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Abstract. Road segment representation is important for evaluating
travel time, route recovery and traffic anomaly detection. Recent works
mainly consider topology information of road network based on graph
neural network, while dynamic character of topology relationship is usu-
ally ignored. Especially, the relationship between road segments is evolv-
ing with time elapsing. To obtain road segment representation based
on dynamic spatial information, we propose a model named temporal
and spatial deep graph infomax network (ST-DGI). It not only cap-
tures road topology relationship, but also denotes road segment repre-
sentation under different time intervals. Meanwhile, the global traffic
status/flow will also affect local road segments’ traffic situation. Our
model would learn the mutual relationship between them, with maximiz-
ing mutual information between road segment (local) representation and
traffic status/flow (global) representation. Furthermore, it would make
road segment representation more distinguishable by this kind of unsu-
pervised learning, and be helpful for downstream application. Extensive
experiments are conducted on two important traffic datasets. Compared
with the state-of-the-arts models, the experiment results demonstrate
the superior effectiveness of our model.
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1 Introduction

Travel time estimation of a path is an important task in recent years, which is
helpful for route planning, ride-sharing, navigation and so on [10,21,23]. Nowa-
days, almost all the travel service applications have this function, including
Google Map, Baidu Map, Uber and Didi. Based on accuracy travel time esti-
mating service, user could obtain road’s status, plan personalized trip and avoid
wasting time on congested roads. Meanwhile, many researchers have devoted
themselves on study of high quality travel time estimation [9,13,22]. However,
as travel time estimation is a complex task and many factors need to consider,
it is still a challenge to provide accuracy estimation.
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To achieve accuracy travel time estimation, an effective road segment repre-
sentation is necessary. Recent works mostly utilized graph-based neural network
to learning representation of road segment, for instance graph auto-encoder [9],
DeepWalk [13], which would make road segment representation be similar to
neighborhoods. There are three drawbacks in these methods:

1) These methods lead to adjacent road segments undistinguishable and will
not be beneficial for downstream tasks. Such as in Fig. 1, the adjacent road
segments i, j’s status would be similar. While, in fact, road segment j would
be more special, since it is apt to block up with the flows from neighbor road
segments.

2) They only focuses on local feature in graph, and could not learn mutual influ-
ence between global traffic condition and each road segment status. Global
traffic condition has influence on individual road segment, and some critical
road segments’ status may also have a great impact on global traffic con-
dition. As in Fig. 1, the traffic flows which come from office areas A, B to
residential area C would affect related road segments, making road segment
j congested. Meanwhile, road segment j’s congestion will also influence other
road segments, not just the adjacent road segments. Sometimes, parts of road
segments representation at some time intervals are absent, while global (or
high-level) traffic condition is rather easily obtained. If we could infer road
segment presentation from global traffic condition, it would be beneficial for
overcoming data sparsity.

3) They couldn’t consider road segment’s dynamic status. Under different time
interval, road segments will have unique status, which includes not only their
dynamic status, but also the special relationship with corresponding global
traffic condition. For instance, road segment j would be unblocked in the
morning, and the adjacent road segments are also unimpeded. But in the
afternoon, j might be congested, and affect the adjacent road segments.
Therefore, it requires a model could consider local-global relationship and
temporal factors in road network, simultaneously.

Since compared with large volumes of road segments, trajectories are too
sparse to denote the distinguishable features of each road segment. Espe-
cially, when considering temporal factors, the sparsity problem is much more
severe. Meanwhile, traffic system is integrated and complex, the mutual relations
between global and local is difficult to model. To solve problems above, we pro-
pose a model based on deep graph infomax, which would maximize mutual infor-
mation between road segment (local) representation and road network (global)
representation. It is beneficial for denoising unrelated information and make road
segment representation be consistent with entire road network’s condition, which
could make road segment representation unique and capture similar structures
in the whole network. To denote road network’s condition, we not only make
use of representations from whole graph itself, but also take advantage of geo-
graphical traffic status and flows condition. Besides, since road segments’ status
is dynamic, we would character road segment’s representation under different
time interval.
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Fig. 1. An example.

In summary, our contribution could be concluded as below:

– A spatial and temporal deep graph infomax network is proposed to learn
road segment representation, which could reflect local and global feature of
road network simultaneously, especially capture similar structures from whole
network view.

– Traffic condition and flows status are both introduced in our model, which
make road representation could perceive global condition, section-level global
condition with CNN. And dynamic road segment representation is designed
to character the temporal traffic condition.

