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Preface

Along with the main conference, the Database Systems for Advanced Applications
(DASFAA) workshops provide international forums for researchers and practitioners to
introduce and discuss research results and open problems, aiming at more focused
problem domains in the database areas. This year, five workshops were held in con-
junction with DASFAA 2021:

— The 6th International Workshop on Big Data Quality Management (BDQM 2021)

— The 5th International Workshop on Graph Data Management and Analysis
(GDMA 2021)

— The 1st International Workshop on Machine Learning and Deep Learning for Data
Security Applications (MLDLDSA 2021)

— The 6th International Workshop on Mobile Data Management, Mining, and
Computing on Social Networks (MobiSocial 2021)

— The 3rd International Workshop on Mobile Ubiquitous Systems and Technologies
(MUST 2021)

All the workshops were selected through a public Call-for-Proposals process, and
each of them focused on a specific area that contributed to the main themes of
DASFAA 2021. After the proposals were accepted, each workshop proceeded with its
own call for papers and a review of the submissions. In total, 29 papers were accepted,
including 5 papers for BDQM 2021 and 6 papers for each of the other workshops.

We would like to thank all of the members of the Workshop Organizing
Committees, along with their Program Committee members, for their tremendous
efforts in making the DASFAA 2021 workshops a success. In addition, we are grateful
to the main conference organizers for their generous support and help.

February 2021 Chia-Hui Chang
Jianliang Xu
Wen-Chih Peng
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ASQT: An Efficient Index for Queries
on Compressed Trajectories

Binghao Wang®™, Hongbo Yin, Kaiqi Zhang, Dailiang Jin, and Hong Gao®

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
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Abstract. Nowadays, the amount of GPS-equipped devices is increas-
ing dramatically and they generate raw trajectory data constantly. Many
location-based services that use trajectory data are becoming increas-
ingly popular in many fields. However, the amount of raw trajectory data
is usually too large. Such a large amount of data is expensive to store,
and the cost of transmitting and processing is quite high. To address
these problems, the common method is to use compression algorithms to
compress trajectories. This paper proposes a high efficient spatial index
named ASQT, which is a quadtree index with adaptability. And based
on ASQT, we propose a range query processing algorithm and a top-k
similarity query processing algorithm. ASQT can effectively speed up
both the trajectory range query processing and similarity query process-
ing on compressed trajectories. Extensive experiments are done on a real
dataset and results show the superiority of our methods.

Keywords: Compressed trajectory - ASQT index - Trajectory range
query - Top-k trajectory similarity query

1 Introduction

Nowadays, with the development of GPS-equipped devices, location-based ser-
vices are becoming increasingly popular in many fields. The amount of trajec-
tory data collected is usually very large. For example, Didi Chuxing, the largest
ride-sharing platform in China, receives hundreds of millions trajectories and
processes more than 3 million travel requests every day [1]. The data quality
management is very important [2,3]. The trajectory data is transmitted to the
cloud to support various services, such as route planning, travel time prediction,
and traffic management, etc.

However, such a large amount of trajectory data brings some serious prob-
lems. It is very expensive to be stored, and the cost of transmitting and pro-
cessing is quite high. If each GPS device records its latest position every 10s,

The National Key Research and Development Program of China (Grant No.
2019YFB2101902), Joint Funds of the National Natural Science Foundation of China
under Grant No. U19A2059.

© Springer Nature Switzerland AG 2021
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1 GB storage space is needed for 4 thousand GPS-equipped devices to store the
trajectory data every day [4]. Most existing trajectory query processing and data
mining algorithms are executed in the main memory, which makes trajectories
inconvenience to be handled when the amount is too large.

To solve the above problems, the common method is to apply some tra-
jectory compression algorithm [4-13] to compress the trajectories. The storage
space, communication bandwidth as well as processing cost of the queries can
be reduced obviously by using compressed trajectory data since the trajectories
are compressed into a much smaller size.

In most location-based services, there are two types of basic but essential
trajectory queries, i.e. trajectory range queries and top-k trajectory similarity
queries. The trajectory range query is to find all trajectories that intersect a
given area, and the top-k trajectory similarity query returns the k most similar
trajectories to the query trajectory. Range queries can be used in the lost and
found service to search all passing taxis in the area. Similarity queries can be used
in the taxi detour detection to determine whether its trajectory is an outlier.

We need to verify all trajectories, if no acceleration strategy is used in the
trajectory range query processing. Similarly, it is also necessary to calculate the
similarity between the query trajectory and all trajectories in the top-k similarity
query processing. Hence, the computing cost is quite high. To solve the problem,
we propose ASQT, an efficient index, to speed up the query processing. The
main contributions of this paper are summarized as follows:

— We propose an Adaptive Spatial Quadtree index for compressed Trajecto-
ries (ASQT for short). ASQT is an adaptive index, which can speed up the
processing of trajectory queries efficiently.

— Based on this high efficient index, we propose a trajectory range query pro-
cessing algorithm and a top-k trajectory similarity query processing algo-
rithm.

— We conducted extensive experiments on a real-life trajectory dataset to verify
the performance of our methods. The results show that all our methods are
of great efficiency.

2 Related Work

2.1 Trajectory Compression Algorithm

Trajectory compression algorithms fall into two categories, i.e. lossless compres-
sion algorithms and lossy compression algorithms. Although more raw trajectory
information can be retained by using the lossless compression algorithms, only a
limited compression ratio can be obtained. Therefore, more research is devoted
to the lossy compression algorithms. A much higher compression ratio can be
achieved by using the lossy while retaining the raw trajectory information within
the error tolerance. The lossy compression methods can be also divided into two
categories, i.e. the batch mode [6-8] and the online mode [9-13]. Algorithms in
the batch mode require that all the points of a trajectory must be loaded in
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the main memory before compression, which means that the main memory must
be large enough to hold the whole trajectory. Therefore, the space complexi-
ties of these algorithms are all at least O(N), which limits their applications in
resource-constrained environments. By contrast, algorithms in the online mode
only need a small size of local buffer to compress trajectories in an online pro-
cessing manner. Therefore, the online mode can be used in more application
scenarios.

Fig. 1. An example of OPW algorithm

In recent years, many lossy compression algorithms were proposed. Since
this paper focuses on the queries on compressed trajectories, we choose Open
Window algorithm (OPW), one of the most accurate compression algorithms,
as our compression method. OPW processes each trajectory point sequentially.
Assume p; as the starting point of the current trajectory line segment, and €
as the threshold. When processing point p;, connect p;,p; and judge whether
the vertical distances from p;i1,...,p;—1 to line segment p;p; are all less than
e. If satisfied, then p;,...p; can be approximately represented by line segment
p;p;; otherwise, we can use the line segment p;p;_1 to approximately represent
points p;, ...,pj—1, and p;_1p; is the new current line segment with p;_; as the
new starting point. The next point p;4, is processed iteratively in the same way
until there are no unprocessed trajectory points. For example in Fig. 1, these
points are compressed into line segments p1p4 and pypsg-

2.2 Existing Similarity Measures

When processing trajectory similarity queries, measuring the similarity between
two trajectories is the most fundamental operation. Most similarity measures
evaluate the similarity by calculating the distance between the matched point
pairs of two trajectories. We use 7; and s; to represent the i-th and j-th trajectory
point of trajectory R and S respectively.

A classic similarity measure is Euclidean distance [14], which requires the
two trajectories to have the same number of trajectory points. The calculation
formula is as follows:
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ED(R,S) = | (riw — sia)" + (rigy — 514)° (1)

i=1

Some more complex similarity measures, such as DTW [15], LCSS [16], EDR
[17] and Swale [18], adopt the Dynamic Programming (DP) method. DTW can
be recursively calculated as:

0 if |[R=]5]=0
00 if |[Rl=0or|S| =0
dist(ry, s1)+
DTW (R, S) = DTW (Rest(R), 2)
Rest(S))
DTW (Rest(R), S)
DTW (R, Rest(S))

min otherwise

where Rest(R) and Rest(S) respectively represent the remaining part of R and
S after removing 1 and s;. dist(r1, s1) is the Euclidean distance between r1 and
s1. LCSS can be recursively calculated as:

0 if |[Rl=0o0r|S|=0
1+ LCSS(Rest(R), Rest(S)) if dist(r1,s1) <e

LCSS(Rest(R),S) herwi
mazx LCSS(R, Rest(S)) otherwise

LCSS(R,S) = (3)

It assigns 0 to non-matched points, otherwise 1. In other words, LCSS ignores
dissimilar point pairs, and only focuses on the number of similar point pairs.

The larger the LC'SS(R,S), the more similar R and S are.

3 The ASQT Index

3.1 Index Construction

gne)
& p;
P1

Fig. 2. Trajectory segment overlapped with R

We aim to process queries on compressed trajectories. In previous work, each
trajectory is thought to be a set of discrete points. A raw trajectory is overlapped
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with a rectangle region R iff at least one point in this trajectory falls in R.
However, a line segment of a compressed trajectory may represent a large number
of points in the raw trajectory [19]. That is to say, although neither of the two
endpoints of a line segment is not in R, as shown in Fig. 2, the discarded points
between them may fall in R. To address this, each compressed trajectory is
regarded as a set of continuous line segments. If a line segment of a compressed
trajectory intersects the rectangular area, this trajectory is considered to be
overlapped with R.

level,

level,

level;

/ /
I Nodecpjiar

Node pitao |

NN N R ——

/:,‘ ————————————————— NOdefather ----------------- v 4 i
!
|
!
|

Nodecpiiaz N,
odechilaz
Node piiaz

Fig. 3. An overview of the ASQT index

In order to speed up query processing on compressed trajectories, we propose
a high efficient index, Adaptive Spatial Quadtree index for compressed Trajecto-
ries (ASQT). For each trajectory, we only store its ID in the index to reduce space
overhead. And the Minimum Bounding Rectangle (MBR for short) is stored for
each trajectory. MBR is the smallest rectangle that can completely contain the
trajectory. At the beginning, there is only one root node which contains all com-
pressed trajectories in the corresponding region. The median of center points’ x
coordinates (y coordinates) of all the MBRs is calculated, which is expressed as
median(x) (median(y)). Then, the root node is divided into two parts by using
median(x) (median(y)). Furthermore, the medians of center points’ y coordi-
nates (x coordinates) of all the MBRs in each part are calculated, which are
expressed as median(y;) and median(y2) (median(x;) and median(zz)). As
shown in Fig. 3, the root is divided into 4 disjoint child nodes with madian(z),
median(yy) and median(y2) (madian(y), median(x1), median(zs)). Therefore,
there are two methods to divide the root node. Meanwhile, a trajectory is dis-
tributed to a child node if the region of this node completely contains the MBR
of the trajectory, otherwise it is left in the original tree node. In these two divi-
sion methods, the method that makes the root node retain fewer trajectories is
adopted. Then, each child node is divided recursively in the same way, and until
the number of trajectories within the child node is less than the threshold &, the
partition process of this node stops.
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3.2 The Properties of ASQT

Approximate Balance. The partition method using the medians can ensure
that the number of trajectories fallen into each child node is roughly equal to
each other. This makes ASQT approximately balanced.

Adaptability. During the partition process of a tree node, the trajectories
completely contained by a child node are distributed to the corresponding node.
However, some trajectories which are not contained by any child are remained
in the parent node. As shown in Fig. 3, there are two partition methods when
dividing each node. The fewer the trajectories remained in the parent node is, the
more trajectories distributed in child nodes are, which makes the effect of pruning
better. Therefore, choose the partition method that keeps fewer trajectories in
the parent node to make the query processing on ASQT more efficient.

4 Queries on ASQT

4.1 Trajectory Range Query Processing on ASQT

An raw trajectory is overlapped with a query region R iff at least one point in this
trajectory falls in R. But a compressed trajectory line segment may represent
hundreds of points, so there may be some raw trajectory points that originally
fall in R are lost after compression. Hence, such a trajectory is missing in the
result set possibly. Inspired by this, we define the range query processing on
compressed trajectories as follows:

Definition 1 (Range Query). Given the compressed trajectory dataset T and
the query region R, the range query result Q. (R,T) contains all such compressed
trajectories in T, at least one of whose trajectory line segments overlaps R, i.e.,

Qr(R,T)={T €T | 3pip; €T, s.t. p;p; overlaps R} 4)

For simplicity, we consider the query regions as two-dimensional rectangles.
The brute force method to verify whether a compressed trajectory 7 is in the

query result @, (R, T) is to determine whether there exists a line segment of T'

overlapped with R. If so, T is added to the result @, (R, T). But with the help of

ASQT, most trajectories can be filtered out by traversing the index. We adopt

Depth First Search (DFS) to traverse ASQT, and apply pruning strategies to

speed up the query:

(1) If the query region R doesn’t overlap the corresponding region of an ASQT
node, then all the trajectories stored on the subtree rooted at this node must
not overlap R. Therefore, we skip the search for this subtree.

(2) If the query region R contains the corresponding region of an ASQT node,
then all the trajectories stored on the subtree rooted at this node fall into
R absolutely. Hence, all these trajectories stored on this subtree should be
put into @, (R, T) directly.

(3) Otherwise, verify whether each trajectory in the node overlaps R sequen-
tially. If this node is a non-leaf node, its childs are handled recursively in the
same way.
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4.2 Trajectory Similarity Query on ASQT

Given the query trajectory T, and a compressed trajectory dataset T, the goal
of top-k similarity query processing is to find the k& compressed trajectories most
similar to T, in T. We formally define the top-k similarity query on compressed
trajectories as follows:

Definition 2 (Top-k Similarity Query). Given the query trajectory T, and
the compressed trajectory dataset T, the top-k similarity query processing returns
a set Qp(Ty, T) consisting of k trajectories, which is defined as:

Qk(TmT) = {T eT | VT € Qk(Tqu)v 7" /E (T - Qk<Tq7r][/‘/))v
s.t. Dist(T,,T") < Dist(T,,T )}

where Dist(Tq,T/) represents the distance between Ty and T under a certain
similarity measure.

()

6-MBR(T,) I "

MBR(7},)

Fig. 4. The region of similarity candidate set

If no acceleration strategy is adopted, the similarity between 7, and each
compressed trajectory in T must be calculated to answer the top-k similarity
query. The time cost of this process is quite high. If the distance between two
points is too far, the matching of the two points has no positive effect on the
similarity. So given a threshold o, the similarity of two trajectories is greater
than O iff there are at least a pair of points with a distacne less than o in
these two trajectories. Based on this idea, the trajectories in T are filtered to
generate a candidate set, which is represented by c (T4, T,0). As shown in Fig. 4,
C'(T,,T,o) consists of all trajectories overlapping the gray regions. Only the
similarity between each trajectory in C' (T, T, o) and T, needs to be calculated.

However, the number of the grey regions is the same as the number of tra-
jectories points, which makes it expensive to calculate c (Ty,T,0). To address
the problem, we extand the candidate set to a set of trajectories which overlap
the MBR of all the grey regions. Before introducing the new candidate set, we
define the o-MBR of T} as follows:
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Definition 3 (0-MBR(T})). Given the distance threshold o and the MBR of
a compressed trajectory T, which is represented by [Tmin, Tmaz) * [Ymins Ymaz)s
o-MBR(Ty) is defined as [Zmin — 0, Tmaz + 0| * [Ymin — O, Ymaz + 0],

The 0-MBR(T}) is the whole orange region shown in Fig.4. o-MBR(Tj) is
the smallest MBR that happens to completely contain all the grey regions. We
use C(T,,T, o) to represent the new candidate set. And for a query trajectory
T, C(T,,T, o) consists of all trajectories overlapping o-MBR(Ty). We formally
define the candidate set of the top-k similarity query processing algorithm as
follows:

Definition 4 (Similarity Candidate Set). Given the distance threshold o,
the query trajectory T, and the compressed trajectory dataset T, the candidate
set is defined as:

C(T,,T,0) ={T €T | 3pip; € T, s.t. p;p; overlaps o-MBR(Ty)}  (6)

That is, C(Ty, T, 0) is equal to Q,(c-MBR(T}), T). Because o-MBR(T}) con-
tains the grey region, C'(T,, T, o) is a subset of Q,.(o-MBR(T,),T). The new
candidate set can be obtained by executing a trajectory range query and a lot of
unnecessary similarity calculations can be avoided. Hence, ASQT can improve
the execution efficiency of range queries, as well as that of the similarity queries.
The top-k similarity query processing algorithm is summarized as follows:

(1) For a query trajectory Ty, whose MBR iS [Zmin, Zmaz|* [Ymin Ymaz], calculate
its o-MBR(T}): [Zmin — O, Tmaz + 0] * [Ymin — O, Ymaz + 0)-

(2) By executing a range query for the region o-MBR(T}), we can get the simi-
larity candidate set C(T}, T, o).

(3) Calculate the similarity between T, and each trajectory in C(T,,T, o), and
select the k most similar trajectories as the similarity query result Qx (7, T).

5 Experiments

5.1 Experiment Settings

Experiment Environment. Experiments were all conducted on a machine
with a 64-bit, 8-core, 3.6GHz Intel(R) Core (TM) i9-9900K CPU and 32GB
memory. Our codes were all implemented in C++ on Ubuntu 18.04 operating
system.

Experiment Dataset. The experiments were conducted on Planet [20] dataset.
It contains more than 8 million raw trajectories and 2.67 billion trajectory points.
The average sampling rate of these trajectories is 4.273s, and the average dis-
tance between two continuous points is 8.589 m. We select all 265303 trajectories
in the geographic coordinate range [7, 14]  [46, 53] as our test data.
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5.2 Experiment Results

For a range query, let Q,, and @, denote the query result on the raw trajectories
and the compressed trajectories respectively. The precision, recall and F} score
are defined respectively as follows:

.. ‘Qor N Qr|
Precision = ————— (7)
Qx|
|QO7‘ ﬂ QT|
Recall = ——— 8
Q] ®)
2 % Precision * Recall
P = (9)

Precision + Recall

1

o
©
@

0.99

Average Recall Rate

c
S
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£ 2098
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1
0.98
0.96
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1092
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—@— Range Query Based on Points —®— Range Query Based on Segments

Fig. 5. Comparison of Precision, Recall, and F; score of trajectory range query pro-
cessing algorithms based on points and line segments on compressed trajectories

In all the experiments below, the region size of each trajectory range query
was fixed as 16 km?, and the region of each trajectory range query was randomly
generated. The trajectory range query processing methods which consider a tra-
jectory as discrete points and continuous line segments were used to execute
10,000 trajectory range queries on same regions respectively. We evaluated the
average Precision, Recall and F score on the compressed dataset w.r.t. varying
the compression ratio, and the result is shown in Fig. 5. When each compressed
trajectory is seen as discrete points, the Precision is always 1, since the points
in each compressed trajectory must be a subset of the corresponding raw tra-
jectory points. The result shows that the algorithm which considers a trajectory
as continuous line segments is much more accurate than that which considers a
trajectory as discrete points.
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Fig. 6. The acceleration effect of executing range queries on compressed trajectories
with different compression ratios

350

300

250

200

150

100

Acceleration ratio with ABQT

50

0
0 50 100 150 200 250 300
Compression Rate

Fig. 7. The acceleration effect of ASQT when executing range queries on compressed
trajectories with different compression ratios

In order to measure the acceleration effect of executing range queries on com-
pressed trajectories, we executed point-based and line-segment-based trajectory
range query processing algorithms on raw trajectories and compressed trajecto-
ries with different compression ratios respectively. Each range query processing
algorithm is executed for the same 10000 randomly generated query regions, and
the average execution time is calculated respectively. In this experiment, ASQT
was not used for the acceleration of queries. The ratio of the average execution
time is shown in Fig. 6. As we can see, the efficiency of the range query processing
can be significantly improved by executing queries on compressed trajectories.
And as the compression ratio increases, the acceleration effect tends to stabilize.

To study the impact of ASQT, we executed 10,000 trajectory range queries
on compressed trajectories with different compression ratios in both cases of
using and not using ASQT to accelerate. Then the average execution time was
calculated respectively. Figure 7 shows the acceleration effect of ASQT. It can be
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seen that the filtering effect of ASQT on irrelevant trajectories is very obvious
when executing trajectory range queries on compressed trajectories.

Table 1. The effect of the threshold £ on the average height of ASQT and the query
time of trajectory range queries

£ Average height | Average range query time (ms)
200 19.141037 0.047437
400 | 8.081274 0.057316
800 | 8.004260 0.058540

1600 | 7.006801 0.111759

3200 | 7 0.112808

6400 | 6 0.213536

Table 1 shows the influence of the threshold £ on the average tree height of
ASQT and the average processing time of range queries. In this experiment, the
compression ratio of the queried trajectories was fixed as 10. From the result, we
can see that ASQT has approximate balance. When ¢ is high, by examining the
structure of ASQT, it is found to be a full quadtree. As the height of the tree
increases, the processing time of range queries decreases. The reason is that as
the depth of the leaf node increases, the filtering effect of ASQT on range query
processing becomes better.

120.00%
100.00%
80.00%
60.00%

40.00%

Average Precision(%)

20.00%

0.00%
0 20 40 60 80 100 120
Compression Rate
«=@=DTW ==@=[CSS

Fig. 8. The Precision of top-k similarity queries under different similarity measures on
compressed trajectories with different compression ratios

Then we used DTW and LCSS to execute top-k similarity queries on com-
pressed trajectories with different compression ratios respectively. Use the query
results on raw trajectories as the standard, and compare the Precision of the
algorithm under different compression ratios. Since the size of the result set is
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k, the Precision, Recall and F} score are the same to each other, so only one
of them is sufficient. The parameter k is fixed as 100. As shown in Fig. 8, the
Precision of trajectory similarity queries performed on compressed trajectories
using different similarity measures is quite high, especially when the compression
ratio of the trajectories is less than 25.

6 Conclusion

It is meaningful that our paper regards the compressed trajectory as continuous
trajectory line segments instead of discrete points. In this paper, we propose
an efficient index named ASQT, which is adaptive. Experiment results show
that ASQT is approximately balanced. Based on ASQT, we propose a range
query processing algorithm and a top-k similarity query processing algorithm.
The range query processing algorithm considers a trajectory as continuous line
segments, rather than discrete points. Experiments shows that when querying
on compressed trajectories, the performance of the range query processing algo-
rithm proposed in this paper is significantly better than that of the algorithm
which regards a trajectory as discrete points. The range query processing algo-
rithm can accelerate the similarity query processing. Hence, ASQT can improve
the execution efficiency of range queries, as well as that of the top-k similarity
queries. Experiments show that ASQT has a significant acceleration effect when
querying on compressed trajectories. This paper proposes a series of query tech-
niques on compressed trajectories including index structure and query processing
algorithms, and has achieved satisfactory results.
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Abstract. In smart phones, vehicles and wearable devices, GPS sensors
are ubiquitous, which can collect a large amount of valuable trajectory
data by tracking moving objects. Analysis of this valuable trajectory
data can benefit many practical applications, such as route planning and
transportation optimization. However, unprecedented large-scale GPS
data poses a challenge to the effective storage of trajectories. Therefore,
the necessity of trajectory compression (also called trajectory sampling)
is reflected. However, the latest compression methods usually perform
unsatisfactorily in terms of space-time complexity or compression rate,
which leads to rapid exhaustion of memory, computing, storage, and
energy. In response to this problem, this paper proposes an online tra-
jectory compression algorithm (ROPW algorithm) with error bounded
that traverses the sliding window backwards. This algorithm has signif-
icantly improved the trajectory compression rate, and its average time
complexity and space complexity is O(NlogN) and O(1) respectively.
Finally, we conducted experiments on three real data sets to verify that
the ROPW algorithm performed very well in terms of compression rate
and time efficiency.

Keywords: Online algorithm - Trajectory compression - Sliding
window - Reverse traversal

1 Introduction

The universal application of global positioning system sensors (GPS) in smart
phones, vehicles and wearable devices enables the collection of a large amount
of trajectory data by tracking moving objects, and these data can be applied to
many fields, such as traffic information services, navigation services, bus arrival
time services, etc.

According to the statistics, assuming that GPS collects information every 5s,
the data generated by a vehicle in a day requires about 70 MB of storage space,
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and the storage space required by all vehicles in a city will be very large. It can
be seen that GPS will generate unprecedented GPS data with time stamps, and
it is urgently needed for trajectory database for effective storage.

Secondly, for long-term trajectory data with scattered data points, such as
wild animal data, bicycle data and other data sets, they provide high-resolution
trajectory data to achieve better management and services. In addition, for foxes,
pigeons and other animals, the size and weight of trajectory equipment will be
limited, which will bring great challenges to the acquisition of trajectory infor-
mation details. Therefore, the combination of long-term operating requirements
and limited resources requires an intelligent online processing algorithm that
can process the input position information in time, that is, it can process in a
constant time and space to achieve a higher compression rate.

Therefore, designing the trajectory compression algorithm in online mode
will become extremely important and meaningful. Fortunately, these problems
can be solved or greatly reduced by trajectory compression technology. Among
them, the method based on line simplification is widely used due to its unique
advantages [1-14,16]. The characteristics of this type of algorithm are as fol-
lows: (a) the algorithm is simple and easy to implement, (b) it does not require
additional knowledge and it is suitable for objects that move freely, (c) it have
a better compression rate under the premise of bounded error.

The most famous algorithm based on line segment simplification is the
Douglas-Peucker algorithm [16] invented in the 1870s, which is used to reduce the
number of points required to represent digitized line segments in the context of
computer graphics and image processing. The most primitive Douglas-Peucker
algorithm is a batch processing algorithm, and its time complexity is O(N?), where
N is the number of trajectory points in the trajectory to be compressed. After that,
several DP-based LS algorithms appeared, for example, by combining DP with
sliding/opening windows [10] for online processing. However, these algorithms still
have a high time overhead in general, and the compression rate is not very good,
which makes them perform poorly in resource-constrained mobile devices.

Recently, an algorithm called BQS [11] was proposed, which uses a new
method of distance checking, which uses an open window based on the con-
vex hull to select eight special points and use them to carry out corresponding
inspections and calculations. In many cases, it only needs to calculate the dis-
tance from a special point to a straight line, rather than all the data points in
the window. In the worst case, the time complexity of the BQS algorithm is
still O(N?). However, its simplified version of the FBQS algorithm [12] directly
outputs line segments and starts a new window when the eight special points
cannot constrain all the points considered so far. Indeed, the FBQS algorithm
has linear time complexity, but when it is used in actual data sets for trajectory
compression, the time performance is average and its compression rate is low.

In addition, a lot of work [17,18] is being done in terms of data quality.

In summary, our contributions are two-fold:

1. Using the idea of sliding/open window, a Reverse OPening Window algorithm
(ROPW algorithm for short) based on the reverse traversal of trajectory
points in the window and accelerated by jumping strategy is designed (ROPW
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algorithm is introduced in Sect.4.3). Although the time complexity is still
O(N?) and the space complexity is O(N), in practical applications, we have
confirmed through experiments that the upper bound of the time complexity
will be reached in rare cases and its average time complexity is O(NlogN). In
addition, the algorithm can achieve extremely high compression rate under
the premise of given error accuracy.

2. We compared the ROPW algorithm with the OPW algorithm, the OPERB
algorithm, etc. on three real trajectory data sets (Animal data set, Indoor
data set and Planet data set), and conducted extensive experimental research
(Sect.5). We found that the ROPW algorithm has the highest compression
rate under the premise of the same error precision bound, and it also has a
good performance in terms of time efficiency and error.

2 Related Work

Trajectory compression algorithms can generally be divided into two categories,
namely lossless trajectory compression algorithms and lossy trajectory compres-
sion algorithms. Lossless compression methods refer to a compression method
that can reconstruct the original trajectory data without losing information. For
example, the delta algorithm [1] is a lossless trajectory compression algorithm
with a time complexity of O(N). The limitation of lossless compression is its
relatively poor compression rate. In contrast, lossy compression methods allow
errors or deviations compared to lossless trajectory compression algorithms. This
kind of algorithm usually tends to select relatively important data points on the
trajectory and remove redundant data points from the trajectory. They focus
on achieving trajectory compression with a higher compression ratio within an
acceptable error range. They can be roughly divided into two categories: Line
simplification based methods and Semantics based methods. This article focuses
on the trajectory compression method based on line simplification.

The trajectory compression method based on line simplification is currently
the more popular trajectory compression method. This method not only has a
satisfactory compression ratio and error limit, but the algorithm is also easy to
implement, so it is widely used in practice. According to the way they process
trajectory data, this method can be divided into: batch mode methods and online
mode methods.

The trajectory compression method in batch mode needs to load all the
trajectory point data before officially starting to compress the trajectory. The
existing batch trajectory compression algorithms include Bellman [7], DP [§],
DPhull, TD-TR, MRPA [9] and so on. Since this mode can get all the data of
the trajectory history, its goal is to achieve a trade-off between the compression
rate and the loss of data information.

The trajectory compression method in online mode does not need to have
the entire trajectory data before it officially starts to compress the trajectory, so
it is very suitable for compressing the data provided by various sensors. These
data are stored in a local buffer, and the online simplification algorithm must
determine the trajectory points to be discarded. Because the online algorithm
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cannot know all the information of the entire trajectory, it is difficult to obtain
the ideal result in the problem of minimizing errors and maximizing the com-
pression rate. However, whether it is batch mode or online mode, they have a
remarkable feature that we can set an error bound € to ensure that the error of
any discarded point does not exceed e. The existing online trajectory compres-
sion algorithm [10-13] usually uses a fixed or open sliding window to compress
the sub-trajectories in the window, but its performance in terms of compression
rate is relatively general. Therefore, we propose an online trajectory compres-
sion method that reversely traverses the trajectory points in the sliding window
and uses a jumping strategy to accelerate. Furthermore, through experimental
analysis, our method has better time efficiency and higher compression rate in
most cases.

3 Preliminaries

In this section, we mainly introduce some basic concepts of trajectory compres-
sion and some online trajectory compression algorithms related to this research.

3.1 Basic Notations

Definition 1. (Points (P)): A data point is defined as a triple P(x,y,t), which
represents that a moving object is located at longitude x and latitude y at time t.

Definition 2. (Trajectories (T')): A trajectory T = {p1,pa2,...,DN} S a sequence
of trajectory points in a monotonically increasing order of their associated time
values (i.e., t1 < to < ... <tn). T[i] = p; is the ith trajectory point in T

Definition 3. (Compressed Trajectory (T/)): Given a trajectory T = {p1,pa, ...,
pNn} and one set of T'’s corresponding consecutive trajectory segments, the com-
pressed trajectory T’ of T is a set of consecutive line segments of all trajectory
segments in T and T  can be denoted as T = {Diy s Pins Dins ooy Pir 15 Din, (Diy =
P1,DPi, = DPN)

Definition 4. (Compression Rate (r)): Given a raw trajectory T = {p1, pa, ...,
pN } with N raw trajectory points and its compressed trajectory T = {Diy s Dins Digs
s Pin_1sDi, }(Diy = P1,0i, = PN) with n — 1 consecutive line segments, the
compression rate s

r = N/n.

Definition 5. (Directed line segments (L£)): A directed line segment (or line
==

segment for simplicity) L is defined as PsP,., which represents the closed line
segment that connects the start point Ps and the end point P..

Definition 6. (Distances (d)): Given a point P; and a directed line segment
—_—
L = PsP,, the distance of P; to L, denoted as d(P;, L), is the Euclidean distance
—_—
from P; to the line P;P., commonly adopted by most existing LS methods.
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3.2 Line Simplification Algorithms

The line simplification algorithm is an important and widely used trajectory
compression method. Next, we briefly introduce an online trajectory compression
algorithm OPW algorithm [10] based on line simplification.

Given a trajectory T' = {p1,p2,...,pn} and an error bound ¢, algorithm
OPW [10] maintains a window WP, ..., P;], where Ps and Py are the start
and end points, respectively. Initially, P, = Py and P, = P;, and the win-
dow W is gradually expanded by adding new points one by one. OPW tries
to compress all points in WP, ..., Py] to a single line segment L(Ps, Py). If
the distances d(P;, £) < € for all points P;(i € [s,k]), it simply expands W to
[Ps, ..., Px, Pry1](k+1 < n) by adding a new point Py 1. Otherwise, it produces a
new line segment £(P;, P;_1), and replaces W with a new window Pjy_1, ..., Pry1.
The above process repeats until all points in T have been considered. The worst
case of the algorithm occurs when every trajectory point can be compressed, so
the time complexity of the algorithm is O(N?), which also makes the algorithm
not suitable for compressing long trajectories. OPW is formally described in
Algorithm 1.

Algorithm 1: OPW

Input: Raw trajectory T = {p1, pa, ..., pN} , error tolerance ¢
Output: € - Error-bounded trajectory

T = {Diys Diny s Pi, }(Pis = P15 D0, = PN)

e =0;

originalIndex = 0;

T = originalIndex ;

while e < T'length() — 1 do

CurPoint = originalIndex + 1;

flag = true;

while CurPoint > e && flag do

if PED(StartPoint, CurPoint, LastPoint) > epsilon then

‘ flag = false;
else

‘ CurPoint + +;
end

end
f /flag then
originalIndex = CurPoint;

o

T' . Append(original Index);
e = originallndexr + 2;

else
| et++;
end

end
T". Append(T.length() — 1);
return T/;
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4 Algorithm ROPW

4.1 Motivation

Before officially introducing the ROPW algorithm, let’s make a simple analysis
of the OPW algorithm [10] described in Sect.3.2. Through the execution pro-
cess of the OPW algorithm, it is not difficult to find that the OPW algorithm
is a forward progressive process. This process of forward progression means that
when compressing a trajectory, all the distances between the starting point and
the “current” end point to the target straight line are required to be less than
the threshold, until a trajectory point that does not meet the threshold require-
ment appears. This point is the end of the current track segment. Indeed, this
processing method can ensure that the perpendicular Euclidean distance from
each compressed trajectory point to the compressed trajectory line segment must
be less than the set threshold, but we intuitively feel that such processing may
reduce the compression rate of the trajectory. The reason is that the OPW algo-
rithm not only guarantees that the perpendicular Euclidean distance from each
compressed point Pi(s < i < k) to the trajectory segment L(P;, Pj) formed
by the start and end points after compression meets d(P;, L) < ¢, but it also
additionally restricts that when each compressed trajectory point P; serves as
the end point of the current sliding window, the distance from each compressed
track point Py, (s < m < i) which is between P; and the starting point Py in the
current window to the line segment L£(Ps, P;) meets restriction d(P,,, L) < e.

Let’s use an example to verify our conjecture. As shown in Fig.1, the tra-
jectory points Py, P», P3 are three trajectory points that arrive in chronological
order. When we execute the OPW algorithm, it is not difficult to find that when
the track point Pz enters the window, the vertical Euclidean distance from the
track point P, to the track line segment L£(P;, P5) meets d(Ps, L) > €, so the
track point P, will not be compressed. However, assuming that we can predict
a certain trajectory point Py that exists later, we can find that when Py is the
last point of the current window, the distances from trajectory point P; and
trajectory point Py to trajectory line segment £(Py, Py) meet the error require-
ments, Which means that the track point P, will be compressed at this time.
Based on such a thinking, we designed the ROPW algorithm.

4.2 Error-Based Metrics

In the process of trajectory compression, we use a set of continuous line segments
to approximate each original trajectory. In order to obtain a good compression
algorithm, the deviation between these line segments and the original trajectory
should be as small as possible. Therefore, the design of a distance error measure-
ment method is an important criterion to measure the quality of the compres-
sion algorithm. This paper uses the more traditional perpendicular Euclidean
distance measurement error, which is suitable for most existing trajectory com-
pression algorithms. It is calculated by calculating the Euclidean distance from
each compressed trajectory point to the line segment corresponding to the tra-
jectory point.
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Fig. 1. Example of verifying conjecture.

Definition 7. (Perpendicular Euclidean Distance): Given a trajectory segment
T, the trajectory segment F is the compressed form of the trajectory T, then
for each trajectory point P discarded in the trajectory T, the PED error of the
trajectory point p is calculated as follows:

_ ——
‘PSPm < P.P.

PED(P,,) = ‘
HPsPe

Where x is the symbol of cross multiplication in vector operations, and ||| is the
length of a vector.

4.3 ROPW

The proposal of the Reverse OPening Window algorithm greatly avoids the
occurrence of the situation described in Sect. 4.1, and therefore maximizes the
compression rate of the algorithm. Although its time complexity is still O(N?),
it is difficult to reach the upper bound of its time complexity in practical appli-
cations and its average time complexity is O(NlogN). Therefore, its time per-
formance is also better. As the name implies, by reversely traversing the points
in the window as the current trajectory end point, the ROPW algorithm avoid
the additional conditions generated by the “current end point”. In addition, the
algorithm uses a jump strategy to find the first trajectory point that does not
meet the error limit requirement from back to front, and let it be compressed as
the “current trajectory end point”, which greatly improves the efficiency of the
algorithm. However, because the online trajectory compression algorithm cannot
get all the data of the original trajectory, we also use the sliding window method
to optimize the implementation of the ROPW algorithm by setting the window
size.

Reverse OPening Window algorithm. The input of the algorithm is an orig-
inal trajectory T" and a given error limit €. The output of the algorithm is the
compressed trajectory T'. The execution process of the ROPW algorithm is
given below: (The pseudo code of the algorithm is shown in Algorithm 2).

Assume that the sliding window size is the default size. First, initialize the
start and end points of the current compressed trajectory (lines 1-2). Second,
put the starting point into the compressed track point set (line 3). Then, check
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whether the middle track point meets the perpendicular Euclidean distance error
requirement from back to front (lines 8-13). If the requirements are not met, the
trajectory point that does not meet the requirements is taken as the end point of
the current compressed trajectory. Otherwise, set the start point as the current
end point, add the end point to the compressed track point set, and set the end
point as the last point of the current window (lines 15-21). Line 23 is used to
add the last line segment to the final result set.

Algorithm 2: ROPW

Input: Raw trajectory T = {p1, pa,...,pN} , error tolerance e
Output: € - Error-bounded trajectory
T' = {pi,  Pigs s P, } (Piy = P1, D1, = PN)
LastPoint = T[T.length() — 1];
StartPoint = T[0];
T = [StartPoint];
while StartPoint # T.length() — 1 do
CurPoint = end — 1;
flag = true;
while CurPoint > StartPoint && flag do
if PED(StartPoint, CurPoint, LastPoint) ; epsilon then
flag = false;

break;

else
‘ CurPoint — —;
end

end
if /flag then
‘ LastPoint = CurPoint;

else
StartPoint = LastPoint;
T .Append(StartPoint);
LastPoint = T[T.length() — 1];

end

end
T' . Append(T[T.length() — 1));
return Tl;

An example of the ROPW algorithm is given below to illustrate the exe-
cution process of the algorithm (as shown in Fig.2). Assume that there are
trajectory points Py, Ps, ..., Ps that arrive in chronological order in the current
sliding window. The ROPW algorithm first takes the first point in the window as
the starting point and the last point as the “current end point” for compression.
Then, the algorithm forms the line segment £(P;, Ps) as the current target com-
pressed trajectory, and calculates the perpendicular Euclidean distance d(P;, £)
from the trajectory point Ps, Py, P3 to the target straight line from back to front.
We find that the trajectory point P3 does not meet the error requirements. At
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this time, the algorithm will continue to compress P53 as the “current end point”
(the trajectory point before the trajectory point Ps will not be calculated). Sup-
pose that when Py, Py, P is compressed into a line segment L(P;, P3) (track
point P is compressed), at this time, the starting point becomes Ps, and the
“current end point” becomes FPg, and the compression process is continued. Until
the starting point becomes the last point in the window, the execution of the
trajectory compression algorithm ends.

p3
o
o >e¢ p4
p2 p6
p1 \/
p5
«— >

Fig. 2. ROPW algorithm execution example.

5 Experiments

In this section, we conduct a comprehensive experimental analysis and verifi-
cation of the ROPW algorithm. We conducted three experiments on three real
data and evaluated the performance of each algorithm in terms of compression
ratio, compression time, and perpendicular Euclidean distance error under the
same error limit.

5.1 Experimental Data Set

In this experiment, we selected three real data sets, namely Animal data set,
Indoor data set and Planet data set. The trajectories in the three data sets have
different characteristics, which can more comprehensively evaluate the quality
of the algorithm. The attribute characteristics of the three data sets are shown
in Table 1.

Table 1. Statistics of data sets.

Number of |Number of |Average length |Average |Average distance Total
trajectories |points of sampling |between two sampling |size
trajectories(m) |rate(s) |points(m)
Animal 327 1558407 1681350 753.009 |352.872 298 MB
Indoor 3578257 3634747297 |43.876 0.049 0.043 224GB
Planet 8745816 2676451044 (111051.670 4.273 8.589 255 GB
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Animal data set [19], this data set is provided by the Movebank database,
which records the migration trajectory data of eight populations of white storks
from 2013 to 2014. The trajectories in this data set have the following character-
istics: extremely long length, low sampling rate, and long distance between two
trajectory points. This data set can reflect the characteristics of sparse trajectory
points and fast moving trajectories.

The Indoor data set [20], which contains the trajectories of visitors in Osaka
ATC shopping mall. The trajectories in this data set have the following charac-
teristics: short length, high sampling rate and very close distance between two
trajectory points. This data set can reflect the characteristics of dense trajectory
points and slower moving trajectories.

Planet data set [21], which is GPS data collected through satellites provided
by OpenStreetMap. These data are a very large collection, containing the move-
ment data of target objects in several countries. These objects may be walking
people, people using vehicles, or some other creatures. The trajectory in this
data set has the following characteristics: Long length, the average speed of the
object is about 2m/s, and the speed is relatively moderate. This data set can
reflect the characteristics of a more mixed trajectory.

5.2 Experiment Settings

In this experiment, we compared the performance of the ROPW algorithm and
two currently popular online trajectory compression algorithms on three real
data sets. These two algorithms are also error-bounded online trajectory com-
pression algorithms based on perpendicular FEuclidean distance measurement
error (the two algorithms are BOPW algorithm [10] and OPERB algorithm [13]).
In order to conduct a more precise and fair experiment, we used C++ to rewrite
all the algorithms to be compared. The implementation of the rewrite is com-
pletely based on the original operating logic, and after rigorous testing, it can
get exactly the same result.

The data used in the experiment comes from the 3 data sets introduced in
Sect. 4.2 (Planet data set, Indoor data set, Animal data set). However, due to the
slow running time of some algorithms on some data sets, we randomly sampled
the Planet data set and the Indoor data set, and finally got 567 original data
tracks on the Planet data set and 1602 on the Indoor data set. Original data
track. After we processed the data set, the size of the three data sets was about
57 MB.

This experiment was performed on a 64-bit 4-core 2.1 GHz AMD(R) Ryzen
5 3500u CPU and 8 GB RAM Linux machine. Our algorithm was implemented
on Ubuntu 18.04 through C++.

5.3 Experiment Results

In this part of the experiment, we mainly evaluate the algorithm in terms of time
performance, compression rate, and trajectory error after compression. In the
evaluation of time performance, in order to measure the accuracy of the results,
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we only calculate the time consumed by the algorithm compression process.
The compression rate is calculated by dividing the total number of trajectory
points in the original trajectory in the data set by the total number of trajectory
points after compression. The error of trajectory compression is calculated by
the perpendicular Euclidean distance calculation formula.

In the first experiment, we evaluated the compression ratio of the three algo-
rithms under different thresholds. The experimental results are shown in Fig. 3.
It is not difficult to find that the compression rate of the ROPW algorithm is
significantly higher than other algorithms by given different error precision lim-
its, that is to say, the ROPW algorithm performs more prominently in terms of
compression efficiency.

Animal Indoor Planet

Threshold Threshold

Fig. 3. Given different thresholds, the performance of different algorithm compression
ratios.

In the second experiment, we evaluate the time performance of the algorithm.
By controlling the compression ratio of the algorithm (with an error of £+ 0.5),
we observe the changes in the execution time of the algorithm. The experimental
results are shown in Fig.4. By observing the experimental results, there is an
intersection between the ROPW algorithm curve and the OPW algorithm curve.
In other words, when the threshold is less than the target threshold, the OPW
algorithm has higher time performance, and when the threshold is greater than
the target threshold, the ROPW algorithm performs better. The reason for this
phenomenon is that the worst case of OPW algorithm in time performance occurs
when each track point of the input trajectory can be compressed, that is to say,
when the threshold is large enough, the OPW algorithm will reach the upper
bound of the time complexity. However, the ROPW algorithm is the opposite.
The worst case of its time performance occurs when each trajectory point of
the input trajectory cannot be compressed, that is to say, the threshold is small
enough, the ROPW algorithm will reach the upper bound of the time complexity.
In short, the OPW algorithm will decrease the time performance of the algorithm
with the increase of the threshold, while the time consumption of ROWP will
decrease. The OPERB algorithm is always the fastest. The reason is that the data
points are checked only once during the entire process of trajectory simplification.
In the following experiments, we can find that the error is relatively large.

In the third experiment, we evaluated the average PED error of each algo-
rithm under the same compression ratio (error within + 0.5). The experimental
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Fig. 4. Given different compression ratios, the performance of different algorithm com-
pression ratios.

results are shown in Fig.5. By observing the experimental results, we can find
that in the three real data sets, the average PED error of the ROPW algorithm is
optimal, while the average PED error of the OPERB algorithm is relatively large.

Animal Indoor Planet

age PED Error
n

.
Average PED Error
Y
=

Fig. 5. Given different compression ratios, different algorithms PED error performance.

6 Conclusion

In this paper, we designed the ROPW algorithm by using the method of travers-
ing the trajectory points in the window in reverse order to avoid the too strict
constraints of OPW and other algorithms. The ROPW algorithm is an error-
bounded algorithm on the PED error. Due to the reverse traversal feature of
the algorithm in the sliding window, it is more suitable for scenes with relatively
standardized moving trajectories and dense trajectory sampling. In this scenario,
time performance and compression performance can be greatly improved. And
the experiment proved that the algorithm has good performance in terms of
compression rate, time efficiency and PED error.
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Abstract. With the popularity of time series analysis, failure during
data recording, transmission, and storage makes missing blocks in time
series a problem to be solved. Therefore, it is of great significance to
study effective methods to recover missing blocks in time series for better
analysis and mining. In this paper, we focus on the situation of contin-
uous missing blocks in multivariate time series. Aiming at the blackout
missing block pattern, we propose a method called hankelized tensor fac-
torization (HTF), based on singular spectrum analysis (SSA). After the
hankelization of the time series, this method decomposes the interme-
diate result into the product of time-evolving embedding, time delaying
embedding, and hidden variables embedding of multivariate variables in
the low-dimensional space, to learn the essence of time series. In an exper-
imental benchmark containing 5 data sets, the recovery effect of HTF and
other baseline methods in three missing block patterns are compared to
evaluate the performance of HTF. Results show that when the missing
block pattern is blackout, the HTF method achieves the best recovery
effect, and it can also have good results for other missing patterns.

Keywords: Multivariate time series + Missing block pattern - Missing
value recovery - Tensor factorization

1 Introduction

With the rapid development of 5G, big data, and the internet of things, time
series data from various sensors, financial markets, meteorological centers, indus-
try monitoring system and the internet is growing at an unprecedented rate.
People expect to exploit the huge value that can reveal the development trends
in the field of interest behind the data, making the analysis, mining and forecast-
ing of time series becoming a popular topic. Unfortunately, all of this requires
time series Completeness as a prerequisite that data in real scenarios often lacks
due to network failure, storage equipment malfunction and other situations from
time to time. Data missing in a period of time, that is, the existence of missing
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blocks in time series has already been a common and urgent problem waiting to
be solved.

Data Quality is a very popular topic recently, and there are a lot of good
study result, i.e. [4]. However, when facing the data quality problem with time
series, things are different.

In the course of practice, people gradually reach a consensus that traditional
statistical method (such as interpolation, multiple imputation [15], etc.) to fill
in missing blocks will obscure the hidden pattern of the original data, destroying
the dynamic trend of data, followed by the recovery result not conducive to
subsequent analysis and prediction [1]. As a result, new methods are gradually
emerging.

In view of positions where missing blocks appear, Khayati et al. [9] put
forward three kinds of missing patterns: disjoint, overlap and blackout, and then
a detailed comparison of the previous work in these three patterns was presented.
Their work pointed out that the recovery effect of the same method on the
same time series in different missing patterns can have a huge difference, which
previous study did not pay attention to. As a result of their research, they
suggested the study of missing block recovery in time series data should focus on
the performance in different missing patterns, especially in the case of blackout
where there is a lack of good methods.

Based on the work of Khayati et al. [9], in particular, there is a gap in the topic
of missing block recovery in the blackout missing pattern. An effective algorithm
named hankelized tensor factorization (HTF) is proposed, to solve the situation
that existing works usually have a bad performance in the case of blackout. The
Inspiration of HTF is from the singular spectrum analysis (SSA), a powerful
time series analysis technique, decomposes the time data to the weighted sum
of a series of independent and explainable components, so as to reconstruct the
original sequence well. However, singular spectrum analysis is not suitable for
the case of large missing blocks. This paper drawing on the idea of singular
spectrum analysis, decomposes the sequence into the product of time-evolving
embedding, time delaying embedding and the hidden variables embedding of
multi-dimensions in the low-dimensional space. And then a reconstruction of
the original sequence is displayed, filling missing values by their reconstruction
estimation. In order to obtain the recovery effect of the method, we conducted
experiments under a benchmark of 5 datasets, evaluating the performance of
HTF and other baseline methods. In conclusion, the contribution of this paper
are listed below:

e HTF, an effective algorithm to recover the missing blocks in time series is
proposed. With inspiration from SSA, we solve the problem of missing block
recovery by an approach named tensor factorization that decomposes high-
dimensional data to low-dimensional embeddings to learning high order tem-
poral correlations among the sequential data.

e Based on the work of Khayati et al., the recovery effect of HTF is com-
pared with other baseline methods in three different missing patterns on the
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benchmark of 5 datasets inherited from their study, including deep learning
methods which was not contained before.

2 Related Work

Study of recovery effect under different missing blocks patterns has not been
widely paid attention to. The work of Simeng Wu et al. [17] is most similar to
this paper, they proposed the HKMF method which focuses on how to fill missing
values of blackout in time series, but their work only suits the case that the time
series is univariate. One contribution of this paper can be regarded as extending
their work to a multivariate case by another technique. More importantly, we
find the theoretical foundation that our work may be the best result we can
achieve when the time series satisfies linear recursive formula by explaining the
fact that HTF and singular spectrum analysis is the same thing in some sense.

Apart from the work mentioned above, Li et al. [10] suggested Dynammo, a
method based on the linear dynamic system which makes use of kalman filter
to model the time series with the assumption that the observed time sequence
is generated by the linear evolution of hidden variables. Kevin et al. [16] rec-
ommended a sequence matching method using the most similar subsequence to
generate an imputation, by selecting k complete sequence most similar to the
sequence just before the missing blocks. Haiang-Fu Yu et al. [18] put forward a
matrix factorization method named TRMF to handle the case when the dimen-
sion of time series is high. The main contribution of their work is a new kind
of regularization that can be explained as a constraint over a temporal graph.
Wei Cao et al. [3] proposed a new deep learning model based on the original
bidirectional LTSM, modifying the structure to make it more adaptive to the
characteristic of time series. A new loss function that minimizes the error both in
forward imputation and backward imputation was presented at the same time.

The following sections are arranged as below: Sect. 3 introduces the problem
definition and missing block patterns. Section4 introduces the HTF method
and its relation to SSA. At last, in Sect. 5, we evaluate the recovery effect and
performance of our method in the benchmark.

3 Backgroud

As a type of data, time series can have various auxiliary data associated with
it, and timestamp is the most common among them. In this paper, we do not
discuss the situation this additional information are contained. Only consider-
ing observed multivariate time series sampled evenly can help us simplify the
problem and find the essence of this type of data.

3.1 Definition

The general problem of missing block recovery for time series is defined as follows:
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Given: A time series of length T, X = (z1,®s,...,x7), where z; € RP is a
D-dimensional column vector for data at time t; an indicating matrix W =
{0,1}P>*T with W, ;, = 0 if the i-th dimension of x; is missing, and W, ; = 1 if
the data is present.

Solve: Estimate the missing values in X indicated by W.

We say W, ;. W, 11,...., W1 is a missing block of length [, if
Wi,j'Wi,jJrla'"ij%*l*l =0 .1If lej,WQJ,...,WD,j = 0, we state there
is a blackout in the j-th column. The main topic this paper study is when
the length [ > 20. The missing pattern of data is defined by the indicating
matrix W, we notate the max length over all missing blocks as [, and hys
is the notation of the max height over all the columns of missing blocks that
Wi, Wisij, oo, Wign-1; = 0.

3.2 Patterns of Missing Blocks

The pattern of missing blocks is determined by factors like the relative position,
the length and the height of missing blocks, and so on. Khayati et al. argued the
following three possible pattern types of missing, as shown in Fig. 1, X7, X5, X3
are the univariate time series of same length column by column, the missing
blocks in every sequence is marked as grey:

1) Disjoint: In this case, missing blocks do not intersect on each other in the
same time span. That is to say for each missing block, the sequences from
other variables at the same time is complete, equivalent to hy; = 1. It is the
simplest case in all three types.

2) Overlap: In this case, missing blocks intersect each other partly, and there
would be at most D — 1 variables missing at the same time, equivalent to
2 < hpr < D. It is a relatively complex case.

3) Blackout: In this case, missing blocks coincide with each other at some time
interval, equivalent to hy; = D. Generally speaking, this case is very hard
to recover when the missing length is large. So in this paper, we constrain
20 <l < 100. It is the most challenging case.

In the real scenarios, these three patterns of missing seldom appear alone, a
problem that all three types mix together usually happens when data transmis-
sion in a bad network.

4 Hankelized Tensor Factorization

The Hankelized Tensor Factorization algorithm we proposed in this paper,
mainly focuses on the Blackout missing pattern. In this case, the indicat-
ing matrix W contains some continuous columns all filled with zero, like
W.;,W. 11,0, W1 =0.

The details of HTF are listed below. First, apply hankelization on the input
time series matrix X € RP*7 carrying the missing position. Then, a novel ten-

sor factorization approach inspired by gradient descent will be carried out on the
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Fig. 1. Different types of missing block pattern (the missing marked as grey)

result of the first step, causing the high dimensional data with missing trans-
formed to some low dimensional embeddings. Thirdly, a reconstruction based
on the embedding obtained just before will be multiplied to make a reconstruc-
tion of the hankelized time series with missing imputed. In the end, we will do
an inverse version of hankelization to turn the reconstruction to an estimation
matrix, with each missing value in the original data matrix being imputed.

4.1 Methodology

In the following subsections, the detail of the procedures listed above will be
explained. For the simplicity of mathematical expression, we give the following
arithmetic definition:

Definition 1. A, B are matrices of size m X n,
(A® B);; £ Aij x By;

Definition 2. x,y are vectors of length m and n,
T1Yy1r T1Y2 ... T1lYn
TRy 2 | T2Y1 T2Y2 ... T2Yn

TmYlt TmY2 -« TmYn

A. Tensor Hankelization

The first step of HTF is to hankelize the input time series matrix X. Compared
to the way Hassani et al. [7] proposed that does hankelization for the sequence
X; . of each variable i, then merge to a compound matrix by put all the results in
the row order or in the column order, generating a much larger matrix compared
with the original X. We give a way that makes the matrix to a tensor, just like
what Hassani et al. do when it hankelizes the univariate sequence as defined. The
difference between these two ways is shown in Fig. 2. We believe the result tensor
can be represented by more explainable, effective and independent components
in our approach, so the essential can be learned better and the reconstruction
result has a better recovery effect. The comparison experiments in Sect.5.2.C
support our point of view.
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=-m-f

Hassani's

Ours

Fig. 2. Different ways of hankelization (Hassani’s and ours)

Tensor hankelization can be thought of as doing the process of formula (1)
for the sequence vector X . of each variable in time series matrix X, and then
put the result in the third dimension height, vertical to the dimension of time-
evolving (row) and multi-variables (column). We notate z;, zi41,..., 2i41—1 as
time evolving vector list of length L, and zj, zj41, ..., 2j+ k-1 as time delaying
vector list of length K. The value of K must satisfy K > [y, + 1, which [;; has
been defined in the Sect. 3.1. For the recovery effect of our method, the value of
K should be appropriately large. The result of this step can be seen as a map
from all matrix elements to all of the tensor, which is shown in Eq. (2).

21 V) e 2L

H(z) = H([z1, 22,...,23]) = Zg 23 . ZL41 )
ZK ZK+41 -+ 2T

Hi(X)ijn = Xijir—1,Hx(X) € RD XK XL @)

Tensor Factorization

The next step of HTF is to decompose the tensor coming from the tensor hanke-
lization. By decomposing the result to time-evolving embedding, time delaying
embedding and multi-variate embedding, the essential of time series can be rep-
resented independently and explainably. Another important advantage of fac-
torization is that the embeddings which map the components of time series to
low dimensional space are dense despite the original in the high dimension is
sparse, the principle behind similar to that the product Z = xy” of vector z ,
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y of length m and n generates a matrix of m x n elements, while solving x,y
does not need as many as m x n elements of Z. This paper takes the following
formula to do tensor factorization,

R
HK(X):Y%ZA:,T®B:,T®CZ,T (3)

r=1

which A, B and C represent the time-evolving trend, time delaying trend and
the hidden variables of multi-variables in the low R-dimension space.

In order to solve A, B,C, we select the method based on the stochastic
gradient descent from machine learning, compared with other approaches to solve
tensor factorization problem, such as alternating least squares [8]. The reason
is that other methods may be harmful to the result because of their default
initialization of zero when dealing with missing values which is no difference
between a tensor with no missing values but is filled with zero and the tensor
which is missing at the same position and initialized with zero. We propose the
following function:

R

Lapcoy)= Y, (Yijx—Y AirB;,Cx.)’+\Rr(A,B,C)+\R(A,B,C)
(i,5,k)ENR r=1

(4)

where (2 is the set of indexes correspond to the observed elements in
Y, which is generated from W. Y, is the (i,7,k)th element of Y.
Rr(A,B,C),R(A, B,C) are two regularizers defined in Eq. (6) and (7), respec-
tively, with A., A\s being the coefficients. Given Eq.(4), the task of learning
A, B, C is achieved by solving:

(A,B,C) =argmina pcLlapc(Y) (5)

More specifically, the objective function in Eq. (4) contains four components
as follows:
First, Z(ijk)e()( ik — ZT 1 A B .Cy,)? quantifies the error of Y ~

Zf:] A:,'r‘ ® B:J- ® C:,T‘
Second, Rr(A, B, C) is the temporal regularizer defined as

D K L R
Rr(A,B,C) =330 A, B;(Cror — Cr1,))? (6)
i=1 j=1k=1 r=1

which restricts the adjacent element of the solution of y & Zf;l A ,®B.,C.,
should be close.
Third, R(A, B,C) is a Lo regularizer defined as:

R(A,B,C) =||All% +|Bl% + lIC[% (7)

which solve the overfitting problem of machine learning.



36 H. Zhang et al.

Solving Rule

To find the optimized A, B, C that minimizes the objective function as shown
in Eq. (4), we adopt the stochastic gradient descent approach with the following
update rules:

AP = A +nlerr 1 (Bj. ©Cy.) — A\ A .
—)\S(F © (A © Ck,:)) (8)
(I e (A" Ck))]

B/?" = B;. + nlerr; jx(Ai. ® Cg.) — A\ Bj..
=X ® (A, ©C)) (9)

(IO (A ©Cy.))]

Cre" = Cr. +nlerr; jx(Ai. © Bj.) — \Cy.
“A(I @ (A0 4)) (10)

(I 0 (Ai. 0 47))]

which:
A=B;.—Bj 1.

Ir= Ai,:(A © Ck:,:)
A= Bj+1,: — Bj7;
I’ = Ai,:(A/ ® Ck’;)

R
errijr =Yijk— E AirBjCl,y

r=1

4.2 Relation to Singular Spectrum Analysis

The HTF algorithm this paper put forward can be thought of as the tensor
factorization version of singular spectrum analysis. Hassani et al. [6] pointed
out, as a novel and powerful time series analysis technique, which can be used
to process the time series from dynamic system, signal processing, economy and
many other spheres, singular spectrum analysis decomposes the original data
into the sum of a series of independent and explainable components, such as
smooth trend, period components, quasi-period components and non-structural
noise.

It generally consists of two steps: decomposition and reconstruction. The
first step is to hankelize the time series, then do singular value decomposi-
tion: H(X) ~ MU Vi + AU Vi + ... + AU, V,,. The second step is to select
eigenvalues that have large impact on the reconstruction by Y, A/ >/ Ay >
threshold, with the purpose of denoising data. So the reconstruction of H(X)
isr < n,]:I(X) = MU Vi + ...+ \.U,V,. At the last, get the estimation of X
by diagonal average approach.
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Golyandina et al. [5] suggested singular spectrum analysis is the optimal
reconstruction for the time series satisfying the Eq. (11):

Ty = ClTp—1 +C2Tp_92 + ... + CLTpn—_k (11)

This property makes it powerful for lots of time series since many time-evolving
processes in real scenarios can be represented or approximately represented by
this formula.

Due to the characteristic of singular value decomposition (SVD) that treats
the missing value of matrix to decompose as zero or some constant, singular
spectrum analysis always takes this default initialization of missing as part of the
trend in data, resulting in the lack of capacity of the method to recover missing
blocks. Although Mahmoudvand et al. [13] proposed a kind of improvement
based on singular spectrum analysis, it has a strict demand on the shape of
missing, which can not deal with arbitrary shapes of missing blocks. However,
the tensor factorization method proposed by this paper which uses stochastic
gradient descent does not take missing into consideration, making it adapt to
the problem.

Since apart from the approach to decompose the original matrix in the pro-
cedure of decomposition, the rest steps of the SSA and HTF are almost the
same, there is no doubt that the HTF has the same capacity as SSA if tensor
factorization technique can reach the effect of SVD which is shown in [12].

5 Experiments

5.1 Experiment Setting

In this section, we conducted experiments using real-world data sets to evaluate
the performance of our approach based on the benchmark of Khayati et al.,
appending the comparison of deep learning approach to get a more exhaustive
evaluation.

The environment of the experiments is a 4-core Intel i5-7300HQ CPU,
NVIDIA GTX 1050 GPU. The implementation of all methods mentioned in
experiments are coded with Pytorchl.5 and Python3.6.

A. Data Sets and Experiment Methodology
Five real-world data sets are used for the experiments':

— Air Quality: contains air quality data in a city of Italy from 2004 to 2005.
There is a periodic trend and jumping changes in the data. We cut it to 10
variables, 1000 time points.

— Electricity: contains family electricity usage in France per minute from 2006 to
2010. There is a strong time varying property in it. We cut it to 20 variables,
2000 time points.

1 All 5 datasets can be found on https://archive.ics.uci.edu/ml/datasets.php.
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— Temperature: contains temperature data sampled in weather stations across
China from 1960 to 2012. There is a high correlation between variables. We
cut it to 50 variables, 5000 time points.

— Gas: contains gas data collected by a chemical laboratory in the United States
in a gas extraction platform from 2007 to 2011. There is a huge difference in
correlation between variables. We cut it to 100 variables, 1000 time points.

— Chlorine: contains chlorine data from 166 intersections in a water system,
sampled every 5min during 15 days. There is a very smooth trend in data,
with a strong periodicity. We cut it to 50 variates, 1000 time points.

The evaluation metric we used in this paper is:

1

NRMSE(X,X) = ]
test

> (Xiy—Xiy)?/

(ivj)eﬂtest

1
X,
(|Qtest|( Z ‘ 7

1,§) € Rtest

)

where X is the result that the missing in the original matrix is filled with estima-
tion. 2.5 is the set of all indices that value is missing. The smaller the NRMSE
of the algorithm is, the better the recovery effect is.

The reason why use NRMSE is that not only the recovery effect of different
methods on the same data set can be compared, but also the effect of one method
on different datasets can be evaluated. It has wide use in papers like [11,14,18],
becoming a popular metric to evaluate the effect of a method to recover missing
values.

To demonstrate the effectiveness of HTF, we compare its performance against
the following baseline approaches: 1) TKCM [16]; 2) Dynammo; [10]; 3) TRMF
[18]; 4) BRITS [3]. The brief statement of their work has been introduced in
Sect. 2.

The original dataset in the benchmark is complete, we simulate the different
missing patterns by generating the related indicating matrix W, and the missing
blocks only appear in the middle of the series to avoid the end case which is
similar to forecasting tasks that the methods we experiment usually perform
badly. Because of the randomness of result caused by the position of missing
generated randomly (There is a large difference between the smooth sequence
piece and steep sequence piece in the recovery effect.), we conduct a duplicate
experiment way to reduce the randomness.

B. Empirical Parameters Setting
K,L =T+ 1— K in the step of hankelization, A, A\s,n in the step of update
rule, and the number of iterations iter_num that applying update rule are all
the hyper-parameters that we need to set empirically.

Before we compare our method with others, we carried out several trials to
select these hyper-parameters of HTF to avoid bad performance of our method.
So in the end, we set A; = A\, € 0.0001,0.001,0.01 for different datasets, R =
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[1.2 % D], K = [1.5 %], and the number of iterations of gradient descent is
iter_num = 100. One process that we did experiments to find a good parameter
is shown in Sect.5.2.D. Also, we do the same process for each baseline method
if it has selective parameters.

5.2 Recovery Effect

A. Performance on Disjoint and Overlap

In this set of experiments, when generating indicating matrix W, the number
of involved variables is at least 4, at most about 40% of total. In the pattern of
Overlap, hy; = 2.

From Table1l and Table2, it can be concluded that overlap case is more
difficult to recover effectively than disjoint, and almost all methods have the a
degree of performance reduction on all data sets. Many methods can achieve
good results when complete sequences of variables exists. The reason is that the
complex dependence of variables in time series at each timestamp can be learned
based on the complete sequence of certain variables as a reference. Among them,
the BRITS algorithm based on deep learning achieved the best performance, and
HTF did not get a good enough result. The essential of this phenomenon is that
HTF focuses on learning the autocorrelation of variables while other methods
more focus on the correlations between variables.

Table 1. Performance on disjoint pattern

Dataset TKCM | Dynammo | TRMF | BRITS | HTF
Air quality |0.916 |0.707 0.494 |0.018 | 0.620
Electricity 0.838 |0.867 0.811 |0.683 0.704
Chlorine 0.323 |0.034 0.015 |0.047 |0.129
Gas 1.740 10.384 0.081 |0.068 |0.467
Temperature | 0.426 | 0.133 0.111 ]0.099 |0.281

Table 2. Performance on overlap pattern

Dataset TKCM | Dynammo | TRMF | BRITS | HTF
Air quality |1.244 |0.770 0.672 |0.578 0.714
Electricity | 0.863 | 1.347 0.873 |0.489 |0.674
Chlorine 0.335 | 0.095 0.061 |0.081 |0.165
Gas 1.726 |0.476 0.383 |0.073 | 0.452
Temperature | 0.442 | 0.481 0.430 |0.140 |0.288
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B. Performance on Blackout
In this set of experiments, generating indicating matrix W, the number of
involved variables is about 40% of total. the length of each missing blocks is 100.

From Table 3, we can find the HTF algorithm we proposed achieved the best
NRMSE in all datasets. All other methods perform really bad, they lost the
ability to recover the missing, which can be confirmed both in nrmse result and
Fig.3. In [2], authors discussed the reason why dynammo fails in the blackout
pattern. Due to only extracting the most similar subsequence to fill the missing,
TKCM can not adapt the local dynamic well, so the shifting phenomenon is very
serious. The matrix factorization technique TRMF takes can not handle the sit-
uation that there is a column in the matrix that is missing, which caused one
column of embedding not having information to update its value. So the impu-
tation may look like white noise with little variance with random initialization.
For BRITS, long intermediate process missing, a kind of gradient vanishing is
hard to solve for neural networks, which is the inherent defect of deep learning,
and there may only be fluctuation values near the end of missing blocks, while
the middle of the block is smooth.

Figure 3 shows the picture of what the recovery result looks like compared
with the original data in the blackout missing pattern on the Electricity dataset,
which is evidence of the analysis we give before. The time points of the missing
block are from 325 to 425, and the red one in the figure is the original data, while
the blue is the image of recovery. It is not hard to see only our method return
the result looks reflecting the characteristic of original time series and there is
no much difference between the recovery and truth.

Table 3. Performance on blackout pattern

Dataset TKCM | Dynammo | TRMF | BRITS | HTF

Air quality |1.254 |1.070 1.252 |1.797 |0.763
Electricity 1.235 1.165 1.273 |1.604 |0.652
Chlorine 0.521 ]0.691 0.517 |0.516 |0.275
Gas 1.459 |1.235 1.202 |1.737 |0.606
Temperature | 1.108 | 0.542 1.123 |0.593 |0.219

C. Influence of Different Ways of Hankelization

The two ways of hankelization introduced in 4.1.A is valid in theory, and the
effect can hardly be analyzed by mathematical. So we compared these two ways
in experiments, we name the way we use tensor hankelization HTF, and the way
we use the matrix hankelization HTF-M. Which can be seen from Table4, HTF
outperforms HTF-M in almost all cases, though the advantage is not obvious,
this kind of difference is enough in Statistical.
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Fig. 3. Recovery effect of different methods on Electricity dataset

Table 4. Influence of different ways of hankelization

Dataset HTF |HTF-M
Air quality |0.7630.798
Electricity 0.652 | 0.658
Chlorine 0.275|0.293
Gas 0.606 | 0.632
Temperature | 0.219 | 0.239

D. Influence of parameter K
The selection of K may have a big impact in performance , and this set of
experiments aims to find a good K. Because of K should satisfy K > I, + 1,
we set K = [&lp](€ > 1). By adjust the value of &, we can see the impact of
different K.

Figure 4 shows the result of the influence of different £ on NRMSE and time
cost every iteration in Air Quality and Electricity data with parameters fixed
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with A = A\, = 0.0001, iter_num = 100. along with the increase of £, time cost
each iteration shows a monotonous increase trend, while the NRMSE decreases
when £ € (1,1.6], and goes smooth when & > 1.6. A good value of k should
balance both recovery effect and time cost the program does, so £ = 1.5, K =
1.5 % s is a good selection.

090 -\-\/'_’/../'

0385 —&— Electricity
8- Air Quality

3
(a) NRMSE of HTF

| e

8 A —a— Electricity
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sfiteration

(b) time cost per iteration of HTF

Fig. 4. The recovery effect and time cost of HTF related to ¢

5.3 Result Conclusion

In conclusion, the HTF algorithm achieved an excellent result in blackout pattern
compared to other baseline methods, while also performs well in other missing
patterns. It is an effective algorithm for time series to recover missing blocks.

6 Conclusion

This paper presents a novel tensor factorization-based approach called HTF to
address the challenging problem of estimating the values of missing blocks in
time series, especially the blackout missing pattern by decomposing multivari-
ate data sequence into time-evolving embedding, time delaying embedding and
multivariate embedding. Following this idea, the method first transforms a time
series matrix into a hankelized version. Through the experiments on the bench-
mark inherited from the previous work, we demonstrate the effectiveness of HTF
by comparing its performance against state-of-art baseline approaches.
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For future work, we plan: 1) design a deep learning method to handle the

Blackout missing pattern Specifically, aiming to deal with the case that time
series does not satisfy linear recursive formula. 2) Solving the problem when
data is sampled unevenly.
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Abstract. The research task of discovering nodes sharing the same
attributes and dense connection is community detection, which has been
proved to be a useful tool for network analysis. However, the existing
approaches are transductive, even for original networks with structures or
attributes changed, retraining was required to get the results. The rapid
changes and explosive growth of information makes real-world applica-
tion have great expectations for inductive community detection mod-
els that can quickly obtain results. In this paper, we proposed Label
Aggregation Algorithm (LAA), an inductive community detection algo-
rithm based on label aggregation. Like the traditional label propaga-
tion algorithm, LAA uses labels to indicate the community to which
the node belongs. The difference is that LAA takes the advantages of
network representation learning’s ability for information aggregation to
generate nodes’ final labels by aggregating the labels propagated from
local neighbors. The experimental results show that LAA has excellent
generalization capabilities to handle overlapping community detection
task.

