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Abstract. High-dimensional approximate nearest neighbor search
(ANNS) has drawn much attention over decades due to its importance
in machine learning and massive data processing. Recently, the graph-
based ANNS become more and more popular thanks to the outstanding
search performance. While various graph-based methods use different
graph construction strategies, the widely-accepted principle is to make
the graph as sparse as possible to reduce the search cost. In this paper,
we observed that the sparse graph incurs significant cost in the high
recall regime (close or equal to 100%). To this end, we propose to judi-
ciously control the minimum angle between neighbors of each point to
create more dense graphs. To reduce the search cost, we perform K-
means clustering for the neighbors of each point using cosine similarity
and only evaluate neighbors whose centroids are close to the query in
angular similarity, i.e., query-directed search. PQ-like method is adopted
to optimize the space and time performance in evaluating the similarity
of centroids and the query. Extensive experiments over a collection of
real-life datasets are conducted and empirical results show that up to
2.2x speedup is achieved in the high recall regime.

Keywords: Nearest neighbor search · Graph-based method ·
Query-directed search

1 Introduction

Nearest neighbor search (NNS) has been a hot topic over decades, which plays
an important role in many applications such as data mining, machine learning
and massive data processing. For high-dimensional NNS, due to the difficulty of
finding exact results [8,9], most people turn to the approximate version of NNS,
named Approximate Nearest Neighbor Search (ANNS). Recently, graph-based
methods have gained much attention in answering ANNS. Given a finite point
set S in R

D, a graph is a structure composed of a set of nodes (representing
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a point in the dataset) and edges. If there is a neighbor relationship between
two nodes, an edge is added between the two nodes. If each node links K edges,
the graph is a KNN graph. The way to construct the graph affects greatly the
search efficiency and precision, so many researchers are committed to improving
the performance using different heuristics in the construction of the graph.

The common wisdom in constructing an KNN graph is to reduce the average
out-degree as much as possible because the search cost is determined by the
number of hops during walking the graph times the average out-degree. By
graph theory, average out-degree and the connectivity of graphs are conflicting
design goals. Hence, low average out-degree will make the graph too sparse and
thus increase the difficulty of finding high quality kNN.

In this paper, we argue that one could obtain low search cost and high answer
quality at one shot with affordable extra memory. Our first observation is that
the state-of-the-art algorithms such as HNSW and NSG cannot achieve this goal
even given enough extra memory, which will be discussed in details in Sect. 2.
To tackle this problem, we propose to (1) control the minimum angle between
neighbors of each point judiciously to create dense KNN graphs and thus improve
the connectivity, and (2) use the query to guide the evaluation of neighbors of
the base point, which significantly reduce the search cost. Figure 1 illustrates
our idea using a simple example. In Fig. 1(a), the search algorithm examines
all neighbors of o1 and chooses the nearest one to q as the next base point. In
contrast, o2 has more neighbors than o1 because the minimum angle between
them is smaller. Suppose we are aware of the direction of q then we can only
compare o3 and o4 with q, which reduces the number of distance evaluation
dramatically. Note that, for almost all search graph construction, the memory
used to store the graph depends on the maximum out-degree (MOD) instead
the average out-degree for implementation efficiency. Thus, our method do not
increase the memory cost to store the graph itself as will be discussed in Sect. 2.

Knowing the direction of q requires extra information associated with the
graph. Our proposal is to partition neighbors of each point into clusters using
standard clustering algorithms such as K-means. One modification is that we use
cosine similarity, instead of the Euclidean distance, as the similarity measure.
By comparing the cosine similarity between centroids and q we can avoid access-
ing distant neighbors and reduce the overall cost. The memory cost is very high
(several times as much as the dataset) if we store the original centoids directly.
Fortunately, slightly imprecise direction information is acceptable, which enables
us to compress centroids using the product quantization method [18]. For exam-
ple, an original centroid of dimension 128 needs 512 bytes to store and the
compressed code occupies only 8 to 16 bytes.

To sum up, the main contributions of this paper are:

– We propose a novel query-directed dense graph (QDG) indexing method by
controlling the minimum angle between neighbors and using clustering cen-
troids to guide efficient search procedure. Please note that the design prin-
ciples of QDG is orthogonal to specific graph construction algorithms, and
thus are applicable for almost all graph-based methods.
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Fig. 1. An example to illustrate the main idea

– To improve space efficiency, we use modified product quantization (PQ)
method to optimize the algorithm performance and reduce the index size.

