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Abstract. As a fundamental task in graph data mining, answering
k-hop reachability queries is useful in many applications such as analysis
of social networks and biological networks. Most of the existing meth-
ods for processing such queries can only deal with directed acyclic graphs
(DAGs). However, cycles are ubiquitous in lots of real-world graphs. Fur-
thermore, they may require unacceptable indexing space or expensive
online search time when the input graph becomes very large. In order to
solve k-hop reachability queries for large general directed graphs, we pro-
pose a practical and efficient method named ESTI (Extended Spanning
Tree Index). It constructs an extended spanning tree in the offline phase
and speeds up online querying based on three carefully designed pruning
rules over the built index. Extensive experiments show that ESTI signif-
icantly outperforms the state-of-art in online querying, while ensuring a
linear index size and stable index construction time.

Keywords: k-hop reachability queries · General directed graphs ·
Extended spanning tree

1 Introduction

Graph is a flexible data structure representing connections and relations among
entities and concepts, which has been widely used in real world, including XML
documents, cyber-physical systems, social networks, biological networks and traf-
fic networks [1–3,9,12]. Nowadays, the size of graphs such as knowledge graphs
and social networks is growing rapidly, which may contain billions of vertices and
edges. k-hop reachability query in a directed graph is first discussed by Cheng et
al. [1]. It asks whether a vertex u can reach v within k hops, i.e., whether there
exists a directed path from u to v in the given directed graph and the path is
not longer than k. Note that the input general directed graph is not necessary to
be connected. Take the graph G in Fig. 1(a) as an example, vertex a can reach
vertex e within 2 hops, but a cannot reach vertex d within 1 hop.

Efficiently answering k-hop reachability queries is helpful in many analyti-
cal tasks such as wireless networks, social networks and cyber-physical systems
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Fig. 1. Illustration of input graph and existing works

[1,2,12]. Several methods for k-hop reachability has been proposed, providing
different techniques to solve this kind of queries. However, existing methods suf-
fer some shortcomings, which make them not practical or general enough to
answer k-hop reachability queries efficiently. To the best of our knowledge, k-
reach [1,2] is the only method aiming at dealing with k-hop reachability queries
for general directed graph, which builds an index based on vertex cover of the
graph. It is infeasible to build such an index for large graphs due to the huge
space cost. Thus a partial coverage is employed in [2]. However, partial coverage
technique is also not practical enough since most queries may fall into the worst
case, which requires online BFS search.

A bunch of methods have been proposed to solve k-hop reachability queries
in DAGs. BFSI-B [12] builds a compound index, containing both FELINE index
[10] and breadth-first search index (BFSI). HT [3] works on 2-hop cover index,
which selects some high-degree nodes in the DAG as hop nodes. Experiments
have shown that both of them are practical and efficient to answer k-hop reach-
ability queries. However, they are developed only for dealing with DAGs, which
are not general enough since most graphs in real applications may have cycles,
such as social networks and knowledge graphs.

A simple version of k-hop rechability query is reachability query. Given a
graph G, reachability query can be taken as a specific case of k-hop reachability
queries, since they are actually equivalent when k ≥ λ(G), where λ(G) represents
the length of the longest simple path in graph G. Note that for a general directed
graph, we can obtain the corresponding DAG by condensing each strongly con-
nected component (SCC) as a supernode, such that the reachability informa-
tion in original graph can be completely preserved in the constructed DAG.
Although lots of methods have been proposed to handle reachability queries
[4,6,8,10,11,13], they cannot be directly used for k-hop reachability queries since
more information such as distance is missing in the transformation above.

We categorize the methods related to k-hop reachability queries [1–4,6,8,10–
13], as shown in Fig. 1(b). Clearly, right-top corner represents k-hop reachability
in general directed graphs, which is the most general one. As discussed above,
k-reach, the only existing method in this research area, is not practical enough
to handle very large graphs. Hence, we develop a practical method named ESTI
to answer k-hop reachability queries efficiently.
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Our proposed approach, ESTI, follows the offline-and-online paradigm. It
builds an index for a given graph in the offline phase, and answers arbitrary
k-hop reachability queries in the online phase. In offline indexing process, both
FELINE+ index and Extended Spanning Tree Index (ESTI) are constructed.
We introduce the concept of Real Node and Virtual Node to build the extended
spanning tree with both BFS and DFS. As for online querying, the offline index
helps to answer k-hop reachability queries efficiently, and three pruning strategies
are devised to further speed up query process.

Paper Organiztion. This paper is organized as follows. Section 3 explains the
details of ESTI offline index, followed by the querying process as discussed in
Sect. 4. Section 5 shows the results of experiments comparing ESTI with other
k-hop reachability methods. In Sect. 6, some exciting works related to k-hop
reachability queries are presented. Finally, Sect. 7 concludes the paper.

2 Problem Definition and Overview

2.1 Problem Definition

In this paper, the input general directed unweighted graph is represented as
G = (V,E), where V denotes the set of vertices and E denotes the set of edges.
|V | and |E| denote the number of vertices and edges in G, respectively. For any
two vertices u, v ∈ V and u �= v, we say that u can reach v within k hops if there
exists a directed path from u to v in G which is not longer than k. Let u

?k−→ v
represent a query asking whether u can reach v within k hops in G.