– Extensive experiments are conducted on three public traffic datasets. The
results on downstream task (travel time estimation) consistently outperforms
the state-of-the-art methods, which proves our road segment representation
model is effective and performs more excellent in the sparse traffic setting.

2 Related Work

Traffic forecasting is a popular research topic in recent years. Firstly, we would
introduce several main tasks in traffic forecasting and the related works. Espe-
cially, we focus the related works in travel time estimation task. Then we would
analyze the difference between our work and the most related works.

Since plenty of data are from sensors and GPS, more and more researchers
focus on the traffic forecasting to provide convenient service for individuals and
traffic management [15,24,26]. In traffic forecasting, there are mainly three kinds
of tasks:

1) Travel Time Estimation. The corresponding methods are categorized to
two kinds: route-based methods and neighbor- based methods. Route-based
methods would map trajectory onto road segments, estimate each segment’s
travel time and aggregate these time as final estimation. [23] treated travel time
estimation as a regression problem and proposed wide-deep-recurrent network
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to capture spatial feature of each road segment and sequential feature for esti-
mating the travel time. Beside of GPS traces and road network, [5] utilized
smartphone inertial data for customized travel time estimation (CTTE). [20]
utilized convolutional neural network to extract spatial feature of road segment
and employs recurrent neural network to learn the sequential feature of tra-
jectories. [13] utilized a deep generative model to learn travel time distribution,
considering spatial feature of road segments with DeepWalk in road network and
temporal feature with the real-time traffic. Different with route-based method,
neighbor-based methods utilize neighboring trips with a nearby origin and des-
tination to estimate travel time. [21] found similar trip with the target trip and
utilized the travel time of those similar trips to estimate the travel time of target
trip.

2) Travel Speed Estimation. Although travel speed estimation is usually
related with travel time estimation, they are still different tasks in traffic fore-
casting. Because travel time estimation contains more factors, such as traffic
lights and making left/right turns, than travel speed estimation. In this kind of
task, graph neural network and recurrent neural network are generally utilized
for extracting topology feature and sequential feature of road network. [28] uti-
lized graph convolutional network to extract spatial topological structure, and
gated recurrent unit to capture dynamic variation of road segments’ speed distri-
bution. It fuses these spatio-temporal features together to predict traffic speed, it
is also similar to [4,14,24,27] which introduced diffusion convolutional recurrent
neural network, a deep learning framework for traffic forecasting that incorpo-
rates both spatial and temporal dependency in the traffic flow. [3] used history
road status (speed) to predict next time’s road speed by considering multi-hop
adjacent matrix and LSTM. [9] utilized graph convolutional weight completion
to learn each road’s speed distribution. [11] proposed graph convolutional gener-
ative autoencoder to fully address the real-time traffic speed estimation problem.

3) Traffic Flow Prediction. In addition to travel speed, traffic flow is another
important sign of traffic condition. To represent the high-level feature of traf-
fic flow, convolutional neural network are usually used. [17,25,26] transformed
traffic flow data into a tensor, and utilized a convolutional neural network and
residual neural network to extract spatio-temporal feature for urban traffic pre-
diction. [16] employed a sequence-to-sequence architecture to make urban traffic
predictions step by step for both of traffic flow and speed prediction. Besides,
there are also some other tasks. [15] predicted the readings of a geo-sensor over
several future hours by considering multiple sensors’ readings, meteorological
data, and spatial data. [22] developed a Peer and Temporal-Aware Represen-
tation Learning based framework (PTARL) for driving behavior analysis with
GPS trajectory data.

In traffic forecasting, road segment representation effect greatly on prediction
performance. This paper would focus on high-quality representation of road seg-
ment. The most related works with ours is GTT [13], GCWC [9], ST-MetaNet
[16]. The differences with them are mainly two points as below: 1) Our model first
propose road segment representation based on local and global traffic conditions
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simultaneously. Since road network is a complex system, each road segment is not
only linked with local adjacent neighborhoods, but also global traffic dynamics.
GCWC, ST-MetaNet only considers local features, ignoring global traffic condi-
tion. Though GTT considers real-time traffic condition, it learns static road seg-
mentation and global traffic condition independently, fusing them linearly with
concatenation operation, which loses sight of the mutual impacts between them.
2) Our model considers the dynamic relationship between road network. In GTT
and GCWC, the relationship between road segments is just the topology rela-
tionship in road network and changeless. However, in fact it would evolve with
time elapsing. Different with ST-MetaNet learning sequential temporal features
with gated recurrent unit which needs much denser data sets and more compu-
tation costs, we pay attention on periodic and non-uniform temporal features. In
summary, our model would not only consider local and global features in traffic
simultaneously and mutually, but also model the dynamic status of each road
segment. Based on these factors, our model could get a more comprehensive
and adaptive road segment representation, which is beneficial for travel time
estimation.