– Extensive experiments show that QDG outperforms HNSW [24] and NSG
[13], the two state-of-the-art graph algorithms in efficiency over a collection
of real datasets. Particularly, up to 2.2x speedup is achieved at high recall
regime.

This paper is organized as follows. Section 2 motivates our proposal. The
details of QDG is presented in Sect. 3. Experimental results and analysis is
given in Sect. 4. Related work is discussed in Sect. 5. Section 6 concludes this
article.

2 Motivation

In recent graph-based methods, due to the high computational cost of building an
exact KNN graph, many researchers turn to build an approximated KNN graph.
Many experimental results such as Efanna [12] proved that the approximate
KNN graph still performs well.

For almost all graph-based methods, the ANN search procedure is based
on the same principle as follows. For a query q, start at an initial vertex chosen
arbitrarily or using some sophisticated selection rule. Moves along an edge to the
adjacent vertex with minimum distance to q. Repeat this step until the current
element v is closer to q than all its neighbors, and then report v as the NN of q.
Figure 4(a) illustrates the searching procedure for q in a sample graph starting
from p.

In order to reduce the searching time on the graph, constructing an approx-
imate KNN graph usually tends to reduce the out-degree of the graph. Out-
degree refers to the number of neighbors connected to each node on the graph.
For example, HNSW adopts the RNG’s edge selection strategy to select the
neighbors. It can reduce the out-degree to a constant CD + o(1), which is only
related to the dimension D [24]. However, this edge selection strategy is too
strict to provide sufficient edges. NSG adopts the MRNG’s edge selection strat-
egy, which is based on a directed graph. It can better ensure that each node on
the graph has sufficient neighbors than RNG, and the angle between any two
edges sharing the same node is at least 60◦ [13].
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Through a number of preliminary experiments we observed that such edge
selection policies may lead to too sparse graphs, especially for datasets such
as Trevi and Nuswide. Table 1 lists the MOD and AOD for HNSW, NSG and
the proposed method QDG, where AOD denotes the average out-degree over all
points in the graph. By graph theory we know that the connectivity of graph is
closed related to its AOD and if the graph is too sparse, the traversal length of
a query will increase, which in turn decreases the efficiency [25].

Table 1. Comparison of the out-degree of graph in three methods. HNSW contains
multiple graphs and we only report the AOD and MOD of its bottom-layer graph
(HNSW0) here.

Dataset HNSW0 NSG QDG

MOD AOD MOD AOD MOD AOD

Audio 70 13 70 17 70 65

Sun 70 13 70 24 70 66

Cifar 70 17 70 29 70 69

Nuswide 70 4 70 8 70 16

Trevi 70 5 70 8 70 46

However, simply increasing MOD does not make out-degree greater because
the edge selection policies such as RNG and MRNG set the lower bound of the
minimum angle between any two edges sharing the same node. Table 2 lists
the recall and search time at high recall regime for four datasets using NSG1,
which suggests (1) increasing MOD does not change the average out-degree
much, and (2) adding more memory to the index cannot trade space to speed by
using the existing index structure alone. Please note the index size is determined
by MOD, instead of AOD, for almost all existing graph-based algorithms for
implementation efficiency.

Table 2. Comparison of recall and cost on different datasets by increasing MOD.

MOD Audio Sun Nuswide Trevi

Recall Cost Recall Cost Recall Cost Recall Cost

70 0.999 0.4403 0.9997 0.07573 0.7685 0.01964 0.9920 0.03730

100 0.999 0.4403 0.9997 0.07774 0.7685 0.02037 0.9935 0.03850

160 0.999 0.4403 0.9997 0.07820 0.7700 0.02079 0.9942 0.03962

220 0.999 0.4403 0.9997 0.07827 0.7702 0.02085 0.9952 0.03999

500 0.999 0.4403 0.9997 0.07827 0.7700 0.02086 0.9952 0.04002

1 HNSW exhibits similar trends.
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These two observations motivate us to increase the out-degree to ensure that
there are sufficient neighbors for each point, that is, improving the connectivity.
The side-effect of dense graph is the increasing computational cost because all
neighbors of each point along the search path will have to be examined. To solve
this problem, we give higher priority to the neighbors closer to the query, which
will be discussed in next section.

