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Abstract. Recently, deep-model-based image inpainting methods have achieved
promising results in the realm of image processing. However, the existing meth-
ods produce fuzzy textures and distorted structures due to ignoring the semantic
relevance and feature continuity of the holes region. To address this challenge,
we propose a detailed depth generation model (GS-Net) equipped with a Multi-
Scale Gated Holes Feature Inpainting module (MG) and a Patch-wise Spacial
Attention module (PSA). Initially, the MG module fills the hole area globally and
concatenates to the input feature map. Then, the module utilizes a multi-scale
gated strategy to adaptively guide the information propagation at different scales.
We further design the PSA module, which optimizes the local feature mapping
relations step by step to clarify the image texture information. Not only preserv-
ing the semantic correlation among the features of the holes, the methods can also
effectively predict the missing part of the holes while keeping the global style
consistency. Finally, we extend the spatially discounted weight to the irregular
holes and assign higher weights to the spatial points near the effective areas to
strengthen the constraint on the hole center. The extensive experimental results on
Places2 and CelebA have revealed the superiority of the proposed approaches.

Keywords: Image inpainting · Feature reconstruction · Gated mechanism ·
Spacial attention · Semantic relevance

1 Introduction

The goal of image completion is the task to fill the missing pixels in an image in a way
that the corresponding restored image to have a sense of visual reality. The restored area
needs continuity and consistency of texture while seeking semantic consistency between
thefilled area and any surrounding area. Image completion techniques arewidely adopted
in photo recovery, image editing, object deletion and other image tasks [1, 5]. At present,
the existing methods have focused on the restoration of the rectangular areas near the
image centers [6, 7]. This kind of regular hole restoration could result in the model
over-fitting accompanied by poor migration effect [8]. The overarching objective of this
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work is to propose an image-restoration model, which is sufficiently robust to repair
regular and irregular holes. Our proposed technique produces semantically meaningful
predictions to ensure that the repaired parts are perfectly integrated with other portions
without any expensive post-processing.

Traditional image restoration methods mainly exploit the texture synthesis technol-
ogy to address the challenge of hole fillings. These methods assume that the missing
regions should contain a pattern similarity to those of background regions. And they
use the certain statistics of the remaining image to restore the damaged image region
[1–4]. As one of the most advanced techniques used in the past, PatchMatch [1] can
quickly find the nearest neighbor matching to replace the repaired hole area through
the stochastic algorithm. Although it usually produces the smooth results especially in
background rendering tasks, it is limited by the available image statistics and just con-
siders the low-level structures without any high-level semantics or global structures for
captured images. In addition, the traditional diffusion-based and block-based methods
assume that missing blocks can be found in the background image and they cannot gen-
erate new image content for complex and non-repetitive structural regions (e.g. human
faces) [9].

Nowadays, the deep-learning-based methods are constantly explored to overcome
the aforementioned obstacles of the above methods by training a large amount of data
[8–10, 12, 13]. In particular, deep convolutional neural networks (CNNs) and generative
adversarial networks (GANs) have been introduced to implement the image complement
tasks [9, 14, 15]. Broadly speaking, image inpainting tasks equipped with deep module
mainly can be divided into two categories. The first ones uses global spatial attention
to fill holes by building the similarity between a missing area and the other areas [6, 7,
19, 31]. Although this group of methods can ensure a consistency between generated
information and context semantics, there often exist pixel discontinuity and semantic
gaps [12]. The second family of schemes is to attach different levels of importance to the
valid pixels of the original image to predict the missing pixels [8, 14]. These methods
correctly handle irregular vulnerabilities correctly, but the generated content still suffers
from semantic errors and boundary artifacts [12]. The above methods work poorly due
to ignoring the semantic relevance and the feature continuity of the generated contents,
which are related to the continuity of local pixels.

