
PAS: Enable Partial Consensus
in the Blockchain

Zihuan Xu, Siyuan Han, and Lei Chen(B)

The Hong Kong University of Science and Technology, Hong Kong, China
{zxuav,shanaj,leichen}@cse.ust.hk

Abstract. Permissioned Blockchain enables distributed collaboration
among organizations that may not trust each other. However, existing
systems cannot efficiently support the ordering and execution of trans-
actions in different workflows parallelly, which seriously affects system
scalability and performances in terms of throughput and latency.

In this paper, we present a partial consensus mechanism named PAS
to achieve fault tolerance and parallelism of transaction processing. In
PAS, transactions in different workflows only need to be confirmed by
the involved subset of nodes, which significantly enhances the system
performance and scalability. Specifically, we introduce a novel data struc-
ture, called the hierarchical consensus tree (HCT). It is maintained in
each node and used to coordinate the consensus process. HCT guarantees
that the consistency reached in different sets of nodes is eventually agreed
by all nodes without conflicts and rollbacks. Since there are many valid
HCTs with different system improvements, we introduce an optimization
problem, named OHCT, to obtain an HCT with respect to the optimal
enhancement. We prove OHCT is NP-hard and propose a general frame-
work with efficient algorithms to address it. Finally, we implement PAS
on PBFT-based Hyperledger fabric and conduct extensive experiments
to show the performance and scalability of PAS.

1 Introduction

The permissioned Blockchain (e.g., Hyperledger [2], Multichain1, and Tender-
mint [5]), where the node identities are controlled and known by each other,
builds a dedicated environment to prompt accountable interactions among users.
However, its performance and scalability issues caused by the underlying con-
sensus mechanism arise many concerns [10].

Most existing permissioned chains require every node to maintain a single
ledger and treat the system as a replicated state machine to reach global consis-
tency by involving all nodes at any time [2], meanwhile, transactions are executed
and ordered sequentially. Thus, it fails to parallelize the transactions that are
not dependent on each other, which leads to low system performance and scal-
ability. Consider a supply chain management example described in [24] where a
role in the supply-chain workflows has multiple instances as shown in Fig. 1.
1 https://www.multichain.com/.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 375–392, 2021.
https://doi.org/10.1007/978-3-030-73200-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73200-4_26&domain=pdf
https://www.multichain.com/
https://doi.org/10.1007/978-3-030-73200-4_26

376 Z. Xu et al.

Example 1. Suppose there are two under processing workflows: Workflow 1:
A factory F1 has produced some products P1 and stored them in a warehouse
W2. Currently, a retailer R3 places an order O1 to purchase these products.
Workflow 2: A retailer R1 places an order to purchase product P2 firstly. Now,
factory F1 confirms the order and places another order to P2’s material supplier
S1. Meanwhile, F1 and S1 agree to deliver the material M2 by carrier C1.

Fig. 1. Example in the supply-chain scenario

Here, companies collaborate to accomplish different supply-chain workflows
which can be divided into several tasks with different service-level agreements
(SLAs) agreed by related users to determine the data to read/write and the
responsibility of each user. These SLAs can be represented in smart contracts
[23]. Participants of each task modify the task data by transactions. Specifically,
contracts O1 and O2 record data states of two tasks (R3 orders product P1 and
F1 orders material M2). Since the data in O1 and O2 do not have overlap and
dependency, participants of two tasks can order and execute task transactions
internally and parallelly, because they are the only current valid modifiers of the
task data. Notice that, each company can participate in multiple tasks simul-
taneously (e.g., factory F1 produces different products in both tasks) and join
or leave a task at any time (e.g., carrier C1 only participates in O2 for a while
and after the delivery, later state of O2 is irrelevant to C1). Thus, to maintain
a complete Blockchain modification history, the participation order of each user
in each task needs to be preserved and globally agreed without conflicts.

In summary, to work in a more general scenario and obtain high performance
and scalability, a Blockchain should satisfy at least the following three require-
ments: (1) Users can flexibly join or leave the modification processes of different
data with separate SLAs. (2) Transactions modifying data without dependency
can be ordered and executed in parallel. (3) The total order of transactions with

PAS: Enable Partial Consensus in the Blockchain 377

dependencies and the users’ participation order of the data modifications can be
eventually agreed by the entire system under a Byzantine fault environment.

Most existing works satisfy requirement (2) by introducing sharding of nodes.
For example, Hyperledger fabric v1.0+ uses channels and CAPER [1] uses appli-
cations to separate nodes. Such a mechanism enables processing transactions in
different shards in parallel. However the settings of shards are static, it is inflexi-
ble for a user to join or leave a shard that fails to efficiently support requirement
(1). Moreover, to fulfill requirement (3), fabric adopts a trusted channel to deal
with cross-channel transactions [3] which breaks the decentralization principle
of the Blockchain. While, to order the cross-application transaction in CAPER,
all system nodes are involved which brings high communication cost in running
the BFT consensus protocol. Especially, when the cross-application transactions
occupy the majority, the system latency increase dramatically [1].