Fig. 2. The neighbor selection strategy at point p. All candidate neighbors are sorted
by distance to p. Starting from the nearest point r, the neighbors whose angle is larger
than the specified degree (e.g. 50◦) will be reserved. The dotted line represents the
abandoned neighbor, the directed arrows point to the reserved neighbor.

3 Query-Directed Dense Graph Algorithm

3.1 Graph Construction

QDG consists of three stages in search graph construction.
The first stage is to construct an approximate KNN graph. We use the same

method as NSG in this stage [13]. After constructing the approximate KNN
graph, the approximate center of the dataset will be calculated, which is called
the Navigating Node. When we choose neighbor candidate sets for a point p, it
will be treated as a query, and the greedy-search algorithm will be performed
starting from the navigating node on the approximate KNN graph. During the
search, the candidate set will be sorted by the distance to p and used for neighbor
selection in the second stage.

Instead of using MRNG’s edge selection adopted by NSG, we adjust the
number of neighbors for each point by controlling the minimum angle between
its neighbors. The edge selection strategy in the second stage is shown in Fig. 2.
Assume that the minimum angle is 50◦. First, the point r closest to p is selected
and put it into the result set. When selecting the remaining edges, it will be
selected from the candidate set according to the distance ranking with respect
to point p. If the angle between itself and the existing ones is greater than 50◦, it
will be kept (like s in Fig. 2) and discarded otherwise (like t Fig. 2). The choice
of minimum angle directly affects the average out-degree of the graph and is left
for user to determine according to the dataset property.
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The third stage is illustrated in Fig. 3. Each point on the graph has a set
of neighbors, then we use K-means algorithm to cluster neighbors that are close
to each other in angular similarity. Since the standard K-means algorithm only
support the Euclidean distance, we make the following pre-processing. As we all
know, the Euclidean distance between point A and point B in high-dimensional
space is calculated as follows:

‖A − B‖2 = (A − B)T (A − B) = ‖A‖2 + ‖B‖2 − 2ATB.

If A and B are normalized to unit vectors, i.e., ‖A‖2 = ‖B‖2 = 1, then ‖A−B‖2
is equal to 2(1 − cos(A,B)), which means there is a monotonic relationship
between the Euclidean distance and cosine similarity. As shown in Fig. 3, we first
transform all candidate neighbors of point p into unit vectors w.r.t. p, then we
use the K-means algorithm to cluster all unit vectors by the Euclidean distance
(cosine similarity). The number of cluster centers K is specified by users and in
Fig. 3 K = 4.

Fig. 3. The blue points are neighbors of point p on the graph, and the number of
cluster centroids is 4. (Color figure online)

3.2 kNN Search on QDG

Most graph-based search algorithms use the greedy-search algorithm to identify
kNN of a query. The only difference between the general search method and
QDG is that we focus on reducing the out-degree at search stage, instead of
the index construction stage. Figure 4(a) and Fig. 4(b) depict examples of the
general greedy-search algorithm and QDG’s search strategy, respectively. As
shown in Fig. 4(a), the general greedy-search algorithm initializes the dynamic
candidate set as the starting point p and its neighbors first. In the candidate set,
the point closest to the query point is selected as the new starting point for the
next iteration and visited points will be marked. The candidate set is of fixed
size, which is often greater than k, and points in the candidate set are sorted
according to the distance from the query point. This method can quickly reach
the neighborhood of the query point. When all the points in the candidate set
are examined, the iteration ends, and the algorithm returns the first k points in
candidate set as kNN.

The search procedure of QDG differs from the general one mainly in the
neighbor selection policy. Particularly, we specify the number of clusters k′ to
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be checked during the search. As shown in Fig. 4(b), the number of clusters K
is 3. Point 1, point 2 and point 3, 4 are in three different clusters, respectively.
When starting from p, we calculate the cosine similarity between three cluster
centroids and q. If we specify k′ = 1, then we only need to check point 3 and
point 4, which reduces the search cost significantly. k′ and K are two tuning
knobs determined by users.

