
Service Oriented Computing for Humans
as Service Providers

Sergio Laso1, Javier Berrocal1(B), José Garcia-Alonso1, Carlos Canal2,
and Juan M. Murillo1

1 Universidad de Extremadura, Cáceres, Spain
{slasom,jberolm,jgaralo,juanmamu}@unex.es

2 ITIS Software, Universidad de Málaga, Málaga, Spain
canal@lcc.uma.es

Abstract. For the past twenty years, Service Oriented Computing has
changed the way in which information technology was understood. The
approach involves not only technological advances that have influenced
the development of Software Engineering, such as Service Oriented Archi-
tecture, Web services, Service Choreography, or Microservices. In addi-
tion, it has also provided the pillars for the development of Cloud Com-
puting, which has transformed how the business in Information and Com-
munication Technology is developed. In that context, this work focuses
on how Service Oriented Computing can also drive the integration of
humans in the Internet of Things and Crowd Sensing loops by enabling
them to act as service providers. The key to this is the deployment of
services on mobile devices, in particular smartphones. The enormous pen-
etration of these devices in today’s society, together with the personal
nature of the information they handle, open a new horizon for the devel-
opment of services. Through them individuals are able to make personal
information available to others. This paper depicts Human Microservices,
an architecture that allows humans to be considered as service providers,
and discusses the open challenges in the field that conforms one of the
next frontiers for Service Oriented Computing.

Keywords: Service Oriented Computing · Human service providers ·
Smartphones

1 Introduction

Service Oriented Computing (SOC) [16] has been a driving force behind innova-
tion in computer science for the last decades [19]. From Service Oriented Archi-
tectures [21] to Cloud Computing [17], SOC has had a deep impact, both in
research and industry.

Additionally to this background, SOC is more active than ever [18], as there
is still a lot of challenges to be addressed [8]. Recently, the advances in this area
led to the paradigm of Everything as a Service [4], where any component in a
system can be handled as a service.
c© Springer Nature Switzerland AG 2021
M. Aiello et al. (Eds.): Papazoglou Festschrift, LNCS 12521, pp. 111–122, 2021.
https://doi.org/10.1007/978-3-030-73203-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73203-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-73203-5_9


112 S. Laso et al.

This situation is complemented by the enormous penetration and the increas-
ing capabilities of smartphones and other smart devices. The constant presence
of this kind of devices in everyday life has led to a more direct involvement of
humans in SOC. On the one hand, most of the companies and services offered
by the so called “collaborative economy” highly depend on service-based appli-
cations that need humans to perform some task in the real world [12], such as
delivering some food, or driving somewhere. On the other hand, the presence of
smart devices around people are producing an amount of information never seen
before, allowing to provide new kinds of services related to these people.

Due to their nature, a significant amount of the information gathered by
smartphones and other smart devices is personal. There is no doubt of the value
that personal information has for the development of context-oriented services.
There is also no doubt about the privacy and ethical problems associated with
the management of such information. Proposals like People as a Service [11]
address this issue by keeping personal information in their owners’ devices, giv-
ing them back control over their data. However, to take advantage of the infor-
mation stored in end user devices, there must be a standardised way to offer
such information to approved applications.

We will refer to these services—based on smart devices owned by indi-
viduals and providing personal information about their owners to approved
applications—as Human Microservices. In this paper we present the techno-
logical architecture needed to manage and provide them. The ultimate benefit is
that humans and their context can be servitized and included in service oriented
applications in a completely smart way through their mobile devices.

The rest of the paper is organised as follows. Section 2 presents the motiva-
tions and technological foundations behind this work, while Sect. 3 describes the
architecture of the proposal and its implementation. Section 4 develops a use case
in which we have applied Human Microservices. And finally, Sect. 5 discusses the
findings of this work and the conclusions of this paper.

2 Motivations and Technological Foundations

The SOC paradigm uses services to support the development of rapid, low-cost,
interoperable, evolvable, and massively distributed applications [18]. During the
last few years this paradigm has changed the way in which software is devel-
oped, paving the way for the proliferation of smart devices and pervasive and
ubiquitous applications [8].

Indeed, the emergence of technological foundations such as Service Oriented
Architecture (SOA) [24], and the Semantic Web [5], and the development of
standards and recommendations such as OpenAPI [15] and W3C Thing Descrip-
tion [13] has made easier the specification of services, and their deployment.
Upon them, Service Composition allows the aggregation of multiple services or
microservices for offering higher level services supporting complex tasks or busi-
ness processes.