To overcome the shortcomings of existing approaches, in this paper, we pro-
pose a novel consensus mechanism called PAS. In particular, to satisfy require-
ment (1), we separate the transactions into tasks. In a period, specific data can
only be updated by users in one task. We use a special transaction to globally
specify the task participants, such that a user can join or leave a task at any
time. To satisfy requirement (2), we order and execute transactions in differ-
ent tasks in parallel. A scope of involved nodes reach strong consistency by the
BFT protocol (e.g., PBFT [7]). To satisfy requirement (3), we propose a data
structure named hierarchical consensus tree (HCT) to coordinate the consensus
process to ensure the eventual agreement on every partial consensus without
conflicts and rollbacks. Besides, as different HCT constructions can affect the
system performance and scalability, to get the optimal HCT, we define an opti-
mization problem. Though the problem is NP-hard, we managed to propose
efficient solutions to it. We summarize our contributions as follows:

(i) We separate transaction types in the distributed collaboration scenario and
identify the challenges to order them in parallel. Then we propose a partial
consensus mechanism named PAS to address these challenges.

(ii) We propose a structure named hierarchical consensus tree (HCT) to sup-
port our consensus mechanism and introduce the OHCT problem to obtain
an optimal HCT with the maximum system performance and scalability
improvement.

(iii) We prove the NP-hardness and approximation hardness of the OHCT prob-
lem. Thus, we propose efficient algorithms to construct the HCT.

(iv) We implement PAS on PBFT-based Hyperledger Fabric as an example,
and conduct extensive experiments to evaluate the system improvement as
well as the effectiveness and efficiency of HCT construction algorithms.

The rest of the paper arranged as follows: Sect. 2 reviews related works.
Section 3 overviews the PAS mechanism. Section 4 and Sect. 5 introduce the
consensus in PAS and propose the HCT to realize the mechanism. Section 6
introduces the OHCT problem and the general framework with efficient algo-
rithms to address it. Section 7 shows experiments and evaluations. We conclude
in Sect. 8.

378 Z. Xu et al.

2 Related Work

Sharding Techniques. To achieve requirements 1 and 2, the sharding tech-
nique divides and maintains system states in several shards. The maintainers of
shards consent in parallel on the execution order of transactions updating the
states within each shard. However, to fulfill the requirement 3, the biggest chal-
lenge is to deal with the cross-shard transactions updating states in different
shards simultaneously. Existing solutions (i.e., RapidChain [27], OmniLedger
[14] and Elastico [17]) are limited to the UTXOs transaction model. A recent
work [9] applies sharding with SGX [18] under general workloads. It relies on
a dedicated committee running BFT protocol to deal with cross-shard trans-
actions. However, without a well-designed system state sharding schema, the
majority of transactions can be cross-shard that is costly to deal with. Thus,
in the worst case, the performance is merely the same as the system without
sharding.

Hyperledger shards the users in different workflows by channels which are
partitions of the network. However, channels are isolated from each other. It is
inflexible for a node to join or leave a workflow at any time since the config-
uration of channels is fixed. Moreover, interactions between channels rely on a
trusted channel [3] or an atomic commit protocol [2], which either breaks the
decentralization or still treat the system as an entirety. Meanwhile, CAPER [1]
adopts a similar idea to shard the users into applications based on their collabo-
ration workflows and process transactions of each application internally. To solve
the cross-application transactions, additional BFT protocols are designed. How-
ever, the protocols still need to involve all nodes. Moreover, if such transactions
occupy the majority, the system latency increase dramatically [1].

Directed Acyclic Graph (DAG). By changing the chain-like structure to
a directed acyclic graph, transactions can be appended to multiple branches
in parallel which satisfy requirements 1 and 2. For example, IOTA [20] and
Byteball [8] are two DAG-based permissioned chains. To satisfy the requirement
3, IOTA enforces each new transaction to pick two existing transactions as its
predecessors and use the number of transactions’ descendants and a PoW nonce
as the proof to prevent conflicts. However, similar to PoW, the security of such
protocol is nondeterministic and it is limited to cryptocurrency applications.
While Byteball relies on a set of privileged users to order the transactions which
breaks the decentralization principle and can easily become the performance
bottleneck.

3 Overview of PAS

To satisfy all the requirements, PAS shards users into scopes. We use tasks and
a special transaction to specify valid modifiers of a set of system states. We
organize the scopes into a tree-like structure with each tree node accompanied
by a Blockchain ledger. For each transaction, we determine which user scopes
are compulsory to reach the consensus based on modified states and current

PAS: Enable Partial Consensus in the Blockchain 379

valid state modifiers. Such that, the order of each transaction can be determined
immediately after only a portion of all nodes reaching consensus. The result is
eventually propagated to the system which significantly improves the parallelism.

Similar to prior works [9,14,19], we make two assumptions on the network:
(i) Nodes are fully connected with each other. (ii) The message sent by an honest
node can be eventually received by others within a maximum delay.

User and Validator. We denote users in PAS by U = {u1, u2, .., un}. Besides,
like other permissioned chains, a set of nodes known as validators process trans-
actions and ensure the consistency of states on behalf of the users. In PAS, we set
the number of validators and users equally. Moreover, cryptography signatures
are used to ensure the integrity and authenticity of a message sent by each node.

Consensus Scope and Ledger. With the similar idea of node partitions [12,13,
25], in PAS, we partition validators to several disjoint sets named consensus scope
with the cardinality in the range of [k, 2k). Details will be discussed in Sect. 4.
Validators in each scope maintain a ledger consisting of the transactions ordered
within the scope. PAS works in epochs denoted by e. In each epoch, validators
are shuffled to serve different scopes. Besides, each user is assigned to one scope
to process transactions. Different from validators, the user-scope assignment is
static. Therefore, the user-scope assignment also determines the structure of
consensus scopes. We use N = {N1, . . . ,Nm} to denote the consensus scopes
where Ni also represents the users assigned to scope i (Ni ⊂ U). The organization
of the consensus scope is shown at the top of Fig. 2.