1 Introduction

Networks provide a natural and powerful way to represent relational information
among data objects from complex real-world systems. Due to the flexibility of
using networks to model data, many real-world applications mine information
by analyzing networks. One way to analyze networks is to identify the groups
of nodes that share highly similar properties or functions, such as proteins with
similar functions in biological networks, users with close relationships in social
networks, papers in the same scientific fields in citation networks. The research
task of discovering such groups of nodes is called the community discovery prob-
lem [7].

In recent years, rapid progress in network representation learning has fueled
the research of community detection [2]. Since network data are high-dimensional
and non-Euclidean, it is not easy to use them directly in real-world applications.
However, by representation learning, every node in the network can be embedded
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into a low-dimensional space, i.e. learning vector representations for each node.
The learned node representation vectors can benefit a wide range of network
analysis tasks such as node classification, link prediction, community detection
and so on.

Several methods have been proposed, which combine community detection
with network representation learning did show great promise in designing more
accurate and more scalable algorithms [15]. However, community detection in
previous models focuses on a single and fixed network. Even for dynamic net-
works with the same sizes and attributes, retraining is required to get the results.
The rapid changing and explosive growth of information make real-world appli-
cations have great expectations for inductive community detection models that
can quickly obtain results.

To address this problem, we propose LAA, an inductive community detection
algorithm based on label aggregation. LAA uses AGM (Affiliation Graph Model)
to assign a label for each node, and the label indicates the membership of the
node belonging to the community. Each node receives the label propagated from
the local neighborhood according to the similarity of the neighboring nodes.
Through training a series of aggregation functions, the received label and its
own label are aggregated as the final label of the node. The aggregation function
explains the influence of the membership information of neighboring nodes on
which communities the target node will be divided into, i.e., the relationship
between the generation of communities and the network topology. We are based
on the assumption that no matter how the structure changes, such a relationship
will not change. In addition, in the networks with the same size and attributes,
such relationships are supposed to be similar. Therefore, through the trained
aggregation function, the labels corresponding to the untrained nodes in the
networks can be obtained, and the communities corresponding to the nodes in
the network are determined.

2 Related Work

Community Detection. In recent years, several community detection models
have been proposed based on different perspectives. One of the popular direc-
tions is to design some indicators to measure the quality of the community [16].
By optimizing these indicators, the community structure can be discovered. The
most common method is to optimize the modularity, and obtain the global opti-
mal modularity by making a locally optimal choice. Another popular direction is
to use matrix factorization technology to decompose the adjacency matrix of the
network or other correlation matrices to obtain the node-community correlation
matrix [9,10,14]. However, due to the limitation of the capacity of the bilin-
ear model and the complexity of matrix factorization, these models cannot be
extended to lager networks. In addition, some researchers use generative mod-
els to discover communities [1,18]. The basic idea is using generative models to
describe the process of network generation, and transform community detection
problem into reasoning problem. However, due to the complex reasoning, the
computational complexity of these methods is also high.
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Label Propagation Algorithm. Label propagation algorithm (LPA) [12] has
proved to be a popular choice for community detection task for its efficiency and
ease of implementation. The basic idea of LPA is that nodes propagate labels to
neighboring nodes according to the similarity of nodes, and neighboring nodes
update their own labels according to the received labels. LPA detects commu-
nities by the iterative propagation of node labels until convergence, and nodes
with the same label belong to a community. However, LPA still has some short-
comings: it cannot obtain accurate results when dealing with the overlapping
community; the randomness of label propagation will lead to unstable results.
In order to overcome the shortcoming of LPA, some enhanced algorithms have
been proposed, such as SLPA [17], COPRA [3].

Network Representation Learning. Network representation learning is one
of the most popular research directions in recent years, and many network rep-
resentation learning models have been proposed. Most of these models can be
divided into two categories. One preserves the information of the network by
the distance between the node vectors, and the nodes’ representation vectors
usually do not contain any information, such as Deepwalk, Node2vec, LINE
[4,11,13]. Another one aggregates the information of the neighborhood based on
the structure of the network so that the representation vectors of nodes not only
represent the attributes of the nodes, but also retains the structure information
of the network, such as GraphSAGE, GCN [5,8].

Community Detection Based on Network Representation Learning.
Most of existing community detection models based on network representation
learning use the network representation learning algorithm to obtain the rep-
resentation vector of the nodes, and then performs clustering calculation or
matrix decomposition calculation. However, in the process of network repre-
sentation learning, existing a problem of structural information loss. Therefore,
when dealing with dense and overlapping networks, it is often impossible to
achieve ideal performance. In order to address this problem, some researchers
have carried out network representation learning and community detection tasks
at the same time, and combine community structure and node representation
for optimization, such as CommunityGAN [6]. However, such algorithms are
often more complex, costly in training, and do not have the ability to infer and
summarize.

3 Problem Definition

Given a network G = (V, &), where V = (v1...v)y|) represents the nodes in the
network, & = {e;;} are their connections. N(v) represents the neighborhood of
node v, and N, (v) represents the sampled neighborhood of node v based on the
node similarity sampling. We denote L, as the label of node v which indicate
the community to which the node v belongs. We denote £* as the label of node
v after k labels aggregation, and L) as the initial label. LAA model takes the
initial label £° = (L9, "'E(\)w) as input, aggregates the labels through a serious
of trained aggregation function, and get the final label £¥ = (L%, "'E\kw)'
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4 LAA Framework

The main idea of LAA is to use the powerful information aggregation capabilities
of the network representation learning algorithm to aggregate label information,
and understand how labels propagating in the network, so as to obtain the gen-
eralization ability of the model. In this section, we present the LAA model. The
main idea of our model is to combine the efficiency and ease of implementa-
tion of label propagation and the information aggregation power of the network
representation learning.

C, C Cs
Py Fip By -
Fy Fp Fy -
Fy Fp Fyo oo

Communities

Menberships

Nodes

Fig. 1. AGM framework

4.1 AGM

In traditional label propagation algorithms, the definition and initialization of
labels are important, and directly affect the results. The LAA model draws on
the related concepts and ideas of AGM when defining and initializing labels.
AGM is proposed to solve the problem of community detection in overlapping
networks. It is based on the idea that a network is generated according to the
community affiliation model. The more common communities that two nodes
belong to, the greater the probability that they are connected. The framework
of AGM is shown in Fig. 1, which can be expressed in the form of a non-negative
membership matrix, or in the form of a bipartite network between nodes and
communities. In AGM, each node can belong to 0, 1, or multiple communities,
and AGM denotes F,, = Fi,...Fyc, as the affiliation vector of node v, where
n is the number of the communities in the network, and F,., indicates the
membership strength of node v to community Cy. The higher F., means the
greater the probability that node v belongs to community C;. LAA use the
affiliation vector F, as the label L, of node v.

4.2 Label Aggregation

After defining and initializing the label of each node, the next step is to carry
out label information propagation and label information aggregation.
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4.2.1 Accept Labels from the Local Neighborhood

In each layer, each node will propagate labels to neighboring nodes, and each
node will also receive labels from neighboring nodes. Since the degree of each
node and the number of neighboring nodes are different, the number of labels
received is naturally different. In order to make the algorithm expandable, LAA
adopts different label receiving strategies for different aggregation functions:
Mean-aggregation and Attention-aggregation. Attention aggregation can adap-
tively handle variable-scale inputs, focusing on the most relevant part of the
input in decision-making. Mean aggregation requires probabilistic sampling in
the first-order neighborhood and second-order neighborhood of the target node
according to the similarity of the nodes to generate a fixed-scale input, as shown
in Fig. 2. The node similarity is defined as follows:

IN(v) NN (u)| + [E(v, u)|
dy + dy, ’

J(v,u) =

where N(v) and N(u) represents the neighborhood nodes set of node v and
u, d, and d, represents the degrees of node v and u. E(v,u) is the judgment
whether the node v and u are connected, if they are connected, E(v,u) = 1,
else E(v,u) = 0. For all nodes in the network, we calculate the similarity of any
two nodes. For each node, we normalize the similarity of its neighboring nodes.
And probability sampling is performed according to the normalization result to
obtain the neighborhood aggregation Ny of a fixed size. The process is shown in
Fig. 3.

Fig. 2. Neighborhood sampling based on the node similarity

4.2.2 Label Aggregation

In each layer, after each node receives the label propagated by the node in the
sampling neighborhood N, LAA uses the aggregation function to aggregate the
received label and its own label as the label in the next layer. The process is
shown in Fig.3. LAA implements two aggregate functions:
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Fig. 3. Label aggregation

1. Mean-aggregation

Mean aggregation is to take the average of the label information of the neighbor-
hood, and then aggregate it with the label of the target node. As shown in the
Algorithm 1, mean aggregation is to take the average of the label information of
the neighborhood, and then aggregate it with the label of the target node. In the
k layer, we first take the average of the label £F propagated by the nodes in the
sampling neighborhood N;(v), then splice the result and the label of the target
node £F. After multiplying with the weight matrix W¥, we perform a non-linear
transformation, and use the result as the label of the node v in the k + 1 layer,
i.e. LEHL.

/:]vas(u) = Mean(LF,Vu € N,(v))

L = oWk concat(£§>£§€\fs(v)))

2. Attention-aggregation

Attention aggregation is to calculate the similarity between the label informa-
tion of the neighboring node and the label information of the target node. The
label with high similarity has a higher weight during aggregation. As shown
in Algorithm 2, attention aggregation is to calculate the similarity between the
label information of the neighboring node and the label information of the tar-
get node. The label information with high similarity has a higher weight during
aggregation. In the k layer, we first calculate the similarity between the label
vector propagated by nodes in the neighborhood and the label vector of the
target node v, then normalize the similarity coefficient with softmax function to
obtain the attention coefficient:

I — a’ (concat(WkLE WLk)))

o > weN@) exp(aT (concat(WkLE W LE)Y))
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Algorithm 1. Mean aggregation for label aggregation algorithm

Input: Graph G(V,&); initial label £° = (£9...£%); number of label aggregation
times K; weight matrices W*,Vk € {1, ..., K}; non-linearity o; sampling neighborhood
N (v).

Output: Aggregated label £F for all nodes v € V.

1: for k=1,...K do
2: forveVdo
3: l:'f\,_s(lv) = Mean(L5™" Yu € Ns(v))
4: LE = o(W" - concat(LET!, L’X&lw))
5: end
6: end
T Ly — Ly/||L3]]
8: return LF
where, a” is a vector of dimension 2n, and n is the number of the communities,

i.e. the dimension of the label vector. a” can map the spliced vector to a real

number, which is the similarity coefficient. After the normalized attention coef-
ficient is obtained, it is linearly combined with the corresponding label, and the
result is subjected to a nonlinear transformation, which is used as the label of
the node v in the (k + 1)th layer.

Lt =o( ) ap,WLy)
u€EN (v)

Algorithm 2. Attention aggregation for label aggregation algorithm

Input: Graph G(V,&); initial label £° = (£9...£); number of label aggregation
times K; weight matrices W*,Vk € {1, ..., K'}; non-linearity o; sampling neighborhood
N (v).

Output: Aggregated label £% for all nodes v € V.

:for k=1,..K do
for v €V do
for u € N(v) do
k—1 aT(concat(Wklﬁﬁ_lywﬁﬁ»)
YweN(v) exp(aT (concat(Wh—1ck=1 wrk=1y))

: end
: end
DLy — LE/|1L5]]

1

2

3

4

5:

6: Lr = U(ZuGN('U) aktwekh
7.

8

9

10: return £F
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4.2.3 Determining Community Membership

After getting the final label vector of each node, we define a threshold to deter-
mine the membership relationship between the node and the community. The
threshold is defined as follows:

0 = /=log(1 - 2[€l/[VI(]V] - 1))

If the membership vector F,,. > J, then the node v; is considered to belong to
the community c.

4.3 Parameter Training

1. Supervised parameter training

In real-world network datasets, the definition of the community often has strong
practical significance, and sometimes it may not have a tight topology. In this
case, if the community detection task is only based on the network topology, the
desired result may not be obtained. Therefore, it is necessary to know part of
the information of the network in advance. LAA uses a multi-label classification
cross-entropy loss function, through a small number of real samples for parameter
training, making the learned aggregation function more realistic.

2. Unsupervised parameter training

However, in many application scenarios, we cannot obtain enough information
of the network in advance, so it’s difficult to obtain a sufficient number of train-
ing sets for supervised parameter training. In order to address these problems,
traditional network representation algorithms define such loss function for unsu-
pervised learning;:

Loss = —logS — log(1 — S)

Where S = o(LI'L;),j € N(i), and S = o(LTLy),k ¢ N(i). By optimizing
the parameters to minimize the loss, the distance between the nodes which are
connected tightly is smaller, and the distance between the nodes which are con-
nected not tightly nodes is larger. However, in the experiment process, due to
the sparsity of the input label vector, such loss functions cannot achieve a good
training effect. The method adopted by LAA is to use the initialized label as the
real label, and perform parameter training through the multi-label classification
cross-entropy loss function. The aim of the LAA model is to learn the way of
label aggregation. When other unsupervised algorithms are used to initialize the
labels, the labels have learning value because they have certain accuracy. And
aggregation with better performance will be obtained when a better initializa-
tion algorithm is used. Therefore, the LAA model under unsupervised training
can be seen as an extension for other community detection algorithms.

5 Experiments

In this section, we evaluate the performance of the LAA model through a series
of datasets with real communities and compare it with other classic algorithms.
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5.1 Datasets

We evaluate the performance of LAA based on datasets with ground-truth com-
munities, the detailed information is shown in Table 1.

Table 1. Datasets statistics. |V|: number of nodes; |E|: number of edges; |C|: number
of communities; |A|: community numbers for per node.

Datasets | |V| | |E| |C] | ]A]
LFR-1 1000|1766 |11 |1.2
LFR-2 1000 | 1747 |11 1.2
LFR-3 1000|1737 |11 |1.2
Amazon | 322510262 | 100 | 3.03

LFR datasets: are social networks generated by LFR algorithm. Nodes repre-
sent individuals and edges represent the relationship between them. The dataset
contains three social networks that are generated by using the same parameters.

Amazon dataset: is collected from the Amazon website. Nodes represent prod-
ucts, edges represent the co-purchase relationships, and communities represent
the categories of products.

5.2 Evaluation

Fl-score and NMI (Normalized Mutual Information) are commonly used indi-
cators for evaluating community detection algorithms. Since it is difficult to
determine the corresponding relationship between the detected community and
the real community, we used the improved F'1-score:

A 1,1

* * A 1 * A
FUCT.C) = 5 D maxFl(cf.) + 5 3. max Fl(ci.é))

. «cOrx
crect &;eC éjECCi eC

where C* is the set of detected communities and C is the set of real communities.

Similar to the Fl-score, we extend the definition of NMI so that it can assess
the quality of overlapping communities.

5.3 Baseline Methods

We compare the performance of LAA with the following baseline methods:

Infomap: is designed to solve this problem: How to use the shortest code to
describe the path generated by a random walk. It divides nodes into different
communities, then encodes communities and nodes respectively. And a good
community division can make the random walk sequence have a shorter code, so
by implementing a shorter code, a better community division can be achieved.
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AGM: is a generative model for networks. It is based on the idea that the
more communities two nodes belong to, the greater the probability that they
are connected. It divides nodes into different communities and generates the
edges according to the common communities. Then it fit the model to networks
to detect communities.

LPA: is used to assign labels to unlabeled samples. LPA constructs an edge-
weighted network according to the similarity of all nodes, and then each node
performs label propagation to its neighboring nodes. And nodes with the same
label belong to the same community.

5.4 Setup

For Mean aggregation and Attention aggregation, we use two layers to aggregate
labels, i.e. K = 2. And we sample 8 nodes from 1-hop neighborhood and 15 nodes
from 2-hop neighborhood for each node to generate the sampled neighborhood.
Due to the performance of LAA is deeply influenced by the label initialization
algorithm, we use different label initialization algorithms to initialize the label
for different datasets in order to get the best initialization effect, Infomap for
LFR datasets and AGM for Amazon datasets.

Based on two aggregation methods, mean aggregation and attention aggrega-
tion, we have implemented a total of four LAA models under supervised training
and unsupervised training respectively: Sup-Mean, Unsup-Mean, Sup-Attention
and Unsup-Attention.

In order to verify the generalization ability of the algorithm, we conducted
two experiments. In the first experiment, we use LFR(Lancichinetti Fortunato
Radicchi) algorithm to generate three datasets with the same parameters so
that we can obtain three networks with the same size and attributes. Then, we
sample 25% nodes of one network for training, and test the generalization ability
of the LAA on the remaining 75% nodes and two other networks (None nodes
are trained). In the second experiment, we test the performance of LAA in the
real-world datasets. We sample 10% nodes of the dataset for training, and use
the remaining nodes for testing.

5.5 Experiment Results

For each algorithm and each dataset, we calculate the extended F1l-score and
NMI. The performance of 7 algorithms on the series of networks is shown in
Table 2. As we can see: 1) Performance of traditional LPA is poor which means
it is difficult to find high-quality communities of practical significance if only
based on the topology information of the networks especially for dealing with
overlapping communities. 2) Infomap initialization algorithm for LFR, datasets
and AGM initialization algorithm for amazon datasets do make a good initial
division of the communities. 3) The performance of LAA is excellent especially
when dealing with the dense overlapping and large-scale dataset, and compared
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with the initialization algorithm, it has a significant improvement effect. 4) Per-
formance of LAA on LFR-2 and LFR-3 dataset shows LAA understands the
deeper reasons for the formation of the community by learning the method of
label aggregation. And we confirmed the generalization ability of LAA.

Table 2. Fl-score and NMI on community detection

Model LFR-1 LFR-2 LFR-3 Amazon
F1 NMI |F1 NMI |F1 NMI |F1 NMI
Sup-Mean 0.8347|0.6571 | 0.7199 | 0.4957 | 0.7985 | 0.5746 | 0.8461 | 0.8305

Unsup-Mean 0.8048 | 0.5786 | 0.712 |0.4796 | 0.7814 | 0.5408 | 0.7233 | 0.6474
Sup-Attention 0.8929 | 0.7286 | 0.7086 | 0.4779 | 0.7986 | 0.5661 | 0.8547 | 0.8472
Unsup-Attention | 0.8169 | 0.593 |0.7428  0.5211 | 0.8043 | 0.5708 | 0.7363 | 0.6699

AGM - - - - - - 0.7046 | 0.6095
Infomap 0.8035 | 0.5717 | 0.7779 | 0.5322 | 0.7803 | 0.5341 | — -
LPA 0.1679 | 0.0243 | 0.154 |0.0122|0.1519|0.0165 | 0.3298 | 0.1141

6 Conclusions

In this paper, we proposed LAA, an inductive community detection algorithm
based on label aggregation. We use AGM to generate the membership vectors
of nodes as labels. Each node propagates labels to neighboring nodes, and also
receives labels from neighboring nodes. We learn how labels are aggregated by
training a series of aggregation functions. Excellent performance of community
detection is obtained through faster and cheaper initialization methods. Besides,
when the network structures change after initialization, we can get results with-
out retraining and reinitialization. We evaluate the performance of LAA through
two categories of datasets. Experiments have verified the generalization ability
of LAA. In the future, we would like to conduct more in-depth experiments on
more densely overlapping and large-scale graphs. In addition, we will try more
efficient initialization algorithms.
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Abstract. Querying clean spatial data is well-studied in database area. However,
methods for querying clean data often fail to process the queries on inconsistent
spatial data. We develop a framework for querying similar trajectories inconsistent
spatial data. For any given entity, our method will provide a way to query its similar
trajectories in the inconsistent spatial data. We propose a dynamic programming
algorithm and a threshold filter for probabilistic mass function. The algorithm with
the filter reduces the expensive cost of processing query by directly using the exist-
ing similar trajectory query algorithm designed for clean data. The effectiveness
and efficiency of our algorithm are verified by experiments.

Keywords: Similar trajectory query - Spatial data - Database

1 Introduction

Inreal world, spatial data is often inconsistent, such as data collected from location-based
services [ 1, 2], data integration [3, 12], and objects monitoring [4]. Methods for querying
such kind of spatial data are not yet well developed. Query processing in inconsistent
data is extremely expensive by a straightforward extension of existing methods for clean
data [6, 9]. To develop efficient query processing methods for inconsistent spatial data,
we in this paper study frequent nearest neighbor query which is a very time costing
problem even in the context of clean data.

1.1 Modeling Inconsistent Spatial Data

Inconsistent spatial data overruns everywhere. For example, due to the inaccuracy of
measurements, it is hard to obtain the concrete location of an entity [5, 6, 8]. To deal
with this, the spatial information of an entity is modeled as a distribution over some local
area. Besides, data is often integrated from different sources, thus causing the hardness
to obtain the right distribution of an entity. Therefore, in real applications, a spatial
entity is usually represented by a finite set of potential specific spatial distributions.
For example, a real-life entity E is composed of N inconsistent distributions, that is,
E = {ey, - -+, en}, where ¢; represents the distribution from the i-th data source.
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In this paper, we use this popular model, i.e., probabilistic data, to model the incon-
sistent data and then study the query algorithm on it. We associate e; area with the data
collected in 7 time probability reg’(e;) model. In this paper, we use a collection of mul-
tiple discrete sampling locations where s' is the entity data collected in ¢ time. Every
sampling location S; ; € s} has a probability of its occurrence which can be written as
Pr(S;j) € (0, 1]. The occurrence probability Pr(S; ;) should satisfy the requirement
Z;"Zl Pr(S,-, j) =1. The sets of entity collection data in E constitute the probability
database DP, and the data set collected by the entity at a given time 7 is called the sketch
of an entity at time 7.

In the real application, probability data often associates with regional correlation.
For example, in the spatial data, the physical quantities such as temperature and light
measured from the nearby locations are probabilistic, and these data are also very similar,
which is the regional correlation of the data. Regional association probability entity data
contains several non-overlapping association regions. The entity ¢; € E belongs to
only one Inconsistent Regional Circle (/RC), and the entity set in the same IRC as ¢; is
denoted as the regional association set IRC(e;), where IRC (e;) contains e¢;. We assume
that entities in the same /RC are independent of each other, and entities in different
IRC are independent of each other, and therefore, the data acquired from practices are
independent of each other.

We use Bayesian network to express the regional correlation of data. Bayesian net-
works are able to represent the dependencies between entities as acyclic directed graphs,
and each entity has a conditional probability table, which represents the conditional
probability under the joint distribution with the parent of the entity.

In probabilistic data model, the probabilistic entity e; uncertainly becomes the nearest
neighbor of a query position g. The probability Prg,_poins (€i, g) is used to represent
the probability that e; becomes the nearest neighbor of the query location g. Then the
probability nearest neighbor query sim-point on the regional correlation probability
data is to find the entity whose Prg;,.poins €xceeds the given threshold constraint. A
trivial method is to access the conditional probability table of e;, and using the variable
elimination method to obtain the joint probability, and then decide if e; belongs to the
query result.

1.2 Nearest Entities in Inconsistent Spatial Data

In the real world, spatial data is usually changing. For example, data obtained from sensor
nodes for the environment monitoring keeps changing over time. At different time, the
data collected by sensor nodes is different. Results of a sim-traj query in sensor network
is the entities with high probability frequently appearing in the result of probabilistic
nearest neighbor query in multiple sketches represented at different moments.

This problem can be described as follows. Given the positive integer k > 0 and the
threshold § > 0, then input 7 sketches D", - - - | Df with the query positions g1, - - - g;. The
sim-traj query outputs a collection of entities such that for each entity in the collection,
the probability of being the nearest neighbor to the query location greater than or equal
to k is greater than the threshold é.
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Let N¢ be the number of sketches where e; becomes the nearest neighbor of the
query locations. For example, N°! = 3 implies the event “¢; is becomes the nearest
neighbor of the query location three times”.

We suppose that Pr(N¢! > k) = Y 22, Pr(N°! = i) which is the probability mass
function of N¢!. The result of a sim-traj query is a collection of entities that satisfies
Pr(N°' > k) > §. A sim-point query is a query carried out on the sketch Df correspond-
ing to a moment ¢ in the probabilistic data set D . Therefore, a sim-point query can be
resolved as follows: let be @ = 0 be the threshold of the sim-traj query, then evaluate
the query over each sketch by find-sim-traj for entities e; in any sketch Df to obtain the
probability pj; of becoming the nearest neighbor of query position g;. Then, According
to the result of 7 and 27 different combinations of calculate the probability distribution of
random variables N, and thus decide if entity ¢; is in the query result. However, such
a trivial method may lead to a large time overhead, reasons can be listed as follows,

1. Let the value of sim-traj threshold be o = 0, find-sim-traj may degenerate to trivial
search on indexes due to the failure of the upper bound pruning method.

2. Accessing conditional probability tables results in a lot of time overhead, as we can
see from the experiments on the pruning method proposed in this paper, a lot of
access is unnecessary.

3. Each entity e; requires an exponential time overhead to compute the probability
distribution of N¢.

As discussed above, the existing work cannot effectively handle sim-traj queries. The
inadequacy of the existing work implies the significance of our method for the sim-traj
query processing.

1.3 Contributions

In this paper, we study sim-traj query problem. We use probabilistic data to model
inconsistent spatial data. A kind of frequent probabilistic nearest neighbor query is
studied in-depth in this paper. We study the probabilistic data of regional association by
using multiple sketches and propose a framework to find frequent probability nearest
neighbor. A dynamic programming algorithm is designed to compute the square time
of the probabilistic mass function. Based on the DP algorithm for sim-traj queries,
a basic processing algorithm is proposed; And then we develop an efficient pruning
methods which are used to reduce the search space of sim-traj queries. Finally, a series
of experiments are conducted on both the synthetic data set and the real data set, and
experimental results show that the efficiency of our algorithm.

2 Problem Definition

Definition 1 (similar-point-probability). LetE = {ei}f-V: | be acollection of probabilistic
entities, and D = {si}{-v= | the sample data of entity set £ at some time. Given position
g, let r; and r; be the possible nearest and farthest distance between probabilistic entity

e; and g (depends on the sampling situation of the corresponding region reg(e;)) and
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Ly-norm d (-, -). Then Pry.poins (g, €;) is the probability that entity e; becomes the
nearest neighbor of query location ¢ as

"
Pr i point @ €) = f et =) x Pr (At (en e 46 0 = 117) * Pr{(Agy (e 466 ¥) 2 7)dr

Definition 2 (similar-point). Let E = {e,'}év= 1 be a collection of probabilistic entities,

and DP = {s;}}_, the sample data of entity set E at some time. Given threshold « and
query location ¢, the result of a sim-point query (g, «) is a set of probabilistic entities
such that y = {e; : Prym—point(q, €) > o, i € [1, N}

In this paper, the random indicator variable I;; = 1is used to indicate that e; becomes

sim-point of g;. At the same time, we denote Pr(I;; = 1) as Pr(I;) for short, hence,
Pr(Iij) = Pryim—point (g, e;). Now, we formally define the frequent probabilistic nearest
neighbor query on regional associated probabilistic data.
Sim-traj query. Let E = {ei}?]: 1 be a collection of probabilistic entities, and DP =
{si}ﬁ\': | the sample data of entity set E at some time. Given a positive integer k, the
threshold value 8, and the set containing  query locations Q = {g;}!_,, the result of a
sim-traj query Q is y = {e; : Pryim—_poine (N > k) = 8, i € [1, N]}.

Obviously, when the parameters t = 1, k = 1, @ = §, any sim-traj query is equiv-
alent to a sim-point query. Therefore, the problem studied in this paper is actually a
generalized version of sim-point query.

3 Frequent Probabilistic Nearest Neighbor Query Processing

We begin with an overview of query processing that deals with frequent probability
nearest neighbors,

1. For the given ¢ sketches D’f , -+, DV to establish corresponding R-star index tree
indexy, --- , index;. In detail, and in all probability will all /IRC entities into the
corresponding minimum circumscribed rectangle, insert each IRC, so as to establish
indexes;

2. For the current set of input query location, the find-sim-point method proposed in
literature [7] was used, by setting o = 0. Traverse the indexes and obtaining the
upper bound of sim-point probability of all entities relative to ¢ query locations. Use
the first pruning condition given below in the next subsection to filter out the invalid
entities.

3. Access and compute the conditional probability table for the remaining entities, to
obtain the sim-point probability relative to ¢ query locations

4. Atlast, for every candidate entity left e;, compute the exact probability Pr(N% > k)
that it becomes a sim-traj, and return the query results.

Next, we detail how to calculate the probability Pr(N% > k), in other words, we give a
method to calculate the joint nearest neighbor probability efficiently under the condition
that the sim-point probability Pr(;;) of e; is known in advance.
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3.1 The Computation of the Nearest Neighbor Probability

As mentioned earlier, a trivial algorithm leads to an exponential time cost. In this section,
we design the dynamic programming algorithm which can derive the probability in
quadratic time while avoiding the computational cost.

First, the cumulative probability Pr>; ; (ej) is defined for each probabilistic entity e;,
its meaning is that there are more than s positions in the given [ positions (respectively

q1--- , q1), then, the sim-point probability of e; can be formulated as
Proile) = 3 (T, Pr0) < T, 0 (1~ Pr0)
Q'O 1Q'|=s

Then, let Prxg ;(¢j) =1, YO < I < t,and Pr>y (¢j)) = 1, YO < < s.

Time Complexity. For each candidate probability entity e;, the dynamic programming
algorithm costs O(z%) space cost and O(r?) time to calculate Pr(N% > k).

3.2 Frequent Probability Nearest Neighbor Lookup Basic Query Algorithm

The literature [7] proposed sim-point query processing algorithm find-sim-point. Given
the probabilistic entity database D, R-star index tree, location query ¢ and threshold
o, it takes the best first search strategy to traverse the index. During the traversal, the
algorithm pruned the invalid entities by using the upper and lower bounds of the prob-
ability recorded in the index, and finally calculated the exact value of Prgjm_poin: for
the remaining candidate entities successively. The aim of this paper is to calculate the
exact value of Prj;;.p0ins for all entities. For this purpose, let the threshold o = 0. This
algorithm can get the accurate value Pry;y.poins for each entity. After all the probability
values are obtained by calling the above algorithm, the dynamic programming algorithm
introduced in the previous section is used to calculate the Pry;.poin:. We present a basic
algorithm Baseline to compute a sim-traj query as shown in Fig. 1.

Time Complexity of Baseline Algorithm. The dynamic programming algorithm in
steps 5 to 10 has a time cost of O(Ntz). The time overhead of steps 1 to 3 comes from
the computation of N; probability values Pr(Iij). This needs to access the conditional
probability table in the regional association probability database which is very expensive.
Therefore, we next propose the pruning methods.

3.3 Probability Nearest Neighbor Advanced Query Algorithm

The main time overhead of the Baseline algorithm is related to the number of entities
to be precisely calculated for the probability. Therefore, the next section focuses on
pruning in steps 2 and 4 of query processing. In order to reduce substantial time, the
number of entities to be precisely calculated is reduced at a lower cost as possible. Next,
we explain the pruning conditions in steps 2 and 4, which are called first pruning and
second pruning, in order to improve the basic algorithm mentioned above.
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Input: entity set E = {e;}\,, sketch set {DF}!_;, R star tree index {index;}!_,,
query location set {q;}}_, positive integer k, threshold & € (0,1]
Output: sim-traj query result collection y
1 foreachi <t do
2 Call subprocessﬁnd—sim—point(indexi’ q;, 0) to get all p(lji)
3 end
4 foreach e; € E do
Calculate Pr

Sl.m_tm/.(ej) (dynamic programming algorithm)

5

6 i D 1ry(€j) = 6 then
7 y=vu{e}
8 end
9 end
10 return y

Fig. 1. Baseline algorithm

To calculate the exact value of each Pr (Ilj) The algorithm in step 2 must consume
a lot of access time to access and calculate the relevant conditional probability table.
Therefore, it is necessary to propose efficient pruning methods to improve performance.

As long as the pruning condition filters most of the candidate entities, it can sig-
nificantly reduce the number of entities that need to be accurately calculated for the
probability Pr(lj,-). Every time a candidate entity is pruned, the time saved is at least
t times the calculation time of the exact value. We can see from the follow-up exper-
iments in this paper, the pruning effect of this method is very obvious, which greatly
improves the query efficiency. Step 2 in the index phase, we can prune a large number of
probability entities to calculate the exact value of sim-point by using the upper bound of
sim-point derived below. When the upper bound of probability Pr (I],) can be calculated
with less online overhead, the pruning method can be used, hence, the baseline algorithm
is improved. An index pruning criterion based on Chernoff bounds can be expressed as
follows.

Theorem 1. Fortheprobability entity e;, givenk (< t), threshold§ € (0,1]andupperbound
! —~ ~ ~

set {Prji}izl.lfzﬁzl Prj; < kand Y Prs = k(In( X0 Pri) —Ink+1) —In 8,

thene; ¢ y.

Each pruning of an entity saves the time cost of accurate calculation of /;; and
verification of Pr(N%) > k.Therefore, by the above Theorem 1, the query processing
algorithm is improved as follows: (1) For each entity e; and the corresponding query
location g;, the upper bound I/’;'ji is quickly calculated when traversing the index. (2)
Using the formula given in Theorem 1 to prune the invalid entity.

The final experiment in this paper verifies that the actual performance of pruning
Theorem 1 is efficient.
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Algorithm 3-2 gives the frequent probability neighbor query processing algorithm

find-sim-traj.

1. Line 1 to 3 initialize each probability upper bound as 0.

2. Lines 4 to 9 traverse the index of each sketch by calling the find-sim-point method. In
this way, the upper bound of probability of each entity can be updated in the process
of traversing, and the corresponding upper bound of probability of each entity can
be obtained after traversing ¢ indexes.

3. Line 10 uses Theorem 1 for the pruning.

4. From line 11 to 13, the accurate probability of the remaining entities is calculated
by accessing the sketch data.

5. Lines 14 to 19 run the dynamic programming algorithm, compute the corresponding
probability of entities that are not pruned during the second time, and output the
query result y.

Input: entity set E = {e;}\,, sketch set {DF}!_,, R star tree index {index;}i_;,
query location set {q;}¢_,, positive integer k, threshold § € (0,1]

Output: sim-traj query result collection y

1 foreach e; € E do

2 Initialization Pryp.q(e)) < 0

3 end

4 foreachi <t do

5 ﬁ=ﬁnd—sim—p0int(indexi’ q;, 0)

6 foreach e; € B do

7 Pri (€7) = Prig (&) + Prj;

8 end

9 end

10 Perform the first pruning by Theorem 1 and the remaining S
11 foreach e; p do

12 Calculate the value of Pr(Ij;)

13 end

14 foreach e; € B do

15 if Pr
16 y=vyU {ej}
17 end

18 end
19 return y

(e]—) > 6 then

sim-traj’

Algo. 3-2 sim-traj query processing algorithm

3.4 The Calculation of the Probability Upper Bounds

As mentioned before, if the above theorem can be applied in practice, we also need to
know how to get the upper bound of sim-traj probability for each entity to become a query
location by fast online calculation. Therefore, two off-line precomputation methods are
presented in the next section. By embedding the structure in the index to save the online
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time of calculating the upper bound, the above pruning method is used to make the query
processing algorithm run in practice.
The upper bound of the exact value of probability Pr (Iij) of entity e; in quick sketch

Df) is

Prji - ZVs_,vles]’: A)\:max{)u’\)x’fd(qi, Sjl)—d<t]i,piwﬂ)] Pry (Sﬂ’ )L)’

where the joint probability is

Pr](Sj[, )\') = Pr{/\VME[RC(e_j)d<piijl9 M) Z d(ﬁ]i’ S]l) - d(‘]i, inSj])}

Here, if the query location g; is not given, then the exact value of the inequality
variable cannot be obtained. However, we find that the endpoints of the numerical range
can be pre-estimated. That is to say, for each sampling position s;; of each entity e;, first
select a value X in the interval [Amin, Amax], and at the same time, select a pivot pivs,.,,

then Pr) (sjl, A) can be calculated offline in advance. When the query location g; arrives,

the algorithm only calculates the value of b = d (q,-, sﬂ) —d (q,-, pivs /.1> temporarily, then

it can find the required Prj (sﬂ, m;lx{)\ < b}) .The sum of such upper bound probability

values corresponding to each sampling position is the upper probability bound p;; of
Theorem 1.

In order to select the pivot, the data space is divided into rectangles with side length
¢ € (0, emax].Each sampling position s;; selects four rectangular endpoints as alterna-
tive pivots for offline prediction. When the query position ¢; comes, the algorithm can
select the candidate points which are in the same quadrant as g; relative to sj; as pivots,
and calculate the joint probability Pry (sjl, k), S0 as to obtain the upper bound value.
Specifically, the algorithm usually selects ¢ preset € value €1, ..., & as an alternative
parameter in a small interval (0, &4,] uniformly, randomly and without playback in
real data. Then, corresponding to each position, the optional pivots are calculated offline
under each optional parameter, and the number is 4 ¢ for each optional parameter in
turn. Once the query position g; is given, the algorithm first finds the pivots in the same
block as the query position in the different alternative parameters & and then temporarily
computes their corresponding upper bounds, which results in ¢ alternative upper bounds.

4 Experiments

In this paper, extensive experiments are conducted on real and synthetic regional
association probability datasets to investigate the proposed query processing method.

4.1 Experimental Configuration

All experimental configurations are the same as in the previous section. The generation
method given in the literature [11] is used here to generate the artificial data set. The
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distribution of a given number of query positions has a great impact on the results of a sim-
traj query Querying randomly on ¢ randomly sim-traj generated sketches is usually not
practical. Thus, in order to facilitate us to comprehensively investigate the performance
of the algorithm, we experimentally query sim-traj on t replicas of the dataset D”. Again,
we examine the query on ¢ queries with a close distribution of positions. Thus, in the
experiment, we generate randomly ¢ points with a high concentration of positions in a
relatively small interval r. Let § be 0.1/0.2/0.4/0.8, k be 5/10/20, t be 20, r be 0.01, N be
10, and d be 5.

To generate the sketch set D”, 200, 000 points are randomly selected in the interval
R = [0, 10]¢ and these points correspond to the reference points of JRC. On this basis,
we construct the dimension of the entity, randomly select the real number a from the
interval [1, 4], and set a to the region size of the IRC. We further randomly generate
n probabilistic entities in the region of IRC according to two distributions, where the
probability distributions we choose are the most common random probability distribution
and the Gaussian probability distribution. Finally, we construct an acyclic directed graph
of the IRC on the IRC and generate a joint probability distribution of the entities. We
examine the performance of the algorithm on the U.S. traffic data whose total number
of NR is 20,000 [11]. The experiment takes the geographic coordinates as the center
point of the /RC and expands it as above into a set of available probabilistic data. Based
on different distribution functions, the generated datasets can be classified into uniform
synthetic data (UniS), traffic data (UniT) and Gaussian traffic data (GauT).

4.2 Analysis of Experimental Results

The comparison algorithm chosen for the experiments in this paper is the Baseline
Algorithm and its corresponding improvement algorithm. The experiments focus on
the efficiency and speed-up ratio of the algorithm for different environmental parame-
ters. Here, we define the speed-up ratio n = IBaseline. \where tpaseline represents the run-

t . .9
sim—traj

time of the Baseline algorithm and #;.sr4 Tepresents the runtime of the sim-traj query
processing algorithm.

Here, we examine the pruning effect of the pruning strategy on different datasets.
Fig. 2 clearly shows that the pruning strategy proposed in this paper can greatly improve
the efficiency of the algorithm and reduce the computation time. When pruning a can-
didate set for the first time using the upper boundary condition, the wrong entities
selected by the Baseline algorithm can be pruned out, avoiding unnecessary time spent
on subsequent calculations of joint probability distributions and boundary probabilities.
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200 I I

UniS UniT GauT

Fig. 2. Effectiveness of pruning criterions

5 Conclusion

In this paper, a general processing framework is proposed including dynamic program-
ming algorithm and threshold filtering method for probabilistic mass function which
solves the problem that it is expensive to deal with the query directly by using the exist-
ing nearest neighbor query algorithm based on traditional clean data. The effectiveness
and efficiency of the algorithm are verified by experiments . Therefore, the work of
this paper overcomes the shortcoming that the existing methods are too strict to query
results, as many query results as possible are given with custom quality assurance are
be ensured.
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Abstract. As a fundamental task in graph data mining, answering
k-hop reachability queries is useful in many applications such as analysis
of social networks and biological networks. Most of the existing meth-
ods for processing such queries can only deal with directed acyclic graphs
(DAGs). However, cycles are ubiquitous in lots of real-world graphs. Fur-
thermore, they may require unacceptable indexing space or expensive
online search time when the input graph becomes very large. In order to
solve k-hop reachability queries for large general directed graphs, we pro-
pose a practical and efficient method named ESTI (Extended Spanning
Tree Index). It constructs an extended spanning tree in the offline phase
and speeds up online querying based on three carefully designed pruning
rules over the built index. Extensive experiments show that ESTT signif-
icantly outperforms the state-of-art in online querying, while ensuring a
linear index size and stable index construction time.

Keywords: k-hop reachability queries - General directed graphs -
Extended spanning tree

1 Introduction

Graph is a flexible data structure representing connections and relations among
entities and concepts, which has been widely used in real world, including XML
documents, cyber-physical systems, social networks, biological networks and traf-
fic networks [1-3,9,12]. Nowadays, the size of graphs such as knowledge graphs
and social networks is growing rapidly, which may contain billions of vertices and
edges. k-hop reachability query in a directed graph is first discussed by Cheng et
al. [1]. It asks whether a vertex w can reach v within &k hops, i.e., whether there
exists a directed path from u to v in the given directed graph and the path is
not longer than k. Note that the input general directed graph is not necessary to
be connected. Take the graph G in Fig. 1(a) as an example, vertex a can reach
vertex e within 2 hops, but a cannot reach vertex d within 1 hop.

Efficiently answering k-hop reachability queries is helpful in many analyti-
cal tasks such as wireless networks, social networks and cyber-physical systems
© Springer Nature Switzerland AG 2021
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(a) Input general directed graph G (b) Categories of existing works

Fig. 1. Illustration of input graph and existing works

[1,2,12]. Several methods for k-hop reachability has been proposed, providing
different techniques to solve this kind of queries. However, existing methods suf-
fer some shortcomings, which make them not practical or general enough to
answer k-hop reachability queries efficiently. To the best of our knowledge, k-
reach [1,2] is the only method aiming at dealing with k-hop reachability queries
for general directed graph, which builds an index based on vertex cover of the
graph. It is infeasible to build such an index for large graphs due to the huge
space cost. Thus a partial coverage is employed in [2]. However, partial coverage
technique is also not practical enough since most queries may fall into the worst
case, which requires online BFS search.

A bunch of methods have been proposed to solve k-hop reachability queries
in DAGs. BFSI-B [12] builds a compound index, containing both FELINE index
[10] and breadth-first search index (BFSI). HT [3] works on 2-hop cover index,
which selects some high-degree nodes in the DAG as hop nodes. Experiments
have shown that both of them are practical and efficient to answer k-hop reach-
ability queries. However, they are developed only for dealing with DAGs, which
are not general enough since most graphs in real applications may have cycles,
such as social networks and knowledge graphs.

A simple version of k-hop rechability query is reachability query. Given a
graph G, reachability query can be taken as a specific case of k-hop reachability
queries, since they are actually equivalent when k > A(G), where A\(G) represents
the length of the longest simple path in graph G. Note that for a general directed
graph, we can obtain the corresponding DAG by condensing each strongly con-
nected component (SCC) as a supernode, such that the reachability informa-
tion in original graph can be completely preserved in the constructed DAG.
Although lots of methods have been proposed to handle reachability queries
[4,6,8,10,11,13], they cannot be directly used for k-hop reachability queries since
more information such as distance is missing in the transformation above.

We categorize the methods related to k-hop reachability queries [1-4,6,8,10-
13], as shown in Fig. 1(b). Clearly, right-top corner represents k-hop reachability
in general directed graphs, which is the most general one. As discussed above,
k-reach, the only existing method in this research area, is not practical enough
to handle very large graphs. Hence, we develop a practical method named ESTI
to answer k-hop reachability queries efficiently.
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Fig. 2. Overview of Extended Spanning Tree Index (ESTI)

Our proposed approach, ESTI, follows the offline-and-online paradigm. It
builds an index for a given graph in the offline phase, and answers arbitrary
k-hop reachability queries in the online phase. In offline indexing process, both
FELINE™ index and Extended Spanning Tree Index (ESTI) are constructed.
We introduce the concept of Real Node and Virtual Node to build the extended
spanning tree with both BFS and DFS. As for online querying, the offline index
helps to answer k-hop reachability queries efficiently, and three pruning strategies
are devised to further speed up query process.

Paper Organiztion. This paper is organized as follows. Section 3 explains the
details of ESTI offline index, followed by the querying process as discussed in
Sect. 4. Section 5 shows the results of experiments comparing ESTI with other
k-hop reachability methods. In Sect.6, some exciting works related to k-hop
reachability queries are presented. Finally, Sect. 7 concludes the paper.

2 Problem Definition and Overview

2.1 Problem Definition

In this paper, the input general directed unweighted graph is represented as
G = (V, E), where V denotes the set of vertices and F denotes the set of edges.
|V| and |E| denote the number of vertices and edges in G, respectively. For any
two vertices u,v € V and u # v, we say that u can reach v within k hops if there

exists a directed path from u to v in G which is not longer than k. Let u SLIH
represent a query asking whether u can reach v within £ hops in G.

2.2 Overview

ESTI follows the offline-and-online paradigm, and Fig. 2 presents the overview
of our offline index structure. For better understanding, we briefly introduce our
basic ideas and techniques for answering arbitrary k-hop reachability queries.
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Fig. 3. FELINE index (X,Y) in DAG G4

FELINE™ Index. Since reachablity is the neccessary condition for k-hop reach-
ability, FELINE index [10] including two topological orders can be utilized to
efficiently filter unreachable queries. The time cost of generating index in offline
phase is O(|V|log|V| + |E|). In Sect.3.1, we present an optimization named
FELINE™ to speed up index generation, which costs O(\V\log(Deggffut)) +|E))
time, where Deg,(,fut) is the maximum outgoing degree of a vertex.

Extended Spanning Tree Index. In order to preserve as much information
as possible for answering queries, we introduce Virtual Root, Real Nodes and
Virtual Nodes to constuct an extended spanning tree from the input graph G in
Sect. 3.2. Also, pre- and postorders and global level are assigned to nodes in the
tree, which helps to efficiently answer k-hop queries online.

Online Querying. Given arbitrary query u SLN v, the constructed index is
utilized to directly return the correct answer or prune search space. In Sect. 4.2,
three pruning strategies are developed to further accelerate online querying.

3 Offline Indexing

3.1 FELINEt Index

If u cannot reach v in G, the answer of query u B s apparently False.
To efficiently filter those unreachable queries in online querying phase, FELINE
[10] condenses all strongly connected components (SCCs) in the given general
directed graph G to obtain a DAG G4, and two topological orders X and Y
are generated for each vertex in G 4. Let X, and Y,, denote the first and second
topological order of a vertex v, respectively. If u can reach v, both X, < X,
and Y, <Y, hold. Hence, for a query u 2k, v, we can directly return the answer
False if X,, > X, or Y, > Y, in FELINE index.

In FELINE [10], X is calculated by a topological ordering algorithm, and
Y coordinate is assigned by applying a heuristic decision. When assigning Y
coordinate, let R be a set storing all roots in current DAG. FELINE iteratively
runs the following procedures until all vertices in G 4 have Y coordinates.

Step 1. Choose the root r from R with largest X, assign 7 a coordinate Y;;

Step 2. Remove all of r’s outgoing edges. and some of its children may have
no ancestors and become new roots. Thus, R should be updated.
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Algorithm 1. FELINET Index Construction
Input: DAG Ga;

Output: Two topological orders X and Y

1: X « a Topological Order of G4

2: R < all the roots in G4 sorted w.r.t descending X value
3: while R is not empty do

4 pop the first element r from R and assign Y
5 Rimp — [ ]

6: for each outgoing neighbor ¢ of r do

7.

8

remove edge (r,t)
if ¢ has no incoming neighbor then

9: Rzmp — Rtmp @) {t}
10: sort Rimp according to descending X value
11: insert all elements of Rymp in the front of R, while preserving the order

12: return X, Y;

Ezample 1. By condensing all SCCs of graph G in Fig. 1(a), its corresponding
DAG G4 is shown in Fig.3. After assigning X, we start to assign Y and R =
{a,¢c, f'}. Since Xy = 3 is the largest one, Y}/ is assigned to be 0, and next we
assign Y, = 1 and Y, = 2. When all edges connecting with & are removed, we
update R = R U {V'} to continue assigning Y coordinate to &’. As for online
querying, for instance, vertex a cannot reach vertex c since Y, > Y, in Fig. 3.

The time cost of condensing SCCs and generating X coordinate is O(|V| +
|E]). Note that FELINE utilizes a max-heap to store all the current roots R, in
which those roots are sorted in the descending order according to X. It takes
O(1) to pop a root r from the max-heap in Step 1, and each vertex in G4 can
only be inserted into R once which costs O(log|V]) time. Hence, the overall time
cost of building index construction for FELINE is O(|V [log|V| + |E]).

In this paper, we propose an novel technique to accelerate Y coordinate
generation, utilizing a simple array to store all the current roots R instead of a
max-heap. Firstly, R is initialized by putting all the roots in original G 4, making
sure they are sorted in descending order w.r.t. X value. Then the following two
steps are processed iteratively until all the vertices have Y coordinate.

Step 1. Pop the first element r from the array R and assign its Y coordinate.

Step 2. Remove all of 7’s outgoing edges. Sort those new roots w.r.t descend-
ing X value, then insert them in the front of array R, while preserving the order.

Theorem 1. The order of elements in array R is always the same as the
descending order of their X wvalue.

Proof. At first, array R is initialized with all roots in original G 4, which are
sorted in the descending order w.r.t. X value. Assume that elements in array R
are in the descending order of X value. When we pop the first element r from
array R to assign Y., X, > X, holds for any vertex v in array R. After removing
r’s outgoing edges, some of its children w may become new roots and X,, > X,
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must hold. Thus, every w has larger X than any v in array R. After sorting those
new roots w in descending X value and inserting them in the front of array R,
all the vertices in array R are still in their descending X order. a

The enhanced algorithm, denoted by FELINE™T, for accelerating FELINE is
shown in Algorithm 1. When generating Y coordinate, according to Theorem 1,
the first element r of array R always has the largest X, value in R, and it
actually constructs the same index as FELINE. Note that to make sure the
initial roots in arrary R are in descending order w.r.t. X value, we only need to
reverse the initial root queue of X coordinate generation process, because their
X values are generated following the order of it. Hence, the initialization time
of array R is linear to the number of roots in original G 4. When processing
each current root r, sorting the new roots takes O(Jw|log|w|), where |w| is the
number of new roots obtained by removing r’s outgoing edges. Since each vertex
in G4 can be a new root only once, the time cost of generating Y coordinate
is O(|V|log(Degic™) + |E|), where Deg?™” is the max number of outgoing

neighbors of a vertex and |w| < Deg?™ always holds.

The total time cost of building index for FELINE™ is O(|V|Zog(Deg,(,f“t)) +

|E]). Theoretically, since Deg,(ﬁut) is much smaller than |V| in many graphs, our

approach is faster than the original FELINE whose time cost is O(|V |log|V| +
|E|). Experiments confirm that the proposed optimization technique significantly
accelerates the index construction for FELINE, as shown in Sect. 5.2.

3.2 Extended Spanning Tree Index for General Directed Graph

Preliminary. We first briefly introduce pre- and postorder index and global
level for a tree, which have been used in GRIPP [9] and BFSI-B [12]. Note that
BFSI-B applies min-post strategy, which actually has the same effect as pre-
and postorders. For any vertex v in the tree, pre, and post, represent the pre-
and postorder index of v, respectively. And level, is the global level of v, i.e.,
the distance from the tree root to v. pre, and post, are generated during the
DFS traversal, while level, is generated during the BFS traversal.

Ezample 2. Figured4(a) illustrates the three labels. Following the visiting order
in DFS, we start from root a and set pre, to 0. Then we visit b and ¢ and set
prep and pre. to 1 and 2, respectively. After returning from ¢, we set post. to
3. The process proceeds until all nodes have been visited. Each node is assigned
both pre- and postorder index following the DFS. As for level index, level, is
set to be 0 and we can assign level to other vertices following the BFS.

We say that (pre,,post,) C (prey,post,) iff pre, > pre, A post, < post,,.
Based on the constructed index (pre,, post,, level,) discussed above, Theorem 2
holds in the tree, and query u ZE, v can be efficiently answered. For example, in
Fig.4(a) a can reach d in 2 hops, since (4,5) C (0,11) and levelg — level, = 2.

Theorem 2. Given two vertices u and v in tree T', u can reach v within k hops
if (prey,post,) C (preqy, post,) A level, — level, € (0, k].
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Fig. 4. Illustration of (pre,, post,,level,) index and Virtual Root

Proof. According to the process of pre- and postorder generation, (pre,, post,) C
(prey, post,,) indicates that v is in the subtree whose root is u. level, — level, €
(0, k] implies that there is a path from u to v which is not longer than k. O

Clearly, if the input graph is a tree, both time and space cost for building
the index are O(|V| + |E|) and it only takes O(1) for online query. However,
when the input general directed graph G is not a tree, to make it practical and
efficient enough for answering k-hop reachability queries, we introduce Virtual
Root, Real Node and Virtual Node to transform G into an Extended Spanning
Tree (EST). Note that our method is quite different from existing approaches like
GRIPP [9] and BFSI-B [12]. GRIPP solves reachability queries while ignores
distance information which is necessary for answering k-hop reachability queries,
and BFSI-B is developed for only dealing with DAGs. However, most graphs in
real life have cycles and BFSI-B cannot directly work on these graphs.

Virtual Root. Since the given graph G may not be connected, e.g., the graph
in Fig. 1(a), we add a virtual root Vz to make sure that it can reach all vertices in
G. We first add an edge from Vg to all the vertices which have no predecessors,
then explore from Vg to mark all of its descendants visited. The second step is to
randomly select an unvisited vertex v, and add an edge from Vg to v while all of
v’s descendants are marked visited. We repeat the second step until all vertices
have been visited. Take graph G in Fig.1(a) as an example. After adding a
virtual root for it, we obtain a new graph G’ in Fig. 4(b).

Real and Virtual Nodes. When starting BFS from virtual root Vi, we may
encounter endless loop since there may exist cycles in G’, or some visited vertices
since they have multiple incoming edges. To solve this problem, we introduce Real
Nodes and Virtual Nodes. In BFS process, if vertex v has never been visited, it
will be added to the spanning tree as a Real Node and we will continue to
visit its successors. If vertex v has been visited, it will be added to the tree as
a Virtual Node while its successors will not be explored again. Following the
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Fig. 5. Extended spanning tree of G and (pre,, posty, level,) index

above definition of Real Node and Virtual Node, we can construct an extended
spanning tree from graph G’, as shown in Example 3. Also, Theorem 3 holds.

Ezample 3. In Fig.4(b), we start BFS from r and add real nodes for r, a, ¢, f,
b, d and g. When exploring from b to visit d, we create a virtual node for d since
it has been visited before. Figure5 is the extended spanning tree of G’.

Theorem 3. In extended spanning tree, each vertex v in graph G’ must have
exactly one real node. The total number of real and virtual nodes in this tree is
equal to the number of edges in G' plus 1.

Proof. Since virtual root Vi can reach all vertices in G’ and we start BFS from
Vg to construct the extended spanning tree, a real node is created for each vertex
v in G’ when it is visited for the first time. When v is visited again, we only
create a virtual node for it. Hence, each v in G’ must have exactly one real node.

At the beginning of BFS, we create a real node for virtual root V. As for
the other vertices v in G/, a real node or virtual node will be created for v only
when we explore from its incoming neighbor. Hence, the number of real and
virtual nodes in this tree is equal to the number of edges in G’ plus one, where
the additional one is the real node representing virtual root Vg. a

Index Generation. Recall that in a tree, the index of vertex v consists of pre,,
post, and level,. When constructing the extended spanning tree from graph G’,
we have already run BFS in the tree, and level index will also be generated for
all the nodes. Next, we explore the whole tree by DFS and assign each vertex
with pre- and postorder index. Take the graph G’ in Fig.4(b) as an example.
The index of its extended spanning tree is shown in Fig. 5. After assigning the
above index, Theorem 4 holds for all the real and virtual nodes in the tree.

Theorem 4. If vertex v of G' has virtual nodes in the extended spanning tree,
denote its unique real node as v.. For any virtual node v} of v, level,, > level,, .

Proof. When construting the extended spanning tree by BFS, all the virtual
nodes of v are created after its real node is created. Hence, based on the explo-
ration order of BFS, level,, > level,; . a
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Let |V'| and |E’| denote the number of vertices and edges in G’, respectively.
When generating G’ from original graph G, we add a virtual root Vi and at
most |V| edges to connect vertices in G. Thus, O(|V'| + |E'|) = O(|V| + |E|).

The time and space comlexity of adding a virtual root is O(|V| + |E|), since
each vertex and edge is visited once. When constructing the extended spanning
tree, each edge in G’ is visited once since we explore from vertex v only when
its unique real node is created. According to Theorem 3, it takes both time and
space cost O(|V| + |E|) to create all real and virtual nodes. And both BFS and
DF'S also take the time and space cost O(|V'|+ |E|). Hence, the overall time and
space cost for constructing the extended spanning tree and the three labels are
O(|V] + |E|), which indicates that it is feasible even for very large graphs.

3.3 Summary of Offline Indexing

The index of our proposed ESTI method consists of two parts: FELINET
(Sect.3.1) and the extended spanning tree (Sect.3.2). The whole generation
process is shown in Algorithm 2. Recall that building FELINE" index takes
O(|[V|log(Deg?"™) + |E|) time and O(|V|) space, where Deg\e™ is the maxi-
mum outgoing degree in G 4. And the time and space cost of constructing the
extended spanning tree and three labels are both O(|V|+|E|). Hence, the overall
index constrution time of ESTI is O(|V|log(Deg,(qut)) + |E|), and index size is
O(|V] + |E]). Next, we will show how the constructed index supports efficient
online k-hop reachability queries.

Algorithm 2. ESTI Index Construction
Input: A general directed graph G;
Output: FELINET index X, Y; EST mapping each v in G to its real or virtual node
v’ in extended spaning tree; Pre, Post, Level index for each node v’ in the tree.
1: G4 < condense SCCs in G
: X, Y « generating FELINE™ index for Ga > see Algorithm 1
: G’ « add a virtual root Vg and virtual edges in G > see Section 3.2
: B — {(Vg,0)} > a queue used as BFS frontier
10
while F' is not empty do
pop (u,l) from F
Level[i] — 1
9: if u has not been visited then
10: EST[u].RealNode — i
11: for each out-neighbor v of u do
12: F—FU{(v,l+1)}
13: else
14: add node i to EST[u].Virtual Nodes
15: i—i+1
16: Pre, Post «— Assign pre- and postorder for all real and virtual nodes in the tree
17: return X, Y, EST, Pre, Post, Level;

S I A ol
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Algorithm 3. Basic Query Fucntion Query(u,v, k)

Input: Start vertex u, target vertex v, k; Offline index XY ,EST,Pre,Post,Level.
Output: True or False.

1: if X[u] > X[v] VY[u] > Y[v] then

2: return False

3: u;. — EST[u].RealNode

4: for each node v’ in {EST[v].RealNode} U EST[v].VirtualNodes do

5: if (Pre[v'], Post[v']) C (Pre[u..], Post[u;.]) A level[v'] — level[u,.] < k then
6: return True

7: if k> 1 then

8: if number of outgoing edges of u < number of incoming edges of v then
9: for each outgoing neighbor w of v do

10: if Query(w,v,k — 1) then

11: return True

12: else

13: for each incoming neighbor w of v do

14: if Query(u,w,k — 1) then

15: return True

16: return False;

4 Online Querying

4.1 Basic Query Process

After constructing ESTI index (Sect.3) for the input graph G, we can utilize
the index to answer k-hop reachability queries online. Given a query u Tk, v, if

u = v or k < 0 we can directly return the answer. Assume that v # v and k > 0,
the basic query function is shown in Algorithm 3.

As discussed in Sect. 3.1, in Line 1-2, if the topological order X (or Y) of
w’s corresponding vertex in DAG G4 is larger than v’s X (or Y'), we can safely
return False. In Line 3-6, the pre- and postorders of real and virtual nodes
are compared. Note that in Line 7-15, we run DFS only when k& > 1 (Line 7)
because the exploration will never return True when k < 1. If kK = 1 the answer
from Line 3-6 is the final answer, and k& = 0 is impossible since the initial input
assumes that & > 0 while funtion Query is invoked only when k > 1.

Ezample 4. Given the constructed index in Fig. 5, for query c 3, b, we invoke
Query(c, b, 8). The pre- and postorder of ¢’s Real Node is (11, 16), but the real
node of b has index (2,9) ¢ (11,16) and its virtual node has index (6,7) ¢
(11,16). Then Query(d, b, 2) is invoked, which results in calling Query(e, b, 1).
Luckily, b’s virtual node has index (6,7) C (5,8) and the function returns True.

To further improve the performance of online querying, we develop three
pruning strategies based on properties of the extended spanning tree.
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4.2 Pruning Strategies

Prune I. For query u SN v, denote u.., v]. as the real node of u and v, respec-
tively. Prune I strategy utilizes Theorem 5 to stop redundant exploration in
advance, i.e., Query(u,v, k) will directly return False if level,s — level, > k.

Theorem 5. If level,, — level,, >k, u cannot reach v within k hops.

Proof. Note that as discussed above, we never invoke Query(u,v, k) s.t. k = 0.

(Case 1). When k = 1, assume that level,, — level,, > 1. If u can reach
v within 1 hop, v has a real or virtual node v' which is the child of «] and
level, = level,, + 1. According to Theorem 4, level,s > level,, indicates that
levelv/r —level, <level, — levelu;‘ = 1, which contradicts the assumption.

(Case 2). When k > 1, in function Query(u, v, k), Line 3-6 will never return
True since level, > level,, and level, —level,, > level, —level,, > k. Hence
we need to invoke Query(w, v, k—1) or Query(u, w, k—1). For Query(w,v, k—1),
since the real or virtual node w’ is a child of u). in the tree, the real node of w
satisfies levelw/r < level, = levelu/r + 1. Thus, we have levelv/r — levelw/r >
levely, —levely —1 >k —1, and Query(w, v,k — 1) falls into Case 1 or Case 2
again. For Query(u,w,k — 1), since w. is the parent of one of the real or virtual
node v’ in the tree, w! satisfies levely, = levelyy —1 > level,, — 1. Thus, we
have level,, — level,, > level, — level,, —1 >k —1, and Query(u,w,k — 1)
also falls into Case 1 or Case 2 again.

Hence, if level,; — level,, > k, u cannot reach v within & hops. O

Example 5. In Fig. 5, for query f a4, e, both real and virtual nodes of e have
level 3, while the real node of f has level 1. Since 3—1 > k = 1, we return False.

Prune II. In Line 3-6 of Algorithm 3, we iterate all real and virtual nodes
v’ to compare (pre,,post, ) with (prey,post,: ), where u is the unique real
node of u. From the generation process of pre- and postorder index, (pre;, post;)
and (pre;,post;) can never overlap for any vertex ¢ and j. Instead of utilizing
(prew, post,), we can only check whether pre,, € (prey,, posty; ). Hence, post,,
index of all virtual nodes v} will never be used in online phase, which means that
we do not need to store post index for all virtual nodes in offline phase.
Moreover, when vertex v has lots of virtual nodes v}, checking whether prey; €
(preu., post,:) is not efficient enough. Instead of iterating them one by one for
comparison, if all the virtual nodes v; have been sorted w.r.t. their prey in
offline phase, we can spend only log(|v}]) to find the first virtual node whose
prey; > prey;, and start iterating from it until preq; > posty; , where |vf] is the
number of virtual nodes representing v. Note that the number of virtual nodes
representing vertex v is equal to its incoming degree in G’ minus 1, since in
the extended spanning tree construction (Sect. 3.2), we create a virtual node for
v only when v is visited again from an incoming neighbor. Hence, sorting all

virtual nodes v; w.r.t. pre,s for each vertex v costs O(|E|log(Deg£fL"))), where

Deg,(ﬁ") is the maximum incoming degree of a vertex. And the overall time cost

of offline indexing is O(|V|log(Deg,(§ut)) + |E\log(Degr(,in))) if Prune II strategy

is used in online phase.
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Algorithm 4. ESTI Online Query Function Query(u,v, k)

Input: Start vertex u, target vertex v, k; Offline index XY ,EST ,Pre,Post,Level,dist.
Output: True or False.
1: if X[u] > X[v] VYTu] > Y[v] Vlevel,, —level,, >k then > Prune I

2 return False

3: u;. — EST[u].RealNode

4: v « the first virtual node of v s.t. pre,, > preu, > Prune II
5: while prey; < postyr do '

6 if level[v'] — level[u,] < k then

7 return True

8: v} « next virtual node of v

9: if k > 1 A Dist[u] < k then > Prune III
10: if number of outgoing edges of v < number of incoming edges of v then

11: for each outgoing neighbor w of u do

12: if Query(w,v,k — 1) then

13: return True

14: else

15: for each incoming neighbor w of v do

16: if Query(u,w,k — 1) then

17: return True

18: return False;

Prune III. For each real node w/. of u, while performing DFS traversal in offline
index construction, we can find out dist, which represents the distance from w,.
to the nearest virtual node w; among all its successors in extended spanning tree.

Given dist index for every real node in the tree, for query « SLN v, if dist, >k,
we do not have to explore u’s successors. That is because when exploring from
u!. in the tree, virtual nodes can only exists in the k*" hop. Assume that u can
reach v within & hops. When one of v’s real or virtual node is in the subtree
rooted at u.., the query will return True in Line 3-6 in Algorithm 3. When all
of v’s real and virtual nodes are not in the subtree rooted at w.., there must
exist a virtual node w] which can jump out of the subtree to reach v. Note that
level,, —level,, <k holds or it needs more than k hops from u to v. However,

it contradicts dzst > k since the distance from u to w/ is smaller than k.

Example 6. In Fig. 5, for query f REN ¢, the pre- and postorder index of ¢ is not
in the interval of f’s index, i.e., (11,16) ¢ (17,24). Next, instead of exploring ¢
and h, we can safely return False directly since disty = k = 3.

4.3 Summary of Online Querying

After utilizing the three pruning strategies as discussed in Sect.4.2, the ESTI
query function Query(u,v, k) is shown in Algorithm 4. Though in the worst case
we still need to explore the whole graph, ESTT index still helps a lot for pruning
online search space. Section 5 will demonstrate its practical efficiency.
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Table 1. Statistics of datasets

Graph V| |E| Graph V| |E|

kegg 3,617 14,395 | p2p-Gnutella3l | 62,586 147,892
amaze 3,710 |3,947 |soc-Epinionsl 75,879 508,837
nasa 5,605 |6,538 | 10go-uniprot 469,526 3,476,397
go 6,793 |13,361 | 10cit-Patent 1,097,775 | 1,651,894
mtbrv 9,602 | 10,438 | uniprotenc22m | 1,595,444 | 1,595,444
anthra 12,499 | 13,327 | 05cit-Patent 1,671,488 | 3,303,789
€coo 12,620 | 13,575 | WikiTalk 2,394,385 | 5,021,410
agrocyc 12,684 | 13,657 | cit-Patents 3,774,768 | 16,518,948
human 38,811 | 39,816 | citeseerx 6,540,401 | 15,011,260
p2p-Gnutella05 | 8,846 | 31,839 | go-uniprot 6,967,956 | 34,770,235
p2p-Gnutella06 | 8,717 | 31,525 | govwild 8,022,880 | 23,652,610
p2p-Gnutella08 | 6,301 | 20,777 | soc-Pokec 1,632,803 | 30,622,564
p2p-Gnutella09 | 8,114 | 26,013 | uniprotenc100m | 16,087,295 | 16,087,295
p2p-Gnutella24 | 26,518 | 65,369 | yago 16,375,503 | 25,908,132
p2p-Gnutella25 | 22,687 | 54,705 | twitter 18,121,168 | 18,359,487
p2p-Gnutella30 | 36,682 | 88,328 | uniprotenc150m | 25,037,600 | 25,037,600

5 Experiments

We evaluate the effectiveness and efficiency of the proposed ESTI method by
carrying extensive experiments on both small and large graphs. All the exper-
iments are conducted on a Linux machine with an Intel(R) Xeon(R) E5-2678
v3 CPU @2.5GHz and 220G RAM, and all algorithms are implemented using
C++ and complied by G++ 5.4.0 with -O3 Optimization. Each experiment has
been run for 10 times and the results are consistent among 10 executions. In this
section, we report the average value from 10 executions of each experiment.

5.1 Datasets

A variety of real graphs are used in our experiments, as shown in Table 1.
kegg, amaze, nasa, go, mtbrv, anthra, ecoo, agrocyc and human are small graphs
from different sources [13]. p2p-Gnutella graphs are 8 snapshots of Gnutella
peer to peer file network, while soc-Epinionsi is a who-trust-whom online
social network [5]. As for large graphs, 10go-uniprot, go-uniprots, uniprotenc22m,
uniprotenc100m and uniprotenc150m come from Uniprot database. 10cit-Patent,
05cit-Patent, cit-Patents and citeseer are citation networks [3]. WikiTalk is a
Wikipedia communication network, while soc-Pokec and twitter are large-scale
social networks [5,7]. govwild and yago are RDF datasets [7].
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Fig. 6. Index construction time of FELINE and FELINE*

5.2 Performance of FELINE+

As discussed in Sect. 3.1, we propose an optimized approach named FELINE*
to accelerate FELINE index generation, while obtaining exactly the same index
as FELINE. Figure6 shows the index construction time, in which FELINE™
significantly speeds up the construction process in all graphs.

5.3 Queries with Different k

The efficiency of online querying is crucial for k-hop reachability query answer-
ing, and different values of k can significantly affect the performance. We
report the query time of the proposed ESTI method with different values of
k (k = 2,4,8) in Table2, comparing it with the state-of-art k-reach approach
[2]. For each k, we generate a million queries with randomly selected start and
target vertices. Note that k-reach requires a fixed budget b to construct the par-
tial vertex cover and we set b = 1000, which is the same as the budget used
in [2].