Inspired by the human mind coupled with the partial convolution [8], we propose a
Multi-Scale Gated Inpainting module (MG) and a Patch-wise Spacial Attention module
(PSA) are proposed to fill an unknown area of the feature map with similar method
as a part of our model. The MG module first fills each unknown feature patch in an
unknown region with the most similar feature patch in the known regions. Subsequently,
the selection of information in the filled area is controlled by a two-scale gating strategy.
As a result, the global semantic consistency is guaranteed by the first step, and the
local feature consistency is optimized by the second step optimization. In addition to
controlling the style relation under local features, the PSA module handles the repaired
features with block-level attention.

Technically, our model uses the U-Net [20] architecture as a baseline to propagate
the consistency of global and local styles and detailed texture information to the missing
areas. On the whole, this model continuously collects the features of an effective region
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through partial convolution. At a higher level of the encoding phase, we develop a
distinctiveMulti-ScaleGated Inpaintingmodule (MG) to carry out two phases. First,MG
revises a current hole area for its global style alignment throughContextual Attention [6].
Second, MG brings a resulting feature fix into alignment with the overall style through
a multi-scale gated mechanism. In the decoding stage, PSA divides the feature channel
into multiple patch blocks to further optimize the consistency of local styles so that the
network learns more effective local features. Finally, the repaired image is delivered to
VGG16 [29] to gauge the style loss and perception loss. Which help generate details
consistentwith the global style. In addition, ourmodel is finally down-sampled to the size
of 4× 4 in order to obtain a higher level of semantic consistency. The experiments driven
by the two standard datasets (Places2 [25] and CelebA [26]) reveal that the proposed
methods produce higher quality results than those of the existing competitors. The main
contributions of this work are summarized as follows:

• We develop a new Multi-Scale Gated Inpainting module (MG) applied to the model
structure.MG combines feature maps generated by gatedmodules of different propor-
tions to obtain structural information of features at different scales, thereby flexibly
leveraging background information to balance the image requirements.

• We extend the spatial attention module by adding the minimization feature of patch-
wise to ensure that the pixels generating holes area are true and locally stylized.

• We introduce the concepts of style loss and the perception loss to construct the
proposed loss function, which yield a consistent style. The proposed new spatial
discounted loss of irregular holes helps to strengthen hole-center constraints, thus
promoting texture consistency.

• The experiments with two standard datasets (Places2 [25] and CelebA [26]) demon-
strate the superiority of our approaches over the most advanced methods found in the
literature.

2 Related Work

2.1 Image Inpainting

Traditional non-learning methods propagate and reproduce information by calculating
the similarity with the other background regions [2, 4]. PatchMatch [1] can well syn-
thesize surface textures through the nearest neighbor matching algorithm, which is an
excellent patch matching algorithm. However, these methods do not semantically origi-
nate meaningful contents, neither can the methods deal with large missing areas. For the
nonexistent detailed texture features, these schemes are unable to generate new features
while exhibiting poor recovery effect.

In recent years, themethods based on deep learning have become a significant symbol
of the image restoration.Context Encoder [15] tries to restore the central area (64× 64) of
128× 128 images. This technique is the first deep networkmodel to handle the inpainting
tasks, which provides reasonable results for the holes semantic filling. Unfortunately,
it has a poor inpainting ability at fine textures. Shortly thereafter, Iizuka et al. extends
the context encoder by proposing local and global discriminators to improve repaired
quality for the image consistency [10]. This extension overlooks the consistent relation
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between holes and the other areas as a whole. Therefore, there exist more obvious color
differences. The Context Encoder [15] is trained to act as the constraint of global content
[13], local texture constraints are constructed by using the local patches similarity of the
missing part and the known regions to obtain high-resolution prediction.

2.2 Feature Matching and Feature Selection

Global spatial attentionmechanisms have also been deployed to address image inpainting
challenges by the virtue of similarity relation. CA [6] creates a rough prediction for
the hole area through similarity calculation. The Multi-Scale Contextual-Attention [7]
patch is located in the missing region. Ultimately, the re-weight for both is located on
the Squeeze-And-Excitation [16] module, which improves generalization ability of the
model. SCA [12] build a patch-wise continuity relationship between adjacent features
of the missing area to enhance the continuity of features inside the holes area. Shift-net
[19] selects a specific encode-decode layer of the same level for similarity measures,
encoder features of the known region are shifted to serve as an estimation of the missing
parts. The RFR [31] harvests remote information and progressively infers a boundary
of the hole by the KCA module, thereby gradually strengthening the constraints on the
hole’s center.

