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Preface

This book is, as a rule, a collection of selected papers for publication after a
final peer-reviewed evaluation of the papers presented at the scientific sessions
of the BIOMAT 2020 International Symposium. The organization of this 20th
International Symposium of the BIOMAT series has been planned soon after the
BIOMAT 2019, to be also the celebration of the organization of 20 international
BIOMAT conferences every year since the year 2001, with the foundation of the
BIOMAT Consortium (http://www.biomat.org). We did not expect the emergence of
a sad, awful situation of pandemics as everybody. However, we now dare to say that
we are proud to confirm that the members of the International BIOMAT Consortium
community have offered clear proof of the resilience of their dedication to scientific
research and their love and curiosity of the structure of natural phenomena despite
all difficulties for creative work and effective scientific discussions. No retreat! No
surrender! – this was written on the flag of our scientific and academic ambitions.

The BIOMAT 2020 International Symposium has been organized as an e-
conference for the first time. With the help of all our colleagues/authors of
accepted works for presentation on sessions of a BIOMAT conference, the BIOMAT
Consortium has succeeded once more at assembling professional researchers and
research students from several countries and continents. On the BIOMAT 2020,
we had participants from 18 countries on 20 scientific sessions from Monday
morning to Friday night, 02nd to 06th November 2020, on a scientific program of
33 contributed talks and 13 keynote speaker talks. We got an expert collaboration
from RNP – the Brazilian Academic Network – and we take this opportunity to
express our sincere thanks to Dr. Beatriz Zoss and Dr. Luiz Coelho from RNP
for their professional expertise and all their patience to give us tips of procedure
on something that had been “terra incognita” for us before the organization of the
BIOMAT 2020, at least for the president of the BIOMAT Consortium!

We have also managed to cope with the difficulties of working on an e-
conference, with participants living in different time zones, and we selected
the Greenwich MeanTime (GMT) as a reference. The presentations have been
scheduled from 10:00 a.m. to 04:45 p.m. (GMT+0) to maximize the attendance
of participants in countries of four continents. We have been motivated all the time,
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vi Preface

among all hindrances, by the aim of organizing an emblematic e-conference, with
the additional duty of celebrating 20 years of a successful international series. We
have done our best to succeed, but despite the success, we sincerely hope not to have
to do it again.

We would like to acknowledge the gentle and efficient help of Dr. Simão C. de
Albuquerque Neto from the Federal University of Rio de Janeiro for his attentive
collaboration on the coordination of the e-platform during all the sessions of the
BIOMAT 2020. Dr. Albuquerque Neto is also a joint author of so many contributions
to the field of amino acid statistical distributions on protein domain families in which
we have worked in the past years.

Since the first BIOMAT conference, in Rio de Janeiro, in 2001, and especially
on this online version of the BIOMAT 2020, I have been indebted to my wife
Carmem Lucia for her collaboration, patience, and belief in the difficult mission of
her husband. Her continuous contribution to the staff at the BIOMAT Consortium
has been invaluable during all these years.

Rio de Janeiro, Brazil Rubem P. Mondaini
06 Nov 2020
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Mathematical Modeling of
Macroalgae-Borne Pathogen
Transmission in Corals

Susmita Halder, Samares Pal, and Joydeb Bhattacharyya

1 Introduction

Coral diseases have been identified as the most important contributors to the
global degradation of coral reef ecosystems. Among all of the coral diseases, BBD
(Black Band Disease) is considered as one of the most important contributors
to the decline of coral reefs. Molecular examinations by Richardson [1] uncover
that cyanobacteria and a complex consortium of different microorganisms are the
primary causative agents of BBD. This microbial community is responsible for
creating a chemical environment that digests off and dissolves the coral tissue away
from the skeleton [2]. Rutzler et al. [3] point out that healthy corals can become
infected with BBD by direct contact. However, field observations by Antonelli [4]
recommended that apart from direct contact, injured corals may become infected
with BBD when placed at a distance apart. As observed by Aeby and Santavy [5],
the transmission of BBD on injured corals is vector-mediated, capable of spreading
by the contaminated environment.

Several macroalgae species contain multiple hydrophobic compounds that
directly damage coral tissues by transferring hydrophobic allelochemicals present
on algal surfaces [6, 7]. Field observations by Andras et al. [8], Rasher et al. [9]
demonstrate that corals when in contact with toxic-macroalgae species experience

We thank the anonymous reviewer for his careful reading of the manuscript entitled “Mathematical
Modeling of Macroalgae-Borne Pathogen Transmission in Corals” and his many insightful
comments and suggestions.
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reduced fecundity and even higher mortality. Also, the release of allelochemicals by
toxic macroalgae helps the microbes to transmit pathogens associated with corals.
As the physical contact between corals and macroalgae increases owing to the
proliferation of benthic macroalgae in coral reefs, the susceptibility of coral disease
increases. This leads to an unhealthy and weaker coral class in coral reefs overgrown
by fast-growing macroalgae. The abundance of macroalgae in coral reefs changes
the community structure toward macroalgae-dominated coral reef ecosystem. The
combinations of the outbreak of BBD and the proliferation of macroalgae are
detrimental to coral reef ecosystems. Our model originates from the models used in
[10, 11] and is a direct extension of the model studied in [11] by subdividing coral
population into susceptible and infected classes and by assuming that macroalgae
recruit externally from the surrounding seascape. The tissues of corals in the wake
of being infected by BBD are stripped from the coral surface, and macroalgae
rapidly colonize the exposed skeleton, preventing any subsequent recuperation of
corals from the infection [12]. This prompts us to consider a model where the
disease spreads among coral population according to a Susceptible→Infected (SI)
type compartmental epidemiological model [13]. The main emphasis of this chapter
will be put in analyzing the dynamic behavior of the system and finding out the
long-term consequences of BBD and reduction in herbivory on coral resilience and
persistence.

2 The Basic Model

Firstly, we model three benthic groups: corals, turf algae, and toxic macroalgae,
competing for space on the seabed by considering a fraction of seabed available for
their growth. The coral population affected by BBD is subdivided into two classes,
viz. susceptible and infected. In formulating the model, we assume that macroalgae
are always present in coral reef ecosystem irrespective of the abundance of corals
in seabed. Let M(t), CS(t), CI (t), and T be the fractions of seabed covered by
macroalgae, disease-free corals, and turf algae, respectively, so thatM(t)+CS(t)+
CI (t) + T (t) = c0 (constant) at any instant t . The concentration of free-living
pathogen (FLP) in the environment at time t is given by W(t). Susceptible corals
become infectious by the contaminated environment. Infectious corals contaminate
the environment by shedding pathogen that is capable of growth and survival in the
environment. For simplicity, we have ignored the possibility of any empty space in
the seabed. Figure 1 depicts a schematization of our eco-epidemiological model.

We make the following assumptions in formulating the mathematical model:

(H1) Corals are overgrown by macroalgae, at a rate α.
(H2) Macroalgae spread vegetatively over algal turfs at a rate a.
(H3) Colonization rate of newly immigrated macroalgae on algal turf is b.
(H4) Corals recruit to and overgrow algal turfs at a rate r .
(H5) Macroalgae and corals have natural mortality rates dm and dc, respectively.
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Fig. 1 Schematic representation of the eco-epidemiological model

(H6) The death rate of corals from macroalgal toxicity is γ .
(H7) The disease-induced death rate of infected corals is δ.
(H8) The grazing rate of herbivorous fish on macroalgae is g(1−β)

c0−(CS+CI ) per unit
area of algal cover, where g is the maximal grazing rate of herbivorous
fish in the absence of harvesting and β represents the harvest-mediated
reduction in grazing of herbivorous fish (0 ≤ β < 1).

(H9) The rate of transmission of infection from the pathogens in the environment
to susceptible corals is λ.

(H10) The rate of release of pathogens into the environment under the influence
of toxic macroalgae and infected corals are ν1 and ν2, respectively.

(H11) The growth rate of pathogens in the environment is η.
(H12)

1
dw

represents the average time that an infectious pathogen exists in the
environment.

(H13)
1
k

represents the carrying capacity of FLP.

The equations representing reef dynamics in the presence of grazing are given by
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dM

dt
= M
{
α(CS + CI )− g(1 − β)

M + T − dm
}
+ (aM + b)T

dCS

dt
= CS {rT − (α + γ )M − λW − dc}

dCI

dt
= λCSW − CI {(α + γ )M + dc + δ}

dT

dt
= gM(1−β)

M+T +dmM+(dc+γM)(CS + CI )+ δCI − T (aM + b + rCS)
dW

dt
= ν1M + ν2CI +W {η(1 − kW)− dw} ,

(1)

where 0 < M(0) < 1, 0 ≤ CS(0) < 1, 0 ≤ CI (0) < 1, 0 < T (0) < 1, and
W(0) > 0.

Without any loss of generality, we assume that c0 = 1. Then from (1), we obtain

dM

dt
=M
{
α(CS+CI )− g(1−β)

1−CS−CI −dm
}

+ (aM+b)(1−M−CS−CI )≡F 1

dCS

dt
= CS {r(1 −M − CS − CI )− (α + γ )M − λW − dc} ≡ F 2

dCI

dt
= λCSW − CI {(α + γ )M + dc + δ} ≡ F 3

dW

dt
= ν1M + ν2CI +W {η(1 − kW)− dw} ≡ F 4,

(2)

where 0 < M(0) < 1, 0 ≤ CS(0) < 1, 0 ≤ CI (0) < 1, andW(0) > 0.
We observe that right-hand sides of the equations in the system (2) are smooth

functions of the variables M,CS,CI ,W and the parameters. As long as these
quantities are non-negative, local existence and uniqueness properties hold in R4+ =
{(M,CS, CI ,W) : M > 0, CS, CI ≥ 0,W > 0}.
Lemma 2.1 For all ε > 0, there exists tε > 0 such that all the solutions of (2) enter
into the set{

(M,CS ,CI ,W) ∈ R4 : M(t)+ CS(t)+ CI (t)+W(t) < 1 + 1
k

(
1 +
√
k(ν1+ν2)

η + 1

)
+ ε
}
whenever t ≥ tε .

Proof We have d
dt
(W(t)) ≤ ν1 + ν2 + ηW(t) {1 − kW(t)}.

Let U(t) be the solution of d
dt
U(t) = ν1 + ν2 + ηU(t) {1 − kU(t)} , satisfying

U(0) = W(0).
Then, U(t) = 1

k
+m
(
ce2mkηt−1
ce2mkηt+1

)
, where m =

√
ν1+ν2
kη

+ 1
k2 and c = m+U(0)− 1

k

m−U(0)+ 1
k

.

This implies U(t)→ m+ 1
k

, as t → ∞.
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Applying the standard theorem of differential inequality, it follows that
limt→∞ supW(t) ≤ m+ 1

k
.

Also, 0 < M(t) + CS(t) + CI (t) ≤ 1 for all t ≥ 0 implies M(t) + CS(t) +
CI (t)+W(t) ≤ 1 +m+ 1

k
as t → ∞.

3 Equilibria and Their Stability

In this section, we determine biologically feasible equilibrium solutions of the
model and investigate the dependence of their stability on several key parameters.

The system (2) possesses the following equilibria:

(i) Coral-free equilibrium E0 = (M0, 0, 0,W0) always exists, where

M0 = a−b+g(1−β)−dm+
√

{a−b+g(1−β)−dm}2+4ab
2a andW0 = η−dw+

√
(η−dw)2+4kην1M0

2kη .
(ii) Interior equilibrium E∗ = (M∗, C∗

S, C
∗
I ,W

∗), where M∗ is a positive root of
the equation

r (1 −M − f2(M)− f3(M)) − (α + γ )M − λf1(M) − dc = 0, C∗
S = f3(M

∗),
C∗
I = f2(M

∗) andW ∗ = f1(M
∗), where

f1(M) = −B±
√
B2−4AC

2A , f2(M) = f1(M){dw−η(1−kf1(M))}−ν1M
ν2

, f3(M) =
f2(M)
λf1(M)

{(α + γ )M + dc + δ},
A = λ2

r2 (aM + b) (aM − αM + b),
B = Mλ

r

{
α
(

1 − 2M − 2(α+γ )M
r

− 2dc
r

− dm
)}

+ λ(aM+b)
r

{
2(α+γ )M

r
+ 2dc

r
+M
}

and
C =

[
M
{
α
(

1 −M − (α+γ )M
r

− dc
r

)
− dm
}
+ (aM + b)

(
(α+γ )M

r
+ dc

r

)]

·
(
M − (α+γ )M

r
− dc

r

)
− g(1 − β)M .

At E0, the eigenvalues of the Jacobian matrix of the system (2) are
−√{a − b + g(1 − β)+ dm}2 + 4ab, r − dc − M0(r + α + γ ) − λW0,
−{(α + γ )M0 + dc + δ} and −√(η − dw)2 + 4kην1M0.

Therefore, all the eigenvalues of the Jacobian matrix at E0 are negative if λ >
r−dc−M0(r+α+γ )

W0
. This gives the following lemma:

Lemma 3.1 The system (2) is locally asymptotically stable at E0 if λ >
r−dc−M0(r+α+γ )

W0
.

Therefore, with high BBD-transmission rate, the system stabilizes at macroalgae-
dominated steady state with complete elimination of corals.

Lemma 3.2 If α > g(1 − β) + a + b
M0

, the system (2) undergoes a transcritical

bifurcation at E0 when λ crosses λ∗ = r−dc−M0(r+α+γ )
W0

.

Proof At λ = λ∗, the Jacobian matrix J0 at E0 becomes
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⎛
⎜⎜⎜⎜⎝

−
√
(b − a + g(1 − β)+ dm)2 + 4ab 0 0 ν1
{α − g(1 − β)− a}M0 − b 0 λW0 0
{α − g(1 − β)− a}M0 − b 0 − {(α + γ )M0 + dc + δ} ν2

0 0 0 −
√
(η − dw)2 + 4kην1M0 .

⎞
⎟⎟⎟⎟⎠

T

Therefore, the zero eigenvalue of the Jacobian matrix is simple.
Let V and W be the eigenvectors corresponding to the zero eigenvalues for J0

and J T0 , respectively.

Then, we obtain V = ( v1 v2 v3 v4
)T

andW1 = (0 1 0 0
)T

, where

v1 = [{α−g(1−β)−a}M0−b]{(α+γ )M0+dc+δ+λW0}
λW0

, v2 = (α+γ )M0+dc+δ
λW0

, v3 = 1 and

v4 = ν1[{α−g(1−β)−a}M0−b]{(α+γ )M0+dc+δ+λW0}+λν2W0

λW0

√
(η−dw)2+4kην1M0

.

Let us express the system (2) in the form Ẋ = f (X; λ), where

X = (M CS CI W
)T

and f (X; λ) = (F 1 F 2 F 3 F 4
)T

.
Then, we have WT fλ(E0; λ∗) = 0, and so no saddle-node bifurcation occurs at

E0 when λ crosses λ∗.

Also, Dfλ(E0; λ∗)V =
(

0 − (α+γ )M0+dc+δ
λ

(α+γ )M0+dc+δ
λ

0
)T

and so

WT [Dfγ (E0; λ∗)V ] = − (α+γ )M0+dc+δ
λ

< 0.
Also, we have

D2f (E0; λ∗)(V , V ) =

⎛
⎜⎜⎜⎝

−2av2
1 + 2v1{α − a − g(1 − β)}(v2 + 1)− 4gM0(1 − β)(v2

2 + v2 + 1)

−2(r + α + γ )v1v2 − 2rv2 − 2λv2v4 − 2rv2
2−2(α + γ )v1 + 2λv2v4

−2kv2
4 .

⎞
⎟⎟⎟⎠

This givesWT [D2f (E0; λ∗)(V , V )] = −2v2[(r+α+ γ )v1 + r(1+ v2)+λv4].
If α > g(1−β)+ a+ b

M0
holds, thenWT [D2f (E0; λ∗)(V , V )] < 0, and so, by

Sotomayor’s theorem [14], it follows that the system (2) undergoes a transcritical
bifurcation at E0 when λ crosses λ∗ (cf. Fig. 2a).

The system is persistent if the boundary equilibrium E0 repels interior trajecto-
ries [15]. The condition given in the following lemma rules out the possibility of
extinction of any organism in the system.

Lemma 3.3 All the organisms in the system will persist if λ < λ∗.

The characteristic equation of the Jacobian J ∗ of the system (2) evaluated at E∗
is μ4 + Aμ3 + Bμ2 + Cμ+D = 0, where

A = aM∗ + b
M∗ (1 − C∗

S − C∗
I )+
(
r + η

C∗
I

)
C∗
S,

B = B1 +
{
(α − a)M∗ − b − gM∗

(1−C∗
S−C∗

I )
2

}
B2, C = C1 −

{
(α − a)M∗ − b − gM∗

(1−C∗
S−C∗

I )
2

}
C2,

B1 =
[(
aM∗ + b(1−C∗

S−C∗
I )

M∗
) (
r + η

C∗
I

)
+ (r + λ)(λC∗

I + η)+ rηC∗
S

C∗
I

]
C∗
S ,

B2 = (r + α)C∗
S + αC∗

I , C1 =
{
(r + λ)(λC∗

I + η)+ rηC∗
S

C∗
I

} (
aM∗ + b(1−C∗

S−C∗
I )

M∗
)
C∗
S ,

C2 =
{
(2α + r)λC∗

I +
(

1 − C∗
S

C∗
I

)
(r + α)η

}
C∗
S ,

D = P1 +
{
(α − a)M∗ − b − gM∗

(1−C∗
S−C∗

I )
2

}
P2,

P1 =
[(
aM∗ + b(1−C∗

S
−C∗
I
)

M∗
)(

aM∗ + r + η

C∗
I

+ b(1−C∗
S
−C∗
I
)

M∗
)

+ rηC∗
S

C∗
I

+ (r + λ)(λC∗
I
+ η)
](
r + η

C∗
I

)
C∗
S
,
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Fig. 2 Bifurcation diagrams of (a) λ, (b) g, (c) γ , and (d) ν1 versus the equilibrium value of coral
cover

and P2 =
(
aM∗ + rC∗

S + b(1−C∗
S−C∗

I )

M∗
) {
(r + α)C∗

S + αC∗
I

}+ (r + 2α)(η + λC∗
I )C

∗
S .

Also, we have A,C1 > 0 and Bi, Pi > 0(i = 1, 2).
Therefore, the system (2) is locally asymptotically stable at E∗ if AB > C and

ABC > C2 + A2D.
Also, we have A,C1 > 0 and Bi, Pi > 0(i = 1, 2).
Now, we will study the Hopf bifurcation of the system (2) at E∗, taking g as the

bifurcation parameter.
Solving ABC−C2 −A2D = 0, the critical value of bifurcation parameter g can

be obtained, say g = g∗.
At g = g∗, the characteristic equation is

(
μ2 + C

A

)(
μ2 + μA+ AD

C

)
= 0.
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For g = g∗, let μi(i = 1, . . . , 4) be the roots of the characteristic equation with the

pair of purely imaginary roots as μ1 = iω0 and μ2 = μ̄1, where ω0 =
√
C(g∗)
A(g∗) .

Now, if μ3 and μ4 are not real, then Reμ3 = μ3+μ4
2 = − 1

2A(g
∗) < 0. If μ3 and

μ4 are real roots, then μ3 + μ4 < 0 and μ3μ4 = A(g∗)D(g∗)
C(g∗) = D(g∗)

ω2
0
> 0 implies

μ3, μ4 < 0.
Therefore, only a pair of eigenvalues of the characteristic equation F(μ) = 0 at

g = g∗ are purely imaginary.
Let ψ(g) = A(g)B(g)C(g) − (C(g)2 + A(g)2D(g)). Since ψ is continuously

differentiable function of g, then there exists an open interval (g∗ − ε, g∗ + ε) such
that μi(g) = pi(g)+ iqi(g), for all g ∈ (g∗ − ε, g∗ + ε).

To verify the condition of Hopf bifurcation at g = g∗, we put p+iq in F(μ) = 0,
and then separating the real and imaginary parts, we obtain

p4 + p3A+ p2(B − 6q2)+ p(C − 3q2A)+ q4 +D = 0

and

q2(4p + A) = 4p3 + 3p2A+ 2pB + C.

Differentiating F(μ) = 0 with respect to g and then putting g = g∗, we get

(
dpi

dg

) ∣∣∣(g = g∗) =
(
KL1 − LK1

JK1 − J1K

)
(g = g∗) 
= 0, (3)

IfK(g∗)L1(g
∗) 
= K1(g

∗)L(g∗) and J (g∗)K1(g
∗) 
= J1(g

∗)K(g∗) which is the
transversality condition of Hopf bifurcation, where J = 4p3 + 3Ap2 + (2B −
12q2)p + C − 3Aq2,K = −12p2 − 6pqA + 4q3, L = p3A′ + p2B ′ + pC′ −
3pq2A′ +D′, J1 = 12p2 + 6Ap+ 2B − 4q2,K1 = −2Aq − 8pq,L1 = 3p2A′ +
2pB ′ + C′ − q2A′.

Therefore, the above system undergoes a Hopf bifurcation if

(i) A(g∗), B(g∗), C(g∗),D(g∗) > 0.
(ii) A(g∗)B(g∗) > C(g∗).

(iii) A(g∗)B(g∗)C(g∗) > C(g∗)2 + A(g∗)2D(g∗).
(iv) K(g∗)L1(g

∗) 
= K1(g
∗)L(g∗), J (g∗)K1(g

∗) 
= J1(g
∗)K(g∗).

We investigate numerically the effect of the various parameters on the qualitative
behavior of the system using parameter values given in Table 1 throughout, unless
otherwise stated.

To identify the impact of infection rate (λ) on coral cover, in Fig. 2a, we plot the
solutions of the nullcline equations in the (CS+CI )−λ plane, yielding a bifurcation
diagram. It is observed that at a low infection rate, there is a high coral cover. As
the infection rate increases, the system undergoes a Hopf bifurcation leading to an
oscillatory dynamics of the system. From Fig. 2a, it is seen that the periodic orbits
emerging from a Hopf bifurcation start to grow with an increase in the values of λ
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Table 1 Parameter values used in the numerical analysis

Parameters Description of parameters Value Reference

α Macroalgal overgrowth rate on corals 0.1 [16]

β Harvest-mediated grazing loss 0.1 [17]

γ Toxin-induced death rate of infected corals 0.1 [17, 18]

δ Disease-induced death rate of infected corals 0.1 –

r Recruitment rate of susceptible corals on turf algae 0.55 [16]

a Macroalgal vegetative growth rate on algal turfs 0.77 [16]

b Immigration rate of macroalgae on algal turf 0.005 [16]

dm Natural mortality rate of macroalgae 0.1 [11]

dc Natural mortality rate of corals 0.24 [16]

g Maximal macroalgae-grazing rate of herbivores 0.8 [16]

λ Rate of infection 0.3 [18]

ν1 Rate of release of FLP by macroalgae 0.01 [18]

ν2 Pathogen-shedding rate by infectious corals 0.3 [18]
1
dw

Average time FLPs exist in environment 100 [18]
1
k

Carrying capacity of FLP 3 –

η Intrinsic growth rate of FLP 0.001 –

before reaching to a peak value. After that, the periodic orbits start shrinking with
the increase in the value of λ, and eventually the system becomes stable with a low
coral cover (when λ < λ∗). For λ > λ∗, the coral becomes extinct from the system.

From Fig. 2b, we see that for a low grazing rate (g), the corals will no longer
be able to survive in the system. With an increase in the grazing rate, initially, the
system turns to an oscillatory state from a low macroalgae-dominated coexistence
state followed by a coral-dominated stable coexistence state.

Figure 2c shows the effect of macroalgal toxicity (γ ) on corals. It is observed
that the system becomes stable at the coexistence steady state when the macroalgal
toxicity is low. With an increase in the value of γ , the system undergoes a Hopf
bifurcation at some critical value of γ . Figure 2c refers to a bifurcation diagram
showing the growth of periodic orbits emerging from a Hopf bifurcation of the
system as γ is increased.

To identify the role of macroalgae on the growth of FLP, in Fig. 2d, we plot
a bifurcation diagram with ν1 as a bifurcation parameter. It is observed that the
coral cover gradually decreases with the increase in the value of ν1, and eventually,
the corals cease to exist in the system when the value of ν1 crosses some critical
threshold.

Figure 3a represents a bifurcation diagram of α versus equilibrium value of coral
cover. It is observed that any increase in the macroalgal growth rate decreases the
coral cover. When the macroalgal growth rate becomes sufficiently high, corals can
no longer survive and the system becomes macroalgae-dominated and coral-free.
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Fig. 3 Bifurcation diagrams of (a) α, (b) b, (c) r , and (d) ν2 versus the equilibrium value of coral
cover

To identify the impact of macroalgal immigration rate (b) on coral cover, in
Fig. 3b, we plot the solutions of the nullcline equations, yielding a bifurcation
diagram. It is observed that the coral cover becomes high with minimal colonization
of macroalgae on algal turf. With an increase of the macroalgal colonization rate,
the coral cover starts getting depleted followed by an oscillatory coexistence state
and an eventual complete elimination of the corals.

Figure 3c represents the effect on the coral cover for different growth rates of
corals (r). It is observed that, under macroalgal toxicity, the diseased corals cannot
be able to survive in the system if their growth rates are sufficiently low. It is also
observed that the faster-growing corals have a greater chance of survival in the
system amid macroalgal toxicity and coral disease.
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Fig. 4 Two-parameter bifurcation plots with (a) λ, g as active parameters, (b) λ, γ as active
parameters, (c) γ , g as active parameters, and (d) γ , ν1 as active parameters (region-I indicates
coral-depleted state; region-II indicates macroalgae-dominated coexistence state; region-III indi-
cates oscillatory coexistence state; region-IV indicates coral-dominated coexistence state)

From Fig. 3d, we see that low shedding rate of FLP by infected corals stabilizes
the system at the coexistence state, while higher pathogen-shedding rate by infected
corals changes the dynamics of the system to an oscillatory coexistence state.

To identify the combined effect of λ and g on coral cover, in Fig. 4a, we plot a
two-parameter bifurcation diagram with λ and g as active parameters. It is observed
that the lower grazing rate is detrimental to the survival of corals even with low
disease transmission rate. A coral-dominated coexistence state (cf. Fig. 4a, region-
IV) exists only when the grazing rate is sufficiently high together with low disease
transmission rate. It is also observed that even with high grazing rate, the system
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Fig. 5 Two-parameter bifurcation plots with (a) λ, b as active parameters, (b) g, b as active
parameters, (c) g, ν1 as active parameters, and (d) g, ν2 as active parameters (region-I indicates
coral-depleted state; region-II indicates macroalgae-dominated coexistence state; region-III indi-
cates oscillatory coexistence state; region-IV indicates coral-dominated coexistence state)

becomes oscillatory (cf. Fig. 4a, region-III) when the disease transmission rate is
high.

The impact of macroalgal colonization rate on turf algae (b) together with disease
transmission rate on the coral cover is represented in Fig. 5a. It is observed that the
coral-dominated stable state exists only at a low infection rate and low macroalgal
immigration rate. It is also observed that as the algal immigration rate increases, the
basin of attraction of the stable coexistence state shrinks.
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To identify the combined effect of λ and γ on coral cover, in Fig. 4b, we plot a
two-parameter bifurcation diagram with λ and γ as active parameters, keeping all
other parameters as in Table 1. It is observed that with a low disease transmission
rate, the system becomes stable at the coral-dominated coexistence state (cf. Fig. 4b,
region-IV) even at a high macroalgal toxicity level. With an increase in the disease
transmission rate, the system becomes oscillatory (cf. Fig. 4b, Region-III). Further,
increase in the transmission rate stabilizes the system at a macroalgae-dominated
coexistence state (cf. Fig. 4b, region-II) followed by the complete elimination of the
corals (cf. Fig. 4b, region-I). When the system is stable at macroalgae-dominated
coexistence state, increase in macroalgal toxicity rate eliminates corals from the
system.

The combined effect of the parameters γ and g on the coral cover is given in
Fig. 4c. It is seen that with sufficiently high grazing rate, the system will be coral-
dominated irrespective of macroalgal toxicity level. From Fig. 4d, it is seen that a
coral-dominated stable state is only possible when the macroalgal toxicity is low
and when macroalgae-mediated pathogen growth is at a low level.

The combined effect of grazing and macroalgal immigration rate is represented
by Fig. 5b. It is seen that grazing plays an active role in the existence of the
coexistence state of the system, while the rate of macroalgal immigration plays a
dominant role for the switching of coral-dominated coexistence state to macroalgae-
dominated coexistence state. It is seen that the coral-dominated coexistence state
exists only when the grazing rate is sufficiently high and the macroalgal immigration
rate is low. Figure 5c and d show the combined effect of grazing and pathogen-
shedding rates by macroalgae and infected corals, respectively. While either figure
shows that lower grazing rate is detrimental for corals, with high grazing rate the
system becomes coral-dominated even with high macroalgae-mediated pathogen
growth (cf. Fig. 5c). On the other hand, with high grazing rate the coral-dominated
state is only possible when the pathogen-shedding rate by infected corals is low (cf.
Fig. 5d).

4 Discussion

We have considered an eco-epidemiological model to study the dynamics of coral
reef benthic system in which macroalgae and corals are competing to occupy turf
algae in the presence of microbial infection on corals. In our model, the immigration
of algae from other areas of the seabed is taken into account. Underwood et al. [19]
observed that for some coral reefs, it may be appropriate to exclude the immigration
of coral larvae. We model a coral reef ecosystem in which coral larvae do not
immigrate. Firstly, we analyze the system in the absence of time delays. We first
perform equilibrium and stability analysis on our 4D non-linear ODE model and
find that the model is capable of exhibiting a transcritical bifurcation associated
with the elimination of corals and a Hopf bifurcation arises when the rate of
disease transmission becomes high. The effect of grazing on hysteresis supports the
observations from previous modeling analyses by Blackwood et al. [11], Mumby
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et al. [10], and Fung et al. [20, 21]. It is noteworthy that in our model, grazing
played an important role in the existence of the coral-dominated stable state. It
is observed that at a high microbial infection rate, the system initially becomes
oscillatory by undergoing a Hopf bifurcation at the coexistence state followed by
a coral-depleted stable state. In this case, the extinction of coral population is due
to natural fluctuations that become very likely when the oscillation drives the coral
population to small size. Further, analytical and numerical simulations demonstrate
the following conclusions:

(i) The corals get eliminated from the system when the macroalgal grazing rate
by herbivores is low. Increase of grazing intensity by herbivores increases
the resilience of the coral-dominated regime, justifying the observations of
Blackwood et al. [11] and Mumby et al. [10]. The system exhibits a Hopf
bifurcation when the grazing intensity is increased from a low threshold level,
resulting in a change of transition from a macroalgae-dominated stable state to
an oscillatory coexistence state.

(ii) The system becomes macroalgae-dominated when the macroalgal immigration
on algal turfs becomes high. In this case, a higher rate of herbivory stabilizes
the system at the coral-dominated state, while a higher rate of disease
transmission stabilizes the system at the coral-free stable state.

(iii) A coral-dominated stable state exists when both the macroalgae-mediated FLP
growth and disease transmission rate are low.

(iv) Even with a high macroalgal toxicity level on corals, higher grazing rate by
herbivores helps in retaining a coral-dominated steady state.

From analytical and numerical observations, we observe that higher grazing rate
of herbivores increases the resilience of the coral-macroalgae coexistence regime.
Further, the colonization rate of macroalgae on algal turf is detrimental to the coral
reef ecosystem affected by the coral disease.
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Oscillatory Behavior of a Delayed
Ratio-Dependent Predator–Prey System
with Michaelis–Menten Functional
Response

Sándor Kovács, Szilvia György, and Noémi Gyúró

1 Introduction

Based on the results in [11], the authors of [13] have considered the ratio-dependent
predator–prey system with the Michaelis–Menten functional response

ẋ = rxg(x,K)−
n∑
i=1

yipi

(yi
x

)
,

ẏi = yipi

(yi
x

)
− diyi, (i ∈ {1, . . . , n})

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (1)

where the dot means differentiation with respect to time t ; x(t) ≥ 0 denotes the
quantity of the prey at time t and yi(t) ≥ 0 are the numbers or densities of the ith
predator (i ∈ {1, . . . , n}) at time t . It was assumed that the per capita growth rate
of prey in the absence of predators is rg(x,K) where r > 0 denotes the maximal
growth rate of prey and K > 0 is the carrying capacity of environment with respect
to the prey; furthermore, the death rate di > 0 of the ith predator is constant, and
the per capita birth rate of the same predator is pi

( yi
x

)
, where the functions g and

pi have the following forms:

g(x,K) :≡ 1 − x

K
and pi

(yi
x
, ai

)
:≡ mix

aiyi + x ,
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and ai is the ith half-saturation constant, namely, in the case where pi is a bounded
function for fixed

ai > 0, mi := sup
x,yi>0

pi(x, yiai)

is the maximal birth rate of the ith predator (i ∈ {1, . . . , n}). For the survival of the
predator, it is clearly necessary that the maximal birth rate be larger than the death
rate: mi > di (i ∈ {1, . . . , n}). This will be assumed in the sequel.

In order to have more realism, the authors of paper [13] took into account that
the predator’s growth rate at present depends on past quantities and, therefore, a
continuous density function ρ was introduced whose role is to weight moments of
the past (cf. [8]). Thus, they replaced the quantity x by

q(t) :=
∫ t
−∞

x(τ)ρ(t − τ) dτ (t ∈ [0,∞)), (2)

where the density function ρ satisfies the requirements

ρ(s) ≥ 0 (s ∈ [0,∞)),
∫ ∞

0
ρ(s) ds = 1.

Note that it is necessary to assume that the function ρ is smooth: ρ ∈ C1. Thus, the
system governing the dynamics of the predator–prey community is taken up in the
form

ẋ = rxg(x,K)−
n∑
i=1

yipi

(yi
x

)
,

ẏi = yipi

(
yi

q

)
− diyi (i ∈ {1, . . . , n}).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3)

In [13], the authors could give in the case of one prey and two predators, i.e., when
n = 2, parameter values for which the above system loses its stability, and they
conjectured that there may be periodic solution occurrence.

This chapter is organized as follows. In the next section, assuming that the density
function ρ is a solution of homogeneous linear differential equations with constant
coefficients, i.e., it has the form

ρm(s) := hm+1sme−hs

m! (s ∈ [0,+∞)) (4)

where m ∈ N0, we perform linear stability analysis of the interior equilibrium
in the case of m ∈ {0, 1}. In the section that follows, the conjecture in [13] is
proved. We show that if the parameter is varied and crosses a critical value, periodic
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solutions arise via Hopf bifurcation. Finally, a numerical simulation for supporting
the theoretical analysis is also given.

2 The System with Delay

In case of m = 0, the weight function is exponentially decaying (“exponential
fading memory”) and has the form

ρ0(s) = he−hs (s ∈ [0,+∞)), (5)

and in case of m = 1, it takes the form

ρ1(s) = h2se−hs (s ∈ [0,+∞)), (6)

where for both cases we have h > 0 (cf. Fig. 1). Fargue has shown in [3] that if the
density ρ has the form (4), then system (3) is equivalent to a system of ordinary
differential equations of higher dimension. The exponential fading memory was
used by several authors (cf. e.g., [1, 2, 4, 6, 15, 17, 18]). The authors of [5, 7, 9]
used the memory with hump in order to make their model more realistic.

2.1 Exponential Fading Memory

Assuming that the influence of the past is fading away exponentially, i.e., for
arbitrary h > 0 (5) and

h

∫ t
−∞

ρ0(−h(t − τ)) dτ =
∫ ∞

0
exp(−hs) ds = 1

holds, we have for the quantity q in (2)

Fig. 1 The density functions:
blue exponential fading
memory and red memory
with a hump

r(s)

s
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q̇(t) = h(x(t)− q(t)) (t ∈ [0,+∞)).

The smaller the h the longer is the time interval in the past in which the values of x
are taken into account, i.e., 1/h is the “measure of the influence of the past.” Hence,
system (3) is equivalent in its qualitative dynamical behavior to the following system
of ordinary differential equations:

ẋ = rxg(q,K)−
n∑
i=1

yipi

(yi
x

)
,

ẏi = yipi

(
yi

q

)
− diyi (i ∈ {1, . . . , n}),

q̇ = h(x − q).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

We note that the equivalence above takes place over the time interval [0,∞); fur-
thermore, if (x, y1, . . . , yn) : [0,∞) → R

n+1 is the solution of (3) corresponding
to the continuous and bounded initial function x̃ : (−∞, 0] → R and the initial
values y0

i := yi(0) (i ∈ {1, . . . , n}) (i.e., x(t) := x̃(t) (t < 0)), then

(x, y1, . . . , yn, q) : [0,∞)→ R
n+2

is the solution of (3) satisfying the initial values

x(0) = x̃(0), yi(0) = y0
i (i ∈ {1, . . . , n})

and

q(0) = q0 := h
∫ 0

−∞
x̃(τ ) exp(hτ) dτ

and vice versa. (Clearly, if the initial values x(0), y0
i , and q0 related to system (3)

are prescribed, then the function x̃ is not uniquely determined.)

2.2 Memory with a Hump

Assume now that the weight function is given by (6) and for t ∈ [0,+∞) introduces
notations
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q(t) := h2
∫ t
−∞
(t − τ)x(τ ) exp(−h(t − τ)) dτ,

r(t) := h
∫ t
−∞

x(τ) exp(−h(t − τ)) dτ.

(8)

Then, we have

q̇ = h(r − q), resp. ṙ = h(x − r),

and furthermore, it is easy to see that system (3) is equivalent on [0,+∞) in the
sense described following (7) to the system

ẋ = rxg(x,K)−
n∑
i=1

yipi

(yi
x

)
,

ẏi = yipi

(
yi

q

)
− diyi (i ∈ {1, . . . , n}),

q̇ = h(r − q),

ṙ = h(x − r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

3 The Case of One Prey and Two Predators

As it was done in [13], we also assume that the community consists of one prey and
two predators, i.e., n = 2 holds. This means that that system (7) takes the form

ẋ = rx
(

1 − x

K

)
−m1

xy1

a1y1 + x −m2
xy2

a2y2 + x ,

ẏ1 = m1
xy1

a1y1 + x − d1y1,

ẏ2 = m2
xy2

a2y2 + x − d2y2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

In [11], it was showed that system (10) is dissipative, i.e., all of its solutions are
bounded and the positive octant of the phase space R

3 is an invariant region;
furthermore, if we extend it for

R
3+ :=
{
(x, y1, y2) ∈ R

3 : x ≥ 0, y1 ≥ 0, y2 ≥ 0
}
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by ẋ = 0, ẏi = 0 if x2 + y2
i = 0 for any i (i ∈ {1; 2}), then the extended system has

four equilibria on the boundary of the positive octant of the phase space, namely

E0(0, 0, 0), E1(K, 0, 0), E2
i (̂xi , ŷ1, ŷ2) (i ∈ {1; 2}),

where for i, j ∈ {1; 2}: j 
= i we have

x̂i := K
(

1 − 1

r

mi − di
ai

)
, ŷi := mi − di

diai
x̂, ŷj = 0,

and it has one interior equilibrium E∗(x∗, y∗1 , y∗2 ) where for i ∈ {1; 2} we have

x∗ := K
(

1 − 1

r

2∑
i=1

mi − di
ai

)
and y∗i := mi − di

diai
x∗.

Note that equilibria E0 and E1 always exist. The equilibria E2
i (i ∈ {1; 2}) and E∗

may or may not exist. In particular, E2
i exists (i ∈ {1; 2}) if

mi − di
ai

< r and mi > di

hold. The interior equilibriumE∗ that represents the coexistence of all species exists
if maximal growth rates mi − di of the predators are positive and the sum of the
ratios of the growth rates and half-saturation constants of the predators is less than
the intrinsic growth rate of the prey, i.e.,

mi > di and
2∑
i=1

mi − di
ai

< r (11)

hold.
Introducing delays with density functions (5) and (6), system (10) goes into

ẋ = rx
(

1 − x

K

)
−m1

xy1

a1y1 + x −m2
xy2

a2y2 + x ,

ẏ1 = m1
qy1

a1y1 + q − d1y1,

ẏ2 = m2
qy2

a2y2 + q − d2y2,

q̇ = h(x − q)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)
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and into

ẋ = rx
(

1 − x

K

)
−m1

xy1

a1y1 + x −m2
xy2

a2y2 + x ,

ẏ1 = m1
qy1

a1y1 + q − d1y1,

ẏ2 = m2
qy2

a2y2 + q − d2y2,

q̇ = h(r − q),

ṙ = h(x − r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

From the biological point of view, we are only interested in the case when the
interior equilibrium exists because the other equilibria are unstable when no delay
is concerned (cf. [11]). If condition (11) holds, then interior equilibria of (10),
resp. (12) and of (13) are

E∗ := (x∗, y∗1 , y∗2 ),

resp.

E∗
d0 := (x∗, y∗1 , y∗2 , x∗) and E∗

d1 := (x∗, y∗1 , y∗2 , x∗, x∗).

In order to determine the stability of equilibria E∗, resp. E∗
d0 and E∗

d1 of sys-
tems (10), resp. (12) and (13) one has to compute the Jacobians

J (x, y1, y2) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

j11 − m1x
2

(a1y1 + x)2 − m2x
2

(a2y2 + x)2
a1m1y

2
1

(a1y1 + x)2
m1x

2

(a1y1 + x)2 − d1 0

a2m2y
2
2

(a2y2 + x)2 0
m2x

2

(a2y2 + x)2 − d2

⎤
⎥⎥⎥⎥⎥⎥⎦

resp.

J (x, y1, y2, q) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

j11 − m1x
2

(a1y1 + x)2 − m2x
2

(a2y2 + x)2 0

0 m1q
2

(a1y1+q)2 − d1 0
a1m1y

2
1

(a1y1 + q)2
0 0

m2q
2

(a2y2 + q)2 − d2
a2m2y

2
2

(a2y2 + q)2
h 0 0 −h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

J (x, y1, y2, q, p) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j11 − m1x
2

(a1y1 + x)2 − m2x
2

(a2y2 + x)2 0 0

0
m1q

2

(a1y1 + q)2 − d1 0
a1m1y

2
1

(a1y1 + q)2 0

0 0
m2q

2

(a2y2 + q)2 − d2
a2m2y

2
2

(a2y2 + q)2 0

0 0 0 −h h

h 0 0 0 −h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

at these equilibria, where

j11 := r − 2rx

K
− a1m1y

2
1

(a1y1 + x)2 − a2m2y
2
2

(a2y2 + x)2 .

If we take parameter values (cf. [13])

m1 := 16, m2 := 18, d1 := 8, d2 := 12, a1 := 4, a2 := 2, K := 0.1,
(14)

then the dependence of E∗, resp. E∗
d0 and E∗

d1, on the parameter r (in fact on the
maximal growth rates from the prey) is as follows:

E∗ :=
(

0.1

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
,

(
1 − 5

r

))
,

resp.

E∗
d0 :=
(

0.1

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
, 0.1

(
1 − 5

r

))

and

E∗
d1 :=
(

0.1

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
,

1

40

(
1 − 5

r

)
, 0.1

(
1 − 5

r

)
, 0.1

(
1 − 5

r

))
.

Under this restriction, we have

J := J (E∗) :=
⎡
⎣8 − r −4 −8

1 −4 0
1 0 −4

⎤
⎦

resp.
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J0 := J (E∗
d0) :=

⎡
⎢⎢⎣

8 − r −4 −8 0
0 −4 0 1
0 0 −4 1
h 0 0 −h

⎤
⎥⎥⎦

and

J1 := J (E∗
d1) :=

⎡
⎢⎢⎢⎢⎢⎣

8 − r −4 −8 0 0
0 −4 0 1 0
0 0 −4 1 0
0 0 0 −h h

h 0 0 0 −h

⎤
⎥⎥⎥⎥⎥⎦
.

We calculate the characteristic polynomials of J , resp. J0 and J1, using Faddeev–
Leverrier method (cf. [10]) and with the help of block matrices. The characteristic
polynomial of the Jacobian J has the form

χJ (z) := z3 + a2z
2 + a1z+ a0 (z ∈ K),

where

a2 = −Tr(J ) = r,

a1 = 1

2

{
(Tr(J ))2 − Tr(J 2)

}
= 8r − 36,

a0 = − det(J ) = 16r − 80.

The equilibrium E∗ is feasible if and only if r > 5 holds. In this case, χJ is a stable
polynomial since it fulfills the Routh–Hurwitz condition (cf. [8]): its coefficients
have the same sign and

a1a2 − a0 = (8r − 36)r − 16r + 80 = 8r2 − 52r + 80 = 4(r − 4)(r − 5/2) > 0.

As a consequence, E∗ is asymptotically stable if it exists. The characteristic
polynomial χJ0 is calculated as follows. From the definition, we have
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χJ0(z) = det(zI4 − J ) = (−1)4 det(J − zI4)

= det

⎡
⎢⎢⎣

8 − r − z −4 −8 0
0 −4 − z 0 1
0 0 −4 − z 1
h 0 0 −h− z

⎤
⎥⎥⎦

= −1

8
det

⎡
⎢⎢⎣
r + z− 8 4 8 0

0 −32 − 8z 0 8
0 0 −4 − z 1
h 0 0 −h− z

⎤
⎥⎥⎦ = −1

8
det

[
A B

C D

]
.

Since A and B commute, we get (cf. [16])

det(zI4 − J0) = −1

8
det [DA− CB]

= −1

8
det

[[
−4 − z 1

0 −h− z

][
r + z− 8 4

0 −32 − 8z

]
− 8h

[
0 0
1 0

]]

= −1

8
det

[[
(4 + z)(r − 8 + z) 4(4 + z)− 4 − z

0 (h+ z)(4 + z)

]
− 8h

[
0 0
1 0

]]

= −1

8
det

[
−(4 + z)(r − 8 + z) −4(4 + z)− 8(4 + z)

−8h 8(h+ z)(4 + z)

]

= (4 + z)(r − 8 + z)(h+ z)(4 + z)− 12h(4 + z)

= (4 + z)
{
z3 + (h+ r − 4)z2 + ((h+ 4)r − 4(h+ 8))z+ 4h(r − 5)

}
.

The characteristic polynomial χJ1 can be computed as follows.

χJ1(z) := det(zI5 − J1) = (−1)5 det(J1 − zI5)

= − det

⎡
⎢⎢⎢⎢⎢⎣

8 − r − z −4 −8 0 0
0 −4 − z 0 1 0
0 0 −4 − z 1 0
0 0 0 −h− z h

h 0 0 0 −h− z

⎤
⎥⎥⎥⎥⎥⎦

= −(h+ z)2(4 + z)2(8 − r − z).
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It is easy to see that J1 is stable only if r > 8, whereas the stability of J0 depends
on the third-order polynomial

z3 + α(h)z2 + β(h)z+ γ (h) (z ∈ K), (15)

where

α(h) := h+ r − 4, β(h) := (h+ 4)r − 4(h+ 8), γ (h) := 4h(r − 5).

In order to have Hopf bifurcation in case of J0, one has to show that a pair
of complex conjugate eigenvalues of J0 crosses the imaginary axis with non-zero
velocity, while the rest of the eigenvalues continue to have negative or positive real
parts. This is fulfilled if (cf. [8, 14])

• the so-called eigenvalue crossing condition holds, i.e., the characteristic polyno-
mial χJ0 has a pair of pure imaginary roots μ(h)± ıν(h) and no other roots with
zero real parts, for which at a critical value h∗ of the bifurcation parameter h

μ(h∗) = 0, ν(h∗) 
= 0; (σ (J0)\{±ıν(h∗)}) ∩ ıR = ∅,

hold;
• the transversality condition holds, i.e., μ′(h∗) 
= 0 is fulfilled.

Clearly, for every h > 0, we have γ (h) > 0 because r > 5 holds.
Next, we use a lemma for which a proof is given in Appendix of [12].

Lemma 3.1 Let I ⊂ R an open interval α, β, γ : I → R smooth functions. Then,
the polynomial

P(z) := z3 + αz2 + βz+ γ (z ∈ K)

fulfills at some h = h∗ ∈ I the eigenvalue crossing condition and the transversality
condition if

α(h∗) 
= 0, β(h∗) > 0, γ (h∗) = α(h∗)β(h∗) (16)

and

d

dh
{α(h)β(h)− γ (h)}|h=h∗ 
= 0 (17)

hold.

Thus, the eigenvalue crossing condition holds for the polynomial in (15) if and only
if

β(h) := (h+ 4)r − 4(h+ 8) > 0, α(h) := h+ r − 4 
= 0
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and

α(h)β(h)− γ (h) := (h+ r − 4) {(h+ 4)r − 4(h+ 8)} − 4h(r − 5) 
= 0.

The authors in [13] have chosen for r := 7 the value h∗ := 1 that is seemingly
not critical. No wonder that they could not observe and prove periodic oscillation.
Solving equation α(h)β(h) = γ (h), we have

hH := h∗ = 1 +√
17

2
.

Because

α(h∗) =
√

17 + 7

2

= 0 and β(h∗) = 3

√
17 − 5

2
> 0,

the eigenvalue crossing condition holds at this value of the parameter h. Thus, we
are able to prove the occurrence of limit cycles from the interior equilibrium E∗

d0 of
the system (12).

Theorem 3.1 Suppose that conditions in (14) hold and r = 7, then at the critical
value hH of the bifurcation parameter h the equilibrium E∗

d0 of the system (12)
undergoes a Hopf bifurcation: E∗

d0 loses its stability and a branch of periodic
solutions emerges from E∗

d0 near h = hH .
Proof We need to check whether the transversality condition (17) holds. Indeed, at
the critical value h = hH , we have

d

dh
(αβ − γ )(hH ) = −[8 − 3(3 + h)− 7(4 + h)+ 4(8 + h)]h=hH = 3

√
17 
= 0,

which proves our statement. ��
Figure 2 shows the time evolution of system (12) if Hopf bifurcation occurs.

4 Stability of the Bifurcating Periodic Solution

In this section, we shall present a very brief summary of the projection method
(cf. [14]) in order to decide whether the bifurcation is super- or subcritical. Under
supercritical bifurcation, we mean the case when the equilibrium E∗

d0 has lost its
stability with occurrence of periodic solutions that are orbitally asymptotically
stable (i.e., for values of the bifurcation parameter h less than hH ), while in the
subcritical case, the periodic solutions are unstable and exist for hs when the
equilibrium E∗

d0 is still asymptotically stable (i.e., for values of h greater than hH ).
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Fig. 2 The periodic solution of system (12) near h = hH

Clearly, system (12) has the form

(u̇, v̇, ẇ, ż) = F(u, v,w, z, h), (18)

where

F1(u, v,w, z, h) := ru
(

1 − u

K

)
−m1

uv

a1v + u −m2
uw

a2w + u,

F2(u, v,w, z, h) := m1
zv

a1v + z − d1v,

F3(u, v,w, z, h) := m2
zw

a2w + z − d2w,

F4(u, v,w, z, h) := h(u− z)

and h is the bifurcation parameter. Define the bilinear, resp. trilinear functions

B = (B1, B2, B3, B4) : K4 ×K
4 → K

4,
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resp.

C = (C1, C2, C3, C4) : K4 ×K
4 ×K

4 → K
4

by

Bi(x, y) :=
4∑

j,k=1

∂2Fi(ξ , hH )

∂ξj ∂ξk

∣∣∣∣∣∣
ξ=E∗

d0

xjyk, (i ∈ {1, 2, 3, 4}),

resp. by

Ci(x, y, z) :=
4∑

j,k,l=1

∂3Fi(ξ , hH )

∂ξj ∂ξk∂ξl

∣∣∣∣∣∣
ξ=E∗

d0

xjykzl (i ∈ {1, 2, 3, 4}).

The Jacobian J0 at the critical parameter value h = hH will be denoted by A:

A := ∂F(ξ , hH )
∂(u, v,w, z)

∣∣∣∣
ξ=E∗

d0

.

Clearly, ıω and −ıω are eigenvalues of A with left and right eigenvectors p,q ∈ K
4,

i.e., satisfying

Aq = ıωq, AT p = −ıωp (19)

and normalized by setting

〈p,q〉 = 1 (20)

where 〈·, ·〉 is the standard scalar product in C
4, antilinear in the first argument.

To examine the supercriticality, resp. subcriticality, of the bifurcating solution,
one has to compute the sign of the first Poincaré–Lyapunov coefficient

l1 = 1

2ω
· � (〈p,H21〉) , (21)

where

H21 := C(q,q,q)+ 2B (q,h11)+B(q,h20),
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resp.

h11 := A−1B(q,q) and h20 := (2ıωI3 − A)−1 B(q,q).

In case of l1 < 0 (resp. l1 > 0), we have supercritical (resp. subcritical) bifurcation.
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Dynamical Analysis of
Phytoplankton–Zooplankton Interaction
Model by Using Deterministic
and Stochastic Approach

Anal Chatterjee and Samares Pal

1 Introduction

Plankton are the backbone of marine ecosystem, which live mostly in watery envi-
ronments such as seas, water column of oceans, and fresh water. They are strongly
dependent on ambient nutrient’s concentrations. In the marine ecosystem, phyto-
plankton are known as self-feeding components and play a major role in controlling
the global carbon cycle that has direct impact on climate regulation. The dynamical
swift growth and drastic decrease of plankton represent a phenomenon known as
bloom.

Harmful algal blooms (HABs) are increasing in frequency worldwide [1, 2] and
have a negative impact on aquaculture, coastal tourism, and human health [3]. Many
theories are available to explain the bloom phenomenon. Some of the researchers
use “top-down” mechanism [4–7] to explain the bloom, that is, according to them
the occurrence of phytoplankton bloom depends on their grazing pressure, whereas
others use “bottom-up” mechanism [8–11], that is, the occurrence of bloom depends
on the availability of the nutrient. On the other hand, some of the scientists consider
the simultaneous effect of both “top-down” and “bottom-up” mechanisms to explain
the bloom phenomenon [12, 13].

The change in population density of one species has the ability to affect the
growth of several other species by producing allelopathic toxins or stimulators. This
is also a responsible factor for seasonal change in population density of various
phytoplankton species. The toxins liberated by the phytoplankton may be regarded
as an anti-grazing strategy[14].
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The anti-grazing strategy is important for the existence of the phytoplankton
species. It also plays a vital role in many zooplankton species largely determined
by the ways in which the species of phytoplankton can resist mutual extinction
due to competition or persistence despite grazing pressure from zooplankton[15].
Phytoplankton are small relative to their predatory enemies in the pelagic, and
they will not survive an encounter with a grazer without any anti-grazing strategy.
Therefore, various anti-grazing strategies such as cell morphology, presence of
gelatinous substances, or aggregation to form patches, and filamentous structures
are observed for phytoplankton [16–18]. A stochastic model may describe more
realistically a natural system and therefore is considered in order to provide a clearer
understanding of the situation. Recently, general deterministic and stochastic N-P-Z
models with toxin-producing phytoplankton have been examined in [19–23].

Based on such observations, in this chapter, we extended the model proposed in
[13] by taking into account the competition between phytoplankton and zooplankton
in the presence of phytoplankton patches on the zooplankton community and
observed its effect on the dynamical system. In this chapter, to capture the effect
of phytoplankton patches on the zooplankton community, we propose a functional
response that is not a monotonically increasing function of the prey density, but
rather it is only monotonically increasing up to a certain threshold density and
then becomes monotonically decreasing. We also assumed that these patches have a
negative impact on the growth of zooplankton.

In the second model, we present the stochastic system. Numerical examples will
be provided to illustrate the complexity of the interaction.

2 The Mathematical Model

The study of the defense mechanism through the formation of patches becomes
more important if such patches have the ability to release toxin chemicals, like in
the case of dinoflagellates.

Let N(t) be the concentration of the nutrient at time t . Let P(t) and Z(t)
be the concentrations of toxin-producing phytoplankton (TPP) and zooplankton
population, respectively, at time t . Let N0 be the constant input of nutrient
concentration and D be the dilution rate [24]. The constant D−1 has the physical
dimension of a time and represents the average time that nutrient and waste
products spend in the system [25]. Let α1 and α2 be the nutrient uptake rate for
the phytoplankton population and the conversion rate of nutrient for the growth of
phytoplankton population, respectively (α2 ≤ α1). Here, c is the predation rate and
e is the conversion rate of zooplankton population (c ≤ e). Let μ1 be the mortality
rate of the phytoplankton population and μ2 be the mortality rate of the zooplankton
population. Let μ3 (μ3 ≤ μ1) be the nutrient recycle rate after the death of
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phytoplankton population and μ4 (μ4 ≤ μ2) be the nutrient recycle rate after the
death of zooplankton population. We choose the Holling type II functional form to
describe the grazing phenomena with K1 and K2 as half-saturation constants. The
most important parameter is ρ that may be defined as the measure of the toxicity,
which is directly proportional to the fraction of phytoplankton-forming patches and
inversely proportional to the number of phytoplankton-forming patches. Suppose
a fraction K(0 ≤ K ≤ 1) of the phytoplankton population aggregates to form n

patches. For the predation term, the standard mass action incidence can easily be
taken, over the fraction 1 − K of the free phytoplankton. We propose here a more
complicated mechanism for the release of poison. Note that the population in each

patch will be 1
n
KP . Let us introduce a new parameter ρ ≡ (K

n
)

2
3 . If the 3D patch in

the ocean can be assumed to be roughly spherical, its radius will be proportional to

[KP
n

] 1
3 , so that its surface is proportional to [KP

n
] 2

3 = ρP 2
3 as suggested in [26]. We

assume that the phytoplankton can detect the presence of zooplankton and release
the poison in self-defense, and this will leak into the surrounding water through

the surface of the patch that is proportional to ρP
2
3 . With the above biological

assumptions, our model system is

dN

dt
= D(N0 −N)− α1PN

K1 +N + μ3P + μ4Z ≡ G1(N, P,Z)

dP

dt
= α2PN

K1 +N − c(1 −K)PZ
K2 + P − μ1P ≡ G2(N, P,Z)

dZ

dt
= e(1 −K)PZ

K2 + P − μ2Z − eρP 2/3Z ≡ G3(N, P,Z)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (1)

The system (1) has to be analyzed with the following initial conditions,

N(0) > 0, P (0) > 0, Z(0) > 0. (2)

Explicitly, the Jacobian matrix at E = (N, P ,Z) can be defined as

V =

⎡
⎢⎢⎢⎣
−D − α1K1P

(K1+N)2 − α1N

K1+N + μ3 μ4

K1α2P

(K1+N)2
α2N

K1+N − K2c(1−K)Z
(K2+P)2 − μ1 − c(1−K)P

K2+P
0 K2e(1−K)Z

(K2+P)2 − 2eρZ

3P
1
3

e(1−K)P
K2+P − μ2 − eρP 2

3

⎤
⎥⎥⎥⎦ .

(3)
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3 Some Preliminary Results

3.1 Positive Invariance

The system (1) is not homogeneous due to the presence of constant supply of
nutrients N0. Therefore, (0, 0, 0) cannot be a solution of equilibrium points. It
is easy to verify that G1(X) > 0 when N = 0, P > 0, and Z > 0 by
choosing X(0) ∈ R3+. Hence, the trajectories becomes part of positive octant
on the plane N = 0. The staying coordinate planes will be the solution of the
respective equilibrium equation. According to existence and uniqueness theorem,
the trajectories cannot approach to unfeasible domain from positive octant, which
indicates that solution remains in positive octant. This ensures that the system is
well defined.

3.2 Equilibria

The system (1) possesses the following equilibria: plankton-free equilibrium E0 =
(N0, 0, 0), zooplankton-free equilibrium E1(N1, P1, 0), and coexistence equilib-
rium E∗ = (N∗, P ∗, Z∗).

3.2.1 Plankton-Free Equilibrium

E0 is always feasible. The eigenvalues evaluate from (3) at E0 are −D < 0, −μ2 <

0, and μ1(R0 − 1). Thus, it is clearly indicated that E0 is asymptotically stable if

R0 = α2N
0

(μ1 +D1)(K1 +N0)
< 1 (4)

holds.

3.2.2 Plankton-Free Equilibrium

The population levels at E1 are N1 == μ1K1
α2−μ1

and P1 = Dα2[N0(α2−μ1)−K1μ1]
(α2−μ1)(α1μ1−μ3α2)

.

Feasibility at E1 exists if max
{
μ1,

(N0+K1)μ1
N0

}
< α2 <

α1μ1
μ3
. Factorizing

Jacobian (3) at E1 gives one explicit eigenvalue e(1−K)P1
K2+P1

− μ2 − eρP
2
3

1 and the

quadratic equation λ2+λ
(
D + α1K1P1

(K1+N1)
2

)
+ K1α2P1
(K1+N1)

2

(
α1N1
K1+N1

− μ3

)
= 0. Clearly,

two roots are negative real parts at E1. Therefore, stability of E1 is ensured by
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(1 −K)P1

K2 + P1
>
μ2

e
+ ρP

2
3

1 . (5)

3.2.3 Coexistence Equilibrium

The coexistence equilibrium at E∗=(N∗, P ∗, Z∗) is Z∗=[(α2−μ1)N
∗−K1μ1](K2+P ∗)

c(K1+N∗)(1−K) ,

while P ∗ is ensured by solving e3ρ3P ∗5 +3K2e
3ρ3P ∗4 +[3K2e3ρ3 −{e(1−K)−

μ2}3]P ∗3+[K3
2e

3ρ3+3{e(1−K)−μ2}2μ2K2]P ∗2−3{e(1−K)−μ2}μ2
2K

2
2P

∗+
μ3

2K
3
2 = 0. Now putting the value of P ∗ and Z∗ in first equation of the system (1),

we get the value of N∗. It is impossible to find the explicit form of N∗, P ∗, and
Z∗ with only system parameters. Therefore, we need to investigate feasibility and
stability criteria of coexistence at E∗ numerically.

At E∗, the Jacobian matrix of the system (1) can be written as

V ∗ =
⎡
⎣m11 m12 m13

m21 m22 m23

0 m32 0

⎤
⎦ ,

where m11 = −D − K1α1P
∗

(K1+N∗)2 < 0, m12 = − α1N
∗

K1+N∗ + μ3 < 0, m13 = μ4 > 0;
m21 = K1α2P

∗
(K1+N∗)2 > 0, m22 = c(1−K)P ∗Z∗

(K2+P ∗)2 > 0, m23 = − γ1P
∗

K2+P ∗ < 0, m32 =
K2e(1−K)Z∗
(K2+P ∗)2 − 2eρZ∗

3P ∗ 1
3

∈ R.

The characteristic equation is

y3 +Q1y
2 +Q2y +Q3 = 0, (6)

where Q1 = −(m11 + m22), Q2 = m11m22 − m12m21 − m23m32; Q3 =
m11m23m32 − m13m32m21. By the Routh–Hurwitz criterion, all roots of the above
equation have negative real parts if and only if Qi > 0, and Q1Q2 −Q3 > 0, i =
1, 2, 3. NowQ1 > 0 is implied by D + K1α1P

∗
(K1+N∗)2 + K2γ1Z

∗
(K2+P ∗)2 >

γ1Z
∗

K2+P ∗ .
Here, we consider two cases depending on the sign of m32.

Case 1: Whenm32>0, thenQ2 > 0 ifm11m21+m23m32 < m11m22 sincem11m22 <

0, m12m21 < 0, and m23m32 < 0.
Also, Q3 = (m11m23 −m13m21)m32 > 0 if m11m23 > m13m21 since m11m23 > 0

and m13m21 > 0.
Case 2: When m32<0, then Q2 > 0 if −m12m21 > m23m32 − m11m22 since
m11m22 < 0, m12m21 < 0, and m23m32 > 0.

Also, Q3 = (m11m23 −m13m21)m32 > 0 if m11m23 < m13m21 since m11m23 > 0
and m13m21 > 0.
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In addition, according to Routh–Hurwitz criterion,Q1Q2−Q3 > 0 must be satisfied
if Q1Q2 > Q3, which indicates that the system becomes locally asymptotically
stable at E∗ depending upon system parameters.

Remark 1 The system could have a Hopf bifurcation at the coexistence equilibrium
if the following two conditions are satisfied,

Q1(N
0
c )Q2(N

0
c )−Q3(N

0
c ) = 0, Q′

1(N
0
c )Q2(N

0
c )+Q1(N

0
c )Q

′
2(N

0
c )−Q′

3(N
0
c ) 
= 0.

(7)

3.3 Hopf Bifurcation at Coexistence

Let us consider a valueN0 = N0
c such thatQ1(N

0
c )Q2(N

0
c )−Q3(N

0
c ) = 0. Then at

N0 = N0
c , the characteristic equation (6) becomes (ρ+Q1)(ρ

2 +Q2) = 0. Clearly,
the equation has three roots that are ±√

Q2i and −Q1, i.e., two roots are a pair
of purely complex roots and third root is negative. To examine the transversality
condition, let us consider any point N0 of ε-neighborhood of N0

c where ρ1,2 =
a(N0)± ib(N0). Putting this in (6) and separating the real and imaginary parts, we
get the following results:

a3 − 3ab2 + p1(a
2 − b2)+ p2a + p3 = 0 (8)

(3a2b − b3)+ 2p1ab + p2 = 0. (9)

Since b(N0) 
= 0, then from (9), we have b2 = 3a2 + 2Q1a +Q2.
Putting the value of b2 in (6), we have

8a3 + 8Q1a
2 + 2a(Q2

1 +Q2)+Q1Q2−3 = 0. (10)

Now differentiating w.r.t N0 at N0 = N0
c , we get the following results[

da
dN0

]
N0=N0

c

= −
[

1
2(Q2

1+Q2)

d
dN0 (Q1Q2 −Q3)

]
N0=N0

c


= 0 provided
[
d
dN0 (Q1Q2 −Q3)

]
N0=N0

c


= 0, i.e., the second condition of (7).

Theorem 1 The direction of Hopf bifurcation is determined by the value μ22. If
μ22 > 0 (< 0), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for N0 > N0

c .
The stability and the period of the bifurcating periodic solutions are, respectively,

determined by the parameters β2 and τ2 defined in the proof. The solutions are
orbitally stable (unstable) if β2 < 0 (> 0) and the period increases (decreases) if
τ2 > 0 (< 0).



Dynamical Analysis of Phytoplankton–Zooplankton Interaction Model by. . . 39

Proof The computational details are very elaborated; therefore, we just outline the
sketch of the proof by using normal form theory [27]. Here, Remark 1 indicates the
conditions of Hopf bifurcation.

Let us indicate by a bar the system parameters; the eigenvector corresponding to
the eigenvalue σ = iη2 is

ω

[
(iη2)

2 −m22(iη2)−m32m23

m21m32
,

iη2

V32
, 1

]T
, ω ∈ R.

The eigenvector corresponding to the eigenvalue e1 is

ω

[
e2

1 −m22e1 −m32m23

m21m32
,
e1

m32
, 1

]T
, ω ∈ R.

Let us interpret the following quantities:

b11 = −η
2
2 +m32m23

m21m32
, b12 = η2m22

m21m32
, b13 = e2

1 −m22e1 −m32m23

m21m32
, b21 = 0,

b22 = − η2

m32
, b23 = e1

m32
, b31 = 1, b32 = 0, b33 = 1.

Applying the transformation

N = N∗ + b11x1 + b12y1 + b13z1,

P = P ∗ + b21x1 + b22y1 + b23z1,

Z = Z∗ + b31x1 + b32y1 + b33z1,

system (1) is then reduced to

dx1

dt
= W3Q2 −W1b22 +W2b12

Q2 −Q1
:= H 1,

dy1

dt
= (Q2 −Q1 +Q3)W1 +Q4W2 + (b13Q1 − b11Q2)W3

b12(Q2 −Q1)
:= H 2,

dz1

dt
= W1b22 −W2b12 −W3Q1

Q2 −Q1
:= H 3, (11)

where as a shorthand we have introduced the following quantities:

Q1 = b11b22 − b21b12, Q2 = b13b22 − b23b12, Q3 = b11b22 − b13b22,

Q4 = b13b12 − b11b12, W1 = D̄(N̄0 −N∗ − b11x1 − b12y1 − b13z1)
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− ᾱ1(N
∗ + b11x1 + b12y1 + b13z1)(P

∗ + b21x1 + b22y1 + b23z1)

K̄1 +N∗ + b11x1 + b12y1 + b13z1

+μ̄3(P
∗ + b21x1 + b22y1 + b23z1)+ μ̄4(Z

∗ + b31x1 + b32y1 + b33z1)

W2 = ᾱ2(N
∗ + b11x1 + b12y1 + b13z1)(P

∗ + b21x1 + b22y1 + b23z1)

K̄1 +N∗ + b11x1 + b12y1 + b13z1

− c̄(1 − K̄)(P ∗ + b21x1 + b22y1 + b23z1)(Z
∗ + b31x1 + b32y1 + b33z1)

K̄2 + P ∗ + b21x1 + b22y1 + b23z1

−μ̄1(P
∗ + b21x1 + b22y1 + b23z1),

W3 = ē(1 − K̄)(P ∗ + b21x1 + b22y1 + b23z1)(Z
∗ + b31x1 + b32y1 + b33z1)

K̄2 + P ∗ + b21x1 + b22y1 + b23z1
−

ēρ̄(P ∗ + b21x1 + b22y1 + b23z1)
2
3 (Z∗ + b31x1 + b32y1 + b33z1).

The origin is the equilibrium point of the new system (11). At it, several entries
vanish after simplifying the Jacobian of (11):

∂H 1

∂x1
= ∂H 2

∂y1
= ∂H 1

∂z1
= ∂H 3

∂x1
= ∂H 3

∂y1
= ∂H 2

∂z1
= 0.

Further, the following auxiliary quantities can be explicitly calculated in terms of
the system parameters, but we omit the explicit formulae in view of their excessive
length.

D11 = ∂H 3

∂z1
, g11 = 1

4

[
∂2H 1

∂x2
1

+ ∂2H 2

∂y2
1

+ i

(
∂2H 2

∂x2
1

+ ∂2H 1

∂y2
1

)]
,

g02 = 1

4

[
∂2H 1

∂x2
1

− ∂2H 2

∂y2
1

− 2
∂2H 2

∂x1∂y1
+ i

(
∂2H 2

∂x2
1

− ∂2H 1

∂y2
1

)
+ 2

∂2H 1

∂x1∂y1

]
,

g20 = 1

4

[
∂2H 1

∂x2
1

− ∂2H 2

∂y2
1

+ 2
∂2H 2

∂x1∂y1
+ i

(
∂2H 2

∂x2
1

− ∂2H 1

∂y2
1

)
− 2

∂2H 1

∂x1∂y1

]
,

G21 = 1

8

[
∂3H 1

∂x3
1

+ ∂3H 1

∂x1∂y
2
1

+ ∂3H 2

∂2x1∂y1
+ ∂3H 2

∂y3
1

]

+ i
8

[
∂3H 2

∂x3
1

+ ∂3H 2

∂x1∂y
2
1

− ∂3H 1

∂2x1∂y1
− ∂3H 1

∂y3
1

]
,
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G110 = 1

2

[
∂2H 1

∂x1∂z1
+ ∂2H 1

∂y1∂z1
+ i
(
∂2H 2

∂x1∂z1
− ∂2H 2

∂y1∂z1

)]
,

G101 = 1

2

[
∂2H 1

∂x1∂z1
− ∂2H 1

∂y1∂z1
+ i
(
∂2H 2

∂x1∂z1
+ ∂2H 2

∂y1∂z1

)]
,

h11 = 1

4

[
∂2H 3

∂x2
1

+ ∂2H 3

∂y2
1

]
, h20 = 1

4

[
∂2H 3

∂x2
1

− ∂2H 3

∂y2
1

− 2i
∂2H 3

∂x1∂y1

]
,

ω11 = − h11

D11
, ω20 = − h20

D11 − 2iω0
, g21 = G21 + 2G110ω11 +G101ω20.

The values of μ22 and τ2, obtained from [27, 28], can now be calculated from the
above quantities,

c1(0) = i
2ω0

[g20g11 − 2|g11|2 − 1

3
|g02|2] + g21

2
,

μ22 = −Re[c1(0)]
u′(0)

, τ2 = − Im[c1(0)] + μ22ω
′(0)

ω(0)
, β2 = 2Re[c1(0)].

Stating finally [27], if the root of the characteristic equation increases for increasing
values of the bifurcation parameter N0, namely u′(0) > 0, the periodic solution
emanating from the equilibrium for μ22 > 0 is supercritical, while it is subcritical
for μ22 < 0.

4 The Stochastic Model

In this section, we study the stochastic stability of the coexistence equilibrium and
the impact of environmental fluctuation by introducing environmental parameters
in model system. Also, we assume that all parameters are constants irrespective of
time.

An existing deterministic system can be developed by two ways. Firstly, to
develop the stochastic system, we can replace some of the environmental parameters
by some random parameters in the deterministic model. Secondly, without altering
any particular parameter in deterministic dynamic equations, we can add a randomly
fluctuating driving force [29].

Here, we apply the second approach. The Gaussian white noise type stochastic
perturbation of the state variables around their steady values E∗ is very effective
to model rapidly fluctuating phenomena that are proportional to the distances N ,
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P , Z of each population from their equilibrium values N∗, P ∗, Z∗ [30]. Based on
the above assumption, we develop the deterministic system (1) by the following
stochastic model:

dN = G1(N, P,Z)dt + σ1(N −N∗)dξ1
t ,

dP = G2(N, P,Z)dt + σ2(P − P ∗)dξ2
t ,

dZ = G3(N, P,Z)dt + σ3(Z − Z∗)dξ3
t , (12)

where real constant parameters σ1, σ2, and σ3 be the intensities of environmental
fluctuations, and ξ it = ξi(t), i = 1, 2, 3, are the standard Wiener processes
independent of each other [31].

The system (12) can be written as an Itō stochastic differential system of the type

dXt = G(t,Xt )dt + g(t,Xt )dξt , Xt0 = X0, (13)

where the solution Xt = (N, P,Z)T , for t > 0, is known as Itō process. Here, G
is the drift coefficient or it can be written as slowly varying continuous component.
The diagonal matrix g = diag[σ1(N −N∗), σ2(P −P ∗), σ3(Z−Z∗)] is defined as
diffusion coefficient. It can be expressed as the rapidly varying continuous random
component, and ξt = (ξ1

t , ξ
2
t , ξ

3
t )
T be a three-dimensional stochastic process having

scalar Wiener process components with increments �ξjt = ξj (t +�t)− ξj (t) that
are independent Gaussian random variables N(0,�t). The system (12) is known as
multiplicative noise as the diffusion matrix g depends upon the solution of Xt .

4.1 Stochastic Stability of the Coexistence Equilibrium

The stochastic differential system (12) can be centered at its coexistence equilibrium
E∗ by introducing the perturbation vector U(t) = (u1(t), u2(t), u3(t))

T , with u1 =
N − N∗, u2 = P − P ∗, u3 = Z − Z∗. To derive the asymptotic stability in the
mean square sense by the Lyapunov functions method, working on the complete
nonlinear equations (12) could be attempted, following [32]. But for simplicity, we
deal with the stochastic differential equations obtained by linearizing (12) about the
coexistence equilibrium E∗. The linearized version of (13) around E∗ is given by

dU(t) = FL(U(t))dt + g(U(t))dξ(t), (14)

where now g(U(t)) = diag[σ1u1, σ2u2, σ3u3] and

FL(U(t)) =
⎡
⎣m11u1 +m12u2 +m13u3

m21u1 +m22u2 +m23u3

m31u1 +m32u2 +m33u3

⎤
⎦ = MU,
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and the coexistence equilibrium corresponds now to the origin (u1, u2, u3) =
(0, 0, 0). Let � = [(t ≥ t0)× R3, t0 ∈ R+], and let �(t,X) ∈ C(1,2)(�) be a
differentiable function of time t and twice differentiable function of X. Let further

L�(t, u) = ∂�(t, u(t))

∂t
+ f T (u(t)) ∂�(t, u)

∂u
+ 1

2
tr

[
gT (u(t))

∂2�(t, u)

∂u2
g(u(t))

]
, (15)

where

∂�

∂u
=
(
∂�

∂u1
,
∂�

∂u2
,
∂�

∂u3

)T
,

∂2�(t, u)

∂u2 =
(
∂2�

∂uj∂ui

)
i,j=1,2,3

.

With these positions, we now recall the following result [33].

Theorem 2 Assume that the functions �(U, t) ∈ C3(�) and L� satisfy the
inequalities

r1|U |α ≤ �(U, t) ≤ r2|U |α, (16)

L�(U, t) ≤ −r3|U |α, ri > 0, i = 1, 2, 3, α > 0. (17)

Then, the trivial solution of (14) is exponentially α-stable for all time t ≥ 0.

Remark 2 For α = 2 in (16) and (17), the trivial solution of (14) is exponentially
mean square stable; furthermore, the trivial solution of (14) is globally asymptoti-
cally stable in probability [33].

Theorem 3 Assume mij < 0, i, j = 1, 2, 3, and that for some positive real values
of ωk , k = 1, 2, the following inequality holds

[
2(1 + ω2)m22 + 2m32ω2 − (1 + ω2)σ

2
2

]
[2m13ω1 + 2m23ω2 (18)

−(ω1 + ω2)σ
2
3

]
> [m12ω1 +m22ω2 +m23(1 + ω2)+m32(ω1 + ω2)]

2 .

Then, if σ 2
1 < −2m11, it follows that

σ 2
2 < −2m22(1 + ω2)+ 2m32ω2

1 + ω2
, σ 2

3 < −2m13ω1 + 2m23ω2

ω1 + ω2
, (19)

where

ω1
∗ = m21

m13 +m11 −m12 −m32
, ω2

∗ = m11 +m13

m12 − (m13 +m11)+m32
, (20)

and the zero solution of system (12) is asymptotically mean square stable.
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Proof We consider the Lyapunov function

�(u(t)) = 1

2

[
ω1(u1 + u3)

2 + u2
2 + ω2(u2 + u3)

2
]
,

where ωk are the real positive constants to be chosen later.