2.2 Overview

ESTI follows the offline-and-online paradigm, and Fig. 2 presents the overview
of our offline index structure. For better understanding, we briefly introduce our
basic ideas and techniques for answering arbitrary k-hop reachability queries.
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FELINE+ Index. Since reachablity is the neccessary condition for k-hop reach-
ability, FELINE index [10] including two topological orders can be utilized to
efficiently filter unreachable queries. The time cost of generating index in offline
phase is O(|V |log|V | + |E|). In Sect. 3.1, we present an optimization named
FELINE+ to speed up index generation, which costs O(|V |log(Deg

(out)
m ) + |E|)

time, where Deg
(out)
m is the maximum outgoing degree of a vertex.

Extended Spanning Tree Index. In order to preserve as much information
as possible for answering queries, we introduce Virtual Root, Real Nodes and
Virtual Nodes to constuct an extended spanning tree from the input graph G in
Sect. 3.2. Also, pre- and postorders and global level are assigned to nodes in the
tree, which helps to efficiently answer k-hop queries online.

Online Querying. Given arbitrary query u
?k−→ v, the constructed index is

utilized to directly return the correct answer or prune search space. In Sect. 4.2,
three pruning strategies are developed to further accelerate online querying.

3 Offline Indexing

3.1 FELINE+ Index

If u cannot reach v in G, the answer of query u
?k−→ v is apparently False.

To efficiently filter those unreachable queries in online querying phase, FELINE
[10] condenses all strongly connected components (SCCs) in the given general
directed graph G to obtain a DAG GA, and two topological orders X and Y
are generated for each vertex in GA. Let Xv and Yv denote the first and second
topological order of a vertex v, respectively. If u can reach v, both Xu < Xv

and Yu < Yv hold. Hence, for a query u
?k−→ v, we can directly return the answer

False if Xu > Xv or Yu > Yv in FELINE index.
In FELINE [10], X is calculated by a topological ordering algorithm, and

Y coordinate is assigned by applying a heuristic decision. When assigning Y
coordinate, let R be a set storing all roots in current DAG. FELINE iteratively
runs the following procedures until all vertices in GA have Y coordinates.

Step 1. Choose the root r from R with largest Xr, assign r a coordinate Yr;
Step 2. Remove all of r’s outgoing edges. and some of its children may have

no ancestors and become new roots. Thus, R should be updated.
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Algorithm 1. FELINE+ Index Construction
Input: DAG GA;
Output: Two topological orders X and Y ;
1: X ← a Topological Order of GA

2: R ← all the roots in GA sorted w.r.t descending X value
3: while R is not empty do
4: pop the first element r from R and assign Yr

5: Rtmp ← [ ]
6: for each outgoing neighbor t of r do
7: remove edge (r, t)
8: if t has no incoming neighbor then
9: Rtmp ← Rtmp ∪ {t}

10: sort Rtmp according to descending X value
11: insert all elements of Rtmp in the front of R, while preserving the order

12: return X, Y ;

Example 1. By condensing all SCCs of graph G in Fig. 1(a), its corresponding
DAG GA is shown in Fig. 3. After assigning X, we start to assign Y and R =
{a, c, f ′}. Since Xf ′ = 3 is the largest one, Yf ′ is assigned to be 0, and next we
assign Yc = 1 and Ya = 2. When all edges connecting with b′ are removed, we
update R = R ∪ {b′} to continue assigning Y coordinate to b′. As for online
querying, for instance, vertex a cannot reach vertex c since Ya > Yc in Fig. 3.

The time cost of condensing SCCs and generating X coordinate is O(|V | +
|E|). Note that FELINE utilizes a max-heap to store all the current roots R, in
which those roots are sorted in the descending order according to X. It takes
O(1) to pop a root r from the max-heap in Step 1, and each vertex in GA can
only be inserted into R once which costs O(log|V |) time. Hence, the overall time
cost of building index construction for FELINE is O(|V |log|V | + |E|).

In this paper, we propose an novel technique to accelerate Y coordinate
generation, utilizing a simple array to store all the current roots R instead of a
max-heap. Firstly, R is initialized by putting all the roots in original GA, making
sure they are sorted in descending order w.r.t. X value. Then the following two
steps are processed iteratively until all the vertices have Y coordinate.

Step 1. Pop the first element r from the array R and assign its Y coordinate.
Step 2. Remove all of r’s outgoing edges. Sort those new roots w.r.t descend-

ing X value, then insert them in the front of array R, while preserving the order.

Theorem 1. The order of elements in array R is always the same as the
descending order of their X value.

Proof. At first, array R is initialized with all roots in original GA, which are
sorted in the descending order w.r.t. X value. Assume that elements in array R
are in the descending order of X value. When we pop the first element r from
array R to assign Yr, Xr ≥ Xv holds for any vertex v in array R. After removing
r’s outgoing edges, some of its children w may become new roots and Xw > Xr



76 Y. Cai and W. Zheng

must hold. Thus, every w has larger X than any v in array R. After sorting those
new roots w in descending X value and inserting them in the front of array R,
all the vertices in array R are still in their descending X order. ��

The enhanced algorithm, denoted by FELINE+, for accelerating FELINE is
shown in Algorithm 1. When generating Y coordinate, according to Theorem1,
the first element r of array R always has the largest Xr value in R, and it
actually constructs the same index as FELINE. Note that to make sure the
initial roots in arrary R are in descending order w.r.t. X value, we only need to
reverse the initial root queue of X coordinate generation process, because their
X values are generated following the order of it. Hence, the initialization time
of array R is linear to the number of roots in original GA. When processing
each current root r, sorting the new roots takes O(|w|log|w|), where |w| is the
number of new roots obtained by removing r’s outgoing edges. Since each vertex
in GA can be a new root only once, the time cost of generating Y coordinate
is O(|V |log(Deg

(out)
m ) + |E|), where Deg

(out)
m is the max number of outgoing

neighbors of a vertex and |w| ≤ Deg
(out)
m always holds.

