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Abstract. Extracting dense structures in a social network is a funda-
mental task in graph mining and can find many real-world applications.
The temporal social network augments the conventional social network
with the temporal dimension, and extracting dense structures enables us
to understand the period of time for which the dense structures exist.
In this paper, we propose the new notion of (L, K)-lasting core, which
is a densely connected subgraph lasting for a sufficiently long period
of time in the temporal social network. We propose a polynomial-time
algorithm to obtain the maximum (L, K)-lasting core with various pro-
cessing strategies to boost the efficiency. We conduct extensive exper-
iments on multiple datasets to validate the effectiveness and efficiency
of the proposed approach. The experimental results show that our pro-
posed approaches outperform the other baseline approaches in terms of
solution quality and efficiency.
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1 Introduction

Extracting dense subgraphs has been actively studied in recent years. It is a basic
and important work in graph analysis. There are many different definitions of
dense subgroup, e.g., average degree [11,21,30], k-truss [22,40], clique [3,4,15],
quasi-clique [1,27], k-core [12,24,32]. All of those different definitions refer to
the same thing that vertices in the group are highly connected. Dense subgroup
of different definitions have different ways to extract, such as linear program-
ming [23,26], core decomposition [8,42], etc. It has a lot of application in prac-
tice, e.g., biological module discovery [20], story identification [2] and community
detection [6,10].

Most of the previous work focus on the dense subgraph on single-layer graph
which exists for just one time. However, they can not apply to multilayer graph.
There were also many work finding dense subgraph on multilayer network. Some
of them consider layers are different type of information [13,46]. Some of them
consider that different layers represent different time [25,29] and we call them
temporal networks. Each edge in temporal networks is associated with time.
Densely connected vertices in a temporal network may correspond to a commu-
nity. For example, in a collaboration network, dense subgroup may represent a
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research team or some researchers in the same domain publishing papers together
continuously.

In this paper, we study the problem of long-lasting group in the temporal
network. We not only consider the cohesiveness but also the time the group lasts.
We adopt the definition of k-core, which is a group in which each member has at
least k other friends also in the group. We aim to find the largest group in the
temporal network with given lasting-time constraint and connectivity constraint.

To achieve above goal, we present a model, called (L, K)-lasting core, based
on the well-known concept of k-core. Our model can preserve a k-core lasting for
L time. For its application scenarios, we can leverage this model to find a team
of researchers publishing paper every year in the same field, or a social group
whose member interact with each other very frequently. We formally define the
problem and propose effective algorithm to deal with it. We conduct extensive
experiments to evaluate our model and study the impact of algorithm variations.
In summary, the contributions of this paper are summarized as follows:

– We propose the notion of (L,K)-lasting core to integrate the social cohesive-
ness with the temporal dimension to identify important groups in temporal
social networks.

– We develop effective algorithms and techniques to extract (L,K)-lasting
cores.

– We conduct extensive experiments to evaluate the performance of our algo-
rithms.

The rest of this paper is organized as follows. After reviewing related work
on dense subgraph and temporal network in Sect. 2, we provide the notation
and formulate our problem in Sect. 3. The details of the proposed algorithms are
described in Sect. 4. We provide the experimental results in Sect. 5. We conclude
this paper in Sect. 7.

2 Related Work

2.1 Dense Subgraph

Our work is related to the problem of extracting dense subgraphs, which has been
actively studied for years. There are many measurements of dense subgraphs,
including average degree [11], k-core [12], clique [4]. For example, Epasto et
al. [11] proposed the method of maintaining a densest subgraph and quickly
updating while an edge insertion or deletion. Sariyuce et al. [32] also studied on
dynamic graph but what they maintained is the k-core decomposition. Bomze
et al. [4] proposed several methods to deal with clique problem. In this paper,
we propose the notion of (L, K)-lasting core, which extends the idea of k-core.