When the value of k increases, the time cost of both k-reach and ESTI also
tend to increase, because a larger k indicates a larger search space when the built
index cannot directly answer a query. We notice that most of queries fall into the
worst case in k-reach, which needs traditional BFS search over the whole graph.
Note that when k = 4 and k = 8, k-reach exceeds our time limit (4h) in graph
soc-Pokec. Clearly, ESTI is faster than k-reach over all graphs when k& = 2 and
k =4, and it also beats k-reach in most graphs except for graph WikiTalk. Note
that the diameter of WikiTalk is 9, which is relatively small and is quite closed
to k = 8. In practice, k will not be too large for social networks.
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Table 2. Query time (ms) of different k

Graph k=2 k=4 k=38

k-reach |ESTI |k-reach |ESTI k-reach | ESTI
kegg 63 27 97 42 103 40
amaze 58 25 83 34 90 37
nasa 96 20 193 33 212 45
g0 177 36 380 70 391 111
mtbrv 66 16 124 24 116 23
anthra 68 17 108 25 129 26
€coo 67 17 123 25 114 28
agrocyc 72 17 105 26 124 27
human 69 20 138 26 255 29
p2p-Gnutella05 | 630 95 8,069 723 47,595 9,507
p2p-Gnutella06 | 624 93 9,260 755 56,856 9,890
p2p-Gnutella08 | 656 73 5,654 462 26,063 5,061
p2p-Gnutella09 | 529 74 5,078 482 34,501 7,006
p2p-Gnutella24 | 467 74 4,862 514 100,276 | 15,639
p2p-Gnutella25 | 509 65 4,534 430 79,991 14,438
p2p-Gnutella30 | 668 74 6,166 478 129,051 | 24,226
p2p-Gnutella3l | 806 78 5,784 503 195,265 | 34,490
soc-Epinions1 132,712 | 596 999,966 | 3,747 765,753 | 11,932
10go-uniprot 788 109 1,622 204 2,505 469
10cit-Patent 245 90 400 159 815 322
uniprotenc22m | 491 77 644 102 776 129
05cit-Patent 458 130 722 222 1,649 480
WikiTalk 1,112,536 | 240 8,091,777 | 842 769,542 | 11,162,590
cit-Patents 5,259 382 36,879 1,605 306,144 | 21,195
citeseerx 927 205 2,935 264 23,154 763
go-uniprot 1,196 214 1,386 201 2,744 351
govwild 3,419 147 9,993 211 19,229 483
soc-Pokec 1,510,794 | 4,057 | - 653,194 - 6,430,662
uniprotencl00m | 744 95 987 113 1,748 160
yago 501 113 861 168 1,255 257
twitter 592 211 647 215 1,432 435
uniprotencl50m | 938 103 1,367 146 2,019 205
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Table 3. Index size, index construction time and query time on small graphs

Graph Index size (KB) | Index time (ms) | Query time (ms)
k-reach | ESTI |k-reach | ESTI |k-reach |ESTI
kegg 129 101 |80 1 107 44
amaze 127 101 T 1 97 42
nasa 229 139 78 1 200 43
go 284 212 |81 3 298 68
mtbrv 345 233 76 2 120 31
anthra 448 301 79 3 118 30
€coo 452 305 79 3 120 30
agrocyc 454 306 81 3 119 30
human 1,380 |922 87 10 121 32
p2p-Gnutella05 450 | 389 |80 7 34,067 | 5,659
p2p-Cnutella06 | 445 384 |79 7 39,010 | 5,747
p2p-Gnutella08 | 383 262 80 4 19,977 2,989
p2p-Gnutella09 | 407 | 332 |80 6 24,226 | 4,514
p2p-Cnutella24 | 1,680 | 931 | 89 19 77,227 | 12,457
p2p-Gnutella25 | 2,102 | 787 91 14 61,227 9,966
p2p-Gnutella30 | 3,056 | 1,269 | 99 28 103,566 | 11,235
p2p-Gnutella3dl | 5,189 | 2,143 | 123 55 160,885 |23,031
soc-Epinionsl | 50,211 | 5,361 | 957 | 134 | 1,214,127 6,579

5.4 Comparison with the State-of-art

As discussed in Sect. 1, k-reach [1,2] is the only method solving k-hop reachablity
queries on general directed graphs. We conduct experiments on both small and
large graphs to compare the proposed ESTI method with k-reach. For each
graph, we randomly generate a million queries while values of k are generated
following the distance distribution of all reachable pairs. Their index size, index
construction time and query time are reported in Table3 and 4.

The results in Table 3 shows that ESTI completely beats k-reach in all small
graphs. Note that the budget of k-reach is also set to be 1000. ESTI constructs
smaller index and is approximately an order of magnitude faster when building
index for most small graphs. As for online querying, ESTI costs significantly
less time. It is even more than a hundred times faster in graph soc-Epinions1.

For large graphs, we compare our ESTI method with k-reach in Table4,
where the budget of k-reach are set to be 1,000 and 50,000, respectively.
Note that k-reach exceeds our time limit (4h) on graph soc-Pokec. When
answering queries online, ESTI method costs much less time over all large
graphs. Though ESTI needs longer index construction time on most graphs,
we believe that the efficiency of online query processing is more important than
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Table 4. Index size, index construction time and query time on large graphs

Graph Index size (MB) Index time (s) Query time (s)

k-reach | k-reach | ESTI | k-reach | k-reach | ESTI | k-reach | k-reach | ESTI

(b=1k) | (b=50k) (b=1k) | (b=50k) (b=1k) | (b=50k)
10go-uniprot 24 24 34 0.7 0.4 1.1 1.2 1.0 0.2
10cit-Patent 26 39 31 0.2 0.6 0.8 0.4 0.4 0.1
uniprotenc22m | 55 55 37 0.6 0.5 0.8 0.4 0.4 0.1
05cit-Patent 41 60 53 0.3 1.2 1.7 0.6 0.7 0.2
WikiTalk 217 217 75 4.7 4.5 4.0 6392 6049 0.8
cit-Patents 181 558 188 5.2 22.4 9.2 94.0 92.5 9.7
citeseerx 171 237 219 3.5 11.1 6.4 2.1 2.2 0.3
go-uniprot 331 321 372 9.8 6.9 13.7 | 1.0 1.0 0.3
govwild 256 262 314 5.1 4.4 8.0 9.9 6.6 0.2
soc-Pokec 183 183 260 11.3 10.5 13.8 |- - 2281
uniprotenc100m | 556 556 370 |82 6.0 10.0 | 0.7 0.7 0.1
yago 411 446 472 2.9 4.2 12.3 0.5 0.6 0.1
twitter 609 609 443 | 5.5 6.9 11.3 | 0.6 0.6 0.3
uniprotencl50m | 866 866 576 14.3 10.1 16.8 | 0.9 0.9 0.1

offline indexing. Theorectically, the overall time cost of ESTI offline indexing is
O(|[V|log(Degs"™™) + | E|log(Deg'i™)), which is a stable bound.

The index size of ESTI is O(|V| + |E|), which is strictly linear to the size
of input graph. However, k-reach with budget 1,000 has the smallest index size
on some large graphs, and it also costs a lot of time to answer queries online.
It seems that 1,000 is a relatively small budget, which may limit the querying
performance of k-reach. But when the budget is set to be 50,000, k-reach has
larger index size than ESTT in many graphs, while it still cost more time in online
querying process. Hence, the overall query answering ability of ESTI method is
also better over large graphs.

6 Related Works

6.1 Reachabilty Query

Before Cheng et al. [1] first proposed k-hop reachability problem, lots of studies
about reachability query over large graphs have been carried. Reachability query
is a special case of k-hop reachability query when k = oo. Since the lack of
distance information, existing reachability query methods including BFL 8],
IP+ [11], GRIPP [9], PWAHS [6], GRAIL [13] and Path-Tree Cover [4], etc. are
not sufficient to answer k-hop reachability queries.

6.2 k-hop Reachabilty Query

To answer k-hop reachability problems, a naive idea is to process BFS or DFS in
given directed graph. Both BFS and DFS don’t need any pre-computed index,
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but they are not efficient when the graph becomes very large, since lots of search
branches will be expanded while exploring in the original large graph. In contrast,
storing the shortest distance between each pair of vertices helps to answer any
queries within O(1) time. However, in order to compute and store such distance,
performing BFS from every vertex in G costs O(|V|(|V|+]|E|)) time and O(|V|?)
space, which is also inefficient and even infeasible for large graphs.

Vertex Cover Based Method. Vertex cover is a subset of all the vertices in
a given graph GG, making sure that for each edge in GG, at least one of the two
vertices connected by this edge is contained in the vertex cover. k-reach [1,2]
makes good use of vertex cover, and runs BFS in the subgraph constructed from
vertex cover to build index. Though it is proved efficient in small graphs, when
dealing with larger graphs, k-reach still costs infeasible index time and space.

To overcome this drawback, Cheng et al. also proposes a partial vertex cover
[2] to make a trade-off between offline index and online query performance.
Though it can work on very large graphs, the partial vertex cover index cannot
answer a large proportion of online queries directly. In fact, traditional online
BFS would be invoked for more than 95% of the queries. Hence, it is still not
practical enough for answering k-hop reachability queries efficiently.

Methods Work on DAGs. To improve index efficiency, Xie et al. [12] proposed
BFSI-B Algorithm, which uses the breadth-first spanning tree to build BFSI
index, including min-post index and global BFS level TLE. Also, FELINE index
[10] is adopted to filter those unreachable queries. Another method developed
for DAGs is HT [3], which adopts the idea of partial 2-hop cover. In its indexing
process, vertices with high degree are selected as hop nodes. Both backward and
forward BFS are started from each hop node u. When visiting a new vertex v,
current hop node’s id v and the distance from u to v will be stored as the index
of v. Topological order is also used for filtering unreachable queries.

Though both BFSI-B and HT are more efficient than k-reach, they can only
work for DAGs and cannot directly deal with directed graphs with cycles. Also,
more efficient pruning strategies need to be utilized to further improve online
querying performance.

Algorithms for Distributed Systems. To deal with multiple k-hop reachabil-
ity queries concurrently on distributed infrastructures, C-Graph [14] focuses on
improving both disk and network I/O performance when performing BFS. Com-
pared with developing methods for a single machine, designing optimizations for
distributed systems is a significantly different task.

7 Conclusion

We propose ESTI method to efficiently solve k-hop reachability queries for gen-
eral directed graphs, which builds an extended spanning tree in offline phase
and utilizes three pruning strategies to accelarte query processing. Also, an
optimization named FELINET is developed to speeds up FELINE index gen-
eration, which helps to effectively filter unreachable queries in online searching.
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We also conduct extensive experiments to compare ESTI with the state-of-art
method k-reach. Our experiment results confirm that on most graphs the overall
performance of ESTI is the best, and in online querying it is significantly faster.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (Grant No. 61902074) and Science and Technology Committee Shanghai
Municipality (Grant No. 19ZR1404900).
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Abstract. A quick and intuitive understanding of network reachability
is of great significance for network optimization and network security
management. In this paper, we propose a query engine called NRFEngine
for network reachability when considering the network security policies.
NREngine constructs a knowledge graph based on the network secu-
rity policies and designs an algorithm over the graph for the network
reachability. Furthermore, for supporting a user-friendly interface, we
also propose a structural query language named NRQ@L in NREngine
for the network reachability query. The experimental results show that
NREngine can efficiently support a variety of network reachability query
services.

Keywords: Network reachability - Network security policies -+ RDF -
Graph database

1 Introduction

Network reachability is an important basis for network security services, which
has attracted more and more attentions of the experts and scholars. Network
reachability is a functional characteristic of the network, which ensures smooth
communication between nodes in order for users to conveniently access the
resources of the network [1].

Considering the requirement of network security or privacy protection, users
usually configure various of security policies in network devices such as firewalls,
routers and so on. Security policies usually restrict the users’ access to the net-
work, and its function is to control network reachability. Obviously, there needs
to be a balance between ensuring normal network communication and achieving
network security or privacy protection. In another word, the network reachabil-
ity needs to be maintained within a suitable range. If the network reachability
is more than the actual requirement, it may cause unnecessary communication,
or even create opportunities for the malicious attacks; and the network reacha-
bility that is less than the actual requirement will disrupt the normal network
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services, and even lead to huge economic losses. Therefore, the network must
have suitable reachability.

In order to measure the network reachability, there are many traditional
methods to check whether the network is reachable or not by using the ping,
traceroute or other tools. These methods have the following two shortcomings.
First, the results are dependent on the state of the devices. If some devices in
the query path get offline, the query results may be always unreachable. Second,
these methods send the test data packet (such as ICMP data packet) to evaluate
the network reachability, which costs a lot of network resources.

With the increase of network devices and the expansion of network scale, it
will become a hot and difficult point to quantify the reachability model of the
whole network. Furthermore, it has important theoretical value and application
prospects to validate the network reachability through an efficient network reach-
ability query approach, and intelligently locate the defects in security policies
configuration according to the query results, and optimize the security policies
configuration and network performance.

After constructing the network reachability model, we can use the graph
traversal search algorithms to query the reachability. Those methods require
searching the graph globally for network reachability and often have low per-
formances. Furthermore, if the network reachability model is stored in two-
dimensional database tables or files, we should reconstruct the graph when
querying, which greatly reduces the performance dramatically; If the network
reachability model is stored in memory, once the system is offline or downtime,
it cannot save the data of the network reachability model and also are limited by
the memory capacity. Therefore, in this study, we build up a knowledge graph
of network reachability based on network security policies and transform the
network reachability query into queries over the knowledge graphs. Then, we
can maintain the knowledge graph of network reachability in graph databases,
like gStore [2,3], Jena [4], rdf4j [5] and Virtuoso [6], which can gain the high
performances when evaluating queries over the knowledge graphs of network
reachability.

1.1 Key Contributions

In this paper, we focus on the query of the network reachability. The main
contributions of this paper are as follows:

1. We propose a novel model for the network reachability based on network
security policies, and construct a knowledge graph of network reachability.

2. We extend the structured query language over knowledge graphs and propose
a new structured query language called NRQL for network reachability. We
design the efficient query algorithms for evaluating NRQL statements over
the knowledge graph of network reachability.

3. We propose a novel query engine for the network reachability called
NREngine, which implements all the above techniques.

4. To evaluate the effectiveness and efficiency of NRFEngine, we conduct extensive
experiments.
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2 Related Work

Recently, there are some effective works on the network reachability. Xie et al.
have made a pioneering work, they define the network reachability and propose a
method to model the static network reachability [1]. The key idea is to extract the
configuration information of routers in the network and reconstruct the network
into a graph in a formal language, so the network reachability can be calculated
through classical problems such as closure and shortest path.

Zhang et al. propose a method to merge the IP addresses with the same reach-
ability into the IP address sets [7]. When the network reachability is changed, the
affected IP address sets can be reconstructed quickly by splitting or merging to
update the network reachability in real-time. However, they do not provide an
algorithm to answer whether an IP is reachable along a certain path to another
IP. Benson et al. propose the concept of the policies unit [8]. The policies unit is
a set of IP addresses affected by the same security policies. A policies unit may
be distributed in many subnets, or there may be many different policies units in a
subnet. They also do not provide an algorithm for the network reachability query.

Amir et al. propose a network reachability query scheme based on network
configurations (mainly ACLs), and construct a network reachability query tool
called “Quarnet” [9,10]. Its ACL model still adopts FDD model, the queries need
to be split by the paths of the FDD. Chen et al. propose the first cross-domain
privacy-preserving protocol for quantifying network reachability [11]. The pro-
tocol constructs equivalent representations of the ACL rules and determines
network reachability while preserving the privacy of the individual ACLs. They
do not consider the other network security policies(such as route table). Hone
et al. propose a new method to detect IP prefix hijacking based on network
reachability, which is a specific application of network reachability [12].

Recently, there are some effective works on network research based on the
graph. Liang et al. propose an improved hop-based reachability indexing scheme
3-Hop which gains faster reachability query evaluation, which has less index-
ing costs and better scalabilities than state-of-the-art hop-based methods, and
they propose a two-stage node filtering algorithm based on 3-Hop to answer tree
pattern queries more efficiently [13]. Rao et al. propose a model of network reach-
ability based on decision diagram [14]. Li et al. propose a verification method of
network reachability based on the topology path. They transform the problem of
the communication need into the verification problem of topology path reachabil-
ity via SNMP and Telnet-based topology discovery and graph theory techniques
[15]. Alfredo et al. propose a novel reachability-based theoretical framework for
modeling and querying complex probabilistic graph data [16]. Hasan proposes a
novel knowledge representation framework for computing sub-graph isomorphic
queries in interaction network database [17].

3 Overview

3.1 Problem Definitions

The essence of network reachability query is to determine whether a certain type
of network packet can reach another node from one node or from one subnet to
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another. Given two subnets N; and No, and two host nodes vy and vy, where v
is a node of Ny, so v; € Ny holds, and vs is a node of Ny, so vy € Ny holds. The
network reachability query in this paper can be divided into three categories as
follows according to the query targets.

Node to Node. This category of query is mainly used to check the network
reachability between nodes. We use v; — wvs to denote that v; to vs is reachable,
and use v; - v to denote that v; to v, is unreachable.

Node to Subset. This category of query is mainly used to check the network
reachability between nodes and subsets. We use v; — N to denote that v, to No
is reachable, and use v; -» N> to denote that vy to N is unreachable. Obviously,
the following formula holds.

vy — No = {H’Uj, v — ’Uj}(’l}j S Ng)

Subset to Subset. This category of query is mainly used to check the network
reachability between subnets. We use N; — N to denote that N; to Ny is
reachable, and use N; - Ny to denote that N7 to Ny is unreachable. Obviously,
the following formula holds.

Ny — Ny = {HUZ‘,’UJ‘, Vi — vj}(vi S Nl,vj € NQ)

We also can divide the network reachability query into two categories as
follows according to the result of query.

1. Boolean query. The result of the query is a boolean value (such as yes or no).
For example, “SMTP server 192.168.0.32 to host 192.168.0.54 is reachable?”,
and the result is “yes” or “no”.

2. Node query. The result of the query is a set of nodes that satisfy the query
condition. For example, “Which hosts in subset 192.168.0.0/24 can receive the
email from the SMTP server 192.168.0.327”. The result is a set of nodes.

3.2 System Architecture

In this paper, we propose a query engine for network reachability based on
network security policies, NREngine. Figure 1 shows the system architecture of
NREngine. NREngine consists of two parts as follows.

In the offline part of NREngine, we collect and organize the network secu-
rity policies (including ACLs and routing table). First, we remove the network
security policies where the action field value is deny and extend OPTree [18] for
maintaining the network security policies. OPTree is a homomorphic structure
of network security policies, and the redundancy policies and the conflict policies
can be removed when constructing OPTree. Then, we propose a network reach-
ability model based on the network topology and the network security policies,
and construct a knowledge graph based on the network reachability model. To
support efficient evaluation of the network reachability query, we maintain the
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knowledge graph in graph databases, like gStore [2,3], Jena [4], rdf4j [5] and
Virtuoso [6].

The online part of NREngine is mainly responsible for processing user query
requests. In this part, we propose a structured query language, called NRQL
(Network Reachability Query Language) for network reachability query. Users
send the query requests to NREngine using NRQL statements. The key of
NREngine query is to match the query conditions by using OPTree in the net-
work reachability model. In order to adapt to OPTree, we propose a NRQL
query parsing algorithm based on OPTree query algorithm. NREngine can pro-
vide three categories of queries: “node to node”, “node to subnet” and “subnet
to subnet”. The results of those queries can be either “Yes” or “NQO”, or a set of
nodes satisfying the query conditions.

Considering the high real-time requirement of network reachability query, the
relatively low frequency of network security policies change, and the long time-
consuming construction of the network reachability model based on OPTree,
we construct or update the network reachability model through timing schedule
in the offline part. In the online part, NREngine provides a real-time network
reachability query service based on the high query efficiency of graph databases.
In terms of system deployment, the online part and the offline part can be
deployed independently, in which the offline part can be deployed in the intranet
environment to isolate ordinary users, and the online part can be deployed in the
extranet environment to provide network reachability query services to ordinary
users by the GUI of NREngine.
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Fig. 1. The system architecture of NREngine
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4 The Offline Part of NREngine

4.1 Network Reachability Model Based on Network Security
Policies

The essence of network reachability in our paper is to determine whether network
data packets can be transferred from one node to another. Many factors affect
whether network data packets can be transmitted from one node to another,
such as the state of the devices. The devices include firewalls, routers, switchers
and hosts. If a device is not online, the data packet can not be transmitted
through it. However, the state of the device is an instantaneous state, which
may be man-made shutdown or the device failure. By opening or repairing the
fault, the state of the device can be changed, so it cannot reflect the basic state
of the network.

Another key factor affecting the network data package is the network security
policies. The network security policy is not an instantaneous state, and cannot
be changed due to the device off-line or the device failure. Therefore, the network
security policies can well reflect the basic state of the network, and we can build a
model for the network reachability based on the network security policies. Noted
that, because the security policies in hosts are managed by their managers and it
is hard to collect the security policies, we do not consider those security policies
in our paper.

First, we formally define the network reachability model. Given a subnet
N and there are n devices (D1, Da,...,D,) in N. Here, we use the graph as
the basic model of the network reachability model. The network is denoted as
G = (V,E, L), where V denotes the set of devices like firewall, router or switcher
in the subnet N; E denotes a set of the edges between vertices and L is the labels
of the edges based on the network security policies. According to the properties
of ACL and routing table, if v; has only one outgoing edge, v; denotes a device
which has packet filtering function, such as firewall. Otherwise v; denotes a device
which has packet forwarding function, such as router or switcher. Obviously, G is
a directed graph. Figure 2 shows an example of the network reachability model.
In Fig. 2, vs, vg and v7 denote the network security devices which have packet
filtering function, and v, vs, vs and v, denote network security devices which
packet forwarding function.

Fig. 2. An example of the network reachability model
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The construction of network reachablity model G = (V, E) for subset N has
two steps as follow as.

Step 1: Creating the Vertices Set for Devices. We create a vertex for each
network security device in subset V. Noted that if a network security device
D; not only has a packet filtering function but also has a packet forwarding
function, in other words, the action field’s values of the network security policies
R; in D; have three categories: Accept, Deny and NextDevice. we should create
two virtual vertexes D} and D} to denote D;, and D} only has a packet filtering
function, and D only has a packet forwarding function.

Step 2: Linking the Vertices of Devices. According to the topological struc-
ture of the network IV and the flow direction of data packets, the edges between
nodes are constructed. Given a vertex v; with packet filtering function, and the
next node is v;, we construct an edge e; ; that from v; to v;, and construct the
OPTree T, based on the network security policies which in v; , we use L(e) to
denote the label of the edge e, that is, L(e; ;) = Tb,. If v; has the packet forward-
ing function, then there are many next-hop nodes of v;. we construct an edge
e;,; for each next-hop node v;, and use R(4,j) to denote the network security
policies which is in v; and the next-hop node is v;, and we construct the OPTree
TR(i,j) and L(em-) = TR(i,j)'

4.2 Knowledge Graph of Network Reachability

After constructing the network reachability model, the next step is to efficiently
evaluate the network reachability query. Existing methods of maintaining the
network reachability model in two-dimensional database tables or files have low
performances or are limited by memory capacity. Thus, in this study, we build
up a knowledge graph of network reachability based on network security policies
and transform the network reachability model into edges of knowledge graphs.
Figure 3 shows an example knowledge graph of network reachability. Then, we
can maintain the knowledge graph of network reachability in graph databases,
like gStore [2,3], Jena [4], rdf4j [5] and Virtuoso [6], which can gain the high
performance of evaluating network reachability queries.

The schema of vertices in our knowledge graph of network reachability is
shown in Table 1, which includes three categories of vertices (“DeviceType”, “Net-
work” and “Edge”). For the devices that have the packet forwarding function,
there is more than one “Edge” vertex, and for the devices that have the packet
filtering function, there is only one “Edge” vertex.

The schema of edges in our knowledge graph of network reachability is shown
in Table2. The most important category of edges is “Label”. The value of a
“Label” edge represents the set of network security policies which is to be matched
by a data packet pass through the edge. In order to improve the query efficiency,
we maintain OPTree in memory to store the network security policies.
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Table 1. Schema of vertices in knowledge graph of network reachability

Name Type Remark

DeviceType | Property | The device type of the vertex, such as firewall,
router, switcher, and host

Network Property | The network of the vertex belongs, such as Ny
Edge Resource | The edge of the vertex, such as e »

Table 2. Schema of edges in knowledge graph of network reachability

Name Type Remark

Label Property | The label value of the edge. In this study, the
value is an OPTree.

NextNode | Resource | The vertex which the edge point to

Labe‘ Address(T, 5)

D
Firewall Address(T’s ;) N,

Fig. 3. Example knowledge graph of network reachability
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Select ?x,?y
Where

{

?x Network ?y.

?x DeviceType “Host”.

7z NextNode ?x.

7z Label ?k.

7k <nr:in> <SIP=192.168.32.0/24,SP=any, DIP=192.168.24.212,DP=23,P=tcp>.

Fig. 4. Example point query

5 The Online Part of NREngine

5.1 Structured Query Language for Network Rechability

In this section, we extend the structured query language over knowledge graphs,
SPARQL [19], for describing the user’s network reachability query request over
the knowledge graph of network rechability. The extended structured query lan-
guage is called NRQL (Network Reachability Query Language).

Generally, SPARQL does not support matching operations related to the pol-
icy matching condition, a SPARQL statement only supports queries with limited
steps. If the target of a query statement is to find the data which meet the query
conditions within 3 steps, its meaning is to find data within the range of 3 edges.
In network reachablility query, we do not know the number of edges between the
starting node and the target node. Therefore, we replace the starting vertex
recursively and perform a one step SPARQL query in the recursive process.

A NRQL statement consists of two parts: a query target clause beginning
with keyword select and a 7 to denote a query variable. Therefore, a query
target clause contains several query targets by several query variables. Figure 4
shows an example of NRQL statement. There are two query targets in Fig. 4.

Figure4 shows a node query. We use the keyword exist to describe the
boolean query, and we only add exist for the query variables of the query state-
ment for boolean query is shown in Fig. 5.

The other part of the NRQL statement is a query condition clause beginning
with keyword where, which is wrapped with braces and contains several triple
patterns. Each triple pattern is a query condition for edges in knowledge graph.
Here, to support matching the data package with network security policies in
the network reachability query, we define a new predicate “<nr: in>" in NRQL.
This predicate means that the content of the object is regarded as a data packet,
and then the process is transformed into the problem of checking whether a
data packet is matched with a set of network security policies. We define this
query condition clause as a policy matching condition. In a query condition
clause, there is only one policy matching condition. In [18], Li etc. propose that
using OPTree can solve this problem efficiently, so it can be transformed into
finding a predicate path in OPTree, which can be solved by using OPTree search
algorithm.
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Select exist(?x)

Where

{

?7x Network ?y.

?x DeviceType “Host”.

7z NextNode ?x.

7z Label ?k.

7k <nr:in> <SIP=192.168.32.0/24,SP=any, DIP=192.168.24.212,DP=23,P=tcp>.

Fig. 5. Example Boolean query

5.2 Execution of NRQL Statements

After we generate NRQL query statements based on the user’s query request,
then we execute the statements over the knowledge graph of network reachabil-
ity. Unfortunately, most graph databases for knowledge graphs, like gStore [2, 3],
Jena [4], rdf4j [5] and Virtuoso [6], do not directly support the NRQL query state-
ments, but they only support the SPARQL query statements. Therefore, when
NRQL query statements are executed, additional parsing and pre-processing of
NRQL query statements are needed.

Algorithm 1: NRQLBooleanQuery(Q, G)

Input: Q:The NRQL query statement.
G:The network reachability model.
Output: True:Network is reachable; False:Network is unreachable

1 set ve=UVstart;

2 result=checkIsMatch(ve, Qseiects Rigs Tmatch);

3 if result==false then

4 ‘ return false;

5 else

6 generate a sparql statement ask which the condition clause is Rrxg — Tmatch-
/* Execute the ask by the query api of the graph database */

7 return graphDatabase.query(ask);

Before describing the query algorithm, we formally define the common con-
cepts which would be used in the algorithm. We use G = (V, E, L) to denote
the network reachability model, and use Q={Qscicct; Quhere} to denote a
NRQL query statement, in which Qgeieer denotes the query target clause and
Quhere denotes the query condition clause. According to the above description,
the query condition clause contains a set of triple patterns, so Quhere = Rig,
where Ry, denotes a set of edges in the knowledge graph of network reacha-
bility and r; denotes a triple tuple in the set of Ryy. The 7,4t denotes the
policy matching condition.

We design the query algorithm of the NRQL according to the categories of the
query of network reachability and the categories of the query result. For boolean
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query, we design the boolen query algorithm, whose pseudo-code is shown as
Algorithm 1.

Function Boolean checkIsMatch(ve, Qseiect; Rig, "mateh)

=

if v. € Qseciect then

2 ‘ return true;
3 else

/% get the next vertexes of v, which match with 7Tmaten */
4 set Vnest=get NextVertexes(ve,rmatch);
5 if Viext # 0 then

/* match 7,,qtch, then call the recursive function */

6 set flag=true;
7 for i =0 to Vyeqt.length do
8 set ve=Vhezt[i];
9 flag=flag || checkIsMatch(ve, Qsciect, Rkgy Tmatch );
10 if flag==false then
11 ‘ return false;
12 else
13 ‘ return true;
14 else
15 ‘ return false;

There are two key functions for boolean query in Algorithm 1. Function
checkIsMatch is a recursive function. For example, in node to node query, we
use Vsiqrt to denote the start vertex, and use ve,q to denote the end vertex.
Firstly, we set v.=v4tqr+ and call the function get NextVertexes to get the next
nodes. In function getNextVerteres, we generate a sparql query statement to
get the next vertexes by using the query api of the graph database and use
Viezt to denote the vertexes which satisfy the condition clause Ryg-rmatch. Sec-
ondly, we check whether each vertex v; match with r,,4¢cp, if a vertex can match
with rp,q¢ch, We set v.=v;, and repeatedly execute the function checkIsMatch
until every vertex in Vj,.,; has been checked. Finally, if the result of function
checkIsMatch is false, it means that there is no path that satisfies the query
condition clause, the result of node to node query is false. Otherwise, we generate
a SPARQL ask statement where the condition clause is Rpg-Tmatch. According
to the properties of ask statement of SPARQL, the result is a boolen value.

The node query algorithm is similar to the boolean query algorithm, except
that the result is a set of nodes, and the pseudo-code of the algorithm is shown
in Algorithm 2.

In Algorithm 2, we finally generate a SPARQL query statement to get the
vertexes which satisfy with Rpg-"match-

5.3 Analysis

For Algorithm 1, we find the key process of boolean query is to match all the
output edges of the starting node with the policy matching condition. Because
the gStore has a high level of query efficiency, the query time of gStore can
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Function Vertexes getNextVertexes(ve, rmatch)

N0 A WN

10
11

12
13
14
15

/* generate the query statement based on the SPARQL */
set sparql="select 7address,?z where { < v. > edge ?y. 7y label ?address. 7y
NextNode 7z.}’;
json=graphDatabase.query(sparql);
if json==null then
‘ return (;
else
set Viise=]];
set edgeList=json.list;
for i =1 to edgeList do
/* get the Object of the OPTree according the memory address

of the OPTree */
set T=Address(edgeList[i].address);
/* use the search algorithm of the OPTree */

set path=T'.search(rmatch);
if path # null then
/* It means that the edge of the vertex V. match the 7Tmaich

when there is a path */
Viist.add(edgeList[i].endNode);
else
continue;

return Vj;s;

Algorithm 2: NRQLNodeQuery(Q, G)

Input: @Q:The NRQL query statement for the network reachability query.
G:The network reachability model.
Output: the node set which satisfies the query condition

1 set ve=Vstart;

2 result=checkIsMatch(ve, Qselect, Rkg, 'match);

3 if result==false then

4 ‘ return null;

5 else

6 generate a sparql statement select which the query target clause is Qseiect
and the query condition clause is Rkg — "'match-
/* Excute select by using the query api of the graph database. */

7 return graphDatabase.query(select);

be ignored. This checking process is equivalent to the searching process of

OPTree. The time complexity of OPTree search algorithm as O(mlog), assum-
ing that the number of output edges of each node is k, and there are g nodes
between the starting node and the target nodes of the query. The best case
is that there is not a output edge e of the starting node which can match the
policy matching condition, then we only need to execute the checking process for
the starting node once. Thus the time complexity is O(kmlogn). The worst case
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is that we need to execute the checking process for every node between the start-
ing node and the target node. The time complexity is O(kqmldgn). Therefore,
the time complexity of the boolean query algorithm is O(kpmldgn)(l <p<gq).

Noted that the node query algorithm is similar to the boolean query
algorithm, therefore, the time complexity of the node query algorithm is
O(kpmlogn)(1 < p < q).

6 Experiments

In this section, we perform our experiments and evaluate the effectiveness and
efficiency of NREngine.

6.1 Setting

In this paper, we propose a knowledge graph-based query engine for network
reachability, and construct the network reachability model based on the network
topology and the network security policies. Therefore, in our experiments, we
should generate three categories of datasets as follow.

1) Datasets of Network Topology. The data set includes the devices and the

edges between the devices. The devices include the host, router, switcher and
firewalls. The size of the devices in the generated network topology ranges
from 10 to 100 with the step length of 10, and the ratio of firewalls in those
devices is 30%, the ratio of routers or switchers in those devices is 70%, and
the size of the forwarding ports in routers or switchers is no more than 4.
Noted that in our experiment, the size of subnets is 3, and each of subnet,
we generate 2 hosts.
In order to be closer to the actual situation, we generate the random size of
the forwarding ports for each router and switcher, so the size of the edges in
the network reachability model is uncertain. However, the size of the edges in
the network reachability model can intuitively reflect the complexity of the
network. Therefore, We use the size of the edges in the network reachability
model as the metrics in our experiment. Table 3 shows the generated data
set of network topology in our experiments.

2) Datasets of Network Security Policies. We use the network security
policies generation tool ClassBench proposed in [20], which is widely used
in policies generation to generate the network security policy sets of the
devices in the network. The size of the generated network security policy
sets in each device range from 100 to 1000 with the step length is 100, note
that each field of a network security policy generated by ClassBench is
represented as a range, we need to transform the range value to one or more
prefixes based on the properties of OPTree.

3) Datasets of NRQL Query Statements. We generate three categories
of NRQL query statement: node to node query, node to subnet query and
subnet to subnet query. We generate 100 NRQL query statements for each
category. Noted that the start node is different from the end node in the
generated NRQL query statements.
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We perform our experiments on PC running Centos7.2 with 32 GB memory
and 4 cores of Intel(R) Xeon(R) processor(3.3 GHz) and implement our proto-
type system using Java. The graph database used for maintaining the knowledge
graph of network reachability is gStore [2,3].

For the offline part of NREngine, we generate the knowledge graph of network
reachability and construct OPTrees for the labels of edges. We measure the
execution time and memory usage of the knowledge graph.

For the online part of NREngine, we perform two categories of the network
reachability query: the boolean query and the node query. To evaluate the effi-
ciency of NREngine, we measure the query time in our experiments. In our
experiments, we execute the three categories network reachability query: node
to node query, node to subnet query and subnet to subnet query that use the
same query condition clauses and only change the query target clauses.

In order to make the experimental results more accurate, we execute the all
NRQL query statements, and then measure their average query time.

Table 3. Datasets

Scale of devices | Devices Edges
Routers or Switchers | Firewalls
10 7 3 89
20 14 6 503
30 21 9 912
40 28 12 1293
50 35 15 1723
60 42 18 2207
70 49 21 2498
80 56 24 2974
90 63 27 3319
100 70 30 3812

6.2 Experiments Results of Offline Part

For the offline part of NREngine, the results of experiments are shown in Table 4.
Noted that the number of edges is the size of edges in network reachability model.
On the one hand, the experimental results show that we can build a knowledge
graph of network reachability with 3700 edges in less than three hours, and the
memory usage is less than 3 GB. Because of the knowledge graph construction
is an offline process, so the time cost and the space cost are acceptable.

On the other hand, the experimental results show that the time and the
memory usage of OPTree construction are more than that of knowledge graph
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Table 4. Results on knowledge graph of network reachability construction

Number of edges | Knowledge graph generation OPTree construction
Ave. Ave. memory Ave. time | Ave. memory
Time (s) |size (MB) (min) size (MB)
100 12.56 12.42 3.51 40.42
500 18.52  20.42 11.52 218.32
900 23.41 |25.62 21.42 398.23
1300 26.43 |31.24 35.23 612.42
1700 31.24 |35.62 51.52 812.25
2100 51.42 ]39.42 72.51 978.07
2500 69.41 |42.54 98.53 1234.23
2900 87.09 |48.23 119.64 1592.31
3300 97.14 |55.21 138.52 1892.18
3700 112.52  |60.87 150.42 2132.52
70009 Node to Node 3000013 Node to Node
—A— Node to Subnet —#A— Node to Subnet
6000 4 Subnet to Subnet| 25000 4 Subnet to Subnet|
;é/: 0007 ,g 20000 4
E ] H
[:5' ::z:A é 15000 4
3 5 10000 4
> 2000 4 o
< Z
1000 4 5000 4
7 54('7;) l(;ﬂﬂ 15'00 Z(;Dﬂ 25'00 30'00 35‘00 40‘00 ’ _0 500 1000 1500 2000 2500 3000 3500 4000
Number of Edges Number of Edges
(a) The results of boolean query (b) The results of node query

Fig. 6. The results of experiments

generation. The reason is that OPTree Construction is a time-consuming opera-
tion, and it includes path checking and path merging, and network reachability
model can be quickly converted into knowledge graph based on pattern match-
ing.

6.3 Experiments Results of Online Part

For the online part of NREngine, the results of experiments are shown in Fig. 6.
The experimental results show that on the one hand the query time of network
reachability is from milliseconds to seconds with the increase in the size of edges
in network reachability model. On the other hand, the efficiency of node to node
query is the highest, followed by node to subnet query, and the efficiency of
subnet to subnet query is the lowest. The reason is that we need to traverse
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every node in the subnet until we find a node that satisfies the query conditions
for node to subnet query and subnet to subnet query. Figure 6(a) shows the
experimental result of the boolean query, and Fig. 6(b) shows the experimental
result. The experimental results show that the query time of node query is similar
to that of boolean query in node to node query, and the query time of node query
is much longer than that of boolean query in node to subnet query and subnet
to subnet query. The reason is that we need find all nodes that satisfy the query
conditions in the node query, and we just find one node that satisfies the query
in the boolean query.

7 Conclusion

In this study, we propose a model of the network reachability based on the
network security policies, and propose a query engine called “NREngine” for
network reachablity. In order to improve the efficiency of network reachability
query, some techniques are used to construct the network as a knowledge graph of
network reachability and maintain the knowledge graph in graph databases. On
this basis, the knowledge graph of network reachability is proposed for network
reachability query. To describe user’s network reachability query requests, we
propose a structured query language, which is called NRQL, and design the
query algorithms for NRQL. The experimental results indicate that NREngine
is effective and efficient.
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Abstract. A question with complete semantics can be answered cor-
rectly. In other words, it contains all the basic semantic elements. In
fact, the problem is not always complete due to the ambiguity of the
user’s intentions. Unfortunately, there is very little research on this issue.
In this paper, we present an embedding-based approach to completing
question semantics by inspiring from knowledge graph completion based
on our proposed representation of a complete basic question as unique
type and subject and multiple possible constraints. Firstly, we propose
a back-and-forth-based matching method to acknowledge the question
type as well as a word2vec-based method to extract all constraints via
question subject and its semantic relevant in knowledge bases. Secondly,
we introduce a time-aware recommendation to choose the best candi-
dates from vast possible constraints for capturing users’ intents precisely.
Finally, we present constraint-independence-based attention to generate
complete questions naturally. Experiments verifies the effectiveness of
our approach.

Keywords: Embedding - Question completion -+ Knowledge graph

1 Introduction

Question answering (QA) is a downstream task of natural language reasoning.
The question answering system can answer natural language questions accu-
rately and concisely in the statistical data set by understanding the intent of
the question [12]. This data set can be a structured knowledge database (as a
knowledge base) or an unstructured document collection. QA techniques have
been widely used in many fields of NLP, such as chatbot, intelligent search,
and recommendation [30]. Different from searching via keyword matching, a
question has a complete semantics (called complete question), that is, it con-
sists of all basic elements of questions if QA returns some accurate and concise
answer [36]. Due to the ambiguous representation of users’ intent, the questions
that users often ask are not always complete [9]. For instance, “the last Japanese
metro” , “Parisian resident population”, and “actors of the movie Green Book”
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are incomplete questions. A complete question must have a complete semantics.
In practice, QA systems often complete the semantics of questions when they are
under completeness [35]. For instance, to answer an incomplete question What
date is today?, we often complete it by adding the date constraint of the current
date. So it becomes very interesting to complete the question accurately and
concisely for further inquiry. As we investigated, unfortunately, there is no open
research work on this problem.

Knowledge graph completion (KGC) [2] as a recent popular technique in
learning new entities and relations, effectively improve knowledge graphs (KGs)
by filling in its missing connections. It is natural to apply KGC techniques to
complete the semantics of questions since questions are often transformed to
logical queries (e.g., SPARQL queries) built on triple patterns in QA systems as
well as KGs are modeled in sets of triples [10]. However, there are some essential
differences between questions and KGs as follows: (1) each question necessarily
have unique type while an entity has multiple relations; (2) the semantics of a
question is dynamically changing while the semantics of a triple in KG often
is stable; (3) one question has multiple representations (as question grammar
form) while the representation of triples in KG is often single. Hence it is not
direct to apply KGC techniques for question completion (QC).

In this paper, we propose a novel method based on embedding. This method
is based on some core technologies of mechanism map completion (KGC) to
analyze and infer the semantics of incomplete questions and make an incomplete
question that cannot be answered correctly. The question becomes a question
with complete semantics so that some QA tasks can identify these questions and
give the correct answers. The main contributions of this paper are summarized
as follows:

— We recognize question type by the back-and-forth-based matching method,
which is to determine it based on the type of answer found by the knowledge
graph and the information entered by the users. Meanwhile, we propose a
word2vec-based method to extract all constraints via question subject and
its semantic relevant in KBs.

— We introduce a time-aware recommendation which overcome the contradic-
tion between static data and dynamic question to choose the best candidates
from vast possible constraints for capturing users’ intents precisely.

— We present constraint-independence-based attention, which captures the deep
meaning expressed by the user through the order of multiple constraints to
generate complete questions naturally.

Experimental results on the datasets revised from benchmark datasets demon-
strate that our approach can effectively extract semantics lost in capturing
intents.

2 Overview of Our Approach

In this section, we introduce our proposed embedding-based model for question
completion, and its overview framework is shown in Fig. 1.
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Fig. 1. The overview framework of our approach

Our embedding-based model consists of three modules, namely, question rep-
resentation, question completion, and question generator as follows:

— Question Representation obtains a tree structure of questions. We process
the input word sequence (that is, the incomplete question) to get the tree
structure of the question. As the base of the question completion module, the
module is used to provide the reference of candidate completed questions. In
this module, we present the method based on a parsing-dependency-tree to
construct a structured representation of all incomplete questions.

— Question Completion constructs a complete tree-structure of input ques-
tions, that is, processes the output of the question representation module.
The module is used to mainly build complete tree-structures of incomplete
questions for generating complete questions in the question generator. In this
module, we present a back-and-forth-based matching method to learn ques-
tion type and an embedding-based model to learning constraint relations.

— Question Generator generates questions with complete semantics for all
complete tree-structures of incomplete questions. The module is mainly used
to learn intents of incomplete questions based on complete tree-structures.
In this module, we present a time-aware recommendation and constraint-
independence-based attention for extracting complete semantics of incomplete
questions.

3 Owur Approach

In this chapter, the technical framework of the paper is divided into four depart-
ments to introduce: namely, question formalization, question representation,
question completion, and question generation.
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3.1 Question Formalization

The formalization of questions is determining what syntactic structure of a ques-
tion to be correctly answered is.

Let X' be a set of words. A finite sequence (w1, ..., w,) of words with w; € X
(i=1,2,...,n)is a sentence over X. We use X* to denote a set of sentences over
YA phmse is a collection of words. By default, a phrase is a natural sentence.

Let Vv, Vg, Vr be three subsets of X*. We set Vr N (Vy U Vg) = ), that is,
Vr and Vi U Vg is disjoint.

Definition 1 (Structure of Question). Let V = Vr U VN U Vg. Let q be a
question. A syntactic structure (‘structure, for short) of ¢ overV as a labeled tree
T, = (N, E,L,\,0) whose children is either a labelled tree named substructure
of Ty or a leaf where

— L :roots(T,;) — Vr: an injective function mapping it to one phrase;
- A: N — Vy: a function mapping each node to a phrase;
-0 : E — Vg: a function mapping each edge to a phrase;

where roots(Ty) is a collection of non-leaf nodes in T,.

Let V be a set of phrases and ¢ be a question over V. T, = (N, E, L, A, 6).
We use Root(T}) to denote the root of T, and Leaf(T}) to denote all leaves of
Ty Let r = Root( 0)-

We say L(r) type of g. We say \(r) subject of ¢ and \(u) constraint of ¢ where
u € Leaf(T},). Given an edge (u,v) € E, we say d(u,v) modification between u
and v. In this sense, we directly v modifying u. And we say ¢’ subquestion of ¢
if T,/ is a substructure of Tj,.

A question g is complete if its structure tree contains at least three nodes
which are all mapped to some phrases and its root is labelled by a question type.
Formmaly, let T, = (N, E, L, \,0), if [N| > 2 and £ # and X # (. Intuitively, a
complete question contains at least three elements: type, subject, and constraint.
See Fig. 2 Fig. 3.

[ What is the average pcpulﬂmn of the US States in 2019?] US States' population

1
(1)

,
\\ ,/
[
~ T ST
£ \
'Con2¥ {Conn;
N AN

\average\ |ussmes\ \ 2019 |
(a) (b)

Fig. 2. (a)-Complete question (b)-Incomplete question
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[ What is the average population of the US States in 2019? ]

average

V4
population of in

O >0 O
What US States 2019

Fig. 3. Query graph structure

Notice that query graph or semantic graph of questions in a graph structure
are substantially introduced to represent logical queries whose solutions are pos-
sible answers of questions [32]. Most approaches of QA systems mainly focus on
better matching a question to candidate query graphs. Our proposed tree struc-
ture of questions is to represent the relational structure of questions themselves
for determining characteristics of questions as a whole such as completeness.

3.2 Natural Question Representation

Given a natural question, based on the formalization of question structure, we
build its structure.

Let V be a set of phrases. Let ¢ be a natural question (wi,ws,...,wy)
over V based on the assumption each w; is not a stopword. In other words,
{wy,...,w,}* C V, that is, all words wy,...,w, are words occurring in V.
T, = (N,E, L, ),0) is constructed in the following four steps:

Type extracting. Compute L£(nodeyey) and update N by adding a new node
denoted by nodeyey,. We present a dynamic planning for entity extracting and
relation learning built on indenpency-trees [27,28].

Subject learning. Compute A(r) and update A\. We present a heuristic method
for subject learning by combing gammar structure with speech analysis.

Constraint learning. Compute A(u) and update N, E by adding new edge
from newly generated nodes and edges and further update (e) for all e € N.
We present a greedy method for identity of named entity built on gammar
indenpency-tree. The similarity function between w; and 7"_; is defined as fol-
lows:

d
Z wzh + T]h |w7,h - Tjh|) (1)

h=1 Z (win +wjn)
h=1

sim (w;, 7"]
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3.3 Question Completion

In this module, we extend a question (possibly an original sentence), whose
question structure is not complete, to complete question via word2vec as an
essential embedding method [23]. Recall that a complete question requires three
elements: type, subject, and constraint. We assume that the subject of an incom-
plete question always exists since the subject is the core of a question. Now, given
an incomplete question, how to complete its type and its constraints. Consider
three cases: (1) constraint completion; (2) type completion; and (3) both type
and constraint completion. Note that for the 3rd case of both type and con-
straint, we firstly apply constraint completion and then type completion. In this
subsection, we mainly review the first two cases.

Input Layer e

Hidden Layer hi
!' }

Basic Base | |
| L !
~ . —.. i '~ — e — T 7/
!.

Rank Layer |

Output Layer ===

Fig. 4. Constraint recommendation model
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Fig. 5. Bi-RNN-attention

Constraint completion. Formally, let V' be a set of phrases, let ¢ be a natu-
ral imcomplete question (wy,ws,...,wy,) over V, T, = (N, E, L, \,0) is the
structure of ¢, the constraint completion problem is predicting all possible
constraints A(u) of T, w.r.t subject A(r) where r is the root of T, and u is a
leaf of r.

We use ¢ = (w1,...,w,) to denote the sequence of d-ary vectors after via
word2vec. We introduce probability in two cases of ¢: basic question (the
depth of its structure tree is exactly at most 2) and complex question (the
depth of its structure tree is at least 3).

We use w; to denote the predicted target word w.r.t. w;. The conditional
probability of w] given w;, denoted by P(w}|w;), is defined as follows: basic
question (see Eq. (2)) and comple question (see Eq. (3)).

P(wj,w;)  count(wj, w;)

(wilws) P(w;) count(w;) @)
W
W (w!,j w;

Puifu) = Wniu) )

-5 l+exp ( — a(n(wg,j))) ’

3

—
where L(w)

) and n(w},j) are the length and the j-th node of the path from
the root node to w; respectivily. And o is defined as follows: let k is a positive

number,
1, if j=2k-1,

4
~1, if j =2k @

o(n(u, ) = {

Let ¢ be a time. The conditional probability of w} given w; w.r.t. ¢ via Ebbing-
haus Forgetting Curve (see Fig. 4) is defined as follows: let | Y| = m,

1 — 0.56A¢%-%) P(w!|w;)

(
S (1 — 0.56.A0-96) P (! |uw; )
i=1

P(wi|wi, t) =

()
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Finally, we select some w} as candidates with suitable conditional probability
of w} given w; w.r.t. t.

Type completion. Formally, the type completion problem is predicting L£(r)
of T, w.r.t subject A(r) (denoted as s)
Given a knowledge base K, we use 2(K, s) = {(r,0) | (s,7,0) € K}.
Now, the probability of 7; w.r.t. s is defined as follows:

_
Pl = _ g {o/(w) Pluffa (], 7))
i={1,2,...,n
where, let M = {j:?,liaf,n}{P(wHwi’t)}’

o (w]) = 1, if P(w}w;,t) > M —min{1, 0.1},
! 0, otherwise.

Finally, let Objects(r;, K) = {o | (s,r;,0) and P(r;) is maximal}. We assign
the type 7 of named entity of elements of Objects(r;, ) obtained identity of
named entity to the value of A(r). That is, we obtain A(r) = 7.

3.4 Natural Question Generation

In this module, we generate a natural question from a question with a completed
structure. The difficulty of question generation is to choose an optimal natural
question from all candidates, maximally capturing the semantics of original ques-
tions. The process of QG consists of the three steps:

Generating natural questions. In this step, we generate all possible nature
questions as candidates by learning stopwords via word2vec and enumerating
all orders of constraints. Note that the structure of questions depends on
non-stop words which have already been deleted as initialization. We learn
stopwords to express a natural question comprehensively.

Representing natural question. In this step, we obtain the embedding rep-
resentation of all words in a natural question via word2vec and then encode
those embedding representation in BiIRNN (see Fig. 5)as follows: let m(q) be
the number of natural questions and g; be a candidate of ¢, the cost function
of BiRNN is as follows:

m(q)
Cost(q) = —@ Z [¢Ing; + (1 —¢q)In(1 — g;)].

i=1

<

Based on the above model, we present an attention-based method to learn
the weight of a word and utilize a fully-connected layer to obtain the vector
representation g; of ¢ as follows:

d —)T_)
— exp(wj; ' V
TG =Y ajhy,  aj=— (wjt _)> ; (6)
=t > exp(wje | V)
t=1
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where V is the shared parameter of attention. a;; and h;: is the weights and
the last hidden layer of the ¢-the word in the ¢;,w;; = sigmoid(W@ + ?)

Recommending natural question. In this step, combining the problem simi-
larity and the probability of the corresponding constraint, we define the Score
function as follows: Score(q;) = P(r;)sim(g;.q). Finally, we choose the opti-
mal ¢; with the highest Score(q;), ¢; = argmaxy;—_; o, . m}{Score(q;)}.

4 Experiments and Evaluation

In this section, we construct four sets of experiments to evaluate our approach
as follows:

— The 1st experiment is to evaluate the effectiveness of our approach.

— The 2nd experiment is to compare our approach with existing approaches to
QG.

— The 3rd experiment is to evaluate the effectiveness of our time-aware recom-
mendation.

— The 4th experiment is to verify the applications of QC.

4.1 Experiment Setup

In our experiments, we select DBpeida', consisting of 5.4 million entities, 110
million triples, and 9708 predicates, as our KB. We select three representative
datasets, where most of the approaches are based on them [26]:

— WebQuestions: The dataset released by [5] contains 3778 pairs for training
and 1254 pairs for testing.

— QALD-7: QALD released by [24] is a series of open-domain question answering
campaigns, mainly based on DBpedia.

— TREC-8 QAZ?: The dataset contains 3000 pairs mostly contributed by NIST
assessors.

4.2 Effectiveness of Question Completion

To evaluate the accuracy of question completion, we established a QA data
set (incomplete question set) obtained by WebQuestions, TrecQA, and QALD
through the random selection of deletion strategies., denoted by WebQuestions*,
TrecQA*, and QALD*, respectively.

In the strategy of constructing an incomplete question set, we apply the
Fisher-Yates Shuffle algorithm?® (A popular algorithm with low time complexity)
randomly delete words to ensure that fair incomplete questions are generated.

! https://wiki.dbpedia.org/.
2 https://www.aclweb.org/anthology /N13-1106.pdf/.
3 http://hdl.handle.net/2440,/10701 /.
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In addition, we use gAnswer [11] for answer testing. Our method uses the query
parsing module of gAnswer, so any KBQA system can perform this experiment.

The experimental results are shown in Table 1, where QC-Precision repre-
sents the accuracy of the answer after completing the question through our
method, and Precision represents the unfinished answer Accuracy. Through
Table 1, the Precision of the three data sets is all zero, which means that any
incomplete question cannot be answered. At the same time, the QC accuracy of
the three data sets is 0.5450, 0.3742, and 0.3477, respectively. These results are
based on the time-aware recommendation model. If there is no model, our QC
accuracy is 0.5060%, 0.3322%, and 0.2877%, respectively. In other words, it can
prove that our algorithm is effective.

Besides, to quantify the effectiveness of question completion, we introduce a
new metric named completion rate, which is defined as follows:

QC-Precision
O-Precision

QC-R = (7)

Here O-Precision represents the accuracy obtained by processing the origi-
nal datasets. The three O-Precision of WebQuestions, TrecQA, and QALD are
0.6464, 0.4555, and 0.4331, respectively.

Table 1. Precision of question completion

Precision | QC-Precision | QC-Rate
QALD* 0 0.5450(13.9%) | 0.8432
TrecQA* 0 0.3742(14.2%) | 0.8215
WebQuestions™ | 0 0.3477(16.0%) | 0.8029

4.3 Comparison to Question Generation (QG)

Though question generation (QG) (returning a question when inputting an
answer) is essentially different from question generation (QC) (returning a com-
plete question when inputting an incomplete question) as discussed previously,
both QG and QC return a text when inputting a text. To distinguish QC from
QG, our experiment is to check if outputs of QG and QC are different when
inputting one text.

In this experiment, we employ for QG [31] and SQuAD dataset consisting
of more than 100K questions posed by crowd workers on 536 Wikipedia arti-
cles. Moreover, the experimental results show that all outputs in QC and QG
are totally different. Due to the limited space, we take two examples shown in
Table2. QC outputs a different result from QG for one input. Therefore the
experiment verifies that QC is a different task from QG.
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Table 2. An example of difference between QC and QG

Input Question Generation Question Completion
Like the lombardi Who designed the Not A Question
trophy, the “50” will be |lombardi trophy?
designed by
tiffany & co. ..
Blank_Obama - Who is Blank_Obama
wife?

4.4 Evaluating Time-Aware Recommendation

In this experiment, we compare our QC approach based on the proposed time-
aware recommendation (denoted by QCY) to our QC approach based on the
skip-gram algorithm [23] (denoted by QC®8) to evaluate the performance of our
proposed time-aware recommendation. Note that the skip-gram algorithm is used
as a mainstream tool to obtain distributed word vectors; it is widely applied in
the recommended system [18].

To support time-aware recommendation, we revise the three datasets by
adding timestamps in a random method* as follows: (1) Remove all stop words in
the three datasets and unify them into lowercase letters; and (2) Add timestamps
to all data randomly in a chronological order.

Note that the first step is to reduce the extra noise, which is caused by
either stop words or difference between uppercase and lowercase, to improve the
performance of recommendation. Moreover, the second step is to add timestamp
labels.

The experimental result is shown in Table 3.

Table 3. Improvement of time-aware recommendation

Accuracy of QC® | Accuracy of QC"
TrecQA® 68.1% 71.0%
WebQuestions® | 70.3% 72.8%
QALD? 66.7% 69.8%

By Table 3, QC* achieves 1.9%, 2.5%, and 3.1% improvement of accuracy w.r.t.
QCs8 over TrecQA?, WebQuestions!, and QALD?, respectively. Hence, we can
conclude that our time-aware recommendation improves performance.

4.5 Applications of Question Completion

Finally, we conduct another experiment to demonstrate the effectiveness of our
QC method, in which QC preprocesses the KBQA system data set to be tested.

* http://hdl.handle.net/2440,/10701 /.
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We select the three systems NFF [11], RFF [11], Aqqu [13] where NFF and RFF
are non-template systems with highest scores of QA-Task in the latest QALD?
and Aqqu is a classical KBQA system [8]. The experimental results w.r.t. F1-
score on WebQuestions and QALD are showed in Table4.

Table 4. QC improving QA baselines

F1

WebQuestions QALD

Baseline | Baseline+QC | Baseline | Baseline+QC
NFF |0.4847 |0.5415 0.7751 |0.7892
RFF |0.3052 |0.3825 0.5341 |0.5513
Aqqu | 0.4944 | 0.5532 0.3741 | 0.4882

By Table4, all baselines with QC preprocessing achieve 0.0568-0.0773 over
WebQuestions and 0.0141-0.141 over QALD. Therefore, the experiment demon-
strates that QC is useful to improve the accuracy of off-the-shelf QA systems.

4.6 Error Analysis

We randomly analyze the major causes of errors on 100 questions with unrea-
sonable results output due to the following major factors.

Semantic Ambiguity and Complexity. Due to the variety or the semantic ambi-
guity of incomplete questions, we hardly construct a completely reasonable tree
structure for those questions practically. On the other hand, our recommenda-
tion model does not always capture all users’ intentions accurately due to the
ambiguity of questions. As a result, we possibly complete an incorrect question
tree.

Entity Linking Error. This error is caused by the failure in extracting the appro-
priate entities for a given question. As a result, we sometimes generate incorrect
question trees. In our work, we mostly fix this error by correcting those wrong
entities.

Dateset and KB Error. This error arises due to the defects of datasets or KB.

The test datasets contain many open questions, while the entity-relationship of
KB does not always cover all questions.

5 https:/ /project-hobbit.eu/challenges/qald-9-challenge/ .
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5 Related Works

In this section, we discuss our approach by comparing it to existing works and
some techniques.

The most relevant problem to question completion is question generation.
Question generation (QG) [29] is a natural language problem that a question is
generated given long sentences or articles [34]. The traditional approach to solve
it is converting sentences into related questions based on heuristic rules [3]. An
end-to-end via sequence-to-sequence learning model base on attention is present
in [7] to reduce the rules of handcrafting and the constraints of sophisticated
NLP. The current popular approaches of QG are based on the attention-based
encoder-decoder model [6,31], where the SynNet model based on the calculation
formula of conditional probability is introduced to divide the QG into answer
synthesis module and problem synthesis module. Besides. There are still some
works by combing QG with QA to train answers and questions within the overall
system [25].

Different from QG inherently, question completion generates a natural ques-
tion for any given a sentence or a phrase or even a word. QG often takes a phrase
or a word as an answer.

The paper is an extension of QC [33]. Compared with the previous paper, this
paper adds more technical implementation details, complete theoretical deriva-
tion, and more experiments. Compared with the previous article, the contribu-
tion discusses the improvement of the previous work. In writing, There are also
considerable differences in format.

Besides, we are interested in discussing the techniques presented in our app-
roach by comparing to existing techniques in the two aspects.

Query graph. Query graph (or semantic graph) is a graph-structure represent-
ing a logical query such as SPARQL BGP (basic graph pattern) query to
be correctly answered in knowledge bases [28]. In general, a natural question
can be structured by a Semantic Query Graph (SQG) to represent the query
intent. SQG obtains semantic information such as entities and attributes from
the dependency analysis tree of natural questions. In the answering question
system, a question can be converted to SPARQL via SQG. These dots in
SQG correspond to the entities in the knowledge graph, and each edge is
associated with a relation or attribute in the knowledge base. The above is
a semantic query graph of “relation (edge)-first”. [11] presents a “node-first”
super SQG using entity phrase, class phrase, and wh-words as nodes, and a
simple path between nodes is introduced into the edge. Compared with the
“relation (edge)-first” SQG, the super SQG obtains a possible relationship
between nodes to retain more semantic information.

Different from the query graph, our tree-based structure of questions is a for-
malization of questions that are used to express the characteristics of ques-
tions such as completeness of questions.

Question Error Detection. Question error detection is to find a question with
grammar error and then correct it for reliably answering. [12,21] presents
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a Bi-LSTM model modification question based on the scoring mechanism
by cross-checking its accuracy of the relationship between predicted answers
and subject words in a question. Different from error detection of questions
treating only questions, question completion addressed in our paper is to
construct a complete question from an incomplete question, which is possibly
phrases, even words. Our approach is based on time-aware recommendation
and density of named entity from the knowledge graph completion.

In summary, question completion is different from existing QA tasks such as
question generation, and techniques developed in our approach are substantially
different.

6 Conclusions

In this paper, we introduce a task related to natural language reasoning called
question completion. Inspired by the knowledge graph completion, we propose a
method based on embedding to complete questions that cannot be answered in
any knowledge. Unlike question generation, our algorithm can infer the intent
of incomplete questions and is used in the improvement of question answering
systems. In future work, we are interested in question completion tasks in some
important areas while considering more domain knowledge.

Acknowledgments. This work is supported by Key Research and Development Pro-
gram of Hubei Province (No. 2020BAB026).
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Abstract. We study the problem of hop-constrained relation discovery
in a graph, i.e., finding the structural relation between a source node
s and a target node t within k hops. Previously studied s — ¢ graph
problems, such as distance query and path enumeration, fail to reveal
the s — ¢ relation as a big picture. In this paper, we propose the k-hop
s — t subgraph query, which returns the subgraph containing all paths
from s to ¢ within k£ hops. Since the subgraph may be too large to be
well understood by the users, we further present a graph summarization
method to uncover the key structure of the subgraph. Experiments show
the efficiency of our algorithms against the existing path enumeration
based method, and the effectiveness of the summarization.

Keywords: Hop-constrained subgraph query - k-hop s — t subgraph -
s — t graph summarization

1 Introduction

With the advent of graph data, it has become increasingly important to manage
large-scale graphs in database systems efficiently. Generally, vertices in graphs
represent entities and edges the relations between them. Paths, formed by chain-
ing together multiple edges that share vertices, can be seen as representing more
complex relations between its source and destination vertices. The fundamental
problem of discovering the relation between two entities has thus given rise to
numerous path-finding algorithms, the majority of which aims at determining
whether a relation exists between two vertices (i.e., reachability) or finding a
relation between two vertices that satisfy specific properties (e.g., shortest path
and top-k path enumeration). However, in certain applications, focusing on one
relation (path) at a time is not enough. We list two real-world scenarios in which
the s — t relation is demanded as a big picture.

Motivation 1. Discovery of ownership structure. In an equity network, vertices
represent corporations, an edge points from a corporation to another if the for-
mer holds shares of the latter. An important query would be to discover the
ownership structure between two corporations, characterized by chains of share-
holding that may span across the whole network. The results of such queries can
© Springer Nature Switzerland AG 2021
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help gain insights into a market’s dynamics, e.g., how financial risks propagate,
and therefore help with risk management.

Motivation 2. Relation discovery in social networks. In a social network, vertices
represent persons and edges their relationships, which may include follower-of,
friend-of, parent-of, etc. A query may aim to obtain the “social group” formed
with two persons of interest as the source and destination respectively, composed
of other persons that act as intermediates for the former to reach the latter.
Results of such queries may benefit social network analysis (e.g., for advertising)
and anomaly detection (e.g., for detecting crimes and terrorism).

Unfortunately, these applications cannot be appropriately handled by exist-
ing path-finding problems and their solutions, for they call not for single paths,
but a subgraph that merges all relevant relations between the source and the
destination. In this paper, we tackle the problem of efficiently computing a sub-
graph that represent the relations between a source and a destination vertex.
Intuitively, given a hop constraint k, we compute a subgraph containing the
paths from s to t within &£ hops, which is referred to as the k-hop s — ¢ subgraph.
Specifically, several algorithms based on graph traversal and pruning techniques
are developed to compute the subgraph. Considering the subgraph may be too
large to be well understood by users (e.g., for visualization) for large graphs, we
further propose a graph summarization technique to only reveal the structural
skeleton of the subgraph. The main contribution of our paper is summarized as
follows.

— We first propose the k-hop s — t graph query, which returns a subgraph con-
taining all paths from s to ¢ within & hops. Compared to existing queries
such as (k-hop) reachability, s — ¢ distance query and path enumeration, the
subgraph query reveals the s — t relation as a big picture. We also propose a
traversal-based algorithm which is worst-case optimal in answering subgraph
queries.

— Based on the result subgraph, we further propose the notion of s — t graph
summarization with hop constraint, which contracts the subgraph into a sum-
marized graph with only a few nodes (controlled by a user-defined parameter).
We present an algorithm based on skeleton node selection and local graph
clustering, and demonstrate two skeleton node selection strategies which
depend on path frequency and walking probability, respectively.

— On several large graph datasets we demonstrate the efficiency of our subgraph
finding algorithm against the baselines based on path enumeration, as well
as the effectiveness of our algorithms in terms of s — ¢ relation discovery and
subgraph summarization.

The remainder of the paper is organized as follows. Section 2 gives the formal
definitions of our studied problems. We discuss related work in Sect. 3, including
several baseline methods. In Sect.4 and 5, we propose our solutions for the k-
hop subgraph query and hop-constrained s—t graph summarization, respectively.
Section 6 reports the experimental results. We conclude the paper in Sect. 7.
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2 Preliminaries

2.1 Problem Statement

We first give several formal definitions about paths and subgraphs. Then we
describe the two studied problems.

Definition 1 (Path and k-hop path). Given a simple and directed graph
G = (V,E), a pathp = (v1 = 8,vq,...,v, = 1) in G is defined as a sequence of
edges, i.e., (vi,v;41) € G.E,Vi € [1,1). Note that the length of p isl — 1, and p
is referred to as a (I — 1)-hop path.

Ve

Fig. 1. An illustration of the definition of k-hop s — t subgraph.

k=3

We say path p contains a cycle if there exists some 1 <4 < j <[ such that
Vi = Vj.

Definition 2 (Union of paths). Given a set of paths {p1,...,pm}, where each
path p; = (v1, = s,...,v, = t) is from s to t. Subgraph Gg = (Vit, Est) is
a union of paths {p1,...,pm}, if Vet = Uicpm{vy, U ... Uy}, and Ey =
Uielt,m){(V5:,v(j11),), 3 € [L,1)}. Duplicated edges are removed during the union
operation.

Definition 3 (k-hop s—t subgraph). A subgraph G (s # t) is referred to as
k-hop s —t subgraph if it is the union of all k-hop s —t paths, such that for each
path p = (v1 = s,..., 0 =), (1) v; # s,Vi € (1,1]; and (2) vj # t,Vj € [1,1).
We also refer to Gg¢ as k-hop subgraph, or subgraph when the context is clear.

The definition of subgraph query aims to reveal the k-hop relation between s
and t as a whole, rather than enumerating separate paths. However, we are not
interested in (1) nodes only reachable to ¢ via s (u in Fig. 1(a)), or (2) nodes only
reachable from s via ¢t (v in Fig. 1(a)). Intuitively, u and v do not contribute to
the relation between s and t, therefore we do not take them into consideration.

Nonetheless, we allow certain cycles in the s — ¢ relation. For example, after
inserting two 3-hop paths (s, a,b,t) and (s, b, a, t) into the subgraph (Fig. 1(b)), a
cycle is formed between a and b. Such cycle may represent meaningful relations,
for instance, the circulating ownership of stock in financial networks. Also note
that G may contain s — ¢ path longer than k ((s, ¢, a,b,t) in Fig. 1(c)), which is
inevitable because of the union of different paths. We ignore these longer paths
in that G4 only focuses on the close (i.e., k-hop) relation between s and ¢.

In this paper, we study the problems of k-hop s—t subgraph query and k-hop
subgraph summarization, defined as follows.
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Definition 4 (Hop-constrained subgraph query). Given a directed graph
G = (V,E), a source node s, a target node t(t # s), and the hop constraint k,
return the k-hop s —t subgraph G*,.

For simplicity, we only consider simple directed graphs in this paper. More-
over, the relation defined above points from s to ¢ and is asymmetric (following
out-edges). Note that the problem setting can be easily extended to other types
of graphs (e.g., undirected or weighted graphs), while the relation can be defined
based on a set of paths following in-edges, or allowing a mixture of outgoing and
incoming edges.

(a) Subgraph Gt (b) The skeleton graph G5¢'™

Fig. 2. k-hop subgraph and its summarization.

Remarks. As mentioned by previous work [21,23], posing a constraint on the
number of hops is reasonable, in that the strength of the relation drops dramat-
ically with distance. Nonetheless, our studied problem is still well-defined when
k is set to co. Let Ggce be the directed acyclic graph (DAG) where each node
in Ggoe corresponds to a strongly connected component of G. Let Cs (resp.
C}) be the strongly connected component containing s (resp. t). To this end, we
are essentially extracting the subgraph in G which corresponds to a subgraph in
Gscco composed by all paths from Cy to C;.

Although the k-hop s —t subgraph provides a way to understand the relation
between s and t, the size of the subgraph can be extremely large, e.g., with
hundreds of thousands of vertices for a reasonable k (say 6) and a medium-
sized graph. This prevents us from finding the underlying structure of s — ¢
relation. Therefore, we also consider the problem of subgraph summarization,
which summarizes the result subgraph into a small and succinct one.

We adopt a skeleton node-based summarization method that contains two
steps. First, we find a set of skeleton nodes that play important role in the under-
lying structure, where the number of skeleton nodes is a user-defined parameter.
Then, we conduct local graph clustering from these skeleton nodes. Other nodes
in the subgraph (except s and t) is assigned to one of the communities C; cor-
responding to some skeleton node v;. In particular, given a k-hop s-t subgraph
G and a set of skeleton nodes Vg (detailed later), the skeleton graph Gljt’h
is the summarization graph of G¥,, where Gf,;h.V = Vs U {s,t}, and for any
U,V € Gljgh.V, (u,v) € Gljt’h.E if some criterion is satisfied, e.g., there exists an
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edge (7,y) € GF,.Est. z € C, and y € C,, or the probability of node u reaching
node v in G¥, is above some threshold.

Definition 5 (Hop-constrained s — t graph summarization). Given a
directed graph G = (V, E), a source node s, a target node t, the hop constraint
k, and the number of skeleton nodes h, return the k-hop s —t summarized graph
G’;;h, which contains h super-nodes corresponding to h local communities in the
s —t subgraph G*,.

Figure2 demonstrates a skeleton graph of the k-hop subgraph. We set the
number of skeleton nodes as 4. Intuitively, node a, ¢, and d are more important
than by,...,b; (e.g., shell companies in financial networks) because more paths
go through them. Node a and c are preferred over d because the latter is a hot
point (i.e., node of large degree, shown in dashed edges), but contributes few
edges to G;. Therefore, we compress node a and by, ..., b, to a super-node A,
c and d to a super-node C. The summarization graph highlights the structural
information in the s — ¢ relation and is easier to visualize. We will discuss the
strategies for finding skeleton nodes in Sect. 5.2.

3 Existing Work

To the best of our knowledge, there is no existing work that directly considers the
problem of s — t subgraph query or summarization. However, a bunch of works
study similar problems that are more or less aimed at determining the relation
between a pair of vertices, in which the techniques used can be extended to our
problem settings. We categorize them as follows and discuss their relation to our
problems.