3 Proposed Model

Problem Definition: Given a road network G(V,E), historical trajectory
dataset H = {T(k)}K

k=1, our objective is to learn the representation h(t)
i for

each road segment ri under different time interval t.
We hope the road segment representation r(t)i not only could capture the

topology relationship between road segment ri and joint roads under different
time interval, but also could denote potential relationship between ri and global
traffic condition. Road segment representation could be used for travel time
estimation [13], traffic speed prediction [16] (seen in experiments), route planning
and so on.

3.1 Model Overview

Our model would be introduced by four parts. Firstly, we introduce a basic graph
constructed by road network, and propose a static road segment representation
method based on maximization mutual information (Static Version). Secondly,
the temporal factors are considered and fused into the model to obtain dynamic
road segment representation (Temporal Version). Thirdly, the traffic status and
flows from global view are modeled and mixed into our model (Dynamic Version).
Finally, it is the optimization method for our model.

3.2 Static Road Segment Representation

Road segment has complex topology and spatial relations with other road seg-
ments. To capture the relations, graph convolutional network (GCN) is usually
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adopted. Especially, graph is constructed by adjacent topology relations, spatial
information could not be captured by GCN. Since GCN excessively emphasizes
proximity information between neighbors, the in-dependence of road segment is
easily ignored. In this part, we first introduce a basic version of road segment rep-
resentation. Then to consider spatial information simultaneously, a grid-based
CNN is utilized to represent section which road segment belongs to. Based on
the two steps, an optimized version for maximizing mutual information will be
introduced.

Feature Initialization. The road network could be represented by a topology
graph, in which node denotes road segment, edge between nodes means the link
relationship between road segments. Accordingly, we assume a generic graph-
based unsupervised machine learning setup: we are provided with a set of road
segment features, R = {r1, r2, ..., rN}, where N is the number of road segments
in the graph and ri ∈ R

F represents the features of road segment ri, where
F is the dimension of road segment basic feature. In our datasets, there are
totally 14 kinds of road types1, 7 kinds of lane number (from 1 to 7), 2 kinds
of way direction (one-way or bidirectional), so the F would be 23. Directly, we
could use one-hot encoding to represent each road segment, while it would miss
the detail characteristics of each road segment, such as number of lanes, speed
limit, road shape and so on. Also it could consider neighbor Point-of-Interests as
road segment’s meta information [20], which could be extended in future. Shown
in Fig. 2(a), we would use multi-hot encoding to initialize each road segment
feature which denotes road segment’s special attribute, and reduce dimension
with fully-connect layer, similar to the amortization technique [13].

Feature Propogation Based on GCN. Based on road network, we could
obtain relational information between these road segments in the form of an
adjacency matrix, A ∈ R

N×N . In all our experiments we will assume the graphs
to be unweighted, i.e. Aij = 1 if there exists a connection ri → rj in the road
network and Aij = 0 otherwise. Here, the adjacency matrix could be obtained by
the road network. However, it is static and could not reflect the road real-time
relationship under special time interval. In fact, road relationship will be dynamic
with time elapsing. In Sect. 3.3, we would introduce a temporal adjacency matrix
A(t) based on historical trajectories.

To learn road segment representation, we would build an encoder, E : RN×F ×
R

N×N → R
N×F ′

, such that E(R,A) = H = {h1,h2, ...,hN} represents high-
level representation hi ∈ R

F ′
for road segment ri . These representations may

then be retrieved and used for travel time estimation task, speed prediction and
so on. The definition of function E could be seen as following:

E(R,A) = σ(D̂− 1
2 ÂD̂− 1

2 RW) (1)

1 i.e., living street, motorway, motorway link, primary, primary link, residential, sec-
ondary, secondary link, service, tertiary, tertiary link, trunk, trunk link, unclassifie.
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where A = A+ IN is the adjacent matrix with added self-connections, IN is the
identity matrix, D̂ is the degree matrix, D̂ =

∑
j Âij . σ is a nonlinear activation

function. W ∈ R
F×F ′

is a learnable linear transformation applied to every node.
Here we will focus on graph convolutional encoders – a flexible class of

node embedding architectures, which generate road segment representations by
repeated aggregation over local road neighborhoods [6]. A key consequence is
that the produced road embeddings, hi, summarize a local patch of the graph
centered around road segment ri rather than just the road segment itself. In
what follows, we will often refer to hi as local representation to emphasize this
point.