The total time cost of building index for FELINE+ is O(|V |log(Deg
(out)
m ) +

|E|). Theoretically, since Deg
(out)
m is much smaller than |V | in many graphs, our

approach is faster than the original FELINE whose time cost is O(|V |log|V | +
|E|). Experiments confirm that the proposed optimization technique significantly
accelerates the index construction for FELINE, as shown in Sect. 5.2.

3.2 Extended Spanning Tree Index for General Directed Graph

Preliminary. We first briefly introduce pre- and postorder index and global
level for a tree, which have been used in GRIPP [9] and BFSI-B [12]. Note that
BFSI-B applies min-post strategy, which actually has the same effect as pre-
and postorders. For any vertex v in the tree, prev and postv represent the pre-
and postorder index of v, respectively. And levelv is the global level of v, i.e.,
the distance from the tree root to v. prev and postv are generated during the
DFS traversal, while levelv is generated during the BFS traversal.

Example 2. Figure 4(a) illustrates the three labels. Following the visiting order
in DFS, we start from root a and set prea to 0. Then we visit b and c and set
preb and prec to 1 and 2, respectively. After returning from c, we set postc to
3. The process proceeds until all nodes have been visited. Each node is assigned
both pre- and postorder index following the DFS. As for level index, levela is
set to be 0 and we can assign level to other vertices following the BFS.

We say that (prev, postv) ⊂ (preu, postu) iff prev ≥ preu ∧ postv ≤ postu.
Based on the constructed index (prev, postv, levelv) discussed above, Theorem 2
holds in the tree, and query u

?k−→ v can be efficiently answered. For example, in
Fig. 4(a) a can reach d in 2 hops, since (4, 5) ⊂ (0, 11) and leveld − levela = 2.

Theorem 2. Given two vertices u and v in tree T , u can reach v within k hops
if (prev, postv) ⊂ (preu, postu) ∧ levelv − levelu ∈ (0, k].
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Proof. According to the process of pre- and postorder generation, (prev, postv) ⊂
(preu, postu) indicates that v is in the subtree whose root is u. levelv − levelu ∈
(0, k] implies that there is a path from u to v which is not longer than k. ��

Clearly, if the input graph is a tree, both time and space cost for building
the index are O(|V | + |E|) and it only takes O(1) for online query. However,
when the input general directed graph G is not a tree, to make it practical and
efficient enough for answering k-hop reachability queries, we introduce Virtual
Root, Real Node and Virtual Node to transform G into an Extended Spanning
Tree (EST). Note that our method is quite different from existing approaches like
GRIPP [9] and BFSI-B [12]. GRIPP solves reachability queries while ignores
distance information which is necessary for answering k-hop reachability queries,
and BFSI-B is developed for only dealing with DAGs. However, most graphs in
real life have cycles and BFSI-B cannot directly work on these graphs.

Virtual Root. Since the given graph G may not be connected, e.g., the graph
in Fig. 1(a), we add a virtual root VR to make sure that it can reach all vertices in
G. We first add an edge from VR to all the vertices which have no predecessors,
then explore from VR to mark all of its descendants visited. The second step is to
randomly select an unvisited vertex v, and add an edge from VR to v while all of
v’s descendants are marked visited. We repeat the second step until all vertices
have been visited. Take graph G in Fig. 1(a) as an example. After adding a
virtual root for it, we obtain a new graph G′ in Fig. 4(b).

Real and Virtual Nodes. When starting BFS from virtual root VR, we may
encounter endless loop since there may exist cycles in G′, or some visited vertices
since they have multiple incoming edges. To solve this problem, we introduce Real
Nodes and Virtual Nodes. In BFS process, if vertex v has never been visited, it
will be added to the spanning tree as a Real Node and we will continue to
visit its successors. If vertex v has been visited, it will be added to the tree as
a Virtual Node while its successors will not be explored again. Following the
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above definition of Real Node and Virtual Node, we can construct an extended
spanning tree from graph G′, as shown in Example 3. Also, Theorem 3 holds.

Example 3. In Fig. 4(b), we start BFS from r and add real nodes for r, a, c, f ,
b, d and g. When exploring from b to visit d, we create a virtual node for d since
it has been visited before. Figure 5 is the extended spanning tree of G′.

Theorem 3. In extended spanning tree, each vertex v in graph G′ must have
exactly one real node. The total number of real and virtual nodes in this tree is
equal to the number of edges in G′ plus 1.

Proof. Since virtual root VR can reach all vertices in G′ and we start BFS from
VR to construct the extended spanning tree, a real node is created for each vertex
v in G′ when it is visited for the first time. When v is visited again, we only
create a virtual node for it. Hence, each v in G′ must have exactly one real node.

