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Preface

Welcome to DASFAA 2021, the 26th International Conference on Database Systems
for Advanced Applications, held from April 11 to April 14, 2021! The conference was
originally planned to be held in Taipei, Taiwan. Due to the outbreak of the COVID-19
pandemic and the consequent health concerns and restrictions on international travel all
over the world, this prestigious event eventually happens on-line as a virtual confer-
ence, thanks to the tremendous effort made by the authors, participants, technical
program committee, organization committee, and steering committee. While the tra-
ditional face-to-face research exchanges and social interactions in the DASFAA
community are temporarily paused this year, the long and successful history of the
events, which established DASFAA as a premier research conference in the database
area, continues!

On behalf of the program committee, it is our great pleasure to present the pro-
ceedings of DASFAA 2021, which includes 131 papers in the research track, 8 papers
in the industrial track, 8 demo papers, and 4 tutorials. In addition, the conference
program included three keynote presentations by Prof. Beng Chin Ooi from National
University of Singapore, Singapore, Prof. Jiawei Han from the University of Illinois at
Urbana-Champaign, USA, and Dr. Eunice Chiu, Vice President of NVIDIA, Taiwan.

The highly selective papers in the DASFAA 2021 proceedings report the latest and
most exciting research results from academia and industry in the general area of
database systems for advanced applications. The quality of the accepted research
papers at DASFAA 2021 is extremely high, owing to a robust and rigorous
double-blind review process (supported by the Microsoft CMT system). This year, we
received 490 excellent submissions, of which 98 full papers (acceptance ratio of 20%)
and 33 short papers (acceptance ratio of 26.7%) were accepted. The selection process
was competitive and thorough. Each paper received at least three reviews, with some
papers receiving as many as four to five reviews, followed by a discussion, and then
further evaluated by a senior program committee (SPC) member. We, the technical
program committee (TPC) co-chairs, considered the recommendations from the SPC
members and looked into each submission as well as the reviews and discussions to
make the final decisions, which took into account multiple factors such as depth and
novelty of technical content and relevance to the conference. The most popular topic
areas for the selected papers include information retrieval and search, search and
recommendation techniques; RDF, knowledge graphs, semantic web, and knowledge
management; and spatial, temporal, sequence, and streaming data management, while
the dominant keywords are network, recommendation, graph, learning, and model.
These topic areas and keywords shed light on the direction in which the research in
DASFAA is moving.

Five workshops are held in conjunction with DASFAA 2021: the 1st International
Workshop on Machine Learning and Deep Learning for Data Security Applications
(MLDLDSA 2021), the 6th International Workshop on Mobile Data Management,



Mining, and Computing on Social Networks (Mobisocial 2021), the 6th International
Workshop on Big Data Quality Management (BDQM 2021), the 3rd International
Workshop on Mobile Ubiquitous Systems and Technologies (MUST 2021), and the 5th
International Workshop on Graph Data Management and Analysis (GDMA 2021). The
workshop papers are included in a separate volume of the proceedings, also published
by Springer in its Lecture Notes in Computer Science series.

We would like to express our sincere gratitude to all of the 43 senior program
committee (SPC) members, the 278 program committee (PC) members, and the
numerous external reviewers for their hard work in providing us with comprehensive
and insightful reviews and recommendations. Many thanks to all the authors for
submitting their papers, which contributed significantly to the technical program and
the success of the conference. We are grateful to the general chairs, Christian S. Jensen,
Ee-Peng Lim, and De-Nian Yang for their help. We wish to thank everyone who
contributed to the proceedings, including Jianliang Xu, Chia-Hui Chang and Wen-Chih
Peng (workshop chairs), Xing Xie and Shou-De Lin (industrial program chairs),
Wenjie Zhang, Wook-Shin Han and Hung-Yu Kao (demonstration chairs), and Ying
Zhang and Mi-Yen Yeh (tutorial chairs), as well as the organizers of the workshops,
their respective PC members and reviewers.

We are also grateful to all the members of the Organizing Committee and the
numerous volunteers for their tireless work before and during the conference. Also, we
would like to express our sincere thanks to Chih-Ya Shen and Jen-Wei Huang
(proceedings chairs) for working with the Springer team to produce the proceedings.
Special thanks go to Xiaofang Zhou (DASFAA steering committee liaison) for his
guidance. Lastly, we acknowledge the generous financial support from various
industrial companies and academic institutes.

We hope that you will enjoy the DASFAA 2021 conference, its technical program
and the proceedings!

February 2021 Wang-Chien Lee
Vincent S. Tseng
Vana Kalogeraki
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Gated Sequential Recommendation
System with Social and Textual

Information Under Dynamic Contexts

Haoyu Geng, Shuodian Yu, and Xiaofeng Gao(B)
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Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China
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Abstract. Recommendation systems are undergoing plentiful practices
in research and industry to improve consumers’ satisfaction. In recent
years, many research papers leverage abundant data from heterogeneous
information sources to grasp diverse preferences and improve overall
accuracy. Some noticeable papers proposed to extract users’ preference
from information along with ratings such as reviews or social relations.
However, their combinations are generally static and less expressive with-
out considerations on dynamic contexts in users’ purchases and choices.

In this paper, we propose Heterogeneous Information Sequential
Recom-mendation System (HISR), a dual-GRU structure that builds
the sequential dynamics behind the customer behaviors, and combines
preference features from review text and social attentional relations
under dynamics contexts. A novel gating layer is applied to dynami-
cally select and explicitly combine two views of data. Moreover, in social
attention module, temporal textual information is brought in as a clue
to dynamically select friends that are helpful for contextual purchase
intentions as an implicit combination. We validate our proposed method
on two large subsets of real-world local business dataset Yelp, and our
method outperforms the state of the art methods on related tasks includ-
ing social, sequential and heterogeneous recommendations.

Keywords: Recommendation systems · Sequential recommendation ·
Gating mechanism

1 Introduction

With the emergence of online service websites, recommendation systems
have become a vital technology for companies. Recommendation systems
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provide better service for customers while promoting their products and also
attracting more purchases. Particularly, there are more and more diverse
forms that customers could interact with the products, such as click history,
images, social relations, review texts, which provide traces to better grasp cus-
tomers’preference for better recommendation accuracy. With increasingly abun-
dant interaction modes and heterogeneous data, cross-domain recommendation
becomes promising in many future applications, especially for large online service
providers which provide multiple services and share the user profiles.

A common practice to achieve cross-domain recommendation with heteroge-
neous information is combining rating records with another. [3,25] leverage social
relations to help with matrix factorization. [10] takes temporal information into
user purchase history to build sequential dynamics of users’ preferences. [12]
combines more than two information sources for better performance. Moreover,
multiple information source could alleviate the data sparsity problems, therefore
the accuracy for side users are improved significantly.

Bob

Alex

Bob’s Historical Reviews

Cathy

Alex’s Historical Reviews

Cathy’s Historical Reviews

David

Alex

Alex’s Historical Reviews

time Scenario Scenario

Reviews

Fig. 1. Illustration of diverse online behaviors in scenario S1 and S2. Alex is prone to
select restaurants by friends in S1, while he would read reviews by himself in S2. Alex
is more likely to refer to Bob on the drumstick, while he would refer to Cathy on fruit.

However, most recent works failed to model the preference dynamics under
varying purchase contexts of users. Figure 1 illustrates an example for such phe-
nomenon. User Alex has different decision patterns in different scenarios S1 and
S2. In S1, he decides his purchase mostly on friends’ recommendations; while in
S2, he would turn to crowd-sourcing reviews since none of his friends have bought
his intended items before. Moreover, when referring to the friends, Alex will not
take all the social connections equally. For example in S1, Alex’s friend Bob is
familiar with local businesses selling drumstick, noodles and sand-witches, while
his another friend Cathy comes to eat taco, fruit and cakes from time to time.
Certainly, Alex may refer to Bob when looking for something like drumstick to
eat, and turn to Cathy for fruit recommendations at another time. Both diver-
sions of interests mentioned above come from evolution of temporal purchase
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Fig. 2. Illustration of HISR. Textual and social information are organized in sequential
view, and review text module and social attention module are aggregated by a novel
gating layer to produce hybrid rating predictions.

intentions, and algorithms for better preference evolution modeling is in need
for explicit and implicit combination of multiple views of data.

Based on the analysis above, we would address three limitations that hin-
der further exploitation of abundant information. Firstly, though recent research
combines multiple information sources, the preference of users are dynamic with
respect to contexts, rather than static. Secondly, some research works have
noticed distinct attention to users’ friends, while few of them find clues from tex-
tual reviews to implicitly enhance social attentions. Thirdly, for explicit module
combination, previous methods usually take fixed strategies like concatenations
or multiplications, which outdate in dynamical scenarios. Therefore, we would
follow three lines of thoughts to address these issues respectively. We design user
preference evolution in two views to tackle temporal contexts, extract temporal
purchase intentions from textual clues to enhance social attention for implicit
combination, and apply gating strategy that decides the extent and proportion
for explicit combination.

In this paper, we propose Heterogeneous Information Sequential
Recommendation System (HISR), a dual-GRU structure that combines review
text module and social attention module by a novel gating mechanism, and mod-
els evolution of users’ preference under dynamic contexts (as shown in Fig. 2).
In the review text module, we would extract semantic information from texts by
convolutional operations, and multi-dimension word attention layer reveals users’
interests from multiple aspects. In the social attention module, it takes extracted
textual representations as indicators, and measures the similarity score between
users’ current interests with his/her friends’ for implicit combination into social
attention. Both modules take advantages of GRU structures [5] for dynamic
modeling, where long-term textual preferences are learnt in the former module,
and short-term purchase intentions are utilized in the latter. Finally, the two
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modules are combined with a novel gating layer to select the informative parts
dynamically for explicit context-aware combination.

