
Modeling and Querying Similar Trajectory
in Inconsistent Spatial Data

Weijia Feng1,2(B), Yuran Geng1, Ran Li1, Maoyu Jin1, and Qiyi Tan1

1 Tianjin Normal University, Binshui Xi Road 393, XiQing District, Tianjin, China
WeijiaFeng@tjnu.edu.cn

2 Postdoctoral Innovation Practice Base Huafa Industrial Share Co., Ltd.,
Changsheng Road 155, ZhuHai, China

Abstract. Querying clean spatial data is well-studied in database area. However,
methods for querying clean data often fail to process the queries on inconsistent
spatial data.We develop a framework for querying similar trajectories inconsistent
spatial data. For any given entity, ourmethodwill provide away to query its similar
trajectories in the inconsistent spatial data. We propose a dynamic programming
algorithm and a threshold filter for probabilisticmass function. The algorithmwith
the filter reduces the expensive cost of processing query by directly using the exist-
ing similar trajectory query algorithm designed for clean data. The effectiveness
and efficiency of our algorithm are verified by experiments.

Keywords: Similar trajectory query · Spatial data · Database

1 Introduction

In realworld, spatial data is often inconsistent, such as data collected from location-based
services [1, 2], data integration [3, 12], and objects monitoring [4].Methods for querying
such kind of spatial data are not yet well developed. Query processing in inconsistent
data is extremely expensive by a straightforward extension of existing methods for clean
data [6, 9]. To develop efficient query processing methods for inconsistent spatial data,
we in this paper study frequent nearest neighbor query which is a very time costing
problem even in the context of clean data.

1.1 Modeling Inconsistent Spatial Data

Inconsistent spatial data overruns everywhere. For example, due to the inaccuracy of
measurements, it is hard to obtain the concrete location of an entity [5, 6, 8]. To deal
with this, the spatial information of an entity is modeled as a distribution over some local
area. Besides, data is often integrated from different sources, thus causing the hardness
to obtain the right distribution of an entity. Therefore, in real applications, a spatial
entity is usually represented by a finite set of potential specific spatial distributions.
For example, a real-life entity E is composed of N inconsistent distributions, that is,
E = {e1, · · · , eN }, where ei represents the distribution from the i-th data source.

© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021 Workshops, LNCS 12680, pp. 57–67, 2021.
https://doi.org/10.1007/978-3-030-73216-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73216-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-73216-5_5

58 W. Feng et al.

In this paper, we use this popular model, i.e., probabilistic data, to model the incon-
sistent data and then study the query algorithm on it. We associate ei area with the data
collected in t time probability regt(ei) model. In this paper, we use a collection of mul-
tiple discrete sampling locations where sti is the entity data collected in t time. Every
sampling location Si, j ∈ sti has a probability of its occurrence which can be written as
Pr

(
Si, j

) ∈ (0, 1]. The occurrence probability Pr
(
Si, j

)
should satisfy the requirement∑m

j=1 Pr
(
Si, j

) = 1. The sets of entity collection data in E constitute the probability
databaseDp, and the data set collected by the entity at a given time T is called the sketch
of an entity at time T .

In the real application, probability data often associates with regional correlation.
For example, in the spatial data, the physical quantities such as temperature and light
measured from the nearby locations are probabilistic, and these data are also very similar,
which is the regional correlation of the data. Regional association probability entity data
contains several non-overlapping association regions. The entity ei ∈ E belongs to
only one Inconsistent Regional Circle (IRC), and the entity set in the same IRC as ei is
denoted as the regional association set IRC(ei), where IRC(ei) contains ei. We assume
that entities in the same IRC are independent of each other, and entities in different
IRC are independent of each other, and therefore, the data acquired from practices are
independent of each other.

We use Bayesian network to express the regional correlation of data. Bayesian net-
works are able to represent the dependencies between entities as acyclic directed graphs,
and each entity has a conditional probability table, which represents the conditional
probability under the joint distribution with the parent of the entity.

In probabilistic datamodel, the probabilistic entity ei uncertainly becomes the nearest
neighbor of a query position q. The probability Prsim-point (ei, q) is used to represent
the probability that ei becomes the nearest neighbor of the query location q. Then the
probability nearest neighbor query sim-point on the regional correlation probability
data is to find the entity whose Prsim-point exceeds the given threshold constraint. A
trivial method is to access the conditional probability table of ei, and using the variable
elimination method to obtain the joint probability, and then decide if ei belongs to the
query result.