Fig. 2. Overview of the system

Data Model. Beyond UTXO-based model [19], we focus on the state-based
model introduced in Ethereum [23]. Specifically, the system states denoted by
S = {S1, S2, . . . , Sn}, can be created, updated or deleted by transactions.

Task and Participant. We define a task as successive modifications on a set of
system states within a group of users (task participants). Besides, modifications

380 Z. Xu et al.

may depend on other states within but not beyond the task (otherwise, those
states should be involved in this task as well). Thus, the transaction execution
order within a task is determined by its participants. In Fig. 2, there are two
tasks with different users to update different states. For instance, once the system
agrees on states (S1, S2) and participants (u1, u2, u3) involved in task 1, until
finishing the task 1, only its participants are authorized to generate transactions
and determine their execution order to modify states in the task.

Transactions. We divide the transaction in PAS into two types based on the
functionality. One is the internal transaction used to modify states in a task.
In Fig. 2 task 1, u1, u2 and u3 use transaction t1,2 to modify S2 from the original
state S1

2 to S2
2 . The other is the external transaction to change the task

participants or create a new task. In Fig. 2, between task 1 and task 2, an
external transaction tex1 changes the valid modifiers of S2 with the confirmation
of S2’s final state (S2

2) after task 1 which is also the initial state of S2 in task 2.
Importantly, the external transaction determines valid modifiers of each state.

Definition 1. Transaction. A transaction is a tuple t = (id, S, op, i, P, P ′, Σ),
where id is the unique order of transactions modifying a set of states S. op is
the operation with parameters. i is the initiator where ∀i, ui ∈ U . P is the set of
current valid modifiers of S where P ⊆ U and P ′ is the new valid modifiers of S
where P ′ ⊆ U . Σ is a set of signatures signed by validators who have ordered t.

The id is to specify the order of transactions and the Σ is obtained during the
consensus. For the validation of a transaction t, suppose a function P (s) returns
current valid modifiers of state s based on the records kept by each validator, if
∃s ∈ t.S, P (s) �= t.P or t.i /∈ P (s), t is treated as invalid.

Threat Model. In this paper, we assume the malicious nodes are less than 1
3 ,

since the BFT protocol is one of our security guarantee. The attackers are adap-
tive like described in [9,15,17,27] where the corruption of the validator takes
time to achieve. Different from other sharding works [9,15,27], instead of assum-
ing all the shards perform honestly, we do not assume all the consensus scopes
perform honestly. Instead, nodes in a consensus scope can perform maliciously
together to cheat others outside the scope for their profit.

4 Partial Consensus in PAS

Achieve Partial Consensus. As we assign users to scopes and rely on val-
idators to process transactions, given a transaction t, after determining which
users are relevant to t, validators in corresponding scopes run the BFT protocol
to order and execute t. Besides, we need to identify in which consensus scope t
has been consented. We denote PC(t) ⊆ N as scopes where t has been ordered.
Since validators in each scope are periodically shuffled, after current validators
in PC(t) reach strong consistency, they will sign on t accompanied by the current
epoch index e and commit t on the Blockchain ledger of the scope. Others can
verify the authority of t through t.Σ. Notice that all existing BFT protocols are

PAS: Enable Partial Consensus in the Blockchain 381

applicable for PAS. Examples are PBFT [7], Tendermint [5], Zyzzyva [16], Hot-
Stuff [26] and MirBFT [21] where all of them can achieve �n−1

3 	 fault-tolerant.

Validator Assignment. For safety, validators shuffling needs to be unbi-
ased. Omniledger combines RandHound [22] with the verifiable random func-
tion (VRF) based leader election algorithm [11] to assign validators which can
be used in PAS as well. Specifically, with a bounded message transmission delay
δ, in each epoch, validators compute a hash value and gossip it to others for
a time δ. Then, the one who gets the lowest value is selected as the leader to
run the RandHound protocol to generate and broadcast a bias-resistant random
number rnde with correctness proof. Finally, others can use rnde to get the
validator-scope assignment. We refer the details and its security analysis to [15].

Consensus Scope Size. The size of a scope is the number of inside validators
and we set it in the range of [k, 2k) to seek a balance between security and
performance. Fewer validators lead to lower latency and higher throughput [10].
However, it also reduces the safety, especially for the scope with the minimum
size k. Since the validator assignment can be treated as random sampling without
replacement, we consider the probability to form a fault scope directly. Suppose
there are V validators with αV malicious, the random variable X denotes the
number of malicious nodes in the scope with k validators. X should follow the
hypergeometric distribution where X ∼ (k, V, αV). Given a BFT protocol with f
(e.g., for PBFT f = n

3) malicious tolerance, the probability to form a fault scope

is Pr[X ≥ f] =
∑k

x=f
(αV

x)((1−α)V
k−x)

(V
k) . For example, with V = 128, α = 0.2, k = V

8 ,

by using PBFT, Pr[X ≥ k
3] = 6%. As stated in [9], when k is large enough (e.g.,

k ≥ 600), the probability is considered negligible (e.g., ≤ 2−20).

5 Eventual Consistency

After reaching partial consensus, validators propagate the result to others. Thus,
every node will eventually receive all consensus results. However, if we want to
finalize a transaction t when only a subset of nodes reaches partial consensus on
its execution order, it is vital to prevent the subsequential transactions conflicting
with t from being adopted. Therefore, we first analyze possible conflicts.