2.2 Multilayer Network

We study the problem on temporal networks, which is a special type of multilayer
graph and its layers represent continuous time. There are many related work of
multilayer graphs [13,25,29,46,47]. Zhang et al. [46] studied the problem on two
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layer graph which is a special case of multilayer graph. One layer is friendship
of entities and the other is similarity between entities. Rozenshtein et al. [29]
searched several groups of vertices with different time interval to maximize the
sum of group density. Galimberti et al. [13] propose a method to find a subgroup
that maximizes the minimum density of selected layers. Zhu et al. [47] aimed
to find several multilayer cores that cover the largest number of vertices. Li et
al. [25] deals with temporal network. They aimed to find dense subgraph with
three constraints, θ, τ , and k called (θ, τ)-persistent k-core. Note that τ is larger
than θ. The union graph of each θ length time interval in a τ length interval
contains a k-core. We give an example of this work. In 1, we give θ = 2, τ = 3 and
k = 3. For τ = 3, we first choose G1, G2 and G3 and then intersect two consistent
snapshots in them for θ = 2, e.g., G1, G2 and G2, G3. Then we find k-core of
each intersection graph. The k-core of G1, G2 is a, b, c, d and the one of G2, G3

is a, b, c, d, e, f . And the (2, 3)-persistent 3-core of this interval is a, b, c, d. The
work we mentioned can’t apply to our problem which we want to find a group
lasting for a consistent time. We formulate the problem in the next section.

Fig. 1. An example of (θ, τ)-persistent k-core.

2.3 Community Search

Community search in social networks is an active research field [5,9,18,19,31,
41,43]. These works study various community search problems, including the
enumeration of k-vertex connected components [41], extracting dense subgraphs,
i.e., small-diameter k-plexes [9], identifying the maximum clique in sparse social
networks [5], and proposing the UCF-Index to extract (k, η)-core in linear time
for uncertain graphs [43]. In addition to finding dense communities in social
networks, recent works also discuss finding sparse anti-communities in social
networks [16,34,36,37], which has a wide spectrum of application scenarios.

2.4 Dense Subgraphs in Heterogeneous Social Networks

Extracting dense subgraphs in heterogeneous social networks have attracted
research attentions [7,14,17,25,33,35,39,45,47]. These works propose new ideas
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and enable many new applications, such as enumerating the spatial cliques in
the two-dimensional space for dense subgraph extraction [45]. Moreover, a set
of socio-spatial group queries aim at identifying the socially-dense groups and
the corresponding meeting points [14,38,44]. In addition to social and spatial
relations, SDSQ is proposed for live multi-streaming scenarios in social networks
that considers both the social tightness and preference of the users, as well as
the diversity of multi-streaming channels [33].

3 Problem Definition

We are given a temporal network G = (V,E), where V is a set of vertices,
and E = {(u, v, t)}, such that u, v ∈ V , timestamp t ∈ N, indicating that edge
(u, v) exists at time t. Given t ∈ N, Et = {(u, v, t)}, which contains edges in
timestamp t, we call each graph associated with certain time is a snapshot: Let
Gt = (V,Et), ∀t ∈ N. Given a subset C ⊆ V , edges induced by C at timestamp
t is denoted Et(C) = {(u, v, t)} for u, v ∈ C. Then the degree of vertex u ∈ C
at time t is denoted dt(u,C) = |{u ∈ C|(u, v, t) ∈ Et(C)}|.
Definition 1 (L-lasting time). L-lasting time means a time sequence which has
L continuous snapshot, e.g., [0, 1, ..., L− 1].

Definition 2 ((L, K)-lasting core). The (L, K)-lasting core of a temporal net-
work G = (V,E) is a non-empty set of vertices C(L,K) ⊆ V , such that ∀u ∈
C(L,K) and dt(u, C(L,K)) ≥ K, ∀t ∈ [t0, t1, ..., tL−1], K ∈ N

+.

In other words, Definition 2 is saying that a (L,K)-lasting core is a K-core
with L-lasting time. A maximum (L,K)-lasting core means it is a (L,K)-lasting
core which has the most vertices. Then we formulate the first problem in this
work which is to search a maximum (L, K)-lasting core.

Problem 1 (Maximum (L, K)-lasting core). Given a temporal network G =
(V,E), two parameters L and K, find the maximum (L,K)-lasting core of G.

We give an example of (L,K)-lasting core. In Fig. 2, we have a temporal
network of 4 snapshots. Given L = 2 and K = 3, we can observe that a, b, c, d
circled by red line is the maximum (2, 3)-lasting core in this temporal network.
In the next section, we will propose basic algorithm for Problem 1 and how to
speed up using advanced techniques.