Fig. 2. Framework of our model. Road network (and trajectories) could be transformed
to node representation. Based on GCN, each node obtains a local representation. A
corrupted graph is also generated. Based on global feature, a discriminator is utilized
to distinguish the real or fake local feature from different graph.

Spatial Region Feature Construction. Since graph can only capture topol-
ogy structures, the spatial information is easily lost. We utilize grid-index of
road segments to construct spatial relations between them. Each grid is denoted
by a multi-hot embedding, p ∈ R

N . If a road segment crosses the grid, the cor-
responding element of embedding is set 1, and 0 otherwise. Multiplying with
road segment representation matrix R, grid representation is achieved q = pR,
which would subsume representations of inner road segments.

Since road segment may cross several grids, we also consider adjacent regions
to include the spatial related road segments with target road segment as much
as possible. Figure 3 shows region-level embedding for target road segment.



A Novel Road Segment Representation Method for Travel Time Estimation 405

Fig. 3. Capturing region-level representation

Feature Optimization with Mutual Information. Since road network is an
entire systems, a road segment is not only related to adjacent neighborhoods, but
also the whole traffic system. The models based on only GCN are insufficient for
road segment representation. Therefore, we need to obtain road segment (i.e.,
local) representations that capture the global information of the entire road
network. As the general graph auto encoder (GAE) [2] could not realize this
object, which directly optimizes the Euclidean Distance (or discrepancy) between
input and output, we adopt maximizing local-global mutual information [8,19]
between road segment (local) representation and entire road network (global)
representation, which could make road segment representation not only unique
but also containing global feature. To achieve this objective, there are 4 questions
to solve:

1) How to represent the feature of road segment?
2) How to represent the feature of entire road network information?
3) How to compute the local-global mutual information?
4) How to maximize the local-global mutual information?

For question 1), we would follow the previous method to represent road
segment as hi. Next, for question 2), in order to obtain the global-level road
network features, g, we leverage a readout function, R : RN×F → R

F , and use
it to gather the obtained local (road segment) representations into a global-level
representation; i.e., g = R(E(R,A)). A simple but efficient choice of R is average
function, R(H) = σ( 1

N

∑N
i=1 hi), where σ is the activation function.

I(H;G) = H(H) − H(H|G), (2)

=
∫

H×G
log

dPHG

dPH ⊗ PG
dPHG, (3)

= DKL(PHG||PH ⊗ PG) (4)
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For question 3), the computation of local-global mutual information is
shown in Eq. 4, where PHG is the joint distribution of two variables, PH ⊗ PG is
the product of margins, DKL is the KL divergency between two distributions.

I(H;G) ≤ EPHG
[Dθ(h,g)] − log(EPH

⊗ [eDθ(h,g)]) (5)

For question 4), to maximize the local-global mutual information, the
mutual information (ML) in KL divergency form could be transformed to
Donsker-Varadhan (DV) representation as dual representations [1] in Eq. 5.
A discriminator is employed to make DV representation to approximate MI,
D : RF × R

F → R, such that D(h,g) represents the probability scores assigned
to this local-global pair. The training of discriminator and maximization MI
would be processed simultaneously. Here contrastive method is adopt [7,12,18],
which is to train the discriminator D to score contrastively between local repre-
sentations (positive examples) that contain features of the whole and those unde-
sirable local representations (negative examples). The discriminator is defined
as following.

D(h,g) = σ(hT W2g) (6)

where W2 ∈ R
F ′×F ′

is a learnable linear transformation applied to every node.
Therefore, based on approximately monotonic relationship between Jensen-
Shannon divergence and mutual information, a noise-contrastive type objective
[8] is formularized with a standard binary cross-entropy (BCE) loss between
the samples from the joint (positive examples) and the product of marginals
(negative examples) for maximizing mutual information, as following equation:

L =
1

N + M
(

N∑

i=1

E(R,A))[logD(hi,g)]+

M∑

j=1

E(R̃,Ã)[log(1 − D(h̃j ,g))])

(7)

This approach effectively maximizes mutual information between hi and g,
based on the Jensen-Shannon divergence between the joint and the product of
marginals.