Fig. 4. (a) An example of the general search procedure. (b) The greedy-search algo-
rithm of QDG. Point p is the entry node, point q is the query node, and the dark yellow
circle represents the kNN neighborhood of q. The red dashed circle represents the clus-
ter centroid of p and α1, α2, α3 represent the angles between the cluster centroids and
q, respectively. (Color figure online)

3.3 Space and Time Performance Optimization

Suppose that the dataset consists of n points and the number of clusters is K,
additional space for storing n ∗ K vectors is required, which is unacceptable.
Suppose, for any point, the number of cluster centroids of its neighbors is the
close to the number of its neighbors, it will become meaningless to do clustering.
To solve this problem, we only cluster the points with more than L neighbors,
where L is set to 10 by default in this paper.

For points of which the number of their neighbors are greater than L, we
use PQ to compress the centroid vectors. Specifically, the cluster centroids are
used to train a codebook C and all the original centroid vectors are stored in
compressed code form, which will greatly reduce the index storage cost. Figure 5
depicts a simple codebook trained using PQ, where the number of subvectors
m = 4 and the number of centroids k∗ = 4. Using this codebook, a vector
of 16*4=64 bytes could be compressed into a one-byte code2. Please refer to
Sect. 5.3 and [18] for more details about PQ.

Besides evaluating the Euclidian distance between candidate points and the
query, the most time-consuming part of this algorithm is to calculate the cosine
similarity between each cluster centroid and the query vector. To reduce such
computation cost, we adopt a pre-calculation method similar to PQ.

At online search stage, suppose a cluster centroid p of code 00010011 to be
evaluated, the formula for calculating the cosine similarity between q and p is
2 The dimension of the vector is 16 and it takes four bytes to store a float number.
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as follows, where the dimension of p and q is 16 as illustrated in Fig. 5. The
re-constructed vector of p from its code is the elements with yellow background
color.

cos(p, q) =
p · q

‖p‖ · ‖q‖
Since the length of q does not affect the ranking of the cosine similarity of dif-
ferent cluster centers, we do not computer ‖q‖. ‖p‖ can be obtained through
the pre-calculation table constructed at indexing stage, which is illustrated in
Fig. 6(a) (the root of sum of elements with yellow background color). Each ele-
ment in this table is computed as the square sum of corresponding elements in
the codebook. For example, the first element 0.50 in row one in Fig. 6(a) is equal
to the square sum of the first four elements in the first row in Fig. 5. Similarly,
the inner product pre-calculation table is illustrated in Fig. 6(b). By looking up
the pre-calculation tables, the cosine similarity between p and q can be approxi-
mately computed by looking up these tables as cos (p, q) = 11.03

3.30×3.38 = 0.98 since
p ·q = 0.59+3.90+3.81+2.73 = 11.03, ‖p‖ =

√
0.50 + 4.01 + 3.79 + 2.63 = 3.30

and ‖q‖ = 3.38. The ranking of cosine similarity of all cluster centroids can be
obtained with these approximations.

Fig. 5. Query vector and codebook. (best viewed in color)

Fig. 6. (a) Length pre-calculation table and (b) inner product pre-calculation table.
(best viewed in color)

4 Experiments

In this section, we conduct a detailed analysis using publicly available datasets
to show the efficiency of QDG. The design principles of QDG are orthogonal to
specific graph-based search methods. In this paper, we only report the results
using NSG. We first describe the datasets and the parameters used, and then
we present the results and analysis.
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4.1 Datasets and Experiment Setting

Our experiment uses five datasets, Audio, Sun, Cifar, Nuswide and Trevi. All
the datasets we used can be found on Github3. The detailed information on the
datasets is listed in Table 3. A set of 200 queries are randomly chosen from each
dataset and then removed from the original dataset. We carried out comprehen-
sive experiments with different k and the results exhibit similar trends. Due to
space limitation, we only report the results for top-100 queries.

