
Deep Attributed Network Embedding
Based on the PPMI

Kunjie Dong, Tong Huang, Lihua Zhou(B), Lizhen Wang, and Hongmei Chen

School of Information, Yunnan University, Kunming 650091, China
kunjiedong@qq.com, huangtong@mail.ynu.edu.cn,

{lhzhou,hmchen}@ynu.edu.cn, lzhwang2005@126.com

Abstract. The attributed network embedding aims to learn the latent
low-dimensional representations of nodes, while preserving the neighbor-
hood relationship of nodes in the network topology as well as the similar-
ities of attribute features. In this paper, we propose a deep model based
on the positive point-wise mutual information (PPMI) for attributed net-
work embedding. In our model, attribute features are transformed into an
attribute graph, such that attribute features and network topology can
be handled in the same way. Then, we perform the random surfing and
calculate the PPMI on the attribute/topology graph to effectively main-
tain the structural characteristics and the high-order proximity informa-
tion. The node representations are learned by a shared Auto-Encoder.
Besides, the local pairwise constraint is used in the shared Auto-Encoder
to improve the quality of node representations. Extensive experimental
results on four real-world networks show the superior performance of the
proposed model over the 10 baselines.

Keywords: Attributed network embedding · Random surfing ·
Positive point-wise mutual information · Auto-encoder

1 Introduction

Network embedding (NE) aims to learn the latent low-dimensional representa-
tions of nodes in a network while preserving the intrinsic essence of the net-
work [8,15,19], which can provide precise service and higher efficiency in prac-
tical applications, such as targeted detection and personalized recommendation
[22,28]. Therefore, NE has aroused many researchers’ interests under the drive
of great requirements in recent years.
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In a network consisting of nodes and edges, nodes represent objects and edges
describe the interactive relationships amongst nodes. For example, in a cite net-
work, nodes represent papers and edges describe the cite relationship amongst
papers. In general, the interactive relationships amongst nodes are referred to
as network topology, which plays a vital role in network analysis tasks. Net-
work topology, typically in the form of node adjacency matrix, is the most com-
mon form of network representation. An important goal of NE is to preserve
the neighborhood relationship of nodes in the network topology. To this end,
various NE methods, such as DeepWalk [15] used the random walks based on
the sampling strategies to convert a general graph structure into a large col-
lection of linear sequences, and then utilized the skip-gram model [13] to learn
low-dimensional representations for nodes from such linear sequences. This is
one effective way to express graph structural information, because the sampled
node sequences characterize the connections amongst nodes in a graph. How-
ever, the procedure involves a slow sampling process, and the hyper-parameters
(such as walk length and total walks) are not easy to determine, especially for
the large graphs. Because the sampled sequences have finite lengths, further-
more, it is difficult to capture the correct contextual information for nodes that
appear at the boundaries of the sampled sequences, such that some relationships
amongst nodes cannot be captured accurately and completely. To make up for
the shortcomings of random walk, DNGR [4] adopts a random surfing model
to capture graph structural information directly, instead of using the sampling-
based method for generating linear sequences. The random surfing model first
randomly orders the nodes in a graph, and then directly yield a probabilistic co-
occurrence (PCO) matrix that capturing the transition probabilities amongst
different nodes. Based on the PCO matrix, the positive point-wise mutual infor-
mation (PPMI) can be computed, which avoids the expensive sampling process.
As an explicit representation of a graph, the PPMI can effectively maintain
the structural characteristics of a graph and contain the high-order similarity
information of the nodes [4], so the PPMI representations of nodes can more
accurately capture potentially complex, non-linear relations amongst different
nodes. But DNGR used network topology alone while did not take the attribute
features affiliated to nodes into consideration.

