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Abstract. With the popularity of time series analysis, failure during
data recording, transmission, and storage makes missing blocks in time
series a problem to be solved. Therefore, it is of great significance to
study effective methods to recover missing blocks in time series for better
analysis and mining. In this paper, we focus on the situation of contin-
uous missing blocks in multivariate time series. Aiming at the blackout
missing block pattern, we propose a method called hankelized tensor fac-
torization (HTF), based on singular spectrum analysis (SSA). After the
hankelization of the time series, this method decomposes the interme-
diate result into the product of time-evolving embedding, time delaying
embedding, and hidden variables embedding of multivariate variables in
the low-dimensional space, to learn the essence of time series. In an exper-
imental benchmark containing 5 data sets, the recovery effect of HTF and
other baseline methods in three missing block patterns are compared to
evaluate the performance of HTF. Results show that when the missing
block pattern is blackout, the HTF method achieves the best recovery
effect, and it can also have good results for other missing patterns.

Keywords: Multivariate time series · Missing block pattern · Missing
value recovery · Tensor factorization

1 Introduction

With the rapid development of 5G, big data, and the internet of things, time
series data from various sensors, financial markets, meteorological centers, indus-
try monitoring system and the internet is growing at an unprecedented rate.
People expect to exploit the huge value that can reveal the development trends
in the field of interest behind the data, making the analysis, mining and forecast-
ing of time series becoming a popular topic. Unfortunately, all of this requires
time series Completeness as a prerequisite that data in real scenarios often lacks
due to network failure, storage equipment malfunction and other situations from
time to time. Data missing in a period of time, that is, the existence of missing
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blocks in time series has already been a common and urgent problem waiting to
be solved.

Data Quality is a very popular topic recently, and there are a lot of good
study result, i.e. [4]. However, when facing the data quality problem with time
series, things are different.

In the course of practice, people gradually reach a consensus that traditional
statistical method (such as interpolation, multiple imputation [15], etc.) to fill
in missing blocks will obscure the hidden pattern of the original data, destroying
the dynamic trend of data, followed by the recovery result not conducive to
subsequent analysis and prediction [1]. As a result, new methods are gradually
emerging.

In view of positions where missing blocks appear, Khayati et al. [9] put
forward three kinds of missing patterns: disjoint, overlap and blackout, and then
a detailed comparison of the previous work in these three patterns was presented.
Their work pointed out that the recovery effect of the same method on the
same time series in different missing patterns can have a huge difference, which
previous study did not pay attention to. As a result of their research, they
suggested the study of missing block recovery in time series data should focus on
the performance in different missing patterns, especially in the case of blackout
where there is a lack of good methods.

Based on the work of Khayati et al. [9], in particular, there is a gap in the topic
of missing block recovery in the blackout missing pattern. An effective algorithm
named hankelized tensor factorization (HTF) is proposed, to solve the situation
that existing works usually have a bad performance in the case of blackout. The
Inspiration of HTF is from the singular spectrum analysis (SSA), a powerful
time series analysis technique, decomposes the time data to the weighted sum
of a series of independent and explainable components, so as to reconstruct the
original sequence well. However, singular spectrum analysis is not suitable for
the case of large missing blocks. This paper drawing on the idea of singular
spectrum analysis, decomposes the sequence into the product of time-evolving
embedding, time delaying embedding and the hidden variables embedding of
multi-dimensions in the low-dimensional space. And then a reconstruction of
the original sequence is displayed, filling missing values by their reconstruction
estimation. In order to obtain the recovery effect of the method, we conducted
experiments under a benchmark of 5 datasets, evaluating the performance of
HTF and other baseline methods. In conclusion, the contribution of this paper
are listed below:

• HTF, an effective algorithm to recover the missing blocks in time series is
proposed. With inspiration from SSA, we solve the problem of missing block
recovery by an approach named tensor factorization that decomposes high-
dimensional data to low-dimensional embeddings to learning high order tem-
poral correlations among the sequential data.

