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1 Introduction

Mathematical models play an essential role to describe the dynamics of many
infectious diseases. The first models usually use three main populations that are
the susceptible S(t), the infectious I (t), and the removed individuals R(t) at a
specific time t . The basic SIR formulation is introduced in the pioneer work [1];
but, when an individual is incubated but still not yet infectious, another class should
be added; this class is called latent compartment noted by L(t). A mutation process
was observed in many infections such as tuberculosis [2], human immunodeficiency
virus [3], dengue fever [4], influenza [5], and other sexually transmitted diseases.
This phenomenon can result in the observation on two or more strains of the studied
pathogen. Hence, multi-strain model can better describe different type of diseases.

Recently, two-strain SLIR epidemic model has been tackled [6], the authors
consider two incidence rates, the first is bilinear while the second is non-monotonic.
More recently, the same problem with two strains is treated by choosing both
the incidences as non-monotonic [7]. The generalization of a multi-strain SLIR
epidemiological model with general incidence rates is studied in [8]; the authors
compare the numerical simulations with COVID-19 clinical data. In this work, we
continue the investigation of this last kind of problems by taking into consideration
the effect of quarantine measures on SLIRmodel with two non-monotonic incidence
rates. The two-strains SLIR epidemiological model that we consider is formulated
as follows:
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dS

dt
= � − α(1 − u1)SI1

1 + mI 21

− β(1 − u2)SI2

1 + kI 22

− δS ,

dL1

dt
= α(1 − u1)SI1

1 + mI 21

− (γ1 + δ)L1 ,

dL2

dt
= β(1 − u2)SI2

1 + kI 22

− (γ2 + δ)L2 ,

dI1

dt
= γ1L1 − (μ1 + δ)I1 ,

dI2

dt
= γ2L2 − (μ2 + δ)I2 ,

dR

dt
= μ1I1 + μ2I2 − δR ,

(1)

with

S(0) ≥ 0, L1(0) ≥ 0, L2(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0.

This model contains six variables, that are, susceptible individuals (S), two cate-
gories of latent individuals: (L1) and (L2), two categories of infectious individuals:
(I1) and (I2), and removed individuals (R). The parameters of the model (1) are
described in Table 1 and the two-strain SLIR diagram is illustrated in Fig. 1; the

Table 1 Description of parameters of the model (1)

Parameters Description

� Recruitment rate

1/δ Average life expectancy of the population

α Infection rate of the strain 1

β Infection rate of the strain 2

1/μ1 Average infection period of strain 1

1/μ2 Average infection period of strain 2

1/γ1 The average latency period of strain 1

1/γ2 The average latency period of strain 2

m Parameter that measures the psychological or inhibitory effect of strain 1

k Parameter that measures the psychological or inhibitory effect of strain 2
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Λ δS

α(1 − u1)SI1
1 + mI21

L1(t)

δL1

γ1L1
I1(t)

δI1

L2(t)

δL2

β(1 − u2)SI2
1 + kI22

γ2L2

I2(t)

δI2

µ 1I1

µ 2I2

δR
S(t) R(t)

Fig. 1 The diagram of SLIR two-strain model

parameters are given in Table 1. The last two new parameters to the model u1 and
u2 represent the efficiency of quarantine in reducing the first strain infection and the
second strain infection, respectively.

The present work is organized as follows. In the next section, we will prove the
positivity and the boundedness results. In Sect. 3, we fulfilled the global analysis of
our model. In Sect. 4, we will give some results of the numerical simulations. Short
conclusion is given in the last section.

2 Positivity and Boundedness of Solutions

Since our problem is related to the population dynamics, we will prove that all model
variables are positive and bounded. First, we will assume that all the parameters in
our model are positive.

Proposition 2.1 For any positive initial conditions S(0),L1(0),L2(0), I1(0), I2(0),
R(0), the variables of the model (1) S(t), L1(t), L2(t), I1(t), I2(t), and R(t) will
remain positive for all t > 0.