The attribute features affiliated to nodes, such as authors, research themes
and keywords associated with papers in a citation network, describe the indi-
vidual profile of nodes in a micro-perspective. This information often carries
orthogonal and complementary knowledge beyond node connectivity and net-
work topology, so incorporating semantic information is expected to significantly
enhance NE based on network topology alone. A network whose nodes are associ-
ated with attribute features referred to as an attributed network [2]. The embed-
ding of an attributed network (ANE) aims to learn the latent low-dimensional
representations of nodes while preserving the neighborhood relationship of nodes
in the network topology as well as the semantics of attribute features. This is not
a trivial task, because network topology and attribute features are two heteroge-
neous information, although they describe the same network from two different
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perspectives [5,9]. How to integrate two heterogeneous information and preserve
the intrinsic essence contained in network topology and attribute features simul-
taneously is a key issue in ANE. Some existing approaches, such as TADW
[24], ASNE [12], CANE [20], first converted network topology into the feature
representations, then which were used to embed into a low-dimensional space.
Meanwhile, attribute features were also used to derive low-dimensional embed-
ding on node semantics. The two low-dimensional representations of all these
NEs are concatenated to joint learn the final embedding. Due to converting a
network topology into a feature representation may lose or may not faithfully
represent non-linear relationship amongst the nodes [11], and the individual fea-
ture vector only contains individual information without inter-individual asso-
ciation relationships, combining topological feature vector and attribute feature
vector together may unsatisfactory to explore and exploit the complementary
relationship between these two types of information. Since, UWMNE [11] main-
tained network topology in the graph form and built attribute graph to represent
semantic information, and then used deep neural networks to integrate the topo-
logical and semantic information in these graphs to learn a unified embedding
representation.

Inspired by the DNGR [4] and the UWMNE [11], we propose a deep
model based on the PPMI for ANE in this paper. The model is referred to
as DANEP. Specifically, we first transform attribute features into an attribute
graph, which is homogeneous with topology graph, so we can deal with them
in the same way. Next, we carry out random surfing on the attribute/topology
graph respectively to generate a attribute/topology probabilistic co-occurrence
(PCO) matrix, and then calculate the attribute/topology PPMI based on the
attribute/topology PCO matrix. After that, using a shared Auto-Encoder to
learn low-dimensional node representations. The advantages of DANEP lie in:
the attribute graph describes the geometry of potential non-linear manifolds
under attribute features information more clearly, the uniformed graph repre-
sentation of attribute features and network topology contributes to integrating
the complementary relationship between two types of information; the random
surfing captures graph structural information concerning attribute/topology, the
PPMIs calculated from the attribute/topology PCO matrixes effectively main-
tain both the structural characteristics and the high-order proximity informa-
tion of attribute/topology graph; and the shared Auto-Encoder learns high-level
abstractions from low-level features as well as captures highly non-linear informa-
tion conveyed by the graph via non-linear projections. Besides, the local pairwise
constraint is further designed in shared Auto-Encoder to improve the quality of
node representations. We also conduct extensive experiments on four real-world
networks and compare our approach with 10 baselines. The experimental results
demonstrate the superiority of our approach.

It is needed to note that our DANEP model is different from the DNGR [4]
and the UWMNE [11]. In our DANEP model, we apply the deep learning method
on PPMIs of attribute features and network topology, but the DNGR just apply
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matrix factorization on PPMI of network topology, and the UWMNE directly
use network topology and attribute graph as the input of an Auto-Encoder.

The rest of the paper is arranged as follows. Section 2 offers a brief overview of
related work. The details of DANEP are presented in Sect. 3. Section 4 provides
extensive experiments and results, and in Sect. 5, conclusions are given.

2 Related Work

2.1 Network Embedding

Many network embedding approaches only utilized network topology to learn
the latent low-dimensional representations. DeepWalk [15] first employed the
truncated random walks to capture the local information and then learn the
latent embedding result by making use of the local information. Node2vec [8]
proposed a biased random walk method to explore various neighborhoods. Line
[19] considered to preserve the first-order and second-order proximity of network
topology into the learned embedding representation. SDNE [21] proposed a semi-
supervised model to jointly preserve the first-order and second-order similarity
of network topology. Struc2vec [17] utilized a weighted random walk to obtain a
similar node sequence and conceived a hierarchical structure strategy to capture
node proximity at different scales. GraRep [3] integrated global structural infor-
mation learned from different models into the embedding representation. DNGR
[4] first adopted a random surfing model to capture graph structural informa-
tion, and then used a stacked denoising Auto-Encoder to learn low-dimensional
vertex representations.