The MOD are all set to 70 for all three methods and other important param-
eter settings are listed in Table 3 as well. As we can see from Table 1, QDG
graph are far more dense than HNSW and NSG because we decrease the min-
imum angle between neighbors of points. The number of clusters K in graph
construction and the number of cluster centroid examined during the NN search
k′ are tuned to be the optimal. For cluster centroid compression, each vector is
partitioned into m = 8 subvectors and k∗ is set to 256. This incurs 8 bytes per
cluster centriod extra memory for indexing. Please note the original index space
cost for all three methods are determined by the MOD, which are all equal to
70 * 4 = 280 bytes.

Table 3. Statistics of datasets and parameter settings.

Dataset Dimension No. of points No. of queries Minimum Angle K k′ m k∗

Audio 192 53,387 200 50◦ 9 7 8 256

Sun 512 79,106 200 50◦ 9 7 8 256

Cifar 512 50,000 200 40◦ 8 6 8 256

Nuswide 500 268,643 200 45◦ 9 7 8 256

Trevi 4096 99,900 200 50◦ 8 7 8 256

4.2 Evaluation Measures

In order to measure the performance of different algorithms, we use the aver-
age recall as a criterion for evaluating accuracy. Given a query point, all the
algorithms are expected to return k points. We need to compare how many of
these k points are in the true k nearest neighbors. Suppose the returned set of
k points for a query is R′ and the true k nearest neighbors set of the query is
R, the recall is defined as:

recall =
|R′ ∩ R|

|R|
The average recall is the average over all the query points.
Another performance measure is the average cost. At online search stage,

the number of Euclidean distance calculation with the query will be counted4.

3 https://github.com/DBWangGroupUNSW/nns benchmark.
4 For QDG, the number of evaluation of cluster centroids and the query is also counted.

https://github.com/DBWangGroupUNSW/nns_benchmark
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Suppose the number is c and the total number of points in the dataset is n. Then
the cost is defined as:

cost =
c

n

The average cost is the average over all the query points. Usually, the smaller
the average cost is, the shorter the search time will be.

4.3 Baseline Algorithms

The algorithms we choose to compare are the two state-of-the-art, i.e., NSG
and HNSW. They are implemented in C++. We do not compare the non-graph
methods because they have been shown less efficient by many researchers [13,20].
Since it is desirable to obtain high-precision results in real scenarios, we focus
on the performance of all algorithms in the high-precision region.

There are many algorithms that do not support multi-threading at searching
stage, so we use single thread setting to compare when searching. Most of these
methods support multi-threading at indexing stage. To save time, we use eight
threads when building the index.

HNSW is based on a hierarchical graph structure, which was proposed in
[24]. In [22,23,27] authors have proposed a proximity graph k-ANNS algorithm
called Navigable Small World (NSW). HNSW is an improved version of NSW and
has a huge improvement in performance. HNSW has multiple implementation
versions, such as Faiss, hnswlib5. We use hnswlib since it performs better than
Faiss implementation.

NSG is a method based on KNN graph, in which the neighbor set of each
point on this graph is pruned by the MRNG method. This method was first
proposed in [13]. At search stage, each query point starts searching from the
same navigating node. NSG can approximate MRNG very well and try to ensure
a monotonic search path in the search procedure. Besides, NSG shows superior
performance in the E-commercial search scenario of Taobao (Alibaba Group)
and has been integrated into their search engine.

All methods, including QDG, are written in C++ and compiled by g++ 5.4
with “O3” option. The experiments on all datasets are carried out on a computer
with i5-8300H CPU and 40 GB memory. Please note our design principles are
also applicable for other graph-based search methods besides NSG.

4.4 Results and Analysis

Recall Vs. Cost. The recall-cost curves of three algorithms on different
datasets are shown in Fig. 7. From these figures we can see:

1. The cost of HNSW is constantly inferior to NSG and our method. This agrees
with the result reported in [13]. Since QDG can be viewed as an enhanced
version of NSG, it also performs better than HNSW on all five datasets.

5 https://github.com/nmslib/hnswlib.

https://github.com/nmslib/hnswlib
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2. For Nuswide dataset, QDG beats NSG all the time. This can be explained by
the fact that the AOD of QDG is two times as much as that of NSG (Table 1).
Too sparse graph leads to weak connectivity, which results in long search path
and high cost. In contrast, the dense graph of QDG provides much stronger
connectivity and thus lower cost. Particularly, NSG examined 5276 points on
average whereas QDG vistited 4047 points (centroids included) at recall 76.7,
which translates to 30% performance gain.

