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Abstract

Background: Oxidative stress that occurs as a 
consequence of the imbalance between anti-
oxidant activity and free radicals can contrib-
ute in the pathogenesis of metabolic disorders, 
such as type 2 diabetes mellitus (T2DM). 
Antioxidant therapies have been proposed as 
possible approaches to treat and attenuate dia-
betic complications. The purpose of this study 
was to evaluate potential antioxidant effects of 
trehalose on oxidative indices in a streptozoto-
cin (STZ)-induced diabetic rat model.

Methods: Diabetic rats were divided ran-
domly into five treatment groups (six rats per 
group). One test group received 45  mg/kg/
day trehalose via intraperitoneal injection, 

and another received 1.5 mg/kg/day trehalose 
via oral gavage for 4  weeks. Three control 
groups were also tested including nondia-
betic rats as a normal control (NC), a non-
treated diabetic control (DC), and a positive 
control given 200  mg/kg/day metformin. 
Levels of thiol groups (-SH), and serum total 
antioxidant capacity were measured between 
control and test groups. In addition, superox-
ide dismutase (SOD) and glutathione peroxi-
dase (GPx) enzyme activities were assessed.

Results: In both oral and injection trehalose-
treated groups, a marked increase was observed 
in serum total antioxidant capacity (TAC) 
(p > 0.05) and thiol groups (-SH) (p < 0.05). 
Also, SOD and GPx activities were increased 
after 4 weeks of treatment with trehalose.
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Conclusion: In conclusion, the present results 
indicate ameliorative effects of trehalose on 
oxidative stress, with increase antioxidant 
enzyme activities in STZ-induced diabetic 
rats.
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1	 �Introduction

Type 2 diabetes mellitus (T2DM) is defined as a 
permanent condition of hyperglycemia with pre-
dominant impacts on multiple metabolic path-
ways and physiologic functions of organs, caused 
by beta-cell dysfunction and insulin deficiency, 
tissue insulin resistance, or other metabolic alter-
ations such as disruption of the redox balance and 
stress [1–3]. Oxidative stress has the potential to 
induce cell death mechanisms associated with 
tissue damage and multiple diabetic complica-
tions, including diabetic cardiomyopathy, reti-
nopathy, and nephropathy [4]. This can occur via 
activation of nuclear factor kappa B (NF-κB), 
p38 MAPK, and c-jun NH2-terminal kinase/
stress-activated protein kinase (JNK/SAPK) sig-
naling pathways [5]. Indeed, there is an associa-
tion between hyperglycemia-induced oxidative 
stress and local or systemic inflammation via 
increased pro-inflammatory cytokine production 
and macrophage infiltration [6]. Due to the dele-
terious outcomes of oxidative stress on diabetes 
complications, application of antioxidant thera-
pies has been considered as a potential means of 
reducing T2DM pathogenesis through a decrease 
in free radicals and an increase in antioxidant 
enzyme activities [7–9].

Trehalose (mycose) is a carbohydrate with a 
disaccharide structure naturally produced by a 
wide range of organisms from prokaryotes to 
plants, except humans [10]. This sweetener 
molecule is frequently applied in food and drug 
industries and has been found to exert impor-
tant biological impacts and modulate several 

metabolic pathways after consumption [11–14]. 
Experimental studies have indicated trehalose 
functions as an antioxidant, anti-inflammatory, 
and autophagy enhancer, which suppresses oxi-
dative stress, inflammation, and autophagy-
related disorders such as diabetes [15–17], 
atherosclerosis [18, 19], and Parkinson [20], 
Alzheimer [21, 22], and Huntington [23] dis-
eases. Antidiabetic effects of trehalose can be 
linked to improving pathophysiological mecha-
nisms such as inflammation and oxidative 
stress, pancreatic islet function, and lipid pro-
file correction [24]. The role of trehalose as a 
natural antioxidant has been reported in in vitro 
and in  vivo studies [25–28]. Here, we have 
attempted to determine the antioxidant effects 
of intraperitoneal (IP) and oral trehalose admin-
istration on total antioxidant capacity (TAC) 
and total thiols, along with the activities of the 
antioxidant enzymes superoxide dismutase 
(SOD) and glutathione peroxidase (GPx) as 
markers of oxidative stress in a streptozotocin 
(STZ)-induced diabetes rat model. In addition, 
antioxidant effects of trehalose were compared 
to those of the standard T2DM medication, 
metformin. The results showed that both oral 
and IP routes of trehalose administration sup-
pressed oxidative stress, confirming the treha-
lose therapeutic potential in controlling 
oxidative stress-induced complications of dia-
betes in animal models.