2.2 Attributed Network Embedding

In recent years, many researchers learned representations of nodes by integrating
network topology and attribute features of nodes. This brings new opportuni-
ties and development for embedding learning. In detail, AANE [10] considered
the proximity of the attribute features into embedding learning and adopted a
distributed manner to accelerate the learning process. TADW [24] proposed the
text-associated DeepWalk model to integrate node’s text features into embed-
ding learning by matrix factorization. ASNE [12] adopted a deep neural net-
work to model the complex interrelations between attribute features and network
topology. DANE [6] employed two symmetrical Auto-Encoders to capture the
consistency and complementary information between attribute features and net-
work topology, where the two symmetrical Auto-Encoders are allowed to interact
with each other. ANRL [27] utilized a neighbor enhancement Auto-Encoder with
attribute-aware skip-gram to extract the correlations of attribute features and
the network topology. NANE [14] considered the local and global information
in the embedding process by a pairwise constraint. Based on the observations
that nodes with similar topology may be dissimilar in their attribute features
and vice versa,which are referred to as the partial correlation, PRRE [29] taken
the partial correlation of nodes into account in the learning process.
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3 The Proposed Model

In this section, we first present the definition of ANE and then develop a deep
attributed network embedding model based on the positive pointwise mutual
information.

3.1 Problem Definition

Given an attributed network with n nodes and m edges G = (V,E,A), wherein
V = {v1, · · · , vn} and E = {eij}ni,j=1 represent the sets in items of nodes and
edges, respectively, and A ∈ Rn×m represent the attribute matrix affiliated to
the nodes, whose row vector ai ∈ Rm corresponds to the attribute features of the
node vi. Let S ∈ Rn×n be the adjacent matrix affiliated to the edges, whose the
element sij corresponds to the relationship of the edge between nodes vi and vj ,
i.e., sij = 1 indicates there exists an edge linked vi to vj , and sij = 0 indicates the
edge is nonexistent. The goal of the ANE is to find a map function f(A,S) →
H that map attribute features A and network topology S into a unified low-
dimensional representation H ∈ Rn×d(d � n, d � m) while preserving the
proximities existing in both the attribute of the nodes and the topology of the
network. More precisely, nodes with similar attribute and topology in the original
network should be closer in the embedding space.

3.2 The Architecture of Proposed Model

The architecture of DANEP is shown in Fig. 1. DANEP first constructs an
attribute graph based on the attribute features A, such that the attribute graph
and the topology graph are homogeneous. Based on the homogeneous represen-
tations of the attribute graph and topology graph, the random surfing is first
conducted to obtain the attribute/topology probabilistic co-occurrence (PCO)
matrix, and then the PPMIs concerning the attribute graph and topology graph
are calculated, represented as PPMI AF and PPMI NT, respectively. The
row vectors of PPMI AF and PPMI NT depict the profile and the neigh-
borhood relationships of node vi with respect to attribute features and network
topology. After that, a shared Auto-Encoder equipped with the local enhance-
ment of graph regulation is applied to learn the unified low-dimensional rep-
resentation for each node from the PPMIs concerning the attribute graph and
topology graph.

The Construction of the Attribute Graph. In this subsection, we construct
an attribute graph based on the attribute features A. Let B ∈ Rn×n be the
attribute similarity matrix, whose elements bij ∈ B can be measured by the
similarity of attribute vectors ai ∈ A and aj ∈ A, such as the cosine similarity
can be calculated by Eq. (1), where “·” signifies the dot product of the two
vectors, “|| · ||” denotes L2 norm, and “×” indicates the product of two scalars.
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Fig. 1. The architecture of DANEP.

bij =
ai · aj

‖ai‖ × ‖aj‖ (1)

Intuitively, the distance between two nodes is closer, the more intimate rela-
tionship they should have. Therefore, we apply the k-nearest neighbor method
[11,18] on the B to construct the attribute graph with n nodes, where each node
vi is connected to k nodes with top-k similarities in bi. Let Bnew ∈ Rn×n be the
adjacent matrix of the constructed attribute graph, then the element bnewij = 1
indicates there exists an edge linked vi to vj , and bnewij = 0 indicates the edge is
nonexistent.