Fig. 2. An example of (L, K)-lasting core.
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4 Algorithm Design

In this section, we introduce our proposed approaches and techniques to extract
(L, K)-lasting core in details. First, we give a naive idea and a basic algorithm
that is also the baseline in experiments. And then, we provide some simple but
powerful techniques to speed up online search time. Finally, we explore the order
of snapshots permutation to minimize the intersection cost.

4.1 Naive Algorithm

The naive algorithm of Problem 1 is detailed in Algorithm 1. First, we use the
concept of sliding window and let L be the length of the sliding window, i.e., it
contains L snapshot. The basic algorithm consists of two steps. The first step is
to slide the window by changing starting time t. Let C be Gt, the snapshot of
time t. Then we intersect C with the rest of L − 1 snapshot. The second step
is to find Ck, the K-core of the intersection result C. If the size of Ck is larger
than the current maximum size of (L, K)-lasting core, Ck become the current
maximum (L, K)-lasting core.

Algorithm 1. Naive algorithm
Input: A temporal network G = (V, E), L and K
Output: The maximum (L, K)-lasting core C(L,K) of G
1: C(L,K) ← ∅;
2: forall t ∈ [0, 1,..., tmax -L] do
3: C ← Gt;
4: forall i ∈ [t+1, t+2,..., t+L-1] do
5: C ← C ∩ Gi;
6: Ck ← find kcore(C);
7: if |Ck| > |C(L,K)| then
8: C(L,K) ← Ck;
9: return C(L,K);

Here, we omit the details of the K-core algorithm. It is to recursively remove
the vertex with degree smaller than K and check its neighbors’ degrees until no
vertex has degree smaller than K in the subgroup C, i.e., dt(u,C) ≥ K. Finally,
in line 9, we output the maximum (L, K)-lasting core.

4.2 Temporal Core Finding-Basic (TCFB)

In the previous subsection, the naive approach performs many redundant inter-
sections. To tackle this issue, our idea is to reuse some parts of intersection
results. Once we reuse them, we are able reduce the number intersections and
improve the efficiency. For example, the current time sequence being processed
is [0, 1, 2, 3, 4] and the next time sequence is [1, 2, 3, 4, 5]. We can observe that
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the timestamp [1, 2, 3, 4] is repeated. If we first do intersection of [1, 2, 3, 4] which
means G1, G2, G3 and G4 and have the result C, then the next action for current
time sequence is to intersect C and G0 and for next time sequence is to intersect
C and G5. Thus we can reduce one time of intersection of G1, G2, G3 and G4.
The detailed description is outlined in Algorithm 2.

4.3 Min-Degree Pruning (MDP)

In this subsection, we focus on reducing vertices. Given a time sequence, each
vertex has a degree on different snapshot. After the process of intersection and
k-core, we get the result subgraph C, the degree of each vertex in C will less than
or equal to the vertex’s smallest degree of all snapshots of the time sequence.
In other words, given a time sequence T , d(u,C) ≤ mint∈T

t d(u,Gt). Based on
this, we can remove the vertex u which mint∈T

t d(u,Gt) < K before the pro-
cess. Equipped with this technique, we may traverse less vertices for each time
sequence to reduce the cost. Here we just eliminate the vertex which does not
satisfy the K constraint before the process, then we can further execute Algo-
rithm 2.

Algorithm 2. Temporal Core Finding-Basic (TCFB)
Input: A temporal network G = (V, E), L and K
Output: The maximum (L, K)-lasting core C(L,K) of G
1: C(L,K) ← ∅;
2: C ← ∅;
3: forall t ∈ [0, 1,..., tmax -L] do
4: r ← t mod 2
5: if r = 0 then
6: C ← Gt+1;
7: forall i ∈ [t+2, t+3,..., t+L-1] do
8: C ← C ∩ Gi;
9: index ← i + (L − 1) ∗ r

10: C ← C ∩ Gindex

11: Ck ← find kcore(C);
12: if |Ck| > |C(L,K)| then
13: C(L,K) ← Ck;
14: return C(L,K);

4.4 Reordering for Intersection Minimization (RIM)

Now if we have a time sequence, we intersect snapshots chronologically in Algo-
rithm 2. We observed that if we disrupt the order of original time sequence,
the result of intersection graph remain the same, but the number of intersec-
tion times will be different. Here we can formulate a Subproblem. If we know
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the order having the least number of intersection times, then we have minimum
cost. The subproblem is formulated as follows.