The driving goal of these technological advances is to facilitate the flexibility
and seamlessly integration of distributed applications, which is also a key issue



Service Oriented Computing for Humans as Service Providers 113

in IoT applications. Typically, the business process flow of IoT systems depends
on the services offered by several smart devices, that may even come from dif-
ferent manufacturers [21]. Consider for instance how the microservices of light
bulbs of different trademarks in an office could be composed to be turned on or
off depending on the brightness of the environment and the preferences of the
employees in the room.

Up to now, the services run by IoT devices have been limited to sensing and
changing the state of the environment. More complex tasks (such as storing or
computing information), or the orchestration of services were limited to cloud
environments, in which research efforts have being invested to address scalabil-
ity [20] and vendor lock-in problems [14], in order to improve the execution of
distributed applications.

Nowadays, the massive deployment of Internet-connected devices has fostered
the consumption of services deployed on cloud environments for retrieving, stor-
ing or computing the sensed information. However, the specific requirements of
IoT applications and the increasing computing capabilities of these devices is
changing the way these services are deployed and consumed. Indeed, paradigms
such as Edge or Mist Computing are fostering the deployment of microservices
on end or near-to-the-end devices. This way, the Quality of Service (i.e., response
time, network overload, data traffic, etc.) can be improved [7]. Similarly to cloud-
based services, these microservices can be composed for executing complex tasks,
and the same technologies for addressing scalability and vendor lock-in problems
can be reused to solve some of the issues of these platforms. For instance, by
increasing the horizontal deployment of services on the edge layer in order to
increase the computational capabilities.

Nevertheless, the nature of IoT devices and the information they handle open
new challenges on the services offered and how they are composed. For instance,
paradigms such as Human-in-the-loop or User-in-the-loop [22] promote services
centred on people and aware of their context [23], mobility or preferences, in
order to personalise the behaviour of the environment. Microservices focused
on offering human-related information (i.e., the preferences, needs or contextual
situation of the users) are needed in order to allow other devices or even third-
party entities to consume that information, and to compose services and business
flows adapted to the users’ needs. These services could be deployed in cloud
environment but, as has been discussed before, some stringent requirements may
benefit from their deployment near the user [7].

In the next section we present the enabling technologies for such a “close-
to-the-user” deployment. First, we introduce a conceptual model, that we have
called People as a Service (PeaaS), for storing, computing and providing the
user’s contextual information within his/her smartphone. Then, we present the
current implementation of the model. This implementation is based on Human
Microservices, a framework which provides a set of tools for designing, imple-
menting and deploying APIs focused on offering (or storing) contextual infor-
mation of the users from their mobile devices.



114 S. Laso et al.

3 Humans as Service Providers

From our point of view, companion devices, more specifically smartphones, can
take a much more active role in the integration of humans in the Internet of
Things through the use of SOC. During the last few years we have witnessed
how these devices have increased their computing and storage capabilities, and
the number of built-in sensors in order to gather more information about their
owners. Usually, the destination of these data is some storage infrastructure in
the cloud. Instead, in order to address the computational requirements of mod-
ern service oriented applications, companion devices should be able of capturing,
storing and processing information about the users in the device itself, in par-
ticular when this information is to be consumed in environments close the user.

3.1 People as a Service

PeaaS is a mobile-centric computing model which proposes using the smart-
phone’s sensors and interactions with other devices in order to gather large
amounts of information about the user’s context. This information is processed
by using the smartphone’s computational capabilities in order to infer the vir-
tual profile of the owner. The computed virtual profile is kept in the device and
provided by means of services. This allow owners to keep their virtual identity
under their own control and, at the same time, the consumers of such services
are allowed to get fresh and updated personalised information.

The PeaaS model is based on four principles:

– Mobile devices as interfaces to people. Smartphones are usually Internet-
connected. Therefore, they are the interface of humans to the virtual word
–they support the virtual links with other people and devices.

– Virtual profiles. Smarthpones have a large number of sensors that collect
information about their surroundings. PeaaS allows to compute all this infor-
mation in order to create and store locally the virtual profile of the owner.

– Virtual profiles as a service. Building a virtual profile of the smartphone’s
owner is particularly useful if it can be queried by external entities. Virtual
profiles are provided as a service to those who might wish to access that
information (such as IoT devices or interested enterprises).