3.1 Reachability/k-hop Reachability

The classic reachability problem studies whether there exists a path from a source
vertex to a destination vertex. The majority of existing reachability algorithms
[24,25,28,30] are index-based and focus on the directed acyclic graph (DAG)
contraction of the input graph. Some generalized versions of reachability queries
have also been proposed, including the label constrained reachability [16] and
the k-hop reachability [7], which answers reachability with the hop constraint k.
They can not be directly applied to our problem because too few information
between s and t is preserved.

3.2 Shortest Path/k-shortest Paths

A plethora of works study the single-pair shortest path problem [3-5,8,11,12,14],
as well as the k-shortest paths (KSP) problem [6,10,15,18,29] which returns the
top-k shortest paths between the source and the target. Though the algorithms
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for KSP can be used for path enumeration, it has been proved inefficient [13].

3.3 Path Enumeration/Top-k Path Enumeration

The path enumeration problem aims to find all paths from the source to the
target, possibly with additional constraints (e.g., hop constraint). To answer
the subgraph query, we can first enumerate all (k-hop) paths and then combine
them into a subgraph. We first show that depth-first search (DFS) can be easily
applied to answer k-hop subgraph queries.

The pseudo-code is illustrated in Algorithm 1. Given a directed graph G, a
source node s, a target node t, and the hop constraint k, the algorithm first
initialize G¥, as empty graph (Line 1) and then invoke k-DFS (Line 2). The
procedure k-DF'S traverses the graph from s in a depth-first way. Once it reaches
t, which means a path from s to ¢ is found, we insert the path into G¥, (Lines
6-7); then we stop traversal immediately, ignore any node only reachable from
s via ¢t (Line 8). Note that the traversal is limited within k-hops from s (Lines
10-12). We have the following theorem.

Theorem 1. Algorithm 1 correctly computes the k-hop subgraph with O(n")
worst time complexity.

Proof. The correctness of Algorithm 1 can be easily derived by the property of
DFS and the definition of k-hop subgraph. To show the algorithm runs in O(n*)

in worst case, consider the following graph (Fig.3). Since there are totally (%)k
k — hop paths from s, the time complexity of DFS is O(k - (%)k) ~ O(nF).

To improve the practical efficiency of k-DFS, in the theoretical paper [13],
they propose T-DFS, a polynomial delay algorithm which takes O(km) to find
one path. Recent work [23] aims at detecting all simple cycles within &k hops after
the insertion of an edge on dynamic graphs, by enumerating all simple paths
within & — 1 hops between the two vertices that the new edge is adjacent to. To
speed up query processing, it employs a hot point index to prevent repetitive
traversals from vertices with high degrees. On the other hand, [21] employs
a pruning-based algorithm to speed up k-hop simple path enumeration. Note
that any path enumeration algorithm has at least Q(kd) complexity, where § is
the number of valid paths. Since there can be tremendous numbers of paths,
they are not suitable to answer top-k subgraph queries of which the answer
size is bounded by O(n + m). Besides, current methods do not consider cycles
for simplicity, whereas we include some types of cycles that also represent the
relationship in the subgraph.

Other related works, such as graph summarization [9,17,22,26,27], primarily
consider summarizing the whole input graph or the subgraph around a given
node s while preserving some properties, and are not specially tailored for the
s —t relation discovery.
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Algorithm 1. The Baseline Algorithm
Input: Directed graph G = (V, E); Source s; Target t; Hop constraint &
Output: GF,, the k-hop s — ¢ subgraph
1: Initialize G¥, as empty graph and stack S = §;
k-DFS(G, s, s,t,k, S, G%,);
return G¥,;
Procedure k-DFS(Graph G, Current node u, Source s, Target ¢, Hop constraint
k, Stack S, Partial subgraph G';t)
Push u to S;
if u =t then
Add p(S) to G*,:
return ;
if £ > 0 then
for each v € O(u) and v # s do
k-DFS(G,v,s,t,k — 1,S,G%);

e XA

—_ =

n/knodes  n/k nodes n/k nodes

Fig. 3. Worst case graph for k-DFS.

4 KHSQ: The K-hop Subgraph Query Algorithm

4.1 Rationale

Recall that the baseline algorithm incurs O(n*) cost for k-hop subgraph query
because each node v may conduct DF'S multiple times. In this section, we propose
a simple yet effective algorithm that accelerates the querying speed by utilizing
the distance information. Intuitively, we first conduct a k-hop breadth first search
(BFS) to compute d/ (s, v) for each v, which is the distance from s to v. Similarly,
we compute the distance of v to t (denoted by d’(v,t)) by a traversal from
t following in-edges. Then, the distance information are used to prune most
repeated or unnecessary traversals.

4.2 Algorithm

Our algorithm, denoted as KHSQ (K-Hop Subgraph Query), is demonstrated in
Algorithm 2. We first invoke k-BFS both from s and ¢ to compute the distance
array (Lines 2-3). The k-BF'S procedure (Lines 7-18) is analogous to the breadth-
first search, but only traverses k levels. Then we invoke DFS-SQ (Line 5), which
improves the naive k-DFS in two aspects:

First, instead of enumerating all k-hop paths and union them together,
we check for each edge (u,v) to see if it is in Gg. To be precise, recall that
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Algorithm 2. KHSQ

Input: Directed graph G = (V, E); Source s; Target ¢; Hop constraint k
Output: G, the k-hop s — t subgraph

1:

—_

12:
13:
14:
15:
16:
17:

18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:

Initialize Gs; as empty graph and stack S = 0;
d? (s, %) = k-BFS(G, s, t, k);
d’(x,t) = k-BFS(G",t, s, k);
Initialize dfs(v) = false,Vv € V;
DFS-SQ(G, 5,5, t,k, S, d (s, %),d"(x,1),df 5, Gs1);
return Gg;
Procedure k-BFS(Graph G, Source s, Target ¢, Hop constraint k)

Initialize d(s,s) = 0, d(s,v) = oo for Vv € V\{s};

Initialize queue Q = {s};

Initialize lvl = 0, numThisLvl = 1,numNextLvl = 0, visited(s) = true, and
visited(v) = false,Yv € V\{s};

while Q # () do

for i = 1 to numThisLvl do
u = remove(Q);
if uw # ¢t and vl < k then
for each v € O(u) and v # s do
if visited(v) = false then
Add v to Q, d(s,v) = d(s,u) + 1,visited(v) = true,
numNextLvl + +;
l + +, numThisLvl = numNextLvl, numNextLvl = 0;

Procedure DFS-SQ(Graph G, Current node u, Source s, Target ¢, Hop constraint
k, Stack S, forward distance df(s,*) and backward distance d®(x,t), Label dfs,
Partial subgraph Gs:)
Push u to S;
df s(u) = true;
if u =t then
pop(S);
return ;
for each v € O(u) and v # s do
if d¥(s,u) + 1+ d°(v,t) < k then
Add edge (u,v) to Gat;
if |S| = df (s,v) and dfs(v) = false then
DFS-SQ(G, v, s,t,k,S,d (s,%),d"(x,t), df s, Gst);
pop(S);

in the definition of k-hop subgraph Gy, (u,v) € Eg if there exists some
k-hop path containing it. If df(s,u) + 1 + d®(v,t) < k, we are sure path
p = (p*(s,u), (u,v),p*(v,t)) is a k-hop path, where p*(s,u) (resp. p*(v,t))
denotes one shortest path from s to w (resp. from v to t). Hence, it is suffi-
cient to check each edge only once.

Second, we also guarantee that each node (and its out-edges) is visited only

once. Each node v conducts neighbor traversal only if the path in stack S is
a shortest path to v, and v has not conducted the traversal before. Since our



Hop-Constrained Subgraph Query and Summarization on Large Graphs 131

algorithm checks each node and each edge at most once, the complexity is asymp-
totically linear of the problem inputs.

4.3 Analysis
The following theorem states the correctness of KHSQ.

Theorem 2. Algorithm 2 correctly finds the k-hop subgraph.

Proof. 1t is easy to see that procedure k-BFS correctly computes the distance
from s to v within k-hops, and set the distance of other nodes as oo. This also
holds for the traversal from ¢ on G", which is in fact traversing in-edges of G. To
show the correctness of procedure DFS-SQ, note that every edge (u,v) in every
k-hop path will be added to G according to our checking condition (Line 27 of
Algorithm 2). On the other hand, if some edge (u,v’) is not contained by any
such path, then we have d”(s,u) +1+d®(v,t) > k and it will be excluded. Path
like v = s — t (or s — t — v) and with less than k-hops is eliminated by setting
d®(v,t) (or d’(s,v)) as oo in k-BFS. Therefore, the subgraph returned by KHSQ
algorithm is equal to the union of all valid k-hop paths, and the correctness
follows.

We bound the time and space complexity of KHSQ as follows. Since pro-
cedure k-BFS only conducts breath-first search from s and within k& hops, its
time complexity is O(n + m). As discussed above, we have demonstrated that
procedure DFS-SQ visits each node and each edge at most once. Therefore, the
cost is still bounded by O(n + m). The following theorem states that KHSQ is
highly efficient in answering k-hop subgraph queries.

Theorem 3. The time complexity of KHSQ is O(n+m), which is asymptotically
linear with the problem inputs and worst-case optimal.

Proof. Since KHSQ only invokes k-BFS twice and DFS-SQ from s once, the time
complexity can be easily derived. To see the algorithm is worst-case optimal,
consider the case that |Gsi| = O(|G]), where |G| = |G.V|+ |G.E| =n+ m, e.g.,
G4 = G. Since each node and edge must be processed with O(1) cost, our claim
holds.

5 KHGS: The k-hop s — t Graph Summarization
Algorithm

5.1 Problem Overview

Though the k-hop subgraph demonstrates the relation between s and ¢ as a
whole, it suffers from extremely large size for many real-world networks. For
example, on a medium-sized graph, say, with millions of nodes and a reasonable
k (e.g., 6), the result subgraph may contain hundreds of thousand nodes, which
prevents us from understanding the underlying structure of the s — ¢ relation.
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Hence, we propose a skeleton node based method for subgraph summarization,
which relies on a set of skeleton nodes (plus s and ¢) while the edges and paths
between them are contracted and summarized (Recall its definition in Sect. 2.1.).
As long as we correctly select the most important nodes as the skeleton of G,
the summarized graph reveals the key structure of s — ¢ relation hidden in a
bunch of edges.

Our algorithm framework is shown in Algorithm 3. Given a graph G, a source
node s, a target node ¢, and the hop constraint k, the KHGS (K-Hop Graph
Summarization) algorithm first invokes KHSQ to compute the k-hop subgraph
G*,. To get the summarization graph, our algorithm contains two steps. We
first choose h most important nodes (referred to as skeleton nodes) from G,
where h is a user-defined parameter. Then we contract G¥, into Gfth, which can
be simply implemented by h distinct local traversals (e.g., clustering) from the
skeleton nodes. Specifically, we present two importance measures based on path
frequency and walking probability, respectively. We describe the algorithms for
skeleton node selection in the following subsection.

Algorithm 3. KHGS

Input: Graph G; Source s; Target t; Hop constraint k; Number of skeleton nodes h
Output: G];t’h, the skeleton graph of the s — t subgraph G

1: G¥, = KHSQ(G, s, t, k);

2: Vs = FindSkeletonNodes(G*%,, s, t, k, h);

3: G’;t’h = SummarizedGraphConstruction(G¥,, s, t, k, Vs);

4: return G%";

Algorithm 4. FindSkeletonNodes-PathBased

Input: Subgraph G¥,; Source s; Target ¢; Hop constraint k; Number of skeleton nodes h
Output: Vs, a set of skeleton nodes, where |Vs\ < h, and the subgraph Gs:
1: {Partial(s,v),Vv € Vot } = PUSH- PATH(G )
2: {Partial(v,t),Yv € Vit } = PUSH-PATH(r(G%,));
for each v € V,; do

3:
4 PC’nt(v) = E(z c;)EPartial(s,v) Z(]7CJ)EPO‘T1’LO‘Z(’U t) CiCj

i+j<k
5: Let Vs be the top-h nodes in V\{s,t} with largest (and non-zero) PCnt(v);
6: return Vg;
7: Procedure PUSH-PATH(GY,)
8: Initialize Partial(s,v) = 0,Yv € Vi, Partialo(s,s) = 1, Partialo(s,v) =
0,vv € V\{s};
9: fori=0tok—1do
10: for each edge (u,v) € Es do
11: Partiali+1(s,v)+ = Partial;(s, u);

12: for each v € Vi do
13: Partial(s,v) = UF_y Partial,(s, v);
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5.2 Finding Skeleton Nodes
The Path Frequency Based Method. According to the definition of G¥

st
which is the union of all k-hop paths from s to ¢, a natural importance measure
for a node v € V% is the number of paths that go through v. We denote it as

PCnt(v). To be precise, we have

PCnt(v) = Z I(p goes through v), Vv € Vi, (1)

p:s—t,peGF, |p|<k

where I(x) is an indicator variable. Instead of enumerating and checking all paths,
which incurs the excessive O(n*) cost, we propose an algorithm based on the
push operation which transfers the information from u to v for each edge (u,v)
and the observation that PCnt(v) can be computed by counting the number of
paths from s to v and v to t, respectively.

Our algorithm, denoted by FindSkeletonNodes-PathBased, takes G¥,, source
node s, target node t, hop constraint k, and skeleton node number h as input.
It invokes procedure PUSH-PATH to compute all paths from s to v (and from
v to t) for each v € VE (Lines 1-2). Since every such path is a fragment of
some path from s to t, it is referred to as the partial path. For each node v,
Partial(s,v) contains a list of (step, cnt) pairs, which indicates that there are
totally ent distinct paths from s to v of length step. Once we have Partial(s,v)
and Partial(v,t) for each v, we calculate PCnt(v) by the following equation:

PCnt(v) ~ Z Z cicj, Yo € VE. (2)
(i,ci)EPartial(s,v) (j,c;)EPartial(v,t)
i+j<k
Intuitively, Eq.2 says that the number of k-hop paths that pass v can be
approximated by the number of paths from s to v times the number of paths
from v to t. Note that we exclude paths longer than k. In fact, the equation
gives the exact answer when G¥, does not contain cycles. When the subgraph
has cycles, Eq.2 computes an upper bound of PCnt(v). We illustrate it by an
example as in Fig.4. Consider the subgraph in Fig.4(a), while we set k = 6.
Their are totally three 6-hop paths from s to ¢ (Fig.4(b)). Similarly, we can
compute all 6-hop paths from s to v and from v to ¢, as shown in Fig. 4(c). If we
concatenate these partial paths together (and eliminate paths longer than 6), the
second and third path Fig.4(b) is counted twice and three times, respectively.
Unfortunately, we are unable to eliminate duplicated counting of paths unless
we can enumerate all s —t paths, which is infeasible for sizable graphs. However,
since k is usually small in practice, which limits the repetitions in a cycle for a
k-hop path, the over estimation of path count only has a minor effect. Therefore,
our approximation achieves a good balance between efficiency and effectiveness.
Now we describe the procedure to compute Partial(s,v) (and Partial(v,t))
for each node v. Take Partial(s,v) as an example. Denote by Partial;(s,v) the
number of path from s to v of length [/, the following lemma holds. The equation
for Partial;(v,t) can be defined analogously.
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Fig. 4. Duplicated counting of s — ¢ paths.

Lemma 1.
1, ifv=sandl =0,
Partiali(s,v) = { 0, ifv#sandl=0, (3)
Y uer() Partiali_1(s,u), otherwise.

Proof. For any node v # s, a path from s to v of length [ can be decomposed
into the sub-path from s to u and edge (u,v), where u denotes the predecessor
of v in p. The length of the sub-path is exactly  — 1. Besides, for any u, v’ € I(v)
and u # u’, the path to v either comes from u or v/, and our lemma follows.

The implementation of Eq.3 is shown in procedure PUSH-PATH. We ini-
tialize Partial(s,v) in Line 8, and then proceed on k iterations. During each
iteration I, we check every edge (u,v) € FEg, and push Partial;(s,u) to
Partial;yq1(s,v) (Lines 9-11). For the computation of Partial(v,t), we invoke
PUSH-PATH on the reverse graph of G¥, (denoted as r(G*,)). Notice that
for practical efficiency, in each iteration [ we only record a set of nodes with
Partial;(s,v) > 0, and conduct push operation from these nodes. The following
lemma and theorem are easily derived.

Lemma 2. The time and space complexity of procedure PUSH-PATH is O(k(n+
m)) and O(kn 4+ m), respectively.

Proof. Since in each iteration, each node and each edge is processed at most
once, so the complexity is bounded by O(|G%|) = O(|VE| + |E%]), and again
bounded by O(n+m) because Gy, is a subgraph of G. The algorithm has exactly
k iterations, thus the time complexity is O(k(n + m)). For the space usage of
PUSH-PATH, note that storing Partial(s,v) needs O(k) space. We need extra
O(|G%,|) space for G¥,. In total, the space cost is bounded by O(kn + m).

Theorem 4. The time and space complexity of FindSkeletonNodes is O(k*n +
km)) and O(kn 4+ m), respectively.

Proof. Algorithm FindSkeletonNodes invokes PUSH-PATH twice, which costs
O(k(n +m)) time. Since both Partial(s,v) and Partial(v,t) may contain O(k)
items, computing PCnt(v) for each v is O(k?). Consequently, the total compu-
tation cost is bounded by O(k(n + m)) + O(k?n) = O(k®n + km)). Since each
node (resp. each edge) needs O(k) (resp. O(1)) space cost, the space complexity
is O(kn +m).

In practice, we always use small k, e.g., kK < 10, and the algorithm has near-
linear time and space complexity.
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The Walking Probability Based Method. The path frequency based defini-
tion of node importance is intuitive, but suffers from a few deficiencies owing to
the graph structure inside and outside G¥,. First, the path frequency based mea-
sure does not consider the path length, which is an indication of the closeness of
the relation. Second, path frequency is vulnerable to malicious tampering of the
graph structure. Take Fig. 2(a) as an example, by building more shell companies
(i-e., b;), more s — ¢ paths go through a and c¢. Third, node d is a hot point
but contribute few to the s — ¢ relation, indicating that we should also consider
the graph structure of the whole graph when choosing skeleton nodes. Lastly, as
previously discussed, the path-based measure is also vulnerable to cycles.
Inspired by the Random Walk with Restart [20] and Personalized PageR-
ank [19], we propose a walking probability based measure for node impor-
tance, which alleviates all drawbacks above. We only need a few modification
of FindSkeletonNodes-PathBased and PUSH-PATH. Briefly speaking, instead of
transfer the information of path frequency from « to v along each edge (u,v), we
transfer probability instead. We first define the walking probability as follows.

Definition 6 (Random walk). A random walk from w is defined as (1) for
each step, with probability « the walk stops; (2) with 1—a probability, u randomly
chooses an out-neighbor v and proceeds to it. Here av is a decay factor in (0,1).

Definition 7 (Walking probability). The probability of node u walks to v,
denoted as Pr(s,v), is defined as Pr(s,v) = UF_ Pr(s,v),Yv € V, where

L, ifv=sand =0,
Pri(s,v) =< 0, ifv#sandl=0, (4)
Pri_q(s,u) .
ZuGI(v) - W» otherwise.

It can be proved by induction that Pr(s,v) is exactly the probability of a random
walk from s terminating at v. We omit the details for space constraint. By substi-
tuting the path frequency measure by the probability based one, we denote the
corresponding procedures as FindSkeletonNodes-ProbBased and PUSH-PROB,
respectively.

5.3 Summarized Graph Construction

After we have determined the skeleton node set Vg, we contract G4 accordingly.
The procedure is rather straightforward: for each v € Vg, we conduct any off-the-
shelf local clustering algorithm, and contract each cluster to a super-node. Two
super-nodes have connecting edges if some nodes in the corresponding cluster
are connected or the walking probability between the super-nodes is above some
threshold. For example, if we employ personalized PageRank for local clustering
and estimate the PPR values via a limited number of random walks, a good
tradeoff between efficiency and effectiveness can be fulfilled.

Finally, we conclude with the following Theorem, which states the complexity
of KHGS.
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Theorem 5. The time and space complexity of KHGS is O(h(k*n + km)) and
O(hn + m), respectively, and is near-linear when k and h can be viewed as con-
stants.

6 Experiments

In this section, we evaluate both the efficiency of our k-hop subgraph algorithm
against the baseline algorithm, as well as the performance of the summarization
algorithms.

6.1 Experimental Settings

Dataset Details. We employ four large directed dataset, i.e., Web-Google
(WG) (n = 875,713,m = 5,105,039), In-2004 (IN) (n = 1,382,908, m =
16,917,053), Soc-LiveJournal (LJ) (n = 4,847,571, m = 68,475,391), and IT-
2004 (IT) (n = 41,291,594, m = 1,150, 725,436). All datasets are obtained from
public sources [1,2].

Methods. For the k-hop subgraph queries, we compare the baseline algorithm
(Algorithm 1) and KHSQ (Algorithm 2) in terms of efficiency. For the graph
summarization problem, we report the query time of KHGS (Algorithm 3), and
consider skeleton node selection via both path frequency based and walking
probability based methods.

Environments. We randomly generate 1,000 s — ¢ pairs, and vary k from 3 to
6. We guarantee that ¢ can be reached from s within £ hops. All experiments
are conducted on a machine with a 2.6GHz CPU and 64GB memory.

6.2 Efficiency

Table 1 shows the query time of the baseline algorithm and KHSQ. Since the k-
DFS procedure is extremely slow for large k, we set £ = 4. Symbol ‘-’ indicates
that for some query the time cost exceeds 1,000s. KHSQ is significantly faster
than the baseline, e.g., nearly an order of magnitude faster on LJ. Moreover, for
the largest dataset IT, the baseline method fails to answer the query even for
k = 4. Figure 5 demonstrate the query speed of Baseline and KHSQ varying k.

In the following, we compare the result size of path enumeration and subgraph
query, followed by the query time evaluation of our summarization algorithms.

Table 1. Query time (sec) of Baseline and KHSQ (k = 4).

Method | Dataset

WG | IN LJ 1T
Baseline | 0.013 | 0.52 | 11.12 |-
KHSQ 0.005]0.022|1.59 |1.34
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Table 2. Query time (sec) of KHGS.

Method Dataset

WG |IN |LJ IT
KHGS (Path-based) 0.43]1.28 | 76.81 | 91.26
KHGS (Probability-based) | 0.52 | 1.42 | 83.57 | 97.71

Result Size. We conduct k-hop path enumeration and subgraph query on four
datasets and very k from 3 to 6. The result is shown in Fig.6. As k increases,
the number of k-hop paths explodes, whereas the size of k-hop subgraph is still
limited.

Query Time of KHGS. We also evaluate the query efficiency of our KHGS
algorithm. For all datasets, we fix the number of skeleton nodes h as 8, hop
constraint k = 5, and a = 0.6. Note that the complexity of KHGS is linear in h
and quadratic in k. Hence their values do not have a major effect on the query
efficiency. The results are shown in Table 2.

7 Conclusion

In this paper, we propose the problem of k-hop s — ¢ subgraph query and a
traversal-based algorithm that answers the query in O(n + m) time, which is
worst-case optimal. We further introduce the notion of hop-constrained s — ¢
graph summarization, which computes a skeleton graph of the s — ¢ subgraph
and provides a better understanding of the underlying structure of the s — ¢
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relation. OQur proposed algorithms are based on skeleton node selection with
various strategies and graph traversal. Extensive experiments demonstrate that
our proposed queries better reflect the s—t relation compared to existing queries,
while our algorithms are highly efficient even on massive graphs.
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A Survey
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Abstract. Ad click-through rate prediction (CTR), as an essential task
of charging advertisers in the field of E-commerce, provides users with
appropriate advertisements according to user interests to increase users’
click-through rate based on user clicks. The performance of CTR models
plays a crucial role in advertising. Recently, there are many approaches
to improving the performance of CTR. In this paper, we present a survey
to analyze state-of-art models of CTR via types of models comprehen-
sively. Finally, we summarize some practical challenges and then open
perspective problems of CTR.

Keywords: Click-through rate - CTR Prediction + E-commerce

1 Introduction

Click-through rate (CTR), defined as the probability that a specific user clicks
on a displayed ad, is essential in online advertising [11,31]. To maximize revenue
and user satisfaction, online advertising platforms must predict the expected user
behavior of each displayed advertisement and maximize the user’s expectations
of clicking [28,33].

The prediction of click-through rate [9] is significant in the recommendation
system (e.g., advertising system). Its task is to estimate the probability of users
clicking on the recommended item. In many recommendation systems, the goal
is to maximize the number of clicks, so the items returned to the user should be
ranked by the estimated click-through rate. In other application scenarios, such
as online advertising, increasing revenue is also substantial the ranking strategy
can be adjusted. It is the bid of CTR for all candidates, where “bid” benefits the
system when the user clicks on the item. In either case, the key is to estimate
the CTR correctly. Hence it is crucial to improve the performance of CTR in
the advertising system.

At the early phase of CTR, classical models of machine learning are applied
to extract low-level features [2], such as factorization machine (FM) [23], and
field-aware factorization machine (FFM) [14]. Though those models of machine
learning have successfully improved the performance of CTR by extracting sim-
ple features, roughly called “explicit” features (e.g., independant features or
combined features [18]), they are not good at capturing “implicit” features (e.g.,
© Springer Nature Switzerland AG 2021
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hidden features [34]) due to the sparse characteristics of advertising data [8,12].
In recent years, inspired by the success of deep learning [10,15], models of deep
learning are applied to extract implicit features for further improving the perfor-
mance of CTR [6,24]. Compared to models of machine learning, models of deep
learning actually bring a better performance. However, it is not always accept-
able to ad recommendations for the cost of learning especially online advertising
systems. Though there are many approaches based on models of either machine
learning or deep learning, there is few work to survey those approaches compre-
hensively in Ad CTR while there are some survey of current recommendation
models such as sparse prediction [8].

This paper presents a survey to analyze state-of-art models of CTR via types
of models, namely, machine learning model and deep learning model. For every
kind of model, we technically analyze their principles via comparison. Finally,
based on practical industrial applications, we summarize some practical chal-
lenges and then open perspective problems of CTR.

The rest of the paper is organized as follows. We survey CTR models based
on machine learning in Sect. 2 and deep learning in Sect. 3. In Sect. 4, we discuss
some challenging open problems. Finally, we conclude this paper in Sect. 5

2 Overview of Machine Learning CTR Prediction Models

In this section, we mainly review two popular CTR models, namely, factorization
machine (FM) [23] and field-aware factorization machine (FFM) [14], which are
based on linear model and non-linear models mainly extract low-level features.

Besides, [5] presents a personalized click prediction model, aiming to provide
a framework for the customized click model in paid search by employing user-
specific and demographic-based characteristics in reflecting the click behavior of
individuals and groups.

In those models, each feature is independent without considering the implicit
relationship between features [22].

2.1 Factorization Machine (FM)

Based on logistic regression, [18] introduces the second-order Cartesian product
for characterizing a simple combination of features formalized as follows:

Y =wy+ Zwivi + Z Z Wi VU5, (1)
=1

i=1 j=i+1

where v; and v; are feature vectors, w; is the weight of the feature, and w;; is
the weight of the new feature combined by v; and v;.
However, some shortcomings of this combination are concluded as follows:

— Causing dimensional disasters;
— Bringing negative effect on the model;
— Resulting in very sparse sample features.
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Support vector machine (SVM) [3] model is a popular model applied in CTR
prediction. Though non-linear SVM can perform kernel mapping on features,
it can not always learn well when highly sparse features [8]. As usually, matrix
decomposition is applied in the relative score matrix and then learn the implicit
relationship between features and features. Since each model has its limitations
for given feature scenes or inputs. In Ad CTR, FM [22,23] algorithm decouples
wi; (in Eq. (1)) so that each feature can automatically learn a hidden vector.

Note that FM assumes that the two features do not appear in a sample.
Indeed, however, this assumption seems rough since there is an indirect rela-
tionship [8,34]. The FM model is a machine learning model based on matrix
factorization. It has a useful learning ability for sparse data. It also introduces
combined features. Its objective function is formalized as follows:

= wq + Zwlvz + Z Z <Uj, Wj> ViVj. (2)

=1 j=i+1

Note that tlogistic regression (LR) [1] model contains the first two items of
Eq. (2). Compared with Eq. (1), u; represents the hidden vector of the feature v;.
The dot product of the invisible vectors corresponding to the two features is used
to obtain the weight of the implicit relationship between the two features and
obtained through model training. Moreover, FM model can make predictions in
linear time.

2.2 Field-Aware Factorization Machine (FFM)

In advertising, one-hot variables are usually encountered, which will result
in sparse data features. To solve this problem, the Field-aware Factorization
Machine (FFM) [13] model improves FM model by introducing the concept of
category, namely field. The features of the same field are individually coded by
one-hot. For each dimensional feature v;, for each field f; of other features, a
hidden vector u; ;, can be learned. This isolated vector is related to both feature
and field. In other words, when a feature is associated with two different features,
different implicit vectors are used. Assuming that n features of the sample are
divided into f fields, the model is formalized as follows:

—wo+Zw UZ—FZ Z <Ug, 1,5 Uj ) > ViV, (3)

=1 j=1i+1

where f; and f; represent the field to which the i-th feature and the j-th fea-
ture belong, and wu; s, represents the hidden vector of the feature u; relative
to field j. To use the FFM model, all features need to be converted into the
“field;q:feat;q:value” format, where fieldiq is the number of the field to which
the feature belongs, feat;q is the feature number, and the value represents the
feature value.

Based on field, FFM sets the same natural features as the same field. In simple
terms, it divides the numerical features generated by the same categorical feature
through one-hot encoding into the same field.
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In addition to the FFM model, there are many approaches to improving the
FM model [13,20] with high complexity.

Besides, Follow the Regularized Leader (FTRL) [18] algorithm popularly
applied in the industry, as a linear model, improves the predictive ability by
using a heavy feature engineering [6]. The gradient iteration method of LR’s
optimization algorithm FTRL is formalized as follows:

t
. 1
wiy1 = argmin, (g1 - w + 5 ZJS [w—ws [ +A[wlL) (4)

s=1

3 Overview of Deep Learning Prediction CTR Models

Neural network-based models can simultaneously extract high-order and low-
order feature interactions in sparse advertising data. These neural network-based
models usually extract low-level feature interactions by designing a pooling layer
and then extract higher-order feature interactions through multiple hidden layers
and activation units.

1
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Fig. 1. The framework of DeepCTR [4]
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3.1 Deep Neural Network Model (DeepCTR)

DeepCTR deep neural network model [4] (whose framework is illustrated in
Fig. 1) contains three modules:

— Convnet: Take the original image v as input, and then the convolutional
network. The output of Convnet is the feature vector of the original image.

— Basicnet: Take the basic feature v as input and applies a fully connected
layer to reduce the dimensionality. Subsequently, the outputs of Convnet and
Basicnet are connected into a vector and fed to two fully connected layers.

— Combnet: The last fully connected layer’s output is a real value z. The model
uses basic features and original images to predict the click-through rate of
image advertisements in one step. Image features can be regarded as a sup-
plement to the basic features.

3.2 Factorisation-Machine Supported Neural Network (FNN)

The Factorisation-machine supported Neural Network (FNN) [8] model uses the
concept of field in FFM to attribute the original features. FNN assumes that
each field has only one non-zero value. The embedding of the FM part of FNN
needs to be pre-trained. The embedding vector obtained by FM is directly concat
connected and used as the input of MLP to learn high-order feature expressions,
and the final DNN [11] output is used as the predicted value. Therefore, FNN’s
presentation of low-level information is relatively limited. Figure 3 illustrates the
structure of a four-layer FNN model.

3.3 Product-Based Neural Network (PNN)

The Product-based Neural Network (PNN) [21] model (whose framework is illus-
trated in Fig. 2) assumes that the cross feature expression learned after embed-
ding to be input for MLP is not sufficient and introduces a product layer idea
based on the multiplication operation to reflect the feature cross DNN network
structure.

The Product Layer comprises two parts: (1) the linear part of the embedding
layer on the left and (2) the feature intersection part of the embedding layer on
the right. The relationship between features is more of an “and” relationship
than an “addition” relationship.
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3.4 Wide & Deep Learning Model

Wide & Deep learning [6] (whose framework is illustrated in Fig. 4) is a fusion
strategy that combines a linear model and deep learning training. It designs
a pooling operation to sum each pair of feature vectors to learn low-level fea-
ture interactions between features. Wide & Deep learning model presents two
concepts, namely, Generalization and Memory.

— The advantage of the Wide part is in learning the high-frequency part of the
sample. The advantage of the model is good at memory. The high-frequency
and low-order features appearing in the sample can be learned with a small
number of parameters. However, the disadvantage of the model is that the
generalization ability is poor.

— The strength of the Deep part is in the long tail part of the learning sample.
The advantage is that it has a strong generalization ability ensure it better
support a small number of samples or even samples that have not appeared.
However, the disadvantage of the model lie two aspects: (1) Learning of low-
level features requires more parameters to be equivalent to the wide part of
the effect and (2) The strong generalization ability may also lead to bad cases
of overfitting to some extent.

s/ / Output Units 7/
2 2 2 4 9 2
< Hidden Layers ===
g 9 2 4 9 4
Z 3 Dense
[ X ] [ X ) Embeddings [ X ) [ X ]
Sparse Features
Wide Models Wide & Deep Models Deep Models

Fig. 4. The framework of Wide & Deep [6]

In a short, the Wide & Deep model is powerful. Since the Wide part is an
LR model, however, manual feature engineering is still required.

3.5 DeepFM

DeepFM [9] (whose framework is illustrated in Fig. 5) combines FM and deep
learning. It learns interactive features by calculating each pair of feature vectors’
inner product and simply fusing them. In DeepFM, the FM and Deep parts share
the embedding layer, and the parameters obtained by FM training are used as
the output of the wide part and as the input of the DNN part.

Besides, Neural Factorization Machines (NFM) [12] designed a BI-Interaction
pooling. The pooling layer calculates the element-wise product of two feature
vectors to represent the two features’ implicit relationship. Attention Factoriza-
tion Machines (AFM) [32] introduces an attention mechanism based on NFM
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to calculate the contribution of feature interaction to the target; CCPM model
based on convolutional neural network (CNN) [16], which can be learned by
convolution kernel Feature interaction between local features [15].

3.6 Deep Knowledge-Aware Network (DKN)

Deep knowledge-aware network (DKN) model [28] (whose framework is illus-
trated in Fig. 6) utilizes knowledge graph representation into news recommen-
dation. DKN takes one piece of candidate news and one piece of a user’s clicked
news as input.

— KCNN: an extension of traditional CNN to process its title and generate an
embedding vector for given news;

— Attention: an aggregator for final embedding of the user;

— DNN: a deep neural network for concatenating embedding of candidate news
and the user to calculate the click predicted probability.

3.7 InteractionNN

InteractionNN [8,34] (whose framework is illustrated in Fig. 7) extracts informa-
tion layer by layer during sparse data modeling to characterize multilevel feature
interactions. InteractionNN mainly contains three modules, namely, nonlinear
interaction pooling, Layer-lossing, and embedding as follows:

— Embedding: Extract basic dense features from sparse features of data;

— NI pooling: a hierarchical structure in constructing lowlevel feature interac-
tion from basic dense features;

— Layer-lossing: a feed-forward neural network learning high-level feature inter-
actions.
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3.8 Deep Interest Network (DIN)

DIN. Deep Interest Network (DIN) [35] (whose framework is illustrated in Fig. 8)
designs a local activation unit to adaptively learn the representation of user inter-
ests from historical behaviors with respect to a certain Ad. This representation
vector varies over different Ads, improving the expressive ability of model greatly.
Besides, we develop two techniques: mini-batch aware regularization and data
adaptive activation function which can help training industrial deep networks
with hundreds of millions of parameters.
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DIEN. Deep Interest Evolution Network (DIEN) [36] (whose framework is illus-
trated in Fig. 9) designs an interest extractor layer to characterize temporal
interests where an auxiliary loss is introduced to supervise interest extracting
each step. Moreover, an interest evolving layer is presented to capture interest
evolving process via attention with considering the effects of relative interests.
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Fig. 9. The framework of DIEN [36]

Besides, the Deep Crossing model [24,25], based on the Residual Network
(ResNet) [10], is a deep neural network for combining features to produce supe-
rior models in an automatical way. A set of individual features is input to Deep
Crossing, and then crossing features are discovered implicitly. Deep Crossing
Network (DCN) [30] is based on the low-order feature interaction and a cross-
network (Cross Network) is proposed to learn higher-order feature interactions.

In short, the existing neural network-based models mostly use linear models
to extract linear features and low-order interactive features [7,36], deep learning
models to extract high-order interactive features, and finally predict the final
goal by fusing features.
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3.9 RippleNet

RippleNet [27] (whose framework is illustrated in Fig. 10) is an end-to-end frame-
work for incorporating knowledge graph into recommender systems to stimulate
the propagation of user preferences. RippleNet extends a user’s potential inter-
ests along with links in the knowledge graph over the set of knowledge entities in
an automatical and iterative way. In Fig. 10, concentric circles represent the rip-
ple sets with different hops, and the fading blue indicates decreasing relatedness
between the center and surrounding entities.

Seeds Hop 1 Hop 2 Hop H

o= Irens SRS

ripple set % X ripple set 52 ripple set 8%

Cusers —{ My |— oo ] { &0

predicted
probability

Fig. 10. The framework of RippleNet [27]

Besides, knowledge graph convolutional networks (KGCN) [29] is an end-
to-end framework for characterizing inter-item relatedness via their associated
attributes to be mined. For each entity, its neighbors to be sampled are used to
discover high-order structure information and semantic information. KGQR [37]
presents a CTR model for capturing rich side information for recommendation
decision making by leveraging knowledge graph processing the rules of reinforce-
ment learning.

4 Challenges of CTR Prediction

In this section, based on reviews above, we discuss some crucial challenges of
CTR prediction as follows:

— Judgment of Click Traffic Attributes. That is, how to maximize the
matching degree between traffic and advertisers. In other words, how to rec-
ommend the most suitable Ads for all types of users. For instance, since the
types of advertisers are also roughly divided into the brand, effect, or vague e-
commerce, it is not suitable to recommend effects of advertising to some users
without purchasing power, such as elementary school students/middle school
students. Besides, older users, such as the elderly, may not be interested
in some promotional activities of young brands instead of some health-care
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advertisements. Besides, older users, such as the elderly, may also promote
some young brands. Generally, the problem of maximizing the effectiveness
of traffic is a combinatorial optimization problem. It is challenging to find
solutions in practice, although there are some third-party DMP handling this
problem.

— User Value Prediction of Media Side. Advertising opportunities are
generated during the user’s using APP. The lowest value judgment is made
when the user’s advertising display opportunities are sold in the market based
on the current user attributes at the present time, which can be used to
determine whether the current user is suitable for advertising exposure this
time. If the current user can have exposure, then the current user’s minimum
value is predicting the user experience damage value of the current user if
the advertisement is displayed.

— Traffic Distribution Problem. For a user’s advertising opportunity, when
there are N advertisers’ needs (N > 1), then how should the advertising
display opportunity be allocated so that APP can maximize advertising rev-
enue within a certain period. When the advertiser’s advertising budget How
to allocate when there are no restrictions, how to allocate when the adver-
tiser’s budget is limited, how to allocate when the advertiser has both a
restricted APP and a minimum selling standard, the goal is to make it in
restricted or unrestricted situations To maximize the revenue of APP within
a certain period of time, if possible, to maximize the revenue of the user of
APP during the life cycle. In this way, the maximum and longest revenue of
APP can be guaranteed.

— Quotation Prediction Problem. In the case of limited data and limited
feedback, the advertiser’s quotation prediction is carried out. For example,
some advertisers will be the next day or inconvenient to obtain feedback data.
Predict the money that the advertiser will pay from the media’s perspective
to maximize the overall revenue of the media. At the same time, an AB
scheme is designed to make the profit experiment with limited feedback.

Last but important, since the high-efficiency of prediction is still vital to
practical online advertising, the optimization of deep learning models becomes
more and more critical when deep learning models exhibit the great success of
Ad CTR prediction.

5 Conclusions

This paper gives a comprehensive survey of the existing approaches of Ad CTR
prediction based on machine learning models and deep learning models. Based
on reviews, we open challenging problems raised from practical advertising busi-
nesses. We think that this survey can inspire new methods and develop new
optimization, as well as it also provides an introduction for beginners.
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Abstract. This paper presents a method for rule learning in large
knowledge graphs. It consists of an effective sampling of large knowledge
graphs (KGs) based on the attention mechanism. The attention-based
sampling is designed to reduce the search space of rule extraction and
thus to improve efficiency of rule learning for a given target predicate.
An implementation ARL (Attention-based Rule Learner) of rule learning
for KGs is obtained by combining the new sampling with the advanced
rule miner AMIE+. Experiments have been conducted to demonstrate
the efficiency and efficacy of our method for both rule learning and KG
completion, which show that ARL is very efficient for rule learning in
large KGs while the precision is still comparable to major baselines.

Keywords: Knowledge graph - Rule learning * Link prediction

1 Introduction

In recent years, many large knowledge graphs (KGs), such as DBpedia [1], Free-
base [3], NELL [5], Wikidata [19] and YAGO [16], have been manually or auto-
matically created. These KGs store millions of entities and facts in the form
of RDF triples, and the facts are not isolated, but are connected to other
facts through shared entities, thus forming a graph representation of knowl-
edge of interest. Knowledge graphs provide flexible organisation of often huge
amounts of data integrated from heterogeneous sources (including the Web)
and are often coupled with ontological rules that describe domain knowledge
or business rules [2]. For instance, if we know that a rule bornInState(x,y) «—
bornInCity(x, z), cityInState(z, y) in a given KG, it can be useful for deriving a
new fact bornInState(x,y) when both facts bornInCity(x, z) and cityInState(z, y)
are already in the KG.

However, it is challenging to produce rules from large KGs by hand and
thus the problem of automatically extracting rules from a KG received extensive
attention in the past few years. In the case of rule learning in a large KG, no
negative examples are explicitly given, which makes it difficult to effectively
employ rule learning algorithms that have been developed in Inductive Logic
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C. S. Jensen et al. (Eds.): DASFAA 2021 Workshops, LNCS 12680, pp. 154-165, 2021.
https://doi.org/10.1007/978-3-030-73216-5_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73216-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-73216-5_11

An Attention-Based Approach to Rule Learning in Large Knowledge Graphs 155

Programming (ILP) [7,11,12,24]. Also, it is a challenge for them to scale to the
current KGs with large data volume and growing scale. Large data volume leads
to a large rule search space, which makes the current rule learning systems unable
to process or the processing speed is very slow. This brings about a problem of
how to shrink search space. To solve this problem, some rule learning systems
have proposed new strategies to reduce the search space.

Several methods for rule learning in KGs have been proposed in the litera-
ture, such as AMIE+ [8], RLvLR [15] and ScaLeKB [6]. ScaLeKB proposes an
ontological path finding method consisting of pruning and eliminating imperfect
or low-efficiency rules, a series of parallel algorithms, and splitting the entire
learning task into several independent subtasks to learn first-order inference
rules from a given KG. AMIE+ [8] adopts a series of accelerated operations for
rule refinement and speeds up confidence evaluation of a rule based on statis-
tics. DistMult [22] uses the embedding learned by the representation learning
method based on matrix factorization to express the relations in a KG as a diag-
onal matrix to reduce computational complexity. At the same time, predicates in
a rule body are split into different types by using relational domain restrictions.
Such optimisation techniques can significantly reduce the search space and thus
improve the efficiency of rule mining. RLvLR [15] sampling subgraphs related to
target the predicate, and proposes the so-called co-occurrence score function to
rank all possible candidate rules. R-Linker [21] proposes a novel subgraph sam-
pling method and an embedding-based score function for rule selection. However,
it is still challenging for efficiently learning rules in KGs with large data volume
and growing scale.

Different from the traditional AMIE+ system, many recently proposed rule
miners use representation learning methods in rule learning. For example, Dist-
Mult uses tensor decomposition and RLvLR uses RESCAL [13,14] to construct
embeddings of entities and predicates.

Inspired by the self-attention mechanism [18], we propose an attention-based
sampling method to select relevant predicates for each target predicate P; for
processing rule learning on large-scale knowledge graphs. The usefulness is man-
ifested in the importance of the selected predicates to the P;. In this paper, we
present an attention-based predicate sampling method to improve the efficiency
of rule learning on large-scale knowledge graphs. In order to evaluate the effec-
tiveness of the sampling method, we performed experiments on the two tasks of
rule learning and link prediction. The experimental results show that our ARL
method is very efficient while keeping a comparative precision for both rule learn-
ing and KG completion. The maximum length of CP rules including head atom
learned by ARL can be up to 5, which is longer than those rules learned by most
of the state-of-the-art rule learners to the best of our knowledge.

The remainder of this paper is structured as follows: Sect. 2 introduces some
basic concepts related to the knowledge graph. Section 3 introduces the sam-
pling method and the rule learning system ARL in detail. Section 4 presents
experimental results and evaluation. Section 5 summarizes our work.
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2 Preliminaries

In this section, we briefly introduce some concepts and define some notations to
be used later, which are related to knowledge graphs and representation learning
methods.

2.1 Knowledge Graphs and Rules

A knowledge graph can be represented by G = (E, P, F'), where E and P denote
the set of entities and predicates respectively, and F' is the fact set, for instance,
bornInCity(Mary, Beijing). Following the convention in knowledge representa-
tion, a fact can be defined as P;(e, €¢’), where e and ¢’ represent the subject and
object entities of the predicate or relation P, indicating the two nodes e, ¢’ € E
are connected by a labeled directed edge P, € P.

Like many other works on rule learning in KGs, we focus on mining a special
class of Horn rules called closed path rules or CP rules, which are in the following
form:

r: Pz, 21) A Pa(21,22) A oo A Pp(2n-1,y) — Pi(z,y),

where z,y and z; are variables, which can be instantiated by entities. Py(z,y)
is the head atom of rule r, denoted head(r); while Py(x,z1) A Pa(z1,22) A ... A
P, (zn-1,y) is the conjunction of body atoms, denoted body(r). Intuitively, if
there are facts in KG that make the body(r) hold at the same time, then P;(z,y)
holds too. Besides, CP rules have some parameter constraints, that is, each
variable in rule r appears at least twice and allowing the predicate of head atom
to appear in the body.

Following the major rule learning methods AMIE+ [8] and RLvLR [15], we
use standard confidence (SC) and head coverage (HC) to measure the quality of
the learned rules. Take the above rule r as an example, the degrees of SC and
HC are defined as follows:

supp(r) = #(e,€') : body(r)(e,e') A Py(e,e’),
" = supp(r) N supp(r)
SC(r) = #(e,e') : body(r)(e, e')’ HC(r) #(e,e') : Py(e,e’)’

Here supp(r) is the support degree of r, which is the number of facts that satisfy
body(r) and head(r) in the knowledge graph. #(e,e’) : body(r)(e,e’) denotes
the number of entity pairs that only satisfy the body. For example, if there are
entities e, ey, ..., ¢’ and facts Py (e, e1), Pa(e1, ea), ..., Po(en—1,€’) in the given KG,
then it is said that the entity pair (e,e’) satisfies the body of r. Similarly, the
denominator of HC represents the number of entity pairs in KG that satisfy the
head atom.

2.2 Representation Learning

The triple facts in a KG are discrete symbolized knowledge. While representation
learning of knowledge bases is to learn distributed representations of entities and
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relationships (embeddings) by encoding the graph structure into a continuous,
low-dimensional vector space through a certain pattern.

Two most classic knowledge graph embedding methods are translation-based
and tensor decomposition-based. The tensor decomposition models regard the
knowledge graph as a n-dimensional tensor and decompose this tensor into the
product of several embeddings, such as RESCAL [13,14], ComplEx [17], ANAL-
OGY [10], while translation-based models utilize the spatial structure of the
graph to model from the head entity to the tail entity, such as TransE [4],
TransH [20], TransR [9].

The rule learner RLvLR employs RESCAL to obtain entity and predicate
embeddings to guide the candidate rule search. In this paper, we choose TransE
to guide the selection of preferred predicates in the sampling method as it is a
more recent method and widely used in the literature.

TransE embeds each entity and relation (or predicate) into a d-dimensional
vector. For each given fact (h,r,t), the following scoring function is computed
to measure the possibility of a fact as true:

d(h,r,t) = Hh+r—t||L1/L2’

where h, r and t denote the embedding of h,r and t, respectively.

3 Attention-Based Rule Learning (ARL)

The framework ARL for rule learning is shown in Fig. 1, which consists of two
independent parts: attention-based sampling and rule search. The attention-
based sampling method is the core of ARL, including hop-based sampling and
attention-based predicate selection, we will introduce it in detail below. After
sampling the preferred predicates, we can input them into two different kinds of
rule learners for rule search: an embedding-based rule miner like RLvLR or an
ILP-based method for searching rules like AMIE+.

Embedding-based

rule learner

Hop-based Attention-based
sampling predicate selection

Preferred
predicates

. @ 3
ILP-based rule learner

""""""" > Attention-based Sampling ‘ Rule Search «----------

Fig. 1. An overview of ARL.

3.1 Hop-Based Sampling

Given a target predicate P; € P, we aim to learn CP rules of different lengths
whose head predicate is P;. For each P;, it aims to obtain relevant samples G’ of
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P, i.e., a subgraph of G. The hop-based sampling is necessary, since many facts
irrelevant to P; will not be useful, so we can use it for preliminary sampling.

The hops for mining different lengths of rules are different. For a fact
(h, P, t), h,t € E, we start from the nodes h and ¢ respectively, perform a
breadth-first traversal of specific hops in G to obtain a subgraph G’. In partic-
ular, let the length of rules be n(n < 5), we can generate the sampling entity
sets Eo, ..., E|n/2) by |n/2] hops, where Ej is the entity set directly connected
to the P; in the knowledge graph G, such as P;(e,e'). E; (0 <i < |n/2]) is the
entity directly connected to E;_; through a predicate P;, such as P;(¢/,e”) or
Pi(e,e").

The union entity set is generated by different hops of entity sets: B/ =
UZLZ(/)% E;. And the union fact set is F/ = {P(ej,e2) | e1,e2 € E', P(e1,e3) € F}.
Since too many facts are sampled, it will be difficult for TransE to deal with.
Thus, we tried two ways to limit the number of samples: limit the number of
facts, or limit the number of facts and entities.

Limit the number of facts. We limit the number of one-hop facts of P; in
a certain percentage, a hyper-parameter Ratio. For other-hops, we collect the
remaining facts by filtering out the triples for too high-frequency or too low-
frequency predicates.

Limit the numbers of entities. ~ We limit the number of one-hop facts of P;
by allowing at most N7 entities. For other-hops, while we filter out facts with
too high-frequency or too low-frequency predicates, we also require that each
remaining predicate be connected to at most Ny facts. Here N; and No are
hyper-parameters.

3.2 Attention-Based Predicate Selection

The core of attention-based sampling method is the mechanism for selection
preferred predicate. The scaled dot-product attention [18] maps a set of queries
and a set of key-value pairs into a weighted sum of the values. Inspired by it, we
apply the way of calculating weights to our predicate selection.

As shown in Fig. 2, attention is equivalent to a function that maps a query
to a series of key-value pairs. The query, key and value are usually represented
as a sequence vector for processing.

General attention calculation is divided into three steps, as shown in Fig.
2(a). First, calculate the similarity weight between the query and each key in a
certain way; second, use softmax function to normalize the weight; finally, the
weighted key and the corresponding value are summed to obtain the attention.

The scaled dot-product attention that we use is a part of self-attention in
Fig. 2(b). The calculation process is the same as that in Figure (a). While the
f(Q,K;) is a dot-product, the scaling factor 1/+/dj is added to the general dot-
product, where dj is the dimension of queries. The reason for using a scaling
factor is to avoid too large values when calculating the dot-product operation,
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QTKi Dot product
QTWa Ki Matrix multiplication
1 fQKy = K. (CMatvur_)
W, [Q Kl] Cascade
v, "tanh(W,Q + U,K;) Perceptron *

exp (Qr K)
2. a; = softmax(f(Q, K,-)) = (r 0)
2. e(r(@x)
3. Attention(Q,K,V) = Z a;V; @ K ¥
i
(a) The general calculation process of attention (b) Scaled Dot-Product Attention

Fig. 2. The attention mechanism.

but resulting in a smaller gradient during model training. The formula for the
attention mechanism is as follows.

Attention(Q. K, V) = softmaz( 2 X ) v
ention(Q, K, = softmax .

e

vp,”
Predicat}es. in Embedding | v attention-based  Set of preferred predicates:
KG:G" : TransE M= predicate selection Plist;°P
P,...,P, vp T (i=12...k

n JnXdy

Fig. 3. Attention-based predication selection.

As shown in Fig. 3, the attention-based predicate selection consists of three
major steps. Firstly, we choose the simple and effective TransE to obtain the
matrix representation M € R™ % of predicates for the sampled G’. Based
on this, we initialize the three matrices Q, K,V with M, and use the formula
Attention(Q, K, V) above to calculate a weight matrix W € R™ " where di
is the embedding dimension, n is the total number of G’ predicates. Each row
of the matrix W corresponds to a predicate P, and the value in the row vector
indicates the importance of other predicates to P.

Next, we perform the predicate selection based on weight matrix W. For
each target predicate P;, we first take the corresponding weight row of P; in W,
rank it and get the top n x rate; important predicate list Plist.” for P,. For
predicates P; € Plist!°’| we can consider that they are in the environment S
of P;, where the predicates are important or related to P;. Besides, there may
be also several predicates that are important to those predicates in S. So they
may also be important to P;. Similarly, we obtain the top n X rate; important
predicate list Plist!”” for P;. Finally, the intersection of all Plist'’” is the final
predicate set we preferred.



160 M. Li et al.

4 Result and Discussion

4.1 Experimentation

To verify the effectiveness of our attention-based predicate sampling method,
we performed two sets of experiments on rule learning and link prediction. The
datasets adopted in our experiments are widely used benchmarks, with the statis-
tics shown in Table 1. The first three benchmarks are commonly used for rule
learning experiments [15], and the last two are often used for link prediction
experiments [22].

Our rule learning experiments was run on a Linux Ubuntu 18.04 server with
3.5 GHz CPU and 64 GB of memory, and the link prediction experiments was
run on a Linux Ubuntu 16.04 server with 3.4 GHz CPU and 64 GB of memory.

Table 1. Benchmark specifications.

KG #Facts | #Entities | #Predicates
YAGO2s 4.12M | 2.26M 37
Wikidata 8.40M | 3.08M 430
DBpedia 3.8 | 11.02M | 3.10M 650
FB75K 0.32M | 0.07™™M 13
FB15K-237 | 0.31M | 0.01M 237

4.2 Rule Learning

We have conducted three experiments to evaluate the performance of ARL and
to validate the following statements:

1. ARL can learn quality rules faster than RLvLR [15].

2. The efficiency and effectiveness are achieved through the attention-based
mechanism.

3. The sampling method can be used in other rule learners, like AMIE+ [8], to
enhance their scalability.

4. The rules learned by ARL have good quality for link prediction.

We compared the (average) numbers of learned rules (#R, with a threshold
SC>0.1 and HC >0.01 as in [15]) and those of learned quality rules (#QR,
with SC > 0.7 and HC > 0.01). The SC and HC measures are calculated over the
whole datasets, not just on the samples.

Experiment 1. Our system is most similar to RLvLR, so we first compare our
system with RLvLR to verify the benefit of our sampling algorithm on enhancing
the efficiency of rule learning. We randomly selected 20 predicates as target
predicates from each of the datasets YAGO2s, Wikidata, and DBPedia 3.8. We
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Table 2. Comparison with RLvLR on rule learning.

Model DBpedia3.8 | Wikidata YAGO2s

#R | #QR | #R #QR | #R | #QR
RLvLR | 99.36| 12.71 | 165.03| 24.39 | 23.14| 6.18
ARL 61.97 | 23.51 | 34.08 19.41 | 10.91| 6.37

compared the numbers of rules and quality rules learned per hour, and the results
are shown in Table 2.

Note that despite the numbers of rules learned by ARL per hour are often
smaller than those of RLvLR, the numbers quality rules learned per hour are
larger than those of RLvLR. This shows our predicate sampling method can
greatly reduce the search space of rule learning without missing quality rules.

Experiment 2. The previous experiment demonstrates the efficiency of our sam-
pling method in learning quality rules, and in the following experiment, we eval-
uate the effectiveness of our attention-based mechanism in sampling. To this
end, we replaced our attention-based sampling method with a random predicate
selection method, denoted ARL(R), which randomly select the same number of
predicates as the original ARL method.

To compare ARL with ARL(R) on rule learning, we randomly selected 10
target predicates for each of the three datasets, and recorded the total numbers
of rules and quality rules learned by both systems and their total times.

Table 3. Random sampling vs. Attention-based sampling.

KG DBpedia3.8 Wikidata YAGO2s

#R | #QR | Time | #R | #QR | Time | #R | #QR | Time
ARL(R) |63 |13 9.09 | 128 |72 783 |7 |2 1.56
ARL 71 |21 0.33 {130 | 71 0.39 15 |11 0.25

Table 3 shows the results. As can be seen, our attention-based sampling
method clearly outperforms the random method in both the numbers of (qual-
ity) rules learned and surprisingly, the learning efficiency, which shows the effec-
tiveness of our attention-based mechanism.

Ezxperiment 8. The third experiment is to evaluate the benefit of our sampling
method in enhancing the scalability of rule learning, and we used our sampling
method as a pre-processing module for AMIE+ and compare the performance
with AMIE+ itself. As the search space increase exponentially in the rule length,
the existing rule learners all face the challenge of learning long rules. In the
original evaluation of AMIE+, the maximum rule length is 4 (for Wikidata and
DBpedia 3.8, the maximum rule length is 3). As a ‘stress’ test, we aim to learn
rules with the maximum length of 5.
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For this experiment, we did not specify any target predicate, that is, to learn
rules whose heads may contain any predicates in the KG, which is a default
setting of AMIE+. We ran AMIE+ (with and without our sampling) with its
native predicate selection heuristics (if any). To verify sampling indeed allows
more quality rules to be learned in a reasonable time, we first ran AMIE+ with
our sampling and recorded the number of rules with time spent, and then we
made AMIE+ to run without sampling for the same time and recorded the
number of rules learned. The experimental result are summarised in Table 4.

Table 4. AMIE+ with and without sampling over the same timeframes.

KG w. sampling w.o. sampling
#R | #QR | Time (h) | #R | #QR

Wikidata 4084 | 651 |4.20 81|30

DBpedia 3.8 | 18070 | 1590 | 10.32 255 | 38

Table 4 clearly shows the benefit of our sample method in enhancing the
scalability of AMIE+, allowing up to 8 times more quality rules to be learned.

4.3 Link Prediction

The link prediction experiment further evaluates the quality of rules learned by
ARL in an important task of KG completion. Given a KG, a predicate P;, and
an entity e, the task of link prediction is to predict another entity e’ such that
Pi(e,e') or Py(e,e) is valid in the KG [15,22].

We set the threshold SC to be 0.005 and HC to be 0.001. We adopted the
standard link prediction metrics, Mean Reciprocal Rank (MRR) and Hits@10.
MRR is the average of the reciprocal ranks of the desired entities, Hits@10 is
the percentage of desired entities being ranked among top 10.

We compared the performance of ARL with several major systems on three
benchmark datasets FB75K, and a more challenging version FB15K-237. Each
dataset is divided into training set (70%) and test set (30%). Note that we use
rules with a maximum length of 4 to infer new facts.

Tables 5 shows the results on respective datasets, the performance of the
other systems are obtained from [15].

From the results, although the number of rules learned by ARL is about one-
tenth of those learned by RLvLR, it obtains a higher Hits@10 on FB15K-237
compared to RLvLR. This shows ARL has advantages in learning quality rules
with higher efficiency.
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Table 5. Comparison on link prediction.

FB75K FB15K-237

MRR | Hits@10 | MRR | Hits@10
ARL 0.27 |42.0 0.23 403
RLVLR 0.34 434 0.24 | 39.3
Neural LP [23] |0.13 |25.7 0.24 | 36.1
R-Linker [21] | - - 0.24 | 38.1
DISTMULT [22] | - - 0.25 408

5 Conclusion

In this paper, we have proposed a sampling method and then implemented a
system ARL (attention-based rule learner) for rule learning in large KGs. ARL
employs attention mechanism to model the importance of predicates in a given
KG with respect to each target predicate. As a result, our sampling method sig-
nificantly reduces the search space of rules, especially for large KGs, while keep-
ing a comparable quality of learned rules. Our attention-based sampling method
can be used as a preprocessing for any rule learners while the implementation is
based on AMIE+. Our experimental results show that the efficiency of AMIE+
can be significantly improved. In particular, longer rules can be learned by ARL.
We are working on further improving the accuracy of ARL while keeping the
scalability and efficiency.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under grant 61976153.
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Abstract. Recently, deep-model-based image inpainting methods have achieved
promising results in the realm of image processing. However, the existing meth-
ods produce fuzzy textures and distorted structures due to ignoring the semantic
relevance and feature continuity of the holes region. To address this challenge,
we propose a detailed depth generation model (GS-Net) equipped with a Multi-
Scale Gated Holes Feature Inpainting module (MG) and a Patch-wise Spacial
Attention module (PSA). Initially, the MG module fills the hole area globally and
concatenates to the input feature map. Then, the module utilizes a multi-scale
gated strategy to adaptively guide the information propagation at different scales.
We further design the PSA module, which optimizes the local feature mapping
relations step by step to clarify the image texture information. Not only preserv-
ing the semantic correlation among the features of the holes, the methods can also
effectively predict the missing part of the holes while keeping the global style
consistency. Finally, we extend the spatially discounted weight to the irregular
holes and assign higher weights to the spatial points near the effective areas to
strengthen the constraint on the hole center. The extensive experimental results on
Places2 and CelebA have revealed the superiority of the proposed approaches.

Keywords: Image inpainting - Feature reconstruction - Gated mechanism -
Spacial attention - Semantic relevance

1 Introduction

The goal of image completion is the task to fill the missing pixels in an image in a way
that the corresponding restored image to have a sense of visual reality. The restored area
needs continuity and consistency of texture while seeking semantic consistency between
the filled area and any surrounding area. Image completion techniques are widely adopted
in photo recovery, image editing, object deletion and other image tasks [1, 5]. At present,
the existing methods have focused on the restoration of the rectangular areas near the
image centers [6, 7]. This kind of regular hole restoration could result in the model
over-fitting accompanied by poor migration effect [8]. The overarching objective of this
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work is to propose an image-restoration model, which is sufficiently robust to repair
regular and irregular holes. Our proposed technique produces semantically meaningful
predictions to ensure that the repaired parts are perfectly integrated with other portions
without any expensive post-processing.

Traditional image restoration methods mainly exploit the texture synthesis technol-
ogy to address the challenge of hole fillings. These methods assume that the missing
regions should contain a pattern similarity to those of background regions. And they
use the certain statistics of the remaining image to restore the damaged image region
[1-4]. As one of the most advanced techniques used in the past, PatchMatch [1] can
quickly find the nearest neighbor matching to replace the repaired hole area through
the stochastic algorithm. Although it usually produces the smooth results especially in
background rendering tasks, it is limited by the available image statistics and just con-
siders the low-level structures without any high-level semantics or global structures for
captured images. In addition, the traditional diffusion-based and block-based methods
assume that missing blocks can be found in the background image and they cannot gen-
erate new image content for complex and non-repetitive structural regions (e.g. human
faces) [9].

Nowadays, the deep-learning-based methods are constantly explored to overcome
the aforementioned obstacles of the above methods by training a large amount of data
[8-10, 12, 13]. In particular, deep convolutional neural networks (CNNs) and generative
adversarial networks (GANSs) have been introduced to implement the image complement
tasks [9, 14, 15]. Broadly speaking, image inpainting tasks equipped with deep module
mainly can be divided into two categories. The first ones uses global spatial attention
to fill holes by building the similarity between a missing area and the other areas [6, 7,
19, 31]. Although this group of methods can ensure a consistency between generated
information and context semantics, there often exist pixel discontinuity and semantic
gaps [12]. The second family of schemes is to attach different levels of importance to the
valid pixels of the original image to predict the missing pixels [8, 14]. These methods
correctly handle irregular vulnerabilities correctly, but the generated content still suffers
from semantic errors and boundary artifacts [12]. The above methods work poorly due
to ignoring the semantic relevance and the feature continuity of the generated contents,
which are related to the continuity of local pixels.

Inspired by the human mind coupled with the partial convolution [8], we propose a
Multi-Scale Gated Inpainting module (MG) and a Patch-wise Spacial Attention module
(PSA) are proposed to fill an unknown area of the feature map with similar method
as a part of our model. The MG module first fills each unknown feature patch in an
unknown region with the most similar feature patch in the known regions. Subsequently,
the selection of information in the filled area is controlled by a two-scale gating strategy.
As a result, the global semantic consistency is guaranteed by the first step, and the
local feature consistency is optimized by the second step optimization. In addition to
controlling the style relation under local features, the PSA module handles the repaired
features with block-level attention.

Technically, our model uses the U-Net [20] architecture as a baseline to propagate
the consistency of global and local styles and detailed texture information to the missing
areas. On the whole, this model continuously collects the features of an effective region
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through partial convolution. At a higher level of the encoding phase, we develop a
distinctive Multi-Scale Gated Inpainting module (MG) to carry out two phases. First, MG
revises a current hole area for its global style alignment through Contextual Attention [6].
Second, MG brings a resulting feature fix into alignment with the overall style through
a multi-scale gated mechanism. In the decoding stage, PSA divides the feature channel
into multiple patch blocks to further optimize the consistency of local styles so that the
network learns more effective local features. Finally, the repaired image is delivered to
VGG16 [29] to gauge the style loss and perception loss. Which help generate details
consistent with the global style. In addition, our model is finally down-sampled to the size
of 4 x 4 in order to obtain a higher level of semantic consistency. The experiments driven
by the two standard datasets (Places2 [25] and CelebA [26]) reveal that the proposed
methods produce higher quality results than those of the existing competitors. The main
contributions of this work are summarized as follows:

e We develop a new Multi-Scale Gated Inpainting module (MG) applied to the model
structure. MG combines feature maps generated by gated modules of different propor-
tions to obtain structural information of features at different scales, thereby flexibly
leveraging background information to balance the image requirements.

e We extend the spatial attention module by adding the minimization feature of patch-
wise to ensure that the pixels generating holes area are true and locally stylized.

e We introduce the concepts of style loss and the perception loss to construct the
proposed loss function, which yield a consistent style. The proposed new spatial
discounted loss of irregular holes helps to strengthen hole-center constraints, thus
promoting texture consistency.

e The experiments with two standard datasets (Places2 [25] and CelebA [26]) demon-
strate the superiority of our approaches over the most advanced methods found in the
literature.

2 Related Work

2.1 Image Inpainting

Traditional non-learning methods propagate and reproduce information by calculating
the similarity with the other background regions [2, 4]. PatchMatch [1] can well syn-
thesize surface textures through the nearest neighbor matching algorithm, which is an
excellent patch matching algorithm. However, these methods do not semantically origi-
nate meaningful contents, neither can the methods deal with large missing areas. For the
nonexistent detailed texture features, these schemes are unable to generate new features
while exhibiting poor recovery effect.

Inrecent years, the methods based on deep learning have become a significant symbol
of the image restoration. Context Encoder [15] tries to restore the central area (64 x 64) of
128 x 128 images. This technique is the first deep network model to handle the inpainting
tasks, which provides reasonable results for the holes semantic filling. Unfortunately,
it has a poor inpainting ability at fine textures. Shortly thereafter, lizuka er al. extends
the context encoder by proposing local and global discriminators to improve repaired
quality for the image consistency [10]. This extension overlooks the consistent relation
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between holes and the other areas as a whole. Therefore, there exist more obvious color
differences. The Context Encoder [15] is trained to act as the constraint of global content
[13], local texture constraints are constructed by using the local patches similarity of the
missing part and the known regions to obtain high-resolution prediction.

2.2 Feature Matching and Feature Selection

Global spatial attention mechanisms have also been deployed to address image inpainting
challenges by the virtue of similarity relation. CA [6] creates a rough prediction for
the hole area through similarity calculation. The Multi-Scale Contextual-Attention [7]
patch is located in the missing region. Ultimately, the re-weight for both is located on
the Squeeze-And-Excitation [16] module, which improves generalization ability of the
model. SCA [12] build a patch-wise continuity relationship between adjacent features
of the missing area to enhance the continuity of features inside the holes area. Shift-net
[19] selects a specific encode-decode layer of the same level for similarity measures,
encoder features of the known region are shifted to serve as an estimation of the missing
parts. The RFR [31] harvests remote information and progressively infers a boundary
of the hole by the KCA module, thereby gradually strengthening the constraints on the
hole’s center.

The above methods adopt the similar treatment for the corruption areas and non-
corruption area, thereby leading to artifacts such as color discrepancy and blurriness.
Only the effective features of each layer are processed by partial convolution [8]. By
updating the mask of each layer and normalizing the convolution weights and mask
values, which ensures that the convolution filter focuses on the effective information
of the known regions to deal with irregular holes. Partial convolution is regarded as a
kind of hard mask [14], which confronts roadblocks learn specific mask information.
Furthermore, it introduces automatic learning soft mask by using gated convolution and
combines with SN-Patch GAN discriminator to achieve optimized predictions. When
it comes to feature normalization, the above methods do not consider the influence of
mask areas, which limits the trainings of network repair. Treating the damaged areas and
the undamaged areas separately [11], the mean value and variance deviation are solved
to continuously improve network performance.

Unlike the leading-edge strategies proposed in the literature [6, 8, 14], our solution
is tailored for process images where backgrounds are misleading or lacks similarity. Our
technique has an edge over the existing methods, because ours leverages the multi-scale
gated module to control the degree of feature extraction while dynamically screening
useful features to alleviate the problem of information redundancy and loss. In order to
enrich repaired details, an extended spatial attention module [28] performs the patch-
wise division on the channel to dynamically extract local features. In this way, our model
is adept at generalizing scenes and understanding styles as well as picture details.
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Fig. 1. The architecture of our GS-Net model. We augment the MG and PSA layer at the resolution
of 32 x 32 in the network.

3 Approach

We describe the entire model structure from top to bottom, and then introduce the MG
module and PSA module in details. Some extensions to the model are also expressed
to allow optional user guidance.

3.1 An Overview of Our Model (GS-Net)

Our model is a one-stage and end-to-end image inpainting model, thereby making our
approach simpler and easier to implement than other methods. More specifically, U-Net
[20] is used as the baseline structure and the partial convolution [8] is stacked as the
basic modules for deep feature extraction in GS-Net (see also Fig. 1). More formally, we
denote W as convolution layer filter weights, b as the bias, M as the mask, and X as the
feature values for the current convolution window. The partial convolution is expressed
as:

1 .
. wT(x ®M)ssuugz(gw)) + b, if sum(M) > 0 )
0, otherwise

In each convolution window with effective feature values, partial convolution layer
assigns greater weight to the convolution result with fewer feature values through the
above operation. After each partial convolution operation is accomplished, whether the
mask has a valid pixel update mask through the convolution region. This process is

expressed as:
o — 1, zfsum(M).>0 @)

0, otherwise

After the feature map passes through partial convolutional layer, the missing area
is filled with the surrounding effective feature area and becomes smaller. Therefore,
all the features areas of the holes will be completely filled after sufficient successive
applications of the partial convolution layer.
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3.2 Multi-scale Gated Inpainting Module (MG)

Partial convolution in our model is stacked with layers to update masks and feature
maps. In partial convolution, the holes region gradually disappear with the deepening of
convolution depth, which is conducive to extracting effective depth features. However,
directly interpolating the features of empty regions from the features of non-empty
regions during an up-sampling process leads to the final blurry texture of missing regions.
The root of such a problem is to directly extract features without repairing the features
of holes, thereby ignoring the spatial continuity of features.