1.2 Nearest Entities in Inconsistent Spatial Data

In the realworld, spatial data is usually changing. For example, data obtained from sensor
nodes for the environment monitoring keeps changing over time. At different time, the
data collected by sensor nodes is different. Results of a sim-traj query in sensor network
is the entities with high probability frequently appearing in the result of probabilistic
nearest neighbor query in multiple sketches represented at different moments.

This problem can be described as follows. Given the positive integer k > 0 and the
threshold δ > 0, then input t sketchesDp

1, · · · , Dp
t with the query positions q1, · · · qt . The

sim-traj query outputs a collection of entities such that for each entity in the collection,
the probability of being the nearest neighbor to the query location greater than or equal
to k is greater than the threshold δ.

Modeling and Querying Similar Trajectory 59

Let Nei be the number of sketches where ei becomes the nearest neighbor of the
query locations. For example, Ne1 = 3 implies the event “ei is becomes the nearest
neighbor of the query location three times”.

We suppose that Pr(Ne1 ≥ k) = ∑∞
i=k Pr(N

e1 = i) which is the probability mass
function of Ne1 . The result of a sim-traj query is a collection of entities that satisfies
Pr(Ne1 ≥ k) ≥ δ. A sim-point query is a query carried out on the sketchDP

t correspond-
ing to a moment t in the probabilistic data set DP . Therefore, a sim-point query can be
resolved as follows: let be α = 0 be the threshold of the sim-traj query, then evaluate
the query over each sketch by find-sim-traj for entities ej in any sketch DP

i to obtain the
probability pji of becoming the nearest neighbor of query position qi. Then, According
to the result of t and 2t different combinations of calculate the probability distribution of
random variables Nei , and thus decide if entity ei is in the query result. However, such
a trivial method may lead to a large time overhead, reasons can be listed as follows,

1. Let the value of sim-traj threshold be α = 0, find-sim-traj may degenerate to trivial
search on indexes due to the failure of the upper bound pruning method.

2. Accessing conditional probability tables results in a lot of time overhead, as we can
see from the experiments on the pruning method proposed in this paper, a lot of
access is unnecessary.

3. Each entity ei requires an exponential time overhead to compute the probability
distribution of Nei .

As discussed above, the existingwork cannot effectively handle sim-traj queries. The
inadequacy of the existing work implies the significance of our method for the sim-traj
query processing.

1.3 Contributions

In this paper, we study sim-traj query problem. We use probabilistic data to model
inconsistent spatial data. A kind of frequent probabilistic nearest neighbor query is
studied in-depth in this paper. We study the probabilistic data of regional association by
using multiple sketches and propose a framework to find frequent probability nearest
neighbor. A dynamic programming algorithm is designed to compute the square time
of the probabilistic mass function. Based on the DP algorithm for sim-traj queries,
a basic processing algorithm is proposed; And then we develop an efficient pruning
methods which are used to reduce the search space of sim-traj queries. Finally, a series
of experiments are conducted on both the synthetic data set and the real data set, and
experimental results show that the efficiency of our algorithm.

2 Problem Definition

Definition 1 (similar-point-probability). LetE = {ei}Ni=1 be a collection of probabilistic
entities, and DP = {si}Ni=1 the sample data of entity set E at some time. Given position
q, let r1 and r2 be the possible nearest and farthest distance between probabilistic entity
ei and q (depends on the sampling situation of the corresponding region reg(ei)) and

60 W. Feng et al.

L2-norm d(·, ·). Then Prsim-point (q, ei) is the probability that entity ei becomes the
nearest neighbor of query location q as

Prsim−point (q, ei) =
∫ r1

r2
Pr(d(q, ei) = r) × Pr

(
∧∀u∈IRC(

ei
)\{ei

}d(q, u) ≥ r|r
)

× Pr
(
∧∀v∈E\IRC(

ei
)d(q, v) ≥ r

)
dr

Definition 2 (similar-point). Let E = {ei}Ni=1 be a collection of probabilistic entities,
and DP = {si}Ni=1 the sample data of entity set E at some time. Given threshold α and
query location q, the result of a sim-point query (q, α) is a set of probabilistic entities
such that γ = {

ei : Prsim−point(q, ei) > α, i ∈ [1, N]
}
.