Definition 2. Conflict Transactions. For two valid transactions t1 and t2
within the same task (t1.P = t2.P

∧
t1.S ∩ t2.S �= ∅)) where t1 is the first to

reach partial consensus, if one of the three conditions holds, t2 conflicts with
t1. 1. internal conflict: t1.op �= t2.op

∧
t1.P

′ = t2.P
′. 2. external conflict:

t1.op = t2.op
∧

t1.P
′ �= t2.P

′. 3. dual-conflict: t1.op �= t2.op
∧

t1.P
′ �= t2.P

′.

We only focus on the conflict within a task, because, if t1, t2 are from two
tasks, there must be one external transaction tex in between of the tasks. As long
as we ensure that tex can be eventually agreed by the system without conflict
(has been covered in condition 2 in Definition 2), t1, t2 do not have conflict
anymore.

382 Z. Xu et al.

Internal Conflict. This happens when the participants of a task concurrently
modify the same state with different operations by two transactions with the
same id. Since task participants remain the same, validators need to reach partial
consensus on their order are the same as well.

External Conflict. This happens when two external transactions t1, t2 (with
the same id) change modifiers of the same state S with the final value (say S∗)
to different users. To order t1 or t2 both current and new modifiers need to be
involved. Suppose the current modifiers are in scope N0. When validators in
N0 act maliciously, they can reach two conflict partial consensus (switching the
modification authority to users in scopes N1 and N2) with the validators in N1

and N2 simultaneously. Meanwhile, users and validators in N1 and N2 cannot
detect the deviation respectively which leads to the system inconsistency.

Dual-conflict. This happens when the modifier change and state update happen
simultaneously. When shifting the state modifiers, an external transaction must
specify it is based on which internal transaction to explicitly inform the final
state values to new modifiers. For example, in Fig. 2, tex1 is generated after t1,2

(tex1.id = t1,2.id+1) specifying the value of S2 is S2
2 . For an internal transaction

tin (tin.id = tex1.id) modifying S2 based on the value S2
2 , if tex1 reaches partial

consensus first, tin should not be accepted anymore, vice versa.

Hierarchical Consensus Tree. To prevent the conflicts, our idea is to control
the consensus scopes where a transaction is ordered. We introduce a data struc-
ture named hierarchical consensus tree (HCT) kept by each node to organize
the scopes and Blockchain ledgers and used to coordinate the consensus process.
By leveraging a tree structure, any two scopes will share a common root. We
restrict a transaction involving users in different scopes to be ordered by all val-
idators under the common root of these scopes. Thus, the conflict can always be
detected and we set rules to prevent the acceptance of conflicts.

For a transaction t, all possible combinations of PC(t) (scopes have reached
consensus on t) form a join semi-lattice which is a partial order of the set include
operation (⊆). Given a pair of scopes N1 and N2, a least upper bound (LUB) �
exists. N̄ = N1�N2 is a LUB of {N1,N2} iff ∀N ∗,N1 ⊆ N ∗ ∧ N2 ⊆ N ∗ ⇒ N1 ⊆
N̄ ∧ N2 ⊆ N̄ ∧ N̄ ⊆ N ∗. Based on LUB we can have the following definition.

Definition 3. Monotonic Consensus Semi-lattice (MCSL). MCSL refers
to PC(t) with the properties: (1) Forms a semi-lattice ordered by ⊆. (2) Merging
two scopes Ni and Nj involves consensus scopes included in the LUB of {Ni,Nj}.
(3) Scope changing is non-decreasing (PC(t) can only accept new scopes).

For a transaction t involving users in scopes N1,N2, it needs to be ordered
at least by validators in N1 and N2. According to the MCSL, it equals to merge
the partial consensus results in N1 and N2 and t should be ordered in all scopes
included in the LUB of {N1,N2}. However, for another scope N3, it is still
possible that (N1 � N2) ∩ (N1 � N3) = N1 which means users in N1 can still
generate conflict transactions without letting nodes in N2 and N3 be aware.
Therefore, we further define the HCT to address this problem.

PAS: Enable Partial Consensus in the Blockchain 383

Definition 4. Hierarchical Consensus Tree (HCT). HCT is a restricted
MCSL with the constraint that each scope set can only have one ancestor. In an
HCT, each leaf node is a single consensus scope. Each internal node is accompa-
nied by a Blockchain ledger recording the transactions ordered by all validators
covered by the consensus scope set of the internal node. Moreover, for two conflict
transactions t1 and t2, if PC(t2) ⊂ PC(t1), t2 is treated as invalid.

(a) Hierarchical Consensus Tree (b) Malicious behavior

Fig. 3. Hierarchical Consensus Tree examples

Figure 3a shows an HCT example. The represented consensus scope of a
tree node is the union of its two children’s scopes. Precisely, each tree node
ledger is maintained by validators in the scope of the tree node. A transaction
involving users in different scopes should be ordered on the ledger of the tree
node representing the LUB of these scopes. Now we prove HCT can prevent the
conflict transactions being adopted during the eventual consistency process.

Theorem 1. By following the hierarchical consensus tree to reach partial con-
sensus, when a transaction t fulfills (t.P

⋃
t.P ′) ⊆ PC(t), its conflict transaction

t∗ cannot be accepted by any correct node.