Maszk =

Inputs

Similarity calculation u Features Gated .. Fusion
and Softmax scores =@ == Reconstruction

T T

Outputs ‘

Fig. 2. In the MG Module, an input feature is transferred to a global attention module to fill a
hole feature area, which is concatenated into the input feature to obtain different gated scores
through two convolution kernels of multiple sizes (3 x 3 and 1 x 1). In the end, element-wise
multiplications are performed specifically by multiplying the convoluted concatenate by the two
gated scores of fusion as an output feature map.

To address the challenge of blurred image content and distorted structure, we pro-
pose a repair network with MG module in Fig. 2. First of all, The MG module uses CA
[6] method to fill the holes in the high-level feature. Partial convolution is still the inter-
polation of depth features on the hole area, and the inability to match the optimal patch
leads to information loss and confusion. Therefore, CA algorithm is used to construct
similarity matrix, and deconvolution operation ensures the trainability of interpolation
process.

Given an input feature map ¢;,, we firstly replace fore-ground feature map using
attention mechanism. For each attention map, we use similar strategy to calculate scores
as [6] the calculation of attention score could be implemented as convolution calculation.

b/ /
Sopy = <l DO 3)
STl byl

where, f y, b,/ . are fore-ground patches and background patches respectively. s . o x
is similarity matrlx between all the patches. To compute the weight of each patch, softmax
is applied on the channel of score map to obtain softmax scores. Since any change in
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the foreground patch is more related to the similar change in the background patch. CA
adopts a left-right propagation followed by a top-down propagation with kernel size of
k, and then propagate score to better merge patch.

A *
Sxy.x .y = z : Sx—H',y,x’—i—i,y’ 4)

where s* is channel-level softmax applied to feature mapping. Finally, the multichannel
mask multiplication is used to preserve the current information and then deconvolution
operation are responsible for restoring a missing feature map. However, the misleading
highly similar regions and the existence of the hole regions could lead to the disappear-
ance of effective features in deconvolution, which is detrimental to feature restoration.
Fortunately, we are inspired by gated convolution to ensure the dynamic selection of
effective features by constructing a soft mask mechanism, in which the expected output
features are learned under fixed gateway scale. This learning mechanism is dynamic,
general and accurate. When the hole feature is repaired, other inappropriate features are
incorrectly filled. And the gate control mechanism dynamically adjusts the gate value to
construct an appropriate output feature.

Moreover, it is nontrivial to determine the appropriate patch match size for various
image to reveal images details. In general, larger patch size helps ensure style con-
sistency while smaller patch size is more flexible on using background feature map.
Patch matching on a single fixed scale seriously limits the capability to fit the model
into different scene [7]. To this end, we devise a novel MG module that helps to make
use of background content flexibly based on the overall image style. The MG integrate
feature selection at two different scales by convolution opteration. In order to better
distinguish the importance of the two, we simply use a learnable parameter A as the
dynamic threshold. Formally, the gated feature of the output is written as:

outputggreq = Aoutput] + (1 — Aoutput; 5

where, output| and output, are two gated values at two different scales. Therefore, the
value output by the MG module has comprehensive information at multiple scales.

Through the MG module’s information, global features become continuous thanks to
global-feature-hole fillings and the multi-scale gated selection mechanism. Therefore,
the partial convolution layer has no need to distinguish between the region of holes
and non-holes and; thus, the mask is set to 1. The MG module is adroit at capturing
background information on high-level semantics while producing contents with elegant
details.

3.3 Patch-Wise Spacial Attention Module (PSA)

A vital feature of a human visual system is that people have no intent to process an
entire scene at once. Instead, humans take advantage of a series of local glimpses and
selectively focus on salient parts in order to capture visual structure in a swift manner.
Although the attention mechanism is widely used in image classification, the mechanism
has no appearance in image inpainting. An important reason is that when it comes to



176 X.Huetal.

incomplete image, there may still be hole information in high-level features. At this time,
the traditional s spatial attention mechanism gives rise to structure dispersion and texture
loss in generated images. In order to solve the above challenges and take advantage of
the attention mechanism, we extend the CBAM technique [28] to devise a patch-wise
attention mechanism depicted in Fig. 3.

Input Feature Attention Scores Output Feature
Conv
Feature o
Extraction
Input Reduce max,mean,min

Fig. 3. PSA Module. 3D features are divided into 3 x 3 x 4 small blocks, and the maximum,
average and minimum values of channel-wise are calculated for each small block, and the spatial
attention of each block is obtained through convolution.

Instead of using the channel-wise reduction directly, we choose a 3 x 3 x 4 feature
block as a unit of attention restoration in order to ensure the consistency relationship of
local features and maximize the effect of the restoration of the hole area. We first apply
maximum pool, average pool, and minimum pool operations on the channel axis and
concatenate them to produce a valid feature descriptor. On the feature descriptor of the
connection, convolution layer is applied to generate the spatial attention graph and extract
the information features of each patch through the convolution operation. Different
from classification and identification tasks, the minimum pool operation obtains the
characteristics of possible hole repair to hold hole is emphasized so as to ensure its
information flow in the network.

We aggregate channel information of a feature map by using three pooling operations,
generating three 2D maps in i patch (The i patch here represents the channel between
(i— 1) *4andi*4): Fly, Flyg, Fiyy € RPHXW . Each denotes max-pooled features,
average-pooled features and min-pooled features across the channel. Those features are
then concatenated and convolved by a standard convolution layer, producing our 2D
patch-wise spatial attention map. In short, the spatial attention is computed as:

Mi(F) = o (f 3 ([Flux Fiugr Fiin]) (6)
where o denotes the sigmoid function and f3*3 represents a convolution operation with
the filter size of 3 x 3.
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4 Loss Function

Similar to the design of PC [8], the style consistency and detail level are also taken
into the consideration of our loss function. For the model learning process can fully
pay attention to the texture details and structural information, we consider a pre-trained
VGG16 [29] as a fixed model to extract high-level features. The perceptual loss [30] and
style loss compare the difference between the deep feature map of the generated image
and the ground truth under different descriptors. All parameter symbols are described
as follows. ¢; denotes feature maps i pooling layer. H, W, C refer to the height, weight
and channels number for a feature map, respectively. And N is the number of feature
maps generated by the VGG16 feature extractor. The perceptual loss can be expressed
as follows:

N

1 t
L 1= 67" — ¢ @)
perceptua ; Hw,C;' i

Although perceptual loss helps to capture high level structures, the perceptual loss
lacks the ability to preserve style consistency. To address this drawback, we advocate
for the style loss (Lgy.) as an integral apart of our loss function. With the help of
the style loss, our model is adroit at learning color and overall style information from
backgrounds.

N

1 1 styleoy,
Layte = Y| g (@ — ™)y (8)
i=1
it
¢ = pig] ©)

Total variation (TV) loss L;,, the smoothing penalty [30] on R, is introduced into
the loss function. Here R is the area of a sliding window that contains missing pixels.
However, the cost of directly applying TV losses to a hole area is to promote texture
blurring of the hole area. More unfortunately, in the case of large losing areas, this
approach leads to a failure to repair void areas -- the hole areas remain void areas. In
order to address the problem of huge amount, we benefit from two cognitions: a hole
area has a certain similarity with the TV of surrounding areas; the edge of the hole area
maintains a certain continuity with the surrounding area. The TV loss is expressed as
follows:

Ltv = me + Lcol (10)

Sy ST

1™ — 11 e — I 1

N—’Lc‘ulz Z N— (11)
Ir (i.j)eR, (i+1,/)eR Ir

Lyow = Z

(i.j)ER,(i,j+1DeR

where / Iie’j represents an image pixel point, Ny, is defined as the number of elements in
the hole’s region. Especially for large holes, boundaries are sometimes still artifacts,
which may be the lack of constraints on the center of the holes. Similar to the spatial
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discounted loss of the CA algorithm, the closer the hole region is to the known region,
the more attention should be given to it. However, the distance between a hole point and
a surrounding effective region is difficult to calculate when it comes to irregular holes.
To simplify the computation, we traverse the symmetric mask value near each hole point
and undertake a bit operation to quickly obtain the hole length. This process is formally
articulated as follows:

i—length,j i+length,j
Symi j iength = maski’j Imaski’j (12)

i—length,j i+length,j
1—length,j mask:.eng J

where mask; , , are the fields of length at the coordinates of point
(i, j). Finally, our target becomes the maximum length value of Sym = [0].

discounwdleftfright = max {Symi,j,length = [0]} (13)
length

where [0] represents the matrix with all values of 0. The upper and lower relation of the
hole region is solved by the same strategy and denoted as discounted,,p—porom- Therefore,
the total spatial discounted weight is formalized as follows:

discounted = y (discountedjef righs+discountedsop—porom) /2 (14)
where, y represents a weighting factor. Futher, L,4s and Ly, which calculate L1
differences in the unmasked area and masked area respectively. The total 1oss Ly is
the combination of all the above loss functions. Thus, we have

Liotal = Maild Lvalid + *hote Lhote © discounted) + )‘perceptuall‘[erceprual + }‘sryleLsryle + AwLey (15)

5 Experiments

5.1 Datasets and Experimental Details

In this section, we evaluate our model on two datasets: the Places2 [25] dataset and the
CelebA [26] dataset. The Places2 dataset is a garden scene selected from the Places365-
Standard dataset, which embraces 9069 images. The dataset is divided into the train,
validate, and test subsets with a ratio of 8:1:1. The CelebA dataset contains 162,770
training images, 19,867 validation images, and 19,962 test images. We use both the
training set and validation set for training purpose, whereas the test set is dedicated
for testing. In the end, we use the mask dataset of partial convolution, which contains
55,116 masks for the training and 24,866 masks for testing. The size of these masks
is 512 x 512. After resizing these masks to 256 x 256, we place the masks into our
network model.

For all the parameter settings similar to those elaborated in the literature [8], the
tradeoff parameters are set as Aygjig = 1, Anole = 0, Apercepmal = 0.05, Agyre = 120 and
Ay = 0.1. Our model is initialized the weights using the initialization method described
in [9] and use Adam [27] for optimization with a learning rate of 0.0001, and train on
a single NVIDIA V100 GPU (32 GB) with a batch size of 6. The Places2 models are
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PC GC Ours

Fig. 4. A Comparison of test results on Places2 images.

trained for two days, whereas the CelebA models are trained for approximately one
week.

We compare the proposed MG and PSA algorithm with the following three state-of-
the-art methods: CA [6]: Contextual Attention, PC [8]: Partial Convolution, GC [14]:
Gated Convolution.

To make fair comparisons with the CA and GC approaches, we retrain the CA and
GC models on the same datasets. Both CA and GC methods are trained using a local
discriminator available in a local boundary box of the hypothetical hole, which makes
no sense for the shape of masks [8]. As such, we directly use CA and GC released pre-
trained models. And PC is trained under the same conditions as those in our experimental
setup until the PC model is converged.

5.2 Qualitative Comparisons

Figure 4 unveils the comparison results among our method and the three most advanced
approaches processing in the Places2 dataset. All images are displayed at the same
resolution (256 x 256). The CA approach is effective at semantic inpainting, but the
results shown above appear to be abnormally blurry and artifact. The PC method fills
the hole areas with the corresponding styles, but PC loses some of the detail textures.
The GC method exhibits a strong inpainting ability in local details and overall styles.
Unfortunately, GC suffers from the local overshine problems. Compared with the other
methods, our solution has an edge under large hole conditions by originating inpainting
results that alleviate artificial traces. Figure 5 unravels that our model is able to generate
fully detailed, semantically plausible, and authentic images with superb performance.
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Fig. 5. Comparison of test results on CelebA images.

5.3 Quantitative Comparisons

Now we quantitatively evaluate our model on the two datasets, using three quality meth-
ods, namely, the structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and
mean L1 loss assessment image similarity. Because the image restoration application
in the application scenario will not stick to the above mask structure. To make a fair
numerical comparison, we apply the mask generation method of GC [14] to compare
the mask repair effects under the three different proportions in Fig. 6. One thousand
masks and their corresponding random pictures are elected in the tests, the results of
which are recapped in Table 1.

10%-20% 30%-40%

Fig. 6. Some test masks for each hole-to-image area ratio category.

Table 1 illustrates that our method produces the decent results with the best SSIM,
PSNR and mean 11 loss on the Places2 dataset and the CelebA faces dataset. Similar
to the aforementioned results, our MG and PSA algorithm is a front runner in terms of
numerical performance on the Places2 and CelebA datasets. When it comes to repairing
large holes, the performance improves of our algorithm over the existing techniques
become more pronounced.
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Table 1. Numerical comparison on two datasets.

Dataset Places2 CelebA

Mask ratio | 10%-20% | 30%-40% | 50%—60% | 10%-20% | 30%-40% | 50%-60%
Mean CA | 3.0941 57280 | 7.4529 3.2433 6.0052 | 8.4367
(%) 'pc | 3.2495 4.4537 5.3843 1.8712 2.5208 3.2301
GC | 2.0385 35036 | 4.7996 1.2488 21232 | 2.9248
Ours | 2.1274 | 3.1917 | 42045 0.9542 1.5228 2.0834
PSNR |CA 21.5031 | 18.1033 | 17.2827 | 20.8873 | 17.5012 | 16.0160
PC 247846 221610  21.1155 | 293626 267636 | 24.9999
GC 247426 215232 |20.1670 | 28.6721 255052 | 23.9649
Ours 257142 | 23.1374 220227 | 32.0948 | 28.9088 | 27.0451
SSIM |CA | 0.8327 | 07042 | 0.6080 | 0.8337 0.7067 | 0.6015
PC | 08296 | 07307 | 0.6476 | 09050 | 08567 | 0.8074
GC | 08638 | 0.7623 0.6758 | 09180 | 0.8589 | 0.8050
Ours | 0.8650 | 07762 | 0.6917 | 0.9463 0.9061 0.8638

5.4 Ablation Study and Discussion

GS-Net, being carried out on partial convolution, is equivalent to the superposition pro-
cessing of partial convolution layer excluding our proposed two modules. To clearly
present the effectiveness of these operations, we compare various indicators by respec-
tively removing the MG and PSA modules in Places2 dataset. Figure 7 and Table 2
reveal that compared to the results yielded by our algorithm, the results from the non-
MG and non-PSA models exhibit more artifacts and distortions. At the same time, the
MG module is superior to the PSA module in terms of performance index.

(a) Input (b) without MG (c) without PSA (d) ours (e) GT

Fig. 7. Comparison results for different attention manners. From the left to the right are: (a) Input,
(b) Without MG, (c) Without PSA, (d) MG + PSA, (e) Ground Truth
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Table 2. Numerical comparison on Places2 dataset.

Method Mean 11 loss (%) | PSNR | SSIM
Without MG 3.8346 21.2940 | 0.7283
Without PSA 3.5739 22.5376 | 0.7615
With MG and PSA | 3.1411 23.2501 | 0.7808

Apart from delivering strong capabilities in terms of recovery, GS-Net can be widely
applied to intelligent face modification or face synthesis. Figure 8 shows two faces with
different detail textures.

Fig. 8. In face of effect.

Features will be input into the PSA module after a globally filled hole area of the
MG module. The information flowing through the MG module is well repaired, this PSA
module is focused on controlling the relationship among local feature blocks. The PSA
is constructed by the channel-wise attentional processing of local 3D blocks, thereby
forming local relations such as local maximum, average, and minimum. It is evident
that each patch repaired may be larger than unrepaired feature values. Thus, exerting
an attention will pay more attention to the repaired local 3D region features, which is
beneficial to the subsequent upsampling process.

Our model outperforms the cutting-edge techniques in most tested cases, but the
repair effect still has a certain difference under a pure color background. The reason
may be caused by partial convolution, which will be addressed in our foreseeable future
research pathway.

6 Conclusion

We proposed in this paper the MG module, which is capable of gradually enriching the
information of mask regions by offering semantically consistent embedding results . We
developed the PSA module to further promote the enrichment of local texture details.
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We conducted extensive qualitative and quantitative comparisons against the leading-
edge solutions. The validity analysis and ablation learning demonstrate that our GS-Net
outperforms the existing solutions over the Places2 and CelebA datasets.
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Abstract. Arrhythmia is one of the most common types of cardiovascu-
lar disease and poses a significant threat to human health. An electrocar-
diogram (ECG) assessment is the most commonly used method for the
clinical judgment of arrhythmia. Using deep learning to detect an ECG
automatically can improve the speed and accuracy of such judgment. In
this paper, an improved arrhythmia classification method named CNN-
BiLSTM, based on convolutional neural network (CNN) and bidirec-
tional long short-term memory (BiLSTM), is proposed that can auto-
matically identify four types of ECG signals: normal beat (N), prema-
ture ventricular contraction (V), left bundle branch block beat (L), and
right bundle branch block beat (R). Compared with traditional CNN and
BiLSTM models, CNN-BiLSTM can extract the features and dependen-
cies before and after data processing better to achieve a higher classi-
fication accuracy. The results presented in this paper demonstrate that
an arrhythmia classification method based on CNN-BiLSTM achieves a
good performance and has potential for application.

Keywords: CNN - BiLSTM - ECG - Arrhythmia - Classification

1 Introduction

Cardiovascular disease is a serious problem with a high fatality rate and can
easily lead to multiple complications, posing a significant threat to human health
[1-3]. Arrhythmia is one of the most common types of cardiovascular disease;

This work was supported by the National Natural Science Foundation of China
(Approval Number: 61903207), Shandong University Undergraduate Teaching Reform
Research Project (Approval Number: M2018X078), and the Shandong Province Gradu-
ate Education Quality Improvement Program 2018 (Approval Number: SDYAL18088).
The work was partially supported by the Major Science and Technology Innovation
Projects of Shandong Province (Grant No. 2019JZZY010731).

© Springer Nature Switzerland AG 2021

C. S. Jensen et al. (Eds.): DASFAA 2021 Workshops, LNCS 12680, pp. 185-196, 2021.
https://doi.org/10.1007/978-3-030-73216-5_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73216-5_13&domain=pdf
http://orcid.org/0000-0001-9033-2540
http://orcid.org/0000-0002-3649-3113
http://orcid.org/0000-0002-7663-278X
https://doi.org/10.1007/978-3-030-73216-5_13

186 J. Zhang et al.

therefore, the automatic diagnosis of arrhythmia has attracted attention from
researchers. An ECG is widely used in the diagnosis of arrhythmia owing to
its noninvasive nature and because it provides a rich heart rhythm, thereby
making the diagnostic process convenient for medical workers [4,5]. However, an
ECG signal is nonlinear, and small changes might get ignored when an ECG is
viewed by the naked eye; moreover, an accurate diagnosis of arrhythmia manually
requires a 24h holter recording process, which is a cumbersome and lengthy
process [6-8]. Therefore, it is necessary to use computer algorithms to diagnose
arrhythmia. Additionally, the use of such algorithms can improve the accuracy
and robustness of the diagnosis and reduce the diagnosis time and workload.

With the development of information technology, many arrhythmia classifi-
cation methods that use computer algorithms have emerged currently, some of
which are traditional ECG algorithms. First, the ECG signals are extracted from
features [9,10] and then put into a support vector machine and random forest in
the classifier [11-14]. However, because the features are manually extracted, the
obtained information may not fully reflect the true ECG signal, leading to the
loss of important features. Therefore, to determine an arrhythmia, it is difficult
to obtain the best results based solely on the use of machine learning.

Compared with machine learning, deep learning provides greater advantages.
In deep learning, all hidden features are noticed, and no manual feature extrac-
tion is required [15]. In terms of ECGs, deep learning has also been applied to
many studies on ECG signals. Xiong et al. proposed a 16-layer one-dimensional
CNN to classify ECGs [16], and Acharya et al. proposed an 11-layer deep CNN
network as an ECG computer-aided diagnosis system to develop four different
types of automatic arrhythmia classification method [6]. Fujita et al. used a CNN
combined with raw data or a continuous wavelet transform for classification of
the four types of ECG signals [17]. Oh et al. used a CNN and a long short-term
memory(LSTM) model to diagnose N sinus rhythms, left bundle branch blocks,
right bundle branch blocks, premature atrial beats, and premature ventricular
beats. The ECG signal has achieved good classification results [7]. Zheng et al.
converted a one-dimensional ECG signal into a two-dimensional gray image and
used the combined model of a CNN-LSTM to detect and classify the input data
[18]. Several researchers have shown that the application of deep learning to
the classification of ECG signals significantly improves the performance of the
system. Various neural networks can extract complex nonlinear features from
the original data without manual intervention, thereby making the classification
results more ideal. However, learning the thinking mechanism of the ECG sig-
nal features with the high accuracy required for monitoring remains a difficult
task. CNNs and BiLSTM models [19] have their own advantages in terms of
feature extraction and dependency learning and they can be used for arrhyth-
mia monitoring, improving the accuracy and stability of automatic arrhythmia
detection.

In this paper, we proposed an end-to-end arrhythmia detection method to
utilize the advantages of the CNN and BiLSTM networks completely. The inno-
vative ECG classification algorithm is called CNN-BiLSTM, and it can identify
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Fig. 1. A normal ECG signal

and classify abnormal signals from ECG signals. The contributions of this study
are as follows.

I. The CNN provides advantages in terms of image processing, and the BilL-
STM model can compensate for the shortcomings of the CNN in terms of
context sequences. Therefore, the end-to-end network of the CNN-BiLSTM
can effectively improve the accuracy of arrhythmia detection.

II. Adaptive segmentation and resampling are adopted to align the heartbeats
of patients with various heart rates. Multi-scale signals that represent elec-
trocardiographic characteristics can be used as the input of the network to
extract multi-scale features.

III. Using a small amount of data as the input of the network reduces the com-
puting resources and yields good experimental results. This improves the
generalization of the network model and provides a high-precision classifica-
tion method to meet the needs of automatic detection.

Section 1 of this paper introduces the current research background on auto-
matic arrhythmia detection and the related research algorithms that have been
implemented. Section 2 describes the operations conducted prior to the exper-
iment and introduces the data and related network structure needed for the
experiment. Section 2.3 introduces the experimental details and results. Section 3
provides some concluding remarks and areas of future research.

2 Materials and Methods

2.1 Description of Dataset

In this study, an ECG signal was obtained from the MIT-BIH Arrhythmia
Database, which is an internationally recognized open-source database [20]. It
includes 48 ECG records of 47 subjects. Each record contains a 30 min ECG sig-
nal, digitized at a rate of 360 samples per second within a range of 10 millivolts
with an 11-bit resolution. Each record has an annotation file for the computer
to read. A complete normal ECG signal is shown in Fig. 1.
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Fig. 2. N, V, R, L signal performance

This study used some of the signals in the database, including the follow-
ing four types: normal heartbeat(N), ventricular premature beat(V), left bundle
branch block heartbeat(L), and right bundle branch block heartbeat(R). The
performances of the four signals are depicted in Fig.2. Ventricular premature
beats often manifest as QRS waves with wide deformities, and the direction of
T waves is opposite to the direction of the QRS waves. An L often shows that
the QRS wave becomes a broad R wave, and the time limit is extended. An R
often shows that the QRS wave is M-shaped, and the R wave is wide and has
notches.

Normal pulsation dominates the dataset; thus, we select a portion of a normal
pulsation and simultaneously balance the data of the remaining three types of
beats to avoid bias in the experimental results. When the ECG signal is evenly
distributed, the neural network exhibits a better convergence. Therefore, we
normalized the experimental data. In this study, 80% of the data were used for
training, and 20% were used for testing.

2.2 Networks

Convolutional Neural Network. CNN is one of the most commonly used
neural networks in the field of image processing [21-23]. It mainly includes an
input layer, a convolution layer, a pooling layer, and an output layer. Among
them, the convolutional layer and pooling layer are the core of the CNN. The
CNN used in this study contains four convolutional layers and four pooling layers.
Its architecture is shown in Fig. 3. The fully connected layer is not connected
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here, and the output data are input into the subsequent BiLSTM network to
continue the training.

The CNN is connected to the input layer through the convolution kernel.
The convolution kernel performs point multiplication through a sliding win-
dow to achieve multi-scale feature extraction. Simultaneously, the weight shar-
ing mechanism of the convolutional layer makes it more effective for feature
extraction, thereby significantly reducing the number of free variables that need
to be learned. The pooling layer follows the convolutional layer and performs a
downsampling to reduce the feature size [24]. After going through several con-
volution and pooling layers, the features obtained are converted into a single
one-dimensional vector for classification.

Bidirectional Long and Short-Term Memory Network. An LSTM net-
work is an improved model of a cyclic neural network. It not only transmits
forward information but also processes the current information. An LSTM net-
work mainly includes three control gate units, i.e., an input gate, a forget gate,
and an output gate. The input gate controls how much input information needs
to be kept at the current moment, whereas the forget gate controls how much
information needs to be discarded at the previous moment. The output gate
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Fig. 4. BiLSTM hidden layer structure diagram

controls the amount of information that needs to be output to the hidden state
at the current moment. The hidden layer structure is shown in Fig. 4.

Assuming that a given input sequence is represented by X, its update state
has the following formula:

fo="06Wylhi—1, Xi] +by) (1)
i =0 (Wilhi—1, Xo] + bi) (2)
Jt = tanh(We [hi—1, X¢] + be) (3)
Or =06 (W, [he—1, X+¢] + o) (4)
hi = Oy * tanh(C}) (5)

Here, C; is the state information of the memory unit, j; is the accumulated
information at the current moment, W is the weight coefficient matrix, b is the
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bias term, sigma is the sigmoid activation function, and tanh is the hyperbolic
tangent activation function.

As shown in Fig. 4, the first layer is a forward LSTM, and the second layer is
a backward LSTM. The final output is calculated using the following formula:

hy = ahi + Bh? (6)

In this formula, h{ is the output of the forward LSTM layer, which will be
is from 21 to x; as input; A} is the output of a backward LSTM layer, which
is from x; to x1; o and (§ are the sequence control of the forward LSTM and
backward LSTM factors (o + 5 = 1),; respectively; and h; is the element sum
of two unidirectional LSTM factors at time t.

Proposed Architecture. In the aforementioned networks, CNNs have signif-
icant advantages in terms of image processing. The CNN model extracts local
features in the input signal through a sliding convolution kernel, and the depen-
dence of the data is difficult to learn. BiILSTM can learn the forward and back-
ward information of the feature vector extracted by the CNN by controlling the
gate unit; thus, the feature extraction is more perfect. In this paper, an ECG
signal classification model based on CNN-BiLSTM is proposed. The ECG signal
is preprocessed and input into the model. The CNN obtains the local features
of the ECG signal through the convolutional and pooling layers and then places
these features into the BiILSTM. The hidden layer obtains the best feature infor-
mation. The learning rate used by the network is 0.01, and the batch size is 16.
Finally, the data are divided into four categories, i.e., N, V, R, and L, through
the fully connected layer and the softmax function. The network structure of
CNN-BiLSTM is shown in Fig. 5.
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2.3 Experimental Detail and Results

The research described in this paper is based on the TensorFlow neural network
framework. Before the start of the experiment, the data label is converted into
the corresponding one-key heat carrier. This study uses the same amount of N,
V, R, and L data for the experiments, and the signal processing of the dataset is
random. The parameters of the network are optimized, and the Adam updater is
used to update the weights to obtain the best classification results. Table 1 lists
the relevant parameters of the experimental network. Additionally, the classifi-
cation results of a single CNN network and a BiLSTM network are compared
with the experimental results of the composite network proposed herein.

To estimate the performance in terms of heartbeat classification, the perfor-
mance of the model is usually accurately evaluated [24-27].

Table 1. The parameters of the model

Network layer type | Filters | Kernel size | Strides
Input layer - - -
Conld 4 3 1
poolingld - 5 5
Con2d 8 5 1
pooling2d - 5 5
Con3d 16 7 1
pooling3d - 5 5
Con4d 32 9 1
pooling4d - 5 5
BiLstm - - -
Full-connected layer | — - -
Softmax - - -

Figure 6 presents the loss function curve of the experiment using three differ-
ent networks, i.e., a CNN, BiLSTM, and CNN-BIiLSTM, under the same data.
It can clearly be observed that the convergence effect of the proposed CNN-
BiLSTM network is better than that of the two single networks.

Figure 7 presents the overall accuracy of the three networks, CNN, BiLSTM,
and CNN-BIiLSTM, and the classification accuracy for the four types of data.
The data volume of the specific classification is provided in Tables2, 3, 4. It
can be observed that the classification accuracy of the CNN-BiLSTM network
is higher than CNN and BiLSTM.

As mentioned previously, the CNN-BIiLSTM model achieves an overall clas-
sification accuracy of 99.69% on the test set, where N is 99.75%, V is 99.56%, R
is 99.92%, and L is 99.52%.
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Table 3. Classification results of BiLSTM

N \% R L

N | 3980 2 1 1
V| 12]3864| 42| 110
R 19 | 3997 5
L 66 13900

Table 4. Classification results of CNN-BiLSTM

N Vv R
3996 9 1/0
4041 2|15

o< 2
—

1 17 13969

In this study, by combining the deep learning model of a CNN and an LSTM
to extract ECG features, the features can be automatically extracted, and a
higher accuracy can be achieved.

Tableb presents a series of scientific studies based on ECG signals with
regard to the MIT-BIH Arrhythmia database. We can observe that, compared
with other deep learning methods, the proposed CNN-BiLSTM network model
improves the input signal and network structure of the model.

Table 5. Comparison with previous work on the MIT-BIH Arrhythmia database

Author (year) Database | Classifier Accuracy (%)

Acharya et al. (2016) [6] AFDB CNN Net A:92.5
MITDB Net B:94.9
CUDB

Fujita et al. (2019) [17] |AFDB | CNN 98.45
MITDB

Oh et al. (2018) [7] MITDB | CNN and LSTM | 98.1

Zheng et al. (2020) [18] |MITDB |CNN and LSTM | 99.01

Proposed model (2020) | MITDB | CNN-BiLSTM 99.69

3 Conclusion

At present, arrhythmia is one of the most common types of cardiovascular dis-
ease, and it seriously endangers human health. In this paper, an automatic sys-
tem for arrhythmia classification was proposed based on a CNN-BiLSTM. This
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network can automatically extract and classify ECG signal features, thereby
significantly reducing the workload of doctors. The network includes four convo-
lutional layers, four pooling layers, a BiLSTM layer, and a fully connected layer
and has achieved good classification performance. This classification method
reduces the computing resources required and achieves a high accuracy; thus, it
can be used as an auxiliary diagnostic method for clinical arrhythmia detection.
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Abstract. Diversity of structure and classification are difficulties for information
security data. With the popularization of big data technology, cross-domain text
classification becomes increasingly important for the information security domain.
In this paper, we propose a new text classification structure based on the BERT
model. Firstly, the BERT model is used to generate the text sentence vector, and
then we construct the similarity matrix by calculating the cosine similarity. Finally,
the k-means and mean-shift clustering are used to extract the data feature structure.
Through this structure, clustering operations are performed on the benchmark
data set and the actual problems. The text information can be classified, and the
effective clustering results can be obtained. At the same time, clustering evaluation
indicators are used to verify the performance of the model on these datasets.
Experimental results demonstrate the effectiveness of the proposed structure in
the two indexes Silhouette coefficient and Calinski-Harabaz.

Keywords: Text classification - BERT model - K-means

1 Introduction

Information security is related to the survival and core interests of individuals, enterprises
and even a country. The issue of information security is without worry, and national secu-
rity and social stability are also guaranteed. An important aspect of information security
technology is the efficient processing and classification of the existing massive infor-
mation. After sorting out the data, it is convenient for managers to search and check
regularly. The traditional text classification method, which usually takes words as the
basic unit of text, is not only easy to cause the lack of semantic information, but also easy
to lead to the high dimension and sparsity of text features. At present, the application of
text classification technology is mostly machine learning. This method usually extracts
TF-IDF (Term Frequency — Inverse Document Frequency, word frequency, inverse doc-
ument frequency) or word bag features, and then trains LR (Logistic Regression) model.
There are many models, such as Bayes, SVM (Support Vector Machine), etc. How-
ever, the generalization ability of text classifiers based on traditional methods tends to
decrease when processing text data with diverse features. In recent years, deep learning
technology has developed rapidly and has been applied in various fields with remarkable
results. Deep learning has been widely used with its unique network structure, which
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can improve the effect of text preprocessing and solve the current problems of text
classification.

Text classification [1] is a basic task in natural language processing and the most
important step to solve the problem of text information overload, which can sort out and
classify the existing massive text resources. The processing of text classification can be
divided into text preprocessing, text feature extraction, classification model construc-
tion and so on. Classic text classification algorithms such as NB (Naive Bayes), KNN
(K-Nearest Neighbor), DTree (Decision Tree), AAC (Arithmetical Average Centroid),
SVM (Support Vector Machine), etc. Text classification technology has an early origin
and has experienced a development process from the expert system to machine learning
and then to deep learning. The development of deep learning improves the high dimen-
sion and sparsity of traditional machine learning in text classification, which leads to
more effective text representation methods. After Bengioetal (2003) proposed the for-
ward Neural Network (feed-forward neural network, FNN) language model, its lexical
vector measures the semantic correlation between words. In 2013, Mikolov proposed
the Word2vec framework, which mainly uses the deep learning method to map words to
low-dimensional real vector space, and captures semantic information of words by cal-
culating the distance between word vectors. The deep learning-based text classification
method uses lexical vectors to express the semantic meaning of words, and then obtains
the semantic representation of text through semantic combination. The methods of a
semantic combination of neural network mainly include convolutional neural network,
cyclic neural network and attention mechanism, etc. These methods rise from semantic
representation of words to semantic representation of text through different combination
methods.

The BERT [2] (Bidirectional Encoder Representations from Transformers) model is
the language presentation model released by Google in October 2018, and the replace-
ment of the Word2Vec model has become a major breakthrough in NLP (Natural Lan-
guage Processing) technology. BERT model in the top level machine reading compre-
hension test SQuADI1.1 showed remarkable achievements: two indexes are better than
others, and it also makes the best grades in 11 different NLP tests, including pushing
GLUE benchmark to 80.4% absolute improvement (7.6%), MultiNLI accuracy reached
86.7% (absolute improvement rate 5.6%). BERT model is actually a language encoder,
which can transform the input sentence or paragraph into feature vectors. Word embed-
ding is a way to map words to Numbers, but a simple real number contains too little
information, generally we map to a numerical vector. In the process of natural language
processing, it is necessary to retain some abstract features of the language itself, such
as semantics and syntax. Throughout the development history of NLP, many revolu-
tionary achievements are the development achievements of word embedding, such as
Word2Vec, ELMo and BERT, which have well preserved the features of natural language
in the transformation process.

This paper uses the BERT model in the process of generating word vectors, and then
calculates the cosine similarity to generate the similarity matrix. In order to solve the
problem of massive information management and improve the efficiency of managers,
we have designed a set of research plans. First, we extract the information in the dataset
and combine the BERT model to complete the construction of the text word vector, and
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then create the text similarity matrix. On the premise of ensuring accuracy, reduce the
time loss in the community discovery process, and then perform clustering operations
through k-means and mean-shift, and finally achieve the purpose of classifying papers.

2 Related Work

2.1 BERT Model

BERT [3] is a language representation model based on deep learning. The emergence
of BERT technology has changed the relationship between pre-trained word vectors
and downstream specific tasks. The word vector model is an NLP tool that transforms
abstract text formats into vectors that can be used to perform mathematical computations
on which NLP’s task is to operate. In fact, NLP technology can be divided into two main
aspects: training text data to generate word vectors and operating these word vectors
in the downstream model. At present, the technology to generate word vectors mainly
includes word2VEc, ELMo, BERT and other models. The core module of BERT model
is transformer, and the core of transformer is the attention mechanism. The attention
mechanism draws lessons from human visual attention, which enables the neural network
to focus on a part of the input, that is, it can distinguish the influence of different parts
of the input on the output. BERT’s network architecture uses a multi-tier Transformer
structure, which abandons the traditional RNN and CNN. The transformer is an Encoder-
Decoder structure, which consists of several encoders and decoders stacked.

BERT Model Input
As shown in Fig. 1 below, BERT’s input adds “CLS” at the beginning of the first sentence
as the beginning of the text, and “SEP” as the end.

Token Embeddings: To represent the word vector, each word is converted into a
vector by establishing a word-to-word scale, which is used as the input representation
of the model.

Segment Embeddings: This part is used to distinguish two sentences, because the
pre-training needs to do the task of classifying two sentences.

Position Embeddings: This part is obtained through model training.

s () () ) () () ) ) ) (o) (o)

Token

Embeddings IE[CLS] Emy ‘ Edog H EIS Ecute E[SEP] | Ehe H Elwkes Eplay ’ E"lng IE[SEP]
+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+

Segment

nssangs | En| [ Ea || Ea || B || B0 || B0 || B |[ & || & || & || & |
-+ + + + + + + + + + +

Position
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Fig. 1. BERT model input.
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BERT Model Pre-training Tasks

1. Masked Language Model (MLM)
In order to train in-depth both transformer representation, BERT [4] model adopts
a simple approach: That is, on the model input text, the input words are randomly
screened, and then the rest of the words are used to predict which part of the input is
screened. For the masked text, a special symbol [MASK] is used 80% of the cases, a
random word is used in 10% of the cases, and the original word is left unchanged in
10% of the cases. After this operation, the model does not know whether the words at
the corresponding position are correct or not when predicting a word, which makes
the model have to rely more on the context information to predict the word, and at
the same time, the model has a certain ability to correct errors.
II. Next Sentence Prediction

The work of the Next Sentence Prediction is as follows: In any two sentences of a
given text, determine whether the second sentence follows the first sentence in the
original dataset. In other words, when inputting sentences A and B, B is 50% likely
to be the next sentence of A, and 50% may be from anywhere in the text. Consider
only two sentences and decide if they are the preceding and following sentences in an
article. In the actual pre-training process, 50% correct sentence pairs and 50% wrong
sentence pairs are randomly selected from the text corpus for training. Combined
with the Masked LM task, the model can more accurately describe the semantic
information of the sentence and even the text level.

The BERT [5] model performs joint training on the Masked LM task and the Next
Sentence Prediction task, so that the vector representation of each word output by the
model can describe the overall semantic information of the input text (single sentence
or sentence pair) as comprehensively and accurately as possible. Provide better initial
values of model parameters for subsequent fine-tuning tasks.

2.2 Matrix Preprocessing

Given graph H = (K, L), K = {k1, k2, ..., k,}. K represents the node set in the graph,
and L represents the edge set in the graph. N(u) is the set of neighbor nodes of node u.
Suppose matrix A = [a;;], ., is the adjacency matrix of graph H, and the corresponding
elements of the matrix indicate whether there is an edge between two points in graph H.

For example, a;; is 1 to indicate that there is an edge between k; and k; in graph H.
If a;; is 0, it means two points. There is no edge in between k; and k; in graph H.

Similarity matrix: For a network graph H = (K, L), the similarity matrix § = [s;] .,
is calculated through the similarity of nodes between two points in the graph H. The
elements in the matrix are the similarity between two nodes.

Similarity calculation-cosine similarity [6]: Cosine similarity, also known as cosine
distance, uses the cosine of the angle between two vectors in a vector space as a measure
of the difference between two individuals. The closer the cosine value is to 1, the closer
the angle is to 0°, that is, the more similar the two vectors are. This is called “cosine
similarity” [7].
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We denote the angle between two vectors, vector a and vector b as 6, then the law
of cosine is used to get similarity.

n
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2.3 K-means Clustering

K-means [8] clustering is an unsupervised learning algorithm. Assuming that the existing
training samples are {x(l), .. ,x(’”)}, and x) € R", The main steps of the K-means
algorithm are as follows.

Step 1. Randomly select k points as cluster centers, denoted as: up, up, - - - uy € R";

Step 2. Traverse all the data and divide each data into the nearest center point, thus
forming k clusters;

Step 3. Calculate the average value of each cluster as the new center point;

Step 4. Repeat Step 2 and Step 3 until the position of the cluster center no longer
changes or the iteration reaches a certain number of times.

In order to solve the inaccuracy problem of clustering of a small number of sam-
ples, the K-means algorithm adopts an optimized iterative operation, and iteratively
corrects and prunes the clusters that have been obtained to determine the clustering of
some samples, which optimizes the places where the initial supervised learning sample
classification is unreasonable. At the same time, it can reduce the total clustering time
complexity for some small samples.

2.4 Mean-Shift Clustering

The core of mean-shift [9] algorithm can be understanded by name, mean (mean), shift
(offset), in short, there is a point, there are many points around it, we calculate the point
and move to each point. The sum of the required offsets is averaged, and the average
offset is obtained. (The direction of the offset is the direction where the surrounding
points are densely distributed) The offset includes the size and direction. Then the point
moves in the direction of the average offset, and then uses this as a new starting point to
iterate continuously until a certain condition is met.
The algorithm flow of mean-shift [10] is shown as follows.

Step 1. Select the center point x and make a high-dimensional sphere with radius h (if
we are in image or video processing, it is a 2-dimensional window, not limited
to a sphere, it can be a rectangle), and mark all points that fall into the window
as Xx;.

Step 2. Calculate the mean-shift vector. If the value is less than the threshold or the
number of iterations reaches a certain threshold, stop the algorithm, otherwise
update the dot and continue to Step 1.
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3 Model Specification

The specific algorithm design of this paper is as follows.

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Step 6.

Step 7.

Use BERT pre-training model to build BERT server and client on the device.
Randomly select from the two original datasets to get two new datasets C and
E.

Input C and E into the BERT model to generate the corresponding vector file.
Calculate the generated vector to get the cosine similarity, and at the same time,
create the similarity matrix M.

Clustering by k-means and mean-shift. The input parameters are the similar-
ity matrix and the number of communities, and the clustering results of the
corresponding communities are obtained, namely RES.

silhouetteScore(M, RES) — INDyijihouetteScore: Obtain the value of silhouette
coefficient.

calinski_harabaz_index(M, RES) — INDcyjinskHarabaz: Obtain the value of
Calinski-Harabaz Index.

Algorithm:

Input:information dataset C and E
Output:clustering result set RES1 and RES2
Evaluation index result:INDyiinoucttescore a1d INDCalinskiHarabazindex
1 BERT(C,E) - {C,, E,}
2 Createsimilaritymatrix(cv,b-v) - {MCﬂ ME}
3 For i:
4 Mean — shift(M;) — res1; and K — means(Mg) — res2;
5 RES1.append(resl;) and RES2.append(res2;)
6 End for
7 silhouetteScore(M, RES) — INDgjihouettescore
8 calinski_harabaz_index(M, RES) = IND yjinskHarabaz

4 Experimental Analysis

4.1 Experimental Design

I. Experimental environment
Processor: Inte(R) Core(TM) 15-8300H CPU@2.30GHz; RAM: 8GB; Operating
system: windows server 2012 R2 standard:IDE: pycharm.

II. DataSet
This experiment uses two datasets (toutiao_cat_data and CORD-19-research-
challenge) for testing. In this experiment, for the above two datasets, 1,024 and
2,048 data were randomly selected to obtain the experimental results.

The URLs of datasets are listed as follows.

The URL of toutiao_cat_data is addressed as https://github.com/aceimnorstuvwxz/
toutiao-multilevel-text-classfication-dataset.

The URL of CORD-19-research-challenge is addressed as https://www.kaggle.com/
allen-institute-for-ai/CORD-19-research-challenge.
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4.2 Evaluation Indices

Silhouette coefficient [11]: Silhouette coefficient is an index used to measure the effec-
tiveness of clustering. It can describe the sharpness of each category after clustering.
The profile coefficient contains two factors: cohesion and separation.
Cohesion: reflects the closeness of a sample point to the elements in the class.
Separation: reflects the closeness of a sample point to elements outside the class.
The formula of the silhouette coefficient is as follows.

sy = b0 —at)

" max{a(i), b))}’ @

Among them, a(i) represents the cohesion degree of the sample points, and the
calculation formula is as follows.

a(i) = n%l Z distance(i, j). (3)

Where j represents other sample points in the same class as sample i, and distance
represents the distance between i and j. So the smaller a(i), the tighter the class. The
calculation method of b(i) is similar to that of a(i). The value range of the silhouette
coefficient S is [—1, 1]. The larger the silhouette coefficient, the better the clustering
effect.

Calinski-Harabaz(CH) Index [12]: The clustering model is an unsupervised learning
model. Generally speaking, the clustering result is that the closer the data distance
between the same categories, the better, and the farther the data distance between different
categories, the better. The CH index measures the tightness within a class by calculating
the sum of the squares of the distances between each point in the class and the center
of the class, and measures the separation of the dataset by calculating the sum of the
squares of the distances between various center points and the center of the dataset. The
CH index is obtained from the ratio of separation and compactness. Therefore, the larger
the CH, the tighter the cluster itself, the more dispersed the clusters, that is, the better
clustering results. The CH index is calculated as follows.

s(k) = tr(By) m—k

W) k=17 @)

Where m is the number of training set samples, k is the number of categories, Bk is
the covariance matrix between categories, Wy is the covariance matrix of the data within
the category, and tr is the trace of the matrix. It can be seen from the above formula
that the smaller the covariance of the data within the category, the better, the larger the
covariance between categories, the better, so the Calinski-Harabaz score will be higher.

4.3 Analysis of Experimental Results

Perform clustering operations on the two datasets respectively, and combine the BERT
model to complete the construction of the text word vector matrix to obtain the similarity
matrix. Under the premise of ensuring accuracy, reduce the time loss in the community



204 K. Zhang et al.

discovery process, and finally achieve the purpose of paper classification. The analysis
results are discussed as follows.

CORD-19-research-challenge Dataset

On this dataset, we selected 2,048 thesis topics, input the BERT model to generate word
vectors for the topics, calculate the cosine similarity between vectors, and generate
the similarity matrix that is 2,048%2,048. Then the mean-shift clustering is used for
classification. Finally, use Silhouette coefficient and Calinski-Harabaz Index evaluate
the performance of the process. The specific results are as follows (Fig. 2):

1000

1250

1500 250
1750, 0

Fig. 2. Three-dimensional similarity matrix of the CORD-19-research-challenge dataset.

The conclusion is obtained by using Mean-Shit clustering: Fig. 3 uses the contour
coefficient to evaluate the clustering effect. It can be seen from the figure that when the
number of communities decreases, the clustering effect is obviously better, and the effect
of categorizing papers is also the best at this time; Fig. 4 uses the Calinski-Harabaz index
to analyze the data. When the community increases, the CH indicator gradually becomes
smaller. According to the nature of the evaluation index, it can be known that the steeper
the curve, the better the classification effect. From the general trend of the curve in the
figure, it can be estimated that then the number of classification communities is about
2, the classification effect is the best and the research significance is the greatest.
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Fig. 3. The analysis result of the evaluation index using the silhouette coefficient in the CORD-
19-research-challenge dataset.
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Fig. 4. The analysis results of the evaluation indicators using the Calinski-Harabaz Index in the
CORD-19-research-challenge dataset.

Toutiao_cat_data Dataset

The original dataset contains 382,688 pieces of information, which are distributed in
15 categories. We selected 1,024 pieces of data for experimentation. The operation is
the same as the previous dataset, except that when clustering the data, we use K-means
instead of mean-shift. Similarly, at the end of the experiment, Silhouette coefficient and
Calinski-Harabaz Index are used to evaluate the classification effect of the process. The
specific results and analysis are as follows (Fig. 5).
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Fig. 5. Three-dimensional similarity matrix of the toutiao_cat_data dataset.
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Fig. 6. The analysis result of the evaluation index using the silhouette coefficient in the
toutiao_cat_data dataset.

The conclusion is obtained by using K-means clustering: Fig. 6 also uses the contour
coefficient to evaluate the clustering effect. From the curve in the figure, it can be known
that the smaller the number of communities, the better the clustering effect. At this time,
the data is also The effect of centralized information classification is the best; Fig. 7
uses the Calinski-Harabaz index to evaluate the clustering results. When the number of
communities increases, the CH indicator gradually becomes smaller, and the steeper the
curve, the better the classification effect. It can be seen from the figure that when the
number of classification communities is about 3, the classification effect is the best.
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Calinski-Harabaz Index
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Fig. 7. The analysis results of the evaluation indicators using the Calinski-Harabaz Index in the
toutiao_cat_data dataset.

5 Conclusions

This paper uses a relatively new word vector model to process the text data and achieves a
more optimistic classification effect through a series of operations. This method improves
the accuracy of classic clustering algorithms, such as K-means, mean-shift, and so on.
Firstly, the BERT model is used to extracts the title of the paper in the CORD-19-research-
challenge dataset and the information in the dataset--toutiao_cat_data to complete the
generation of the word vector, and at the same time, construct the cosine similarity
matrix. Then on the premise of ensuring accuracy, the time loss in the community
detection process is reduced. Finally, K-means and mean-shift are used for clustering
on the two datasets, and finally, the purpose of text classification is achieved. Through
the analysis of the clustering effect of the dataset, for the CORD-19-research-challenge
dataset, the experimental results show that when the number of communities is 2, the
clustering effect is the best. For the dataset-- toutiao_cat_data, it can be concluded that
when the number of communities is 3, the clustering effect is the best. we can achieve the
experimental purpose well, which provides an operational basis for information security
technology to a certain extent, and need to improve the clustering operation, so as to
achieve the best classification effect of the results.
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opment Program of China (No. 2018 YFB1201500) and Natural Science Foundation of China (No.
61773313).
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Surface Defect Detection Method of Hot Rolling
Strip Based on Improved SSD Model

Xiaoyue Liu and Jie Gao®
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Abstract. In order to reduce the influence of surface defects on the performance
and appearance of hot-rolled steel strip, a surface defect detection method com-
bining attention mechanism and multi-feature fusion network was proposed. In
this method, the traditional SSD model was used as the basic framework, and
the ResNet50 network after knowledge distillation was selected as the feature
extraction network. The low-level features and high-level features were fused and
complementary to improve the accuracy of detection. In addition, channel atten-
tion mechanism was introduced to filter and retain important information, which
reduced the network computation and improves the network detection speed. The
experimental results showed that the accuracy of RAF-SSD model for surface
defect detection of hot rolled steel strip was significantly higher than that of tradi-
tional deep learning models, and the detection speed was 12.9% higher than that
of SSD model, which can meet the real-time requirements of industrial detection.

Keywords: Hot rolled strip - Surface defect - SSD model - ResNet50 - Feature
fusion - Channel attention mechanism

1 Introduction

Hot rolled steel strip is an important material in industrial production, widely used in
aerospace, machinery manufacturing, construction and other fields. Its surface quality
is very important to the aesthetics, performance and durability of products, and will
directly affect the evaluation of product quality level [1]. However, due to the poor
actual production environment and complex technological process, hot rolled steel strip
is prone to be affected by rolling equipment, technology, raw materials and external
environment in the production process, thus forming various types of defects on the
surface [2].

The traditional surface defect detection methods of hot rolled steel strip are divided
into frequency-flash detection method and manual detection method, but these two meth-
ods are non-automatic detection methods, mainly rely on human eyes for detection.
However, in the production process, human eyes are very easy to produce fatigue, and
it is impossible to accurately detect the type and grade of defects, resulting in high false
detection rate and false detection rate, low detection efficiency and other problems. The
more advanced detection methods of hot rolled steel strip include infrared detection
method and computer vision detection method. Although the former detection speed is

© Springer Nature Switzerland AG 2021
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faster and the accuracy is higher, it cannot realize the accurate classification of the sur-
face defects of hot rolled steel strip. The latter has strong defect recognition ability, but
the algorithm flow is complex and the robustness is poor [3]. For this reason, the rapid
and accurate detection of hot rolled steel strip has become the focus of many domestic
and foreign research institutions.

In recent years, with the continuous development and progress of deep learning, a
lot of target detection algorithms have emerged. At present, target detection networks
based on deep learning can be structurally divided into two categories [4]: one-stage
models and two-stage models. The core idea of the two-stage models represented by
RCNN, Fast-RCNN and Faster-RCNN is based on the method of candidate region. The
candidate box of the target may exist, and then the target detection is further carried
out. The one-stage models represented by SSD and YOLO directly predict and classify
target locations on the basis of network feature extraction. These algorithms have been
improved by researchers and applied to defect detection in various fields, and good
results have been achieved. Based on SSD model, Jiang Jun combined void convolution
and feature enhancement algorithm to construct AFE-SSD model, which significantly
improved the detection accuracy of small targets [5]. Zhu Deli used MobileNet as the
feature extractor of SSD model, which improved the feature extraction capability and
the robustness of the model [6]. Wu Shoupeng improved the Faster-RCNN model by
using the bidirectional feature pyramid to enhance the detection capability of multi-scale
defects [7]. Although the above methods effectively improve the detection accuracy, they
also increase the number of parameters for the model, which makes it difficult for the
detection speed to meet the real-time detection requirements.

From the detection accuracy and speed of the surface defect of hot rolled steel
belt, considering two aspects in this paper, on the basis of the SSD model, use after
knowledge distilling ResNet50 replaced VGG - 6 as a network of feature extraction, and
the characteristics of shallow and deep characteristics of fusion, make the characteristics
of shallow semantic information is not enough rich up, then get the characteristics of the
image through the channel attention mechanism for information filtering, so as to realize
the effective use of important information, and reduce the computational complexity.
The results showed that the average accuracy of RAF-SSD model was 71.4%, which
was 1.6% and 1.8% higher than SSD model and YOLO-V3 one-stage detection model,
respectively, and 1.0% higher than the two-stage detection model Faster RCNN model.
The detection speed of RAF-SSD model was 12.9% higher than that of the fastest SSD
model among the three models. This indicates that the improved method in this paper can
effectively improve the extraction and utilization of feature information of the model,
and improve the accuracy and detection speed of the model for surface defects of hot
rolled steel strip, which can meet the requirements of the industry for real-time and
accurate detection.

2 SSD Model and its Improved Method

2.1 SSD Model

SSD target detection model [8] is a multi-classification single-order target detection
model proposed on the basis of drawing on the Anchor generation method of Faster



Surface Defect Detection Method of Hot Rolling Strip 211

RCNN [9] and the mesh division idea of YOLO [10]. This model maintains the detection
speed of the one-stage model and is equivalent to the two-stage deep learning target
detection model in detection accuracy. It is one of the mainstream deep learning target
detection model at present.

10%10%512 2%

N ppy 19X19%1024 19X 19X 1024
3003003 38X58A512 Additional network

Basic network

Fig. 1. SSD model structure diagram

The structure of SSD model is shown in Fig. 1, which takes VGG-16 as the basic
network for feature extraction of input images, and adds an additional 4-level convolu-
tional layer. The input image will generate a series of characteristic maps through the
network. The characteristic maps of Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2,
Conv11_2 are mainly used for the final prediction. Finally, through detection module,
classification and regression calculation are carried out on each feature image respec-
tively to obtain the type of detection target and the position of prediction box in the
feature image. Finally, the results obtained from the detection module are integrated,
and the final detection results are obtained by the method of non-maximum suppression.

2.2 Knowledge Distillation Algorithm

Knowledge distillation is an effective model compression method by transferring learn-
ing ideas in neural networks and obtaining smaller models that are more suitable for
reasoning through trained larger models [11]. The model introduced by knowledge dis-
tillation algorithm can be divided into teacher model and student model, among which
the teacher model has large number of parameters, strong feature extraction ability and
high accuracy. The number of student model parameters is relatively small, but the accu-
racy of individual training is insufficient, so it is difficult to meet the actual needs. The
training method of knowledge distillation is to guide the training process of students’
network through teacher network, so as to extract the soft knowledge of large teacher
model into small student model. The knowledge distillation algorithm uses the teacher
model’s soft output to punish the student model because the soft output can provide more
information from the native network. Therefore, the soft output of the teacher network is
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used to train and compress the student model in the form of a soft label. Different from
the traditional hard label, which only uses “0” and “1” to label the data, the soft label
uses the data between 0 and 1 to label the picture, which can well represent the distance
between classes.

The principle of knowledge distillation algorithm is shown in Fig. 2. In the knowledge
distillation training of the student model, a network model with more parameters and
higher accuracy should be trained firstly, and the soft label of the training set obtained
by the model and the real label should be used as the distillation training object together,
and the parameter a is selected to adjust the proportion of the parameter. After the
training is completed, the student model is used to make predictions. The loss function
of knowledge distillation of student model is shown in Eq. (1):

Lip = aT*Dk1(QF, OF) + (1 — @) Lee(Qs, Yuure) (D

« is the weight of two parts loss function parameter, used to adjust the two partial loss
values of weights of back-propagation gradient; T is the temperature coefficient; Dgy, is
the KL divergence loss function; Q7 and QF corresponds to the model of the teachers and
students respectively model improved Softmax functions softening the output results;
L., stands for cross entropy loss function; Qs is the output of the student model after
passing the Softmax function; y;.,, is the true tag value.

Training Total loss Prediction
process process

[ Soft Tabel | Soft Iabel || Soft Iabel k—{ Hard Iabel |

[

Softmax Softmax

1T 1/T [ Softmax Softmax
Teacher Student model Student
model model

(] o]

Fig. 2. Schematic diagram of knowledge Distillation Algorithm

Equation (1) contains two components. One is the KL divergence loss function of the
student model and the teacher model, which is used to calculate the distance between the
output of the student model and the teacher model. The other part is the cross-entropy
loss value between the student model and the real label, and the weighted sum of these
two parts is used as the loss function of distillation training.

In the training process of knowledge distillation, a temperature coefficient T can be
introduced into the Softmax function to obtain a softer label. The improved Softmax
function is shown in Eq. (2).
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Where, z; is the output value of the jth neuron; S; is the Softmax output value of z;.The
size of T can change the distribution of the output results of the neural network. The
lager the value of T, the smoother the probability distribution. Therefore, in the training
of knowledge distillation, the timely adjustment of T value can control the softening
degree of the output results of teacher model and student model in the loss function.

2.3 Residual Network

Although the deepening of the network can improve the ability of feature extraction, the
simple stacking of network layers will lead to gradient explosion, gradient disappearance
and network degradation, which is reflected in the decline of training accuracy and test
accuracy.

He proposed Residual Network (ResNet) to solve the problem of network degradation
[12]. The principle of each residual learning module in the residual network is shown in
Fig. 3.

X

40 R o

Residual part: F(X)—

B

RS =TT D

Xin1=F(X)+X

Fig. 3. Flow chart of attention mechanism algorithm

X represents the residual block input, and the output of the real for F'(X7), expect
to get the output of X1, each module will also enter superimposed on the output in
the form of direct mapping, but in the need to use the output of the ReLU function
activated. After superposition, the output into F'(X1) + X1, network learning content into
F(X1) = X141 — Xj residual form. If the network layer number more than the optimal
number of residual network will map the extra layer of training for F(X) = 0, namely
the equal identity map layer to the input and output, so it can avoid the phenomenon of
network degradation. Moreover, the residual network simplifies the learning objective
and makes the network training converge more quickly.

The commonly used ResNet models are ResNet50, ResNet101, ResNetl152, etc.
Using knowledge distilling algorithm mentioned in the previous section, ResNet50 as
teacher model, ResNet101 as student model, to students in the model and the number
of smaller at the same time, through the supervision and training process, the teacher
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model transfer from “knowledge” ResNetl101 network to ResNet50 network, improve
the accuracy of the ResNet50, and get the KD-ResNet50 distillation after training the
student model.

2.4 Feature Fusion

SSD model is based on forward propagation convolutional neural network, which is
hierarchical and can extract feature graphs of different scales and different semantic
information. In general, the feature map extracted by shallow layer network has a high
resolution, but the receptive field corresponding to each feature point is small, and the
semantic information is poor, so it is suitable for predicting small objects. After multi-
layer convolutional pooling operation, feature images extracted from deep network have
low resolution, large receptive field corresponding to each feature point and rich semantic
information, which are suitable for prediction of large objects [13].

Most of the surface defects of hot rolled steel strip are small area defects, and the
proportion of the defects in pixels is low, which belongs to small target detection. Small
object detection requires that the features extracted by the network have high resolution
and rich semantic information, while SSD mdoel uses multi-scale feature map for target
detection, which leads to its unsatisfactory effect in small object detection. In view of
this situation, the fusion of shallow and deep feature images is considered to improve
the detection accuracy of small targets.

Filter 4X4
Input:2X2
Output:4X4
Filter 4X4
Input:2X2
Output:4X4

Fig. 4. Deconvolution principle diagram

However, the resolution of the feature images extracted by different convolution
layers may be different, so it is necessary to expand and shrink the convolution feature
images with different resolutions first, and then carry out feature fusion after unified res-
olution. Upsampling is a method of converting low-resolution images to high-resolution
images. In the convolutional neural network, the commonly used upsampling method is
transpose convolution, also known as deconvolution, but it only realizes the adjustment
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of size, rather than the reduction of value in the mathematical sense. Deconvolution
principle as shown in Fig. 4, assume that the input dimension of 2 x 2, in the process of
the deconvolution using convolution kernels of size is 4 * 4, set the padding value is 1,
as convolution kernels to 2 for pace in the input image, get four output window, the size
of 4 * 4 different output window overlapping part of overlay, then remove the outermost
layer of padding, the resulting output image size is 4 * 4, amplification for the input size
2 times.

Conv3_c
Conv3_x
Deconv 1X 1Conv
Fusion |
Conv9_2 Conv9_c

1X1Conv

Fig. 5. Feature fusion module

This paper refers to the deconvolution module of DSSD model [14], whose structure
is shown in Fig. 5. First, the up-sampling of high-level and low-resolution images is
carried out, and then the channel number is unified through 1 x 1 convolution layer.
After that, the adjusted deep and shallow feature maps are fused, and finally the ReLU
function is used for activation.

2.5 Attention Mechanism

The working principle of the attention mechanism [15] is to establish a new layer of
weight, and after learning and training, make the network learn more important areas
in each training image, and strengthen the weight of these areas, thus forming the so-
called attention. This paper uses the channel attention mechanism module including
three parts, namely extrusion, incentive and attention. The algorithm flow after adding
attention mechanism is shown in Fig. 6.
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‘ Input X ‘

1y

‘ Extrusion operation

‘ Attention mechanism ‘
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Incentive operation and
attention operation

/
| Output X* ‘

Fig. 6. Flow chart of attention mechanism algorithm

The principle of extrusion is shown in Eq. (3).

H W

22 X))
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HxW

Equation (3) is actually a global average pooling operation. In the formula, H and
W represent the length and width of the input feature image X ; (7, j) represent the points
at the position of (i, j) on the figure X ; C represents the number of channels in the figure
X ; all the eigenvalues in each channel are averaged and summed up to obtain a one-
dimensional array S of length C.After the output S is obtained, the correlation between
channels is modeled, that is, the process of excitation. The principle is shown in Eq. (4).

R = Sigmoid(W, - ReLU(W,S)) 4)

The dimension of W; is C; x Cj, and the dimension of W5 is C> x C,, of which
Cy = C1/4, are these two weights trained by ReLLU function and Sigmoid function,
and a one-dimensional excitation weight is obtained to activate each channel, and the
obtained R is dimension C; x 1 x 1. Finally, the attention calculation is carried out.

X*=X-R (5)

The feature graph X™* obtained by the attention module is used to replace the original
input X, and then sent into the improved algorithm model for detection. In other words,
this process is actually a process of scaling and scaling, in which different weights
are multiplied by different channel values, so as to enhance the attention to important
channels.
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3 RAF-SSD Model

3.1 RAF-SSD Model Structure

The improved RAF-SSD model structure is shown in Fig. 7.

Fig. 7. RAF-SSD model structure diagram

Firstly, KD-ResNet50 is used as the backbone network of RAF-SSD. After knowl-
edge distillation, KD-ResNet50 still has the same structure as ResNet50, which is mainly
composed of five residual learning modules. The convolution layer in the middle of
each residual block first reduces the calculation amount through a convolution layer,
then another convolution layer is used for reduction, which not only ensures the accu-
racy, but also reduces the amount of calculation. In addition, the structure of residual
blocks can deepen the network depth while avoiding the gradient explosion and gradient
disappearance and other problems caused by VGG16 as the main network.

In view of the poor performance of traditional SSD model in small target detection,
two feature fusion modules were added to the model, which fused the features of Conv3_x
and Conv8_2, Conv7 and Conv10_2 respectively. The obtained feature map has both
strong resolution and rich semantic information, which is more suitable for small target
detection task.

But the added feature fusion module adds new parameters to the model and increases
the computation. Therefore, in order to guarantee the detection speed of the model, the
feature images extracted from the backbone network and feature fusion module are sent
to the channel attention module to screen and retain important information and reduce
the computing space occupied by unnecessary feature information. Finally, the feature
map processed by the channel attention mechanism is applied to the detection task, and
the detection results are obtained by the way of maximum suppression.

3.2 Priority Box Setting and Matching

The prior box is set from two main aspects: scale and length-width ratio. The scale
follows the principle of linear increase, and its size changes are shown in Eq. (6).

Smax — Smi
Sp — Smin + max min
m

—7 - D.pell.m (6)
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Where, S), is the ratio of the prior box to the image size; Syqx and Sy, are the maximum
and minimum values of the ratio respectively; p is the current feature graph; m is the
number of feature graphs. During training, set Sy,;; to 0.3 and S, to 1.0. In the first
feature graph, the scale scale of the prior box is set as S, /2, and the subsequent feature
graph is linearly increased according to the principle in Eq. (6). Prior to training frame
aspect ratio is set to {1, 2, 1/2, 1/3}.

The matching principle is: first of all, each target box in the picture selects a priori box
with the largest intersection ratio as the matching object, and this priori box is identified
as the priori box of positive sample.IOU is the intersection of the prior box. By setting
the value of IOU, the match between the prior box and the target box is realized.

3.3 Loss Function

The loss function of the model is mainly divided into two parts: location loss and regres-
sion loss, and the detection effect of the network is evaluated by these two parts together.
The overall loss is shown in Eq. (7):

L(x,c,w, h) = ]lV(Lconf(xa ¢)) + BLioc(x, w, h) (7

In the first part of the formula, zlv (Lconf(x, ¢)) represents the position loss, where N
represents the number of matching boxes with the complete target box, and ¢ represents
confidence. The second part BLj,.(x, w, h) represents return loss, where x is the location
of the center of the target frame, w is the width of the box, and h is the height of the box.

4 Experiment

4.1 Experimental Environment

Windows10 64-bit operating system, Intel(R)Core(TM) i7-10170U CPU and NVIDIA
GeForce 1070 graphics card are used in this lab. Use Python language on Tensorflow
deep learning framework combined with opencv library.

4.2 Experimental Data

The data used in this paper are NEU-DET data set of surface defects of hot-rolled steel
strip, an open source data set of a certain university, which includes the following six
main surface defects of hot-rolled steel strip:

Rolled-in scale: In the rolling process, the Rolled iron sheet is pressed into the surface
of the steel plate, generally in the shape of strip, block or fish scale, and the color is brown
or black.

Crazing: itis a serious surface defect. Cracks of different shapes, depths and sizes will
form on the surface of the steel strip, which will cause serious damage to the mechanical
properties of the steel plate.

Surface Inclusion: it is divided into metal Inclusion, non-metal Inclusion and mixed
Inclusion. The surface of the steel strip presents brownish-red, yellow-brown or black
embedded structures, and the inclusions are randomly distributed in different shapes.
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Pitted surface: Local or patchy rough surface formed on the surface of a steel plate,
resulting in pits of varying shades and shapes.

Scratches: mostly produced in the conveying process of rolling steel strip, Scratches
under high temperature appear brown or light blue, irregular shape, generally long.

Patches: Approximately circular bright spots that appear as dense Patches. Which
are iron sheet pressure, cracks, surface inclusions, pitting, scratches, and surface spots
(Fig. 8).

S
n scale

{
g

Pitted surface Scratches Patches

Roled-1

Fig. 8. Sample image of NEU-DET dataset

In order to facilitate training and testing, O to 5 are used to represent the above
five defect types. Each type of defect in the original data set contains 300 samples and
a total of 1800 sample images. In order to prevent the occurrence of overfitting and
improve the generalization ability of the model after training, images of the data set
were amplified to 13400 by flipping, random cropping, adding noise and other image
enhancement methods. However, there were only six surface defect classification labels
in the original data set, which was difficult to meet the requirements of deep network
training. Therefore, based on the amplified 13400 samples, the defect positions in each
image were marked with a rectangular frame to obtain a new data set, NEU-DETX.

4.3 Experimental Results

Firstly, the NEU-DET dataset with only classification label is divided into training data
set and detection data set in a 4:1 ratio, which is used to verify the effect of knowledge
distillation. In this paper, knowledge distillation is carried out with RESNETS50 as student
model and ReSNet101 as teacher model. Table 1 lists the three kinds of model number,
number of floating point arithmetic (Floating point operations, FLOPs) and classification
accuracy of the data, it can be seen that the teacher model ResNet101 in NEU-DET data
set on the classification accuracy of 98.5%, without distillation training, learning model
ResNet50 classification accuracy of 97.2%, after knowledge distilling the training of
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students model KD-ResNet50 classification accuracy of 98.1%, compared to before
this compared with the distillation training model, classification accuracy of 0.9%. It
can be seen that under the supervision and training of the teacher model, the student
model achieves better classification accuracy, and compared with the teacher network,
the number of parameters in the student network is only half that of the teacher network.

Table 1. ResNet classification effect comparison

Model Layers | Parameters/M | Accuracy/% | FLOPs/G
ResNet101 101 45.37 98.5 7.6
ResNet50 50 24.71 97.2 3.8
KD-ResNet50 | 50 24.71 98.1 3.8

The R-SSD model was obtained by using KD-ResNet 50 after distillation training
as the feature extraction network of SSD network. Then, based on the R-SSD model, the
feature fusion module is added to get the RF-SSD model. Finally, attention modules are
added to the RF-SSD model to obtain the final model RAF-SSD model in this paper.

After the model was built, parameters were initialized firstly. Small batch stochastic
gradient descending method (SGD) was selected as the optimizer. The learning rate was
set as 0.0001, the decay factor of the learning rate was set as 0.92, the number of training
samples per batch was set as 32, and the number of iterations of the training data set
was set as 20,000. Then, the NEU-DETX data set was divided into training data set and
detection data set in the same 4:1 ratio, and the six models of SSD, R-SSD, RF-SSD,
RAF-SSD, Faster RCNN and YOLO-V3 were trained.

According to the experimental results, Frame Per Second (FPS) and Mean Average
Precision (mAP) are used as evaluation indexes to compare the performance of six trained
models.

Table 2. Performance comparison of six models

SSD |R-SSD |RF-SSD |RAF-SSD | Faster-RCNN | YOLO-V3

rolled-in scale | 68.1 68.7 70.1 70.2 68.8 68.2
crazing 68.2 |68.2 68.4 68.5 69.1 67.9
inclusion 724 734 73.9 73.7 74.3 71.5
pitted surface 684 689 70.1 70.2 69.2 68.4
scratches 67.8 |67.8 69.9 70.8 68.1 68.3
patches 73.7 739 74.8 74.9 72.9 73.2
mAP/% 69.8 |70.2 71.2 714 70.4 69.6
FPS 54 60 58 61 41 52
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As can be seen from Table 2, the mAP value of R-SSD is 70.0%, which is an increase
of 0.4% compared with the traditional SSD model, indicating that the KD-ResNet50
network trained by distillation can better extract image feature information than the
VGG16 network. Because the number of parameters of KD-ResNet50 is also smaller
than VGG16, the detection speed of R-SSD model is also improved by 11.1% compared
with SSD model. Then the MAP value of the RF-SSD model is 1.0% higher than that of
the R-SSD model, which indicates that through the addition of feature fusion module,
the information of shallow feature mAP and deep feature mAP can be effectively fused,
and it is more suitable for small target detection. However, because the feature fusion
module adds new parameters to the model, the detection speed of the RF-SSD model is
reduced by 3.3% compared with the R-SSD model. And finally to the RAF-SSD model
mAP value and detection speed, respectively 71., 4% and 61, compared with the RF-
SSD model, mAP value increased by 0.2%, the detection rate of 5.1%, this shows that
attention so module characteristic figure of the important contents for higher weight,
filtered out the important content, the characteristic information more efficiently, also
reduce the computational complexity of the network.