– User privacy. PeaaS guarantees that an individual’s virtual profile is always
exclusively kept in the owner’s device. PeaaS allows the users to control and
monitor the external entities consuming their information. By means of user-
defined privacy rules, PeaaS empowers users to manage their privacy.

Serving virtual profiles allows the integration of humans in the loop by apply-
ing SOC together with mobile computing technologies. In addition, PeaaS allows
a variety of information to be collected in order to infer higher-level knowledge
about the users, such as their mood, the kind of place their current location
corresponds to, or the people who are with them. Such analysis requires specific
algorithms to process the data and to provide them as part of the virtual profile.



Service Oriented Computing for Humans as Service Providers 115

PeaaS first use case consisted in an advertising and a commercial platform
called nimBees [2] based on Google Cloud Messaging and Apple Push Notifica-
tion Service. This implementation had some restrictions due to the limitations
of the mobile operating systems and its orientation to the mobile marketing
domain. The current implementation of PeaaS is called Human Microservices,
and it eases the deployment of microservices on smartphones. In the coming
subsections we describe both implementations of the PeaaS model.

3.2 nimBees

NimBees [2] is a smart push notification system with advanced segmentation
capabilities based on the user’s virtual profile. Figure 1 shows the nimBees archi-
tecture compared with the reference architecture of PeaaS.

Fig. 1. Architectures of PeaaS and nimBees.

The system consists of a library that can be imported in almost any mobile
application. This library allows these applications to receive segmented push
notifications (i.e., notifications that are only shown or processed by the smart-
phones of the users meeting some specific requirements). Once the push notifica-
tion reaches the smartphone, nimBees checks the owner’s virtual profile in order
to decide if s/he meets the requirements indicated in the notification. Only in
that case, the notification is processed. Otherwise, it is ignored. The whole work-
flow of push notifications is processed transparently to the mobile applications
finally receiving them.



116 S. Laso et al.

More importantly, nimBees is also in charge of building the virtual profile by
getting information from the different sensors of the smartphone and by process-
ing it by means of inference rules [6]. It also allows consulting the virtual profile
through push notifications. The richer the profile, the greater the segmentation
can be. In addition, every personal datum stays in the owner’s device. nimBees
has a server-side, but only to manage the connected devices, the nimBees-based
applications, and the delivery of the push notifications.

nimBees was a successful commercial implementation exploiting some of the
features of PeaaS that allowed us to see its real potential. Thus, more recently
we have been working on an implementation applying the SOC technologies and
to directly provide the user’s profile as a service.

3.3 Human Microservices

Human Microservices are services integrating a human in the loop, and focused
on providing very personalised and updated contextual information about this
person and his/her context and surroundings.

In order to implement Human Microservices, we have built a framework based
on SOC technologies for the development and deployment of APIs on companion
devices (mobile devices, smartwatches, etc.) for providing the owner’s virtual
profile. All the information is obtained at runtime through the device’s sensors
or from the profile stored in the smartphone.

Differently from nimBees, Human Microservices is not a library to be
imported by third-party application developers. Instead, it proposes a set of
tools and a development process that can be easily followed by any developer to
design and implement the APIs that can be deployed on top of the virtual profile
and the device’s resources. Please, note that in this paper we will not focus on
how the virtual profile or the information is computed, but only on how it is
exposed by means of microservices.

Deployment Process. First, a development process has been defined in order
to provide a guideline to developers about the different activities that should
be performed and their sequencing. This process is based on technologies and
standards already used for designing and implementing APIs that will deployed
on cloud environments. Figure 2 shows the proposed steps.

– API Definition. First, the characteristics of the API are defined through
the OpenAPI Specification (OAS) [15] following the same notation as if it
were developed for a cloud environment. During the design of the interface,
developers must bear in mind that the microservices will provide personal
information about one single user. In that sense, the API could be a little
different with respect to its design as a cloud microservice.

– Generate Source Code. In this step, the source code of the API is
generated. Currently, different tools, such as OpenAPI Generator [3] or
Guardrail [1], support the generation of source code (mainly the skeleton



Service Oriented Computing for Humans as Service Providers 117

Fig. 2. Process for the development and deployment of Human Microservices.

and the schema of the API) from an OAS design. This scaffolding is based
on its deployment on cloud environments. Therefore, as detailed bellow, an
extension of the OpenAPI Generator tool has been developed to support the
deployment of Human Microservices in smartphones and other companion
devices.