• Based on the work of Khayati et al., the recovery effect of HTF is com-
pared with other baseline methods in three different missing patterns on the
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benchmark of 5 datasets inherited from their study, including deep learning
methods which was not contained before.

2 Related Work

Study of recovery effect under different missing blocks patterns has not been
widely paid attention to. The work of Simeng Wu et al. [17] is most similar to
this paper, they proposed the HKMF method which focuses on how to fill missing
values of blackout in time series, but their work only suits the case that the time
series is univariate. One contribution of this paper can be regarded as extending
their work to a multivariate case by another technique. More importantly, we
find the theoretical foundation that our work may be the best result we can
achieve when the time series satisfies linear recursive formula by explaining the
fact that HTF and singular spectrum analysis is the same thing in some sense.

Apart from the work mentioned above, Li et al. [10] suggested Dynammo, a
method based on the linear dynamic system which makes use of kalman filter
to model the time series with the assumption that the observed time sequence
is generated by the linear evolution of hidden variables. Kevin et al. [16] rec-
ommended a sequence matching method using the most similar subsequence to
generate an imputation, by selecting k complete sequence most similar to the
sequence just before the missing blocks. Haiang-Fu Yu et al. [18] put forward a
matrix factorization method named TRMF to handle the case when the dimen-
sion of time series is high. The main contribution of their work is a new kind
of regularization that can be explained as a constraint over a temporal graph.
Wei Cao et al. [3] proposed a new deep learning model based on the original
bidirectional LTSM, modifying the structure to make it more adaptive to the
characteristic of time series. A new loss function that minimizes the error both in
forward imputation and backward imputation was presented at the same time.

The following sections are arranged as below: Sect. 3 introduces the problem
definition and missing block patterns. Section 4 introduces the HTF method
and its relation to SSA. At last, in Sect. 5, we evaluate the recovery effect and
performance of our method in the benchmark.

3 Backgroud

As a type of data, time series can have various auxiliary data associated with
it, and timestamp is the most common among them. In this paper, we do not
discuss the situation this additional information are contained. Only consider-
ing observed multivariate time series sampled evenly can help us simplify the
problem and find the essence of this type of data.

3.1 Definition

The general problem of missing block recovery for time series is defined as follows:
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Given: A time series of length T , X = 〈x1,x2, ...,xT 〉, where xt ∈ R
D is a

D-dimensional column vector for data at time t; an indicating matrix W =
{0, 1}D×T , with Wi,t = 0 if the i-th dimension of xt is missing, and Wi,t = 1 if
the data is present.

Solve: Estimate the missing values in X indicated by W .
We say Wi,j .Wi,j+1, ...,Wj+l−1 is a missing block of length l, if

Wi,j .Wi,j+1, ...,Wj+l−1 = 0 . If W1,j ,W2,j , ...,WD,j = 0, we state there
is a blackout in the j-th column. The main topic this paper study is when
the length l ≥ 20. The missing pattern of data is defined by the indicating
matrix W , we notate the max length over all missing blocks as lM , and hM

is the notation of the max height over all the columns of missing blocks that
Wi,j ,Wi+1,j , ...,Wi+h−1,j = 0.

3.2 Patterns of Missing Blocks

The pattern of missing blocks is determined by factors like the relative position,
the length and the height of missing blocks, and so on. Khayati et al. argued the
following three possible pattern types of missing, as shown in Fig. 1, X1,X2,X3

are the univariate time series of same length column by column, the missing
blocks in every sequence is marked as grey:

1) Disjoint: In this case, missing blocks do not intersect on each other in the
same time span. That is to say for each missing block, the sequences from
other variables at the same time is complete, equivalent to hM = 1. It is the
simplest case in all three types.

2) Overlap: In this case, missing blocks intersect each other partly, and there
would be at most D − 1 variables missing at the same time, equivalent to
2 ≤ hM < D. It is a relatively complex case.