We validate our proposed method on two large real-world local business
datasets of Yelp1. Comparison of our methods with the state of the art base-
lines in sequential, social and heterogeneous methods respectively indicates that
our results outperforms the baselines on three major evaluation metrics. Through
ablation study, we also verify that our improvements come from effectively grasp
two views of data, and the explicit gating combination strategy is superior to
traditional ones. We provide a variant of model, HISR-SIM, as offline version
with pretrained social embedding that are more effective in training. A case
study is presented as well to visualize our sequential modeling results.

In conclusion, the major contributions of this paper are:

– Bring sequential dynamics into heterogeneous recommendations with textual
and social information, which constructs long-term preferences and short-
term intentions.

– Propose social attention module based on similarity measure of temporal
purchase intentions to deal with dynamic contexts.

– Apply a gating layer for explicit combination for two views of data, which fits
with heterogeneous dynamic model with more expressiveness.

2 Problem Formalization

Let U = {u1, u2, . . . , um} denote the user set of m users, and I = {i, i2, · · · , in}
denote the item set of n items. The set of reviews R = {Ru1 , Ru2 , . . . , Rum

} is
consist of reviews Ruj

for each user uj . In Ruj
=

{
R

(1)
uj , R

(2)
uj , . . . , R

(t)
uj

}
, R

(k)
uj is

the review text for user j at timestamp k (k ∈ {1, 2, 3, ..., t}). The rating set is
r = {ru1 , ru2 , · · · , rum

}, where ruj
=

{
ruj ,i1 , ruj ,i2 . . . , ruk,in

}
are the ratings for

user uj for items i1, i2, . . . , in. Social relations among users are represented by
matrix S ∈ R

m×m. Suv = 1 indicates u trusts v or u regards v as his/her friend,
otherwise Suv = 0.

Definition 1. Given user set U , item set I, review set R, social relation matrix
S, and rating set r, our top-N recommendation task is to learn a scoring function
φ : U × I × R × r × S → R from the dataset that replicates for each user its
perfect ranking.

3 Proposed Method

As is shown in Fig. 2, our proposed HISR consists of two components: review
text module and social attention module. Both modules take advantages of GRU
units to model the purchase dynamics and evolution, and two-side representa-
tions are combined by a novel gating layer as the final user representation for
rating predictions and top-N recommendations.
1 https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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3.1 Review Text Module

In the review text module, we aim to take advantage of reviews to learn long-
term purchase preferences as well as short-term intentions behind user behaviors.
Particularly, we hope to extract informative insights of user preferences, which
is useful for implicit and explicit combinations with social attention module.

Word Embedding Lookup. In the lookup layer, we would transform the words
into vector representations. Since it is not our main focus, we adopt pretrained
word embedding model GloVe [15] as our word embedding. Suppose the single
review text Rk

u for user u at timestamp k is consist of words [· · · , wi−1, wi, · · · ].
We could look up in the pretrained word embedding for each word wi, and
concatenate them to form a word embedding matrix s

(t)
u ∈ Rlr×de where lr is

the length of review text and de is the dimension of embedding word. Review
texts with more than lr words are clipped, and with less than lr words are
padded, so that each review contains exactly lr words.

Convolutional Operations. Convolutional operations in papers [11,21,23]
are utilized to extract contextual representations. Consecutive sentences in the
review and consecutive words in sentences are highly related, therefore we use it
to link the relevance among contextual words and produce the semantic infor-
mation in user’s review histories. The semantic extraction layer is put on each
review to get wc

i as the contextual representation for i-th word, denoting as:

wc
h,j = σ(sh− dc

2 :h+ dc
2

), (1)

where sh− dc
2 :h+ dc

2
is word sequence slice centering at h with sliding window

length dc , wc
h,j ∈ R1 is contextual representation for j-th convolutional filter,

and σ is the non-linear activation function. wc
i =

[· · · , wc
i,j−1, w

c
i,j , w

c
i,j+1, · · ·

]
,

wc
i ∈ Rdc , dc is the number of convolutional filters. Since different users have

distinct pieces of reviews on their documents, for simplicity, we set each user
have same number of reviews by clipping the latest reviews, and padding empty
ones. The user review embedding is Ek

u ∈ Rld×lr×dc at timestamp k, where ld is
the number of reviews in each user’s document.

Word-Level Multi-Dimensional Attention Mechanism. Attention Mech-
anism has been proved effective in multiple tasks in recent years [1,17,18]. As we
are inspired by the advances in review-related recommenders in [12,23], words in
the reviews do not always contain the same amount of information. Moreover, the
one-dimensional attentional weight could not grasp the diverse preference that
is revealed in the textual reviews. Therefore, we adopt the multi-dimensional
attention to avoid overly focus on one specific aspect of content. Specifically, the
attention mechanism is put on each review embedding representation Ek

u, and
the attention score Ak

u ∈ Rlr×da is defined as:

Ak
u = softmax

(
tanh

(
WcE

k
u + bc

)
Wa + ba

)
, (2)

where da is the dimension of attention, Wc ∈ Rdc×dc is the weight matrix for
convolutional representation, and ba ∈ Rdc×dc is the bias term. As the max
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pooling operation tends to lose information from the text when it overestimates
the informative words and underestimates others, we takes the attentive sum
of the word contextual embedding as the representation of each review. With
the activation function tanh(·), multi-dimensional weight matrix Wa ∈ Rdc×da

is put on the review representations:

pk
u = Ak

uEu, T k
u = pk

uWag, (3)

where pk
u ∈ Rdc×da is the attentional representation of review at timestamp

k, Wag ∈ Rda is the aggregation vector that combines attentions of multiple
aspects into one vector. Therefore, T k

u ∈ Rdc represents each review in the user
u’s document at timestamp k.

Temporal Preference Evolution. With the information we grasped through
the text processing and modeling above, we further propose to build the prefer-
ence evolution layer to dynamically grasp the long-term purchase habits as well
as short-term purchase intentions. Recurrent neural networks are widely-used
to build the sequential relations, specifically, we adopt Gated Recurrent Unit
(GRU) [5] to construct the evolution for user text modeling:

hk
u = GRU

([
hk−1

u , T k
u

])
. (4)

The hidden state hk
u ∈ Rdh at the last timestamp t will be regarded as text-

view long-term user embedding as it preserves user preferences for all times,
and the hidden state hk

u (k ∈ {1, 2, ..., t}) at corresponding timestamps will be
reckoned as short-term purchase intentions, which reflects fine-grained temporal
preference of users.

3.2 Social Attention Module

While the review text module extracts purchase preferences, in some cases the
sparsity of review texts and inactivity of user feed-backs on online services pose
difficulties. We propose social attention module to alleviate this issue, moreover,
to combine the short-term purchase intentions with temporal social reference as
indications for attention strength. Additional information from social networks
would be a promising complement for comprehensive user understanding.

Social Embedding Lookup. To characterize the preferences of each user in
the social network, we introduce the long-term user preference representation in
review text module ht

u as user embedding of user u:

eu = ht
u. (5)

Note that there is alternatives for lookup layer, pretrained network embed-
ding, which will be further elaborated in model discussions.

Temporal Mutual Attention. In order to grasp the evolution of trust for
different friends under dynamic scenarios, we need to bring in attention into
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temporal contexts. Recent trends in attention mechanism effectively assign dis-
tinct strengths to different friends. The attention would be bi-directional, there-
fore mutual attention indicates relevant attention between two people. We define
Attk(u, v) as the mutual attention score from user u to user v at timestamp k,
and it is measured by the similarity between convergence of users’ long-term pref-
erence and short-term intention and that of their friends at the corresponding
timestamp:

Attk(u, v) = cos
(
hk

u � eu, hk
u � ev

)
, (6)

where � is the element-wise production, which enhances users’ temporal pur-
chases and weaken his preference that is irrelevant to the context.

Hybrid User Embedding with Social Regularization. With the text-aware
mutual attention, we could get hybrid user social embedding. With user v in
friends S(u) of user u, the hybrid user embedding Mk

u is the weighted sum of
user embedding of user u at timestamp k, which aggregates the influence of
social relations with distinct strength:

Mk
u =

∑
v∈S(u)

Att(k)(u, v)ev. (7)

Social Attention Evolution. The attentions towards friends with respect to
time are not independent; instead, it is accumulative and based on previous
knowledge. Therefore, we would build the dual structure of gated recurrent unit
in social attention module alone with previous module to construct evolution on
cognition and impressions of users towards friends. gk

u for user u at timestamp
k indicates hidden state of social attention module, which lies in the same space
with hk

u in review text module, defined as:

gk
u = GRU

([
gk−1

u ,Mk
u

])
, (8)

where gk
u ∈ Rdh , and gt

u at the last timestamp t would be seen as compre-
hensive social representation as it aggregates the evolution of all times.

3.3 Gating Layer

Our both modules deal with dynamic contexts with sequential model, therefore,
the combination of the two need to fit with the dynamic nature and effectively
distill informative parts in two view of data. Instead of taking the prevalent
practices for representation combination, we apply a gating layer for a novel
combination of text-view and social-view user representations:

G = sigmoid
(
W1h

t
u + W2g

t
u + b

)
,

zu = G � ht
u + (1 − G) � gt

u,
(9)

where W1 ∈ Rdh×dh ,W2 ∈ Rdh×dh are weightings and b ∈ Rdh is bias term.
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Gating mechanism is widely used in many fields [9,12], and it has expressive
power by deciding how much is carried out from input to output. However, it
has not been fully exploited in heterogeneous recommendations. In our task, it is
particularly attracting when gating layer dynamically decides the way and pro-
portion to combine two views of information, especially in the dynamic contexts.
As we expect it to grasp users’ preference over social view and textual view, the
gating mechanism outshines other simple combination strategies and we would
further compare these in experiments.

3.4 Decode Layer for Rating Prediction

The decode layer is a multi-layer perceptron to decode the low-dimension latent
vector to reconstruct the rating predictions:

ru = decode(zu), (10)

where zu ∈ Rn is the rating predictions over n items for user u. As the decode
layer is a multi-layer neural network, it is to recover the user ratings from the
dense user embedding, where there is a linear transformation and tanh activation
for each layer respectively.