The above methods adopt the similar treatment for the corruption areas and non-
corruption area, thereby leading to artifacts such as color discrepancy and blurriness.
Only the effective features of each layer are processed by partial convolution [8]. By
updating the mask of each layer and normalizing the convolution weights and mask
values, which ensures that the convolution filter focuses on the effective information
of the known regions to deal with irregular holes. Partial convolution is regarded as a
kind of hard mask [14], which confronts roadblocks learn specific mask information.
Furthermore, it introduces automatic learning soft mask by using gated convolution and
combines with SN-Patch GAN discriminator to achieve optimized predictions. When
it comes to feature normalization, the above methods do not consider the influence of
mask areas, which limits the trainings of network repair. Treating the damaged areas and
the undamaged areas separately [11], the mean value and variance deviation are solved
to continuously improve network performance.

Unlike the leading-edge strategies proposed in the literature [6, 8, 14], our solution
is tailored for process images where backgrounds are misleading or lacks similarity. Our
technique has an edge over the existing methods, because ours leverages the multi-scale
gated module to control the degree of feature extraction while dynamically screening
useful features to alleviate the problem of information redundancy and loss. In order to
enrich repaired details, an extended spatial attention module [28] performs the patch-
wise division on the channel to dynamically extract local features. In this way, our model
is adept at generalizing scenes and understanding styles as well as picture details.
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Fig. 1. The architecture of ourGS-Netmodel.We augment theMGandPSA layer at the resolution
of 32 × 32 in the network.

3 Approach

We describe the entire model structure from top to bottom, and then introduce the MG
module and PSA module in details. Some extensions to the model are also expressed
to allow optional user guidance.

3.1 An Overview of Our Model (GS-Net)

Our model is a one-stage and end-to-end image inpainting model, thereby making our
approach simpler and easier to implement than other methods. More specifically, U-Net
[20] is used as the baseline structure and the partial convolution [8] is stacked as the
basic modules for deep feature extraction in GS-Net (see also Fig. 1). More formally, we
denote W as convolution layer filter weights, b as the bias, M as the mask, and X as the
feature values for the current convolution window. The partial convolution is expressed
as:

x
′ =

{
WT (X ⊗ M )

sum(1)
sum(M )

+ b, if sum(M ) > 0

0, otherwise
(1)

In each convolution window with effective feature values, partial convolution layer
assigns greater weight to the convolution result with fewer feature values through the
above operation. After each partial convolution operation is accomplished, whether the
mask has a valid pixel update mask through the convolution region. This process is
expressed as:

m
′ =

{
1, if sum(M ) > 0
0, otherwise

(2)

After the feature map passes through partial convolutional layer, the missing area
is filled with the surrounding effective feature area and becomes smaller. Therefore,
all the features areas of the holes will be completely filled after sufficient successive
applications of the partial convolution layer.
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3.2 Multi-scale Gated Inpainting Module (MG)

Partial convolution in our model is stacked with layers to update masks and feature
maps. In partial convolution, the holes region gradually disappear with the deepening of
convolution depth, which is conducive to extracting effective depth features. However,
directly interpolating the features of empty regions from the features of non-empty
regions during an up-sampling process leads to the final blurry texture ofmissing regions.
The root of such a problem is to directly extract features without repairing the features
of holes, thereby ignoring the spatial continuity of features.

Fig. 2. In the MG Module, an input feature is transferred to a global attention module to fill a
hole feature area, which is concatenated into the input feature to obtain different gated scores
through two convolution kernels of multiple sizes (3 × 3 and 1 × 1). In the end, element-wise
multiplications are performed specifically by multiplying the convoluted concatenate by the two
gated scores of fusion as an output feature map.

