
Pattern Atlas

Frank Leymann(B) and Johanna Barzen

IAAS, University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany
{frank.leymann,johanna.barzen}@iaas.uni-stuttgart.de

Abstract. Pattern languages are well-established in the software architecture
community. Many different aspects of creating a software architecture are
addressed by such languages. Thus, several pattern languages have to be con-
sidered when building a particular architecture. But these pattern languages are
isolated, i.e. it is hard to determine the relevant patterns to be applied from the dif-
ferent pattern languages. Moreover, the sum of patterns from different languages
may be huge, i.e. restriction to relevant patterns is desirable. In this contribution
we envision an encompassing tool, the pattern atlas, that supports building com-
plex systems based on pattern languages. The analogy to cartography motivates
the name of the tool.

Keywords: Pattern languages · Software architecture · Cartography · Manifolds

1 Principles of Pattern Languages

Pattern languages have their origin in architecting houses and urban planning [1]. In the
meantime it is used in a whole spectrum of fields reaching from information technology
(e.g. [5, 11–14, 16, 18]) to the humanities (e.g. [2–4]). In this section we will sketch the
basics behind pattern languages and their principle use.

1.1 The Notion of a Pattern Language

A pattern is a proven solution of a recurring problem. “Proven” means that the outlined
solution has been successfully applied several times, and the situation in which the
solution has been applied was not always the same but showed some variance. This
indicates that the corresponding problem occurred more than once (and will occur in
future again), i.e. it is “recurring”. If it would not be recurring, the effort to document
the solution would not be worth spending.

The presented “solution” is generic in the sense that it captures the essence of each of
theworking solutions in the corresponding contexts but no specific details of theworking
solution at all. I.e. a pattern is in fact derived by abstraction from the working solutions
(σ1,…, σn in Fig. 1) [10, 16]. Because a pattern’s solution is generic it can be applied
in new, unforeseen situations. Vice versa, instead of forgetting the working solutions a
pattern has been derived from, a pattern may refer to these working solutions, and even
future implementations of the abstract solution of the pattern (called “concretizations”

© Springer Nature Switzerland AG 2021
M. Aiello et al. (Eds.): Papazoglou Festschrift, LNCS 12521, pp. 67–76, 2021.
https://doi.org/10.1007/978-3-030-73203-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73203-5_5&domain=pdf
http://orcid.org/0000-0002-9123-259X
http://orcid.org/0000-0001-8397-7973
https://doi.org/10.1007/978-3-030-73203-5_5


68 F. Leymann and J. Barzen

in Fig. 1) may also be associated [6]. This way, a pattern becomes a source of reuse of
working solutions freeing users to implement the abstract solution over and over again.

Often, when facing a certain problem, other problems will occur too. This situation
is captured by directed links that point from a pattern to the related other patterns. These
links may have various semantics like that the problem of the target pattern often appears
jointlywith the problem of the source pattern or the solution of the target pattern excludes
the solution of the source pattern, respectively. �1 and �2 in Fig. 1 indicate such links
between patterns. Together, patterns form a weighted directed graph the nodes of which
are patterns, the edges of which are these links, and the weights are the semantics of the
links [7]. Such a graph is referred to as a pattern language.

The term “language” indicates the generative nature of a pattern language: by nav-
igating from one pattern to another a corresponding sequence of generic solutions is
generated, and these solutions are applied to solve a composite, more complex problem.
Such a sequence is referred to as a solution path [25].

Fig. 1. A pattern as an abstraction of working solutions, and related to other patterns.

1.2 Using Multiple Pattern Languages

A pattern language is specific for a certain domain, e.g. it addresses solutions of integra-
tion problems, cloud computing problems etc. In general, a complex system requires to
solve many problems from multiple domains: for example, components have to be real-
ized as microservices, these services must be integrated, they have to be secured, their
robustness must be guaranteed - and each problem domain is addressed by a separate
pattern language.