3) Blackout: In this case, missing blocks coincide with each other at some time
interval, equivalent to hM = D. Generally speaking, this case is very hard
to recover when the missing length is large. So in this paper, we constrain
20 ≤ lM ≤ 100. It is the most challenging case.

In the real scenarios, these three patterns of missing seldom appear alone, a
problem that all three types mix together usually happens when data transmis-
sion in a bad network.

4 Hankelized Tensor Factorization

The Hankelized Tensor Factorization algorithm we proposed in this paper,
mainly focuses on the Blackout missing pattern. In this case, the indicat-
ing matrix W contains some continuous columns all filled with zero, like
W:,j ,W:,j+1, ..., W:,j+l−1 = 0.

The details of HTF are listed below. First, apply hankelization on the input
time series matrix X ∈ R

D×T carrying the missing position. Then, a novel ten-
sor factorization approach inspired by gradient descent will be carried out on the
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Fig. 1. Different types of missing block pattern (the missing marked as grey)

result of the first step, causing the high dimensional data with missing trans-
formed to some low dimensional embeddings. Thirdly, a reconstruction based
on the embedding obtained just before will be multiplied to make a reconstruc-
tion of the hankelized time series with missing imputed. In the end, we will do
an inverse version of hankelization to turn the reconstruction to an estimation
matrix, with each missing value in the original data matrix being imputed.

4.1 Methodology

In the following subsections, the detail of the procedures listed above will be
explained. For the simplicity of mathematical expression, we give the following
arithmetic definition:

Definition 1. A,B are matrices of size m × n,
(A � B)ij � Aij × Bij

Definition 2. x,y are vectors of length m and n,

x ⊗ y �

⎡
⎢⎢⎣

x1y1 x1y2 ... x1yn

x2y1 x2y2 ... x2yn

. . ... .
xmy1 xmy2 ... xmyn

⎤
⎥⎥⎦

A. Tensor Hankelization
The first step of HTF is to hankelize the input time series matrix X. Compared
to the way Hassani et al. [7] proposed that does hankelization for the sequence
Xi,: of each variable i, then merge to a compound matrix by put all the results in
the row order or in the column order, generating a much larger matrix compared
with the original X. We give a way that makes the matrix to a tensor, just like
what Hassani et al. do when it hankelizes the univariate sequence as defined. The
difference between these two ways is shown in Fig. 2. We believe the result tensor
can be represented by more explainable, effective and independent components
in our approach, so the essential can be learned better and the reconstruction
result has a better recovery effect. The comparison experiments in Sect. 5.2.C
support our point of view.
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Fig. 2. Different ways of hankelization (Hassani’s and ours)

Tensor hankelization can be thought of as doing the process of formula (1)
for the sequence vector Xi,: of each variable in time series matrix X, and then
put the result in the third dimension height, vertical to the dimension of time-
evolving (row) and multi-variables (column). We notate zi, zi+1, ..., zi+L−1 as
time evolving vector list of length L, and zj , zj+1, ..., zj+K−1 as time delaying
vector list of length K. The value of K must satisfy K ≥ lM + 1, which lM has
been defined in the Sect. 3.1. For the recovery effect of our method, the value of
K should be appropriately large. The result of this step can be seen as a map
from all matrix elements to all of the tensor, which is shown in Eq. (2).

H(z) = H([z1,z2, ...,z3]) =

⎡
⎢⎢⎣

z1 z2 ... zL

z2 z3 ... zL+1

. . ... .
zK zK+1 ... zT

⎤
⎥⎥⎦ (1)

HK(X)i,j,k = Xi,j+k−1,HK(X) ∈ R
D×K×L (2)

Tensor Factorization
The next step of HTF is to decompose the tensor coming from the tensor hanke-
lization. By decomposing the result to time-evolving embedding, time delaying
embedding and multi-variate embedding, the essential of time series can be rep-
resented independently and explainably. Another important advantage of fac-
torization is that the embeddings which map the components of time series to
low dimensional space are dense despite the original in the high dimension is
sparse, the principle behind similar to that the product Z = xyT of vector x ,
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y of length m and n generates a matrix of m × n elements, while solving x,y
does not need as many as m × n elements of Z. This paper takes the following
formula to do tensor factorization,

HK(X) = Y ≈
R∑

r=1

A:,r ⊗ B:,r ⊗ C:,r (3)

which A,B and C represent the time-evolving trend, time delaying trend and
the hidden variables of multi-variables in the low R-dimension space.