The Calculation of PPMIs. Motivated by DNGR [4], we adopt the ran-
dom surfing model on the topology graph S/attribute graph Bnew to obtain
the attribute/topology probabilistic co-occurrence (PCO) matrix through k-step
iterative. The iterative process can be represented by Eq. (2), where p0 is the
initial one-hot vector with i-th value is 1 and the other values are 0, coefficient
α and 1 − α represent the probabilities with respect to the node jumps to the
next node and returns to original vertex (restart), respectively.

pk = α · pk−1 + (1 − α)p0 (2)

Based on the attribute/topology PCO matrix, the pointwise mutual infor-
mation (PMI) can be calculated by Eq. (3), where p(vi, vj) represents the num-
ber of co-occurrences that nodes vi and vj are in the same context, |D| =∑

vi

∑
vj

p(vi, vj), p(vi) and p(vj) represents the number of occurrences of nodes
vi and vj , respectively.

PMIvi,vj
= log(

p(vi, vj) · |D|
p(vi) · p(vj)

) (3)
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Then, PPMI can be calculated by Eq. (4) [23], which means that negative
values in attribute/topology PMI are assigned to zeros.

PPMIvi,vj
= max(PMIvi,vj

, 0) (4)

The Design of the Shared Auto-Encoder. In general, an Auto-Encoder
consists of an encoder and a decoder which can extract inherent essence and
non-linear information of a network. In DANEP, we designed a shared Auto-
Encoder with 2K −1 layers to incorporate attribute features and network topol-
ogy. The input of the Auto-Encoder is the concatenation of the row vectors of
PPMI AF and PPMI NT, i.e. ci = (fi, ti) = (fi1, · · · , fin, ti1, · · · , tin), where
C = [F,T] ∈ Rn×2n, ci, fi and ti are the i-th row vector of C, F, and T, respec-
tively. Let yi,k(k = 1, · · · ,K) and ŷi,k(k = 1, · · · ,K) be the desired embedding
representation and the reconstructed representation of the Auto-Encoder, then
yi,k(k = 1, · · · ,K) and ŷi,k(k = 1, · · · ,K) can be computed by Eq. (5)–(9).

yi,1 = f(W1ci + b1) (5)

yi,k = f(Wkyi,k−1 + bk)(k = 2, · · · ,K − 1) (6)

yi = ŷi,1 = yi,K = f(WKhi,K−1 + bK) (7)

ŷi,k = f(WK+k−1ŷi,k−1 + bK+k−1)(k = 2, · · · ,K − 1) (8)

ŷi,K = f(W2K−1ŷi,K−1 + b2K−1) (9)

Where f(·) represents the non-linear activation function, and θ =
{Wk,bk}(k = 1, · · · , 2K − 1) are weight and bias parameters of the shared
Auto-Encoder.

Let Ĉ be the output of the decoder, where ĉi = ŷi,K = f(W2K−1ŷi,K−1 +
b2K−1). The goal of Auto-Encoder is to minimize the reconstruction loss between
the C and Ĉ, so the loss function is defined as:

Lrec =
n∑

i=0

||ĉi − ci||22 (10)

To further improve the quality of node representation of the shared Auto-
Encoder, we designed the local pairwise constraint, which is used to reinforce
the consistency and complementary information contained in attribute features
and network topology. Given the adjacent matrix S/Bnew of attribute/topology
graph, the local pairwise constraint is defined as:

Llocal =
1
2

∑n

i=1

∑n

j=1
sij ||yi − yj ||22 +

1
2

∑n

i=1

∑n

j=1
bnewij ||yi − yj ||22

= tr((YC)
T
L1YC) + tr((YC)

T
L2YC)

(11)

where L1 = D′ − S, L2 = D′′ − Bnew, both D′ = [d′
ij ] ∈ Rn×n and D′′ =

[d′′
ij ] ∈ Rn×n are diagonal matrices, D′

ii =
∑n

j=1 sij , D′′
ii =

∑n
j=1 bnewij .
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Thus, the objective function of the DANEP is defined as:

L = αLlocal + βLrec (12)

Where α and β are the hyper-parameter to balance the weights among dif-
ferent losses.