To address the challenge of blurred image content and distorted structure, we pro-
pose a repair network with MG module in Fig. 2. First of all, The MG module uses CA
[6] method to fill the holes in the high-level feature. Partial convolution is still the inter-
polation of depth features on the hole area, and the inability to match the optimal patch
leads to information loss and confusion. Therefore, CA algorithm is used to construct
similarity matrix, and deconvolution operation ensures the trainability of interpolation
process.

Given an input feature map φin, we firstly replace fore-ground feature map using
attention mechanism. For each attention map, we use similar strategy to calculate scores
as [6] the calculation of attention score could be implemented as convolution calculation.

sx,y,x′,y′ = <
fx,y

||fx,y|| ,
bx′,y′

||bx′,y′ ||> (3)

where, fx,y, bx′
,y′ are fore-ground patches and background patches respectively. sx,y, x′

,y′
is similaritymatrix between all the patches. To compute theweight of each patch, softmax
is applied on the channel of score map to obtain softmax scores. Since any change in
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the foreground patch is more related to the similar change in the background patch. CA
adopts a left-right propagation followed by a top-down propagation with kernel size of
k, and then propagate score to better merge patch.

ŝx,y,x′,y′ =
∑

i∈{−k,...,k}
s∗x+i,y,x′+i,y′ (4)

where s∗ is channel-level softmax applied to feature mapping. Finally, the multichannel
mask multiplication is used to preserve the current information and then deconvolution
operation are responsible for restoring a missing feature map. However, the misleading
highly similar regions and the existence of the hole regions could lead to the disappear-
ance of effective features in deconvolution, which is detrimental to feature restoration.
Fortunately, we are inspired by gated convolution to ensure the dynamic selection of
effective features by constructing a soft mask mechanism, in which the expected output
features are learned under fixed gateway scale. This learning mechanism is dynamic,
general and accurate. When the hole feature is repaired, other inappropriate features are
incorrectly filled. And the gate control mechanism dynamically adjusts the gate value to
construct an appropriate output feature.

Moreover, it is nontrivial to determine the appropriate patch match size for various
image to reveal images details. In general, larger patch size helps ensure style con-
sistency while smaller patch size is more flexible on using background feature map.
Patch matching on a single fixed scale seriously limits the capability to fit the model
into different scene [7]. To this end, we devise a novel MG module that helps to make
use of background content flexibly based on the overall image style. The MG integrate
feature selection at two different scales by convolution opteration. In order to better
distinguish the importance of the two, we simply use a learnable parameter λ as the
dynamic threshold. Formally, the gated feature of the output is written as:

outputgated = λoutput1 + (1 − λ)output2 (5)

where, output1 and output2 are two gated values at two different scales. Therefore, the
value output by the MG module has comprehensive information at multiple scales.

Through theMGmodule’s information, global features become continuous thanks to
global-feature-hole fillings and the multi-scale gated selection mechanism. Therefore,
the partial convolution layer has no need to distinguish between the region of holes
and non-holes and; thus, the mask is set to 1. The MG module is adroit at capturing
background information on high-level semantics while producing contents with elegant
details.

3.3 Patch-Wise Spacial Attention Module (PSA)

A vital feature of a human visual system is that people have no intent to process an
entire scene at once. Instead, humans take advantage of a series of local glimpses and
selectively focus on salient parts in order to capture visual structure in a swift manner.
Although the attentionmechanism is widely used in image classification, themechanism
has no appearance in image inpainting. An important reason is that when it comes to
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incomplete image, theremay still be hole information in high-level features. At this time,
the traditional s spatial attentionmechanism gives rise to structure dispersion and texture
loss in generated images. In order to solve the above challenges and take advantage of
the attention mechanism, we extend the CBAM technique [28] to devise a patch-wise
attention mechanism depicted in Fig. 3.

Fig. 3. PSA Module. 3D features are divided into 3 × 3 × 4 small blocks, and the maximum,
average and minimum values of channel-wise are calculated for each small block, and the spatial
attention of each block is obtained through convolution.