Proof First, let

T = sup{τ ≥ 0 | ∀t, 0 ≤ t ≤ τ such that S(t) ≥ 0, L1(t) ≥ 0, L2(t) ≥ 0,

I1(t) ≥ 0, I2(t) ≥ 0 , R(t) ≥ 0}.

Let us now demonstrate that T = +∞.
Assume that 0 < T < +∞; by continuity, we will have S(T ) = 0 or L1(T ) = 0

or L2(T ) = 0 or I1(T ) = 0 or I2(T ) = 0 or R(T ) = 0. If S(T ) = 0 before the
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other variables L1, L2, I1, I2, R, become zero. Therefore

dS(T )

dt
= lim

t→T −
S(T ) − S(t)

T − t
= lim

t→T −
−S(t)

T − t
≤ 0.

From the first equation of the system (1), we have

dS(T )

dt
= � > 0.

If L1(T ) = 0 before S, L2, I1, I2, and R. Then

dL1(T )

dt
= lim

t→T −
L1(T ) − L1(t)

T − t
= lim

t→T −
−L1(t)

T − t
≤ 0.

From the second equation of the system (1) with the fact L1(T ) = 0, which gives

dL1(T )

dt
= α(1 − u1)SI1

1 + mI 21

.

Since u1 and u2 reflect the effectiveness of quarantine, we have ui ∈ [0, 1], i = 1, 2.
Therefore, α(1 − u1) and m are positive, and we have

dL1(T )

dt
> 0.

Also, if I1 = 0 before S, L1, L2, I2, R become zero, then

dI1(T )

dt
= lim

t→T −
I1(T ) − I1(t)

T − t
= lim

t→T −
−I1(t)

T − t
≤ 0.

But from the fourth equation of the system (1) with I1(T ) = 0, we will have

dI1(T )

dt
= γ1L1.

Since γ1 > 0, we have

dI1(T )

dt
= γ1L1 > 0.

Similar proofs for L2(t), I2(t), and R(t).
We conclude that T could not be finite; this completes the proof.

Proposition 2.2 The biologically feasible region is represented by
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H = {(S, L1, L2, I1, I2, R) ∈ R
6+ such that S + L1 + L2 + I1 + I2 + R ≤ �

δ
}

is positively invariant.

Proof Let the total acting population

N(t) = S(t) + L1(t) + L2(t) + I1(t) + I2(t) + R(t).

By adding all equations in system (1), we will have

dN(t)

dt
= � − δN(t),

therefore,

N(t) = �

δ
+ Ce−δt , (2)

when t = 0, we will have

N(0) = �

δ
+ C.

Therefore

N(t) = �

δ
+ (N(0) − �

δ
)e−δt ,

hence,

lim
t→+∞ N(t) = �

δ
.

Consequently, we conclude thatH is positively invariant which completes the proof.

3 Analysis of the Model

This section is devoted to the equilibria global stability by using some suitable
Lyapunov functionals [9, 10]. Since the first five equations of the system (1) are
not dependent of R and since the total population verifies Eq. (2), thus we can omit
the sixth equation and the system (1) can be reduced to
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dS

dt
= � − α(1 − u1)SI1

1 + mI 21

− β(1 − u2)SI2

1 + kI 22

− δS ,

dL1

dt
= α(1 − u1)SI1

1 + mI 21

− (γ1 + δ)L1 ,

dL2

dt
= β(1 − u2)SI2

1 + kI 22

− (γ2 + δ)L2 ,

dI1

dt
= γ1L1 − (μ1 + δ)I1 ,

dI2

dt
= γ2L2 − (μ2 + δ)I2 ,

(3)

with

R = N − S − L1 − L2 − I1 − I2.