In order to solve A,B,C, we select the method based on the stochastic
gradient descent from machine learning, compared with other approaches to solve
tensor factorization problem, such as alternating least squares [8]. The reason
is that other methods may be harmful to the result because of their default
initialization of zero when dealing with missing values which is no difference
between a tensor with no missing values but is filled with zero and the tensor
which is missing at the same position and initialized with zero. We propose the
following function:

LA ,B ,C (Y ) =
∑

(i,j,k)∈Ω

(Yi,j,k −
R∑

r=1

Ai,rBj,rCk,r)
2 + λsRT (A,B,C) + λrR(A,B,C)

(4)
where Ω is the set of indexes correspond to the observed elements in
Y , which is generated from W . Yi,j,k is the (i, j, k)th element of Y .
RT (A,B,C), R(A,B,C) are two regularizers defined in Eq. (6) and (7), respec-
tively, with λr, λs being the coefficients. Given Eq. (4), the task of learning
A,B,C is achieved by solving:

〈A,B,C〉 = argminA ,B ,CLA ,B ,C (Y ) (5)

More specifically, the objective function in Eq. (4) contains four components
as follows:

First,
∑

(i,j,k)∈Ω(Yi,j,k − ∑R
r=1 Ai,rBj,rCk,r)2 quantifies the error of Y ≈∑R

r=1 A:,r ⊗ B:,r ⊗ C:,r.
Second, RT (A,B,C) is the temporal regularizer defined as

RT (A,B,C) =
D∑

i=1

K∑
j=1

L∑
k=1

(
R∑

r=1

Ai,rBj,r(Ck,r − Ck−1,r))2 (6)

which restricts the adjacent element of the solution of Ŷ �
∑R

r=1 A:,r⊗B:,r⊗C:,r

should be close.
Third, R(A,B,C) is a L2 regularizer defined as:

R(A,B,C) = ||A||2F + ||B||2F + ||C||2F (7)

which solve the overfitting problem of machine learning.
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Solving Rule
To find the optimized A,B,C that minimizes the objective function as shown

in Eq. (4), we adopt the stochastic gradient descent approach with the following
update rules:

Anew
i,: = Ai,: + η[erri,j,k(Bj,: � Ck,:) − λrAi,:

−λs(Γ � (Δ � Ck,:))
−λs(Γ ′ � (Δ′ � Ck,:))]

(8)

Bnew
j,: = Bj,: + η[erri,j,k(Ai,: � Ck,:) − λrBj,:

−λs(Γ � (Ai,: � Ck,:))
−λs(Γ ′ � (Ai,: � Ck,:))]

(9)

Cnew
k,: = Ck,: + η[erri,j,k(Ai,: � Bj,:) − λrCk,:

−λs(Γ � (Ai,: � Δ))
−λs(Γ ′ � (Ai,: � Δ′))]

(10)

which:
Δ = Bj,: − Bj−1,:

Γ = Ai,:(Δ � Ck,:)

Δ′ = Bj+1,: − Bj,:

Γ ′ = Ai,:(Δ′ � Ck,:)

erri,j,k = Yi,j,k −
R∑

r=1

Ai,rBj,rCk,r

4.2 Relation to Singular Spectrum Analysis

The HTF algorithm this paper put forward can be thought of as the tensor
factorization version of singular spectrum analysis. Hassani et al. [6] pointed
out, as a novel and powerful time series analysis technique, which can be used
to process the time series from dynamic system, signal processing, economy and
many other spheres, singular spectrum analysis decomposes the original data
into the sum of a series of independent and explainable components, such as
smooth trend, period components, quasi-period components and non-structural
noise.