In this paper, the random indicator variable Iij = 1 is used to indicate that ej becomes
sim-point of qi. At the same time, we denote Pr

(
Iij = 1

)
as Pr

(
Iij

)
for short, hence,

Pr
(
Iij

) = Prsim−point(q, ei). Now, we formally define the frequent probabilistic nearest
neighbor query on regional associated probabilistic data.

Sim-traj query. Let E = {ei}Ni=1 be a collection of probabilistic entities, and DP =
{si}Ni=1 the sample data of entity set E at some time. Given a positive integer k, the
threshold value δ, and the set containing t query locations Q = {qi}ti=1, the result of a
sim-traj query Q is γ = {

ei : Prsim−point(Nei ≥ k) ≥ δ, i ∈ [1, N]
}
.

Obviously, when the parameters t = 1, k = 1, α = δ, any sim-traj query is equiv-
alent to a sim-point query. Therefore, the problem studied in this paper is actually a
generalized version of sim-point query.

3 Frequent Probabilistic Nearest Neighbor Query Processing

We begin with an overview of query processing that deals with frequent probability
nearest neighbors,

1. For the given t sketches Dp
1, · · · , Dp

t to establish corresponding R-star index tree
index1, · · · , indext . In detail, and in all probability will all IRC entities into the
corresponding minimum circumscribed rectangle, insert each IRC, so as to establish
indexes;

2. For the current set of input query location, the find-sim-point method proposed in
literature [7] was used, by setting α = 0. Traverse the indexes and obtaining the
upper bound of sim-point probability of all entities relative to t query locations. Use
the first pruning condition given below in the next subsection to filter out the invalid
entities.

3. Access and compute the conditional probability table for the remaining entities, to
obtain the sim-point probability relative to t query locations

4. At last, for every candidate entity left ej, compute the exact probability Pr(Nej ≥ k)
that it becomes a sim-traj, and return the query results.

Next, we detail how to calculate the probability Pr(Nej ≥ k), in other words, we give a
method to calculate the joint nearest neighbor probability efficiently under the condition
that the sim-point probability Pr

(
Iij

)
of ej is known in advance.

Modeling and Querying Similar Trajectory 61

3.1 The Computation of the Nearest Neighbor Probability

Asmentioned earlier, a trivial algorithm leads to an exponential time cost. In this section,
we design the dynamic programming algorithm which can derive the probability in
quadratic time while avoiding the computational cost.

First, the cumulative probability Pr≥s, l
(
ej

)
is defined for each probabilistic entity ej,

its meaning is that there are more than s positions in the given l positions (respectively
q1 · · · , ql), then, the sim-point probability of ej can be formulated as

Pr≥s, l
(
ej

) =
∑

Q′⊆QI , |Q′|≥s

(∏

qi∈Q′ Pr
(
Iji

) ×
∏

qi∈QI \Q′
(
1 − Pr

(
Iji

)))

Then, let Pr≥0, l
(
ej

) = 1, ∀0 ≤ l ≤ t, and Pr≥s, l
(
ej

) = 1, ∀0 ≤ l ≤ s.

Time Complexity. For each candidate probability entity ej, the dynamic programming
algorithm costs O

(
t2

)
space cost and O

(
t2

)
time to calculate Pr(Nej ≥ k).

3.2 Frequent Probability Nearest Neighbor Lookup Basic Query Algorithm

The literature [7] proposed sim-point query processing algorithm find-sim-point. Given
the probabilistic entity database DP , R-star index tree, location query q and threshold
α, it takes the best first search strategy to traverse the index. During the traversal, the
algorithm pruned the invalid entities by using the upper and lower bounds of the prob-
ability recorded in the index, and finally calculated the exact value of Prsim-point for
the remaining candidate entities successively. The aim of this paper is to calculate the
exact value of Prsim-point for all entities. For this purpose, let the threshold α = 0. This
algorithm can get the accurate value Prsim-point for each entity. After all the probability
values are obtained by calling the above algorithm, the dynamic programming algorithm
introduced in the previous section is used to calculate the Prsim-point . We present a basic
algorithm Baseline to compute a sim-traj query as shown in Fig. 1.