Negative samples for D are provided by pairing the global g from (R,A)
with local representation h̃j of an alternative graph, (R̃, Ã), where R̃ and Ã are
corruption versions of original data, respectively. For the road network graph, an
explicit (stochastic) corruption function, C : RN×F ×R

N×N → R
M×F ×R

M×M

(M is the node number of corruption graph) is required to obtain a negative
example from the original graph, i.e., (R̃, Ã) = C(R,A). Corruption function C
could be feature-based by row-wise shuffling feature matrices or adjacent-matrix-
based by changing part of adjacent matrix elements, which would be discussed
in experiments. The choice of the negative sampling procedure will govern the
specific kinds of structural information that is desirable to be captured as a
byproduct of this maximization.
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As all of the derived local representations are driven to preserve mutual
information with the global road network representation, this allows for discov-
ering and preserving dependency on the local-level – for example, distant roads
with related structural roles. For road network and traffic condition, our aim is
for the road segment to establish link to related road segment across the road
network, rather than enforcing the global representation to contain all of these
correlations.

3.3 Temporal Adjacent Matrix

As mentioned before, road segment’s status is not static. At different time inter-
vals, road segment’s status will be different. The same to relationship between
adjacent road segments. To model the dynamic road segment representation, we
propose to construct temporal adjacent matrix A(t), which is based on trajec-
tories T (t) = {tr1, tr2, ...tr|Tt|} in corresponding time interval t. For instance,
t = [ts, te), where ts means the start of the time interval, te means the end of
the time interval. Based on the temporal adjacent matrix A(t) and encoder E ,
dynamic road segment representation h(t)

i could be obtained.
However, if each road segment has an independent representation at each

time interval, it would cause overfit and need large storage memory. Moreover,
not all road segments have trajectories at each time interval, a.k.a. data sparsity
problem. Here, we utilize amortization technique, which makes road segment
ri’s static representation h(s)

i and one-hot encoding of time interval et mapping
into a low-dimensional representation by fully-connected layer to denote dynamic
road segment representation h′(t)

i , shown in Eq. 8. To learn the parameters in the
fully-connected layer, with h(t)

i obtained by temporal adjacent matrix and the
encoder E denoted in Eq. 9, we utilize L2 to minimize the error between h′(t)

i and
h(t), which would optimize parameters in the fully-connected layer. Based on the
fully-connected layer, we could get road segment’s dynamic representation.

h′(t)
i = σ(w(h(s)

i ⊕ t) + b) (8)

H(t) = E(R,A(t)) (9)

L = min||h(t)
i ,h′(t)

i ||22 (10)

3.4 Global Traffic Condition and Flows

To optimize the mutual information between local and global features in traffic
graph, we utilize GCN to extract each road segment representation as the local
feature. And the global feature is denoted by the average of all the road segment
representation. As in Sect. 3.3, the local feature could be dynamic. Directly, we
could also update the global feature with the temporal local feature. However,
the global feature is insufficient by aggregating local features, which ignores
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important traffic information, especially traffic real-time status s(t) and flows
f (t) under time interval t. Here, we utilize two vectors s(t) ∈ R

F , f (t)in/out ∈ R
F

to denote them, respectively. Therefore, we could update the global feature g(t)

by unifying these traffic feature with g′(t). There would be several methods to
mix these features, the detail would be discussed in the experiment part.

s(t) = CNN(S(t)) (11)

To calculate traffic real-time condition, we could split geographical space
into grids. And we calculate the average speed of trajectories in each grid under
time interval t to denote the traffic condition S(t) ∈ R

P×Q, where P , Q are
the girds number in rows and columns, respectively. Then convolutional neural
network would be utilized to extract the high-level traffic condition as shown
in Fig. 2(d). To represent traffic flow, we could count each grids’s flow-in and
flow-out times, which would construct matrix F(t)

in ,F(t)
out ∈ R

P×Q to denote the
traffic flow separately, as depicted in Fig. 2(e). The process of extracting high-
level feature of traffic flow is similar to traffic real-time condition’s. To avoid
utilizing the future data in prediction, we could not directly utilize the current
traffic data. Here, we adopt traffic condition s(t−1) under time interval t − 1 as
the global traffic condition. In future, we could utilize LSTM (Long Short Term
Memory) to predict current traffic condition s(t) as global traffic condition by
the history traffic condition {s(t−k), ...s(t−1)}.