3.5 Training

The loss function is root-mean-square error with L2-norm regularization term:

J =
∑

(u,i)∈U×I

1ru,i∈r (r̂u,i − ru,i)
2 + λΘ‖Θ‖2, (11)

where Θ is collection of all parameters, and λΘ is the parameter of regularization.
Finally, we produce the top-N ranked list according to the rating predictions.

4 Experiments

4.1 Datasets

We adopt Yelp2 as our dataset. Yelp is a large collection of local business reviews
allowing users to rate items, browse/write reviews, and connect with friends. We
extracted two subsets on Ontario province in Canada and North Carolina state
in US. All the datasets are processed to ensure that all items and users have
at least five interactions (ratings and reviews). The statistical details of these
datasets are presented in Table 1.

2 https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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Table 1. Statistics of Yelp datasets

Datasets Yelp ON Yelp NC

# of users 27625 14780

# of items 18840 7553

# of ratings 553045 235084

# of of Density (ratings) 0.1063% 0.2105%

# of reviews 553045 235084

# of Social Relations 173295 75408

# of Density (social relations) 0.0333% 0.0675%

4.2 Baselines

To evaluate the performance on the recommendation task, we compared our
model with the following classical and state-of-the-art recommendation methods.

– PMF [13]: Probabilistic Matrix Factorization is a classical matrix fac-
torization variant that performs well on the large, sparse, imbalanced dataset.

– BPR [16]: Bayesian Personalized Ranking learns personalized rankings
from implicit feedback for recommendations.

– SBPR [25]: uses social connections to derive more accurate ranking-based
models by Bayesian personalized ranking.

– NCF [8]: Neural Collaborative Filtering is a recently proposed deep
learning based framework that combines matrix factorization (MF) with a
multilayer perceptron (MLP) for top-N recommendation.

– SASRec [10]: Self-Attentive Sequential Recommendation is the state
of the art self-attention based sequential model that captures long-term
semantics. At each time step, SASRec seeks to identify which items are ‘rel-
evant’ from a user’s action history, and predict the next item accordingly.

– SAMN [3]: Social Attentional Memory Network is a state of the
art method in social recommendation. The friend-level model based on an
attention-based memory captures the varying aspect attentions to his differ-
ent friends and adaptively select informative friends for user modeling.

– GATE [12]: Gated Attentive-autoencoder is state of the art method
for heterogeneous recommendation. It learns hidden representations of item’s
contents and binary ratings through a neural gating structure, and exploits
neighboring relations between items to infer users’ preferences.

4.3 Experimental Setup

Evaluation Metrics: We set four metrics: Precision@K measures what pro-
portion of positive identifications is actually correct. NDCG@K accounts for
the position of hits by assigning higher scores to hits at top ranks, while F1
score measures precision and recall comprehensively.
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Data Processing: We set our experiments under strong generalization: split
all users into training/validation/testing sets, and recommend for unseen users
in test stage. During testing, 70% of historical records are extracted for the
held-out users to learn necessary representations of the model, and are used to
recommend for the next 30% records. Strong generalization is more difficult than
weak generalization taken in baseline methods, where proportions of historical
records are held out for all users in testing.

Parameters: The parameter settings and hyper-parameters tuning of baselines
follow their corresponding paper to get their optimal performance. The param-
eters of ours are set with batch size 128, learning rate 0.01 with dropping half
every 5 epochs. The dimension of word embedding de is 50 by default. In review
text processing, each sentence is set to length lr = 40, and each user document
contains ld = 50 reviews. The number of convolutional filters (dc) is 64, and the
dimension of RNN hidden vector dh is 100. The decoder layer is three layer fully
connected neural networks, and the number of neurons is 600, 200 and 1. The
activation function for the neural networks are all ReLU, and that for all soft-
max layers is tanh. The regularization parameter 0.9 in the objective function.
The model is trained for 30 epochs by default.

4.4 Performance Comparison

Full results and comparisons are demonstrated in Table 2, and we have several
observations regarding the result table.

Firstly, As our anticipation, the performance on NC subset is better than
ON mainly because of lower sparsity in social relations and reviews. The density
of yelp NC subset is twice as that of ON, while our model could address sparsity
issues and narrows the gap between two datasets.

Table 2. Performance comparison with baselines

Method Yelp ON Yelp NC

F1 P@10 NDCG@10 F1 P@10 NDCG@10

PMF [13] 0.000379 0.000298 0.000346 0.000590 0.000414 0.000456

BPR [16] 0.011038 0.007716 0.015311 0.019033 0.012602 0.027625

SBPR [25] 0.007566 0.004781 0.012324 0.014571 0.008900 0.024261

NCF [8] 0.011732 0.008365 0.015314 0.015886 0.010643 0.021759

SASRec [10] 0.012565 0.008726 0.016371 0.025737 0.019216 0.031811

SAMN [3] 0.013633 0.008767 0.019660 0.021426 0.013217 0.035317

GATE [12] 0.014123 0.011794 0.012770 0.021861 0.014468 0.016295

HISR-SIM 0.018735 0.016894 0.017594 0.027747 0.026890 0.027989

HISR 0.019145 0.019392 0.020303 0.028181 0.025437 0.035620

Improvement 35.55% 64.42% 3.27% 9.49% 32.37% 0.85%

Note: Underline here represents the best result that the baseline achieves on the
corresponding metric.
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Secondly, as the heterogeneous method, we argue that our recommender is
better than that for single information source. Moreover, our results are bet-
ter than the recent heterogeneous methods GATE, which utilizes gating layer
for information combination, but fails to model the contextual dynamics. Fur-
thermore, our proposed similarity metric to build mutual social attention could
better address the issues in text modules and makes them a deeper combination.

Thirdly, for social recommenders, SBPR leverages social connections, how-
ever, it fails to build the sequential dynamics. Even though SAMN captures
social connections with attention mechanism, lack of social data for side users
could limit its potential. SAMN has relatively good ranking quality with high
NDCG, but comes with lower prediction accuracy.

Finally, as sequential recommender, SASRec has achieved great efficiency.
Self attention structure is validated to be powerful in many tasks, however,
empirical practices indicates that recurrent network still achieves comparable
results for sequential dynamics modeling.

5 Model Discussions

5.1 Variant of the Model

Our proposed model takes output of textual review module as user embedding for
social attention module. However, this embedding technique only leverages one-
hop local connection As network embedding techniques could grasp highly non-
linear global network structure, we adopt the work of SDNE [19] as pretrained
social embedding of social attention module. The variant of the model is denoted
as HISR-SIM. The pretrained user embedding is not necessarily on the same
embedding space with the review module, so we apply a linear transformation.

As illustrated in Table 2, HISR-SIM is comparable to original HISR. Note
that as user embeddings are pretrained, it saves much time and GPU memory
during the training process, and the performance is more stable than HISR.
HISR-SIM identifies the generalizability, and is more suitable for offline version.

5.2 Ablation Study

We set our ablation in two aspects and four variants. We argue that not only
multiple information sources cover the side users for better recommendation
accuracy, but the gating layer for explicit embedding combination improves the
overall performance as well, as shown in Fig. 3.

Firstly, to validate the effectiveness of combination of multiple information
sources, we would conduct split experiments on social component and review
component, denoted as HISR-Text and HISR-Social, respectively. We block the
one of the modules, and take another module to decode and recommend directly.
Note that as the social attention component utilizes the representations in the
review text module, there is no explicit combination of the two. As is shown,
HISR-Text achieves better performance on four metrics than HISR-Social. Since
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Fig. 3. Ablation study

the performance of both modules are lower than heterogeneous one, we argue
that two modules address different aspects in users’ preferences respectively,
while combination of the two covers the side users for both modules.

Secondly, we would validate effectiveness of our gating layer for explicit com-
bination. For comparison, we take two mostly adopted methods for vector com-
bination: Hadamard product (element-wise multiplication) and concatenation.
As is shown in Fig. 2, both the combination strategies fail to outperform our
gating strategy. Concatenation presents more power than Hadamard product,
especially on recall. However, neither of the alternative combination strategies
could grasp the side preferences for side users as gating mechanism does.

5.3 Hyper-Parameter Sensitivity Analysis

To analyze reproducibility and generalization of HISR, we evaluate influence
of hyper-parameters. We take four representative ones, word embedding size,
regularization weight, hidden state size in RNN, and attention dimensions, for
more experiments. The default values are 50, 0.9, 100 and 30, respectively.

Word Embedding Size. The pretrained word embedding comes from
Wikipedia 2014 corpus3. In Fig. 4(a), the performance on four metrics drops
slightly with the increasing embedding size. The choice of embedding size has
relatively little influence on final results, so the short embedding is good enough
while saving memory and training time in practice.

Regularization Term Weight. Empirical practices indicate that weight near
0.9 leads to good results. In Fig. 4(b), smaller values of regularization takes lower
results, probably falls in overfitting. When the regularization increases, NDCG
increases while other metrics decreases. for model perform stability, we need to
set a medium regularization to avoid overfitting or underfitting.

3 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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(a) Embedding Size (b) Regularization Weight

(c) Hidden Size (d)Attention Dim

Fig. 4. Performance w.r.t different hyper-parameter settings

Hidden Size in Recurrent Neural Networks. Figure 4(c) compares results
for the experiments. The result of recall increases as the hidden size increases,
probably because higher dimension of user representation is more expressive and
makes our model to retrieve desired business from candidate list.

Dimension in Word Attention. Figure 4(d) illustrates that NDCG increases
significantly when the dimension increases, indicating that the desired items are
ranked top. Precision is improved as well, showing probably that our model could
better distinguish unfavorable businesses from favorable ones.

5.4 Case Study

To present our results more explicitly, we extract a recommendation scenario
shown in Table 3. We list training part and ground truth for an anonymous
user, namingly Alex in Yelp dataset. Alex is a representative user, as the other
half, who has only a few pieces of reviews and lacks social contacts on online
platforms. Scenarios like this would be generally difficult for recommenders, even
impossible for pure social recommendations. We retrieve top 5 model outputs.
Note that the business names and categories are all invisible to the model, and
they are only for demonstration in the case study.