At the beginning of BFS, we create a real node for virtual root VR. As for
the other vertices v in G′, a real node or virtual node will be created for v only
when we explore from its incoming neighbor. Hence, the number of real and
virtual nodes in this tree is equal to the number of edges in G′ plus one, where
the additional one is the real node representing virtual root VR. ��

Index Generation. Recall that in a tree, the index of vertex v consists of prev,
postv and levelv. When constructing the extended spanning tree from graph G′,
we have already run BFS in the tree, and level index will also be generated for
all the nodes. Next, we explore the whole tree by DFS and assign each vertex
with pre- and postorder index. Take the graph G′ in Fig. 4(b) as an example.
The index of its extended spanning tree is shown in Fig. 5. After assigning the
above index, Theorem 4 holds for all the real and virtual nodes in the tree.

Theorem 4. If vertex v of G′ has virtual nodes in the extended spanning tree,
denote its unique real node as v′

r. For any virtual node v′
i of v, levelv′

i
≥ levelv′

r
.

Proof. When construting the extended spanning tree by BFS, all the virtual
nodes of v are created after its real node is created. Hence, based on the explo-
ration order of BFS, levelv′

i
≥ levelv′

r
. ��
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Let |V ′| and |E′| denote the number of vertices and edges in G′, respectively.
When generating G′ from original graph G, we add a virtual root VR and at
most |V | edges to connect vertices in G. Thus, O(|V ′| + |E′|) = O(|V | + |E|).

The time and space comlexity of adding a virtual root is O(|V | + |E|), since
each vertex and edge is visited once. When constructing the extended spanning
tree, each edge in G′ is visited once since we explore from vertex v only when
its unique real node is created. According to Theorem3, it takes both time and
space cost O(|V | + |E|) to create all real and virtual nodes. And both BFS and
DFS also take the time and space cost O(|V |+ |E|). Hence, the overall time and
space cost for constructing the extended spanning tree and the three labels are
O(|V | + |E|), which indicates that it is feasible even for very large graphs.

3.3 Summary of Offline Indexing

The index of our proposed ESTI method consists of two parts: FELINE+

(Sect. 3.1) and the extended spanning tree (Sect. 3.2). The whole generation
process is shown in Algorithm 2. Recall that building FELINE+ index takes
O(|V |log(Deg

(out)
m ) + |E|) time and O(|V |) space, where Deg

(out)
m is the maxi-

mum outgoing degree in GA. And the time and space cost of constructing the
extended spanning tree and three labels are both O(|V |+|E|). Hence, the overall
index constrution time of ESTI is O(|V |log(Deg

(out)
m ) + |E|), and index size is

O(|V | + |E|). Next, we will show how the constructed index supports efficient
online k-hop reachability queries.

Algorithm 2. ESTI Index Construction
Input: A general directed graph G;
Output: FELINE+ index X, Y ; EST mapping each v in G to its real or virtual node

v′ in extended spaning tree; Pre, Post, Level index for each node v′ in the tree.
1: GA ← condense SCCs in G
2: X, Y ← generating FELINE+ index for GA � see Algorithm 1
3: G′ ← add a virtual root VR and virtual edges in G � see Section 3.2
4: F ← {(VR, 0)} � a queue used as BFS frontier
5: i ← 0
6: while F is not empty do
7: pop (u, l) from F
8: Level[i] ← l
9: if u has not been visited then

10: EST [u].RealNode ← i
11: for each out-neighbor v of u do
12: F ← F ∪ {(v, l + 1)}
13: else
14: add node i to EST [u].V irtualNodes

15: i ← i + 1

16: Pre, Post ← Assign pre- and postorder for all real and virtual nodes in the tree
17: return X, Y , EST , Pre, Post, Level;
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Algorithm 3. Basic Query Fucntion Query(u, v, k)
Input: Start vertex u, target vertex v, k; Offline index X,Y ,EST ,Pre,Post,Level.
Output: True or False.
1: if X[u] > X[v] ∨ Y [u] > Y [v] then
2: return False
3: u′

r ← EST [u].RealNode
4: for each node v′ in {EST [v].RealNode} ∪ EST [v].V irtualNodes do
5: if (Pre[v′], Post[v′]) ⊂ (Pre[u′

r], Post[u′
r]) ∧ level[v′] − level[u′

r] ≤ k then
6: return True
7: if k > 1 then
8: if number of outgoing edges of u ≤ number of incoming edges of v then
9: for each outgoing neighbor w of u do

10: if Query(w, v, k − 1) then
11: return True
12: else
13: for each incoming neighbor w of v do
14: if Query(u, w, k − 1) then
15: return True
16: return False;

4 Online Querying

4.1 Basic Query Process

After constructing ESTI index (Sect. 3) for the input graph G, we can utilize
the index to answer k-hop reachability queries online. Given a query u

?k−→ v, if
u = v or k ≤ 0 we can directly return the answer. Assume that u �= v and k > 0,
the basic query function is shown in Algorithm3.

As discussed in Sect. 3.1, in Line 1–2, if the topological order X (or Y ) of
u’s corresponding vertex in DAG GA is larger than v’s X (or Y ), we can safely
return False. In Line 3–6, the pre- and postorders of real and virtual nodes
are compared. Note that in Line 7–15, we run DFS only when k > 1 (Line 7)
because the exploration will never return True when k ≤ 1. If k = 1 the answer
from Line 3–6 is the final answer, and k = 0 is impossible since the initial input
assumes that k > 0 while funtion Query is invoked only when k > 1.