Comparing RAF-SSD model with SSD model and YOLO-V3 one-step model, the
mAP value increased by 1.6% and 1.8%, and the detection speed increased by 12.9% and
17.3%. Compared with Faster-RCNN, the RAF-SSD model improves the mAP value by
1.0% and the detection speed by 48.8% (Fig. 9).

(a) Original (b) Detecti
image on result

Fig. 9. Experimental detection effect drawing

From the inspection effect diagram, the defect area in the original image is marked
out by a rectangular box, and the type and confidence of the defect are also shown. It
shows that the improved algorithm proposed in this paper is accurate and effective in
the detection of surface defects of hot rolled steel strip, and can realize the detection of
surface defects of different kinds of hot rolled steel strip.
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5 Conclusion

Based on the SSD model, this paper uses knowledge distillation to train ResNet50 net-
work, and uses the obtained KD-ResNet50 to replace VGG16 as the backbone network.
On this basis, the feature fusion module is added to make the shallow feature and the
deep feature fusion to improve the detection accuracy of small targets. Finally, the atten-
tion module is added to screen the important information, which can effectively use the
feature information and reduce the computation. The experimental results show that the
quasi-accuracy of RAF-SSD model is higher than that of SSD model, Faster RCNN
model and YOLO-V3 model, and the detection speed is 12.9% higher than that of the
fastest SSD model among the three models, which can effectively meet the real-time
detection requirements for surface defects of hot rolled steel strip. However, the data set
used in this paper has a small number of samples, so the next step will be to enhance the
data, expand the sample size, and then improve the performance of the model.
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Abstract. Continuous keystroke dynamics-based user authentication
methods are one of the most perspective means of user authentication in
computer systems. Such methods do not require specialized equipment
and allow detection of user change anytime during a user session. In this
paper, we explore new approaches to solving the problem based on Haus-
dorff distance and its modification, including a new method, the sum of
maximum coordinate deviations. We compare proposed methods to exist-
ing ones that are based on distance functions defined in feature space,
statistical criteria, and neural networks. Based on the experiments, we
observe that the proposed method based on the sum of maximum coordi-
nate deviations with k nearest feature vector selection reports the highest
accuracy of all reviewed methods.

Keywords: Outlier detection - Continuous authentication - Keystroke
dynamics - Hausdorff distance - SMCD

1 Introduction

In recent decades, cloud services have gained much attention. They are used for
accomplishing both personal and enterprise tasks. Thus, it is crucial to ensure
the security of information processed by the cloud services. One of the key tasks
in ensuring information security is authentication, a process by which subjects,
normally users, establish their identity to a system [4]. For authentication pur-
poses, subjects provide an identifier to the system.

Authentication methods differ by the nature of the identifier used in the
process. Although methods that employ secret knowledge, such as a password,
or an identification object, such as a magnetic card, are easy to implement,
they are vulnerable to identifier compromise. In this regard, the most promising
methods are those that use user’s biometrics for identification. Biometrics is
divided into two categories: physiological samples and behavioral ones.

Physiological samples represent the physiological characteristics of a person
which remain with him throughout his life. These include fingerprints, iris, and
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facial geometry. A significant drawback of such methods is that they depend on
specialized equipment.

Behavioral patterns represent the behavioral characteristics of a person, such
as voice, gait, and handwriting. These methods do not require specialized equip-
ment. However, existing approaches are less stable than those based on physio-
logical samples.

As for authentication frequency, continuous authentication is preferred as it
eliminates the possibility of an attacker gaining access to the system sometimes
after a legitimate user passed authentication.

Thus, the most promising task is continuous user authentication based on
behavioral biometric characteristics. As such, we can consider keystroke dynam-
ics, i.e. characteristics of a person’s dynamics when working with a computer
keyboard. Since the keyboard is one of the primary means of human interaction
with a computer, keystroke dynamics can be effectively used for continuous user
authentication.

In this paper, we discuss continuous keystroke dynamics-based user authenti-
cation as an outlier detection problem [9]. The goal of the research was to improve
authentication effectiveness when a small dataset is used to train a user’s model.
With this goal in mind, we propose a new method, the sum of maximum coordi-
nate deviations, or SMCD. Along with this method, we explore new approaches
based on the Hausdorff distance [7] and its modifications. Our hypothesis was
that these approaches would achieve higher efficiency when compared to other
ones.

This article has the following structure. Section2 provides an overview of
existing continuous keystroke dynamics-based authentication methods. Section 3
describes methods based on the Hausdorff distance and the sum of maximum
coordinate deviations. Section 4 is devoted to an experimental study of the pro-
posed methods and their comparison with existing approaches to solving the
problem. Section 5 summarises the obtained results.

2 Related Work

When considering authentication methods, we should pay attention to what
is considered features of keystroke dynamics in a specific method, how these
features are preprocessed, which algorithm is used to decide the user’s legitimacy,
and what accuracy the method has. In this section, we discuss each of these steps
in detail.

2.1 Feature Extraction and Preprocessing

Most studies use single keystroke characteristics [2,3,10,12,13,17] and digraph
characteristics [2,3,8,10,13,17] as features of user’s keystroke dynamics. Here,
a digraph is a combination of two consecutive user keystrokes. The duration of
keystrokes is considered as a characteristic of single clicks. As for digraphs, all
possible intervals between digraph keystrokes are used as its features.
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Here and further to facilitate notation we will denote a set {i € Nja <14 < b}
where a,b € N with a,b. With this in mind, let us denote t4°%" i = 1,2 the time
when the i-th digraph key is pressed, t;”,i = 1,2 the time when the i-th digraph
key is released (see Fig.1). Then, we can define four digraph characteristics as
follows:

DD-time, or duration of the interval between keypresses: t4o®wn — town;
DU-time, or digraph input duration: t,? — tfown;

UU-time, or duration of the interval between key releases: 5" — t17;
UD-time, or duration of the jump between keystrokes: t3°w™ — ¢{7.

=W

To construct feature vectors a sliding window can be used [8]. In this case,
we select a window of a certain size from the sequence of user keystrokes and
calculate features based on the keystrokes contained in the window. When the
user clicks, the sliding window shifts, and authentication is performed again (see
Fig.2). This means that the user is authenticated continuously while he is using

the keyboard.
o

tldown tlup tzdown t2”p

Fig. 1. Digraph features.

J4HHEHLHLHoHWS

Sliding window values

Fig. 2. Sliding window operation.

Using a sliding window allows to use aggregate feature values, such as
their empirical means [3,8,10,12,17] and standard deviations [3,8,12,17]. This
increases the stability of the method to possible outliers in individual feature val-
ues. It is worth noting, however, that a smaller sliding window makes a method
more responsive to a possible user change. Hence, smaller window size is prefer-

able.
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Modern keyboards contain more than n = 70 different keys. As a result, the
dimension of the feature space of all possible digraphs and all possible single
keystrokes exceeds n? +n = 4970. To reduce the dimensionality of the feature
space, in studies [8,10,17] it is proposed to split keyboard keys into groups
based on their physical location or functional purpose. In this case, features
of digraphs or individual keystrokes are calculated only within the group and
between different groups. As a result, we can decrease the number of considered
features, and increase the number of their values observed in the sliding window.

2.2 User Model Construction

As mentioned earlier, we consider the problem of continuous user keystroke
dynamics-based authentication an outlier detection problem [9]. In study [§],
various classification methods are considered in application to the problem of
deciding the user’s legitimacy based on their keystroke dynamics. The study cov-
ers methods based on statistical criteria, distance functions defined in features
space, and machine learning methods, such as SVM, k nearest neighbors, and
SVDD. According to the results obtained, the method based on the Kolmogorov-
Smirnov statistics [15] reports to be the most effective for small sliding window
size.

This method considers random variables £ and 7 that correspond to some fea-
ture of a legitimate user and a tested one respectively. Based on the feature val-
ues obtained during two users were interacting with the keyboard, we construct
empirical cumulative distribution functions F¢(x) and F),(x). The Kolmogorov-
Smirnov statistic is:

Dey = sup | Fg(x) — Fy() | - (1)
zER
The decision on the legitimacy of the user being tested is made based on
comparing the statistic value with a certain threshold value. The threshold value
can be calculated based on a given significance level or selected experimentally.
Some works explored the possibility of using neural networks for creating a
model of legitimate user’s behaviour [11].

3 Proposed Approach

This section describes the proposed approaches to continuous keystroke
dynamics-based user authentication.

3.1 Feature Extraction

To build features based on the available data, we use the sliding window method
described in Sect.2. We use sliding windows of size from 100 to 300 events,
where each event describes either a key press or a release. The event description
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consists of its type: press or release, a key code, and a timestamp of the moment
when the event occurred.

Feature values that correspond to long pauses when the user stops typing are
abnormal for the legitimate user model. Their presence in the sliding window
degrades the quality of the authentication method. Thus, to prevent this we
split the window if the pause between consecutive keystrokes exceeds the 40-s
threshold. The optimal values of the sliding window parameters were selected
experimentally.

It is worth noting that the space of keystroke dynamics features is sparse.
This is because only a small subset of all possible digraphs and single keystrokes
can occur in the sliding window. To select only the most significant features from
the set of all features and reduce the dimensionality of feature space, in [10] we
proposed to reduce the dimension of the feature space by selecting a fixed number
of single keystrokes and digraphs that are most common in the observed window.
This way, in each window we select 37 most frequently encountered keys and 100
most frequently encountered digraphs. For selected keystrokes, we calculate their
keystroke duration, and for selected digraphs, we calculate the average duration
of the UU and DU intervals. The optimal ratio of single keypress and digraph
features was found during a preliminary series of experiments.

Along with the features described above we also consider the following fea-
tures: average keystroke duration by groups (see Fig.3), average frequency of
keystrokes in the sliding window, average frequency of command keys used by
the user in the sliding window.
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Fig. 3. Proposed key groups for feature extraction.

7/

3.2 Quantile Discretization

To preprocess the obtained feature values we propose to use quantile discretiza-
tion [10].

Let X be a training sample of values of some feature 7. Using sample X we
calculate empirical quantiles ¢; of orders %,i = 1,k — 1, where number k is an
algorithm hyper-parameter. Then we replace every value 7 of feature n with the
number j such that:
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1 iffe (—oo,ql;
J=qk ifne (qu-1,+00); (2)
t ifte2k—1andf € (q_1,q

Quantile discretization of features allows mitigating small fluctuations in val-
ues of continuous features by discretizing their values. In addition to that, it was
shown in [10] that the distribution of the considered features is multimodal. By
applying quantile discretization it is possible to smoothen feature distributions
and thereby improve the quality of machine learning methods designed to work
with more homogeneous data.

Based on the results of a series of experiments, the optimal number of sam-
pling intervals is k = 7.

3.3 Hausdorff Distance

We propose to use the Hausdorff distance [7] for outlier detection. Let X =
{z',...,2™} and Y = {y',...,5'} be two sets of vector from a metric space M

with the distance function p. The Hausdorff distance between sets of vectors in
X and Y is defined as:

pr(XY) = max{h(X,Y), h(Y,X)};

h(X,Y) = max min p(z?, y?);
i€T,m jell (3)

B(Y,X) = max min p(z, ).
jeLliel,m

Let us consider the feature space as a metric space M. Let X be a training
sample of feature vectors of a legitimate user and Y be a set containing a single
feature vector y of a tested user. In that case, i.e. for [ = 1, Formula 3 can be
rewritten as follows:

(X, Y |1 =1) = max p(a",y). (4)

To decide the legitimacy of the tested user, we compare the value of Hausdorff
distance py(X,Y) to a threshold value set a priori. If py(X,Y) exceeds the
threshold, the hypothesis about the legitimacy of the current user is rejected,
and the user’s session is suspended. Otherwise, the user continues working in the
system.

Let us also consider a method based on a modified Hausdorff distance [5].
The modified Hausdorff distance, or MHD, is defined as:
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PMHD (X, Y) = max{hM (X, Y), h]\/[ (Y, X)),

m

1 . .

hav(X,Y) = — » min p(z", y);
o 9
1< o

har (V,X) = 7 3 min_p(a’,y/).

1

J

The modified Hausdorff distance is less sensitive to the presence of outliers
in the sets X and Y. For [ = 1, Formula 5 is equivalent to:

punp (X, Y [1=1) = Zp ', y). (6)

We also investigate the method based on mterpolated modified Hausdorff
distance [14]. Interpolated modified Hausdorff distance, or IMHD, is defined as
follows:

pivup (X, Y) = max{h(X,Y), h (Y, X));

hi(X Y):lzl: in (Lﬂ_l j).
n ! j:lizg’mp 2 7 (7)
ha(Y, %) = ;fjrgnlm“j)
For [ = 1, Formula 7 is equivalent to:
prvup (X, Y [1=1) = QLP(W—’—TW»?J) (8)

3.4 Sum of Maximum Coordinate Deviations

As a modification of the method based on the Hausdorff distance, we propose a
method based on the sum of maximum coordinate deviations.

Let us denote M a n — dimensional feature space and let X = {z!,... 2™
be a set of m vectors from space M where z° = (2%,...,2%),i = 1,m. The
sum of the maximum coordinate deviations, or SMCD, between the vector y =
(Y1,-.-,Yn) € M and the set X is defined as:

Z max |27 — y;. (9)
i—1 jeET,m
This means that the greater the value of the sum of the maximum coordinate
deviations is the greater is the difference between the vector y and the vectors
from the set X.
Let us introduce a feature space M, a training sample of the feature vectors X,
and a feature vector y of the tested user in the same way as they were introduced
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in the previous subsection. As before, the decision on the legitimacy of the tested
user can be made based on the result of comparing the value of the sum of the
maximum coordinate deviations pgs(y, X) with a threshold value set a priori. The
current user’s legitimacy hypothesis is rejected if the value pg(y, X) exceeds the
specified threshold value.

Note that the sum of the maximum coordinate deviations is related to the
Hausdorff distance. Let Ml;; be an n-dimensional linear metric space with norm
lall = L 37 ]ail,a € My and X = {z!, ..., 2™}, Y = {y} be two sets of vectors
from M;. Then, taking into account Formula 4, the following is true:

X,Y) = — max T — 10
pr(,Y) = - max Q il (10)
In a linear metric space My; for an arbitrary set of vectors Z = {z!,..., 2™}

is the following true:

max |27 =2 <> max |2/, (11)
j=1m i—1 i—1 i—1 j=1lm

where 270 € Z is the element of the set Z that provides the maximum in the
left part of the equation.
Combining Formulas 9, 10, and 11 we conclude that the following is true:

pr(X,Y) < ps(y, X). (12)

Thus, sum of maximum coordinate deviations serves as an upper boundary
of the Hausdorff distance in the linear space M;;.

3.5 K Nearest Neighbors

Along with other methods, an outlier detection method based on the k nearest
neighbors search method is considered in study [8].

Let us introduce the feature space M, a training sample of feature vectors
X, and the feature vector y of the tested user as in the previous subsection. Let
p(.,.) be a distance function defined in space M. Then, for the vector y and a
given value k there is a subset X = {#',...,2#"} C X containing k nearest to
the vector y of vectors from the set X based on the distance function p(.,.). The
decision on the legitimacy of the tested user is made based on comparing the
average distance from the vector y to the vectors from X:

k
Z Py, ). (13)

As before, if the value is d(y, X) exceeds a certain threshold set a priori, and
the hypothesis about the legitimacy of the tested user is rejected.

?r'M—‘
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In study [8], the L2 distance function is defined in feature space. However,
other distance functions can also be used. In this regard, we also considered a
variation of this method that defines a cosine distance in feature space.

Also, we propose a modification of this method. As before, we find a sub-
sample X of k vectors closest to the vector y in the sample X. To decide the
legitimacy of the tested user, we will use the value of the Hausdorff distance
pu (X, {y}) (see Formula 3), modified Hausdorff distance pyup (X, {y}) (see For-
mula 5), interpolated modified Hausdorff distance pivup (X, {y}) (see Formula
7), or the sum of maximum coordinate deviations pg(y, X) (see Formula 9).

4 Results

We tested the proposed methods on a dataset used in studies [12,16]. It contains
collected data for 144 users while they were working with the computer keyboard.
The dataset contains over 1,345 registered clicks for each user as well as the
following information about each user: platform used by the user: desktop or
laptop, user’s gender, user’s age group, user’s dominant hand, user’s awareness
of the data collection.

In our study we use only the following information about user’s actions: code
of the pressed key, keypress start timestamp, keypress end timestamp.

When testing each method, we used 80% of the legitimate user’s sample to fit
the method, and the remaining 20% as well as other users’ samples to evaluate
the method.

To assess each method we only used those users for whom we obtained more
than 10 feature vectors during feature extraction. We do so to mitigate the fact
that a smaller training sample may result in poor model fit and, as a result, poor
accuracy of the tested authentication method.

To compare the effectiveness of the methods under consideration, we used
ROC AUC, which is equal to the value of the area under the ROC curve. It
can be interpreted as the probability that the model ranks a randomly chosen
positive instance higher than a randomly chosen negative instance [6]. Hence,
it can be used to evaluate the quality of classification without setting an exact
threshold for deciding the user’s legitimacy.

Along with ROC AUC, we assessed methods’ effectiveness based on equal
error rate (EER) [8] and average precision (AP) [18].

As a baseline model, we consider a one-class SVM with an RBF core [10].
This model is often used in outlier detection problems. We also consider the
Fuzzy method [10] and neural network models.

We considered different neural network models based on the autoencoder
architecture [1], including fully connected, recurrent, and fully convolutional.
These models are trained to encode feature vectors of the legitimate user into
vectors of reduced dimensionality. The decision on the legitimacy of the user
being tested is made based on comparing the Euclidean distance between the
initial and restored vectors with a certain threshold value set a priori.
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Based on the results of preliminary experiments a fully convolutional autoen-
coder (see Fig.4). It is worth noting that deep neural networks require a larger
dataset to get an optimal model. Hence, to assess the method based on the fully
convolutional autoencoder we only used those users for whom we obtained more
than 100 feature vectors. This drawback of neural network models is the reason
why we did not focus our research on these models.
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Fig. 4. Fully convolutional autoencoder model.

In this study we evaluated the existing methods based on Kolmogorov-
Smirnov statistic, a one-class SVM with RBF core, the k nearest neighbors
algorithm, the Fuzzy method, the approach based on a fully convolutional
autoencoder, the proposed approaches based on Hausdorff distances, and the
proposed methods based on SMCD. Every algorithm was tested both with and
without quantile discretization. Table 1 contains descriptions of algorithms with
their optimal hyper-parameter values that were found using grid search method.
Table 2 shows the experimental results.

According to the results, the proposed methods of continuous authentication
based on SMCD are more effective than all other methods. Meanwhile, methods
based on the composition of the k nearest neighbors method and the sum of
maximum coordinate deviations report the best accuracy. It is worth noting
that the proposed method based on the sum of maximum coordinate deviations
surpasses methods based on other considered modifications of the Hausdorff
distance.
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Table 1. Description of tested algorithms.

Authentication method

Method parameter

Parameter value

One-class SVM

Feature preprocessing

Quantile discretization

Kernel function RBF
Kernel width (v) 0.000837
Error fraction in training set 0.00144
(v)
Kolmogorov-Smirnov statistic | Feature preprocessing -
Hausdorff distance Feature preprocessing -
Distance function L1

Modified Hausdorff distance

Feature preprocessing

Quantile discretization

Distance function

L1

Interpolated modified
Hausdorff distance

Feature preprocessing

Quantile discretization

Distance function

L1

SMCD Feature preprocessing Quantile discretization
k nearest neighbors Feature preprocessing Quantile discretization
Distance function L2
k 74
Hausdorff distance with k Feature preprocessing Quantile discretization
nearest neighbors selection Distance function L1
k 72

MHD with k nearest neighbors
selection

Feature preprocessing

Quantile discretization

Distance function L1

k 73
IMHD with k nearest Feature preprocessing Quantile discretization
neighbors selection Distance function L1

k 73

SMCD with k nearest
neighbors selection

Feature preprocessing

Quantile discretization

Distance function

L2

k

58

Fuzzy

Feature preprocessing

Quantile discretization

Kernel function RBF
Kernel width (v) le—06
Error fraction in training set 0.001
(k)

Affiliation level decrease rate 12.5

(m)

Fully convolutional
autoencoder

Feature preprocessing

Quantile discretization

Optimization algorithm Adam
Loss function LogCosh
Learning rate 0.01
Epochs 300
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Table 2. Experiments results.

Authentication method Median ROC AUC | IQR ROC AUC | Median AP | Median EER
One-class SVM 0.961 0.103 0.186 0.111
Kolmogorov-Smirnov 0.558 0.181 0.351 0.500
statistic

Hausdorff distance 0.837 0.242 0.005 0.333
Modified Hausdorff distance | 0.857 0.246 0.011 0.214
Interpolated modified 0.935 0.152 0.077 0.158
Hausdorff distance

SMCD 0.950 0.091 0.305 0.064
k nearest neighbors 0.977 0.129 0.315 0.089
Hausdorff distance with k 0.929 0.188 0.090 0.151
nearest neighbors selection

MHD with k£ nearest 0.893 0.235 0.046 0.173
neighbors selection

IMHD with k£ nearest 0.960 0.156 0.176 0.130
neighbors selection

SMCD with k nearest 0.987 0.030 0.503 0.065
neighbors selection

Fuzzy 0.972 0.079 0.183 0.102
Fully convolutional 0.908 0.128 0.095 0.185
autoencoder

5 Conclusion

Continuous keystroke dynamics-based user authentication is one of the most
promising areas of authentication methods development. We propose new
approaches to this problem that are based on the Hausdorff distance and its
modifications as well as new methods based on the Hausdorff distance modifica-
tion, the sum of maximum coordinate deviations.

According to the results of experimental research, the proposed method based
on the sum of the maximum coordinate deviations with k nearest keyboard vec-
tors selection reports the median value of the ROC AUC equal to 0.987. Thus,
this method surpasses all other considered approaches, including the existing
method based on Kolmogorov-Smirnov statistics, which is considered one of the
most effective methods of one-class user authentication using keystroke dynam-
ics, and a method based on a fully convolutional autoencoder.

Despite favorable experimental results, there are ways to extend the research.
First of all, to guarantee language independence, the proposed method’s perfor-
mance should be evaluated on datasets in other languages. Secondly, with the
proposed approach the size of the feature vector strongly depends on the slid-
ing window size, i.e. in case of a smaller window fewer significant features can
be extracted. Thus, to use a smaller sliding window different methods of feature
extraction should be explored. Also, we plan to make a more detailed comparison
with statistical and deep learning methods.
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Abstract. Recurrent neural networks (RNNs) have been effective methods for
time series analyses. The network representation learning model and method based
on deep learning can excellently analyze and predict the community structure of
social networks. However, the node relationships of complex social networks in
the real world often change over time. Therefore, this study proposes a dynamic
community discovery method based on a recurrent neural network, which includes
(1) spatio-temporal structure reconstruction strategy; (2) spatio-temporal feature
extraction model; (3) dynamic community discovery method. Recurrent neural
networks can be used to obtain the time features of the community network
and help us build the network time feature extraction model. In this study, the
recurrent neural network model is introduced into the time series feature learning
of dynamic networks. This research constructs a network spatiotemporal feature
learning model combining RNN, convolutional neural networks (CNN), and auto-
encoder (AE), and then uses it to explore the dynamic community structure on the
spatiotemporal feature vector. The experiment chose the Email-Enron data set of
the Stanford Network Analysis Platform (SNAP) website to evaluate the method.
The experimental results show that the proposed method has higher modularity
than Auto-encoder in the dynamic community discovery of the real social net-
work data set. Therefore, the dynamic community discovery method based on the
recurrent neural network can be applied to analyze social networks, extract the
time characteristics of social networks, and further improve the modularity of the
community structure.

Keywords: Dynamic community discovery - Social network - Recurrent neural
network - Deep learning

1 Introduction

The static community discovery algorithm can explore the network topology commu-
nity structure at a certain moment. However, the relationship between nodes in the
network always changes with time. The characteristics of dynamic communities can
be classified as follows: time-varying, unstable, and short-term smoothness. Based on
these three characteristics, the existing community discovery and community evolution
research in dynamic social networks can be roughly divided into three categories which
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C. S. Jensen et al. (Eds.): DASFAA 2021 Workshops, LNCS 12680, pp. 237-248, 2021.
https://doi.org/10.1007/978-3-030-73216-5_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73216-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-73216-5_17

238 L. Wuet al.

include instantaneous optimal community discovery methods, time-varying balanced
community discovery methods, and cross-time community discovery methods.

The instantaneous optimal community discovery method is implemented in two
stages. The first stage explores the static community structure for network clustering at
each moment, and the second stage matches the community structure on different time
slices to calculate and analyze the community evolution. In essence, the instantaneous
optimal community discovery method separates the relationship between time and net-
work space topology changes. The time-varying balanced community discovery method
only considers the relationship between historical moments and network space topol-
ogy changes, and only the cross-time community discovery method comprehensively
considers historical and future moments for network space topology changes. However,
the cross-time community discovery method cannot handle real-time community detec-
tion as each new step requires recalculation of all historical steps when the network is
modified. Therefore, it is of high theoretical and practical significance to design an effec-
tive model that learns the evolutionary characteristics and laws of dynamic networks by
comprehensively considering the influence of historical and future time slice networks
on community discovery.

Existing research proposes to use deep learning methods to analyze the temporal
characteristics of social network structure and predict future changes in the social net-
work structure. These studies make community discovery based on the structure of future
social networks [1-5]. It is an important and meaningful topic to treat community dis-
covery as a problem related to time and space and to analyze the impact of the interaction
of time and space factors on community discovery.

This study will utilize the recurrent neural network to extract the time-dependent
features and network evolution features of network data at different times to achieve the
purpose of dimension adjustment. This study proposes to establish a combined neural
network model based on a convolutional neural network, a recurrent neural network, and
an auto-encoder for extracting the spatial and temporal characteristics of the network.
This research obtains the dynamic community structure and evolution of the network by
clustering the temporal and spatial feature vectors of the network. The performance of
the algorithms will be analyzed and compared through simulation experiments.

The main contributions of this study are as follows:

(1) Constructing a model of time feature extraction of a dynamic network. Based
on the dynamics of the dynamic network, this study takes the auto-encoder as the
main model framework and integrates the recurrent neural network to generate a
combined model of the recurrent neural network and the auto-encoder. This model
is used for network time feature extraction.

(2) Constructing a spatio-temporal feature extraction model for dynamic net-
works. Based on the large-scale and dynamic nature of the network, this research
constructs a combined model based on a recurrent neural network, a convolutional
neural network, and an auto-encoder to extract the temporal and spatial features
of the network. This study proposes a dynamic community discovery algorithm
based on a recurrent neural network; this method is entitled “Deep Recurrent Auto-
Encoding neural network based on Reconstructive matrix for dynamic community
detection” (DRAER). The overall model framework of this study is shown in Fig. 1.
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Fig. 1. Deep Recurrent Auto-Encoding neural network based on Reconstructive matrix for
dynamic community detection (DRAER)

The remainder of the paper is organized as follows. Section 2 proposes a spatio-
temporal feature extraction method for dynamic community discovery, and Sect. 3
introduces the process of dynamic community discovery method. In Sect. 4, the actual
experimental results are analyzed and discussed. Section 5 summarizes the conclusions
and future research directions.

2 Spatio-Temporal Feature Extraction Method

The method of dynamic community discovery based on recurrent neural network needs
could be used to extract the time-dependent characteristics and network evolution char-
acteristics of network data at different times. As an important tool for time analyses,
a recurrent neural network could be combined with an auto-encoder method to extract
time features. This study proposes a spatio-temporal feature extraction model that builds
convolutional neural networks and recurrent neural networks, whose input layer and out-
put layer have the same variables. These neural networks use convolutional layers and
recurrent layers as the hidden layers between the input layer and the output layer to
extract the spatio-temporal features through convolutional and recurrent operations and
to represent the original input variables for encoding into vectors with spatio-temporal
features.

2.1 Principle Explanation

A simple case study is given to explain the principle of the reconstruction adjacency
matrix variable with the community matrix [6] as four nodes (i.e., x1, x2, x3, and x4),
which contains four neurons in the input layer and a filter with the size of 1 x 3 (i.e.,
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o1, oz, and «3) in the convolutional layer. The convolutional layer has two neurons,
and the output layer have four neurons (i.e., x;’, xo’, x3’, and x4”). The simple schematic
structure of the deep neural network combining the convolutional neural network and
the auto-encoder for extracting the spatial features (i.e., 2/ and /2) is shown in Fig. 2.

Fig. 2. The combination of the convolutional neural network and the auto-encoder

In the case study in Fig. 2, a recurrent neural network is adopted to analyze the spatial

features at the first time point H(D = {hil),hgl)} and the spatial features at the second

time point H? = {hﬁz) ,héz)}. The spatio-temporal features (i.e., g and g®) could
be extracted by the combination of the recurrent neural network and the auto-encoder
(shown in Fig. 3).

hl'(l) 2O ],,1'(2) jA0)
@, W, , @,
o v v
g( ) g(z)
U, L,

h‘l(l) hz(l) hl(Z) hz(z)

Fig. 3. The combination of the recurrent neural network and the auto-encoder

In this case study, the weights of the input layer are {vy,v;}; the adjustment variable
of the neuron in the hidden layer is {b1 1 }; the weight between the recurrent layer is {v};
the weights between the hidden layer and the output layer are {w;,w;}; the adjustment
variables of the two neurons in the output layer are {bz, 1,022 } The values of neurons in
the recurrent layer (i.e., {g(o),g(l),g(z) }) are shown in Eq. (1), Eq. (2), and Eq. (3); the

values of neurons in the output layer (i.e., {h/l(l),hlz(l),h/l(z) 7h/2(2) }) are shown in Eq. (4)
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and Eq. (5); the loss function can be presented in Eq. (6).
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For optimization, the gradient descent method is used, and the updated values of
weights and adjustment variables are shown in Eq. (7), Eq. (8), Eq. (9), Eq. (10), and
Eq. (11). The spatio-temporal features of the two input time points are cyclically extracted
as {g(l),gm} when the training is completed.
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2.2 General Description

In this study, g spatial features during ¢ time points are extracted as the input of a recurrent
neural network. The recurrent neural network is combined with an auto-encoder neural
network, which includes g neurons in the input layer, a recurrent layer with p neurons,
and ¢ neurons in the output layer. The neural network structure is shown in Fig. 4. In the
optimization process, the mean square error between the output layer and the input layer
is adopted as the loss function, and the gradient descent method is used to correct each
weight. In the operation stage, the trained recurrent neural network can be combined
with an auto-encoder to extract the spatiotemporal features G® of the network at the i
time point, which is shown in Eq. (12).

G = [ g g | (12)

LN
I 2(1)

RO
—gz
h(l 1 hl(f hz(')

Fig. 4. The combination of the recurrent neural network and the auto-encoder for a general case

3 Dynamic Community Discovery Method

In this study, the K-means algorithm is used to group data for achieving dynamic com-
munity discovery. After extracting the spatiotemporal features of the network, a total of
n feature vectors of ¢ x p dimensions can be obtained, and the n data are grouped by
using the K-means algorithm.

3.1 Algorithm

The steps of dynamic community discovery based on recurrent neural network include
the following steps.

(1) Randomly selecting k data from n data as the cluster center of k clusters in
the initialization phase.

(2) Updating the feature vector of each group center. For instance, the feature vector
L; of the i-th group center is expressed in Eq. (13). In this study, the Euclidean
distance is used to calculate the correlation. After obtaining the correlation between
each data and each cluster center, the data is grouped into the cluster in accordance
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with the highest correlation. The calculation of the correlation coefficient between
the j-th data G; (shown in Eq. (14)), and the correlation coefficient ¢(i, j) of the
i-th group center is shown in Eq. (15). The calculation results could be used for

grouping.

_ | @) 4 (D @) @®)
Li_[li,l ARy "'li,l'”li,p]‘ (13)

_ H @M (1) () @)
Gj_[gj,l g5 j’p...gj’l...gj’p]_ (14)

14
> d(i.j.k)?, where d(i.j. k) = j‘f’,j — 1. (15)
k=1

@i, )) =

Determining the feature vector of each group center. If each group center has no
changes, the algorithm has reached convergence; if more than one of group centers
has changes, Steps (2) and (3) are repeated.

3.2 Time Complexity Analyses

The neural networks include the following parameters: n records are in the dataset; the
number of neurons in the i-th hidden layer is m;; the total number of hidden layers is
[; there are ¢ time points; the number of training times is r. The time complexities of
methods (i.e., (1) an auto-encoder model, (2) a CNN model, (3) the combination of an
auto-encoder and a CNN model, and (4) the combination of an auto-encoder, a CNN,
and RNN model) are shown in Eq. (16), Eq. (17), Eq. (18), and Eq. (19), respectively.
Therefore, the time complexity of the proposed dynamic community discovery method
is 0(trnm2).

-1
(0] (trn Z mim,-_H) = O(trnmz). (16)
1
-1
0 (trn 3 m,'mH_l) - O(Irnmz), (17)
1
-1
(0] (trn Z mimH_l) = 0(trnm2>. (18)
1
-1
(0] (trn Z mimi+1> = O(trnmz). (19)
1

4 Experimental Results and Discussions

This section consists of two subsections: (1) experimental environments and (2)
experimental results and analyses.
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4.1 Experimental Environments

This subsection presents data sets, algorithm performance indicators, run configuration
and algorithm comparisons.

(1) Datasets. This study uses the Enron Email-Enron dataset [7] from the SNAP web-

site to verify the performance of the proposed algorithm for a real network. The
statistical characteristics of Email-Enron dataset are shown in Table 1.

Table 1. The statistical characteristics of Email-Enron dataset.

Maximum | Maximum |Number of |Increasing the |Reducing the | Description

number of | number of | timestamps | number of number of
nodes edges edges at a edges ata
moment moment

251 5923 8 216 126 The Enron Mail
Data Set records
the email
communication
data of the

employees of
Enron in the
United States

(2) Evaluation Factor. For evaluation, the extension modularity (EQ) [7] is used as
an evaluation factor to evaluate the performance of the proposed method. EQ is
defined in Eq. (20), where O; represents the number of communities to which node
i belongs.

1 « 1 kik;
EQ = — S pa—— 20
Q 2m Z Z Oin |: / Zm] (20)

k=11i,jeCy

4.2 Experimental Results and Analyses

After finding the most influential observation leader at time 71 [6] and using the strategy
of space structure reconstruction [6], the dataset of Email-Enron’s real network was used
to sequentially reconstruct the eight-time network of Email-Enron. The unreconstructed
matrix and reconstructed matrix at each time are shown in Fig. 5, Fig. 6, Fig. 7, Fig. §,
Fig. 9, Fig. 10, Fig. 11, and Fig. 12.

In Table 2, the better modularity of the algorithm is highlighted in bold. Table 2
shows that the AE algorithm has achieved better modularity at #1 and #,, and the proposed
method has achieved better modularity from 73 to fg.
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(a) Unreconstructed matrix

IR

(b) Reconstructed matrix

Fig. 5. The unreconstructed matrix and the reconstructed matrix at time #1.

(a) Unreconstructed matrix

(b) Reconstructed matrix

Fig. 6. The unreconstructed matrix and the reconstructed matrix at time #7.

(a) Unreconstructed matrix

(b) Reconstructed matrix

Fig. 7. The unreconstructed matrix and the reconstructed matrix at time #3.

245

The learning effect of the proposed method shows insufficient accuracy in the initial

stage. The modularity of the proposed method is lower than the benchmark algorithm
AE at time #1 and #;. This is mainly due to the fact that the proposed method uses RNN
to learn the time-dependent characteristics of the network. The initial two moments have
fewer network information nodes and fewer connections, and the network information
at a single moment is relatively insufficient. More importantly, there is only one time-
series network at the dependent moment. The number of time-series network input is
insufficient, which makes the proposed method unable to learn the time features of the
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(a) Unreconstructed matrix (b) Reconstructed matrix

Fig. 8. The unreconstructed matrix and the reconstructed matrix at time #4.

]
R

UL

(a) Unreconstructed matrix (b) Reconstructed matrix

Fig. 9. The unreconstructed matrix and the reconstructed matrix at time 5.

(a) Unreconstructed matrix (b) Reconstructed matrix

Fig. 10. The unreconstructed matrix and the reconstructed matrix at time #¢.

sequence network, so that the modularity on the #; time slice and ¢, time slice is low. The
learning effect of the proposed method in the initial stage has an insufficient precision.

From £3 to tg, the modularity of the proposed method is higher than that of the AE
algorithm. Since from ¢3, there are already 2 groups of networks at the time of dependent
time. The RNN has been able to learn the evolution of the time series dynamic network
from these 2 groups. Therefore, the accuracy of the algorithm is stable from this moment
and higher than the AE algorithm.
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(b) Reconstructed matrix

Fig. 11. The unreconstructed matrix and the reconstructed matrix at time #7.

(a) Unreconstructed matrix

(b) Reconstructed matrix

Fig. 12. The unreconstructed matrix and the reconstructed matrix at time #g.

Table 2. Modularity comparison between the proposed method and the AE method.

Time ¢ | Auto-encoder | The proposed method
t1 0.086 0.075
12 0.063 0.035
13 0.190 0.297
t4 0.213 0.345
15 0.210 0.287
16 0.165 0.267
17 0.211 0.274
8 0.213 0.384

5 Conclusions and Future Work

Firstly, the network of each time slice is reconstructed through the space structure recon-
struction strategy, and the space learning model is used to obtain the spatial features at
each moment. Secondly, the space feature learning model based on convolutional auto-
encoder is subtly integrated into the temporal feature learning model in this study. Then,
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the spatial feature vector at each moment is used as the input of the neural network
and input into the temporal feature learning model based on a recurrent neural network.
Finally, the spatio-temporal features of the network are extracted. Experimental results
showed that when the dynamic network time series network is greater than 2 groups,
the proposed dynamic community discovery method based on a recurrent neural net-
work can extract spatio-temporal features for effectively detecting dynamic communities
and improving the modularity of community discovery. In the future, the parallel and
distributed computing techniques [8] could be applied to improve the effectiveness of
method.
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Abstract. The attributed network embedding aims to learn the latent
low-dimensional representations of nodes, while preserving the neighbor-
hood relationship of nodes in the network topology as well as the similar-
ities of attribute features. In this paper, we propose a deep model based
on the positive point-wise mutual information (PPMI) for attributed net-
work embedding. In our model, attribute features are transformed into an
attribute graph, such that attribute features and network topology can
be handled in the same way. Then, we perform the random surfing and
calculate the PPMI on the attribute/topology graph to effectively main-
tain the structural characteristics and the high-order proximity informa-
tion. The node representations are learned by a shared Auto-Encoder.
Besides, the local pairwise constraint is used in the shared Auto-Encoder
to improve the quality of node representations. Extensive experimental
results on four real-world networks show the superior performance of the
proposed model over the 10 baselines.

Keywords: Attributed network embedding -+ Random surfing -
Positive point-wise mutual information - Auto-encoder

1 Introduction

Network embedding (NE) aims to learn the latent low-dimensional representa-
tions of nodes in a network while preserving the intrinsic essence of the net-
work [8,15,19], which can provide precise service and higher efficiency in prac-
tical applications, such as targeted detection and personalized recommendation
[22,28]. Therefore, NE has aroused many researchers’ interests under the drive
of great requirements in recent years.
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In a network consisting of nodes and edges, nodes represent objects and edges
describe the interactive relationships amongst nodes. For example, in a cite net-
work, nodes represent papers and edges describe the cite relationship amongst
papers. In general, the interactive relationships amongst nodes are referred to
as network topology, which plays a vital role in network analysis tasks. Net-
work topology, typically in the form of node adjacency matrix, is the most com-
mon form of network representation. An important goal of NE is to preserve
the neighborhood relationship of nodes in the network topology. To this end,
various NE methods, such as DeepWalk [15] used the random walks based on
the sampling strategies to convert a general graph structure into a large col-
lection of linear sequences, and then utilized the skip-gram model [13] to learn
low-dimensional representations for nodes from such linear sequences. This is
one effective way to express graph structural information, because the sampled
node sequences characterize the connections amongst nodes in a graph. How-
ever, the procedure involves a slow sampling process, and the hyper-parameters
(such as walk length and total walks) are not easy to determine, especially for
the large graphs. Because the sampled sequences have finite lengths, further-
more, it is difficult to capture the correct contextual information for nodes that
appear at the boundaries of the sampled sequences, such that some relationships
amongst nodes cannot be captured accurately and completely. To make up for
the shortcomings of random walk, DNGR [4] adopts a random surfing model
to capture graph structural information directly, instead of using the sampling-
based method for generating linear sequences. The random surfing model first
randomly orders the nodes in a graph, and then directly yield a probabilistic co-
occurrence (PCO) matrix that capturing the transition probabilities amongst
different nodes. Based on the PCO matrix, the positive point-wise mutual infor-
mation (PPMI) can be computed, which avoids the expensive sampling process.
As an explicit representation of a graph, the PPMI can effectively maintain
the structural characteristics of a graph and contain the high-order similarity
information of the nodes [4], so the PPMI representations of nodes can more
accurately capture potentially complex, non-linear relations amongst different
nodes. But DNGR used network topology alone while did not take the attribute
features affiliated to nodes into consideration.

The attribute features affiliated to nodes, such as authors, research themes
and keywords associated with papers in a citation network, describe the indi-
vidual profile of nodes in a micro-perspective. This information often carries
orthogonal and complementary knowledge beyond node connectivity and net-
work topology, so incorporating semantic information is expected to significantly
enhance NE based on network topology alone. A network whose nodes are associ-
ated with attribute features referred to as an attributed network [2]. The embed-
ding of an attributed network (ANE) aims to learn the latent low-dimensional
representations of nodes while preserving the neighborhood relationship of nodes
in the network topology as well as the semantics of attribute features. This is not
a trivial task, because network topology and attribute features are two heteroge-
neous information, although they describe the same network from two different
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perspectives [5,9]. How to integrate two heterogeneous information and preserve
the intrinsic essence contained in network topology and attribute features simul-
taneously is a key issue in ANE. Some existing approaches, such as TADW
[24], ASNE [12], CANE [20], first converted network topology into the feature
representations, then which were used to embed into a low-dimensional space.
Meanwhile, attribute features were also used to derive low-dimensional embed-
ding on node semantics. The two low-dimensional representations of all these
NEs are concatenated to joint learn the final embedding. Due to converting a
network topology into a feature representation may lose or may not faithfully
represent non-linear relationship amongst the nodes [11], and the individual fea-
ture vector only contains individual information without inter-individual asso-
ciation relationships, combining topological feature vector and attribute feature
vector together may unsatisfactory to explore and exploit the complementary
relationship between these two types of information. Since, UWMNE [11] main-
tained network topology in the graph form and built attribute graph to represent
semantic information, and then used deep neural networks to integrate the topo-
logical and semantic information in these graphs to learn a unified embedding
representation.

Inspired by the DNGR [4] and the UWMNE [11], we propose a deep
model based on the PPMI for ANE in this paper. The model is referred to
as DANEP. Specifically, we first transform attribute features into an attribute
graph, which is homogeneous with topology graph, so we can deal with them
in the same way. Next, we carry out random surfing on the attribute/topology
graph respectively to generate a attribute/topology probabilistic co-occurrence
(PCO) matrix, and then calculate the attribute/topology PPMI based on the
attribute/topology PCO matrix. After that, using a shared Auto-Encoder to
learn low-dimensional node representations. The advantages of DANEP lie in:
the attribute graph describes the geometry of potential non-linear manifolds
under attribute features information more clearly, the uniformed graph repre-
sentation of attribute features and network topology contributes to integrating
the complementary relationship between two types of information; the random
surfing captures graph structural information concerning attribute/topology, the
PPMIs calculated from the attribute/topology PCO matrixes effectively main-
tain both the structural characteristics and the high-order proximity informa-
tion of attribute/topology graph; and the shared Auto-Encoder learns high-level
abstractions from low-level features as well as captures highly non-linear informa-
tion conveyed by the graph via non-linear projections. Besides, the local pairwise
constraint is further designed in shared Auto-Encoder to improve the quality of
node representations. We also conduct extensive experiments on four real-world
networks and compare our approach with 10 baselines. The experimental results
demonstrate the superiority of our approach.

It is needed to note that our DANEP model is different from the DNGR, [4]
and the UWMNE [11]. In our DANEP model, we apply the deep learning method
on PPMIs of attribute features and network topology, but the DNGR just apply
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matrix factorization on PPMI of network topology, and the UWMNE directly
use network topology and attribute graph as the input of an Auto-Encoder.
The rest of the paper is arranged as follows. Section 2 offers a brief overview of
related work. The details of DANEP are presented in Sect. 3. Section 4 provides
extensive experiments and results, and in Sect. 5, conclusions are given.

2 Related Work

2.1 Network Embedding

Many network embedding approaches only utilized network topology to learn
the latent low-dimensional representations. DeepWalk [15] first employed the
truncated random walks to capture the local information and then learn the
latent embedding result by making use of the local information. Node2vec [§]
proposed a biased random walk method to explore various neighborhoods. Line
[19] considered to preserve the first-order and second-order proximity of network
topology into the learned embedding representation. SDNE [21] proposed a semi-
supervised model to jointly preserve the first-order and second-order similarity
of network topology. Struc2vec [17] utilized a weighted random walk to obtain a
similar node sequence and conceived a hierarchical structure strategy to capture
node proximity at different scales. GraRep [3] integrated global structural infor-
mation learned from different models into the embedding representation. DNGR
[4] first adopted a random surfing model to capture graph structural informa-
tion, and then used a stacked denoising Auto-Encoder to learn low-dimensional
vertex representations.

2.2 Attributed Network Embedding

In recent years, many researchers learned representations of nodes by integrating
network topology and attribute features of nodes. This brings new opportuni-
ties and development for embedding learning. In detail, AANE [10] considered
the proximity of the attribute features into embedding learning and adopted a
distributed manner to accelerate the learning process. TADW [24] proposed the
text-associated DeepWalk model to integrate node’s text features into embed-
ding learning by matrix factorization. ASNE [12] adopted a deep neural net-
work to model the complex interrelations between attribute features and network
topology. DANE [6] employed two symmetrical Auto-Encoders to capture the
consistency and complementary information between attribute features and net-
work topology, where the two symmetrical Auto-Encoders are allowed to interact
with each other. ANRL [27] utilized a neighbor enhancement Auto-Encoder with
attribute-aware skip-gram to extract the correlations of attribute features and
the network topology. NANE [14] considered the local and global information
in the embedding process by a pairwise constraint. Based on the observations
that nodes with similar topology may be dissimilar in their attribute features
and vice versa,which are referred to as the partial correlation, PRRE [29] taken
the partial correlation of nodes into account in the learning process.
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3 The Proposed Model

In this section, we first present the definition of ANE and then develop a deep
attributed network embedding model based on the positive pointwise mutual
information.

3.1 Problem Definition

Given an attributed network with n nodes and m edges G = (V, E, A), wherein
V ={v1,--,vn} and E = {e;;}};_; represent the sets in items of nodes and
edges, respectively, and A € R™*™ represent the attribute matrix affiliated to
the nodes, whose row vector a; € R™ corresponds to the attribute features of the
node v;. Let S € R™*™ be the adjacent matrix affiliated to the edges, whose the
element s;; corresponds to the relationship of the edge between nodes v; and v;,
i.e., s;; = 1 indicates there exists an edge linked v; to v;, and s;; = 0 indicates the
edge is nonexistent. The goal of the ANE is to find a map function f(A,S) —
H that map attribute features A and network topology S into a unified low-
dimensional representation H € R"*%(d < n,d < m) while preserving the
proximities existing in both the attribute of the nodes and the topology of the
network. More precisely, nodes with similar attribute and topology in the original
network should be closer in the embedding space.

3.2 The Architecture of Proposed Model

The architecture of DANEP is shown in Fig.1. DANEP first constructs an
attribute graph based on the attribute features A, such that the attribute graph
and the topology graph are homogeneous. Based on the homogeneous represen-
tations of the attribute graph and topology graph, the random surfing is first
conducted to obtain the attribute/topology probabilistic co-occurrence (PCO)
matrix, and then the PPMIs concerning the attribute graph and topology graph
are calculated, represented as PPMI_AF and PPMI_NT, respectively. The
row vectors of PPMI_AF and PPMI_NT depict the profile and the neigh-
borhood relationships of node v; with respect to attribute features and network
topology. After that, a shared Auto-Encoder equipped with the local enhance-
ment of graph regulation is applied to learn the unified low-dimensional rep-
resentation for each node from the PPMIs concerning the attribute graph and
topology graph.

The Construction of the Attribute Graph. In this subsection, we construct
an attribute graph based on the attribute features A. Let B € R™*"™ be the
attribute similarity matrix, whose elements b;; € B can be measured by the
similarity of attribute vectors a; € A and a; € A, such as the cosine similarity
can be calculated by Eq. (1), where “” signifies the dot product of the two
vectors, “|| - ||” denotes L2 norm, and “x” indicates the product of two scalars.
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Fig. 1. The architecture of DANEP.
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bij = (1)

l[aill > [lay]]

Intuitively, the distance between two nodes is closer, the more intimate rela-
tionship they should have. Therefore, we apply the k-nearest neighbor method
[11,18] on the B to construct the attribute graph with n nodes, where each node
v; is connected to k nodes with top-k similarities in b;. Let B"** € R"*" be the
adjacent matrix of the constructed attribute graph, then the element b7 =1
indicates there exists an edge linked v; to v;, and b}'*" = 0 indicates the edge is
nonexistent.

The Calculation of PPMIs. Motivated by DNGR [4], we adopt the ran-
dom surfing model on the topology graph S/attribute graph B to obtain
the attribute/topology probabilistic co-occurrence (PCO) matrix through k-step
iterative. The iterative process can be represented by Eq. (2), where pg is the
initial one-hot vector with i-th value is 1 and the other values are 0, coefficient
a and 1 — « represent the probabilities with respect to the node jumps to the
next node and returns to original vertex (restart), respectively.

Pr = Pr-1+ (1 —a)po (2)

Based on the attribute/topology PCO matrix, the pointwise mutual infor-

mation (PMI) can be calculated by Eq. (3), where p(v;, v;) represents the num-

ber of co-occurrences that nodes v; and v; are in the same context, |D| =

2o 2w, P(Vi;5), p(v;) and p(v;) represents the number of occurrences of nodes
v; and vj, respectively.

p(vi, v;) - | D

PMIL, ,, =lo
&l p(v;) - p(v;y)

) 3)
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Then, PPMI can be calculated by Eq. (4) [23], which means that negative
values in attribute/topology PMI are assigned to zeros.

PPMI,, ,,, = max(PMIL,, ,,,0) (4)

The Design of the Shared Auto-Encoder. In general, an Auto-Encoder
consists of an encoder and a decoder which can extract inherent essence and
non-linear information of a network. In DANEP, we designed a shared Auto-
Encoder with 2K —1 layers to incorporate attribute features and network topol-
ogy. The input of the Auto-Encoder is the concatenation of the row vectors of
PPMI_AF and PPMI,NT, i.e. C;, = (fi, ti) = (fih ce ,fin, ti17 s 7tin>, where
C = [F,T] € R"*?" ¢;, f; and t; are the i-th row vector of C, F, and T, respec-
tively. Let y; x(k =1,--- ,K) and §; x(k =1,--- , K) be the desired embedding
representation and the reconstructed representation of the Auto-Encoder, then
vik(k=1--- K)and §;x(k =1,---, K) can be computed by Eq. (5)—(9).

Vi1 = f(Wic; +by)

(
Yigk=F(Wkyik-1+bp)(k=2,--- K1) (
vi=¥i1=Yixk = [(Wgkh; k1 +bg) (7
S’i,k :f(WK+k715’i,k71 + bK+k71)(k =2, K- 1) (
Vik = f(Waog 19 k1 +bog 1) (
Where f(-) represents the non-linear activation function, and ¢ =
{Wg,be}(k = 1,--- 2K — 1) are weight and bias parameters of the shared
Auto-Encoder.
Let C be the output of the decoder, where & = §ix = f(Wox 19, 5 1 +
by _1). The goal of Auto-Encoder is to minimize the reconstruction loss between
the C and C, so the loss function is defined as:

Erec - Z ||él - CiH% (10)
1=0

To further improve the quality of node representation of the shared Auto-
Encoder, we designed the local pairwise constraint, which is used to reinforce
the consistency and complementary information contained in attribute features
and network topology. Given the adjacent matrix S/B"™" of attribute/topology
graph, the local pairwise constraint is defined as:

1 n n 2 1 n n 2
LCiocat =53 > sullyi—yili+5D 0 > 0illy: = vill3

(11)
= tr((YO) L YC) + tr((YC) LyYC)
where Ly = D' — S, Ly = D” — B"", both D’ = [d';;] € R"*™ and D" =

. nxXn 3 : . /. n . "o n new
[d";;] € R are diagonal matrices, D';; = ijl Sij, D" i = ijl b



258 K. Dong et al.

Thus, the objective function of the DANEP is defined as:
L= aLliscal + BLrec (12)

Where o and 3 are the hyper-parameter to balance the weights among dif-
ferent losses.

4 Experiments and Results

In this section, we conduct extensive experiments on the four real-world networks
by adopting three widely used applications, i.e., node classification, node clus-
tering, and network visualization, to evaluate the effectiveness of our proposed
method DANEP.

4.1 Datasets

In experiments, four publicly available networks with class labels are used, i.e.,
Cora, Citeseer, BlogCatelog and Flicker networks, where the first two datasets
are academic papers citation network, and the last two datasets are the social
networks. In Cora/Citeseer networks, nodes and edges represent academic papers
and the citation relationships amongst those papers, respectively, each paper can
be represented as a bag-of-words vector with 1433/3703-dimensions, and papers
are divided into 7/6 categories, such as Genetic algorithm, Neural Networks
and Reinforcement Learning. In BlogCatelog/ Flicker networks, nodes and edges
represent the users and relationships amongst those users, respectively, each user
can be represented as a bag-of-words vector with 8189/12047-dimensions, and
those users are divided into 6/9 categories based on social preferences. The
statistics for each network are summarized in Table 1.

Table 1. The statistics of networks.

Dataset Nodes | Edges | Features | Classes
Cora 2708 5278 | 1433 7
Citeseer 3312 4660 | 3703 6
BlogCatalog | 5196 | 171743 | 8189 6
Flicker 7575 | 239738 | 12047 9

4.2 Baselines

To verify the effectiveness of DANEP model, we select 10 approaches as the base-
lines, including: 4 “Topology-only” algorithms, i.e., DeepWalk [15], Node2Vec [§],
GraRep [3], DNGR [4], and 6 “Topology +Attribute” algorithms, i.e., AANE
[10], TADW [24], ASNE [12], DANE [6], ANRL [27], NANE [14]. The details of
these baselines are illustrated as follows:
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“Topology-Only” Algorithms: DeepWalk [15]: It employed the truncated
random walks to capture the local topology information, and then learned the
latent embedding representation by making full use of the captured local infor-
mation.

Node2Vec [8]: It proposed biased random walks to project node into a low-
dimensional space while preserving the network essence by exploring and pre-
serving network neighborhoods of nodes.

GraRep [3]: It developed a model to learn the node representation for the
weighted graph by integrating global structural similarity in the learning process.

DNGR [4]: It adopted a random surfing model to capture topology informa-
tion, and then utilized the stacked denoising Auto-Encoder to extract meaningful
information into the low-dimensional vector representation.

“Topology +Attribute” Algorithms: AANE [10]: AANE considered and
integrated the proximity of attribute features into the embedding learning and
adopted a distributed manner to accelerate the learning process.

TADW [24]: It employed a matrix factorization method based on DeepWalk
to learn low-dimensional representations of text and network topology, and then
concatenate them to form the final representation.

DANE [6]: DANE allowed neighborhood topology obtained by random walks
and attribute features to interact with each other to preserve the consistent and
complementary information during the learning process.

ANRL [27]: Tt designed a neighbor enhancement Auto-Encoder model with
an attribute-aware skip-gram to integrate the attribute features and network
topology proximities in the learning process simultaneously.

ASNE [12]: ASNE integrated the adjacent matrix of network topology and
attribute matrix on the input layer, and allowed them to interact with each other
for capturing the complex relationships and the more serviceable information.

NANE [14]: It cascaded the adjacent matrix of network topology and cosine
similarity of attribute features into the unified representation to capture the
local information and non-linear correlation in the network.

4.3 Parameter Settings

To get a fair comparison, we set the embedding dimension d of all datasets to
be 128 for all baselines. For DeepWalk and Node2Vec, we set the window size as
10, the walk length as 80, and the number of walks per node as 10. For GraRep,
the maximum transition step is set to 5. For TADW, we set the regularization
parameter to 0.2. Besides, the default values of the other parameters for these
methods were set the same as the open-source codes released by the original
authors.

4.4 Node Classification

In this subsection, we randomly select 10%, 30%, 50% nodes as the training set
and the remained nodes as the testing set, apply the linear SVM as the classifier
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Table 2. The performance evaluation of node classification.

Metrics Methods | 10% 30% 50%
Mi-F1 | Ma-F1 | Mi-F1 | Ma-F1 | Mi-F1 | Ma-F1
Cora DeepWalk | 0.7341 | 0.7180 | 0.7905 | 0.7796 | 0.8233 | 0.8136
Node2Vec | 0.7059 | 0.6880 | 0.7747 | 0.7627 | 0.8013 | 0.7913
GraRep 0.7375 | 0.7207 | 0.7750 | 0.7561 | 0.7835 |0.7631
DNGR 0.6493 | 0.6380 |0.7071 | 0.6968 | 0.7335 |0.7164
AANE 0.6582 | 0.6177 | 0.7195 | 0.6891 | 0.7305 |0.7015
TADW 0.7945 | 0.7777 |0.8360 | 0.8220 | 0.8436 | 0.8298
DANE 0.7751 | 0.7545 | 0.8188 | 0.8033 | 0.8302 | 0.8143
ANRL 0.7487 | 0.7224 | 0.7659 | 0.7430 | 0.7731 | 0.7538
NANE 0.5114 | 0.4660 | 0.5816 | 0.5470 | 0.6459 |0.6113
ASNE 0.457 0.4353 | 0.5347 | 0.5099 | 0.5723 | 0.5466
DANEP 0.8215 | 0.8078 | 0.8398 | 0.8259 | 0.8575 | 0.8435
Citeseer DeepWalk | 0.5037 | 0.4723 | 0.5888 | 0.5502 | 0.6199 | 0.5790
Node2Vec | 0.4875 | 0.4508 | 0.5621 | 0.5223 | 0.5851 | 0.5401
GraRep 0.5063 | 0.4644 | 0.5421 | 0.4881 | 0.5542 | 0.4957
DNGR 0.4581 | 0.4228 | 0.4970 | 0.4547 | 0.5331 | 0.4895
AANE 0.6549 | 0.6008 | 0.6834 | 0.6293 | 0.6930 | 0.6436
TADW 0.6621 | 0.6181 |0.7182 | 0.6520 | 0.7421 | 0.6972
DANE 0.6415 | 0.5960 | 0.6950 | 0.6520 | 0.7163 | 0.6722
ANRL 0.6795 | 0.6371 | 0.7270 | 0.6747 | 0.7397 | 0.6880
NANE 0.4488 |0.4171 |0.5783 | 0.5334 | 0.6298 | 0.5749
ASNE 0.3261 | 0.3028 | 0.4110 | 0.3695 | 0.4385 |0.3874
DANEP 0.6494 | 0.5970 | 0.7357 | 0.6834 | 0.7349 | 0.6787
Flickr DeepWalk | 0.4389 | 0.4352 | 0.5223 | 0.5144 | 0.5483 | 0.5385
Node2Vec | 0.3899 | 0.3863 | 0.4896 | 0.4804 | 0.5171 | 0.5049
GraRep 0.4908 | 0.4829 | 0.5422 | 0.5327 | 0.5558 | 0.5466
DNGR 0.4656 | 0.4027 | 0.4653 | 0.4552 | 0.4768 | 0.4656
AANE 0.5865 | 0.6068 | 0.6151 | 0.6323 | 0.6244 | 0.6369
TADW 0.6117 | 0.6026 | 0.7020 | 0.6940 | 0.7218 |0.7143
DANE 0.6453 | 0.6439 |0.7160 | 0.7144 | 0.7395 | 0.7380
ANRL 0.2740 |0.1984 |0.2947 | 0.2268 | 0.2978 | 0.2250
NANE 0.3733 | 0.3690 | 0.4993 | 0.4931 | 0.5290 | 0.5224
ASNE 0.4366 |0.4316 |0.5218 | 0.5116 | 0.5500 |0.5413
DANEP 0.8457 | 0.8431 | 0.8585 | 0.8565 | 0.8690 | 0.8670
BlogCatalog | DeepWalk | 0.5781 | 0.5733 | 0.6624 | 0.6549 | 0.6899 | 0.6811
Node2Vec | 0.5296 | 0.5258 | 0.6283 | 0.6215 | 0.6592 | 0.6509
GraRep 0.6890 | 0.6851 | 0.7272 |0.7230 | 0.7450 |0.7413
DNGR 0.5896 | 0.5850 |0.6515 | 0.6423 | 0.6682 | 0.6585
AANE 0.8565 | 0.8539 | 0.8846 | 0.8828 | 0.8920 | 0.8897
TADW 0.8199 | 0.8175 |0.8610 | 0.8799 | 0.8789 | 0.8772
DANE 0.8436 | 0.8400 |0.8180 | 0.8752 | 0.8876 | 0.8856
ANRL 0.8073 | 0.8004 | 0.8285 | 0.8225 | 0.8333 | 0.8274
NANE 0.6806 | 0.6778 |0.7764 | 0.7739 | 0.8043 | 0.8016
ASNE 0.5838 | 0.5823 | 0.6651 | 0.6615 | 0.6759 | 0.6695
DANEP 0.8749 | 0.8739 | 0.9126 | 0.9117 | 0.9226 | 0.9219
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Table 3. The performance evaluation of node clustering.

Metrics | Methods | Cora Citeseer | BlogCatalog | Flickr | Average

ACC DeepWalk | 0.5609 |0.4029 |0.3646 0.3163 |0.4112
Node2Vec | 0.6128 |0.4208 |0.3553 0.3209 |0.4275
GraRep 0.5027 |0.3238 |0.3710 0.2934 |0.3727
DNGR 0.5948 ]0.3929 | 0.3599 0.2750 | 0.4057
AANE 0.3904 |0.5379 | 0.4320 0.1338 |0.3735
TADW 0.6686 | 0.5689 | 0.6848 0.3640 |0.5716
DANE 0.7187 | 0.4884 | 0.4879 0.2445 |0.4849
ANRL 0.5129 |0.5730 |0.4720 0.2137 |0.4429
NANE 0.1503 |0.2430 |0.5837 0.2861 |0.3158
ASNE 0.3889 |0.4088 | 0.3896 0.2283 |0.3539
DANEP |0.7179 |0.6097 | 0.7048 0.6886 | 0.6803

NMI DeepWalk | 0.4021 |0.1371 |0.1966 0.1694 |0.2263
Node2Vec | 0.4396 |0.2227 |0.2060 0.1801 |0.2621
GraRep 0.3749 |0.1673 | 0.2040 0.1482 |0.2236
DNGR 0.4424 |0.2017 |0.1836 0.1462 |0.2435
AANE 0.2206 |0.2774 |0.2759 0.0901 |0.216
TADW 0.5515 | 0.3550 | 0.4352 0.1833 |0.3813
DANE 0.5494 |0.2975 |0.3277 0.1165 |0.3228
ANRL 0.3812 |0.3619 |0.3417 0.1004 |0.2963
NANE 0.2096 |0.2637 | 0.3583 0.1329 |0.2411
ASNE 0.2096 |0.1221 |0.2165 0.1290 |0.1693
DANEP |0.5510 | 0.3792 |0.5207 0.6002 | 0.5128

and use 5-fold cross-validation to train the classifier in the learning process.
This process is repeated 10 times and the average performance in terms of both
Macro-F1 and Micro-F1 [25] is reported as the classification results. The detailed
results are shown in Table 2, where the bold numbers indicate the best results.
From Table 2, we have the following observations and analyses:

(1)

DANEP obtains the best performance with respect to the Micro-F1 and
Macro-F1 on the Cora, Flickr and BlogCatalog datasets when the training
rates are 10%, 30% and 50%, respectively. The improved performance con-
cerning the Micro-F1 and Macro-F1 is significantly on different datasets,
such as DANEP achieves the 20.04%, 19.92%, 14.25%, 14.21%, 12.95 and
12.9% than the best baseline DANE on Flicker dataset when the training
rates are 10%, 30% and 50%, respectively. Those results demonstrated the
superiority of DANEP with random surfing and PPMI schemes.

ANRL and TADW achieve the highest values on the Citeseer dataset when
the training rates are 10% and 50%, respectively, which indicate that the
neighbor enhancement mechanism and text-associated matrix factorization
have some the ability to capture the essence of the network, but they are
still obviously inferior to DANEP.
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Fig. 2. The visualization result of different methods on the BlogCatalog dataset
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Fig. 3. The sensitivity of DANEP w.r.t. different « and 3 for node classification

4.5 Node Clustering

Node clustering is an unsupervised downstream task of network analysis based
on the learned node representation. In this study, we use k-means [1] as the
clustering algorithm, accuracy (ACC) [6] and normalized mutual information
(NMI) [14] as metrics to evaluate the clustering performance. Similarly, this
process is repeated 10 times and the average performance in terms of both ACC
and NMI is reported as the clustering results. The final results for each baseline
are shown in Table3. From Tables3, we have the following observations and
analyses:
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(1) DANEP acquires the best clustering performance on the Citeseer, BlogCat-
alog and Flickr datasets against all the baselines. The promotion of perfor-
mance is significantly on different datasets, such as, DANEP with 32.46%
and 41.69% than the best baseline TADW on the Flicker dataset. Besides,
DANEP ranked the second on the Cora dataset, but only with the slightly
inferior in ACC than DANE, i.e., —0.008, and in NMI than TADW, i.e.,
—0.005, respectively. Those results indicated that DANEF based on the
graph representation and PPMI has a good clustering performance than
all baselines.

(2) From the perspective of average performance, TADW obtains better clus-
tering results than the other baselines, but TADW is seriously inferior to
DANEP. In detail, DANEP averagely improves 10.87% in ACC and 13.11%
in NMI than TADW, which demonstrated attribute graph and PPMI matrix
have powerful assistance in node clustering.

4.6 Network Visualization

To verify whether the learned node representations have the discriminative
essence features, we use the t-SNE [16] to project the learned embedding repre-
sentation for each node into the 2D space. The color of a point indicates the class
label. The desired embedding layout should be that nodes with the same color
(label) to closer each other and different colors (label) to distant each other with
the obvious boundary. Due to the space limitation, we only show the visualiza-
tion result on the BlogCatalog dataset in Fig. 2, and the visualization results on
other datasets are similar.

From Fig. 2, we can see that the DANEP, i.e., sub-figure (k), performs the
best result with the nodes of the same color are close to each other and the
boundaries amongst the different colors are discernible. Besides, DANE, sub-
figure (e), performs the suboptimal result that the separation of boundaries
is inferior to DANEP. Nevertheless, the visualization results of the DeepWalk,
Node2Vec, Grarep, DNGR, ANRL, AANE, TADW, NANE and ASNE, i.e., sub-
figure (a), (b), (c), (d), (f), (g), (h), (i) and (j), are mixed with different color
nodes.

4.7 Sensitivity Analysis of Parameters

The hyper-parameters « and 3 are used to balance the weights between the
pairwise constraint loss and reconstruction loss of the DANEP. In this subsection,
we analyze the sensitivity of hyper-parameters of DANEP via node classification
and node clustering tasks. Experimental results of Micro-F1 of node classification
and ACC of node clustering are presented in Fig. 3 and Fig. 4, respectively. The
trends of Macro-F1 and NMI with respect to a and 3 are similar to that of
Micro-F1 and ACC, so we do not present them due to the space limitation.
From Fig. 3, we can observe that the tendencies of the Micro-F1 value of node
classification are stable under different hyper-parameters and different datasets,
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Fig. 4. The sensitivity of DANEP w.r.t. different o and § for node clustering

which indicates DANEP has stable performance for node classification. In Fig. 4,
the fluctuation of ACC of node clustering is obvious with the various hyper-
parameter 3 than hyper-parameter «, which indicates that reconstruction loss
plays a vital role in the node clustering process.

5 Conclusion

In this study, we develop the DANEP model to integrate attribute features
and network topology into a unified graph format and encode each node into a
low-dimensional embedding representation. In our model, the k-nearest neighbor
graph can reveal some potential non-linear manifold under the attribute features,
the random surfing model and PPMI can capture the structural characteristics
and high-order proximity information of the attribute/topology graph, and the
pairwise constraint can improve the quality of node representation. Experiment
results on four real-life datasets in node classification, node clustering and visu-
alization tasks indicated that the performance of the DANEP outperformed
10 representative baselines, including “Topology-only” algorithms and “Topol-
ogy+Attribute” algorithms.

The DANEP is designed to handle the homogeneous networks with single-
typed nodes and edges. However, real-world networks are usually with multiple-
typed nodes and edges, which contain richer semantic information and more
complex network topology for network representation learning [7,26]. Therefore,
extending the DANEP to heterogeneous networks and improving the stability
of clustering are our future works.
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Abstract. As one of the important exogenous factors that induce malignant
tumors, environmental pollution poses a major threat to human health. In recent
years, more and more studies have begun to use data mining techniques to explore
the relationships among them. However, these studies tend to explore universally
applicable pattern in the entire space, which will take a high time and space cost,
and the results are blind. Therefore, this paper first divides the spatial data set,
then combined with the attenuation effect of pollution influence with increasing
distance, we proposed the concept of high-impact anomalous spatial co-location
region mining. In these regions, industrial pollution sources and malignant tumor
patients have a higher co-location degree. In order to better guide the actual work,
the pollution factors that have a decisive influence on the occurrence of malignant
tumors in the pattern is explored. Finally, a highly targeted new method to explore
the dominant influencing factors when multiple pollution sources act on a certain
tumor disease at the same time is proposed. And extensive experiments have been
conducted on real and synthetic data sets. The results show that our method greatly
improves the efficiency of mining while obtaining effective conclusions.

Keywords: Spatial data mining - Anomalous region - Co-location patterns with
dominant influencing features

1 Introduction

Malignant tumors are caused by a variety of human carcinogenic risk factors including
chemical, physical, biological, etc. As one of the important exogenous factors that cause
malignant tumors, environmental pollution factors will not only cause damage to the
ecological environment, but also pose a great threat to human health. Existing studies
have shown that various types of pollution can cause humans to produce different tumor
diseases, such as: increased levels of PM2.5 in air pollution will increase the risk of lung
cancer [ 1], the gastric cancer mortality rate of residents in areas with high levels of organic
pollutants and heavy metals in water is significantly higher than that in low-polluted areas
[2].

To control environmental pollution and protect human health, it is necessary to find
the correlation between pollution and human disease in order to propose better measures
to protect the environment.
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Data mining refers to the process of obtaining information hidden in a large amount
of data from a large amount of data according to a certain mining algorithm. At present,
there have been studies using data mining technology to explore the potential connections
between diseases and pathogenic factors [3]. However, these researches often explore
universally applicable pattern in the entire space or data set, which will take a high time
and space cost, and will produce a lot of useless results. And because of the greater
interference from useless information, the final mining results are blind. Therefore, it is
necessary to propose a targeted and instructive and efficient mining method to explore
the correlation between tumor diseases and pollution sources.