In order to solve such complex multi-domain problems, a user will have to navigate
across pattern languages. For this purpose, links between pattern languages are needed
(dashed arrows in Fig. 2) [7]. But the authors of individual pattern languages are most
often only concerned with links within pattern languages, e.g. simply because they
can’t consider a whole plethora of other pattern languages. A further complication is
that pattern languages are often published as books, i.e. links across books can’t be
established, they can’t be foreseen because the collection of pattern languages evolve
over time. Thus, links between pattern languages have to be realized as separate artifacts.



Pattern Atlas 69

This is why our existing approach to pattern languages (PatternPedia - see Sect. 2.1)
publishes pattern languages as online resources (sometimes in addition to published
books) like [20–22]. Patterns are realized as marked-up documents (e.g. HTML docu-
ments), and links between pattern documents are URLs (e.g. hyperlinks). These links are
not embedded in the pattern documents but external to the documents: they are directed,
pointing from a source document to a target document.

Especially, a link can originate from a document in one pattern language and target
a document in another pattern language: this way, cross pattern language links can be
established, and they can be established at a later point in time, e.g. when a new pattern
language appears.

Fig. 2. Connecting pattern languages to solve composite problems.

Also, a cross pattern language link may have the semantics that the target pattern
concretizes the solution sketched by the source pattern. For example, a cloud computing
pattern describes when and how an elastic load balancer is used, and links may point
to patterns that show how this is realized in Amazon Web Services or Azure. Thus, a
concretization of a pattern is not necessarily an executable, but may be another, refining
pattern.

If concretizations are executables, theymay be used for automatically buildingwork-
ing solutions of a composite problem [9]. When deriving a solution path by navigating
through a pattern language and selecting working solutions of each of the patterns along
this path, proper annotations associated with working solutions help to derive a working
solution of the composite problem represented by the solution path [8].

A pattern language might be quite comprehensive, and if multiple pattern languages
have to be consulted, the body of knowledge to consider can easily become hardly
comprehensible. In such a situation, a pattern language view is quite useful [24]: it
consists of a subset of relevant patterns from the pattern languages to be considered
together with the relevant links within the pattern languages or across pattern languages



70 F. Leymann and J. Barzen

(see Fig. 3). Such a view is created by a specialist understanding the collection of relevant
pattern languages and its applicability to solve cross-domain problems. To a user, such a
view appears like a single pattern language. The view V in Fig. 3, for example, appears
to be a pattern language to create secure microservices in a cloud environment.

Fig. 3. A pattern language view.

Finally, it is far from trivial to determine “where to start” using a pattern language (be
it a viewor a basic pattern language).Ausermust understand all of the patterns, especially
the problems each of the patterns solves, to find an entry to the pattern language [17],
i.e. a first pattern where navigation through the pattern language begins and a solution
path is created. By applying the solution path, some of the problems are solved, other
remain. Based on the remaining problems another entry is determined and so on.

2 Pattern Atlas

A tool that supports the creation of software architectures based on patterns has to cope
with concepts like pattern languages, links, solutions, views, entries (and several more
that we did not discuss). In this section we show by analogy how these concepts relate,
and this analogy motivates the name of the tool.

2.1 PatternPedia

Formore than a decadewebuilt a tool called PatternPedia that supports several of the con-
cepts above, and various pattern languages have been represented in PatternPedia [10].
The existing tool has been described in several publications, and it served as the basis
for a couple of projects.



Pattern Atlas 71

Also, repositories for working solutions (which are often domain specific, i.e. which
cannot be generalized) have been created for some domains. Patterns from these domains
point to corresponding working solutions. Concepts and tools to (semi-)automatically
derive patterns from working solutions by means of data analytics have also been
prototypically implemented.

Based on this experience it became clear that a new architecture and corresponding
implementation for a general pattern repository (which encompasses solution reposito-
ries) is due: the pattern atlas. This name is justified because the realization of this new
platform is steered by the analogy of an atlas that turned out to be helpful in decisions
about the platform’s functionality.

Fig. 4. Pattern languages as maps of IT domains.