It is easy to check that inequalities (16) are true for α = 2. Furthermore,

L�(u(t)) = [m22(1 + ω2)+m32ω2] u2
2 + [m13ω1 +m23ω2] u2

3

+u1u2 [m12ω1 +m21(1 + ω2)+m32ω1] + u2u3 [m12ω1 +m22ω2 +m23(1 + ω2)

+m32(ω1 + ω2)] + u3u1 [m13ω1 +m11ω1 +m21ω2]

+m11ω1u
2
1 + 1

2
tr

[
gT (u(t))

∂2�

∂u2 g(u(t))

]
.

Now observe that

∂2�

∂u2 =
∣∣∣∣∣∣
ω1 0 ω1

0 1 + ω2 ω2

ω1 ω2 ω1 + ω2

∣∣∣∣∣∣ ,

so that we can evaluate the trace term as follows,

tr

[
gT (u(t))

∂2�

∂u2 g(u(t))

]
= ω1σ1

2u1
2 + (1 + ω2)σ2

2u2
2 + (ω1 + ω2)σ3

2u3
2.

Using then (20), the Lyapunov function becomes L�(u(t)) = −uTQu, with the
real symmetric matrix

Q =
∣∣∣∣∣∣
−m11ω1 − 1

2ω1σ
2
1 0 0

0 −(1 + ω2)m22 − ω2m32 − 1
2 (1 + ω2)σ

2
2 Q23

0 Q23 Q33

∣∣∣∣∣∣ ,

where

Q23 = −m12ω1 +m22ω2 +m23(1 + ω2)+m32(ω1 + ω2)

2

and Q33 = −m13ω1 −m23ω2 − 1
2 (ω1 + ω2)σ

2
3 . Easily, the inequality L�(u(t)) ≤

−uTQu holds. On the other hand, (18) and (19) imply that Q is positive-definite,
and therefore, all its eigenvalues λi(Q), i = 1, 2, 3, are the positive real numbers.
Let λm = min{λi(Q), i = 1, 2, 3} > 0. From the previous inequality for L�(u(t)),
we thus get
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L�(u(t)) ≤ −λm|u(t)|2,

thus completing the proof.

Remark 3 Theorem 3 provides the necessary conditions for the stochastic stability
of the coexistence equilibrium E∗ under environmental fluctuations [34]. Thus, the
internal parameters of the model together with the intensities of the environmental
fluctuations help in maintaining the stability of the stochastic system.

5 Numerical Simulations

In this section, the dynamic characteristics of plankton species are being emphasized
with the help of numerical simulations. We start with a reference parameter set
(cf. Table 1 [13, 26]) in which the criterion for existence at E∗ is satisfied. We
observe that the equilibrium of coexistence is locally asymptotically stable under the
given set of parametric values (cf. Fig. 1a). Now by varying the different parametric
values, we study the dynamic behavior of system (1).

5.1 Effects of N0

If the value of constant nutrient input N0 = 4.2 is increased, the system exhibits
oscillations around E∗. But for low value of N0 = 2.2, the system switches to

Table 1 A set of parametric values

Parameter Definition Default value

N0 Constant input of nutrient 4

D Dilution rate of nutrient 1.65

ρ The degree of toxicity 0.018

α1 Nutrient uptake rate for the phytoplankton 1.2

α2 Conversion rate of nutrient for the growth of phytoplankton 1

μ1 Mortality rate of phytoplankton 0.6

μ2 Mortality rate of zooplankton 0.2

μ3 Nutrient recycle rate due to the death of phytoplankton 0.06

μ4 Nutrient recycle rate due to the death of zooplankton 0.06

c Predation rate of zooplankton 1

e Conversion rate of zooplankton 0.8

K1 Half-saturation constant for phytoplankton 0.6

K2 Half-saturation constant for zooplankton 2

K The fraction of phytoplankton aggregates 0.55
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Fig. 1 (a) The equilibrium point E∗ is stable for the parametric values as given in Table 1. (b) The
figure depicts oscillatory behavior around the positive interior equilibrium point E∗ of system (1)
forN0 = 4.2 (blue line), zooplankton-free equilibriumE1 forN0 = 2.2 (green line), and plankton-
free equilibrium E0 for N0 = 0.8 (black line). (c) The figure depicts oscillatory behavior around
the positive interior equilibrium point E∗ of system (1) for D = 1.85 (blue line) and zooplankton-
free equilibriumE1 forD = 0.7 (black line). (d) The figure depicts oscillatory behavior around the
positive interior equilibrium point E∗ of system (1) for μ1 = 0.56 (blue line) and zooplankton-free
equilibrium E1 for μ1 = 0.8 (black line)

zooplankton-free equilibrium E1. Further decreasing the value of N0 from 2.2 to
0.8, the system shifts to plankton-free equilibrium E0 (cf. Fig. 1b).

5.2 Effects of D

The system (1) can switch to oscillatory behavior around E∗ for high value of
dilution rate of nutrient, D = 1.85. Also, our observation indicates that for low
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value of D = 0.8, the trajectory approaches zooplankton-free equilibrium E1 (cf.
Fig. 1c).

5.3 Effects of μ1

Decreasing the value of μ1 from 0.6 to 0.56, the stable equilibrium switches to
oscillatory behavior aroundE∗. On the other hand, the system shifts to zooplankton-
free equilibrium E1 due to high value of μ1 = 0.8 (cf. Fig. 1d).

5.4 Effects of μ2

The system (1) exhibits oscillations aroundE∗ for low value ofμ2 = 0.195. Further,
it is noted that at high value of μ2 = 0.25, the stable equilibrium switches to
zooplankton-free equilibrium E1 (cf. Fig. 2a).

5.5 Effects of K

Taking K = 0.53, the system exhibits oscillatory behavior around the positive
interior equilibrium E∗. But it is observed that the stable equilibrium shifts to
zooplankton-free equilibrium E1 due to high value of K = 0.65 (cf. Fig. 2b).

5.6 Effects of ρ

Taking amount of toxicity ρ = 0.014, the stable equilibrium switches to oscillatory
behavior around the positive interior equilibrium E∗. But increasing the value of
ρ from 0.018 to 0.3, the system switches to zooplankton-free equilibrium E1 (cf.
Fig. 2c).

5.7 Hopf Bifurcation

Figure 3a–c depicts the different steady-state behaviors of nutrient, phytoplankton,
and zooplankton in the system (1) for the parameter N0. Here, we see a Hopf bifur-
cation point atN0

c = 4.18 (denoted by a red star (H)) with first Lyapunov coefficient
being −1.101668e−002, which indicates that a stable limit cycle bifurcates from the
equilibrium and loses its stability. Here, N0 = 2.40 (BP) denotes the branch point
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Fig. 2 (a) The figure depicts oscillatory behavior around the positive interior equilibrium pointE∗
of system (1) forμ2 = 0.195 (blue line) and zooplankton-free equilibriumE1 forμ2 = 0.25 (black
line). (b) The figure depicts oscillatory behavior around the positive interior equilibrium point E∗
of system (1) for K = 0.53 (blue line) and zooplankton-free equilibrium E1 for K = 0.65 (black
line). (c) The figure depicts oscillatory behavior around the positive interior equilibrium point E∗
of system (1) for ρ = 0.014 (blue line) and the zooplankton-free equilibrium E1 for ρ = 0.03
(black line)

of the system (1) where zooplankton go to extinction. We have plotted a bifurcation
diagram with N0 as the bifurcation parameter with other three species (cf. Fig. 3d).

Figure 4a–c depicts the different steady-state behaviors of nutrient, phytoplank-
ton, and zooplankton in the system (1) for the parameter D. Here, we observe a
Hopf bifurcation point at D = 1.75 (denoted by a red star (H)) with first Lyapunov
coefficient being −1.057982e−002. Here,D = 0.798 (BP) indicates the branch point
of the system (1). We have displayed a bifurcation diagram whenD is treated as the
free parameter (cf. Fig. 4d).
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Fig. 3 (a) The figure depicts different steady-state behaviors of nutrient for the effect of N0.
(b) The figure depicts different steady-state behaviors of phytoplankton for the effect of N0. (c)
The figure depicts different steady-state behaviors of zooplankton for the effect of N0. (d) The
bifurcation diagram for N0

From Fig. 5a–c, it follows different stability behaviors for free parameter μ2.
At μ2 = 0.196, the Hopf point indicates the supercritical bifurcation with first
Lyapunov coefficient −1.136241e−002. It is clearly indicated that zooplankton
become extinct at μ2 = 0.229760 (BP). Here, LP denotes the limit point.
Further, we have plotted a bifurcation diagram with constant nutrient input μ2
as the bifurcation parameter with other three species (cf. Fig. 5d). For a clear
understanding of a dynamic change due to change in μ1, ρ, and K , we have plotted
three bifurcation diagrams separately (cf. Fig. 6a–c). We have simulated a family
of stable limit cycles bifurcating from Hopf point when ρ is the free parameter (cf.
Fig. 6d). Finally, we have plotted two-parameter bifurcation diagrams for N0 −D,
N0 −μ1, N0 −K , and N0 − ρ, respectively (Fig. 7a–d), to show the stable zone at
E∗. All the numerical results are summarized in Table 2.
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Fig. 4 (a) The figure depicts different steady-state behaviors of nutrient for the effect ofD. (b) The
figure depicts different steady-state behaviors of phytoplankton for the effect of D. (c) The figure
depicts different steady-state behaviors of zooplankton for the effect of D. (d) The bifurcation
diagram for D

5.8 Environmental Fluctuations

Next, we examine the dynamical behavior of the system in the presence of environ-
mental disturbances. To study the stochastic differential equation numerically using
MATLAB software, we apply the Euler–Maruyama method. Firstly, we satisfy the
condition for asymptotic stability at coexistence equilibrium in the mean square
sense that depends on system parameters of model system (12) and σ1, σ2, and
σ3. Taking σ1 = 0.1, σ2 = 0.1, and σ3 = 0.14, the values of intensities of the
environmental perturbations with reference set of parametric values as in Table 1
for which all the three species coexist and the system is stochastically stable
(cf. Fig. 8a). But when we increase the values of intensities of the environmental
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Fig. 5 (a) The figure depicts different steady-state behaviors of nutrient for the effect of μ2.
(b) The figure depicts different steady-state behaviors of phytoplankton for the effect of μ2. (c)
The figure depicts different steady-state behaviors of zooplankton for the effect of μ2. (d) The
bifurcation diagram for μ2

perturbations, σ1 = 0.3, σ2 = 0.2, and σ3 = 0.15, the coexistence equilibrium
becomes unstable (cf. Fig. 8b).

6 Discussion

We have considered a nutrient–phytoplankton–zooplankton interaction model in
which toxin-producing phytoplankton (TPP) aggregate to defend itself from the
zooplankton predation. Their main features are the use of general nutrient uptake
functions and instantaneous nutrient recycling. We further investigate the impact of
model parameters by either varying one of them or combining some of them.
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Fig. 6 (a) The bifurcation diagram for μ1. (b) The bifurcation diagram for ρ. (c) The bifurcation
diagram for K . (d) The family of limit cycles bifurcating from the Hopf point H for ρ

Firstly, the model is studied analytically, and the threshold values for the
feasibility and stability of the three possible steady states namely plankton-
free, zooplankton-free, and coexistence equilibria are determined. If the system
parameter values satisfy suitable conditions, these equilibrium states are related to
each other by transcritical bifurcations. Next analytical results are performed for
a Hopf bifurcation at the coexistence equilibrium that is supported by numerical
simulations. By changing the various parameters, persistent oscillations occur.
The bifurcation diagrams of Figs. 3 and 4 indicate that increasing values of the
nutrient input as well as of its dilution rate lead to sustained population oscillations.
The same outcome occurs if instead we decrease the mortality rate of plankton
population rate, the degree of toxicity, and the fraction of phytoplankton aggregates.
These results indicate that to avoid recurrence bloom and to prevent zooplankton
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Fig. 7 (a) The two-parameter bifurcation diagram for N0 −D. (b) The two-parameter bifurcation
diagram forN0−μ1. (c) The two-parameter bifurcation diagram forN0−K . (d) The two-parameter
bifurcation diagram for N0 − ρ

from extinction, a suitable range is necessary for the constant nutrient input,
dilution rate of nutrient, mortality rate of both plankton population, and degree of
toxicity. Next, we assume environmental noise in the model. It is observed that
low values of noise intensities lead to stochastic asymptotic stability of the system.
But slightly higher values of noise intensities may lead to oscillations with high
amplitudes. It is clearly indicated that our model system persists to be stochastically
stable if it satisfies suitable conditions that involve both the maximum size of the
environmental random fluctuations and the model parameters.
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Table 2 Natures of equilibrium points

Parameters Values Eigenvalues Equilibrium points

N0 4.179998 (−1.8582,±0.107212i) Hopf (H)

2.399359 (−2.59529,−0.254198, 0) Branch point (BP)

D 1.753770 (−1.97839,±0.105751i) Hopf (H)

0.798046 (−1.57999,−0.417547, 0) Branch point (BP)

μ2 0.195716 (−1.84882,±0.108783i) Hopf (H)

0.229760 (−3.768,−0.361995, 0) Branch point (BP)

0.533205 (−7.40619,−0.461418, 0) Limit point (LP)

μ1 0.575143 (−1.88529,±0.111077i) Hopf (H)

0.772012 (−1.89088,−0.148792, 0) Branch point (BP)

ρ 0.015674 (−1.84885,±0.111284i) Hopf (H)

0.027499 (−3.768,−0.361995, 0) Branch point (BP)

K 0.541502 (−1.84877,±0.110211i) Hopf (H)

0.596800 (−3.768,−0.361995, 0) Branch point (BP)

N0 − μ1 (1.710668, 0.142322) (−3.20526,±0.145281i) Generalized Hopf (GH)

(0.072670, 0.046703) (−8.19909,±0.0300249ii) Generalized Hopf (GH)

N0 − ρ (7.0466980.027502) (−1.96543, 0, 0) Bogdanov–Takens (BT)
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Fig. 8 (a) The figure depicts the solution of system is stochastically stable for σ1 = 0.1, σ2 = 0.1,
and σ3 = 0.14. (b) The figure depicts the solution of system is stochastically unstable for σ1 =
0.3, σ2 = 0.2, and σ3 = 0.15
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Predicting the COVID-19 Spread Using
Compartmental Model and Extreme
Value Theory with Application to Egypt
and Iraq

Mahmoud A. Ibrahim, Amenah Al-Najafi, and Attila Dénes

1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is a respiratory
pathogen. The disease spreads mainly through respiratory droplets that are produced
when an infected person coughs, sneezes, sings, speaks, or breathes. The most
common symptoms of COVID-19 are fever, dry cough, fatigue, shortness of
breath, sore throat, muscle pain, loss of smell, loss of appetite, headache, and
conjunctivitis [1, 2]. Most infected persons (about 80%) develop mild to moderate
illness and recover without hospitalization. About 20% become seriously ill and
require oxygen, and 5% become critically ill and require intensive care. The
background of the disease in Iraq and Egypt can be found in [3].

A variety of mathematical models have been developed to understand the
epidemiological features of COVID-19 and the transmission dynamics for many
countries, including France [4], Germany [5], Hungary [9], the UK [6], and the
USA [7, 8]. Ibrahim and Al-Najafi [3] studied the spread of COVID-19 epidemic
in Iraq and Egypt by using compartmental, logistic regression, and Gaussian
models, providing a forecast of the spread of COVID-19 in Iraq. Furthermore,
we predicted the possible start of the second wave of the COVID-19 epidemic
in Egypt using generalized SEIR with time-periodic transmission rate. Here, we
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establish a compartmental mathematical model for the spread of COVID-19, taking
into account presymptomatic, mildly, and symptomatically infected individuals. We
estimate the parameters that provide the best fit to the incidence data from both
countries.

Extreme value theory (EVT) is widely applied in many disciplines, including
public health. We refer to some of these studies, Lim et al. [10], in which EVT was
used to model the extremes in dengue case counts using provincial-level data in
Thailand from 1993 to 2018. Lim et al. [11] analyzed the dengue incidence data in
Singapore by using time-varying extreme mixture (tvEM) methods to account for
the time dependence of dengue case numbers over extreme and non-extreme time
periods. In [12], the annual maxima of pneumonia and influenza deaths were plotted
against the return level over the period 1979–2011. Chen et al. [13] used EVT to
forecast the probability of outbreaks of highly pathogenic influenza. In more recent
research, the EVT has been used to project the future of COVID-19 confirmed cases
in Italy, Australia, Iran, South Africa, the USA, and Chile [14]. Here, we estimate
the return level and the return period of the COVID-19 epidemic to predict the future
of the disease in Egypt and Iraq. We provide several scenarios for the possible peak
and its timing using Gaussian2 fit model.

This chapter is organized as follows. Section 2 describes the various methods
applied in our work, while the results provided by these methods are given in Sect. 3.
This chapter is concluded by a discussion in Sect. 4.

2 Methods

2.1 Compartmental Model for COVID-19 Transmission

The population is divided into seven compartments: susceptible (denoted by S(t)),
exposed (E(t)), presymptomatic infected (P(t)), symptomatically infected (Is(t)),
mildly infected (Im(t)), treated (I

T
(t)), and recovered individuals (R(t)). The total

size of the population at any time t is given byN(t) = S(t)+E(t)+P(t)+Im(t)+
Is(t)+ IT (t)+ R(t).

The transmission dynamics is shown in the flow diagram in Fig. 1, and our model
takes the form

S E P

Im

Is I
T R

Fig. 1 Follow diagram of the COVID-19 transmission
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S′(t) = − β κpP (t)+ κmIm(t)+ Is(t)+ κT IT (t)
N(t)

S(t),

E′(t) = β κpP (t)+ κmIm(t)+ Is(t)+ κT IT (t)
N(t)

S(t)− νeE(t),

P ′(t) = νeE(t)− νpP (t),
I ′m(t) = θνpP (t)− γmIm(t),
I ′s(t) = (1 − θ)νpP (t)− γsIs(t),
I ′
T
(t) = γsIs(t)− γT IT (t)− δT IT (t),

R′(t) = γmIm(t)+ γT IT (t).

(1)

The description of the model parameters is listed in Table 1. Susceptibles are
those who can be infected through COVID-19. Once having contracted the disease,
an individual moves up to the exposed class; these individuals do not yet have
symptoms and can not transfer the virus to susceptible individuals. Exposed
individuals progress to presymptomatic class, and these individuals do not yet have
symptoms but can transfer the virus. Following the incubation period, presymp-
tomatic individuals move to one of the symptomatically infected class and the
mildly infected class, based on whether or not that individual shows symptoms
or not. Mildly infected individuals progress to the symptomatically compartment
or the recovered class. Symptomatically infected individuals move to the treated
compartment, which includes those who reported hospitalized. After the infectious
period, the treated persons move to the recovered class. To keep our model simpler,
we do not add separate compartments for the quarantined individuals. In particular,
β represents the transmission rate from symptomatically infected to susceptible,
while βκp, βκm, and βκ

T
are the transmission rates from presymptomatic, mildly

infected, and treated to susceptible, respectively. The length of the latent period for
humans is 1/ν, while 1/γm, 1/γT denote the lengths of the infected period for mildly
and symptomatically infected people, respectively. The parameter θ is the fraction
of mildly infected among all the infected people.

Table 1 Description of the model (1) parameters

Parameters Descriptions

β Transmission rate from infectious classes to susceptible

κp, κm, κT The relative transmissibility of P, Im and I
T

, respectively

θ Proportion of asymptomatic infections

γs Progression rate from Is to I
T

γm, γT Recovery rates

δ
T

Disease-induced death rate

νe, νp Incubation rates
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2.1.1 Derivation of the Basic Reproduction Number

By using the next generation method introduced in [19], we derive a formula for
the basic reproduction number of (1). Then by considering the infectious states
E,P , Im, Is , and I

T
in (1) and substituting the values in the disease-free equilibrium

(N, 0, 0, 0, 0, 0, 0), we calculate the matrices F and V for the new infection terms
and the remaining transfer terms. These two matrices are, respectively, given by

F =

⎡
⎢⎢⎢⎢⎢⎣

0 βκp βκm β βκT
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

and V =

⎡
⎢⎢⎢⎢⎢⎣

νe 0 0 0 0
−νe νp 0 0 0

0 −θνp γm 0 0
0 −(1 − θ)νp 0 γs 0
0 0 0 −γs γT + δ

T

⎤
⎥⎥⎥⎥⎥⎦
.

According to [19], the basic reproduction number is the largest absolute eigenvalue
of FV −1, and thus, it is given by

R0 = ρ(FV −1) = βκp

νp
+ θβκm

γm
+ (1 − θ)βνe

νpγs
+ (1 − θ)βνeκT
νp(γT + δ

T
)
. (2)

Besides calculating the basic reproduction number R0 of the model (1), effective
reproduction rate Reff = R0

S(t)
N

can also be estimated by this formula, measuring
the average number of secondary cases per infectious case in a population. In
addition, the time-dependent reproduction number can be calculated from incidence
data (see e.g., [20] for details).

2.2 Return Level Estimation

The application of EVT offers different techniques to study the behavior of a sample
with very high or very low levels. One of the important techniques of extreme value
theory is the idea of the return level. The return level is strongly related to the return
period: it is the quantile that will be reached or exceeded once in every year. In
this chapter, we will use it to investigate the upper-tail distribution properties of the
infection of the COVID-19 epidemic. In this subsection, we follow the methods and
definitions given in [15].

Let X be a random variable with cumulative distribution function F , and the
distribution function of this random variable is called excess distribution function
over the threshold u denoted by Fu, defined as
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Fu(x) = P(X − u ≤ x | X > u) = F(u+ x)− F(u)
1 − F(u) , x ≥ 0,

where 1 − F(u) is the exceedance probability, and the mean excess function of X
e(u) = E(X − u | X > u) denotes the mean residual life function. The method
is based on exceedances over a specified threshold. Assuming that the appropriate
distribution is chosen and then the parameters are estimated, it is useful to calculate
the return level. For a given threshold u, assume that the generalized Pareto (GP)
distribution with scale σ and shape ξ parameters is a suitable model for exceedances.
For sufficiently large u, the distribution function of (X − u), conditional on X > u,
is therefore approximately

H(x) = 1 −
(

1 + ξx

σ̃

)− 1
ξ

, ξ > 0, (3)

where σ̃ = σ + ξ(u − μ). Let ζu = P {X > u}, and let xm be the value that is
exceeded once in every m periods on average, and the level xm will be obtained
from

xm =
⎧⎨
⎩
u+ σ

ξ
[(mζu)ξ − 1] ξ 
= 0

u+ σ log(mζu) ξ = 0
(4)

provided m is sufficiently large to ensure that xm > u.
To predict the second wave of the COVID-19 epidemic, we apply a Gaussian2 fit

model. Let I (x) denote the Gaussian2 function, and it is given by

I (x) =
2∑
j=1

Ij exp

(
−
(
x − μj
σj

)2
)
, (5)

where Ij is the amplitude, μj is the time of the peak, and σj is related to the peak
width.

3 Results

3.1 Parameter Estimation for Iraq and Egypt

The data were collected from the Worldometer website [16, 17]. We focus on the
data from 22 February to 31 October, 2020 in Iraq and from 15 February to 31
October, 2020 in Egypt.
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To estimate the model (1) parameters giving the best fit, we applied Latin
hypercube sampling, a method used in statistics to measure simultaneous variation
of multiple parameters (see e.g., [18] for details).

Figure 2 shows the model (1) fitted to the daily number of confirmed cases in (a)
from Egypt, 15 February 2020 to 31 October 2020, and in (b) from Iraq, 22 February
2020 to 31 October 2020. Our model gives a reasonable good fit for both countries,
showing the peak in Egypt and predicting the peak in Iraq. The fitting parameter
results are listed in Table 2.
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Fig. 2 The model (1) fitted to the daily confirmed cases in (a) Egypt and (b) Iraq with parameters
given in Table 2

Table 2 Parameters and
fitted values of model (1) in
the case of Iraq and Egypt

Value for Iraq Value for Egypt

Parameters R0 = 1.122 R0 = 1.129 Source

β 0.572 0.817 Fitted

κp 0.284 0.277 Fitted

κm 0.275 0.235 Fitted

κ
T

0.211 0.368 Fitted

θ 0.728 0.805 Fitted

γs 0.5 0.255 Fitted

γm 0.23 0.203 Fitted

γ
T

0.098 0.336 Fitted

δ
T

0.164 0.191 Fitted

νe 0.259 0.155 Fitted

νp 0.483 0.93 Fitted
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3.2 Reproduction Numbers

In order to quantify the effort needed to eradicate infectious diseases, the basic
reproduction rate R0 is an important threshold parameter and is defined as the
expected number of secondary infections generated by one infected person in a
population where all individuals are susceptible to infection. The basic reproduction
number is estimated from the incidence data using exponential growth (EG) method
(see e.g., [20] for details), and we found that R0 = 1.047 for Egypt and R0 = 1.078
for Iraq. The reproduction number in both countries is greater than one and the
disease persists.

Formula (2) gives us the basic reproduction number in any time point by
substituting the parameter values into it. To assess the dependence of the basic
reproduction number on the parameters that can be subject to control the spread
of the virus, the contour plot of the basic reproduction number in terms of
the transmission rate (β) and progression rate from symptomatically infected to
hospitalized individuals (γs) for the two countries is shown in Fig. 3.

Figure 4 shows the effective reproduction number along with the number of
symptomatically infected in Egypt and Iraq, 2020–2021, showing that the number
of infected individuals begins to decline when the effective reproduction number
goes below 1. The highest value of the effective reproduction number is calculated
to be about Reff ≈ 1.129 in Egypt and Reff ≈ 1.122 in Iraq.
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Fig. 4 The effective reproduction number and the number of symptomatically infected in (a)
Egypt and (b) Iraq, 2020–2021

Fig. 5 Mean excess plot with threshold in Iraq and Egypt, 2020

3.3 Prediction of the Second Wave of the COVID-19 Epidemic

The application of the return level required choosing an optimal threshold assuming
that data exceeding a specified threshold follows a Pareto distribution to determine
an accurate return level estimate. It is very important to choose a plausible threshold
value because choosing a threshold value that is too small leads to an imprecise
estimate and choosing a threshold value that is too high leads to a biased estimate.
The results of the empirical mean excess function show the appropriate threshold
value for our data and also the peak value for infections, with the peak value in Iraq
being 4200 and in Egypt 1400.

Figure 5 shows the peak values selected for infections, which are 4200 and 1400
in Iraq and Egypt, respectively.

The return level for the peaks corresponding to the selected threshold for 2020
and 2021 is shown in Fig. 6. Over the 2021 period, it indicates that 4434, 4468,
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Fig. 7 Two different scenarios with return level to the daily confirmed cases in Egypt and Iraq,
2020–2021

and 4498 infection cases per day are expected to be exceeded in next year in Iraq
with confidence intervals (4341.4, 4564.2), (4321, 4704.2), and (4302, 4858.5),
respectively, while 1534 (1502.2, 1577.7), 1549 (1511.2, 1598), and 1560 (1523.6,
1661.7) infection cases per day are expected to be exceeded once in the next year
in Egypt. The upper and lower confidence intervals for peaks 4468 and 4498 in Iraq
and 1549 and 1560 in Egypt indicate low precision and high uncertainty, while the
confidence intervals to the peaks 4434 and 1534 for Iraq and Egypt, respectively,
revealed narrower and less uncertainty. To predict the spread of COVID-19 in Iraq
and Egypt, we apply the Gaussian2 model (5) to estimate the value and time of the
expected peak for two different scenarios and estimate the time of the peak that
we obtained from return level. Figure 7 shows the daily cases with three expected
maximum peak values at its timing in Iraq and Egypt. Table 3 shows the parameters
that were used to obtain each scenario and return level estimation. The return level
peak timing is estimated to occur on 12 October 2021 with R2 = 0.9574 for Iraq,
while on 18 April 2021 in Egypt with R2 = 0.9578. The second wave peak timing
is estimated to occur between 21 March and 4 July, 2021 in Iraq, while in Egypt it
is estimated to occur between 17 February and 29 March, 2021.
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Table 3 Estimated parameter results for two scenarios and return level of the Gaussian model to
Iraq and Egypt

Gaussian2 model

Parameters Scenario one Scenario two Return level

Iraq

Estimated peak day cases 8200 6500 4434

Estimated peak date 21/3/2021 04/07/2021 12/10/2021

Goodness of fit (R2) 0.9675 0.9544 0.9574

Root-mean-square error (RMSE) 364.8 364.9 365

Egypt

Estimated peak day cases 4000 2700 1535

Estimated peak date 17/02/2021 29/03/2021 28/04/2021

Goodness of fit (R2) 0.9498 0.9779 0.9578

Root-mean-square error (RMSE) 111.3 111.4 111.7

4 Discussion

We have studied the spread of COVID-19 epidemic in Egypt and Iraq by using
compartmental (generalized SEIR) model considering presymptomatic, mildly, and
severely infected individuals. We estimated the parameters that best fit the incidence
data. Our model provides a reasonable good fit to the incidence data in both
countries.

The reproduction number was estimated based on the cumulative confirmed cases
by using the exponential growth (EG) method and was found to be 1.078 and 1.047
for Iraq and Egypt, respectively. Using our compartmental model, we obtained a
formula for the basic reproduction number that allowed us to calculate the value
of R0. Using the estimated parameter set resulting from fitting our model to the
incidence data in both countries, we found that R0 = 1.122 and R0 = 1.129 for
Iraq and Egypt, respectively. The basic reproduction number is greater than one,
indicating that the virus still persists in both countries. The highest value of the
effective reproduction number is estimated to be about 1.129 in Egypt and 1.122
for Iraq (see Fig. 4). The contour plots of the basic reproduction number (see Fig. 3)
suggest that to control the spread of the COVID-19 outbreak, both countries should
work to decrease the transmission rate enough by making more restrictions and
precaution measures in the cities that have large numbers of infected people.

The return level for the peaks indicates that infection cases per day are expected
to be exceeded once in next year and corresponds to a number of 4434 and
1535 infection cases with narrower and less uncertain confidence intervals in Iraq
and Egypt, respectively. The Gaussian2 fit model was used to obtain statistical
predictions for the spread of COVID-19 pandemic in Iraq and Egypt, and we fitted
the Gaussian2 model to the daily confirmed cases to estimate the value and timing
of the expected peak for two different scenarios and to determine the timing of the
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peak that we obtained from the return level for both countries. The results of the
return level in Iraq illustrate that the predicted daily cases are estimated to be 4434,
while the peak values of scenario one and scenario two are expected to be 8200 and
6500 on March 21, 2021 and July 4, 2021, respectively. In Egypt, the predicted daily
cases are estimated to be 1535, while the peaks of scenario one and scenario two are
expected to be 4000 and 2700 on 17 February and 29 March, 2021, respectively.
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Geometry of Fitness Surfaces and
Dynamics of Replicator Systems

A. S. Bratus, A. S. Novozhilov, and T. Yakushkina

1 Introduction: Extremum Principles in Evolution

For almost a century, Fisher’s fundamental theorem of natural selection is being
discussed and reinterpreted [1–7]. The original study [8] proposed a concept
describing the mean fitness behavior through universal law, similar to the second
law of thermodynamics in physics. However, it was not defined for any particular
replicator system or strictly mathematically formalized. Various representations
of the fitness landscape and genetic variance lead to different perceptions of
evolutionary dynamics [9–12].

In biological research, a widespread visualization of the fitness landscape is a
statistic hypersurface with hills, canyons, and valleys [13, 14]. Evolving population
in this metaphor is “moving” across this terrain, experiencing decreases on the
way, and reaching toward its peak. From a mathematical perspective, Fisher’s
postulate means that there exists a Lyapunov function that monotonically increases
along the system’s adaptive trajectories. Nevertheless, such a function can be found
analytically only for a very limited set of problems. One of the examples is a class
of replicator equations that have a globally asymptotically stable equilibrium [15].

The idea of having universal laws in biology that can be described by explicit
mathematical expressions attracted the attention of many scientists [16–20]. In par-
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ticular, it inspired many studies of maximization processes in evolution [21–23]. In
this chapter, we consider general replicator and Lotka–Volterra systems, analyzing
their extremal properties from the standpoint of fitness landscape geometry.

2 Fitness Landscapes of Replicator Systems

Let the vector u(t) = (u1(t), . . . , un(t)) denote the distribution of species in the
population changing over time t . A conventional way to define a replicator system
is by the following differential equations [24, 26]:

u̇i = ui ((Au)i − f (u)) , i = 1, . . . n, (1)

(Au)i =
n∑
j=1

aijuj (t), f (u) = (Au,u) ,

u(t) ∈ Sn =
{

x ∈ R
n : xi ≥ 0,

n∑
i=1

xi = 1

}
.

Here and throughout this chapter, u̇ denotes a derivative with respect to time t . In the
system (1), selection is described by the matrix of fitness coefficients A = {aij }n×n.
The expression (Au)i stands for the average reproductive success of i-th species
and equals to the corresponding element of the vector Au. The term f = (Au,u) =∑n
i,j=1 aijuiuj is the mean fitness, which assures that u(t) belongs to the simplex

Sn for any time moment t .
To describe a steady state of the system (1), one can write the system of algebraic

equations:

Aū = f (ū)1, 1 = (1, . . . , 1)T , ū ∈ Sn. (2)

Here, f (ū) is the mean fitness at the equilibrium state ū.
Adopting the approach proposed in our previous study [27], we examine the

geometry of the fitness landscape. We introduce the notation, using the parameters
of Eq. (1):

� =
⎧⎨
⎩z = f (u) : f (u(t)) =

n∑
i,j=1

aijui(t)uj (t), u ∈ Sn
⎫⎬
⎭ . (3)

The hypersurface � is called fitness landscape. For each trajectory γt ∈ Sn of the
system (1), there exists a curve �t ∈ �.

Properties of � depend on the type of A. Consider a decomposition of A into a
sum of a symmetric matrix B and a skew-symmetric matrix C:
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A = B + C, B = 1

2

(
A + AT

)
, C = 1

2

(
A − AT

)
. (4)

Denote the rows of B and C as bi and ci , respectively. If A is symmetric itself, then
C = 0. Otherwise, since (Cu,u) = 0, the mean fitness of the system is described
solely by B:

f (u) = (Au,u) ≡ (Bu,u) .

To estimate the rate of the mean fitness variation, we derive

ḟ (u(t)) =
n∑
i=1

(bi,u(t))2 ui(t)− f 2(u(t))+
n∑
i=1

(bi,u(t)) (ci,u(t)) ui(t). (5)

For symmetric A, the expression (5) gives

ḟ (u) =
n∑
i=1

(Au)2i ui −
(

n∑
i=1

(Au)i ui

)2

≥ 0. (6)

The latter is the variance of the random variable (Au)i distributed with the
probability u. This statement is known in the literature [28, 29] as Kimura’s
maximum principle. However, in a general case of Eq. (5), a cubic form is not sign-
definite. Hence, the sign of ḟ can be negative, and the mean fitness of the population
can undergo local decreases. In modern biology, these intervals of fitness reduction
are commonly thought to be insignificant. It means that the general dynamics of
the mean fitness allows it to reach its maximum value eventually. For quasi-species
systems, this hypothesis is proven to be true [30]. The mean fitness in the Eigen
model cannot have local minima in any internal point of a simplex, except for the
steady states.

To study the fitness landscape behavior in a general case, we need more
sophisticated techniques. From a mathematical point of view, the mean fitness
function is a quadratic form defined by a symmetric matrix B:

f (u(t)) = (Bu,u) .

Hence, there is an orthogonal transformation U:

UTBU = � = diag(λ1, . . . , λn).

In the latter expression, the parameters λi denote real eigenvalues of the matrix B.
Thus, the orthogonal transformation u = Uw reduces the quadratic form to the
canonical one:
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f (w) =
k∑
i=1

λ+i w
2
i +

n∑
j=k+1

λ−j w
2
j . (7)

In this formula, we use λ+i and λ−j as positive and negative real eigenvalues of B
correspondingly. Note that we assume |B| 
= 0.

Consider the extended classification for quadratic forms on fitness land-
scapes [27]. The eigenvalues of the matrix B define the three possible types:
elliptic if all the eigenvalues are of the same sign, hyperbolic if some eigenvalues
have opposite signs, and parabolic if there are zero eigenvalues.

The study on adaptive fitness landscapes [15] showed that isolated equilibrium
point ū ∈ intSn of the system (1) coincides with the extremum of the fitness
landscape if and only if there exists a non-degenerate matrix M = {mij }, i, j =
1, . . . , n:

C = MB, (8)

and

M · 1 = 0, 1 = (1, . . . , 1)T . (9)

If matrix A is symmetric, then C = 0 and M = 0.
Another non-trivial example is a class of the so-called circulant matrices, for

which the conditions (8), (9) take place:

A =

⎛
⎜⎜⎝
a1 a2 . . . an−1 an

an a1 . . . an−2 an−1

. . . . .

a2 a3 . . . an a1

⎞
⎟⎟⎠ . (10)

2.1 Game-Theoretical Approach and Evolutionary Stable
Strategies

Consider the existence problem for a local maximum of the fitness landscape �.
It is closely related to the concept of evolutionary stable strategies (ESS), which is
widely used in evolutionary game theory [24, 25]. From this standpoint, the matrix
A can be interpreted as a payoff matrix in a normal-form game with n strategies [24].
Each element aij describes the profitability of using strategy i against j in the
current environment. Thus, these interactions impact the distribution of strategies in
the population. We suppose that only pure strategies can be chosen, and the offspring
replicates the strategy of the parent. In this sense, the expected profit of particular
species with a strategy i is defined through all the possible interactions:
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fi(u) =
n∑
i=1

aijuj = (Au)i , u ∈ Sn,

which is a fitness value for this species. The expected profit value is the same as the
mean fitness of such population:

n∑
i=1

(Au)iui = f (u) = (Au,u) .

The difference between individual and population profits gives the same expression
as in Eq. (1):

u̇i

ui
= (Au)i − f. (11)

Given the approach described above, we can apply the techniques from game
theory to the system (1), especially the concept of Nash equilibrium for ESS [25].
Consider the following definition [24]:

Definition 2.1 A steady state ū ∈ intSn is an ESS, if

(ū,Au) > (u,Au) (12)

for all u 
= ū in some neighborhood of ū in Sn.

We focus on the connection between the steady states ū satisfying the condition (12)
and the extremal properties of the fitness landscape �.

Lemma 2.1 If a steady state ū ∈ intSn is an ESS, then there is a strict local
maximum of the hypersurface �.

Indeed, let ū be an ESS. Consider u = ū + εw. Since u ∈ Sn, then (w, 1) = 0.
From (12), we get

ε (w, ū)+ ε2 (w,Aw) < 0. (13)

Taking into account that ū is a steady state, i.e., Aū = f (ū)1, we derive the
inequality:

(w,Aw) < 0,w 
= 0,

since ε (w, ū) goes to zero. �
Note that the converse is not necessarily true: it holds only if conditions (8)

and (9) are applicable.
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Theorem 2.1 Let ū ∈ intSn be a unique solution to the system (1). Furthermore,
assume that it coincides with the local maximum of the hypersurface �. If this
equilibrium is asymptotically stable, then it is an ESS and gives the global maximum
for � over Sn. Otherwise, if ū is unstable, then the global maximum of � is reached
at the boundary of the simplex bdSn.

Assume that an asymptotically stable equilibrium ū coincides with a local maximum
point of � over Sn. Consider the following Lyapunov function:

V (u) =
n∑
i=1

[
(ui − ūi )− ūi ln

ui

ūi

]
> 0,u 
= ū, V (ū) = 0. (14)

Hence,

V̇ (u) =
n∑
i=1

u̇i

(
ui − ūi

ui

)
=

n∑
i=1

[(Au)i − (Au,u)] (ui − ūi ) =

(Au,u − ū) < 0,u 
= ū.

For some neighborhood Uδ(ū) of the steady state:

(ū,Au) < (Au,u).

Since

(Au, ū) ≤ max
u∈Sn

(Au,u), u ∈ Uδ(ū),

then under the conditions (8) and (9), we obtain

C = MB, M1 = 0, Bū = f (ū)1.

Finally, we get

(ū,Au) = (ū, (B + C)u) = (ū,Bu)+ (ū,Cu) =
(Bū,u)− (Cū, u) = f (ū)(1,u)− (MBū,u) = f (ū),

so that

f (ū) < max
u∈Sn

(Au,u). (15)

That is, the maximal value of the fitness landscape is not reached at the equi-
librium point ū ∈ intSn. From Lemma 2.1, it follows this value cannot be
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reached at any internal point of the local maximum; therefore, it is reached at the
boundary bdSn. �
Corollary 2.1 If a steady state ū ∈ intSn of the circulant system is asymptotically
stable, then it is also an ESS and a maximum point for the fitness landscape � over
the simplex Sn. If ū is unstable, then global maximum is reached at the boundary
bdSn.

2.2 Lotka–Volterra System

Consider the general case of the Lotka–Volterra equations in R
n+:

u̇i = ui (ri − (Au)i) , i = 1, . . . , n, (16)

(Au)i =
n∑
i=1

aijuj , r = (r1, . . . , rn).

It is natural to raise a question, which function is the analogue to the mean fitness
of the replicator system in this case. One of the suggestions for this function found
in the literature [31] has the form:

F(u) =
n∑
i=1

riui − 1

2
(Au,u). (17)

Deriving the variation from the expression (17), we get

Ḟ (u) =
n∑
i=1

ui (ri − (Bu)i)2 +
n∑
i=1

(Cu)i ((Bu)i − ri) ui . (18)

Here, we applied the formula for the matrix A factorization (4). The equality (18)
is similar to the one (5). In particular, if the matrix A is symmetric, then Ḟ (u) ≥ 0,
which was the case for the general replicator equations.

Theorem 2.2 Let ū ∈ intRn+ be a unique stable steady state of the system (16).
Furthermore, assume that C in a matrix A decomposition (4) has the form

C = MB, |M| 
= 0, M · r = 0. (19)

Then, ū is a global maximum point for the hypersurface z = F(u), z ∈ R
n.

Assume that we have an internal steady state ū ∈ intRn+. By definition,

Aū = r, |A| = 0.
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Since ū is stable, then B in Eq. (4) is positive-definite. The condition (19) is
necessary and sufficient to guarantee the equality Bū = r. This proof follows a
similar logic as the one for general replicator systems [15].

A necessary condition for the function z = F(u) having extremum at ū holds
true, since

∂F (u)
∂uk

∣∣∣∣
u=ū

= rk − (Bū)k = 0, (20)

where k = 1, . . . , n. A sufficient condition for the maximum at ū is the matrix
{zkj }nk,j=1 being negative-definite:

zkj = ∂2F(ū)
∂uk∂uj

= −bkj , k, j = 1, . . . , n. (21)

Since B is positive-definite, the latter condition takes place. Therefore, the hyper-
surface z = F(u) is a convex function in R

n+. Moreover, the steady state ū is the
global maximum point for this surface.

Corollary 2.2 If a unique steady state ū ∈ intRn+ is unstable, then the maximum
value of the hypersurface z = F(u) is reached at the boundary bdRn+.
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In-Host Dynamics of the Human
Papillomavirus (HPV) in the Presence
of Immune Response

Z. Chazuka, G. M. Moremedi, and E. Rapoo

1 Introduction

High-risk human papillomavirus types (16, 18, 31, 45) are one of the major con-
tributory causes of cervical cancer in women worldwide with about 80% of women
infected by HPV mainly due to sexual activities within their lifetime [6, 8]. Most
HPV cases in women are normally cleared by the immune system within a year
provided that there is quick detection. Due to either late detection or no detection,
some HPV infections will lie dormant or latently until there is natural clearance or
they develop into persistent HPV infections [7]. When fully functional, the human
body is well organised with great defences against infection and reinfection. It has
the skin as the immediate defence mechanism since it has a tough layer of cells
called (keratinocytes) that are constantly producing keratin. The skin is equipped
with glands that secrete substances such as fatty acids and enzymes that break down
bacteria. It is important to always keep the skin intact so as to avoid possible attacks
by viruses. However, during sexual intercourse, viruses such as HPV take advantage
of abrasion of the epidermal lining of the genital or oral mucosa [13] to enter into
the body as a result of abrasion of the epithelium. The body is also equipped with
an innate and adaptive immune response system ready to identify and eradicate
infection on a day-to-day basis provided they are prompted into action. However,
infections such as HPV make it very hard for the immune response to be prompted
into action due to their immune-evasive behaviour.
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Mathematical modelling of the in-host dynamics of infections such as HPV
makes it easy to understand the interactions necessary for a virus to spread within
cells. In relation to the mathematical modelling of HPV, there are a few in-host
models as compared to between-host models presented in literature. Smith et al. [10]
presented an in-host mathematical model that looked at the link between low-
risk HPV and high-risk HPV types [10]. The model also looked at the impact of
vaccination, competition between HPV low-risk and high-risk types within cells
and the probable co-infection dynamics. Simulations from the model indicated that
if there is no vaccination, then both low-risk and high-risk viral types coexist [10].
However, Smith? et al. [10] did not explore the effects of immune response in the
presence of vaccination, which then left out an important aspect in the dynamics of
HPV within the body. Spencer Hunt in his thesis presents a mathematical model for
HPV in the presence of immune response without vaccination [1]. In this particular
work, Hunt creates three models, that is, a basic HPV model with immune response,
the extended model with immune response and the memory model that incorporates
immune response and delay. In the basic HPV, Hunt establishes that using the
reproduction number for the model, one can be able to establish eradication or
persistence of infection. In the memory model, Hunt considered the possibility of
developing memory cells after an infection or the absence thereof and the effect of
such on the reproduction number R0. The results indicated that in the presence of
memory cells as long as the effective reproduction number Re < 1, HPV infection
will eventually be cleared. In the immune response delay model, Hunt presents a
model that tries to address the effects of a delay in immune response on the onset of
infection. The model includes a time delay from the start of the infection up until the
immune response is able to detect HPV; however, there is a flaw in that model in that
the detection of the HPV virus by the immune response is purely a random process
[7], and probably a stochastic model was appropriate. The results from the model
established that there was a certain critical threshold that when reached meant that
the immune response would be activated and viral clearance would drive the system
to the disease-free equilibrium.

Another interesting research to note is that of Murall et al. [5]. In this particular
work, they went on to create an in-host model for HPV that specifically looked at the
dynamics of high-risk types in the presence of immune response and vaccination.
Results from this study concluded that the removal of the ability of the HPV virus
to delay effector cell attack consequently caused R0 > 1 for cell types with higher
oncogene expression. The results also indicated that vaccine imposed immunity
could create higher oncogene expression, which in turn has serious consequences on
the host [5]. The model also found out that a high antibody response is an effective
way of reducing the number of infected cells through reduction of healthy cells by
the free HPV virions produced which supported vaccination of women.

This motivates the creation of a model that encompasses the thoughts presented
in the papers above and includes latent HPV infections. In the next section, we
present the model formulation, section 3 presents the analysis of the model, section
4 presents the disease-free equilibrium and reproduction number, section 5 presents
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the sensitivity analysis of the reproduction number, section 6 presents the numerical
simulations and finally discussion and conclusion are in section 7.

2 Model Formulation

Our HPV model considers basal layer cells of the epithelium within the genital
mucosa that are constantly at risk of HPV infection during sexual intercourse. This
particular mathematical model is made up of susceptible target cells denoted by
Ts(t), which represent healthy cells that are at risk of getting infected upon abrasion
of the epithelium. These cells are assumed to die naturally at a rate μ. When HPV
enters or infects a healthy target cell Ts(t), it merges its DNA with that of the cell
such that the cell is altered and no longer operates like a normal cell. Infection of
the healthy target cells is assumed to be done at a rate given by

βV

γ + Ts , (1)

where β is the transmission rate of the HPV virus, V (t) is the free HPV virus,
Ts(t) is the total number of uninfected epithelial cells given that are susceptible to
infection and γ is the concentration of the epithelial cells where infection is half-
maximal [5, 13]. The model incorporates latently infected cells, and these are target
cells within the basal layer that lie dormant or do not show any cytological changes
for a certain period before either clearing HPV infection or becoming infectious
target cells. We denote these type of cells within the model by L(t). Inclusion of
latently infected cells takes into account the undetectable HPV infection that in the
long run can develop into persistent HPV if not cleared by the immune system.
We assume that natural death of latently infected cells occurs at a rate μ, while
clearance of latent HPV infection as a result of immune response occurs at a rate
θ. Latently infected cells will also heal and return to the susceptible class at a rate
φ. Infectious target cells for the model are denoted by I1(t). The model assumes
that after a certain period, the latently infected cells can subsequently mature into
infectious target cells at a rate ψ and therefore progress to the I1(t) class. Natural
death of the I1(t) cells occurs at a rate μ. Throughout the model, clearance of HPV
infection as a result of immune response is assumed to occur at a rate θ within all
cell classes. Due to oncogene expression at a rate of 0 ≤ ε ≤ 1, I1(t), cells are
converted into transit amplifying cells I2(t) that prompt immune response due to
unusual cell activity [5, 13]. These cells are assumed to self-proliferate at a rate
rε, where r is the transit-amplifying cells recruitment rate [5, 13] and rε ≤ μ and
0 ≤ r ≤ 1. I2(t) cells die naturally at a rate μ and due to bursting release free
virion(s). Free virus production within the model is assumed to occur at a rate of
N2μ(I1 + I2), where N2 is the burst size that is due to virus particles produced by
the I1(t) and I2(t) cells in a lifetime. Free virion(s) are assumed to die naturally at
a rate δ. Immune response in the form of cytotoxic target cells (CTLs) is assumed
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Fig. 1 In-host dynamics of HPV in the presence of immune response

to be initiated through a rapid and abnormal cell growth of I2(t) cells indicating a
peculiar change within the system. The model assumes that the proliferation rate
of immune response cells is given by σ [5, 13] and that immune response cells die
naturally at a rate ν. This leads us to the flow diagram for the basic HPV model with
the immune response of Fig. 1; this model’s flow diagram leads us to the following
model equations:

T ′
s = �+ φL−

(
βV

(γ + Ts) + μ
)
Ts,

L′ = βV Ts

(γ + Ts) − (μ+ ψ + φ)L,

I ′1 = ψL− (ε + μ+ θK)I1,

I ′2 = εI1 + rεI2 − (μ+ θK)I2,

V ′ = N2μ(I1 + I2)− δV,

K ′ = σI2K − νK.

(2)
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3 Preliminary Analysis of the HPV Model

3.1 Positivity and Boundedness of Solutions

Model system (2) describes the dynamics of high-risk HPV in human
cells within the genital mucosa, and hence we prove that all the variables
Ts(t), L(t), I1(t), I2(t), V (t) and K(t) are non-negative for all time t > 0. This
leads us to the following important theorem that we state and prove.

Theorem 3.1 Let the initial conditions of (2) satisfy Ts0 > 0, L0 > 0, I10 >

0, I20 > 0, V0 > 0 and K0 > 0. Provided the unique solutions for system (2)
exist on an interval [0, t0] for some t0 > 0; then, Ts(t), L(t), I1(t), I2(t), V (t) and
K(t) will be bounded and remain positive ∀t ∈ [0, t0].
Proof We adopt the method by [14], and hence we initially prove that Ts(t) is
positive for t ≥ 0; otherwise, there exists a positive t0 such that Ts(t) > 0 for
t ∈ [0, t0), and hence Ts(t0) = 0. Using the equation,

T ′
s = �+ φL−

(
βV

(γ + Ts) + μ
)
Ts. (3)

Using the above equation, we note that Ts(t) is strictly positive ∀t ∈ [0, t0). We
establish that T ′s(t0) = � + φL ≥ 0, which implies that Ts(t) < 0, which is
therefore a contradiction to the fact that Ts(t) > 0 for t ∈ [0, t0). Based on this, we
have the following:

L′|L=0 = βV Ts

(γ + Ts) ≥ 0,

I ′1|I1=0 = ψL ≥ 0,

I ′2|I2=0 = εI1 ≥ 0,

V ′|V=0 = N2μ(I1 + I2) ≥ 0,

K ′|K=0 = 0.

(4)

It can clearly be seen that Ts(t) ≥ 0, L(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥
0, V (t) ≥ 0,K(t) ≥ 0, ∀ t ∈ [0, t0) meaning that any solution within
Ts(t), L(t), I1(t), I2(t), V (t) and K(t) of model (2) is positive for all t ≥ 0.

We prove that the system is dissipative, that is, all solutions of models system (2)
are uniformly bounded in a proper subset of � ⊂ R

6+, as indicated by the lemma.

Lemma 3.1 Let Ts(t) > 0, L(t) >= 0, I1(t) >= 0, I2(t) >= 0, V (t) >= 0
and K(t) >= 0. Then, there exist Ts(t) > 0, L(t) >= 0, I1(t) >= 0, I2(t) >=
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0, V (t) >= 0 and K(t) >= 0 such that for Ts(t), L(t), I1(t), I2(t), V (t), K(t),
lim sup
t→∞

(Ts(t)) ≤ TsM, lim sup
t→∞

(L(t)) ≤ LM, lim sup
t→∞

(I1(t)) ≤ I1M, lim sup
t→∞

(I2(t)) ≤
I2M, lim sup

t→∞
(V (t)) ≤ VM, lim sup

t→∞
(K(t)) ≤ KM, ∀t ∈ [0, t0].

The presence of HPV viral infection decreases the number of healthy Ts cells, and
hence initially at t = 0 we expect that the number of healthy target cells to be close
to the total cell population. Therefore, if the system is disease-free, it means that all
other equations of system (2) reduce to zero except for

T ′
s = �+ φL−

(
βV

(γ + Ts) + μ
)
Ts, (5)

which reduces to

T ′
s ≤ �− μTs, (6)

when evaluated at a disease-free equilibrium. So, based on that fact, we can find an
expression for T ′

s (t) as follows:

T ′
s + μTs = �, (7)

which can easily be solved using the integrating method approach to obtain

Ts(t) = �

μ
+ Ae−μt , (8)

where A is a constant; hence, by inputting the initial conditions Ts(0) = T0, we
obtain the following result:

Ts(t) = �

μ
+
(
T0 − �

μ

)
e−μt . (9)

Taking limits on the above expression gives

lim sup
t→∞

Ts(t) = lim sup
t→∞

[
�

μ
+ (T0 − �

μ
)e−μt
]
= �

μ
, (10)

and therefore the population of cells will grow towards
�

μ
. In order to also show

that all other cells of system (2) are also bounded, we recall that all constants for the
system are positive, and hence it follows that

T ′s(t)+ L(t)+ I ′1(t)+ I ′2(t) = �− μ(Ts + L+ I1 + I2)+ rεI2, (11)
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and this can be rewritten as

T ′s(t)+ L′(t)+ I ′1(t)+ I ′2(t) ≤ �−min{μ}(Ts + L+ I1 + I2), (12)

and hence using the integrating factor approach yields

∫
emin{μ}t d(Ts + L+ I1 + I2) ≤

∫
�emin{μ}t dt, (13)

which is equal to

(Ts + L+ I1 + I2) ≤ �

min{μ} + c0e
−min{μ}t , (14)

where c0 is a constant of integration. Taking lim sup on both sides of the above
equation yields

lim sup
t→∞

(Ts + L+ I1 + I2) ≤ lim sup
t→∞

�

min{μ} + c0e
−min{μ}t = �

min{μ} . (15)

Let TsM(t) = LM(t) = I1M(t) = I2M(t) = �

min{μ} such that (Ts + L + I1 + I2)
is bounded and so is Ts(t), L(t), I1(t), I2(t), since

{Ts(t), L(t), I1(t), I2(t)} ≤ (Ts + L+ I1 + I2)(t). (16)

So, Ts(t) ≤ TsM, L(t) ≤ LM, I1(t) ≤ I1M, I2(t) ≤ I2M, ∀t ∈ [0, t0]. Now,
considering the virus population, we recall that

dV

dt
= N2μ(I1 + I2)− δV, (17)

where (I1 + I2) ≤ �

μ
, and hence it follows that

dV

dt
≤ N2�− δV, (18)

which by solving, using the integrating factor approach, yields

V (t) ≤ N2�

δ
+ A0e

−δt , (19)

where A0 is a constant. By applying the initial conditions, we obtain

V (t) ≤ N2�

δ
+ (V0 − N2�

δ
)e−δt . (20)
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Now, taking lim sup limits on both sides of the above equation yields

lim sup
t→∞

V (t) ≤ lim sup
t→∞

N2�

δ
+
(
V0 − N2�

δ

)
e−δt = N2�

δ
, (21)

and hence we choose VM = N2�

δ
such that V (t) ≤ VM , and since I1 and I2 are

bounded, it suffices that V (t) is also bounded for all t ∈ [0, t0].All feasible solutions
to model system (2) are therefore positively bounded by

� = {Ts(t), L(t), I1(t), I2(t), V (t),K(t ∈ R
6+ | Ts ≤ �

μ
}. (22)

The region is considered of biological interest and is positively invariant and
attracting. ��

4 The Disease-Free Equilibrium and the Reproduction
Number R0

In order to find the disease-free equilibrium point, we consider all infectious
compartments {L, I1, I2, V } to be equal to zero such that model system (2) yields a
disease-free equilibrium given by

E0 =
(
�

μ
, 0, 0, 0, 0, 0

)
. (23)

We find R0 using the next generation matrix approach by Van den Driessche and
Watmough [12]. We proceed to construct the F and V matrices for model system (2)
as follows:

F =

⎛
⎜⎜⎜⎜⎝

0 0 0
�β

(�+ γμ)
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,V =

⎛
⎜⎜⎝
(μ+ ψ + φ) 0 0 0

−ψ (ε + μ) 0 0
0 −ε μ− rε 0
0 −N2μ −N2μ δ

⎞
⎟⎟⎠ , (24)

such that the spectral radius ρ(FV −1) is given by

R0 = β�ψN2μ(μ+ ε − rε)
δ(γμ+�)(ψ + φ + μ)(μ− rε)(ε + μ), (25)

where μ− rε > 0, 0 < r < 1, 0 < ε < 1, the assumption being that as oncogene
expression increases, (μ− rε) decreases and when oncogene expression decreases,



In-Host Dynamics of the Human Papillomavirus (HPV) in the Presence of. . . 87

(μ− rε) approaches μ, and hence the reproduction number is positive as required.
We establish the stability of the disease-free equilibrium by stating the following
theorem.

Theorem 4.1 The disease-free equilibrium for model (2) is locally asymptotically
stable provided that R0 < 1 and unstable when R0 > 1.

Proof The Jacobian for model (2) calculated at the disease-free equilibrium gives

J (E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ φ 0 0 − �β

(�+ γμ) 0

0 −(μ+ ψ + φ) 0 0
�β

(�+ γμ) 0

0 ψ −(ε + μ) 0 0 0
0 0 ε −(μ− rε) 0 0
0 0 N2μ N2μ −δ 0
0 0 0 0 0 −ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)
The first two eigenvalues of the above Jacobian matrix are λ1 = −μ and λ2 = −ν,
while the remaining eigenvalues are found by solving the quartic polynomial:

P(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, (27)

where

a1 = 3μ+ ψ + φ + ε(1 − r)+ δ > 0
a2 = δ(3μ+ ε(1 − r)+ ψ + φ)+ (μ+ ψ + φ)(2μ+ ε(1 − r))
+(ε + μ)(μ− rε) > 0
a3 = δ(μ+ ψ + φ)(2μ+ ε(1 − r))+ (ε + μ)(μ− rε)(δ + μ+ ψ + φ) > 0
a4 = δ(μ+ ε)(μ+ ψ + φ)(μ− rε) [1 −R0] > 0.

(28)
In order to establish whether the eigenvalues of the polynomial above have negative
real parts, we state the following lemma.

Lemma 4.1 The eigenvalues of the fourth degree polynomial P(λ) = λ4 + a1λ
3 +

a2λ
2 + a3λ + a4 have negative real parts provided that a1 > 0, a2 > 0, a3 > 0

and a3(a1a2 − a3)− a2
1a4 > 0, where a0, a1, a2, a3 and a4 are given above.

Proof In order to show that the Routh–Hurwitz condition is satisfied, let

α = (3μ+ ψ + φ + ε(1 − r)+ δ), α1 = (μ+ ψ + φ), α2 = (2μ+ ε(1 − r))

and α3 = (ε + μ)(μ− rε); hence,

a3(a1a2 − a3) = δ3αα1α2 + δ2α3(α1 + α2 + αα1 + α)+ δα3α2(α2α1 + α3α2)

+ δα1α(αα3 + α1α
2
2)+ α1α2α3(α3 + αα1)

(29)
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and

a2
1a4 = (1 −R0)

[
δ3α3α1 + 2δ2αα1α3 + δα3α1α

2
]

(30)

such that

a3(a1a2 − a3)− a2
1a4 = δ3α2(α3 + αα1)+ δ2α3(α1 + αα2)

+ δα2α3(α2α1 + α3 + αα1)+ δα2
1αα

2
2

+ α1α2α3(α3 + αα1)+R0α1α3
[
δα2 + δ3 + 2δ2α

]
> 0,

(31)

and hence the Routh–Hurwitz condition is satisfied implying that the quartic
polynomial has roots with negative real parts. Thus, the disease-free equilibrium is
locally asymptotically stable when R0 < 1 and unstable otherwise. This completes
the proof. ��

4.1 Global Stability Analysis of the Disease-Free Equilibrium

The disease-free equilibrium is locally stable provided that R0 < 1 around E0. In
order to prove global stability of model system (2), we state the following theorem.

Theorem 4.2 The disease-free equilibrium for system (2) is globally stable pro-
vided that R0 < 1 around E0.

Proof We prove global stability of an in-host model through following the work by
Shuai and van den Driessche [9]. We recall that for our particular model

R0 = β�ψN2μ(μ+ ε − rε)
δ(γμ+�)(ψ + μ+ φ)(μ− rε)(ε + μ). (32)

The Perron–Frobenius theorem states that every non-negative matrix can be
obtained as a limit of positive matrices. Therefore, there exists an eigenvector
with non-negative parts, and the corresponding eigenvalue is non-negative and will
be greater than or equal, in its absolute value, to all other eigenvalues of the matrix
[3]. So, let X = (L, I1, I2, V )

T , and based on the work by Shuai and van den
Driessche [9], we construct a Lyapunov function of the form

L = uT V−1X ,

and we let

X ′ = (F − V)X − f (x, Ts).
The matrix V−1F is reducible, and hence the left eigenvector is given by uT =
(0, 0, 0, 1), since the only non-zero column for the reducible matrix is column four.
Therefore, the Lyapunov function L is given as
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L = N2μψ(μ+ ε − rε)
δ(ψ + φ + μ)(μ− rε)(ε + μ)L+ N2μ(μ+ ε − rε)

δ(μ− rε)(ε + μ)I1 + N2μ

δ(μ− rε) I2 + 1

δ
V

= R0(γ + Ts0)
βTs0

(
L+ (μ+ ψ + φ)

ψ
I1 + (μ+ ψ + φ)(ε + μ)

ψ(μ+ ε − rε) I2

+ (μ+ ψ + φ)(ε + μ)(μ− rε)
N2μψ(μ+ ε − rε) V

)
.

It follows from the above calculation that

L′ = uT V−1(F − V)X − uT V−1f (x, y), (33)

where

(F − V)X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ+ ψ + φ) 0 0
βTs0

(γ + Ts0)

ψ −(ε + μ) 0 0

0 ε −(μ− rε) 0

0 N2μ N2μ −δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L

I1

I2

V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(34)
and

f (x, y) = (F − V)X − F(x, y)+ V (x, y).

Hence, using the vectors and matrices found above in the calculation of R0, we
obtain

f (x, Ts) =

⎛
⎜⎜⎜⎜⎝

βV Ts0

(γ + Ts0) −
βV Ts

(γ + Ts)
θKI1

θKI2

0

⎞
⎟⎟⎟⎟⎠ , (35)

and hence

uT V−1f (x, Ts) = R0(γ + Ts0)
Ts0

(
Ts0

γ + Ts0 − Ts

γ + Ts
)
V + θK(I1 + I2), (36)

and

uT V−1(F − V)X = (R0 − 1) V + θK(I1 + I2); (37)
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finally,

L′ = uT V−1(F − V)X − uT V−1f (x, y)

= (R0 − 1) V − R0(γ + Ts0)
Ts0

(
Ts0

γ + Ts0 − Ts

γ + Ts
)
V + θK(I1 + I2) ≤ 0,

(38)
provided R0 <≤ 1. It can easily be seen that L′ = 0 is satisfied when V = I1 =
I2 = K = 0 and Ts0 = Ts and also that L = 0. Therefore, it can be established that
the only largest compact invariant set in (Ts, L, I1, I2, V ,K) ∈ R

6+ : L′ = 0 is the
singleton {E0}.We state without proof LaSalle’s invariant principle as follows.

Theorem 4.3 (LaSalle’s invariance principle [2] ) Assuming that L is a Lyapunov
function for (2) on G. We define S = {x ∈ G ∩ � : L̇ = 0}. Let M be the largest
invariant set in S; then, every bounded trajectory for t ≥ 0 of (2) that remains in G
approaches the set M as t → +∞.
Using the above principle, it suffices to state that the singleton {E0} is globally
asymptotically stable in � when R0 < 1, which completes the proof. ��

4.2 The Endemic Equilibrium

Model system (2) has two endemic equilibrium points Ee1 and E∗
2 . In this particular

work, we study the dynamics of the CTL-inactivated endemic equilibrium point,
which is given by

Ee1 = {T es , Le, I e1 , I e2 , V e,Ke},

where

T es = �

μ
− �(R0 − 1)(γμ+�)
μ[R0γμ+�(R0 − 1)] > 0, Le = �(R0 − 1)(γμ+�)

(μ+ ψ)[R0γμ+�(R0 − 1)] ,

I e1 = �ψ(R0 − 1)(γμ+�)
(μ+ ψ)(ε + μ)[R0γμ+�(R0 − 1)] ,

I e2 = �ψε(R0 − 1)(γμ+�)
(μ+ ψ)(μ− rε)(ε + μ)[R0γμ+�(R0 − 1)] ,

V e = R0(R0 − 1)(μ+ ψ + φ)(�+ γμ)2
(μ+ ψ)[R0γμ+�(R0 − 1)] , Ke = 0.

(39)
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4.3 The CTL-Activated Reproduction Number RK

There exists a CTL-activated immune response reproduction number that represents
the life span of a CTL cell. Based on model (2) for (σI2 − ν ≤ 0), the CTL immune
response reproduction number is given by

RK = �σψε(R0 − 1)(γμ+�)
ν(μ+ ψ)(μ− rε)(ε + μ)[R0γμ+�(R0 − 1)] . (40)

We state without proof the following lemma.

Lemma 4.2 Conditions governing the CTL-inactivated/activated equilibrium
are

(1) if R0 > 1 and RK ≤ 1, then the CTL-inactivated endemic equilibrium Ee1 is
globally asymptotically stable.

(2) if R0 > 1 and RK ≥ 1, then the CTL-inactivated endemic equilibrium Ee1 is
unstable, while the CTL-activated equilibrium endemic is globally asymptoti-
cally stable.

The CTL inactivated endemic equilibrium Ee1 presents a situation where there is
HPV infection among cells yet the innate immune response is not responsive or
is suppressed [14]. We present numerical simulations that present the dynamics of
HPV in the absence of immune response.

5 Sensitivity Analysis of R0.

In order to establish which control methods are effective in the reduction of the
spread of HPV in-host, we carry out a sensitivity analysis. This analysis helps us to
identify those particular parameters that have an impact on R0. The best measure of
sensitivity is the calculation of the elasticity index which is given by

�R0
p = ∂R0

∂p
× p

R0
, (41)

where p is the parameter of interest. Using the parameters in Table 1 below, the
following normalised sensitivity indices were calculated and tabulated.

Using the parameters from Table 1, we obtain the sensitivity indices.
The results of Table 2 indicate that β,N2 and δ are the highly sensitive parameters of
the model. The results indicate that an increase in the transmission rate by 10% will
also result in an increase in R0 by 10%, an increase in the burst size N2 indicates
an increase in R0 by 10% and an increase in the natural viral death δ by 10% will
result in a decrease in R0 by 10%. These key parameters are mainly involved in viral
transmission and replication, and hence the less the viral particles are as a result of
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Table 1 Table of parameters

Parameter Value Description Source

� 36000 cells per ml per
day

CD4+ epithelial cell recruitment
rate

[4]

β 0.0067 virion(s) per day HPV infection rate [13]

δ 0.05 cells per day Virion death rate Est.

μ 0.048 per day Cells death rate [5]

N2 1000 virion(s) per cell HPV burst size. [13]

θ 0.01 per day HPV clearance rate [10]

γ 106 Epithelial cell concentration for
infection half-maximal

[5]

ψ 0.03 Mature rate of latently infected
cells

[1]

σ 0.001 cells per ml CTL expansion rate Est.

ν 0.5 cells per ml CTL death rate Est.

ε varied between 0 − 1 Oncogene expression [5]

r 0.01 Transit-amplifying cells
recruitment rate

[5]

φ 0.002 Natural clearance of HPV as a
result of healing of cells

[10]

Table 2 Table of sensitivity indices for R0

Parameter Sensitivity Parameter Sensitivity

β 100% φ −88.5%

N2 100% μ −66.13%

δ −100% ε 1.9%

� 57.14 r 1.45%

ψ 95.58% γ −54.14%

reduction in transmission, burst size and increase in viral death of natural death,
the less the spread of HPV among cells. It can also be seen that a decrease in the
epithelial cell concentration by 5.7% implies an increase in R0 by 5.7%, while an
increase in ψ the progression rate of latently infected cells to the infected cells class
I1 by 9.5% implies an increase in R0 by 9.5%; this is a due to the fact that I1 cells
are key in the spread of HPV. Oncogene expression ε = 0.1 has little effect on R0
while increasing its value also increases R0, and finally the transit amplifying rate
has the least significant effect on R0. These two parameters are highly dependent
on each other; by this, we mean that the proliferation of I1 into I2 is dependent on
the oncogene expression rate, so the higher the rate is, the more significant effect on
R0.
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6 Numerical Simulations

We present numerical simulations that show the infection dynamics of HPV in the
presence of immune response. The simulations show the stability of the disease-free
point therefore supporting our theoretical claims above. We use parameters sourced
from literature given in Table 1 above and obtain the simulations below. According
to the simulations presented below in Fig. 2, the disease-free equilibrium is given
by E0 = (7.5 × 105, 0, 0, 0, 0, 0) and is found to be globally asymptotically stable
as indicated. Figure 2 indicates that over time, the infected classes will converge
to zero, while the healthy cells class Ts converges to (7.5 × 105) showing that the
disease-free equilibrium is stable when R0 < 1.
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Fig. 2 In-host dynamics of HPV in the presence of immune response for classes
Ts(t), L(t), I1(t), I2(t), R0 = 0.1591 < 1 and with ε = 0.01 and all other parameters taken
from Table 1
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Fig. 3 Phase diagrams for the in-host dynamics of HPV in the presence of immune response for
classes V (t),K(t),R0 = 0.1591 < 1 and with ε = 0.01 and all other parameters as of Table 1

The phase portraits for the disease free equilibrium are given in (Fig. 3) above.
The phase plots above support the stability of the disease free equilibrium as it can
be seen that Fig. 3a indicates that when the HPV virus is introduced as a result of the
abrasion of the epithelial cells, the healthy cells Ts gradually decrease relative to the
virus population. This continues until the virus reaches a viral load peak, and then
we suddenly observe a gradual decrease in the virus till it reaches zero. The above
trend can be as a result of the fact that though R0 < 1, the immune system has the
ability to suppress the viral load at some point within the infection. The remaining
phase plots, Figs. 3b–d, also support the existence of a globally asymptotically stable
disease free equilibrium given R0 < 1.

The dynamics of the first endemic equilibrium point Ee1 also known as the CTL
free equilibrium are given by the simulations in Fig. 4 below. The simulations in
Fig. 4a–f show the behaviour of HPV in the absence of CTL action as a probable
result of immune evasion. The figures also indicate that in the absence of immune
response, infected cells increase, while the healthy cells decrease to a minimal
value. Figure 4b–e also specifically shows some form of delay in the increase
of infected cells and virus cells in the early days between 0 and 150 days. The
simulations indicate that classes Ts(t), L(t), I1(t), I2(t), V (t) andK(t) converge to
the CTL-free endemic equilibrium given by Ee1 = (3.2× 104, 4.418 × 105, 2.419 ×
104, 2.183×105, 2.932×108, 0), with R0 = 13.8090 > 1 and RK = 0.0563 < 1.
The corresponding phase portraits for the endemic point Ee1 are given in Fig. 5.
These phase portraits for the case R0 = 13.809 > 1 and RK = 0.0563 clearly
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Fig. 4 In-host dynamics of HPV in the absence of immune response for classes
Ts(t), L(t), I1(t), I2(t), R0 = 13.809 > 1,RK = 0.0563 and with parameters ε = 0.5 and
σ = 10−6 and all other parameters taken from Table 1

indicate that upon the introduction of the HPV virus, healthy cells will gradually
reduce as the viral load increases, while latently infected cells, infected cells and
self proliferating cells will gradually increase. It can also be noted that we will
eventually have a situation where self-proliferating cells (I2)will exceed the number
of infected cells (I1),which promotes the spread of the virus within the cells as long
as there is no immune response. Clearly, the phase portraits indicate that the endemic
equilibrium point Ee1 is globally asymptotically stable when R0 > 1,RK < 1.
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Fig. 5 In-host dynamics of HPV in the absence of immune response for classes V (t),K(t),R0 =
13.809 > 1,RK = 0.0563 and with ε = 0.5 and σ = 10−6 and all other parameters as of Table 1

7 Discussion and Conclusion

This chapter looked at the overall dynamics of HPV in the presence of cell
proliferation and immune response. An in-host model based on the work by
Samantha et al. [13] and Carmen et al. [5] was created with latency incorporated.
Latent HPV infections play a significant role in the dynamics of HPV in host.
If such infections are not cleared by the immune system, they can develop into
persistent infections. The local and global stability of the disease-free equilibrium
were analysed, and it was established that the disease-free equilibrium was stable
provided that R0 < 1. The model created had two equilibrium points of which
in this chapter we only looked at the stability of the CTL inactive equilibrium
Ee1 . Based on extensive research on the viral dynamics of HPV by authors such
as Stanley et al. [11] and Sasagawa et al. [8], this particular equilibrium point
presents the immune evading behaviour of the HPV virus. The stability of this
particular equilibrium point was analysed, and it was established from simulations
that in the absence of immune response, self-proliferating cells I2 will exceed the
number of infected cells I1 thereby spreading infection within cells as long as
immune response is absent. A rise in infected cells also implies a rise in latently
infected cells and consequently a rise in the HPV virus as a result of viral burst.
The biological understanding of the dynamics of HPV as explained by Stanley et
al. [11] and Sasagawa et al. [8] supports our mathematical findings. HPV evades
the immune system through a number of ways; among these is choosing to infect
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the keratinocytes and therefore evading abnormal cell death. Abnormal cell death
normally prompts the immune system into action and will also prompt the triggering
of inflammatory responses that in turn will prompt the adaptive immune response.
HPV will also evade the immune system through the production of oncoproteins E6
and E7 that cause the uncontrolled self-replication of cells through suppression of
the p53 protein. The modelling of HPV is highly complex, but we believe that the
simple model created closely resembles the dynamics of the virus in the absence
of immune response. Future work looks at an analysis of the second endemic
equilibrium point and its implications on the dynamics of the infection. We will
also extend the model to look at the impact of immune suppression as a result of
infections such as HIV.
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Global Properties and Optimal Control
Strategies of a Generalized Ebola Virus
Disease Model

Zineb El Rhoubari, Hajar Besbassi, Khalid Hattaf, and Noura Yousfi

1 Introduction

Ebola is the name of a river near the city of Yambuku in the Congo. The virus
was identified firstly in this locality in 1976 and bears today the name of this river.
Since then, the West Africa countries have experienced sporadic outbreaks with a
mortality rate up to 90% [1]. In the 2014–2016 Ebola outbreak, the World Health
Organization (WHO) reported more than 11000 deaths and declared a public health
emergency of international concern [2, 3]. The virus is introduced and spread in
the human population by an unprotected contact with bodily fluids of infected ill or
dead humans, non-human primates, and bats.

The fruit bats are recognizing as the natural reservoir of the Ebola virus (EV)
[4]. Other studies have shown that bats bear Ebola virus without being ill. For
instance, Swanpoel et al. [5] experienced that the virus replicates in bats without
being affected. Also, a seropositive bat for Ebola lives healthy over 13 months post-
sampling [6]. On the other hand, many mathematical studies have modeled the Ebola
transmission in the bat population. In [7], the authors studied the dynamics of a
generalized epizootic model in order to understand the long-term transmission of
the EVD in the bat population. Furthermore, they studied the global stability of the
two equilibria (disease-free and endemic) theoretically and numerically. Buceta and
Kaylynn studied in [8] an SIR compartmental model including the bats mobility and
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the spatiotemporal climate variability. They are used to understand the migration
patterns of bats and to predict the hot spots of Ebola outbreaks in space and time.

The frequent emergence of the disease and the high mortality rate make EVD
a major global public health problem. Hence, the disease has caught the attention
of many mathematical and biological researchers. Weitz and Dushoff [9] estimated
in 2014 that 10% to 30% of EVD cases in the human population are caused by
post-death transmission. Motivated by these statistics, Rhoubari et al. [10] proposed
a new generalized model of EVD that takes into account the transmission of
Ebola from dead humans to the living. The transmission process was modeled
by general incidence functions that cover many types of incidence rates existing
in the literature. The global stability of equilibria was investigated theoretically
and numerically. Moreover, a threshold parameter was given in order to determine
whether the disease is extinct or not.