Example 4. Given the constructed index in Fig. 5, for query c
?3−→ b, we invoke

Query(c, b, 3). The pre- and postorder of c’s Real Node is (11, 16), but the real
node of b has index (2, 9) �⊂ (11, 16) and its virtual node has index (6, 7) �⊂
(11, 16). Then Query(d, b, 2) is invoked, which results in calling Query(e, b, 1).
Luckily, b’s virtual node has index (6, 7) ⊂ (5, 8) and the function returns True.

To further improve the performance of online querying, we develop three
pruning strategies based on properties of the extended spanning tree.
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4.2 Pruning Strategies

Prune I. For query u
?k−→ v, denote u′

r, v′
r as the real node of u and v, respec-

tively. Prune I strategy utilizes Theorem 5 to stop redundant exploration in
advance, i.e., Query(u, v, k) will directly return False if levelv′

r
− levelu′

r
> k.

Theorem 5. If levelv′
r

− levelu′
r

> k, u cannot reach v within k hops.

Proof. Note that as discussed above, we never invoke Query(u, v, k) s.t. k = 0.
(Case 1). When k = 1, assume that levelv′

r
− levelu′

r
> 1. If u can reach

v within 1 hop, v has a real or virtual node v′ which is the child of u′
r and

levelv′ = levelu′
r

+ 1. According to Theorem 4, levelv′ ≥ levelv′
r

indicates that
levelv′

r
− levelu′

r
≤ levelv′ − levelu′

r
= 1, which contradicts the assumption.

(Case 2). When k > 1, in function Query(u, v, k), Line 3–6 will never return
True since levelv′ ≥ levelv′

r
and levelv′ − levelu′

r
≥ levelv′

r
− levelu′

r
> k. Hence

we need to invoke Query(w, v, k−1) or Query(u,w, k−1). For Query(w, v, k−1),
since the real or virtual node w′ is a child of u′

r in the tree, the real node of w
satisfies levelw′

r
≤ levelw′ = levelu′

r
+ 1. Thus, we have levelv′

r
− levelw′

r
≥

levelv′
r

− levelu′
r

− 1 > k − 1, and Query(w, v, k − 1) falls into Case 1 or Case 2
again. For Query(u,w, k − 1), since w′

r is the parent of one of the real or virtual
node v′ in the tree, w′

r satisfies levelw′
r

= levelv′ − 1 ≥ levelv′
r

− 1. Thus, we
have levelw′

r
− levelu′

r
≥ levelv′

r
− levelu′

r
− 1 > k − 1, and Query(u,w, k − 1)

also falls into Case 1 or Case 2 again.
Hence, if levelv′

r
− levelu′

r
> k, u cannot reach v within k hops. ��

Example 5. In Fig. 5, for query f
?1−→ e, both real and virtual nodes of e have

level 3, while the real node of f has level 1. Since 3−1 > k = 1, we return False.

Prune II. In Line 3–6 of Algorithm 3, we iterate all real and virtual nodes
v′ to compare (prev′ , postv′) with (preu′

r
, postu′

r
), where u′

r is the unique real
node of u. From the generation process of pre- and postorder index, (prei, posti)
and (prej , postj) can never overlap for any vertex i and j. Instead of utilizing
(prev′ , postv′), we can only check whether prev′ ∈ (preu′

r
, postu′

r
). Hence, postv′

i

index of all virtual nodes v′
i will never be used in online phase, which means that

we do not need to store post index for all virtual nodes in offline phase.
Moreover, when vertex v has lots of virtual nodes v′

i, checking whether prev′
i
∈

(preu′
r
, postu′

r
) is not efficient enough. Instead of iterating them one by one for

comparison, if all the virtual nodes v′
i have been sorted w.r.t. their prev′

i
in

offline phase, we can spend only log(|v′
i|) to find the first virtual node whose

prev′
i

> preu′
r

and start iterating from it until prev′
i

> postu′
r
, where |v′

i| is the
number of virtual nodes representing v. Note that the number of virtual nodes
representing vertex v is equal to its incoming degree in G′ minus 1, since in
the extended spanning tree construction (Sect. 3.2), we create a virtual node for
v only when v is visited again from an incoming neighbor. Hence, sorting all
virtual nodes v′

i w.r.t. prev′
i

for each vertex v costs O(|E|log(Deg
(in)
m )), where

Deg
(in)
m is the maximum incoming degree of a vertex. And the overall time cost

of offline indexing is O(|V |log(Deg
(out)
m ) + |E|log(Deg

(in)
m )) if Prune II strategy

is used in online phase.
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Algorithm 4. ESTI Online Query Function Query(u, v, k)
Input: Start vertex u, target vertex v, k; Offline index X,Y ,EST ,Pre,Post,Level,dist.
Output: True or False.
1: if X[u] > X[v] ∨ Y [u] > Y [v] ∨ levelv′

r
− levelu′

r
> k then � Prune I

2: return False
3: u′

r ← EST [u].RealNode
4: v′

i ← the first virtual node of v s.t. prev′
i

> preu′
r

� Prune II
5: while prev′

i
< postu′

r
do

6: if level[v′] − level[u′
r] ≤ k then

7: return True
8: v′

i ← next virtual node of v

9: if k > 1 ∧ Dist[u] < k then � Prune III
10: if number of outgoing edges of u ≤ number of incoming edges of v then
11: for each outgoing neighbor w of u do
12: if Query(w, v, k − 1) then
13: return True
14: else
15: for each incoming neighbor w of v do
16: if Query(u, w, k − 1) then
17: return True
18: return False;

Prune III. For each real node u′
r of u, while performing DFS traversal in offline

index construction, we can find out distu which represents the distance from u′
r

to the nearest virtual node w′
i among all its successors in extended spanning tree.