2.2 Maps and Atlas: Covering IT with Pattern Languages

Information technology is a huge sphere, too huge to be able to present the knowledge
about it as a whole with high precision. It is like the surface of earth, which needs a
large collection of maps, i.e. an atlas, that represent information of various kinds to
comprehend this surface.

Figure 4 depicts the sphere of information technology as - well - a sphere, a mathe-
matical sphere, i.e. as the surface of a ball in 3-dimensional space. The different domains
of information technology are indicated by grey-shaded areas on this sphere. Examples
of such domains are the domain of enterprise architecture that has been covered by a
pattern language in [12], the domain of cloud computing in [11], the domain of microser-
vices by [18], or enterprise application integration in [13]. In our analogy to earth, the
grey-shaded areas are like geographic regions, e.g. countries, and the pattern languages
correspond to maps of these regions. In cartography, a collection of maps that covers a
certain part of earth is an atlas, and in analogy we call a collection of pattern languages
covering a certain part of information technology a pattern atlas.



72 F. Leymann and J. Barzen

2.3 Glueing Maps Together: Links Between Pattern Languages

In cartography, maps are flat representations of areas on earth, the latter of which are
always curved (which becomes important a bit later). Differential geometry [19] consid-
ers the sphere, i.e. the surface of earth, as a 2-dimensional manifold and generalizes the
notion of an atlas by emphasizing the functions that transform an area of the manifold
into its flat image: an atlas is a set of pairs {(Ui, fi)}, called charts, where fi: Ui → Vi ⊆
R
2 is a “structure preserving” function. Then, fi(Ui) = Vi is what is known as a map in

cartography. For Ui ∩ Uj �= ∅ the so-called transition function fj ◦ f −1
i determines how

the maps Vi and Vj are glued together (see Fig. 5).

Fig. 5. Glueing maps together.

In our analogy, these transition functions are represented as links between pattern
languages. The links define how various patterns of the affected pattern languages relate,
i.e. how these pattern languages are glued together into a consistent map of the com-
bined domain of information technology. For example, by establishing links between
the microservice pattern language and the cloud computing pattern language a pattern
language for microservices in the cloud is created.

2.4 Special Representations of Maps: Views of Pattern Languages

An atlas in cartography supports various special representations of one and the same
geographic region: special maps depict transport routes (e.g. highways or railroads),
ecological zones (e.g. tropics, subtropics, deserts), mountain structures and so on. Such
representations are created by omitting details that are not relevant for the aspect of
interest. These omissions allow to focus on specific aspects without having to understand
or consider all the details of a geographic region.

The pattern atlas supports such omission to increase focus by means of views. A
view is defined by selecting a subset of patterns and links of a given pattern language (or
collection of linked pattern languages) to ease comprehension and to focus on certain
aspects. For example, restricting the cloud computing patterns of [11] to the data related
patterns eases the use of the pattern language for users that need to cope with data



Pattern Atlas 73

management in the cloud; or restricting the combined enterprise integration pattern
language and security pattern language to corresponding communication-related patterns
in both languages immediately supports users concerned with secured communication
between applications.

2.5 Index for Finding Entities in Maps: Entries in Pattern Languages

Whenworkingwith an atlas an index is used to efficiently find detailswithin a geographic
region like a certain city, a certain mountain, or a certain lake. Such an index is mainly a
list of names of entities on earth and references tomaps that contain their representations,
as well as references to detailed positions within these maps. Finding a proper pattern
to start solving a complex problem is far from being trivial, i.e. an analogy to an index
is needed.

The concept of an entry point [17] corresponds to such an index, but due to the
nature of patterns more sophistication is needed: an entry point is the starting pattern
of a solution path solving a (probably composite) problem (note, that a solution path
may consist of a single pattern only). It is determined based on the context of the overall
architectural problem to be solved. A context is described by means of facts. “Negative
facts” represent the problems to be solved. Since each pattern solves a problem, applying
a pattern removes negatives facts, i.e. it turns them into “positive facts”. The goal is to
turn as many as possible negative facts into positive facts. Our proposed algorithms
in [17] determines all possible solution paths addressing negative facts in the current
situation, selects the solution path that will turn most negative facts into positive facts,
and offers its start pattern as entry point to the pattern language. This assumes that the
pattern language is extended by such facts, which is currently rarely the case.