Time Complexity of Baseline Algorithm. The dynamic programming algorithm in
steps 5 to 10 has a time cost of O

(
Nt2

)
. The time overhead of steps 1 to 3 comes from

the computation of Nt probability values Pr
(
Iij

)
. This needs to access the conditional

probability table in the regional association probability databasewhich is very expensive.
Therefore, we next propose the pruning methods.

3.3 Probability Nearest Neighbor Advanced Query Algorithm

The main time overhead of the Baseline algorithm is related to the number of entities
to be precisely calculated for the probability. Therefore, the next section focuses on
pruning in steps 2 and 4 of query processing. In order to reduce substantial time, the
number of entities to be precisely calculated is reduced at a lower cost as possible. Next,
we explain the pruning conditions in steps 2 and 4, which are called first pruning and
second pruning, in order to improve the basic algorithm mentioned above.

62 W. Feng et al.

Fig. 1. Baseline algorithm

To calculate the exact value of each Pr
(
Iij

)
. The algorithm in step 2 must consume

a lot of access time to access and calculate the relevant conditional probability table.
Therefore, it is necessary to propose efficient pruning methods to improve performance.

As long as the pruning condition filters most of the candidate entities, it can sig-
nificantly reduce the number of entities that need to be accurately calculated for the
probability Pr

(
Iji

)
. Every time a candidate entity is pruned, the time saved is at least

t times the calculation time of the exact value. We can see from the follow-up exper-
iments in this paper, the pruning effect of this method is very obvious, which greatly
improves the query efficiency. Step 2 in the index phase, we can prune a large number of
probability entities to calculate the exact value of sim-point by using the upper bound of
sim-point derived below. When the upper bound of probability Pr

(
Iji

)
can be calculated

with less online overhead, the pruningmethod can be used, hence, the baseline algorithm
is improved. An index pruning criterion based on Chernoff bounds can be expressed as
follows.

Theorem 1. Fortheprobabilityentityej ,givenk(≤ t), thresholdδ∈(0,1]andupperbound

set
{
Pr
∧

ji

}t

i=1
. If

∑t
i=1 Pr

∧

ji < k and
∑t

i=1 Pr
∧

ji ≥ k
(
ln

(∑t
i=1 Pr

∧

ji

)
− ln k + 1

)
− ln δ,

thenej /∈ γ .

Each pruning of an entity saves the time cost of accurate calculation of Iji and
verification of Pr(Nej) ≥ k.Therefore, by the above Theorem 1, the query processing
algorithm is improved as follows: (1) For each entity ej and the corresponding query

location qi, the upper bound Pr
∧

ji is quickly calculated when traversing the index. (2)
Using the formula given in Theorem 1 to prune the invalid entity.

The final experiment in this paper verifies that the actual performance of pruning
Theorem 1 is efficient.

Modeling and Querying Similar Trajectory 63

Algorithm 3–2 gives the frequent probability neighbor query processing algorithm
find-sim-traj.

1. Line 1 to 3 initialize each probability upper bound as 0.
2. Lines 4 to 9 traverse the index of each sketch by calling the find-sim-pointmethod. In

this way, the upper bound of probability of each entity can be updated in the process
of traversing, and the corresponding upper bound of probability of each entity can
be obtained after traversing t indexes.

3. Line 10 uses Theorem 1 for the pruning.
4. From line 11 to 13, the accurate probability of the remaining entities is calculated

by accessing the sketch data.
5. Lines 14 to 19 run the dynamic programming algorithm, compute the corresponding

probability of entities that are not pruned during the second time, and output the
query result γ .

Input: entity set , sketch set , R star tree index index ,
query location set , positive integer k, threshold

Output: sim-traj query result collection
1 foreach do
2 Initialization
3 end
4 foreach do
5 β=find-sim-point index
6 foreach do

7 total total
8 end
9 end
10 Perform the first pruning by Theorem 1 and the remaining β
11 foreach do
12 Calculate the value of
13 end
14 foreach do
15 if then
16
17 end
18 end
19 return γ

Algo. 3-2 sim-traj query processing algorithm

3.4 The Calculation of the Probability Upper Bounds

As mentioned before, if the above theorem can be applied in practice, we also need to
knowhow to get the upper bound of sim-traj probability for each entity to become a query
location by fast online calculation. Therefore, two off-line precomputation methods are
presented in the next section. By embedding the structure in the index to save the online

64 W. Feng et al.

time of calculating the upper bound, the above pruning method is used to make the query
processing algorithm run in practice.