It generally consists of two steps: decomposition and reconstruction. The
first step is to hankelize the time series, then do singular value decomposi-
tion: H(X) ≈ λ1U1V1 + λ2U2V2 + ... + λnUnVn. The second step is to select
eigenvalues that have large impact on the reconstruction by

∑r
l=1 λl/

∑n
l=1 λl ≥

threshold, with the purpose of denoising data. So the reconstruction of H(X)
is r < n, Ĥ(X) = λ1U1V1 + ... + λrUrVr. At the last, get the estimation of X
by diagonal average approach.
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Golyandina et al. [5] suggested singular spectrum analysis is the optimal
reconstruction for the time series satisfying the Eq. (11):

xn = c1xn−1 + c2xn−2 + ... + ckxn−k (11)

This property makes it powerful for lots of time series since many time-evolving
processes in real scenarios can be represented or approximately represented by
this formula.

Due to the characteristic of singular value decomposition (SVD) that treats
the missing value of matrix to decompose as zero or some constant, singular
spectrum analysis always takes this default initialization of missing as part of the
trend in data, resulting in the lack of capacity of the method to recover missing
blocks. Although Mahmoudvand et al. [13] proposed a kind of improvement
based on singular spectrum analysis, it has a strict demand on the shape of
missing, which can not deal with arbitrary shapes of missing blocks. However,
the tensor factorization method proposed by this paper which uses stochastic
gradient descent does not take missing into consideration, making it adapt to
the problem.

Since apart from the approach to decompose the original matrix in the pro-
cedure of decomposition, the rest steps of the SSA and HTF are almost the
same, there is no doubt that the HTF has the same capacity as SSA if tensor
factorization technique can reach the effect of SVD which is shown in [12].

5 Experiments

5.1 Experiment Setting

In this section, we conducted experiments using real-world data sets to evaluate
the performance of our approach based on the benchmark of Khayati et al.,
appending the comparison of deep learning approach to get a more exhaustive
evaluation.

The environment of the experiments is a 4-core Intel i5-7300HQ CPU,
NVIDIA GTX 1050 GPU. The implementation of all methods mentioned in
experiments are coded with Pytorch1.5 and Python3.6.

A. Data Sets and Experiment Methodology
Five real-world data sets are used for the experiments1:

– Air Quality: contains air quality data in a city of Italy from 2004 to 2005.
There is a periodic trend and jumping changes in the data. We cut it to 10
variables, 1000 time points.

– Electricity: contains family electricity usage in France per minute from 2006 to
2010. There is a strong time varying property in it. We cut it to 20 variables,
2000 time points.

1 All 5 datasets can be found on https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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– Temperature: contains temperature data sampled in weather stations across
China from 1960 to 2012. There is a high correlation between variables. We
cut it to 50 variables, 5000 time points.

– Gas: contains gas data collected by a chemical laboratory in the United States
in a gas extraction platform from 2007 to 2011. There is a huge difference in
correlation between variables. We cut it to 100 variables, 1000 time points.

– Chlorine: contains chlorine data from 166 intersections in a water system,
sampled every 5 min during 15 days. There is a very smooth trend in data,
with a strong periodicity. We cut it to 50 variates, 1000 time points.

The evaluation metric we used in this paper is:

NRMSE(X, X̂) =

√√√√ 1
|Ωtest|

∑
(i,j)∈Ωtest

(Xi,j − X̂i,j)2/

(
1

|Ωtest|
∑

(i,j)∈Ωtest

|Xi,j |)

where X̂ is the result that the missing in the original matrix is filled with estima-
tion. Ωtest is the set of all indices that value is missing. The smaller the NRMSE
of the algorithm is, the better the recovery effect is.