4 Experiments and Results

In this section, we conduct extensive experiments on the four real-world networks
by adopting three widely used applications, i.e., node classification, node clus-
tering, and network visualization, to evaluate the effectiveness of our proposed
method DANEP.

4.1 Datasets

In experiments, four publicly available networks with class labels are used, i.e.,
Cora, Citeseer, BlogCatelog and Flicker networks, where the first two datasets
are academic papers citation network, and the last two datasets are the social
networks. In Cora/Citeseer networks, nodes and edges represent academic papers
and the citation relationships amongst those papers, respectively, each paper can
be represented as a bag-of-words vector with 1433/3703-dimensions, and papers
are divided into 7/6 categories, such as Genetic algorithm, Neural Networks
and Reinforcement Learning. In BlogCatelog/ Flicker networks, nodes and edges
represent the users and relationships amongst those users, respectively, each user
can be represented as a bag-of-words vector with 8189/12047-dimensions, and
those users are divided into 6/9 categories based on social preferences. The
statistics for each network are summarized in Table 1.

Table 1. The statistics of networks.

Dataset Nodes Edges Features Classes

Cora 2708 5278 1433 7

Citeseer 3312 4660 3703 6

BlogCatalog 5196 171743 8189 6

Flicker 7575 239738 12047 9

4.2 Baselines

To verify the effectiveness of DANEP model, we select 10 approaches as the base-
lines, including: 4 “Topology-only” algorithms, i.e., DeepWalk [15], Node2Vec [8],
GraRep [3], DNGR [4], and 6 “Topology +Attribute” algorithms, i.e., AANE
[10], TADW [24], ASNE [12], DANE [6], ANRL [27], NANE [14]. The details of
these baselines are illustrated as follows:
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“Topology-Only” Algorithms: DeepWalk [15]: It employed the truncated
random walks to capture the local topology information, and then learned the
latent embedding representation by making full use of the captured local infor-
mation.

Node2Vec [8]: It proposed biased random walks to project node into a low-
dimensional space while preserving the network essence by exploring and pre-
serving network neighborhoods of nodes.

GraRep [3]: It developed a model to learn the node representation for the
weighted graph by integrating global structural similarity in the learning process.

DNGR [4]: It adopted a random surfing model to capture topology informa-
tion, and then utilized the stacked denoising Auto-Encoder to extract meaningful
information into the low-dimensional vector representation.

“Topology +Attribute” Algorithms: AANE [10]: AANE considered and
integrated the proximity of attribute features into the embedding learning and
adopted a distributed manner to accelerate the learning process.

TADW [24]: It employed a matrix factorization method based on DeepWalk
to learn low-dimensional representations of text and network topology, and then
concatenate them to form the final representation.

DANE [6]: DANE allowed neighborhood topology obtained by random walks
and attribute features to interact with each other to preserve the consistent and
complementary information during the learning process.

ANRL [27]: It designed a neighbor enhancement Auto-Encoder model with
an attribute-aware skip-gram to integrate the attribute features and network
topology proximities in the learning process simultaneously.

ASNE [12]: ASNE integrated the adjacent matrix of network topology and
attribute matrix on the input layer, and allowed them to interact with each other
for capturing the complex relationships and the more serviceable information.

NANE [14]: It cascaded the adjacent matrix of network topology and cosine
similarity of attribute features into the unified representation to capture the
local information and non-linear correlation in the network.