3.1 The Basic Reproduction Number

It is well known that the basic reproduction number can be defined as the average
number of new cases of an infection caused by one infected individual, in a
population consisting of susceptible individuals only. We use the next generation
matrix FV −1 to calculate the basic reproduction number R0. Indeed, the formula
that gives us the basic reproduction number is R0 = ρ(FV −1), where ρ stands for
the spectral radius, F is the nonnegative matrix of new infection cases, and V is the
matrix of the transition infections associated with model (3).

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0
α(1 − u1)�

δ
0

0 0 0
β(1 − u2)�

δ
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, V =

⎛

⎜
⎜
⎝

γ1 + δ 0 0 0
0 γ2 + δ 0 0

−γ1 0 μ1 + δ 0
0 −γ2 0 μ2 + δ

⎞

⎟
⎟
⎠ .

Then,
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FV −1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α(1 − u1)�γ1

δ(γ1 + δ)(μ1 + δ)
0

α(1 − u1)�

δ(μ1 + δ)
0

0
β(1 − u2)�γ2

δ(γ2 + δ)(μ2 + δ)
0

β(1 − u2)�

δ(μ1 + δ)

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This implies that

R0 = max{R1
0, R

2
0},

with

R1
0 = α(1 − u1)�γ1

δ(γ1 + δ)(μ1 + δ)

and

R2
0 = β(1 − u2)�γ2

δ(γ2 + δ)(μ2 + δ)
.

Denoting

a = γ1 + δ, b = γ2 + δ, c = μ1 + δ, e = μ2 + δ,

then,

R1
0 = α(1 − u1)�γ1

δac

and

R2
0 = β(1 − u2)�γ2

δbe
.

3.2 Steady States

The model (3) has four equilibrium points, one called disease-free equilibrium and
the others called endemic equilibria given as follows:

• The disease-free equilibrium Ef =
(

�

δ
, 0, 0, 0, 0

)

.

• The strain 1 endemic equilibrium Es1 = (
S∗

s1
, L∗

1,s1 , L
∗
2,s1 , I

∗
1,s1 , I

∗
2,s1

)
,

where
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S∗
s1

= ac

α(1 − u1)γ1
(R1

0 − α(1 − u1)

δ
I ∗
1,s1) , L∗

1,s1 = c

γ1
I ∗
1,s1 ,

I ∗
1,s1 = 2δ(R1

0 − 1)
√

α(1 − u1)2 + 4mδ2(R1
0 − 1) + α(1 − u1)

,

I ∗
2,s1 = 0 , L∗

2,s1 = 0 .

• The strain 2 endemic equilibrium Es2 = (
S∗

s2
, L∗

1,s2 , L
∗
2,s2 , I

∗
1,s2 , I

∗
2,s2

)
,

where

S∗
s2

= be

β(1 − u2)γ2
(R2

0 − β(1 − u2)

δ
I ∗
2,s2) , L∗

2,s2 = e

γ2
I ∗
2,s2 ,

I ∗
2,s2 = 2δ(R2

0 − 1)
√

β(1 − u2)2 + 4kδ2(R2
0 − 1) + β(1 − u2)

,

I ∗
1,s2 = 0 , L∗

1,s2 = 0 .

• The endemic equilibrium Et = (
S∗

t , L∗
1,t , L

∗
2,t , I

∗
1,t , I

∗
2,t

)
,

where

S∗
t = �

δ
(1 − α(1 − u1)I

∗
1,t

δR1
0

− β(1 − u2)I
∗
2,t

δR2
0

) ,

L∗
1,t = c

γ1
I ∗
1,t , L∗

2,t = e

γ2
I ∗
2,t ,

I ∗
1,t =

√
1

m
(R1

0 S∗
t

δ

�
− 1) , I ∗

2,t =
√
1

k
(R2

0 S∗
t

δ

�
− 1) .

Remark 3.1

(1) From the components of the equilibrium point Es1 (respectively, Es2 ), we
conclude that this strain 1 endemic equilibrium (respectively strain 2 endemic
equilibrium) exists when R1

0 > 1 (respectively, R2
0 > 1).