Optimization. Assuming the single-graph setup (i.e., (R,A(t))) provided as
input), we will now summarize the steps of the model optimization procedure:

1. Sample a negative example by using the corruption function: (R̃, Ã(t)) ∼
C(R,A(t)).

2. Obtain local representations, h(t)
i for the input graph by passing it through

the encoder: H(t) = E(R,A(t)) = {h(t)
1 ,h(t)

2 , ...,h(t)
N }.

3. Obtain local representations, h(t)
j for the negative example by passing it

through the encoder: H̃(t) = E(R̃, Ã(t)) = {h̃(t)
1 , h̃(t)

2 , ..., h̃(t)
M }.

4. Summarize the input graph by passing its local representation through the
readout function: g(t) = R(H(t)), and form g′(t) by unifying global traffic
condition with g(t).

5. Update parameters of E , R and D by applying gradient descent to maximize
Eq. 7.

This algorithm is fully depicted in Fig. 2(c).

4 Experiments

In this section, we will conduct extensive experiments to evaluate the effective-
ness of our model on travel time estimation task. Firstly, we described three large
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scale datasets. Secondly, the evaluation metrics are introduced. Thirdly, the com-
pared state-of-the-art models would be presented. Next, the results compared
with baselines would be analyzed. Then, we study the effectiveness of hyper-
parameters and each part in our model.

Task Description: Travel Time Estimation, based on each road segment’s rep-
resentation h(t)

i in trajectory tr, we could initialize road segment representation
of travel time estimation model, e.g., DeepGTT. After training DeepGTT, we
could infer each road segment’s travel speed v

(t)
i from road segment’s represen-

tation h(t)
i . Considering each road segment’s distance li as a weight, the average

travel speed is obtained as following:

vr =
n∑

i=1

wivi, wi =
li∑n

k=1 lk
(12)

then the travel time could be achieved as below:

t =
∑n

i li
vr

(13)

Datasets. We conduct experiments on two public datasets from Didi2 and one
dataset from Harbin [13].

– Chengdu Dataset: It consists of 8,048,835 trajectories (2.07 billion GPS
records) of 1,240,496 Didi Express cars in Oct 2018 in Chengdu, China. The
shortest trajectory contains only 31 GPS records (0.56 km), the longest tra-
jectory contains 18,479 GPS records (96.85 km), the average of GPS records
(distance) in trajectory is 257 (4.56 km).

– Xi’an Dataset: It consists of 4,607,981 trajectories (1.4 billion GPS records) of
728,862 Didi Express cars in Oct 2018 in Xi’an, China. The shortest trajectory
contains only 31 GPS records (0.27 km), the longest trajectory contains 16,326
GPS records (166.12 km), the average of GPS records (distance) in trajectory
is 316 (4.96 km).

– Harbin Dataset: It consists of 517,857 trajectories ( the sampling time interval
between two consecutive points is around 30 s) of 13,000 taxis cars during 5
days in Harbin, China. The shortest trajectory contains only 15 GPS records
(1.2 km), the longest trajectory contains 125 GPS records (60.0 km), the aver-
age of GPS records (distance) in trajectory is 43 (11.4 km).

In all datasets each trajectory is associated with the timestamp and driverID.
For the first two dataset, we set trajectories in the first 18 days as the training
set, trajectories in last 7 days as the testing set and the rest of trajectories as
the validation set. For Harbin dataset, we set trajectories in the first 3 days as
the training set, trajectories in last day as the testing set and the rest of tra-
jectories as the validation set. We adopt Adam optimization algorithm to train
2 http://bit.ly/366rlXf.

http://bit.ly/366rlXf
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the parameters. The learning rate of Adam is 0.001 and the batch size during
training is 128. Our model is implemented with PyTorch 1.0. We train/evaluate
our model on the server with one NVIDIA RTX2080 GPU and 32 CPU (2620v4)
cores.

Baselines. To prove the effectiveness of our model on travel time estimation
task, we first compare our model with several baseline methods, including:

– DeepTTE: It treats road segments as tokens and compress a sequence of
tokens (a route) to predict travel time by using RNN [20].