3. For the remaining four datasets, QDG performs almost the same as or slightly
worse than NSG in the relatively low recall region. The reason is that the con-
nectivity of NSG already could provide fine accuracy at low cost and QDG
are far more dense, which incurs slightly higher cost even with the help of
query-directed pruning. However, the trend changes after a critical point in the
high recall regime. Particularly, the recalls at the transition point are around
99.65%, 99.9%, 99.95% and 98% for Audio, Sun, Cifar and Trevi, respectively.
After the critical point, the cost of NSG increase dramatically whereas QDG
enjoys more smooth incline. For example, QDG achieves 2.7x, 1.7x and 1.34x
speedup over NSG at recall of 100% for Audio, Sun and Cifar, respectively. For
Trevi, the cost of NSG is 1.53 times as much as that of QDG at recall of 98.95%.
The main reason is that QDG is dense enough to provide high recall while NSG
has to search a way longer path to achieve the same recall.

Fig. 7. The recall-cost curves of three algorithms on different datasets.
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Recall Vs. Time. The time-recall curves of three algorithms on different
datasets are shown in Fig. 8. Similar trends are observed as in Fig. 7 since
the wall-clock search time are proportional to the cost. Particularly, QDG con-
stantly outperforms NSG with around 10% performance gain on Nuswide and
achieves 2.2x, 1.51x and 1.08x speedup over NSG at recall of 100% for Audio,
Sun and Cifar, respectively. For Trevi, the cost of NSG is 1.29 times as much as
that of QDG at recall of 98.95%. The speedup is slightly smaller than that in the
case of Recall vs. Cost because it takes time to build the pre-calculation tables.
More importantly, the accuracy of NSG saturates once reaching 99% whereas
QDG achieve higher recall that the other algorithms cannot provide.

Fig. 8. The time-recall curves of all algorithms on different datasets.
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5 Related Work

Approximate nearest neighbor search (ANNS) has been a hot topic over decades,
it provides fundamental support for many applications of data mining, databases
and information retrieval [2,11,29,31]. There is a large amount of significant lit-
erature on algorithms for approximate nearest neighbor search, which are mainly
divided into the following categories: tree-structure based approaches, hashing-
based approaches, quantization-based approaches, and graph-based approaches.

5.1 Tree-Structure Based Approaches

Hierarchical structures (tree) based methods offer a natural way to continuously
partition a dataset into discrete regions at multiple scales, such as KD-tree [6,7],
R-tree [10], SR-tree [19]. These methods perform very well when the dimension-
ality of the data is relatively low. However, it has been proved to be inefficient
when the dimensionality of data is high. It has been shown in [30] that when
the dimensionality exceeds about 10, existing indexing data structures based on
space partitioning are slower than the brute-force, linear-scan approach. Many
new hierarchical-structure-based methods [12,26] are presented to address this
limitation.

5.2 Hashing-Based Approaches

For high-dimensional approximate search, the well-known indexing method is
locality sensitive hashing (LSH) [15]. The main idea is to use a family of locality-
sensitive hash functions to hash nearby data points into the same bucket. After
the query point goes through the same hash functions, it will get the corre-
sponding bucket number, and only compare the distance between the point in
the bucket and the query point. In the end, the k approximate nearest neigh-
bor results that are closest to the query point will be returned. In recent two
decades, many LSH-based variants have been proposed, such as QALSH [17],
Multi-Probe LSH [21], BayesLSH [28]. However, there is no guarantee that all
the neighbor vectors will fall into the nearby buckets. In order to achieve a high
recall (the number of true neighbors within the returned points set divides by
the number of required neighbors), a large number of hash buckets need to be
checked.