4.3 Parameter Settings

To get a fair comparison, we set the embedding dimension d of all datasets to
be 128 for all baselines. For DeepWalk and Node2Vec, we set the window size as
10, the walk length as 80, and the number of walks per node as 10. For GraRep,
the maximum transition step is set to 5. For TADW, we set the regularization
parameter to 0.2. Besides, the default values of the other parameters for these
methods were set the same as the open-source codes released by the original
authors.

4.4 Node Classification

In this subsection, we randomly select 10%, 30%, 50% nodes as the training set
and the remained nodes as the testing set, apply the linear SVM as the classifier
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Table 2. The performance evaluation of node classification.

Metrics Methods 10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Cora DeepWalk 0.7341 0.7180 0.7905 0.7796 0.8233 0.8136

Node2Vec 0.7059 0.6880 0.7747 0.7627 0.8013 0.7913

GraRep 0.7375 0.7207 0.7750 0.7561 0.7835 0.7631

DNGR 0.6493 0.6380 0.7071 0.6968 0.7335 0.7164

AANE 0.6582 0.6177 0.7195 0.6891 0.7305 0.7015

TADW 0.7945 0.7777 0.8360 0.8220 0.8436 0.8298

DANE 0.7751 0.7545 0.8188 0.8033 0.8302 0.8143

ANRL 0.7487 0.7224 0.7659 0.7430 0.7731 0.7538

NANE 0.5114 0.4660 0.5816 0.5470 0.6459 0.6113

ASNE 0.457 0.4353 0.5347 0.5099 0.5723 0.5466

DANEP 0.8215 0.8078 0.8398 0.8259 0.8575 0.8435

Citeseer DeepWalk 0.5037 0.4723 0.5888 0.5502 0.6199 0.5790

Node2Vec 0.4875 0.4508 0.5621 0.5223 0.5851 0.5401

GraRep 0.5063 0.4644 0.5421 0.4881 0.5542 0.4957

DNGR 0.4581 0.4228 0.4970 0.4547 0.5331 0.4895

AANE 0.6549 0.6008 0.6834 0.6293 0.6930 0.6436

TADW 0.6621 0.6181 0.7182 0.6520 0.7421 0.6972

DANE 0.6415 0.5960 0.6950 0.6520 0.7163 0.6722

ANRL 0.6795 0.6371 0.7270 0.6747 0.7397 0.6880

NANE 0.4488 0.4171 0.5783 0.5334 0.6298 0.5749

ASNE 0.3261 0.3028 0.4110 0.3695 0.4385 0.3874

DANEP 0.6494 0.5970 0.7357 0.6834 0.7349 0.6787

Flickr DeepWalk 0.4389 0.4352 0.5223 0.5144 0.5483 0.5385

Node2Vec 0.3899 0.3863 0.4896 0.4804 0.5171 0.5049

GraRep 0.4908 0.4829 0.5422 0.5327 0.5558 0.5466

DNGR 0.4656 0.4027 0.4653 0.4552 0.4768 0.4656

AANE 0.5865 0.6068 0.6151 0.6323 0.6244 0.6369

TADW 0.6117 0.6026 0.7020 0.6940 0.7218 0.7143

DANE 0.6453 0.6439 0.7160 0.7144 0.7395 0.7380

ANRL 0.2740 0.1984 0.2947 0.2268 0.2978 0.2250

NANE 0.3733 0.3690 0.4993 0.4931 0.5290 0.5224

ASNE 0.4366 0.4316 0.5218 0.5116 0.5500 0.5413

DANEP 0.8457 0.8431 0.8585 0.8565 0.8690 0.8670

BlogCatalog DeepWalk 0.5781 0.5733 0.6624 0.6549 0.6899 0.6811

Node2Vec 0.5296 0.5258 0.6283 0.6215 0.6592 0.6509

GraRep 0.6890 0.6851 0.7272 0.7230 0.7450 0.7413

DNGR 0.5896 0.5850 0.6515 0.6423 0.6682 0.6585

AANE 0.8565 0.8539 0.8846 0.8828 0.8920 0.8897

TADW 0.8199 0.8175 0.8610 0.8799 0.8789 0.8772

DANE 0.8436 0.8400 0.8180 0.8752 0.8876 0.8856

ANRL 0.8073 0.8004 0.8285 0.8225 0.8333 0.8274

NANE 0.6806 0.6778 0.7764 0.7739 0.8043 0.8016

ASNE 0.5838 0.5823 0.6651 0.6615 0.6759 0.6695

DANEP 0.8749 0.8739 0.9126 0.9117 0.9226 0.9219
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Table 3. The performance evaluation of node clustering.