The upper bound of the exact value of probability Pr
(
Iij

)
of entity ej in quick sketch

DP
i is

Pr
∧

ji =
∑

∀sjl∈sij∧λ=max
{
λ′|λ′≤d(qi, sjl)−d

(
qi , pivsjl

)} PrJ
(
sjl , λ

)
,

where the joint probability is

PrJ
(
sjl , λ

) = Pr
{
∧∀u∈IRC(ej)d

(
pivsjl , u

)
≥ d

(
qi, sjl

) − d
(
qi, pivsjl

)}

Here, if the query location qi is not given, then the exact value of the inequality
variable cannot be obtained. However, we find that the endpoints of the numerical range
can be pre-estimated. That is to say, for each sampling position sjl of each entity ej, first
select a value λ in the interval [λmin, λmax], and at the same time, select a pivot pivsjl ,
then PrJ

(
sjl , λ

)
can be calculated offline in advance. When the query location qi arrives,

the algorithm only calculates the value of b = d
(
qi, sjl

)−d
(
qi, pivsjl

)
temporarily, then

it can find the required PrJ

(
sjl , max

λ
{λ < b}

)
.The sum of such upper bound probability

values corresponding to each sampling position is the upper probability bound p̂ji of
Theorem 1.

In order to select the pivot, the data space is divided into rectangles with side length
ε ∈ (0, εmax].Each sampling position sjl selects four rectangular endpoints as alterna-
tive pivots for offline prediction. When the query position qi comes, the algorithm can
select the candidate points which are in the same quadrant as qi relative to sjl as pivots,
and calculate the joint probability PrJ

(
sjl , λ

)
, so as to obtain the upper bound value.

Specifically, the algorithm usually selects c preset ε value ε1, . . . , εc as an alternative
parameter in a small interval (0, εmax] uniformly, randomly and without playback in
real data. Then, corresponding to each position, the optional pivots are calculated offline
under each optional parameter, and the number is 4 c for each optional parameter in
turn. Once the query position qi is given, the algorithm first finds the pivots in the same
block as the query position in the different alternative parameters ε and then temporarily
computes their corresponding upper bounds, which results in c alternative upper bounds.

4 Experiments

In this paper, extensive experiments are conducted on real and synthetic regional
association probability datasets to investigate the proposed query processing method.

4.1 Experimental Configuration

All experimental configurations are the same as in the previous section. The generation
method given in the literature [11] is used here to generate the artificial data set. The

Modeling and Querying Similar Trajectory 65

distribution of a given number of query positions has a great impact on the results of a sim-
traj query Querying randomly on t randomly sim-traj generated sketches is usually not
practical. Thus, in order to facilitate us to comprehensively investigate the performance
of the algorithm, we experimentally query sim-traj on t replicas of the datasetDp.Again,
we examine the query on t queries with a close distribution of positions. Thus, in the
experiment, we generate randomly t points with a high concentration of positions in a
relatively small interval r. Let δ be 0.1/0.2/0.4/0.8, k be 5/10/20, t be 20, r be 0.01, N be
10, and d be 5.

To generate the sketch set Dp, 200, 000 points are randomly selected in the interval
R = [0, 10]d and these points correspond to the reference points of IRC. On this basis,
we construct the dimension of the entity, randomly select the real number a from the
interval [1, 4], and set a to the region size of the IRC. We further randomly generate
n probabilistic entities in the region of IRC according to two distributions, where the
probability distributionswe choose are themost common randomprobability distribution
and the Gaussian probability distribution. Finally, we construct an acyclic directed graph
of the IRC on the IRC and generate a joint probability distribution of the entities. We
examine the performance of the algorithm on the U.S. traffic data whose total number
of NR is 20,000 [11]. The experiment takes the geographic coordinates as the center
point of the IRC and expands it as above into a set of available probabilistic data. Based
on different distribution functions, the generated datasets can be classified into uniform
synthetic data (UniS), traffic data (UniT) and Gaussian traffic data (GauT).