(2) From the last equilibrium point Et components, we can conclude that this
endemic equilibrium exists when R1

0 > 1 and R2
0 > 1.

3.3 Global Stability

Theorem 1 If R1
0 ≤ 1 and R2

0 ≤ 1. Then the disease-free equilibrium point Ef is
globally asymptotically stable.

Proof First, we consider the following Lyapunov function in R
5+:
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Lf (S, L1, L2, I1, I2) = S∗
(

S

S∗ − ln

(
S

S∗

)

− 1

)

+ L1 + L2 + a

γ1
I1 + b

γ2
I2.

The time derivative is given by

L̇f (S, L1, L2, I1, I2)

= Ṡ − S

S∗ Ṡ + L̇1 + L̇2 + a

γ1
İ1 + b

γ2
İ2,

= δS∗
0

(

2 − S∗
0

S
− S

S∗
0

)

+ α(1 − u1)S
∗
0 I1

1 + mI 21

+ β(1 − u2)S
∗
0 I2

1 + kI 22

− ac

γ1
I1 − be

γ2
I2,

≤ δS∗
(

2 − S∗
0

S
− S

S∗
0

)

+ I1

(

α(1 − u1)S
∗
0 − ac

γ1

)

+ I2

(

β(1 − u2)S
∗
0 − be

γ2

)

,

≤ δS∗
(

2 − S∗
0

S
− S

S∗
0

)

+ ac

γ1
I1(R

1
0 − 1) + be

γ2
I2(R

2
0 − 1),

since the arithmetic mean is greater than or equal to the geometric mean, it follows

2 − S∗
0

S
− S

S∗
0

≤ 0.

Therefore when R1
0 ≤ 1 and R2

0 ≤ 1, we will have L̇f ≤ 0, then the disease-
free equilibrium point Ef is globally asymptotically stable. In order to establish
the global stability of the endemic steady state Es1 , Es2 , and Est , we will need the
following numbers:

Rm = �

δ

√
m

Rk = �

δ

√
k.

We call Rm (respectively Rk) the strain 1 inhibitory effect reproduction number
(respectively the strain 2 inhibitory effect reproduction number).

Theorem 2 If R2
0 ≤ 1 < R1

0 and Rm ≤ 1. Then the strain 1 endemic equilibrium
point Es1 is globally asymptotically stable.

Proof First, we consider the Lyapunov function L1 defined by

L1(S, L1, L2, I1, I2) =S∗
s1

(
S

S∗
s1

− ln

(
S

S∗
s1

)

− 1

)

+ L∗
1

(
L1

L∗
1,s1

− ln

(
L1

L∗
1,s1

)

− 1

)
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+ L2 + a

γ1
I ∗
1,s1

(
I1

I ∗
1,s1

− ln

(
I1

I ∗
1,s1

)

− 1

)

+ b

γ2
I2.

The time derivative is given by

L̇1(S, L1, L2, I1, I2)

=
(

1 − S∗
s1

S

) (

� − α(1 − u1)SI1

1 + mI 21

− β(1 − u2)SI2

1 + kI 22

− δS

)

+
(

1 − L∗
1,s1

L1

) (
α(1 − u1)SI1

1 + mI 21

− aL1

)

+ β(1 − u2)SI2

1 + kI 22

− bL2

+ a

γ1
(γ1L1 − cI1)

(

1 − I ∗
1,s1

I1

)

+ b

γ2
(γ2L2 − eI2) .

We have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = δS∗
s1

+ α(1 − u1)S
∗
s1

I ∗
1,s1

1 + mI ∗2
1

,

α(1 − u1)S
∗
s1

I ∗
1,s1

1 + mI ∗2
1,s1

= aL∗
1,s1 ,

L∗
1,s1

I ∗
1,s1

= γ1

c
.