Another approach to entry points that has been realized in PatternPedia is based on
tags associated with patterns, or enabling full-text search on pattern documents: this
way individual patterns can be determined that might help solving a problem. But this
does not guarantee the determined pattern is the begin of a solution path that solved a
maximum number of problems.

2.6 Concrete Renderings of Maps: Working Solutions

A map is a flat representation of a region on earth (see Sect. 2.3). Ideally, the map
should faithfully render the region. Here, faithful means that geometric properties like
angles, areas, distances etc. of the region on earth are preserved, i.e. are (proportionally)
the same on the map as in the region. But according the famous Theorema Egregium
by C.F. Gauss, any such flat rendering inherently results in distortions: i.e. a faithful
rendering of a region on earth is impossible.

Important applications like navigation require maps that preserve at least one of the
geometric properties of the region on earth. Luckily, this can be achieved. For example,
equi-area projections preserve areas (e.g. Lambert’s cylindrical projection). Azimuthal
equidistant projections preserve distances (e.g. Postel’s projection). Gnomonic projec-
tions preserve shorter routes. While such projections preserve one geometric property,
they distort the others: e.g. if areas are preserved, the shape of the areas is changed.



74 F. Leymann and J. Barzen

These concrete renderings of a map (i.e. such projections) serve specific needs like
determining routes on sea, determining the distances between locations etc.While a map
itself renders a region “as good as possible”, it is not a proper solution to such specific
problems. But the projections are “working solutions”: a given map can be associated
with a set of corresponding projections allowing to determine the shortest route between
two locations on sea, to determine the area of a shape on the map etc. In this sense, maps
are abstract while projections are concrete.

Similarly, the pattern atlas supports to associate concrete solutions (aka working
solutions) with patterns. This way, the abstract solution sketched in the pattern document
ismade concrete. For example, if a pattern sketches how to use amessage queue, concrete
solutions specify how this is done in Amazon’s SQS or IBM’s MQSeries.

Table 1. Mapping concepts from patterns and cartography.

Patterns Cartography

Pattern languages Maps of geographic regions

Links Arrangements of maps

Views Special representations of regions

Solutions Concrete renderings of a map

Entries Index

Table 1 shows how the discussed features and concepts from cartography correspond
to the discussed features and concepts from pattern languages.

3 Conclusion

We reminded the main concepts and entities from pattern languages, especially in their
practical use in building software architectures. Extensions like views, entries, andwork-
ing solutions have been summarized. Our prototypical support of pattern language-based
design of software architectures named PatternPedia needs to be revamped after a decade
of incremental development. The paradigm that guides us in this new implementation
stems from cartography, which motivates the name of the new tool: Pattern Atlas. We
have shown by analogy how the concepts and features of an atlas correspond to the con-
cepts and features of the Pattern Atlas. The pattern atlas will be partially implemented
in the project PlanQK, a platform to support quantum machine learning [23].

Acknowledgements. We are grateful to our colleagues Uwe Breitenbücher, Michael Falkenthal,
Manuela Weigold and Karoline Wild for the discussions about the evolution of PatternPedia
towards the Pattern Atlas.



Pattern Atlas 75

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York (1977)

2. Barzen, J., Leymann, F.: Costume languages as pattern languages. In: Proceedings of Pursuit
of Pattern Languages for Societal Change - Preparatory Workshop (2014)

3. Barzen, J., Leymann, F.: Patterns as formulas: patterns in the digital humanities. In: Pro-
ceedings of the Ninth International Conferences on Pervasive Patterns and Applications
(PATTERNS) (2017)