The reason why use NRMSE is that not only the recovery effect of different
methods on the same data set can be compared, but also the effect of one method
on different datasets can be evaluated. It has wide use in papers like [11,14,18],
becoming a popular metric to evaluate the effect of a method to recover missing
values.

To demonstrate the effectiveness of HTF, we compare its performance against
the following baseline approaches: 1) TKCM [16]; 2) Dynammo; [10]; 3) TRMF
[18]; 4) BRITS [3]. The brief statement of their work has been introduced in
Sect. 2.

The original dataset in the benchmark is complete, we simulate the different
missing patterns by generating the related indicating matrix W , and the missing
blocks only appear in the middle of the series to avoid the end case which is
similar to forecasting tasks that the methods we experiment usually perform
badly. Because of the randomness of result caused by the position of missing
generated randomly (There is a large difference between the smooth sequence
piece and steep sequence piece in the recovery effect.), we conduct a duplicate
experiment way to reduce the randomness.

B. Empirical Parameters Setting
K,L = T + 1 − K in the step of hankelization, λr, λs, η in the step of update
rule, and the number of iterations iter num that applying update rule are all
the hyper-parameters that we need to set empirically.

Before we compare our method with others, we carried out several trials to
select these hyper-parameters of HTF to avoid bad performance of our method.
So in the end, we set λs = λr ∈ 0.0001, 0.001, 0.01 for different datasets, R =
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1.2 ∗ D�, K = 
1.5 ∗ lM�, and the number of iterations of gradient descent is
iter num = 100. One process that we did experiments to find a good parameter
is shown in Sect. 5.2.D. Also, we do the same process for each baseline method
if it has selective parameters.

5.2 Recovery Effect

A. Performance on Disjoint and Overlap
In this set of experiments, when generating indicating matrix W , the number
of involved variables is at least 4, at most about 40% of total. In the pattern of
Overlap, hM = 2.

From Table 1 and Table 2, it can be concluded that overlap case is more
difficult to recover effectively than disjoint, and almost all methods have the a
degree of performance reduction on all data sets. Many methods can achieve
good results when complete sequences of variables exists. The reason is that the
complex dependence of variables in time series at each timestamp can be learned
based on the complete sequence of certain variables as a reference. Among them,
the BRITS algorithm based on deep learning achieved the best performance, and
HTF did not get a good enough result. The essential of this phenomenon is that
HTF focuses on learning the autocorrelation of variables while other methods
more focus on the correlations between variables.

Table 1. Performance on disjoint pattern

Dataset TKCM Dynammo TRMF BRITS HTF

Air quality 0.916 0.707 0.494 0.018 0.620

Electricity 0.838 0.867 0.811 0.683 0.704

Chlorine 0.323 0.034 0.015 0.047 0.129

Gas 1.740 0.384 0.081 0.068 0.467

Temperature 0.426 0.133 0.111 0.099 0.281

Table 2. Performance on overlap pattern

Dataset TKCM Dynammo TRMF BRITS HTF

Air quality 1.244 0.770 0.672 0.578 0.714

Electricity 0.863 1.347 0.873 0.489 0.674

Chlorine 0.335 0.095 0.061 0.081 0.165

Gas 1.726 0.476 0.383 0.073 0.452

Temperature 0.442 0.481 0.430 0.140 0.288
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B. Performance on Blackout
In this set of experiments, generating indicating matrix W , the number of
involved variables is about 40% of total. the length of each missing blocks is 100.

From Table 3, we can find the HTF algorithm we proposed achieved the best
NRMSE in all datasets. All other methods perform really bad, they lost the
ability to recover the missing, which can be confirmed both in nrmse result and
Fig. 3. In [2], authors discussed the reason why dynammo fails in the blackout
pattern. Due to only extracting the most similar subsequence to fill the missing,
TKCM can not adapt the local dynamic well, so the shifting phenomenon is very
serious. The matrix factorization technique TRMF takes can not handle the sit-
uation that there is a column in the matrix that is missing, which caused one
column of embedding not having information to update its value. So the impu-
tation may look like white noise with little variance with random initialization.
For BRITS, long intermediate process missing, a kind of gradient vanishing is
hard to solve for neural networks, which is the inherent defect of deep learning,
and there may only be fluctuation values near the end of missing blocks, while
the middle of the block is smooth.