4.2 Analysis of Experimental Results

The comparison algorithm chosen for the experiments in this paper is the Baseline
Algorithm and its corresponding improvement algorithm. The experiments focus on
the efficiency and speed-up ratio of the algorithm for different environmental parame-
ters. Here, we define the speed-up ratio η = tBaseline

tsim−traj
, where tBaseline represents the run-

time of the Baseline algorithm and tsim-traj represents the runtime of the sim-traj query
processing algorithm.

Here, we examine the pruning effect of the pruning strategy on different datasets.
Fig. 2 clearly shows that the pruning strategy proposed in this paper can greatly improve
the efficiency of the algorithm and reduce the computation time. When pruning a can-
didate set for the first time using the upper boundary condition, the wrong entities
selected by the Baseline algorithm can be pruned out, avoiding unnecessary time spent
on subsequent calculations of joint probability distributions and boundary probabilities.

66 W. Feng et al.

0

200

400

UniS UniT GauT

basic with pruning

Fig. 2. Effectiveness of pruning criterions

5 Conclusion

In this paper, a general processing framework is proposed including dynamic program-
ming algorithm and threshold filtering method for probabilistic mass function which
solves the problem that it is expensive to deal with the query directly by using the exist-
ing nearest neighbor query algorithm based on traditional clean data. The effectiveness
and efficiency of the algorithm are verified by experiments . Therefore, the work of
this paper overcomes the shortcoming that the existing methods are too strict to query
results, as many query results as possible are given with custom quality assurance are
be ensured.

Acknowledgement. This research is funded by theNatural Science Foundation of China (NSFC):
61602345; National Key Research and Development Plan: 2019YFB2101900; Application
Foundation and Advanced Technology Research Project of Tianjin (15JCQNJC01400).

References

1. Chen, L., Thombre, S., Järvinen, K., et al.: Robustness, security and privacy in location-based
services for future IoT: a survey. IEEE Access 5, 8956–8977 (2017)

2. Zheng, X., Cai, Z., Li, J., et al.: Location-privacy-aware review publication mechanism for
local business service systems. In: IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pp. 1–9. IEEE (2017)

3. Stonebraker, M., Ilyas, I.F.: Data integration: the current status and the way forward. IEEE
Data Eng. Bull. 41(2), 3–9 (2018)

4. Cheng, S., Cai, Z., Li, J.: Approximate sensory data collection: a survey. Sensors 17(3), 564
(2017)

5. Miao, D., Cai, Z., Li, J., et al.: The computation of optimal subset repairs. Proc. VLDB
Endowment 13(12), 2061–2074 (2020)

Modeling and Querying Similar Trajectory 67

6. Bertossi, L.: Database repairs and consistent query answering: origins and further develop-
ments. In: Proceedings of the 38thACMSIGMOD-SIGACT-SIGAISymposiumonPrinciples
of Database Systems, pp. 48–58 (2019)

7. Lian, X., Chen, L., Song, S.: Consistent query answers in inconsistent probabilistic databases.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, pp. 303–314 (2010)

8. Wijsen, J.: Foundations of query answering on inconsistent databases. ACM SIGMOD Rec.
48(3), 6–16 (2019)

9. Greco, S., Molinaro, C., Trubitsyna, I.: Computing approximate query answers over
inconsistent knowledge bases. IJCAI 2018, 1838–1846 (2018)

10. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic
Techniques in Algorithms and Data Analysis. Cambridge university press (2017)

11. Chen, L., Lian, X.: Query processing over uncertain and probabilistic databases. In: Lee,
S.-G., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol.
7239, pp. 326–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29035-
0_32

12. Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted database
repair of functional dependency violations. Theoret. Comput. Sci. 609, 594–605 (2016)

https://doi.org/10.1007/978-3-642-29035-0_32

	Modeling and Querying Similar Trajectory in Inconsistent Spatial Data
	1 Introduction
	1.1 Modeling Inconsistent Spatial Data
	1.2 Nearest Entities in Inconsistent Spatial Data
	1.3 Contributions

	2 Problem Definition
	3 Frequent Probabilistic Nearest Neighbor Query Processing
	3.1 The Computation of the Nearest Neighbor Probability
	3.2 Frequent Probability Nearest Neighbor Lookup Basic Query Algorithm
	3.3 Probability Nearest Neighbor Advanced Query Algorithm
	3.4 The Calculation of the Probability Upper Bounds

	4 Experiments
	4.1 Experimental Configuration
	4.2 Analysis of Experimental Results

	5 Conclusion
	References