Therefore

L̇1(S, L1, L2, I1, I2)

= δS∗
s1

(

2 − S∗
s1

S
− S

S∗
s1

)

+ 3aL∗
1,s1 + α(1 − u1)S

∗
s1

I1

1 + mI 21

+ β(1 − u2)S
∗
s1

I2

1 + kI 22

− α(1 − u1)SI1L
∗
1,s1

L1(1 + mI 21 )
− α(1 − u1)S

∗
s1

1 + mI ∗2
1,s1

S∗
s1

I ∗
1,s1

S
− α(1 − u1)S

∗
s1

I1

1 + mI ∗2
1,s1

− aL1I1

I1
− be

γ2
I2.

Then,

L̇1(S, L1, L2, I1, I2)
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= aL∗
1,s1

(

4 − S∗
s1

S
− I ∗

1,s1

I1

L1

L∗
1,s1

− S

S∗
s1

L∗
1,s1

L1

I1

I ∗
1,s1

1 + mI ∗2
1

1 + mI 21

− 1 + mI 21

1 + mI ∗2
1

)

+ δS∗
s1

(

2 − S∗
s1

S
− S

S∗
s1

)

+ β(1 − u2)I2

(
S∗

s1

1 + kI 22

− be

β(1 − u2)γ2

)

+ α(1 − u1)S
∗
s1

I ∗
1,s1

1 + mI ∗2
1,s1

(
1 + mI 21

1 + mI ∗2
1

+ 1 + mI ∗2
1

1 + mI 21

I1

I ∗
1,s1

− I1

I ∗
1,s1

− 1

)

.

Therefore,

L̇1(S, L1, L2, I1, I2)

= aL∗
1,s1

(

4 − S∗
s1

S
− I ∗

1,s1

I1

L1

L∗
1,s1

− S

S∗
s1

L∗
1,s1

L1

I1

I ∗
1,s1

1 + mI ∗2
1,s1

1 + mI 21

− 1 + mI 21

1 + mI ∗2
1,s1

)

+ δS∗
s1

(

2 − S∗
s1

S
− S

S∗
s1

)

+ β(1 − u2)I2

(
S∗

s1

1 + kI 22

− be

β(1 − u2)γ2

)

− amc

γ1

(
1 − mI1I

∗
1,s1

) (I + I ∗
1,s1

)(I − I ∗
1,s1

)2

(1 + mI ∗2
1,s1

)(1 + mI 21 )
.

By the relation between arithmetic and geometric means we have

2 − S∗
s1

S
− S

S∗
s1

≤ 0

and

4 − S∗
s1

S
− I ∗

1,s1

I1

L1

L∗
1,s1

− S

S∗
s1

L∗
1,s1

L1

I1

I ∗
1,s1

1 + mI ∗2
1,s1

1 + mI 21

− 1 + mI 21

1 + mI ∗2
1,s1

≤ 0.

If R2
0 ≤ 1. Then

S∗
s1

1 + kI 22

≤ be

β(1 − u2)γ2
.

Since Rm ≤ 1, we have that m(�
δ
)2 ≤ 1

which implies, 1 − mI1I
∗
1,s1

≥ 0
Consequently,

L̇1 ≤ 0.
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We conclude that the point Es1 is globally asymptotically stable when R2
0 ≤ 1,

1 < R1
0, and Rm ≤ 1.

Theorem 3 If R1
0 ≤ 1 < R2

0 and Rk ≤ 1. Then the strain 2 endemic equilibrium
point Es2 is globally asymptotically stable.

Proof Let us consider the following Lyapunov function:

L2(S, L1, L2, I1, I2)

= S∗
s2

(
S

S∗
s2

− ln

(
S

S∗
s2

)

− 1

)

+ L1 + L∗
2

(
L2

L∗
2

− ln

(
L2

L∗
2

)

− 1

)

+ a

γ1
I1 + b

γ2
I ∗
2,2

(
I2

I ∗
2,2

− ln

(
I2

I ∗
2,s2

)

− 1

)

.