Over the past years, several mathematical models have been built to help public
health authorities deciding on vaccination strategies. Classically, the SIR model
is used where the population is assumed to be divided into three components:
susceptible, S, infected I , and recovered, R. In [11], Laarabi et al. developed an
SIR model with saturated incidence rate and saturated treatment function. They
are used to minimize the susceptible and infected individuals and to maximize
the number of recovered. In the work of Lashari [12], the author has proposed an
optimal control problem for an SIR epidemic model and has considered two control
strategies: treatment and vaccination. Their impact was discussed through the basic
reproduction number. In another study [13], Zaman et al. have formulated a control
problem relatively to an SIR model and have shown the impact of vaccinating
a percentage of the susceptible population. Those three models do not consider
a specific disease neither the methods of transmission. Therefore, they are not
applicable to EVD.

Concerning the EVD optimal control problems, most of the existing studies in
the literature neglect the post-death transmission. In [14], Rachah and Torres have
applied optimal control for an SIR EVD model to show the impact of vaccination on
the propagation of the disease in the 2014 outbreak in West Africa. In a next work
[15], they have added the exposed component. Using the SEIR model, they have
proposed three strategies: control Ebola infection by vaccination of susceptible,
minimize exposed and infected, and finally reduce infection by vaccination and
education. In a recent work [16], the authors have improved the SEIR model with
additional hospitalization, quarantine, and vaccination components. They studied
the impact of control in the case of hospitalization (with and without quarantine)
and vaccination. Their purpose was to predict the possible future outcome in terms
of resource utilization for disease control and the effectiveness of vaccination on
sick populations.

In this work, we perform sensitivity analysis of the basic reproduction number
with respect to some epidemiological parameters. We find that it is most sensitive
to the mortality rate due to EVD. These suggest us to formulate an optimal control
problem to minimize the number of infectious by vaccination and/or treatment. In
fact, the vaccine stimulates the body’s immune system to be resistant against the
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infection or the disease. Vaccination is the most effective method for controlling
and eradicating infectious diseases and helps to avert between 2 and 3 million deaths
each year [17, 18]. For Ebola, the WHO prequalified in 12 November 2019 an Ebola
vaccine for the first time. This step will help to accelerate its licensing, access, and
rollout in nations most in danger of Ebola outbreaks. This was the quickest vaccine
prequalification process directed by WHO [19].

On the other hand, there is no licensed drug to treat the EVD. The standard treat-
ment settles for a supportive therapy providing hydration, oxygen, and medication
to support blood pressure and to manage the possible symptoms such as fever and
diarrhea.

For all the aforementioned biological considerations, we are focused in this work
to determine the suitable Ebola vaccination and/or treatment program with the help
of optimal control theory subject to the model given in [10]. To do this, the next
section focuses on the sensitivity analysis. Section 3 deals with the formulation of
our generalized model and its global properties. Section 4 is devoted to the optimal
controls. The study is supported by numerical simulations in Sect. 5. A discussion
and conclusions of our results are presented in the last section.

2 Sensitivity Analysis

We have proved in [10] that the global stability of the proposed model is determined
by the basic reproduction number R0 of the form

R0 = bf
(
A
μ
, 0
)+ (μ+ d)g(A

μ
, 0
)

(μ+ d + r)b ,

for any incidence functions f and g satisfying some required assumptions. In

particular, for f (S, I ) = β1S

1 + α1I
and g(S,D) = β2S

1 + α2D
, this number is

R0 = Aβ1

μ(μ+ d + r) +
(μ+ d)Aβ2

bμ(μ+ d + r) . (1)

In order to show the more crucial parameters for the EVD transmission, we
propose to calculate the sensitivity indices of the number R0 (1) with respect to
the parameters given in Table 1. The results are presented in Table 2.

Definition 2.1 The normalized forward sensitivity index of a variable x, which

depends differentiably on a parameter p, is Sxp = ∂x

∂p
× p

x
.

By analyzing the sensitivity indices in Table 2, we deduce that the most sensitive
parameter is the death rate due to EVD d. In order to target this sensitive rate, we
propose to introduce controls by vaccination and/or treatment.
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Table 1 Values for parameters used for sensitivity analysis

Parameter Definition Value Reference

A The recruitment rate 50 [10]

μ The natural death rate 0.5 [10]

β1 The infection rate by infectious individuals 0.005 [10]

β2 The infection rate by deceased individuals 0.02 [10]

d The death rate due to the EVD 0.05 [10]

r The recovery rate 0.05 [10]

b The burial rate 0.8 [10]

Table 2 Sensitivity indices
of R0 to parameters for the
model

Parameter Sensitivity index

A 1

μ −1.1860

β1 0.2711

β2 0.7455

d −1.7361

r −0.0847

b −0.7455

3 The Model Formulation and Equilibria

In order to find the optimal control rates according to time u1(t) and u2(t), we
consider the following nonlinear system:

⎧⎪⎪⎨
⎪⎪⎩

dS
dt

= A− μS − f (S, I )I − g(S,D)D − u1S,
dI
dt

= f (S, I )I + g(S,D)D − (μ+ d + r + u2)I,
dR
dt

= (r + u2)I − μR + u1S,
dD
dt

= (μ+ d)I − bD,
(2)

where S(t), I (t), R(t), and D(t) are the numbers of susceptible, infectious,
recovered, and died individuals at time t . The susceptible population increases at the
recruitment rate A and decreases at the natural rate μ. It also decreases and converts
into the infectious compartment by effective contact with infectious individuals at
rate f (S, I )I or with infectious corpses in traditional burial preparations at rate
g(S,D)D. The infectious population dies naturally at rate μ or due to the Ebola
virus disease at rate d and recovers from the disease at rate r . The number of died
individuals decreases directly after burials at rate b. The control functions u1 and
u2 represent the use of Ebola vaccine for susceptibles and the treatment of the
infectious humans, respectively.
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As in [10, 20], we assume that the general incidence functions f and g are
continuously differentiable in IR2+ and satisfy the following properties:

(H1) f (0, I ) = 0,
∂f

∂S
(S, I ) > 0,

∂f

∂I
(S, I ) ≤ 0 for all S, I ≥ 0;

(H2) g(0,D) = 0,
∂g

∂S
(S,D) > 0,

∂g

∂D
(S,D) ≤ 0 for all S,D ≥ 0.

Epidemiologically, the above hypotheses are reasonable and consistent with the
reality. In fact, the first assumption (H1) on the function f (S, I ) means that the
incidence rate by direct contact with infectious individuals is equal to zero if there
are no susceptible individuals. This incidence rate is increasing when the number
of infectious individuals is constant and the number of susceptible individuals
increases. Also, it is decreasing when the number of susceptible individuals is
constant and the number of infectious individuals increases. Similarly, the second
assumption (H2) on the function g(S,D) means that the incidence rate by died
individuals is equal to zero if there are no susceptible individuals. Besides, this
incidence rate is increasing when the number of died individuals is constant and the
number of susceptible individuals increases. Also, it is decreasing when the number
of susceptible individuals is constant and the number of died individuals increases.
Therefore, the more susceptible individuals, the more infectious events will occur.
However, the higher the number of infectious or died individuals, the less infectious
events will be. Furthermore, the biological meaning of (H1) for other diseases is
given in [21, 22].

By simple computation, system (2) always has one disease-free equilibrium
Ef (

A
μ+u1

, 0, 0, 0). Then, we define the basic reproduction number of (2) as follows:

R0(u1, u2) =
bf
(

A
μ+u1

, 0
)+ (μ+ d)g( A

μ+u1
, 0
)

b(μ+ d + r + u2)
. (3)

Hence,
∂R0

∂u1
= −A
b(μ+ u)2(μ+ d + r + u2)

(
b
∂f

∂S
+ (μ+ d) ∂g

∂S

)
.

Using (H1) and (H2), we get
∂R0

∂u1
< 0.

Also, we have

∂R0

∂u2
= −1

b(μ+ d + r + u2)2

(
bf
( A

μ+ u1
, 0
)+ (μ+ d)g( A

μ+ u1
, 0
))
< 0.

This means that R0 is a decreasing function of u1 and u2 and shows the impact of
vaccination and treatment in reducing R0.

The other equilibrium of (2) satisfies the following equations:

A− μS − f (S, I )I − g(S,D)D − u1S = 0, (4)

f (S, I )I + g(S,D)D − (μ+ d + r + u2)I = 0, (5)
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(r + u2)I − μR + u1S = 0, (6)

(μ+ d)I − bD = 0. (7)

By (4) to (7), we have

bf

(
S,
A− (μ+ u1)S

μ+ d + r + u2

)
+ (μ+ d)g

(
S,
(μ+ d)(A− (μ+ u1)S)

b(μ+ d + r + u2)

)
= b(μ+ d + r + u2).

(8)

Since, I = A−(μ+u1)S
μ+d+r+u2

≥ 0, which implies S ≤ A

μ+ u1
, we deduce that there is

no equilibrium when S >
A

μ+ u1
.

Define a function ψ on the interval [0, A
μ+u1

] by

ψ(S) = bf

(
S,
A− (μ+ u1)S

μ+ d + r + u2

)
+ (μ+ d)g

(
S,
(μ+ d)(A− (μ+ u1)S)

b(μ+ d + r + u2)

)
− b(μ+ d + r + u2).

We haveψ(0) = −b(μ+d+r+u2) < 0,ψ(
A

μ+ u1
) = b(μ+d+r+u2)(R0−1)

and

ψ ′(S)=b
(
∂f

∂S
− μ+ u1

μ+d+r+u2

∂f

∂I

)
+(μ+d)

(
∂g

∂S
− (μ+ d)(μ+ u1)

b(μ+d+r+u2)

∂g

∂D

)
> 0.

Thus, for R0 > 1, there exists a unique endemic equilibrium E∗(S∗, I∗, R∗,D∗)
with S∗ ∈ (0, A

μ+ u1
), I∗ > 0, R∗ > 0, and D∗ > 0.

Therefore, we get the following theorem.

Theorem 3.1 Let R0 be defined by (3)

(i) System (2) always has a disease-free equilibrium Ef ( A
μ+u1

, 0, 0, 0).
(ii) If R0 > 1, system (2) has a unique endemic equilibrium of the form

E∗(S∗, I∗, R∗,D∗) with S∗ ∈ (0, A
μ+u1

), I∗ > 0, R∗ > 0, and D∗ > 0.

4 The Optimal Control

Our objective in this section is to seek the optimal level of vaccination and treatment
in order to minimize the number of infectious individuals. To this end, we consider
the following objectif functional:

J (u) =
∫ tf

0

(
I (t)+ 1

2
τ1u

2
1(t)+

1

2
τ2u

2
2(t)

)
dt, (9)
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where the functions u1 and u2 represent the vaccination and the treatment control,
respectively. τi is a positive weight parameter associated with the control ui with
i ∈ {1, 2} and tf is the period of control. The goal is to find a pair of an optimal
control (u∗1, u∗2) such that

J (u∗1, u∗2) = min{J (u1, u2)|(u1, u2) ∈ U},

where U is the control set defined by

U = {(u1, u2) : ui is measurable, 0 ≤ ui(t) ≤ uimax ≤ 1, i = 1, 2, ∀t ∈ [0, tf ]
}
.

4.1 Existence of an Optimal Control

The first result is about the existence of an optimal control. It is given by the
following theorem.

Theorem 4.1 There exists an optimal control u∗ = (u∗1, u∗2) such that

J (u∗) = min{J (u)|u = (u1, u2) ∈ U}.

Proof The control and the state variables are positive values. In this minimizing
problem, the necessary convexity of the objective functional in u(t) is satisfied. The
control setU is also convex and closed by definition. The optimal system is bounded
which determines the compactness needed for the existence of the optimal control.
In addition, the integrand of J , I (t)+ 1

2τ1u
2
1(t)+ 1

2τ2u
2
2(t), is convex on the control

u(t). Also, we can easily see that, there exist a constant ρ > 1 and positive numbers
w1 and w2 such that J (u(t)) � w2 + w1(|u|2) ρ2 . �

4.2 Optimality System

Now, we use Pontryagin’s minimum principle [23] in order to find an optimal
solution. This principle converts (9) and (2) into a problem of minimizing pointwise
a Hamiltonian H , with respect to u, such that

H = I (t)+ 1

2
τ1u

2
1(t)+

1

2
τ2u

2
2(t)

+λ1(t)

(
A− μS − f (S, I )I − g(S,D)D − u1S

)

+λ2(t)

(
f (S, I )I + g(S,D)D − (μ+ d + r + u2)I

)
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+λ3(t)

(
(r + u2)I + u1S − μR

)

+λ4(t)

(
(μ+ d)I − bD

)
,

where λ1, λ2, λ3, and λ4 are adjoint variables.
Next, we determine the adjoint variables λ1, λ2, λ3, and λ4 suitably by applying the
necessary conditions to the Hamiltonian H .

Theorem 4.2 Let S∗(t), I ∗(t), R∗(t), and D∗(t) be optimal state solutions with
associated optimal control variable u∗(t) for the control problem (2) and (9). The
adjoint variables λ1, λ2, λ3, and λ4 exist and satisfy

dλ1

dt
= −λ1(t)

(
− μ− ∂f

∂S
I ∗ − ∂g

∂S
D∗ − u∗1(t)

)
− λ2(t)

(
∂f

∂S
I ∗ + ∂g

∂S
D∗
)

−λ3(t)u
∗
1(t);

dλ2

dt
= −1 + (λ1(t)− λ2(t)

)(∂f
∂S
I ∗ + f (S∗, I ∗)

)
+ λ2(t)

(
μ+ d + r + u2

)

−λ3(t)(r + u2)− λ4(t)
(
μ+ d);

dλ3

dt
= μλ3(t);

dλ4

dt
= (λ1(t)− λ2(t)

)( ∂g
∂D
D∗ + g(S∗,D∗)

)
+ λ4(t)b,

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = 0.
Furthermore, the optimal control is given by

u∗1 = min
(
u1max,max

(
(λ1(t)− λ3(t))S

∗(t)
τ1

, 0

))
,

u∗2 = min
(
u2max,max

(
(λ2(t)− λ3(t))I

∗(t)
τ2

, 0

))
.

Proof Using Pontryagin’s minimum principle, we find

dλ1

dt
= −∂H

∂S
, λ1(tf ) = 0;

dλ2

dt
= −∂H

∂I
, λ2(tf ) = 0;

dλ3

dt
= −∂H

∂R
, λ3(tf ) = 0;
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dλ4

dt
= −∂H

∂D
, λ4(tf ) = 0.

The optimal control u∗ is obtained by solving the equations

∂H

∂u1
= 0 and

∂H

∂u2
= 0

on the interior of the control set and using the property of the control space U . �

5 Numerical Simulations

In this section, we carry out some numerical simulations in order to illustrate the

theoretical results. The incidence functions are chosen as f (S, I ) = β1S

1 + α1I
and

g(S,D) = β2S

1 + α2D
. Hence, system (2) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS
dt

= A− (μ+ u1)S − β1SI

1 + α1I
− β2SD

1 + α2D
,

dI
dt

= β1SI

1 + α1I
+ β2SD

1 + α2D
− (μ+ d + r + u2)I,

dR
dt

= (r + u2)I − μR + u1S,
dD
dt

= (μ+ d)I − bD,

(10)

where β1 and β2 are the infection rates caused by infectious and died human indi-
viduals, respectively. The nonnegative constants α1 and α2 measure the saturation
effect. The other parameters have the same biological meanings as in system (2).

To solve the optimality system, we use an implicit finite difference method.
The interval

[
t0, tf
]

is discretized at the points ti = ih + t0 (i=0,1,. . . .n), where
h is the time step and tn = tf . Furthermore, the state and adjoint variables
S(t), I (t), R(t),D(t), λ1(t), λ2(t), λ3(t), λ4(t) and the control u(t) are defined in
terms of nodal points Si, Ii , Ri,Di, λi1, λ

i
2, λ

i
3, λ

i
4 and ui , respectively. Then, we

adapt the technique developed by Gumel et al. [24] to our model as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Si+1−Si
h

= A− (μ+ ui1)Si+1 − β1Si+1Ii

1 + α1Ii
− β2Si+1Di

1 + α2Di
,

Ii+1−Ii
h

= β1Si+1Ii

1 + α1Ii
+ β2Si+1Di

1 + α2Di
− (μ+ d + r + ui2)Ii+1,

Ri+1−Ri
h

= (r + ui2)Ii+1 − μRi+1 + ui1Si+1,
Di+1−Di

h
= (μ+ d)Ii+1 − bDi+1.

(11)
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Similarly, we approximate the time derivative of the adjoint variables by their first-
order backward difference as follows:

λn−i1 − λn−i−1
1

h
=− λn−i1

(
− μ− β1Ii+1

1 + α1Ii+1
+ β2Di+1

1 + α2Di+1
+ ui1
)

− λn−i2

(
β1Ii+1

1 + α1Ii+1
+ β2Di+1

1 + α2Di+1

)
− λn−i3 ui1,

λn−i2 − λn−i−1
2

h
=− 1 + (λn−i1 − λn−i2

)( β1Si+1

1 + α1Ii+1
− α1β1Si+1Ii+1

(1 + α1Ii+1)2
+ ui1
)

− λn−i2

(
μ+ d + r + ui2

)
− λn−i3 (r + ui2)− λn−i4 (μ+ d),

λn−i3 − λn−i−1
3

h
=μλn−i3 ,

λn−i4 − λn−i−1
4

h
=(λn−i1 − λn−i2

)( β2Si+1

1 + α2Di+1
− α2β2Si+1Di+1

(1 + α2Di+1)

)
+ bλn−i4 .

The algorithm describing the approximation method for obtaining the optimal
control is the following.

Algorithm

Step 1: S(0) = S0, I (0) = I0, R(0) = R0, D(0) = D0, λ1(tf ) = 0, λ2(tf ) = 0,
λ3(tf ) = 0, λ4(tf ) = 0, u1(0) = 0, u2(0) = 0.

Step 2: for i=0,. . . , n-1, do:

Si+1 = (Si + hA)
1 + h(μ+ ui1 + β1Ii

1 + α1Ii
+ β2Di

1 + α2Di

) ;

Ii+1 =
Ii + h
(β1Si+1Ii

1 + α1Ii
+ β2Si+1Di

1 + α2Di

)
1 + h(μ+ d + r + ui2)

;

Ri+1 = Ri + h
(
(r + ui2)Ii+1 + ui1Si+1

)
1 + hμ ;

Di+1 = Di + h(μ+ d)Ii+1

1 + hb ;

λn−i−1
1 = λn−i1 − h

(
λn−i1

(
μ+ ui1 + β1Ii+1

1 + α1Ii+1
+ β2Di+1

1 + α2Di+1

)

− λn−i2

( β1Ii+1

1 + α1Ii+1
+ β2Di+1

1 + α2Di+1

)− λn−i3 ui1

)
;
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λn−i−1
2 = λn−i2 − h

(
− 1 + (λn−i1 − λn−i2 )

( β1Si+1

1 + α1Ii+1
− α1β1Si+1Ii+1

(1 + α1Ii+1)2

)

+ (μ+ d + r + ui2)λn−i2 − λn−i3 (r + ui2)− λn−i4 (μ+ d)
)
;

λn−i−1
3 = λn−i3 − hμλn−i3 ;

λn−i−1
4 = λn−i4 − h

(
λn−i4 b + (λn−i1 − λn−i2 )

( β2Si+1

1 + α2Di+1
− β2α2Si+1Di+1

(1 + α2Di+1)2

))
.

Hi+1 = (λn−i−1
1 − λn−i−1

3 )Si+1

τ1
;

Gi+1 = (λn−i−1
2 − λn−i−1

3 )Ii+1

τ2
;

ui+1
1 = min

(
1,max

(
Hi+1, 0

));

ui+1
2 = min

(
1,max

(
Gi+1, 0

));

end for
Step 3: for i=0,. . . .,n-1, write

S∗(ti) = Si, I ∗(ti) = Ii, R∗(ti) = Ri,D∗(ti) = Di, u∗1(ti) = ui1, u∗2(ti) = ui2
end for

The parameters used for the simulation are the same as in [10] and are A = 50,
μ = 0.5, β1 = 0.005, β2 = 0.001, α1 = 0.01, α2 = 0.01, d = 0.05, r = 0.06, and
b = 0.8. The initial values are S0 = 30, I0 = 10, R0 = 5, D0 = 2, u0

1 = 0, and
u0

2 = 0.

Strategy 1: Use of vaccination only
With the vaccination strategy, we set the treatment control to 0 (u2 = 0).

Figure 1 shows that the number of infectious individuals converges to 36.4337 in the
presence of the vaccination strategy. This means a decrease of 20.68% of infectious
individuals in the absence of any control. The profile of the vaccination control u1
is represented in Fig. 2.

Strategy 2: Use of treatment and vaccination
Here, both strategies are used to optimize the objectif function J . Figure 3

shows that the number of infectious tends to 26.0276, with −43.34% of infectious
individuals in the absence of any control. The optimal vaccination and treatment
controls are represented in Fig. 4.
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Fig. 1 Susceptible, infectious, recovered, and died individuals with and without vaccination
control

Fig. 2 The optimal
vaccination control u1(t)
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Strategy 3: Use of treatment only
Here, we use only the treatment strategy and set the vaccination control to 0.

Figure 5 shows that the number of infectious individuals has decreased by 32.43%
by the use of the treatment strategy. The profile of the optimal treatment control is
shown in Fig. 6.
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Fig. 3 Susceptible, infectious, recovered, and died individuals with and without both vaccination
and treatment controls

Fig. 4 The optimal controls
u1(t) and u2(t)
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6 Conclusion

In this chapter, we propose optimal control strategies of an EVD model with post-
death transmission. Firstly, we determine the most sensitive parameter to the basic
reproduction numberR0, which is the death rate due to EVD. Based on this analysis,
we proposed three strategies to control the EVD by vaccination and/or treatment.
The mechanism of EVD transmission was modeled by two general incidence
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Fig. 5 Susceptible, infectious, recovered, and died individuals with and without the treatment
control

Fig. 6 The optimal control
u2(t)
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functions that describe the two main modes of Ebola transmission: from living
and from dead individuals. These functions cover many incidence rates existing
in the literature such as the saturated incidence, the classical bilinear incidence, the
Beddington–DeAngelis functional response, the Hattaf–Yousfi functional response,
and the Crowley–Martin functional response.

Theoretically, we discuss the existence of equilibria and calculate the basic
reproduction number R0. Also, we construct a suitable objectif function in order to
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minimize the number of infectious. By the help of Pontryagin’s minimum principle,
we establish the necessary conditions for the optimal control problem.

On the other hand, we solved numerically the optimal control problem. For this,
we formulate an algorithm based on the backward and forward finite-difference
schemes. We used to assess the impact of using only the treatment control or the
vaccination control and using both of them. A comparison between controls and the
absence of any control has been shown. By an analysis of the numerical results, we
found that combining the two controls has a very desirable effect for minimizing the
number of infectious.
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On Whole-Graph Embedding Techniques

L. Maddalena, I. Manipur, M. Manzo, and M. R. Guarracino

1 Introduction

Recently, network embedding, also known as network representation learning [27],
has attracted the attention of a wide audience, as witnessed by recent surveys
devoted to the subject [6, 27]. Indeed, network analytical techniques have provided
significant insights in diverse application areas, such as social sciences, bioinformat-
ics, connectomics, health informatics, and transportation [2, 21, 28, 31, 34, 37, 49].

Different taxonomies have been given for graph embedding methods. They can
be distinguished based on the types of sources of the involved information, i.e.,
graphs that are homogeneous or heterogeneous [6, 27] include auxiliary information
or are constructed from non-relational data [6]. They can also be subdivided
according to different embedding approaches, such as matrix factorization, deep
learning, edge reconstruction, graph kernels, or generative model [6]. Another
possible taxonomy is based on the type of the output produced, i.e., the embedding
of nodes, edges, subgraphs, or whole graphs [6, 27]. Indeed, networks can be studied
at an individual level, where features such as nodes or graph sub-structures are
employed for network characterization, node classification, edge prediction, and
feature extraction [6, 20]. In other cases, the whole-graph embedding approach,
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where entire graphs are embedded in a vector space, is used for graph similarity
learning in case of graph classification and clustering [25, 30].

Here, we focus on whole-graph embedding and aim to compare the performance
of some representative methods for the task of graph classification. To this end, we
consider a set of network datasets that we made publicly available.

This chapter is organized as follows. In Sect. 2, we provide an overview of var-
ious approaches for whole-graph embedding, focusing on selected examples. Then,
in Sect. 3, we describe how network can be modeled with empirical probability
distributions and how to compute their mutual distances. In Sect. 4, we evaluate
the classification performance of these approaches on undirected real and synthetic
network datasets and compare them to the distribution-based measures used in [17],
described in Sect. 3. Moreover, we inspect the network properties that affect the
performance of these methods, which could help drive the choice of embedding
methods for future applications. Section 5 summarizes our conclusions.

2 Approaches to Whole-Graph Embedding

Given a set of m graphs G = {G1, G2 . . . . Gm}, each graph Gi = {Vi , Ei , li}mi=1,
where V and E are sets of vertices and edges and li the corresponding class label
of Gi . Whole-graph embedding approaches aim to learn embeddings individually
for each graph Gi or a single embedding jointly for the set of graphs G, to predict
each graph label li . Here, an embedding is intended as a mapping of a whole graph
(rather than of a node or a subgraph) into a low-dimensional space R

d , d � |V|,
where the embedding vector is expected to preserve the network features as much as
possible [27]. This problem setting can be found in many real-life challenges that
involve collections of networks representing instances of the system under study
[18]. These include functional brain networks of a cohort of patients (connectomes)
[19], chemical compound graphs [40], multilayer networks [8], or other applications
that involve dynamic interactions between components that can be described as
sequences of static graphs characterizing the dynamic evolution of the system.

Whole-graph embedding methods can be subdivided [27] into graph kernel
methods and deep learning methods. Besides these two approaches, in the following,
we also consider a matrix factorization approach. It should be observed that, besides
approaches directly devoted to whole-graph embedding, the problem can also be
tackled using embedding of nodes or sub-structures, combining their results via
averaging or max pooling [11, 48]. However, as observed in [33], these lead to
suboptimal results.
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2.1 Graph Kernels

Kernel methods refer to machine learning algorithms that learn by comparing pairs
of data points using particular similarity measures, the kernels [25]. In the case
of graphs, graph kernels are based on the comparison of graph sub-structures via
kernels [4]. In the graph kernel approach, the inner product of vector representations
of graph sub-structures is used for pairwise graph comparisons [6]. These graph
sub-structures include graphlets, shortest paths, random walks, and subtree patterns
[4, 32, 39, 44, 47]. A survey of graph kernels by Kriege et al. [25] evaluated
the performance of many of these methods on benchmark datasets and provided
guidelines for their use based on graph properties.

One of the very first graph kernels is the shortest-path (SP) kernel [4]. The basic
idea of the SP kernel is to compare the attributes and lengths of the shortest paths
between all pairs of vertices in two graphs. First, the original graphs G1 and G2
are transformed into shortest-path graphs S1 and S2, which contain the same set of
nodes as the input graphs and such that there exists an edge between all nodes in Si ,
which are connected by a walk in Gi . The SP graph kernel on S1 = (V1, E1) and
S2 = (V2, E2) is then defined as

kSP (S1, S2) =
∑
e1∈E1

∑
e2∈E2

k
(1)
walk(e1, e2),

where k(1)walk is a positive definite kernel on edge walks of length 1.
Graph kernels based on random walks (RWs) count the number of label

sequences along walks that two graphs have in common. In [44], they are defined
using the notion of direct product graph G1 × G2, i.e., the graph over all possible
pairs of vertices from the two graphs such that two vertices in the direct product
graph are neighbors if and only if the corresponding vertices are neighbors in both
graphs. The RW graph kernel is defined as

kRW (G1,G2) =
∞∑
k=0

μkq
T×Wk×p×,

where μk are coefficients such that the sum converges, W× is the weight matrix of
the direct product graph G1 × G2, p× and q× are initial and stopping probability
distributions, and qT×Wk×p× is the expected similarity between simultaneous length
k random walks on G1 and G2.

The above kernels follow the concept of convolution kernels, as they decompose
the compared graphs and add up the pairwise similarities between their parts. In
[24], Kriege et al. study optimal assignment kernels, which assign parts of one object
to the parts of the other, such that the total similarity between the assigned parts is
maximum. They investigate which base kernels lead to optimal assignment kernels
that are valid, i.e., that are symmetric and positive semi-definite, and characterize
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a class of so-called strong kernels, showing that they are equivalent to kernels
obtained from a hierarchical partition of the domain of the kernel. Based on these
kernels, they derive the Weisfeiler–Lehman optimal assignment (WL-OA) graph
kernel. The Weisfeiler–Lehman subtree kernel counts the vertex colours two graphs
have in common in the first h refinement steps. The base kernel for WL-OA
corresponds to the number of matching colours in the refinement sequence and is
defined for vertices as

k(u, v) =
h∑
i=0

kδ(τi(u), τi(v)),

where τi(u) indicates the color of vertex u at refinement step i.

2.2 Neural Network- and Deep Learning-Based Embeddings

Several works aim at generalizing neural networks to graphs for the purpose of
graph embedding [5, 13, 33, 38]. One of the best known is Graph2vec [33], a neural
embedding framework to learn, in an unsupervised way, data-driven representations
of entire graphs as fixed-length feature vectors. Inspired by neural document
embedding models, the authors extend the model to learn graph embeddings. A
graph is viewed as a document and the rooted subgraph of degree d of any graph
node (i.e., the subgraph including all nodes reachable in d hops from the node) is
viewed as one of the words that compose the document, forming the vocabulary.
Given a set of labeled graphs in input, the algorithm extracts all rooted subgraphs
and assigns them a unique label. Then, it trains a doc2vec skip-gram model, a feed-
forward neural network to learn distributed representations of word sequences, using
negative sampling. In the case of unlabeled graphs, nodes are labeled with their
degree.

Popular deep learning models used in graph embedding include convolutional
neural networks (CNNs) [11, 23, 27, 29, 35, 48, 50] and autoencoders [6, 7, 18,
41, 45]. We focus on autoencoders, unsupervised neural networks able to compress
the representation of input data. Here, an encoder maps input data to a smaller
dimensional representation space, while a decoder maps the representation space
to a reconstruction space. The autoencoder optimizes the encoding and decoding
parameters so as to minimize the reconstruction error.

Gutiérrez-Gómez and Delvenne [18] propose the denoising autoencoders
method, in the following named DAE, to learn graph embeddings for a collection
of networks defined on the same set of nodes. For this purpose, they train a DAE
[43] to uncover dissimilar relationships between graphs. This autoencoder is trained
to reconstruct a clean version of a noisy input, thus providing a generalizable
mapping of the encoding and decoding mappings, independent of the training data.
The graphs, represented by powers of their adjacency matrix, are embedded into a



On Whole-Graph Embedding Techniques 119

smaller dimensional feature space and mapped to a Euclidean distance matrix that
reflects the structural similarity between input samples.

2.3 Matrix Factorization

Matrix factorization-based graph embedding represents graph properties in the form
of a matrix and factorizes this matrix to obtain the embedding [6]. In most cases, the
input is a graph and the output is a set of node embeddings. The matrices used to
represent the graph properties include the node adjacency matrix, Laplacian matrix,
and node transition probability matrix [15].

An example of matrix factorization approach to whole-graph embedding is given
by “Joint Embedding” (JE) [46], which considers the whole set of graphs G to
extract features for all its graphs. It simultaneously identifies a set of rank one
symmetric matrices and projects the graph adjacency matrices Ai into the linear
subspace spanned by these matrices. The coefficients obtained by projecting Ai are
denoted by λ̂i ∈ R

d , which is called the loading for graph i. To estimate rank one
symmetric matrices and loadings for graphs, the algorithm minimizes the sum of
squared Frobenius distances between adjacency matrices and their projections

(λ̂1, . . . , λ̂m, ĥ1, . . . , ĥd ) = argmin
λi ,||hk ||=1

m∑
i=1

∣∣∣∣∣
∣∣∣∣∣Ai −

d∑
k=1

λi[k]hkhTk
∣∣∣∣∣
∣∣∣∣∣
2

,

where d is the dimension of the embedding and λi[k] indicates the kth element of
λi .

3 Graph Classification with Distribution-Based Measures

Networks can be represented by probability distributions of their local and global
topological properties [16, 17]. Using these representations, the set of distribution
distances of a given graph from all the others in the dataset can also be considered
as whole-graph embeddings, which can be used for graph classification, as done in
[16, 17].

In order to compare this classification approach with the other node embedding
methods, we consider two different graph distributions: the node distance distribu-
tion (NDD) and the transition matrix (TM) [9, 16]. The NDD N r

i of node i in graph
Gr has as its generic element N r

i (h) the fraction of nodes in Gr having distance
h from node i. It provides information on global properties of the graph. The TM
T r (s) of order s for graph Gr has as its generic element T ri,j (s) the probability for
node i of reaching node j by a random walker in s steps. The TMs T r (1) and T r (2)
contain local information about the connectivity of the graph Gr .
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Given two graphs Gp and Gq , for each of the described network probability
distributions P1,r

i = N r
i ,P

2,r
i = T ri (1), and P3,r

i = T ri (2) for node i in graph
Gr , r = p, q, we consider the network distance

Mk
l (Gp,Gq) =

1

|V |
|V |∑
i=1

d(Pk,pi ,Pk,qi ), k = 1, 2, 3, (1)

obtained by averaging over all the |V | nodes the Jensen–Shannon distance
d(Pk,pi ,Pk,qi ) of the probability distributions of their nodes. Moreover, we also
consider two further network distances, given as averages of the measures in
Eq. (1) [16]

Dkl (Gp,Gq) =
1

k

k∑
i=1

Mk
l (Gp,Gq), k = 2, 3. (2)

Using any of the five distribution-based measures of Eqs. (1) and (2), each
network in the dataset is represented by the vector containing the distances from
all other elements (i.e., the corresponding row of the distance matrix).

4 Experimental Results

4.1 Data

The four datasets used in our experiments consist of two synthetic datasets of
undirected and unweighted graphs and two real-world datasets with undirected and
weighted graphs. The characteristics of all the datasets are summarized in Table 1.
Here, for each dataset, we report the number of graphs and classes, the number of
nodes (the same for all graphs), the availability of vertex labels, the average number
of edges, the average graph density, if graphs are weighted or not, the minimum
and maximum of all the diameters, the average degree, the average assortativity
coefficient based on degree, and the average global clustering coefficient [12].

4.1.1 Synthetic Graphs

The LFR dataset, available from https://github.com/leoguti85/GraphEmbs, was gen-
erated in the study performed by [18], using the Lancichinetti–Fortunato–Radicchi
(LFR) method [26]. The dataset consists of two classes of graphs, all having
81 nodes, generated using two different mixing parameters (μ): 600 graphs with
μ = 0.1 and 1000 graphs with μ = 0.5. The parameter μ ∈ [0, 1] is the expected
proportion of edges having a vertex in one community and the other vertex in a

https://github.com/leoguti85/GraphEmbs
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Table 1 Summary of characteristics of the datasets

LFR MREG Kidney Brain fMRI

Number of graphs 1600 300 299 124

Number of classes 2 3 3 2

Number of nodes 81 100 1034 263

Average number of edges 844.45 1151.71 3226 19748.88

Average graph/edge density 0.26 0.23 0.01 0.57

Edge weights × × � �
Minimum diameter 3 2 126 0.03

Maximum diameter 7 3 455.36 0.07

Average degree 20.85 23.03 6.24 150.18

Average assortativity coefficient −0.01 −0.02 −0.13 0.14

Average clustering coefficient 0.34 0.23 0.21 0.66

different community, thus controlling the strength of the community arrangements
(well-defined communities for small values and meaningless community structure
for high values). LFR networks for each class are shown in Fig. 1-a, where it can be
observed that the 6 communities in the left network (obtained with a lowμ value and
having clustering coefficient equal to 0.55) can be much better perceived than the
5 communities in the right network (obtained with a high μ value and a clustering
coefficient equal to 0.21).

The MREG dataset was generated using the multiple random eigen graphs
(MREG) model, defined in [46] as

(λi, Ai)
m
i=1 = MREG(F, h1 . . . ., hd).

Here, A1, . . . , Am are the random adjacency matrices of m graphs, generated with
the d-dimensional MREG model. {λi}mi=1 are random variables and F denotes their
distribution on χ , where χ ⊆ R

d such that xT y ∈ [0, 1], for all x, y ∈ χ . {hk}dk=1

are vectors that satisfy
∑d
k=1 λi[k]hkhTk ∈ [0, 1]n×n for all λ ∈ χ . Vectors {hk}dk=1

are shared across graphs and represent the joint latent positions of the vertices, while
each λi represents the parameter of the ith graph relative to the latent positions. A
detailed description of the MREG model is given by Wang et al. [46]. Using this
model with d=2, a total of 300 graphs with 100 nodes each were generated, with
3 classes and 100 graphs in each class. Here, λ=[24.5, 4.75] for class 1, λ=[20.75,
2.25] for class 2, and λ=[24.5, 2.25] for class 3. Moreover, h1, h2 ∈ R

n, with n =
100 (the number of nodes), where all the entries of h1 are set to 0.1, while the
first half entries of h2 are set to −0.1 and the remaining to 0.1. These parameters
were chosen closely based on the experiment performed by Wang et al. for graph
classification, although in our case, we generated three classes of graphs instead of
the binary classification problem considered by the authors in [46].
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4.1.2 Real Graphs

Functional magnetic resonance imaging (fMRI) time series data [1] from The
Center for Biomedical Research Excellence (COBRE) dataset (http://fcon1000.
projects.nitrc.org/indi/retro/cobre.html) were converted to fMRI networks in [3].
The processed dataset (https://github.com/jesusdaniel/graphclass) consists of 124
graphs with two classes of 54 Schizophrenia subjects and 70 healthy controls. All
graphs contain 263 nodes corresponding to different regions of the brain (see Fig. 1-
d). The edges were weighted with the Fisher-transformed correlation between the
fMRI time series of the nodes after ranking, in the pre-processing step performed in
[3]. For this study, we retained only the positively correlated edge weights.

Kidney metabolic networks were constructed in [16], by integrating gene expres-
sion data (Projects TCGA-KIRC and TCGA-KIRP) obtained from the Genomic
Data Commons portal (https://portal.gdc.cancer.gov) and the kidney tissue-specific
metabolic model [42] from the Metabolic Atlas repository (https://metabolicatlas.
org/). In [17], these networks were simplified by retaining only the top eigen central
nodes and their adjacent nodes, resulting in networks with 1034 nodes (see Fig. 1-c).
The Kidney dataset contains 299 samples divided into three classes: 159 clear cell

Fig. 1 Network datasets: (a) LFR: 2 classes of networks with 0.1μ and 0.5μ each consisting
of 81 nodes; (b) MREG network with 100 nodes; (c) Kidney metabolic network with 1034
nodes (representing metabolites); and (d) Brain fMRI network with 263 nodes (representing brain
regions). Cytoscape v3.7.1. was used for representing the networks

http://fcon1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon1000.projects.nitrc.org/indi/retro/cobre.html
https://github.com/jesusdaniel/graphclass
https://portal.gdc.cancer.gov
https://metabolicatlas.org/
https://metabolicatlas.org/
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renal cell carcinoma, 90 papillary renal cell carcinoma, and 50 solid tissue normal
samples.

4.2 Empirical Comparison of Methods

We evaluated the performance of the joint embedding (JE) method [46] as a
representative of the matrix factorization method, while for autoencoders, we chose
the denoising autoencoder (DAE) [18]. We specifically selected the above methods
of MF and AE as they are aimed at embedding graphs that have the same sets
of nodes. The Python implementations of JE and DAE are available from https://
github.com/jesusdaniel/JEG and https://github.com/leoguti85/GraphEmbs, respec-
tively. In order to assess graph kernels, we used WL-OA [24], shortest path (SP)
[4], and random walk (RW) [44] kernels. The Matlab implementation of WL-OA,
SP, and RW was obtained from [4, 14], and [44], respectively. Finally, the M1, M2,
M3, D2, and D3 distribution-based measures were calculated using the R package
available at https://github.com/cds-group/GraphDistances.

The parameters of the embedding methods reported in Table 2 were chosen so
as to maximize the method’s accuracy, while the remaining parameters were kept as
defined in the respective implementations.

Table 2 Summary of parameters evaluated. Values of the parameters resulting in the best average
classification accuracy for all the datasets are reported. In the case of WL-OA, the parameter
“Kernel” indicates if OA is added (2) or not (1) to the base WL kernel; the kernel constructs the
label tree for the set of graphs up to the specified depth D. For the RW graph kernel, lambda is a
scaling parameter required by the routine

Brain

LFR MREG Kidney fMRI

Parameters
Autoencoder
DAE Embedding dim. (d) 800 1600 1600 1600

Adjacency power (Ar ) 3 2 2 2

Matrix
Factorization
JE Embedding dim. (d) 2 2 50 2

Graph kernels
WL-OA Kernel 1 1 2 1

Depth (D) 5 5 10 10

SP – – – – –

RW Lambda 10−3 10−3 10−2 10−5

Distribution-based
measures
M1, M2, M3, D2, D3 – – – – –

https://github.com/jesusdaniel/JEG
https://github.com/jesusdaniel/JEG
https://github.com/leoguti85/GraphEmbs
https://github.com/cds-group/GraphDistances


124 L. Maddalena et al.

The output from the evaluated methods was min–max normalized and classified
with the support vector machine (SVM) classifier using the LIBSVM implementa-
tion [10] available in scikit-learn [36]. For multi-class classification, the one-vs.-rest
strategy was used. The 10-fold cross-validation was repeated 10 times, and the
average of the accuracy (Acc), precision (Prec), recall (Rec), and f-measure (F1)
scores over all the runs was measured to evaluate the classification. These scores are
defined in terms of the number of true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs) as follows:

Acc = TP + TN

TP + TN + FP + FN
, Prec = TP

TP + FP
,

Rec = TP

TP + FN
, F1 = 2 * Prec · Rec

Prec + Rec
.

4.3 Performance Evaluation

Figures 2 and 3 show the distribution of the classification scores obtained by running
10 iterations of the 10-fold cross-validation on the synthetic and real datasets with
the various methods, while detailed numerical results are reported in Tables 3 and 4.

All the methods perform well on the LFR dataset, achieving 100% accuracy in
most of the cases. Hence, any of the whole-graph embedding methods would be
effective on datasets that contain network classes differing from each other by well-
defined community properties.

High accuracy for the MREG dataset is achieved only with the JE embedding
method, with the rest of the methods performing poorly (<69% accuracy). The
dataset, having been constructed using the 2D MREG model, might be an advantage
for the JE method, as it is precisely this property that it exploits. Additionally, these
networks are highly connected and unweighted and, hence, not ideal for embedding
measures relying on path properties.

On the Kidney dataset, the distribution-based measures perform well overall,
with the M3 measure giving the best result. These are closely followed by the
DAE and JE methods, and the results for which may be further improved by fine-
tuning their parameters. Instead, graph kernel-based methods perform poorly on
this dataset.

The distribution-based measures M2, M3, D2, and D3 achieve the best perfor-
mance on the Brain fMRI dataset, which results particularly hard for all the other
compared methods, consisting of very dense graphs with high average degree but
extremely low diameter.

We further analyzed the performance of the DAE, JE, M1, M2, and M3

methods in terms of the total time taken for the computation of the embedding or
distances. We focus only on these methods as they performed reasonably well in at
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Fig. 2 Distribution of the different classification scores of all the compared methods on the two
synthetic datasets: (a) LFR and (b) MREG. The red dashed line indicates the best average accuracy
obtained among all the methods (see Table 3)

least two datasets. We used 50 and 100 graphs each from the LFR and Brain fMRI
dataset, which contain 81 and 243 nodes, respectively. All the experiments were
performed on a 16 core, 128 GB RAM, and a 64-bit platform cluster node. Figure 4
shows the computational time for all the considered methods.
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Fig. 3 Distribution of the different classification scores of all the compared methods on the two
real datasets: (a) Kidney and (b) Brain fMRI. The red dashed line indicates the best average
accuracy obtained among all the methods (see Table 4)
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Table 3 Average classification performance of the compared methods on the synthetic datasets

LFR MREG

Acc Prec Rec F1 Acc Prec Rec F1

Autoencoder
DAE 100.00 100.00 100.00 100.00 68.53 69.33 69.06 67.93

Matrix factorization
JE 81.23 80.75 78.49 79.19 85.63 86.03 85.87 85.22

Graph Kernels
WL-OA 98.85 98.52 99.08 98.78 61.07 59.88 60.79 59.35

SP 100.00 100.00 100.00 100.00 52.30 39.83 54.73 43.94

RW 85.27 84.44 83.97 84.11 59.43 59.28 60.34 54.74

Distribution-based measures
M1 100.00 100.00 100.00 100.00 63.57 64.63 64.32 62.42

M2 80.76 79.89 78.43 78.90 46.33 48.10 46.48 39.74

M3 100.00 100.00 100.00 100.00 53.57 57.79 53.78 49.66

D2 100.00 100.00 100.00 100.00 57.07 67.22 57.29 56.35

D3 100.00 100.00 100.00 100.00 65.03 68.93 65.38 64.33

Table 4 Average classification performance of the compared methods on the real datasets

Kidney Brain fMRI

Acc Prec Rec F1 Acc Prec Rec F1

Autoencoder
DAE 90.33 91.13 91.28 90.69 59.24 59.83 57.70 51.68

Matrix factorization
JE 87.69 88.51 87.98 87.39 56.46 28.23 50.00 35.50

Graph Kernels
WL-OA 59.71 41.89 44.97 40.78 49.49 50.95 50.72 47.65

SP 51.68 30.81 36.52 29.91 51.24 31.03 49.36 36.27

RW 65.98 48.15 48.62 45.11 51.35 30.40 49.08 35.86

Distribution-based measures
M1 92.52 91.80 93.16 92.02 50.18 50.80 49.91 47.90

M2 93.39 92.83 93.35 92.61 86.97 86.35 88.54 86.04

M3 93.95 93.60 94.15 93.51 83.56 82.95 85.20 82.55

D2 93.22 92.75 93.25 92.58 78.62 78.81 80.57 77.54

D3 93.75 93.16 94.17 93.27 81.11 81.04 83.21 80.18

In the case of the LFR dataset, we see that DAE is the fastest method, even when
the number of graphs is doubled. However, it has a 4 times increase in execution
times when rising the number of nodes from 81 to 243 (on the Brain fMRI dataset).
In these cases, the JE method runs faster than all the other methods.
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Fig. 4 Computational time. Time (seconds) for computation of embeddings and distances, where
G and N are the total number of graphs and nodes, respectively. For example, LFRG50_N81 stands
for LFR dataset with 50 graphs, each having 81 nodes

5 Conclusions

In this chapter, we review classes of embedding techniques which jointly embed
whole graphs for the task of classification and compare the performance of a
selected subset of methods. Although this is not an exhaustive comparison of
all whole-graph embedding approaches, we provide results on a collection of
undirected synthetic and real-world network datasets that have properties which
differ from those commonly used for the evaluation of graph classification [22]. The
results show that, in case of unweighted networks that differ based on their commu-
nity properties, all approaches except JE, RW, and M2 achieve very high accuracy.
On real-world weighted networks with node correspondence, the distribution-based
measures are better at discriminating classes than the graph embedding methods
compared in this study. Although they have a higher computational time than
the other techniques, they should be considered for use, as evidenced by their
classification performance.

The datasets and links to the software adopted for our experiments are made
publicly available for further comparisons via a GitHub repository at https://github.
com/cds-group/GraphDatasets.

Acknowledgments The work of Mario R. Guarracino was conducted within the framework of
the Basic Research Program at the National Research University Higher School of Economics
(HSE). The work was carried out also within the activities of the authors as members of the ICAR-
CNR INdAM Research Unit. Mario Manzo thanks Prof. Alfredo Petrosino for the guidance and
supervision during the years of working together.

https://github.com/cds-group/GraphDatasets
https://github.com/cds-group/GraphDatasets


On Whole-Graph Embedding Techniques 129

References

1. CJ Aine, H Jeremy Bockholt, Juan R Bustillo, José M Cañive, Arvind Caprihan, Charles
Gasparovic, Faith M Hanlon, Jon M Houck, Rex E Jung, John Lauriello, et al. Multimodal
neuroimaging in schizophrenia: description and dissemination. Neuroinformatics, 15(4):343–
364, 2017.

2. Laura Antonelli, Mario Rosario Guarracino, Lucia Maddalena, and Mara Sangiovanni. Inte-
grating imaging and omics data: A review. Biomedical Signal Processing and Control,
52:264–280, 2019.

3. JD Arroyo-Relión, D Kessler, E Levina, and SF Taylor. Network classification with
applications to brain connectomics [internet]. Annals of Applied Statistics. Available: http://
arxiv.org/abs/1701.08140, 2019.

4. Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pages 8–pp. IEEE, 2005.

5. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In Yoshua Bengio and Yann LeCun, editors, 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014,
Conference Track Proceedings, 2014.

6. Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of
graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering, 30(9):1616–1637, 2018.

7. Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph
representations. In AAAI, 2016.

8. A. Cardillo, J. Gmez-Gardees, M. Zanin, and other. Emergence of network features from
multiplexity. Sci Rep, 3(1344), 2013.

9. L. Carpi, T.A. Schieber, P.M. Pardalos, G. Marfany, C. Masoller, A. Díaz-Guilera, and M.G.
Ravetti. Assessing diversity in multiplex networks. Scientific Reports, 9(4511), 2019.

10. Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

11. Fengwen Chen, Shirui Pan, Jing Jiang, Huan Huo, and Guodong Long. DAGCN: dual attention
graph convolutional networks. In International Joint Conference on Neural Networks, IJCNN
2019 Budapest, Hungary, July 14–19, 2019, pages 1–8. IEEE, 2019.

12. Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 2006.

13. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5–10, 2016, Barcelona, Spain, pages 3837–3845, 2016.

14. Pierre-Louis Giscard. Weisfeiler-Lehman optimal assignment kernel, 2020.
15. Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance:

A survey. Knowledge-Based Systems, 151:78–94, 2018.
16. Ilaria Granata, Mario R Guarracino, Valery A Kalyagin, Lucia Maddalena, Ichcha Manipur,

and Panos M Pardalos. Supervised classification of metabolic networks. In 2018 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pages 2688–2693.
IEEE, 2018.

17. Ilaria Granata, Mario R Guarracino, Valery A Kalyagin, Lucia Maddalena, Ichcha Manipur,
and Panos M Pardalos. Model simplification for supervised classification of metabolic
networks. Annals of Mathematics and Artificial Intelligence, 88(1):91–104, 2020.

18. Leonardo Gutiérrez-Gómez and Jean-Charles Delvenne. Unsupervised network embeddings
with node identity awareness. Applied Network Science, 4(1):82, 2019.

http://arxiv.org/abs/1701.08140
http://arxiv.org/abs/1701.08140


130 L. Maddalena et al.

19. Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J Honey, Van J
Wedeen, and Olaf Sporns. Mapping the structural core of human cerebral cortex. PLOS
Biology, 6(7):1–15, 07 2008.

20. William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

21. Zifeng Kang, Hanwen Xu, Jianming Hu, and Xin Pei. Learning dynamic graph embedding for
traffic flow forecasting: A graph self-attentive method. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 2570–2576. IEEE, 2019.

22. Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2016.

23. Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24–26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

24. Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment
kernels and applications to graph classification. In Advances in Neural Information Processing
Systems, pages 1623–1631, 2016.

25. Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020.

26. Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Physical review E, 78(4):046110, 2008.

27. Bentian Li and Dechang Pi. Network representation learning: a systematic literature review.
Neural Computing and Applications, pages 1–33, 2020.

28. Peng Liu, Lemei Zhang, and Jon Atle Gulla. Real-time social recommendation based on graph
embedding and temporal context. International Journal of Human-Computer Studies, 121:58–
72, 2019.

29. Z. Luo, L. Liu, J. Yin, Y. Li, and Z. Wu. Deep learning of graphs with ngram convolutional
neural networks. IEEE Transactions on Knowledge and Data Engineering, 29(10):2125–2139,
2017.

30. Guixiang Ma, Nesreen K Ahmed, Theodore L Willke, and Philip S Yu. Deep graph similarity
learning: A survey. arXiv preprint arXiv:1912.11615, 2019.

31. Ichcha Manipur, Ilaria Granata, Lucia Maddalena, and Mario Rosario Guarracino. Clustering
analysis of tumor metabolic networks. BMC Bioinformatics, 21(349), 2020.

32. Mario Manzo. Kgearsrg: Kernel graph embedding on attributed relational sift-based regions
graph. Machine Learning and Knowledge Extraction, 1(3):962–973, 2019.

33. Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005, 2017.

34. Walter Nelson, Marinka Zitnik, Bo Wang, Jure Leskovec, Anna Goldenberg, and Roded
Sharan. To embed or not: network embedding as a paradigm in computational biology.
Frontiers in genetics, 10:381, 2019.

35. Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In International conference on machine learning, pages 2014–2023,
2016.

36. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

37. Gideon Rosenthal, František Váša, Alessandra Griffa, Patric Hagmann, Enrico Amico, Joaquín
Goñi, Galia Avidan, and Olaf Sporns. Mapping higher-order relations between brain structure
and function with embedded vector representations of connectomes. Nature communications,
9(1):1–12, 2018.

38. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,
2008.



On Whole-Graph Embedding Techniques 131

39. Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

40. A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Sternberg. The predictive
toxicology evaluation challenge. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence - Volume 1, IJCAI’97, page 4–9, San Francisco, CA, USA, 1997.
Morgan Kaufmann Publishers Inc.

41. Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations
for graph clustering. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, AAAI14, page 12931299. AAAI Press, 2014.

42. Mathias Uhlén, Linn Fagerberg, Björn M Hallström, Cecilia Lindskog, Per Oksvold, Adil
Mardinoglu, Åsa Sivertsson, Caroline Kampf, Evelina Sjöstedt, Anna Asplund, et al. Tissue-
based map of the human proteome. Science, 347(6220), 2015.

43. Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine Learning, ICML 08, page 10961103, New York, NY,
USA, 2008. Association for Computing Machinery.

44. S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. The Journal of Machine Learning Research, 11:1201–1242, 2010.

45. Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 16, page 12251234, New York, NY, USA, 2016. Association for Computing
Machinery.

46. Shangsi Wang, Jesús Arroyo, Joshua T Vogelstein, and Carey E Priebe. Joint embedding of
graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

47. Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1365–1374, 2015.

48. Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December
2018, Montréal, Canada, pages 4805–4815, 2018.

49. Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosavinasab,
Yungui Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun. Graph embedding
on biomedical networks: methods, applications and evaluations. Bioinformatics, 36(4):1241–
1251, 2020.

50. Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2–7, 2018, pages 4438–4445. AAAI Press, 2018.



Semigroup Approaches of Cell
Proliferation Models

Y. E. Alaoui and L. Alaoui

1 Introduction

Cell biology is getting heavily dependent on mathematics, and various related
biological processes have been formulated using mathematical models that are
described by various types of equations. Even if models do not translate all factors
related to the complexity of the processes, they can help in providing solutions to
the problems at hand. However, in order to understand the mathematical dynamics
behind the processes, to extract useful information from the models, and also to
come up with better models that could reflect the real behavior associated with
the problems at hand, such models alone are not sufficient. For these objectives,
mathematical analysis tools are indeed needed to better drive interactions between
mathematics and biology. For a solid research, novel mathematical ideas are needed.
This is due to the numerous challenges that range, among others, from parameter
estimation, effects of their associated changes, hypotheses validation to prevention
and control.

Strong analytical mathematical methods that can be applied not only to one
particular case but also to a wide range of models are therefore needed to get
well-founded interpretation results for the real phenomena. To this end, the theory
developed for translation semigroups that are solutions of equations of the type

u(t) = φ(ut ) (1)
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in addition to the theory developed for perturbed semigroups that are solutions of
some abstract integral equations of the form

u(t) = T0(t)+
∫ t

0
T �∗

0 (t − s)φ(u(s))ds (2)

has been very useful in the mathematical analysis of various population dynamics
models [1–9] that are the model using either integral equations or partial differential
equations or delay differential equations. It provides various tools to derive prop-
erties for such models ranging from the existence and positivity of the solutions,
the compactness and irreducibility of the solution semigroups to the asymptotic
behavior and stability properties.

Mathematical modeling of the cell cycle has received great interest during the
last three decades. The need for such modeling is expressed by the need to use
mathematical and computational methods to come up with solutions to the complex
problems related to the dynamics of epidemics or tumors. Various models have been
proposed by many researchers to model the cell growth and proliferation in order to
understand such dynamics.

In this chapter, we consider cell models that use either integral equations or
partial differential equations to describe the process of cellular proliferation within
the cell cycle. Our aim is to provide a general framework for the mathematical
study of such models. The framework is based on the use of the theory developed
for the class of semigroup of operators that are associated with core operators φ
and are solutions of equations of the type (1) or (2). The framework allows us to
conclude various properties for the solutions of the considered models by simply
using assumptions on their associated core operators that are determined using
suitable transformations if it is not straightforward.

To be more precise, we consider an integral equation model and two partial
differential equation (PDE) models. Each model describes the evolution of cell
densities by using relevant factors related to the birth, mortality, reproduction, or
immigration factors.

The first model investigated is an integral model [10] that is described by the
following equation:

n(t, y) = 2
∫ ∞

0

∫ ∞

0
h(y, ξ(τ, σ ))γ (τ, σ )n(t−τ, σ )dσdτ, t ≥ 0, a.e. y ∈ (0,∞),

(3)
where n(t, y) denotes the size density of birth rate with respect to time t and size
x. In addition, h(y, x) is the conditional probability that a daughter cell has a size
y with the condition that the mother cell size is x and γ (τ, σ ) is the conditional
density such that

∫ t2
t1
γ (τ, σ ) is the probability that the duration of cell cycle with

initial size σ to lie within [t1, t2]. The function ζ(τ, σ ) is the final size such that τ is
the duration of the cell cycle and σ is the initial size of the cell.

The second model proposed and the first PDE model [11] we are considering
describe the interactions between a group of cells characterized by their levels of
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differentiation and mutation by taking into consideration the proliferation process
and are given as follows:

∂

∂t
nj,i(a, t)+ ∂

∂a
nj,i(a, t) = −(μj,i(a)+ βj,i(a))nj,i(a, t)

nj,i(0, t) = 2
l∑
k=j

(
pj,k,i

∫ ∞

0
βk,i(a)nk,i(a, t)da

+qj,k,i−1

∫ ∞

0
βk,i−1(a)nk,i−1(a, t)da

)
, t ≥ 0

nj,i(a, 0) = φj,i(a), j = 1, 2, · · · , l, i = 0, 1, · · · ,m− 1, N = lm,
(4)

where nj,i(a, t) is the density of the cells that are of age a at time t characterized by
their telomeric state j and mutation state i. The parameters βj,i(a) and μj,i(a) are,
respectively, the proliferation and death rate of the cell in the telomeric and mutation
class (j, i). pj,k,i is the probability that one of the two cells from a mother cell in
the (k, i) class, will be a cell in the (j, i) class, where k and j stand for the telomeric
states and i stands for the mutation state. qj,k,i−1 is the probability that a cell in the
(k, i − 1) class will give rise to a mutate cell in the (j, i) class, where k and j stand
for the telomeric states and i stands for the mutation state.

The second PDE model we consider treats the case of a cell population that is
composed not only of proliferating cells but also of quiescent cells[12]. The model
reads as follows:

∂

∂t
p(t, a)+ ∂

∂a
p(t, a) = −β(a)p(t, a)− σ(a)p(t, a)+ τ(a)q(t, a)

∂

∂t
q(t, a)+ ∂

∂a
q(t, a) = σ(a)p(t, a)− τ(a)q(t, a)

p(t, 0) = 2b
∫ ∞

0
β(a)p(t, a)da

q(t, 0) = 2(1 − b)
∫ ∞

0
β(a)p(t, a)da,

(5)

where p(t, a) and q(t, a), respectively, denote the densities of cells in the prolif-
erating and the quiescent state. The parameter β is the splitting rate, and σ and
τ are, respectively, the transition rates from the proliferate (quiescent) state to the
quiescent (proliferate) state.

Within the proposed framework, the analysis of the models we give will be done
by first relating each model to translation semigroups. This is done by determining
the associated core operators φ yielding translation semigroups that are either direct
solution semigroups or equivalent to the solution semigroups of the models. This
fact allows us in a first step to apply the nice theory developed for such semigroups
in [1–9] to conclude various properties related to the solution semigroups of the
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models ranging from existence, positivity, and irreducibility to compactness and
spectral properties. Such properties are of course obtained by simply making
assumptions only on the model parameters defining their core operators. With all
such properties, we will be able in a second step to easily deduce the so-called
asynchronous exponential growth (AEG) property for the models.

The property AEG is satisfied for a semigroup {T (t)}t≥0 when the assumption

(HAEG)
( ‖e−λ0t T (t)− P ‖ ≤ Me−δt , for t > 0, where P is a projection

of rank one

)

is satisfied. The parameter λ0 is the so-called intrinsic growth constant or
the Malthusian parameter. For the cell models, the AEG property means that
‖e−λ0t n(t, a) − Pn0‖ exponentially decreases toward 0 when t → ∞. In other
words, the cell population exhibits an asymptotic stabilization after multiplication
by a Malthusian exponential factor in time around a one-dimensional projection
only dependent on the initial cell structure.

Indeed, we prove that the solutions of these models stabilize around a charac-
teristic distribution of the structure. This function does not depend on the initial
distribution of the structure. The way we proceed to conclude such AEG is explicitly
explained in [2].

2 Cell Cycle Model with Unequal Division and Random
Transition

In [10], Arino et al. proposed the integral model (3) based on the assumption
of unequal division between daughter cells during cytokinesis that is slightly a
modification of the models proposed by [14] and studied in [15, 16]. The author
in [10] assumed that the length of the cell cycle is characterized by a conditional
density, contrary to [14–16] where the length of the cell cycle is only determined by
the initial size.

Let X = L1((−θ̃ , 0), Y ), where Y = L1(0, A). The constant θ̃ is the maximal
time a cell can spend during the proliferation, and A is the maximal size of the cell.
In this section, we assume
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(Hh)
(
h ∈ L∞((0, A)2), h ≥ 0

)
,

(Hγ )
(
γ ∈ L∞((0, θ̃ )× (0, A)), γ ≥ 0

)
,

(Hξ )
(
ξ is a.e. continuous on [0, θ̃ ] × [0, A] and is with values in (0, A)

)

(H∗
ξ )

⎛
⎜⎜⎝

For 0 < a < b < A the support of the function

(σ, τ, x) �→ h(x, ξ(τ, σ ))γ (τ, σ ) on [(0, A)− (a, b)] × (0, θ̃ )× (a, b)
is with Lebesgue measure 
= 0

⎞
⎟⎟⎠ .

and (Hα)

⎛
⎜⎜⎝

There exists a nonnegative function α(σ) such that α(σ) > 0

on the left neighborhood at σ = A such that the function

h(x, ζ(τ, σ ))γ (τ, σ ) ≥ α(σ) for a.e. (σ, τ, x)

⎞
⎟⎟⎠ .

The core operator φ : X → Y is given by

φ(f )(y) = 2
∫ θ̃

0

∫ A
0
h(y, ξ(τ, σ ))γ (τ, σ )f (−τ, σ )dσdτ. (6)

Since the operator φ is a positive bounded linear operator from X to Y . It is shown
in [1] that the operator φ defines a bounded positive linear operator from X into
Y since the assumptions (Hh), (Hγ )and(Hξ) hold. Then, we can associate the
operator defined in (6) a translation semigroup {Tφ(t)}t≥0 such that {Tφ(t)}t≥0 such
that

Tφ(t)f = n(t, .), t ≥ 0,

the semigroup solution of (3) with infinitesimal generator Aφ defined by

Aφf = f ′

D(Aφ) = {f ∈ X, f is absolutely continuous, f ′ ∈ X and f (0) = φf }.

We associate with the core operator φ the operator φ̃λ as follows:

φ̃λϕ(y) = φ(eλ. ⊗ ϕ) =
∫ A

0
kλ(y, σ )ϕ(σ )dσ, ϕ ∈ Y, y ∈ (0, A), (7)

where

kλ(y, σ ) = 2
∫ θ̃

0
e−λτ h(y, ζ(τ, σ ))γ (τ, σ )dσ.

This latter is bounded on (0, A) × (0, A), so the operator φ̃λ is weakly compact on
Y ; in addition, F possesses the Dunford–Pettis property, and we can conclude that
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φ is of compact type [17]. The irreducibility result comes from the result in [18] and
assumption (H∗

ζ ).
Also, by a straightforward computation, we can show that the semigroup

{Tφ(t)}t≥0 is eventually norm continuous [1]. Then, we can get the AEG property
as follows.

Proposition 2.1 Since (Hh), (Hγ ), (Hζ ), and (H∗
ζ ) are satisfied, there exists a

unique solution n of (3) with n0 = f for f ∈ X, f 
≡ 0. This solution is associated
with the semigroup translation such that nt = Tφ(t)f for all t ≥ 0 with the core
operator given by (6). There exists an eigenfunction μ ∈ Y associated with φ̃λ0 ,
where λ0 is the solution of r(φ̃λ) = 1 such that (HAEG) holds.

Using the ideas in [9], we can rewrite the model given by (3) using suns and stars
framework as an abstract integral equation of the type

nt = T0(t)f + j−1
∫ t

0
T �∗

0 (t − s)φ(ns)1(−θ̃ ,0)ds. (8)

To do it, let us consider the core operator given by (6) defined from X =
L1((−θ̃ , 0) × (0, A)) into Y = L1(0, A). The semigroup T0 : X → X is given
by

T0(t)f (s, y) =
{
f (t + s, y) if t + s < 0

0 if t + s ≥ 0

with generator (A0f )(s, y) = ∂
∂s
f (s, y) on the domain

D(A0) = {f ∈ X, f is absolutely continuous, f ′ ∈ X and f (0) = 0}.

The semigroup T ∗
0 is again translation to the left on X∗ := L∞

(
(0, θ̃ )× (−A, 0)

)
.

This semigroup is not strongly continuous. However, it is strongly continuous on

the subspace X� := C0

(
(0, θ̃ )× (−A, 0)

)
.

The semigroup T �∗
0 : X�∗ := NBV

(
(−θ̃ , 0)× (0, A)

)
→ X�∗ is also given

by the left translation as T0 with generator (A�∗
0 f�∗)(s, y) = ∂

∂s
f�∗(s, y) on the

domain

D(A�∗
0 ) = {f�∗ ∈ X�∗ : ∃g ∈ X�∗/f�∗(s, y) =

∫ 0

s

g(t, y)dt,∀s ∈ (−θ̃ , 0)}.

In addition, the space X is embedded into X�∗ via the transformation j defined by

jf (s) :=
∫ 0

s

f (τ, .)dτ, τ ∈ (−θ̃ , 0).
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Then, via this construction by duality, we can transform our problem (3) into
the abstract integral of the type (8). We obtain the following result with slightly
modification on the assumptions given above.

Proposition 2.2 Since (Hh), (Hγ ), (Hζ ), and (Hα) are satisfied, there exists a
unique solution n(t) of (8) with n0 = f ∈ X on [0,∞). The family of operators
T (t) : f �→ nt for t ≥ defines a C0 semigroup of bounded operators on X.
Furthermore, {T (t)}t≥0 is eventually compact, the operator φ̃λ is nonsupporting,
and (HAEG) holds.
Proof Using well-known results on contraction mapping, we can assure the exis-
tence and uniqueness of the solution associated with (8). Further results on
compactness can be deduced using the generation expansion such that we set

n = n0 + Fn, where n0 = T0(t)f ;

then, we obtain n = n0 +∑∞
i=1 F in, where the first iteration Fn0 is compact by

using argument of Arzèla Ascoli. Therefore, our perturbed semigroup is eventually
compact since it is a sum of finite sum of compact operators. The nonsupporting
property follows from the assumption (Hα). We can conclude that there exists
a unique real root of r(φ̃λ) = 1 that is simple and dominant eigenvalue of the
generator of the perturbed semigroup. We can conclude that the (HAEG) is satisfied.

��

3 Cell Cycle Model with Mutation Accumulation
and Telomere Hierarchies

In this section, we investigate the model (4) of telomere loss where the model
admits a hierarchy at the level of the telomere where the more (least) differentiated
cells have the shortest (longest) telomeres. During each round of division, it is
hypothesized that one or more mutations can occur. These mutations are inherited
by the daughter cells from their mother cell. After a number of mutations, the cell
becomes cancerous. The model (4) admits a hierarchy at the level of mutations
accumulated. Then, we can divide it into classes, each class corresponds to a
telomeric and a mutation state.

Several papers explore models of telomere loss with and without overlapping
generations. Arino et al.[19] investigate a linear model with the only source of loss
due to the division. The population exhibits a polynomial growth of the telomere
classes and asymptotic stabilization of the highest class.

Furthermore, as an extension of the work [19], the authors in [20] added a logistic
loss term for each class. The result is the extinction of all the telomere classes that
know a polynomial growth.

In this section, we assume
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(Hβ,μ)

⎛
⎜⎜⎜⎜⎜⎝

βj,i ∈ L1(0, h) ∩ L∞(0, h), there exists some constant β̄ such that

0 < βj,i(a) ≤ β̄ for 1 ≤ j ≤ l, 0 ≤ i ≤ m− 1 a.e in (0, h),

μj,i ∈ L1(0, h) ∩ L∞(0, h) there exists some constant μ̄ such that

0 ≤ μj,i(a) ≤ μ̄ for 1 ≤ j ≤ l, 0 ≤ i ≤ m− 1 a.e in (0, h),

⎞
⎟⎟⎟⎟⎟⎠

and

pj,k,i =
⎧⎨
⎩

0 for j > k ∀2 ≤ j ≤ n, 0 ≤ i ≤ m− 1

1

2
for j = k ∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

qj,k,i = 0 for j > k, ∀2 ≤ j ≤ n, 0 ≤ i ≤ m− 1

n∑
k=j

pj,k,i +
n∑
k=j

qj,k,i = 1

2
∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1,

where pj,k,i > 0 and qj,k,i−1 > 0. When i = 0, one has qj,k,i−1 = 0.
If we write the vector of cell population, n(a, t) := (Ni(a, t))0≤i≤m−1 with

Ni(a, t) := (nj,i(a, t))1≤j≤l . In addition, we consider the matrix describing the loss
due to death or divisionM(a) := Diag(Mi)0≤i≤m−1 withMi(a) := Diag(μj,i(a)+
βj,i(a))1≤j≤l .

B(a) = (br,s)0≤r,s≤m−1 =

⎧⎪⎪⎨
⎪⎪⎩

Pr if r = s
Qr if r = s + 1

0 otherwise,

where

Pi(a) =
(
p̃t,z
)

1≤t,z≤l =

⎧⎪⎪⎨
⎪⎪⎩

p̃t,t (a) := βt,i(a) if t = z
p̃t,z+1 := 2βz+1,i (a)pt,z+1,i if t < z

0 otherwise

Qi(a) = (q̃t,z)1≤t,z≤l =

⎧⎪⎪⎨
⎪⎪⎩

q̃t,t := 2βt,i−1(a)qt,t,i−1 if t = z
q̃t,z+1 := 2βz+1,i−1(a)qt,z+1,i−1 if t = z
0 otherwise.

Then, we can rewrite the model (4) as
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∂

∂t
n(a, t)+ ∂

∂a
n(a, t) = −M(a)n(a, t)

n(0, t) =
∫ h

0
B(a)n(a, t)da,

(9)

we use the transformation m(a, t) = Z(a)n(a, t), and then we obtain the following
system:

∂

∂t
m(a, t)+ ∂

∂a
m(a, t) = 0

m(0, t) =
∫ h

0
B(s)Z−1(s)m(s, t)ds = φ(m(., t)),

(10)

where the matrix transformation Z is the solution of the first-order differential
equation

Z′(a) = −Z(a)M(a) (11)

with Z(0) = I .

Proposition 3.1 Since (Hβ,μ) holds, there exists a unique positive solution n(a, t)
of (4) for all initial data  f ∈ X := L1((0, h),RN) with h > 0. This solution
satisfies

n(a, t) = G(t)  f (a) =

⎧⎪⎨
⎪⎩
Z−1(a)Z(t − a)f (t − a) if t − a < 0

Z−1(a)

∫ h
0
B(s)n(s, t − a)ds if t − a ≥ 0

for  f = (f1,0, · · · , fn,m−1
)tr

such that n(a, 0) =  f with (χf )(a) :=
Z(a)f (s), a ∈ (0, h) such that Z−1(a =)Diag(Z−1

i (a))1≤i≤m−1 where

Z−1
i (a) :=

⎛
⎝z̄j,k,i :=

⎧⎨
⎩
e−
∫ h

0 diag(μj,i (τ )+βj,i (τ ))dτ if k = j
0 if k 
= j

⎞
⎠ .

The solution semigroup {G(t)}t≥0 is given by

G(t)  f = χ−1Tφ(t)χ  f , ∀f ∈ X,

where {Tφ(t)}t≥0 is the semigroup solution of (10) and

φ  f =
∫ h

0
B(a)Z−1(a)  f (a)da.
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The generator of {G(t)}t≥0 satisfies

D(A) = {  f ∈ X : fj,i is absolutely continuous on (0, h),  f (0) =
∫ h

0
B(a)  f (a)da}

A  f = −  f ′(a)−M(a)  f (a),  f ∈ D(A).

Furthermore, the semigroup {G(t)}t≥0 satisfies (HAEG).
Proof Since the operator φ is a bounded nonnegative operator, we obtain that the
translation semigroup {Tφ(t)} exists on X. The associated operator φ̃λ is irreducible
since z̃k,k,i , β and pj,k,i > 0 for k > j . The semigroup of translation is eventually
compact since it is composed of convolution in X and bounded linear operator.
Then, we obtain that the AEG property is satisfied for both semigroups by the
equivalence property. ��
In order to perform the suns–stars calculus, we consider the case where φ = 0
in (10), and the associated semigroup solution is given by

(T0(t) g)(a) =
{  g(a − t) if a − t > 0

0 if a − t ≤ 0.
(12)

Its infinitesimal generator is

D(A0) = { g ∈ X : g is absolutely continuous,  g(0) = 0}
A0  f = −  f ′.

The injection j from L1((0, h),RN) into NBV((0, h),RN) is given by

(j  g)(a) :=
∫ a

0
 g(s)ds, a ∈ (0, h).

Then, by integration of the transformed system (10), we obtain

d

dt
m(t) = A�∗

0 jm(t)+ φ(m(t))H

m(0) =  f ,
(13)

where the operator A�∗
0 is defined as follows:

D(A�∗
0 ) = {ϕ ∈ X�∗, ϕ(a) =

∫ a
0
ψ(s)ds ∀a ∈ [0, ã] and ψ ∈ X�∗}

A�∗
0 ϕ = −ϕ′,



Semigroup Approaches of Cell Proliferation Models 143

and H is the standard basis of RN such that

Hi (a) =
{
ei for a ∈ (0, ã)
0 for a = 0.

So, we can rewrite our problem as

m(t) = T0(t) g + j−1
(∫ t

0
T �∗

0 (t − s)φ(m(s))Hds
)
. (14)

We obtain the following result [21]:

Proposition 3.2 The semigroup (G(t))t≥0 solution of (4) yields (HAEG). There
exists a projection Q̃ of rank one, and there exists δ > 0 such that

‖e−λ0tG(t)− Q̃‖ ≤ Me−δt , t ≥ 0,

and Q̃ is such that Q̃  f := χ−1Q(χ  f ), i.e.,

Q̃  f = C(χ  f )(eλ0·Z−1(·)⊗ ζλ0),
 f ∈ X,

where

Q  f = C(  f )(eλ0· ⊗ ζλ0), (15)

and

C(  f ) = 〈ζ ∗λ0
, φ(θ �→ ∫ θ0 e−λ0(θ−s)  f (s)ds)〉
〈ζ ∗λ0

, φ(θ �→ θe−λ0θ ⊗ ζλ0)〉
,  f ∈ X, (16)

where ζλ0 and ζ ∗λ0
are two positive eigenvectors, respectively, of φ̃λ0 and φ̃∗

λ0

associated with the eigenvalue r(φ̃λ0) = 1.

4 Cell Cycle Model with Quiescence

In the following, we study the model given by (5) where the cells are in either
proliferating or quiescent class. This model is an extension of the model given in
[13]. In this section, we consider the space of initial functions

X = L1((0, ã),R2), ã > 0

and assume
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(Hβ,τ,σ )
(
β, τ, σ : (0, ã)→ R

+, β, τ, σ ∈ L∞(0, ã), β 
≡ 0.
)

As the same spirit in Sect. 3, the core operator φ : X → R
2 is given by

φ  f =
∫ ã

0
B(s)Z−1(s)  f (s)ds,

where

B(a) =
(

2bβ(a) 0
2(1 − b)β(a) 0

)
,

and Z is the solution of (11) with

M(a) =
(
β(a)+ σ(a) −τ(a)

−σ(a) τ(a)

)
;

we obtain then the following result [2] for both frameworks.

Proposition 4.1 Since (Hβ,τ,σ ) holds, the solution semigroup (G(t))t≥0 exists on
X and it is given by

G(t)  f = χ−1Tφ(t)χ  f , for all  f ∈ X.

Its generator A satisfies

D(A) = {  f ∈ W 1,1((0,∞),R),  f (0) =
∫ ∞

0
B(s)  f (s)ds}

A

(
p

q

)
(s) =
( − p′(s)

− q ′(s)

)
+
(−(β(s)+ σ(s))p(s)+ τ(s)q(s)

σ (s)p(s)− τ(s)q(s)

)
.

Its spectrum yields

σ(A) = σp(A) = {λ ∈ C, 1 ∈ σ(φ̄λ)}

= {λ ∈ C,

∫ ã
0
e−λa2β(a)

[
bz1,1(a)+ (1 − b)z1,2(a)

]
da = 1}.