Proof. Suppose a transaction t has reached partial consensus and its later gen-
erated conflict transaction is represented as t∗ (by Definition 2, t.P = t∗.P). We
use S1 to denote the set of consensus scopes where users of t.P are assigned.
Also, we use S2, S3 to denote the scopes where t.P ′ and t∗.P ′ are assigned
respectively. Based on the HCT, PC(t) = S1 � S2. For different conflicts:

Internal conflict (t.op �= t∗.op
∧

S2 = S3). To order t∗, it must have PC(t∗) =
S1 � S3 = S1 � S2 = PC(t). Since the order of t has reached partial consensus in
PC(t) before t′ is generated, honest nodes will treat t′ as invalid.

External conflict (t.op = t∗.op
∧

S2 �= S3). To order t∗, it must have PC(t∗) =
S1�S3. If S3 ⊂ (S1�S2) ⇒ (S1�S3) ⊂ (S1�S2) ⇒ PC(t∗) ⊂ PC(t). According to
Definition 4, t∗ is invalid. If S3 �⊂ (S1 �S2), there must be at least one consensus
scope N where N �∈ (S1 � S2)

∧ PC(t) ⊂ (S1 � {N}). It means to order t∗,
validators who have ordered t must be involved in the process. Thus, validators
in PC(t) can prove that t.Σ contains their signatures during the execution of
the BFT protocol such that other honest validators in S1 � S3 can deny t∗.

384 Z. Xu et al.

Dual-conflict (t.op �= t′.op
∧

S2 �= S3). If t is an external and t∗ is an internal
transaction, there must be S1 �= S2

∧
S1 = S3, meanwhile, S1 = (S1 � S3) ⊂

(S1 � S2) ⇒ PC(t∗) ⊂ PC(t). According to Definition 4, t∗ is invalid and will be
discarded. Else if t is an internal transaction and t∗ is an external transaction,
there must be S1 = S2

∧
S1 �= S3, we also consider two cases where S3 ⊂ (S1�S2)

or S3 �⊂ (S1 � S2). Thus, the rest proof is the same as external conflict.

Based on Example 1, we give an HCT example shown in Fig. 3b, to illustrate
how it can prevent the generation of conflict transactions.

Example 2. Suppose a transaction t is sent by F1 to appoint O1’s carrier as C1

and allow C1 to modify the state of O1.condition and t has been ordered by
validators in N1,1. Meanwhile, F1, C2 and C3 are malicious and try to generate
an external conflict transaction t∗ granting the same permission to another user:

Case 1: F1 grants permission to C2 which needs to be ordered by the validators
in N2,1. Since N2,1 ⊂ N1,1 and F1, C2 know the existence of t during their partial
consensus, by Definition 4, t∗ is invalid and will be discarded by the validators.

Case 2: F1 grants permission to C3 which needs to be ordered by the validators
in N0. Since the honest validators in N1,1 has obtained the confirmation signa-
tures on t, they can prove the existence of t to deny t∗ during the running of the
BFT protocol and other honest validators will discard t∗ as well.

Notice that, for each node, in the path from its position to the tree root,
the ledger of each internal node will always be up-to-date. Because whenever
an update is made on those ledgers, the nodes will be involved in the consensus
process to reach strong consistency. For instance, in Example 2, C1 always knows
the latest transactions committed on the ledgers of N2,2,N1,1 and N .

6 HCT Optimization

The bottleneck to scale the system is the communication cost to consent the
transactions [10], while, transaction generation frequency (TGF) of users
(the interaction frequency between users) contributes to the cost.

Definition 5. Interaction Frequency. A matrix Fn×n where n = |U | records
the interaction frequency in users. fi,j in F is the generation frequency of trans-
actions involving ui and uj where ui, uj ∈ U and fi,j = fj,i.

For instance, in Example 1, if retailer R3 often places order O1, the interaction
frequency between F1,W2, F1, R3 and W1, R3 will be high. Notice that, the TGF
is an estimation result in a period or determined by actual applications. It is used
to establish and reconfigure the system based on the demands of users.

Optimal HCT Problem. The consensus message complexity denoted by T (μ)
where μ is the number of involved validators, is determined by the used BFT
protocol (e.g., for PBFT T (μ) ∈ O(n2)). Observe that T (μ) ∝ μ. Suppose

PAS: Enable Partial Consensus in the Blockchain 385

users u1 and u2 are in scopes N1 and N2, the message complexity to consent
transactions related to u1 and u2 is f1,2T (μ1,2) where μ1,2 is the number of
validators in the scopes under N1 � N2. Therefore, a well-structured HCT can
further reduce the message complexity which leads to better system performance
and scalability. We define the HCT optimization problem as below:

Definition 6. Optimal Hierarchical Consensus Tree (OHCT) Problem.
Given the interaction frequency matrix Fn×n, the complexity function T (·) of the
BFT protocol and the scope validator cardinality constraint [k, 2k). Our goal is:

minimize
∑

ui,uj∈U

fi,j T (μi,j) (∀fi,j : i ≤ j)

subject to min
ui,uj∈U

{μi,j} ≥ k, max
ui,uj∈U

{μi,j} < 2k

Hardness Analysis. We prove the NP-hardness by studying a special case of
OHCT and reducing the minimum bisection problem (MBP) [4] to it.

Theorem 2. OHCT problem is NP-hard.

Due to the space, we only show our proof sketch. Consider a special case of
OHCT problem where k = |U |

2 . In this case, we can only bisect users in two sets
S1, S2 with all transactions completion cost as a constant T (|U |) and minimize
T (|U |)∑

ui∈S1,uj∈S2
fi,j . Then, we can reduce the MBP to the case. Besides, we

further analyze the hardness to get an approximation solution to OHCT.