Metrics Methods Cora Citeseer BlogCatalog Flickr Average

ACC DeepWalk 0.5609 0.4029 0.3646 0.3163 0.4112

Node2Vec 0.6128 0.4208 0.3553 0.3209 0.4275

GraRep 0.5027 0.3238 0.3710 0.2934 0.3727

DNGR 0.5948 0.3929 0.3599 0.2750 0.4057

AANE 0.3904 0.5379 0.4320 0.1338 0.3735

TADW 0.6686 0.5689 0.6848 0.3640 0.5716

DANE 0.7187 0.4884 0.4879 0.2445 0.4849

ANRL 0.5129 0.5730 0.4720 0.2137 0.4429

NANE 0.1503 0.2430 0.5837 0.2861 0.3158

ASNE 0.3889 0.4088 0.3896 0.2283 0.3539

DANEP 0.7179 0.6097 0.7048 0.6886 0.6803

NMI DeepWalk 0.4021 0.1371 0.1966 0.1694 0.2263

Node2Vec 0.4396 0.2227 0.2060 0.1801 0.2621

GraRep 0.3749 0.1673 0.2040 0.1482 0.2236

DNGR 0.4424 0.2017 0.1836 0.1462 0.2435

AANE 0.2206 0.2774 0.2759 0.0901 0.216

TADW 0.5515 0.3550 0.4352 0.1833 0.3813

DANE 0.5494 0.2975 0.3277 0.1165 0.3228

ANRL 0.3812 0.3619 0.3417 0.1004 0.2963

NANE 0.2096 0.2637 0.3583 0.1329 0.2411

ASNE 0.2096 0.1221 0.2165 0.1290 0.1693

DANEP 0.5510 0.3792 0.5207 0.6002 0.5128

and use 5-fold cross-validation to train the classifier in the learning process.
This process is repeated 10 times and the average performance in terms of both
Macro-F1 and Micro-F1 [25] is reported as the classification results. The detailed
results are shown in Table 2, where the bold numbers indicate the best results.
From Table 2, we have the following observations and analyses:

(1) DANEP obtains the best performance with respect to the Micro-F1 and
Macro-F1 on the Cora, Flickr and BlogCatalog datasets when the training
rates are 10%, 30% and 50%, respectively. The improved performance con-
cerning the Micro-F1 and Macro-F1 is significantly on different datasets,
such as DANEP achieves the 20.04%, 19.92%, 14.25%, 14.21%, 12.95 and
12.9% than the best baseline DANE on Flicker dataset when the training
rates are 10%, 30% and 50%, respectively. Those results demonstrated the
superiority of DANEP with random surfing and PPMI schemes.

(2) ANRL and TADW achieve the highest values on the Citeseer dataset when
the training rates are 10% and 50%, respectively, which indicate that the
neighbor enhancement mechanism and text-associated matrix factorization
have some the ability to capture the essence of the network, but they are
still obviously inferior to DANEP.
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Fig. 2. The visualization result of different methods on the BlogCatalog dataset

Fig. 3. The sensitivity of DANEP w.r.t. different α and β for node classification