In addition, (G(t))t≥0 is eventually compact and satisfies (HAEG), where s(A) =
ω(A) is a simple pole and a dominant eigenvalue ofA and is the unique real solution
λ0 of the equation

∫ ã
0
e−λa2β(a)

[
bz1,1(a)+ (1 − b)z1,2(a)

]
da = 1.
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Viability Analysis of Labor Force in an
Agroforestry System

I. M. Cholo Camargo, J. A. Amador Moncada, C. A. Peña Rincón,
and G. Olivart Tost

1 Introduction

Societies in general incorporate their environment that includes supporting ecosys-
tems as an essential part for economic growth that allows them to offer well-being
to their population. For this purpose, strategies that frame the protection of
natural resources have been developed, for example, through the common pool
resource (CPR) theory [1]. However, the results of the implementation of these
strategies are not fully achieved in practice[2]. Moreover, the dynamic complexity
of the relationships between different economic, governmental, and natural systems
proposes great challenges to the agro-ecological systems that are essential to
understand food production as well as the challenges of environmental impacts and
their consequences on the environment [3–5]. On the other hand, socio-ecological
systems coupled nature and humans, which recognize people as part and not part
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of nature [6], where the dynamics of the social system influence an ecological
system and vice versa [7], encouraging to lead scenarios for natural resources to
be overexploited [8, 9].

The most affected natural resources are found in forests on a global scale,
and they are deforested mainly by the change in land use due to agriculture,
timber production, and infrastructure investment [10]; most deforestation occurs
in the tropics [11, 12]. Therefore, this problem has been addressed from the
socio-ecological modeling by making models that consider several ecological
dynamic configurations thus allowing to analyze different types of social pressure
on resources [13]. Additionally, models that include technology to overcome
the increase in the scarcity of renewable resources have been considered [14];
models that take into account economic growth fluctuations motivated by dynamic
resources have also been studied [15, 16]. A very inclusive model was proposed by
Brander and Taylor [15], often called BT-type models, characterized mainly by the
following attributes: (1) population growth, (2) substitutability, (3) innovation, (4)
capital accumulation, (5) property rights and conservation policies for renewable
and non-renewable resources, and (6) modeling approach with the purpose of
understanding the dynamics between society and natural resources by including
renewable resources, agriculture, and a manufactured good [17].

In the 2D model proposed by DAlessandro [16], two important considerations
are included: agriculture as an economic activity parallel to resource extraction and
a critical level of resources in which its regeneration rate becomes negative and,
therefore, total resource depletion becomes inevitable [18]. Results in that paper are
basically phase portraits that show the change in the vector field of the system under
parameter changes. Other works analyzed the model from the bifurcation theory in
order to characterize all the possible steady-state scenarios in the parametric space
[19–22], showing that adequate parameter sets can lead to sustainable trajectories
where population and resource level are higher than zero in the long run.

In this chapter, we modify the model in [16] to perform the analytical study of
its steady-state dynamics and approached it from the viability theory to evaluate
the trajectory under some restrictions that guarantee a minimum value for the state
variable at each instant of time t . This approach focuses on the transient state of
the system to identify the set of thresholds associated with the system solution that
ensures the coexistence of the social and ecological component rather than pointing
to steady-state analysis, see [23, 24].

The chapter is organized as follows. In Sect. 2, we introduce some description of
DAlessandro’s model [16] and its purpose and, additionally, the modification and
its advantages to the local dynamic analysis. In Sect. 3, we define some concepts
regarding viability theory and their application to the modified model. In Sect. 4,
an analysis was made of the numerical simulations performed, which reflect the
theoretical results. We conclude in Sect. 5, by discussing the exposed results and by
giving our contributions and some topics considered as challenges.
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2 Mathematical Model

The mathematical model proposed in this chapter for the viability analysis is
a modification to DAlessandro’s system [16], which considers a population that
obtains its livelihoods mainly from the exploitation of renewable resources, as well
as from its agricultural activities within its territory. The following is an introduction
to the generalities of the base model [16]. In addition, the modification made is
shown to facilitate the application of analytical methods.

2.1 Base Model

The base model presents a system of ordinary differential equations (ODEs) repre-
senting the dynamic interaction between the population growth and the exploitation
of available renewable resources in an isolated society. It is assumed that the
dynamics of the population depends on the income acquired by the economic
activities within its territory, being agriculture represented by a Cobb–Douglas
production function and the exploitation of the natural resource that must satisfy
the minimum basic needs required by the population. The model assumes that the
forest grows logistically and decreases according to a Schaefer production function
[25]. This model has been studied from the perspective of bifurcation analysis in
order to understand the behavior of steady-state variables [21, 22, 26]. The coupled
system of ODEs for the base model is

⎧⎨
⎩
L̇ = γ (α1 (1 − β)δ Lδ−1 + φα2βS − σ )L,
Ṡ =
[
ρ
(
S
k2

− 1
) (

1 − S
k1

)
− α2βL

]
S,

(1)

where

• L is the level of population.
• S is the level of renewable resources available.
• β is the proportion of people dedicated to the exploitation of the resource. Thus,

1 − β is the proportion of population dedicated to agriculture.
• ρ represents the natural growth rate of the forest.
• k1 is the carrying capacity of the resource.
• k2 is a threshold where the forest growth rate becomes negative, and therefore,

the depletion of the resource is inevitable; this is called the strong Allee effect.
• φ and γ are the representative values of the resource and agricultural products in

terms of calories, respectively.
• α1 is a measure of the productivity of the land.
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• α2 is a measure of effectiveness in resource extraction.
• σ is the minimum value of per capita income in terms of calories necessary to

survive.
• δ is the elasticity of the Cobb–Douglas function.

2.2 Modified Model

The base model (1) presents equilibrium points with a value of L = 0, where
it was not feasible to determine its local behavior analytically by means of the
linear approximation. Furthermore, an explicit expression of the internal equilibrium
points was not determined in the positive quadrant of the system. To overcome
these difficulties, we propose a quadratic approximation of Lagrange in the term
Lδ assuming a maximum population level of 5000.

Lδ ≈ g(L) = aL2 + bL, (2)

where

a = −5000δ−2(1 − 2δ−1) < 0 y b = 5000δ−1(2 − 2δ−1) > 0.

The modified model incorporating Eq. (2) is

⎧⎪⎪⎨
⎪⎪⎩
L̇ = γ [α1(1 − β)δg(L)+ φα2βLS − σL].
Ṡ = ρS

(
S
k2

− 1
) (

1 − S
k1

)
− α2βLS,

L(t) ≥ 0 S(t) ≥ 0.

(3)

2.3 Equilibrium Points

The modified system presents five or six equilibrium points, of which up to two are
in the positive quadrant and are characterized by L > 0 and S > 0, these being the
points of interest for this chapter. By using the definition of equilibria of a system of
ODEs and performing algebraic operations, a quadratic equation for S of the form
AS2 + BS + C = 0 is obtained, where

A = aα1(1 − β)δρ,

B = −A(k1 + k2)− k1k2φα
2
2β

2,

C = k1k2α2β
(
σ − bα1(1 − β)δ)+ aα1(1 − β)δρk1k2.
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If it is defined that

� = α2
2β

2φk1k2 + aα1k1ρ(1 − β)δ + aα1k2ρ(1 − β)δ,

the possible equilibrium points are

(L1.S1), (L2.S2), y (L00, S00),

where

S1 = �+√
B2 − 4AC

2a(1 − β)δα1ρ
, (4)

if is satisfied that

α2
2β

2φk1k2 +
√
B2 − 4AC < −aα1ρ(1 − β)δ (k1 + k2) ,

and

S2 = �−√
B2 − 4AC

2a(1 − β)δα1ρ
, (5)

if it is satisfied that

α2
2β

2φk1k2 < −aα1ρ(1 − β)δ (k1 + k2)+
√
B2 − 4AC.

By replacing the values of S obtained in (4) and (5) in (6), coordinates of L > 0
for the internal equilibrium points are obtained

L1,2 = σ − bα1(1 − β)δ − φα2βS1,2

aα1(1 − β)δ , (6)

as long as it is true that

σ < bα1(1 − β)δ + φα2βS1,2.

These two internal points exist when the discriminant B2 − 4AC > 0. If the
discriminant is zero, we obtain that

S00 = �

2a(1 − β)δα1ρ

with the restriction
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α2
2β

2φk1k2 < −aα1ρ(1 − β)δ (k1 + k2) .

Finally, the value of L for S00 is obtained

L00 = σ − bα1(1 − β)δ − φα2βS00

aα1(1 − β)δ .

3 Viability

A qualitative analysis for the base model (3) shows the existence of stationary
state scenarios in which the population can consume natural resources without
completely depleting them, thus guaranteeing their own existence. This behavior
is possible when the trajectory converges either to an internal equilibria or to a
limit cycle, depending on the configuration of the system parameters and the initial
conditions, see, for example, [22].

Now, if the purpose is to evaluate the trajectory under some restrictions that
guarantee a minimum value for the state variables at each instant of time t , it
is necessary to use the viability theory. From [27], viability is defined as the
capacity for a system to maintain conditions of existence through time given certain
constraints; the set of initial conditions for which a control exists in such a way that
the system satisfies and complies with the restrictions is called the viability kernel.
In practice, the initial conditions cannot easily be controlled, while the restrictions
are more likely to be modified. Therefore, an equivalent definition of viability
kernel is the set of thresholds values for which the dynamical system (7) becomes
compliant with the constraints (8) during a period of time by applying an admissible
control strategy given a certain initial condition [28]. This set of thresholds is called
sustainable thresholds. We use this last definition for viability analysis in the work.

3.1 Preliminary

Consider the following system:

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = f (x(t), μ(t))
x(0) = x0

μ(t) ∈ [μmin, μmax],
(7)

where x(t) ∈ �n is the vector of state variables and μ(t) ∈ � is the control variable
that represents a decision that would be applied to the system.

For the system (7) to have a solution and to be unique, it is assumed that
f (x(t), μ(t)) is locally Lipschitz.
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Depending on the initial condition, additional conditions (8) may be required to
be met, which shall be considered as system constraints of (7).

Ij (x(t), μ(t)) ≥ θj j = 1, . . . p. (8)

Therefore, we have the following definition.

Definition 3.1 The set of sustainable thresholds of the system (7) with control μ(t)
is given by

Ut∗ (x0) =
{
θ |∃ (x (t) , μ (t)) , satisfies (7) and (8) ∀t ∈ (0, t∗)} . (9)

Schaefer [25] expresses the dynamics of a renewable resource in terms of its
natural growth G(S) and its exploitation h(S) as: Ṡ = G(S) − h(S). By varying
a factor in such a dynamics that affects the harvesting of the resource, a different
trajectory is obtained; for example, if the extraction workforce increases, renewable
resources will disappear faster. Theorem 3.1 is motivated from the above, where
each Cauchy problem refers to the resource dynamics with a different control.

Theorem 3.1 Let f : A→ � be a continuous function with A ⊆ �×� open. Let
us suppose that there is a function g : � × � → � that is continuous and locally
Lipschitz in x(t) such that f (x, μ) ≤ g(x, μ) for all (x, μ) ∈ A, ∂g

∂μ
≤ 0, where

μ(t) ∈ � is the control variable. Moreover, let (x0, μ1(t0)), (y0, μ2(t0)) ∈ A be two
initial conditions, such that x0 ≤ y0 and μ1(t) ≥ μ2(t)∀t ≥ t0. if x(t) and y(t) are
the solutions of the following Cauchy problems:

ẋ(t) = f (x(t), μ1(t), t) ẏ(t) = g(y(t), μ2(t), t)

x(t0) = x0 y(t0) = y0;

then

x(t) ≤ y(t) ∀t ∈ I.

I is the solution existence interval for x(t) and y(t).

Proof (Contradiction) Let us suppose that there exists t̄ ≥ t0, t̄ ∈ I , such that
x(t̄) > y(t̄).

Then, we define t∗ by

t∗ = sup{t ∈ [t0, t̄] | x(t) ≤ y(t)},

by the continuity of the solutions x(.) e y(.), we have x(t∗) = y(t∗). On the other
hand, f is locally Lipschitz in x(t∗), hence, the constants ε1 > 0 and Lf ≥ 0 will
exist, such that |f (x, s)−f (y, s)| ≤ Lf |x−y| for every x, y ∈ (x(t∗)−ε1, x(t

∗)+
ε1) and for every s ≥ 0. Moreover, as t∗ < t − a new constant ε2 > 0 appears, such
that t∗ + ε2 < t−. Finally, for every s ∈ (t∗, t∗ + ε2), x(s), y(s) ∈ (x(t∗) −



154 I. M. Cholo Camargo et al.

ε1, x(t
∗) + ε1). Thus, for every s ∈ (t∗, t∗ + ε2), it is satisfied that |f (x(s), s) −

f (y(s), s)| ≤ Lf |x(s)− y(s)|. Let us define a continuous function w(t) as w(t) =
x(t)− y(t) > 0 ∀t ∈ (t∗, t∗ + ε2]; then,

0 < w(t) = x(t)− y(t)

= x0 +
∫ t
t0

f (x(s), μ1(s), s)ds − y0 −
∫ t
t0

g(y(s), μ2(s), s)ds

= x0 +
∫ t∗
t0

f (x(s), μ1(s), s)ds +
∫ t
t∗
f (x(s), μ1(s), s)ds − y0

−
∫ t∗
t0

g(y(s), μ2(s), s)ds −
∫ t
t∗
g(y(s), μ2(s), s)ds

= x(t∗)+
∫ t
t∗
f (x(s), μ1(s), s)ds − y(t∗)−

∫ t
t∗
g(y(s), μ2(s), s)ds

=
∫ t
t∗
f (x(s), μ1(s), s)ds −

∫ t
t∗
g(y(s), μ2(s), s)ds

≤
∫ t
t∗
g(x(s), μ1(s), s)ds −

∫ t
t∗
g(y(s), μ2(s), s)ds (f (x, μ) ≤ g(x, μ))

≤
∫ t
t∗
g(x(s), μ2(s), s)ds −

∫ t
t∗
g(y(s), μ2(s), s)ds

(
∂g

∂μ
≤ 0, μ1 ≥ μ2

)

=
∫ t
t∗
g(x(s), μ2(t), s)− g(y(s), μ2(s), s)ds

≤ Lg
∫ t
t∗

|x(s)− y(s)|ds

= Lg
∫ t
t∗

|w(s)|ds

= Lg
∫ t
t∗
w(s)ds.

From Gronwall’s lemma, it is concluded that w(t) = 0, which contradicts the
approach that w(t) > 0, thus x(t) ≤ y(t) ∀t ∈ I . ��

If two different controls are applied starting from the same initial point, the
corresponding trajectories will be kept separated during a time interval I , because
it may happen that there is a different crossing from the initial condition at a time t ,
as seen in Fig. 1. Proposition 3.1 demonstrates the existence of this interval I .

Proposition 3.1 Let f, g : A → � be continuous functions with A ⊆ �2 open.
Consider the following system of ordinary differential equations:

ẋ(t) = f (x(t), t)
ẏ(t) = g(y(t), t),
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Fig. 1 Monotonicity of the state variables in the interval (0, t∗) and (L0, S0) = (200, 12000)

such that x(0) = y(0) = x̄ y f (x̄, 0) < g(x̄, 0). Then, there is an interval I where

x(t) < y(t) ∀t ∈ I. (10)

Proof Let be z = x − y; then,

z(0) = x(0)− y(0)
= x̄ − x̄
= 0.

On the other hand, ż(t) = f (x(t), t)− g(y(t), t), and thus

ż(0) = f (x(0), 0)− g(y(0), 0))
= f (x̄, 0)− g(x̄, 0) < 0,

but

ż(0) = lim
t→0

z(t)− z(0)
t

= lim
t→0

z(t)

t
< 0,

which implies that z(t) < 0, that is, x(t)− y(t) < 0, thus, by the sign conservation
theorem, there is a ε > 0 such that x(t) < y(t) for every t ∈ (0, ε). ��

If we look at the solution of the system (3) in Fig. 1, it can be seen that there is an
interval I where there is a monotonicity of the trajectories for both L and S, taking
different controls of 0 ≤ β ≤ 1. The interval corresponding to the state variable L
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is contained in the interval associated with the state variable S; in other words, the
monotonicity of L implies the monotonicity of S, which leads to Theorem 3.2.

Theorem 3.2 Let f : A → � be a continuous and locally Lipschitz function with
A ⊆ � open. Suppose that there are two controls μ1(t) and μ2(t) such that μ1(t) ≥
μ2(t) and L1(t) ≥ L2(t) for all t ≥ t0, where Li(t) is the fixed solution of L̇(t)
with the respective control. Consider the solutions x(t) and y(t) of the following
problems:

ẋ(t) = f (x(t))− μ1(t)L1(t)x(t) ẏ(t) = f (y(t))− μ2(t)L2(t)y(t)

x(t0) = x0 y(t0) = y0

with x0 = y0.
Then, x(t) ≤ y(t) for all t ∈ I , where I is the solution existence interval.

Proof (Contradiction) Suppose there is a t̄ > t0, t̄ ∈ I such that x(t̄) > y(t̄).
Then, t is defined as

t∗ = sup{t ∈ [t0, t̄) | x(t) ≤ y(t)}.
Now, x(·) and y(·) are continuous in t∗; then, x(t∗) = y(t∗), f is locally

Lipschitz in x(t∗), and hence there is ε1 > 0, Lf ≥ 0 such that |f (x) − f (y)| ≤
Lf |x−y| for every x, y ∈ (x(t∗)− ε1, x(t

∗)+ ε1) and for every s ≥ 0. In addition,
by definition of t∗, t∗ < t̄ , and thus there is ε2 > 0 such that t∗ + ε2 < t̄ , and for
every s ∈ (t∗, t∗ + ε2), we have x(s), y(s) ∈ (x(t∗) − ε1, x(t

∗) + ε1). Thus, for
every s ∈ (t∗, t∗ + ε2), we have |f (x(s)) − f (y(s))| ≤ Lf |x(s) − y(s)|. Let us
define a continuous function w(t) as w(t) = x(t) − y(t) > 0 ∀t ∈ (t∗, t∗ + ε2];
then,

0 < w(t) = x(t)− y(t)

= x0 +
∫ t
t0

f (x(s))− μ1(s)L1(s)x(s)ds − y0 −
∫ t
t0

f (y(s))− μ2(s)L2(s)y(s)ds

= x0 +
∫ t∗
t0

f (x(s))− μ1(s)L1(s)x(s)ds +
∫ t
t∗
f (x(s))− μ1(s)L1(s)x(s)ds − y0

−
∫ t∗
t0

f (y(s))− μ2(s)L2(s)y(s)ds −
∫ t
t∗
f (y(s))− μ2(s)L2(s)y(s)ds

= x(t∗)+
∫ t
t∗
f (x(s))− μ1(s)L1(s)x(s)ds − y(t∗)−

∫ t
t∗
f (y(s))− μ2(s)L2(s)y(s)ds

=
∫ t
t∗
f (x(s))− μ1(s)L1(s)x(s)ds −

∫ t
t∗
f (y(s))− μ2(s)L2(s)y(s)ds

=
∫ t
t∗
f (x(s))− μ1(s)L1(s)x(s)− f (y(s))+ μ2(s)L2(s)y(s)ds

≤
∫ t
t∗
f (x(s))− μ1(s)L1(s)x(s)− f (y(s))+ μ1(s)L1(s)x(s)ds
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=
∫ t
t∗
f (x(s))− f (y(s))ds

≤ Lf
∫ t
t∗

|x(s)− y(s)|ds

= Lf
∫ t
t∗

|w(s)|ds

= Lf
∫ t
t∗
w(s)ds.

From Gronwall’s lemma, it is concluded that w(t) = 0, which contradicts the
approach that w(t) > 0. Thus, x(t) ≤ y(t) ∀t ∈ I . ��
Solow [29] studied the sustainability in an economic model of consumption–
production of non-renewable resources, and he found an expression for maximal
sustainable consumption without considering a restriction on the conservation
of the resource, while Martinet in [30] considered the restriction and found a
relationship between a guaranteed minimum consumption and the minimum reserve
of the resource. There is something similar for the case under study. An important
factor in the exploitation of a renewable resource is the labor force that allows
to obtain enough from the natural environment, thus guaranteeing the livelihood
of the population and a sustainable level of resources. With the above, there is
the minimum level of resources that ensure livelihood with a minimum level of
population given. This relationship can be generalized by using Proposition 3.2
where p − 1 constraints are set to find the sustainable threshold θp.

Proposition 3.2 Consider a system of the form (7) and the constraints (8). For a
given initial condition, the set of sustainable thresholds Ut∗(x0) that depends on
p − 1 guaranteed constraints is given by

Ut∗(x0) = {(θ1, . . . , θp) | θ1, θ2, . . . θp−1 ≥ 0 θp ≤ θ+p (θ1, . . . θp−1)},

where θ+p (θ1 . . . θp−1) := max{θ | ∃ μ(t), x(t) starting from x0, such that
satisfy (7) and Ij (x(t), μ(t)) ≥ θj , j = 1, . . . p ∀t ∈ (0, t∗)}
Proof (⇒)

Let be A = {(θ1, . . . , θp)|θ1, θ2, . . . θp − 1 ≥ 0 and θp ≤ θ+p(θ1, . . . θp − 1)}.
Let us suppose that θ ≤ U t∗(x0). Therefore, there exists one control μ(t) and
one path x(t) starting from x0 satisfying both the dynamics (7) and the restriction
Ij (x(t), μ(t)) ≥ θj for all j = 1, · · · , p at any t ∈ (0, t∗). Now as, θj ≥ 0∀j =
1 · · ·p − 1 and θp ≤ θ + p, since, is the maximun of the θj that satisfy (7) and
(8) then θ ∈ A. By definition, θj ≥ 0 ∀j = 1 · · ·p − 1, and from the same
definition of θ+p , θp ≤ θ+p since θp complies with the characteristics to be in the
set of which θ+p is the maximum.

(⇐)
Let us consider θj ≥ 0 with j = 1 · · ·p − 1 and θp ≤ θ+p(θ1, . . . θp − 1),
and suppose that θ + p is one of the sustainable thresholds, which means that
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there is one control μ(t) and one path x(t) starting from x0 and satisfying both
the dynamics (7) and the constraint Ip(x, μ) ≥ θ + p ∀t ∈ (0, t∗). Now, as
θp ≤ θ + p then Ip(x, μ) ≥ θp, hence, θ ∈ U t∗(x0).

��

3.2 Sustainable Thresholds

3.2.1 One-Dimensional Case

Consider the following Cauchy problem:

⎧⎪⎪⎨
⎪⎪⎩
Ṡ(t) = f (S(t), β)
S(0) = S0

β ∈ [0, 1]
(11)

with the condition

S(t) ≥ S > 0 ∀t ∈ (0, t∗), (12)

and f (S(t), β) is the expression given by the system (3) for S. By Definition 3.1,
we have that given an initial condition S0, the set of sustainable thresholds for the
problem (11) with restriction (12) is

Ut∗(S0) = {S | ∃(S(·), β(·)) such that S(t) ≥ S}
= {S | ∃(S(·), β(·)) such that S ≤ Ŝ}.

Since S is decreasing with respect to the β control, the set of sustainable thresholds
is given by Proposition 3.3.

Proposition 3.3 Let S0 be an initial condition; then,

UT (S0) = (−∞, Ŝ]

with

Ŝ = inf
t≥0
S∗(t),

and S∗(t) is the solution of the system with the maximum control β.

Proof (⇐)
Let S ∈ (−∞, Ŝ]; then, S ≤ Ŝ, a control that maintains this relationship needs
to be found. As 0 ≤ β ≤ 1, if β = 0 implies that
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Ṡ∗ = ρS∗
(
S∗

k2
− 1

)(
1 − S∗

k1

)
. (13)

Thus, Ŝ ≤ S∗(t) and by hypothesis S ≤ Ŝ, hence S ≤ S∗(t), thus S ∈ Ut∗(S0).

(⇒)
Let be S ∈ Ut∗(S0); then, there is a β such that (11) is satisfied and S ≤
S(t) ∀t ∈ (0, t∗). It is known that 0 ≤ β ≤ 1, let be β = 0; then, we have (13),
since f is decreasing with respect to the control S∗(t) ≥ S(t) ∀t ∈ (0, t∗)
(Theorem 3.1), and by the assumption S ≤ S(t), we then conclude S ≤ S∗(t)
consequently S ≤ Ŝ.

��

3.2.2 Two-Dimensional Case

Consider the system (3) in the form (7)

⎧⎪⎪⎨
⎪⎪⎩
L̇ = γ [α1(1 − β)δg(L)+ φα2βLS − σL]
Ṡ = ρS

(
S
k2

− 1
) (

1 − S
k1

)
− α2βLS

β ∈ [0, 1]
(14)

with the restrictions

L(t) ≥ L ≥ 0 S(t) ≥ S ≥ 0 ∀t ∈ (0, t∗). (15)

Using Proposition 3.2, sustainable thresholds Ut∗ are defined. For this, two
restrictions are established, one for the level of people and the other for the forestry
resource reserve, that is, the restrictions (15).

After that, Definition 3.1 of the set of sustainable thresholds Ut∗(L0, S0) is
applied for the reserve level of the resource S and of people L given an initial
condition (L0, S0).

Definition 3.2 For a given initial condition (L0, S0) of the system (14) with
constraints (15), we have

Ut∗(L0, S0) = {(L, S) | ∃ β(·) satisfying dynamics (14) and constraints

L(t) ≥ L, S(t) ≥ S ∀t ∈ (0, t∗)}.

To determine this set, we considered the maximum S that can be sustained
given L.

Definition 3.3 Given an initial condition (L0, S0) and a minimum reserve level of
people L, S+(L0, S0, L) is defined as
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S+(L0, S0, L) := max{S ≥ 0 | ∃ β(·) satisfying dynamics (14) and

constraints L(t) ≥ L, S(t) ≥ S ∀t ∈ (0, t∗)}.

Thus, this set is characterized by Proposition 3.4, which is obtained by applying
Proposition 3.2 to the system (14).

Proposition 3.4 Let (L0, S0) be an initial condition of the system (14).

Ut∗(L0, S0) = {(L, S) | S ≤ S+(L0, S0, L) L ≥ 0 ∀t ∈ (0, t∗)}.

Proof See the proof of Proposition 3.2. ��
Note that a condition for L to be a sustainable threshold L ≤ L0 must be

met, since otherwise, from the beginning the sustainability restriction is violated.
In addition, there is no control whose associated trajectory is above L, which is why
it is defined L+(L0, S0).

Definition 3.4 Let (L0, S0) be an initial condition; then,

L+(L0, S0) = max{L ≥ 0 | ∃ β(·) such that L(t) ≥ L ∀t ∈ (0, t∗)}.

Numerical simulations in Fig. 1 show that the trajectory L(t) associated to the
maximum control β = 1 is increasing, namely, L + (L0, S0) = L0. Now, if
trajectory L(t) is increasing for any control β ∈ [0, 1], L+(L0, S0) is characterized
by Proposition 3.5.

Proposition 3.5 If an initial condition (L0, S0) is considered, then

L+(L0, S0) = min
t∈(0,t∗) Lβ=1(t).

Proof Let be A = {L ≥ 0 | ∃ β(·) such that L(t) ≥ L ∀t ∈ (0, t∗)}.
(≤)

Let us suppose that L ∈ A. Then, there exists one control 0 ≤ β ≤ 1 such
that Lβ ≥ L at any time t ∈ (0, t∗). Besides, by the monotonity of L(t) we
have that Lβ = 1(t) ≥ Lβ ≥ L, which implies that the minimum value of the
trajectory Lβ=1(t)) is greater than or equal to L, consequently min

t∈(0,t∗) Lβ=1(t) ≥
L+(L0, S0) ∀t ∈ (0, t∗).

(≥)
Let be L = min

t∈(0,t∗) Lβ=1(t), then there is β = 1 such that Lβ ≥ L and hence by

definition, L ∈ A, then L ≤ maxA, thus L = min
t∈(0,t∗) Lβ=1(t) ≤ L+(L0, S0).

��
Now, if we consider the restriction for the level of people, by Theorem 3.2, we

have that if the dynamics of the system are run with the maximum control, i.e.,
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β = 1, then L1(t) ≥ L ∀t ∈ (0, t∗) with 0 ≤ L ≤ L+(L0, S0), which implies that
in the same interval all trajectories S(t) with any other control will be above of the
minimum value of the trajectory of S; thus, the maximum level of resource reserve
that can be sustained is defined as indicated in Proposition 3.6.

Proposition 3.6 Let (L0, S0) be an initial condition, if 0 ≤ L ≤ L+(L0, S0), then

S+(L0, S0, L) = min
t∈(0,t∗) Sβ=1(t).

Proof Let be a = min
t∈(0,t∗) Sβ=1(t). Suppose that L(t) ≥ L at any time t ∈ (0, t∗)

with 0 ≤ L ≤ L+(L0, S0)}. Let us see that S+(L0, S0, L) = a.

(≤)
Suppose S+(L0, S0, L) is a sustainable threshold, so there is a control 0 ≤ β ≤ 1
such that the associated trajectory (Lβ, Sβ) starting at (L0, S0) satisfies the
system dynamics and the constraints Lβ ≥ L and Sβ ≥ S+(L0, S0, L) at
any time t ∈ (0, t∗). If β = 1, then S1(t) ≥ S+(L0, S0, L); particularly, the
minimum observed value of the trajectory of S1(t) meets this restriction in the
same interval, thus S+(L0, S0, L) ≤ a.
(≥)
If 0 ≤ β ≤ 1, consider a control β1 = 1 and a β2 < 1, then by Proposition 3.1,
there is an interval (0, t∗)where two trajectories beginning from the same starting
point remain separate and, by Theorem 3.1, the trajectory associated with the
greatest control (β = 1) is less than any other, especially the smallest value of
S(t) associated with β1 = 1, that is, min S1(t) = a ≤ Sβ2(t) in this interval, and
hence, it can be said that a is a sustainable threshold, since there is a control, in
this case β2 such that the associated trajectory is above a, and thus, a is less than
or equal to the maximum of the set of sustainable thresholds that is S+(L0, S0, L)

(Definition 3.3), consequently S+(L0, S0, L) ≥ a.
��

Proposition 3.7 If L > L+(L0, S0), then S+(L0, S0, L) = 0.

Proof Let L be a value above L+(L0, S0), then L is not a sustainable threshold,
since by definition, L+(L0, S0) (Definition 3.4) is the maximum of the sustainable
thresholds, which implies that for whatever control, there is an instant t ∈ (0, t∗)
at which L(t) ≤ L, and thus there is no such a control that leads to satisfy the
restriction forL(t) and S(t) at the time, but by definition, it is considered that always
S(t) ≥ 0 and then S+(L0, S0) = 0. ��

3.3 Viability: Equilibrium Points

The equilibrium points of a system are viable points [27]. In Sect. (2.3), maximum
two equilibria were found where the human population and the natural resource for
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the system (14) coexist, and these equilibria are viable as long as they satisfy the
viability restrictions (15); thus, the following must be fulfilled:

Li(t) ≥ L+(L0, S0) y Si(t) ≥ S+(L0, S0, L). (16)

4 Results

Simulations were performed for parameter values in Table 1; the values are taken
from [16]. An initial condition was considered such that the dynamic of L is
increasing with respect to the control β.

In Fig. 2, the brown area bounded by L+(L0, S0) and S+(L0, S0, L) represents
the set of thresholds that are sustainable. That is, given an initial condition (L0, S0),
there is a control β, which makes the trajectory that starts in this condition satisfy the
dynamics of the system and the restrictions that these thresholds involve at any time
t ∈ (0, t∗). Specifically, Fig. 2a, b shows the sets of thresholds L and S, considering
as initial condition the carrying capacity S0 = 12000 and the initial value of the
population L0 = 500 y L0 = 1500, respectively. It is worth noting that, the initial
condition for L corresponds to the maximum threshold L+(L0, S0); this is because
the trajectory of L with the maximum control is increasing in the interval (0, t∗).

The points that are outside Ut∗ are thresholds that regardless of the control used,
at some point, some of the restrictions given by these thresholds are not satisfied.
That is, the trajectory of L is not above L and/or the trajectory of S is not above S.

As a further result, the Ut∗ was found considering α2 = 0.0003, which means
evaluating how an increase in the speed of extraction affects the set of sustainable
thresholds. The results are shown in Figs. 2c, d. When comparing these results with
those shown in Figs. 2a, b, a decrease of 60.6% in the values of S+(L0, S0, L) is
observed; this is because a higher extraction rate reduces the level of resources
available more quickly.

The time t∗ during which Ut∗ is defined is relevant since from that moment the
monotonicity of the trajectories of the state variables is not fulfilled. In Fig. 3, it can
be seen that this time regardless of the initial conditions is shorter for L(t), which
means that the monotonicity of L(t) implies the monotonicity of S(t), which is the
result of Theorem 3.2.

Table 1 Parameter values Parameter Value Parameter Value

k2 700

φ 3 ρ 0.025

α1 12.95 γ 0.1

α2 0.0001 δ 0.7

k1 12000 σ 1.4
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Fig. 2 Sustainable thresholds for different initial conditions in L and α2 = 0.0003
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Fig. 3 Instant of time for the first crossing of the L and S trajectories with different initial
conditions

With the previous results, we can say that Ut∗ is sensitive to changes, not only in
the values of the system parameters but also to changes in the initial conditions. In
Fig. 4, the curve with coordinates (L+

i (L0, S0), S
+
i (L0, S0, L)) for L0 ∈ (0, 5000]
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Fig. 4 Maximum sustainable
thresholds for different initial
conditions L0
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and S0 = 12000 is shown. Taking into account that L+(L0, S0) = L0 because
L(t) is increasing with the maximum control, it is observed that the curve has
a maximum, which implies that there is an L0 for which a maximum value of
S+(L0, S0L) is obtained.

5 Discussion: Key Challenges and Ways Forward

From model (3), the internal equilibrium points were found analytically. Addition-
ally, the viability theory was applied to find the sustainable thresholdsUt∗ that define
the conditions of coexistence between humans and renewable resources within a
time interval (0, t∗) given an initial state. If the initial condition is an equilibrium
point of the system and the trajectory originating there complies with the viability
restrictions, it is said that this point is viable.

In literature in general [28, 30–34], the systems have monotonicity at every
instant of time, that is, the trajectories do not cross and it is not necessary to calculate
t∗. Furthermore, in these papers, it was possible to find a specific expression for
sustainable thresholds. The proposal made in this chapter is focused on those models
that have monotonic behavior only in the time interval (0, t∗), since there is a
crossing of trajectories for different controls. Specifically, we work with a model that
represents the pressure that population makes on renewable resources, considering
that they are extracted at a certain rate that depends on the labor force (β) involved
in the activity. The extraction of these resources allows an increase in the level of
population and a decrease in the level of the forestry resource, that is, the dynamics
of the population is increasing and that of the resource is decreasing. Additionally,
the intensity of the labor force (high β values) enables faster increases for the
population and faster decreases for the resource. This means that with maximum
control, the maximum trajectory for L and the minimum for S are obtained.
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Analytically, the existence of the interval (0, t∗) was demonstrated, in which the
monotonicity ofL implies the monotonicity of S; this means that the first crossing of
trajectories associated with two different controls occurs inL, that is, it is guaranteed
that for the same two controls, there is no crossing of the trajectories of S in the same
interval.

Numerically, the value of t∗ was found showing the existence of the interval
and the monotonicity of the trajectories for different configurations in the initial
conditions and values of α2, which is a measure of the efficiency in which the
resources are extracted. It was found that t∗ is the time in which the trajectory with
the maximum control intersects with another, determining the maximum sustainable
thresholds S+(L0, S0, L) and L+(L0, S0) that comply with the restrictions of the
system.

In this study, the value of t∗ was not considered in the analysis, as it focused
mainly on determining the value of sustainable thresholds. However, from practice,
it is important to take into account the time during which compliance with the
restrictions can be guaranteed, because large sustainable thresholds for a very short
time may not be the best option for a decision-maker, but thresholds of moderate
size for a long time may be. As a future paper, a viability analysis that integrates the
sustainable thresholds Ut∗ with the value of t∗ is proposed.

For future papers, it is proposed to carry out a sensitivity analysis, varying not
only the initial conditions but also the parameters of the system other than the β
control, which allow to identify the different scenarios given a certain configuration.

It is also proposed to work on the problem for the case in which the dynamics of
L is decreasing with respect to the control. This implies rethinking the problem and
proposing the theory to define the corresponding sustainable thresholds.
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Modeling Covid-19 Considering
Asymptomatic Cases and Avoided
Contacts

Iulia Martina Bulai

1 Introduction

World Health Organization (WHO) defined coronaviruses (CoV) as a large family
of viruses that cause illness ranging from the common cold to more severe
diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe
Acute Respiratory Syndrome (SARS-CoV). The novel coronavirus (SARS-CoV-2)
is a new strain that has not been previously identified in humans. Coronaviruses are
zoonotic, meaning they are transmitted between animals and people, [1].

In this chapter we introduce a mathematical model, a modified version of an SIR
(Susceptible-Infected-Recovered) model, which describes the dynamics in time of
Covid-19. One of the novelties of this model is that it considers both symptomatic
and asymptomatic cases. Several studies showed the importance of asymptomatic
individuals in SARS-CoV-2 transmission, e.g., [2]–[5]. Other diseases such as
malaria can be asymptomatic, in [6]–[8] can be seen some of the mathematical
models that include also the asymptomatic cases. Here we model the dynamics
of four different classes of individuals. First the healthy individuals that coincide
with susceptible; we assume that at the beginning of the epidemics no immunity
is present. Then the infected individuals are divided in two different groups,
those that do not present any symptoms, asymptomatic individuals, and those with
symptoms, symptomatic individuals. And finally the recovered individuals that get
the immunity to the disease. The total population number, in this case of Italy, is
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assumed constant since we consider the scenario at the beginning of the epidemics
and for a short interval of time.

This is a predictive model, and we look at different scenarios; first of all assuming
any prevention to avoid the diffusion of the virus is taken and secondly different
scenarios where precautionary measures to avoid contact between individuals are
taken, such as quarantine and social distancing. We consider a measure to contain
the disease already studied for a predator–prey system with the disease in the prey
population, [9], assuming that the infection rate can be decreased avoiding contacts
between preys (people in our case). Notice that we do not consider the exposed
class since the infected individuals can infect even before developing symptoms,
while asymptomatic, (or presymptomatic as defined in [3]).

The overview of the chapter is as follows: In the next section we introduce the
mathematical model, the assumptions that were made to build the model and the
parameter values considered to study the model. In Sect. 3 we did a qualitative
analysis of the model, studying the equilibrium points and their stability, and
furthermore we analyzed the dependence of the basic reproduction number from
the parameter values that define it. In Sect. 4 the results are reinforced by numerical
simulations and biological interpretation of the obtained results. Last we conclude
the chapter with discussing the obtained results.

2 Model Formulation

In this section we introduce the novel mathematical model that describes the
interactions between healthy and SARS-CoV-2 infected individuals, and finally the
parameters of the model.

2.1 The Mathematical Model

We build a fourth dimensional nonlinear mathematical model describing the
interaction and evolution in time of healthy individuals (susceptible), denoted by
H ; SARS-CoV-2 virus infected individuals that present symptoms, denoted by S;
SARS-CoV-2 virus infected individuals without any symptoms, denoted by A; and
recovered individuals denoted by R. We assume that once the individuals recover
they get the immunity for the disease. N is the total population that we assume
constant since we consider the beginning of the epidemics and a short interval of
time (several months).

We consider the mathematical model:

dH

dt
= �− βH(A+ S)

N
− μNH, (1)
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dA

dt
= φβ

H(A+ S)
N

− γAA− μNA− δA,
dS

dt
= (1 − φ)βH(A+ S)

N
− γSS − μNS + δA− μSS,

dR

dt
= γAA+ γSS − μNR,

where the infection rate can be written as β = λ(1 − ψ), where the fraction
0 ≤ ψ ≤ 1 of avoided contacts is introduced. This term is given from assuming a
more realistic situation where the rate of contacts between infected and susceptible
individuals gets reduced, in case prevention measures are taken by the individuals,
to avoid contagion.

The first equation of (1) describes the evolution in time of healthy individuals
(susceptible), � represent birth/immigration, and μN is the mortality rate due to
other causes than Covid-19. The susceptible individuals can be infected at rate
β; this newly infected individuals can become asymptomatic (probability φ) or
symptomatic (probability 1 − φ). We assume that asymptomatic and symptomatic
can recover at rate γA and γS , respectively.

The second equation describes the asymptomatic population; they get infected
as described earlier, recover at rate γA, and die at rate μN . We suppose that the
asymptomatic individuals can also develop symptoms and become symptomatic;
this happens at rate δ.

The third equation describes the symptomatic individuals; notice that differently
from the asymptomatic individuals the symptomatic individuals have an extra
mortality rate due to Covid-19 disease, μS .

The fourth and last equation describes the dynamics in time of the recovered
population.

2.2 Parameter Values

In Table 1 are described the parameters of system (1) and the values that can be
assumed.

3 Qualitative Analysis of the Model

In this section we compute the basic reproduction number for the introduced
model (1), and analyze how we can change depending on the parameters that define
it; in particular we focus our attention on all the parameters related with the disease,
excluding the parameters related to demography, (N , � and μN ). Notice that here
we will not focus on the value of R0 since it can depend on the population structure
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Table 1 Parameters of the model for data considering Italy

Parameters Name Value Unit

N Total population 60.36 × 106a human

� Birth and immigration 633780b human/day

λ Infection rate 0.292c day−1

ψ Fraction of avoided contacts test pure number

φ Prob. of undergoing asympt. infection 0.5d pure number

γA Per capita recovery rate A 0.028 day−1

γS Per capita recovery rate S 0.028e day−1

μN Mortality rate due to other causes 0.0105a day−1

δ Transition from A→ S 0.067d day−1

μS Mortality rate due Covid-19 0.0069e day−1

a
[11] (ISTAT 2018)

b
� was chosen such that H(0) $ �/μN

c
[10]

d
[4]

e
Fitted using data from [12]

of the model, on the assumptions about demographic dynamics as well as on the
critical model parameters, as described in [13]. Secondly we find the equilibrium
points of the model, the coexistence equilibrium, and the disease free equilibrium
(DFE), respectively, and we analyze their stability.

3.1 Basic Reproduction Number R0

For the sake of simplicity, without the losing of generality, we consider a new
version of model (1), with a = γA + μN + δ > 0 and b = γS + μS + μN > 0:

dH

dt
= �− βH(A+ S)

N
− μNH, (2)

dA

dt
= φβ

H(A+ S)
N

− aA,
dS

dt
= (1 − φ)βH(A+ S)

N
− bS + δA,

dR

dt
= γAA+ γSS − μNR.

The basic reproduction number, R0, is “the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual,”
(e.g., [14]). The importance of R0 in the spreading of a disease is related to its value.
The ideal scenario is R0 < 1; in this case the infection cannot grow. This means that
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on average an infected individual produces less than one new infected individual
over the course of its infectious period. Conversely if R0 > 1, the disease spreads
over the population; in fact each infected individual produces, on average, more
than one new infection. We compute the basic reproduction number using the next
generation matrix technique (for a detailed description of the method see [14, 15]),
and we get

R0 = λ(1 − ψ)�
μNNab

(a(1 − φ)+ φ(b + δ)) , (3)

where we used that β = λ(1 − ψ). R0 can be explained in the following way:
an infected person stays in the symptomatic (asymptomatic) class for an averaged
time 1/(ab) (1/a). During this time a symptomatic (asymptomatic) person infects
λ(1 − ψ) persons per unit time.
To understand the importance of the parameters on the value of the basic repro-
duction number R0 we can analyze the variation of it assuming that the parameter
values change; this can be seen computing the quantities ∂R0/∂pi , with pi = λ, ψ ,
φ, γA, γS , δ and μS :

∂R0

∂λ
= (μN + (1 − φ)γA + (γS + μS)φ + δ)(1 − ψ)�

μNNab
> 0

∂R0

∂ψ
= −λ�(μN + (1 − φ)γA + (γS + μS)φ + δ)

μNNab
< 0

∂R0

∂φ
= λ�(1 − ψ)(μS − γA + γS)

μNNab

∂R0

∂γA
= −λ�(1 − ψ)φ(b + δ)

μNNa2b
< 0

∂R0

∂γS
= ∂R0

∂μS
= −λ�(1 − ψ)((1 − φ)μN + (1 − φ)γA + δ)

μNNab2
< 0

∂R0

∂δ
= λ�(1 − ψ)(γA − γS − μS)φ

μNNa2b
.

Summing up, we get that R0 increases increasing the infection rate, λ, increases
increasing the probability of undergoing asymptomatic infection φ or the rate to
show symptoms once infected, δ assuming (γA − γS − μS) > 0 and vice versa
decreases if this expression does not hold, while R0 decreases increasing all the
other parameters: fraction of avoided contacts, ψ , per capita recovery rate of
asymptomatic individuals, γA, per capita recovery rate of symptomatic individuals,
γS , or the mortality rate due to the disease, μS respectively.
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3.2 Equilibrium Points and Their Stability

We find two equilibrium points of (2), the disease free equilibrium (DFE) E0 =
(�/μN, 0, 0, 0) and the coexistence equilibrium E∗ = (H ∗, A∗, S∗, R∗). The
analytical expression of the coexistence equilibrium can be obtained following the
next steps:

• From the first equation of (2) we get

H ∗ = �N

μNN + βA+ βS ,

that is always positive.
• We substitute H ∗ in the second and third equations of (2), and then we solve the

second equation in S, and we get

S∗ = −A [aμNN + β(aA−�φ)]
(aA−�φ)β .

• We substitute S∗ in the third equation of (2) and we get A

A∗ = φ [�β(a(1 − φ)+ φ(b + δ))− μNNab]

βa [a(1 − φ)+ φ(b + δ)] ,

for the feasibility of A∗, �β [a(1 − φ)+ φ(b + δ)] − μNNab > 0 must hold.
Notice that this is equivalent of asking R0 > 1.

• Last we substitute A∗ and S∗ in the last equation and we get

R∗ = A∗γA + S∗γS
μN

,

which is always feasible.

We get

H ∗ = Nab

β[a(1 − φ)+ φ(b + δ)] > 0

and

S∗ = [a(1 − φ)+ δφ] [Ωβ[a(1 − φ)+ φ(b + δ)] − μNNab]

βab [a(1 − φ)+ φ(b + δ)]
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is feasible if R0 > 1. Under appropriate assumptions the DFE is stable if R0 < 1
and unstable if R0 > 1, see [15] for more details. This can be shown evaluating the
Jacobian in E0 and computing the characteristic polynomial. In fact we get

J =

⎡
⎢⎢⎣
−β(A+ S)/N − μN −βH/N −βH/N 0
φβ(A+ S)/N φβH/N − a φβH/N 0

(1 − φ)β(A+ S)/N (1 − φ)βH/N + δ (1 − φ)βH/N − b 0
0 γA γS −μN

⎤
⎥⎥⎦

(4)
then the characteristic polynomial corresponding to the DFE is

p0(μ) =
[
μNNμ

2 + (μNN(a+b)−�β)μ+μNNab−�β(a(1−φ)+φ(b+δ))
]

(μN + μ)(μN + μ) (5)

which has a negative root μ = −μN with double multiplicity, while the other two
roots are negative if R0 < 1 and μNN(a + b) − �β > 0. In an analogous way
we can compute the characteristic polynomial p∗(μ) given evaluating the Jacobian
matrix (4) at the coexistence equilibrium. One eigenvalue is μ = −μN , while the
other three can be found solving a three degree polynomial in μ, not reported here.

4 Numerical Simulations and Biological Interpretation
of the Results

In this section we deepen the importance of the parameters values on the outcome
of the model, in particular we plot the density of susceptible, asymptomatic,
symptomatic, and recovered individuals. First we consider the transition phase of
the model, choosing the integration time t = 100 days (Figs. 1, 3, 5) and secondly
the coexistence or the disease free equilibrium reach the stability, for t = 1000 days
(Figs. 2, 4, 6) respectively. These simulations are made varying two parameters at
the same time in the grid [0, 1], the couple of parameters represented here are (λ, ψ),
(λ, φ), and (λ, γA), respectively.

From Figs. 1 and 2 it is obvious the importance of the parameter ψ , fraction of
avoided contacts, that in practice can be represented by social measures such as
lockdown, social distancing, and wearing masks. For values of the infection rate
close to zero (≤0.044) the fraction of avoided contacts is not relevant since the DFE
is stable while for values of the infection rate above this value the DFE stability can
be reached only if the fraction of avoided contacts is different than zero (see Fig. 1).
Another important observation is about the fact that both the infection rate and the
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Fig. 1 Density of susceptible, asymptomatic, symptomatic, and recovered individuals, in the
transition phase of the model, varying two parameters at the same time in the grid [0, 1], (λ, ψ).
The parameter values are as in the Table 1 while integration time t = 100 days. Initial conditions
H(0) = 60 × 106, A(0) = 171, S(0) = 50, R(0) = 0

fraction of avoided contacts have an important effect on the peak of the epidemics,
in particular on the value of the maximum of the peak and on the time when is
reached (see Fig. 1).

From Figs. 3 and 4 it can be seen that if the infection rate is small enough,
the DFE is stable independently on the value of the probability of undergoing
asymptomatic φ, while for values of λ > 0.044 increasing φ leads to an increase
in the asymptomatic population and a decrease in the symptomatic, respectively
(see Fig. 4). This is quite an intuitive result. However the density of susceptible
and recovered individuals does not change significantly changing the value of the
probability of undergoing asymptomatic. Furthermore another interesting result is
that the value of φ affects the maximum value of the peak of symptomatic and
asymptomatic individuals but not the time at which it is reached (here around
sixtieth day), see Fig. 3.
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Fig. 2 Density of susceptible, asymptomatic, symptomatic, and recovered individuals, at the
stability phase of the coexistence or disease free equilibrium, varying two parameters at the same
time in the grid [0, 1], (λ, ψ). The parameter values are as in the Table 1 while integration time
t = 1000 days. Initial conditions H(0) = 60 × 106, A(0) = 171, S(0) = 50, R(0) = 0

Another important parameter in our analysis is the recovery rate of asymptomatic
individuals, γA, for now little is known about it. Once more from Figs. 5 and 6 it
can be seen that the DFE is stable for values of λ close to zero, independently of
γA, while for values of λ close to 0.292 (the value from Table 1), increasing γA
leads to an increase in the density of symptomatic population and a decrease in the
density of asymptomatic population, while the density of susceptible and recovered
individuals is not much affected by this parameter, see Fig. 6. Furthermore from
Fig. 5 it can be seen that increasing the recovery rate of asymptomatic individuals
impacts both peaks (of symptomatic and asymptomatic, respectively); in particular
the maximum value of the peaks decreases and the time when it is reached is shifted
to the right.
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Fig. 3 Density of susceptible, asymptomatic, symptomatic, and recovered individuals, in the
transition phase of the model, varying two parameters at the same time in the grid [0, 1], (λ, φ).
The parameter values are as in the Table 1 while integration time t = 100 days. Initial conditions
H(0) = 60 × 106, A(0) = 171, S(0) = 50, R(0) = 0

5 Discussion of the Results

In this chapter we have introduced a four dimensional ordinary differential system
describing the interaction between individuals susceptible to SARS-CoV-2, infected
with symptoms and without symptoms, respectively, and individuals recovered from
the infection. We focused our attention on the basic reproduction number and how
it depends on the parameter values of the model. Six of the parameter values
can be found from literature, two of them are obtained by fitting real data, and
the remaining ones are used as test parameter values and can give us a better
understanding of the model. Little is known about the asymptomatic infections,
for that reason we chose to use the fraction of avoided contacts and the recovery
rate of asymptomatic individuals as tests (unknown). From the basic reproduction
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Fig. 4 Density of susceptible, asymptomatic, symptomatic, and recovered individuals, at the
stability phase of the coexistence or disease free equilibrium, varying two parameters at the same
time in the grid [0, 1], (λ, φ). The parameter values are as in the Table 1 while integration time
t = 1000 days. Initial conditions H(0) = 60 × 106, A(0) = 171, S(0) = 50, R(0) = 0

number analysis it can be seen that increases increasing the infection rate while
decreases increasing the fraction of avoided contacts, or per capita recovery rate of
asymptomatic individuals, or per capita recovery rate of symptomatic individuals, or
the mortality rate due to the disease, respectively. More interestingly the probability
of undergoing asymptomatic infection or the rate to show symptoms once infected
can both increase or decrease the value of the basic reproduction number depending
on the values that the mortality rate due to the infection, the recovery rate of
symptomatic and asymptomatic individuals assume.

We can conclude that (i) avoiding contacts is important in the spreading of the
disease (in practice it can be applied using social distancing and/or quarantine for
the infected individuals, and/or using face masks), with concrete results on the
maximum value of the peak and the time when occurs. (ii) The transition from
the asymptomatic class to the symptomatic one has a positive impact on the disease
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Fig. 5 Density of susceptible, asymptomatic, symptomatic, and recovered individuals, in the
transition phase of the model, varying two parameters at the same time in the grid [0, 1], (λ, γA).
The parameter values are as in the Table 1 while integration time t = 100 days. Initial conditions
H(0) = 60 × 106, A(0) = 171, S(0) = 50, R(0) = 0

(meaning that leads to the disease free equilibrium case) only if the recovery rate
of the asymptomatic individuals is smaller than the sum between the mortality rate
due to the disease and the recovery rate of the symptomatic individuals. In practice,
this means that if the asymptomatic individuals have a recovery rate smaller (need
more days to recover) than the symptomatic ones, then it would be much easier to
get the disease free equilibrium if more asymptomatic individuals show symptoms.
(iii) The opposite reasoning as at the previous point holds for the probability of
undergoing asymptomatic.
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Fig. 6 Density of susceptible, asymptomatic, symptomatic, and recovered individuals, at the
stability phase of the coexistence or disease free equilibrium, varying two parameters at the same
time in the grid [0, 1], (λ, γA). The parameter values are as in the Table 1 while integration time
t = 1000 days. Initial conditions H(0) = 60 × 106, A(0) = 171, S(0) = 50, R(0) = 0
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On the Stability of Periodic Solutions
of an Impulsive System Arising
in the Control of Agroecosystems

Youcef Belgaid, Mohamed Helal, Abdelkader Lakmeche, and Ezio Venturino

1 Introduction

Natural resources are being depleted nowadays at a fast rate. In agriculture, the use
of synthetic fertilizers in the past several decades has brought two different types
of problems. On one side, the poisoning of the environment, for which for instance
DDT has been banned as a pest control since many years, but in any case after
causing several problems in the environment. On the other hand, the insects in time
tend to develop resistance to the pesticides used, by suitable mutations, which in
turn generate the need of devising new poisons for their combat. An alternative to
the widespread use of pesticides is to try to control pests via organic means, using for
instance specific predators or parasitoids of the involved crop pests in the terrestrial
ecosystems.

Wise et al. [20–22] proposed the spider as a model terrestrial predator and
specified that some spider families differ so much in how they forage and utilize
their surroundings . From a point of view, it can be assessed that the spiders
frequently face a shortage of prey in nature. Confronted with prey shortages,
the wandering spiders search for more productive microhabitats. Many wandering
spiders, in fact, select microhabitat on the basis of prey abundance [6, 9, 16, 17].

Ezio Venturino is the member of the INdAM research group GNCS.

Y. Belgaid · M. Helal · A. Lakmeche
Laboratory of Biomathematics, Univ. Sidi Bel Abbès, Sidi Bel Abbès, Algeria
e-mail: y.belgaid@univ-chlef.dz; mohamed.helal@univ-sba.dz;
abdelkader.lakmeche@univ-sba.dz

E. Venturino (�)
Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Torino, Italy
e-mail: ezio.venturino@unito.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. P. Mondaini (ed.), Trends in Biomathematics: Chaos and Control in Epidemics,
Ecosystems, and Cells, https://doi.org/10.1007/978-3-030-73241-7_12

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73241-7_12&domain=pdf
mailto:y.belgaid@univ-chlef.dz
mailto:mohamed.helal@univ-sba.dz
mailto:abdelkader.lakmeche@univ-sba.dz
mailto:ezio.venturino@unito.it
https://doi.org/10.1007/978-3-030-73241-7_12


184 Y. Belgaid et al.

Most agroecosystems provide no permanent habitats for many species. Hence,
for the thriving of the latter, the presence of refuge areas, such as woods, is
fundamental [7, 18].

A model for the biological control of agroecosystems has been proposed in [19],
where the use of spiders is suggested, by preserving suitable habitats for these
species around the fields where the crops grow.

The model has been analyzed, and finally coupled with the use of insecticides,
because in particular environments the latter are heavily used anyway. Spraying
insecticides from flying planes or helicopters on large fields will interfere also with
the species that are helpful in controlling the pests and needs to be suitably taken
into consideration. Spraying is usually administered at regular time intervals, a fact
that in the corresponding dynamical system is modeled via impulsive functions.

The impulsive models arise, generally, in the description of phenomena subjected
to abrupt external changes, where the time of the change can be neglected, and the
change can be modeled as jump in the phenomena under study. A rich literature on
the theory of impulsive differential equations can be found in [1, 2, 14]. This new
branch of differential equations developed quickly over the past 50 years (see [15]).
In particular, important contributions have been made by Bainov and Simeonov
[1, 2], Lakshmikantham et al. [14], and their colleagues.

In [19] simulations have been carried out, but a theoretical analysis of the system
behavior is lacking. The main objective is to study the stability of the periodic
solutions that have been empirically found in [19].

For the ease of the reader we restate here the model introduced in [19], whose
oscillating solutions are the aim of this chapter:

dx1

dt
= rx1

(
1 − x1

W

)
− cx2x1 (1)

dx2

dt
= x2

(
−a + kbx3

H + x3
+ kcx1

)
(2)

dx3

dt
= x3

(
e − bx2

H + x3

)
(3)

x1(t
+
i ) = x1(ti)

(
1 − h(1 − q)

α

)
(4)

x2(t
+
i ) = x2(ti)

(
1 − hKq

α

)
(5)

x3(t
+
i ) = x3(ti)

(
1 − hq

α

)
, (6)
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Table 1 Model parameters and their meaning

r Logistic growth

c Spider’s hunting rate on insects

W Woods and green patches carrying capacity

e Insect growth rate in open fields

b Spider’s hunting rate on field insects

a Spider’s mortality rate

H Half saturation constant

k < 1 Conversion factor of prey into new spiders

q Portion of insecticide sprayed on vineyards

1 − q Portion of insecticide accidentally sprayed on the woods

h Insecticide effectiveness against the parasites

0 < K < 1 Smaller insecticide effect on the spiders

where ti+1 − ti = τ > 0,∀i ∈ N. The meaning of the variables is as follows:
x1 represents the insects population living in the woods, x2 represents the spiders
populations, and x3 represents the insects having the vineyards as habitat.

The positive parameters are defined in Table 1.
The rest of the chapter contains the theoretical analysis, organized in just one

section. In it, the various subsections address in turn the basic definitions, the
stability of the unique non-trivial, positive, well-defined, and stable periodic solution
of the wood insects only. Then, the stability of the other solution is studied, namely
the τ -periodic, pest-only solution and the τ -periodic, spider-free solution. The
Appendices contain the most technical mathematical details.

2 Analysis of the Model

In the following, we proceed to analyze our model. To this purpose, we shall use a
fixed point approach. Let�(t;X0) be the solution of the system (1), (2), (3), (4), (5),
and (6) for the initial condition X0. We define the mappings F1, F2, F3 : R3 −→ R

by

F1(x1, x2, x3) = rx1

(
1 − x1

W

)
− cx2x1.

F2(x1, x2, x3) = x2

(
−a + kbx3

H + x3
+ kcx1

)
.

F3(x1, x2, x3) = x3

(
e − bx2

H + x3

)
.

and �1,�2,�3 : R3 −→ R by
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�1(x1(ti), x2(tt ), x3(ti)) = x1(ti)

(
1 − h(1 − q)

α

)
,

�2(x1(ti), x2(tt ), x3(ti)) = x2(ti)

(
1 − hKq

α

)
,

�3(x1(ti), x2(tt ), x3(ti)) = x3(ti)

(
1 − hq

α

)
.

2.1 Definitions and Assumptions

Definition 2.1 A solution ζ = (x1; x2; x3) of the problem (1), (2), (3), (4), (5),
and (6) is a function defined in R

+, with nonnegative components, continuously
differentiable in R

+ − {ti} with t0 = 0, and satisfying all relations (1) through (6).

Definition 2.2 ζ is called a wood insect-only solution of problem (1), (2), (3), (4),
(5), and (6) if and only if its second and third components are zeros.

Definition 2.3 Also, ζ is called a τ -periodic wood insect-only solution if it is a
wood insect-only solution satisfying ζ(nτ) = ζ((n+ 1)τ ), for all n ≥ 0.

In our study, we further assume that F = (F1;F2;F3) and� are smooth enough,
� = (�1;�2;�3) is positive, and Fi(x1, x2, x3) = 0 for xi = 0, i = 1; 2; 3.

Letting � be the flow associated with (1), (2), (3), (4), (5), and (6), we have

ζ(t) = �(t,X0), 0 < t ≤ τ,

where ζ(0) = X0. We assume that the flow � applies up to time τ . So ζ(τ ) =
�(τ,X0) Then, within a very small time interval starting at time τ , we assume that
the treatment is administered and instantaneously kills a fraction of the population.
The term ζ(τ+) denotes the state of the population after the treatment, ζ(τ+) is
determined in terms of ζ(τ ) according to equations (4), (5), and (6). We have
ζ(τ+) = �(ζ(τ)) = �(�(τ,X0)). Let  be the operator defined by

 (τ, .) : R3+ −→ R
3+

X0 �−→  (τ,X0) = �(�(τ,X0)).

and denote by DX the derivative of  with respect to X.

Theorem 2.1 The model (1), (2), (3). (4), (5), and (6) has a unique global positive
solution for all positive initial conditions

Proof Because Fi, (i = 1, 2, 3) are smooth functions from the Cauchy–Lipschitz
theorem we obtain the local existence and uniqueness of the solutions of (1), (2),
and (3). Since the solutions are bounded then the solution is global in [0, t1].
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The system (1), (2), and (3) is quasi-positive because for all xi ∈ R
+ we have

Fi(x1, x2, x3) ≥ 0 for xi = 0, i = 1; 2; 3. Thus a unique positive global solution
exists in [0, t1].

By recurrence we can prove that ∀k ∈ N
∗, we have a unique positive global

solution in the interval [tk; tk+1]. Hence, the existence of a unique positive global
solution of (1), (2), (3), (4), (5), and (6) follows. ��

We now recall the following result, [12].

Lemma 2.1 ζ = �(.,X0) is a τ -periodic solution of (1), (2), (3), (4), (5), and (6)
if and only if  (τ,X0) = X0

Remark 2.1 This lemma states that X0 is a fixed point of  (τ, .). A fixed point X0
of (τ, .) is given by the initial ζ verifying ζ(0) = X0. Consequently, for each fixed
point X0 of  (τ, .) there is an associated τ -periodic solution ζ .

Definition 2.4 ([8]) We say that a fixed point is trivial if it is associated with a
trivial periodic solution.

Remark 2.2 The fixed point of  (τ, .) can be determined using a fixed point
method, [8].

Definition 2.5 ([8]) The solution ζ is exponentially stable if and only if the spectral
radius ρ(DX (τ, .)) is strictly less than 1.

Remark 2.3 If x2 = x3 = 0 the problem (1), (4) has a τ0-periodic solution denoted
by x1(t) = x(t, x̂1), where

x1(t) = Wx̂1e
rt

W − x̂1(1 − ert ) (7)

and x̂1 is determined by

x̂1 = W

α

α(erτ0 − 1)− h(1 − q)erτ0
erτ0 − 1

(8)

which is positive if

h(1 − q) < α, τ0 >
1

r
ln

α

α − h(1 − q) , (9)

conditions that ensure the following result.

Theorem 2.2 If (9) is satisfied, then the problem (1), (4) has a τ0-periodic solution
x1(t) = x(t, x̂1) determined by (7) where x̂1 is given by (8).

Remark 2.4 By extension it follows that the function ζ(t) = (x(t), 0, 0) is a τ0-
periodic solution of (1), (2), (3), (4), (5), and (6) in the three dimensional space.
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2.2 Stability of ζ

In the case x2 = x3 = 0, then the system (1), (2), (3), (4), (5), and (6) reduces to
the particular case (1), (2), (3), and (4). The latter has a unique non-trivial, positive,
well-defined, and stable periodic solution xs given by (7).

To determine the stability of the wood insect-only solution ζ = (xs; 0; 0) in the
three dimensional space, we must evaluate DX (τ0;X0). Specifically, we find

DX (τ0;X0) = DX�(�(τ0;X0))
∂�

∂X
(τ0;X0) (10)

=

⎛
⎜⎜⎜⎜⎜⎝

∂�1

∂x1

∂�1

∂x2

∂�1

∂x3
∂�2

∂x1

∂�2

∂x2

∂�2

∂x3
∂�3

∂x1

∂�3

∂x2

∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∂�1

∂x1

∂�1

∂x2

∂�1

∂x3

0
∂�2

∂x2
0

0 0
∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(τ0;X0).

The solution ζ is exponentially stable if and only if the spectral radius is less than
one, namely for i = 1, 2, 3,

∣∣∣∣∂�i∂xi
(�(τ0;X0))

∂�i

∂xi
(τ0;X0)

∣∣∣∣ < 1.

Following [12] and [4], we now consider the variational equation associated with
the system (1), (2), (3), (4), (5), and (6):

d

dt
(DX�(t;X0)) = DXF(�(t;X0))(DX�(t;X0)), (11)

together with the initial conditionDX�(0;X0) = IdR3 . Following [12], integrating
and deferring the details to the Appendix A1, we obtain

∂�1(t;X0)

∂x1
= e
∫ t

0

∂F1(ζ(r))

∂x1
dr

,
∂�2(t;X0)

∂x2
= e
∫ t

0

∂F2(ζ(r))

∂x2
dr

, (12)

∂�3(t;X0)

∂x3
= e
∫ t

0

∂F3(ζ(r))

∂x3
dr

.

We have the following stability result:

Theorem 2.3 The trivial solution ζ = (xs; 0; 0) is exponentially stable if and
only if
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1

r
ln

α

α − h(1 − q) < τ0 (13)

< min

{
1

kcW − a ln
α
kcW
r

+1

(α − hKq)(α − h(1 − q)) kcWr
; 1

e
ln

α

α − hq

}
.

Proof Observe that

∣∣∣∣∂�1

∂x1
(�(τ0;X0))

∂�1

∂x1
(τ0;X0)

∣∣∣∣ = αe−rτ0
α − h(1 − q) ,

∣∣∣∣∂�2

∂x2
(�(τ0;X0))

∂�2

∂x2
(τ0;X0)

∣∣∣∣ = (α − hKq)(α − h(1 − q)) kcWr e(kcW−a)τ0

α
kcW
r

+1

and
∣∣∣∣∂�3

∂x3
(�(τ0;X0))

∂�3

∂x3
(τ0;X0)

∣∣∣∣ =
(

1 − hq

α

)
eeτ0 .

��

2.3 Stability of the Remaining τ -Periodic Solution

The system (1), (2), (3), (4), (5), and (6) has two more τ -periodic solution, namely
the τ -periodic pest-only solution and τ -periodic spider-free solution:

ζ(t) := ζf = (0; 0; x3(t)) , ζ(t) := ζv = (x1(t); 0; x3(t)) ,

The existence conditions of the τ -periodic solutions ζf and ζv are discussed in what
follows.

Existence of the τ -Periodic Pest-Only Solution
If x1 = x2 = 0, the problem (3), (6) has a τ0-periodic solution denoted by
x3(t) = x(t, x̂3), where

x3(t) = x̂3e
et , (14)

with x̂3 ∈ R
∗+. It is defined and positive if

hq < α, τ0 = 1

e
ln

α

α − hq , (15)

conditions that ensure the following result.
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Theorem 2.4 If (15) is satisfied, then the problem (3), (6) has a stable τ0-periodic
solution x3(t) = x(t, x̂3) determined by (14).

Remark 2.5 By extension it follows that the function ζ(t) = ζf = (0, 0, x3(t)) is a
τ0-periodic solution of (1), (2), (3), (4), (5), and (6) in the three dimensional space
with τ0 given in (15).

Existence of the τ -Periodic Spider-Free Solution
If x2 = 0, the problem (1), (3), (4), (6) has a τ0-periodic solution denoted by
(x1(t), x3(t)) = (xf (t, x̂1), xv(t, x̂3)), where

(x1(t), x3(t)) =
(

Wx̂1e
rt

W − x̂1(1 − ert ) , x̂3e
et

)
. (16)

With x̂3 ∈ R
∗+, x̂1 is determined by

x̂1 = W

α

α(erτ0 − 1)− h(1 − q)erτ0
erτ0 − 1

(17)

and it is defined and positive if

1

e
ln

(
1 − hq

α

)
<

1

r
ln

(
1 − h(1 − q)

α

)
, τ0 = 1

e
ln

α

α − hq , (18)

conditions that ensure the following result.

Theorem 2.5 If (18) is satisfied, then the problem (1), (3), (4), (6) has a τ0-periodic
solution (x1(t), x3(t)) = (xf (t, x̂1), xv(t, x̂3)) determined by (16), where x̂3 ∈ R

∗+
and x̂1 is given by (17).

Remark 2.6 By extension it follows that the function ζ(t) = ζv = (x1(t), 0, x3(t))

is a τ0-periodic solution of (1), (2), (3), (4), (5), and (6) in the three dimensional
space with

τ0 = 1

e
ln

α

α − hq ,
1

e
ln

(
1 − hq

α

)
<

1

r
ln

(
1 − h(1 − q)

α

)
.

To study the stability of ζf ,ζv we use a fixed point approach.
Since solutions of (1), (2), and (3) exist globally in R

+ and are nonnegative we
have

X(t) = �(t,X0), (19)

where X(t) = (x1, x2, x3)(t),X(0) = X0 and� is the flow associated with (1), (2),
(3), (4), (5), and (6).

The state of the population after the spraying is denoted byX(τ+) = �(X(τ)) =
�(�(τ,X0)). To have a periodic solution we must have X(τ+) = X0 that is X0 =
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�(�(τ,X0)). Now, for X0 = ζj , j = f or j = v and τ = τ0 we have

DX (τ0;X0) = DX�(�(τ0;X0))
∂�

∂X
(τ0;X0)

=
⎛
⎜⎝

1 − h(1−q)
α

0 0
0 1 − hKq

α
0

0 0 1 − hq
α

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∂�1

∂x1

∂�1

∂x2

∂�1

∂x3
∂�2

∂x1

∂�2

∂x2

∂�2

∂x3
∂�3

∂x1

∂�3

∂x2

∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(τ0;X0)

=

⎛
⎜⎜⎜⎜⎜⎝

(
1 − h(1−q)

α

) ∂�1

∂x1

(
1 − h(1−q)

α

) ∂�1

∂x2

(
1 − h(1−q)

α

) ∂�1

∂x3

(1 − hKq
α
)
∂�2

∂x1
(1 − hKq

α
)
∂�2

∂x2
(1 − hKq

α
)
∂�2

∂x3

(1 − hq
α
)
∂�3

∂x1
(1 − hq

α
)
∂�3

∂x2
(1 − hq

α
)
∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(τ0;X0).

Further,

DX (τ0; ζf ) =

⎛
⎜⎜⎜⎜⎜⎝

(
1 − h(1−q)

α

) ∂�1

∂x1
0 0

0 (1 − hKq
α
)
∂�2

∂x2
0

0 (1 − hq
α
)
∂�3

∂x2
(1 − hq

α
)
∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(τ0; ζf ),

and

DX (τ0; ζv) =

⎛
⎜⎜⎜⎜⎜⎝

(
1 − h(1−q)

α

) ∂�1

∂x1

(
1 − h(1−q)

α

) ∂�1

∂x2
0

0 (1 − hKq
α
)
∂�2

∂x2
0

0 (1 − hq
α
)
∂�3

∂x2
(1 − hq

α
)
∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(τ0; ζv).

To calculate
∂�i

∂xj
we used the variational equation (11) associated with the

system (1), (2), (3), (4), (5), and (6), whose details are contained in Appendix A1.
For each τ -periodic solution, now we assess stability, recalling that exponential

stability is equivalent to imposing that the spectral radius is less than one. We
examine each solution separately in what follows.
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2.3.1 Stability of ζf

For the solution ζf we need to solve det(DX (τ0; ζf )− μI) = 0, with

det(DX (τ0; ζf )− μI) =
∣∣∣∣∣∣
DX,11 − μ 0 0

0 DX,22 − μ 0
0 DX,32 DX,33(τ0; ζf )− μ

∣∣∣∣∣∣ (20)

where

DX,11 =
(

1 − h(1 − q)
α

)
∂�1

∂x1
(τ0; ζf ),

DX,22 =
(

1 − hKq

α

)
∂�2

∂x2
(τ0; ζf ),

DX,32 =
(

1 − hq

α

)
∂�3

∂x2
(τ0; ζf ),

DX,33 =
(

1 − hq

α

)
∂�3

∂x3
(τ0; ζf ).

From (20), it follows that the solution ζf is exponentially stable if and only if

∣∣∣∣
(

1 − h(1 − q)
α

)
∂�1

∂x1
(τ0; ζf )

∣∣∣∣ < 1;
∣∣∣∣
(

1 − hKq

α

)
∂�2

∂x2
(τ0; ζf )

∣∣∣∣ < 1;

and

∣∣∣∣
(

1 − hq

α

)
∂�3

∂x3
(τ0; ζf )

∣∣∣∣ < 1. From the variational equation, for all 0 < t ≤
τ0 we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂�1(t;X0)

x1
= ert

∂�2(t;X0)

∂x2
= e−at

[
H + x̂3e

et

H + x̂3

] kb
e

∂�3(t;X0)

∂x3
= eet

.

The details are contained in the Appendix A2. Therefore the following result holds:

Theorem 2.6 The equilibrium ζf is unconditionally unstable.

Proof From the conditions (15) of existence of the τ -periodic spider-free solution,

we have τ0 = 1

e
ln

α

α − hq . Using this value in the condition of stability we obtain

∣∣∣∣
(

1 − hq

α

)
∂Φ3

∂x3
(τ0; ζf )

∣∣∣∣ < 1
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we obtain
∣∣∣∣
(

1 − hq

α

)
e
e 1
e

ln α
α−hq
∣∣∣∣

which is not strictly less than 1. ��

2.3.2 Stability of ζv

For the solution ζv we need to solve det(DX (τ0; ζv)−μI) = 0 which amounts to
the equation:

((
1 − h(1 − q)

α

)
∂�1(τ0; ζv)

∂x1
− μ
)(
(1 − hKq

α
)
∂�2(τ0; ζv)

∂x2
− μ
)

(21)

×
(
(1 − hq

α
)
∂�3(τ0; ζv)

∂x3
− μ
)

= 0.

From (21), the solution ζv is exponentially stable whenever

∣∣∣∣
(

1 − h(1 − q)
α

)
∂�1

∂x1
(τ0; ζv)

∣∣∣∣ < 1;
∣∣∣∣(1 − hKq

α
)
∂�2

∂x2
(τ0; ζv)

∣∣∣∣ < 1;

∣∣∣∣(1 − hq

α
)
∂�3

∂x3
(τ0; ζv)

∣∣∣∣ < 1.

From the variational equation, we have for all 0 < t ≤ τ0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂�1(t;X0)

∂x1
= W 2ert

[W − x̂1(1 − ert )]2 ,
∂�2(t;X0)

∂x2
= e−at

[
H + x̂3e

et

H + x̂3

] kb
e
[
W − x̂1(1 − ert )

W

] kcW
r

∂�3(t;X0)

x3
= eet ,

,

for which the details are contained in Appendix A3. From (18) we find

∣∣∣∣
(

1 − hq

α

)
∂�3

∂x3
(τ0; ζv)

∣∣∣∣ = |
(

1 − hq

α

)
e
e 1
e

ln α
α−hq | = 1 ≮ 1.

Then the following result follows:

Theorem 2.7 The equilibrium ζv is unconditionally unstable.
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Appendix

We begin by giving some general computational results, in what follows, and then
specialize them for each solution in the three following subsections.

For all t ∈ (0, τ ] we have

d

dt
(DX�(t;X0)) = ∂F

∂X
(�(t;X0))

∂�

∂X
(t;X0)

with the initial condition DX�(0;X0) = IdR3 . Here

d

dt
DX�(t;X0) = d

dt

⎛
⎜⎜⎜⎜⎜⎝

∂�1

∂x1

∂�1

∂x2

∂�1

∂x3
∂�2

∂x1

∂�2

∂x2

∂�2

∂x3
∂�3

∂x1

∂�3

∂x2

∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(t;X0),

and

∂F

∂X
(�(t;X0)) =

⎛
⎜⎜⎜⎜⎜⎝

∂F1

∂x1

∂F1

∂x2

∂F1

∂x3
∂F2

∂x1

∂F2

∂x2

∂F2

∂x3
∂F3

∂x1

∂F3

∂x2

∂F3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(t;X0)

=

⎛
⎜⎜⎜⎜⎜⎝

r(1 − 2
x1

W
)− cx2 −cx1 0

kcx2

(
−a + kbx3

H + x3
+ kcx1

)
kbHx2

(H + x3)2

0
bx3

H + x3
e − bHx2

(H + x3)2

⎞
⎟⎟⎟⎟⎟⎠
(t;X0),

and

∂�

∂X
(�(t;X0)) =

⎛
⎜⎜⎜⎜⎜⎝

∂�1

∂x1

∂�1

∂x2

∂�1

∂x3
∂�2

∂x1

∂�2

∂x2

∂�2

∂x3
∂�3

∂x1

∂�3

∂x2

∂�3

∂x3

⎞
⎟⎟⎟⎟⎟⎠
(t;X0).
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Moreover, we have

d

dt

(
∂�1(t;X0)

∂x1

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x1
+ ∂F1(t;X0)

∂x2

∂�2(t;X0)

∂x1
.

d

dt

(
∂�1(t;X0)

∂x2

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x2
+ ∂F1(t;X0)

∂x2

∂�2(t;X0)

∂x2
.

d

dt

(
∂�1(t;X0)

∂x3

)
= ∂F1(t;X0)

∂x2

∂�2(t;X0)

∂x3
.

d

dt

(
∂�2(t;X0)

∂x1

)
= ∂F2(t;X0)

∂x1

∂�1(t;X0)

∂x1
+ ∂F2(t;X0)

∂x2

∂�2(t;X0)

∂x1
.

d

dt

(
∂�2(t;X0)

∂x2

)
= ∂F2(t;X0)

∂x1

∂�1(t;X0)

∂x2

+∂F2(t;X0)

∂x2

∂�2(t;X0)

∂x2
+ ∂F2(t;X0)

∂x3

∂�3(t;X0)

∂x2
.

d

dt

(
∂�2(t;X0)

∂x3

)
= ∂F2(t;X0)

∂x2

∂�2(t;X0)

∂x3
+ ∂F2(t;X0)

∂x3

∂�3(t;X0)

∂x3
.

d

dt

(
∂�3(t;X0)

∂x1

)
= ∂F3(t;X0)

∂x2

∂�2(t;X0)

∂x1
.

d

dt

(
∂�3(t;X0)

∂x2

)
= ∂F3(t;X0)

∂x2

∂�2(t;X0)

∂x2
+ ∂F3(t;X0)

∂x3

∂�3(t;X0)

∂x2
.

d

dt

(
∂�3(t;X0)

∂x3

)
= ∂F3(t;X0)

∂x2

∂�2(t;X0)

∂x3
+ ∂F3(t;X0)

∂x3

∂�3(t;X0)

∂x3
.