4. Barzen, J., Breitenbücher, U., Eusterbrock, L., Falkenthal,M.,Hentschel, F., Leymann, F.: The
vision forMUSE4Music. Applying theMUSEmethod inmusicology. Comput. Sci. Res. Dev.
32(3–4), 329–330 (2016). https://doi.org/10.1007/s00450-016-0340-5. In:HermannEngesser
(Hrsg) Advancements of Service Computing: Proceedings of SummerSoC 2016. Springer,
Heidelberg

5. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages. Wiley, Hoboken (2007)

6. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, Ch., Leymann, F.: From pattern lan-
guages to solution implementations. In: Proceedings of the Sixth International Conferences
on Pervasive Patterns and Applications (PATTERNS 2014) (2014)

7. Falkenthal, M., Breitenbücher, U., Leymann, F.: The nature of pattern languages. In: Pursuit
of Pattern Languages for Societal Change (2018)

8. Falkenthal, M., Barzen, J., Breitenbücher, U., Leymann, F.: On the algebraic properties of
concrete solution aggregation. In: Software-Intensive Cyber-Physical Systems (SICS) (2019)

9. Falkenthal, M., Leymann, F.: Easing pattern application by means of solution languages. In:
Proceedings of the Ninth International Conference on Pervasive Patterns and Applications
(PATTERNS) (2017)

10. Fehling, Ch., Barzen, J., Falkenthal, M., Leymann, F.: PatternPedia - collaborative pattern
identification and authoring. In: Proceedings of Pursuit of Pattern Languages for Societal
Change - Preparatory Workshop (2014)

11. Fehling, Ch., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns.
Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1568-8

12. Fowler, M.: Patters of Enterprise Application Architecture. Addison-Wesley, Boston (2003)
13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Systems. Addison-Wesley, Boston (2004)
14. Leymann, F.: Towards a pattern language for quantum algorithms. In: Feld, S., Linnhoff-

Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 218–230. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14082-3_19

15. Nygard, M.T.: Release IT, 2nd edn. The Pragmatic Bookshelf (2018)
16. Reiners, R.: An evolving pattern library for collaborative project documentation. Dissertation,

RWTH Aachen (2013)
17. Reinfurt, L., Falkenthal, M., Leymann, F.: Where to begin - on pattern language entry points.

In: Software-Intensive Cyber-Physical Systems (SICS) (2019)
18. Richardson, Ch.: Microservices Patterns. Manning Publications (2018)
19. Spivac, M.: Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc.

(1999)
20. Website Cloud Computing Patterns. https://www.cloudcomputingpatterns.org/. Accessed 2

Oct 2020
21. Website EAI Patterns. https://www.enterpriseintegrationpatterns.com/. Accessed 2 Oct 2020
22. Website Microservices Patterns. https://microservices.io/patterns/microservices.html.

Accessed 2 Oct 2020

https://doi.org/10.1007/s00450-016-0340-5
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1007/978-3-030-14082-3_19
https://www.cloudcomputingpatterns.org/
https://www.enterpriseintegrationpatterns.com/
https://microservices.io/patterns/microservices.html


76 F. Leymann and J. Barzen

23. Website PlanQK. https://planqk.de/. Accessed 2 Oct 2020
24. Weigold, M., Barzen, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Wild, K.: Pattern

views: concept and tooling for interconnected pattern languages. arXiv preprint arXiv:2003.
09127 (2020)

25. Zdun, U.: Systematic pattern selection using pattern language grammars and design space
analysis. Softw. Pract. Exp. 37, 983–1016 (2007)

https://planqk.de/
http://arxiv.org/abs/2003.09127

	Pattern Atlas
	1 Principles of Pattern Languages
	1.1 The Notion of a Pattern Language
	1.2 Using Multiple Pattern Languages

	2 Pattern Atlas
	2.1 PatternPedia
	2.2 Maps and Atlas: Covering IT with Pattern Languages
	2.3 Glueing Maps Together: Links Between Pattern Languages
	2.4 Special Representations of Maps: Views of Pattern Languages
	2.5 Index for Finding Entities in Maps: Entries in Pattern Languages
	2.6 Concrete Renderings of Maps: Working Solutions

	3 Conclusion
	References