Theorem 3. There is no algorithm with constant approximation ratio for
OHCT.

The sketch of the proof is to use the conclusion in [6] that for a fixed ε > 0,
it is NP-hard to approximate the MBP problem with an additive term of n2−ε

[6].

Solution Framework. To solve the OHCT problem, a general framework is
to 1. construct an optimal HCT by regarding each user as a single consensus
scope first and 2. pruning and merging to fulfill the cardinality constraint.

Top-down Construction Algorithm. Intuitively, the greedy way to do the
construction is to pair two users into a binary tree first. Then, each time we
randomly pick one user from unassigned users. Starting from the tree root, we
compare the normalized interaction frequency between the picked user and all
users in the left and right sub-tree. Then we go into the root of sub-tree with
higher normalized interaction frequency. We stop until we find the suitable leaf
node position for all users. Details are shown in Algorithm 1.

Pruning And Merging Algorithm. After we obtain an HCT with each leaf
to be one user, we perform DFS on the root. Each time, if the leaf number |t|
of an internal node is greater than 2k, we continue. If |t| ∈ [k, 2k), we group its
leaves to one scope. If |t| < k, we reinsert each user in the leaf to the sibling

386 Z. Xu et al.

sub-tree using the top-down construction algorithm. Because, since one sub-tree
and its sibling are grouped under the same LUB by the construction algorithm,
it means they have more frequent interactions. By merging the sub-tree into its
sibling, it will bring less additional completion cost. Details are in Algorithm 2.

Complexity Analysis. Since |U | = n, for Construction with Algorithm 1, it
recurrently decides the position for each user. In an average case, the algorithm
takes O(n2 log n). For Pruning and Merging, the worst case of its DFS takes O(n)
while the worst case cost of merge is O(k log n). In total, it takes O(nk log n).
Since k � n, the total complexity is O(n2 log n).

Bottom-up Construction Algorithm. Although the Algorithm 1 is efficient,
its performance is affected by the input order of users. Thus, we can enhance the
HCT construction by always considering every users. The idea is that each time
we merge two sub-trees with the highest average transaction completion cost.
Then, we recompute the cost between the new sub-tree and other sub-trees. We
terminate until all users are rooted in the same tree. The intuition is to merge
sub-trees with higher average transaction completion cost as earlier as possible
to reduce the involved consensus scopes to the most. Details are in Algorithm 3.

Complexity Analysis. In n − 1 rounds merging, the most time consuming
part is to maintain the heap which provides the highest interaction frequency
among sub-trees. It takes O(max{|ti| × |tj |, (n − t)log(n2)}) ∈ O(nlogn2) in
average. Thus, using Algorithm 3 makes the time complexity of the framework
be O(n2logn2).

PAS: Enable Partial Consensus in the Blockchain 387

Algorithm 3: Bottom-up HCT Construction
Input : Interaction frequency matrix F , Users U and cost function T .
Output: tree root of a hierarchical consensus tree.

1 subTrees ← U;
2 foreach ti ∈ subTrees do
3 foreach tj ∈ subTrees do
4 avgC(ti, tj) ← F [i][j] × T (2); //avgC: average completion cost

5 while |subTrees| ! = 1 do
6 Merge ti, tj with the maximum avgC(ti, tj) into t∗ and remove ti, tj from subTrees;
7 foreach t ∈ subTrees do

8 avgC(t∗, t) ← (
avgC(ti,t)×|ti|

T (|ti|+|t|) +
avgC(tj ,t)×|tj |

T (|tj |+|t|)) × T (|ti|+|tj |+|t|)
(|ti|+|tj |) ;

9 subTrees.append(t∗);

10 return subTrees.first;

7 Experiment and Evaluation

In this section, we first evaluate the effectiveness and efficiency of our HCT
construction algorithms on both real and synthetic datasets. Then, we choose
hyperledger fabric v0.6 as a permissioned Blockchain example to implement PAS
and measure the performance and scalability enhancement brought by PAS.

7.1 HCT Construction Evaluation

Real Dataset. To obtain the real interaction frequency of Blockchain users, we
use the dataset extracted from Ethereum blocks during the period from Dec 17,
2017, to Feb 23, 2018. It contains 14,393,250 unique addresses and 64,719,559
transactions. Specifically, we treat the token transform from one user to another
as one task modifying the states of two account balances. We uniformly sample
and group the unique addresses to form different sizes of user groups and obtain
the interaction frequency distribution matrix among the groups.

Table 1. Synthetic datasets

Number of users |U | 4, 8, 16, 32, 64, 128

σ of normal distribution 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

a of power-law distribution 1, 2, 3, 4, 5, 6

Minimum scope size k 1, 4, 7, 10, 13, 16

Synthetic Dataset. We generate synthetic interaction frequencies by following
uniform (in the range of [0,1]), normal (with μ = 0.5) and power-law (with
c = 1) distributions. Table 1 shows the parameter settings we used in synthetic
datasets and default values are in bold. Similarly, we construct transactions
between users as the token transform. We first generate a |U | × |U | triangular
contribution matrix (the sum of all elements is 1) by following the distributions
mentioned above. This matrix denote the contribution of each pair of users to the
transaction generation frequency (TGF mentioned in Sect. 6). Given the system

388 Z. Xu et al.

TGF , we can obtain the interaction frequency matrix by multiplying the TGF
and the contribution matrix. Notice that, TGF is not selected as a parameter.
Because the interaction frequency fi,j between two users pi and pj is computed
by TGF ×di,j where di,j is the frequency contrition of user pair ui and uj . Thus,
the overall message complexity is represented by TGF

∑
ui,uj∈U di,jT (μi,j). For

the same experiment settings, TGF is a constant which will not affect the result.