– ST-MetaNet: It employs a sequence-to-sequence architecture to make predic-
tion step by step, in which it contains a recurrent graph attention network to
capture diverse spatial correlations and temporal correlations [16].

– GCWC: It proposed a graph convolutional weight completion to fill each
road’s time-varying speed distribution, which would be helpful for travel time
representation [9].

– DeepGTT: It utilizes a deep generative model to learn the travel time distri-
bution for any route by conditioning on the real-time traffic [13].

Evaluation Metrics. To estimate the performance of different models on the
prediction task, we adopt RMSE and MAE,

RMSE(t, t̂) =

√
1
|t| ||t − t̂||22,MAE(t, t̂) =

1
|t| ||t − t̂||1 (14)

where t, t̂ denote ground truth and estimated value, respectively.

Performance. Compared with the state-of-the-art models, our model outper-
forms other models at least 5.0%, for two reasons: 1) Our model makes the road
representation consider local spatial relationship and global traffic status, simul-
taneously, rather than considering only local spatial relationship as in DeepTTE,
ST-MetaNet and DeepGTT. 2) Our model learns road segment’s temporal repre-
sentation under different time interval, which would denote the dynamic spatial
relationship under a certain time interval, which is also ignored by other models
(Table 1).

Hyperparameters and Ablation. To demonstrate the performance of our
model, we tested our model under different hyperparamters on Harbin dataset,
including the dimension of features F ′ ∈ {40, 80, 120, 160, 200}, the time interval
|t| ∈ {10, 15, 20, 30, 60} min, as shown in Fig. 4.

Dimension: From the values of RMSE and MAE of our model on Harbin dataset,
we could find as dimension increase, the model’s error become less and accuracy
become increasing. Especially, when dimension equals 200, the RMSE/MAE
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Table 1. Performance results on travel time estimation

Chengdu Xi’an Harbin

RMSE MAE RMSE MAE RMSE MAE

DeepTTE 356.74 248.04 344.69 250.15 330.65 239.67

ST-MetaNet 274.90 182.89 266.72 193.78 254.96 184.97

GCWC 280.72 195.43 270.15 200.12 264.92 193.93

DeepGTT 236.44 165.36 228.46 166.77 219.10 159.11

ST-DGI 222.92 154.45 216.33 156.64 208.43 150.53

ST-DGI/S 229.27 160.56 222.82 162.15 213.44 154.61

ST-DGI/T 231.34 161.59 224.53 163.85 215.37 158.02

ST-DGI/G 228.73 159.32 221.12 161.93 212.28 153.70

both is least, our model achieves best performance. Therefore, in the experiments
we set the dimension of features in our model as 200.

Time Interval: We also test the value of time interval’s effect to our model. Com-
pared with dimension, we could find time interval’s change has bigger influence to
model’s performance. When time interval equals 20 min, our model has the best
performance. When time interval become smaller, the performance decreases. It
may be caused by the data sparsity problem, in which there are too few trajec-
tories to learn temporal road segment representation.

To prove the effectiveness of each part in our model, we estimate our model
with its variants:

– ST-DGI/S: It is a variant of our model without the statistical information of
each road segments. Here, we adopt stochastic initialization of road segment
representation.

– ST-DGI/T: It is a variant of our model without considering temporal factor.
Here, we adopt the same representation for a road segment at different time
intervals.

– ST-DGI/G: It is a variant of our model without considering global traffic
status and traffic flows. It just utilizes summarized representation of nodes in
road network graph.

From Table 1, we could find each component is beneficial for our model.
Because without considering any part of our model, the RMSE/MAE of the
variants both become larger. Meanwhile, we could find the variant without tem-
poral factor, our model’s performance decreases most. It denotes the temporal
factor is very important for road segment representation and travel time esti-
mation. Besides, as without considering global traffic status and the statistical
information of road segment, it proves the two factors also play an important
role in travel time estimation.
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(a) vary dimension (b) vary time interval

Fig. 4. Effect of two hyper parameters: dimension and time interval.

5 Conclusion

Both road’s statistical information and global traffic factors and road segment’s
dynamic status with time changing. A mutual information loss function is uti-
lized to learn road segment representation, which could make the road segment
representation characterize global traffic status at special time interval. The
experiments’s performance on travel time estimation demonstrates the effective-
ness of our road representation method, compared with the state-of-the-arts. In
future, we would extend the application of our work on other traffic prediction
tasks, such as traffic speed prediction, route planning and so on.
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