As is shown in Table 3, the samples in the dataset are put in the sequential
order. We could guess from the information that Alex generally takes reviews on
restaurants, and he maybe likes Asian food (and occasionally European food).
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Table 3. Case study of user recommendation on imbalanced sparse data

Date Name Category Rate

Training ‘2016-03-30’ ‘Burger Factory’ ‘ Food, Halal, Burgers,

Desserts’

5.0

‘2016-04-05’ ‘Reyan Restaurant’ ‘Middle Eastern, Halal,

Sandwiches’

5.0

‘2016-04-07’ ‘Roman Zaman’ ‘Middle Eastern,

Mediterranean, Greek’

5.0

‘2017-10-03’ ‘Braiseryy’ ‘Brazilian, Chicken Wings’ 5.0

Recommended – ‘Schnitzel Queen’ ‘Sandwiches, German,

Restaurants’

–

– ‘Blossom Vegetarian’ ‘Buffets, Restaurants,

Vegetarian’

–

– ‘Dumplings&Szechuan’s’ ‘Chinese, Restaurants’ –

– ‘Cece Sushi’ ‘Sushi Bars, Japanese,

Restaurants’

–

– ‘Istanbul Kebab House’ ‘Mediterranean, Pizza,

Turkish, Kebab’

–

Ground truth ‘2018-03-10’ ‘Seafood City’ ‘Grocery, Food’ 2.0

‘2018-03-10’ ‘The Maharaja’ ‘Indian, Nightlife, Bars,

Pakistani’

5.0

‘2018-03-15’ ‘Istanbul Kebab House’ ‘Mediterranean, Pizza,

Turkish, Kebab’

5.0

He puts full stars for the restaurants he went in 2016 and 2017. As is shown in
our top-5 recommendations, Chinese and Japanese food are recommended, as
well as German restaurants. There is a hit on Mediterranean’s food, where Alex
later comes to this restaurant and leaves full stars.

6 Related Work

Recommendation with Review Texts. With the advances in natural lan-
guage processing, there are some works that take advantages of the review texts
to learn user preferences. [23] proposes to take reviews to model the latent fac-
tor for user-item pairs instead of a static representation. [20] used a joint tensor
factorization method of two tasks: user preference modeling for recommendation
and opinionated content modeling for explanation. [7] extracts aspects from user
reviews, and put attentive models to aspects and friends. [2,11,23] uses convo-
lutional neural networks to extract semantic information from reviews. [20] uses
sentiment analysis and joint tensor factorization for recommendations.

Social Recommendation. An influential work in social recommendations [25]
leverages social correlations for recommendations, and the underlying theory
is that users’ behaviors are influenced or similar to his/her friends, proven by
social correlation theories. We take the state of the art method [3] as our baseline,
where it adopts memory network to indicate different strength and aspects when
attending friends’ preferences.
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Sequential Recommendation. Sequential recommendation has achieved great
success to model dynamic users’ preference in recent work. [10] takes advantages
of recent self-attention mechanism to build the sequential model. [4] uses memory
network when building a memory matrix for each user to record their historical
purchases or feature-level preferences. [24] employs variational inference to model
the uncertainty in sequential recommendation.

Recommendation with Multiple Information Sources. Heterogeneous
recommendation falls into two lines. In the first, the hybridization of algorithms
integrates different recommendation techniques. [6] presents a joint optimization
framework for the multi-behavior data for users. [14] designs a review encoder
based on mutual self attention to extract the semantic features of users and
items from their reviews. [22] is a recent work that combines reviews of encoder-
decoder with user-item graph with attentive graph neural networks. [12] is the
state of the art baseline that combines ratings and reviews with a gating layer,
and finds the one-hop neighbors to enhance recommendations. In the second,
hybridization of information combines information of heterogeneous data forms,
and heterogeneous information networks (HIN) is the representative approach.

However, there is few work that model the sequential dynamics in users’ pref-
erence with multiple information sources. While sequential model builds the rules
of purchase habits, the sparsity problem in the dataset may harm the perfor-
mance if there are cold start users and aspects of items. The problem mentioned
above made the performance of previous recommendations constrained.

7 Conclusion

In this paper, we propose Heterogeneous Information Sequential Recommenda-
tion System (HISR) which tackles recommendations under dynamical contexts.
The combination of multiple information sources lies in two parts: the gating
layer for explicit infusion of two views of data, and the implicit combination
in social attentional module. To our best knowledge, we are first to combine
the sequential dynamics with the multiple information sources, and present the
dual-GRU structure to model review texts and social attentions. Further, we
evaluate our proposed method with real local business dataset. We also validate
effectiveness of module components by ablation study and further discussions.
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Abstract. Sequential recommendation is essentially a learning-to-rank
task under special conditions. Bayesian Personalized Ranking (BPR) has
been proved its effectiveness for such a task by maximizing the mar-
gin between observed and unobserved interactions. However, there exist
unobserved positive items that are very likely to be selected in the future.
Treating those items as negative leads astray and poses a limitation to
further exploiting its potential. To alleviate such problem, we present a
novel approach, Sequential Recommendation GAN (SRecGAN), which
learns to capture latent users’ interests and to predict the next item in
a pairwise adversarial manner. It can be interpreted as playing a min-
imax game, where the generator would learn a similarity function and
try to diminish the distance between the observed samples and its unob-
served counterpart, whereas the discriminator would try to maximize
their margin. This intense adversarial competition provides increasing
learning difficulties and constantly pushes the boundaries of its perfor-
mance. Extensive experiments on three real-world datasets demonstrate
the superiority of our methods over some strong baselines and prove the
effectiveness of adversarial training in sequential recommendation.

Keywords: Sequential recommendation · Generative adversarial
networks · Pairwise comparison · Interest evolution

1 Introduction

In an era of data deluge, users are increasingly immersed in massive informa-
tion and options, which calls for effective and powerful recommendation systems.
Different from traditional methods such as Collaborative Filtering (CF), sequen-
tial recommendation has a distinct edge in capturing users’ dynamic interests
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and thus gains extensive attention in recent years. Research in this field have
developed different schools of thinking. A classical method is to model users’
behaviors through Markov Chain, which assumes that their feature behaviors
depends on the last few ones [7,16]. Another method is based on deep learning
approaches. This includes prevailing techniques such as recurrent neural network
[9,10], self-attention mechanism [11], convolutional neural network [17] and dual
structure [14,22].

The core of sequential recommendation can be formulated as creating a user-
specific ranking for a set of items with user’s recent behavioral history. Bayesian
Personalized Ranking (BPR) [15] has been proved its effectiveness for such a task.
It is a pairwise learning-to-rank method that maximizes the margin as much as
possible between an observed interaction and its unobserved counterparts [8].
This behavior of BPR treats the unobserved positive items equally the same as
those negative items. However, those unobserved positive items are very likely
to be selected in the future and its margin with the observed items should be
minimized instead of maximized naively. Thereby, in this work, we aim to explore
an extended version of BPR which could wisely determine the margin to alleviate
above problem.

Inspired by the success of applying GAN in recommendation system [2,19,
21], we concentrate upon the integration of adversarial training with BPR and
propose a GAN-based Sequential Recommender, called SRecGAN. This combi-
nation enjoys merits from both sides: the adversarial training helps the model to
find a certain margin instead of maximizing it naively, while the pairwise learn-
ing pushes the model to its limit. The formulation of SRecGAN can be seen as
playing a minimax game: given the dynamic interests state from the sequential
layer, the generator strives to learn a similarity function. With pairwise compar-
ison, a score difference (i.e. margin) is obtained between an instance pair rated
by the generator which preserves the preference information. On the other hand,
the discriminator focuses on classification task and learns to judge the rational-
ity of the generated margin. When the game reaches equilibrium, the generator
can effectively capture user’s dynamic interests and produce high-quality recom-
mendations.

Extensive experiments have been carried out to verify the feasibility of our
method over three real-world datasets compared with several competitive meth-
ods. The results show that SRecGAN achieves significant improvements on var-
ious evaluation metrics. Furthermore, a series of ablation studies further justify
the rationality of our framework. The main contribution of our paper can be
summarized as follows:

– We explore the integration of adversarial training with BPR and propose a
novel framework called SRecGAN. Such combination helps to ease the issue
that unobserved positive items are misleadingly treated.

– We design the sequential layer to effectively capture the user’s interests as
well as their evolving process and dynamics. Furthermore, we evaluate some
sequential extraction methods realized under SRecGAN framework to verify
the versatility of the module.
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– We conduct extensive experiments and ablation studies on three real-world
datasets. The results not only show the superiority of our method, but also
justify the rationality of our framework.

The rest of the paper is organized as follows: Sect. 2 formalizes the problem
and lists the notation. Section 3 describes the design of SRecGAN model and
the proposed interest capturing method in details. Experimental results are pre-
sented in Sect. 4 and Sect. 5 introduces the related work to this paper. Finally,
Sect. 6 concludes this paper.

2 Preliminary

In sequential recommendation problem, we denote a set of users as U and a set
of items as I. Each user u has a chronologically-ordered interaction sequence
of items S = {s1, s2, . . . , s|S|}, where sk ∈ I. For fairness, we constrain the
maximum length of the sequence that our model handles down to n and denote
s := {(s1, s2, . . . , sn)} as the subsequence set of entire sequence.

BPR is a generic method for personalized ranking and can be seamlessly
transferred into sequential settings. Given a historical interaction sequence s of
a user u, it assumes that u prefers the observed item I+

u,s over all other non-
observed items as the next item to act on. To this end, the margin between an
observed interaction and its unobserved counterparts is maximized as much as
possible. We create pairwise training instances Q by:

Q := {(u, s, i, j) | i ∈ I+
u,s ∧ j ∈ I \ I+

u,s}

and the objective function of BPR to be minimized is

JBPR(Q | Θ) =
∑

(u,s,i,j)∈Q
− ln σ (ŷu,s,i(Θ) − ŷu,s,j(Θ)) + λΘ‖Θ‖2

where σ(·) is the sigmoid function, ŷu,s,i(Θ) is an arbitrary real-valued simi-
larity function of the model parameters vector Θ, and λΘ are model specific
regularization coefficient.