Problem 2 (Minimum times of intersection). Given a time sequence of L snap-
shot on G, we would like to find a permutation of given time sequence that min-
imize the sum of edge numbers of the intersection graph [I0, I1, ..., IL−2], such
that I0 = G0, I1 = intersection(I0, G1), I2 = intersection(I1, G2),..., IL−2 =
intersection(IL−2, GL−1).

Clearly, if we can solve Subproblem 1, then we can solve Problem 1 more effi-
ciently. A straightforward method to find optimal solution of Subproblem 1 is to
enumerate all the permutation of given time sequence and find the best one. How-
ever, it is time-consuming to search in L factorial number of permutation when
L grows. We propose a method, which choose snapshot greedily based on the
previous snapshot. The standard of choosing next snapshot is by edge difference
of two snapshots. Edge difference means the number of edges of previous snap-
shot that do not exist in the next snapshot. The detailed description is outlined
in Algorithm 3. We compute edge difference offline. In line 4, edgediff(Gi,Gj)
means the number of edges of Gi that do not exist in Gj . It should be noted
that edgediff(Gi,Gj) may be not same as edgediff(Gj ,Gi). After the computation,
we get a map Diff giving us information of edge difference of each snapshot
pair. We then apply it on Algorithm 2 which is Algorithm 3. In Figs. 3, 3(a)
is an example of snapshots. We can compute edge difference: Diff [(1,2)] = 3,
Diff [(1,3)] = 2, Diff [(1,4)] = 1, Diff [(2,3)] = 4, Diff [(2,4)] = 1. If we are using
greedy order, and we first choose snapshot 1, and next we choose snapshot 2
because Diff [(1,2)] = 3 is the largest. Then we choose snapshot 3. Now we see
Fig. 3(b) to compute the cost: snapshot 1 has 4 edges; Intersection of 1, 2 has 1
edge; Intersection of 1, 2, 3 has 1 edge and Intersection of 1, 2, 3, 4 has 0 edge.
Cost will be 4 + 1 + 1. Finally, we have an advanced algorithm called Temporal
Core Finding (TCF) which applies MDP and RIM on TCFB.

Algorithm 3. Edge Difference
Input: A temporal network G = (V, E)
Output: Edge difference of each pair of snapshots
1: forall i ∈ [0, 1,..., tmax ] do
2: forall j ∈ [0, 1,..., tmax ] do
3: if i �= j then
4: Diff [(i, j)] = edgediff(Gi,Gj);
5: return Diff ;
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Algorithm 4. RIM
Input: A temporal network G = (V, E), L and K
Output: The maximum (L, K)-lasting core C(L,K) of G;
1: C(L,K) ← ∅;
2: forall t ∈ [0, 1,..., tmax -L] do
3: C ← Gt;
4: h ← t;
5: S ← set(t+1, t+2,..., t+L-1);
6: forall i ∈ [1, 2,..., L-1] do
7: h ← argmaxs∈SDiff(h, s);
8: S ← S \ s;
9: C ← C ∩ Gh;

10: Ck ← find kcore(C);
11: if |Ck| > |C(L,K)| then
12: C(L,K) ← Ck;
13: return C(L,K);

4.5 Time Complexity and Optimality

Then we analyze the time complexity of naive algorithm that we mentioned in
Sect. 4.1. We use a sliding window to traverse given time. Assume the length of
given time is N , then we need to process N − L + 1 sliding window. For each
sliding window, we have L snapshots and intersect graphs by iterating edges
of graph of starting time, so the time complexity of this part is O(EL). The
next part is to find k-core of intersection graph. We recursively remove edges
and vertices, thus the time complexity is O(V +E). Then we can derive the time
complexity of naive algorithm which is O(NLE2).