Instead of using the channel-wise reduction directly, we choose a 3 × 3 × 4 feature
block as a unit of attention restoration in order to ensure the consistency relationship of
local features and maximize the effect of the restoration of the hole area. We first apply
maximum pool, average pool, and minimum pool operations on the channel axis and
concatenate them to produce a valid feature descriptor. On the feature descriptor of the
connection, convolution layer is applied to generate the spatial attention graph and extract
the information features of each patch through the convolution operation. Different
from classification and identification tasks, the minimum pool operation obtains the
characteristics of possible hole repair to hold hole is emphasized so as to ensure its
information flow in the network.

Weaggregate channel information of a featuremapbyusing three pooling operations,
generating three 2Dmaps in ith patch (The ith patch here represents the channel between
(i − 1) * 4 and i * 4): Fi

max,F
i
avg,F

i
min ∈ R1×H×W . Each denotes max-pooled features,

average-pooled features and min-pooled features across the channel. Those features are
then concatenated and convolved by a standard convolution layer, producing our 2D
patch-wise spatial attention map. In short, the spatial attention is computed as:

Mi(F) = σ(f 3×3([Fi
max,F

i
avg,F

i
min])) (6)

where σ denotes the sigmoid function and f 3×3 represents a convolution operation with
the filter size of 3 × 3.
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4 Loss Function

Similar to the design of PC [8], the style consistency and detail level are also taken
into the consideration of our loss function. For the model learning process can fully
pay attention to the texture details and structural information, we consider a pre-trained
VGG16 [29] as a fixed model to extract high-level features. The perceptual loss [30] and
style loss compare the difference between the deep feature map of the generated image
and the ground truth under different descriptors. All parameter symbols are described
as follows. φi denotes feature maps ith pooling layer. H, W, C refer to the height, weight
and channels number for a feature map, respectively. And N is the number of feature
maps generated by the VGG16 feature extractor. The perceptual loss can be expressed
as follows:

Lperceptual =
N∑
i=1

1

HiWiCi
|φgt

i − φout
i |1 (7)

Although perceptual loss helps to capture high level structures, the perceptual loss
lacks the ability to preserve style consistency. To address this drawback, we advocate
for the style loss (Lstyle) as an integral apart of our loss function. With the help of
the style loss, our model is adroit at learning color and overall style information from
backgrounds.

Lstyle =
N∑
i=1

| 1

HiWiCi
(φ

stylegt
i − φ

styleout
i )|1 (8)

φ
style
i = φiφ

T
i (9)

Total variation (TV) loss Ltv, the smoothing penalty [30] on R, is introduced into
the loss function. Here R is the area of a sliding window that contains missing pixels.
However, the cost of directly applying TV losses to a hole area is to promote texture
blurring of the hole area. More unfortunately, in the case of large losing areas, this
approach leads to a failure to repair void areas -- the hole areas remain void areas. In
order to address the problem of huge amount, we benefit from two cognitions: a hole
area has a certain similarity with the TV of surrounding areas; the edge of the hole area
maintains a certain continuity with the surrounding area. The TV loss is expressed as
follows:

Ltv = Lrow + Lcol (10)

Lrow =
∑

(i,j)∈R,(i,j+1)∈R

||I i,j+1
R − I i,jR ||1

NIR
, Lcol =

∑
(i,j)∈R,(i+1,j)∈R

||I i+1,j
R − I i,jR ||1

NIR
(11)

where I i,jR represents an image pixel point, NIR is defined as the number of elements in
the hole’s region. Especially for large holes, boundaries are sometimes still artifacts,
which may be the lack of constraints on the center of the holes. Similar to the spatial
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discounted loss of the CA algorithm, the closer the hole region is to the known region,
the more attention should be given to it. However, the distance between a hole point and
a surrounding effective region is difficult to calculate when it comes to irregular holes.
To simplify the computation, we traverse the symmetric mask value near each hole point
and undertake a bit operation to quickly obtain the hole length. This process is formally
articulated as follows:

Symi,j,length = maski−length,j
i,j |maski+length,j

i,j (12)

where maski−length,j
i,j , maski+length,j

i,j are the fields of length at the coordinates of point
(i, j). Finally, our target becomes the maximum length value of Sym = [0].