3 Methodology

In this section, we elaborate technical details for our proposed model SRecGAN.
First, we introduce the generator and discriminator of SRecGAN as shown in
Fig. 1. Then we highlight the techniques used for capturing users’ interests evo-
lution and detail the specifications of the sequential layer.
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Fig. 1. The framework of SRecGAN. The generator (G) and the discriminator
(D) play a minimax game with each other during the training. When the game reaches
equilibrium, G can effectively capture user’s dynamic interests and produce high-quality
recommendations.

3.1 Generator

The generator is widely designed to learn the distribution of ground truth data
with a fixed similarity function and then samples the most relevant items to
a given user. However, back-propagation would be invalid since this sampling
procedure is non-differentiable [23]. Distinctively, our generator strives to learn
the user-item representations and the flexible similarity function simultaneously.
Given a pairwise interaction quartet q = (u, s, i, j) ∈ Q, we can obtain two
triplets τi = (u, s, i) and τj = (u, s, j). As shown in Fig. 1, through sequential
layer, the generator captures the dynamic interest patterns in the sequence s
first and then estimates the preference score r(τ) that reflects the chance of item
i being selected by user u as the next item. Concretely, we have

r(u, s, i) = σ(fh(ruser
E (u), ritem

E (i), fs(ritem
E (s)))) (1)

where fh(·) is the fully-connected layer, fs(·) is the sequential layer.
ruser
E (·), ritem

E (·) are the embedding layers for user and item respectively. Here
we skip the details of the structure, which can be found in Sect. 3.3.

Normal generative models focus on the score itself, however, user bias causes
distinct variation in rating values [13]. In other words, different users have dif-
ferent rating standards, some users have the tendency to give higher ratings
while some rate conservatively. Based on the theory that the weighing of the
scales reflects a user’s preference, i.e. r(τi) > r(τj) means user u with sequence
s prefers item i to item j as the next item to click, we calculate the score dif-
ference between each pairwise comparison to preserve the valuable preference
information.

ΔGθ,q = r(u, s, i) − r(u, s, j) (2)
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3.2 Discriminator

The traditional discriminator in policy gradient based GAN is in fact a binary
classier to predict the label of each item [19]. CFGAN [2] demonstrates that such
a paradigm inevitably encounters the dilemma where the generator samples the
items exactly the same as those in ground truth, causing a large proportion of
contradictory labeled items in the training data. Therefore, the discriminator is
confused and produces wrong feedback signals to the generator. This issue ends
with the degradation of both generator and discriminator.

To exploit the potential of the generator, our discriminator forces the score
difference of each comparison to approximate a critical margin which renders it
improved labeling. Each instance of the discriminator includes the same pairwise
interaction quartet q = (u, s, i, j) ∈ Q, the score difference ΔGq between item i
and item j, and the label � of the instance. All the instance whose score difference
comes from the generator will be labeled as −1, whilst others will be labeled as
1 if it comes from the ground truth data. We equip those ground truth data with
an ideal score difference ΔG∗

q , which is set to be the maximum of all possible
values. Specifically, we have

dφ(ΔGq, u, s, i, �) = σ(� · fh(ΔGq, d
user
E (u), ditem

E (i), fs(ditem
E (s)))) (3)

where σ(·), fh(·), fs(·) is the same as the aforementioned, duser
E (·), ditem

E (·) are
the embedding layers for user and item respectively.

ΔGq =

{
ΔGθ,q if � = −1
ΔG∗

q if � = 1
(4)

Optimally, the discriminator can not be fooled even when the generated score
difference approaches the critical margin.

3.3 Layer Structure

Embedding Layer. Embedding is widely used to map discrete symbols into
continuous embedding vectors that reflect their semantic meanings. To better
encode user’s and item’s features, we create a user embedding matrix M ∈
R

|U|×du and an item embedding matrix N ∈ R
|I|×di where du, di are the latent

dimensionality respectively. The k-th user u is first encoded as a one-hot vector
where only the k-th value is 1 and other values are zero, then we retrieve the
corresponding latent vector eu ∈ M to represent the static preferences and
interests. Similarly, we can retrieve ei ∈ N for item i to characterize its static
attribute and influence. For padding item, we set its embedding to be a constant
zero vector 0. Note that in SRecGAN, the generator and discriminator are two
self-contained models, so we adopt independent embedding parameters for them.

Sequential Layer. We leverage the sequential layer to capture users’ imper-
ceptible yet dynamics interests. Since the interest extraction is independent of
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Fig. 2. Illustration of a user’s interest evolution. Movies are aligned in chronological
order. There are two streams of user’s interest evolution, namely sci-fi and thought-
provoking movie interest evolution.

the adversarial learning framework, we design the generator and discriminator
to share the same architecture in sequential layer.

A significant feature of a user’s behavior patterns is the constant evolution
of his interests [26]. Using Fig. 2 as an example, after watching Interstellar, the
user dove into exploring more sci-fi movies. What’s more, there is another stream
indicates that the user’s interests in thought-provoking movie evolved. This figure
vividly shows that the user’s interests can not only evolve, but also drift from
stream to stream. Capturing this interest evolution amplifies the representation
of dynamic interests hd with more relative history information and leads to a
better prediction by following the interest evolution trend.

We follow the trend to combine GRU with attention mechanism [26]. Differ-
ent from the inner attention-based GRU [18], we implement attention mechanism
to activate relative items in the behavior sequence to target item first and then
use GRU to learn the evolving interest. Here we apply additive attention [1] and
the attention weight of candidate item i on clicked item j can be

aij =
exp(WA [ej ,ei] + bA)

n∑

k=1

exp(WA [ek,ei] + bA)

(5)

where WA is the weight matrix and bA is the bias vector. Then, the t-th hidden
states ht of GRU with t-th item embedding et is computed by

ut = σ (W uaitet + Uuht−1 + bu) (6)
rt = σ (W raitet + U rht−1 + br) (7)

h̃t = tanh
(
W haitet + rt ◦ Uhht−1 + bh

)
(8)

ht = (1 − ut) ◦ ht−1 + ut ◦ h̃t (9)

where σ(·) is the sigmoid function, ◦ is element-wise product, W u,W r,
W h,Uu,U r,Uh are the weight matrices and bu, br, bh are the bias vectors.
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After reading the behavior sequence, the final hidden state of the GRU is the
summary vector hd which reflects user’s dynamic interests.

Prediction Layer. In generator, we concatenate user embedding eu, candidate
item embedding ei and dynamic interests hd for future score prediction. In
discriminator, we concatenate user embedding eu, positive item embedding epos,
negative item embedding eneg, dynamic interests hdpos

,hdneg
which represent the

relevance between behavior sequence and the corresponding candidate items, the
score difference together for future classification. We leverage an oft-used “tower”
network structure for prediction where the bottom layer is the widest and each
successive hidden layer reduces the number of units [3].

3.4 Training Algorithm

This subsection describes the training regime for our models. To learn the prefer-
ence distribution, given a similarity function, the generator would try to dimin-
ish the distance between the observed samples and its unobserved counterpart,
whereas the discriminator would try to maximize their margin. In other words,
the generator and the discriminator play the following two-player minimax game
with value function:

min
θ

max
φ

J(G,D) = EΔG∗
q∼PΔG∗

[
log Dφ

(
ΔG∗

q

)]
+

Eq∼PQ [log (1 − Dφ (ΔGθ,q))]
(10)

where q = (u, s, i, j) ∈ Q, PQ is the empirical preference distribution, and
PΔG∗ is the pursued score difference distribution. Separately, our discriminator’s
objective function, denoted as JD, is as follows1:

JD = − EΔG∗
q∼PΔG∗

[
log Dφ

(
ΔG∗

q

)] − Eq∼PQ [log (1 − Dφ (ΔGθ,q))]

= − ∑
q log Dφ

(
ΔG∗

q

) − ∑
q log (1 − Dφ (ΔGθ,q))

(11)

And, similarly, that of our generator is:

JG = Eq∼PQ [log (1 − Dφ (ΔGθ,q))]
=

∑
q log(1 − Dφ(ΔGθ,q))

(12)

Here we provide the learning algorithm as shown in Algorithm1. It is note-
worthy that we initialize the generator using BPR (line 2). The reason is that
during the implementation, we discover that the generator with randomly initial-
ized parameters would possibly encounter mode collapse at early stage, where it
finds a trivial solution to fool the discriminator: i.e. rating every instance simply
the same without considering users’ preference at all. This is due to the fact
that the intense adversarial training in the early stage with meaningless initial
1 For simplicity, we define both of the objective functions to be a minimization prob-

lem.
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Algorithm 1. SRecGAN
Input: training quartet set Q, learning rate μG for the generator (G) and μD for
the discriminator (D), minibatch size MG for G and MD for D.

1: Initialize generator’s parameters θ and discriminator’s parameters φ.
2: Pre-train θ with BPR.
3: for number of training iterations do
4: for D-steps do
5: The generator generates score difference for each quartet (u, s, i, j) in Q
6: Update D by φ ← φ − μD

MD
· ∇φJD

7: end for
8: for G-steps do

9: Update G by θ ← θ − μG

MG
· ∇θJ

G

10: end for
11: end for

embeddings may easily lead astray. To prevent this, we pre-train the generator
to obtain better parameters.

By fully exploiting the potential of GAN, our proposed framework produces
the synergy effect between the generator and the discriminator and is able to
catch the intricate relationships between users and items. When the adversarial
training ends, our generator can provide high-quality recommendations.

3.5 Discussions

In this subsection, we point out the limitation of BPR, which motivates us to
propose SRecGAN. As we have indicated before, BPR improves itself by maxi-
mizing the margin between observed and unobserved interactions. However, due
to users’ limited exposure to the data, the unobserved interactions are actually
a mixture of both unobserved negative samples and positive ones. Unobserved
negative samples refer to interactions that have not yet happened and would also
not happen in the future, while unobserved positive samples are the potential
interactions that are very likely to happen in the future but have not yet been
exposed to users. Without prior knowledge, one can hardly distinguish those
two kinds of samples. By ignoring the unobserved positive samples and naively
maximizing its margin with the observed ones, BPR poses a limitation to further
exploiting its potential.