2	 �Material and Methods

2.1	 �Animal

Male Wistar albino rats (8 weeks old, 180–200 g) 
were bred and housed in the Laboratory Animal 
Research Center of Medicine Faculty, Mashhad 
University of Medical Sciences, Mashhad, Iran. 
All animal experiments were approved by the 
Institutional Ethics Committee and Research 
Advisory Committee of the Mashhad University 
of Medical Sciences and the National Institute 
for Medical Research Development (NIMAD). 
The animals were maintained using a 12:12-h 
day-night cycle, at a constant 22  ±  2  °C, and 
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humidity of 45–64%. Over the entire experimen-
tal procedure, the rats were fed with a standard 
rodent diet and water ad libitum. All rats were 
anesthetized with IP injections of thiopental 
sodium and blood samples collected after 
4 weeks of treatment at study termination.

2.2	 �Induction of Rat T2DM Model

Non-insulin-dependent diabetes mellitus was 
induced by intravenous injection of single 60 mg/
kg dose of streptozotocin in overnight-fasted rats 
(Masiello et  al., 1998). STZ was dissolved in 
citrate-buffered saline (0.1  M, pH  4.5). 
Hyperglycemia was confirmed with blood glu-
cose levels >180 mg/dL, determined at 72 h and 
then on day 7 after injection, and diabetic rats 
were included in this study. Two groups of dia-
betic rats (six rats per group) were treated daily 
with 45 mg/kg/day trehalose via i.p. injection and 
1.5  g/kg/day via oral gavage for 4  weeks. 
Nondiabetic rats (n = 6) were used as the normal 
control (NC) group that received citrate buffer 
(i.p.). The diabetic (DC) and positive control 
groups received saline buffer and metformin 
(200 mg/kg/day), respectively.

2.3	 �Total Thiol (-SH) Group

Total thiol groups (-SH) were measured using the 
Kiazist kit according to the manufacturer’s 
instructions. In this assay, 5,5′-dithiobis-(2-
nitrobenzoic acid) (DTNB) reacts with reduced 
sulfhydryl (-SH) groups in the serum, resulting in 
a yellow-colored complex, which is detectable at 
405 nm.

2.4	 �Total Antioxidant Capacity 
(TAC)

The potential of samples for reducing ferric 
(Fe+3) to the ferrous form (Fe+2) was considered 
as the total antioxidant capacity (TAC) and mea-
sured by a colorimetric method. For this assay, 
150 μL Kiazist TAC reagent was added to 30 μL 

sample or standard and incubated at room tem-
perature for 45 min. The absorbance was read in 
450 nm.

2.5	 �Antioxidant Enzyme Activity 
Assay

The levels of antiperoxidative enzymes, includ-
ing GPx and SOD, were determined in the serum 
of diabetic rats using specific assay kits (Kiazist, 
Iran). The measurement of SOD and GPx activi-
ties was based on reducing free radicals produced 
by the xanthine/xanthine oxidase system and 
conversion of hydrogen peroxide to water, 
accompanied by glutathione oxidation, 
respectively.

2.6	 �Statistical Analysis

Statistical analysis was performed with Microsoft 
Excel (2019) and GraphPad Prism version 8 soft-
ware. The results were analyzed using one-way 
analysis of variance (ANOVA) and the Tukey’s 
multiple comparison posttest to evaluate the sig-
nificance of differences between treatment 
groups. Results with p < 0.05 were considered as 
statistically significant.

3	 �Results

3.1	 �Evaluation of Reduced (Free) 
Thiol (-SH) Groups and Total 
Antioxidant Capacity

IP and oral administration of trehalose led to an 
increase in TAC and thiols, with lower levels in 
diabetic rats than the healthy control group 
(nondiabetic). Although TAC alterations did not 
reach statistical significance (Fig. 1), total thiol 
groups were increased significantly (p < 0.05) in 
treated groups compared to nontreated diabetic 
control, and the effect of IP trehalose adminis-
tration was more potent than the oral route 
(Fig. 2).
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3.2	 �Evaluation of SOD and GPx 
Antioxidant Enzyme Activities

For studying the effect of trehalose to induce 
enzymes that counteract free radical production, 
we measured the activities of SOD and GPx. 
These enzymes were increased in both the IP and 
oral trehalose-treated groups with a stronger 
effect of oral trehalose when compared with dia-
betic control rats. Differences in oral (P = 0.07) 
and IP trehalose (P = 0.89) groups were not sig-
nificant for SOD (Fig. 3), whereas a significant 
increase was observed in GPx activity (P < 0.05) 
(Fig. 4).