discountedleft−right = max
length

{Symi,j,length = [0]} (13)

where [0] represents the matrix with all values of 0. The upper and lower relation of the
hole region is solved by the same strategy and denoted as discountedtop−bottom. Therefore,
the total spatial discounted weight is formalized as follows:

discounted = γ (discountedleft−right+discountedtop−bottom)/2 (14)

where, γ represents a weighting factor. Futher, Lvalid and Lhole which calculate L1
differences in the unmasked area and masked area respectively. The total loss Ltotal is
the combination of all the above loss functions. Thus, we have

Ltotal = λvaild Lvalid + λhole(Lhole � discounted) + λperceptualL[erceptual + λstyleLstyle + λtvLtv (15)

5 Experiments

5.1 Datasets and Experimental Details

In this section, we evaluate our model on two datasets: the Places2 [25] dataset and the
CelebA [26] dataset. The Places2 dataset is a garden scene selected from the Places365-
Standard dataset, which embraces 9069 images. The dataset is divided into the train,
validate, and test subsets with a ratio of 8:1:1. The CelebA dataset contains 162,770
training images, 19,867 validation images, and 19,962 test images. We use both the
training set and validation set for training purpose, whereas the test set is dedicated
for testing. In the end, we use the mask dataset of partial convolution, which contains
55,116 masks for the training and 24,866 masks for testing. The size of these masks
is 512 × 512. After resizing these masks to 256 × 256, we place the masks into our
network model.

For all the parameter settings similar to those elaborated in the literature [8], the
tradeoff parameters are set as λvalid = 1, λhole = 6, λperceptual = 0.05, λstyle = 120 and
λtv = 0.1. Our model is initialized the weights using the initialization method described
in [9] and use Adam [27] for optimization with a learning rate of 0.0001, and train on
a single NVIDIA V100 GPU (32 GB) with a batch size of 6. The Places2 models are
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Input CA PC GC Ours GT

Fig. 4. A Comparison of test results on Places2 images.

trained for two days, whereas the CelebA models are trained for approximately one
week.

We compare the proposed MG and PSA algorithm with the following three state-of-
the-art methods: CA [6]: Contextual Attention, PC [8]: Partial Convolution, GC [14]:
Gated Convolution.

To make fair comparisons with the CA and GC approaches, we retrain the CA and
GC models on the same datasets. Both CA and GC methods are trained using a local
discriminator available in a local boundary box of the hypothetical hole, which makes
no sense for the shape of masks [8]. As such, we directly use CA and GC released pre-
trainedmodels. And PC is trained under the same conditions as those in our experimental
setup until the PC model is converged.

5.2 Qualitative Comparisons

Figure 4 unveils the comparison results among our method and the three most advanced
approaches processing in the Places2 dataset. All images are displayed at the same
resolution (256 × 256). The CA approach is effective at semantic inpainting, but the
results shown above appear to be abnormally blurry and artifact. The PC method fills
the hole areas with the corresponding styles, but PC loses some of the detail textures.
The GC method exhibits a strong inpainting ability in local details and overall styles.
Unfortunately, GC suffers from the local overshine problems. Compared with the other
methods, our solution has an edge under large hole conditions by originating inpainting
results that alleviate artificial traces. Figure 5 unravels that our model is able to generate
fully detailed, semantically plausible, and authentic images with superb performance.
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Input CA PC GC Ours GT

Fig. 5. Comparison of test results on CelebA images.

5.3 Quantitative Comparisons

Nowwe quantitatively evaluate our model on the two datasets, using three quality meth-
ods, namely, the structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and
mean L1 loss assessment image similarity. Because the image restoration application
in the application scenario will not stick to the above mask structure. To make a fair
numerical comparison, we apply the mask generation method of GC [14] to compare
the mask repair effects under the three different proportions in Fig. 6. One thousand
masks and their corresponding random pictures are elected in the tests, the results of
which are recapped in Table 1.

10%-20% 30%-40% 50%-60%

Fig. 6. Some test masks for each hole-to-image area ratio category.