It easy to verify that

L̇2(S, L1, L2, I1, I2)

=
(

1 − S∗
s2

S

)(

� − α(1 − u1)SI1

1 + mI 21

− β(1 − u2)SI2

1 + kI 22

− δS

)

+
(

1 − L∗
2

L2

)(
β(1 − u2)SI2

1 + kI 22

− bL2

)

+
(

α(1 − u1)SI1

1 + mI 21

− aL1

)

+ b

γ2
(γ2L2 − eI2)

(

1 − I ∗
2,s2

I2

)

+ a

γa

(γ1L1 − cI1).

It is easy to see that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = δS∗
s2

+ β(1 − u2)S
∗
s2

I ∗
2,s2

1 + kI ∗2
2,s2

β(1 − u2)S
∗
s2

I ∗
2,s2

1 + kI ∗2
2,s2

= bL∗
2,s2 ,

L∗
2,s2
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e
.

We have

L̇2(S, L1, L2, I1, I2)
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Then,
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Therefore
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The hypothesis (H2) implies that
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≤ 0.

Then,
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hence,
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If R1
0 ≤ 1. Then

α(1 − u1)S
∗
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≤ ac

γ1
.

By the relation between arithmetic and geometric means we have
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S
− S

S∗
s2

≤ 0

and
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Then

L̇2 ≤ 0.

We conclude that the point Es2 is globally asymptotically stable when R1
0 ≤ 1 <

R2
0.

Theorem 4 If R1
0 > 1, R2

0 > 1, Rm ≤ 1, and Rk ≤ 1. Then the endemic
equilibrium point Est is globally asymptotically stable.
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Proof For the proof of this last result it will be enough to consider the following
Lyapunov function L3:

L3(S, L1, L2, I1, I2)

= S∗
t

(
S
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S
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− 1
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2,t

)

− 1

)

+ a
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(
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I ∗
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− ln

(
I1
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− 1

)

+ b

γ2
I ∗
2,t

(
I2

I ∗
2,t

− ln

(
I2

I ∗
2,t

)

− 1

)

.

4 Numerical Simulations

In this section, we will perform some numerical simulations in order to check the
impact of quarantine measures in reducing the spread of COVID-19. Indeed, Fig. 2
shows the evolution of infection for λ = 1, α = 0.9, β = 1.45, γ1 = 0.5, γ2 = 0.3,
μ1 = 0.15, μ2 = 0.15, δ = 0.2, m = 1.75, k = 2.85 and different values of u1 and
u2.

In the case when no quarantine strategy is undertaken, i.e. u1 = u2 = 0, we
observe that the disease persists and the infected cases stay at very high level. When
the effectiveness of the quarantine measures is increased, u1 = u2 = 0.25 or u1 =
u2 = 0.75, a significant reduce of the infection cases is observed; we can also
observe a considerable reduce of the latent individuals. Finally, when the quarantine
measures are fully established, i.e. u1 = u2 = 1, an interesting result is observed.
In this last case, the disease dies out, which is represented by the vanishing of all
strains infected individuals and also the latent ones. The susceptible individuals will
reach in this situation their maximal level. We conclude that the quarantine measures
reduce significantly the spread of COVID-19.

5 Conclusion

Modeling epidemiological phenomena makes it possible to better understand several
mechanisms that influence the spread of many diseases. In this work, we have stud-
ied the effectiveness of quarantine against the spread of COVID-19. Indeed, we have
established the problem via six-compartment SLIR model, in which the dynamics
of the COVID-19 epidemic is modeled by a system of six nonlinear differential
equations, describing the interactions between susceptible, exposed, infected, and
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Fig. 2 The effect of quarantine strategy on the SLIR model dynamics

healed. First, we have calculated the basic reproduction number depending on the
quarantine efficacy. Next, we have given the disease-free equilibrium and three
other endemic equilibria, and then we have discussed, according to the value of
the basic reproduction number, the global stability of each equilibrium. Numerical
simulations are presented in order to discuss the effectiveness of quarantine
measures in reducing the spread of COVID-19 pandemic.
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