– Deployment. At this point developers implement the business logic for each
endpoint/microservice and configure the communication protocol. As it will
be explained bellow, mobile devices present several limitations due to the
restrictions imposed by the operating system and the mobile nature of the
devices. Therefore, during the API scaffolding asynchronous communication
protocols are supported. In this step, these protocols have to be configured,
and the API is deployed following the procedure defined by the manufacturer.

– Service consumption. Finally, once the API is deployed, any device or
third party can invoke the provided Human Microservices to request and
consume information about the user, and to adapt the behaviour of the system
accordingly.

In the next subsections, the three last steps and the related tools implemented
to support them are described in more detail.

API Generator for End Devices - APIGEND. APIGEND is an extension
of OpenAPI Generator that allows the generation of APIs that can be deployed
on end devices. Currently, we provide support for its scaffolding and deployment
on Android-based devices and other devices base on Esp32 Microcontrollers.
APIGEND is available to any developer1.

Figure 3 shows an example of generating an API using APIGEND. As it
can be seen, the tool provides a website in which developers have to specify
the framework (or the operating system) for which they want to generate the
skeleton. Subsequently, In the parameters section, they have to indicate the
following:

– “openAPIUrl”, which is the public URL to the specification of the API with
OpenAPI. This specification can be stored in a git repository, a Dropbox
folder, or any others web environment.

1 https://openapi-generator-spilab.herokuapp.com.

https://openapi-generator-spilab.herokuapp.com


118 S. Laso et al.

– “options” allows the definition of different parameters that are not manda-
tory for the API scaffolding, but they help developers to adapt the source
code generated to their needs. For instance, developers can specify the com-
munication protocol they want to use to consume the endpoints. Currently,
developers can choose between MQTT or FCM.

Fig. 3. Parameters to generate an Android API using the MQTT library.

In order to generate the API, the developer must click the Execute button
and if there are no errors, a JSON response containing a link for downloading
the generated API is produced.

Deployment. For deploying the API on end devices, the developer first have
to configure the selected communication protocol. For MQTT, she only needs
to indicate the connection parameters for the MQTT broker used to send and
receive the messages consuming the microservices. For FCM, there is a guide
for configuring it either using the Android IDE or manually2. Then, the devel-
oper has to implement the behaviour of the different endpoints defined (to get
personal information from the stored virtual profile, to access information from
the device’s sensors, etc.). Finally, the developed API is deployed following the
procedure recommended by the manufacturer.

Consuming Human Microservices. Due to their mobile nature and to lim-
itations of the operating system, not every companion device supports the pro-
vision of services following synchronous communication. As indicated above,
several asynchronous protocols (currently, MQTT and FCM) are supported by
the framework.

For instance, for MQTT the content of the request is defined in JSON. The
different parameters that must be specified are:

2 https://firebase.google.com/docs/cloud-messaging/android/client.

https://firebase.google.com/docs/cloud-messaging/android/client


Service Oriented Computing for Humans as Service Providers 119

– Resource: it indicates the Tag associated with the end point to be invoked.
– Method: it corresponds to the Id of the endpoint.
– Sender: ID or topic of the consumer performing the invocation, used for

sending the reply.
– Params: parameters associated to the endpoint.

By default, the MQTT topic for sending requests to the API is the title of
the specification without spaces. Listing 1.1 shows an example of an API request.

Human Microservices represent a shift in the role of companion and mobile
devices in service oriented applications. It allows them to take full responsibility
for storing, processing and exposing users’ personal information, having greater
control than they currently do, offering updated information, and seamlessly
integrating humans in the loop.

4 Case Study

This section presents a case study where Human Microservices are deployed on
an Android device and a smartwatch (based on the ESP32 microcontroller). To
that end, the development process and the tools described in the Sect. 3.3 have
been used.

The case study consists of an API that allows to obtain contextual and health
information about people. The API will be deployed on a smartwatch to monitor
an elderly person. This same API will be deployed on an Android device, acting
as the caregiver’s device. The mobile device can obtain information about the
elderly person, such as location, body temperature, etc. by invoking the deployed
API. In addition, the smartwatch is able to send messages or alerts by invoking
the microservice deployed on the mobile device. This case study is fully available
on Github3.

The first step is to design and define the API. It is composed of four
main microservices. Get User allows to obtain personal data stored in the
device (such as name, age, etc.). Get Body-Temperature provides the body
temperature of the elderly person thanks to the sensors of the smartwatch. Get
Location provides the location through the built-in GPS sensor. Finally Post
Alert allows to invoke the caregiver’s microservices in order to send alerts (e.g.,
when an elder falls down and cannot get up).