Given dist index for every real node in the tree, for query u
?k−→ v, if distu ≥ k,

we do not have to explore u’s successors. That is because when exploring from
u′
r in the tree, virtual nodes can only exists in the kth hop. Assume that u can

reach v within k hops. When one of v’s real or virtual node is in the subtree
rooted at u′

r, the query will return True in Line 3–6 in Algorithm 3. When all
of v’s real and virtual nodes are not in the subtree rooted at u′

r, there must
exist a virtual node w′

i which can jump out of the subtree to reach v. Note that
levelw′

i
− levelu′

r
< k holds, or it needs more than k hops from u to v. However,

it contradicts distu ≥ k since the distance from u′
r to w′

i is smaller than k.

Example 6. In Fig. 5, for query f
?3−→ c, the pre- and postorder index of c is not

in the interval of f ’s index, i.e., (11, 16) �⊂ (17, 24). Next, instead of exploring g
and h, we can safely return False directly since distf = k = 3.

4.3 Summary of Online Querying

After utilizing the three pruning strategies as discussed in Sect. 4.2, the ESTI
query function Query(u, v, k) is shown in Algorithm4. Though in the worst case
we still need to explore the whole graph, ESTI index still helps a lot for pruning
online search space. Section 5 will demonstrate its practical efficiency.
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Table 1. Statistics of datasets

Graph |V | |E| Graph |V | |E|
kegg 3,617 4,395 p2p-Gnutella31 62,586 147,892

amaze 3,710 3,947 soc-Epinions1 75,879 508,837

nasa 5,605 6,538 10go-uniprot 469,526 3,476,397

go 6,793 13,361 10cit-Patent 1,097,775 1,651,894

mtbrv 9,602 10,438 uniprotenc22m 1,595,444 1,595,444

anthra 12,499 13,327 05cit-Patent 1,671,488 3,303,789

ecoo 12,620 13,575 WikiTalk 2,394,385 5,021,410

agrocyc 12,684 13,657 cit-Patents 3,774,768 16,518,948

human 38,811 39,816 citeseerx 6,540,401 15,011,260

p2p-Gnutella05 8,846 31,839 go-uniprot 6,967,956 34,770,235

p2p-Gnutella06 8,717 31,525 govwild 8,022,880 23,652,610

p2p-Gnutella08 6,301 20,777 soc-Pokec 1,632,803 30,622,564

p2p-Gnutella09 8,114 26,013 uniprotenc100m 16,087,295 16,087,295

p2p-Gnutella24 26,518 65,369 yago 16,375,503 25,908,132

p2p-Gnutella25 22,687 54,705 twitter 18,121,168 18,359,487

p2p-Gnutella30 36,682 88,328 uniprotenc150m 25,037,600 25,037,600

5 Experiments

We evaluate the effectiveness and efficiency of the proposed ESTI method by
carrying extensive experiments on both small and large graphs. All the exper-
iments are conducted on a Linux machine with an Intel(R) Xeon(R) E5-2678
v3 CPU @2.5GHz and 220G RAM, and all algorithms are implemented using
C++ and complied by G++ 5.4.0 with -O3 Optimization. Each experiment has
been run for 10 times and the results are consistent among 10 executions. In this
section, we report the average value from 10 executions of each experiment.

5.1 Datasets

A variety of real graphs are used in our experiments, as shown in Table 1.
kegg, amaze, nasa, go, mtbrv, anthra, ecoo, agrocyc and human are small graphs
from different sources [13]. p2p-Gnutella graphs are 8 snapshots of Gnutella
peer to peer file network, while soc-Epinions1 is a who-trust-whom online
social network [5]. As for large graphs, 10go-uniprot, go-uniprots, uniprotenc22m,
uniprotenc100m and uniprotenc150m come from Uniprot database. 10cit-Patent,
05cit-Patent, cit-Patents and citeseer are citation networks [3]. WikiTalk is a
Wikipedia communication network, while soc-Pokec and twitter are large-scale
social networks [5,7]. govwild and yago are RDF datasets [7].
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Fig. 6. Index construction time of FELINE and FELINE+

5.2 Performance of FELINE+

As discussed in Sect. 3.1, we propose an optimized approach named FELINE+

to accelerate FELINE index generation, while obtaining exactly the same index
as FELINE. Figure 6 shows the index construction time, in which FELINE+

significantly speeds up the construction process in all graphs.

5.3 Queries with Different k

The efficiency of online querying is crucial for k-hop reachability query answer-
ing, and different values of k can significantly affect the performance. We
report the query time of the proposed ESTI method with different values of
k (k = 2, 4, 8) in Table 2, comparing it with the state-of-art k-reach approach
[2]. For each k, we generate a million queries with randomly selected start and
target vertices. Note that k-reach requires a fixed budget b to construct the par-
tial vertex cover and we set b = 1000, which is the same as the budget used
in [2].