Next, we analyze the time complexity of TCF. The number of sliding window
is still N − L + 1. We can see the part of reusing intersection of overlapped
snapshots can decrease intersection times by about 2 times, which do not affect
time complexity. The part of MDP remove vertices which can not be in the
solution, but it may not remove any vertices in the worst case. The part of
RIM change the intersection order of snapshots, but it has no effect on time
complexity. Therefore, the time complexity of intersection part is still O(EL).
The part of finding k-core didn’t change. Then we can derive the time complexity
of TCF which is still O(NLE2). Though the time complexity of TCF doesn’t
change, the better performance can be see in later Sect. 5.

Here we discuss the optimality of basic algorithm and TCF. The basic algo-
rithm slide a window to search in each interval, do intersection, and find k-core.
Obviously, the basic algorithm can find optimal solution. Then, in TCF, the part
of reusing intersection of overlapped snapshots just reduce intersection cost, it
process the same thing. MDP part eliminates the vertex not in the solution
which doesn’t affect the result. RIM part change the order of snapshots, but the
intersection graph of them is same as non-ordering one’s. Thus we can observe
that both naive algorithm and TCF can find optimal solution.
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(a) Example snapshots

(b) Greedy order

Fig. 3. Example of greedy order and optimal order.

5 Experiments

In this section, we present experimental results and performance comparisons of
our methods on different datasets.

Datasets. We use 3 real-world datasets recording interactions with temporal
information. Each dataset is with a window size which defining how much con-
tinuous time each snapshot contains. If multiple interactions between two ver-
tices appear in the same window, they just counted as one interaction. The
characteristics of the datasets are reported in Table 1.

Last.fm records the co-listening history of its streaming platform. DBLP
is the co-authorship network of the authors of scientific papers from DBLP
computer science bibliography. Youtube [28] is a video-sharing web site that
includes a social network and we pick two window size for this dataset. Synthetic
datasets are all generated by Barabási–Albert preferential attachment model.
Synthetic2000 is generated as 2000 vertices with 100 snapshots and the average
degree of each snapshot ranges from 50 to 700. Synthetic5000 is generated as
5000 vertices and the average degree ranges from 80 to 900. Synthetic10W is
generated as 100000 vertices and the average degree ranges from 60 to 300.

Method. We compare our approach (TCFB, TCF and two techniques) with
brute force finding order of least intersection times (BF), greedy density method
(Jethava) in [23] and maximal-span-cores algorithm (Galimberti) in [12]. Tech-
niques are MDP and RIM. TCFB is in Sect. 4.2 and TCF is our best method
applying MDP and RIM.

Implementation. All methods are implemented in C++. The experiments run
on a machine equipped with Intel CPU at 3.7 GHz and 64 GM RAM.
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Table 1. Datasets.

Dataset |V | |E| |T | Window size Type

Last.fm 992 4M 77 21 days Co-listening

DBLP 1M 11M 78 1 year Co-authorthip

Youtube 1 3M 12M 78 1 day Friendship

Youtube 2 3M 11M 78 2 day Friendship

synthetic2K 2K 39M 100 X Synthetic

synthetic5K 5K 166M 100 X Synthetic

synthetic10W 10W 636M 50 X Synthetic

5.1 Comparison of BF and TCF

First, we try to find optimal solution of Subproblem 1, finding the permutation of
minimum number of times of intersection. We test all permutation of snapshots
for each given time sequence. The running time is proportional to L factorial.
Then we conduct experiments with small L on DBLP dataset to compare TCF
and BF. In Fig. 4(a), L remains the same, and when K becomes larger, BF’s
running time decreases because the part of finding k-core removes most of the
vertices that do not satisfy K constraint and TCF’s changes not much because
most of the vertices are removed before processing and intersection time domi-
nates the running time. In Fig. 4(b), we can see BF’s running time grows with
L as expected. Figures 4(c) and (d) show that TCF has the smallest number of
times of intersection in all conditions.

6 Methods with Different Techniques

We compare our methods applying different techniques in this subsection. In
Fig. 5(a), the running time of intersection part decreases when K grows, but the
part of finding k-core dominates the running time, thus the total running time
seems to remain the same. In Fig. 5(b), all the total running time of four methods
decreases when L grows because more vertices are removed before processing
and more edges do not satisfy the L constraint. Therefore, both running time of
intersection part and finding k-core part decrease. Moreover, Figs. 5(c) indicates
that TCFB+RIM’s intersection times is smaller than TCFB’s because reordering
snapshots has effect on reducing the cost. They all remain the same because L
is fixed. Both TCFB+MDP’s and TCF’s intersection times decrease when K
grows because more vertices that not satisfy constraint K are removed.