The second step is to generate the skeleton of the API for both the Android
device and the smartwatch, in this case MQTT is used as the communication
protocol.

The third step is to deploy the APIs on both devices. On the one hand,
it is necessary to configure the MQTT communication protocol for the connec-
tion between both devices. On the other hand, the microservices have to be
implemented with the behaviour described above.

The last step is to invoke the deployed microservices. Listing 1.1 shows an
example of invocation of the API developed to obtain the location. The request
3 https://github.com/rurentero/HealthAlerts M5Stick-C.

https://github.com/rurentero/HealthAlerts_M5Stick-C


120 S. Laso et al.

is sent to the main topic ‘HealthAlerts’ (which is the name of the application)
indicating the user id from whom the service consumer wants to get the infor-
mation. Other topics schemes can be configured, for instance, per endpoint, tag,
user, etc.

1 {
2 "resource": "Status",

3 "method": "getLocation",

4 "sender": "caregiver293",

5 "params": {}
6 }
7 caregiver.publish(’HealthAlerts/user2234 ’,request)

Listing 1.1. Content of the request to obtain the location by MQTT.

Thus, using Human Microservices, the elderly person virtual profile is con-
nected to the Internet to be consumed by trusted external entities.

5 Discussion and Conclusions

Current information systems and applications are more focused on the users
(e.g., their preferences, their context and their needs). From simple IoT appli-
cations [10], such as a smart light-bulb that is automatically turner on or off
depending on the luminosity of the environment and the user’s preferences, to
complex business processes and systems [9], such as a Supply Chain or Smart
Manufacturing Systems in which the socio-technical integration is crucial. The
integration of people in the Internet is key but, in order to obtain the maximum
benefit, this integration should follow standards and mechanisms that already
exists.

PeaaS and its implementation Human Microservices allows the definition
of APIs and services that can be deployed on companion devices following a
specification broadly adopted by the industry. First, this reduces the learning
curve, since developers can design the API and generate the source code by
using tools already known by them. Secondly, it facilitates the integration of
these Human Microservices in the business processes of the information systems
because they can be consumed without requiring any knowledge about their
implementation in the “server” side (in our case, the companion device).

In addition, the deployment of microservices near the user has positive impli-
cations with respect to resource consumption, latency, response times, and pri-
vacy. With a client-server model, end devices act as simple clients which con-
stantly collect and send information to a cloud environment. This implies a
significant consumption of some of their resources such as battery and data traf-
fic, including heavy use of the network increasing latency and response times.
In addition, this architecture can pose a risk to the privacy of users since the
information is stored on servers and is beyond their control.



Service Oriented Computing for Humans as Service Providers 121

Finally, Human Microservices allows smartphones to change their role from
pure consumers of information to also become providers of information. The
APIs deployed on companion devices can be consumed by different information
systems and third-party entities. For instance, the information gathered by the
device’s sensors and provided as Human Microservices can be consumed by a
smart factory system, a smart city application and by a smart home IoT systems
in order to adapt their behaviour to the current context and needs of the user.
As future work, we currently work on evaluating the defined process and the
related tools developed.

This work is founded on previous work on the Service Oriented Computing
and Mobile Computing paradigms. We would like to thank Mike P. Papazoglou
for his substantial contributions to these areas and, specially, for inspiring us in
the development of the proposal presented in this paper.

Acknowlegments. This work was supported by the projects RTI2018-094591-B-
I00, PGC2018-094905-B-I00 (MCI/AEI/FEDER, UE), the RCIS research network
(RED2018-102654-T), the 4IE+ Project (0499-4IE-PLUS-4-E) funded by the Inter-
reg V-A España-Portugal (POCTEP) 2014-2020 program, by the project UMA18-
FEDERJA-180 (FEDER/Junta de Andalucia), by the Department of Economy and
Infrastructure of the Government of Extremadura (GR18112, IB18030), and by the
European Regional Development Fund.

References

1. Guardrail. https://github.com/twilio/guardrail
2. nimBees. http://www.nimbees.com
3. Openapi Generator. https://github.com/OpenAPITools/openapi-generator
4. Banerjee, P., et al.: Everything as a service: powering the new information economy.