When the value of k increases, the time cost of both k-reach and ESTI also
tend to increase, because a larger k indicates a larger search space when the built
index cannot directly answer a query. We notice that most of queries fall into the
worst case in k-reach, which needs traditional BFS search over the whole graph.
Note that when k = 4 and k = 8, k-reach exceeds our time limit (4 h) in graph
soc-Pokec. Clearly, ESTI is faster than k-reach over all graphs when k = 2 and
k = 4, and it also beats k-reach in most graphs except for graph WikiTalk. Note
that the diameter of WikiTalk is 9, which is relatively small and is quite closed
to k = 8. In practice, k will not be too large for social networks.
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Table 2. Query time (ms) of different k

Graph k = 2 k = 4 k = 8

k-reach ESTI k-reach ESTI k-reach ESTI

kegg 63 27 97 42 103 40

amaze 58 25 83 34 90 37

nasa 96 20 193 33 212 45

go 177 36 380 70 391 111

mtbrv 66 16 124 24 116 23

anthra 68 17 108 25 129 26

ecoo 67 17 123 25 114 28

agrocyc 72 17 105 26 124 27

human 69 20 138 26 255 29

p2p-Gnutella05 630 95 8,069 723 47,595 9,507

p2p-Gnutella06 624 93 9,260 755 56,856 9,890

p2p-Gnutella08 656 73 5,654 462 26,063 5,061

p2p-Gnutella09 529 74 5,078 482 34,501 7,006

p2p-Gnutella24 467 74 4,862 514 100,276 15,639

p2p-Gnutella25 509 65 4,534 430 79,991 14,438

p2p-Gnutella30 668 74 6,166 478 129,051 24,226

p2p-Gnutella31 806 78 5,784 503 195,265 34,490

soc-Epinions1 132,712 596 999,966 3,747 765,753 11,932

10go-uniprot 788 109 1,622 204 2,505 469

10cit-Patent 245 90 400 159 815 322

uniprotenc22m 491 77 644 102 776 129

05cit-Patent 458 130 722 222 1,649 480

WikiTalk 1,112,536 240 8,091,777 842 769,542 11,162,590

cit-Patents 5,259 382 36,879 1,605 306,144 21,195

citeseerx 927 205 2,935 264 23,154 763

go-uniprot 1,196 214 1,386 201 2,744 351

govwild 3,419 147 9,993 211 19,229 483

soc-Pokec 1,510,794 4,057 - 653,194 - 6,430,662

uniprotenc100m 744 95 987 113 1,748 160

yago 501 113 861 168 1,255 257

twitter 592 211 647 215 1,432 435

uniprotenc150m 938 103 1,367 146 2,019 205



86 Y. Cai and W. Zheng

Table 3. Index size, index construction time and query time on small graphs

Graph Index size (KB) Index time (ms) Query time (ms)

k-reach ESTI k-reach ESTI k-reach ESTI

kegg 129 101 80 1 107 44

amaze 127 101 77 1 97 42

nasa 229 139 78 1 200 43

go 284 212 81 3 298 68

mtbrv 345 233 76 2 120 31

anthra 448 301 79 3 118 30

ecoo 452 305 79 3 120 30

agrocyc 454 306 81 3 119 30

human 1,380 922 87 10 121 32

p2p-Gnutella05 450 389 80 7 34,067 5,659

p2p-Gnutella06 445 384 79 7 39,910 5,747

p2p-Gnutella08 383 262 80 4 19,977 2,989

p2p-Gnutella09 407 332 80 6 24,226 4,514

p2p-Gnutella24 1,680 931 89 19 77,227 12,457

p2p-Gnutella25 2,102 787 91 14 61,227 9,966

p2p-Gnutella30 3,056 1,269 99 28 103,566 11,235

p2p-Gnutella31 5,189 2,143 123 55 160,885 23,031

soc-Epinions1 50,211 5,361 957 134 1,214,127 6,579

5.4 Comparison with the State-of-art

As discussed in Sect. 1, k-reach [1,2] is the only method solving k-hop reachablity
queries on general directed graphs. We conduct experiments on both small and
large graphs to compare the proposed ESTI method with k-reach. For each
graph, we randomly generate a million queries while values of k are generated
following the distance distribution of all reachable pairs. Their index size, index
construction time and query time are reported in Table 3 and 4.

The results in Table 3 shows that ESTI completely beats k-reach in all small
graphs. Note that the budget of k-reach is also set to be 1000. ESTI constructs
smaller index and is approximately an order of magnitude faster when building
index for most small graphs. As for online querying, ESTI costs significantly
less time. It is even more than a hundred times faster in graph soc-Epinions1.

For large graphs, we compare our ESTI method with k-reach in Table 4,
where the budget of k-reach are set to be 1,000 and 50,000, respectively.
Note that k-reach exceeds our time limit (4 h) on graph soc-Pokec. When
answering queries online, ESTI method costs much less time over all large
graphs. Though ESTI needs longer index construction time on most graphs,
we believe that the efficiency of online query processing is more important than
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Table 4. Index size, index construction time and query time on large graphs

Graph Index size (MB) Index time (s) Query time (s)

k-reach

(b=1k)

k-reach

(b=50k)

ESTI k-reach

(b=1k)

k-reach

(b=50k)

ESTI k-reach

(b=1k)

k-reach

(b=50k)