6.1 Synthetic Datasets

Then we conduct experiments on small and big synthetic datasets. For small
synthetic datasets, in Figs. 6 and 7, we can observe that TCFB+MDP’s and
TCF’s time and intersection times decrease when K is larger than 60 in Figs. 6(a)
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(a) Time vs K (b) Time vs L

(c) Number of times of intersection
vs K

(d) Number of times of intersection
vs L

Fig. 4. Comparison of baseline and exhaustive - DBLP.

(a) Time vs K (b) Time vs L

(c) Number of times of intersection
vs K

(d) Number of times of intersection
vs L

Fig. 5. Methods with different techniques - Youtube #1.
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(a) Time vs L - synthetic2000 (b) Time vs L - synthetic2000

(c) Number of times of intersection
vs K

(d) Number of times of intersection
vs L

Fig. 6. Methods with different techniques - synthetic datasets #1.

(a) Time vs L - synthetic5000 (b) Time vs L - synthetic5000

(c) Number of times of intersection
vs K

(d) Number of times of intersection
vs L

Fig. 7. Methods with different techniques - synthetic datasets #2.
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(a) Number of times of intersection
vs K

(b) Number of times of intersection
vs L

(c) Number of times of intersection
vs K

(d) Number of times of intersection
vs L

Fig. 8. Methods with different techniques - big synthetic datasets.

and (c) and when K is larger than 80 in Figs. 7(a) and (c). That is because
synthetic2K’s vertex smallest degree is 60 and synthetic5K’s is 80 and MDP
only can remove vertices when K is larger than each dataset’s smallest degree.
Other methods do not apply MDP so their running time and intersection times
remain almost the same. In Figs. 6(b) and 7(b), TCFB and TCFB+MDP are
lines almost the same, and TCFB+RIM and TCF are lines almost the same. We
can see methods with RIM get large improvement and MDP have no effect on
this condition because of fixed K 30 is too small to remove any vertices. Figures
6(d) and 7(d) have same condition that methods with RIM are lines almost the
same and methods without RIM are other lines almost the same. They first
ascend and then decline, it is because RIM is less effective when L is small. On
the other hand, when L is large, RIM reduces a lot of cost. For big synthetic
dataset, in Figs. 8(a) and (c), MDP only decreases intersection times when K is
large enough. In Figs. 8(b) and (d), RIM is less effective because this dataset is
too sparse to make great change on intersection times, so all lines seems almost
the same.

6.2 Comparison of Other Work

In this subsection, we implement greedy density method (Jethava) in [23] and
maximal-span-cores algorithm (Galimberti) in [12] and compare with our meth-
ods on Last.fm dataset. In Fig. 9(a), we can see Jethava takes more time than
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Galimberti and TCF. For Galimberti and TCF, we can see more clear in Fig. 9(b)
that Galimberti takes more time than TCF. Then we turn to judge the solution
each method found. In Fig. 9(c), we can see Jethava’s solution is always the
biggest size and Galimberti’s solution is same as TCF which is the optimal solu-
tion. Jethava find the group with largest density according to L, which do not
consider K. And its solution is too big to find meaningful or interesting pattern.
Although Galimberti finds optimal solution, TCF is more effective which has less
running time. Therefore, our method TCF has better efficiency and effectiveness.

(a) Time vs L (b) Time vs L

(c) Group Size vs L

Fig. 9. Comparison of other work.

Finally, we make a conclusion. MDP can reduce graph size when K becomes
larger thus reduce number of times of intersection and then running time. When
L becomes larger, RIM can intensively strengthen the performance. In other
words, our methods can give good speedup in running time.

7 Conclusions

In this paper, we introduced a model called (L,K)-lasting core to detect the last-
ing group in temporal networks. We proposed efficient algorithms and applied
advance techniques to solve this problem. Experiments in different datasets show
us the efficiency and scalability. We can find interesting group by using our algo-
rithms. In future work, we can extend our algorithms to temporal hypergraphs,
which edges in the graph are arbitrary sets of nodes.
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