Table 1 illustrates that our method produces the decent results with the best SSIM,
PSNR and mean l1 loss on the Places2 dataset and the CelebA faces dataset. Similar
to the aforementioned results, our MG and PSA algorithm is a front runner in terms of
numerical performance on the Places2 and CelebA datasets. When it comes to repairing
large holes, the performance improves of our algorithm over the existing techniques
become more pronounced.
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Table 1. Numerical comparison on two datasets.

Dataset Places2 CelebA

Mask ratio 10%–20% 30%–40% 50%–60% 10%–20% 30%–40% 50%–60%

Mean
l1(%)

CA 3.0941 5.7280 7.4529 3.2433 6.0052 8.4367

PC 3.2495 4.4537 5.3843 1.8712 2.5208 3.2301

GC 2.0385 3.5036 4.7996 1.2488 2.1232 2.9248

Ours 2.1274 3.1917 4.2045 0.9542 1.5228 2.0834

PSNR CA 21.5031 18.1033 17.2827 20.8873 17.5012 16.0160

PC 24.7846 22.1610 21.1155 29.3626 26.7636 24.9999

GC 24.7426 21.5232 20.1670 28.6721 25.5052 23.9649

Ours 25.7142 23.1374 22.0227 32.0948 28.9088 27.0451

SSIM CA 0.8327 0.7042 0.6080 0.8337 0.7067 0.6015

PC 0.8296 0.7307 0.6476 0.9050 0.8567 0.8074

GC 0.8638 0.7623 0.6758 0.9180 0.8589 0.8050

Ours 0.8650 0.7762 0.6917 0.9463 0.9061 0.8638

5.4 Ablation Study and Discussion

GS-Net, being carried out on partial convolution, is equivalent to the superposition pro-
cessing of partial convolution layer excluding our proposed two modules. To clearly
present the effectiveness of these operations, we compare various indicators by respec-
tively removing the MG and PSA modules in Places2 dataset. Figure 7 and Table 2
reveal that compared to the results yielded by our algorithm, the results from the non-
MG and non-PSA models exhibit more artifacts and distortions. At the same time, the
MG module is superior to the PSA module in terms of performance index.

(a) Input (b) without MG (c) without PSA (d) ours (e) GT

Fig. 7. Comparison results for different attention manners. From the left to the right are: (a) Input,
(b) Without MG, (c) Without PSA, (d) MG + PSA, (e) Ground Truth
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Table 2. Numerical comparison on Places2 dataset.

Method Mean l1 loss (%) PSNR SSIM

Without MG 3.8346 21.2940 0.7283

Without PSA 3.5739 22.5376 0.7615

With MG and PSA 3.1411 23.2501 0.7808

Apart from delivering strong capabilities in terms of recovery, GS-Net can be widely
applied to intelligent face modification or face synthesis. Figure 8 shows two faces with
different detail textures.

Input Ours GT

Fig. 8. In face of effect.

Features will be input into the PSA module after a globally filled hole area of the
MGmodule. The information flowing through theMGmodule is well repaired, this PSA
module is focused on controlling the relationship among local feature blocks. The PSA
is constructed by the channel-wise attentional processing of local 3D blocks, thereby
forming local relations such as local maximum, average, and minimum. It is evident
that each patch repaired may be larger than unrepaired feature values. Thus, exerting
an attention will pay more attention to the repaired local 3D region features, which is
beneficial to the subsequent upsampling process.

Our model outperforms the cutting-edge techniques in most tested cases, but the
repair effect still has a certain difference under a pure color background. The reason
may be caused by partial convolution, which will be addressed in our foreseeable future
research pathway.

6 Conclusion

We proposed in this paper the MG module, which is capable of gradually enriching the
information of mask regions by offering semantically consistent embedding results . We
developed the PSA module to further promote the enrichment of local texture details.
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We conducted extensive qualitative and quantitative comparisons against the leading-
edge solutions. The validity analysis and ablation learning demonstrate that our GS-Net
outperforms the existing solutions over the Places2 and CelebA datasets.
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