ESTI

10go-uniprot 24 24 34 0.7 0.4 1.1 1.2 1.0 0.2

10cit-Patent 26 39 31 0.2 0.6 0.8 0.4 0.4 0.1

uniprotenc22m 55 55 37 0.6 0.5 0.8 0.4 0.4 0.1

05cit-Patent 41 60 53 0.3 1.2 1.7 0.6 0.7 0.2

WikiTalk 217 217 75 4.7 4.5 4.0 6392 6049 0.8

cit-Patents 181 558 188 5.2 22.4 9.2 94.0 92.5 9.7

citeseerx 171 237 219 3.5 11.1 6.4 2.1 2.2 0.3

go-uniprot 331 321 372 9.8 6.9 13.7 1.0 1.0 0.3

govwild 256 262 314 5.1 4.4 8.0 9.9 6.6 0.2

soc-Pokec 183 183 260 11.3 10.5 13.8 - - 2281

uniprotenc100m 556 556 370 8.2 6.0 10.0 0.7 0.7 0.1

yago 411 446 472 2.9 4.2 12.3 0.5 0.6 0.1

twitter 609 609 443 5.5 6.9 11.3 0.6 0.6 0.3

uniprotenc150m 866 866 576 14.3 10.1 16.8 0.9 0.9 0.1

offline indexing. Theorectically, the overall time cost of ESTI offline indexing is
O(|V |log(Deg

(out)
m ) + |E|log(Deg

(in)
m )), which is a stable bound.

The index size of ESTI is O(|V | + |E|), which is strictly linear to the size
of input graph. However, k-reach with budget 1,000 has the smallest index size
on some large graphs, and it also costs a lot of time to answer queries online.
It seems that 1,000 is a relatively small budget, which may limit the querying
performance of k-reach. But when the budget is set to be 50,000, k-reach has
larger index size than ESTI in many graphs, while it still cost more time in online
querying process. Hence, the overall query answering ability of ESTI method is
also better over large graphs.

6 Related Works

6.1 Reachabilty Query

Before Cheng et al. [1] first proposed k-hop reachability problem, lots of studies
about reachability query over large graphs have been carried. Reachability query
is a special case of k-hop reachability query when k = ∞. Since the lack of
distance information, existing reachability query methods including BFL [8],
IP+ [11], GRIPP [9], PWAH8 [6], GRAIL [13] and Path-Tree Cover [4], etc. are
not sufficient to answer k-hop reachability queries.

6.2 k-hop Reachabilty Query

To answer k-hop reachability problems, a naive idea is to process BFS or DFS in
given directed graph. Both BFS and DFS don’t need any pre-computed index,



88 Y. Cai and W. Zheng

but they are not efficient when the graph becomes very large, since lots of search
branches will be expanded while exploring in the original large graph. In contrast,
storing the shortest distance between each pair of vertices helps to answer any
queries within O(1) time. However, in order to compute and store such distance,
performing BFS from every vertex in G costs O(|V |(|V |+ |E|)) time and O(|V |2)
space, which is also inefficient and even infeasible for large graphs.

Vertex Cover Based Method. Vertex cover is a subset of all the vertices in
a given graph G, making sure that for each edge in G, at least one of the two
vertices connected by this edge is contained in the vertex cover. k-reach [1,2]
makes good use of vertex cover, and runs BFS in the subgraph constructed from
vertex cover to build index. Though it is proved efficient in small graphs, when
dealing with larger graphs, k-reach still costs infeasible index time and space.

To overcome this drawback, Cheng et al. also proposes a partial vertex cover
[2] to make a trade-off between offline index and online query performance.
Though it can work on very large graphs, the partial vertex cover index cannot
answer a large proportion of online queries directly. In fact, traditional online
BFS would be invoked for more than 95% of the queries. Hence, it is still not
practical enough for answering k-hop reachability queries efficiently.

Methods Work on DAGs. To improve index efficiency, Xie et al. [12] proposed
BFSI-B Algorithm, which uses the breadth-first spanning tree to build BFSI
index, including min-post index and global BFS level TLE. Also, FELINE index
[10] is adopted to filter those unreachable queries. Another method developed
for DAGs is HT [3], which adopts the idea of partial 2-hop cover. In its indexing
process, vertices with high degree are selected as hop nodes. Both backward and
forward BFS are started from each hop node u. When visiting a new vertex v,
current hop node’s id u and the distance from u to v will be stored as the index
of v. Topological order is also used for filtering unreachable queries.

Though both BFSI-B and HT are more efficient than k-reach, they can only
work for DAGs and cannot directly deal with directed graphs with cycles. Also,
more efficient pruning strategies need to be utilized to further improve online
querying performance.

Algorithms for Distributed Systems. To deal with multiple k-hop reachabil-
ity queries concurrently on distributed infrastructures, C-Graph [14] focuses on
improving both disk and network I/O performance when performing BFS. Com-
pared with developing methods for a single machine, designing optimizations for
distributed systems is a significantly different task.

7 Conclusion

We propose ESTI method to efficiently solve k-hop reachability queries for gen-
eral directed graphs, which builds an extended spanning tree in offline phase
and utilizes three pruning strategies to accelarte query processing. Also, an
optimization named FELINE+ is developed to speeds up FELINE index gen-
eration, which helps to effectively filter unreachable queries in online searching.
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We also conduct extensive experiments to compare ESTI with the state-of-art
method k-reach. Our experiment results confirm that on most graphs the overall
performance of ESTI is the best, and in online querying it is significantly faster.
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