5.3 Quantization-Based Approaches

The most common of quantization-based methods is product quantization (PQ)
[18]. It seeks to perform a similar dimension reduction to hashing algorithms,
but in a way that better retains information about the relative distances between
points in the original vector space. Formally, a quantizer is a function q mapping
a D-dimensional vector x ∈ R

D to a vector q(x) ∈ C = {ci; i ∈ I}, where the
index set I is from now on assumed to be finite: I = 0 . . . k−1. The reproduction
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values ci are called centroids. The set Vi of vectors mapped to given index i is
referred to as a cell, and defined as

Vi �
{
x ∈ R

D : q(x) = ci
}

The k cells of a quantizer form a partition of RD. So all the vectors lying in the
same cell Vi are reconstructed by the same centroid ci. Due to the huge number
of samples required and the complexity of learning the quantizer, PQ uses m
distinct quantizers to quantize the subvectors separately. An input vector will
be divided into m distinct subvectors uj , 1 ≤ j ≤ m. The dimension of each
subvector is D∗ = D/m. An input vector x is mapped as follows:

x1, . . . , xD∗
︸ ︷︷ ︸

u1(x)

, · · · , xD−D∗+1, . . . , xD︸ ︷︷ ︸
um(x)

→ q1 (u1(x)) , . . . , qm (um(x))

where qj is a low-complexity quantizer associated with the jth subvector. And
the codebook is defined as the Cartesian product,

C = C1 × . . . × Cm

and a centroid of this set is the concatenation of centroids of the m subquantizers.
All subquantizers have the same finite number k∗ of reproduction values, the
total number of centroids is k = (k∗)m.

PQ offers three attractive properties: (1) PQ compresses an input vector into
a short code (e.g., 64-bits), which enables it to handle typically one billion data
points in memory; (2) the approximate distance between a raw vector and a
compressed PQ code is computed efficiently (the so-called asymmetric distance
computation (ADC) and the symmetric distance computation (SDC)), which is
a good estimation of the original Euclidean distance; and (3) the data structure
and coding algorithm are simple, which allow it to hybridize with other indexing
structures. Because these methods avoid distance calculations on the original
data vectors, it will cause a loss of certain calculation accuracy. When the recall
rate is close to 1.0, the required length of the candidate list is close to the size of
the dataset. Many quantization-based methods try to reduce quantization errors
to improve calculation accuracy, such as SQ, Optimal Product Quantization
(OPQ) [14], Tree Quantization (TQ) [3].

5.4 Graph-Based Approaches

Recently, graph-based methods have drawn considerable attention, such as NSG
[13], HNSW [24], Efanna [12], and FANNG [16]. Graph-based methods construct
a KNN graph offline, which can be regard as a big network graph in high-
dimensional space [4,5]. However, the construction complexity of the exact KNN
graph will increase exponentially. Hence, many researchers turn to building an
approximated KNN graph.

Many graph-based methods perform well in search time, such as Efanna [12],
KGraph [1], HNSW and NSG. They all use different neighbor selection methods
to reduce the average out-degree. As we have shown in this paper, too sparse
graph may jeopardize the performance at the high recall region.
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6 Conclusion

In this paper, we proposed a new approximate nearest neighbor search method
called QDG. This method is constructed based on the approximate KNN graph,
and neighbors are selected according to the minimum angle between the neigh-
bors of each point. To guide the search path using the query point, we cluster
the neighbors of all points with cosine similarity in advance and only compare
the clusters close to the query point in angular similarity at NN search stage.
Extensive experiments indicates that our method perform better than the two
state-of-the-art, NSG and HNSW, especially in the high recall regime.

Acknowledgments. The work reported in this paper is partially supported by NSFC
under grant number (No: 61370205), NSF of Xinjiang Key Laboratory under grant
number (No:2019D04024) and Tianjin “Project + Team” Key Training Project under
Grant No. XC202022.

References

1. KGraph. https://github.com/aaalgo/kgraph
2. Arora, A., Sinha, S., Kumar, P., Bhattacharya, A.: Hd-index: Pushing the

scalability-accuracy boundary for approximate knn search in high-dimensional
spaces. arXiv preprint arXiv:1804.06829 (2018)

3. Babenko, A., Lempitsky, V.: Tree quantization for large-scale similarity search
and classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4240–4248 (2015)

4. Baranchuk, D., Babenko, A.: Towards similarity graphs constructed by deep rein-
forcement learning. CoRR abs/1911.12122 (2019)

5. Baranchuk, D., Persiyanov, D., Sinitsin, A., Babenko, A.: Learning to route in
similarity graphs. ICML 97, 475–484 (2019)

6. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. In: Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 1000–1006. IEEE (1997)

7. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

8. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7 15
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