Fortunately, in SRecGAN, the above problem can be alleviated to a certain
degree. We draw an analogy in Fig. 3. There exist linking lines between observed
positive items and unobserved positive items, indicating their potential future
interactions. In each epoch of training, the generator tries to minimize the margin
between the observed and unobserved samples. When their margin get closer
to the critical point, the discriminator get confused. For the discriminator, its
mission is to judge the rationality of the generated margin and tries to score
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Fig. 3. An Illustration of SRecGAN training.

down the unobserved samples, to put it another way, maximizing the margin
between observed and unobserved samples.

Eventually, when the game reaches a dynamic equilibrium, the generator can
effectively estimate the preference distribution. The unobserved positive items
would be assigned with higher scores and ranked before the negative ones since
they are linked to those observed ones.

Table 1. Dataset statistics

Dataset #User #Item #Actions Sparsity

MovieLens-100K 943 1349 99287 92.20%

MovieLens-1M 6040 3416 999611 95.16%

Netflix 10000 5332 4937186 90.74%

4 Evaluation

This section comprehensively analyzes the results of our extensive experiments
to show the effectiveness of our models. Our experiments are designed to answer
the following research questions:

– RQ1: How effective is it to integrate BPR with adversarial training?
– RQ2: How do the key hyper-parameters affect the accuracy of SRecGAN?
– RQ3: How does SRecGAN perform compared with other strong methods?
– RQ4: Is sequential layer in SRecGAN a generic module?
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4.1 Experimental Settings

In this subsection, we reveal our experimental details.

Dataset. We adopt three real-world datasets: ML-100K [6], ML-1M [6] and
Netflix. For Netflix dataset, we randomly sample 10,000 users with their rated
movies for the evaluation. Table 1 summarizes their detailed statistics. Follow-
ing the experiment setting of [11], we treat users’ ratings as implicit feedbacks
and leave the last two most recent items as the testing set while the rest as
the training set. Note that during testing, the input sequences contain training
actions.

Comparison Methods. To show the effectiveness of our methods, we include
four related mainstream sequential recommenders and two GAN-based recom-
menders, which are listed as follows:

– GRU4Rec+ [9]: An improved version of GRU4Rec with different loss func-
tion and sampling strategy. Note that GRU4Rec is the pioneering work that
applies RNNs in session-based recommendation.

– DEEMS [22]: A novel dual structure method that unifies sequential recom-
mendation and information dissemination models via a two-player game. It
leverages the dynamic patterns of both users and items for prediction. Note
that DEEMS has two variants and we choose the stronger one, i.e. DEEMS-
RNN, as the baseline.

– DREAM [24]: A RNN-based model for next basket recommendation.
DREAM is able to enrich users’ representation with both current interests
and global sequential features for better prediction.

– SASRec [11]: A self-attention based model which adaptively learns the
dependency between items. It achieves very competitive performance in
sequential recommendation task.

– IRGAN [19]: A GAN-based method that combines generative and discrimi-
native information retrieval via adversarial training, in which a simple matrix
factorization is used. Note that IRGAN is the first to introduce GAN to rec-
ommendation system.

– CFGAN [2]: A novel collaborative filtering framework with vector-wise
adversarial training.

Evaluation Metric. We adopt three popular top-K metrics to evaluate the
performance: AUC, NDCG@K, P@K. The former two are ranking-based met-
ric while the last one is accuracy-based. In the generated recommendation list,
accuracy-based metrics focus on how many correct items are included while
ranking-based metrics are sensitive about the ranked position of correct items.
In this experiment we set K equal to 3.

Implementation Details. First and foremost, we set the number of hidden
units in the generator as 128 ReLU → 64 ReLU → 32 ReLU → 8 ReLU and
32 ReLU → 8 ReLU in the discriminator. In the sequential layer, we set the
units number of GRU hidden states to be 32, and use Xavier [4] initialization
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and orthogonal initialization for the input weights and recurrent weights of GRU
respectively. For the biases, we initialize them as zero vectors. We choose Adam
[12] optimizer for fast convergence and set the learning rate to be 0.005 for
the generator and 0.001 for the discriminator. The mini-batch size is 256 and
the maximum length of user’s behavior sequence is 10. In the training stage, for
each user, we see the real next behavior as positive instance and sample negative
instance from item set except the clicked items. In order to keep the balance,
the number of negative instance is the same as the positive instance.

4.2 RQ1: Effectiveness of Adversarial Training

Fig. 4. Learning trend of SRecGAN and BPR on ML-100K and Netflix (left). Hit Ratio
improvement when deliberately marks some observed items as unobserved ones (right).

We conduct two experiments to address following problems: (1) How is the
effect of adversarial training? (2) Can unobserved positive items really be ranked
before the negative ones? In so far as the first issue is concerned, we pre-train
the generator with BPR for 10 epochs. After that, our experiment is divided
into two branches, one of which keeps training the generator with BPR, and
the other branch activates adversarial training, i.e. SRecGAN. Figure 4 show
the performance of BPR and SRecGAN on ML-100K and Netflix respectively.
As we can see, after 10 epochs, the BPR model can hardly elevate its accuracy
in both datasets. By contrast, adversarial training can significantly boost the
performance and gains around 4% and 1% improvements in ML-100K and Net-
flix. Then in terms of the second, since we do not know users’ potential future
interactions, we deliberately mark the last 10% observed items in the training
set as unobserved positive items and view it as negative during the training. We
employ hit ratio HR@K to measure how many above items are recollected in
first K items, where K in [10, 30, 50, 100]. The right subgraph in Fig. 4 demon-
strates that SRecGAN gains 15% HR@10 improvement compared to BPR on
ML-100K, which shows the superiority of SRecGAN in rating those unobserved
positive items.

Both experiments well confirm our assumption. Different from BPR method
that strive to maximize the margin between positive and negative items accord-
ing to a static optimization goal, SRecGAN utilizes pair-wise adversarial training
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to adjust the guidance for generator in a dynamic way. Such mechanism not only
provides stricter supervisory signals to help adjust the generator efficiently, but
also benefits the generator to rate those unobserved positive item properly.

4.3 RQ2: Influence of Hyper-parameters

Fig. 5. Results of different hyper-parameter settings in SRecGAN.

We study the influence of some key hyper-parameters in SRecGAN on ML-
100K in this section as demonstrated in Fig. 5.

Influence of Embedding Size. As aforementioned, we adopt independent
embedding parameters for the generator and discriminator. We denote them as
r and d respectively. Figure 5 shows how the AUC and GAUC change as the
embedding size varies from 4 to 64. To achieve the best performance, we set
embedding size as 64 and 8 for generator and discriminatory respectively in the
following experiments. This size discrepancy mainly due to the different task of
generator and discriminator.

Influence of Hidden Units Size in Sequential Layer. We change the size of
hidden units h from 32 to 256 to explore how it affect the model’s performance.
From Fig. 5, we observe that both AUC and GAUC reach the peak when the size
is 32. A large hidden layer may result in overfitting and heavy computational
cost. Therefore, we set the hidden layer size as 32 in the following experiments.

4.4 RQ3: Performance Comparison

By analyzing Tables 2, we can find that our proposed model SRecGAN have
superior recommendation accuracy than all the competitors on three evaluation
metrics. For example, SRecGAN outperforms the strongest baseline SASRec
by 1.61%, 1.38%, 2.01% in terms of AUC, P, NDCG on Netflix, respectively.
The main reasons are two-folds. First, by leveraging a neural network, our gen-
erator is capable of handling the complicated interactions between users and
items. Therefore, more reasonable prediction scores can be obtained. Second,
the improvement mainly comes from the difference in the training approach.
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Table 2. Experiment results

ML-100K ML-1M Netflix

AUC P NDCG AUC P NDCG AUC P NDCG

IRGAN 0.739 0.505 0.698 0.799 0.542 0.760 0.755 0.512 0.719

CFGAN 0.772 0.525 0.750 0.848 0.578 0.829 0.768 0.519 0.738

DEEMS 0.778 0.532 0.737 0.815 0.554 0.783 0.814 0.554 0.785

DREAM 0.798 0.549 0.762 0.837 0.568 0.807 0.822 0.560 0.796

GRU4Rec+ 0.803 0.544 0.772 0.860 0.579 0.840 0.755 0.506 0.716

SASRec 0.863 0.589 0.848 0.881 0.599 0.864 0.871 0.575 0.845

SRecGAN 0.882 0.587 0.862 0.893 0.606 0.876 0.885 0.583 0.862

Our intense competition between the discriminator and the generator results
in mutual progress. Consequently, the method can achieve higher accuracy in
recommendation.

Fig. 6. Performance comparison of different sequential layer settings.

4.5 RQ4: Ablation Study on Sequential Layer

We design the sequential layer as a generic module to capture user’s dynamic
interests. In addition to our GRU over attention methods, more methods can be
implemented in this layer, such as GRU [9], Attention [11] and CNN [17]. We
rebuild the sequential layer with these oft-used techniques and investigate their
perform difference. Figure 6 shows the feasibility of these techniques and verifies
the versatility of sequential layer. Furthermore, we observe that our method pro-
vides recommendation accuracy consistently and universally higher than other
methods.
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5 Related Work

5.1 Sequential Recommendation

Sequential behaviors usually reveal a user’s preferences and thus, mining sequen-
tial patterns is critical for recommendation systems to make more accurate pre-
dictions. Some sequential recommendation models base their work on Markov
Chain (MC) method. FPMC [16] is a representative baseline that integrates
matrix factorization (MF) with first order MC to model the transition between
adjacent items. Later on, FOSSIL [7] improved the performance by fusing
similarity-based method with high-order MC, which can better model both long-
term and short-term dynamics.