Spatial data mining is the process of discovering potential connections between data
in spatial database. The spatial co-location pattern is a set of spatial features with higher
spatial proximity relations. The application and promotion of spatial co-location pattern
mining methods in different fields has become a hot spot for scholars all over the world.
Huang et al. proposed a join-based co-location pattern mining method [4]. Priya et al.
studied the similarities and differences between the co-location mining problem and the
classic association rule mining problem, and formalized the co-location pattern mining
problem [5]. Manikandan and Srinivasan use R-tree index to mine spatial co-location
patterns to reduce spatial data search time [6]. Manikandan and Srinivasan proposed
a new co-location pattern mining algorithm [7], this method uses Prim algorithm to
reduce the calculation amount of traditional algorithms without losing co-location pattern
instances. Considering the differences in the contribution of different features to the
pattern, a method to measure the feature differences in the co-location pattern is proposed
by Fang et al. [8].

All the above methods explore universally applicable patterns in the whole data set
and ignore the existence conditions of the patterns, which will undoubtedly make the
obtained results blind. Moreover, they consider all spatial features equally and ignore
the interaction between features.

Anomalous spatial co-location region refers to the regions in the space with spatial
co-location intensity that higher or lower than expected. In the anomalous spatial co-
location region, we can often obtain more interesting spatial associations. Recently, Cai
et al. proposed an adaptive anomalous spatial region mining algorithm based on the
co-location intensity between different features in the space [9]. This algorithm only
considers whether the instances are adjacent to each other when measuring the spatial
co-location intensity, but ignores the influence of distance on co-location intensity.

Based on anomalous spatial co-location pattern mining technology, combined with
the attenuation effect of pollution influence with increasing distance, we propose a
mining algorithm for mining high-impact anomalous regions. In high-impact anomalous
regions, industrial pollution sources and patients with malignant tumors have a higher
degree of spatial co-location. In this case, malignant tumors are more likely to be caused
by the influence of pollution.

Then, in order to better guide the actual work, we proposed the concept of mining
co-location patterns with dominant influencing features to discover the decisive factor
of pollution over malignant tumors. To sum up, a new method of mining spatial co-
location patterns with dominant influencing features in high-impact anomalous regions
is proposed. The method is implemented using Java, and a large number of experiments
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are performed on real and synthetic data sets. The results show that the proposed method
is practical and efficient.

The main contributions of this paper can be summarized as follows: (1) Proposed a
definition of spatial co-location patterns with dominant influencing features, by dividing
spatial features into primary features and the influencing features. (2) The concepts of
influencing clique, influencing degree and difference degree of features are defined for
mining co-locations with dominant influencing features. (3) A method to obtain high-
impact anomalous regions that have a higher of co-location is provided. (4) Designed
an algorithm for finding spatial co-location patterns with dominant influencing features
in high-impact anomalous regions.

The organization of this paper is as follows: Sect. 2 defines the basic con-
cept. Section 3 presents the mining algorithm. Section 4 gives the evaluation of the
experimental results. Section 5 shows the conclusion and future works.

2 Basic Concepts

For a spatial instance set O = {0}, 02, ..., o}, if the Euclidean distance between two
spatial instances o; and o is less than or equal to a specified distance threshold d, it is
considered that there is a proximity relationship R between them, which can be expressed
as:

R(0j, o) < (distance(oj, ox) < d) (1)

When there is a spatial proximity relationship R between the spatial instances, we
think that the two instances are adjacent to each other.

Definition 1 (Primary Features (PF) and Influencing Features (IF)). Spatial feature
setFF = {f, /2, ..., fx} isacollection of different kinds of things. The primary feature set

PF = {flp , fzp . ..., [P refers to a collection of features whose occurrence probability and
distribution will be _aff@cted by_ other features. It is a subset of F, PF C F. The influencing
feature set IF = {f}, f;, ..., f,} is the set of features that will affect other features. It is

the complement of the primary feature set in the spatial feature set F', [F = F — PF.
Figure 1 shows an example of the primary features and influencing features in a spatial
dataset.

(a) (b)

Fig. 1. An example of spatial dataset, (a) An example of primary feature instances (red dots),
(b) Multiple different types of influencing feature instances (blue squares) within its proximity
threshold range (circle) (Color figure online)
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Definition 2 (Influencing Cliques (IC)). For a spatial instance set O, including the
primary feature instance set PO and the influencing feature instance set 10, if there is a
spatial instance set IC = {05.’ ,oh, .., o’q}, and any influencing feature instance in it has

a proximity relationship with the primary feature instance of , namely {R(oj.7 , 0;;)|p <
k <gq, of € PO, 0;; € 10}, then IC can be called an influencing clique.
For an influencing clique IC = {oi.7 , 0;,, o 0;}, for each influencing feature instance

oj:, its co-location effectiveness p decreases as the increase of distance between it and
the primary feature instance o/ . In order to better simulate this attenuation process, we
refer to the literature [10] and propose the following formula:

i2
distance(af ,ui.)

pi = l % e_ d2+5 (2)

where, d value is the distance threshold specified by us. According to the formula,
pi will be close to 0 when the distance is equal to d.

The influencing co-location intensity /CI of the primary feature instance of inICis
defined the accumulation of p-values of all impact feature instances in IC, expressed as:

q
ICly=% . pi (3)

For region A that has multiple primary feature instances, we use statistics G*, which
proposed in [11] to measure the influencing co-location intensity of the region, expressed
as:

> peaICl —n+ICI
J

Nxn—n?

S*\ N
Wherein n is the number of primary feature instances contained in region A, N is the
total number of primary feature instances in all regions, ICI; is the number of influencing

feature instances that have a neighboring relationship with the primary feature instance,
ICI is the average of ICI;, and S is expressed as:

N 2
- ICI;
S = L — ICI? (5)
N

If the G* value is positive, it means that the influencing spatial co-location intensity
of region A is higher than the average level, which means that A is a high-impact
spatial anomalous co-location region. As shown in Fig. 2, the primary feature instance
(represented by the red dot) and the adjacent influencing feature instances constitute the
high-impact anomalous regions.

“4)

Definition 3 (Influencing Co-location Patterns). For a spatial feature set F, which
including the primary feature set PF' and the influencing feature set /F, influencing co-
location pattern ¢ = {]S.P,fl’,fz’, . ,fk’} is a subset of F, and it is the union of a primary
feature and the non-empty subset of the influencing feature set.
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Fig. 2. An example of influencing cliques (Color figure online)

Size is used to identify the number of different influencing features that affect the co-
location pattern. Since each influencing co-location pattern contains only one primary
feature, the size of an influencing co-location pattern is its length minus 1, denoted as
size(c) = |c| — 1.

Definition 4 (Row Instance and Table Instance). For an influencing co-location pat-
tern c, if there is an influencing clique /C, we regard /C as a row instance of c, if IC
includes all features in ¢, and no subset of /C can contain all the features in c¢. The set
including all the row instances of influencing co-location pattern c is called table instance
of c.

Figure 3 is the table instances of influencing co-location patterns in Fig. 2.

Primary|Influencing Primary|Influencing Primary| Influencing Primary| Influencing Primary| Influencing
_feature | feature  feature | feature = _feature| feature feature| feature = feature|  feature
A a A b A a b A a c A a b2 ¢
Al al Al bl Al al bl A4 a8 ¢l A3 a4 b2 cl
Al a2 AS b2 Al a2 bl A4 a9 cl A3 a7 b2 cl
Al a3 A5 b2 Al a3 bl A4 a8 2 020 10.18 0.33 0.50
Al a4 AS b3 Al a4 bl A4 a9 2
A2 as 0.60 1.00 A3 a4 b2 A3 a4 cl
A2 a6 A3 a7 b2 A3 a7 el
A2 a7 _— A5 [al0 b2 0.40 10.36 1.00
A3 a4 Primary| Influencing A5 |all b2 Primary| Influencing
A3 a7 feature | feature A5 a0 B3 o feat
A4 a8 A c AS |a1g py ealure— e
A4 a9 A3 cl 0.60_|0.64 1.00 A3 b2 ol
AS al0 A4 cl (033 030
A5 a1l ‘A4 2 ~ 020 033 0.50
1.00 1.00 0.40 1.00
(a) (b) ()

Fig. 3. The table instances of influencing co-location patterns in Fig. 2, (a) 1-size influencing
co-location patterns, (b) 2-size influencing co-location patterns, (c) 3-size influencing co-location
patterns

Definition 5 (Participation Ratio and Participation Index). For a k-size influencing
f:o-locat%on pattern k= .{)?p JS fkl},. The participation ratio PR(c, ﬁ) of the
influencing feature f; in ¢y is defined as the ratio of the number of non-repeated instances
of f; in the table instance of ¢ to the total number of instances in f;, it is expressed as:

|7Tfi (table_instance(cy)) |
|table_instance({f})|

PR(cy, fi) = (6)
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wherein 7 is the projection operation. Participation index of influencing co-location
pattern ci is defined the minimum of the participation ratios of all influencing features,
which denoted as /(cy), expressed as:

PI(cy) = min’_ {PR(cy, f3)} (7)

When PI(cy), the participation index of ¢, is greater than or equal to the user given
threshold min_prev, it can be called a prevalent influencing co-location pattern, which
represents the primary feature instance and influencing feature instances have prevalent
association relationships in space.

Definition 6 (Influencing Degree of Influencing Features (IFID)). For a k-size influ-
encing co-location pattern cy, any k-1 size sub-pattern of ¢ is record as ¢, =
{fjp Jiofss oo fi—1 ). The loss ratio of any influencing feature f;' from cx_ to ¢, that

is, the ratio of the number of lost instances of fii from ci_1 to ci to the total number of
instances in fi’, recorded as LR, expressed as:

Irrfii (table_instance(cy—1)| — |7rj;_,' (table_instance(cy)|

LR(Ck, Ck_l,f;i) = (8)

|table_instance({ff}) |

The minimum of LR from all influencing features in the co-location pattern from cy — |
to ¢ is called the loss degree of pattern from c;_1 to ci. It is recorded as LD(ck, ck—1),
expressed as:

LD(ex. ck-1) = minf= {LR(cx ci-1. 7)) ©)

The loss degree LD(cx, cx—1) indicates that the possibility that pattern c;_; is not
affected by the influencing feature fki (fki = ¢ — cx—1) and appear by itself. With the
increasing of L/, influencing feature f; has less effect to pattern ¢, that s, f;” has less
ability to influence the primary feature.

In order to more intuitively express the degree of influence of each influencing
feature on the pattern, the concept of the influencing degree of the influencing feature is
introduced. The influencing degree IFID(cy, f;") is defined as:

IFID(ck. f7) = 1 = LI (ck. ck—1) (10)

The bigger the IFID(cy, f/') is, the greater the influence of influencing feature £ on
the primary feature in cy.

Definition 7 (Difference Degree of Influencing Feature (IFDD)). In order to measure
the difference of influencing degree between different influencing features, we propose
the concept of influencing feature difference degree, that is, the difference between the
influencing degree of the influencing feature and the minimum feature. The minimum
feature influencing degree is recorded as min_IFID(cy), and the influencing feature
difference degree is recorded as IFDD(cy, fl.i ), expressed as:

min_IFID(cy) = min_, (IFID (ck , f,f') ) (11)

IFDD(cy., f) = IFID (ck, f;') — min_IFID(cy) (12)
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Definition 8 (Influencing Co-location Pattern with Dominant Influencing Feature).
For a k-size influencing co-location pattern ¢y, given a minimum participation index
threshold min_prev and a minimum influencing feature difference degree threshold
min_ifdd. If the participation index PI(cy) of influencing co-location pattern is greater
than min_prev, and there are one or more influencing feature difference degree greater
than or equal to min_ifdd, then these influencing features can be called dominant features,
and the pattern ¢y is called an influencing co-location pattern with dominant influencing
feature, hereinafter referred to as the dominant influencing pattern. Dominant features
are marked with “* in the pattern.

Figure 4 is an example of determining whether a pattern is a dominant influence
pattern:

mflvencing featere Py inflaenc iz feae prenary wnllnencing featire

feanare feamre feamse
A a A a
Al al At a8 <l
Al 2 A ) <l
a1 . a1 - @ T
Al .t A w“ <
Ad al AS £ cl
A - A3 a7 cl
0.40 0.36 1.00 2) Calculate the loss degree of influencing feature
LR({Aab.c {Aacha)=0. || ILR({Aabc} {Aache) LD({A,ab.c}, {Aab})=min(LR({A.ab.c}, (A,ab}.a),
36-0.18=0.18 1-0.5=0.5 LR 46
1 D Calculate th loss ratio of dny influencing LD({Aab.c}. {Aac)=min(LR({A, }a).
feature LR({Aab.c}, {Aac)c)=0.18
b0, || LR(GAab.ct {A b1 b)-1 ur (¢ Lired)
033=0.67 LD({Aab.c},{Abch)=min(LR({A,ab.c}, {Ab.c}b),
LR({Aab.c}, (A b} )0
| z feanme 2 . e .
Sasea intlusing Lanse 9 Caleulate the influence degree of influencing feature
A a ! c
A3 al b2 el
Al a7 b2 el
030 0.18 0.33 050
L I
@ |
5determining whether a pattem is a dominant influence pattem @ Calculate the difference degree of the influencing features
Given min_prev=0.1, min_ifdd=0.3.
The participation index of the pattern i: PI({A.a.b.¢})= 0.18>0.1; Mininum feature influnce degroe: min_IFID({A,a.0,c})=0.54:
30, influencing feature a is a dominant influencing features

Fig. 4. The process to mine the dominant influencing pattern

3 Mining Algorithms

According to the above definition, in order to complete the research of this paper, we
need to classify the dataset first. According to the Definition 1 and Definition 2, we
divide the spatial dataset into primary feature set and influencing features set. Then we
propose an algorithm called AHIASCRM to obtain the high-impact spatial co-location
anomalous regions. Then in order to further explore whether there are one or more influ-
encing features have a decisive influence on the production of the primary features, we
propose the ADICPM algorithm to mine the influencing co-location patterns with dom-
inant influencing features in such regions. Finally, the prevalent influencing co-location
patterns and its dominant influencing features are obtained. The mining framework is
given in Fig. 5.
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classify the
features set primary features ADICPM
dataset and the high-impact R

»

influence co-location
patterns i
dominant features

spatial data set

influencing features anomalous regions
data set

Fig. 5. The mining framework

First, we propose an algorithm AHIASCRM (Algorithm of high-impact anoma-
lous spatial co-location region Mining) to obtain high-impact anomalous regions, the
algorithm pseudocode is shown in the Fig. 6 and the steps are as follows:

(1) Initialization. For feature instances in space, the proximity relationship between
each of the primary features and the proximity relationship between the primary
features and the influencing features are calculated. Then calculate and save the IC/
and G* values of each primary feature based on the distance between the primary
feature and the influencing feature. (Line 1)

(2) According to the G* value of the main feature, filter out the main feature instances
with a positive G* value, and sort the main feature instances with a positive G*
value in descending order. (Lines 2—7)

(3) Starting from the unexplored primary feature instance with the largest G* value,
search for the primary feature instances adjacent to it that can increase the influenc-
ing co-location intensity statistics G*, and add them to the high-impact anomalous
region. Repeat this process to search for the neighbors of the neighbors until all the
primary feature instances with a positive G* value has been visited. (Lines 8-25)

Input: primary features set PF and influencing features set /F. 5 end if

distance threshold d 6:  end for

Output: spatial data set S in anomalous regions 7: desc_sort_queue = Descending sort_with_G +
Variable: (high_level _PF)

ICI: Influencing co-location intensity of the primary feature 8 n=0

instance 9: while desc_sort_queue # @ do

Rn: One of the anomalous regions 10: pf = desc_sort_queue_pop()

n: The serial number of anomalous regions, » starts from 0 11: add(Rn, pf)

G * (Rn): G* value of region Rn 12: push(cheacked_queue, neighbors_pf)

G * (Rn U pf): G* value of region Rn plus primary feature 13: delet(desc_sort_queue,neighbors_pf)
instance pf’ 14: while cheack_queue # @ do
neighbors_pf: All primary feature instance neighbors of pf 15: pf = cheacked_queue_pop()
high_level _PF: Primary feature set with positive G* value 16: if G+(RnuUpf)>G~*(Rn)
desc_sort_queue: The queue of primary feature instances in 17: add(Rn, pf)

descending order of G* value 18: push(cheacked_queue,neighbors_pf)
checked_queue: A queue for checking 19: delet(desc_sort_queue, neighbors_pf)
S: spatial data set in anomalous regions 20: end if

Method: 21: end while

1: init_PF_ICIl.and_G » (PF,RF,d) 22: add(S, Rn)

2: for allpf € PF do 23: n=n+1

3: if G+(pf)>0 24 end while

4 add(high_level_PF,pf) 25! return(S)

Fig. 6. Pseudocode of AHIASCRM
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After obtaining the high-impact anomalous region, we can intuitively understand
and observe the status of the primary feature instance being affected by the influencing
feature instance. In order to further explore which influencing features play a decisive
role in the prevalent appearance of the primary features, this paper proposes a method
to mine the influencing co-location with dominant influencing features in the spatial
anomalous co-location region, referred to as dominant influencing co-location patterns
or DICPs. The algorithm to mine DICPs is called ADICPM (Algorithm of Dominant
Influencing Co-location Pattern Mining) The algorithm pseudocode is shown in the Fig. 7
and it can be described the following 3 steps:

(1) Forthe feature instances in the spatial anomalous region, calculate the neighbor rela-
tionship between the primary feature instance and the influencing feature instance
and save it into the neighbor list, (Line 1)

(2) Generate the influencing co-location pattern table instance based on the neighbor
relationship and filter it. Pattern that do not meet the minimum participation index
threshold are pruned, and finally the prevalent influencing co-location pattern is
obtained. (Lines 3 to 10)

(3) For prevalent influencing co-location patterns, calculate the influencing degree and
difference degree of each influencing features, and judge whether each influencing
feature is the dominant influencing feature, and whether the pattern is an influencing
co-location pattern containing the dominant influencing feature. (Lines 11 to 32)

Input: primary features set PF and influencing features set IF. 11: for allp € P,_,(c) do

spatial data set S in anomalous regions, distance threshold d. 12: LD(c,p) = calculate_LD(c,p)
minimal pattern threshold min_prev, minimal influencing 13: end for

features difference degree min_ifdd. 14: for all f! € cdo

Output: influencing co-location patterns containing dominant 15: IFID(c, f*) = calculate_IFID(c, /%)
features 16: if min_IFID = IFID(c, ")
Variable: 17: min_IFID = IFID(c, ")
NCP: neighbor set centered on the primary feature instance 18: end if

Cy: set of k-size candidate influencing patterns 19: end for

Py set of k-size prevalent influencing patterns 20: for all f! € ¢ do

IPCDF: set of influencing patterns containing dominant features 21: IFDD(c, ') = IFID(c, fY) —
DIF: set of dominant influencing features min_IFID

Method: 22: if IFDD(c,f') = min_ifdd

1: NCP = generate_pf_neighborhoods(S, PF,IF,d) 23: flag = 1,add( DIF (¢c), f%)
3: k=2, IDCP_set =0 24: end if

3: P, = select_prevalence_influernce_colocation (NCP) 25: end for

4:while P, #0 do 26: if flag ==

5: k=k+1: 27: add( IPCDF,{c,DIF(c)})

5: C, = generate_candidate_influernce_colocation(P,_,) 28: end if

6: while C, # @ do 29: end if

7: for allc € C,, do 30: end for

8: PI(c) = calculate_PI(c, RI_set) 31:  end while

9: if PI(c) = min_prev 32:end while

10: add(P,(c),¢), flag =0 33:return(/PCDF)

Fig. 7. Pseudocode of ADICPM
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4 Experimental Evaluation

The computer configuration used in the experiment is as follow: Intel®CoreTMi7-
8700KCPU, 16 GB memory; Windows10 operating system; development language:
Java.

The experiment was completed on real and synthetic data sets. The real data set is
information of tumor patients and pollution source in a province and some surrounding
areas. According to Definitions 1 and Definition 2, we regard tumor patients as the
primary feature and pollution source as influencing feature including 26 types of primary
features and 9 types of influencing features, a total of 13,562 spatial feature instances,
of which 7,959 are primary feature instances and 5603 are influencing feature instances.
The synthetic data set is generated using a spatial data generator based on [12].

The parameters in the synthetic data set are shown in Table 1.

Table 1. Synthetic data sets

Data sets | Number of instances | Number of primary features | Number of influencing
features

Datal 10000 10 10

Data2 20000 10 15

Data3 40000 15 20

Data4 100000 15 20

4.1 Performance Evaluation and Comparison of Mining Results

Performance Evaluation and Comparison of Mining Results of AHIASCRM. First,
we evaluate the performance of the high-impact anomalous region mining algorithm on
synthetic data sets of different magnitudes. In Fig. 8(a), we set the distance thresholds
to 10, 20, 30, 40, and we can find that the running time increases with the number of
instances, this is because in the process of mining high-impact anomalous regions, we
need to traverse each instance in the primary feature instance set and operate on it, so
that the data set size will directly affect the running time. At the same time, the running
time increases first and then decreases as the distance threshold d increases. Because the
anomalous region mined under different distance thresholds are different, the impact of
thresholds on running time is also different.

In order to evaluate the influence of the distance threshold d on the mining results, we
respectively show the number of primary feature instances and the number of influencing
features contained in the high-impact anomalous regions mined by Data3 and Data4
under different thresholds in Fig. 8(b) and Fig. 8(c). It can be found that the number of
primary feature instances will decrease as d increases, and the number of influencing
feature instances will increase as d increases. This is because when d increases, the
more influencing feature instances are considered to be adjacent to the primary feature
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instance, the average influencing co-location intensity of the entire region will increase,
and the ICI value of the primary feature instance will also tend to average strength of
influencing co-location intensity. Then the primary feature instances in the anomalous
region will decrease, and the number of influencing feature instances will increase. If the
value of d is too small, some meaningful influencing feature instances will be ignored.
If the value of d is too large, some instances that have little influence on the primary
feature instances will also be wrongly considered. Therefore, the value of d needs to be
determined according to the actual situation, otherwise the validity of the mining results
will be affected.
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Fig. 8. Experiment results of AHIASCRM

Performance Evaluation and Comparison of Mining Results of ADICPM. After
mining the high-impact anomalous region, we evaluate the performance of ADICPM
algorithm on synthetic data sets of different magnitudes. In Fig. 9(a), let min_prev =
0.6, as the distance threshold d increases, the running time of the algorithm increases,
because the larger the value of d, the more instances are considered to be adjacent to
each other, the more prevalent patterns would be generated by the algorithm. And the
more connected operations will be done, the more time will be cost.

In Fig. 9(b), let d = 11.5. As the minimum participation threshold increases, the
running time of the algorithm decreases, because the larger the min_prev value is, the



278 L. Zeng et al.

more patterns will be judged as not prevalent patterns, and the algorithm will prune to
reduce subsequent connection operations and the time consumption.

In order to evaluate the influence of the minimum difference degree threshold on the
mining results and algorithm performance, we compare the differences on the data set
Data3 with a moderate amount of data.

In Fig. 9(c), let min_prev = 0.6 and d = 11.5, with the threshold of mini-
mum difference degree min_ifdd increases, the total number of prevalent patterns
remains unchanged, while the number of prevalent patterns containing dominant features
decreases. This is because min_ifdd does not affect the generation of prevalent patterns,
but only affects the judgment and storage of dominant features. The higher the min_ifdd
is, the requirement of influencing degree difference between the dominant feature and
other features in the pattern is higher, and dominant features that meet the conditions is
fewer, the number of prevalent patterns with dominant features is smaller.

In Fig. 9(d), we evaluate the influence of min_ifdd on the running time, and we
can find that the mining time of the dominant mode will decrease with the increase of
min_ifdd. This is because as the previous analysis, the higher the min_ifdd is, the less the
dominant mode will be, and the time required for the storage and output of the dominant
pattern is less. However, since the dominant pattern mining time is very short, the main
time consumption of the algorithm comes from the generation of prevalent patterns.
Therefore, the total mining time is hardly affected by the value of min_ifdd.
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Fig. 9. Experiment results of ADICPM
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Comprehensive Performance Evaluation and Mining Results Analysis. The previ-
ous two subsections compare the performance of AHIASCRM and ADICPM respec-
tively. And in the subsequent case analysis, we need to use the two together. Therefore,
this section will conduct a complete mining on the real data set coherently, and analyze
the proportion of time spent in different steps to evaluate the comprehensive performance
of the algorithm.

In Fig. 10(a), let d = 2000, min_prev = 0.25, min_ifdd = 0.1. The first step of the
algorithm is to mine high-impact anomalous regions. Since the real data set contains
only a small number of instances, this step takes less time, accounting for about 12% of
the running time. The second step is to generate prevalent affecting co-location patterns.
Due to a large number of row instances and table instances is generated in this step, it
takes the most time, accounting for nearly 90% of total. The third step is to explore the
dominant pattern. Since this step requires less operations, it takes very little time and
the running time accounts for less than one ten thousandth. In general, the algorithm can
obtain high-impact anomalous regions in a short time.

In Fig. 10(b), we can see that when d = 2000, the anomalous regions are reduced by
nearly 20% compared with the conventional regions. According to the previous section,
we can know that the fewer the number of instances is, the faster the mining time
is. Therefore, the acquisition of high-impact anomalous regions not only improves the
pertinence of our mining results, but also saves time for subsequent prevalent pattern
mining.

Although the algorithm takes more time to generate prevalent patterns, compared
with traditional algorithms, such as Join-less[13], we divide the feature set to only
generate patterns that contain both primary features and influencing features. We will
not generate patterns that include only primary features or influencing features, which
undoubtedly saves a lot of time and overhead. Finally, the algorithm only needs to spend
a very low cost to mine the dominant pattern, and it can get more instructive results.

In summary, our method is not only efficient, but also more targeted and instructive
than traditional algorithms.
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Fig. 10. Overall experiment results
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4.2 Case Study

In the previous section, we evaluated the efficiency and effectiveness of the algorithm.
In this section, we will analyze and explain the mining results on real data sets through
case analysis to further verify the guidance and practicality of the algorithm.

First, we conduct the mining of high-impact anomalous regions, and the results
obtained are shown in Fig. 11.

Fig. 11. High-impact anomalous regions on a real data set

Then we use the ADICPM algorithm to mine the above-mentioned high-impact
anomalous regions, and obtain the influencing co-location pattern with dominant influ-
encing features, so as to extract the industrial pollution sources that have the dominant
influence on malignant tumors.

When the distance threshold d = 2000, the minimum participation index threshold
min_prev = 0.25, and the minimum difference degree threshold min_ifdd = 0.1, the
three-order dominant pattern obtained is shown in the following table (take multi-system
tumors, abdominal malignancies, and biliary malignancies as examples), The ones with
“*” are the dominant influencing features in the co-location pattern:

Table 2. Mining results on real data set

Patterns that include dominant feature Participation index | Difference degree
{ Abdominal malignant tumor, oil chemical industry, | 0.25531915 0.19859687
printing factory*}

{Renal malignant tumor, electric power, 0.25862069 0.10757212
petrochemical industry*}

{Renal malignant tumor, plastic factory, 0.31034483 0.12885274
petrochemical industry*}

{Malignant tumors of the chest, electricity, printing | 0.25925926 0.10432244
houses*}

{Malignant tumors of the breast, coal industry, food |0.26851852 0.11086198

processing plants*}
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It can be seen from Table 2 that on the basis of obtaining prevalent influencing co-
location patterns, the algorithm further explores whether there are one or more pollution
sources that play a decisive factor in the generation of patterns and the emergence of
cancer patients.

For example, in the pattern {Renal malignant tumor, plastic factory, petrochemical
industry*}, we can not only find that plastic factory and petrochemical industry enter-
prises often exist near patients with renal malignant tumor, but also know that compared
with plastic factory, the pollution generated by petrochemical industry is more likely
to be the primary factor causing the disease of patients with renal malignant tumor.
Because as the dominant feature, the difference degree of petrochemical industry is
greater than the given threshold. This shows that the effect of petrochemical industry
on renal malignancy is obviously higher than that of plastic factory, which means that
where there is petrochemical industry without plastic factory, there will still be kidney
malignant tumor patients often appear, and where there is no petrochemical industry but
only plastic factory, the incidence of renal malignancy is lower.

At present, in terms of medicine, the pathogenic factors of kidney malignancy are
still to be studied, but according to The National Kidney Foundation (NKF) [14], we can
know thatitis likely to be related to air particle pollution. The various industrial processes
of the petrochemical industry and the plastics factory will emit a lot of smoke and dust,
resulting in the increase of PM2.5 in the air. This is consistent with our mining results.
And since our results contain dominant features, it can further guide us to explore the
causes of malignancy. For example, we may get some interesting results by analyzing the
differences in the composition and emissions of the pollution produced by petrochemical
and plastic factories.

Combined with the above analysis, we can find that the mining of high-impact
anomalous regions eliminates the blindness of global data, and improves our pertinence
in exploring the association between pollution sources and cancer patients. The proposal
of the ADICPM algorithm makes our mining results more instructive, and can be applied
well in pollution control, cancer etiology investigation and cancer prevention. When
multiple pollution sources affect certain types of cancer patients at the same time, we
can more accurately identify the leading pollution factors, and focus on them and strictly
monitor them during pollution prevention and control.

For some cancers with ambiguous causes, we can analyze the pollutant emissions of
leading pollution sources to obtain potential environmental influence factors and provide
research directions for exploring the external causes of cancer.

5 Conclusions

Traditional spatial pattern mining determines the connection between a certain pollution
source and a certain disease based on the proximity, while ignoring the common effect
of multiple pollution sources on the same disease. This paper excavates high-impact
regions where multiple pollution sources work together on certain patients based on
the mining algorithm for anomalous co-location patterns. With an improved join-less
algorithm, the dominant pollution source among multiple pollution sources affecting the
same patient was discovered. It is more interesting than the traditional spatial pattern
mining results, and can better reflect the objective laws of the real world.
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In addition, this article also has some shortcomings. It still takes a lot of time to
generate prevalent patterns. It can be improved in the future with new methods. The
simulation of the distance attenuation effect is rough. If more experimental support can
be obtained, it can be further improved.
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to their social and spatial information. However, current activity orga-
nization queries mainly consider simplistic and direct relationships to
measure the relevance. Although Heterogeneous Information Networks
capture complex relationships by meta-structures, the relevance is sel-
dom measured from both social and spatial aspects and does not take the
distinctiveness of meta-structure into account. To fill this gap, we first
propose a new relevance measurement, named SIMER to more accurately
measure the connection strength. Then, we formulate a new query, named
MHS2Q), which considers the social and spatial factors as well as the dis-
tinctiveness of meta-structures. Furthermore, we extend the MHS2Q to
Subsequent MHS2Q, to consider a series of queries with varying spa-
tial constraints. We design an efficient algorithm MS2MU to answer the
(Subsequent) MHS2Q, which exploits a new index structure named d-
Table to boost the computation for subsequent queries, and a pruning
strategy, MSR-pruning to avoid unnecessary computation. Experiments
on real LBSNs show that MS2MU is more effective to retrieve a social
group that is both relevant and socially tight to the query.
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1 Introduction

Location Based Social Networks (LBSNs) platforms such as Yelp, Meituan and
Instagram have witnessed a surge in popularity in the past and the ongoing
decade. Abundant user information such as user friendships, check-ins, and
reviews is kept on these platforms. Benefited from the information, many appli-
cations for marketing, recommendation, prediction, and so on are pervasive in
our daily life [10,12,17,27]. Among these applications, the activity organization
query is one of the most important and actively studied research problems, which
aims at selecting a suitable group of people according to their social and spatial
information for a wide spectrum of applications, e.g., organizing social activities
(concert, trip), planning marketing events, completing certain tasks [8,11,20],
and forming communities [8,14,19,22,27].

However, current activity organization queries mainly consider simplistic and
direct relationships (i.e., liked, check-ins, and reviews) within the input network,
which cannot fully capture the complex relationships between users and other
social network entities. For instance, to hang out at a newly opened swimming
pool, we may want to invite those who are likely to enjoy this swimming pool by
some intuition, e.g., as illustrated in Fig. 1(a), a suitable attendee should visit a
location that has a common attribute with the swimming pool but also is visited
along with the swimming pool by another person. In this case, the acquired
social group from previous works may not satisfy the need because previous
works fail to considered more realistic, complex and semantically representative
relationships as the one described on Fig. 1(a).

To better understand the users and capture the complex relationship from
LBSNs, Heterogeneous Information Networks (HINs) [2,6,26] have been intro-
duced to represent real-world relationships with various semantic meanings
among different types of entities, e.g., person, restaurant, attribute. Consider
the scenario that Gina is looking for someone to hang out at a newly opened
swimming pool. To ensure that everyone enjoys, the invited attendees should
have some connections with the swimming pool (e.g., they like workout) as well
as is socially close to each other. In Gina’s opinion, one may join if 1) he/she has
a close relationship with Gina, and 2) some location he/she has been to shares
a common attribute with this swimming pool and has been also visited together
with this swimming pool by someone else (described as Fig. 1(a)). For example,
in Fig. 1(b), Cindy has been to a gym which is similar to the swimming pool
due to the same attributes, healthy and indoor, and Alice has been to both the
gym and the swimming pool. So, Cindy is regarded as having a connection with
this swimming pool.

Despite the abundant information on an HIN to capture various semantic
meanings of entities and their relationships and the ability of meta-structures to
describe the complex knowledge of relevance, we argue that there are still some
issues not addressed in the previous works on measuring the relevance between
an individual and an entity through complex semantic meaning. Specifically, two
important aspects are not well considered and utilized in previous works for HIN,
i.e., 1) the social and spatial factors, and 2) the distinctiveness of meta-structure.
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Fig. 1. An illustrating example.

Social and Spatial Factors. Specifically, the social influence and the spatial
distance are not incorporated into the measurement via meta-structures, which
greatly affects people’s perception [1,7,25]. In the real world, the neighborhood
of people, both socially and geographically, usually encapsulates more valuable
information, which suggests the connection is supposed to be established through
or related to those that are socially and geographically close. For example, in
Fig. 1(c), Cindy has a connection with the swimming pool if Alice has a pow-
erful enough impact on her. On the other hand, in Fig. 1(d), the connection
established by “South Beach”, “waterside”, and “Bob” may be meaningless to
David since South Beach is not in David’s living sphere. Hence, measuring the
relevance between an individual and an entity from both structural, social, and
geographical aspects helps well capture his/her perception of the entity.

Distinctiveness of Meta-structure. Moreover, the distinctiveness of meta-
structure instances is not considered in previous works [2,6,26]. Formally, a
meta-structure [6], denoted as S = (Ag, Rs,as,a:), is defined as a directed
acyclic graph to describe the relationship between a source type as € Ag and
a target type a; € Ag through types in Ag and relations in Rg, e.g., Fig. 1(a)
illustrating the relationship between the types person and location. A meta-
structure instance Mg = (Vs, Eg,vs,v:) [6] of S is a subgraph of an HIN, which
represents that a source entity vs has the relationship S with a target entity
vy, where each entity in Vg and each relation in Eg correspond to a unique
type in Ag and Rg, respectively. For example, consider the meta-structure S
in Fig. 1(a), where the source type as and the target type a; are person and
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location, respectively. Figure 1(b) shows two instances of S, one of which is
Cindy (person) — Gym (location) — healthy (attribute) and Alice (person)
— Swimming pool (Location) while the other of which has almost the same enti-
ties but a different attribute indoor. In the previous works, only the number of
meta-structure instances matters in the measurement of relevance between two
entities. For instance, in Figs. 1(b) and 1(d), both Cindy and David share two
meta-structure instances with Swimming pool and would be regarded equally
relevant in the previous measurements. However, David is relevant to Swimming
pool from more aspects, i.e., Baseball field and South Beach, than Cindy is, which
indicates the meta-structure instances shared by David and Swimming pool con-
tain more comprehensive information. Hence, David’s and Cindy’s relevance to
Swimming pool should not be identical even though they share the same number
of meta-structure instances with Swimming pool. Therefore, in addition to the
number of meta-structure instances, we argue the distinctiveness should also be
taken into account when measuring the relevance between an individual and an
entity.

To address the above issues, in this paper, we formulate a new activity organi-
zation query, referred to as Meta Heterogeneous Social Spatial Query (MHS2Q).
Given an activity (associated with geographical coordinates), an input user (e.g.,
organizer), a meta-structure S (encapsulating the complex relationship of each
attendee and the activity), and a parameter k, MHS2Q selects a group of k
attendees (i.e., users) such that they are socially close to the input user and
their relevance to the activity with respect to S is the highest. Since MHS2Q
measures the relevance in terms of the spatial and social factors as well as the
distinctiveness and extracts the top-k users with the highest relevance, a suitable
group of attendees is thus returned. The previous works that focus on either the
structural relevance, social and/or spatial tightness are incapable of retrieving a
proper user group for MHS2Q. To solve MHS2Q, we propose a measurement of
relevance, named Social-Spatial and Distinctiveness aware Meta-structure Rele-
vance (SIMER), of a user to the query user and the set of query entities. Specif-
ically, SIMER incorporates the social/spatial meta knowledge acquired from the
influence propagation probability between users and the spatial distance and
is aware of the distinctiveness of meta-structure instances by emphasizing the
number of distinct entities rather than the number of instances. We also exploit
a pruning strategy named Minimum Social Ratio Pruning (MSR-pruning) which
takes advantage of the current results to avoid SIMER computation of the users
who must not be reported as the top-k ones due to lack of a high enough SIMER
value.

However, the living sphere in measuring SIMER is usually uncertain due
to the lack/availability of transportation mean in different areas. This entails
that because of user’s moving patterns, different geographical areas need dif-
ferent spatial distance requirement to select the most suitable group of users.
Therefore, identifying the area of people’s living sphere for the query is chal-
lenging for the query user. To address this issue, we further propose the use
of subsequent queries with varying spatial distance requirements which consist
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of a series of identical queries but different spatial distance requirements. The
optimal distance requirement is found when the subsequent queries results con-
verge. We propose a table-based index structure named d-Table which records
intermediate results from previous queries to boost the processing of subsequent
queries and the computation of SIMER. Extensive experiments conducted on
real LBSNs show that MS2MU is more effective to retrieve a social group that
is both relevant and socially tight to the query.
The contributions of this paper are as follows.

1. We propose a new relevance measurement named SIMER to more accurately
measure the connection strength between a users and the activity.

2. We formulate a new query, named MHS2@Q to consider the spatial and social
factors as well as the distinctiveness of meta-structure. We further propose
a Subsequent MHS2Q to allow a series queries with varying spatial distance
requirements.

3. We design an efficient algorithm, named MS2MU to answer the (Subsequent)
MHS2Q with a new index structure named d-Table and a pruning strategy,
MSR-pruning to boost the performance.

4. Experiments on real dataset show that our approaches significantly outper-
form the other baselines.

2 Related Work

Considering the social relationships among the entities returned (users), social
group queries in social networks have been addressed in existing literature con-
sidering different factors such as social distance and skills [4,5,15,20] for group
formation, later enhanced with the incorporation of the social influence [8]. Users’
social connection coupled with user interests [19] as well as geographical locations
[27] have been considered for activity planning. However, these works only con-
sider simplistic and direct relationships in the input networks. Therefore, they
fail to take advantage of the rich semantics provided by complex relationships
in HIN for suitable activity and event organization.

Many previous researches have used Heterogeneous Information Network
(HIN) to compute the relevance between two entities. Liu et al. propose the
use of Meta-path in order to compute the relevance between two objects [9],
whereas, Shi et al. propose the concept of weighted meta-path for personalized
recommendation [17]. Yu et al. propose a probabilistic approach for path-based
relevance and the notion of cross-meta-path synergy for computing entities rel-
evance [18]. To increase the accuracy of relevance by taking into consideration
complex relationships, Huang et al. introduce three meta-structure based i.e.,
StructCount, SCSE, BSCSE with additional data structure to efficiently com-
pute the relevance between entities on HIN [6]. However, the previous works
do not consider the social relationships of the selected entities the social influ-
ence or the spatial dimension in the HIN which have been shown to improve
the accuracy of the relevance in activity organization [13] and recommendation
tasks respectively [12,16]. Additionally, the previous works do not consider the
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distinctiveness of meta-structure instances, which reflects the comprehensiveness
of the meta-structure instances.

In summary, the previous works on social activity organization and HIN are
not applicable to our scenario which aims to select a group of users relevant
to a set of input items while considering the social relationship between users,
the social influence, geographical location in the HIN and the meta-structure
distinctiveness necessary to form a suitable group of attendees.

3 Formulation

In order to take into consideration the social relationship among individuals, we
propose an extension of an HIN named Integrated Information Network (IIN)
by including the social information into the conventional HIN. Formally, an
integrated information network is denoted as G = (V, E, W) with schema (A4, R),
where V is a set of vertices representing the entities, E is the set of edges
representing the relations between entities, and W is another set of edges which
capture the social influence between entities specifically for the type person. In
addition, A is the type set of entities, and R is the type set of relations for edges
in E.

For each entity v € V, we denote its type as ¥(v) € A, and for each directed
relation (u,v) € E between u,v € V| its type is denoted as ¢(u,v) € R. For
entities u,v € V where 1(u) and ¢(v) are both person, p,, € [0,1] in W is
also an directed edge representing the activation probability of u on v to model
the social influence among them [7]. Note that, without loss of generality, each
entity in V is unique and there is no duplicate relation between the same pair
of entities.

According to the information from an IIN, the relevance between an indi-
vidual and an entity can be measured by their structural, social, and spatial
connections [7,24,26].

By intuition, a meta-structure S is given to illustrate the structural relation
between two types. However, as mentioned earlier, simply counting the number
of instances satisfying a meta-structure S is insufficient to fully represent the
relevance between an individual and an entity since the social influence, distinc-
tiveness, the spatial distance, and entity similarity are not considered. Therefore,
in the following, we first detail the proposed measurement to capture each factor
mentioned above in Sect. 3.1. Then, based on these measurement for each factor,
we propose a new measurement to integrate all the factors and formulate the
research problem in Sect. 3.2.

3.1 Proposed Measurement for Each Factor

Social Influence Factor. As the social influence affects people’s perception in
the real world, the relevance between an individual vs; and an entity v; estab-
lished by or related to more influential individuals is more representative [7]. In
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other words, given a meta-structure S and a source v, an entity v; is more rele-
vant to v if it is connected to vy through a meta-structure instance (i.e., Mg) of
S containing entities related to those who can influence vs more. Inspired by the
concept of maximum influence path [21], which is a path possessing the maxi-
mum propagation probability from one to another, the probability of someone
to activate vy is adopted to quantify the impact of his/her social influence on vy.
Therefore, the social meta knowledge capturing the extent of an entity socially
related to v, is thus defined as follows.

Definition 1. Social Meta Knowledge. Given a source individual (i.e., of
type person) vs and an entity v # vs, let © # vy denote the closest individ-
ual to v, i.e., © has the shortest distance to v in IIN, where O = v if 1 (v) is
person. Assume the maximum influence path from ¥ to vs is P(0,vs) = (0 =
V1, V2, , Uy = Us). The social meta knowledge of an entity v to vs, denoted as
w(v,vs), is the propagation probability on P(0,vs), i.e., w(v,vs) = H;l_llpw,iﬂ.
Note that for v = v, the social meta knowledge is defined as 1 (the mazimum
value) without loss of generality.

Distinctiveness Factor. On the other hand, as the diversity of relationships is
concerned, the strength of relationship between an individual vs; and an entity
vy established by more distinct instances is stronger [23]. To evaluate the dis-
tinctiveness of instances, the number of distinct entities in these instances is
crucial since the larger the number is, the more distinct these instances are
due to the uniqueness of each entity in the IIN. Specifically, for a source v,
and a target v, assume there are n instances of the meta-structure S and
M (vs,vi) = (Vi E%, vs,v;) denotes the ith instance of S. Accordingly, we have
|U; V&| entities in these n instances while there supposedly are at most n|Ag|
entities for n instances. Hence, the distinctiveness is the ratio of distinct entities
to all entities, which is defined as follows.

Definition 2. Distinctiveness. Given a meta-structure S, a source individ-
ual vs, and a target entity vy, let Mg(vs,v;) denote the set of meta-structure
instances of S with source v, and target vy, where M (vs,v) = (V&, EY, vs, vt)
is the i instance in Mg (vs,v;). The distinctiveness of Mg(vs,vy) is

U: V4]

OMsveve)) = R4 w0 TAs] N

Intuitively, 6(Mg(vs,v:)) € [0, 1], where a larger value implies the relationship
between vg and vy is thus stronger.

Spatial Factor. The spatial distance also plays an important role in measuring
the relevance since the knowledge is usually regional, e.g., some scenic spots or
fantastic restaurants are only known to locals. A connection established by or
related to those entities located within people’s living sphere is thus more reli-
able. In particular, given the radius of people’s living sphere d, a meta-structure
instance M (vs, v) counts for a spatial concern if and only if v has a less dis-
tance than d to all entities, i.e., Yo € V&, Dgpa(vs,v) < d, where Dygpq(vs,v) is
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the spatial distance between vy and v [24,25]. Note that an entity not attached
to a physical location, e.g., entities of type attribute, always satisfies the spa-
tial criterion without loss of generality. Therefore, only the set of meta-structure
instances meeting the spatial distance requirement, denoted as Mg(vg,vs,d),
contributes to the relevance measurement of vy to v;.

With the measurements for each factor in hand, now we are ready to pro-
pose an integrated measurement for all these factors and formulate the research
problem, MHS2Q).

3.2 Integrated Measurement and Problem Formulation

As the knowledge of entities is fully expressed in an IIN, the relevance between an
individual vs and an entity v; can be derived more comprehensively through the
entity similarity. For example, iPhone XS and iPhone XS Max are quite similar
from many aspects. The relevance between one and iPhone XS (or iPhone XS
Max) thus can be the reference for that between him/her and the other iPhone. In
order to extensively consider the entities similar to v;, the set of extensive meta-
structure instances Mg(vs,*,d) are used instead of Mg (vs,vs,d). Therefore,
the relevance between an individual v, and an entity v; with respect to a meta-
structure S is measured as the distinctiveness of Mg(vs, *, d), the average social
meta knowledge of entities in Mg(vs, *,d), and the average similarity between
target entities in Mg(vs, *,d) and v;.

Definition 3. Influence-based and Meta-structure Distinctiveness-
aware Relevance (IMDR). Given a meta-structure S, a source individual
v, @ target entity vy, and the radius of people’s living sphere d, the IMDR is

> w(v,vs) ,
vel; Vi Yo Sim(vy, ve)
Ui V§| |M5(U87*7d)| 7

IMDR(vs,vy,d | S) = §(Mg(vs,*,d)) - (2)

where Sim(-,-) can be any similarity function.

Please note IM DR(vs,v¢,d | S) € [0,1], where a larger value indicates that v
is more relevant to v; in terms of the social, spatial, and distinctiveness factors

to S.

Ezample 1. Given the meta-structure S in Fig. 1(a) and Jaccard function to
measure the neighborhood similarity between two entities, consider the source
Cindy and the target Swimming pool in Fig. 1(c), where the number in each
entity represents the spatial distance to Cindy. Given the spatial distance require-
ment d = 3, since Cindy has two instances with Swimming pool and one instance
with Nightclub, |Mg(Cindy, *, d)| = 3. The Jaccard similarity between Nightclub
and Swimming pool is % The IMDR of Cindy to Swimming pool within d = 3
with respect to S is thus
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Swimming

pool, 2
4 0.2 0.6
Gym, Vs ®
1 Swimming < v
N pool, 2 ~

4 Nightclub, 3

(a) IEDiscovery: Cindy’s SCT (b) SMKComputation

Fig. 2. Examples for MS2MU.

1+09+4+02-240.12-3 ><(1+1+2)
32x5 3

IM DR(Cindy, Swimming pool, 3 | S) =
= 0.16.

In addition to measuring the relevance between a source individual v and
the target entities, the connectivity between vs and the target user u € V is
quite important as well. In order to acquire a social group who are familiar
to the target user u, a more social distant source individual v, is less relevant.
Formally, the Social-Spatial and Distinctiveness aware Meta-structure Relevance
(SIMER) is defined as follows.

Definition 4. SIMER. Given a target entity v, a target user u, a correspond-
ing meta-structure S illustrating the structural relationship between person and
v’s type, and the spatial distance requirement d, the relevance of a source user
vs (Vs # u) to vy and uw within d with respect to S is

IMDR(vs,vt,d | S)
Dsoc(Usau) ’

SIMER(vs,vi,u,d | S) = (3)

where Dgoc(vs,u) is the social distance between vy and u.

Therefore, SIMER(vs, v, u,d | S) € [0,1], where a larger SIMER value indi-
cates v, is more suitable as an attendee.

Ezxample 2. Given a target entity Swimming pool, a target user u, a meta-
structure S shown in Fig. 1(a), and the spatial distance requirement d =
3, consider the source Cindy in Fig. 1(c). Follow Example 1 and assume
Do (Cindy, u) = 2.

1
SIM ER(Cindy, Swimming pool,u,3 | S) = 3 x 0.16 = 0.08. |

Given the above definition, now we can formulate the Meta Heterogeneous
Social-Spatial Query (MHS2Q)) problem which answers the top-k relevant users
to a specific user and a specific activity associated with geographical coordinates.
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Definition 5. MHS2Q. Given an IIN G = (V,E,W) with schema (A, R),
a target entity vy € V, a target user uw € V, a meta-structure S, and a spatial

distance requirement d, MHS2Q) extracts the top-k users v € V' having the highest
SIMER(v,v,u,d | S).

MHS2Q is challenging since the relevance between any returned user and the
query (including the query user and the activity) as well as the spatial distance
to the activity of the returned users should be considered simultaneously. Actu-
ally, MHS2Q can be easily proved to be NP-Hard (with a reduction from the
Hamiltonian path problem [3]).

4 Algorithm MS2MU for MHS2Q

In this section, we first design an efficient algorithm for MHS2Q named Mazimum
Spatial and Social Meta-knowledge Relevant Users (MS2MU) which retrieves
the top-k users with the highest SIMER values. To derive the value of SIMER
of a specific source individual v, with respect to a specified meta-structure S,
MS2MU calculates the value of IMDR, towards each target entity in two steps.
The first step, named Instance Entity Discovery (IEDiscovery), finds all distinct
entities and meta-structure instances of vy within the spatial distance require-
ment with respect to S while the second step, referred to as Social Meta knowl-
edge Computation (SMKComputation), computes the social meta knowledge of
those distinct entities to vs. Then, the SIMER value as well as the IMDR, values
can be calculated according to Egs. (3) and (2), respectively.

4.1 Instance Entity Discovery (IEDiscovery)

In this step, for a source user, IEDiscovery identifies all meta-structure instances
and distinct entities among them. To achieve this goal, IEDiscovery traverses
from the source user with respect to the given meta-structure and records the
discovered meta-structure instances in a tree structure, where the entities in
the same level corresponding to the meta-structure are regarded as a composite
node and the source user is the root node. In order to fulfil the spatial distance
requirement and save more space, we adapt the Compressed ETree (CT) [6],
which merges the same (composite) nodes with the same ancestors in the same
level together, and propose the Spatial Compressed ETree (SCT) to maintain
the spatial information. The formal definition of a SCT is described as follows.

Definition 6. Spatial Compressed-ET (SCT). Given an IIN G, a meta-
structure S, and a source individual vs, the Spatial Compressed-ETree of S from
vs, denoted as SCT(vs | S) = (Vser(vs | S), Escr(vs | S)), is a tree, where
each node v € Vsor(vs | S) in the ith level represents the composite of entities
in the it" level of some instances. Note that all nodes with the same ancestors
in the same level are merged together for saving space. Besides, for each node,
a mintmum spatial distance requirement is obtained to record the least spatial
distance requirement for traversing from vs to this node. The least spatial distance
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requirement of a node v comes from the maximum of (1) the least spatial distance
requirement of v’s ancestors and (2) the maximum spatial distance from v’s
entities to vs.

Ezample 3. Figure 2(a) is the SCT of the meta-structure S in Fig. 1(a) on the
IIN in Fig. 1(c). In Fig. 1(c), there are three instances of S and the entities of
all instances in levels 0, 1, 2, and 3 include {Cindy}, { Gym}, {healthy, indoor,
Alice}, and {Swimming pool, Nightclub}, respectively. The SCT in Fig. 2(a) has
Cindy as the root with minimum spatial distance requirement 0 while Gym is
placed in level 1 with minimum spatial distance requirement 1. Then, two nodes
{healthy, Alice} and {indoor, Alice} are placed in level 2 both with minimum
spatial distance requirement 2, where {indoor, Alice} is merged by two instances
ended with Swimming pool and Nightclub since it and its ancestors, i.e., Gym and
Cindy, are the same. Finally, level 3 contains the target entity of each instance,
i.e., Swimming pool, Swimming pool, and NightClub, with minimum spatial dis-
tance requirements 2, 2, and 3, respectively. |

By definition, each path from the root node of SCT to a leaf node tracks a
unique meta-structure instance. If the leaf node is associated with a minimum
spatial distance requirement lower than or equal to the given spatial distance
requirement d, this instance thus satisfies the spatial distance bound. Therefore,
we can obtain the set of distinct entities in all the meta-structure instances
satisfying the distance bound (i.e., yvé ) by traversing the SCT

(VE,BL)eM s (vs,x,d)
using BFS or DFS algorithms. So far, by Equation (1), the distinctiveness is
calculated.

4.2 Social Meta Knowledge Computation (SMKComputation)

According to Definition 1, the social meta knowledge is modeled as the propaga-
tion probability of the maximum influence path between two entities. Observed
from the property that any subpath of a maximum influence path is also a max-
imum influence path, we have the social meta-knowledge of v is a function of
the social meta knowledge of v’s out-neighbor v’ that maximizes py, . - w(v’, vs).
Let U denote the set of entities with type person in V. To compute the social
meta-knowledge of each individual in U to vs, we dynamically compute the social
meta-knowledge of each node in U starting from v, by exploring the social edges
between individuals using a BFS-based manner.

Specifically, initially, we have w(vs,vs) = 1 and w(v,vs) = 0,Yv € U. At
each iteration, the node v/ € U with the highest social meta knowledge to vy is
selected. The social meta knowledge to vs of each v'’s in-neighbor v € U becomes
the product of the social meta knowledge of v’ to v, and the influence from v to
v’ in case the product is higher than the current social meta knowledge value i.e.,
w(v, ) = P, - w(V,0s) if Py -w (v, v5) > w(v,vs). Each individual is selected
exactly once and SMKCompution terminates when all individuals are selected.
As all social meta knowledge of individuals in U is discovered, SMKComputation
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updates the social meta knowledge of distinct entities not belonging to person
by Definition 1.

Ezample 4. Consider Fig. 2(b) for example where the hexagon represents an
entity with type person, the rectangle represents the entity whose type is not
person, and the dashed edges represent the social relationships with social influ-
ence. SMKComputation first extracts all individuals in U = {vs, a, b, ¢}, and has
w(vs,vs) = 1 and the value of the social meta knowledge from each node (differ-
ent from vy) to vy is 0. At the first iteration, vy is selected and the values of social
meta knowledge of all vy’s in-neighbors i.e., a and b, are computed as 0.2 and
0.1, respectively. At the second iteration, a is selected because w(a,vs) = 0.2 is
the highest. Hence, w(c,vs) is set to 0.6 - w(a, vs) = 0.12. The process continues
until all individual have been selected. Finally, the social meta-knowledge of v
is set as w(c, vs) = 0.12 due to ¢ is the closet individual to v. [ |

As the average social meta knowledge is derived, the IMDR value is calculated
by Eq.(2). Then, the SIMER value is also derived by Eq.(3). MS2MU thus
reports the top-k users with the highest SIMER as the answer. In the following,
we prove that i) SMKComputation correctly computes the social meta knowledge
from any vy € V to v, € V.

4.3 Correctness of SMKComputation

Theorem 1. Let vy € V, SMKComputation accurately computes the social
metaknowledge from v € V to vs.

Proof. Let vy, € V and O = V \ U, where U is the set of users. Since (1)
SMKComputation selects each user node once, (2) each step the user node
4 = argmax,cy w(u,vs) with the maximum SMK value computed so far is
selected, and (3) each entity not belonging to person takes the SMK value of
the neighboring user node with the maximum SMK value, we prove Theorem 1
by showing the induction that at each step of the SMKComputation, the SMK
value of the user node 4, i.e., w(i,vs), is accurate.

At iteration 1, w(vs,vs) = 1 which is maximal and therefore accurate. At
iteration 2, the SMK values of the neighboring nodes to vs in the IIN are set
to be 1 for o € O and to p, ,, for each neighboring user u. Let U; be the set
of user nodes that have not been selected yet and whose SMK values have been
computed at step i. Let 4y = argmax,cy, w(u,v,), and we have w(tg,vs) =
W(Vs,Vs) * Ditgw. = Pinw.- Let N(vs) C U be the set of user neighbors to vs.
w(u, vs),Vu € N(vs) is always the product of a term bounded by [0, 1] and pg ,,
which implies that w(u,vs) < pg.,. Therefore at step 2, w(tsg,vs) is maximal
and thus accurate.

Assume that at iteration n, i, = argmax,; w(u,v,) is accurate. In the fol-
lowing we show that ii,41 = argmax, ¢y, ,, w(u,vs) is also accurate at iteration
n+ 1.

Since dn41 = argmax, ey, ., w(u,vs) at iteration n+ 1, pa, ., + € [0,1],Vt €
N(lp41), and w(v,vs) € [0,1],Vv € V, then w(lni1,vs) > w(t,vs) - Pa,1,ts
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Yt € N(tn+1)UUpt1. Therefore, w(tp41) is maximal and thus accurate at iter-
ation n+ 1. Recall that SMKComputation pick a new node at each iteration and
that SMKComputation stops after selecting each user node socially connected to
vs. Moreover, the SMK value of an entity in O is the SMK value of the neighbor-
ing node with the highest SMK value and all nodes not socially connected to v,
have an SMK value set to be 0. Therefore, the SMKComputation step accurately
computes the SMK values of from each node to vs. The theorem follows.

5 Subsequent MHS2Q

In the real world, since the radii of people’s living spheres are various in different
geographical areas, it is challenging for the query user to obtain the knowledge
about the spatial distance requirement. In particular, the user moving pattern
differs according to areas partly because of the influence of the lack/availability
of transportation means in different areas. Therefore, the optimal spatial dis-
tance requirement will vary according to different areas and thus will be harder
to determine. This can make the query user unsatisfied with the resulting top-k
users due to the lack of knowledge about user moving patterns in this area. To
ensure a suitable top-k list returned to the query user, we propose the Subse-
quent MHS2Q with varying spatial distance requirements until convergence of
the resulting top-k list.

A naive approach to answer the Subsequent MHS2Q is to perform Algorithm
MS2MU multiple times regardless of previous query results. However, the previ-
ous queries might generate intermediary results that can be used for subsequent
queries in order to improve the efficiency. We notice that as the spatial distance
requirement d increases, some intermediary results from previous queries with
smaller d can be re-used to compute the new results of the subsequent queries.
Inspired by this observation, we extend Algorithm MS2MU to incorporate a
table-based index structure, referred to as the d-Table, which records the results
of the exploration of a SCT regarding the minimum spatial distance require-
ment. By using the d-table, we further propose the MSR-pruning strategy for
MS2MU to avoid the SIMER, computation for those who must not be the top-k
users. Finally, the results of a series of queries are aggregated to form a top-k
list, where the number of times appearing in all top-k lists is the first priority
while the highest rank in the top-k list is the second priority.

2| Swimming pool, |NULL 2| Swimming pool, Swimming pool, healthy,
Swimming pool Swimming pool Alice, Gym, Cindy, indoor
3 Nightclub NULL 3 Nightclub Nightclub
(a) Initial (b) Updated

Fig. 3. An example of the d-table for Cindy’s SCT.
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5.1 d-Table

The d-Table is an index structure of an SCT of a source user with respect
to a specified meta-structure. As the spatial factor is taken into account in
calculating the IMDR, the computation will be boosted if the meta-structure
instances satisfying the spatial distance requirement can be directly accessed.
To address the need, the d-Table is thus designed to index all leaf nodes by their
minimum spatial distance requirements. Furthermore, the d-table also records
intermediate results, i.e., the distinct entities traversed in queries, so that the
subsequent queries do not need to traverse the SCT again to obtain the same
distinct entities. Hence, the d-Table is built during the IEDiscovery step and
updated when MS2MU answers queries.

In particular, the d-Table contains three columns, including the minimum
spatial distance requirement, the leaf nodes of the corresponding SCT, and the
distinct entities that have been ever traversed. Initially, the d-Table only fills in
the first two columns by indexing the leaf nodes of the SCT in an ascending order
of their minimum spatial distance requirements while the third column contains
NULL, indicating no leaf node associated with the current minimum spatial
distance requirement is traversed. For example, the initial d-table of Cindy’s
SCT in Fig. 2(a) is shown in Fig. 3(a), where the two Swimming pool point
to different leaf nodes in Fig. 2(a). When answering a query with the spatial
distance requirement d and computing the IMDR of some source individual vy,
MS2MU reads v,’s d-Table for the rows with minimum spatial distance require-
ments less than or equal to d in an ascending order. For a row with NULL in
the third column, indicating the leaf nodes in this row have not been traversed
yet, MS2MU back traverses v,’s SCT from each leaf node in this row, marks the
nodes traversed in the SCT as visited, fills in the third column of the d-Table
with the entities that do not appear in the third column of any row, and stops
when a visited nodes in the SCT is met. If the third column of a row is not
NULL, which means the leaf nodes of this row have been traversed, MS2MU
can directly obtain the distinct entities in the third column for calculating the
IMDR. Note that the third columns of all rows are disjoint since only distinct
entities are recorded during traversal.

Ezample 5. Consider Cindy’s SCT in Fig. 2(a) and the initial d-Table in
Fig. 3(a). Given the spatial distance requirement d = 3, MS2MU first reads the
first row associated with minimum spatial distance requirement 2. Since 2 < d
and the third column is NU LL, MS2MU back traverses the two leaf nodes Swim-
ming pool, respectively. For the first Swimming pool, MS2MU records Swimming
pool, healthy, Alice, Gym, and Cindy in the third column of the first row in order.
Then, for the second Swimming pool, MS2MU only records indoor in the third
column and stops traversal since the node Gym is visited. After that, since the
second row associated with minimum spatial distance requirement 3 = d and the
third column is NULL, MS2MU back traverses the leaf node Nightclub, records
only Nightclub in the third column, and stops due to the visited node {indoor,
Alice}. The updated d-Table is shown in Fig. 3(b). ]
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5.2 MSR-Pruning Strategy

For better efficiency, MS2MU exploits the minimum SIMER of the current top-k
list to avoid the SIMER computation for those that must not be the top-k users.
By Definition 4, the value of SIMER comes from the value of IMDR divided
by the social distance Dgoc(vs,u). We thus propose a pruning strategy named
Minimum Social Ratio pruning (MSR-pruning) that takes the minimum SIMER,
denoted as spyin, of the current top-k list and the upper bound of SIMER of an
individual v, into account for pruning. Specifically, if v,’s upper bound of SIMER
is less than sy, indicating it is impossible for v, to be the top-k users, vs can
be pruned satisfactory. In order to infer the upper bound of SIMER, the upper
bounds of IMDR. should be first derived.

Theorem 2. The IMDR wvalue ts upper bounded by the average similarity.

Proof. Since all distinctiveness, average social meta knowledge, and average sim-
ilarity are bounded in [0, 1], the IMDR is upper bounded by the minimum value
among them. If the average similarity is the minimum value among them, the
IMDR is exactly upper bounded by the average similarity. Otherwise, there exists
the minimum value among them less than the average similarity. In this case,
IMDR is upper bounded by this minimum value, which is still upper bounded
by the average similarity. The theorem is thus proved.

According to Theorem 2, the upper bound of an IMDR value can be derived by
the average similarity of all leaf nodes and the corresponding query entity. By
using the d-Table, MS2MU can easily obtain the leaf nodes satisfying the spatial
distance requirement and compute the average similarity. The upper bound of
SIMER is thus the average similarity divided by the social distance Dgoc(vs, w).
If the average similarity is less than sy - Dsoc(vs, w), which is equivalent to that
the upper bound of SIMER is less than sy, MS2MU can prune v, satisfactory.
The pseudo code of Algorithm MS2MU is in Algorithm 1.

Algorithm 1. MS2MU

Require: An IIN G = (V, E, W) with (A, R); a query user u; an query activity vy; a meta-structure S; a
spatial distance requirement d; a parameter k > the output is a top-k list
1: Build offline the SCT and d-Table for each individual with respect to S

2: Q «— an empty priority queue with size k; spjn < O
3: for vs € V and vg belongs to person do

4: if avg. similarity > sminDsoc(vs, u) then

5: s <« vg’s SIMER value by Equation (3)

6: if s > syin then

7 Add vs into Q and update sy, if necessary
8: end if

9:  endif

10: end for

11: return Q
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Table 1. The summary of datasets.

Dataset V| |E| |[W| |A] | |R
Yelp 33,025 970,818 | 196,134 | 8 |4 7,990
Weeplaces | 43,023 | 189,879 119,939 |3 |3 |16,022

# of type person

5.3 Results Aggregation

In order the answer the Subsequent MHS2Q, MS2MU needs to aggregate the
results from a series of queries with different spatial distance requirements to
ensure a suitable top-k list. The aggregated top-k users should be aware of the
number of times appearing in all results as well as the highest rank. In other
words, a user with greater frequency of appearance has a higher rank in the
top-k list. If two or more users have the same frequency, the rank in the top-k
list determined by their ever highest rank.

As the aggregated top-k list converges, indicating the optimal spatial distance
requirement is used for query, MS2MU reports the aggregated one as the answer.
In the following, we prove that M2SMU obtains the optimal solution to MHS2Q.

5.4 Optimal Solution Guarantee
Theorem 3. M25MU returns the optimal solution for MHS2Q).

Proof. MS2MU uses SMKComputation to compute IMDR and consequently
SIMER. MS2MU discards all the users violating the social and spatial bound.
Moreover, the IEDiscovery step finds all the instances of S in G and filters the
found instances according to the spatial bound. Therefore, IMDR and SIMER
are accurately computed. After the computation of SIMER for each new user,
MS2MU inserts the new user in the top-k list if the SIMER value of the new
user is higher than the smallest SIMER value in the top-k list. Furthermore, the
returned top-k list is connected. Therefore, MS2MU returns the optimal solution
to MHS2Q. The theorem follows.

6 Experiments

In this section, we conduct experiments on two real location-based social net-
works Yelp and Weeplaces, whose summary is listed in Table 1. The performance
of our algorithm MS2MU is evaluated in terms of the SIMER value, the social
distance, and the running time. In particular, we implement three competitive
approaches from the meta-structure, social, and spatial aspects, respectively. The
details are described as follows. (1) BSCSE [6] reports the most relevant users
to the query activity with respect to the given meta-structure as the result. (2)
SDSSel [13] reports a social group interested in the query activity and guarantee-
ing the social tightness. (3) SPATIAL is a straightforward approach to consider
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Fig. 5. The social distance comparison as k varies from 5 to 20 for d = oo.

the spatial factor, which reports the top-k socially close users who are not only
interested in the query activity but also satisfy the spatial constraint. For the
experiments, we randomly select a pair of user and location for each query. We
form 60 of such pairs on each dataset for each measurement. There are two corre-
sponding meta-structures, metal and meta2, both of which contains three levels.
The spatial distance requirements include 25 km, 30 km, 35 km, and 40 km while
the parameter k is set as 5, 10, 15, and 20. All the programs are implemented
in C++ and run on an Intel core E7-4850 2.20 GHz PC with 52 GB RAM using
CentOS Linux release 7.3.1611.

6.1 Effectiveness

Figure 4 shows the SIMER value among MS2MU, BSCSE, SDSSel, and SPA-
TTAL for d = oo when k varies from 5 to 20 on Yelp and Weeplaces. We have two
observations. First, for all k&, MS2MU has the highest SIMER, value, followed by
BSCSE, and SDSSel is worse than BSCSE while SPATTAL is usually the worst.
This is because MS2MU considers the relevance in terms of both social and
spatial factors as well as the distinctiveness of meta-structures. Second, as k
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Fig. 7. The average response time comparison as the number of subsequent queries
increases for k = 20.

increases, the values of SIMER also increase for all approaches as well. However,
the increase velocity of MS2MU is faster than the competitive approaches, which
shows that the a newly selected by MS2MU usually has a large SIMER, while
competitive approaches do not always a select user with a large SIMER.

Next, Fig. 5 demonstrates the social distance of the reported group to the
query user among MS2MU, BSCSE, SDSSel, and SPATIAL for d = oo when
k varies from 5 to 20 on Yelp and Weeplaces. The results show that SPATIAL
usually has the least social distance since the social distance to the query user
is its main criterion for ranking. Apparently, for selecting socially close users,
MS2MU can be comparable or even better than SDSSel, which aims at social
tightness. On the other hand, BSCSE does not consider any social concept so
that the social distance is unstable. Besides, there is usually an upward trend of
social distance for most approaches as k increases. This is because the number
of users usually grows exponentially with the social distance so that it is more
likely to select a socially distant user when k increases.
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On the other hand, Fig. 6 shows the SIMER value among MS2MU, BSCSE,
SDSSel, and SPATTAL for k£ = 20 when d varies from 25 km to 40 km on Yelp and
Weeplaces. First of all, MS2MU is the best due to the comprehensive consider-
ation, especially from the spatial aspect. The other approaches are comparable
and cannot find a good solution. Since neither BSCSE nor SDSSel considers
the spatial factor, the returned top-k users are very likely to be irrelevant to the
query when d is constrained. For SPATTAL, even though the spatial factor is con-
sidered, the lack of comprehensive consideration of the other factors still makes
SPATIAL fail to return a good solution. Moreover, the SIMER, value is not sen-
sitive to d because the larger d allows more meta-structure instances considered,
which makes both higher and lower distinctiveness as well as average similarity
possible. Note that the social distance as well as the top-k users returned by
BSCSE and SDSSel for different d are the same as that for d = co. Besides,
unlike varying k, the trend of the social distance for MS2MU and SPATTAL is
not related to d since a larger/less spatial distance requirement does not prefer
selecting socially close or distant users. Hence, the social distance comparison
for varying d is thus omitted.

Table 2. The time comparison for k£ = 20 and d = co.

(Sec) Yelp, metal | Yelp, meta2 | Weeplaces, metal | Weeplaces, meta2
MS2MU | 72.19 124.31 17.39 9.87
BSCSE 14.49 42.00 2.15 0.66
SDSSel 32.59 32.59 9.25 9.25
SPATIAL | 6.53 6.53 10.61 10.61

6.2 Efficiency

In this subsection, we compare the query response time of all approaches. Since
the response time is sensitive to neither k nor d, Table 2 only shows the response
time comparison for & = 20 when d = co. The results show that MS2MU takes
a little longer time than the competitive approaches. This is because MS2MU
carefully examines the social meta knowledge and distinctiveness of each can-
didate user while SDSSel and SPATIAL do not take the knowledge of meta-
structures into account and BSCSE directly retrieves the relevant users to the
query activity.

In addition, we also compare the average response time for Subsequent
MHS2Q of our MS2MU algorithm with and without d-Table and MSR-pruning.
Figure 7 shows the average response time as the number of subsequent queries
increases, where the spatial distance requirement d in the subsequent queries
is increasing. Note that MS2MU without d-Table and MSR-pruning is denoted
as Basic MS2MU in the figure. Obviously, with the help of d-Table and MSR-
pruning, the response time is largely reduced. On Yelp, the spatial distance
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requirement d in the first query is more than most spatial distance between enti-
ties so that it takes more time for the first query while the response time for
subsequent queries becomes less. By contrast, the running time of each query
is evenly distributed on Weeplaces since the spatial distance requirement d for
each query allows a number of additional entities to be traversed for SIMER
computation.