We next specialize these computations to each individual equilibrium.

Appendix A1

For the equilibrium X0 = ζ we have

∂�1(t;X0)

∂x3
= ∂�2(t;X0)

∂x1
= ∂�2(t;X0)

∂x3
= ∂�3(t;X0)

∂x1
= ∂�3(t;X0)

∂x2
= 0.

Further,

d

dt

(
∂�1(t;X0)

∂x1

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x1
(12.22)
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d

dt

(
∂�1(t;X0)

∂x2

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x2
+ ∂F1(t;X0)

∂x2

∂�2(t;X0)

∂x2
(12.23)

d

dt

(
∂�2(t;X0)

∂x2

)
= ∂F2(t;X0)

∂x2

∂�2(t;X0)

∂x2
(12.24)

d

dt

(
∂�3(t;X0)

∂x3

)
= ∂F3(t;X0)

∂x3

∂�3(t;X0)

∂x3
. (12.25)

From (12.22), (12.24), and (12.25) it follows

∂�1(t;X0)

∂x1
= e
∫ t

0

∂F1(ζ(r))

∂x1
dr

= e
r

W

∫ t
0 (W−2xs(ρ))dρ = W 2ert

[W − x̂1(1 − ert )]2 .

∂�2(t;X0)

∂x2
= e
∫ t

0

∂F2(ζ(r))

∂x2
dr

= e
∫ t

0 (kcxs(ρ)−a)dρ = [W − x̂1(1 − ert )] kcWr
W

kcW
r eat

.

∂�3(t;X0)

∂x3
= e
∫ t

0

∂F3(ζ(r))

∂x3
dr

= eet .

Appendix A2

For the equilibrium X0 = ζf we have

∂�1(t;X0)

∂x2
= ∂�1(t;X0)

∂x3
= ∂�2(t;X0)

∂x1
= ∂�2(t;X0)

∂x3
= ∂�3(t;X0)

∂x1
= 0.

Further,

d

dt

(
∂�1(t;X0)

∂x1

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x1
(12.26)

d

dt

(
∂�2(t;X0)

∂x2

)
= ∂F2(t;X0)

∂x2

∂�2(t;X0)

∂x2
(12.27)

d

dt

(
∂�3(t;X0)

∂x2

)
= ∂F3(t;X0)

∂x2

∂�2(t;X0)

∂x2
+ ∂F3(t;X0)

∂x3

∂�3(t;X0)

∂x2
(12.28)

d

dt

(
∂�3(t;X0)

∂x3

)
= ∂F3(t;X0)

x3

∂�3(t;X0)

∂x3
. (12.29)
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From (12.26) it follows

∂�1(t;X0)

∂x1
= e
∫ t

0

∂F1(ζf (r))

∂x1
dr

= ert .

Moreover, from (12.27) and (12.29) we have instead

∂�2(t;X0)

∂x2
= e
∫ t

0

∂F2(ζf (r))

∂x2
dr

= e
∫ t

0 (−a+
kbx3(r)

H + x3(r)
)dr

= e−at
[
H + x̂3e

et

H + x̂3

] kb
e

.

and

∂�3(t;X0)

∂x3
= e
∫ t

0

∂F3(ζf (r))

∂x3
dr

= eet .

Appendix A3

For the point X0 = ζv we have

∂�1(t;X0)

∂x3
= ∂�2(t;X0)

∂x3
= ∂�3(t;X0)

∂x1
= ∂�2(t;X0)

∂x1
= 0

together with

d

dt

(
∂�1(t;X0)

∂x1

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x1
(12.30)

d

dt

(
∂�1(t;X0)

∂x2

)
= ∂F1(t;X0)

∂x1

∂�1(t;X0)

∂x2
+ ∂F1(t;X0)

∂x2

∂�2(t;X0)

∂x2
(12.31)

d

dt

(
∂�2(t;X0)

∂x2

)
= ∂F2(t;X0)

∂x2

∂�2(t;X0)

∂x2
(12.32)

d

dt

(
∂�3(t;X0)

∂x2

)
= ∂F3(t;X0)

∂x2

∂�2(t;X0)

∂x2
+ ∂F3(t;X0)

∂x3

∂�3(t;X0)

∂x2
(12.33)

d

dt

(
∂�3(t;X0)

x3

)
= ∂F3(t;X0)

x3

∂�3(t;X0)

x3
. (12.34)
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From (12.34) it follows

∂�3(t;X0)

x3
= e
∫ t

0

∂F3(ζv(r))

∂x3
dr

= eet .

From (12.30) it follows

∂�1(t;X0)

∂x1
= e
∫ t

0

∂F1(ζv(r))

∂x1
dr

= e
r

W

∫ t
0 (W−2x1(ρ))dρ = W 2ert

[W − x̂1(1 − ert )]2 .

and finally, from (12.32) it follows

∂�2(t;X0)

∂x2
= e
∫ t

0

∂F2(ζv(r))

∂x2
dr

= e

∫ t
0

(
−a+ kbx3(r)

H + x3(r)
+kcx1(r)

)
dr

= e−at
[
H + x̂3e

et

H + x̂3

] kb
e
[
W − x̂1(1 − ert )

W

] kcW
r

.
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A Jaccard-Like Symbol and Its
Usefulness in the Derivation of Amino
Acid Distributions in Protein Domain
Families

Rubem P. Mondaini and Simão C. de Albuquerque Neto

1 Introduction

The present work aims to put emphasis on a series of results associated with the
Jaccard symbol [1, 2] in topics related to the application of Statistical Mechanics to
model the evolution of protein domains and their origin as well as their association
into families and clans [3–6]. We try to motivate the proposed approach by showing
some characteristics of the direct process of saddle point approximation [7, 8] on
the construction of probabilistic distributions. Some problems with the imposition
of constraints are then circumvented by the proposal of adding to the Jaccard
symbol a linear combination of elementary entropies. Actually, the Jaccard symbol
is like a “harness” for dressing a chosen entropy measure in order to circumvent
the problems introduced with necessary constraints. The efficiency of the proposed
method should be tested intensively and the first steps in this sense are exposed here.
An essential characteristic of the Jaccard symbol is its association to an entropy
previously chosen. It is essentially a functional of the entropy measure which we
choose to start with.

2 Saddle Points of the Constrained Lagrangian and Minima
of the Euclidean Norm of Its Gradient

In this section we introduce the fundamental motivation of this work. We give simple
examples to clarify the ideas to be exposed later. All the subsequent developments
are based on the analysis of probabilistic distributions of amino acids on rectangular
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arrays of m rows and n columns which are obtained by techniques of alignment of
protein domains and have been presented in references [3, 6], as well as in references
therein.

Let us consider the Lagrangian for calculating the extrema of a constrained
generic entropy measure Sj of the probabilistic distribution of the j th column of
amino acids on a Canonical ensemble.

Lj = Sj + λj
(

1 −
∑
a

pj (a)
)
+ μj
(
〈E〉j −

∑
a

p̂j (a)Ej (a)
)

(1)

where j = 1, . . . , n, a = A, C, D, E, . . ., W, Y, for the 20 amino acids, p̂j (a) =(
pj (a)
)s
/
∑
b

(
pj (b)
)s the escort probability [3, 6] associated with pj (a), 0 ≤ s ≤

1, andEj(a) is the energy of the a amino acid on the j th column with 〈E〉j standing
for the energy mean.

We also consider the Euclidean Norm of its gradient, or,

NLj =
[∑
a

(
∂Lj
∂pj (a)

)2

+
(
∂Lj
∂λj

)2

+
(
∂Lj
∂μj

)2
]1/2

(2)

The point is that the surface Lj has a saddle point for each set of energies Ej(a)
and the surface NLj has a minimum on the same point for the same set of energies.

In order to show specific examples, we firstly choose the probabilistic
distributions driven by the Gibbs–Shannon (s → 1) entropy (GS)j =
−∑a pj (a) logpj (a) for two amino acids, pj (A) = p, pj (C) = 1 − p:

L(GS)j (p, μ) = −p logp − (1 − p) log(1 − p)+ μ(ξ − pζ) (3)

N
(GS)

Lj (p, μ) =
[(

log

(
1 − p
p

)
− μζ
)2

+ (ξ − pζ)2
]1/2

(4)

where

ξ = 〈E〉 − E1−p ; ζ = Ep − E1−p (5)

The coordinates of the saddle point of L(GS)j and the minimum of N(GS)Lj are

p̃ = ξ

ζ
; μ̃ = 1

ζ
log

(
ζ − ξ
ξ

)
, ξ < ζ (6)

This can be seen from the calculation of the second derivatives and their Hessian
matrix at the point given by Eq. (6):
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∂2Lj
∂p2

∣∣∣∣∣
p̃,μ̃

= − 1

p̃(p̃ − 1)
> 0 ; ∂2Lj

∂μ2

∣∣∣∣∣
p̃,μ̃

= 0 ; ∂2Lj
∂p∂μ

∣∣∣∣∣
p̃,μ̃

= −ζ

Hess(p̃, μ̃) = det

⎛
⎝−

1

p̃(p̃ − 1)
−ζ

−ζ 0

⎞
⎠ = −ζ 2 < 0 (7)

which is characteristic of a saddle point.
An analogous calculation is then performed for the distribution driven by a

Havrda–Charvat Entropy: (HC)j = αj−1
1−s where αj = ∑a (pj (a))s , 0 ≤ s < 1,

with lims→1(HC)j = (GS)j

L(HC)j (p, μ) = ps + (1 − p)s − 1

1 − s + μ
(
ξ − ps

ps + (1 − p)s ζ
)

(8)

N
(HC)

Lj (p, μ) =
[
s2

(
ps−1 − (1 − p)s−1

1 − s − μζ p
s−1(1 − p)s−1

(
ps + (1 − p)s)2

)2

+
(
ξ − ps

ps + (1 − p)s ζ
)2]1/2

(9)

The saddle point of L(HC) and the minimum of N(HC)L is then given by

p̃ = 1

1 +
(
ζ−ξ
ξ

)1/s ; μ̃ = 1

ζ

(
p̃s + (1 − p̃)s)2 · (1 − p̃)1−s − p̃1−s

1 − s (10)

We have of course, lim
s→1

p̃ = ξ

ζ
, lim
s→1

μ̃ = 1

ζ
log

(
ζ − ξ
ξ

)
.

Sometimes the calculation of the minima of the Euclidean norm of the gra-
dient involves discontinuities, and the existence of the minima should be proved
alternatively since the test with second derivatives will fail. Unfortunately the NL
functions here do correspond to this case and we should then study the NL function
on the neighbourhood of the points given by Eqs. (6) or (10) above. We discard these
elementary technicalities here by showing the Figs. 1a, b, 2a, b, below.

The second derivatives of the Lagrangian L(HC) of Eq. (8) are given by

∂2L(HC)
∂p2

∣∣∣∣∣
p̃,μ̃

= −s(p̃s−2 + (1 − p̃)s−2)− μ̃ζ s(s − 1)
p̃s−2(1 − p̃)s−2(1 − 2p̃)(

p̃s + (1 − p̃)s)2

+2μ̃ ζ s2 p̃
s−1(1 − p̃)s−1

(
p̃s−1 − (1 − p̃)s−1

)
(
p̃s + (1 − p̃)s)3 (11)
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Fig. 1 (a) Constrained Lagrangian and the saddle point (p̃ = 0.25, μ̃ = log(3), Lj (p̃, μ̃) =
0.5623) represented by a red dot for Gibbs–Shannon entropy measure, for ξ = 0.25, ζ = 1.00. (b)
Euclidean norm of the gradient and the minimum point (p̃ = 0.25, μ̃ = log(3), NLj (p̃, μ̃) = 0)
represented by a blue dot for Gibbs–Shannon entropy measure, for ξ = 0.25, ζ = 1.00

Fig. 2 (a) Constrained Lagrangian and the saddle point (p̃ = 0.1, μ̃ = 2.024, Lj (p̃, μ̃) =
0.5298) represented by a red dot for Havrda–Charvat (s = 0.5) entropy measure, for ξ = 0.25,
ζ = 1.00. (b) Euclidean norm of the gradient and the minimum point (p̃ = 0.1, μ̃ = 2.024,
NLj (p̃, μ̃) = 0) represented by a blue dot for Havrda–Charvat (s = 0.5) entropy measure, for
ξ = 0.25, ζ = 1.00
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∂2L(HC)
∂μ2

∣∣∣∣∣
p̃,μ̃

= 0 (12)

∂2L(HC)
∂p∂μ

∣∣∣∣∣
p̃,μ̃

= −ζ s
(
p̃s−1(1 − p̃)s−1

)
(
p̃s + (1 − p̃)s)2 (13)

The Hessian is then written as

Hess(p̃, μ̃) = −ζ 2 s
2 p̃2s−2(1 − p̃)2s−2

(
p̃s + (1 − p̃)s)4 < 0 (14)

3 The Meaning of Constraints on the Variational Process for
the Derivation of Probabilistic Distributions

In this section we study the problem of introduction of constraints on the variation
of an entropy measure. The entropy is supposed to be able to clarify the rectangular
arrays of amino acids as well as to allow for a statistical physics approach to the
evolution of protein families and clans to be recognized on these arrays.

We start from a Lagrangian for the distribution of a pair of columns of amino
acids by working with a generic entropy measure Sjk . The generalization to sets
of t columns (1 ≤ t ≤ n) is straightforward and will be presented in Sect. 5. In
the following section we specialize to the treatment to be made with the Jaccard
functional symbol. We adopt all the terminology of Canonical Ensembles [9]

Ljk = Sjk + λjk
(

1 −
∑
a,b

pjk(a, b)

)
+ λj
(

1 −
∑
a

pj (a)

)
+ λk
(

1 −
∑
b

pk(b)

)

+μjk
(
〈E〉jk −

∑
a,b

p̂jk(a, b)Ejk(a, b)

)
+ μj
(
〈E〉j −

∑
a

p̂j (a)Ej (a)

)

+μk
(
〈E〉k −

∑
b

p̂k(b)Ek(b)

)

(15)

where p̂jk(a, b), p̂j (a), p̂k(b) are the escort probabilities associated with the joint
probability and the simple probabilities pjk(a, b), pj (a), pk(b), respectively,

p̂jk(a, b) =
(
pjk(a, b)

)s
αjk

, p̂j (a) =
(
pj (a)
)s

αj
, p̂k(b) =

(
pk(b)
)s

αk
(16)
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with

αjk =
∑
a,b

(
pjk(a, b)

)s
, αj =

∑
a

(
pj (a)
)s
, αk =

∑
b

(
pk(b)
)s
, 0 ≤ s < 1

(17)
We consider that Sjk is a function of αjk , αj , αk standing for the partition

functions of the probabilities distributions. Actually, in Eq. (15) we do not need
to use constraints like

∑
a

pj (a) = 1 ,
∑
b

pk(b) = 1 (18)

together with
∑
a,b pjk(a, b) = 1, since the expansion for the marginal probabilities

pj (a) =
∑
b

pjk(a, b) , pk(b) =
∑
a

pjk(a, b) , ∀j (19)

will then lead to Eqs. (18). However we work with the constrained Lagrangian given
by Eq. (15) and we study all the possible special cases after deriving the extrema
of the probabilistic distributions at the end of the variational process. We then
undertake the independent variations of the Lagrangian of Eq. (15):

δpjk(a,b)Ljk = ∂Ljk
∂pjk(a, b)

δpjk(a, b) = 0 (20)

δpj (a)Ljk = ∂Ljk
∂pj (a)

δpj (a) = 0 (21)

δpk(b)Ljk = ∂Ljk
∂pk(b)

δpk(b) = 0 (22)

The structure of the partial derivatives of the entropy function Sjk is given by

(
∂Sjk

∂pjk(a,b)

∂Sjk
∂pj (a)

∂Sjk
∂pk(b)

)
=
(
∂Sjk
∂αjk

∂Sjk
∂αj

∂Sjk
∂αk

)
⎛
⎜⎜⎜⎝

∂αjk
∂pjk(a,b)

∂αjk
∂pj (a)

∂αjk
∂pk(b)

∂αj
∂pjk(a,b)

∂αj
∂pj (a)

∂αj
∂pk(b)

∂αk
∂pjk(a,b)

∂αk
∂pj (a)

∂αk
∂pk(b)

⎞
⎟⎟⎟⎠ (23)

All the elements of the matrix above are easily calculated by formulae (17) and (19)
and we then have



A Jaccard-Like Symbol and Its Usefulness in the Derivation of Amino Acid. . . 207

⎛
⎜⎜⎜⎜⎝

∂αjk
∂pjk(a,b)

= s(pj (a, b))s−1 ∂αjk
∂pj (a)

=
s
∑
b

(
pjk(a,b)
)s

pj (a)

∂αjk
∂pk(b)

=
s
∑
a

(
pjk(a,b)
)s

pk(b)

∂αj
∂pjk(a,b)

= s(pj (a))s ∂αj
∂pj (a)

= s(pj (a))s ∂αj
∂pk(b)

= 0
∂αk

∂pjk(a,b)
= s(pk(b))s ∂αk

∂pj (a)
= 0 ∂αk

∂pk(b)
= s(pk(b))s

⎞
⎟⎟⎟⎟⎠
(24)

where we have used the Bayes’ law [10],

pjk(a, b) = pjk(a|b)pk(b) = pkj (b|a) = pkj (b, a) (25)

The variations of Eqs. (20), (21), (22) will lead to

Tjk(c, d) s
(
pjk(c, d)

)s−1 + Tj (c) s
(
pj (c)
)s−1 + Tk(d) s

(
pk(d)
)s−1

− λjk − λj − λk = 0 (26)

Tj (c)s
(
pj (c)
)s−1 + s(pj (c))s−1

�jk(c)− λjk − λj = 0 (27)

Tk(d)s
(
pk(d)
)s−1 + s(pk(d))s−1

�jk(d)− λjk − λk = 0 (28)

where

Tjk(c, d) = ∂Sjk

∂αjk
+ μjk

αjk

(〈E〉jk − Ejk(c, d)
)

(29)

Tj (c) = ∂Sjk

∂αj
+ μj

αj

(〈E〉j − Ej(c)
)

(30)

Tk(d) = ∂Sjk

∂αk
+ μk

αk

(〈E〉k − Ek(d)
)

(31)

and

�jk(c) = 1(
pj (c)
)s
[
αjk

∂Sjk

∂αjk

∑
d

p̂jk(c, d)+ μ
(〈E〉jk

∑
d

p̂jk(c, d)

−
∑
d

p̂jk(c, d)Ejk(c, d)
)]

(32)

�jk(d) = 1(
pk(d)
)s
[
αjk

∂Sjk

∂αjk

∑
c

p̂jk(c, d)+ μ
(〈E〉jk

∑
c

p̂jk(c, d)

−
∑
c

p̂jk(c, d)Ejk(c, d)
)]

(33)
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We have from Eqs. (32), (33):

∑
c

(
pj (c)
)s
�jk(c) = αjk ∂Sjk

∂αjk
=
∑
d

(
pk(d)
)s
�jk(d) (34)

After multiplying Eq. (26) by pjk(c, d) and summing up in c, d, we get

∑
c,d

Tjk(c, d) s
(
pjk(c, d)

)s +∑
c,d

Tj (c) s
(
pj (c)
)s
pkj (d|c)

+
∑
c,d

Tk(d) s
(
pk(d)
)s
pjk(c|d)− (λjk + λj + λk)

∑
c,d

pjk(c, d) = 0 (35)

The terms in Eq. (35) containing the symbols μjk , μj , μk will cancel due to the
corresponding constraints on the Lagrangian Eq. (15), resulting in the following
identities:

∑
c,d

Tjk(c, d) s
(
pjk(c, d)

)s = αjk ∂Sjk
∂αjk

(36)

∑
c,d

Tj (c) s
(
pj (c)
)s
pkj (d|c) =

∑
c

Tj (c) s
(
pj (c)
)s = αj ∂Sjk

∂αj
(37)

∑
c,d

Tk(d) s
(
pk(d)
)s
pjk(c|d) =

∑
d

Tk(d) s
(
pk(d)
)s = αk ∂Sjk

∂αk
(38)

where we have used,

(
pj (c)
)s−1

pjk(c, d) =
(
pj (s)
)s−1

pkj (d|c)pj (c) =
(
pj (c)
)s
pkj (d|c)

and

∑
c,d

(
pj (c)
)s−1

pjk(c, d) =
∑
c

(
pj (c)
)s∑

d

pkj (d|c) =
∑
c

(
pj (c)
)s = αj

Analogously, we also have

∑
c,d

(
pk(d)
)s−1

pjk(c, d) =
∑
d

(
pk(d)
)s∑

c

pjk(c|d) =
∑
d

(
pk(d)
)s = αk

We can then write from Eqs. (35), (36), (37), and (38):

λjk + λj + λk = s
[
αjk

∂Sjk

∂αjk
+ αj ∂Sjk

∂αj
+ αk ∂Sk

∂αk

]
(39)
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We now multiply Eq. (27) by
(
pj (c)
)

and we sum up in c:

∑
c

Tj (c) s
(
pj (c)
)s + s∑

c

(
pj (c)
)s
�jk(c)− (λjk + λj )

∑
c

pj (c) = 0 (40)

We then have from Eqs. (32), (34) and (37):

λjk + λj = s
[
αj
∂Sjk

∂αj
+ αjk ∂Sjk

∂αjk

]
(41)

Analogously, we multiply Eq. (28) by pk(d) and we sum up in d:

λjk + λk = s
[
αk
∂Sjk

∂αk
+ αjk ∂Sjk

∂αjk

]
(42)

We have from Eqs. (39), (41), (42):

λj = s αj ∂Sjk
∂αj

(43)

λk = s αk ∂Sjk
∂αk

(44)

λjk = s αjk ∂Sjk
∂αjk

(45)

We now substitute Eqs. (27), (28) into Eq. (26). We notice that after multiplying by
pjk(c, d) and summing up into c, d we get an identity due to Eq. (45) and the results:

∑
c,d

(
pj (c)
)s−1

pjk(c, d)�jk(c) =
∑
c,d

(
pj (c)
)s
pkj (d|c)�jk(c)

=
∑
c

(
pj (c)
)s
�jk(c) = αjk ∂Sjk

∂αjk
(46)

∑
c,d

(
pk(d)
)s−1

pjk(c, d)�jk(d) =
∑
c,d

(
pk(d)
)s
pjk(c|d)�jk(d)

=
∑
d

(
pk(d)
)s
�jk(d) = αjk ∂Sjk

∂αjk
(47)

The substitution will then lead to
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pjk(c, d) =
(
Tjk(c, d)

) 1
1−s

(
−αjk ∂Sjk∂αjk

+ (pj (c))s−1
�jk(c)+

(
pk(d)
)s−1

�jk(d)
) 1

1−s
(48)

and
(
pj (c)
)s−1;
(
pk(d)
)s−1 will be given by

(
pj (c)
)s−1 =

αjk
∂Sjk
∂αjk

+ αj ∂Sjk∂αj

Tj (c)+�jk(c) (49)

(
pk(d)
)s−1 =

αjk
∂Sjk
∂αjk

+ αk ∂Sjk∂αk

Tk(d)+�jk(d) (50)

Finally, we can write the probability distribution of amino acids for a pair of
columns:

pjk(c, d) =
(
Tjk(c, d)

) 1
1−s

⎡
⎢⎢⎣−αjk ∂Sjk∂αjk

+

(
αjk

∂Sjk

∂αjk
+ αj ∂Sjk

∂αj

)
�jk(c)

Tj (c)+�jk(c)

+

(
αjk

∂Sjk

∂αjk
+ αk ∂Sjk

∂αk

)
�jk(d)

Tj (d)+�jk(d)

⎤
⎥⎥⎦

1
1−s

(51)

From the right-hand sides of Eqs. (37) and (34) and depending on how greater is
αjαk compared to αjk (the Khinchin–Shannon inequalities), it could be considered
to satisfy

αjk
∂Sjk

∂αjk
% αj

∂Sjk

∂αj
(52)

This will be shown to be the case for Sjk = Jjk , the Jaccard-like measure on the
next section and we can have by assuming a convenient probabilistic distribution
pj (c):

�jk(c)% Tj (c) (53)

and analogously

�jk(d)% Tk(d) (54)
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This means that Eq. (51) could be approximated by

pjk(c, d) ≈
(
αjk

∂Sjk
∂αjk

+ μjk
(〈E〉jk − Ejk(c, d)

)) 1
1−s

(αjk)
1

1−s
(
αjk

∂Sjk
∂αjk

+ αj ∂Sjk∂αj
+ αk ∂Sjk∂αk

) 1
1−s

(55)

We will obtain the same result of Eq. (55) by discarding the constraints on the energy
distributions of the columns by making μj = 0, μk = 0 in the original Lagrangian,
Eq. (15).

4 The Jaccard-Like Functional Measure

In this section we introduce the Jaccard-like functional measure by following which
have been presented in the 20th International BIOMAT Symposium on November
01–06, 2020. In that presentation we have summarized the ideas and results of a
research period of 05 years.

First of all, we introduce the Sharma–Mittal set of entropy measures:

(SM)jk = (αjk)
1−r
1−s − 1

1 − r , αjk =
∑
a,b

(
pjk(a, b)

)s (56)

A concavity criterium is satisfied for 1 ≥ r ≥ s ≥ 0, or

∂2(SM)jk

∂p2
jk(a, b)

= s(αjk) 1−r
1−s
(
pjk(a, b)

)s−2
[
s(s − r)
(1 − s)2 p̂jk(a, b)− 1

]
< 0 (57)

where p̂jk(a, b) =
(
pjk(a,b)
)s

αjk
is the escort probability, Eq. (16). Many previous

works of this series have emphasized the particular entropy measures associated
with this set. These are given by

Havrda–Charvat’s:

(HC)jk = lim
r→s
(SM)jk = αjk − 1

1 − s (58)

Landsberg–Vedral’s:

(LV )jk = lim
r→2−s(SM)jk = αjk − 1

(1 − s)αjk ≡ (HC)jk

αjk
(59)
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Renyi’s:

Rjk = lim
r→1

(SM)jk = logαjk
1 − s (60)

All these entropy measures will have the Gibbs–Shannon entropy measure as the
limit s → 1

lim
s→1

(
(HC)jk , (LV )jk , Rjk

) = −
∑
a,b

pjk(a, b) logpjk(a, b) (61)

A Jaccard-like measure is introduced as the “normalization” of the distance of
information:

0 ≤ Jjk = djk

(SM)jk
≤ 1

djk = (SM)jk −Mjk (62)

whereMjk is the “mutual information”

Mjk = 1

1 − r

(
1 −
(
αjk

αjαk

) 1−r
1−s
)

(63)

we then see from Eqs. (17), (56) that Mjk ≡ 0 when the probabilistic distributions
of single columns are independent.

We can then write for the Jaccard-like measure associated with the Sharma–
Mittal set:

J
(SM)
jk = 1 + (αjk)

1−r
1−s − (αjαk) 1−r

1−s

(αjαk)
1−r
1−s
(
(αjk)

1−r
1−s − 1

) (64)

We remark that the inequality

αjk ≤ αjαk (65)

is the generalized Khinchin–Shannon inequality [5] for the columns of the rectan-
gular array of amino acids built from the alignment of protein domains.

In order to look for an elementary 3-D representation of a Jaccard-like measure,
we now proceed to a derivation of a convenient parametrization, by restricting
ourselves to two amino acids only, a = A, C. Without loss of generality we now
use Eq. (19) to write
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pj (A) = q = pjk(A,A)+ pjk(A,C) = qp + q(1 − p)
pj (C) = 1 − q = pjk(C,A)+ pjk(C,C) = (1 − q)p + (1 − q)(1 − p)
pk(A) = v = pjk(A,A)+ pjk(C,A) = vu+ v(1 − u)
pk(C) = 1 − v = pjk(A,C)+ pjk(C,C) = (1 − v)u+ (1 − v)(1 − u)

(66)

we can write from Eq. (17):

αj = (pj (A))s + (pj (C))s = qs + (1 − q)s (67)

αk = (pk(A))s + (pk(C))s = vs + (1 − v)s (68)

αjk can be written twice. We have

αjk = (qp)s + (q(1 − p))s + ((1 − q)p)s + ((1 − q)(1 − p))s
= (qs + (1 − q)s)(ps + (1 − p)s) (69)

and

αjk = (vu)s + (v(1 − u))s + ((1 − v)u)s + ((1 − v)(1 − u))s
= (vs + (1 − v)s)(us + (1 − u)s) (70)

From Eqs. (69), (70), we can have

(I) q = u, v = p

⇒ αjk = αjαk = (us + (1 − u)s)(ps + (1 − p)s) , (71)

which exhausts the Khinchin inequalities ⇒ Jjk = 1
(II) q = v, p = u

⇒ αjk = (qs+ (1−q)s)(ps+ (1−p)s) ≤ αjαk = (qs+ (1−q)s)2 (72)

We take the case II as our model for parametrization of Jjk .

We now choose to represent the Jaccard measure surface associated with the
Havrda–Charvat entropy measure (r = s in Eq. (64)) and we write

J
(HC)
jk = 1 + αjk − αjαk

αjαk(αjk − 1)

= 1 + ps + (1 − p)s − (qs + (1 − q)s)(
qs + (1 − q)s)((qs + (1 − q)s)(ps + (1 − p)s)− 1

) (73)
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Fig. 3 (a) The Jaccard surface associated with Havrda–Charvat entropy measure for s = 0.5. (b)
The Havrda–Charvat surface, s = 0.5

As a comparison, we also take the related Havrda–Charvat surface

(HC)jk = αjk − 1

1 − s =
(
qs + (1 − q)s)(ps + (1 − p)s)− 1

1 − s (74)

Their surfaces are represented on Fig. 3a, b below. The s-parameter has been
chosen to be s = 0.5. The Jaccard surface has a saddle point at (p̃ = 0.5, q̃ = 0.5)
and the Havrda–Charvat one has a maximum at the same point, which could be
confirmed by direct calculation of their derivatives:

∂Jjk

∂p

∣∣∣∣
p̃,q̃

= (y2 − 1)

y(xy − 1)2
dx

dp
= 0 ; ∂Jjk

∂q

∣∣∣∣
p̃,q̃

= x(y2 − 2xy + 1)

y2(xy − 1)2
dy

dq
= 0 (75)

with

x = ps + (1 − p)s ; y = qs + (1 − q)s (76)

∂2Jjk

∂p2

∣∣∣∣
p̃,q̃

= (y2 − 1)

y(xy − 1)3

[
(xy − 1)

d2x

dp2 − 2y

(
dx

dp

)2
]
= 4s(s − 1)

22(1−s) − 1
< 0

(77)
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∂2Jjk

∂q2

∣∣∣∣
p̃,q̃

= x(y2 − 2xy + 1)

y2(xy − 1)2
d2y

dq2 − 2x(xy3 − 3x2y + 3xy − 1)

y3(xy − 1)3

(
dy

dq

)2

= 4s(s − 1)

1 − 22(1−s) > 0 (78)

∂2Jjk

∂p∂q

∣∣∣∣
p̃,q̃

= − (xy
3 − 3xy + y2 + 1)

y2(xy − 1)3
dx

dp

dy

dq
= 0 (79)

Hess(p̃, q̃) = ∂2Jjk

∂p2

∣∣∣∣
p̃,q̃

· ∂
2Jjk

∂q2

∣∣∣∣
p̃,q̃

−
(
∂2Jjk

∂p∂q

∣∣∣∣
p̃,q̃

)2

= −16s2(s − 1)2

(1 − 22(1−s))2
< 0 (80)

A model of bound on surfaces like that are feasible for the treatment with
the direct methods of saddle point approximation of probability distributions of
Statistical Mechanics [9]. This is seen as an advantage over the usual treatment
based on the maximization of the entropy measures given by Eq. (74) and Fig. 3b.

Actually the surface of Fig. 3a should be presented by removing its parts above
the plane Jjk = 1; we do that by specifying the domain of the coordinates, p, q,
according to

ps + (1 − p)s = qs + (1 − q)s (81)

and Fig. 4, below.

Fig. 4 The red regions
correspond to the
parametrization to be used for
surface Jjk(p, q), s = 0.5
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The regions to be considered are then given by

(0 ≤ q ≤ 0.5, 0 ≤ p ≤ q) ; (0 ≤ q ≤ 0.5, 1 − q ≤ p ≤ 1)

[1ex](0.5 ≤ q ≤ 1, 0 ≤ p ≤ 1 − q) ; (0.5 ≤ q ≤ 1, q ≤ p ≤ 1)
(82)

The surface Jjk(p, q) will be then represented as in the Fig. 5, below.
Some elementary discussion for the case t ≥ 3 is missing. The equation

Jjk(p, q) for t columns is easily derived by finite induction by assuming the same
parametrization of Eq. (66):

Jj1...jt (p, q) = 1 + ps + (1 − p)s − (qs + (1 − q)s)t−1

(
qs + (1 − q)s)t−1[(

qs + (1 − q)s)(ps + (1 − p)s)− 1
]
(83)

The second derivatives at the critical point (p̃, q̃) = (0.5, 0.5) are given by

∂2Jj1...jt

∂p2

∣∣∣∣
p̃,q̃

= 4s(s − 1)(t − 1)

2(1−s)(t−1) − 1
< 0 (84)

∂2Jjk

∂q2

∣∣∣∣
p̃,q̃

= s(s − 1)(t − 1)23−s−(1−s)t (22(1−s)(t−1) − 21+(1−s)t + 1)

(2(1−s)t − 1)2
(85)

∂2Jjk

∂p∂q

∣∣∣∣
p̃,q̃

= 0 (86)

Fig. 5 The surface obtained
with the restrictions on the
regions of the parametrization
in order to avoid Jjk > 1



A Jaccard-Like Symbol and Its Usefulness in the Derivation of Amino Acid. . . 217

For 1 > s ≥ 0, the second derivative will be positive or negative if 2(1−s)t is inside

or outside the interval

(
1−

√
1−2−2(1−s)

2−2(1−s) ,
1+

√
1−2−2(1−s)

2−2(1−s)

)
, respectively. However, the

first case should be discarded, since t (s) would be negative for 1 > s ≥ 0 according
to Fig. 6 below and we have only negative values for Eq. (85) corresponding to
the region above the blue curve of Fig. 6 and also negative values for the Hessian
corresponding to a saddle point of the surface given by Eq. (83).

At this point we would like to stress that the requirement leading to Eqs. (53), (54)
is trivially satisfied for the Jaccard-like measure. We take the example of Jaccard’s
associated with the Havrda–Charvat measure, Eq. (73):

αjk
∂Jjk

∂αjk
= αjk(αjαk − 1)

αjαk(αjk − 1)2

αj
∂Jjk

∂αj
= αk ∂Jjk

∂αk
= − αjk

αjαk(αjk − 1)

the inequality

αjk
∂Jjk

∂αjk
% αj

∂Jjk

∂αj
= αk ∂Jjk

∂αk
(87)

for αjk % 1, αj % 1, αk % 1 and still satisfying Khinchin–Shannon inequality. In
addition, there is always a probability distribution pj (c) such that the inequalities
of Eqs. (53), (54) are true.

The results of this section point to the possibility of deriving a probabilistic dis-
tribution for the Jaccard entropy measure associated with Havrda–Charvat entropy

Fig. 6 The blue curve is the
hypograph of the region
corresponding to a negative
Hessian at (p̃, q̃) = (0.5, 0.5)
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measure by the alternative direct method of using the saddle point approximation,
instead of maximizing Havrda–Charvat’s. This process will be valid for the Jaccard
measure associated with Landsberg–Vedral’s and Renyi’s as will be shown in a
forthcoming chapter. This will favour the construction of an alternative Statistical
Mechanics.

5 A Proposal for Information Measure and the Synergy of
the Probabilistic Distributions

From the generalization of the equation (56) to distributions of sets of t columns,
t = 1, . . . , n or

(SM)j1...jt =
(αj1...jt )

1−r
1−s − 1

1 − r , αj1...jt =
∑
a1,...,at

(
pj1...jt (a1, . . . , at )

)s (88)

with 1 > r ≥ s > 0. We then define

Ij1...jt = − (SM)j1...jt
(αj1...jt )

1−r
1−s

= −(SM)j1...jt
1 + (1 − r)(SM)j1...jt

(89)

From Eq. (89), we write

(SM)j1...jt = − Ij1...jt

1 + (1 − r)Ij1...jt
(90)

From the generalization of the Khinchin–Shannon inequality [5]

αj1...jt ≤
t∏
l=1

αjl &⇒ 1 + (1 − r)(SM)j1...jt ≤
t∏
l=1

(
1 + (1 − r)(SM)jl

)
(91)

We then have from Eqs. (90), (91)

1 − (1 − r) Ij1...jt

1 + (1 − r)Ij1...jt
≤

t∏
l=1

(
1 − (1 − r) Ijl

1 + (1 − r)Ijl

)
(92)

or

1 + (1 − r)Ij1...jt ≥
t∏
l=1

(
1 + (1 − r)Ijl

)
(93)
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i.e. the information associated with a set of t columns is greater than the sum of
information of each column. Hence, Eq. (93) corresponds to the expression of the
synergy of the probabilistic distribution. For t = 2, t = 3, we have respectively
from Eq. (93):

Ij1j2 ≥ Ij1 + Ij2 + (1 − r)Ij1Ij2 (94)

Ij1j2j3 ≥ Ij1 +Ij2 +Ij3 +(1−r)(Ij1Ij2 +Ij1Ij3 +Ij2Ij3)+(1−r)2Ij1Ij2Ij3 (95)

We can also define the “information gain”. From Eq. (88), we have

dIj1...jt = − d(SM)j1...jt(
1 + (1 − r)(SM)j1...jt

)2 (96)

From the mean value theorem of Calculus, we write

�Ij1...jt = − �(SM)j1...jt(
1 + (1 − r)〈SM〉j1...jt

)2 (97)

where 〈SM〉j1...jt is a value of (SM)j1...jt inside of the interval �(SM)j1...jt . It
follows the obvious interpretation of information gain with the decrease in entropy.

6 Some Useful Remarks and Planning for Future Work

There are many ways to continue the work on the research topics of this note. In
particular:

(1) The problem of constructing a parametrization including 20 amino acids for the
treatment of the constrained optimization problem of Sect. 3;

(2) To understand the real nature of the Jaccard-like functional entropy measure and
the possible relation of the Gauss–Kuzmin probabilistic distribution associated
with its continued fraction. Meanwhile we present here the continued fraction
associated with the Jaccard-like measure introduced in this article which is
given by the “cursed” example of continued fraction in the mathematical
literature:

Jjk = 1 + 1

1 + 1

−1 + 1

1 + 1

−1 + 1

1 + 1

−1 + . . .
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= 1 + 1

1+
1

(−1)+
1

1+
1

(−1)+
1

1+
1

(−1)+ . . .

= (1; 1,−1) (98)

(3) The use of the elementary algebra of partition functions αj1...jt , t = 2, . . . , n,
αjl , l = 1, . . . , t to construct a probabilistic distribution pj1...jt (a1, . . . , at ) free
of the problems exposed in Sect. 3;

(4) The construction of a lattice model of Statistical Mechanics, like the Potts
Model based on a Hamiltonian

H =
∑

j1<j2<...<jt

Jj1...jt αj1...jt + J
t∏
l=1

αjl (99)

where

J = t !(n− t)!
n!

∑
j1<j2<...<jt

Jj1...jt (100)

is the average of the Jaccard measure over all n!
t !(n−t)! sets of t columns.

References

1. P. Jaccard – Étude comparative de la distribution florale dans une portion des Alpes et du Jura
– Bull. Soc. Vaud. Sci. Nat., 37 (142) (1901), 547–579.

2. P. Jaccard – The distribution of the Flora in the Alpine Zone – New Phytol., 11 (2) (1912),
37–50.

3. R. P. Mondaini, S. C. de Albuquerque Neto – Stochastic assessment of protein databases by
generalized entropy measures – Trends in Biomathematics, 1 (2018) 91–105, Springer Nature.

4. R. P. Mondaini, S. C. de Albuquerque Neto – Towards a Thermostatistics of the Evolution of
protein domains through the formation of families and clans – Trends in Biomathematics 2
(2019) 139–152, Springer Nature.

5. R. P. Mondaini, S. C. de Albuquerque Neto – Khinchin-Shannon generalized inequalities for
“Non-additive” entropy measures – Trends in Biomathematics 2 (2019) 177–190, Springer
Nature.

6. R. P. Mondaini, S. C. de Albuquerque Neto – The statistical analysis of protein domain family
distributions via Jaccard Entropy measures – Trends in Biomathematics 3 (2020) 169–207,
Springer Nature.

7. G. Bricogne – Maximum Entropy and the Foundations of Direct Methods – Acta Crystal. A40
(1984) 410–445.

8. H. E. Daniels Saddlepoint Approximations in Statistics – Ann. Math. Stat. 25 (1954) 631–650.
9. K. Huang – Statistical Mechanics, second edition. John Wiley & Sons, 1987.

10. R. P. Mondaini, S. C. de Albuquerque Neto – The Pattern Recognition of Probabilistic
distributions of amino acids in protein families – in Mathematical Biology and Biological
Physics, World Scientific (2017), pp. 29–50.



When Ideas Go Viral—Complex
Bifurcations in a Two-Stage Transmission
Model

J. Heidecke and M. V. Barbarossa

1 Introduction

Social contagion is the spread of behaviors or attitudes through (physical or
virtual) groups of people [1]. From a mathematical point of view, modeling social
contagion in large communities is very similar to modeling the transmission of
an infectious disease in a population. Hence, it seems natural that methods from
the field of mathematical epidemiology, such as compartmental models [2–8],
are used to model social contagion phenomena. In certain cases social contagion
and disease spread even have to be considered coupled to one another, as when
a group in a social network criticizes vaccination [9]. Despite the analogies,
social contagion differs from biological contagion in various aspects. For example,
intellectual epidemics could be advantageous [3], ideas do not require interpersonal
contact to spread [10], or people might be asked to choose between opposite
opinions [7]. Thus, to mathematically describe social contagion processes, models
from theoretical epidemiology might require adaptation to the specific context.

The classical SEIR (susceptible-exposed-infective-recovered) model in math-
ematical epidemiology describes the transmission of an infectious disease in a
population [11]. When a susceptible individual comes in contact with an infective
one, there is a certain probability that contagion occurs and the susceptible moves
to the exposed compartment. After a latent period exposed individuals become
infectious themselves and can infect others. Once the infectious period is over, the
individual recovers, cannot anymore transmit the disease to others, and becomes
immune. Waning of immunity, i.e., transitions from the recovered to the susceptible
compartment, is possible for certain diseases [11, 12].
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In the context of social contagion, the spreading of a specific behavior or opinion
in a population could be described as the transition of individuals from the “naive”
(susceptible) status to the “promoter” (infectious) one. This transition might require
several steps and depend on repeated exposure to promoters [8, 13]. Therefore, we
classify individuals as:

• naive/susceptible (S), those who have not yet been exposed to the considered
behavior/opinion,

• weakened (W ), those who came in contact with the considered behavior/opinion,
but are not yet spreading to others,

• promoters/infectious (I ), those who have embraced the considered behav-
ior/opinion and are able to transmit it to others,

• inactive/resistant (R), those who have earlier been sharing the considered
behavior/opinion but are now neither transmitting to others nor can be re-
exposed.

In contrast to the classical SEIR approach, transition from the exposed/weakened
stage to the promoter/infected stage depends on contacts with infectives/promoters.
Promoters and susceptibles make contact sufficient to transmit the opinion/behavior
at rate β. We assume that upon such a contact the susceptibles have a certain
probability ρ ∈ (0, 1) to enter the I -compartment directly, becoming a promoter
themselves (perfect contact). With probability 1−ρ susceptible individuals enter the
W -compartment (imperfect contact). When a W -individual comes in contact with
promoters, the weakened enters the I -compartment at rate β2 ≥ β. In this sense, an
individual in theW -compartment is more vulnerable to the opinion/behavior than an
individual in the S-compartment. Over time promotors might reject the considered
opinion/behavior. Thus, we assume that promotors leave the promoting class at rate
α and become inactive/resistant. As we assume that the inactivity/resistance of a R-
individual towards the considered opinion/behavior might wane over time, we allow
transition from R back to S at rate η. Moreover, we assume that the infection can
fade away in weakened individuals, whereby transitions from W to S are occuring
at rate γ . We assume that γ ≥ α, suggesting that the average time an individual
is able to promote a certain opinion is not shorter than his exposure time. A model
sketch is given in Fig. 1 and the corresponding differential equations system is

S′ = −βIS + γW + ηR
W ′ = (1 − ρ)βIS − β2IW − γW
I ′ = β2IW + ρβIS − αI
R′ = αI − ηR.

(1)

Limit cases of this system lead, on the one hand, to the standard SIRS model
(cf. [11]) if ρ = 1 and the W -compartment is empty at the beginning of
observations. On the other hand, if the transition from W to I would be a linear
one and γ = ρ = 0, the model would be equivalent to the classical SEIRS model
(cf. [11]).
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Fig. 1 Flowchart of the
two-stage contagion
model (1) with waning of
immunity and fading of
infection in weakened
individuals S W I R

(1 − r)bI

rbI

b2I

g

a

h

Observing that the total population N = S+W + I +R does not vary over time,
we set N ≡ 1. Clearly, system (1) has a unique non-negative global solution for
every choice of non-negative initial values, and the set {(S, I,W,R) ∈ R

4≥0 | S +
W + I + R = 1} is forward invariant. For analytical simplicity, we restrict to the
case β2 = β. Using the conservation relationW = 1 − S − I − R, we consider the
reduced system

S′ = −βIS + γ (1 − S − I − R)+ ηR
I ′ = ρβIS − αI + βI (1 − S − I − R)
R′ = αI − ηR.

(2)

A similar compartmental model for two-stage contagion was previously proposed
by Guy Katriel [8]. System (2) differs from Katriel’s work in two aspects. First
we include waning immunity and fading of infection, that is transitions from
R, respectively W , to the susceptible compartment. Second, we do not consider
population demography (births/deaths). Such differences lead to major analytical
challenges with respect to Katriel’s study [8]. In the rest of this chapter we study the
qualitative properties of system (2) by means of analytical and numerical methods.

2 Existence and Local Stability of Equilibria

To understand the long-term behavior of the system we first investigate its equilibria.
The criteria on the stability of the disease-free equilibrium, where the I compart-
ment is empty, are commonly related to the so-called basic reproduction number,
R0. We remark that the following results are derived assuming that γ ≥ α holds.

Theorem 2.1

(a) System (2) has a unique disease-free (DFE) equilibrium E0 := (1, 0, 0), which
exists for any choice of β, γ, η, α > 0, ρ ∈ (0, 1).
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(b) The DFE E0 is locally asymptotically stable (shortly, LAS) if R0 := ρβ
α
< 1,

and unstable ifR0 > 1.

Proof (a): Equilibria of system (2) are determined setting the right-hand side of the
system equal to zero,

0 =− βI ∗S∗ + γ (1 − S∗ − I ∗ − R∗)+ ηR∗

0 =I ∗ (ρβS∗ − α + β(1 − S∗ − I ∗ − R∗)
)

0 =αI ∗ − ηR∗.

(3)

If I ∗ = 0 (DFE condition), then the third relation in (3) implies that R∗ = 0 and the
first relation in (3) implies that S∗ = 1. Thus, E0 is the unique DFE of the system.
(b): For studying the local stability of the DFE we linearize about E0. The Jacobian
matrix of (2) is

J =
⎛
⎝ −βI − γ −βS − γ η − γ
(ρ − 1) βI β ((ρ − 1) S + 1 − 2I − R)− α −βI

0 α −η

⎞
⎠ . (4)

Evaluation of J at E0 yields the eigenvalues λ1 = −γ < 0, λ2 = ρβ − α, and
λ3 = −η < 0. The condition λ2 < 0 ⇐⇒ R0 < 1 guarantees local stability of
the DFE. ��
The above expression for R0 can be interpreted as the number of secondary
infections that a single promoter introduced into a completely susceptible population
produced through perfect contacts (ρβ) over the duration of its promoting period
(1/α). The secondary infections produced through imperfect contacts require two
nonlinear transitions over the W -compartment, which is empty at E0, hence do not
contribute to determining the local stability of the DFE.

Theorem 2.1 provides conditions for the local stability of the DFE. What exactly
happens at the bifurcation value R0 = 1 can be determined with the help of
Theorem A.1, first introduced by Castillo-Chavez and Song [14]. For convenience
of notation we define κ := (1 + α/η).
Theorem 2.2 Let ρ∗ := −α+√

αγ κ

γ κ−α . If ρ > ρ∗, then a transcritical bifurcation
of forward type occurs at R0 = 1. If ρ < ρ∗, then a transcritical bifurcation of
backward type occurs atR0 = 1.

Proof We use Theorem A.1 and take β as our bifurcation parameter, with β∗ :=
α
ρ

corresponding to R0 = 1. The Jacobian (4) of system (2) evaluated at E0 for
β = β∗, A := J |E0,β

∗ , has a simple zero eigenvalue and two eigenvalues with
negative real part. To compute a right eigenvector w of A, solve Aw = 0, which
is an underdetermined system. We fix w2 = 1 and obtain w3 = α

η
w2 = α

η
and

w1 = − α
ργ

− 1 + α
γ
− α
η

. Analogously, to find a left eigenvector of A, we solve the
system vA = 0, obtaining v = (0, 1, 0).
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Next, we denote the vector field of system (2) by f = (f1, f2, f3) and we
calculate second order partial derivatives to verify the conditions of Theorem A.1.
As v1 = 0 = v3 the derivatives of f1 and f3 are not needed. All second order
derivatives of f2 are zero, except for

∂2f2

∂2I
= −2β∗, ∂2f2

∂I∂R
= −β∗,

∂2f2

∂S∂I
= ρβ∗ − β∗, ∂2f2

∂I∂β∗ = ρ.

Therefore, the quantities a and b in Theorem A.1 are given by

b =
3∑
i=1

v2wi
∂2f2

∂xi∂β
(0, 0) = ρv2w2 = ρ > 0,

and

a =
3∑

i,j=1

v2wiwj
∂2f2

∂xi∂xj
(0, 0)

= −2
α

ρ
v2w

2
2 − 2

α

ρ
v2w2w3 + 2

(
α − α

ρ

)
v2w1w2

= −2
α

ρ
− 2

α2

ρη
+ 2

(
α − α

ρ

)(
− α

ργ
− 1 + α

γ
− α

η

)
,

where x = (x1, x2, x3) = (S, I, R). The condition a > 0 is equivalent to

ψ(ρ) := ρ2 (γ κ − α)+ 2ρα − α < 0. (5)

Because of the assumption γ ≥ α, we have γ κ = γ (1 + α
η
) > α. The open

up parabola ψ(ρ) has negative intercept and vertex on the left half-plane. Thus,
condition (5) is fulfilled only if 0 < ρ < ρ∗, where

ρ∗ = −α +√
αγ κ

γ κ − α
is the positive zero of ψ(ρ). ��
Endemic equilibria of (2) are determined by solving (3) for I ∗ 
= 0. From the third
and the first in (3) we get

R∗ = α

η
I ∗ and S∗ = γ (1 − κI ∗)+ αI ∗

βI ∗ + γ .
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Note here that 1 − I ∗ − α
η
I ∗ = 1 − I ∗ − R∗ ≥ 0, hence S∗ ≥ 0 if I ∗ ≥ 0. The

equilibria condition thus reduces to the quadratic equation

0 = aI ∗2 + bI ∗ + c =: �(I ∗), (6)

with a := βκ > 0, b := α (2 − ρ)+ργ κ−β and c := γ
(
α
β
− ρ
)

. Solutions to (6)

are given by

I ∗± = 1

2βκ

[
β − ργ κ − α (2 − ρ)±√

�
]
,

where � is the discriminant of (6). Hence, system (2) has at most two endemic
equilibria E± := (S∗±, I ∗±, R∗±

)
, whereby I ∗± are the positive roots of the open up

parabola �(I ∗). We write the coefficients b and c of �(I ∗) as functions of β,

b(β) := α(2 − ρ)+ ργ κ − β

c(β) := γ

(
α

β
− ρ
)
.

Note that b(β) is a strictly decreasing linear function with zero at

βb := α(2 − ρ)+ ργ κ

and c(β) is a strictly decreasing curve with zero at

βc := α

ρ
.

Further

c(β)

⎧⎨
⎩
> 0 ⇐⇒ R0 < 1,
= 0 ⇐⇒ R0 = 1,
< 0 ⇐⇒ R0 > 1.

Theorem 2.2 suggest to consider the cases ρ∗ < ρ and ρ∗ > ρ separately.

Theorem 2.3 If ρ∗ < ρ < 1, then:

• For R0 ≤ 1, there are no endemic equilibria.
• For R0 > 1, there is a unique endemic equilibrium E+.
AtR0 = 1 a transcritical bifurcation of forward type occurs, and a branch of stable
endemic equilibria E+ emerges from E0.
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Proof Observe that

βb > βc ⇐⇒ 2ρα − αρ2 + ρ2γ κ > α ⇐⇒ ψ(ρ) > 0 ⇐⇒︸ ︷︷ ︸
Thm. 2.2

ρ∗ < ρ.

(7)
Thus, if ρ∗ < ρ we have that the zero of b(β) lies on the right of the zero of c(β).
In other words, if c(β) ≥ 0 (that is R0 ≤ 1), then necessarily b(β) > 0. This means
that if the open up parabola �(I ∗) has a positive y-intercept, then it also has vertex
on the left half-plane, hence no positive root I ∗. If c(β) < 0 (that is R0 > 1),�(I ∗)
has a negative y-intercept, thus only its larger root I ∗+ is positive. The rest follows
from Theorem 2.2. ��
Define

RC := ρ(2 − ρ)− ρ2 γ κ

α
+ 2

ρ(1 − ρ)
α

√
αγ κ (8)

and consider the case ρ∗ > ρ.

Theorem 2.4 If 0 < ρ < ρ∗, then the following results hold:

(a) IfR0 < RC , there are no endemic equilibria.
(b) If RC ≤ R0 < 1, there are two endemic equilibria E±, which coincide if

RC = R0.
(c) If 1 ≤ R0, there is a unique endemic equilibrium E+.
At R0 = 1 a transcritical bifurcation of backward type occurs, and a branch of
unstable endemic equilibria E− emerges from E0.

Proof From ρ < ρ∗ it follows from (7) that βb < βc. Hence if c(β) ≤ 0 (that is
R0 ≥ 1), then necessarily b(β) < 0. This means that if the open up parabola Φ(I ∗)
has a non-positive y-intercept, it has vertex on the right half-plane as well, and
hence a unique positive root I ∗+. This proofs statement c). For two positive roots I ∗±
the conditions c(β) > 0, b(β) < 0 and �(β) ≥ 0, where

�(β) =β2 + β(2ρα + 2ργ κ − 4α)

+ 4α2 (1 − ρ)+ ρ2α2 + ρ2γ 2κ2 + 4ραγ κ − 2ρ2αγ κ − 4αγ κ︸ ︷︷ ︸
:=c�

,

are necessary. For �(β) = 0 the two roots coincide. The discriminant �(β) as a
function of β is an open up parabola itself. Short computation shows that

c� < 0 ⇐⇒ ρ < 2ρ∗,

hence c� is always negative under the assumptions of the theorem. Thus �(β) ≥ 0
for β larger than the positive zero of the discriminant-parabola, that is

β ≥ α(2 − ρ)− ργ κ + 2(1 − ρ)√αγ κ =: β�,
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and �(β) = 0 ⇐⇒ β = β�. Observe that

βb < β� ⇐⇒ ρ2γ 2κ2 < (1 − ρ)2αγ κ
⇐⇒ ρ2(γ κ − α)+ ρ2α − α < 0

⇐⇒ ρ < ρ∗.

(9)

Further

β� < βc ⇐⇒ α(2 − ρ)− ργ κ + 2(1 − ρ)√αγ κ < α

ρ

⇐⇒ ρ2 (−α − γ κ − 2
√
αγ κ
)+ ρ2

(
α +√

αγ κ
)− α︸ ︷︷ ︸

=:χ(ρ)
< 0.

Note that χ(ρ) is an open down parabola with vertex on the right half-plane,
negative y-intercept, and zero discriminant. Therefore, χ(ρ) has a unique zero at

ρ = (α + γ κ + 2
√
αγ κ)(−α +√

αγ κ)

(γ κ − α)(α + γ κ + 2
√
αγ κ)

= ρ∗.

Hence,

ρ < ρ∗ &⇒ χ(ρ) < 0 ⇐⇒ β� < βc.

With (9) this means that for ρ < ρ∗ it holds that βb < β� < βc. As the positive
root β� of �(β) lies on the right of the zero of b(β), then for β ≥ β� we have
�(β) ≥ 0 and necessarily b(β) < 0. As c(β) > 0 (that is R0 < 1) for β < βc, the
condition on β to have positive roots I ∗± of �(I ∗) is β� ≤ β < βc. Dividing by βc
and using the definition (8) of RC , we obtain the condition on R0 as in statement b)
of the theorem. The rest follows from Theorem 2.2. ��

The results of Theorems 2.3 and 2.4 are summarized in Fig. 2. Local stability of
the endemic equilibria can be determined evaluating the Jacobian matrix (4) of the
system at E±,

J |E± =
⎛
⎝ −βI ∗± − γ −βS∗± − γ η − γ
(ρ − 1) βI ∗± β

(
(ρ − 1) S∗± + 1 − (1 + κ) I ∗±

)− α −βI ∗±
0 α −η

⎞
⎠ .

The characteristic polynomial of J |E± is given by

"(λ) = λ3 + λ2a2 + λa1 + a0, (10)
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10 backward bifurcation forward bifurcation

Fig. 2 Visualization of statements in Theorems 2.3 and 2.4: Endemic equilibria of system (2) in
dependence on ρ

where

a2 = βI ∗± (2 + κ)+ γ + α + 2βS∗± (1 − ρ)− β + η

= (
1

κ
+ 1

2
)
[
β − ργ κ − α(2 − ρ)±√

�
]
+ γ + α

+2βS∗± (1 − ρ)− β + η
a1 = 2β2I ∗±S∗± (1 − ρ)+ β2I ∗±

2
(1 + κ)+ γα + γβS∗± (1 − ρ)

+γβI ∗± (3 − ρ)+ γβ α
η
I ∗± + ηα + ηβS∗ (1 − ρ)+ 3ηβI ∗±

+αβI ∗± + ηγ − β2I ∗± − ηβ − γβ
a0 = ηβ2I ∗±

(
2
(
S∗± (1 − ρ)+ I ∗±

)− 1
)+ γ ηβ(S∗±(1 − ρ)

+I ∗± (3 − ρ)− 1)+ (η − γ )αβI ∗± (2 − ρ)+ γ ηα.

With the Routh–Hurwitz criteria [15] it follows that:

Theorem 2.5 Let E∗ be an endemic equilibrium of system (2) and let J |E∗ the
coefficient matrix of the linearization of the system (2) about E∗. Then E∗ is LAS
if the coefficients of the characteristic polynomial (10) satisfy a2 > 0, a0 > 0, and
a1a2 > a0.

We enrich the analytical results obtained so far by means of numerical investiga-
tions.
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3 Numerical Bifurcation Analysis

From the analysis in Sect. 2 it becomes clear that β and ρ are critical parameters
affecting the qualitative behavior of the system. In this section we extensively
investigate the (β, ρ)-parameter plane and numerically identify bifurcations of
codimension 1 and 2. The remaining parameters are fixed η = 0.02, α = 0.2,
γ = 0.3, such that ρ∗ ≈ 0.1976. This choice is not motivated by a specific
application or data, but highlights the rich dynamics the model can produce. All
parametric portraits and simulations shown in what follows are produced using
the numerical bifurcation software MATCONT [16]. Background on bifurcation
theory can be found e.g. in the seminal books by Yuri Kuznetsov [17] or Stephen
Wiggins [18].

At first we investigate regions of the (β, ρ)-plane where ρ is constant and
look for bifurcations in β only. Figure 3 shows the (β, I )-plane, where curves
of (the I -component of) endemic equilibria in dependence of β are plotted for
six different values of ρ, ordered by ascending ρ. Branches in blue (respectively,
yellow) represent locally asymptotically stable (respectively, unstable) equilibria.
Red asterisks mark either a transcritical bifurcation point (BP), a fold bifurcation
point (LP), a supercritical Hopf bifurcation point (Hsup), a subcritical Hopf bifur-
cation point (Hsub), or a neutral saddle equilibrium (NS, no bifurcation point).
Figure 3 shows that as ρ increases there is a continuous change from a backward
bifurcation (Fig. 3a–d) to a forward bifurcation (Fig. 3e–f), as the fold bifurcation
point LP crosses the β-axis to the lower half-plane. This is in line with our analytical

Fig. 3 Curves of (the I -component of) endemic equilibria in dependence of β are plotted for
different values of ρ. Branches in blue (respectively, yellow) represent LAS (respectively, unstable)
equilibria. (a) ρ = 0.02. (b) ρ = 0.05. (c) ρ = 0.1. (d) ρ = 0.18. (e) ρ = 0.2. (f) ρ = 0.25
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results from the previous section (cf. Theorems 2.2–2.4). Further, Hopf bifurcations
occur on the equilibria branch corresponding to E+. We observe a change from a
subcritical Hopf bifurcation (Fig. 3a) to a supercritical Hopf bifurcation (Fig. 3b–e).
The neutral saddle equilibrium (Fig. 3a–c) gets closer to the fold bifurcation point
and finally collides with it and turns into a second supercritical Hopf bifurcation
point on the branch of E+ (Fig. 3d–e). Increasing ρ, the two supercritical Hopf
bifurcation points approach each other (Fig. 3d–e) and finally collapse into one point
and eventually vanish (Fig. 3f).

MATCONT provides additional information on the eigenvalues of the lineariza-
tion about the endemic equilibria. In case of a backward bifurcation with a single
Hopf bifurcation point (Fig. 3a–c), both endemic equilibria are born unstable at the
fold bifurcation. The unstable manifold of E+ is two dimensional and the one of
E− is one dimensional. The two eigenvalues of the linearization about E+ with
positive real part cross the imaginary axis at the Hopf bifurcation point so that E+
becomes LAS. In the situation where we observe two (supercritical, Fig. 3d–e) Hopf
bifurcation points on the branch of E+, this equilibrium was born LAS at the fold
bifurcation. Two eigenvalues cross the imaginary axis to the right half-plane at the
first Hopf bifurcation point and cross it again back to the left half-plane at the second
Hopf bifurcation point.

The above observations help us to understand the parametric portrait in β and ρ,
and the arising codimension 2 bifurcations. Continuation of fold and transcritical
bifurcation points with respect to β and ρ leads to Fig. 4a. The curve of fold
bifurcations (straight line) and the curve of transcritical bifurcations (curved line)
meet at the point labeled CP. This point marks a cusp bifurcation where the normal
form coefficient of the fold bifurcation vanishes. It divides the curve of transcritical
bifurcations into the branch of forward bifurcations (upper part) and backward
bifurcations (lower part). In addition, a Bogdanov–Takens (BT) bifurcation occurs
on the curve of fold bifurcation points, where an additional eigenvalue approaches

Fig. 4 (a) Continuation of fold and transcritical bifurcation points with respect to β and ρ; (b)
Continuation of Hopf bifurcation points with respect to β and ρ starting from the Bogdanov–
Takens point BT
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the imaginary axis. At the BT point the curve of Hopf bifurcation points collides
with the curve of fold bifurcations. Continuation of the Hopf bifurcation curve
from BT leads to the red curve in Fig. 4b (neutral saddle equilibria are not
shown here). The Bogdanov–Takens point BT marks the point where the neutral
saddle equilibrium turns into a supercritical Hopf bifurcation point or vice versa.
The semi-elliptic shape of the Hopf curve leads to the occurrence of two Hopf
bifurcations for values of ρ above the Bogdanov–Takens point (cf. Fig. 3d–e).
Another codimension 2 bifurcation arises on the curve of Hopf bifurcations. A
generalized Hopf bifurcation, where the first Lyapunov coefficient is zero and
changes its sign, labeled GH marks the point where the Hopf bifurcation changes
from subcritical (lower part) to supercritical (upper part). In what follows, we study
the branches of limit cycles emerging from these Hopf bifurcation points.

In Fig. 5a–b we see that, for sufficiently small values of ρ, as β increases the
amplitudes of the unstable limit cycles born at the subcritical Hopf bifurcation

Fig. 5 (a) Continuation of limit cycles with respect to β starting from subcritical Hopf bifurcation
point for ρ = 0.02; (b) Zoom of (a); (c) Continuation of limit cycles with respect to β starting
from supercritical Hopf bifurcation point for ρ = 0.03. The branch of stable limit cycles reaches a
limit point cycle, folds back, and becomes unstable; (d) Zoom of (c)
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increase as well. The limit cycles get closer and closer to E−. This increases the
period of the closed orbits, and a point moving on such orbits spends more and
more time in the proximity of the equilibrium. The branch of limit cycles disappears
by colliding with the one-dimensional unstable manifold of E− leading to a saddle
homoclinic bifurcation (more details are provided in the master thesis [19] of the
first author).

Figure 5c–d shows the same plot for a slightly larger value of ρ such that the
involved Hopf bifurcation is supercritical. The branch of stable limit cycles reaches a
limit point cycle (LPC) then folds back and becomes unstable. Thus, there is a small
interval of values of β in which a stable limit cycle and an unstable one coexist. The
unstable branch of limit cycles vanishes through a saddle homoclinic bifurcation.
Increasing ρ further, the interval of values of β where a stable limit cycle exists
becomes larger, while the interval where an unstable limit cycle exists gets smaller
and eventually vanishes (i.e. there is no LPC involved anymore). In this case it is the
branch of stable limit cycles that vanishes through a saddle homoclinic bifurcation
(not shown here, cf. [19]).

Increasing ρ further, two Hopf Bifurcation points, hence two branches of stable
limit cycles exist, both vanishing through a saddle homoclinic bifurcation (not
shown here, cf. [19]). For even larger values of ρ there exists a bubble of limit
cycles, starting and ending at the Hopf Bifurcation points (cf. Fig. 6a). Increasing ρ
the bubble becomes smaller (cf. Fig. 6b), until the two Hopf points collide and the
limit cycles vanish (cf. Fig. 3f).

Continuation of the curve of saddle homoclinic bifurcations (light green) and
fold bifurcations of limit cycles (magenta) yield the complete parametric portrait
in Fig. 7. The different bifurcation curves subdivide the (β, ρ)-plane into regions
where the system shows different qualitative behavior. We conclude this numerical
study by a discussion of typical solution trajectories and orbits for each region.

Region I The disease-free equilibrium E0 is the only equilibrium and it is LAS
(Fig. 8). Crossing the boundary to region IX leads to a transcritical bifurcation

Fig. 6 Continuation of limit cycles with respect to β starting from two supercritical Hopf
bifurcation points for (a) ρ = 0.2 and (b) ρ = 0.24. The two branches of stable limit cycles
meet and form an endemic bubble
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Fig. 7 Parametric portrait with respect to β and ρ. The different bifurcation curves subdivide the
(β, ρ)-plane into regions. The green and yellow balloons show zoomed regions around the BT and
GH point, respectively

Fig. 8 Dynamics in region I: Convergence to E0 shown in (a) (t, I )-plane and (b) (S, I, R)-phase
space. For these simulations we set parameter values: β = 1, ρ = 0.15, α = 0.2, γ = 0.3, and
η = 0.02; and initial conditions: R0 = 0, I0 = 0.5 and I0 = 0.1, S = 1 − I0

through which E0 loses stability and the LAS E+ arises. Crossing the boundary
to region II results into a fold bifurcation, with the LAS equilibrium E+ and the
unstable equilibrium E− (with one-dimensional unstable manifold). Passing from
region I to region III also leads to a fold bifurcation, through which both E+ (two-
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Fig. 9 Dynamics in region II: Bistability of E0 and E+. For these simulations we set parameter
values: β = 1.1, ρ = 0.181, α = 0.2, γ = 0.3, and η = 0.02, and initial conditions: (a)
R0 = 0.1, S0 = 0.85, I0 = 0.015; (b) R0 = 0, S0 = 0.9, I0 = 0.1

Fig. 10 Dynamics in region III: Convergence to the DFE E0. Both endemic equilibria E± are
unstable. For these simulations we set parameter values: β = 2.5, ρ = 0.05, α = 0.2, γ =
0.3, and η = 0.02; and initial conditions: (a) R0 = 0.65, S0 = 0.207, I0 = 0.065; (b) R0 =
0.05, S0 = 0.9, I0 = 0.006

dimensional unstable manifold) and E− (one-dimensional unstable manifold) arise
unstable.

Region II The disease-free equilibrium E0 is LAS. Both endemic equilibria
E± exist, E+ being LAS and E− being unstable with one-dimensional unstable
manifold. Figure 9 shows the bistability of E0 and E+. Crossing the boundary to
region IX leads to a transcritical bifurcation through which E0 loses stability and E−
moves out of the first quadrant. Passing from region II to region IV leads to a Hopf
bifurcation through which E+ becomes unstable with two-dimensional unstable
manifold, and a stable periodic orbit emerges. Crossing the boundary between
region II and region VI (intersection of Hopf and transcritical bifurcation curve)
the above bifurcations happen simultaneously.

Region III The system has three equilibria (cf. Fig. 10). The DFE E0 is LAS
and both endemic equilibria E± are unstable, the unstable manifold of E+ being
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Fig. 11 Dynamics in region IV: Bistability of E0 and a limit cycle. For these simulations we set
parameter values: β = 1.14, ρ = 0.174, α = 0.2, γ = 0.3, and η = 0.02; and initial conditions:
(a) R0 = 0.15, S0 = 0.82, I0 = 0.015; (b) R0 = 0, S0 = 0.9, I0 = 0.1

two dimensional, that of E− one dimensional. We observe the phenomenon of
excitability: Solutions starting close to E− follow its unstable manifold, which leads
to a large epidemic outbreak before converging to E0 (cf. Fig. 10b). Crossing the
boundary to region IV results into a saddle homoclinic bifurcation, which produces
a stable periodic orbit. Passing the boundary to region V, a fold bifurcation of limit
cycles takes place and a stable and an unstable periodic orbit are born. Moving from
region III to region VII leads to a subcritical Hopf bifurcation; E+ becomes LAS
and an unstable limit cycle arises.

Region IV The disease-free equilibrium E0 is LAS and both endemic equilibria
E± are unstable, the unstable manifold of E+ being two dimensional, that of E−
one dimensional. Additionally, a stable limit cycle exists. This leads to a bistability
of the disease-free equilibrium and a periodic solution (cf. Fig. 11). Crossing the
boundary to region V results in a saddle homoclinic bifurcation, which produces a
second (unstable) periodic orbit. Passing the boundary to region VI, a transcritical
bifurcation occurs, through which E0 loses stability and E− moves out of the first
quadrant. Moving from region IV to region VIII leads to a Hopf bifurcation, E+
becomes LAS, and the stable periodic orbit vanishes. Crossing the boundary to
region IX (intersection of Hopf and transcritical bifurcation curve) the last two
bifurcations happen simultaneously.

Region V The dynamical behavior in this region is similar to that in Region IV
(cf. Fig. 12). Additionally to the stable limit cycle, an unstable limit cycle exists,
separating the basin of attraction of E0 and of the stable limit cycle. Like in
Region III, we observe the phenomenon of excitability for orbits starting close to
E− (cf. Fig. 12a). Moving to region VII leads to a supercritical Hopf bifurcation.
The stable limit cycle disappears and E+ becomes LAS. Crossing the boundary
to region VIII (intersection of Hopf and saddle homoclinic bifurcation curve) the
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Fig. 12 Dynamics in region V: Bistability of E0 and a limit cycle. For these simulations we set
parameter values: β = 2.952, ρ = 0.046, α = 0.2, γ = 0.3, η = 0.02 and initial conditions: (a)
R0 = 0.03, S0 = 0.94, I0 = 0.003; (b) R0 = 0.3, S0 = 0.3, I0 = 0.2

Fig. 13 Dynamics in region VI: Convergence to a stable limit cycle shown in (a) (t, I )-plane and
(b) (S, I, R)-phase space. For these simulations we set parameter values: β = 1.4, ρ = 0.2, α =
0.2, γ = 0.3, η = 0.02 and initial conditions: R0 = 0, S0 = 0.9, I0 = 0.1

supercritical Hopf bifurcation happens simultaneously with a saddle homoclinic
bifurcation through which also the unstable limit cycle vanishes.

Region VI The disease-free equilibrium E0 is unstable, and so is also the only
endemic equilibrium E+. There exists a stable limit cycle to which solutions
converge (cf. Fig. 13). Moving from region VI to region IX leads to a supercritical
Hopf bifurcation, the stable limit cycle vanishes, and E+ becomes LAS.

Region VII The equilibria E0 and E+ are both LAS (cf. Fig. 14), whereas the third
equilibrium E− is unstable with one-dimensional unstable manifold. Furthermore,
there exists an unstable periodic orbit that separates the basin of attraction of E0
and E+. Like in Region III, we observe the phenomenon of excitability for orbits
starting close to E− (cf. Fig. 14b). Crossing the boundary to region VIII leads to a
saddle homoclinic bifurcation and the unstable periodic orbit vanishes.
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Fig. 14 Dynamics in region VII: Bistability of E0 and E+. For these simulations we set parameter
values: β = 3.27, ρ = 0.01, α = 0.2, γ = 0.3, η = 0.02 and initial conditions: (a) R0 =
0.5, S0 = 0.3, I0 = 0.2; (b) R0 = 0.06, S0 = 0.88, I0 = 0.006

Fig. 15 (a) Dynamics in region VIII: Bistability of E0 and E+. For these simulations we set
parameter values: β = 3.4, ρ = 0.01, α = 0.2, γ = 0.3, η = 0.02 and initial values:
R0 = 0, S0 = 0.9, I0 = 0.001 and I0 = 0.01. (b) Dynamics in region IX: Convergence
to the unique endemic equilibrium E+. For these simulations we set parameter values: β =
2.5, ρ = 0.25, α = 0.2, γ = 0.3, η = 0.02 and initial conditions: R0 = 0, I0 = 0.1 and
I0 = 0.3, S0 = 1 − I0

Region VIII In this region, we have bistability of E0 and E+ (cf. Fig. 15a). The
second endemic equilibrium E− is unstable with one-dimensional unstable manifold
connecting to E+. Crossing the boundary to region IX, a transcritical bifurcation
takes place, such that E0 loses stability and E− leaves the positive quadrant.

Region IX The DFE E0 is unstable, and the unique endemic equilibrium E+ is
LAS (cf. Fig. 15b).

So far we have investigated the (β, ρ)-parameter plane fixing the values of
α, γ, η. One might ask how the qualitative behavior of system (2) is affected by
the particular choice of these three parameters. For instance, we constructed the
parametric portrait from Fig. 7 for different values of η (same was done for α and γ ,
though not shown here). The result is shown in Fig. 16. Reducing η (Fig. 16a) region
VI gets significantly larger. Slowing down the transition from R to S makes the
model closer to a SIRS system with delay (cf. [20, 21]) enhancing the occurrence of
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Fig. 16 Parametric portrait in β and ρ, for α = 0.2, γ = 0.3, and (a) η = 0.016; (b) η = 0.02;
(c) η = 0.024

oscillations. Moreover, the generalized Hopf point in Fig. 16b moves to the fourth
quadrant. In contrast, increasing η (Fig. 16c) region VI gets significantly smaller,
whereas the points GH, CP, BT move up along the bifurcation curves.