4.5 Node Clustering

Node clustering is an unsupervised downstream task of network analysis based
on the learned node representation. In this study, we use k-means [1] as the
clustering algorithm, accuracy (ACC) [6] and normalized mutual information
(NMI) [14] as metrics to evaluate the clustering performance. Similarly, this
process is repeated 10 times and the average performance in terms of both ACC
and NMI is reported as the clustering results. The final results for each baseline
are shown in Table 3. From Tables 3, we have the following observations and
analyses:
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(1) DANEP acquires the best clustering performance on the Citeseer, BlogCat-
alog and Flickr datasets against all the baselines. The promotion of perfor-
mance is significantly on different datasets, such as, DANEP with 32.46%
and 41.69% than the best baseline TADW on the Flicker dataset. Besides,
DANEP ranked the second on the Cora dataset, but only with the slightly
inferior in ACC than DANE, i.e., −0.008, and in NMI than TADW, i.e.,
−0.005, respectively. Those results indicated that DANEF based on the
graph representation and PPMI has a good clustering performance than
all baselines.

(2) From the perspective of average performance, TADW obtains better clus-
tering results than the other baselines, but TADW is seriously inferior to
DANEP. In detail, DANEP averagely improves 10.87% in ACC and 13.11%
in NMI than TADW, which demonstrated attribute graph and PPMI matrix
have powerful assistance in node clustering.

4.6 Network Visualization

To verify whether the learned node representations have the discriminative
essence features, we use the t-SNE [16] to project the learned embedding repre-
sentation for each node into the 2D space. The color of a point indicates the class
label. The desired embedding layout should be that nodes with the same color
(label) to closer each other and different colors (label) to distant each other with
the obvious boundary. Due to the space limitation, we only show the visualiza-
tion result on the BlogCatalog dataset in Fig. 2, and the visualization results on
other datasets are similar.

From Fig. 2, we can see that the DANEP, i.e., sub-figure (k), performs the
best result with the nodes of the same color are close to each other and the
boundaries amongst the different colors are discernible. Besides, DANE, sub-
figure (e), performs the suboptimal result that the separation of boundaries
is inferior to DANEP. Nevertheless, the visualization results of the DeepWalk,
Node2Vec, Grarep, DNGR, ANRL, AANE, TADW, NANE and ASNE, i.e., sub-
figure (a), (b), (c), (d), (f), (g), (h), (i) and (j), are mixed with different color
nodes.

4.7 Sensitivity Analysis of Parameters

The hyper-parameters α and β are used to balance the weights between the
pairwise constraint loss and reconstruction loss of the DANEP. In this subsection,
we analyze the sensitivity of hyper-parameters of DANEP via node classification
and node clustering tasks. Experimental results of Micro-F1 of node classification
and ACC of node clustering are presented in Fig. 3 and Fig. 4, respectively. The
trends of Macro-F1 and NMI with respect to α and β are similar to that of
Micro-F1 and ACC, so we do not present them due to the space limitation.

From Fig. 3, we can observe that the tendencies of the Micro-F1 value of node
classification are stable under different hyper-parameters and different datasets,
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Fig. 4. The sensitivity of DANEP w.r.t. different α and β for node clustering

which indicates DANEP has stable performance for node classification. In Fig. 4,
the fluctuation of ACC of node clustering is obvious with the various hyper-
parameter β than hyper-parameter α, which indicates that reconstruction loss
plays a vital role in the node clustering process.

5 Conclusion

In this study, we develop the DANEP model to integrate attribute features
and network topology into a unified graph format and encode each node into a
low-dimensional embedding representation. In our model, the k-nearest neighbor
graph can reveal some potential non-linear manifold under the attribute features,
the random surfing model and PPMI can capture the structural characteristics
and high-order proximity information of the attribute/topology graph, and the
pairwise constraint can improve the quality of node representation. Experiment
results on four real-life datasets in node classification, node clustering and visu-
alization tasks indicated that the performance of the DANEP outperformed
10 representative baselines, including “Topology-only” algorithms and “Topol-
ogy+Attribute” algorithms.

The DANEP is designed to handle the homogeneous networks with single-
typed nodes and edges. However, real-world networks are usually with multiple-
typed nodes and edges, which contain richer semantic information and more
complex network topology for network representation learning [7,26]. Therefore,
extending the DANEP to heterogeneous networks and improving the stability
of clustering are our future works.
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