Computer 44(3), 36–43 (2011)
5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43

(2001)
6. Berrocal, J., Garćıa-Alonso, J., Murillo, J.M., Canal, C.: Rich contextual informa-

tion for monitoring the elderly in an early stage of cognitive impairment. Pervasive
Mob. Comput. 34, 106–125 (2017). https://doi.org/10.1016/j.pmcj.2016.05.001

7. Berrocal, J., et al.: Early analysis of resource consumption patterns in mobile
applications. Pervasive Mob. Comput. 35, 32–50 (2017). https://doi.org/10.1016/
j.pmcj.2016.06.011. http://www.sciencedirect.com/science/article/pii/S154119216
300797

8. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

9. Cimini, C., Pirola, F., Pinto, R., Cavalieri, S.: A human-in-the-loop manu-
facturing control architecture for the next generation of production systems.
J. Manuf. Syst. 54, 258–271 (2020). https://doi.org/10.1016/j.jmsy.2020.01.002.
http://www.sciencedirect.com/science/article/pii/S0278612520300029

10. Flores-Mart́ın, D., Berrocal, J., Garćıa-Alonso, J., Murillo, J.M.: Towards a run-
time devices adaptation in a multi-device environment based on people’s needs.
In: IEEE International Conference on Pervasive Computing and Communications
Workshops, PerCom Workshops 2019, Kyoto, Japan, 11–15 March 2019, pp. 304–
309. IEEE (2019). https://doi.org/10.1109/PERCOMW.2019.8730859

https://github.com/twilio/guardrail
http://www.nimbees.com
https://github.com/OpenAPITools/openapi-generator
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.06.011
https://doi.org/10.1016/j.pmcj.2016.06.011
http://www.sciencedirect.com/science/article/pii/S154119216300797
http://www.sciencedirect.com/science/article/pii/S154119216300797
https://doi.org/10.1016/j.jmsy.2020.01.002
http://www.sciencedirect.com/science/article/pii/S0278612520300029
https://doi.org/10.1109/PERCOMW.2019.8730859


122 S. Laso et al.

11. Guillen, J., Miranda, J., Berrocal, J., Garcia-Alonso, J., Murillo, J.M., Canal, C.:
People as a service: a mobile-centric model for providing collective sociological
profiles. IEEE Softw. 31(2), 48–53 (2013)

12. Huang, K., Yao, J., Zhang, J., Feng, Z.: Human-as-a-service: growth in human
service ecosystem. In: 2016 IEEE International Conference on Services Computing
(SCC), pp. 90–97. IEEE (2016)

13. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V.: Web of Things (WoT) thing
description. First Public Working Draft W3C (2017)

14. Nguyen, D.K., Lelli, F., Papazoglou, M.P., van den Heuvel, W.: Blueprinting app-
roach in support of cloud computing. Future Internet 4(1), 322–346 (2012). https://
doi.org/10.3390/fi4010322

15. OpenAPI Initiative: The OpenAPI Specification. https://github.com/OAI/
OpenAPI-Specification

16. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Commun.
ACM 46(10), 25–28 (2003)

17. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the cloud. IEEE Internet
Comput. 15(6), 74–79 (2011)

18. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

19. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, 2003, WISE 2003, pp. 3–12. IEEE (2003)

20. Papazoglou, M.P.: Cloud blueprint: a model-driven approach to configuring fed-
erated clouds. In: Abelló, A., Bellatreche, L., Benatallah, B. (eds.) MEDI 2012.
LNCS, vol. 7602, pp. 1–1. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33609-6 1

21. Papazoglou, M.P., Van Den Heuvel, W.J.: Service oriented architectures:
approaches, technologies and research issues. VLDB J. 16(3), 389–415 (2007)

22. Petrov, V., et al.: When IoT keeps people in the loop: a path towards a new global
utility. IEEE Commun. Mag. 57(1), 114–121 (2018)

23. Rosenberger, P., Gerhard, D.: Context-awareness in industrial applications: defini-
tion, classification and use case. Procedia CIRP 72, 1172–1177 (2018)

24. World Wide Web Consortium: Web services architecture (2004). http://www.w3.
org/TR/2004/NOTE-ws-arch-20040211/

https://doi.org/10.3390/fi4010322
https://doi.org/10.3390/fi4010322
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.1007/978-3-642-33609-6_1
https://doi.org/10.1007/978-3-642-33609-6_1
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

	Service Oriented Computing for Humans as Service Providers
	1 Introduction
	2 Motivations and Technological Foundations
	3 Humans as Service Providers
	3.1 People as a Service
	3.2 nimBees
	3.3 Human Microservices

	4 Case Study
	5 Discussion and Conclusions
	References