4 Discussion

In this chapter we have presented a mathematical model for transmission dynamics
with two nonlinear stages of contagion, applying analytical and numerical methods
to analyze its qualitative behavior. The two-stage contagion is combined with a
renewal of the susceptible compartment, modeled by (i) the waning of immunity
in inactive/resistant individuals and (ii) the fading of infection in those individuals
who are weakened after the first contact with the promoting/infected community.
This leads to rich dynamics, including bistability of equilibria or bistability of an
equilibrium and a periodic solution, discontinuous regime shifts through hysteresis
effects, and excitability. Thus, the multi-stage nature of social contagion processes
might explain some of the complex phenomena observed in social dynamics (see
e.g. the irregular [22] or periodic [23] outcomes in political elections, or the
emergence of new trends in the usage of social media [24]). In a previous study by
Guy Katriel [8] similar properties were determined for a two-stage contagion model
with demographic turnover. This lets us conjecture that the rich dynamics observed
in our work and in [8] is due to the coupling of a two-stage contagion process
with any (demographic or “immunological”) source of renewal of the susceptible
population. Despite of the analogies with Katriel’s work, the combination of waning
of immunity and fading of infection in our model leads to additional analytical
complexity. The analytical advantage of Katriel’s model was possibly due to the
choice of the birth rate in the S-compartment matching with the death rates of all
compartments. Katriel’s model shows also both backward and forward bifurcation,
and in the latter case it behaves like a one-stage contagion model for any choice
of β. In contrast, our model shows Hopf bifurcations, hence periodic solutions,
also in case of a forward bifurcation (cf. Fig. 7e). Single phenomena which can
be observed in our model have been previously found also for variations of the
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classical one-stage contagion models. For example SIRS models with delayed loss
of immunity [20] naturally show stable periodic solutions, whereas bistability of
equilibria was found e. g. in models with exogenous reinfection [14] or imperfect
vaccination [25].

In this work we have focused on the investigation of the qualitative properties
of a simple two-stage contagion model. We have numerically investigated the
parameter space, focusing in particular on the effects of the transmission rate (β)
and the probability of a perfect contact (ρ). Of course the study could be repeated
deriving the parametric portrait of the system (2) with respect to the other model
parameters as well. Moreover, we see three possible generalizations of our model:
(i) the assumption that β = β2 could be relaxed, and e.g. W -individuals might
be assumed to have a higher susceptibility than S-individuals; (ii) individuals in
the W -compartment could also be contagious (cf. also [26]); (iii) the model could
also include births and deaths, in addition to waning/fading processes. All these
variations would make the analytical investigations more challenging; however,
a similar numerical investigation as presented in this work could be performed.
Thinking of applications and comparison with data, the major limitation of our work
is due to the deterministic approach. Dividing a population into a few homogeneous
compartments, without taking into account interpersonal variability, is indeed a
major simplification of reality. Refining our approach, agent-based modeling [27]
and complex networks [28] could be used. In certain cases, previous works based
on these methods also included two-stage contagion [29, 30].

Appendix A

In the proof of Theorem 2.2 we referred to the following result by Castillo-Chavez
and Song [14] proved using center-manifold theory.

Theorem A.1 Let f ∈ C2(Rn × R,Rn). Consider the following general system of
ODEs with a parameter β:

dx

dt
= f (x, β). (A.1)

Without loss of generality assume that x0 = 0 is an equilibrium point of the system,
that is, f (0, β) = 0 for all β ∈ R. Assume the following:

• The linearization of the system (A.1) A := Dxf (0, 0) =
(
∂fi
∂xj
(0, 0)
)
has zero as

a simple eigenvalue and all other eigenvalues of A have negative real parts.
• The matrix A has a non-negative right eigenvector w and a left eigenvector v

each corresponding to the zero eigenvalue.
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Let fk be the k-th component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

b =
n∑

k,i=1

vkwi
∂2fk

∂xi∂β
(0, 0).

Then, the local dynamics of the system around 0 is completely determined by the
signs of a and b:

1. a > 0, b > 0. When β < 0 with |β| � 1, 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < β � 1, 0 is unstable and
there exists a negative and locally asymptotically stable equilibrium.

2. a < 0, b < 0. When β < 0 with |β| � 1, 0 is unstable; when 0 < β � 1, 0 is
locally asymptotically stable and there exists a positive unstable equilibrium.

3. a > 0, b < 0. When β < 0 with |β| � 1, 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; when 0 < β � 1, 0 is stable and a
positive unstable equilibrium appears.

4. a < 0, b > 0. When β changes from negative to positive, 0 changes its sta-
bility from stable to unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

In particular, if a > 0 and b > 0, a backward bifurcation occurs at β = 0, and if
a < 0 and b > 0, a forward bifurcation occurs at β = 0.

Remark A.1 Remark 1 in [14] suggests that if the equilibrium of interest in
Theorem A.1 is a non-negative equilibrium x0, then the requirement that w is non-
negative is not necessary. When some components in w are negative, one can still
apply Theorem A.1 provided that the j -th component of w is positive whenever the
j -th component of x0 is zero. If the j -th component of x0 is positive, then the j -th
component of w need not be positive.
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Dynamic Analysis of SLIR Model
Describing the Effectiveness of
Quarantine Against the Spread of
COVID-19

Omar Khyar and Karam Allali

1 Introduction

Mathematical models play an essential role to describe the dynamics of many
infectious diseases. The first models usually use three main populations that are
the susceptible S(t), the infectious I (t), and the removed individuals R(t) at a
specific time t . The basic SIR formulation is introduced in the pioneer work [1];
but, when an individual is incubated but still not yet infectious, another class should
be added; this class is called latent compartment noted by L(t). A mutation process
was observed in many infections such as tuberculosis [2], human immunodeficiency
virus [3], dengue fever [4], influenza [5], and other sexually transmitted diseases.
This phenomenon can result in the observation on two or more strains of the studied
pathogen. Hence, multi-strain model can better describe different type of diseases.

Recently, two-strain SLIR epidemic model has been tackled [6], the authors
consider two incidence rates, the first is bilinear while the second is non-monotonic.
More recently, the same problem with two strains is treated by choosing both
the incidences as non-monotonic [7]. The generalization of a multi-strain SLIR
epidemiological model with general incidence rates is studied in [8]; the authors
compare the numerical simulations with COVID-19 clinical data. In this work, we
continue the investigation of this last kind of problems by taking into consideration
the effect of quarantine measures on SLIR model with two non-monotonic incidence
rates. The two-strains SLIR epidemiological model that we consider is formulated
as follows:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= �− α(1 − u1)SI1

1 +mI 2
1

− β(1 − u2)SI2

1 + kI 2
2

− δS ,

dL1

dt
= α(1 − u1)SI1

1 +mI 2
1

− (γ1 + δ)L1 ,

dL2

dt
= β(1 − u2)SI2

1 + kI 2
2

− (γ2 + δ)L2 ,

dI1

dt
= γ1L1 − (μ1 + δ)I1 ,

dI2

dt
= γ2L2 − (μ2 + δ)I2 ,

dR

dt
= μ1I1 + μ2I2 − δR ,

(1)

with

S(0) ≥ 0, L1(0) ≥ 0, L2(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0.

This model contains six variables, that are, susceptible individuals (S), two cate-
gories of latent individuals: (L1) and (L2), two categories of infectious individuals:
(I1) and (I2), and removed individuals (R). The parameters of the model (1) are
described in Table 1 and the two-strain SLIR diagram is illustrated in Fig. 1; the

Table 1 Description of parameters of the model (1)

Parameters Description

� Recruitment rate

1/δ Average life expectancy of the population

α Infection rate of the strain 1

β Infection rate of the strain 2

1/μ1 Average infection period of strain 1

1/μ2 Average infection period of strain 2

1/γ1 The average latency period of strain 1

1/γ2 The average latency period of strain 2

m Parameter that measures the psychological or inhibitory effect of strain 1

k Parameter that measures the psychological or inhibitory effect of strain 2
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Λ δS

α(1 − u1)SI1
1 + mI21

L1(t)

δL1

γ1L1
I1(t)

δI1

L2(t)

δL2

β(1 − u2)SI2
1 + kI22

γ2L2

I2(t)

δI2

µ 1I1

µ 2I2

δR
S(t) R(t)

Fig. 1 The diagram of SLIR two-strain model

parameters are given in Table 1. The last two new parameters to the model u1 and
u2 represent the efficiency of quarantine in reducing the first strain infection and the
second strain infection, respectively.

The present work is organized as follows. In the next section, we will prove the
positivity and the boundedness results. In Sect. 3, we fulfilled the global analysis of
our model. In Sect. 4, we will give some results of the numerical simulations. Short
conclusion is given in the last section.

2 Positivity and Boundedness of Solutions

Since our problem is related to the population dynamics, we will prove that all model
variables are positive and bounded. First, we will assume that all the parameters in
our model are positive.

Proposition 2.1 For any positive initial conditions S(0),L1(0),L2(0), I1(0), I2(0),
R(0), the variables of the model (1) S(t), L1(t), L2(t), I1(t), I2(t), and R(t) will
remain positive for all t > 0.

Proof First, let

T = sup{τ ≥ 0 | ∀t, 0 ≤ t ≤ τ such that S(t) ≥ 0, L1(t) ≥ 0, L2(t) ≥ 0,

I1(t) ≥ 0, I2(t) ≥ 0 , R(t) ≥ 0}.

Let us now demonstrate that T = +∞.
Assume that 0 < T < +∞; by continuity, we will have S(T ) = 0 or L1(T ) = 0

or L2(T ) = 0 or I1(T ) = 0 or I2(T ) = 0 or R(T ) = 0. If S(T ) = 0 before the
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other variables L1, L2, I1, I2, R, become zero. Therefore

dS(T )

dt
= lim
t→T −

S(T )− S(t)
T − t = lim

t→T −
−S(t)
T − t ≤ 0.

From the first equation of the system (1), we have

dS(T )

dt
= � > 0.

If L1(T ) = 0 before S, L2, I1, I2, and R. Then

dL1(T )

dt
= lim
t→T −

L1(T )− L1(t)

T − t = lim
t→T −

−L1(t)

T − t ≤ 0.

From the second equation of the system (1) with the fact L1(T ) = 0, which gives

dL1(T )

dt
= α(1 − u1)SI1

1 +mI 2
1

.

Since u1 and u2 reflect the effectiveness of quarantine, we have ui ∈ [0, 1], i = 1, 2.
Therefore, α(1 − u1) and m are positive, and we have

dL1(T )

dt
> 0.

Also, if I1 = 0 before S, L1, L2, I2, R become zero, then

dI1(T )

dt
= lim
t→T −

I1(T )− I1(t)
T − t = lim

t→T −
−I1(t)
T − t ≤ 0.

But from the fourth equation of the system (1) with I1(T ) = 0, we will have

dI1(T )

dt
= γ1L1.

Since γ1 > 0, we have

dI1(T )

dt
= γ1L1 > 0.

Similar proofs for L2(t), I2(t), and R(t).
We conclude that T could not be finite; this completes the proof.

Proposition 2.2 The biologically feasible region is represented by
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H = {(S, L1, L2, I1, I2, R) ∈ R
6+ such that S + L1 + L2 + I1 + I2 + R ≤ �

δ
}

is positively invariant.

Proof Let the total acting population

N(t) = S(t)+ L1(t)+ L2(t)+ I1(t)+ I2(t)+ R(t).

By adding all equations in system (1), we will have

dN(t)

dt
= �− δN(t),

therefore,

N(t) = �

δ
+ Ce−δt , (2)

when t = 0, we will have

N(0) = �

δ
+ C.

Therefore

N(t) = �

δ
+ (N(0)− �

δ
)e−δt ,

hence,

lim
t→+∞N(t) =

�

δ
.

Consequently, we conclude that H is positively invariant which completes the proof.

3 Analysis of the Model

This section is devoted to the equilibria global stability by using some suitable
Lyapunov functionals [9, 10]. Since the first five equations of the system (1) are
not dependent of R and since the total population verifies Eq. (2), thus we can omit
the sixth equation and the system (1) can be reduced to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= �− α(1 − u1)SI1

1 +mI 2
1

− β(1 − u2)SI2

1 + kI 2
2

− δS ,

dL1

dt
= α(1 − u1)SI1

1 +mI 2
1

− (γ1 + δ)L1 ,

dL2

dt
= β(1 − u2)SI2

1 + kI 2
2

− (γ2 + δ)L2 ,

dI1

dt
= γ1L1 − (μ1 + δ)I1 ,

dI2

dt
= γ2L2 − (μ2 + δ)I2 ,

(3)

with

R = N − S − L1 − L2 − I1 − I2.

3.1 The Basic Reproduction Number

It is well known that the basic reproduction number can be defined as the average
number of new cases of an infection caused by one infected individual, in a
population consisting of susceptible individuals only. We use the next generation
matrix FV −1 to calculate the basic reproduction number R0. Indeed, the formula
that gives us the basic reproduction number is R0 = ρ(FV −1), where ρ stands for
the spectral radius, F is the nonnegative matrix of new infection cases, and V is the
matrix of the transition infections associated with model (3).

F =

⎛
⎜⎜⎜⎜⎜⎝

0 0
α(1 − u1)�

δ
0

0 0 0
β(1 − u2)�

δ
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
, V =

⎛
⎜⎜⎝
γ1 + δ 0 0 0

0 γ2 + δ 0 0
−γ1 0 μ1 + δ 0

0 −γ2 0 μ2 + δ

⎞
⎟⎟⎠ .

Then,
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FV −1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α(1 − u1)�γ1

δ(γ1 + δ)(μ1 + δ) 0
α(1 − u1)�

δ(μ1 + δ) 0

0
β(1 − u2)�γ2

δ(γ2 + δ)(μ2 + δ) 0
β(1 − u2)�

δ(μ1 + δ)
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

This implies that

R0 = max{R1
0, R

2
0},

with

R1
0 = α(1 − u1)�γ1

δ(γ1 + δ)(μ1 + δ)
and

R2
0 = β(1 − u2)�γ2

δ(γ2 + δ)(μ2 + δ) .

Denoting

a = γ1 + δ, b = γ2 + δ, c = μ1 + δ, e = μ2 + δ,

then,

R1
0 = α(1 − u1)�γ1

δac

and

R2
0 = β(1 − u2)�γ2

δbe
.

3.2 Steady States

The model (3) has four equilibrium points, one called disease-free equilibrium and
the others called endemic equilibria given as follows:

• The disease-free equilibrium Ef =
(
�

δ
, 0, 0, 0, 0

)
.

• The strain 1 endemic equilibrium Es1 = (S∗s1 , L∗
1,s1 , L

∗
2,s1 , I

∗
1,s1 , I

∗
2,s1

)
,

where
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S∗s1 = ac

α(1 − u1)γ1
(R1

0 − α(1 − u1)

δ
I ∗1,s1) , L

∗
1,s1 = c

γ1
I ∗1,s1 ,

I ∗1,s1 = 2δ(R1
0 − 1)√

α(1 − u1)2 + 4mδ2(R1
0 − 1)+ α(1 − u1)

,

I ∗2,s1 = 0 , L∗
2,s1 = 0 .

• The strain 2 endemic equilibrium Es2 = (S∗s2 , L∗
1,s2 , L

∗
2,s2 , I

∗
1,s2 , I

∗
2,s2

)
,

where

S∗s2 = be

β(1 − u2)γ2
(R2

0 − β(1 − u2)

δ
I ∗2,s2) , L

∗
2,s2 = e

γ2
I ∗2,s2 ,

I ∗2,s2 = 2δ(R2
0 − 1)√

β(1 − u2)2 + 4kδ2(R2
0 − 1)+ β(1 − u2)

,

I ∗1,s2 = 0 , L∗
1,s2 = 0 .

• The endemic equilibrium Et =
(
S∗t , L∗

1,t , L
∗
2,t , I

∗
1,t , I

∗
2,t

)
,

where

S∗t = �

δ
(1 − α(1 − u1)I

∗
1,t

δR1
0

− β(1 − u2)I
∗
2,t

δR2
0

) ,

L∗
1,t =

c

γ1
I ∗1,t , L∗

2,t =
e

γ2
I ∗2,t ,

I ∗1,t =
√

1

m
(R1

0 S
∗
t

δ

�
− 1) , I ∗2,t =

√
1

k
(R2

0 S
∗
t

δ

�
− 1) .

Remark 3.1

(1) From the components of the equilibrium point Es1 (respectively, Es2 ), we
conclude that this strain 1 endemic equilibrium (respectively strain 2 endemic
equilibrium) exists when R1

0 > 1 (respectively, R2
0 > 1).

(2) From the last equilibrium point Et components, we can conclude that this
endemic equilibrium exists when R1

0 > 1 and R2
0 > 1.

3.3 Global Stability

Theorem 1 If R1
0 ≤ 1 and R2

0 ≤ 1. Then the disease-free equilibrium point Ef is
globally asymptotically stable.

Proof First, we consider the following Lyapunov function in R
5+:
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Lf (S, L1, L2, I1, I2) = S∗
(
S

S∗
− ln

(
S

S∗

)
− 1

)
+ L1 + L2 + a

γ1
I1 + b

γ2
I2.

The time derivative is given by

L̇f (S, L1, L2, I1, I2)

= Ṡ − S

S∗
Ṡ + L̇1 + L̇2 + a

γ1
İ1 + b

γ2
İ2,

= δS∗0
(

2 − S∗0
S

− S

S∗0

)
+ α(1 − u1)S

∗
0 I1

1 +mI 2
1

+ β(1 − u2)S
∗
0 I2

1 + kI 2
2

− ac

γ1
I1 − be

γ2
I2,

≤ δS∗
(

2 − S∗0
S

− S

S∗0

)
+ I1
(
α(1 − u1)S

∗
0 − ac

γ1

)
+ I2
(
β(1 − u2)S

∗
0 − be

γ2

)
,

≤ δS∗
(

2 − S∗0
S

− S

S∗0

)
+ ac

γ1
I1(R

1
0 − 1)+ be

γ2
I2(R

2
0 − 1),

since the arithmetic mean is greater than or equal to the geometric mean, it follows

2 − S∗0
S

− S

S∗0
≤ 0.

Therefore when R1
0 ≤ 1 and R2

0 ≤ 1, we will have L̇f ≤ 0, then the disease-
free equilibrium point Ef is globally asymptotically stable. In order to establish
the global stability of the endemic steady state Es1 , Es2 , and Est , we will need the
following numbers:

Rm = �

δ

√
m

Rk = �

δ

√
k.

We call Rm (respectively Rk) the strain 1 inhibitory effect reproduction number
(respectively the strain 2 inhibitory effect reproduction number).

Theorem 2 If R2
0 ≤ 1 < R1

0 and Rm ≤ 1. Then the strain 1 endemic equilibrium
point Es1 is globally asymptotically stable.
Proof First, we consider the Lyapunov function L1 defined by

L1(S, L1, L2, I1, I2) =S∗s1
(
S

S∗s1
− ln

(
S

S∗s1

)
− 1

)
+ L∗

1

(
L1

L∗
1,s1

− ln

(
L1

L∗
1,s1

)
− 1

)
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+ L2 + a

γ1
I ∗1,s1

(
I1

I ∗1,s1
− ln

(
I1

I ∗1,s1

)
− 1

)
+ b

γ2
I2.

The time derivative is given by

L̇1(S, L1, L2, I1, I2)

=
(

1 − S∗s1
S

)(
�− α(1 − u1)SI1

1 +mI 2
1

− β(1 − u2)SI2

1 + kI 2
2

− δS
)

+
(

1 − L∗
1,s1

L1

)(
α(1 − u1)SI1

1 +mI 2
1

− aL1

)
+ β(1 − u2)SI2

1 + kI 2
2

− bL2

+ a

γ1
(γ1L1 − cI1)

(
1 − I ∗1,s1

I1

)
+ b

γ2
(γ2L2 − eI2) .

We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = δS∗s1 + α(1 − u1)S
∗
s1
I ∗1,s1

1 +mI ∗2

1

,

α(1 − u1)S
∗
s1
I ∗1,s1

1 +mI ∗2

1,s1

= aL∗
1,s1 ,

L∗
1,s1

I ∗1,s1
= γ1

c
.

Therefore

L̇1(S, L1, L2, I1, I2)

= δS∗s1

(
2 − S∗s1

S
− S

S∗s1

)
+ 3aL∗

1,s1 + α(1 − u1)S
∗
s1
I1

1 +mI 2
1

+ β(1 − u2)S
∗
s1
I2

1 + kI 2
2

− α(1 − u1)SI1L
∗
1,s1

L1(1 +mI 2
1 )

− α(1 − u1)S
∗
s1

1 +mI ∗2

1,s1

S∗s1I
∗
1,s1

S
− α(1 − u1)S

∗
s1
I1

1 +mI ∗2

1,s1

− aL1I1

I1
− be

γ2
I2.

Then,

L̇1(S, L1, L2, I1, I2)
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= aL∗
1,s1

(
4 − S∗s1

S
− I ∗1,s1

I1

L1

L∗
1,s1

− S

S∗s1

L∗
1,s1

L1

I1

I ∗1,s1

1 +mI ∗2

1

1 +mI 2
1

− 1 +mI 2
1

1 +mI ∗2

1

)

+ δS∗s1
(

2 − S∗s1
S

− S

S∗s1

)
+ β(1 − u2)I2

(
S∗s1

1 + kI 2
2

− be

β(1 − u2)γ2

)

+ α(1 − u1)S
∗
s1
I ∗1,s1

1 +mI ∗2

1,s1

(
1 +mI 2

1

1 +mI ∗2

1

+ 1 +mI ∗2

1

1 +mI 2
1

I1

I ∗1,s1
− I1

I ∗1,s1
− 1

)
.

Therefore,

L̇1(S, L1, L2, I1, I2)

= aL∗
1,s1

(
4 − S∗s1

S
− I ∗1,s1

I1

L1

L∗
1,s1

− S

S∗s1

L∗
1,s1

L1

I1

I ∗1,s1

1 +mI ∗2

1,s1

1 +mI 2
1

− 1 +mI 2
1

1 +mI ∗2

1,s1

)

+ δS∗s1
(

2 − S∗s1
S

− S

S∗s1

)
+ β(1 − u2)I2

(
S∗s1

1 + kI 2
2

− be

β(1 − u2)γ2

)

− amc

γ1

(
1 −mI1I ∗1,s1

) (I + I ∗1,s1)(I − I ∗1,s1)2
(1 +mI ∗2

1,s1
)(1 +mI 2

1 )
.

By the relation between arithmetic and geometric means we have

2 − S∗s1
S

− S

S∗s1
≤ 0

and

4 − S∗s1
S

− I ∗1,s1
I1

L1

L∗
1,s1

− S

S∗s1

L∗
1,s1

L1

I1

I ∗1,s1

1 +mI ∗2

1,s1

1 +mI 2
1

− 1 +mI 2
1

1 +mI ∗2

1,s1

≤ 0.

If R2
0 ≤ 1. Then

S∗s1
1 + kI 2

2

≤ be

β(1 − u2)γ2
.

Since Rm ≤ 1, we have that m(�
δ
)2 ≤ 1

which implies, 1 −mI1I ∗1,s1 ≥ 0
Consequently,

L̇1 ≤ 0.
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We conclude that the point Es1 is globally asymptotically stable when R2
0 ≤ 1,

1 < R1
0, and Rm ≤ 1.

Theorem 3 If R1
0 ≤ 1 < R2

0 and Rk ≤ 1. Then the strain 2 endemic equilibrium
point Es2 is globally asymptotically stable.
Proof Let us consider the following Lyapunov function:

L2(S, L1, L2, I1, I2)

= S∗s2
(
S

S∗s2
− ln

(
S

S∗s2

)
− 1

)
+ L1 + L∗

2

(
L2

L∗
2
− ln

(
L2

L∗
2

)
− 1

)

+ a

γ1
I1 + b

γ2
I ∗2,2

(
I2

I ∗2,2
− ln

(
I2

I ∗2,s2

)
− 1

)
.

It easy to verify that

L̇2(S, L1, L2, I1, I2)

=
(

1 − S∗s2
S

)(
�− α(1 − u1)SI1

1 +mI 2
1

− β(1 − u2)SI2

1 + kI 2
2

− δS
)

+
(

1 − L∗
2

L2

)(
β(1 − u2)SI2

1 + kI 2
2

− bL2

)
+
(
α(1 − u1)SI1

1 +mI 2
1

− aL1

)

+ b

γ2
(γ2L2 − eI2)

(
1 − I ∗2,s2

I2

)
+ a

γa
(γ1L1 − cI1).

It is easy to see that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = δS∗s2 + β(1 − u2)S
∗
s2
I ∗2,s2

1 + kI ∗2

2,s2

β(1 − u2)S
∗
s2
I ∗2,s2

1 + kI ∗2

2,s2

= bL∗
2,s2 ,

L∗
2,s2

I ∗2,s2
= γ2

e
.

We have

L̇2(S, L1, L2, I1, I2)
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= δS∗s2(2 − S∗s2
S

− S

S∗s2
)+ 3bL∗

2,s2 + β(1 − u2)S
∗
s2
I2

1 + kI 2
2

+ α(1 − u1)S
∗
s2
I2

1 +mI 2
1

− β(1 − u2)SI2L
∗
2

L2(1 + kI 2
2 )

− β(1 − u2)S
∗
s2

1 + kI ∗2

2

.
S∗s2I

∗
2,s2

S

− β(1 − u2)S
∗
s2
I2

1 + kI ∗2

2

− bL2I2

I2
− ac

γ1
I1.

Then,

L̇2(S, L1, L2, I1, I2) = δS∗s2
(

2 − S∗s2
S

− S

S∗s2

)
+ α(1 − u1)S

∗
s2
I1

1 +mI 2
1

− ac

γ1
I1

+ bL∗
2,s2

(
3 − S∗s2

S
− I ∗2,s2

I2

L2

L∗
2,s2

− S

S∗s2

L∗
2,s2

L2

I2

I ∗2,s2

)

+ β(1 − u2)S
∗
s2
I ∗2,s2

1 + kI ∗2

2,s2

S

S∗s2

L∗
2,s2

L2

I2

I ∗2,s2
+ β(1 − u2)S

∗
s2
I2

1 + kI 2
2

− β(1 − u2)SI2

1 + kI 2
2

L∗
2,s2

L2
− be

γ2
I2.

Therefore

L̇2(S, L1, L2, I1, I2)

≤ δS∗s2
(

2 − S∗s2
S

− S

S∗s2

)
+
(
α(1 − u1)S

∗
s2

1 +mI 2
1

− ac

γ1

)
I1

+ be

γ2
I2

(
S

S∗s2

L∗
2,s2

L2
− 1

)
+ β(1 − u2)S

∗
s2
I2

1 + kI 2
2

(
1 − S

S∗s2

L∗
2,s2

L2

)

+ bL∗
2,s2

(
3 − S∗s2

S
− I ∗2,s2

I2

L2

L∗
2,s2

− S

S∗s2

L∗
2,s2

L2

I2

I ∗2,s2

)
.

The hypothesis (H2) implies that

be

γ2
I2

(
S

S∗s2

L∗
2,s2

L2
− 1

)
+ β(1 − u2)S

∗
s2
I2

1 + kI 2
2

(
1 − S

S∗s2

L∗
2,s2

L2

)
≤ 0.

Then,
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L̇2(S, L1, L2, I1, I2) ≤ δS∗s2
(

2 − S∗s2
S

− S

S∗s2

)
+
(
α(1 − u1)S

∗
s2

1 +mI 2
1

− ac

γ1

)
I1

+ bL∗
2,s2

(
3 − S∗s2

S
− I ∗2,s2

I2

L2

L∗
2,s2

− S

S∗s2

L∗
2,s2

L2

I2

I ∗2,s2

)
,

hence,

L̇2(S, L1, L2, I1, I2) ≤ δS∗s2
(

2 − S∗s2
S

− S

S∗s2

)
+
(
α(1 − u1)S

∗
s2

− ac

γ1

)
I1

+ bL∗
2,s2

(
3 − S∗s2

S
− I ∗2,s2

I2

L2

L∗
2,s2

− S

S∗s2

L∗
2,s2

L2

I2

I ∗2,s2

)
.

If R1
0 ≤ 1. Then

α(1 − u1)S
∗
s2

≤ ac

γ1
.

By the relation between arithmetic and geometric means we have

2 − S∗s2
S

− S

S∗s2
≤ 0

and

3 − S∗s2
S

− I ∗2,s2
I2

L2

L∗
2,s2

− S

S∗s2

L∗
2,s2

L2

I2

I ∗2,s2
≤ 0.

Then

L̇2 ≤ 0.

We conclude that the point Es2 is globally asymptotically stable when R1
0 ≤ 1 <

R2
0.

Theorem 4 If R1
0 > 1, R2

0 > 1, Rm ≤ 1, and Rk ≤ 1. Then the endemic
equilibrium point Est is globally asymptotically stable.
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Proof For the proof of this last result it will be enough to consider the following
Lyapunov function L3:

L3(S, L1, L2, I1, I2)

= S∗t
(
S

S∗t
− ln

(
S

S∗t

)
− 1

)
+ L∗

1,t

(
L1

L∗
1,t

− ln

(
L1

L∗
1,t

)
− 1

)

+ L∗
2,t

(
L2

L∗
2,t

− ln

(
L2

L∗
2,t

)
− 1

)
+ a

γa
I ∗1,t

(
I1

I ∗1,t
− ln

(
I1

I ∗1,t

)
− 1

)

+ b

γ2
I ∗2,t

(
I2

I ∗2,t
− ln

(
I2

I ∗2,t

)
− 1

)
.

4 Numerical Simulations

In this section, we will perform some numerical simulations in order to check the
impact of quarantine measures in reducing the spread of COVID-19. Indeed, Fig. 2
shows the evolution of infection for λ = 1, α = 0.9, β = 1.45, γ1 = 0.5, γ2 = 0.3,
μ1 = 0.15, μ2 = 0.15, δ = 0.2, m = 1.75, k = 2.85 and different values of u1 and
u2.

In the case when no quarantine strategy is undertaken, i.e. u1 = u2 = 0, we
observe that the disease persists and the infected cases stay at very high level. When
the effectiveness of the quarantine measures is increased, u1 = u2 = 0.25 or u1 =
u2 = 0.75, a significant reduce of the infection cases is observed; we can also
observe a considerable reduce of the latent individuals. Finally, when the quarantine
measures are fully established, i.e. u1 = u2 = 1, an interesting result is observed.
In this last case, the disease dies out, which is represented by the vanishing of all
strains infected individuals and also the latent ones. The susceptible individuals will
reach in this situation their maximal level. We conclude that the quarantine measures
reduce significantly the spread of COVID-19.

5 Conclusion

Modeling epidemiological phenomena makes it possible to better understand several
mechanisms that influence the spread of many diseases. In this work, we have stud-
ied the effectiveness of quarantine against the spread of COVID-19. Indeed, we have
established the problem via six-compartment SLIR model, in which the dynamics
of the COVID-19 epidemic is modeled by a system of six nonlinear differential
equations, describing the interactions between susceptible, exposed, infected, and
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Fig. 2 The effect of quarantine strategy on the SLIR model dynamics

healed. First, we have calculated the basic reproduction number depending on the
quarantine efficacy. Next, we have given the disease-free equilibrium and three
other endemic equilibria, and then we have discussed, according to the value of
the basic reproduction number, the global stability of each equilibrium. Numerical
simulations are presented in order to discuss the effectiveness of quarantine
measures in reducing the spread of COVID-19 pandemic.
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Non-FSI 3D Hemodynamic Simulations
in Time-Dependent Domains

Y. V. Vassilevski, O. N. Bogdanov, X. V. Chesnokova, A. A. Danilov,
T. K. Dobroserdova, D. D. Dobrovolsky, and A. V. Lozovskiy

1 Introduction

Computational analysis of functionality of the cardiovascular system is based on
equations describing incompressible fluid flows. Blood flows interact inevitably
with surrounding elastic tissues. The most general approach to hemodynamic
simulations is the solution of fluid–structure interaction (FSI) problems [1–4]. The
numerical solution of 3D FSI problems is computationally expensive, is time-
consuming, and requires usage of parallel computers. In addition, FSI simulations
are hard to personalize since elastic properties of vessels cannot be retrieved in vivo
with appropriate accuracy. To overcome these difficulties, reduced hemodynamic
models have been developed in the last few decades [5, 6]. The reduced models,
however, cannot represent 3D flows and thus cannot provide important characteris-
tics such as vorticity, wall shear stress, etc.

Several applications allow us to simulate 3D blood flows with less computational
cost than the numerical solution of the 3D FSI problems. In this paper we address
two such applications: blood flow in the left ventricle of a patient, and blood flow
in the aortic bifurcation. In the first case the input data is dynamic ceCT medical
images [7]; in the second case the input corresponds to a benchmark [8]. We
consider mathematical formulations which can replace FSI formulations and still
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provide feasible 3D solutions. For theoretical study and numerical details we refer
to [1, 7, 9] for the first application and [8, 10] for the second application.

The paper is organized as follows. In Sect. 2 we pose the 3D FSI problem
in a monolithic setting. In Sect. 3 we discuss the incompressible Navier–Stokes
equations for flows in a time-dependent domain whose walls are moving (e.g. heart
ventricles). In Sect. 4 we introduce a multiscale model for blood flows in the aortic
bifurcation and compare it with the reference FSI solution.

2 Fluid–Structure Interaction

In the fluid–structure interaction setting, a time-dependent domain �(t) ⊂ R
3

is partitioned into fluid subdomain �f (t) and structure subdomain �s(t) with
interface �f s(t) := ∂�f (t) ∩ ∂�s(t) where the fluid–structure interaction occurs.
The reference domains

�f = �f (0), �s = �s(0)

are mapped by a deformation

ξ s : �s × [0, t] →
⋃

t∈[0,T ]
�s(t), ξf : �f × [0, t] →

⋃
t∈[0,T ]

�f (t).

For the structure, the deformation is naturally related to the displacement us via
us(x, t) := ξ s(x, t) − x and velocity vs := ∂tus = ∂tξ

s(x, t). For the fluid, the
deformation is artificial and is defined by a continuous extension uf := Ext(us) of
the displacement field us to �f :

ξf (x, t) = uf + x in �f × [0, t], ξf = ξ s on �f s × [0, t],

where �f s := �f s(0). There exist methods providing a mapping ξf [1]. Of course,
ξf is not Lagrangian since it does not follow fluid particles trajectories.

In contrast to equations for the structure, equations for the fluid deal with the
velocity vector field vf and the pressure scalar field pf given in the current domain
�f (t) for t ∈ [0, T ]. We set ps = 0 in �s and define the global pressure variable
p = pf,s . For simplicity, we shall exploit the notations in the current configuration
as vf (x, t) := vf (ξf (x, t), t), pf (x, t) := pf (ξf (x, t), t).

The monolithic approach [11] sets equations for displacements u = uf,s and
velocities v = vf,s both in �f and �s . The globally defined deformation gradient
F = I + ∇u and its Jacobian J := det(F) contribute to each dynamic equation in
the monolithic method:
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∂v
∂t

=

⎧⎪⎨
⎪⎩

ρ−1
s div (J (σ s ◦ ξ s)F−T ) in �s,

(Jρf )
−1div (J (σ f ◦ ξf )F−T )− (∇v)

(
F
−1
(

v − ∂u
∂t

))
in �f .

(1)
Here ρs and ρf are the solid and fluid densities, and σ s and σ f are the Cauchy
stress tensors. Note that the dynamics of structure is given in the Lagrangian
coordinates, whereas the dynamics of fluid is given in the Arbitrary Lagrangian–
Eulerian framework. The kinematic equation in the structure

∂u
∂t

= v in �s (2)

and incompressibility constraint in the fluid

div (JF−1v) = 0 in �f (3)

complete the system of the monolithic approach equations.
The above equations are complemented with initial conditions

u(x, 0) = 0, v(x, 0) = v0(x) in �(0) (4)

and appropriate boundary conditions on the outer boundary. On the fluid–structure
interface no-slip no-penetration of fluid and the balance of normal stresses are
imposed

vs = vf and σ fF
−T n = σ sF

−T n on �f s, (5)

where n is the unit normal vector on �f s .
The solution of the FSI problem implies finding pressure p in fluid and

continuous velocity and displacement fields v, u in �̄f ∪ �̄s satisfying the set
of Eqs. (1)–(5) and the boundary conditions. It is assumed that an extension rule
uf := Ext(us) is given.

It remains to define the Cauchy tensors for the fluid and the structure. They
depend on chosen rheological model. For instance, for Newtonian fluid with
viscosity μf

σ f = −pf I+ μf (∇vF−1 + F
−T (∇v)T ) (6)

and for Saint Venant–Kirchhoff material of the structure with Lame constants λs, μs

σ s = 1

J
F(λs tr(E)I+ 2μsE)F

T , (7)

where E = 1
2

(
F
T
F− I
)

is the Lagrange–Green strain tensor.
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The common approach to the solution of the FSI problem in domains with
complex geometry is the finite element method on unstructured tetrahedral meshes
since these meshes can be generated in any domain, and may be locally refined.
Fractional time stepping is computationally cheaper than implicit schemes, but
imposes restrictions on the time step. Implicit and semi-implicit schemes may afford
large time steps [1, 11–13]. In any case, the solution of a 3D FSI problem is compu-
tationally expensive: passing 3D benchmarks may require hundreds and thousands
of core-hours. Moreover, patient-specific simulations require personalized elastic
models of wall tissues which cannot be retrieved in clinical practice.

3 Navier–Stokes Equations in Time-Dependent Domain

Let the computational domain contain only fluid and the mapping �(t) = ξ(�0 ×
{t}) be given, the deformation gradient F = ∇xξ and its Jacobian J = det(F) satisfy

inf
Q
J ≥ cJ > 0, sup

Q

(‖F‖F + ‖F−1‖F ) ≤ CF , with ‖F‖F := tr(FFT )
1
2 ,

(8)
whereQ := �0×[0, T ] denotes the space-time cylinder and CF , cJ denote positive
constants.

The dynamics of incompressible Newtonian fluid is described by the fluid subset
of Eqs. (1)–(5) for velocity v and pressure p defined inQ

⎧⎪⎨
⎪⎩
∂v
∂t

− (Jρf )−1div (J (σ f ◦ ξ)F−T )+ (∇v)
(
F
−1
(

v − ∂ξ

∂t

))
= f

div (JF−1v) = 0

in Q,

(9)
with body forces f (e.g. gravity) and the initial condition v(x, 0) = v0(x) in �0.
The fluid is assumed to be Newtonian (6) although a nonlinear rheological law is
also applicable.

The boundary conditions depend on physical characteristics of boundary parts:
on the wall part one imposes no-penetration no-slip or slip condition for velocity, on
the inlet/outlet one may impose the free flow condition involving the Cauchy tensor;
for details we refer to [1, 9].

An approximate solution of (9) may be obtained by the finite element method on
a tetrahedral mesh in �0. A popular choice is P2-P1 Taylor–Hood elements (piece-
wise quadratic continuous velocities and piecewise linear continuous pressures).
According to the stability and convergence analysis [9], the Taylor–Hood elements
and the backward Euler discretization in time (with linearized inertia term) provide
the optimal error bound O(max{h2;�t}) under feasible assumptions. The error
norm is the same for the stability and the convergence estimates and is typical for
the numerical analysis of the finite element solution of the Navier–Stokes equations.
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The time step �t is not limited by the CFL restriction. The second order in time
approximation can be achieved by using the second order backward differences
in time instead of the backward Euler time stepping. Numerical tests confirm the
second order (in space) convergence of the Taylor–Hood solution to an analytical
solution [9].

In practice, the mapping ξ may be defined by a sequence of topologically
invariant meshes which differ only in nodes positions. The first mesh in the sequence
is referred to as the reference mesh at time t = 0 with reference mesh nodes. Let
ξ(x, tk) be the position of a reference mesh node with position x at time t = tk .
We define the mapping ξ k as the continuous piecewise linear vector function with
values ξ(x, t) at mesh nodes for t = tk , and define the function ξ(x, t) as the linear
interpolation between mappings ξ k−1 and ξ k for tk−1 < t < tk . Such continuous
in space and time piecewise linear in mesh cells and time intervals mapping is
an approximation of an unknown smooth mapping ξ contributing an additional
modelling error. However, this error is small and does not pollute the solution
essentially. The approach was successfully applied to simulation of 3D blood flow
in the left ventricle of a patient [1, 7]. Figure 1 demonstrates the computational
tetrahedral mesh and computed blood velocities at two instants of the systole.

If the mapping ξ is reconstructed from medical images, no-penetration no-slip
condition requires both normal and tangential components of the wall velocity. The
normal velocity may be recovered from any dynamic sequence of medical images
by v� = n · (ξ t ◦ ξ−1), whereas the tangential velocity needs special treatment of
the images, e.g. speckle tracking.

Fig. 1 Computational mesh for the left ventricle (top), blood velocities at two instants of the
systole (bottom left, bottom right)



266 Y. V. Vassilevski et al.

4 Multiscale Hemodynamic Model in Compliant Bifurcations

It is known [14] that pulsatile flows in vessels with rigid and compliant walls differs
considerably. One cannot use the solution of the Navier–Stokes equations as an
approximation to the solution of the FSI problem: flow rates and pressures are
essentially different even for a straight tube. However, in case of compliant vessel
bifurcation, one can use the Navier–Stokes equations in a domain with a rigid wall
provided that the domain is a vicinity of the bifurcation and the 3D Navier–Stokes
equations are coupled to 1D and 0D reduced hemodynamic models in a multiscale
hemodynamic model [10].

The 3D Navier–Stokes equations in a short bifurcation domain�with rigid walls
are reduced to

⎧⎪⎨
⎪⎩
∂v
∂t

− ρ−1
f div σ f + (∇v)v = f

div v = 0
in �, (10)

with the initial condition v(x, 0) = v0(x), no-slip boundary condition on the rigid
wall, and interface boundary conditions on the inlet and two outlets. The latter
conditions couple (10) with a 0D hydraulic model of an absorber which mimics
an elastic sphere �0D filled with fluid. The parameters of the absorber model are
volume V (t) and variable p0D(t) denoting the difference between fluid and external
pressures. The kinematic equation for the elastic sphere filled with fluid is

I
d2V

dt2
+ R0

dV

dt
+ V − V0

C
= p0D, (11)

where V0 is the volume at rest under p0D = 0; I ,C,R0 are inertia, expansibility, and
resistance parameters of the sphere. The 0D absorber model mimics the compliance
of the original compliant 3D bifurcation and interfaces the 3D Navier–Stokes
equations in rigid walls from one side and 1D hemodynamic equations in the
branches of the bifurcation, from the other side.

The 1D equations represent a reduced model for pulsatile flow in tubes with
elastic walls. They are able to reproduce the pulse wave propagation under
assumption of small ratio of tube diameter to its length. These equations stem from
the mass and momentum conservation laws:

∂A/∂t + ∂(Av) /∂x = 0, (12)

∂v/∂t + ∂
(
v2/2 + p/ρb

)
/∂x = fv, (13)

where x is the coordinate along the tube, A(t, x) is the cross-section area of the
tube, v(t, x) and p are the averaged over the cross-section linear velocity and
fluid pressure, ρb is the fluid density, fv = −2(n + 2)μbπvA−1ρ−1

b is the flow
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deceleration friction term. The latter term is derived under assumption of the
axisymmetric velocity profile [8]. The third equation of the 1D reduced model
incorporates elastic properties of the tube wall via pressure to cross-section area
relationship p(A)

p = pd + βA−1
d (

√
A−√Ad), β = 4

√
πEh/3, (14)

whereAd is the diastolic cross-sectional area, pd = 9.5 kPa is the diastolic pressure,
E and h are the Young’s modulus and thickness of the wall, respectively. For a
review of different variants of (14) we refer to [6, 15].

The coupling equations at the 1D-0D and 3D-0D interfaces are

dV
dt

= Q1D −Q3D, conservation of mass
p − p0D = R1DODQ1D, Poiseuille law
p0D − p = R0D3DQ3D, Poiseuille law

(15)

where Q1D = Av is the 1D fluid flux, Q3D = − ∫
�

v · nds is the 3D fluid
flux through inlet/outlet from �0D to �3D , R1D0D and R0D3D are the resistance
coefficients. Positive parameters R0, R1D0D and R0D3D are shown to produce
dissipation in the cumulative energy balance of the complete 1D–0D–3D system
[16].

For numerical examination, we consider an idealized model of the aortic bifur-
cation [8]. The abdominal aorta is represented by the inlet cylinder �a with length
La = 8.6 cm, radius ra = 0.86 cm, diastolic cross-sectional area Aa = 1.8062 cm2,
wall thickness ha = 1.032 mm, Young’s modulus Ea = 500 kPa, density ρw =
1 g/cm3. The iliac arteries are represented by two equal outlet cylinders with length
Li = 8.5 cm, radius ri = 0.60cm, diastolic cross-sectional area Ai = 0.9479 cm2,
wall thickness hi = 0.72 mm, Young’s modulusEi = 700 kPa, and the same density
ρw = 1 g/cm3. The blood with viscosity μb = 4 mPa s, density ρb = 1060 kg/m3,
mean flow rate Q̄a = 0.4791 l/min, and pulsatile velocity profile at the inlet
v(ξ, t) = v(t)n−1(n + 2)[1 − (ξr−1)n], where r is the lumen radius, ξ is the
radial coordinate, n = 9 is the polynomial order providing a good approximation of
experimentally measured profile, v(t) is a given axial blood flow velocity averaged
over the cross-section [8]. Each iliac cylinder is coupled with a three-element 0D
Windkessel model [10].

The numerical solution of the 1D equation is based on the grid-characteristic
method [1, 17, 18]. The numerical solution of the 3D Navier–Stokes equations
is based on the P2-P1 Taylor–Hood finite elements and the backward Euler dis-
cretization in time (with linearized inertia term) on a tetrahedral mesh in bifurcation
domain �. Coupling between the 1D,0D,3D models is achieved via iterations
for (15) at the interfaces.

Table 1 presents the average relative error avg% and the maximum relative error
max% for the flux and the pressure. The reference solution is provided by the 3D
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Table 1 Error at the iliac arteries junction: flow rate and pressure computed by the numerical
solutions of the Navier–Stokes equations in rigid walls and the multiscale method

Flux Pressure

Error in method avg% max% avg% max%

NSE with rigid walls 9.15 30.02 1.41 8.31

Multiscale 1.15 4.49 2.02 3.48

FSI equations. The error produced by the Navier–Stokes equations in rigid walls is
prohibitively large.

Acknowledgments The work has been supported by the Russian Science Foundation grant 19-
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Co-existence of Chaos and Control in
Generalized Lotka–Volterra Biological
Model: A Comprehensive Analysis

Taqseer Khan and Harindri Chaudhary

1 Introduction

Over the years, chaos has been one of the most important characteristic of nonlinear
phenomena mostly found in nature. Interestingly, it has been prescribed in numerous
ways, some elaborate it as a disorder existing in the events so that they exhibit
unpredictable behaviour. Chaotic behaviour exists vastly in biology, engineering,
chemical, economics, physics, management, and many more scientific domains. In
the beginning, chaos was not considered to be important in any area but it was only
after the remarkable work of Pecora and Carroll [1] who initiated the idea of chaos
synchronization among chaotic systems in 1990, started attracting researchers and
scientists from many fields. Since then, various chaos synchronization techniques
were introduced and presently several novel techniques are being introduced also.
Some frequently introduced techniques are complete [2], hybrid [3], anti [4],
function projective [5], hybrid projective [6, 7], combination synchronization [7],
combination-combination [6], lag [8], triple compound [9], etc. Numerous control
techniques are employed to achieve the aforementioned schemes, for instance,
active [10], adaptive or parameter identification method [6], impulsive [11], sliding
mode [12], feedback [13], and so on.

In this chapter, the combination difference anti-synchronization (DCAS) among
identical chaotic generalized Lotka–Volterra (GLV) biological model [14, 15]
using active control method has been achieved. The analytical results are justified
graphically which clearly illustrate that the scheme used is effective and feasible
for synchronizing the discussed GLV system. The remainder of the chapter is
arranged as: In Sect. 2: problem formulation has been made. Section 3 describes the
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synchronization methodology. Section 4 implements the DCAS scheme in chaotic
GLV system. Section 5 comprises the discussions concerning numerical simulations
and demonstrates the results performed in MATLAB. Section 6 concludes the
chapter.

2 Problem Formulation

In this section, we outline combination synchronization [16] considering master–
slave configuration in three chaotic/hyperchaotic systems which is essential in the
following sections.

Suppose the first master system is given by

ṙm1 = g1(rm1), (1)

and the second master system is given by

ṙm2 = g2(rm2). (2)

Assume the slave system is given by

ṙs1 = g3(rs1)+W(rm1, rm2, rs1), (3)

where rm1 = (rm11, rm12, . . . , rm1n)
T ∈ Rn, rm2 = (rm21, rm22, . . . , rm2n)

T ∈
Rn, rs1 = (rs11, rs12, . . . , rs1n)

T ∈ Rn are the state vectors of master and slave
systems (1), (2), and (3), respectively, g1, g2, g3 : Rn → Rn are three nonlinear
continuous vector functions,W = (W1,W2, . . . ,Wn)

T : Rn × Rn × Rn → Rn are
the controllers which are to be properly chosen.

We describe difference combination anti-synchronization (DCAS) error as

e = Crs1 + (Brm2 − Arm1),

whereA = diag(a1, a2, . . . , an),B = diag(b1, b2, . . . , bn),C = diag(c1, c2, . . . , cn)

and C 
= 0.

Definition 2.1 The combination of two chaotic master systems (1)–(2) is said
to achieve difference combination anti-synchronized (DCAS) state with slave
system (3) if

lim
t→∞‖e‖ = lim

t→∞‖Crs1 + (Brm2 − Arm1)‖ = 0.

Remark 2.1 The matrices A, B, and C are called the scaling matrices. Moreover,
A,B, and C can be extended as matrices of functions of state variables rm1, rm2,
and rs1.
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Remark 2.2 The problem of combination synchronization would be converted into
traditional chaos control issue for A = B = 0.

3 Synchronization Theory via Active Control Design

In this section, we study DCAS approach among chaotic systems (1)–(3) by defining
the simplified active control laws.

Let us design the active controllers by

Wi = −φi
ci

− (g3)i −
Miei

ci
, (4)

where φi = (bi(g2)i − ai(g1)i), i = 1, 2, . . . , n.

Theorem 3.1 To achieve the DCAS technique via ACT in the chaotic systems (1)–
(3) asymptotically, we choose the active controllers as designed in (4).

Proof The synchronized errors are formulated as

ei = cirs1i + (birm2i − airm1i ), for i = 1, 2, . . . , n.

The error dynamics turns into

ėi = ci ṙs1i + (bi ṙm2i − ai ṙm1i )

= ci((g3)i +Wi)+ (bi(g2)i − ai(g1)i)

= ci((g3)i +
φi

ci
− (g3)i −

Miei

ci
)− φi

= φi −Miei − φi
= −Miei. (5)

The typical Lyapunov function, V (e(t)), is defined as

V (e(t)) = 1

2
eT e

= 1

2
�e2

i . (6)

On differentiating V (e(t)) as given in Eq. (6), we have

V̇ (e(t)) = �eiėi
= �ei(−Miei)
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= −�Mie2
i , using Eq. (5). (7)

We now select (M1,M1, . . . ,Mn) so that V̇ (e(t)) given by Eq. (7) becomes negative
definite. Thus, by LST, we obtain

lim
t→∞ ei(t) = 0 for (i = 1, 2, 3).

Thus, the master systems (1)–(2) and slave system (3) have attained DCAS scheme.

4 A Simple Numerical Example

In this section, we firstly discuss in short the famously known chaotic Generalized
Lotka–Volterra (GLV) three species biological system [17, 18], to be picked up for
DCAS technique using ACT.

We now represent GLV model as the first master system:

⎧⎪⎪⎨
⎪⎪⎩
ṙm11 = rm11 − rm11rm12 + k3r

2
m11 − k1r

2
m11rm13

ṙm12 = −rm12 + rm11rm12

ṙm13 = k2rm13 + k1r
2
m11rm13,

(8)

where (rm11, rm12, rm13)
T ∈ R3 are the state variables of given system and k1, k2,

and k3 are positive parameters. Further, in (8), rm11 represents the prey population
and rm12, rm13 denote the predator populations. For parameter values k1 = 2.9851,
k2 = 3, k3 = 2 and initial values (27.5, 23.1, 11.4), the first master GLV system
depicts chaotic behaviour as exhibited in Figs. 1a and 2a.

The second identical master GLV chaotic system prescribed, respectively, as
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Fig. 1 Phase portraits of chaotic GLV biological system in (a) rm11 − rm13 plane, (b) rm21 − rm22
plane, (c) rs31 − rs33 plane
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Fig. 2 Phase portraits of chaotic GLV biological system in (a) rm11 − rm12 − rm13 space, (b)
rm21 − rm22 − rm23 space, (c) rs31 − rs32 − rs33 space

⎧⎪⎪⎨
⎪⎪⎩
ṙm21 = rm21 − rm21rm22 + k3r

2
m21 − k1r

2
m21rm23

ṙm22 = −rm22 + rm21rm22

ṙm23 = k2rm23 + k1r
2
m21rm23,

(9)

where (rm21, rm22, rm23)
T ∈ R3 are the state variables of the system and k1, k2, and

k3 are positive parameters. For parameter values k1 = 2.9851, k2 = 3, k3 = 2, the
second master GLV system shows chaotic behaviour for selected initial conditions
(1.2, 1.2, 1.2) as exhibited in Figs. 1b and 2b.

The slave system, defined by the identical chaotic GLV system, is prescribed as

⎧⎪⎪⎨
⎪⎪⎩
ṙs31 = rs31 − rs31rs32 + k3r

2
s31 − k1r

2
s31rs33 +W1

ṙs32 = −rs32 + rs31rs32 +W2

ṙs33 = k2rs33 + k1r
2
s31rs33 +W3,

(10)

where (rs11, rs12, rs13)
T ∈ R3 is the state vector of the system and k1, k2, and k3 are

positive parameters. For parameter values k1 = 2.9851, k2 = 3, k3 = 2 and initial
conditions (2.9, 12.8, 20.3), the slave GLV system displays chaotic behaviour as
depicted in Figs. 1c and 2c. Further, W1, W2, and W3 are active control functions
to be determined so that DCAS among three identical GLV chaotic systems will
be attained keeping Lyapunov stability theory (LST) in mind and hence required
stability criterion has been derived.

Defining now the error functions (e1, e2, e3) as

⎧⎪⎪⎨
⎪⎪⎩
e1 = c1rs31 + (b1rm21 − a1rm11)

e2 = c2rs32 + (b2rm22 − a2rm12)

e3 = c3rs33 + (b3rm23 − a3rm13).

(11)

The immediate goal in this work is to design controllers Wi , (i = 1, 2, 3) ensuring
that error functions defined in (11) satisfy
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lim
t→∞ ei(t) = 0 for (i = 1, 2, 3).

The resulting error dynamics turns into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = c1(rs31 − rs31rs32 + k3r
2
s31 − k1r

2
s31rs33 +W1)

+b1(rm21 − rm21rm22 + k3r
2
m21 − k1r

2
m21rm23)

−a1(rm11 − rm11rm12 + k3r
2
m11 − k1r

2
m11rm13)

ė2 = c2(−rs32 + rs31rs32 +W2)+ b2(−rm22 + rm21rm22)

−a2(−rm12 + rm11rm12)

ė3 = c3(k2rs33 + k1r
2
s31rs33 +W3)+ b3(k2rm23 + k1r

2
m21rm23)

−a3(k2rm13 + k1r
2
m11rm13).

(12)

Let us now define the active controllers as

W1 = −φ1

c1
− (g3)1 − M1e1

c1
, (13)

where φ1 = (b1(g2)1 − a1(g1)1).

On putting the values of a1, b1, φ1, (g3)1 in (13) and simplifying, we get

W1 = −e1

c1
+ rs31rs33 − k3r

2
s31 + k1r

2
s31rs33

− b1

c1
(−rm21rm22 + k3r

2
m21 − k1r

2
m21rm23)

+ a1

c1
(rm11rm12 − k3r

2
m11 + k1r

2
m11rm13)− M1e1

c1
, (14)

W2 = −φ2

c2
− (g3)2 − M2e2

c2
, (15)

where φ2 = (b2(g2)2 − a2(g1)2).

By substituting the values of a2, b2, φ2, (g3)2 in (15) and solving, we find that

W2 = e2

c2
− rs31rs32 − b2

c2
rm21rm22 + a2

c2
rm11rm12 − M2e2

c2
, (16)

W3 = −φ3

c3
− (g3)3 − M3e3

c3
, (17)

where φ3 = (b3(g2)3 − a3(g1)3).

By putting the values of a3, b3, φ3, (g3)3 in (17) and combining, we have

W3 = k2e3

c3
− k1r

2
s31rs33 − b3k1

c3
r2
m21rm23 + a3k1

c3
r2
m11rm13 − M3e3

c3
, (18)
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whereM1 > 0,M2 > 0, andM3 > 0 are gain constants.
On substituting the active controllers (14), (16), and (18) into error dynam-

ics (12), we get

⎧⎪⎪⎨
⎪⎪⎩
ė1 = −M1e1

ė2 = −M2e2

ė3 = −M3e3.

(19)

The Lyapunov function is described as

V (e(t)) = 1

2
[e2

1 + e2
2 + e2

3]. (20)

It is obvious that Lyapunov function V (e(t)) is positive definite in R3.
Then, the derivative of Lyapunov function V (e(t)) may be expressed as

V̇ (e(t)) = e1ė1 + e2ė2 + e3ė3. (21)

Using Eq. (19) in (21), we obtain

V̇ (e(t)) = −M1e
2
1 −M2e

2
2 −M3e

2
3 < 0,

which displays that V̇ (e(t)) is negative definite.
Therefore, in view of LST, we find that the discussed DCAS error dynamics is

asymptotically stable globally, i.e., the synchronization error e(t) → 0 asymptoti-
cally with t → ∞ for each initial value e(0) ∈ R3.

5 Numerical Simulations and Discussions

In this section, we present few simulation experiments to show the effectiveness
of the proposed DCAS scheme using ACT. Selected parameters for the given GLV
model are k1 = 2.9851, k2 = 3, and k3 = 2 which display that given GLV system
behaves chaotically without the controllers. Initial conditions of master systems (8)–
(9) and corresponding slave system (10) are (27.5, 23.1, 11.4), (1.2, 1.2, 1.2), and
(2.9, 12.8, 20.3), respectively. We attain DCAS scheme between two master (8)–(9)
and corresponding one slave systems (1)) by selecting scaling matrices A with a1 =
1, a2 = 1, a3 = 1; B with b1 = 1, b2 = 1, b3 = 1; C with c1 = 1, c2 = 1, c3 = 1.
Here, the control gains are taken as Mi = 6 for i = 1, 2, 3. Simulation results are
depicted in Fig. 3(a–c) that display the state trajectories of master (8)–(9) and slave
system (10). Synchronization errors (e1, e2, e3) = (−23.4,−9.1, 10.1) approach
zero as t tending to infinity as shown in Fig. 4(a–d). Therefore, the discussed DCAS
approach for master and slave systems is achieved computationally.
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Fig. 3 Phase portraits of DCAS trajectories for GLV biological system (a) between rs31(t) and
rm21(t) − rm11(t), (b) between rs32(t) and rm22(t) − rm12(t), (c) between rs33(t) and rm23(t) −
rm13(t)
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Fig. 4 Phase portraits of time series in DCAS error for GLV biological system (a) (t, e1), (b)
(t, e2), (c) (t, e3), (d) (t, e1, e2, e3)
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6 Conclusion

In this chapter, the proposed DCAS scheme for chaotic GLV systems (identical)
via active control design has been explored. Using suitably constructed nonlinear
controllers which are based on classic LST, the considered DCAS strategy is
attained. Additionally, MATLAB performed numerical simulations indicate that the
designed controllers are efficient and accurate in controlling the chaotic regime of
GLV systems to desired set points which depicts the effectiveness of our proposed
DCAS technique. Specifically, the analytical theory as well as the numerical results
both are in complete understanding. It is further intriguing and challenging to
introduce new synchronization and control schemes to stabilize the chaos occurring
in three species chaotic GLV biological system that generalize our discussed
strategy.
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Global Dynamics of a Model for
Anaerobic Wastewater Treatment
Process

S. Barua and A. Dénes

1 Introduction

1.1 Anaerobic Wastewater Treatment Process

The anaerobic wastewater treatment process is a procedure where microorganisms
degrade organic contaminants in an oxygen-free environment. This process has
high capacity to break down biodegradable waste originating from agriculture
(animal manures, energy crops, harvest remains, algal biomass), food industry
(food/beverage processing, starch, dairy, sugar, pulp/paper, etc.), sewage sludge, etc.
[1]. It requires little energy, produces very little sludge, and can even recover energy
by burning methane in some cases [2]. Basically this process is a complex naturally
occurring process called anaerobic digestion.

Nowadays, anaerobic digestion is one of the most successful waste management
strategies worldwide, wherein microorganisms play a vital role in reducing organic
pollutants and producing renewable energy [3].

In 1907, Karl Imhoff developed the first anaerobic digester for wastewater
treatment. Later in the twentieth century several small-scale utilizations of anaerobic
digestion for biogas production flourished in France and England [4]. By the year
of 2014 more than 14,500 biogas plants were established in Europe with the total
capacity of 7857 MWel [5].

Hydrolysis, acidogenesis, acetogenesis, and methanogenesis are the four succes-
sive stages of anaerobic digestion process which is dependent on the interactions
between the diverse microorganisms that have ability to carry out the aforesaid
stages [6]. In the process of hydrolysis, hydrolytic bacteria secrete extracellular
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enzymes that hydrolyzed lipids, proteins and carbohydrate polymers to long-chain
fatty acids, amino acids, and sugars respectively.

It is notable that certain substrates like cellulose, hemicellulose, and lignin are
difficult to degrade, as because of inaccessibility for microbes due to their complex
structure. In this case enzymes are often added to accelerate the hydrolysis of these
carbohydrates [6–8].

In the second stage of anaerobic digestion known as acidogenesis, acidogenic
microorganisms convert the products of hydrolysis through their cell membranes
and produce alcohol, carbon dioxide, hydrogen, volatile fatty acids (VFAs) such as
propionic acid, butyric acid and acetic acid. In general, acidogenesis is believed
to proceed at a faster rate than other three stages of anaerobic digestion where
acidogenic bacteria having a generation time of less than 36 h. It is important to
note that, as this stage is faster than others so the production of VFAs creates
direct precursors for the fourth stage of methanogenesis, which is reported to be
an aftermath for digester failure [4, 6, 9]. The product of acidogenesis, VFAs and
alcohols are converted into acetic acid, hydrogen and carbon dioxide by acetogenic
bacteria in the process of acetogenesis, third stage of anaerobic digestion.

Methanogenesis is marked as the fourth and final stage of anaerobic digestion
where methanogens can produce methane using carbon dioxide, acetate, etc. In
batch reactor when the biogas production stops then the end of the methanogenesis
is determined, which can take about 40 days [6, 10].

1.2 Mathematical Models for Anaerobic Wastewater Treatment
Process

Mathematical modeling of the anaerobic digestion process has drawn interest of the
researchers during the past decades. Anaerobic digesters exhibit significant stability
problems frequently that may be avoided only through suitable control strategies.
In general, the development of appropriate mathematical models is needed, which
adequately illustrate the key biological processes that take place in the reactor [11].

Hajji et al. [11] concentrated the reactionary part of the anaerobic digestion
involving only acetogens and methanogens bacteria populations and study their
syntrophic relationship. The volatile fatty acids and other products are degraded by
acetogens, forming hydrogen, acetate and carbon dioxide which are the intermediate
product, required by anaerobic methanogens in order to carry out anaerobic respira-
tion. In the absence ofH2-producing acetogens bacteria, methanogens cannot grow.
Applying the Poincaré–Bendixson theorem and the Dulac criterion they found that
under general and natural assumptions of monotonicity on the functional responses,
the stable asymptotic coexistence of acetogenic and methanogenic bacteria occurs.

Hess et al. [12] introduced a model considering acidogenesis and methanogenesis
which provides the operator with a risk index associated with his main strategy, also
can be used in parallel to a controller that only guarantees local convergence. They
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proposed a criterion which can predict very early a future accumulation of acids, that
is the main reason of instability of the reactor. The mass balanced model proposed
by them is formulated as

X′
1 = μ1(S1)X1 − αDX1,

S′1 = − k1μ1(S1)X1 +D(S1in − S1),

X′
2 = μ2(S2)X2 − αDX2,

S′2 = − k3μ2(S2)X2 + k2μ1(S1)X1 +D(S2in − S2),

(1)

where S1, S2, X1, X2 represent organic substrate, VFAs, acidogenic bacteria, and
methanogenic bacteria respectively. Also D, S1in, S2in are dilution rate, concen-
tration of influent organic substrate and influent VFAs respectively. The kis are
pseudo-stoichiometric coefficients associated with the bioreaction and α appears
here as the fraction of the biomass not retained in the digestor.

Weedermann et al. [4] studied the effects of inhibition on the microbes involved
in the process. For that they assumed the temperature remains constant and consider
continuously stirred tanks only. They did not consider hydrolysis in their model as
it is a preliminary phase of the process. A bifurcation result for the preservation
of global stability was provided by them which can be applied to an inhibition-
free version of the model and it serves as a baseline for studying the consequences
of inhibition. Assuming a continuous-flow constant-volume reactor and uniformly
mixed substrate, and ignoring biomass decay rates they derive the system of
differential equations

S′ = D(S(0) − S)− g̃S(S)XS,
X′
S = −DXS + YXS g̃S(S)XS,
V ′ = −DV + Ysvg̃S(S)XS − g̃V (V ,H)XV ,
X′
V = −DXV + YXV g̃V (V )XV ,
A′ = −DA+ Ysag̃S(S)XS + Yvag̃V (V,H)XV − g̃A(A)XA,
X′
A = −DXA + YXAg̃A(A)XA,
H ′ = −DH + Yshg̃S(S)XS + Yvhg̃V (V,H)XV − g̃H (H,A)XH ,
X′
H = −DXH + YXH g̃H (H,A)XH ,

(2)

where simple substrates are denoted by S, VFAs by V , acetic acid by A, hydrogen
by H . The notations Xα, α = S, V,A,H represent bacteria for different nutrient
groups. Again, D, S(0), Yi, gα(·) stand for dilution rate, concentration of monomer
inflow, yield coefficient, and bacterial growth rate, respectively.

Amster et al. [13] introduce a simple ω-periodic and delayed chemostat model
and proved the existence of ω-periodic solutions. Their results partially generalize
those obtained for the undelayed case and they have constructed Poincaré’s transla-
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tion operators tailored for a one-parameter family of integro-differential equations
for the nutrient equation and a map related to the biomass equation defined over the
fixed points of the above-mentioned Poincaré operators.

There exist general models with multiple microbial species. Hale et al. [14]
considered a model where n species compete for a single essential periodically
fluctuating nutrient in a chemostat. They assumed uptake rate functions are positive,
increasing, and bounded above instead of the familiar Michaelis–Menten kinetics
for nutrient uptake.

Wolkowicz and Zhao [15] studied an n-species competition model in a periodi-
cally operated chemostat and gave sufficient conditions for the uniform persistence
of all species and for the existence of at least one positive, periodic solution.

2 Model Formulation

Inspired by the wastewater treatment process models given by Hess et al. [12] and
Weederman et al. [4] and by the general, n-species chemostat models [14, 15], we
establish a generalized model which describes n microbial species feeding on n
types of substrates.

In the model, similarly as in (1) and (2), the n species and the corresponding
substrates form a chain where the nutriments consumed by the ith microbial species
are produced by the microbes denoted by a lower index. We will denote by Si(t)
the amount of the ith substrate and by Xi(t) the amount of the ith microbial species
at time t . We use the notation S(0)i for the concentrations of influent substrates. We
will denote by D the dilution rate of the chemostat. The functions gi(Si) represent
the bacterial growth rates associated with the bioreactions during which the ith
microorganism produces substrate for those with higher indices. The coefficients
Yi (i = 1, . . . , n) and Yki (k = 1, . . . , i − 1) are pseudo-stoichiometric coefficients
associated with the bioreactions. For technical reasons, in this work we will always
assume that these functions only depend on the amount of substrates denoted with
lower indices. Another important restriction on the functions gi(Si) is that they are
all assumed to be monotone increasing functions. For example, the functions gi
might be Monod type functions of the form gi(Si) = μi

Si
Si+ki with some positive

constants μi and ki .
Using the above notations and applying the assumptions described above, our

model takes the form

S′1(t) = D(S(0)1 − S1(t))− g1(S1(t))X1(t),

X′
1(t) = −DX1(t)+ Y1g1(S1(t))X1(t),

(3a)
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S′i (t) = D(S(0)i − Si(t))+
i−1∑
k=1

Ykigk(Sk(t))Xk(t)− gi(Si(t))Xi(t),

X′
i (t) = −DXi(t)+ Yigi(Si(t))Xi(t),

(3b)

where i = 2, 3, . . . , n.

3 Global Dynamics

In this subsection, we turn to the global analysis of system (3a). We will establish
a procedure to completely describe the dynamics of our system. In each step of
the procedure, as the right-hand sides of the equations do not depend on variables
with higher indices, only on those with lower ones, we can always decouple two
equations from the rest of equations and determine the dynamics of that planar
system.

It is easy to check that, depending on the parameters, the system (3a) consisting
of the first two equations of (3) may have two equilibria

E1
0 = (S(0)1 , 0) and E1+ = (g−1

1 (D/Y1), Y1[S(0)1 − g−1
1 (D/Y1)]).

Let us introduce the threshold parameter

ϑ1 := −D + Y1g1(S
(0)
1 ).

We obtain that the equilibrium E1
0 exists independently of the parameter values,

while the positive equilibrium E1+ exists if and only for ϑ1 > 0.
The Jacobian of system (3a) can be calculated as

J =
[
−D − ∂

∂S1
g1(S1)X1 −g1(S1)

∂
∂S1
X1Y1g1(S1) −D + Y1g1(S1)

]
.

At the trivial equilibrium E1
0 , the Jacobian takes the form

J0 =
[
−D −g1(S

(0)
1 )

0 −D + Y1g1(S
(0)
1 )

]

and has the eigenvalues −D and −D + Y1g1(S
(0)
1 ), hence, we can see that the

equilibrium E1
0 is locally asymptotically stable if ϑ1 < 0 and unstable if ϑ1 > 0.

Now let us consider the Dulac function 1
X1

. Then
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∂

∂S1

D(S
(0)
1 −S1)−g1(S1)X1

X1
+ ∂

∂X1

X1Y1g1(S1)−DX1

X1
= − D

X1
− ∂

∂S1
g1(S1) < 0

for all parameter values, using the assumption that g1(S1) is monotone increasing.
Applying the Bendixson–Dulac theorem, we can observe that the system has no
periodic solution. Hence, it follows from the Poincaré–Bendixson theorem that all
solutions tend to one of the two equilibria. As we have seen above, if ϑ1 < 0, then
only the trivial equilibriumE1

0 exists, hence, all solutions will tend toE1
0 as t → ∞.

We have also obtained above that E1
0 is locally asymptotically stable if ϑ1 < 0,

using this and the global attractivity, we obtain that the trivial equilibrium is globally
asymptotically stable if ϑ1 < 0. Again, if ϑ1 > 0, then the trivial equilibrium
E1

0 becomes unstable and the positive equilibrium E1+ also exists. Because of the
instability of E1

0 all solutions tend to E1+, except the solutions started with X1 = 0,
thus, E1+ is globally attractive on the set

R
2+ \ {(S1, X1) : X1 = 0}.

Let us now proceed to the second pair of equations of system (3), i.e., the two
equations (3b) for i = 2, namely the equations

S′2(t) = D(S(0)2 − S2(t))+ Y12g1(S1(t))X1(t)− g2(S2(t))X2(t),

X′
2(t) = −DX2(t)+ Y2g2(S2(t))X2(t).

(4)

Let (S∗1 , X∗
1) denote the global attractor of the system consisting of the first two

equations (3a) and let us substitute these values into the first equation of (3b) to
obtain

S′2 = D(S(0)2 − S2)+ Y12g1(S
∗
1 )X

∗
1 − g2(S2)X2

which, introducing the notation

C2 := DS(0)2 + Y12g1(S
∗
1 )X

∗
1,

can be transformed into

S′2(t) = C2 −DS2(t)− g2(S2(t))X2(t),

X′
2(t) = −DX2(t)+ Y2g2(S2(t))X2(t).

(5)

Observe that (5) is of the same structure as system (3a). Hence, a similar analysis
can be performed for (5) as for (3a), yielding that the threshold parameter ϑ2 defined
as

ϑ2 = −D + Y2g2
(
C2
D

)
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determines which of the two possible equilibria

E2
0 =
(
C2
D
, 0
)

and E2+ =
(
g−1

2

(
D
Y2

)
, Y2

(
C2
D

− g−1
2

(
D
Y2

)))

is globally attractive. Performing similar steps as for the first pair of equations, we
obtain the limit of the transformed equations (5) and we can proceed to the next pair
of equations.

In the general step of the procedure, we study the dynamics of the ith pair of
equations (3b), which are of the form

S′i (t) = D(S(0)i − Si(t))+
i−1∑
k=1

Ykigk(Sk(t))Xk(t)− gi(Si(t))Xi(t),

X′
i (t) = −DXi(t)+ Yigi(Si(t))Xi(t).

From the analysis performed before, we have already obtained the limit of all
functions Sk(t) and Xk(t), i = 1, 2, . . . , i − 1, denote these again by S∗k and X∗

k .
Hence, we can substitute these values into the first equation of (3b) to get

S′i (t) = D(S(0)i − Si(t))+
i−1∑
k=1

Ykigk(S
∗
k )X

∗
k − gi(Si(t))Xi(t),

X′
i (t) = −DXi(t)+ Yigi(Si(t))Xi(t).

By introducing the notation

Ci := DS(0)i +
i−1∑
k=1

Ykigk(S
∗
k )X

∗
k ,

we arrive at the system

S′i (t) = Ci −DSi(t)− gi(Si(t))Xi(t),
X′
i (t) = −DXi(t)+ Yigi(Si(t))Xi(t),

(6)

which is again of the same structure as (3a).
Again, depending on the parameters, system (6) may have two equilibria,

Ei0 =
(
Ci
D
, 0
)

and Ei+ =
(
g−1
i

(
D
Yi

)
, Yi

(
Ci
D

− g−1
i

(
D
Yi

)))
.

Introducing the threshold parameter

ϑi = −D + Yigi
(
Ci
D

)
,



288 S. Barua and A. Dénes

we can see that Ei0 always exists, while the positive equilibrium Ei+ exists if and
only if ϑi > 0. The Jacobian of (6) has the form

J =
[
−D −Xi ∂∂Si gi(Si) −gi(Si)
XiYi

∂
∂Si
gi(Si) −D + Yigi(Si)

]
.

At the trivial equilibrium Ei0, the Jacobian can be calculated as

J =
[−D −gi(CiD )

0 −D + Yigi(CiD )
]

and it has the two eigenvalues −D and −D+Yigi
(
Ci
D

)
. Hence, we obtain that Ei0 is

a locally asymptotically stable equilibrium of system (6) if ϑi < 0 and it is unstable
ϑi > 0. Now let us consider the Dulac function 1

Xi
. Then

∂

∂Si

Ci −DSi − gi(Si)Xi
Xi

+ ∂

∂Xi

XiYigi(Si)−DXi
Xi

= − D
Xi

− ∂

∂Si
gi(Si) < 0,

so using the Bendixson–Dulac theorem we can say that the system has no periodic
solution and it follows from the Poincaré–Bendixson theorem that all solutions
tend to one of the two equilibria. If ϑi < 0 the only trivial equilibrium Ei0 exists
and it is locally asymptotically stable. Being a global attractor it is also globally
asymptotically stable. On the other hand, if ϑi > 0, then the trivial equilibrium
Ei0 becomes unstable and the positive equilibrium Ei+ also exists. Because of the
instability of Ei0 all solutions tend to Ei+ except the solutions started with Xi = 0.
Hence, depending on the threshold parameter ϑi , we have determined the dynamics
of (6) and we can again proceed to the next two equations.

Performing the above steps n times, we obtain a sequence of threshold param-
eters ϑ1, ϑ2, . . . , ϑn, which completely determine the global dynamics of the
2n-dimensional system.

4 Numerical Simulations

In this section, we present some numerical simulations (Fig. 1) for the cases n = 2
to support and illustrate the theoretical results obtained in the previous section. In
these simulations, we assume the functions gi(Si) to be of Monod type and of the
form

gi(Si) = μi Si

Si + ki .
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Fig. 1 Solutions of (3) in the case n = 2 for all possible combinations of the signs of the threshold
parameters ϑ1 and ϑ2. Solid lines denote substrates, dashed lines denote bacteria. Blue lines stand
for S1 and X1, red lines stand for S2 and X2. (a) The case ϑ1, ϑ2 < 0 when both bacteria go
extinct. The parameter values are d = 0.2932, S(0)1 = 0.005 S(0)2 = 0.01, Y1 = 1.35, Y2 = 1;
Y12 = 1.168, μ1 = 1.086, k1 = 7.17, μ2 = 1.626, k2 = 0.1, while the threshold parameters take
the values ϑ1 = −0.292, ϑ2 = −0.145. (b) The case ϑ1 < 0, ϑ2 > 0 when the first bacterium goes
extinct, the second one persists. The parameter values are d = 0.0994, S(0)1 = 0.005 S(0)2 = 0.01,
Y1 = 1.35, Y2 = 1; Y12 = 1.168, μ1 = 1.086, k1 = 7.17, μ2 = 1.626, k2 = 0.1, while the
threshold parameters take the values ϑ1 = −0.098, ϑ2 = 0.048. (c) The case ϑ1 > 0, ϑ2 < 0 when
the first bacterium persists, the second one goes extinct. The parameter values are d = 0.16062,
S
(0)
1 = 0.015, S(0)2 = 0.0051, Y1 = 5.65; Y2 = 0.01; Y12 = 1.052; μ1 = 1.176, k1 = 0.35,
μ2 = 2.574, k2 = 0.1, while the threshold parameters take the values ϑ1 = 0.112, ϑ2 = −0.144.
(d) The case ϑ1, ϑ2 > 0 when both types of bacteria persist. The parameter values are d = 0.279,
S
(0)
1 = 5.1, S(0)2 = 1.13, Y1 = 1, Y2 = 1.944,Y12 = 1.286, μ1 = μ2 = 1, k1 = 9.53, k2 = 9.47,

while the threshold parameters take the values ϑ1 = 0.0696, ϑ2 = 0.116

The solutions in the numerical examples show a behavior which is determined by
the results of the previous section: the signs of the threshold parameters ϑ1 and ϑ2
determine which of the two bacterial species will die out or persist, demonstrating
that all possible combinations are feasible, depending on the parameter values.
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5 Discussion

In this paper we have studied a mathematical model for an anaerobic wastewater
treatment process. Inspired by earlier models, we have established a generalized
model of 2n equations for n types of bacteria and the corresponding nutriments
consumed by those bacteria. In our model, the substrates and bacteria form a linear
food chain in the sense that the ith bacterium produces nutriment for the (i + 1)th
species. Under some conditions on the bacterial growth rates and the interactions
among the different species and nutriments, we can establish a procedure to
determine the global dynamics of the system where in each step we can decouple
a pair of equations from the remaining ones and applying the Bendixson–Dulac
and the Poincaré–Bendixson theorems, we can determine the globally attractive
equilibrium of that given planar system. This way, we obtain a sequence of threshold
parameters which completely determine the global dynamics of the system.