Figure 3 shows the picture of what the recovery result looks like compared
with the original data in the blackout missing pattern on the Electricity dataset,
which is evidence of the analysis we give before. The time points of the missing
block are from 325 to 425, and the red one in the figure is the original data, while
the blue is the image of recovery. It is not hard to see only our method return
the result looks reflecting the characteristic of original time series and there is
no much difference between the recovery and truth.

Table 3. Performance on blackout pattern

Dataset TKCM Dynammo TRMF BRITS HTF

Air quality 1.254 1.070 1.252 1.797 0.763

Electricity 1.235 1.165 1.273 1.604 0.652

Chlorine 0.521 0.691 0.517 0.516 0.275

Gas 1.459 1.235 1.202 1.737 0.606

Temperature 1.108 0.542 1.123 0.593 0.219

C. Influence of Different Ways of Hankelization
The two ways of hankelization introduced in 4.1.A is valid in theory, and the
effect can hardly be analyzed by mathematical. So we compared these two ways
in experiments, we name the way we use tensor hankelization HTF, and the way
we use the matrix hankelization HTF-M. Which can be seen from Table 4, HTF
outperforms HTF-M in almost all cases, though the advantage is not obvious,
this kind of difference is enough in Statistical.
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Fig. 3. Recovery effect of different methods on Electricity dataset

Table 4. Influence of different ways of hankelization

Dataset HTF HTF-M

Air quality 0.763 0.798

Electricity 0.652 0.658

Chlorine 0.275 0.293

Gas 0.606 0.632

Temperature 0.219 0.239

D. Influence of parameter K
The selection of K may have a big impact in performance , and this set of
experiments aims to find a good K. Because of K should satisfy K ≥ lM + 1,
we set K = 
ξlM�(ξ > 1). By adjust the value of ξ, we can see the impact of
different K.

Figure 4 shows the result of the influence of different ξ on NRMSE and time
cost every iteration in Air Quality and Electricity data with parameters fixed
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with λs = λr = 0.0001, iter num = 100. along with the increase of ξ, time cost
each iteration shows a monotonous increase trend, while the NRMSE decreases
when ξ ∈ (1, 1.6], and goes smooth when ξ > 1.6. A good value of k should
balance both recovery effect and time cost the program does, so ξ = 1.5,K =
1.5 ∗ lM is a good selection.

(a) NRMSE of HTF

(b) time cost per iteration of HTF

Fig. 4. The recovery effect and time cost of HTF related to ξ

5.3 Result Conclusion

In conclusion, the HTF algorithm achieved an excellent result in blackout pattern
compared to other baseline methods, while also performs well in other missing
patterns. It is an effective algorithm for time series to recover missing blocks.

6 Conclusion

This paper presents a novel tensor factorization-based approach called HTF to
address the challenging problem of estimating the values of missing blocks in
time series, especially the blackout missing pattern by decomposing multivari-
ate data sequence into time-evolving embedding, time delaying embedding and
multivariate embedding. Following this idea, the method first transforms a time
series matrix into a hankelized version. Through the experiments on the bench-
mark inherited from the previous work, we demonstrate the effectiveness of HTF
by comparing its performance against state-of-art baseline approaches.
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For future work, we plan: 1) design a deep learning method to handle the
Blackout missing pattern Specifically, aiming to deal with the case that time
series does not satisfy linear recursive formula. 2) Solving the problem when
data is sampled unevenly.