In summary, compared to the baselines, MS2MU always reports a group of
users with the highest SIMER and the users in the reported social group are
socially close to the query user. Even though the response time of MS2MU
is a little longer, MSMU can still answer the query in reasonable time. More-
over, by exploiting d-Table and MSR-pruning, MS2MU is efficient for Subse-
quent MHS2Q. Consequently, MS2MU is capable of answering the (Subsequent)
MHS2Q effectively and efficiently.

7 Conclusion

In this paper, we proposed a new relevance measurement SIMER to more accu-
rately measure the connection strength between a user and the activity. Then,
we formulated a novel query MHS2Q to consider the spatial and social factors as
well as the distinctiveness of meta-structure. We further proposed a Subsequent
MHS2Q to allow a series queries with varying spatial distance requirements. To
answer the (Subsequent) MHS2Q, we designed an efficient algorithm MS2MU
with a new index structure d-Table and a pruning strategy MSR-pruning to
boost the performance. Experiments on real dataset showed that our approaches
significantly outperform the other baselines.
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Abstract. Previous studies on intrusion detection focus on analyzing features
from existing datasets. With various types of fast-changing attacks, we need to
adapt to new features for effective protection. Since the real network traffic is very
imbalanced, it’s essential to train appropriate classifiers that can deal with rare
cases. In this paper, we propose to combine oversampling techniques with deep
learning methods for intrusion detection in imbalanced network traffic. First, after
preprocessing with data cleaning and normalization, we use feature importance
weights generated from ensemble decision trees to select important features. Then,
the Synthetic Minority Oversampling Technique (SMOTE) is used for creating
synthetic samples from minority class. Finally, we use Recurrent Neural Networks
(RNNs) including Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) for classification. In our experimental results, oversampling improves the
performance of intrusion detection for both machine learning and deep learning
methods. The best performance can be obtained for CIC-IDS2017 dataset using
LSTM classifier with an Fl-score of 98.9%, and for CSE-CIC-IDS2018 dataset
using GRU with an F1-score of 98.8%. This shows the potential of our proposed
approach in detecting new types of intrusion from imbalanced real network traffic.

Keywords: Class imbalance - Oversampling - Feature selection - Long
short-term memory - Gated recurrent unit

1 Introduction

Nowadays, new variants of security threats in the cyber world are massively increasing
on the Internet. It is the main focus for the system administrator to protect the network
infrastructure from malicious behaviors such as new intrusions and attacks. Therefore,
intrusion detection has become an important research area in network security. Intrusion
detection systems aim to actively detect attacks and identify the critical illegal behaviors
from network traffic. There are some challenges in effective classification for intrusion
detection. First, most existing research on analyzing the characteristic of attack pat-
terns use popular datasets such as KDD CUP’99, NSL-KDD, and ISCX2012, which
need some improvement since they are out-of-date. With the development of Internet
technology, there are increasing amount of new cyber-attacks. To deal with the issues
of unreliable datasets that are out of date, we utilize new intrusion detection datasets
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including CIC-IDS2017 dataset [1], and CSE-CIC-IDS2018 dataset [2] which are devel-
oped by Sharafaldin et al. [3]. These new public datasets are based on real-time network
traffic captured around the world, which are helpful for intrusion detection research.
Second, due to the changing characteristics of new attacks in real data, we need to select
features that can capture the most important characteristics. Louppe et al. [4] introduced
the variable importance derived from tree-based methods and can be implemented as
feature selection methods to improve classification accuracy. Third, we are faced with
large-scale imbalanced datasets since only a small percentage of real network traffic are
attacks or illegal traffic. To address this issue, we utilize Synthetic Minority Oversam-
pling Technique (SMOTE) [5] to improve the prediction accuracy for the imbalanced
dataset. Finally, for the classification algorithm, we compare classical learning methods,
such as Random Forest [6], Decision Tree [7], and Naive Bayes [8], with deep learn-
ing methods such as Long Short-Term Memory (LSTM) [9], and Gated Recurrent Unit
(GRU) [10] in their classification performances. The contributions of this paper include:

1. We evaluate classification performance of recurrent neural networks (RNNs) for
intrusion detection on two new publicly available datasets, which are captured from
real work traffic in large scale.

2. We improve the performance of intrusion detection for the imbalanced dataset by
using SMOTE oversampling technique as the feature selection method for both
classical machine learning and deep learning methods.

The remainder of this paper are as follows. First, related work is reviewed in Sect. 2.
Then, the proposed method is described in Sect. 3, and our experimental results are
analyzed and discussed in Sect. 4. Finally, we give conclusions in Sect. 5.

2 Related Work

Intrusion detection has been an important research topic in information security. Many
conventional machine learning methods have been used for intrusion detection. Albayati
et al. [11] discussed the intelligent classifier suitable for automatic detection, such as
Naive Bayes, Random Forest, and decision tree algorithm. The best performance can be
obtained for Random Forest classifiers with an accuracy of 99.89% when using all of
the features from the NSL-KDD dataset. Almseidin et al. [12] evaluated the intrusion
detection using machine learning methods: SVM, Random Forest, and decision tree
algorithm. Random forest classifier registered the highest accuracy of 93.77%, with the
smallest false positive rate for the KDD CUP’99 dataset. Khuphiran et al. [13] researched
on detecting Distributed Denial of Services (DDoS), as the most common attack, using
DARPA 2009 DDoS datasets, and implementing a traditional SVM and Deep Feed
Forward (DFF) algorithm. Deep Feed Forward got the highest accuracy of 99.63% and
F1-score is 0.996 while SVM got an accuracy rate of 81.23% and F1-score is 0.826.
Recently, deep learning methods especially recurrent neural networks, such as Long
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) have been implemented
in intrusion detection research area. Althubiti et al. [14] applied LSTM algorithm for
multi-classification using the rmsprop parameter in the CIDDS-001 dataset, which spe-
cializes in web attacks. The best accuracy of 84.83% can be obtained for LSTM, which
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is better than SVM and Naive Bayes. Xu et al. [15] proposed a study in IDS with GRU,
which uses softmax function for multiclass classification. The best accuracy of 99.42%
using KDD CUP’99 and 99.31% using NSL-KDD can be obtained.

For an IDS to accurately detect unauthorized activities and malicious attacks in
network traffic, different features might have different importance to distinguish between
attacks and normal traffic. On the one hand, feature selection is needed since it is useful in
analyzing complex data, and for removing features excessive or irrelevant. On the other
hand, network traffic is extremely imbalanced since normal traffic accounts for most
of the traffic, while intrusion or attacking traffic are very rare. For feature selection,
Alazzam et al. [16] proposed a pigeon inspired optimizer for feature selection, and
achieved good accuracy of 0.883 and 0.917 for NSL-KDD and UNSW-NB15 datasets
respectively when reducing the feature size to 5. This shows the importance of feature
selection in classification.

Regarding the class imbalance problem, some techniques have been proposed. Wu
etal. [17] dealt with imbalanced health-related data with deep learning approaches using
RNNs. Shuai et al. [18] devised a multi-source learning approach to extract common
latent factors from different sources of imbalanced social media for mental disorders
detection. To mitigate the problem of overfitting for the imbalanced class with ran-
dom oversampling, the technique of SMOTE generates synthetic examples by k-nearest
neighbor algorithm rather than simply replicating existing instances. Smiti and Soui [19]
explored the idea of employing SMOTE and deep learning to predict bankruptcy. Seo
and Kim [20] proposed to handle the class imbalance problem of KDD CUP’99 dataset
by finding the best SMOTE ratios in different rare classes for intrusion detection.

Due to the growing types of new attacks, we focus on intrusion detection for the
new datasets CIC-IDS2017 and CSE-CICIDS2018. Kurniabudi et al. [21] analyzed the
features of CIC-IDS2017 dataset with information gain, and achieved the best accuracy
of 99.86% for Random Forest. But they only used 20% of the full dataset, and cannot
detect some types of traffic, for example, Infiltration attack. Kim et al. [22] compared the
performance of intrusion detection on CSE-CICIDS2018 dataset using Convolutional
Neural Networks (CNNs) and RNNs. They only focused on DoS category, and achieved
the best accuracy of 91.5% and 65% for CNN and RNN, respectively.

In this paper, we apply deep learning methods to classify imbalanced network traffic
for intrusion detection, and compare the performance with conventional machine learn-
ing methods using the two new datasets. Specifically, we compare variants of RNNs
including LSTM and GRU. Then, we apply SMOTE technique to deal with class imbal-
ance problem. To further improve the classification accuracy, we propose to use variable
importance derived from tree-based methods [4] for feature selection, because it has fast
calculation and suitable for large data size. We used the full datasets, and the best F1
score of 98.9% and 98.8% can be achieved for CIC-IDS2017 and CSE-CICIDS2018
datasets, respectively.

3 The Proposed Method

In our proposed method for intrusion detection using deep learning approach, there
are three stages: data preprocessing, feature selection and oversampling technique, and
classification. The proposed framework for intrusion detection is shown in Fig. 1.
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Fig. 1. The proposed framework for intrusion detection.

As shown in Fig. 1, in the preprocessing stage, missing and undefined values are
fixed in data cleaning stage, and separate datasets are combined into a single one. In
feature selection stage, we use totally randomized trees to find the important features
in the dataset. Then, the SMOTE oversampling technique is used to deal with the class
imbalance problem. Finally, we compare the classification performance of classical
machine learning methods including Random Forest (RF), Iterative Dichotomiser 3
(ID3), and Naive Bayes (NB) with recurrent neural networks, including LSTM and
GRU on the large scale network traffic data. In the following subsections, we describe
each stage in more details.

3.1 Preprocessing

There are several preprocessing tasks needed for the new datasets. First, we remove
unnecessary information from the original dataset including the socket information of
each data instance, such as source IP address “src_ip”, destination IP address “dst_ip”,
Flow ID “flow_id,” and “protocol.” The reason to remove these is to provide unbiased
detection. Second, we remove unreadable data which might include some noise in class
labels such as: “Web Attack A\x96 Brute Force’ , “‘Web Attack A\x96 XSS’ , “‘Web Attack
A\x96 SQL Injection’, which can be replaced to distinct Unicode characters. Then, we
also remove invalid numbers, such as Not a Number (NaN) and ‘Infinity’. The miss-
ing values and other errors in the dataset are fixed, such as in “flow_bytes_per_s” and
“flow_pkts_per_s” features. Regarding the data types, the dataset consists of categori-
cal, strings, and numeric data types such as float64 and int64. The categorical data type
in the label consists of benign, and all attack types. In the CSE-CICIDS2018 dataset,
the data types of some features are not appropriate, which were changed from int64 to
the float64 data type. Finally, for training purpose, the numeric attributes need to be
normalized, since the difference of scale in numbers or values can degrade the perfor-
mance of classification. For example, some of the features with large numeric values,
e.g., ‘flow_duration’ can dominate small numeric values such as ‘total_fwd_packets’
and ‘total_fwd_pckts’. Thus, we use min-max normalization to convert values into a
normalized range.
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3.2 Feature Selection

To select the most important features, we adopt the feature selection method proposed
by Louppe et al. [4] to estimate feature importance using Mean Decrease Impurity
(MDI) from randomized ensemble trees. Let V = {X, X», ....X;,} denote categorical
input variables, and Y means a categorical output, Shannon entropy is used as impurity
measure on totally randomized trees as follows:

r—1 1 1
Varlmp(Xp) = 3 Trk D ey (v-my | Xt Y1B) (M
S Varlmp(n) = (X1, X2, ... X Y) )
m=1

Where V™™ denotes the subset V\{Xy, }, Px (V™™) denotes subsets of V™™ of car-
dinality k, and I(Xy,;YIB) is the conditional mutual information of X, and Y given the
variables in B.

In this paper, X defines the input features in training data, and Y defines the output
class of Benign and Attack. We adopt MDI for feature selection since it calculates each
feature importance as the sum over the number of splits (across all trees) that include
the features, proportionally to the number of samples it splits. In addition, ensembles
of randomized trees are used to select the best subset of features for classification. This
reduced feature set is then employed to implement an intrusion detection system.

3.3 Oversampling

In intrusion detection datasets, there is class imbalance problem, where the minority
class of attack has much fewer instances than the benign class. The distribution of all
classes in CIC-IDS2017 and CSE-CICIDS2018 is shown in Fig. 2.

Distribution of classes for Binary Distribution of classes for Binary

Classification in CIC-IDS2017 dataset Classification in CSE-CICIDS2018 dataset
2500000 5373087 16000000
14000000 13484708
2000000
12000000
1500000 10000000
8000000
1000000 6000000
557646
4000000 5
500000 2748235
2000000 .
0 0
Benign Attacks Benign Attacks
@ (b)

Fig. 2. Distribution of all classes in (a) CIC-IDS2017 dataset (b) CSE-CIC-IDS2018 dataset.
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As shown in Fig. 2, the distribution of benign and attack classes show the class
imbalance problem in both datasets. To tackle the problem, we adopt SMOTE [5] to
improve our prediction of the minority class. The idea is to take each minority class
sample, and add synthetic examples on the line segments which join the k-minority
class nearest neighbors. This can be done as the following steps:

Step 1: Assume x € A, where A is the set of the minority class. For each x of the k-nearest
neighbors, it is obtained from the Euclidean distance calculation between x and samples
from the set A.

Step 2: The number of samples N is chosen according to the sample proportion of
imbalanced data. For instance, given x1, x2 ..., xy (N < k) that are randomly selected
by k-nearest neighbors, we can build a new set Aj.

Step 3: For each instance xx € Ay, where kis 1, 2,..., N, the formula is used to create a
new instance Xpew as follows:

Xpew = X + random(0, 1)x||x — x|| 3)

The amount of oversampling is influenced by the number of randomly selected
samples from the k-nearest neighbors. It has been shown to perform better than simple
under-sampling technique because this algorithm creates new instances of the minority
class by using convex combinations of neighboring instances.

3.4 Classification

After preprocessing and oversampling the dataset, we use two types of RNNs, including
LSTM and GRU, and compare with conventional machine learning classifiers such as
Random Forest, ID3, and Naive Bayes, for intrusion detection.

LSTM is a variation of RNNs to deal with the vanishing gradient problem in sequen-
tial data. The architecture of LSTM consists of input gate It, forget gate Ft, output gate
Ot, and memory cell Ct, as shown in Fig. 3.

*@

LSTM unit

i
|
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{ o tanh o

.
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Fig. 3. Long Short Term Memory (LSTM) architecture.
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The equations for the operations of LSTM architecture are given below:

Fr = o (Wrx; + Uphp—1 + br) “)

Iy =o(Wix; + Urhy—1 + by) ®)

O = o (Wox; + Uohp—1 + bo) (6)
C,=F,0c¢—1 +I; ©tanh(Wexe + Uchi—1 + be) @)
hy = O, © tanh(Cy) (3

01 = f (Woh; + bo) 9)

where o denotes a sigmoid function, x, means an input vector at time ¢, &, denotes
a hidden state vector at time #, W denotes the hidden weight matrix from an input, U
means the hidden weight matrix from hidden layers, and b means a bias term.

GRU is an LSTM without an output gate, in which the contents are fully written
from its memory cell to the output at each time-step. Its internal structure is simpler
and therefore considered faster to train as there are fewer computations needed to make
updates to its hidden state. GRU has two types of gates: reset gate r, and update gate z.
The reset gate determines the new input with the previous memory cell, and the update
gate defines how much of the previous memory cell to keep.

GRU unit f I

Ri Z .

[0} o
tanh

Fig. 4. Gated Recurrent Unit (GRU) architecture

Equations the operations of GRU architecture are given below:

Zy =0 Wexi + Uzhyi1 + D) (10)



312 J.-H. Wang and T. W. Septian

Ry = o (Wgx; + Ugh;—1 + bg) (11)

h =0 —=2Z) ©h—1 + Z © tanh(Wpx; + Up(R; © hy—1) + bp) (12)

where Z; is the update gate, R; is the reset gate, and h; is the hidden state. © is
a multiplication element-wise, and o is the sigmoid activation function. W and U are
denoted as learned weight matrices.

4 Experiments

In this paper, we use two new datasets CIC-IDS2017 and CSE-CIC-IDS2018, because
they are up-to-date and offer broader attack types and protocols. We want to implement
the intrusion detection system using real network traffic data with machine learning and
deep learning methods. After the preprocessing stage, we obtained a total of 2,830,743
data instances containing 2,273,097 “benign” and 557,646 “attacks” in CIC-IDS2017.
In CSE-CIC-IDS2018 there’s a total of 16,232,943 data instances containing 13,484,708
“benign” and 2,748,235 “attacks”. The detailed statistics of data distribution in different
classes for the two datasets are shown in Figs. 5 and 6.

Statistics of CIC-IDS2017 dataset

Heartbleed 11
SQLInjection 21
Infiltration 36

XSS 652
BruteForce 1507
Bot 1966

DoSSlowhttptest 15499
DoSSlowloris | 5796
SSHPatator 5897
FTPPatator |7938
DoSGoldenEye 110293
DDoS mmm 128027
PortScan mssm 158930
DoSHulk  mssssss 231073
BENIGN 2273097

0 500000 1000000 1500000 2000000 2500000

Fig. 5. The statistics of CIC-IDS2017 dataset.
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Statistics of CSE-CIC-IDS2018 dataset

SQL Injection 87
Brute Force -XSS 230
Brute Force -Web 611
DDOS attack-LOIC-UDP 1730
DoS attacks-Slowloris 10990
DoS attacks-GoldenEye | 41508
DoS attacks-SlowHTTPTest 139890
Infilteration = 161934
SSH-Bruteforce = 187589
FTP-BruteForce » 193360
Bot m 286191
DoS attacks-Hulk == 461912
DDosS attacks-LOIC-HTTP == 576191
DDOS attack-HOIC = 686012
Benign 13484708

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000

Fig. 6. The statistics of CSE-CIC-IDS2018 dataset.

In this paper, we divided the original 15 categories into two groups: O - benign, and
1 - attack. They are further separated into training and test sets as shown in Table 1.

Table 1. Training and test sets from CIC-IDS2017 and CSE-CIC-IDS2018 dataset.

Dataset Training set | Test set
CIC-IDS2017 2,264,694 | 566,149
CSE-CIC-IDS2018 | 12,917,016 | 3,229,255

Then, we applied feature importance by MDI to select the top features as shown in
Table 2.

After applying SMOTE for CIC-IDS2017 dataset, the number of minority instances
increases from 445,820 to 1,818,774, and for CSE-CIC-IDS2018 it increases from
2,197,368 to 10,719,648.

In order to implement the LSTM and GRU models, we use the modules from the
Keras Python library. Sequential model is a linear stack of layers to initializing the neural
network. Dense is a regular layer of neurons in the neural network. A dropout layer is
used for implementing regularization technique, which aims to reduce the complexity
of the model to prevent overfitting. The architectures of LSTM and GRU both consist of
three dimensional input array, one dropout layer, two dense layers, and the output layer
which uses softmax function for classification.

The parameters of our model are as follows: Firstly, in the sequential model, and
one layer of LSTM or GRU consists of 64 units, which are the dimensionality of the
output space. The 3D input shape is the shape of our training set with the format [input
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Table 2. Feature importance of CIC-IDS2017 and CSE-CIC-IDS2018 dataset.

Number CIC-IDS2017 CSE-CIC-IDS2018
Features Weight Features Weight

1 init_win_bytes_forward 0.065970 init_fwd_win_bytes 0.158607
2 psh_flag_count 0.061660 fwd_seg_size_min 0.140294
3 bwd_packet_length_mean 0.046262 ack_flag_cnt 0.048100
4 avg_bwd_segment_size 0.042485 init_bwd_win_bytes 0.044378
5 bwd_packet_length_std 0.040715 bwd_pkts_per_s 0.037927
6 packet_length_std 0.034778 flow_pkts_per_s 0.035585
7 bwd_packet_length_max 0.031926 fwd_pkts_per_s 0.032158
8 average_packet_size 0.030894 fwd_pkt_len_max 0.023756
9 bwd_packet_length_min 0.030410 bwd_pkt_len_max 0.019874
10 fwd_iat_max 0.028837 fwd_iat_tot 0.019413
11 min_seg_size_forward 0.027920 fwd_iat_mean 0.018725
12 flow_iat_max 0.026415 flow_iat_min 0.018556
13 packet_length_mean 0.025863 fwd_iat_max 0.018508
14 packet_length_variance 0.022699 flow_duration 0.017454
15 ack_flag_count 0.022489 flow_iat_mean 0.016863

samples, time steps, features]. Secondly, we add a dropout layer with a dropout rate of
0.2, meaning that 20% of the layers will be dropped. Next, the dense layer specifies
the output of 2 units (number of classes), and activated with softmax function which
normalizes the output to a probability distribution over each output class.

Next, we compile our model using the Adaptive moment estimation (Adam), and
sparse categorical cross-entropy loss function to obtain the output. Adam optimizer is
implemented for maintaining a learning rate for updating each network weight separately,
which can automatically decrease the gradient size steps towards minima based on the
exponential moving average of gradients and squared gradients. Sparse categorical cross-
entropy loss function is used for our classification since its efficiency and the use of
integers as our class labels. Finally, a fitting function is used to fit the model on the data,
and we ran the model for ten epochs, with the batch size of 1,000.

To evaluate the performance of intrusion detection, we use evaluation metrics
including: Accuracy, Precision, Recall (sensitivity), and F1-score, as shown below.

TN + TP

Accuracy = (12)
FP+ TN + 1N + FN
L TP

Precision = —— (13)

FP+TP

P

Recall = ——— (14)

TP + FN
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2xprecisionkrecall

F1— Score = (15)

precision + recall

First, the evaluation results of the classification performance using the full dataset
of CIC-IDS2017 are shown in Table 3.

Table 3. Evaluation results using full data (72 features) — CIC-IDS2017.

Classifier | Precision | Recall | F1-score | Accuracy

RF 92.7% 92.7% | 92.7% | 92.7%
ID3 93.1% 93.1% | 931% |93.1%
NB 78.2% 68.6% | 71.5% | 68.6%

LSTM 89.3% 88.4% | 86.5% | 95.7%
GRU 93.3% 932% | 92.8% | 95.1%

As shown in Table 3, for classical learning methods, ID3 gives better performance
than Random Forest and Naive Bayes with an accuracy of 93.1% and an F1-Score of
93.1%. For deep learning methods, better performance can be obtained for LSTM with
an accuracy of 95.7%, and GRU with an F1-score of 86.5%.

Next, the evaluation results of CIC-IDS2017 dataset using SMOTE are shown in
Table 4.

Table 4. Evaluation results using oversampling (72 features) — CIC-IDS2017.

Classifier | Precision | Recall | F1-score | Accuracy

RF 93.8% 93.7% | 93.7% | 93.7%
1D3 93.8% 93.8% | 93.8% |93.7%
NB 78.6% 77.8% | 782% | 77.8%

LSTM 96.6% 96.2% | 96.3% | 96.2%
GRU 96.9% 96.5% | 96.6% | 96.5%

As shown in Table 4, in classical learning, ID3 gives better performance, with an
accuracy of 93.7% and an F1-Score of 93.8%. In deep learning, better performance can
be obtained for GRU with an accuracy of 96.6% and an F1-score of 96.5%.

If we applied feature selection by MDI, the evaluation results using 20 selected
features are shown in Table 5.



316 J.-H. Wang and T. W. Septian

Table 5. Evaluation results using 20 selected features, SMOTE — CIC-IDS2017.

Classifier | Precision | Recall | F1-score | Accuracy

RF 95.2% 94.2% | 94.4% | 94.2%
1D3 95.1% 94.1% | 941% | 94.1%
NB 88.8% 82.5% | 83.4% |82.5%

LSTM 98.9% 98.9% | 98.9% | 98.9%
GRU 98.4% 98.4% | 98.4% | 98.4%

As shown in Table 5, in classical learning, Random Forest gives better performance,
with an accuracy of 94.2% and an F1-score of 94.4%. In deep learning, LSTM gives
better performance than GRU, with an accuracy of 98.9% and an F1-score of 98.4%.

If we further reduce the number of selected features, the evaluation results are shown
in Table 6.

Table 6. Evaluation results using 10 selected features, SMOTE — CIC-IDS2017.

Classifier | Precision | Recall | F1-score | Accuracy

RF 95.1% 94.1% | 941% | 94.1%
1D3 94.8% 93.9% | 93.9% | 94.0%
NB 88.5% 80.9% | 81.9% | 80.9%

LSTM 98.6% 98.6% | 98.6% | 98.6%
GRU 98.1% 98.1% | 98.1% | 98.1%

As shown in Table 6, in classical learning, Random Forest gives better result, with an
accuracy of 94.1% and an F1-score of 94.1%. In deep learning, we found LSTM gives
better performance than GRU with an accuracy of 98.6% and an F1-score of 98.6%.

From the performance comparison of results from Tables 5 and 6, we found in
classical learning, Random Forest gives the best result with an accuracy of 94.4% and

Table 7. Evaluation results full data (72 features) — CSE-CIC-IDS2018.

Classifier | Precision | Recall | F1-score | Accuracy

RF 89.0% 88.0% | 89.0% |89.1%
1D3 93.3% 932% | 93.2% |93.2%
NB 62.9% 50.1% | 55.0% | 49.1%

LSTM 81.1% 81.0% [ 89.9% |85.0%
GRU 87.1% 86.8% | 83.7% | 84.7%
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an Fl-score of 94.2%. In deep learning, LSTM gives the best result, with an accuracy of
98.9% from 20 selected features, and an F1 score of 98.9%. This shows the effectiveness
of the proposed feature selection and deep learning methods. Next, we do the same for
the CSE-CIC-IDS2018 dataset as shown in Table 7.

As shown in Table 7, in classical learning, the best performance can be obtained for
ID3 with an accuracy of 93.2% and an F1-score of 93.2%. In deep learning, the best
performance can be obtained for LSTM with an accuracy of 85.0%, and an F1-score of
89.9%. Then, evaluation results using SMOTE oversampling are shown in Table 8.

Table 8. Evaluation results of using oversampling (72 features) — CSE-CIC-IDS2018.

Classifier | Precision | Recall | F1-score | Accuracy

RF 90.0% 88.9% | 86.6% | 88.9%
ID3 93.9% 93.7% | 93.8% | 93.7%
NB 85.7% 50.7% | 55.0% | 50.7%

LSTM 91.1% 91.0% [ 89.9% |95.2%
GRU 87.1% 86.8% | 83.7% | 94.7%

As shown in Table 8, in classical learning, ID3 gives better performance, with an
accuracy of 93.7% and an Fl-score of 93.8%. It’s better than deep learning methods
in Fl-score, where LSTM gives better accuracy of 95.2%. Then, the evaluation results
using 20 selected features are shown in Table 9.

Table 9. Evaluation results of using 20 selected features, SMOTE — CSE-CIC-IDS2018.

Classifier | Precision | Recall | F1-score | Accuracy

RF 92.1% 92.1% | 92.1% | 92.1%
ID3 94.6% 94.6% | 94.7% | 94.6%
NB 82.9% 751% | 751% | 75.1%

LSTM 98.0% 97.9% | 97.9% | 97.9%
GRU 98.9% 98.8% | 98.8% | 98.8%

Asshownin Table 9, in classical learning, ID3 gives better performance, with an accu-
racy of 94.6% and an F1-score of 94.7%. In deep learning, GRU gives better performance,
with an accuracy of 98.8% and an F1-score of 98.8%.
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Finally, the evaluation results using 10 selected features are shown in Table 10.

Table 10. Evaluation results using 10 selected features, SMOTE — CSE-CIC-IDS2018.

Classifier | Precision | Recall | F1-score | Accuracy

RF 91.5% 91.5% | 91.5% |91.4%
ID3 94.2% 942% | 94.2% | 94.2%
NB 82.5% 74.5% | 74.5% | 74.5%

LSTM 97.7% 97.6% | 97.6% | 97.6%
GRU 98.1% 98.1% | 98.1% | 98.1%

As shown in Table 10, in classical learning, ID3 gives better result with an accuracy
of 94.2% and an Fl-score of 94.2%. In deep learning, we found GRU gives better
performance with an accuracy of 98.1% and an F1-score of 98.1%.

When comparing Tables 9 and 10, GRU shows the best F1-score and accuracy of
98.8%. In classical learning, ID3 gives the best performance with an accuracy of 94.6%
and an F1-score of 94.7%.

In summary, when we compare the evaluation results for the two datasets, the best
performance can be obtained using different methods: LSTM and RF for CIC-IDS2017
dataset, and GRU and ID3 for CSE-CICIDS2018 dataset. There’s only slight difference
between the best performance of LSTM and GRU. Also, we can see comparable perfor-
mance when using only 10 selected features. This shows the effectiveness of combining
the MDI feature selection method, and SMOTE oversampling method in recurrent neural
networks.

5 Conclusions

In this paper, we aimed at intrusion detection using deep learning methods. In this context,
the CIC-IDS2017 and CSE-CICIDS2018 datasets were used since they are up-to-date
with wide attack diversity, and various network protocols (e.g., Mail services, SSH,
FTP, HTTP, and HTTPS). First, by using a feature selection method, we can determine
the most important features in both datasets. Then, it is combined with oversampling
technique to deal with imbalanced data. The experimental results show that our results
are better than existing works to classify and detect intrusions. In CIC-IDS2017 dataset,
the best performance obtained for the proposed method is an accuracy of 98.9 and an F1-
score of 98.9% by LSTM. Second, in CSE-CIC-IDS2018 dataset, the best performance
can be obtained for GRU with an accuracy of 98.8% and an F1-score of 98.8%. Third,
by using the top 10 selected features, the performance is better than using all features.
This shows the effectiveness of our proposed method for using feature selection and
oversampling for intrusion detection in large scale network traffic.

In future, we plan to use other datasets which include new variants of attacks like
malware and backdoor activity in real network traffics. Besides, we want to compare
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with other feature selection methods. For under-sampling or over-sampling technique,
to adjust the class distribution in the dataset, we can use the weight of distribution of
minority class, to generate more synthetic data for the minority class. Finally, we plan to
combine deep learning with other classification methods for improving the performance.
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Abstract. In this paper, we propose a joint extraction model of entity
and relation from raw texts without relying on additional NLP fea-
tures, parameter threshold tuning, or entity-relation templates as pre-
vious studies do. Our joint model combines the language modeling for
entity recognition and multi-head attention for relation extraction. Fur-
thermore, we exploit two hint mechanisms for the multi-head attention
to boost the convergence speed and the F1 score of relation extraction.
Extensive experiment results show that our proposed model significantly
outperforms baselines by having higher F1 scores on various datasets. We
also provide ablation tests to analyze the effectiveness of components in
our model.

1 Introduction

In this paper, we aim to study the joint model to extract both entities and
relations from raw texts, such that the F1 score of both tasks can be boosted
mutually. Specifically, the task of name entity recognition (NER) [12] recognizes
the boundary and the type of entities, and the relation extraction (RE) task
[28] determines the relation categories over entity pairs. Figure 1 shows the
extraction results on an example sentence, where the bounding boxes, the arrow
links, and the colors identify different entities, relations between entities, and
their corresponding types, respectively.

Traditional approaches treat NER as a predecessor to RE in a pipeline model
[4] while recent studies have shown that joint extractions of entities and relations
with end-to-end modeling can boost the quality of both tasks [17]. It is because
the relations are constructed by entity pairs, the knowledge of relation types can
increase the accuracy of entity extraction and vice versa. Owing to the advance
of deep learning technologies, the neural network models have gained popularity
for the joint learning task. Miwa and Bansal [17] presents a deep neural network
model, of which the promising results on end-to-end relation extraction require
additional NLP features such as POS and dependency trees. Later, Katiyar and
Cardie [10] utilizes the pointer network to extract semantic relations between
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Fig. 1. Gold-standard entity and relation annotations for an example sentence from
CoNLLO04 dataset.

entity mentions without accessing dependency trees. However, the performance
depends on a threshold parameter, and setting a proper threshold value can be
quite challenging. Li et al. [14] uses a multi-turn question answering system to
accomplish the joint extraction task. However, the proposed method requires
some prior knowledge to build the templates about relations between entities
and needs to enumerate all possible templates in advance, which may not be
practical when used in real applications.

To solve the aforementioned issues, we propose to design a joint extraction
model without the prior knowledge about additional NLP features, parameter
thresholds, or entity-relation templates. First, we exploit the powerful language
modeling of XLNet [25] to obtain word embeddings for higher accuracy of entity
recognition in the joint task. For the relation extraction part, we exploit the
multi-head encoder-decoder attention for deeper extraction of semantic relations.

To achieve even higher extraction F1 score, we design two hint mechanisms,
the positional hint and the pair-wise hint. Due to the design of the encoder-
decoder attention, at each time step, the query is always the last token in the
sequence to the attention, and the key/value vector is the entire sequence. Since
the index of query keeps growing as the time step increases, our proposed posi-
tional hint is to reverse the original positional encoding in the attention such
that the positional information of the query can always be indexed first. In this
way, the model clearly understands the first index of the positional encoding
is the query we defined and is responsible for calculating the relation with all
other tokens in the sequence. This deeper semantic information helps the model
converge faster and have higher extraction F1 score.

In addition, the multi-head attention mechanism itself can capture the related
information of the query to the entire sequence. Our proposed pair-wise hint
further transforms such information in a clearer way by constructing triplets of
two tokens (the query and the other one) and its corresponding relations. Such
structure provides the model all existing relations and thus improves the recall
rate of relation extraction.

Furthermore, our proposed method is able to extract multiple relations from
one entity to others, and can decode all entities and relations within a sentence in
one pass. The entity boundaries do not need to be specified first, and all possible
relations can be decoded out rather than being limited to a predetermined entity
pair as previous works do.
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We have compared our method with baselines on various benchmark datasets.
Extensive experiment results show that our model outperforms existing methods
on all datasets. It is worth noting that the F1 score of our model for entity
and relation extraction is 8.6% higher compared to the multi-turn QA model
[14] on the ACE04 dataset. In the ablation tests, when replacing the language
modeling with the one used in Li et al. [14] (i.e., BERT [7]), our model still
achieves a higher F1 score for the joint extraction task compared to their model
on CoNLL04, which demonstrates the advantages of two hint mechanisms.

The remainder of this paper is organized as follows. Section 2 details related
works. We describe the proposed model in Sect. 3, the datasets, setting and
experimental results in Sect.4, and analysis in Sect.5. Section 6 concludes our

paper.
2 Related Works

NER and RE. Two basic NLP tasks, named entity recognition (NER) [12]
and relation extraction (RE) [27,28], recently exploit neural networks to reach
better performance. RNNs have been used for many sequential modeling and
predictive tasks with time series, such as NER [19] and machine translation [1].
It has been found that variants such as adding a CRF-like objective on top
of LSTMs produce more advanced results on several sequence prediction NLP
tasks [5]. Moreover, traditional methods tend to deal with NER and RE tasks
separately, assuming that the entity boundary has been given to perform the
RE task. Several studies find that extracting entities and relations jointly can
benefit both tasks [13] [3], and we follow this line of work in this study.

Note that many existing NER and RE methods rely on the availability of
NLP tools (e.g., POS taggers and dependency tree parsers) [8] or manually-
designed features, leading to additional complexity. Li et al. [14] proposes a
new approach that combines NER and RE tasks with a QA system, but such a
model design requires manually-formulated QA templates for different datasets.
Creating these templates bring considerable costs, and if the template is not
well-fitted to the dataset, it would hurt the model performance.

Miwa and Bansal [17] uses bi-directional LSTM as an encoder to learn the
hidden word representations, and uses tree-structured LSTM to get relations
between entities. Global optimization and normalization have been successfully
applied on the RE using neural networks [26]. It maximizes the cumulative score
of the gold-standard label sequence for one sentence as a unit. Katiyar and
Cardie [10] proposes a new approach for RE that does not need dependency
trees. Instead, they utilizes the pointer network [24] to extract semantic relations
between entity mentions. In the inference time, all the labels with probability
values above the threshold are outputted as results. Bekoulis et al. [2] uses adver-
sarial training to improve robustness of neural network methods by adding small
perturbations in training data, and such modifications substantially improve the
performance. Sun et al. [22] proposes Minimum Risk Training to optimize global
loss function to jointly train the NER and RE. The aforementioned approaches



324 C.-H. Fang et al.

have various focuses and advantages, and they are included for comparison in
Sect. 4.3. According to the experimental results, our model is able to obtain
competitive or state-of-the-art scores on various datasets.

Language Model. The pre-trained Language Model (LM) has become very
popular in recent years, and because of the breakthrough of BERT [7], the
pre-trained LM reaches another peak. BERT is a pre-trained LM that can be
fine-tuned on many NLP tasks to get better performance. The commonly used
embedding method is Word2Vec [16] or GloVe [20], but a recent study [7] proves
that BERT scores well in multiple NLP tasks. Another LM that surpasses BERT
is XLNet [25]. Yang et al. [25] uses Permutation Language Modeling as the objec-
tive and builds Two-Stream Self-Attention as the core architecture. In order to
have a fair comparison with the previous study [14], we evaluate our model with
both of BERT and XLNet as LM in the ablation test.

Multi-head Attention. Using multi-head attention, the core concept of Trans-
former [23], can yield more interpretable models. While single-head attention
works for many tasks, multi-head attention further helps capture more effec-
tive information related to the syntactic and semantic structure of sentences. In
our model, this concept is leveraged to enrich the semantic information in the
relation extraction task.

Positional Encoding. Positional encoding is a representation of the position
of a word in a sentence by using sinusoidal function. This technique is used
because there is no notion of word order in the proposed architecture (unlike
common RNN or ConvNet architectures). Therefore, a position-dependent signal
is added to each word-embedding to help the model incorporate the information
about the order of words. Vaswani et al. [23] finds that using sinusoidal function
to represent position has nearly identical results with using learned positional
embeddings, and using sinusoidal version can extrapolate positional information
to sentence length longer than the training phase.

3 Model

In this study, we propose a joint model that can extract all entities and the corre-
sponding relations within the sentence at once. Our model contains a multi-layer
bi-directional RNN that learns a representation for each token in the sequence
from the output of LM. We treat named entity recognition as a sequence label-
ing task and relation extraction as a table filling task, respectively. Figure 1 and
Table 1 show an example of annotating the entity tags and relation tags. At
each time step ¢, the multi-head attention layer utilizes the information from
the previous time steps to get the representation. After that, the current token
representation points to all previous token representations to get the relation
label. The left half of Fig. 2 represents the architecture for NER, and the other
half is for RE. In this section, we introduce our model from the embeddings to
training in a bottom-up way.
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Table 1. Gold-standard relation annotation for the example sentence in Fig. 1. The
entire relation table is first initialized with the zero vector, and then the table is filled
with predicted results. The symbol L denotes “none relation” and “P” denotes padding
tag. (If the token at time step ¢ is related to itself, the relation type is defined as “none
relation”, as the diagonal of this table. Note that the padding tags do not affect the
calculation of loss, since the calculation only considers the lower left triangle of this
table.)

David|Foster is |the AP ’s |Northwest|regional|reporter|, |based|in |Seattle
David 1 P P |...
Foster L L P P
is R 1 1 |P P .
the . 1 |L P P ...
AP 1 Work For —|L |L |L P P L
’s oL 1 P P R
Northwest ./L |OrgBased In —|L |L P P S
regional L € P P |...
reporter € 1 P |P -
s 1 1 P P
based 1 L P |P
in L 1 P
Seattle ...|1L |OrgBased In —| L |... 1 |1

3.1 Embeddings

One of the latest milestones in embeddings is the release of XLNet, which brakes
eighteen records in various NLP tasks. The pre-trained LM representations can
be fine-tuned with just one additional output layer. By using XLNet, we can
save the time and computation resources that would have gone to training a
model from scratch. XLNet is basically a trained “Transformer-XL” [6] stack.
The Transformer-XL is a model that uses attention to boost the accuracy and
consists of segment-level recurrence mechanism and relative positional encoding.
Note that XLNet model has a large number of encoder layers, and we sum the
output of all essential layers as the embedding vector.

The input of the model is a sequence of n tokens (i.e., a sentence) x =
[z1,...,25]. SentencePiece [11] is used here to effectively avoid the out-of-
vocabulary (OOV) problem. We average the vectors of pieces of each word and
convert it back to a vector to represent a word. We use LM (-) to denote the
sum of all XLNet output layers and mean of word pieces of each word, and
vEM) ¢ RPxdea g the word embeddings from LM (-) as below:

o M) = LM (x). (1)

3.2 Named Entity Recognition

We perform named entity recognition on multi-layer bi-directional LSTMs for
sequence tagging since LSTMs are more capable of capturing long-term depen-
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Fig. 2. The structure of our proposed end-to-end joint entity and relation extraction
model, with sequence-wise multi-head attention and token-wise pointer network.

dencies between tokens. The vector v(®) € R"*4r:m denotes the output of Bil-
STM as below:
v® = BiLSTM (v IM)), (2)

We treat entity detection as a sequence labeling task using BILOU (Begin,
Inside, Last, Outside, and Unit) scheme similar to previous study [17]. Each
entity tag represents the entity type and the position of a word in the entity. For
example, in Fig. 1, we assign B-Peop and L-Peop to each word in David Foster
to represent this phrase as a Peop (people) entity type, and we assign U-Org
to represent the organization entity type of the word AP. For each token in the
sequence, we formulate a softmax over all candidate entity tags to output the
most likely entity tag as below:

Y = softmam([vf )1, vt(b)]WE +bF), (3)
where v( ) € Rétasemb denotes the entity tag embeddings in the previous time
step, the “,” symbol denotes concatenation, v,gb) denotes the BiLSTM output in

the time step t, WF € R(dagemotdian)x|El gnd pP e RIF| are learnable param-
eters, |E| denotes the entity size, and y; € RIEl denotes the output of entity in
the time step ¢t. When ¢ = 0, the vgi)l is a zero vector. We decode the entity
label from left to right in a greedy manner. To optimize the performance, we
connect the entity embeddings in the previous time step and BiLSTM output in
the current time step. Thus our outputs are not conditional independent from

each other. Finally, we transform the output y;_1 into the entity tag embeddings

”g )1

3.3 Stacking Sequence

Here we concatenate the entity tag embeddings in the previous time step, the
entity tag embeddings in the current time step, and the BiLSTM output in the
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current time step as the current information about the sequence into the relation
layer as below:

hy = [vgi)l; vt(b); v,ge)]Wh + b, (4)

where W € R(dtagemptdia)xdrer and p" € Rt are learnable parameters, and
h; € R denotes the concatenated vector in lower dimension. We stack the
time steps until current time step t as the key s and value s} (i.e., sK = s} =
[h1;...;hy] € RP¥4rel) into the multi-head attention. The query 5@ € RI*dret
denotes the concatenated vector in the current time step into the multi-head

attention.

3.4 Positional Hint (P-hint)

In [23], in order to subjoin some information about the positions of tokens in the
sequence, they add positional encoding to input word embeddings. The positional
encoding consists of sinusoidal function. Besides, using sinusoidal function is able
to extrapolate the sequence lengths longer than the ones encountered during
training. In the proposed model, we use positional encoding as a hint (called
“Positional Hint”) for relation extraction task, and we propose two strategies
to utilize the hint. The first strategy (called “forward”) is quite similar to the
transformer positional encoding, where we add the positional encoding to the
sequence in order. The second strategy (called “backward”) is to reverse the
positional encoding and add the reversed positional encoding to the sequence.
In the designed model, we use the last token as the query to score all the previous
tokens to attention function, so we reverse the positional encoding and give the
first index of positional encoding to the last token, in order to maintain the
consistency of the query position at each time step. In Sect. 5.2, comparison and
analysis of these two strategies are provided.

3.5 Multi-head Attention

In our model, we adopt the multi-head attention on relation model. An attention
function comprises a query and a set of key-value pairs. The output of atten-
tion function is computed as a weighted sum of the values, where the weight
assigned to each value is computed by the compatibility function of the query
with the corresponding key. We adopt encoder-decoder attention for the scaled
dot-product as our attention function as below:

QK"
drel

where ® denotes the element-wise multiplication. A previous study [23] shows
that multi-head attention is capable of processing information from different
representation subspaces at different positions. We leverage this to enhance the
context representation of the relation of entity pairs in every time step as below:

Attention(Q, K, V) = softmaz( YoV, (5)

SiV[H = MultiHead(S?,Sfa 82/)

6
= Concat(heady, ..., head,, )W, (6)
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head; = Attention(s?WjQ, stKWjK, SYWJ-V) , (7)

where WjQ, WK WY € Rirerxdv WO g Rmdvxdret denote the projection matri-
ces and m is the number of attention heads, and md, = d,.;. We then apply a
residual connection [9] on s} and sM# to obtain the vector r! as below:

o= s @ s ®

where 7t € R4 and @ denotes the element-wise addition. To facilitate the
residual connection, the dimensions of s} and sM# are the same.

3.6 Pair-Wise Hint (Pw-hint)

In our model, we formulate relation extraction as a table filling task. For each
token, we want to find the relation between the current token and the token
at the previous time step. In Table 1, the Peop entity type “David Foster” is
related to the Org entity type “AP”. For simplicity, we follow the previous study
[18] where only the tail of entity (L tag or U tag) is related to each other, i.e.,
“Foster” is related to “AP” via the “Work For” relation. Because of this, our
model is able to decode multiple relations through table filling.

Besides the positional hint, we further adopt additive attention as “Pair-wise
Hint”. Through this attention function, the pair-wise hint is to remind the model
that the relation of token pair is prepared to be classified. In addition, it can
also reduce the dimension to relation size via u. In every time step, the current
token points to the previous tokens, in order to get the probability of relation of
this entity pair as below:

ol = tanh(riwW? 4+ rtw )y, (9)
P! = softmaz(al), (10)
where i € (1,...,t) denotes time series until current time step t. W and

WPz € RédretXdpair are weight matrices of the model, and u € RépeirxIRI+1) g 5
learnable matrix to transform the hidden representations into attention scores.
ri denotes the i-th token of the vector after residual connection, r} denotes
the vector in current time step, and o} denotes the score computed from the
compatibility function with r! and r!. Finally, p! € R2ZI+1 represents the result
of relation extraction in the entity pair, i.e., R relation types in bi-direction and
“none relation”. In the ablation tests (Sect.5.1), there is a clear performance
drop when Pw-hint is removed®, indicating that Pw-hint is a key component to
improve the information extraction of relations in the vector.

! When Pw-hint is removed, we directly multiply ¢ by a matrix to reduce its dimension
to R¥*2IEI+1 and then connect to softmax.
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3.7 Training

The final objective for the joint task is to minimize L;oint = LNER+ALRE, Where
A is the hyperparameter controlling the proportion of relation loss to improve
the model. Given a sentence .S, we minimize the cross-entropy loss between this
output distribution with the gold-standard distribution as below:

1
Lypr=— Y logp(eile<, S,0), (11)
‘S| i€]S|
1
ERE - _@ Z IOgP(Ti|€§iaSa 9), (12)
i€|S|

where 6 represents the network parameters, e denotes the prediction of entity
tags, and r denotes the prediction of relation tags. Please note that our model is
designed to be capable of extracting all entities and the corresponding relations
within the sentence at once. Our model design is also suitable for multi-label
tasks, allowing multiple relations per entity.

4 Experiments

4.1 Data and Evaluation Metrics

We evaluate our proposed model and other baselines on four datasets, which are
CoNLL04, ADE, ACE04, and ACEO05. In order to conduct fair comparisons, we
follow the preprocessing procedure used in the baseline methods. Specifically, for
CoNLL04, we follow the previous study [18] to split the data into training and
test corpora, and then divide 10% of the training corpus for development. For
ADE, we perform 10-fold cross-validation as Bekoulis et al. [2] do. For ACE04
and ACEO05, we perform 5-fold cross-validation as Miwa and Bansal [17] do on
ACE04, and we also follow Miwa and Bansal [17] to split the ACE05 dataset
into training, development and test sets.

For the evaluation metrics, we follow the previous studies [2,17] and report
micro Fl-scores, precision and recall on both entities and relations. An extracted
entity is considered correct only if both the entity boundaries and the entity type
are detected correctly. Similarly, a relation is considered correct only if we detect
both the entity pair and the relation type correctly. In addition, we make average
of precision, recall and F1 three times on CoNLL04 and ACEQ5.

4.2 Hyperparameters and Training Details

We use the AdamW optimizer [15] to set hyperparameters on the validation
sets. For multi-head attention, we use 32 heads to get best accuracy. For XLNet,
we average the pieces of each word and combine them into a vector. As for
the version of XLNet, the XLNetgasg model is used as input of our contextual
embeddings. For the efficiency and better embedding performance, we adopt
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Table 2. Performance comparison of our proposed model and other state-of-the-art
approaches on the test set. The dash (“~”) indicates that this score is not reported in
the original paper.

Dataset | System Entity Entity + Relation
P |[R |F1 [P |R |F1
CoNLL04 | Our model 89.0|88.3|88.6 | 73.8|67.7|70.7
Li et al. (2019) [14] 89.0|86.6 | 87.8 | 69.2|68.2 | 68.9
Bekoulis et al. (2018a) [2] - - 83.6 |- - 62.0
Zhang et al. (2017a) [26] - - 85.6 |- - 67.8
ADE Our model 87.6|86.0 86.8 78.1|74.8|76.4
Bekoulis et al. (2018a) [2] - - 86.7 |- - 75.5
ACE04 | Our model 87.7|87.7 | 87.7 58.6|57.4|58.0
Li et al. (2019) [14] 84.4/82.983.6 50.1 48.7|49.4
Bekoulis et al. (2018a) [2] - |- 816 |- |- 47.5
Miwa and Bansak (2016) [17] | 80.8 | 82.9 | 81.8 | 48.7|48.1 |48.4
ACE05 Our model 88.9189.3/89.1/65.0|57.6|61.0
Li et al. (2019) [14] 84.7184.984.8 64.8 56.2|60.2
Sun et al. (2018) [22] 83.9]83.2/83.6 64.9|55.1|59.6
Miwa and Bansal (2016) [17] | 82.9|83.9|83.4 | 57.2|54.0 | 55.6

XLNet with feature-based approach, where fixed features are extracted from
the pre-trained model. To generate the embedding vector, we sum all layers in
XLNet model output. Moreover, in our task, the special tokens [CLS] and [SEP]
are not needed. We also regularize our model using dropout [21] after the XLNet
output, BiILSTM layer, and relation model.

4.3 Results

Table 2 compares the performance of our model with other state-of-the-art meth-
ods. Due to the complex nature of NLP tasks, it can be observed that the
reported improvements among recent studies are usually limited (e.g., 1% from
2016 [17] to 2019 [14] on ACE04). Despite the difficulty, in relation extraction
task, our model significantly outperforms (8.7% higher in F1 score) the adver-
sarial training model [2] and exceeds (1.8%) the multi-turn QA model [14] on the
CoNLL04 dataset. For the ADE dataset, our entity F1 score is slightly higher
than that of Bekoulis et al. [2], but there is a greater improvement on combined
F1 score performance (0.9% higher). As for ACE04, substantial improvements
can be found in F1 score for relation extraction tasks (8.6%) when compared
with the multi-turn QA model [14]. Finally, for ACEO05, our entity F1 score is the
highest, and the relation F1 score is also higher (0.8%) than the state-of-the-art



Multi-head Attention with Hint Mechanisms for Joint Extraction 331

Table 3. Performance comparison of the model variants with different LM, P-hint,
and Pw-hint on CoNLL04 and ACEOQ5.

Settings CoNLLO04 ACEO05
Entity Entity + Relation|Entity Entity + Relation
P R |F1 [P |R |F1 P R |F1 P R |F1

BERT}, 50 +P-hint (backward)+Pw-hint |86.7|85.7/86.2|72.4/66.4/69.3 86.9(87.5/87.2/64.6/54.5/59.1
BERT 4 g +P-hint(backward) +Pw-hint |85.3|83.7|84.5(74.7|63.0/68.3 86.9(86.8/86.964.0(52.7|57.8
XLNet g0+ P-hint (backward)+Pw-hint |89.0|88.3|88.6|73.8/67.7|70.7 88.9(89.3/89.1/65.0(57.6/61.0

XLNety g0+ P-hint (forward)+Pw-hint  |87.9/88.3/88.1|72.7/68.0/70.3 88.8(88.9/88.8/65.2(55.9/60.2
XLNet g6+ Pw-hint 88.9(88.0/88.4/72.1|68.5/70.3 88.6/88.7/88.664.5(55.1|59.4
XLNetpage+P-hint(backward) 88.2(88.0/88.176.8/64.5|70.1 87.5(88.7/88.1/66.8/54.7/60.1
XLNetp a0 88.9/87.9/88.4/72.3/68.0/70.1 87.7/88.6/88.264.1|54.1|58.7
XLNetjpgo-+P-hint(backward)+Pw-hint|88.3|88.488.3|76.8|65.5/70.6 89.0(89.4/89.2/69.3|54.1/60.8
Li et al. (2019) [14] 89.0(86.6/87.869.2(68.2(68.9 84.7(84.9/84.8/64.8/56.2|60.2

model [14] in relation extraction task. Our code will be publicly available for
testing the reproducibility of results?.

5 Analysis

5.1 Ablation Tests

In this subsection, we conduct a series of ablation tests on the test set of
CoNLL04 and ACEO05. We evaluate our model with and without the two hint
mechanisms and replace the LM with the one used in previous studies, in order to
see the contribution of these components. According to the experimental results
in Table 3, using these two hints considerably improves the ability of NER and
RE. Note that we focus on the F1 score of E4+R hereafter without specifying.
Specifically, on the dataset with difficult predictions such as ACE05 (which has
more complex relation types), the improvement of the result is more significant
(2.3% higher) with using two hints than not using these two components. On
CoNLLO04, the result only increases by 0.6%. It means that the two hint mecha-
nisms bring more improvements for complex situations.

Moreover, we find that the score of backward P-hint is slightly higher (0.4%)
than that of forward P-hint on CoNLLO04, and it is also higher (0.8%) than that
of forward P-hint on ACEO05. It shows that the backward strategy of P-hint has
certain impact on the results, confirming that it is effective to give query a fixed
positional information while the query is the last token.

Furthermore, when using only Pw-hint on ACEQ5, the F1 score on relation
is reduced by 1.6%. It means that the backward P-hint brings more suitable
information to the relation task. For the relation decoding method, the last token
of the sequence at each time step, i.e., the query, is given to the information of
the first position, and it is effective to maintain the positional information of
the query on the first position. When using only P-hint on ACEQ05, the F1

2 Due to the anonymity requirement, the GitHub link will be provided after the anony-
mous review period ends.
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score on relation is reduced by 0.9%, and the recall is reduced by 2.9%. It shows
that Pw-hint helps improve recall of relation extraction, because this component
confirms what kind of relation exists for each token pair. Finally, using two hint
mechanisms together can make the results even better.

We also use different LMs (e.g., BERTpase, BERT 1arge and XLNetjarge) on the
ablation tests and keep other hyper-parameters unchanged. The experimental
results show that the F1 scores of base models slightly exceed the large models
on two datasets and two different LMs, indicating that using large model may
cause the overfitting problem. In addition, in order to have the same comparison
standard with Li et al. [14], we also use BERT as the LM. The results show
that our BERT version model slightly exceeds the multi-turn QA model [14]
in F1 score (0.4%) on CoNLL04, and on ACEQ5 the relation F1 score is also
competitive to their method.

5.2 P-Hint Strategies

In Sect. 3.4, we introduce two strategies for P-hint, i.e., “forward” and “back-
ward”. Figure 3 shows that the model using forward P-hint has a slower con-
vergence speed and lower scores than the backward P-hint. This indicates that
using backward P-hint brings higher F1 score and converges faster in the early
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training. Due to the model design, the query is always the last token of the
sequence, and we must decode all the relations about the query at each time
step. If we use backward P-hint, the hint will always gives the positional infor-
mation of the first index to the query. It means that the backward P-hint can
maintain the consistency of positional information about the query. On the other
hand, forward P-hint always gives the last positional information to the query in
every time step, and the positional information of query would not be consistent
in every time step. The experimental results also support that it is important
to maintain the consistency of the positional information of the query in our
model.

5.3 Accuracy at Sentence Level

Generally speaking, longer sentences may have more entities and relations, so it
is more difficult to extract all the entities and relations correctly. To show that
two hint mechanisms indeed help improve the accuracy at the sentence level,
we compare the corresponding accuracy when using P-hint and Pw-hint in the
sentence level on the test set of ACE05. When evaluating the accuracy at the
sentence level, a sentence is considered correct only if all the labels in the result
table are correct. According to the results in Fig.4, when the sentence length
increases, the accuracy drops dramatically. The results further show that the
sentence-level accuracy of using two hint mechanisms is higher than not using
any hint. When the sentence length is greater than 40 words, the difference in
accuracy between the two methods is more than 5%, indicating that our proposed
model has more advantages in longer sentences.

6 Conclusions

In this paper, we propose a novel end-to-end joint NER and RE model, which
uses the neural network based on multi-head attention, positional hint and pair-
wise hint. Extensive experiments have shown the effectiveness of using these two
hint mechanisms in the relation layer. Analysis and ablation tests further demon-
strate that backward positional hint speeds up the convergence and pair-wise hint
improves the recall of relation extraction. According to the experimental results,
our final model achieves the state-of-the-art performances on various benchmark
datasets.
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Maximum (L, K)-Lasting Cores
in Temporal Social Networks

Wei-Chun Hung and Chih-Ying Tseng®™)
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Abstract. Extracting dense structures in a social network is a funda-
mental task in graph mining and can find many real-world applications.
The temporal social network augments the conventional social network
with the temporal dimension, and extracting dense structures enables us
to understand the period of time for which the dense structures exist.
In this paper, we propose the new notion of (L, K)-lasting core, which
is a densely connected subgraph lasting for a sufficiently long period
of time in the temporal social network. We propose a polynomial-time
algorithm to obtain the maximum (L, K )-lasting core with various pro-
cessing strategies to boost the efficiency. We conduct extensive exper-
iments on multiple datasets to validate the effectiveness and efficiency
of the proposed approach. The experimental results show that our pro-
posed approaches outperform the other baseline approaches in terms of
solution quality and efficiency.

Keywords: Densest subgraph - Temporal social networks - Cores

1 Introduction

Extracting dense subgraphs has been actively studied in recent years. It is a basic
and important work in graph analysis. There are many different definitions of
dense subgroup, e.g., average degree [11,21,30], k-truss [22,40], clique [3,4,15],
quasi-clique [1,27], k-core [12,24,32]. All of those different definitions refer to
the same thing that vertices in the group are highly connected. Dense subgroup
of different definitions have different ways to extract, such as linear program-
ming [23,26], core decomposition [8,42], etc. It has a lot of application in prac-
tice, e.g., biological module discovery [20], story identification [2] and community
detection [6,10].

Most of the previous work focus on the dense subgraph on single-layer graph
which exists for just one time. However, they can not apply to multilayer graph.
There were also many work finding dense subgraph on multilayer network. Some
of them consider layers are different type of information [13,46]. Some of them
consider that different layers represent different time [25,29] and we call them
temporal networks. Each edge in temporal networks is associated with time.
Densely connected vertices in a temporal network may correspond to a commu-
nity. For example, in a collaboration network, dense subgroup may represent a
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research team or some researchers in the same domain publishing papers together
continuously.

In this paper, we study the problem of long-lasting group in the temporal
network. We not only consider the cohesiveness but also the time the group lasts.
We adopt the definition of k-core, which is a group in which each member has at
least k other friends also in the group. We aim to find the largest group in the
temporal network with given lasting-time constraint and connectivity constraint.

To achieve above goal, we present a model, called (L, K)-lasting core, based
on the well-known concept of k-core. Our model can preserve a k-core lasting for
L time. For its application scenarios, we can leverage this model to find a team
of researchers publishing paper every year in the same field, or a social group
whose member interact with each other very frequently. We formally define the
problem and propose effective algorithm to deal with it. We conduct extensive
experiments to evaluate our model and study the impact of algorithm variations.
In summary, the contributions of this paper are summarized as follows:

— We propose the notion of (L, K)-lasting core to integrate the social cohesive-
ness with the temporal dimension to identify important groups in temporal
social networks.

— We develop effective algorithms and techniques to extract (L, K)-lasting
cores.

— We conduct extensive experiments to evaluate the performance of our algo-
rithms.

The rest of this paper is organized as follows. After reviewing related work
on dense subgraph and temporal network in Sect.2, we provide the notation
and formulate our problem in Sect. 3. The details of the proposed algorithms are
described in Sect. 4. We provide the experimental results in Sect. 5. We conclude
this paper in Sect. 7.

2 Related Work

2.1 Dense Subgraph

Our work is related to the problem of extracting dense subgraphs, which has been
actively studied for years. There are many measurements of dense subgraphs,
including average degree [11], k-core [12], clique [4]. For example, Epasto et
al. [11] proposed the method of maintaining a densest subgraph and quickly
updating while an edge insertion or deletion. Sariyuce et al. [32] also studied on
dynamic graph but what they maintained is the k-core decomposition. Bomze
et al. [4] proposed several methods to deal with clique problem. In this paper,
we propose the notion of (L, K)-lasting core, which extends the idea of k-core.

2.2 Multilayer Network

We study the problem on temporal networks, which is a special type of multilayer
graph and its layers represent continuous time. There are many related work of
multilayer graphs [13,25,29,46,47]. Zhang et al. [46] studied the problem on two
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layer graph which is a special case of multilayer graph. One layer is friendship
of entities and the other is similarity between entities. Rozenshtein et al. [29]
searched several groups of vertices with different time interval to maximize the
sum of group density. Galimberti et al. [13] propose a method to find a subgroup
that maximizes the minimum density of selected layers. Zhu et al. [47] aimed
to find several multilayer cores that cover the largest number of vertices. Li et
al. [25] deals with temporal network. They aimed to find dense subgraph with
three constraints, 0, 7, and k called (8, 7)-persistent k-core. Note that 7 is larger
than 6. The union graph of each 6 length time interval in a 7 length interval
contains a k-core. We give an example of this work. In 1, we give § =2, 7=3 and
k =3. For 7 =3, we first choose G1, G5 and (G3 and then intersect two consistent
snapshots in them for § =2, e.g., G1, G2 and G5, G3. Then we find k-core of
each intersection graph. The k-core of G1, Gs is a,b, ¢, d and the one of G2, G3
is a,b,c,d, e, f. And the (2, 3)-persistent 3-core of this interval is a, b, ¢,d. The
work we mentioned can’t apply to our problem which we want to find a group
lasting for a consistent time. We formulate the problem in the next section.

EN

&o

no @

Fig. 1. An example of (0, 7)-persistent k-core.

2.3 Community Search

Community search in social networks is an active research field [5,9,18,19,31,
41,43]. These works study various community search problems, including the
enumeration of k-vertex connected components [41], extracting dense subgraphs,
i.e., small-diameter k-plexes [9], identifying the maximum clique in sparse social
networks [5], and proposing the UCF-Index to extract (k,n)-core in linear time
for uncertain graphs [43]. In addition to finding dense communities in social
networks, recent works also discuss finding sparse anti-communities in social
networks [16,34,36,37], which has a wide spectrum of application scenarios.

2.4 Dense Subgraphs in Heterogeneous Social Networks

Extracting dense subgraphs in heterogeneous social networks have attracted
research attentions [7,14,17,25,33,35,39,45,47]. These works propose new ideas
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and enable many new applications, such as enumerating the spatial cliques in
the two-dimensional space for dense subgraph extraction [45]. Moreover, a set
of socio-spatial group queries aim at identifying the socially-dense groups and
the corresponding meeting points [14,38,44]. In addition to social and spatial
relations, SDSQ is proposed for live multi-streaming scenarios in social networks
that considers both the social tightness and preference of the users, as well as
the diversity of multi-streaming channels [33].

3 Problem Definition

We are given a temporal network G = (V| E), where V is a set of vertices,
and E = {(u,v,t)}, such that u,v € V, timestamp ¢ € N, indicating that edge
(u,v) exists at time ¢. Given t € N, Ey = {(u,v,t)}, which contains edges in
timestamp ¢, we call each graph associated with certain time is a snapshot: Let
Gy = (V, E;), Vt € N. Given a subset C' C V, edges induced by C at timestamp
t is denoted E:(C) = {(u,v,t)} for u, v € C. Then the degree of vertex u € C
at time ¢ is denoted di(u, C) = {u € Cl(u,v,t) € E¢(C)}|.

Definition 1 (L-lasting time). L-lasting time means a time sequence which has
L continuous snapshot, e.g., [0,1,..., L—1].

Definition 2 ((L, K )-lasting core). The (L, K )-lasting core of a temporal net-
work G = (V, E) is a non-empty set of vertices C(p gy C V, such that Yu €
C(L,K) and d¢(u, C(L,K)) > K, Vt € [to,t1,...,t-1], K € N+.

In other words, Definition 2 is saying that a (L, K)-lasting core is a K-core
with L-lasting time. A maximum (L, K )-lasting core means it is a (L, K)-lasting
core which has the most vertices. Then we formulate the first problem in this
work which is to search a maximum (L, K)-lasting core.

Problem 1 (Maximum (L, K)-lasting core). Given a temporal network G =
(V, E), two parameters L and K, find the maximum (L, K)-lasting core of G.

We give an example of (L, K)-lasting core. In Fig.2, we have a temporal
network of 4 snapshots. Given L =2 and K =3, we can observe that a, b, ¢, d
circled by red line is the maximum (2, 3)-lasting core in this temporal network.
In the next section, we will propose basic algorithm for Problem 1 and how to
speed up using advanced techniques.

[Time 1] [Time 2] [Time 3] [Time 4]
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Fig. 2. An example of (L, K)-lasting core.
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4 Algorithm Design

In this section, we introduce our proposed approaches and techniques to extract
(L, K)-lasting core in details. First, we give a naive idea and a basic algorithm
that is also the baseline in experiments. And then, we provide some simple but
powerful techniques to speed up online search time. Finally, we explore the order
of snapshots permutation to minimize the intersection cost.

4.1 Naive Algorithm

The naive algorithm of Problem 1 is detailed in Algorithm 1. First, we use the
concept of sliding window and let L be the length of the sliding window, i.e., it
contains L snapshot. The basic algorithm consists of two steps. The first step is
to slide the window by changing starting time ¢. Let C be Gy, the snapshot of
time t. Then we intersect C' with the rest of L — 1 snapshot. The second step
is to find C}, the K-core of the intersection result C. If the size of Cj is larger
than the current maximum size of (L, K)-lasting core, C} become the current
maximum (L, K)-lasting core.

Algorithm 1. Naive algorithm

Input: A temporal network G = (V, E), L and K
Output: The maximum (L, K)-lasting core C(1 k) of G

1: C(L,K) — (Z);

2: forall t € [0, 1,..., tmaz-L] do

3: C — Gy

4: forall i € [t+1, t+2,..., t+L-1] do
5: C—CnGy;

6: Cj < find_kcore(C);

7: if |Ck| > |O(L,K)| then

8: Cw,x) — Chk;

9: return C(p, x);

Here, we omit the details of the K-core algorithm. It is to recursively remove
the vertex with degree smaller than K and check its neighbors’ degrees until no
vertex has degree smaller than K in the subgroup C, i.e., d;(u,C) > K. Finally,
in line 9, we output the maximum (L, K)-lasting core.

4.2 Temporal Core Finding-Basic (TCFB)

In the previous subsection, the naive approach performs many redundant inter-
sections. To tackle this issue, our idea is to reuse some parts of intersection
results. Once we reuse them, we are able reduce the number intersections and
improve the efficiency. For example, the current time sequence being processed
is [0,1,2,3,4] and the next time sequence is [1,2,3,4,5]. We can observe that
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the timestamp [1, 2, 3, 4] is repeated. If we first do intersection of [1, 2, 3, 4] which
means G1, G2, G3 and G4 and have the result C, then the next action for current
time sequence is to intersect C' and G and for next time sequence is to intersect
C and G5. Thus we can reduce one time of intersection of G1,Gs, G and Gy.
The detailed description is outlined in Algorithm 2.

4.3 Min-Degree Pruning (MDP)

In this subsection, we focus on reducing vertices. Given a time sequence, each
vertex has a degree on different snapshot. After the process of intersection and
k-core, we get the result subgraph C, the degree of each vertex in C' will less than
or equal to the vertex’s smallest degree of all snapshots of the time sequence.
In other words, given a time sequence T, d(u,C) < min!Td(u,G;). Based on
this, we can remove the vertex u which min{<"d(u,G;) < K before the pro-
cess. Equipped with this technique, we may traverse less vertices for each time
sequence to reduce the cost. Here we just eliminate the vertex which does not
satisfy the K constraint before the process, then we can further execute Algo-
rithm 2.

Algorithm 2. Temporal Core Finding-Basic (TCFB)

Input: A temporal network G = (V| E), L and K
Output: The maximum (L, K)-lasting core C(1 k) of G
1: C(L’K) — 0
2: C «— 0;
3: forall t € [0, 1,..., tma-L] do
T+t mod 2
if r=0 then
C — Giy1;
forall ¢ € [t+2, t+3,..., t+L-1] do
C—CnGy;
9: index — i+ (L—1)*r
10: C—Cn G'Lndez
11:  Ck « find kcore(C);
12: if |Ck| > |C(L,K)| then
13: C(L,K) — Ck;
14: return C(p k);

4.4 Reordering for Intersection Minimization (RIM)

Now if we have a time sequence, we intersect snapshots chronologically in Algo-
rithm 2. We observed that if we disrupt the order of original time sequence,
the result of intersection graph remain the same, but the number of intersec-
tion times will be different. Here we can formulate a Subproblem. If we know
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the order having the least number of intersection times, then we have minimum
cost. The subproblem is formulated as follows.

Problem 2 (Minimum times of intersection). Given a time sequence of L snap-
shot on G, we would like to find a permutation of given time sequence that min-
imize the sum of edge numbers of the intersection graph [lo, I1, ..., I1,—2], such
that Iy = Go, I; = intersection(lp, G1), Is = intersection(ly, G2),..., I—2 =
intersection(Ir,_2,Gr—1).

Clearly, if we can solve Subproblem 1, then we can solve Problem 1 more effi-
ciently. A straightforward method to find optimal solution of Subproblem 1 is to
enumerate all the permutation of given time sequence and find the best one. How-
ever, it is time-consuming to search in L factorial number of permutation when
L grows. We propose a method, which choose snapshot greedily based on the
previous snapshot. The standard of choosing next snapshot is by edge difference
of two snapshots. Edge difference means the number of edges of previous snap-
shot that do not exist in the next snapshot. The detailed description is outlined
in Algorithm 3. We compute edge difference offline. In line 4, edgediff(G;,G;)
means the number of edges of G; that do not exist in G;. It should be noted
that edgediff(G;,G;) may be not same as edgediff(G;,G;). After the computation,
we get a map Diff giving us information of edge difference of each snapshot
pair. We then apply it on Algorithm 2 which is Algorithm 3. In Figs. 3, 3(a)
is an example of snapshots. We can compute edge difference: Dif f[(1,2)] =3,
Dif f[(1,3)]=2, Dif f[(1,4)] =1, Dif f[(2,3)] =4, Dif f[(2,4)] = 1. If we are using
greedy order, and we first choose snapshot 1, and next we choose snapshot 2
because Dif f[(1,2)] =3 is the largest. Then we choose snapshot 3. Now we see
Fig.3(b) to compute the cost: snapshot 1 has 4 edges; Intersection of 1, 2 has 1
edge; Intersection of 1, 2, 3 has 1 edge and Intersection of 1, 2, 3, 4 has 0 edge.
Cost will be 441+ 1. Finally, we have an advanced algorithm called Temporal
Core Finding (TCF) which applies MDP and RIM on TCFB.

Algorithm 3. Edge Difference

Input: A temporal network G = (V, E)

Ou