One of the limitations of the model is that for technical reasons, we have
prescribed some properties for the bacterial growth rate functions. Also, in order to
obtain a planar system in each step of the procedure, we neglected possible effects
of bacteria and substrates denoted by higher indices on those with lower indices.
Further improvements of the model might include the consideration of periodic
coefficients. We leave these questions as a future work.
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Spatiotemporal Dynamics of Fractional
Hepatitis B Virus Infection Model with
Humoral and Cellular Immunity

Moussa Bachraoui, Khalid Hattaf, and Noura Yousfi

1 Introduction

The liver is the largest abdominal organ and is part of the digestive tract secreting
bile and performing more than 300 vital functions, including the following three: a
cleansing function, a synthesis function, and a storage function. It is an amphicrine
gland allowing the synthesis of bile (exocrine role) as well as that of several
carbohydrates and lipids (endocrine role). It also plays an important role in
haemostasis. It is a richly vascularized organ.

Hepatitis is an inflammation of the liver caused by toxic substances or viruses
(majority of cases). To date, five viruses causing targeted infection and inflammation
of the liver have been identified. These viruses, designated by the letters A, B, C,
D, and E, differ in their mode of transmission (faecal-oral for viruses A and E,
parenteral for viruses B and C) and their aggressiveness.

The WHO estimates that in 2016, hepatitis A would have caused approximately
7134 deaths (i.e. 0.5% of the mortality due to viral hepatitis), 257 million people
were living with chronic hepatitis B (defined as positive for hepatitis B surface
antigen) with 887,000 deaths, mainly due to cirrhosis or hepatocellular carcinoma
(i.e. primary liver cancer), 71 million individuals are chronic carriers of hepatitis
C and 399,000 deaths, most often from cirrhosis or hepatocellular carcinoma, and
each year an estimated 20 million HEV infections occur worldwide, resulting in an
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estimated 3.3 million symptomatic cases of hepatitis E, and it has been responsible
for approximately 44 000 deaths (3.3% of mortality due to viral hepatitis).

Faced with aggression by the hepatitis B virus, two types of immune reactions
are set up successively. The first is called innate; it is immediate and is not specific
to the pathogenic agent. In the second stage, a so-called adaptive immune reaction
is directed specifically towards the virus. This response involves specialized cells
called lymphocytes. There are two classes of lymphocytes: B lymphocytes, which
are responsible for the production of antibodies. When they encounter an infectious
agent, they produce specific antibodies directed against it. These antibodies are
proteins capable of binding to foreign proteins and destroying the pathogen. They
are also called immunoglobulins. T lymphocytes that can directly destroy foreign
particles.

Recently, several mathematical models describing HBV dynamics including
HBV DNA-containing capsids and adaptive immune response effects have appeared
in literature. In [1], Manna investigated the role of the CTL immune response in a
reaction-diffusion model of HBV with capsids. Their work was an extension of the
work presented in [2]. In [3], Xu and Geng proposed and analysed a discrete-time
model with CTL immune response and nonlinear incidence. Bachraoui et al. [4]
proposed a fractional order model for HBV infection with capsids and CTL immune
response that improved and generalized the mathematical models formulated by
ordinary differential equations (ODEs) in [2, 5] and also the FDE models introduced
in [6–8] by considering the Hattaf’s incidence rate [9] that includes the common
types such as the bilinear incidence rate, the saturated incidence rate, and the
Beddington-De Angelis functional response [10, 11]. All these models take only
into account the effect of the cellular response formed by the CTL cells and do
not integrate the effects of the humoral response formed by the antibodies in the
modeling approach. Therefore, Manna and Hattaf in [12] studied a new HBV
infection model which contains two arms of immunity, three time delays, capsids,
general incidence rate, and allows the movement of capsids and viruses by diffusion.
The proposed model and the results obtained extended and improved the DDE and
PDE models and the corresponding results are presented in [1, 13, 14].

The memory is an important characteristic of adaptive immunity, there are T and
B lymphocytes known as memory lymphocytes. The latter retain the memory of a
pathogen. If this agent re-infects the organism, the response will be much faster.
The classical integer derivative does not reflect this characteristic because it is a
local operator unlike the fractional derivative. In this chapter, we will develop a
mathematical model governed by both FDEs and PDEs in order to describe the
dynamics of HBV infection under the effects of diffusion and memory.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αt U(x, t) = λ− dU(x, t)− F(U(x, t), V (x, t))V (x, t),
∂αt I (x, t) = F(U(x, t), V (x, t))V (x, t)− γ I (x, t)− pI (x, t)T (x, t),
∂αt C(x, t) = dC�C + vI (x, t)− (ρ + γ )C(x, t),
∂αt V (x, t) = dV�V + ρC(x, t)− μV (x, t)− qV (x, t)W(x, t),
∂αt W(x, t) = aV (x, t)W(x, t)− bW(x, t),
∂αt T (x, t) = cI (x, t)T (x, t)− eT (x, t).

(1)
Here U(x, t), I (x, t), C(x, t), V (x, t), W(x, t), and T (x, t) are, respectively, the
densities of uninfected cells, infected cells, capsids, free viral particles, antibodies,
and CTL cells at location x and time t . Uninfected cells are produced at rate λ,
die at rate dU , and become infected by virus at rate F(U, V )V . The death rate
of infected cells and capsids is denoted by γ , while the death rates of free viral
particles, antibodies, and CTL cells are, respectively, labeled by μ, b, and e. The
capsids are produced from infected cells at rate vI and converted to virus at rate
ρC. Free viral particles are neutralized by antibodies at rate qVW . Whereas, the
infected cells are killed by CTL cells at rate pIT . Antibodies develop in response
to free viral particles at rate aVW , while CTL cells expand in response to viral
antigens derived from infected cells at rate cIT . The positive constants dC and dV

denote, respectively, the diffusion coefficients of capsids and virus. � =
n∑
i=1

∂2

∂x2
i

is the Laplacian operator. The incidence function of (1) is described by Hattaf-
Yousfi functional response [9] of the form F(U, V ) = kU

ε0+ε1U+ε2V+ε3UV , where
the nonnegative constants εi , i = 0, 1, 2, 3, measure the saturation, inhibitory or
psychological effects, and the positive constant k is the infection rate. Dα is the
fractional derivative in the sense of Caputo with order α ∈ (0, 1]. Further, the
proposed model (1) is subjected to the following initial conditions:

U(x, 0) = U0(x) ≥ 0 , I (x, 0) = I0(x) ≥ 0 , C(x, 0) = C0(x) ≥ 0, (2)

V (x, 0) = V0(x) ≥ 0 ,W(x, 0) = W0(x) ≥ 0 , T (x, 0) = T0(x) ≥ 0 , ∀x ∈ �̄,

and zero-flux boundary conditions

∂C

∂ν
= ∂V

∂ν
= 0, on ∂�× (0,+∞),

where � is a bounded domain in R
n with smooth boundary ∂�, and ∂

∂ν
denotes

the outward normal derivative on ∂�. From the biological point of view, these
conditions mean that the capsids and free virus particles do not move across the
boundary ∂�.
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Clearly, model (1) has one infection-free steady stateE0(U
0, 0, 0, 0, 0, 0), where

U0 = λ

d
. So, the basic reproduction number of (1) is given by

R0 = vρF(U0, 0)

μγ (ρ + γ ) .

The remaining equilibria of system (1) satisfy the following algebraic equations:

λ− dU − F(U, V )V = 0, (3)

F(U, V )V − γ I − pIT = 0, (4)

vI − (ρ + γ )C = 0, (5)

ρC − μV − qVW = 0, (6)

aVW − bW = 0, (7)

cIT − eT = 0. (8)

From Eq. (7), we get T = 0 or I = e

c
and by (8), we getW = 0 or V = b

a
.

When W = 0 and T = 0, we find I = λ− dU
γ

, C = v(λ− dU)
γ (ρ + γ ) , V =

ρv(λ− dU)
μγ (ρ + γ ) and

F

(
U,
ρv(λ− dU)
μγ (ρ + γ )

)
= μγ (ρ + γ )

ρv
. (9)

Since I ≥ 0, we have U ≤ λ

d
. Define

g1(U) = F
(
U,
ρv(λ− dU)
μγ (ρ + γ )

)
− μγ (ρ + γ )

ρv
.

We have g1(0) = −μγ (ρ+ γ )
βv

< 0 and g1
(
λ
d

) = μγ (ρ+γ )
ρv

(R0 − 1) and

g′1(U) =
∂F

∂U
− ρdv

μγ (ρ + γ )
∂F

∂V
> 0.

When R0 > 1, model (1) has a unique immune-free infection steady state

E1(U1, I1, C1, V1, 0, 0) with U1 ∈
(

0,
λ

μ

)
, I1 = λ− dU1

γ
, C1 = v(λ− dU1)

γ (ρ + γ ) ,

and V1 = ρv(λ− dU1)

μγ (ρ + γ ) .
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If W 
= 0 and T = 0, we have I = λ− dU
γ

, C = v(λ− dU)
γ (ρ + γ ) , V = b

a
, W =

avρ(λ− dU)
qbγ (ρ + γ ) − μ

q
, and

F

(
U,
b

a

)
= a(λ− dU)

b
.

Since W ≥ 0, we have U ≤ λ

d
− μbγ (ρ + γ )

avdρ
. So, there is no equilibrium if

U >
λ

d
− eγ

cd
. Define the function g2 on [0, λ

d
− μbγ (ρ + γ )

avdρ
] by

g2(U) = F
(
U,
b

a

)
− a(λ− dU)

b
.

We have g2(0) = −aλ
b
< 0 and

g′2(U) =
∂F

∂U
+ ad

b
> 0.

Define the reproduction number for humoral immunity as follows

RW1 = aV1

b
, (10)

which biologically represents the average number of the antibodies activated by
virus when HBV infection is successful and CTL immune response has not been
established [15].

When RW1 < 1, V1 <
b
a
, U1 >

λ

μ
− μbγ (ρ + γ )

avdρ
and

g2

(
λ

d
− μbγ (ρ + γ )

avdρ

)
= F

(
λ

d
− μbγ (ρ + γ )

avdρ
,
b

a

)
− μγ (ρ + γ )

ρv

< F(U1, V1)− γ c (ρ + γ )
ρv

= 0.

Thus, there is no steady state if RW1 < 1.

WhenRW1 > 1,we haveU1 <
λ

d
−μhγ (ρ + γ )

avdρ
and g2

(
λ

μ
− μbγ (ρ + γ )

avdρ

)
>

0. Hence, (1) has another equilibrium E2(U2, I2, C2, V2,W2, 0), where U2 ∈(
0,
λ

d
− μbγ (ρ + γ )

avρ

)
, I2 = λ−dU2

δ
, C2 = v(λ− dU2)

γ (ρ + γ ) , V2 = b

a
and

W2 = avρ(λ− dU2)

qbγ (ρ + γ ) − μ

q
.
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When W = 0 and T 
= 0, we get I = e

c
, C = ve

c(ρ + γ ) , V = ρve

μc(ρ + γ ) ,

T = c(λ− dU)
pe

− γ

p
, and

F

(
U,

ρve

μc(ρ + γ )
)

= μc(ρ + γ )(λ− dU)
ρve

.

T ≥ 0 leads to U ≤ λ

μ
− γ e

cd
. So, there is no steady state if U >

λ

d
− γ e

cd
. Define

the function g3 on the interval [0, λ
d

− γ e

cd
] by

g3(U) = F
(
U,

ρve

μc(ρ + γ )
)
− μc(ρ + γ )(λ− dU)

ρve
.

In this case, g3(0) = −μcs(ρ + γ )
ρve

< 0 and

g′3(U) =
∂F

∂U
+ μcd(ρ + γ )

ρve
> 0.

In addition to R0 and RW1 , We define the reproduction number for cellular
immunity as follows

RZ1 = cI1

e
, (11)

which represents the average number of the CTL immune cells activated by infected
hepatocytes when HBV infection is successful and humoral immune response has
not been established [15].

If RZ1 < 1, then I1 <
e

c
, U1 >

λ

μ
− δe

cμ
and

g3

(
λ

μ
− γ e

cd

)
= F

(
λ

d
− γ e

cd
,

ρve

μc(ρ + γ )
)
− μc(ρ + γ )(λ− dU)

vρe

< F(U1, V1)− δc (ρ + γ )
ρv

= 0.

Hence, there is no steady state if RZ1 < 1.

When RZ1 > 1, U1 <
λ

d
− γ e

cd
and g2

(
λ

d
− γ e

cd

)
> 0. Therefore, there exists

an infection equilibrium E3(U3, I3, C3, V3, 0, T3) with U3 ∈
(

0,
λ

d
− γ e

cd

)
, I3 =

e

c
, C3 = ve

c(ρ + γ ) , V3 = ρve

μc(ρ + γ ) and T3 = c(λ− dU3)

pe
− γ

p
.
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WhenW 
= 0 and T 
= 0, I = e

c
, C = ae

c(ρ + γ ) , V = b

a
, T = c(λ− dU)

pe
− γ
p

,

W = aρve

qc(ρ + γ )b − μ

q
and

F

(
U,
h

a

)
= a(λ− dU)

b
.

As T ≥ 0, we have U ≤ λ

d
− γ e
cd

. Define the function g4 on the interval [0, λ
d
− γ e
cd

]
by

g4(U) = F
(
U,
b

a

)
− a(λ− dU)

b
.

We have g4(0) = −as
b
< 0 and

g′4(U) =
∂F

∂U
+ ad

b
> 0.

We define the reproduction number for cellular immunity in competition as follows

RZ2 = cI2

e
.

which represents the average number of the CTL immune cells activated by infected
hepatocytes under the condition that humoral immunity has been established [15].

If RZ2 < 1, then I2 <
e

c
, U2 >

λ

d
− γ e

cd
and

g4

(
λ

d
− γ e

cd

)
= F

(
λ

d
− γ e

cd
,
b

a

)
− aeγ

cb

< F(U2, V2)− a(λ− dU2)

b
= 0.

Therefore, there is no equilibrium when RZ2 < 1.

If RZ2 > 1, then I2 > b
c
, U2 <

λ

d
− γ b

cd
and g4

(
λ

d
− γ e

cd

)
> 0. Thus, there

exists a unique U4 ∈
(

0,
λ

d
− γ e

cd

)
such that g4 (U4) = 0.

From the fourth equation of system (1), we find that

W4 = μ

q

(
RW3 − 1

)
,
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where RW3 is the reproduction number for humoral immunity in competition defined
by

RW3 = aV3

b
,

which denote the average number of the antibodies activated by virions under the
condition that cellular immunity has been established [15]. So, if Rz2 > 1 and RW3 >

1, then model (1) has an infection steady state E4(U4, I4, C4, V4,W4, T4), where

I4 = e

c
, C4 = ve

c(ρ + γ ) , V4 = b

a
, W4 = μ

q

(
aρve

cbμ(ρ + γ ) − 1

)
, and T4 =

c(λ− dU4)

pe
− γ

p
.

The above discussions lead to the following result.

Theorem 1.1

(i) When R0 ≤ 1, model (1) always has one infection-free steady state

E0(U
0, 0, 0, 0, 0, 0), where U0 = λ

d
.

(ii) When R0 > 1, model (1) has an infection steady state without immunity

E1(U1, I1, C1, V1, 0, 0), where U1 ∈
(

0,
λ

d

)
, I1 = λ− dU1

γ
, C1 =

v(λ− dU1)

γ (ρ + γ ) , and V1 = ρv(λ− dU1)

μγ (ρ + γ ) .

(iii) When RW1 > 1, model (1) has an infection steady state with only humoral

immunity E2(U2, I2, C2, V2,W2, 0), where U2 ∈
(

0,
λ

d
− μbγ (ρ + γ )

avdρ

)
,

I2 = λ−dU2
γ

, C2 = a(λ− dU2)

γ (ρ + γ ) , V2 = b

a
, andW2 = avρ(λ− dU2)

qbγ (ρ + δ) − μ

q
.

(iv) When RZ1 > 1, model (1) has an infection steady state with only cellular

immunityE3(U3, I3, C3, V3, 0, T3), whereU3 ∈
(

0,
λ

d
− γ e

cd

)
, I3 = e

c
, C3 =

ve

c(ρ + γ ) , V3 = ρve

μc(ρ + γ ) , and T3 = c(λ− dU3)

pe
− γ

p
.

(v) When RZ2 > 1 and RW3 > 1, model (1) has an infection steady state
with both cellular and humoral immune responses E4(U4, I4, C4, V4,W4, T4),

where U4 ∈
(

0,
λ

d
− δe

cd

)
, I4 = e

c
, C4 = ve

c(ρ + γ ) , V4 = b

a
, W4 =

μ

q

(
aρve

cbμ(ρ + γ ) − 1

)
, and T4 = c(λ− dU4)

pe
− γ

p
.
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2 Global Stability

This section focuses on the global stability of the five steady states of (1).

Theorem 2.1 The infection-free steady state E0 is globally asymptotically stable if
R0 ≤ 1.

Proof Consider the following Lyapunov functional

L0(t) =
∫
�

[
ε0

ε0 + ε1U0U
0�

(
U

U0

)
+ I (x, t)+ γ

v
C(x, t)+ γ (ρ + γ )

ρv
V (x, t)

+qγ (ρ + γ )
ρv

W(x, t)+ p

q
T (x, t)

]
dx,

where �(x) = x − 1 − ln(x) for x > 0. According to [16], we obtain

DαL0(t) ≤
∫
�

[
ε0

ε0 + ε0
1U

(
1 − U0

U

)
∂αt U +DαI + γ

v
∂αt C + γ (ρ + γ )

ρv
∂αt V

+qγ (ρ + γ )
ρv

∂αt W + p

q
∂αt T

]
dx.

Using λ = dU0, we get

DαL0(t)

≤ −
∫
�

⎡
⎣dε0(U − U0)2(
ε0 + ε0

1U
)
U

− γμ(ρ + γ )
ρv

(
F(U, V )

F (U, 0)
R0 − 1

)
V

+ qγ b (ρ + γ )
aρv

W + pe

q
T

]
dx

≤ −
∫
�

⎡
⎣dε0(U − U0)2(
ε0 + ε0

1U
)
U

− γμ(ρ + γ )
ρv

(R0 − 1) V + qγ b (ρ + γ )
aρv

W + pe

q
T

⎤
⎦ dx.

henDαL0(t) ≤ 0 when R0 ≤ 1. Furthermore,DαL0(t) = 0 if and only if U = U0,
I = 0, C = 0,W = 0, T = 0 and (R0 − 1) V = 0. Two cases arise:

• If R0 < 1, then V = 0.
• If R0 = 1. From the first equation of (1), we obtain F(U0, V )V = 0. Then
V = 0.

Therefore, E0 is the largest invariant set in {(U, I, C, V,W, T ) | DαL0(t) = 0}. It
follows from the LaSalle’s invariance principle [17] that E0 is globally asymptoti-
cally stable when R0 ≤ 1. ��
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Theorem 2.2 Assume R0 > 1.

(i) The immune-free infection equilibrium E1 is globally asymptotically stable if
RW1 ≤ 1 and RZ1 ≤ 1.

(ii) The infection equilibrium with only humoral immunity E2 is globally asymp-
totically stable if RW1 > 1 and RZ2 ≤ 1.

(iii) The infection equilibrium with only cellular immunity E3 is globally asymptot-
ically stable if RZ1 > 1 and RW3 ≤ 1.

(iv) The infection equilibrium with both cellular and humoral immune responses
E4 is globally asymptotically stable if RZ2 > 1 and RW3 > 1.

Proof For (i), we construct the Lyapunov functional as

L1(t) =
∫
�

[
ε0+ε2V1

ε0+ε1U1 + ε2V1 + ε3U1V1
U1�

(
U

U1

)
+I1�
(
I

I1

)
+ γ
v
C1�

(
C

C1

)

+ qγ (ρ + γ )
vaρ

W(x, t)+ γ (ρ + γ )
vρ

V1�

(
V

V1

)
+ p

c
T (x, t)

]
dx.

Then

DαL1(t) ≤
∫
�

[(
1 − F(U1, V1)

F (U, V1)

)
∂αt U +

(
1 − I1

I

)
∂αt I + γ

v

(
1 − C1

C

)
∂αt C

+γ (ρ + γ )
vρ

(
1 − V1

V

)
∂αt V + qγ (ρ + γ )

vaρ
∂αt W + p

c
∂αt T

]
dx.

Since λ = dU1 + F(U1, V1)V1, we have

DαL1(t) ≤ −
∫
�

[
d (ε0 + ε2V1) (U − U1)

2

(ε0 + ε1U1 + ε2V1 + ε3U1V1) U
− pe

c

(
RZ1 − 1

)
T

−qγ b(ρ + γ )
vaρ

(
RW1 − 1

)
W − F(U1, V1)V1

(
5 − F(U1, V1)

F (U, V1)

−C1I

CI1
− F(U, V )

F (U1, V1)

V I1

V1I
− CV1

C1V
− F(U, V1)

F (U, V )

)

− F(U1, V1)V1(ε0 + ε1U)(ε2 + ε3U)(V − V1)
2

(ε0 + ε1U + ε2V1 + ε3UV1)(ε0 + ε1U + ε2V + ε3UV )V1

]
dx

−dCF(U1, V1)V1

vI1
C1

∫
�

‖*C‖2

C2
dx − dV F(U1, V1)V1

ρC1
V1

∫
�

‖*V ‖2

V 2
dx.
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Since

5− F(Ui, Vi)
F (U, Vi)

− CiI
CIi

− F(U, V )

F (Ui, Vi)

V Ii

ViI
− CVi
CiV

− F(U, Vi)
F (U, V )

≤ 0, for i ∈ {1, 2, 3, 4}
(12)

we have, DαL1(t) ≤ 0 if RZ1 ≤ 1 and RW1 ≤ 1. Also, the largest compact
invariant set in {(U, I, C, V,W, T ) | DαL1(t) = 0} is {E1}. Therefore, it follows
from LaSalle’s invariance principle that E1 is globally asymptotically stable when
RZ1 ≤ 1 and RW1 ≤ 1.

For (ii), we consider the following Lyapunov functional

L2(t) =
∫
�

[
ε0 + ε2V2

ε0 + ε1U2 + ε2V2 + ε3U2V2
U2�

(
U

U2

)
+ I2�
(
I

I2

)

+γ
v
C2�

(
C

C2

)
+ γ (ρ + γ )

vρ
V2�

(
V

V2

)

+qγ (ρ + γ )
vaρ

W2�

(
W

W2

)
+ p

c
T

]
dx.

Then

DαL2(t) ≤
∫
�

[(
1 − F(U2, V2)

F (U, V2)

)
∂αt U +

(
1 − I2

I

)
∂αt I + γ

v

(
1 − C2

C

)
∂αt C

+γ (ρ + γ )
vρ

(
1 − V2

V

)
∂αt V + qγ (ρ + γ )

vaρ

(
1 − W2

W

)
∂αt W

+p
c
∂αt T
]
dx.

By using λ = dU2 + F(U2, V2)V2, we get

DαL2(t)

≤ −
∫
�

[
d (ε0 + ε2V2) (U − U2)

2

(ε0 + ε1H2 + ε2V2 + ε3H2V2)H2
− pc

e

(
RZ2 − 1

)

−F(U2, V2)V2

(
5 − F(U2, V2)

F (U, V2)
− C2I

CI2
− F(U, V )

F (U2, V2)

V I2

V2I
− CV2

C2V
− F(U, V2)

F (U, V )

)

+ F(U2, V2)V2(ε0 + ε2U)(ε2 + ε3U)(V − V2)
2

(ε0 + ε1U + ε2V2 + ε3UV2)(ε0 + ε1U + ε2V + ε3UV )V2

]
dx

− dCF(U2, V2)V2

vI2
C2

∫
�

‖*C‖2

C2
dx − dV F(U2, V2)V2

ρC2
V2

∫
�

‖*V ‖2

V 2
dx.
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According to (12) and RZ2 ≤ 1, we deduce thatDαL2(t) ≤ 0. Also thatDαL2(t) =
0 holds if and only if U = U2, I = I2, C = C2, V = V2, and W = W2. So, the
largest compact invariant set in {(U, I, C, V,W, T ) | DαL2(t) = 0} is {E2}. Hence,
E2 is globally asymptotically stable when RW1 > 1 and RZ2 ≤ 1.

For (iii), we consider the following Lyapunov functional

L3(t) = ε0 + ε2V3

ε0 + ε1U3 + ε2V3 + ε3U3V3
U3�

(
U

U3

)
+ I3�
(
I

I3

)

+ (γ + pT3)

v
C3�

(
C

C3

)
+ (γ + pT3) (ρ + γ )

vρ
V3�

(
V

V3

)

+q(ρ + γ ) (γ + pT3)

vaρ
W + p

c
T3�

(
T

T3

)
.

Then

DαL3(t) ≤
∫
�

[(
1 − F(U3, V3)

F (U, V3)

)
∂αt U +

(
1 − I3

I

)
∂αt I + (γ + pT3)

v

(
1 − C3

C

)
∂αt C

+ (γ + pT3) (ρ + γ )
vρ

(
1 − V3

V

)
∂αt V + q(ρ + γ ) (γ + pT3)

vaρ
∂αt W

+p
c

(
1 − T3

T

)
∂αt T

]
dx.

By applying the equality λ = dU3 + F(U3, V3)V3, we obtain

DαL3(t) ≤ −
∫
�

[
d (ε0 + ε2V2) (U − U3)

2

(ε0 + ε1U3 + ε2V3 + ε3U3V3) U3
− q(ρ + γ ) (γ + pT3)

vaρ

(
RW3 − 1

)
W

−F(U3, V3)V3

(
5 − F(U3, V3)

F (U, V3)
− C3I

CI3
− F(U, V )

F (U3, V3)

V I3

V3I
− CV3

C3V
− F(U, V3)

F (U, V )

)

+ F(U3, V3)V3(ε0 + ε2U)(ε2 + ε3U)(V − V3)
2

(ε0 + ε1U3 + ε2V3 + ε3U3V3)(ε0 + ε1U + ε2V + ε3UV )V3

]
dx

− dCF(U3, V3)V3

vI3
C3

∫
�

‖*C‖2

C2
dx − dV F(U3, V3)V3

ρC3
V3

∫
�

‖*V ‖2

V 2
dx.

Hence, DαL3(t) ≤ 0 with equality holds if and only if U = U3, I = I3, C = C3,
V = V3, W = W3, and T = 0. Therefore, E3 is globally asymptotically stable if
RZ1 > 1 and RW3 ≤ 1.

Finally, we prove (iv) by considering the following Lyapunov functional

L4(t) =
∫
�

[
ε0 + ε2V4

ε0 + ε1U4 + ε2V4 + ε3U4V4
U4�

(
U

U4

)
+ I4�
(
I

I4

)

+ (γ + pT4)

v
C4�

(
C

C4

)
+ (ρ + γ ) (γ + pZ4)

vρ
V4�

(
V

V4

)
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+q(ρ + γ ) (γ + pT4)

vaρ
W4�

(
W

W4

)
+ p

c
T4�

(
T

T4

)]
dx.

Similarly to above, we get

DαL4(t) ≤ −
∫
�

[
d (ε0 + ε2V4) (U − U4)

2

(αε0 + ε1U4 + ε2V4 + ε3U4V4) U4

−F(U4, V4)V4

(
5 − F(U4, V4)

F (U, V4)
− C4I

CI4
− F(U, V )

F (U4, V4)

V I4

V4I
− CV4

C4V
− F(U, V4)

F (U, V )

)

+ F(U4, V4)V4(ε0 + ε2U)(ε2 + ε3U)(V − V4)
2

(ε0 + ε1U + ε2V4 + ε3UV4)(ε0 + ε1U + ε2V + ε3UV )V4

]
dx

− dCF(U4, V4)V4

vI3
C4

∫
�

‖*C‖2

C2
dx − dV F(U4, V4)V4

ρC4
V4

∫
�

‖*V ‖2

V 2
dx.

Thus, DαL4(t) ≤ 0 with equality holds if and only if U = U4, I = I4, C = C4,
V = V4, W = W4 and T = T4. This implies that the largest compact invariant set
in {(U, I, C, V,W, T ) | DαL2(t) = 0} is {E4}. Thus, E4 is globally asymptotically
stable. This completes the proof. ��

3 Numerical Simulations

In this section, we carry out numerical simulations to confirm the above analytical
results.

Let �t be the time step size, � = [xmin, xmax] and �x = (xmax − xmin) /N be
the space step size with N is a positive integer. The grid points for the space are
xi = xmin + i�x for i ∈ {0, . . . , N} and for time are tm = m�t for m ∈ N.
Based on Grünwald-Letnikov method [18] which recently used in [19], the Caputo
fractional derivative can be approximated by

C∂αt l (xi, tm) ≈
1

�tα

m∑
j=0

βαj l
(
xi, tm−j

)− l̃m, (13)

where l̃m = l(xi ,0)t−αm
�(1−α) and βαj are the fractional binomial coefficients

(
α

j

)
with the

recursion formula

βαj =
(

1 − 1 + α
j

)
βαj−1, βα0 = 1.

For simplicity, we denote the approximations of (U, I, C, V,W, T ) solution of
system (1) at the discretized point (xi, tm) by (Umi , I

m
i , C

m
i , V

m
i ,W

m
i , T

m
i ). By

applying (13), we find
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1

�tα

⎛
⎝Um+1

i +
m+1∑
j=1

βαj U
m+1−j
i

⎞
⎠− Ũm+1

i = λ− dUmi − F(Umi , V mi )V mi ,

1

�tα

⎛
⎝Im+1

i +
m+1∑
j=1

βαj I
m+1−j
i

⎞
⎠− Ĩm+1

i = F(Umi , V mi )V mi − γ Imi − pImi T mi ,

1

�tα

⎛
⎝Cm+1

i
+
m+1∑
j=1

βαj C
m+1−j
i

⎞
⎠− C̃m+1

i
= dC

Cm
i+1 − 2Cm

i
+ Cm

i−1

�x2
+ vImi − (ρ + γ )Cmi ,

1

�tα

⎛
⎝Vm+1

i
+
m+1∑
j=1

βαj V
m+1−j
i

⎞
⎠− Ṽ m+1

i
= dV

Vm
i+1 − 2Vm

i
+ Vm

i−1

�x2
+ ρCmi −μVmi − qVmi Wmi ,

1

�tα

⎛
⎝Wm+1

i
+
m+1∑
j=1

βαj W
m+1−j
i

⎞
⎠− W̃m+1

i
= aVmi Wmi − bWmi ,

1

�tα

⎛
⎝T m+1

i
+
m+1∑
j=1

βαj T
m+1−j
i

⎞
⎠− T̃ m+1

i
= cImi T mi − eT mi .

Thus,

Um+1
i

= −βαj Um+1−j
i

+�tα
[
Ũm+1
i

+ λ− dUmi − F(Umi , V mi )V mi
]
,

Im+1
i

= −
m+1∑
j=1

βαj I
m+1−j
i

+�tα
[
Ĩm+1
i

+ F(Umi , V mi )V mi − γ Imi − pImi T mi
]
,

Cm+1
i

= −
m+1∑
j=1

βαj C
m+1−j
i

+�tα
[
C̃m+1
i

+ dC
Cm
i+1 − 2Cm

i
+ Cm

i−1

�x2
+ vImi − (ρ + γ )Cmi

]
,

V m+1
i

= −
m+1∑
j=1

βαj V
m+1−j
i

+�tα
[
Ṽ m+1
i

+ dV
Vm
i+1 − 2Vm

i
+ Vm

i−1

�x2
+ ρCmi − μVmi − qVmi Wmi

]
,

T m+1
i = −

m+1∑
j=1

βαj T
m+1−j
i +�tα

[
T̃ m+1
i + cImi T mi − eT mi

]
.

For numerical illustrations, we take in the whole section� = [0, 4] and dC = dV =
0.1. The initial conditions used are H(x, 0) = 40,000, I (x, 0) = 500, C(x, 0) =
300, V (x, 0) = 50,W(x, 0) = 30, and T (x, 0) = 20.

Firstly, we take λ = 5.04 × 105, d = 0.0039, k = 10−6, γ = 0.0693, p =
0.00064, v = 150, ρ = 0.2, μ = 0.67, q = 10−5, b = 0.7, c = 10−2, a =
10−5, e = 0.5, α = 0.8, ε0 = 0.1, ε1 = 1, ε2 = 0.1, and ε3 = 0.00001. In this
case, R0 = 0.0240 < 1. According to Theorem 2.1, the infection-free equilibrium
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Fig. 1 Stability of the infection-free equilibrium E0

E0(1.292 × 108, 0, 0, 0, 0, 0) is globally asymptotically stable. Figure 1 confirms
this result.

Next, we take k = 10−3, a = 10−7, c = 10−5 and do not change the other
values. By a simple computation, we have R0 = 2.3993 > 1, RW1 = 0.1997,
and Rz1 = 0.1682. It follows that case (i) of Theorem 2.2 that E1(1.2908 × 108,
8.4091 × 103, 4.6839 × 106, 1.3982 × 106, 0, 0) is globally asymptotically stable.
Figure 2 demonstrates this result.
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Fig. 2 Stability of the immune-free equilibrium E1

For the case in which k = 10−3, a = 10−5, c = 10−5, we obtain R0 = 2.3993 >
1, RW1 = 1.9974, and Rz2 = 0.9178. From (ii) of Theorem 2.2, E2(1.2908 × 108,
4.5891 × 104, 2.5562 × 107, 7 × 105, 6.6333 × 105, 0) is globally asymptotically
stable (see, Fig. 3).

For the case in which k = 10−3, a = 10−6, c = 10−3, we obtain R0 = 2.3993 >
1, RZ1 = 16.8183, and RW3 = 0.1188. By (iii) of Theorem 2.2, E3(1.2221 × 108,
500, 2.7850 × 105, 8313 × 104, 0, 131.8464) is globally asymptotically stable (see,
Fig. 4).
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Fig. 3 Stability of the infection equilibrium with only humoral immunity E2

For the case in which k = 10−3, a = 10−6, c = 10−4, we obtain R0 = 2.3993 >
1, RZ2 = 9.1783, and RW3 = 1.1876. By (iv) of Theorem 2.2, we deduce that
E4(1.2913 × 108, 5000, 2.785 × 106, 7 × 108, 1.2571 × 104, 20.3542) is globally
asymptotically stable (see, Fig. 5).
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Fig. 4 Stability of the infection equilibrium with only cellular immunity E3

4 Conclusions

In this work, we gave a rigorous mathematical analysis of a time-fractional diffusion
model for HBV infection with capsids and two arms of adaptive immune responses
that are the humoral and cellular immunity. We have shown that the model has
five equilibrium points which are given by the infection-free equilibrium E0, the
infection equilibrium E1, the infection equilibrium with only humoral immunity
E2, The infection equilibrium with only cellular immunity E3, and the infection
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Fig. 5 Stability of the infection equilibrium with both cellular and humoral immune responses E4

equilibrium with both cellular and humoral immune responses E4. The global
stability of the five infection equilibria is determined by five threshold parameters,
which are the reproduction number R0, the reproduction numbers for humoral
immunity RW1 , for cellular immunity RZ1 , for cellular immunity in competition RZ2 ,
and for humoral immunity in competition RW3 . More concretely, the infection-free
equilibrium E0 is globally asymptotically stable if the basic infection reproduction
number R0 ≤ 1, which biologically means that the HBV is cleared and the infection
dies out. When RW1 ≤ 1 and RZ1 ≤ 1, the infection equilibrium E1 is globally
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Fig. 6 The state variable V (x, t) with different values of α

asymptotically stable. For RW1 > 1 and RZ2 ≤ 1, the infection equilibrium with only
humoral immunity E2 is globally asymptotically stable. The infection equilibrium
with only cellular immunity E3 is globally asymptotically stable if RZ1 > 1 and
RW3 ≤ 1. Finally, when RZ2 > 1 and RW3 > 1, the infection equilibrium with both
cellular and humoral immune responses E4 is globally asymptotically stable. These
findings demonstrate that HBV persists in the liver despite the activation of one or
both arms of immunity.

From our analytical and numerical results, we conclude that the order α of the
fractional derivative has no effect on the stability of the five equilibria, but it can
affect the time for arriving to these equilibria and reduces the oscillations. For
example, when α increases which describes the long memory, the solutions of the
model converge rapidly to the steady states (Fig. 6). Additionally, the activation
of one or both arms adaptive immunity is unable to eradicate the HBV from the
liver. However, it plays a significant role in reducing viral load, increasing healthy
hepatocytes and decreasing infected hepatocytes.
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A 3D Fractional Step Computational
Modeling of Nerve Impulse Transmission
Through an Axonal Membrane:
Incorporating Calcium Buffer
and Extrusion

H. Lefraich

1 Introduction and Motivation

Neurodegenerative disorders are diseases which are associated with the death of
certain parts of the brain. They are some of the toughest illnesses to heal with
excessive outcomes. Parkinson’s and Huntington’s diseases are among the most
severe and the most widespread disorders. Despite the fact that a lot of information
has been found about the reason why these diseases occur, neurodegenerative
disorders are still complex and much remain to be revealed. The brain is an
extremely complex organ which is made of billions of cells that ensure its proper
functioning. Some of the most important cells in the brain are called neurons.
Neurons communicate with each other to achieve every function of the brain
including the muscles control. A very small miscommunication between neurons
can cause a neurodegenerative illness.

A neuron is among the most important and interesting cells in the human
body. The fundamental function of neurons consists in receiving, conducting, and
transmitting chemical and electrical signals. Indeed, neurons can carry signals from
the sensory organs inward to the central nervous system, which consists of the
brain and spinal cord. In the central nervous system, these signals are analyzed and
interpreted by a system of neurons, which then create a response. The response
is sent, again by neurons, to muscle cells and glands. A typical neuron can be
divided into four functionally distinct parts: cell body, or soma, which contains
the nucleus and other organelles; branches of dendrites, which receive signals from
other neurons; an axon, which is the long, slim nerve fiber that conducts signals
away from the cell body and transmits them to other neurons; and many branches
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at the far end of the axon, known as nerve terminals or presynaptic terminals. The
junction between two neurons is called a synapse and consequently, if a neuron
sends a signal across a synapse it is common to refer to the sending neuron as the
presynaptic neuron and to the receiving neuron as the postsynaptic neuron. The
axon is the essential signaling pathway from one neuron to another. This signaling
is ensured by brief voltage pulses called action potentials (AP) which are initiated
near the cell body and travel along the axon in order to reach the many presynaptic
boutons. The axon makes use of the ionic concentration gradients across their
membranes as a driving force for the ionic currents that generate the action potential.

Discerning the computational properties of single neurons is decisive for under-
standing their contribution to normal brain function and its breakdown during
different pathologies. For anatomical reasons, the geometry of axons resembles
that of an electric cable. Lord Kelvin[1–3], working on submarine cables, was the
first to develop the theory of current flow in electric cables. This theory was first
used in work related to neurons by Weber[4, 5], Cremer[6, 7], and Hermann[8–
10]. Hermann suggested that current flow of the kind described by cable theory
may be helpful to maintain nerve impulse propagation. After that, the theory has
been often used in the study of nerve and muscle. The theory has had full success
when applied to the mechanism of impulse transmission. In fact, the applications
have grown rapidly in 1930s and 1940s (see Rashevsky[11]; Rushton[12, 13];
Monnier[14]; Cole and Curtis[15–17]; Rosenberg[18, 19]; Hodgkin[20]; Cole and
Hodgkin[21]; Katz[22]; Offner, weinberg, and Young[23]; Weinberg[24]; Hodgkin
and Rushton[25]; Lorente de No[26]). Although, the generation and propagation
of signals have been extensively studied for the past century by physiologist; the
most valuable work in these studies is that of Alan Hodgkin and Andrew Huxley.
They established the first successful electrophysiological quantitative model of the
propagation of an electrical signal along a squid giant axon and revealed the key
properties of the ionic currents that underlie the nerve action potential. Their model
describes the conduction of action potentials in axons by a nonlinear excitable cable
(Hodgkin and Huxley[27]), moreover, the integration of postsynaptic signals in
dendrites has been studied with analytical solutions to passive cables (Rall[28]).

Their work besides the experimental developments keeps inspiring other
Hodgkin–Huxley type ionic models which have been created since then. In fact,
many researchers have used the cable model to check the possibility of improving
it to take account of more complex signal processing in dendrites with complex
morphologies, multiple synaptic inputs, and passive or excitable membranes
(Shepherd et al.[29]; Perkel and Perkel[30]; Wathey et al.[31]). These traditional
mathematical models of electrical activity, which are based on the work of Hodgkin
and Huxley, maybe collectively named cable models. The resting membrane
potential is maintained by ionic concentration discrepancies across the membrane.
Cable models are based upon a representation of the equilibrium potential of
each ion by a battery whose electromotive force is given by the Nernst potential.
Variations in the membrane permeability are modeled by variations of conductance
in series with the batteries. The ionic concentrations are mostly not significantly
affected by these conductance changes, so the equilibrium potentials are not affected
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and consequently the potentials of the batteries can be considered fixed which may
not always be a valid assumption. In fact, this is a good approximation when
dealing with the squid giant axon and large neurons but may induce errors if the
concentrations of some ions vary significantly, especially when the intracellular
volume is relatively small, then ionic concentrations can change rapidly following a
transient change in ionic conductance. This is more likely to arise in small processes
and during synaptic triggering in small structures such as spines (Rall[32]; Koch
and Poggio[33]). Besides, a sudden change in concentration at one area can create
gradients of ionic concentration within a thin process, which transgresses another
essential assumption of the cable model. That being said, it is necessary to consider
the fundamental laws governing the movements of ions, as given by the Nernst–
Planck equations for electro-diffusion (Jack et al.[34]).

Another motivation for meticulously treating the ionic concentrations and the
diffusion of ions within neurons is the fact that many intracellular functions are
regulated by concentrations of particular ions. For example, the concentration
of Ca2+ inside presynaptic terminals has been proposed to play a pivotal role
in a number of events, including neurotransmitter release [35–37]). Furthermore,
the neuron’s calcium concentration can change by an order of magnitude in
milliseconds. Consequently, it is crucial to predict accurately the concentration
changes of Ca2+ such as synaptic boutons and dendritic spines. Models based
on the Nernst–Planck equation have been considered to model voltage-dependent
concentration gradients. Previously, Qian and Sejnowski[38] applied the Nernst–
Planck equation in one dimension for the modeling of excitatory postsynaptic
potentials on dendritic spines, and showed in the case of large conductance changes,
there are important differences between the cable and electro-diffusion models. In
addition, Van Egeraat and Wikswo[39] applied a one-dimensional Nernst–Planck
equation in order to study axonal propagation in injured axons over long time scales.

In this chapter we introduce an electro-diffusion model that is based on the
Nernst–Planck equation. The electro-diffusion model provides a unified framework
for the computation of both the membrane potentials and the intracellular ionic con-
centrations during synaptic activity. The Nernst-Planck equation is supplemented by
a modified cable equation which rely membrane potential to ionic concentrations.

2 Materials and Methods

We model the detailed evolution of the concentrations of the most relevant ion
species and the resulting electric field during the spread of an AP along an axonal
membrane. To this end, the Nernst–Planck equation supplemented by a modified
cable equation is solved numerically by application of the finite element method.
In order to take full advantage of this framework, a numerical scheme capable
of handling three-dimensional geometries and also preserving the positivity of
concentrations, is required. That issue is tackled by using a fractional step method
which, additionally, can take account of the multiscale aspect of the phenomenon.
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Fig. 1 Computational
domain constructed. The
cylinder represents an axon
having a diameter of
0.05 μm. The domain is
discretized with tetrahedrals

2.1 Representation of the Computational Domain

Our simulation model focuses on the axonal part of the neuron because it can
capture the essential features of the latter and we can recover the functions of a
neuron by representing the postsynaptic and presynaptic terminals. Let us consider
a neuron which fills the bounded open set � of R3. � is assumed to be a cylinder
with boundary ∂� (Fig. 1). The boundary of the domain consists of three parts
∂� = �post ∪ �lat ∪ �pre, where �post refers to the left base of the cylinder and
represents the postsynaptic terminal, �pre refers to the right base, or end of the
cylinder which represents the presynaptic terminal, and �lat stands for the lateral
boundary.

2.2 Modeling the Nernst–Planck Equation

We will derive here a system of time-dependent, coupled, nonlinear partial differen-
tial equations to describe ionic electro-diffusion in this domain. We consider a set
of ion species K. Typically K will include sodium Na+, potassium K+, calcium
Ca2+, and chloride Cl−. Calcium buffer and bound calcium will not be described
explicitly in here, as it will be discussed in depth in another section. The movement
of ions is supposed to be due to diffusion and also the effect of electrical field. The
mass conservation equation for each ion specie Ak ∈ K stipulate that

∂Ck

∂t
+ div(Jk) = Fk (1)

where Ck is the concentration of species Ak , Fk denotes the production rate of Ak
due to all the homogeneous reactions in which it is involved and Jk is its molar
transport flux. Consequently, migration is included along with diffusion as possible
modes of transport for each species. The molar flux Jk then becomes

Jk = −dk∇Ck −mkCk∇V (2)
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where V is the electrical potential; dk , mk , and zk are, respectively, the diffusion
coefficient, the mobility, and the valence of the ionic specie Ak . There is a
relationship between the mobilitymk and the diffusion constant dk (see [40]), which
is given by

mk = dkzkFa

RTe
(3)

where zkFa is the charge carried by a mole of species Ak , R is the universal gas
constant, and Te is the local temperature. The transport equation for each specie
becomes

∂Ck

∂t
− dk�Ck −mkdiv(Ck∇V ) = Fk(C1, .., C4) (4)

We suppose that Fk depends continuously on the Ck ’s, and obviously that dk is a
positive constant for each k.

2.3 Modeling the Modified Cable Equation

The neuron can be modeled as a capacitor related in parallel with variables
resistances and batteries. The capacitance is due to the phospholipid bilayer that
separates the ions on the inside and the outside of the axon. The resistances and
batteries represent the different ionic currents. Consequently, in the one-dimensional
cable model, the membrane potential, V (x, t), at distance x and time t along an axon
satisfies the equation [34]:

d

4Ri

∂2V

∂z2 = Cm ∂V
∂t

+ Im + Istim (5)

where d is the diameter of the cable, Ri is the total intracellular cytoplasmic
resistivity, Cm is the membrane capacitance per unit area, Im represents the total
non-capacitive membrane current density which is the summation of all non-
capacitive membrane current densities for each ionic specie Im,k and Istim is an
applied external stimulation current. Assuming that the movement of ionic specie
Ak across the membrane can be described by a membrane resistance of unit area
Rm,k in series with a battery whose electromotive force Ek is equal to the ionic
equilibrium potential, then

Im,k = (V − Ek)
Rm,k

and
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Im =
∑
k

Im,k = (V − Vrest )
Rm

(6)

where the resting membrane potential, Vrest , and the total membrane resistance Rm,
are given by

Vrest = Rm
∑
k

(
Ek

Rm,k
)

1

Rm
=
∑
k

(
1

Rm,k
)

Now, if we assume that the potential change in a short segment of a process is
equal to the change of the total charge in the segment divided by its membrane
capacitance:

V (x, t) = Vrest + ( Fd
4Cm

)
∑
k

(Ck(x, t)− Ck,rest )zk (7)

where Vrest is the initial potential and Ck,rest is the initial ionic concentration of
specie Ak . By substituting (6) into (5) and considering (7), we get

dRm

4Ri

∂2V

∂z2 = CmRm ∂V
∂t

+ ( Fd
4Cm

)
∑
k

(Ck(x, t)− Ck,rest )zk + RmIstim

Analogously, the membrane potential in a 3D single neuron can be modeled as a
continuous system with the following partial differential equation:

λ2�V = τm ∂V
∂t

+ ( Fd
4Cm

)
∑
k

(Ck(x, t)− Ck,rest )zk + RmIstim(x, t), (8)

where the space and time constants are defined as

λ =
√
dRm

4Ri

τm = RmCm
Let us mention that Istim may only depend on time and space but may also depend
on the electrical potential.
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2.4 Calcium Buffer and Extrusion

Calcium ions play a pivotal role in the regulation of the functions of the neurons. The
dynamics of the free intracellular calcium is controlled by diffusion and binding to
host of different enzymes, which serves as calcium buffers and as calcium sensors.
Certain proteins, such as calmodulin, change their structure when they bind to
calcium and consequently activating or modulating enzymes and ionic channels.
It is very important to understand the role of diffusion and chemical kinetics
in controlling the cytosolic calcium. The Ca2+ binding can be modeled by the
following chemical reaction:

Ca2+ + B K+�
K−
CaB

where B stands for a generic calcium buffer and CaB for bound calcium. K+
and K− are forward and backward binding rates, respectively (they are given in
Table 1). The effect of buffering on the concentration of the different species is given
by differential equations derived from the chemical reaction. Then, the differential
equations for the buffer take the form:

∂[Ca2+]
∂t

= K−[CaB] −K+[Ca2+][B],

∂[B]
∂t

= K−[CaB] −K+[Ca2+][B],

∂[CaB]
∂t

= −K−[CaB] +K+[Ca2+][B]

The total buffer concentration is given as BT = [B]+ [CaB] and the rate of change
of this quantity is null:

∂BT

∂t
= 0

Now we can rewrite

∂[Ca2+]
∂t

= K−[CaB] −K+(BT − [CaB])[Ca2+],

∂[CaB]
∂t

= −K−[CaB] +K+(BT − [CaB])[Ca2+][B]

Furthermore, the basic equation of Nernst–Planck must be augmented to incor-
porate the physiological extrusion of calcium in the nerve cell. Consequently,
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Table 1 Symbols, units, and
default parameter values of
the model

Symbol Parameter Value Unit

F Faraday constant 96,485 C/mol

R Perfect Gaz constant 8.3144 J/(mol K)

T Absolute temperature 310 K

K+ Forward buffer rate 0.05 μM−1 ms−1

K− backward buffer rate 0.5 ms−1

Pm Pump parameter 0.2 μm ms−1

Kp Dissociation constant 0.5 μM

τm Electric time constant 20 ms

λ Electric space constant 224 μm

Rm Membrane resistivity 20 K� cm2

BT Total buffer concentration 100 μm

we include a simple calcium extrusion process P(
[
Ca2+]) that saturates at high[

Ca2+]. That pump has the following form:

P(
[
Ca2+]) = 2Pm

a

[
Ca2+]

1 + [Ca2+]
Kp

where Kp is the dissociation constant between the pump and calcium, 2
a

is the
surface area-to-volume ratio in a cylinder of radius a and Pm is the membrane pump
parameter.

Incorporating the calcium buffering and its extrusion into the diffusion equation
and accounting for the diffusibility of the buffer leads to

∂[Ca2+]
∂t

− dCa2+�[Ca2+] −mCa2+div([Ca2+]∇V )
= −P([Ca2+])+K−[CaB] −K+(BT − [CaB])[Ca2+],

∂[CaB]
∂t

− dCaB�[CaB] −mCaBdiv([CaB]∇V )
= −K−[CaB] +K+(BT − [CaB])[Ca2+]

2.5 Initial and Boundary Conditions

We assume that initial conditions are given for all ion concentrations,

Ck(x, 0) = C0
k (x) for all x ∈ �

In addition, we assume that an initial condition is given for the membrane potential:
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V (x, 0) = V0(x) for all x ∈ �

Finally, we will close the system by a set of boundary conditions. At the open ends
of the neuron �pre, we impose Dirichlet conditions equal to the initial values of
concentrations, which corresponds to the physical scenario of the system interacting
with a large reservoir of ions.

Ck(x, t) = C0
k (x) for all x ∈ �pre

Similarly, the voltage obeys

V (x, t) = 0 for all x ∈ �pre
The fixed concentrations and the grounded voltage on the outermost boundary
provide an infinite source/sink of ions during the simulation. For the remaining part
of the boundary, we opted for a sealed condition, thus there must be no flow of ions
nor flux of the electric field into or out of the boundary �lat ∪ �post ,

∂Ck

∂n
= 0 on �lat ∪ �post ,

∂V

∂n
= 0 on �lat ∪ �post

2.6 Summary of Governing Equations

For our model we take the Calmodulin protein Ca-Cam as a calcium buffer. We
denote the concentrations of the reactants by

C1 =
[
Ca2+] , C2 = [Ca − Cam] , C3 = [Na+] , C4 = [K+] , C5 = [Cl−]

The model is given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C1

∂t
− d1�C1 −m1div(C1∇V ) = −P(C1)+K−C2 −K+( BT−C2)C1 in ]0, T [ ×�

∂C2

∂t
− d2�C2 −m2div(C2∇V ) = −K−C2 +K+( BT − C2)C1 in ]0, T [ ×�

∂C3

∂t
− d3�C3 −m3div(C3∇V ) = 0 in ]0, T [ ×�

∂C4

∂t
− d4�C4 −m4div(C4∇V ) = 0 in ]0, T [ ×�

∂C5

∂t
− d5�C5 −m5div(C5∇V ) = 0 in ]0, T [ ×�

τm
∂V
∂t

− λ2�V + ( Fd4Cm
)
∑
k

(Ck(t, x)− Ck,rest )zk = −RmIstim(x, t) in ]0, T [ ×�
∂Ck

∂n
= 0, in ]0, T [ × (�lat ∪ �post ), for k = 1, 2, .., 5.

∂V

∂n
= 0, in ]0, T [ × (�lat ∪ �post ), for k = 1, 2, .., 5.

Ck(t, x) = C0
k in ]0, T [ × �pre

V (t, x) = 0 in ]0, T [ × �pre
Ck(0, x) = C0

k in �, for k = 1, 2, .., 5.
V (0, x) = V0(x) in �

where T > 0. We suppose that:

for all k = 1, . . . , 5 C0
k ∈ L2(�) and satisfy C0

k ≥ 0 .

2.7 Variational Formulation of the Problem

Let’s consider the functional spaceW defined as follows:

W =
{
φ ∈ H 1(�), φ = 0 on �pre

}

In order to show the numerical formulation of the problem, let S = L2(0, T ;W)
be the space of approximate solutions and obviously W is the space of tests
functions. Let Wh be a finite element space of Lagrange P1 included in W and
Sh = L2(0, T ;Wh) be the finite dimensional subspace of S. The Faedo-Galerkin
formulation for the problem is given by, finding Ck,h − C0

k,h ∈ Sh for i = 1, . . . , 5
and Vh ∈ Sh:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• for every wh ∈ Wh a.e. t ∈]0, T [ and for 1 ≤ k ≤ 5,
d
dt

∫
�
Ck,hwh + dk

∫
�
∇Ck,h∇wh +mk

∫
�
Ck,h∇Vh∇wh = − ∫

�
Pk(Ck,h)wh

+ ∫
�
Fk(C1,h, . . . , C5,h)wh

Ck,h(0, x) = C0
k,h(x) on �

• for all φh ∈ Wh and a.e. t ∈]0, T [
τm

d
dt

∫
�
Vhφh + λ2

∫
�
∇Vh∇φh + ( Fd4Cm

)
∑
k

∫
�
zk(Ck,h(t, x)− Chk,rest )φh

= − ∫
�
RmIstim(x, t)φh

Vh(0, x) = V h0 (x) on �
(9)

where in our case:

F1(C1,h, . . . , C5,h) = −F2(C1,h, . . . , C5,h) = K−C2,h −K+( BT − C2,h)C1,h

and F3 = F4 = F5 = 0,

and

P1 = P, Pk = 0 for k = 2, . . . , 5

C0
k,h and V h0 are the projections of C0

k and V0 onWh.

2.8 Numerical Scheme

The problem is hard to solve because of the strongly nonlinear terms and the
important convective effects. Furthermore, a loose coupling exists between the
different phenomena which evolve with different characteristic times. From the
numerical view point, we propose a fractional step approach. This method consists
in separating the operators of a partial differential equation, and dealing with each
term successively. Let us recall the transport equation:

∂Ck,h

∂t
− dk�Ck,h −mkdiv(Ck,h∇Vh) = −Pk(Ck,h)+ Fk(C1,h, C2,h, . . . , C5,h)

This equation can be rewritten:

∂Ck,h

∂t
−dk�Ck,h−mk∇Vh∇Ck,h−mkCk,h�Vh = −Pk(Ck,h)+Fk(C1,h, C2,h, . . . , C5,h)

By denoting

u = −mk∇Vh
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The transport equation becomes

DtCk,h − dk�Ck,h −mkCk,h�Vh = −Pk(Ck,h)+ Fk(C1,h, C2,h, . . . , C5,h)

where Dt denotes the particle derivative

Dt = ∂t + u.∇

It is convenient to first solve

DtCk,h − dk�Ck,h = −Pk(Ck,h)+ Fk(C1,h, C2,h, . . . , C5,h)

which depends on Vh only by means of Dt , then solve the system

∂Ck,h

∂t
−mkCk,h�Vh = 0, (10)

τm
∂Vh

∂t
− λ2�Vh + ( Fd

4Cm
)
∑
k

(Ck,h(t, x)− Chk,rest )zk = −RmIstim(x, t)

Let us remark that Eq. (10) can be rewritten in conservation form:

∂tσk,h −mk�Vh = 0

with σk = log(Ck,h) and σk,h is the projection of log(Ck,h) on Sh.

2.8.1 Time Marching Scheme

Let us denote by (Cn+1
k,h , V

n+1
h ) and (Cnk,h, V

n
h ) the approximate value at time t =

tn+1 and t = tn, respectively, and by δt the time step size. Then by using (9) and
the following algorithm, we determine the unknown fields.

Algorithm of Resolution
We used the following algorithm to calculate Ck,h and Vh.

• Initialize for k = 1, . . . , 5

C0
k,h = C0

k,h(x),

V 0
h = V h0 (x)

• Loop over n
At step n:
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• Calculate C∗
k,h solution of:

∫
�

C∗
k,h − Cnk,h ◦Xn

δt
wh +
∫
�

dk∇C∗
k,h.∇wh = −ak

(
2Pm
a

)∫
�

C∗
k,h

1 + Cnk,h
Kp

wh

+
∫
�

Fk(C
n
1,h, ., C

∗
k,h, ., C

n
5,h)wh

where a1 = 1, a2 = a3 = a4 = a5 = 0.
Once C∗

k,h is computed then we compute

σ ∗
k,h = PSh(log(C∗

k,h))

as the projection on Sh of the field log(C∗
k,h).

• Calculate (σn+1
k,h , V

n+1
h ) solutions of the system:

∫
�

σn+1
k,h − σ ∗

k,h

δt
ψh +
∫
�

mk∇V n+1
h .∇ψh = 0, ∀ψhεWh

τm

∫
�

V
n+1
h

− V n
h

∂t
φh+λ2

∫
�

∇V n+1
h

∇φh+(
Fd

4Cm
)

∫
�

∑
zk(C

∗
k,h(x, t)−Chk,rest )φh = −

∫
�
RmIstim(x, t)φh ∀φhεWh

Then, we compute

Cn+1
k,h = PSh(exp(σn+1

k,h ))

as the projection on Sh of the field exp(σn+1
k,h ).

3 Results and Discussion

In this section, aiming to understand how an action potential emerges from the
mathematical structure that we have developed we study the dynamics of the model
for different types of input. For all the results of this section, we considered the
following parameters:

For the computations membrane capacitance per unit surface area is taken
as Cm = 1 μF/cm2, following Zador et al.[41]. The radius of the neuron is
a = 0.05 μm, which is of the same magnitude used by Zador et al.[41]. The
diffusion coefficients of the ions are d1 = 0.6 μm2 ms−1, d2 = 0.13 μm2 ms−1,
d3 = 1.334 μm2 ms−1, d4 = 1.96 μm2 ms−1, and d5 = 2.03 μm2 ms−1 following
Cussler[42]. The charge number of the ions are z1 = 2, z2 = 2, z3 = 1, z4 =
1, and z5 = −1.
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The initial concentrations are set toC0
1 = 0.01 μM,C0

2 = 0.6 μM,C0
3 = 12 mM,

C0
4 = 155 mM, C0

5 = 162 mM, and φ0 = −80 mV. The data employed for initial
concentrations were taken from Hille[43]. The time step of the simulation is δt =
10−5 s, and T = 0.003 s.

3.1 Numerical Result 1: Electrophysiological Behavior of the
Model in Absence of Stimulation

In order to experiment the scenario where the neuron is not receiving any stimulation
from other neurons, we set Istim = 0 and evaluate the electrical potential at the
center of the longitudinal axis. Figure 2 illustrates the depolarization of the axon,
which is a change during which the neuron undergoes a shift in electric charge
distribution, resulting in less negative charge in the intracellular side. The computed
electrical potential is in agreement with the physical experiments of Hodgkin and
Huxley[20], which stipulates that the neuron’s membrane potential moves to a
more positive value (movement closer to zero from resting membrane potential).
Moreover, the exponential increase of the electrical potential agrees with the curve
of the analytical solution calculated for a linear cable by Jack et al. [34].

Figure 3 plots the temporal evolution of the Ca2+ concentration at the center of
the longitudinal axis of the neuron. We can see that the concentration of calcium is
increasing which is expected by biological experiments. In fact, when the membrane
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Fig. 2 Action potential in a neuron without stimulation showing depolarization
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Fig. 3 Time course of Calcium concentration inside the neuron with C0
1 = 0.01 μM

potential becomes greater, it causes the opening of Ca2+ channels, then the Ca2+
rushes in inside the neuron.

Furthermore, we experimented the mechanism of calcium extrusion of our
model. Let us notice that the calcium extrusion process P([Ca2+]) can saturate
at high [Ca2+]. In fact, if the [Ca2+] is high relative to the pump dissociation
constant (i.e., [Ca2+]/Kp >> 1), then P([Ca2+]) approaches a constant. At
the other extreme, if the [Ca2+] is low relative to the pump dissociation constant
(i.e., [Ca2+]/Kp << 1), then the extrusion becomes a linear function of [Ca2+].
Figure 4 corresponds to the case with high calcium concentrations compared toKp,
where we take C0

1 = 5 μM.
In Fig. 4, we see the calcium concentration decreasing which is justified by the

fact that the pump behaves as a steady hyperpolarizing current flowing out across
the membrane. Meanwhile, in Fig. 3 the pump behaves like the leak term in standard
cable models.

3.2 Numerical Result 2: Electrophysiological Validation of the
Model

To validate the model two criteria are considered (1) excitability (2) action potential
morphology.
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Fig. 4 Time course of Calcium concentration inside the neuron with C0
1 = 5 μM (effect of pump

saturating)

3.2.1 Excitability

This means that the neuron stays in its resting potential as long as no stimulation is
applied to it. However, by using an efficient stimulus it produces AP. The stimulus
current Istim is the key to stimulate the system. In the neuron, the excitation is
received from other neurons. Here we applied a single stimulus, which delivers a
short current pulse of 0.5 ms and strength −200 μA/cm2, beginning at t = 150 ×
10−5 s at the center of the longitudinal axis of the neuron. Figure 5 shows that before
time t = 150.10−5 s there was no stimulation and consequently there is no action
potential but at time t = 150.10−5 s an AP is generated. In Fig. 6 we display a 3D
snapshot of the evolution of the response of the axon to the current stimulation.

3.2.2 Action Potential Morphology

This model reproduces the triangular AP morphology specific to excitable cells (see
Fig. 5) with no sustained plateaus, which is similar to the AP shape obtained with
more complex models Nygren et al. [44] and Cherry et al. [45].
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Fig. 5 Generated AP by stimulus current at time t = 150 × 10−5 s. Before time t = 150 × 10−5 s
no stimulation is applied

Fig. 6 A 3D snapshot of the
propagation of the electrical
potential along the cylindrical
axon at the end of the
stimulation

4 Conclusion

A computational model for the 3D dynamic of electric charges had been developed,
with application to nerve impulse transmission. This model fills the gap in scale
between the detailed molecular dynamic approach, which consider the role of ionic
channels, and the semi-empirical approach of the cable equation and Hodgkin–
Huxley equations. Our model has provided valuable insights and potential exper-
imentally viable predictions which illustrates how the interdependence between
electrical and chemical aspects of the phenomenon can help us to understand more
perfectly the neuron signaling process. Numerical experiments qualitatively and
quantitatively agree with the standard model. Other perspectives and developments
of this model include: further investigations of the effect of the morphology of the
neuron including the dendritic spine, modeling the synapses and gap junction and
also modeling the extracellular space.
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Covid-19 Superspreading Events
Network Analysis from Agent-Based
Model with Mobility Restriction

L. L. Lima and A. P. F. Atman

1 Introduction

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has spread around
the world, being an immediate major public health concern [1]. Governments and
research centers around the world have joined efforts to help combat COVID-19,
seeking alternative solutions to contain the pandemic while a vaccine had not been
developed. Some countries, like China, have succeeded to control the first wave of
the disease with some restrictions on travel and mobility, along with other action, as
detecting and isolating cases [2, 3].

Epidemiological models can be of great help in understanding the spread
of epidemics, becoming a tool used to assist decision making. Throughout the
pandemic, the basic reproduction number (R0) received much attention. It is defined
as the mean number of infections generated by an infected individual in a susceptible
population and has estimated values between 1.4 and 6.49 for COVID-19 [4].

If we analyze only R0, we know that values less than 1 indicate that the infection
will not be maintained and, on the other hand, when R0 is greater than 1, the
infection tends to spread in the population [5]. However, R0 is an average value, and
being below 1 may not be enough to indicate that the epidemic does not continue to
spread, especially if we consider the occurrence of superspreading events (SSE): as
a mean number, R0 can distort individual infectiousness [6].
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SSE are defined as outbreaks where a large number of cases are caused by a
small number of infected individuals, i.e., some individuals have high infection
capacity [7]. A single case can be responsible for an explosive epidemic when a
disease has a high individual variation [6]. Other factors, as transmission mode,
contact frequency and duration, and public heath interventions, can also impact the
occurrence of superspreading events [8].

The superspreading events had special attention in SARS outbreaks in Singapore
and China in 2003, since they could assist in understanding transmission dynam-
ics [9]. In Singapore, five people caused more than half of the 205 cases (and
163 cases caused zero secondary transmission) [10]. In 2015, in Korea, only 5
cases of MERS originated 154 secondary cases (166 cases caused zero secondary
infections) [9, 11]. For COVID-19, one of the most famous cases of superspreading
at the beginning of the pandemic is the “Patient 31,” who is linked to a cluster with
more than 5,000 cases in Daegu, South Korea [12].

Sometimes, looking at an average value (as R0) for large regions may not be
representative of the situation, especially if clusters are formed in isolated regions.
It is necessary to consider the distribution of cases spatially and, if possible, trace the
contacts. Thus, in this chapter, we aim to use an agent-based model to evaluate how
reducing the human mobility during COVID-19 pandemic impacts the peak number
of infected and the need for medical support (like ventilator) and how the individual
number of transmissions change. For this, we evaluate the degree distribution, the
betweenness and the closeness centrality in the COVID-19 transmission network.

2 Materials and Methods

2.1 Agent-Based Model

We developed an Agent-Based Model (ABM) using probabilistic cellular automata
over a regular square lattice (L × L sites, with 9 m2 of area for each). The
time step considered was 1 h, with synchronous updating, and the agents execute
a random walk along the environment, using Moore’s neighborhood and with
periodic boundary conditions. Each agent can assume one of the following states:
Susceptible, Incubated, Symptomatic Infected, Asymptomatic Infected, Infected in
the Infirmary, Infected in ICU (Intensive Care Unit), Recovered, and Dead.

When two or more agents are on the same site and one of them is infected,
the susceptible ones have a probability 80% of being infected, except if those
individuals are in the infirmary or in the ICU, once they are isolated in these sites.
Both symptomatic and asymptomatic can transmit the disease [13]. As it is a new
disease with many characteristics still unknown, we do not consider the possibility
of reinfection along the short period of the simulation run.

All the simulations started with only susceptible individuals and, then, we choose
one to be infected to spread the disease. The permanence into a given state follows a
Gaussian distribution around the time intervals shown in Table 1, which are reported
in literature as typical for COVID-19 [14–17].
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Table 1 Time (days) used as model parameters

State Mean Minimum Maximum

Incubation 5.2 2 12

Infection (after incubation) 5.8 3 14

Infirmary (after infection, if hospitalized) 10.5 7 14

ICU (after Infirmary, if goes to ICU) 17.5 14 21

Fig. 1 Dynamics of the model: an infected individual can be symptomatic or asymptomatic.
Symptomatic individuals can go to the infirmary and from there to the ICU

To analyze the effect of the mobility reduction (with people staying at home
and less physical interaction), the model considers that the individual reduces the
movement in a percentage (0% or no restriction, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% or lockdown). We apply the Monte Carlo method (64-
bit Xorshift Method [18]) to implement the mobility restriction, that is, the agent
moving less. This does not prevent the individual from meeting other humans, but
since everyone is moving less, the chance of encounters is reduced. For this work,
we used L = 250 and 10000 individuals. The population is distributed a priori with
the following probabilities (considering the case of the individual be infected): 60%
will become symptomatic [13]; 21% will need to go to a hospital [19]; 5% will need
ICU [19]; and 2% of death rate, [19] as Fig. 1.

2.2 Network Analysis

By analyzing the results, it was possible to build a directed network from the
original infected individual towards the subsequent infected ones to visualize the
transmission of the disease. For this, we record the infection chain from individual to
individual and build a graph. Agents not infected were not considered in the graph.

Each infected agent is considered as a vertex of the network and we considered
the degree of a vertex v the number of links connected to v. We called this value
as deg(v). We calculate the out-degree, that is, how many people does an infected
individual transmit the disease to. So, the degree distribution measured in this work
only considers out-degree connections.
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The betweenness centrality of a node v, B(v), is given by

B(v) =
∑
s 
=v 
=t

σst (v)

σst
, (1)

where σst is the total number of shortest paths from node s to t and σst (v) is the
number of those paths that pass through v. We also performed a normalization by
dividing B(v) by (N − 1)(N − 2), since the graph is directed. N is the number of
nodes (vertices) of the graph.

We also calculate the closeness centrality, which is given by C(v).

C(v) = N − 1∑
u d(v, u)

(2)

Note that the equation already considers a normalization when multiplies by the
number of nodes minus 1. d(v, u) is the distance (number of nodes) in the shortest
path between vertices v and u.

3 Results and Discussion

In Fig. 2 we observed a remarkable difference between the infected curves in
function of the mobility restriction. The results suggest that high mobility does not

Fig. 2 Percentage of infected for different values of mobility restriction and for the scenario
without restrictions (0%)
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have a big impact in the infected individuals, as observed in the mobility reduction
of 10%, 20%, 30%, and 40%. The most effective result for flattening the infected
curve was to establish a restriction on the movement of people by 90%, similar
to a lockdown situation, in which people leave the house only if strictly necessary.
However, it is almost impossible to live a long time in lockdown, since we know how
big is the impact not only socio-economic [20] but also in the physical and mental
health of the populations [21, 22]. Reducing the mobility by 70% and 80% also
showed a considerable flattening of the curve concerning to no mobility restriction
(0%), as shown in Fig. 2. These curves correspond to the average over 30 runs for
each value of mobility restriction.

In Table 2 it is possible to notice a difference of approximately 268 days at
the peak of the pandemic and approximately 24% of infected individuals during
the peak for a situation without mobility restriction (0%) compared with the case
of 90% restriction. This is also reflected in the number of people hospitalized in
ICUs, whose number jumps from 0.49% to 2.95% at the peak with a difference
of 274 days. This implies a difference of about 246 ICU beds with a ventilator
for every 10,000 inhabitants and shows how the mobility restrictions are important
especially for the health system not collapse. In addition to having fewer individuals
hospitalized simultaneously, there is time to prepare beds and purchase health
supplies (such as ventilators and medications) when there are high levels of mobility
restriction.

It is important to highlight that practically all individuals are infected in the
model with up to 60% mobility restrictions. At 70%, the non-infected rate is about
0.4% and it reaches almost 16% for a restriction of 90% (Table 2).

Figure 3 shows the infection network of each simulation in function of the
mobility restriction level. To analyze the differences between each one, we evaluated
the distributions of the measures of degree, betweenness and closeness centrality.
Figure 4 shows the degree distribution of the different simulations and the results
indicate that there are a large number of people who do not transmit the disease
to anyone, while a small number of individuals are responsible for a large number
of infections, characterizing superspreading events. We can see a reduction in the
maximum number of infected for each mobility restriction value, and superspreaders
degree tend to decrease with a higher mobility restriction. In Fig. 4, the distribution
exhibits heavy tails, as observed for SARS epidemic in Singapore in 2003 [10].
In this way, some researchers indicate that superspreading is a typical feature of
disease spread [6] and that the data counting from infectious diseases tend to have a
variance greater than the mean, that is, they tend to be over dispersed [10].

The slope of the heavy tails versus the order parameter is shown in Fig. 5. For
low values of reduced mobility, the dependence is almost linear, which corroborates
the observation made previously that there is no big difference in the spreading
dynamics for small mobility restriction levels. A significant flattening of the curves
is observed only for restriction mobility above 70%.

Figures 6 and 7 corroborate with the out-degree data that there is a change in
the network due to the mobility restriction. In Fig. 6, the higher the restriction,
the higher the maximum values found in the distribution of betweenness centrality.
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Fig. 3 Example of a transmission network generated at the end of a simulation for each mobility
restriction: (a) 0%; (b) 10%; (c) 20%; (d) 30%; (e) 40%; (f) 50%; (g) 60%; (h) 70%; (i) 80%; (j)
90%

Fig. 4 Out-degree distribution of each mobility restriction value. Linear fit on a log scale on the y
axis

Since betweenness is related to how many times a vertex appears in shorter paths,
the higher values of this measure found for higher restriction values may be related
to the fact that the infection spreads with a slower rate (having a flattened curve),
causing a person to tend to be the point of connection with several others. However,
there are many records of zero or close to zero betweenness, which shows that
few individuals are responsible for the largest connections on the network, as
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Fig. 5 Slope for the degree distribution of each mobility restriction value

Fig. 6 Betweenness centrality distribution of each mobility restriction value
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Fig. 7 Closeness centrality distribution of each mobility restriction value

shown by the measure of the degree (Fig. 4). On the other hand, when there are
no restrictions, more people tend to be infected at the same time, transmitting to
many others at first, but as time passes, people who have already been infected
do not reinfect themselves, breaking the chain of transmission and having smaller
betweenness value. This characteristic of superspreaders having a more important
role in the spread of the infection as mobility decreases is not captured by the degree
distribution but is evidenced by the betweenness measures.

A similar interpretation can be given for the measure of the closeness of the
networks (Fig. 7). There is a small number of individuals with higher closeness
in simulations with a higher mobility restriction, indicating that they transmit the
disease more efficiently through the network. However, for networks built from
smaller restrictions, there are a large number of individuals with intermediate
closeness values. This agrees with the reasoning that there are more people infected
transmitting the disease at the same time.

Even with the reduced mobility by 90%, there was still a record of individuals
spreading it to many people. The high values of betweenness and closeness for
higher mobility restriction highlights the importance of testing and trace infected
people. By isolating these potential disseminators, it is possible to prevent the
mass spread of the disease and allow more people in circulation in the cities. This
consequently contributes to reducing the other impacts of the pandemic as economic
and social.
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4 Conclusions

In general, the simulation showed that reduced mobility is capable of flattening
the curve. Regarding superspreading, the simulation analysis showed that there is
a reduction in the degree of infected as the mobility restriction increases but the
values of betweenness and closeness centrality reveal the most prominent role of
the superspreaders. In addition to other preventive measures, as mobility restriction,
testing and tracing contacts are necessary, allowing infected individuals to remain
in isolation and not spread the disease to the susceptible.

Controlling a pandemic requires high-stakes decisions that involve different
factors at different levels of government and public health organizations. It is
necessary to use appropriate tools to support these decisions, which highlights the
need for investment in science. Epidemics that came before COVID-19 showed
the need to be prepared to face the adversities of a disease that can affect the
entire world. Unfortunately, this was proven during the COVID-19 pandemic,
showing how important it is to develop appropriate tools to study and support
events as complex as this. In this way, understanding the role of some events
as superspreading is extremely important for making prediction models and for
establishing disease control strategies.
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Distinct Prognostic Values of BCL2
Anti-apoptotic Members in Lung Cancer:
An In-Silico Analysis

Pooja Mittal, Indrakant Kumar Singh, and Archana Singh

1 Introduction

Lung cancer (LC) is the most common cancer among men and women and accounts
for a quarter of the cancer-associated deaths worldwide [1, 2]. It is constituted by
two major histological types: small-cell lung carcinoma (SCLC), which comprises
15% of LC, and non-small-cell lung carcinoma (NSCLC), which comprises 80–85%
of LC cases [2]. NSCLC includes the subcategories adenocarcinomas and squamous
cell carcinomas [2, 3]. Recent advances have led to enhanced understanding of LC
molecular pathology and molecular-targeted therapies, but despite these, the LC-
associated mortality remains high due to late diagnosis and limited effectiveness of
clinical interventions [2].