Implementation and Metrics. We implement our HCT construction algo-
rithms in Python 3.7. The experiments are conducted on a server with Intel(R)
Core(TM) i5 3.0 GHz CPU with 16 GB RAM. Each experiment is repeated 30
times and we report the average results. We choose PBFT as our baseline con-
sensus protocol and set its T (μ) = μ2. In each experiment case, we measure and
compute the total message complexity result of each method and the enhance-
ment percentage (1 − algorithm

baseline) compared with the baseline whose message
complexity is TGF |U |2. We compare our solution framework with the HCT
construction algorithms of top-down, bottom-up and the random pair which
randomly forms a valid HCT. The aim is to show the performance of the PAS
even if in a random construction fashion.

Experimental Results. Since the real dataset tends to follow the normal dis-
tribution, due to the space, we only report the results on the real dataset and
synthetic dataset following the power-law distribution.

Impact of Number of Users |U |. The first row of Fig. 4 shows the results
of varying |U | in both real and power-law synthetic dataset. The line chart
shows the total consensus message complexity, while, the bar chart shows the
enhancement percentage comparing with the baseline. For the top-down and
bottom-up algorithms, the message complexity reduction is from 25% to 56%.
The enhancement of the bottom-up is better than the top-down algorithm from
2% to 10% since the bottom-up always takes T (μ) into consideration, while, the
time cost of bottom-up increases dramatically when |U | increase. With increasing
|U | the enhancement of HCT also increases but the incremental speed becomes
slower. Because HCT does not change the intrinsic complexity of the protocol
itself. PBFT, as an example, with more validators, its O(n2) message complexity
becomes obvious making the enhancement of HCT be a constant factor.

(a) Power-law. (b) Time cost. (c) Real dataset. (d) Time cost.

(e) Power-law. (f) Time cost. (g) Power-law. (h) Real dataset.

Fig. 4. Results of the comparison of HCT construction algorithms

PAS: Enable Partial Consensus in the Blockchain 389

Impact of a in Power-law Distribution. Figure 4e shows the impact of a
in power-law distribution. With a larger a, the enhancement of HCTs built by
three algorithms all decrease. Because a larger a means most of the interaction
frequency is very small. Thus, the enhancement brought by the reduced valida-
tors in each consensus process becomes insignificant. Especially, the top-down
algorithm is more sensitive to a, since it only considers a single node at each
time which is more likely to reach local optimal.

Impact of Consensus Scope Cardinality k. Figure 4g and Fig. 4h show the
results on varying k. With larger k, there are fewer consensus scopes in the HCT
making the average number of validators need to be involved in each consensus
process increase. Thus, the HCT enhancements all decrease. However, even if we
only have 2 consensus scopes (k = 16), the performance enhancement can still
reach 35% indicating to have a better balance between performance and security,
it is not necessary to divide the consensus scope into extremely small ones.

Summary of the Results. From the above discussion, with HCT, the total
consensus message complexity can always be reduced. Especially, bottom-up
construction algorithm can achieve better performance than others with the
reduction of PBFT message complexity by at least 30%. Moreover, the HCT
enhancement is better when the interaction frequency distribution tends to fol-
lows a normal distribution. It means when all users frequently interact with
each other, our mechanism can better improve the system. Besides, the cardi-
nality constraint k will not influence the performance too much. The difference
between k = 1 and k = 16 in a 32 nodes system is nearly 10%. Therefore, for
better security, it is reasonable to set the k constraint higher.

7.2 PAS Evaluation

We evaluate the actual performance of PAS by implementing it on Hyperledger
Fabric v0.6 and evaluate the systems with and without PAS.

Implementation and Metrics. The main aim of PAS is to make transactions
be ordered in different consensus scopes based on involved users. Thus, the PAS
system should support validators from the same Blockchain network in achieving
consensus within different sub-networks. Therefore, we implement an external
HCT module to make validators participate in the partial consensus of multiple
subnets simultaneously. Specifically, the HCT module mainly does two things: 1.
Compute and record the structure of HCT: Since the HCT is constructed
based on the estimated interaction frequency among users, after obtaining the
interaction frequency from others (consensus may be required), nodes can build
the HCT by running the construction algorithm by themselves. This process
is only conducted when forming a new network, or the interaction frequency
changes dramatically. Users (even only in a branch of the HCT) can decide
to reconstruct the entire (or a sub) tree. 2. Routing transactions: When a
transaction is received by the validator, it will use the HCT module to determine
in which scope to reach partial consensus to execute and order the transaction.

390 Z. Xu et al.

Simple key-value storage is implemented to record the valid modifiers of each
system state obtained by the transaction history on the ledgers they maintain.

The experiments are conducted on the Azure cloud service cluster. We create
validators with 16 GB RAM, 500 GB hard drive, running Ubuntu 18.04 LTS on
each of them. They are connected to each other via a 1GB bandwidth network.
The aim of our experiment is to measure the peak throughput of each system on
varying the number of users/validators (from 4 to 16). We use the official chain-
code transferring token between users as the task in the workflow. Then we use
client nodes to simulate the transaction generation by following the interaction
frequency distribution obtained from the real dataset. In each experiment, we
steadily increase the overall system TGF to obtain the peak throughput which
is measured by the completion rate from the time a transaction is generated
until receiving the commit message of the block which contains the transaction.