References

1. Aydilek, I.B., Arslan, A.: A hybrid method for imputation of missing values using
optimized fuzzy c-means with support vector regression and a genetic algorithm.
Inf. Sci. (Ny) 233, 25–35 (2013)

2. Cai, Y., Tong, H., Fan, W., Ji, P.: Fast mining of a network of coevolving time
series, pp. 298–306 (2015). https://doi.org/10.1137/1.9781611974010.34

3. Cao, W., Wang, D., Li, J., Zhou, H., Li, Y., Li, L.: Brits: bidirectional recurrent
imputation for time series. In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS 2018, pp. 6776–6786. Curran
Associates Inc., Red Hook (2018)

4. Miao, D., Cai, Z., Li, J., Gao, X., Liu, X.: The computation of optimal subset
repairs. Proc. VLDB Endow. 13, 2061–2074 (2020)

5. Golyandina, N., Korobeynikov, A.: Basic singular spectrum analysis and forecast-
ing with R. Comput. Stat. Data Anal. 71, 934–954 (2014). https://doi.org/10.
1016/j.csda.2013.04.009

6. Hassani, H.: Singular spectrum analysis: Methodology and comparison. University
Library of Munich, Germany, MPRA Paper 5 (2007)

7. Hassani, H., Mahmoudvand, R.: Multivariate singular spectrum analysis: a general
view and new vector forecasting approach. Int. J. Energy Stat. 01, 55–83 (2013).
https://doi.org/10.1142/S2335680413500051

8. Hidasi, B., Tikk, D.: Fast ALS-based tensor factorization for context-aware rec-
ommendation from implicit feedback. In: Flach, P.A., De Bie, T., Cristianini, N.
(eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 67–82. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33486-3 5

9. Khayati, M., Lerner, A., Tymchenko, Z., Cudre-Mauroux, P.: Mind the gap:
an experimental evaluation of imputation of missing values techniques in time
series. Proc. VLDB Endow. 13, 768–782 (2020). https://doi.org/10.14778/3377369.
3377383

10. Li, L., Mccann, J., Pollard, N., Faloutsos, C.: DynaMMo : mining and summariza-
tion of coevolving sequences with missing values. In: KDD 2009 Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 507–516 (2009). https://doi.org/10.1145/1557019.1557078

11. Li, Z., Ye, L., Zhao, Y., Song, X., Teng, J., Jin, J.: Short-term wind power pre-
diction based on extreme learning machine with error correction. Prot. Control
Modern Power Syst. 1 (2016). https://doi.org/10.1186/s41601-016-0016-y

12. Maehara, T., Hayashi, K., Kawarabayashi, K.T.: Expected tensor decomposition
with stochastic gradient descent. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, AAAI 2016, pp. 1919–1925. AAAI Press (2016)

13. Mahmoudvand, R., Rodrigues, P.: Missing value imputation in time series using
singular spectrum analysis. Int. J. Energy Stat. 04, 1650005 (2016). https://doi.
org/10.1142/S2335680416500058

14. Pennekamp, F., et al.: The intrinsic predictability of ecological time series and its
potential to guide forecasting. Ecol. Monogr. 89, e01359 (2019)

https://doi.org/10.1137/1.9781611974010.34
https://doi.org/10.1016/j.csda.2013.04.009
https://doi.org/10.1016/j.csda.2013.04.009
https://doi.org/10.1142/S2335680413500051
https://doi.org/10.1007/978-3-642-33486-3_5
https://doi.org/10.14778/3377369.3377383
https://doi.org/10.14778/3377369.3377383
https://doi.org/10.1145/1557019.1557078
https://doi.org/10.1186/s41601-016-0016-y
https://doi.org/10.1142/S2335680416500058
https://doi.org/10.1142/S2335680416500058


44 H. Zhang et al.

15. Sterne, J.A.C., et al.: Multiple imputation for missing data in epidemiological and
clinical research: potential and pitfalls. BMJ 338 (2009). https://doi.org/10.1136/
bmj.b2393. https://www.bmj.com/content/338/bmj.b2393
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