4	 �Discussion

Diabetes is a chronic disease characterized by 
hyperglycemia resulting from deficiency of insu-
lin secretion or insulin resistance, leading to 
microvascular and macrovascular complications 
that can damage different organs and tissues [29]. 
Hyperglycemia causes oxidative stress through 
multiple pathways, which is considered as a trig-
ger for developing vascular complications of 
T2DM [30, 31]. High glucose levels promote the 
activity of some enzymes, including protein 
kinase C and nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, leading to aug-
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mentation of reactive oxygen species (ROS) and 
oxidative stress, which in turn promote cell dam-
age and tissue injuries [15]. Free radicals may 
attack cell membranes resulting in lipid peroxi-
dation and an increase in MDA as a sensitive 
index of the systemic redox status and potential 
disease progression [32]. Besides lipid oxidation 
effects, ROS can oxidize free thiols and decrease 
circulating sulfhydryl (SH) concentrations, lead-
ing to a reduction in total antioxidant capacity 
[33]. Moreover, the alterations of antioxidant 
enzyme patterns are a characteristic feature of the 
uncontrolled diabetic state associated with a 
higher incidence of diabetic complications [34]. 
Since oxidative stress is a critical pathogenic fac-

tor for secondary complications of diabetes, the 
antioxidant therapy approach may be a useful 
strategy to treat diabetes by controlling free radi-
cal production; increasing intracellular antioxi-
dant defenses, along with protective mechanisms 
against oxidative stress-induced apoptosis; and 
preserving β-cell function [35–37]. This study 
aimed to evaluate the antioxidant effects of treha-
lose as a natural antioxidant compound in T2DM. 
The changes in antioxidant markers such as 
serum thiol levels, and TAC, as well as the activ-
ity of GPx and SOD, were determined following 
4  weeks of trehalose administration in STZ-
induced diabetic rats.

Trehalose is a nonreducing disaccharide con-
sisting of two glucose units in an α,α-1,1-
glycosidic linkage, synthesized in numerous 
organisms from plants and bacteria to inverte-
brates and yeast [38]. Recent studies indicate that 
trehalose may decrease blood glucose and ame-
liorate insulin sensitivity and, thereby, may serve 
as a potential non-pharmacological agent for the 
management of diabetes [24]. We evaluated this 
possibility in our previous animal study and con-
firmed trehalose antidiabetic effects in a rat 
model of type 2 diabetes. The antioxidant effects 
of trehalose have also been assessed in different 
in vitro and in vivo studies [39, 40]. Treatment 
with trehalose in preclinical studies revealed that 
this antioxidant molecule significantly decreased 
the amount of ROS and H2O2 levels in a dose-
dependent manner [15, 25] and upregulated anti-
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oxidant gene expression of SOD, glutathione 
(GSH), and catalase (CAT) via promotion of 
nuclear translocation of Nrf2 [25, 41]. Although 
antioxidant enzyme-dependent defenses play a 
crucial role in scavenging free radicals produced 
under oxidative stress [42, 43], there have been 
conflicting reports on SOD and GPx activity in 
diabetes mellitus. Both increased and decreased 
antioxidant enzyme activities have been reported 
[44–49], while some studies have shown no 
change in comparison to nondiabetic healthy 
controls [50, 51]. In diabetes, impaired pancre-
atic β-cells may express low physiological levels 
of the antioxidant enzymes SOD and GPx [52–
54]. On the other hand, elevated ROS levels and 
increased production of O2− may increase the 
total antioxidant enzyme activity, suggesting a 
possible adaptive response to oxidative status 
[55]. Our results indicated a marked decrease in 
GPX activity in the diabetic rats, whereas this 
activity was significantly increased in both 
trehalose-treated groups compared with the DC 
group. A similar trend was found for SOD activ-
ity after 4 weeks of trehalose intervention, though 
the differences were not statistically significant. 
Experimental models have determined that anti-
oxidant compounds can change TAC in serum or 
plasma; therefore, monitoring plasma TAC may 
be a valuable index for oxidative burden [56, 57]. 
However, no prior study has investigated the 
effects of trehalose on plasma TAC levels; our 
research reported that TAC and the amount of 
free thiol increased during the treatment process. 
Differences in TAC marker was  significant 
between the IP-treated trehalose group and DC 
group. Intraperitoneal administration of trehalose 
had greater potential efficacy than oral adminis-
tration, which could be due to the higher bio-
availability of trehalose in the IP route.

As mentioned earlier, previous studies dis-
played in vitro antioxidant activities of trehalose, 
and here we carried out the in vivo experimental 
study to support an antioxidant effect of trehalose 
in T2DM model during 4  weeks of treatment. 
The obtained results suggest that trehalose might 
be regarded as a safe antioxidant supplement for 
diabetic subjects in clinical studies over a longer 
timeframe.

In conclusion, regarding the importance of 
oxidative stress in activating intracellular signal-
ing pathways and the pathogenesis of multiple 
disorders, natural antioxidant products could be a 
potential therapeutic strategy to manage and 
reduce oxidative damage. The findings of our 
study demonstrated that trehalose administration 
could enhance antioxidant capacities, and protect 
antioxidant enzyme activity slightly; however, a 
clear and comprehensive understanding of the 
effect of trehalose on antioxidant enzymes needs 
further investigation.
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