Fig. 5. Result of throughput on varying |U |

Experimental Results. Figure 5 shows the throughput comparison between
PAS-based and original Hyperledger. The throughput of Hyperledger is between
100 to 142 tps, while, PAS can reach 134 to 234 tps. With the bottom-up con-
structed HCT, the performance enhancement is at least 50%. Meanwhile, despite
the slightly lower enhancement of the top-down algorithm, as compared in Fig. 4
the lower time complexity of the top-down algorithm makes it more suitable for
large scale systems. With more users, the enhancement ratio also increases which
is similar to what we observed in the HCT construction experiments. Besides,
with the nodes increasing, the throughput tends to decrease. In fact, in Hyper-
ledger, to confirm connectivity between nodes, messages such as PeersMessage
are sent periodically to check the connection status. When the number of valida-
tors in the network increases, such requests also increase, which affects the overall
performance of the network to a certain extent. For example, the throughput of
the two systems drops linearly from 8 to 16 nodes. Meanwhile, the dropping
speed of HCT-based is slower than the original Hyperledger, which can also
prove the better scalability of PAS.

PAS: Enable Partial Consensus in the Blockchain 391

8 Conclusions

In this paper, we introduce PAS, a consensus mechanism for permissioned Block-
chain to satisfy the requirements in the general distributed collaboration sce-
nario. Specifically, PAS enables a user to join or leave different tasks flexibly
by using the transaction to specify the valid modifiers of each system state. We
introduce the partial consensus to order transactions in different tasks in paral-
lel. Moreover, to ensure the order of transactions determined by a set of nodes
can be eventually agreed by all nodes with the BFT guarantee, we propose the
hierarchical consensus tree (HCT) to coordinate the consensus process. When a
transaction is ordered, the acceptance of its conflict transaction is strictly pre-
vented. We also propose the OHCT problem to obtain an optimal HCT with
the maximum system enhancement. We proved the NP-hardness and approxi-
mation hardness of the OHCT problem and propose a framework with efficient
algorithms to solve it. Finally, we implement PAS on Hyperledger and conduct
extensive experiments to evaluate it. The result shows that PAS can significantly
improve system performance and scalability.

Acknowledgment. This work is partially supported by the Hong Kong RGC GRF
Project 16213620, CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project
AoE/E-603/18, China NSFC No. 61729201, Guangdong Basic and Applied Basic
Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and
ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, Didi-HKUST
joint research lab project, and Wechat and Webank Research Grants.

References

1. Amiri, M.J., Agrawal, D., Abbadi, A.E.: Caper: a cross-application permissioned
blockchain. In: VLDB (2019)

2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: EuroSys (2018)

3. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: Horizontal
scaling and confidentiality on permissioned blockchains. In: ESORICS (2018)

4. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for
dense instances of np-hard problems. JCSS (1999)

5. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018)

6. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-
hard. Inf. Process. Lett. (1992)

7. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI (1999)
8. Churyumov, A.: Byteball: A decentralized system for storage and transfer of value

(2016)
9. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards

scaling blockchain systems via sharding. In: SIGMOD (2019)
10. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A

framework for analyzing private blockchains. In: SIGMOD (2017)
11. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-

tine agreements for cryptocurrencies. In: SOSP (2017)

http://arxiv.org/abs/1807.04938

392 Z. Xu et al.

12. Han, S., Xu, Z., Chen, L.: Jupiter: a blockchain platform for mobile devices. In:
2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1649–
1652. IEEE (2018)

13. Han, S., Xu, Z., Zeng, Y., Chen, L.: Fluid: a blockchain based framework for crowd-
sourcing. In: Proceedings of the 2019 International Conference on Management of
Data, pp. 1921–1924 (2019)

14. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Omniledger: a
secure, scale-out, decentralized ledger. In: IEEE SP (2018)

15. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
Omniledger: a secure, scale-out, decentralized ledger via sharding. In: SP (2018)

16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: SIGOPS (2007)

17. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: SIGSAC (2016)

18. Mckeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: Hasp@isca (2013)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
20. Popov, S.: The tangle. cit. on (2016)
21. Stathakopoulou, C., David, T., Vukolić, M.: Mir-bft: High-throughput bft for

blockchains. arXiv preprint arXiv:1906.05552 (2019)
22. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: SP (2017)
23. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper (2014)
24. Wüst, K., Gervais, A.: Do you need a blockchain? In: CVCBT (2018)
25. Xu, Z., Han, S., Chen, L.: Cub, a consensus unit-based storage scheme for

blockchain system. In: 2018 IEEE 34th International Conference on Data Engi-
neering (ICDE), pp. 173–184. IEEE (2018)

26. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft con-
sensus with linearity and responsiveness. In: PODC (2019)

27. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: SIGSAC (2018)

http://arxiv.org/abs/1906.05552

	PAS: Enable Partial Consensus in the Blockchain
	1 Introduction
	2 Related Work
	3 Overview of PAS
	4 Partial Consensus in PAS
	5 Eventual Consistency
	6 HCT Optimization
	7 Experiment and Evaluation
	7.1 HCT Construction Evaluation
	7.2 PAS Evaluation

	8 Conclusions
	References