Evasion of the apoptotic signaling pathway is a major hallmark associated
with cancer progression [4]. The apoptotic pathway is divided into extrinsic and
intrinsic/mitochondrial pathways. The intrinsic apoptotic pathway comprises four
subclasses of BCl2 proteins: anti-apoptotic, pro-apoptotic effectors, BH3-only
direct activators, and BH3-only sensitizers.

cBioportal is an open platform to access and explore cancer genomic data [5, 6].
KM plotter (Kaplan-Meier plotter) database includes gene expression and patient
survival datasets for various cancer types. KM plotter is a highly valuable platform
for the preliminary biomarker analysis in cancer [7]. A number of potential
prognostic biomarkers have been identified using KM plotter for various cancers,
including lung cancer [8, 9]. MicroRNAs (miRNAs) are short and non-coding
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RNAs that regulate gene expression through mRNA degradation and translational
repression. MiRSystem is an online user-friendly tool that predicts miRNA targets
as well as miRNAs with potential binding to target gene transcripts [10].

In the present study, we utilized three online platforms, cBioportal, KM plotter,
and miRSystem to report the genomic alterations in target genes, effects of mRNA
expression of selected BCL-2 anti-apoptotic genes on overall survival (OS) and
potential miRNA regulators of target genes, in context to lung cancer.

2 Materials and Methods

2.1 Gene Alteration Analysis Through cBioportal

The cBioportal (http://cbioportal.org) was accessed (on 2nd July 2020) and the
gene alteration percentages were obtained for the four anti-apoptotic BCL2 genes
(BCL2, MCL1, BCL2A1, and BCL2L1) in two lung cancer datasets: Lung Adeno-
carcinoma (TCGA, PanCancer Atlas – 507 patients/samples) and Lung Squamous
Cell Carcinoma (TCGA, PanCancer Atlas – 469 patients/samples) [5, 6]. The data
was represented in the form of bubble plots (created through R) wherein the size
of each is bubble is directly proportional to the percentage of samples with gene
alterations (mutations+ copy number variations).

2.2 Prognostic Analysis Through KMplotter

KM plotter was used to assess the prognostic relevance of four BCL-2 anti-
apoptotic genes (BCL2, MCL1, BCL2A1, and BCL2L1) mRNA expression in lung
cancer. Also the correlation of mRNA expression, prognosis and clinicopathological
features (tumor histology and patient smoking history) was assessed. The follow-up
threshold was set at 5 years (60 months), and Kaplan-Meier survival curves were
obtained (1st July 2020). HR, 95% CI, log-rank P values, and number-at-risk were
also calculated and displayed along with survival curves. P values of less than 0.05
(P < 0.05) were considered as statistically significant.

2.3 miRNA Regulation Analysis Through miRSystem

The computational algorithm “miRSystem” was used to predict miRNAs that bind
to the mRNA transcripts of our target genes (BCL2, MCL1, BCL2A1, and BCL2L1)
at the 3′-Untranslated regions (UTRs) [10]. Then using Venny 2.1 tool we created

http://cbioportal.org
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a Venn diagram and the three common miRNAs that potentially target all the four
gene of interest in this study [11].

3 Results

3.1 Genomic Alterations in Target Genes
in Lung Cancer

Based on our analysis, we showed the percentage of gene alterations in the four
selected anti-apoptotic BCL2 members. In case of lung adenocarcinoma, MCL1
possessed relatively higher genetic alterations in 11% of samples, followed by
BCL2 (2.8%), BCL2L1 (2.6%), and BCL2A1 (0.6%). In case of lung squamous cell
carcinoma, MCL1 possessed highest genetic alterations in 6% of samples, followed
by BCL2L1 (5%), BCL2 (1.7%), and BCL2A1 (1.1%). The results were represented
as a bubble plot, wherein each bubble corresponds to the percentage of samples
with corresponding gene alteration (Fig. 1) [12]. But gene expression or protein
expression cannot be inferred from these percentages.

Fig. 1 Bubble plot
illustrating the percent
genomic alteration (mutation
and copy number alteration)
of BCL2 anti-apoptotic genes
in lung adenocarcinoma and
squamous cell carcinoma
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3.2 Distinct Prognostic Values of the Selected BCl2
Anti-apoptotic Members

3.2.1 Prognostic Significance of Selected BCL2 Anti-apoptotic Members
in All Lung Cancer Patients

The high mRNA expression of BCL2L1 and BCL2A1 correlated with poor overall
survival (OS) while high mRNA expression of MCL1 correlated with favorable OS
outcome in all lung cancer patients. BCL2 mRNA expression did not correlate with
OS in all lung cancer patients (Table 1).

3.2.2 Prognostic Significance of Selected BCL2 Anti-apoptotic Members
in All Lung Cancer Patients with Different Tumor Histology

The high mRNA levels of BCL2L1 and BCL2A1 significantly correlated with
poor OS in lung adenocarcinoma patients while no correlation was found with
lung squamous cell carcinoma. High MCL1 mRNA expression was significantly
correlated with favorable OS in both tumor histology types while BCL2 mRNA
expression did not correlate with any tumor histology type (Table 2).

3.2.3 Prognostic Significance of Selected BCL2 Anti-apoptotic Members
in All Lung Cancer Patients with Different Smoking History

The high mRNA expression of MCL1 significantly associated with better OS, while
high BCL2L1 mRNA expression significantly correlated with worse OS in both
smoker and non-smoker lung cancer patients. BCL2 and BCL2A1 mRNA expression
did not correlate with smoking history in lung cancer patients (Table 3).

Table 1 Prognostic values of
BCL-2 family anti-apoptotic
members (BCL2, MCL1,
BCL2A1, and BCL2L1)
mRNA expression in all lung
cancer patients
(follow-up= 5 years)

BCL2 family OS

genes HR 95% CI P value

(Affymetrix IDs)

BCL2 1.07 0.93–1.23 0.32
(207005_s_at)

MCL1 0.67 0.58–0.76 8e–09
(200797_s_at)

BCL2L1 1.26 1.1–1.45 0.00091
(215037_s_at)

BCL2A1 1.2 1.04–1.38 0.011
(205681_at)

P value< 0.05 were considered statistically signif-
icant. Bold values in the table indicate significant
values
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Table 2 Prognostic values of BCL-2 family anti-apoptotic members (BCL2, MCL1, BCL2A1, and
BCL2L1) mRNA expression in lung cancer patients with different tumor histology (follow-up= 5
years)

BCL2 family

genes OS

(affymetrix IDs) Histology HR 95% CI P value

BCL2 Adenocarcinoma 1.06 0.83–1.37 0.64

(207005_s_at)

Squamous cell
0.92

0.71–1.19 0.52

carcinoma

MCL1 Adenocarcinoma 0.54 0.41–0.7 1.6e–06
(200797_s_at)

Squamous cell 0.77 0.59–1 0.046
carcinoma

BCL2L1 Adenocarcinoma 1.96 1.52–2.54 1.7e–07
(215037_s_at)

Squamous cell 1 0.77–1.3 0.99

carcinoma

BCL2A1 Adenocarcinoma 1.51 1.17–1.94 0.0016
(205681_at)

Squamous cell 1 0.77–1.3 0.99

carcinoma

P value < 0.05 were considered statistically significant. Bold values in the table indicate
significant values

Table 3 Prognostic values of BCL-2 family anti-apoptotic members (BCL2, MCL1, BCL2A1, and
BCL2L1) mRNA expression in lung cancer patients with different smoking history (follow-up= 5
years)

BCL2 family

genes OS

(affymetrix IDs) Smoking history HR 95% CI P value

BCL2 Smokers 1.1 0.88–1.38 0.39

(207005_s_at) Non-smokers 1.15 0.62–2.14 0.65

MCL1 Smokers 0.68 0.54–0.85 0.00067
(200797_s_at) Non-smokers 0.29 0.14–0.58 0.00018
BCL2L1 Smokers 1.28 1.02–1.61 0.03
(215037_s_at) Non-smokers 2.52 1.3–4.89 0.0046
BCL2A1 Smokers 1.12 0.9–1.41 0.31
(205681_at) Non-smokers 1.2 0.64–2.23 0.57

P value < 0.05 were considered statistically significant. Bold values in the table indicate
significant values
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Fig. 2 Venn diagram
showing the overlap of
miRNAs predicted to bind to
the target genes (BCL2,
MCL1, BCL2A1, and
BCL2L1) 3′-UTR by
miRSystem algorithm

3.3 Potential miRNA Regulators of Selected Target Genes

MiR-182-5p, miR-587, and miR-513a-5p were predicted as the three common
miRNAs for all four target genes (BCL2, MCL1, BCL2A1, and BCL2L1) were
obtained for their potential binding to the 3′-UTR of the mRNA transcript (Fig. 2).
The therapeutic efficacy of these miRNAs needs to be further validated.

4 Discussion

Apoptosis has major roles to play cancer growth and metastasis. Thus, the relevance
of BCL2 family members to patient survival in cancer becomes a major research
question. The correlation of BCL2 family protein expression with prognosis is
generally studied, while the role of mRNA expression of these genes in cancer
prognosis remains largely elusive. Therefore, in this report we elucidated the
prognostic values for four major anti-apoptotic genes (BCL2, MCL1, BCL2A1, and
BCL2L1) in lung cancer.

BCL2 family gene amplification has been implicated in several human cancers.
MCL1 was one of the genes to be found amplified in cytoband 1q21.2 in breast and
lung cancers [13]. Both MCL1 and BCL2L1 have been found to be overexpressed
in NSCLC cell lines [14].

BCL2 expression has been reported as a favorable prognostic marker in
lung squamous cell carcinoma [15]. Tumor stage dependent analysis in NSCLC
revealed that BCL2 protein expression did not significantly correlate with
survival [16]. Another study demonstrated BCL as a prognostic indicator in
localized NSCLC [17]. Our in-silico analysis did not show BCL2 as a prognostic
indicator in LC, nor its correlation with tumor histology and smoking history. We
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Fig. 3 Schematic representation of the model used for prognostic analysis of the target genes

found that the other members, MCL1, BCL2L1, and BCL2A1, hold great potential
to be prognostic indicators in LC and need experimental validation. The schematic
model representing our in-silico analysis using KM plotter is shown in Fig. 3.

MiR-182 expression dysregulation has been reported in cancer progression in
a variety of human cancers. In mesothelioma, the downstream targets of miR-
182 are FOXO1 and p27, and its upregulation are linked with cell invasion and
proliferation [18]. Similar to this, miR-182-5p was found upregulated in NSCLC
and one of its downstream targets was HOXA9. MiR-182-5p is upregulated in lung
squamous cell carcinoma and serves as a biomarker [19]. BCL2 anti-apoptotic genes
as targets for miR-182 in NSCLC need further validation [20]. MiR-587 antagonizes
the colorectal cancer cells to 5-fluorouracil induced apoptosis by downregulation of
PPP2R1B [21]. In lung adenocarcinoma, miR-513a-5p targets GSPT1 and sensitizes
cancer cells to cisplatin therapy [22]. MiR-513a-5p also increases sensitivity to
radiotherapy in osteosarcoma by targeting APE1 [23].
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Economic Development Process: A
Compartmental Analysis of a Model
with Two Delays

A. B. Ndione, A. Mendy, and C. A. Onana

1 Introduction

Economic development always remains an interesting topic for economists. Reasons
for such interests are simply due to the fact that economic growth is variable
among nations. Generally, economic growth is a result of greater quantity and
better quality of naturalnature, human, capital resources, and also technological
advances that boost productivity (Chen [6]). Recall that economic development is
the process by which a nation enhances its standard of living (Chen [6]). However,
economic development is not a random phenomenon, and it is greatly influenced
by the policies and attitudes of the governments as well as by the international
environment.

Several models of economic growth and development have been created to give
some insights to economic development problems, but the question of development
remains a major concern, especially for African countries that are involved in
programs to achieve the emergence on a given horizon. These models are based on
econometric concepts, mathematical optimization models, and so on (Kumar [16],
Intriligator [13]).

Since development is a dynamical process, it can be modeled by dynamical
systems, and compartment models are among the most popular tools used to
analyze dynamical systems. Compartmental models have been traditionally used in
physiology to describe the distribution of a substance among different tissues of an
organism. It has been extensively used in chemistry (Nicolis et al. [25], Ladde [17]),
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medicine (Anderson [1], Jacquez [14]), epidemiology (Murray [23]), ecology (Matis
et al. [20]), and pharmacokinetics (Anderson [1], Solimano et al. [30]). Many of the
models and methods developed in these fields can be usefully applied, by analogy,
in the description of economical and social systems. There are not, however, so
many applications in the economic literature. Among these works, Tramontana [31]
uses the compartmental approach applied to a macroeconomic model characterized
by companies that can go bankrupt each time they are unable to repay their debts.
Artzrouni and Tramontana [2] developed a model that relies on two compartments,
Government and Company, with cash flows between the compartments and the
outside world.

The objective of this chapter is to build a dynamical compartmental model
describing the process of growth and economic development. We consider a total
of N countries that are subdivided into three compartments according to their
economic status: D(t) denotes the compartment of developing countries at time
t , E(t) stands for the compartment of emerging countries at time t , while A(t)
represents advanced countries at time t . (In the sequel, our model is termed as the
DEA model.) We also include two delays that describe the average time necessary
for collaborations between countries to become efficient for their development
process. In fact, the results of the economic measures are not immediate; thus,
several economic models with delays have been developed in these recent years
(Huang et al. [12], Bélair et al. [3], Matsumoto et al. [21], Matsumoto A. and
Szidarovszky F. [22], etc). In the light of the above, we rely on the properties of
dynamical systems for model analysis. Numerical simulations on real economic
data further illustrate our analytical results.

This chapter is organized as follows: we start by introducing the economic model
in Sect. 2 and proceed to Sect. 3 where we describe the basic properties of the model.
In Sects. 4 and 5, we describe the mathematical analysis of the model. In Sect. 6,
numerical simulations are carried out to illustrate the main results.

2 The DEA Model

Our model is composed of three compartments characterized by countries according
to the stage of development of their economies. As mentioned in our previous
work (Ndione and Awono [24]), we use the World Economic Forum (WEF)
classification in the Global Competitiveness Report (Schwab et al. [28]) to represent
the compartments. WEF classifies a total of 140 countries into 3 categories.
Based on this classification, we consider a first compartment named developing
countries D represented by countries whose Gross Domestic Product (GDP) per
capita is less than 3000 $ and characterized by four pillars of competitiveness that
are: Institutions, Infrastructure, Macroeconomic stability, and Health and primary
education. These pillars are the basic requirements for developing countries.

In the second compartment, we have emerging countriesE. These countries have
a GDP per capita between 3000 and 17,000 $ and are characterized by six pillars of
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competitiveness that are: Higher education and training, Goods market efficiency,
Labor market efficiency, Financial market sophistication, Technological readiness,
and Market size. These pillars represent the efficiency enhancers that characterize
emerging countries.

The advanced countries A are in the third compartment with a GDP per capita
of more than 17,000 $ and characterized by two pillars: Business sophistication and
Innovation.

For a developing country to be able to emerge, it must significantly improve its
growth rate by acting on the efficiency factors. Thus, it will be able to increase
its GDP per capita and be in the class of emerging economies. From the WEF
equation of competitiveness (Schwab et al. [29]), we consider the function σ1 the
growth rate obtained with performances on the efficiency factors also using an
international collaboration with the emerging countries E. In fact, the data show
that the more countries there are involved in the collaborations, the greater the
benefits are (Vicente et al. [32]). These collaborations are in the form of international
programs such as official development assistance or Foreign Direct Investment,
which have a positive and significant effect on the growth (Camelia and Sanjay
[5], Hansen and Tarp [10], Collier and Dollar [7], Burnside and Dollar [4]).

We assume that developing countries are involved in collaboration just with
emerging countries and these are in collaboration with the advanced countries.

To reach the advanced countries compartment, emerging countries must increase
their GDP per capita, by acting on the innovation and sophistication factors.
Let σ2 be the growth rate obtained with performances made in the innovation
and sophistication factors. We further assume that emerging countries are in
collaboration with the advanced countries A.

Two delays τ1 and τ2 are included to characterize the necessary time before these
collaborations with the emerging and advanced countries, respectively, become
productive.

Another fact that unfortunately affects economies is the economic crisis. Coun-
tries are fragile to economic and financial crises. Although the origin of the
crises begins in the major financial centers of the developed countries, we can
see how it also affects the developing and emerging countries (Bruno [9]). Thus,
we consider β1 and β2 to be the probabilities of economic crisis that can weaken
the emerging and advanced countries, respectively, and make them change their
economic status. β1 and β2 may be viewed as underperformances; thus, the time
scale of underperformances can be considered longer than the time scale of the
growth rates.

The process of economic development is illustrated in Fig. 1. The model is given
analytically by the following system of delayed differential equations:

⎧⎨
⎩
Ḋ(t) = β1 E(t)− σ1 E(t)D(t − τ1),

Ė(t) = σ1 E(t)D(t − τ1)+ β2A(t)− β2 E(t)− σ2A(t)E(t − τ2),

Ȧ(t) = σ2A(t)E(t − τ2)− β2A(t).

(1)
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Fig. 1 The process of
economic development

The positive initial conditions for the model are given by

D(θ) = ψ1(θ), E(θ) = ψ2(θ),

A(θ) = ψ3(θ), θ ∈ (−τ, 0], ψi ∈ C
(
(−τ, 0],R+) , i = 1, 2.

Now we present the analysis of model (1) by using theories of differential equations.

3 Basic Results

3.1 Positivity and Boundedness of Solutions

The first step is to show that solutions of the system remain nonnegative and are
bounded, so that system is economically meaningful.

Lemma 3.1 Solutions of system (1) are nonnegative and bounded.

Proof Since Ḋ|D=0 > 0, Ė|E=0 > 0, and Ȧ|A=0 > 0, solutions of system (1)
remain nonnegative for t ≥ 0. Furthermore, Ḋ + Ė + Ȧ = 0, and thus D(t) +
E(t)+A(t) = D(0)+E(0)+A(0) = N , where N is the total number of countries.
Then, all the solutions of system are uniformly bounded. ��
Since Ḋ + Ė + Ȧ = 0 (the total number of countries is constant), the system (1) is
conservative. We can study the system (1) using only the first two equations, and A
can be computed by means of the following equation: A(t) = N −D(t)− E(t).

Therefore, system (1) becomes

⎧⎪⎪⎨
⎪⎪⎩

Ḋ(t) = β1 E(t)− σ1 E(t)D(t − τ1),

Ė(t) = σ1 E(t)D(t − τ1)+ σ2D(t)E(t − τ2)+ σ2 E(t)E(t − τ2)

+ β2N − β2D(t)− σ2N E(t − τ2)− (β1 + β2)E(t).

(2)

In the following, we will consider the system (2).
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3.2 Equilibria

Equilibrium points of system (2) correspond to solutions of the algebraic system
Ḋ = Ė = 0. Since any time delay does not change the equilibrium of the system,
the following result holds.

Proposition 3.1 The system (2) has three positive equilibria F1, F2, and F3 defined
by

F1 = (N, 0), F2 =
(
β1

σ1
, N − β1

σ1

)
, whenN− β1

σ1
> 0. and F3 =

(
β1

σ1
,
β2

σ2

)
.

Remark 3.1 These equilibria characterize the number of countries in each
compartment. Thus, if we consider the system (1), with A = N − D − E,
the equilibrium F1 = (N, 0, 0) means that all countries are underdeveloped,

F2 =
(
β1

σ1
, N − β1

σ1
, 0

)
there are no advanced countries, and F3 =(

β1

σ1
,
β2

σ2
, N − β1

σ1
− β2

σ2

)
is the equilibrium of coexistence which thatis the

situation that corresponds to the current state of the economy. From the perspective
of this model, considering the expression of equilibria, the economic class of each
country may be described by the ratio of its underperformances on performances.

4 Stability Analysis of the System Without Delays
(τ1 = τ2 = 0)

In this section, we deal with stability analysis of the aforementioned equilibria of
system (2). We considered here that the system evolves without delays. This is
motivated by the fact that if an equilibrium is unstable for system (2) without delays,
it will remain unstable for system (2) with delays (Culshaw and Ruan [8], Martin
and Ruan S [19]).

Let (D∗, E∗) be an equilibrium of system (2). The Jacobian matrix of system (2)
at (D∗, E∗) reads as

( −σ1 E
∗ β1 − σ1D

∗
(σ1 + σ2) E

∗ − β2 2σ2 E
∗ + (σ1 + σ2)D

∗ − (β1 + β2 + σ2N)

)
.



360 A. B. Ndione et al.

4.1 Local Stability Analysis for F1

Theorem 1 The equilibrium F1 = (N, 0) is a locally asymptotically stable node

whenever N − β1

σ1
< 0.

Proof Considering F1 = (N, 0), the Jacobian matrix is

J (F1) =

(
0 β1 − σ1N

−β2 σ1N − β1 − β2

)
.

Let trace(J (F1)) = σ1N−β1−β2 and det (J (F1)) = −σ1 β2(N− β1

σ1
). There-

fore, F1 is locally asymptotically stable if trace(J (F1)) < 0 and det (J (F1)) > 0,

which leads to N − β1

σ1
− β2

σ1
< 0 and N − β1

σ1
< 0.

In addition, since � = trace(J (F1))
2 − 4det (J (F1)) = (σ1N − (β1 − β2))

2 > 0,
eigenvalues of J (F1)) are real. Therefore, F1 is a locally asymptotically stable node
if conditions of Theorem 1 hold. This ends the proof. ��

4.2 Local Stability Analysis for F2

Theorem 2 The equilibrium F2 =
(
β1

σ1
, N − β1

σ1

)
is a locally asymptotically

stable node if
β1

σ1
+ β2

σ2
> N .

Proof Considering the equilibrium F2, the Jacobian matrix is J (F2) =⎛
⎝ β1 − σ1N 0

(σ1 + σ2)(N − β1

σ1
)− β2 σ2N − β1 σ2

σ1
− β2

⎞
⎠ . The eigenvalues of the

Jacobian matrix at F2 are λ1 = β1 − σ1N and λ2 = σ2N − β1 σ2

σ1
− β2.

Therefore, F2 is locally asymptotically stable if both eigenvalues are negatives.
Since λ1 = −σ1(N − β1

σ1
) < 0, then F2 is stable if λ2 < 0, which leads to

β1

σ1
+ β2

σ2
> N . ��

4.3 Local Stability Analysis for F3

Theorem 4.3 The equilibrium F3 =
(
β1

σ1
,
β2

σ2

)
is locally asymptotically stable if

β1

σ1
+ β2

σ2
< N .
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Proof The Jacobian matrix at F3 is J (F3) =

⎛
⎝ −β2 σ1

σ2
0

(σ1+σ2)
β2

σ2
−β2 β2+β1 σ2

σ1
−σ2N

⎞
⎠.

The eigenvalues of the Jacobian matrix at F3 are λ1 = −β2 σ1

σ2
and λ2 = β2 +

β1 σ2

σ1
− σ2N . Therefore, F3 is locally asymptotically stable if λ2 < 0, i.e.,

β1

σ1
+

β2

σ2
< N . ��

Remark 4.1 We notice that with the conditions of existence and stability, if F2 is
stable, then F3 is unstable and the existence of F2 implicates the unstability of F1.

We summarize the statement of equilibria and condition for existence and stability
in the following table:

Equilibrium Expression Condition for existence Condition for stability

F1 (N, 0) No condition N − β1

σ1
< 0

F2

(
β1

σ1
, N − β1

σ1

)
N − β1

σ1
> 0

β1

σ1
+ β2

σ2
> N

F3

(
β1

σ1
,
β2

σ2

)
No condition

β1

σ1
+ β2

σ2
< N

Stability allows us to move from an initial condition (D0, E0) to a new
equilibrium state (D1, E1). Then, it is possible to act on the parameters so that
the number of developing countries decreases (D0 > D1), while that of emerging
countries increases (E0 < E1) as long as the conditions of equilibrium stability is
verified (Fig. 2).

The condition for stability of F1 is equivalent to Nσ1 < β1. This means that
as long as the underperformance exceeds the performance of all countries, there
will be no change in economic status and all countries will remain in phase one.
Therefore, F2 exists if and only if Nσ1 > β1, with the condition for stablity β1σ2 +
β2σ1 > σ1σ2N . The condition for stability of the coexistence equilibrium F3 is
equivalent to β1σ2 + β2σ1 < σ1σ2N , which means that the combined performance
of all countries must be greater than the sum of the product of the performance of
the developing countries and the underperformance of the emerging countries and
the opposite product.

Fig. 2 Equilibria stability
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We analyze in the next section the model when the delays τ1 and τ2 are positive.

5 Stability Analysis of the System with Time Delays

In this section, we study the stability of equilibria in the presence of discrete delays
τ1 > 0 and τ2 > 0. It is well known that if an equilibrium is unstable for τ1 = τ2 =
0, it remains unstable for τ1 > 0, τ2 > 0 (Culshaw and Ruan [8], Martin and Ruan
[19]). Therefore, throughout this section, we assume that stability conditions of F1,
F2, and F3 hold.

5.1 Linearization and Characteristic Equation

We first linearize the system (2) around an equilibrium F = (D∗, E∗) and deduce
the characteristic equation.

Setting u(t) = D(t) − D∗ and v(t) = E(t) − E∗, the linearized system (2)
around F = (D∗, E∗) is then given by

⎧⎪⎪⎨
⎪⎪⎩

u̇(t) = (β1 − σ1D
∗) v(t)− σ1 E

∗ u(t − τ1),

v̇(t) = (σ1D
∗ + σ2 E

∗ − (β1 + β2)) v(t)+ (σ2 E
∗ − β2) u(t)

+ σ1 E
∗u(t − τ1)+ (σ2D

∗ + σ2 E
∗ + σ2N) v(t − τ2).

(3)

Define

A0 =
(

0 β1 − σ1D
∗

σ2 E
∗ − β2 σ1D

∗ + σ2 E
∗ − (β1 + β2)

)
;

A1 =
(−σ1 E

∗ 0
σ1 E

∗ 0

)
; and A2 =

(
0 0
0 σ2D

∗ + σ2 E
∗ − σ2N

)
.

The characteristic equation associated with (3) is given by

�(λ, τ1, τ2) = λ I2 − A0 − A1 e
−λ τ1 − A2 e

−λ τ2 = 0. (4)

Let a1 = β1 − σ1D
∗, a2 = σ2 E

∗ − β2, a3 = σ1D
∗ + σ2 E

∗ − (β1 + β2),b1 =
−σ1 E

∗, b2 = σ1 E
∗, and c = σ2D

∗ + σ2 E
∗ − σ2N.

After simplifications, Eq. 4 becomes

�(λ, τ1, τ2) = P0(λ)+ P1(λ)e
−λ τ1 + P2(λ)e

−λ τ2 + P3(λ)e
−λ(τ1+τ2) = 0, (5)

where P0(λ) = λ2 − a3 λ− a1 a2, P1(λ) = −b1 λ+ a3 b1 − a1 b2, P2(λ) = −c λ,
and P3(λ) = b1 c.
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5.2 Stability Analysis When τ1 > 0 and τ2 = 0

5.2.1 Stability Analysis at Equilibrium F1

When τ1 > 0 and τ2 = 0, the characteristic equation at F1 = (N, 0) is given by
�(λ, τ1) = λ2 − (σ1N − β1 − β2)λ+ β2(β1 − σ1N) = 0.

The characteristic equation is independent of the delay τ1, and then F1 retains its
stability when τ1 > 0 and τ2 = 0.

5.2.2 Stability Analysis at Equilibrium F2

When τ1 > 0 and τ2 = 0, the characteristic equation at F2 =
(
β1

σ1
, N − β1

σ1

)
is

given by

�(λ, τ1) = λ2 + (β2 − σ2 E
∗)λ+ (σ1 E

∗ λ+ (β2 − σ2 E
∗)σ1 E

∗) e−λ τ1 = 0.

For reader’s convenience, let us set p = β2 − σ2 E
∗, q = (β2 − σ2 E

∗)σ1 E
∗, and

s = σ1 E
∗, and then

�(λ, τ1) = λ2 + p λ+ (s λ+ q) e−λ τ1 = 0. (6)

Stability analysis and Hopf bifurcation

It is known that the steady state is asymptotically stable if all roots of the character-
istic equation (6) have negative real parts. In order to investigate the stability of the
positive equilibrium F2 of system (2), we need to study the distribution of roots of
Eq. (6).

We want to determine if the real part of some root increases to reach zero and
eventually becomes positive as τ1 varies. If iω(ω > 0) is a root of Eq. (6), then

−ω2+ ipω+ isω cos(ωτ1)+sω sin(ωτ1)+q cos(ωτ1)− iqp sin(ωτ1) = 0. (7)

Separating the real and imaginary parts, we have

{−ω2 = −q cos(ωτ1)− sω sin(ωτ1).

pω = −sω cos(ωτ1)+ q sin(ωτ1).
(8)

It follows that ω satisfies

ω4 + (p2 − s2)ω2 − q2 = 0. (9)

Let � = (p2 − s2)2 + 4q2.
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Since� > 0 and −q2 < 0, then Eq. (9) has a unique positive root ω2
0. Therefore,

the characteristic equation (6) has purely imaginary roots when τ1 takes certain
values. These critical values τ1j of τ1 can be determined from (8). They are given
by

τ1j = 1

ω0
arccos

(
qω2

0 − psω2
0

s2ω2
0 + q2

)
+ 2πj

ω0
, j = 0, 1, 2, .. (10)

at which Eq. 6 has a pair of purely imaginary roots ±iω.
Let λ(τ1) = α(τ1) + iω(τ1) be a root of Eq. (6) near τ1 = τ1j with α(τ1j ) =

0, ω(τ1j ) = ω0. From functional differential equation theory, for every τ1j , j =
0, 1, 2, · · · , there exists ε > 0 such that λ(τ1) is continuously differentiable at τ1
for
∣∣τ1 − τ1j

∣∣ < ε. Substituting λ(τ1) into (6) and taking the derivative with respect
to τ1, we obtain

[
dλ

dτ1

]−1

= 2λ+ p
λ(sλ+ q)e−λτ1 + s

(sλ+ q)e−λτ1 − τ1

λ
.

Since 2λ2 + λP = λ2 − (sλ+ q)e−λτ1 , we obtain[
dλ

dτ1

]−1

= 1

(sλ+ q)e−λτ1 − 1

λ2
+ sλ

λ2(sλ+ q) −
τ1

λ
,

= 1

−(λ2 + q) −
q

λ2(sλ+ q) −
τ1

λ
;

thus,

sign

{
d(Reλ(τ1))

dτ1

}∣∣∣∣
λ=iω0

= sign
{
Re
(
dλ
dτ1

)−1
}
,

= sign
{

ω2
0

ω4
0 + p2ω2

0

+ q2

ω2
0(s

2ω2
0 + q)

}
.

Since q > 0, we have
d

dτ1
(Reλ(τ1)) > 0.

Thus, from the previous discussions, we can obtain the following results about the
distribution of the characteristic roots of Eq. (8) (Ruan [26]).

Lemma 5.1 Let τ1j (j = 0, 1, 2, . . .) be defined by (10), and when τ1 ∈ [0, τ1j ) all
roots of Eq. (6) have negative real parts, when τ1 = τ1j Eq. (6) has a pair of purely
imaginary roots±iω0, and when τ1 > τ1j Eq. (6) has at least one root with positive
real part.

Applying the above lemma, we then obtain the following theorem:
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Theorem 5.1 Let τ 0
1 = min

j=0,1,2,...
τ1j , and then the positive equilibrium F2 is

asymptotically stable if τ1 ∈ [0, τ 0
1 ), and unstable for τ1 > τ 0

1 . Furthermore,
system 2 undergoes a Hopf bifurcation at equilibrium F2 when τ1 = τ 0

1 .

Direction and stability of the Hopf bifurcation

In the previous section, we obtain the conditions under which the system (2)
undergoes Hopf bifurcation from the positive steady state F2 at the critical values
of τ1. Using the normal form theory and center manifold reduction by Hassard et
al. [11], we are able to determine the Hopf bifurcation direction and investigate the
properties of these bifurcating periodic solutions, for example, stability on the center
manifold and period. Throughout this section, we always assume that the system (2)
undergoes Hopf bifurcations at the critical value τ 0

1 of τ1, and then ±ω0 is the
corresponding purely imaginary roots of the characteristic equation associated with
the positive steady state F2. Renaming x1(t) = D(t)−D∗, and x2(t) = E(t)−E∗,
then the system (2) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = −σ1E
∗x1(t − τ1)+ f1(x1(t − τ1), x2(t))

ẋ2(t) = (σ1D
∗ + σ2D

∗ − β1 − β2 − σ2N)x2(t)

+ (σ2 E
∗ − β2) x1(t)+ σ1 E

∗ x1(t − τ1)+ f2(x1(t), x2(t), x1(t − τ1)

,

(11)
where f1(x1(t − τ1), x2(t) = −σ1x2(t)x1(t − τ1),

f2(x1(t), x2(t), x1(t − τ1)) = σ1x1(t)x2(t − τ1)+ σ2x1(t)x2(t)+ σ2x
2
2(t).

Let τ1 = τ ∗ + μ, and then μ = 0 is the Hopf bifurcation value of system (2)
at the positive equilibrium F2. Since the system (2) is equivalent to system (11) in
what follows we consider the system (11).
Let ui(t) = xi(τ1t), and then the system (11) can be rewritten as follows:

⎧⎪⎪⎨
⎪⎪⎩

u̇1(t) = (τ ∗ + μ) [−σ1E
∗u1(t − τ1)+ f1(u1(t − τ1), u2(t)

]
,

u̇2(t) = (τ ∗ + μ)[((σ1 + σ2)D
∗ + 2σ2E

∗ − β1 − β2 − σ2N)u2(t)

+ (σ2 E
∗ − β2) u1(t)+ σ1 E

∗ u1(t − τ1)+ f2(u1(t), u2(t), u1(t − τ1))
]
.

(12)

If we consider the equilibrium F2, we have D∗ = β1

σ1
and E∗ = N − β1

σ1
, then

(σ1 + σ2)D
∗ + 2σ2E

∗ − β1 − β2 − σ2N = σ2(N − β1

σ1
)− β2 = σ2E

∗ − β2.

The system (12) is transformed into a functional differential equation (FDE) in C =
C([−1, 0],R2) as
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u̇(t) = Lμ(ut )+ f (μ, ut ), (13)

where u(t) = (u1(t), u2(t))
T ∈ R

2, Lμ : C ↔ R is the linear operator and
f : R× C ↔ R is given, respectively, by

Lμ(φ) = (τ 0
1 + μ)

(
0 0

σ2E
∗ − β2 σ2E

∗ − β2

)(
φ1(0)
φ2(0)

)
+ (τ 0

1 + μ)
(
−σ1E

∗ 0
σ1E

∗ 0

)(
φ1(−1)
φ2(−1)

)

(14)

and

f (φ,μ) = (τ 0
1 + μ)

(
f1(φ(−1), φ2(0))

f2(φ1(0), φ2(0), φ1(−1))

)
, (15)

where φ = (φ1, φ2)
T .

By the Riesz representation theorem, there exists a function η(θ, μ) of bounded
variation for θ ∈ [−1, 0], such that

Lμ(φ) =
∫ 0

−1
dη(θ, μ)φ(θ), forφ ∈ C. (16)

In fact, we can choose

η(θ, μ) = (τ 0
1 +μ)
(

0 0
σ2E

∗ − β2 σ2E
∗ − β2

)
δ(θ)−(τ 0

1 +μ)
(−σ2E

∗ 0
σ2E

∗ 0

)
δ(θ+1),

(17)
where δ is defined by

δ(θ) =
{

0, θ 
= 0,
1, θ = 0.

(18)

For φ ∈ C([−1, 0],R2), define

A(μ)φ =
⎧⎨
⎩

dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1 dη(μ, s)φ(s)), θ = 0,
(19)

and

R(μ)φ =
{

0, θ ∈ [−1, 0),
f (μ, φ), θ = 0.

(20)

Then, the system (13) is equivalent to

u̇(t) = A(μ)ut + R(μ)ut , (21)
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where ut (θ) = u(t + θ) for θ ∈ [1, 0].
For ψ ∈ C1([0, 1],R2), define

A∗ψ(s) =
⎧⎨
⎩

dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1 dη
T (t, 0)ψ(−t), s = 0,

(22)

and a bilinear inner product

< ψ(s), φ(θ) >= ψ̄(0)φ(0)−
∫ 0

−1

∫ θ
ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (23)

where η(θ) = η(θ, 0). Then, A(0) and A∗ are the adjoint operators. We know
that ±iw0τ

∗
1 are eigenvalues of A(0). Thus, they are also eigenvalues of A∗. Let

q(θ) be the eigenvector corresponding to +iw0τ
∗
1 and q∗(θ) be the eigenvector of

A∗ corresponding to −iw0τ
∗
1 .

Suppose that q(θ) = (1, α)-eiθw0τ
0
1 is the eigenvector of A(0) corresponding to

+iw0τ
0
1 . Then, A(0)q(0) = iw0τ

0
1 q(0).

It follows from the definition of A(0) and (16 and (17) that

(
iω0 + σ1E

∗e−iw0τ
0
1 0

−σ2E
∗ + β2 − σ1E

∗e−iw0τ
0
1 iw0 − σ2E

∗ + β2

)
q(0) =

(
0
0

)
. (24)

Thus, we can easily obtain

q(0) = (1, α)- =
(

1,
σ2E

∗ − β2 + σ1E
∗e−iw0τ

0
1

iw0 − σ2E∗ + β2

)-
.

On the other hand, suppose that q∗(s) = D(1, α∗)-eisw0τ
0
1 is the eigenvector of A∗

corresponding to −iw0τ
0
1 . Then, A∗(0)q∗(0) = iw0τ

0
1 q

∗(0). By the definition of
A∗ and (16) and (17), we have

(
−iw0 + σ1E

∗e−iw0τ
0
1 −σ2E

∗ + β2 − σ1E
∗e−iw0τ

0
1

0 −iw0 − σ2E
∗ + β2

)
(q∗(0))- =

(
0
0,

)

(25)
which means that

q∗(0) = D
(

1,
−iw0 + σ1E

∗e−iw0τ
0
1

σ2E∗ − β2 + σ1E∗e−iw0τ
0
1

)-
.

In order to have < q∗(s), q(θ) >= 1, we need to determine the value of D.
From (23), we have
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< q∗(s), q(θ) > = q̄∗(0)q(0)− ∫ 0
−1

∫ θ
ξ=0 q̄(ξ − θ)dη(θ)φ(ξ)dξ

= D̄
{

1 + ᾱ∗α − ∫ 0
−1(1, α

∗)θeiw0θτ
0
1 dη(θ)(1, α)-

}
= D̄
{

1 + ᾱ∗α + τ 0
1 σ1E

∗(α∗ − 1)e−iw0τ
0
1 top
}
.

So we have

D̄ = 1

1 + ᾱ∗α + τ 0
1 σ1E∗(α∗ − 1)e−iw0τ

0
1

, (26)

D = 1

1 + α∗ᾱ + τ 0
1 σ1E∗(α∗ − 1)eiw0τ

0
1

. (27)

In the remainder of this section, we use the same notations as in Hassard et al.
[11], and we first compute the coordinate to describe the center manifold C0 at
μ = 0. Let ut be the solution of Eq. (13) when μ = 0. Define

z0(t) =< q∗, μt >,W(t, θ) = μt (θ)− 2Re(z0(t)q(θ)) = μt (θ)− (z0(t)q(θ)+ z̄0(t)q̄(θ)).

(28)

On the center manifold C0, we have

W(t, θ) = W(z0, z̄0, θ), (29)

where

W(z0, z̄0, θ) = W20(θ)
z2

0

2
+W11(θ)z0z̄0 +W02(θ)

z̄0
2

2
+ . . . , (30)

z0 and z̄0 are the local coordinates for center manifold on C0 in the direction of
q∗ and q̄∗. Note that W is real if ut is real. We consider only real solutions. For the
solution ut ∈ C0 of (13), since μ = 0, we have

ż0(t)=iw0τ
0
1 z0+q̄∗f (0, w(z0, z̄0, 0)+2Re(z0q(θ)))

def= iw0τ
0
1 z0+q̄∗(0)f0(z0, z̄0).

(31)
We rewrite this equation as

z0(t) = iw0τ
0
1 z0 + p(z0, z̄0), (32)

with
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p(z0, z̄0) = q̄∗(0)f0(z0, z̄0) = p20(θ)
z2

0

2
+p11(θ)z0z̄0+p02(θ)

z̄0
2

2
+p21(θ)

z2
0z̄0

2
+· · · .

(33)

Remark 5.1 In what follows, our objective is to compute coefficients p20, p11, p02,
and p21 of p(z0, z̄0). These coefficients will be used to find the direction of the Hopf
bifurcation.

We have ut (θ) = (u1t (θ), u2t (θ)) and q(θ) = (1, α)-eiw0τ
0
1 θ . From (28) and (30),

we have

ut (θ) = w(t, θ)+ 2Re(z0(t)q(θ)),

= w(t, θ)+ z0(t)q(θ)+ z̄0(t)q̄(θ),

= W20(θ)
z2

0
2 +W11(θ)z0z̄0 +W02(θ)

z̄0
2

2

+(1, α)-eiw0τ
0
1 θ + (1, ᾱ)-e−iw0τ

0
1 θ + · · · ,

(34)

and then we have

u1t (0) = z0 + z̄0 +W(1)
20 (0)

z2
0
2 +W(1)

11 (0)z0z̄0 +W(1)
02 (0)

z̄0
2

2 + · · · ,
u2t (0) = αz0 + ᾱz̄0 +W(2)

20 (0)
z2

0
2 +W(2)

11 (0)z0z̄0 +W(2)
02 (0)

z̄0
2

2 + · · · ,
u1t (−1) = z0e

−iw0τ
0
1 + z̄0e

iw0τ
0
1 +W(1)

20 (−1)
z2

0
2 +W(1)

11 (−1)z0z̄0 +W(1)
02 (−1) z̄0

2

2 + · · · ,
u2t (−1) = z0αe

−iw0τ
0
1 + z̄0ᾱe

iw0τ
0
1 +W(2)

20 (−1)
z2

0
2 +W(2)

11 (−1)z0z̄0 +W(2)
02 (−1) z̄0

2

2 + · · · .
(35)

It follows together with Eq. (15) that

p(z0, z̄0) = q̄∗(0)f0(z0, z̄0) = q̄∗(0)f (0, ut ),
= τ 0

1 D̄(1, ᾱ
∗)
(

−σ1u2t (0)u1t (−1)
σ1u2t (0)u1t (−1)+ σ2u1t (0)u2t (0)+ σ2u

2
2t (0)

)
,

= τ 0
1 D̄
{−σ1u2t (0)u1t (−1)+ ᾱ∗(σ1u2t (0)u1t (−1)+ σ2u1t (0)u2t (0)+ σ2u

2
2t (0)
}
.

(36)

Using the expressions in (35), we have

p(z0, z̄0) = τ 0
1 D̄
{− σ1(αz0 + ᾱz̄0 +W(2)

20 (0)
z2

0
2 +W(2)

11 (0)z0z̄0 +W(2)
02 (0)

z̄0
2

2 )

×(z0e
−iw0τ

0
1 + z̄0e

iw0τ
0
1 +W(1)

20 (−1)
z2

0
2 +W(1)

11 (−1)z0z̄0 +W(1)
02 (−1) z̄0

2

2 )

+ᾱ∗(αz0 + ᾱz̄0 +W(2)
20 (0)

z2
0
2 +W(2)

11 (0)z0z̄0 +W(2)
02 (0)

z̄0
2

2 )

×[σ1(z0e
−iw0τ

0
1 + z̄0e

iw0τ
0
1 +W(1)

20 (−1)
z2

0
2 +W(1)

11 (−1)z0z̄0+W(1)
02 (−1) z̄0

2

2 )

+σ2(z0 + z̄0 +W(1)
20 (0)

z2
0
2 +W(1)

11 (0)z0z̄0 +W(1)
02 (0)

z̄0
2

2 )

+σ2(αz0 + ᾱz̄0 +W(2)
20 (0)

z2
0
2 +W(2)

11 (0)z0z̄0 +W(2)
02 (0)

z̄0
2

2 )
]}
.

(37)

After calculation, we have
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p(z0, z̄0) = z2
0
2

{
2τ 0

1 D̄
[
(ᾱ∗ − α)σ1e

−iw0τ
0
1 + σ2α(α + ᾱ∗)

]}
+ z̄0

2

2

{
2τ 0

1 D̄
[
(ᾱ∗ − 1)σ1ᾱe

iw0τ
0
1 + σ2ᾱ(ᾱ + ᾱ∗)

]}
+z0z̄0
{
τ 0

1 D̄[(ᾱ∗ − α)σ1e
iw0τ

0
1 + (ᾱ∗ − 1)σ1ᾱe

−iw0τ
0
1

+σ2ᾱ
∗(α + ᾱ + 2αᾱ]}

+ z0
2 z̄0
2

{
τ 0

1 D̄[(ᾱ∗W(1)
20 (0)−W(2)

20 (0))σ1e
iw0τ

0
1 + (ᾱ∗W(1)

11 (0)−W(2)
11 (0))2σ1e

−iw0τ
0
1

+σ1(ᾱ
∗ − 1)2αW(1)

11 (−1)+ σ1(ᾱ
∗ − 1)ᾱW(1)

20 (−1)
+2σ2αᾱ

∗(W(1)
11 (0)+W(2)

11 (0))+ σ2ᾱᾱ
∗(W(1)

20 (0)+W(2)
20 (0))

+σ2(1 + ᾱ)ᾱ∗W(1)
20 (0)+ σ2(1 + α)2ᾱ∗W(2)

11 (0)]
}
.

(38)
Comparing the coefficients with (33), we obtain

p20 = 2τ 0
1 D̄
[
α(σ2α − σ1e

−iw0τ
0
1 )+ ᾱ∗(σ2α + σ1e

−iw0τ
0
1 )
]

p02 = 2τ 0
1 D̄
[
ᾱ(σ2ᾱ − σ1e

iw0τ
0
1 )+ ᾱ∗(σ2ᾱ + σ1e

iw0τ
0
1 )
]

p11 = τ 0
1 D̄
[
−σ1(αe

iw0τ
0
1 + ᾱe−iw0τ

0
1 )+ ᾱ∗{σ1(αe

iw0τ
0
1 + ᾱe−iw0τ

0
1 )+ σ2(α + ᾱ + 2αᾱ)

}]
p21 = τ 0

1 D̄
[
(ᾱ∗W(1)

20 (0)−W(2)
20 (0))σ1e

iw0τ
0
1 + (ᾱ∗W(1)

11 (0)−W(2)
11 (0))2σ1e

−iw0τ
0
1

+σ1(ᾱ
∗ − 1)2αW(1)

11 (−1)+ σ1(ᾱ
∗ − 1)ᾱW(1)

20 (−1)
+2σ2αᾱ

∗(W(1)
11 (0)+W(2)

11 (0))+ σ2ᾱᾱ
∗(W(1)

20 (0)+W(2)
20 (0))

+σ2(1 + ᾱ)ᾱ∗W(1)
20 (0)+ σ2(1 + α)2ᾱ∗W(2)

11 (0)
]
.

(39)
Since there areW20 andW11 in p21, in the sequel we shall compute them.

From (21) and (28), we have

Ẇ = u̇t − z0q − ˙̄z0q̄ =
{

AW − 2Re {q̄∗f0q(θ)} , θ ∈ [−1, 0),
AW − 2Re {q̄∗f0q(0)} + f0, θ = 0,

def= AW +H(z0, z̄0, θ),

(40)

where

H(z0, z̄0, θ) = H20(θ)
z2

0

2
+H11(θ)z0z̄0 +H02(θ)

z̄0
2

2
+ · · · . (41)

Substituting the corresponding series into Eq. (40) and comparing the coefficients,
we obtain

(A− 2iw0τ
0
1 )W20(θ) = −H20(θ),

AW11(θ) = −H11(θ).
(42)

From Eq. (40), we know that for θ ∈ [−1, 0),

H(z0, z̄0, θ) = −q̄∗f0q(θ)− q∗f̄0q̄(θ)

= −p(z0, z̄0)q(θ)− p̄(z0, z̄0)q̄(θ).
(43)

Comparing the coefficients with Eq. (41), we obtain
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H20(θ) = −p20q(θ)− p̄02q̄(θ). (44)

H11(θ) = −p11q(θ)− p̄11q̄(θ). (45)

From Eqs. (41) and (44) and the definition of A, it follows that

Ẇ20(θ) = 2iw0τ
0
1W20 + p20q(θ)+ p̄02q̄(θ). (46)

Notice that q(θ) = (1, α)-eiw0τ
0
1 θ . Hence,

W20(θ) = ip20

w0τ
0
1

q(0)eiw0τ
0
1 θ + ip̄02

3w0τ
0
1

q(0)e−iw0τ
0
1 θ + E1e

2iw0τ
0
1 θ , (47)

where E1 = (E(1)1 , E
(2)
1 ) ∈ R

2 is a two-dimensional constant vector.
Similarly, from Eqs. (41) and (45), we can obtain

W11(θ) = − ip11

w0τ
0
1

q(0)eiw0τ
0
1 θ + ip̄11

3w0τ
0
1

q(0)e−iw0τ
0
1 θ + E2, (48)

where E1 = (E(1)2 , E
(2)
2 ) ∈ R

2 is also a constant vector.
In what follows, we shall seek appropriate E1 and E2 in (47) and (48). From the

definition of A and (42), we obtain

∫ 0

−1
dη(θ)W20(θ) = 2iw0τ

0
1W20(0)−H20(0) (49)

and

∫ 0

−1
dη(θ)W11(θ) = −H11(0), (50)

where η(θ) = η(0, θ). From (40) and (41), we have

H20 = −p20q(0)− p̄02q̄(0)+ 2τ 0
1

(
α(σ2α − σ1e

−iw0τ
0
1 )

σ2α + σ1e
−iw0τ

0
1

)
(51)

and

H11 = −p11q(0)− p̄11q̄(0)+ 2τ 0
1

(
−σ1Re(αe

iw0τ
0
1 + ᾱe−iw0τ

0
1 )

σ1Re(αe
iw0τ

0
1 + ᾱe−iw0τ

0
1 )+ σ2Re(α + ᾱ + 2αᾱ)

)
.

(52)

Substituting (47) and (51) into (49) and noticing that
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(
iw0τ

0
1 I − ∫ 0

−1 e
iw0τ

0
1 θ dη(θ)

)
q(0) = 0,(

−iw0τ
0
1 I − ∫ 0

−1 e
−iw0τ

0
1 θ dη(θ)

)
q̄(0) = 0,

we obtain

2iw0τ
0
1 I −
∫ 0

−1
e2iw0τ

0
1 θ dη(θ) = 2τ1

(
α(σ2α − σ1e

−iw0τ
0
1 )

σ2α + σ1e
−iw0τ

0
1

)
,

which leads to

(
2iw0 + σ1E

∗e−2iw0τ
0
1 0

−σ2E
∗ + β2 − σ1E

∗e−2iw0τ
0
1 2iw0 − σ2E

∗ + β2

)
E1 = 2

(
α(σ2α − σ1e

−iw0τ
0
1 )

σ2α + σ1e
−iw0τ

0
1

)
.

It follows that

E
(1)
1 = �11

�1
;

E
(2)
1 = �12

�1
,

where

�1 = det

(
v1 v2

v3 v4

)
,�11 = 2 det

(
X1 v2

X2 v4

)
,�12 = 2 det

(
v1 X1

v3 X2

)
,

with

v1 = 2iw0 + σ1E
∗e−2iw0τ

0
1 ; v2 = 0; v3 = −σ2E

∗ + β2 − σ1E
∗e−2iw0τ

0
1 ;

v4 = 2iw0 − σ2E
∗ + β2;

X1 = α(σ2α − σ1e
−iw0τ

0
1 ); X2 = σ2α + σ1e

−iw0τ
0
1 .

Similarly, substituting (48) and (52) into (50), we can obtain

(
σ1E

∗ 0
−σ1E

∗ −σ2E
∗ + β2

)
E2 = 2

(
−σ1Re(αe

iw0τ
0
1 + ᾱe−iw0τ

0
1 )

σ1Re(αe
iw0τ

0
1 + ᾱe−iw0τ

0
1 )+ σ2Re(α + ᾱ + 2αᾱ)

)
.

It follows that

E
(1)
2 = �21

�2
,
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E
(2)
2 = �22

�2
,

where

�2 = det

(
m1 m2

m3 m4

)
,

�11 = 2 det

(
Y1 m2

Y2 m4

)
,

�12 = 2 det

(
m1 Y1

M3 Y2

)
,

with

m1 = σ1E
∗; m2 = 0; m3 = −σ1E

∗; m4 = −σ2E
∗ + β2;

Y1 = −σ1Re(αe
iw0τ

0
1 + ᾱe−iw0τ

0
1 ); Y2 = σ1Re(αe

iw0τ
0
1 + ᾱe−iw0τ

0
1 )+ σ2Re(α + ᾱ + 2αᾱ).

Therefore, we can determine W20 and W11 from (47) and (48). Furthermore, we
can determine p21. Therefore, each pij in (33) is determined by the parameters and
delays. Thus, we can compute the following values:

C2(0) = i

2w0τ
0
1

(
p20p11 − 2 |p11|2 − |p02|2

3

)
+ p21

2
,

μ2 = − Re (C2(0))

Re
(
λ′(τ 0

1 )
) ,

γ2 = 2Re (C2(0)) ,

T2 = −Im (C2(0))+ μ2Im
(
λ′(τ 0

1 )
)

w0τ
0
1

,

(53)

which determine the quantities of bifurcating periodic solution in the center
manifold at the critical value τ 0

1 . We have the following result.

Theorem 5.2 (Hassard et al. [11]) In Eq. (53), the sign of μ2 determines the
direction of the Hopf bifurcation. If μ2 > 0, then the Hopf bifurcation is
supercritical and the bifurcating periodic solutions exist for τ1 > τ

0
1 . Ifμ2 < 0, then

the bifurcation is subcritical and the bifurcating periodic solutions exist for τ1 < τ
0
1 .

γ2 determines the stability of the bifurcating periodic solutions: The bifurcating
periodic solutions are stable if γ2 < 0 and unstable if γ2 > 0. T2 determines the
period of the bifurcating periodic solutions. The period increases if T2 > 0 and
decreases if T2 < 0.
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5.2.3 Stability Analysis at Equilibrium F3

When τ1 > 0 and τ2 = 0, the characteristic equation at F3 =
(
β1

σ1
,
β2

σ2

)
is given by

�(λ, τ1) = λ2 + p1λ+ (s1λ+ q1) e
−λτ1 = 0, (54)

where p1 = σ2(N−D∗−E∗) > 0, s1 = σ1E
∗, and q1 = σ1σ2E

∗(N−D∗−E∗)) >
0.

Hopf bifurcation

Using the same methodology as in the previous section, we have the following
theorem:

Theorem 5.3 The positive equilibrium F3 is asymptotically stable if τ1 ∈ [0, τ ∗1 )
and unstable for τ1 > τ

∗
1 . Furthermore, then system 2 undergoes a Hopf bifurcation

at equilibrium F3 when τ1 = τ ∗1 .
Proof Since Eq. (54) has the same form as that of Eq. (6), by analogy we get the
critical values τ1j of τ1 for the equilibrium F3 defined by

τ1j = 1

w0
arccos

(
q1w

2
0 − p1s1w

2
0

s2
1w

2
0 + q2

1

)
+ 2πj

w0
, j = 0, 1, 2, .. (55)

And we have

sign

{
d(Reλ(τ1))

dτ1

}∣∣∣∣
λ=iw0

= sign
{
Re

(
dλ

dτ1

)−1
}
,

= sign
{

w2
0

w4
0 + p2

1w
2
0

+ q2
1

w2
0(s

2
1w

2
0 + q1)

}
.

Since q1 > 0, we have
d

dτ1
(Reλ(τ1)) > 0. ��

Direction and stability of the Hopf bifurcation

For the direction and stability of the Hopf bifurcation, we use the same methodology

as for the equilibrium F2. We just replace E∗ by E∗
3 = β2

σ2
. Following the same
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process until the end, we get the coefficients of bifurcation. Then, we have the
following theorem:

Theorem 5.4 There exist three real numbers μ3, γ3, and T3 such that: if μ3 > 0,
the Hopf bifurcation is supercritical and the bifurcating periodic solutions exist for
τ1 > τ ∗1 , if μ3 < 0, the bifurcation is subcritical and the bifurcating periodic
solutions exist for τ1 < τ

∗
1 . The bifurcating periodic solutions are stable if γ3 < 0

and unstable if γ3 > 0. The period increases if T3 > 0 and decreases if T3 < 0.

In the next section, we explore the case when τ1 = 0 and τ2 > 0.

5.3 Stability Analysis When τ1 = 0 and τ2 > 0

When τ1 > 0 and τ2 = 0, the characteristic equations at F1 = (N, 0) and F2 =(
N,N − β1

σ1

)
are, respectively, given by

λ2 + (σ1N − β1 − β2)λ+ β2(β1 − σ1N) = 0

λ2 + (β2 + (σ1 − β2)E
∗) λ+ σ1E

∗((β2 − σ2E
∗) = 0.

The characteristic equations are independent of the delay τ2, and then F1 and F2
retain their stability when τ1 = 0 and τ2 > 0.

The characteristic equation at F3 =
(
β1

σ1
,
β2

σ2

)
is given by

�(λ, τ2) = λ2 + pλ+ (sλ+ q)e−λτ2 = 0, (56)

where p2 = σ1E
∗ > 0, s2 = σ2(N −D∗ −E∗) > 0, and q2 = σ1σ2E

∗(N −D∗ −
E∗).

For w > 0, iw being a root of (56), it follows that

{
w2 = q2 cos(wτ2)+ s2w sin(wτ2),

pw = −s2w cos(wτ2)+ q2 sin(wτ2),
(57)

which lead to

w4 − (s2
2 − p2

2)w
2 − q2

2 = 0. (58)

Let � = (s2
2 − p2

2)
2 + 4q2

2 . Since � > 0 and −q2
2 < 0, then Eq. (58) has only one

positive root w+ =
√

2

2

[
s2

2 − p2
2 +√

�
] 1

2
.

From (57), we can obtain
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τ2j = 1

w+
arccos

(
(q2 − p2s2)w

2+
s2

2w
2+ + q2

2

)
+ 2πj

w+
, j = 0, 1, 2, · · · . (59)

Denote by λ(τ2) = α(τ2) + iw(τ2) the root of Eq. (56) such that α(τ2j ) = 0,
w(τ2j ) = w+.

Substituting λ(τ2) into the left-hand side of (56) and differentiating with respect
to τ2, we have

[
dλ

dτ2

]−1

= 2λ+ p2

λ(s2λ+ q2)e−λτ1
+ s2

(s2λ+ q2)
− τ2

λ
, (60)

which leads to

{
d(Reλ(τ1))

dτ2

}∣∣∣∣
λ=iw+

=
{
Re

(
dλ

dτ2

)−1
}
,

= 1

w2+ + p2
2

+ q2
2

w2+(s2
2w

2+ + q2
2 )
> 0.

According to the above analysis and Ruan et al. [26], we have the following results.

Theorem 5.5 The positive equilibrium F3 is asymptotically stable if τ2 ∈ [0, τ 0
2 ),

and unstable for τ2 > τ
0
2 . Furthermore, the system 2 undergoes a Hopf bifurcation

at equilibrium F3 when τ2 = τ 0
2 .

Remark 5.2 We notice that the direction of the bifurcation is obtained by replacing
τ1 by τ2 in the proof of the bifurcation direction of the equilibrium F2.

5.4 Stability Analysis of Equilibrium F3 When τ1 > 0
and τ2 > 0

From the above discussion, we see that F1 is independent of the delays τ1 and τ2,
and F2 is dependent only on the delay τ1. Therefore, when τ1 > 0 and τ2 > 0, we
just consider the equilibrium F3 that depends on both the delays τ1 and τ2.

When τ1 > 0 and τ2 > 0, at the equilibrium F3, the characteristic equation is

�(λ, τ1, τ2) = P0(λ)+P1(λ)e
−λ τ1 +P2(λ)e

−λ τ2 +P3(λ)e
−λ(τ1+τ2) = 0, (61)

and the coefficients become P0(λ) = λ2, P1(λ) = σ1E
∗λ = x1λ, P2(λ) = σ2(N −

D∗ − E∗)λ = x2λ, and P3(λ) = σ1E
∗σ2(N −D∗ − E∗) = x1x2.

In what follows, we will use the methodology developed by X. Lin and H. Wang
[18] to analyze (61) in our special case when P0(λ) is quadratic, P1(λ) and P2(λ)

are linear, and P3(λ) is constant.
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5.4.1 Stability Switching Curves

We will study the change of the number of zeros of (61) on C+, as the delays
(τ1, τ2) vary on R

2+. The following lemma guarantees the continuity of the zeros
with respect to the delay parameters.

Lemma 5.2 As the delays (τ1, τ2) continuously vary within R
2+, the number of

zeros (counting multiplicity) of�(λ, τ1, τ2) onC+ can change only if a zero appears
on or cross the imaginary axis.

The proof of this lemma can be found in any book on functional differential
equations, for example, in Kuang [15], Smith [27].

From the above lemma, to study stability switching, we wish to have purely
imaginary characteristic roots.

We assume that λ = iw(w > 0). Substituting this into (61), we get

�(iw, τ1, τ2) =
(
P0(iw)+ P1(iw)e

−iwτ1
)
+
(
P2(iw)+ P3(iw)e

−iw(τ1
)
e−iwτ2 .

(62)
Since
∣∣e−iwτ2 ∣∣ = 1, we have

∣∣∣P0 + P1e
−iwτ1
∣∣∣ = ∣∣∣P2 + P3e

−iwτ1
∣∣∣ , (63)

which is equivalent to

(
P0 + P1e

−iwτ1
) (
P̄0 + P̄1e

iwτ1
)
=
(
P2 + P3e

−iwτ1
) (
P̄2 + P̄3e

iwτ1
)
,

where P0 = −w2, P1 = ix1w, P2 = ix2w, and P3 = x1x2.
After simplification, we obtain

|P0|2 + |P1|2 + 2Re
(
P0P̄1
)

cos(wτ1)− 2Im
(
P0P̄1
)

cos(wτ1)

= |P2|2 + |P3|2 + 2Re
(
P2P̄3
)

cos(wτ1)− 2Im
(
P2P̄3
)

cos(wτ1).

Thus,

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2A1(w) cos(wτ1)− 2B1(w) sin(wτ1), (64)

where

A1(w) = Re
(
P2P̄3
)− Re (P0P̄1

)
,

B1(w) = Im
(
P2P̄3
)− Im (P0P̄1

)
,

with P0P̄1 = ix1w
3 and P2P̄3 = ix1x

2
2w. Then,
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A1(w) = 0,
B1(w) = x1w

(
x2

2 − w2
)
.

If w = x2, then

A1(w) = B1(w) = 0 ⇔ P0P̄1 = P2P̄3. (65)

The right-hand side of (64) is 0 with any τ1, and

|P0|2 + |P1|2 = |P2|2 + |P3|2 . (66)

Therefore, if w = x2, then (65) and (66) are satisfied, and then all τ1 ∈ R+ are
solutions of (63).

If w 
= x2, then Eq. (64) becomes

|P0|2 + |P1|2 − |P2|2 − |P3|2 = −2B1(w) sin(wτ1). (67)

Obviously, a sufficient and necessary condition for the existence of τ1 ∈ R+,
satisfying the above equation, is

∣∣∣|P2|2 + |P3|2 − |P0|2 − |P1|2
∣∣∣ ≤ 2 |B1| . (68)

Denote

� =
{
w ∈ R+ :

∣∣∣|P2|2 + |P3|2 − |P0|2 − |P1|2
∣∣∣ ≤ 2 |B1|

}
.

Lemma 5.3 The set � is not empty.

Proof It suffices to prove there exists w̄ ∈ R+ such that

|P2|2 + |P3|2 − |P0|2 − |P1|2 = 0, (69)

and this equation is equivalent to

w̄4 +
(
a2

1 − a2
2

)
w̄2 − a2

1a
2
2 = 0. (70)

Since the coefficient of w4 is positive and (a1a2)
2 is negative, using Descarte’s

change of sign rule, the above equation has a positive root. This achieves the proof.
��

Let

sin(ψ1) = |P2|2 + |P3|2 − |P0|2 − |P1|2
2 |B1| , ψ ∈ [0, π ],
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and we have ψ1 = ωτ1 + 2n1π or ψ1 = π − ωτ1 + 2n1π , n1 ∈ Z. Then,

⎧⎪⎨
⎪⎩
τ+1,n1

(ω) = ψ1 + 2n1π

ω
,

τ−1,n1
(ω) = −ψ1 + (2n1 + 1)π

ω
.

(71)

All the formulas in these steps can be obtained explicitly.
Once we get τ1(ω) given by (71), substitute it into (62), and we get an explicit

formula for τ2(ω) unconditionally with each ω ∈ �, i.e.,

τ±2,n1
(ω) = 1

ω
arg

{
−P2 + P3e

−iωτ±1

P0 + P1e
−iωτ±1

}
+ n2π, n2 ∈ Z. (72)

Thus, the stability crossing curves are

T =
{(
τ±1,n1

(ω), τ±2,n2
(ω)
)
∈ R

2+ : ω ∈ �, n1, n2 ∈ Z

}
. (73)

5.4.2 Crossing Direction

Let λ = α + iω. Then by the implicit function theorem, τ1, τ2 can be expressed as
functions of α and ω under some non-singular condition. For symbolic convenience,
denote τ3 = τ1 + τ2.
Define

R0 = ∂Re(�(λ, τ1, τ2))

∂α

∣∣∣∣
λ=iω

= Re
{
P ′

0(iω)+
3∑
k=1

(
P ′
k
(iω)− τkPk(iω)

)
e−iωτk

}

= a1 cos(τ1ω)− a1τ1ω sin(τ1ω)+ a2 cos(τ2ω)− a2τ2ω sin(τ2ω)− a1a2τ3 cos(τ − 3ω),
(74)

I0 = ∂Im(�(λ, τ1, τ2))

∂α

∣∣∣∣
λ=iω

= Im
{
P ′

0(iω)+
3∑
k=1

(
P ′
k
(iω)− τkPk(iω)

)
e−iωτk

}
,

= 2ω − a1 sin(τ1ω)− a1τ1ω cos(τ1ω)− a2 sin(τ2ω)− a2τ2ω cos(τ2ω)+ a1a2τ3 sin(τ − 3ω).
(75)

Similarly, we have

∂Re(�(λ, τ1, τ2))

∂ω

∣∣∣∣
λ=iω

= −I0, (76)

∂Im(�(λ, τ1, τ2))

∂ω

∣∣∣∣
λ=iω

= R0. (77)



380 A. B. Ndione et al.

We also have

Rl = ∂Re(�(λ, τ1, τ2))

∂τl

∣∣∣∣
λ=iω

= Re {−iω (Pl(iω)e−iωτl + P3(iω)e
−iω(τ1+τ2))} ,

(78)

Il = ∂Im(�(λ, τ1, τ2))

∂τl

∣∣∣∣
λ=iω

= Im {−iω (Pl(iω)e−iωτl + P3(iω)e
−iω(τ1+τ2))} ,

(79)

where l = 1, 2. From the derivation, T ±k
n1,n2

are piecewise differentiable. By the
implicit function theory, we have

�(ω) =

⎛
⎜⎜⎜⎝

∂τ1

∂α

∂τ1

∂ω

∂τ2

∂α

∂τ2

∂ω

⎞
⎟⎟⎟⎠
α=0, ω∈�

=
(
R1 R2

I1 I2

)−1 (
R0 −I0
I0 R0

)
. (80)

The implicit function theorem applies as long as

det

(
R1 R2

I1 I2

)
= R1I2 − R2I1 
= 0.

For any crossing curve T ±k
n1,n2

, we call the direction of the curve corresponding to
increasing ω ∈ �k the positive direction, and the region on the left-hand (right-
hand) side when we move in the positive direction of the curve the on the left (right).

Since the tangent vector of T ±k
n1,n2

along the positive direction is

(
∂τ1

∂ω
,
∂τ2

∂ω

)
, the

normal vector of T ±k
n1,n2

pointing to the right region is

(
∂τ2

∂ω
,−∂τ1

∂ω

)
. As we know,

a pair of complex characteristic roots across the imaginary axis to the right on thr
complex plane as α increases from negative to positive through 0, thus (τ1, τ2)

moves along the direction

(
∂τ1

∂α
,
∂τ2

∂α

)
. As a consequence, we can conclude that

if

δ(ω) =
(
∂τ1

∂α
,
∂τ2

∂α

)
.

(
∂τ2

∂ω
,−∂τ1

∂ω

)

= ∂τ1

∂α

∂τ2

∂ω
− ∂τ2

∂α

∂τ1

∂ω
= det�(ω) > 0,

(81)
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the region on the right of T ±k
n1,n2

has two more characteristic roots with positive real
parts. On the other hand, if inequality (81) is reversed, then the region on the left
has two more characteristic roots with positive real parts.
Since

det

(
R0 −I0
I0 R0

)
= R2

0 + I 2
0 > 0,

we have

sign δ(ω) = sign {R1I2 − R2I1} . (82)

Since R0 
= 0 and I0 
= 0, for any (τ±1 , τ
±
2 ) ∈ T ±k

n1,n2
, we have

P2(iω)e
−iw(τ±1 −τ±2 ) = −P0(iω)e

−iwτ±1 − P1(iω)− P(iω)e−iwτ±2 .

If z1 = R1 + iI1, z2 = R2 + iI2, we have z1 × z2 = (R1R2 − I1I2, R1I2 + R2I1).
Then,

R1I2 − R2I1 = Im{−iw (P1e
−iw(τ±1 + P3e

−iw(τ±1 +τ±2
)

×− iw
(
P2e

−iw(τ±2 + P3e
−iw(τ±1 +τ±2

) }
= ω2Im

{
P̄1P2e

−iw(τ±1 −τ±2 ) + P̄1P3e
−iwτ±2 + P̄3P2e

−iwτ±1
}

= ω2Im
{(
P2P̄3 − P0P̄1

)
eiwτ

±
1

}
= ω2Im

{∣∣P2P̄3 − P0P̄1
∣∣ ei π2 eiwτ±1 }

= ω2
∣∣P2P̄3 − P0P̄1

∣∣ sin(π2 + wτ±1 )
= ω2
∣∣P2P̄3 − P0P̄1

∣∣ cos(wτ±1 ).
(83)

Hence, δ(ω ∈ �) = sign(ω2
∣∣P2P̄3 − P0P̄1

∣∣ cos(wτ±1 ), and we have the following
result.

Theorem 5.6 For any k = 1, 2, · · · , N.
• If cos(wτ±1 ) < 0, then the region on the right of T +k

n1,n2
(T −k
n1,n2

) has two more
(less) characteristic roots with positive real parts.

• If cos(wτ±1 ) > 0, then the region on the left of T +k
n1,n2

(T −k
n1,n2

) has two more (less)
characteristic roots with positive real parts.

If we know the number of characteristic roots with positive real parts when
τ1 = τ2 = 0, we can use criterion 81 to find the number of characteristic roots
with positive real parts for any (τ1, τ2) ∈ R

2. In this way, stability based on the
characteristic equation is completely known.

In what follows, we present numerical simulations to illustrate the above results.
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6 Numerical Simulations

In this section, we present some numerical results of the system (2) to illustrate the
analytical predictions obtained in the previous section.

6.1 Numerical Examples When τ1 = τ2 = 0

We present the numerical results that illustrate analytical results obtained with τ1 =
τ2 = 0. The system (2) is integrated using a nonstandard scheme method with
the following set of parameter values: N = 100, β1 = 0.6, β2 = 0.35, σ1 =
0.01, and σ2 = 0.07. For these parameter values, the conditions for stability for F2
are satisfied and the solutions converge to (60, 40) for different initial conditions
illustrated by Fig. 3a, b). On the other hand, Fig. 3c, d) shows that the solutions
converge to the equilibrium F3 with the set of parameter values:N = 200, β1 = 0.6,
β2 = 0.7, σ1 = 0.01, σ2 = 0.07 that assume its conditions for stability.
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Fig. 3 Plot of trajectories of system 2. For different initial conditions, solutions converge to the
stable equilibrium F2 = (60, 40) (a), (b) and to the stable equilibrium F3 = (60, 70) (c), (d)
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6.2 Numerical Examples When τ1 > 0, τ2 > 0

From Sect. 5, we may determine the direction of a Hopf bifurcation and the stability
of the bifurcation periodic solutions. We first consider the case when τ1 > 0 and
τ2 = 0. From the set of parameter values N = 100, β1 = 0.6, β1 = 0.7,
σ1 = 0.01, and σ2 = 0.01, we obtain that ω0 = 0.4, τ 0

1 ≈ 3.927, and τ 0
1

is the critical value for Hopf bifurcation. It follows from Theorem 5.1 that if
τ1 ∈ [0, 3.927), the equilibrium F2 = (60, 40) is asymptotically stable. System (2)
undergoes a Hopf bifurcation at τ1 ≈ 3.927. Furthermore, using Theorem 5.2, after
simple computation, we have C2(0) = −0.0009 − 0.0023i, μ2 = 0.0268 > 0,
γ2 = −0.0019 < 0, and T2 = 0.0013 > 0. Therefore, the Hopf bifurcation of
system (2) is supercritical, and the bifurcation periodic solutions are stable. These
conclusions are verified by the numerical simulation in Figs. 4 and 5.

We consider the positive equilibrium F3 = (60, 70), obtained with the set of
parameter values: N = 200, β1 = 0.6, β1 = 0.7, σ1 = 0.01, and σ2 = 0.01. We
have ω01 = 0.1 and τ ∗1 = 2, 244. Thus, the positive equilibrium F3 = (60, 70) is
stable when τ1 < τ

∗
1 as is illustrated by computer simulations (see Fig. 6). When τ1

passes through the critical value τ ∗1 = 2, 244, the positive equilibrium F3 = (60, 70)
loses its stability and a Hopf bifurcation occurs, i.e., a family of periodic solutions
bifurcate from the positive equilibrium F3 = (60, 70). Since μ2 > 0 and γ2 < 0,
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Fig. 4 Behavior and phase portrait of the system (2), with τ2 = 0, τ1 = 3.20 < τ 0
1 ≈ 3.927.

The positive equilibrium F2 = (60, 40) is asymptotically stable. Hopf bifurcation occurs from the
positive equilibrium F2 when τ1 = τ 0

1
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Fig. 5 Behavior and phase portrait of the system (2), with τ2 = 0, τ1 = 4.9 > τ 0
1 ≈ 3.927. The

positive equilibrium F2 = (60, 40) is unstable
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Fig. 6 Behavior and phase portrait of the system (2), with τ2 = 0, τ1 = 1.7 < τ ∗1 ≈ 2241.
The positive equilibrium F3 = (60, 70) is asymptotically stable. Hopf bifurcation occurs from the
positive equilibrium F3 when τ1 = τ 0

1
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Fig. 7 Behavior and phase portrait of the system (2), with τ2 = 0, τ1 = 2.4 > τ ∗1 ≈ 2241. The
positive equilibrium F3 = (60, 70) is unstable

the direction of Hopf bifurcation is τ1 > τ
∗
1 , and these bifurcating periodic solutions

from F3 = (60, 70) at τ ∗1 are stable, which is depicted in Fig. 7.
If τ1 = 0 and τ2 > 0, just the equilibrium F3 depends on τ2. From the set of

parameter values N = 200, β1 = 0.6, β1 = 0.7, σ1 = 0.01, and σ2 = 0.01, we
obtain ω02 = 0.7 and τ 0

2 = 2, 244. Thus, the positive equilibrium F3 = (60, 70)
is stable when τ2 < τ 0

2 as is illustrated by computer simulations (see Fig. 8).
System (2) undergoes a Hopf bifurcation at τ2 ≈ 2, 244, and F3 becomes unstable
when τ2 > τ

0
2 (see Fig. 9).

And finally when τ1 > 0 and τ2 > 0, we choose the same parameter values as in
Fig. 9. F(ω) has only one root ω = 0.7 and � = {ω} (see Fig. 10). When (τ1, τ2)

varies within a region formed by two curves, the number of characteristic roots with
positive real parts stays the same. It can change only when (τ1, τ2) crosses the curve
τ2(τ1). Hence from Fig. 11, the coexistence equilibrium F3 is stable if and only if
(τ1, τ2) is between the region delimited by τ1 and τ2 of the (τ1, τ2)-plane.

7 Conclusion and Discussion

In this chapter, we described a process of economic development using a compart-
mental approach. We have proposed a simple model of compartment characterized
by countries based on their economic status. The model is an extension of our
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Fig. 9 Behavior and phase portrait of the system (2), with τ1 = 0, τ2 = 2.7 > τ 0
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previous model, to which country collaboration and two delays have been added.
The main result of this exercise consists in showing how the number of countries
of each compartment changes from period to period. Thus, we have shown, under
certain conditions, that it is possible to reduce the number of developing countries
and thus increase the number of emerging and advanced countries.

The model reflects collaboration between developing and emerging countries on
the one hand and between emerging and advanced countries on the other. The model
also assumes that this collaboration is done without counterpart. Nevertheless, the
implementation of the compartmental approach in a model that is as simple as
possible can be useful to understand better the process of economic development
and can be used by the fiscal policy authority to improve their development policy.
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Our mathematic model describes complex macro-economic realities. Through the
bifurcations, we were able to analyze the effect of collaboration on economic
growth. We have seen that external inputs contribute to strengthening the growth
of developing countries over a period of about 4 years and 2 years for emerging
countries. These results confirm the positive short-term effect of openness on the
economic system of developing and emerging countries. Thus in terms of economic
implication, it is important for developing and emerging countries to put in place
economic strategies that can make them independent of external inputs in the
medium and long term to ensure the improvement of their GDP per capita and to
progress to higher development phases.

In the future, we intend to build a more complex model by taking into account
all kinds of collaboration and by including the limits of these collaborations.
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