Another line of work focus on deep learning techniques. DIN [27] adds a local
activation unit to multilayer perceptron (MLP), which can adaptively learn the
representation for different advertisements. [10] proposed GRU4Rec as the first
model applying recurrent neural network (RNN) in sequential recommendation.
In this model, multiple GRU layers are used to learn the patterns within a session
(behavior sequence). As an improved version of [10], GRU4Rec+[9] modifies
the sampling strategy and makes a great improvement. Based on RNN, [24]
proposed another dynamic recurrent basket model called DREAM to learn both
the user’s current interests and the sequential features. Moreover, [17] proposed
Caser, a model that considers history behaviors embeddings as an “image” and
adopts convolutional neural network (CNN) in learning. In addition, SASRec
[11] utilizes self-attention mechanism to model user’s sequence and discover the
relevance between items. Recently, DEEMS [22] and SCoRe [14] construct dual
models to capture temporal dynamics from both user and item sequences and
prove their advancement in recommendation accuracy.

5.2 Generative Adversarial Nets

Generative Adversarial Nets was originally proposed by Goodfellow et al. [5] to
generate realistic images. Recently, more and more studies focus on its appli-
cation in Recommendation Systems. IRGAN [19] is the pioneering work that
applies GANs in Recommendation Systems. It proposed an adversarial frame-
work for information retrieval: the generator predicts relevant documents for a
given query, and the discriminator distinguishes the generated document-query
pairs and the real ones. It solves the problem that traditional GANs can only gen-
erate continuous data by leveraging policy gradient instead of gradient descent.
However, the discriminator may be confused as the a document-query pair can
be labeled as both real and fake (generated), so as to affect the optimization of
the model. Accordingly, CFGAN [2] fixed this problem by adopting a generator
which generates purchase vectors instead of item indexes. Besides, [21] proposed
an adversarial framework with pairwise comparisons called CRGAN, where the
generator learns a continuous score function on items. Nevertheless, the above
mentioned approaches are aimed for the general recommendation, failing to con-
sider the temporal information or capture the sequential pattern in historical
data, thereby leaving it an open literature.
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The existing work on GAN’s application in sequential recommendation are
actually quite few. PLASTIC [25] combines RNN and MF in an adversarial
framework to learn user’s sequential preference, and yet the fixed score function
in MF is too simple to learn a sufficient expression. Work in [20] adopts a neural
memory network to capture both long-term and short-term interests of users in
stream recommendation. However, it lacks capturing dependency between items.

6 Conclusion

In this paper, we identify the limitation of existing BPR method that naively
maximizes the margin between an observed sample and its unobserved coun-
terparts. In order to address this limitation, we suggest integrating adversar-
ial training with BPR to distinguish unobserved positive and negative items.
Through the adversarial training process, the generator consistently pushes the
discriminator to its limits by diminishing the distance between observed and
unobserved items. The discriminator also consistently provides strict yet bene-
ficial feedbacks to the generator which renders it improved scoring. Extensive
experiments and sufficient ablation studies on three datasets show both the supe-
riority and rationality of our method.

For future study, we will conduct further experiments on more real-world
datasets. We plan to improve the stability of SRecGAN by exploring some recent
state-of-the-art GANs, e.g. adopting the Wasserstein GAN framework by map-
ping the score difference into a Wasserstein distance. We also plan to leverage
item side information to model more reasonable interest representations.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

2. Chae, D., Kang, J., Kim, S., Lee, J.: CFGAN: a generic collaborative filtering
framework based on generative adversarial networks. In: CIKM, pp. 137–146. ACM
(2018)

3. Covington, P., Adams, J., Sargin, E.: Deep neural networks for Youtube recom-
mendations. In: RecSys, pp. 191–198. ACM (2016)

4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS. JMLR Proceedings, vol. 9, pp. 249–256. JMLR.org
(2010)

5. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
6. Harper, F.M., Konstan, J.A.: The MovieLens datasets: History and context. ACM

Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016)
7. He, R., McAuley, J.J.: Fusing similarity models with Markov chains for sparse

sequential recommendation. In: ICDM, pp. 191–200. IEEE Computer Society
(2016)

8. He, X., He, Z., Du, X., Chua, T.: Adversarial personalized ranking for recommen-
dation. In: SIGIR, pp. 355–364. ACM (2018)

9. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-
based recommendations. In: CIKM, pp. 843–852. ACM (2018)



SRecGAN: Pairwise Adversarial Training for Sequential Recommendation 35

10. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. In: ICLR (Poster) (2016)

11. Kang, W., McAuley, J.J.: Self-attentive sequential recommendation. In: ICDM, pp.
197–206. IEEE Computer Society (2018)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR
(Poster) (2015)

13. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. Computer 42(8), 30–37 (2009)

14. Qin, J., Ren, K., Fang, Y., Zhang, W., Yu, Y.: Sequential recommendation with
dual side neighbor-based collaborative relation modeling. In: WSDM, pp. 465–473.
ACM (2020)

15. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: UAI, pp. 452–461. AUAI Press
(2009)

16. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: WWW, pp. 811–820. ACM
(2010)

17. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: WSDM, pp. 565–573. ACM (2018)

18. Wang, B., Liu, K., Zhao, J.: Inner attention based recurrent neural networks for
answer selection. In: ACL (1). The Association for Computer Linguistics (2016)

19. Wang, J., et al.: IRGAN: a minimax game for unifying generative and discrimina-
tive information retrieval models. In: SIGIR, pp. 515–524. ACM (2017)

20. Wang, Q., Yin, H., Hu, Z., Lian, D., Wang, H., Huang, Z.: Neural memory stream-
ing recommender networks with adversarial training. In: KDD, pp. 2467–2475.
ACM (2018)

21. Wang, Z., Xu, Q., Ma, K., Jiang, Y., Cao, X., Huang, Q.: Adversarial prefer-
ence learning with pairwise comparisons. In: ACM Multimedia, pp. 656–664. ACM
(2019)

22. Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models
linking sequential recommendation and information dissemination. In: KDD, pp.
447–457. ACM (2019)

23. Xu, Z., et al.: Neural response generation via GAN with an approximate embedding
layer. In: EMNLP, pp. 617–626. Association for Computational Linguistics (2017)

24. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next
basket recommendation. In: SIGIR, pp. 729–732. ACM (2016)

25. Zhao, W., Wang, B., Ye, J., Gao, Y., Yang, M., Chen, X.: PLASTIC: prioritize long
and short-term information in top-n recommendation using adversarial training.
In: IJCAI, pp. 3676–3682. ijcai.org (2018)

26. Zhou, G., et al.: Deep interest evolution network for click-through rate prediction.
In: AAAI, pp. 5941–5948. AAAI Press (2019)

27. Zhou, G., et al.: Deep interest network for click-through rate prediction. In: KDD,
pp. 1059–1068. ACM (2018)



SSRGAN: A Generative Adversarial
Network for Streaming Sequential

Recommendation

Yao Lv1,2, Jiajie Xu1,2(B), Rui Zhou3, Junhua Fang1, and Chengfei Liu3

1 Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, Suzhou, China

20194227033@stu.suda.edu.cn,{xujj,jhfang}@suda.edu.cn
2 Neusoft Corporation, Shenyang, China

3 Swinburne University of Technology, Melbourne, Australia
{rzhou,cliu}@swin.edu.au

Abstract. Studying the sequential recommendation in streaming set-
tings becomes meaningful because large volumes of user-item interac-
tions are generated in a chronological order. Although a few streaming
update strategies have been developed, they cannot be applied in sequen-
tial recommendation, because they can hardly capture the long-term
user preference only by updating the model with random sampled new
instances. Besides, some latent information is ignored because the exist-
ing streaming update strategies are designed for individual interactions,
without considering the interaction subsequence. In this paper, we pro-
pose a Streaming Sequential Recommendation with Generative Adver-
sarial Network (SSRGAN) to solve the streaming sequential recommen-
dation problem. To maintain the long-term memory and keep sequential
information, we use the reservoir-based streaming storage mechanism
and exploit an active subsequence selection strategy to update model.
Moreover, to improve the effectiveness and efficiency of online model
training, we propose a novel negative sampling strategy based on GAN to
generate the most informative negative samples and use Gumble-Softmax
to overcome the gradient block problem. We conduct extensive experi-
ments on two real-world datasets and the results shows the superiority
of our approaches in streaming sequential recommendation.

Keywords: Streaming recommendation · Sequential
recommendation · Generative Adversarial Network

1 Introduction

With the rapid development of mobile devices and Internet services, recom-
mender systems play a more and more important role in solving the problem of
information overload and satisfying the diverse needs of users [12,19]. On the
other hand, large E-commerce platforms such as Tmall and Amazon generate
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tremendous amounts of interaction data at a high speed. For instance, up to
583,000 transactions were generated in Tmall per second during its shopping
event on 11, November 2020. Such streaming data is continuous, time-varying
and rapid, which is quite different from the static data in an offline setting.
Therefore, it is more reasonable to study the recommender systems under a
data streaming scenario.

Several methods has been proposed to solve the streaming challenge in con-
ventional recommender systems. One kind of solution is memory-based algo-
rithms based on users’ historical activities. [4,13] adopt neighborhood-based
methods to calculate the similarity of users and then recommend items for user
based on the current preference of most similar users calculated by historical
data. Another kind of solution is model-based algorithms such as online learn-
ing. This method updates the model only by using new arrival date to capture the
drift of users’ preference [25]. Furthermore, the random sampling strategy with
reservoir [6] was employed to solve the long-term challenge. However, these meth-
ods can only be applied in non-sequential patterns and cannot capture hidden
information in sequential behaviors. Different from conventional recommender
systems, sequential recommender systems try to model the evolution of user pref-
erence and item popularity over time in user-item interaction sequences. Some
recommender systems adopt MCs [9], CNNs [26], GRU [11] or Self-Attention
[17] to tackle the sequential recommendation problem. Unfortunately, they can
only be applied in offline settings.

Although many existing methods have achieved good results in both sequen-
tial and streaming recommendation, we found that there are still several chal-
lenges in solving the sequential recommendation problem in a streaming setting.
Firstly, existing streaming update strategies [15,21] cannot be applied directly
in sequential recommendation because we can only update the model using the
newest coming data and this solution may cause the loss of long-term memory.
Also, due to the high speed of data input, it takes a certain amount of time to
update the model. A good model should have the ability to respond to the data
instantly, e.g., not trying to update with all the new data. Secondly, existing
streaming update strategies [8,25] fail to capture the drift of users’ preferences
and item popularity over time because sequence information is not considered
when data is updated. Thirdly, in the period of online streaming model opti-
mization, popularity-biased or random sampling strategies [2] are used in most
recommender systems to generate negative samples. However, these negative
samples contribute little to the model updating because most of them could be
discriminated from positive samples without difficulty.

To address the above limitations of existing works, we propose a novel model,
SSRGAN, to solve the sequential recommendation in a streaming setting. The
model consists of a reservoir-based model update mechanism and an online
adversarial sequential recommendation module. More specifically, to tackle the
challenge of long-term memory, we use the reservoir-based streaming storage
technique in the model updating component and exploit an active subsequence
selection strategy, where subsequences that can change the sequential model
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most are chosen to update the model. It is worth noting that we try to keep
the sequence information during the sampling process. In online model updat-
ing process, to speed up the training effectiveness and efficiency, we develop a
negative sampler based on the Generative Adversarial Network (GAN) [7] and
introduce the Gumbel-Softmax approximation [14] to tackle the gradient block
problem in discrete sampling step. Moreover, we choose a hierarchical gating
network to do the recommendation task due to its high accuracy and efficiency
in sequential recommendation.

The main contributions of this study are summarized as follows:

– We define the sequential recommendation problem under a streaming sce-
nario, and propose a streaming sequential recommendation model with gener-
ative adversarial network to solve it. It can ensure effectiveness and efficiency
of streaming sequential recommendation.

– We introduce a reservoir-based data storage mechanism to solve the long-
term memory challenge in streaming settings and propose an active sampling
strategy which selects the most informative subsequences to update model
with maintaining the sequential information.

– We design a novel negative sampling strategy to generate adversarial negative
samples for model optimization in streaming settings, which greatly improves
the training effectiveness of online model updating. We introduce the Gumbel-
Softmax approximation to overcome the gradient block problem, which has
not been studied in sequential recommender system.

– We conduct a comprehensive series of experiments on two real-world datasets,
which shows the effectiveness of our proposed SSRGAN model in streaming
scenario by comparing with the state-of-the-art methods.

2 Related Work

2.1 Streaming Recommendation

Making recommendation in the continuous streaming data has been widely stud-
ied recently. There are two major kinds of streaming recommender systems.

Memory-Based. The first category is memory-based algorithms based on users’
historical activities. [4,13] adopt neighborhood-based methods to calculate the
similarities of users in an offline phase and then recommend items for a user
according to the current preference of most similar users calculated by historical
data. All similarities need to be re-computed in the period of model updating in
these methods, which is very inefficient for streaming recommendation. Another
problem is that we cannot use all the historical activities at a time. Min-hash
technique has been proposed to solve this problem [22]. By tracking the related
users of each item in the minimum hash index, the similarity between users can
be approximately calculated. They use hash functions to reduce the memory
consumption instead of cutting down user-items interactions.
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Model-Based. Another category is model-based algorithms, which try to
update the pre-trained model based on new coming user-item interactions. [25]
try to capture the evolution of users’ interests by updating the model only by new
arrival data. However, they fail to capture users’ long-term preferences to some
degree. Then the random sampling strategy with a reservoir [6] was proposed
to maintain the long-term memory. Furthermore, [21] proposes an online-update
algorithm to solve the overload problem by selecting new data instances. In our
work, we aim to both maintain long-term user preferences and capture short-
term user preferences in streaming recommendation.

2.2 Sequential Recommendation

Sequential recommendation has shown better performance than traditional rec-
ommender systems in many tasks. Many sequential recommender systems try
to model item-item transition term to capture sequential patterns in succes-
sive items. For instance, [20] uses first-order Markov Chains (MC) to capture
long-term preferences and short-term transitions respectively. Recently, meth-
ods based on deep neural network were proposed to learn the sequential dynam-
ics. [11] firstly introduces Gated Recurrent Units (GRU) in order to model the
sequential patterns for the session-based recommendation, and an developed
method [10] was proposed to improve its Top-k recommendation performance.
Another line of work [23] adopts convolutional neural network (CNN) to process
the item embedding sequence to extract item transitions for future prediction.
Moreover, following the idea in natural language processing, the Self-Attention
mechanism is applied to sequential recommendation problem, which can adap-
tively consider the interaction preferences between items [16]. However, these
methods are somewhat limited because they adopt offline batch training and
cannot be applied in online streaming settings directly.

3 Problem Definition

We formulate the sequential recommendation problem and then extend it to
the streaming setting. We take sequential implicit feedback as the input data
for sequential recommendation in this paper. The number of users is M and
the number of items is N . For each user, the preference is represented by a
time ordered user-item interaction sequence Si =

(
Si
1,Si

2, . . . ,Si
|Si|

)
, where Si

j

is an item j that user i has interacted with. At time step t, given the earlier
|L| successive items of a user, the aim is to predict the next item that the
user is likely to interact with at t + 1 time step. When it comes to streaming
sequential recommendation, the difference is that the given subsequence is in a
chronologically ordered and continuous manner.
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4 Proposed Method

4.1 Overview of SSRGAN

In this paper, we propose a novel SSRGAN model to solve the streaming sequen-
tial recommendation problem. The architecture of SSRGAN model is shown in
Fig. 1. We first introduce our offline HGN model (in Sect. 4.2) and then extend it
to online streaming setting. There are two key components in streaming setting:
the reservoir-based sequential updating module (in Sect. 4.3) and the adversarial
sequential recommendation module (in Sect. 4.4).

Fig. 1. The overview of the SSRGAN model. (a) An offline sequential recommendation
model named Hierarchical Gating Networks (HGN). The HGN model can be updated
in a short time with high accuracy. (b) The online model for streaming sequential rec-
ommendation. It consists of two parts: the reservoir-based sequential updating module
and the adversarial sequential recommendation module.

4.2 Hierarchical Gating Networks for Sequential Recommendation

Follow the idea in [18], we introduce the HGN model to do the sequential recom-
mendation task. HGN is a state-of-the-art sequential recommendation method
with high updating efficiency. It captures the users’ long and short-term prefer-
ence from feature and instance level without using complex recurrent or convo-
lutional neural networks. For each user u, we extract every |L| successive items
as input and their next one item as the target output.
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4.2.1 Gating Layers for Group-Level Influence
In a user’s interaction sequence, a group of previous items may be closely related
to the items to be interacted in the near future. Therefore, it is crucial to model
the interactions in group-level. A hierarchical gating network is proposed to
model the user-item interactions from group-level, which consists of two different
layers: a feature gating layer and an instance gating layer. These two layers select
effective latent features and relevant items from different aspects respectively.

Feature Gating. There are many hidden connections between the latent fea-
tures of different items. Thus, it is crucial to capture the sequence features in
the latent space based on users’ long-term preferences.

We feed the embeddings of previous L items into our model at time step t.
Then we convert the item index v to a low-dimensional vector v by the item
embedding matrix Q ∈ R

d×N . Here d is the number of latent dimensions. As a
result, the subsequence at time t are embedded to Su,t = (vt−L, . . . ,vt−2,vt−1).

Then, inspired by the gated linear unit (GLU) [5], we adopt the similar idea
to select the relevant features to predict future items. Moreover, different users
have different preferences on items, so the GLU should be improved to be user-
specific. We use the inner product instead of the convolution operation to reduce
the number of learnable parameters, and the operation is as follows:

SF
u,t = Su,t ⊗ σ (Wg1 · Su,t + Wg2 · u + bg) (1)

where SF
u,t ∈ R

d×L is the subsequence embedding after the feature gating, σ

represents the sigmoid function, u ∈ R
d is the embedding of user u, Wg1 ,Wg2 ∈

R
d×d and bg ∈ R

d are the learnable parameters in GLU, and ⊗ means the
element-wise product between matrices. By applying the feature gating, different
latent features of items can be chosen to the next layer.

Instance Gating. Given L successive items, it is likely that some items are
more informative in the subsequence to predict the next one item. We use an
instance-level gating layer to chosen relevant items which contribute more to do
recommendation according to the preferences of user:

SI
u,t = SF

u,t ⊗ σ
(
w�

g3
· SF

u,t + u� · Wg4

)
(2)

where wg3 ∈ R
d,Wg4 ∈ R

d×|L| are learnable parameters and SI
u,t ∈ R

d×L is the
embedded subsequence after the instance gating. By doing so, the more relevant
items will be more useful to predict the items in the near future and other items
could be ignored.

We use the average pooling on SI
u,t to transfer the subsequence embeddings

SI
u,t into a group-level latent representation:

savg
u,t = avg −pooling

(
SI

u,t

)
(3)

where savg
u,t ∈ R

d. Since informative features and items are chosen after the
feature and instance-level layers, the hidden information can be accumulated by
applying the average pooling.



42 Y. Lv et al.

4.2.2 Item-Item Product
In the recommendation task, we should not only consider the group-level infor-
mation for sequential recommendation, but also try to capture relations between
items explicitly. We can find out that the items in the input L items and the tar-
get one are closely related. As a result, we learn to aggregate the inner product
between the input and output item embeddings to capture the item relations
between L and the target item:

∑
v∈Su,t

v� · E, where E ∈ R
d×N is the target

item embedding. Then the latent information between items can be accumulated
by the aggregation operation.

4.2.3 Prediction and Training
We use the matrix factorization (MF) to capture the global and long-term pref-
erences of users. For user u, given the subsequence at time t as the input, the
model outputs the score of item v:

r̂ (u, v) = u� · ev + savg�
u,t · ev +

∑
v∈Su,t

v� · ev (4)

where ev ∈ R
d is the v -th output item embedding.

In prediction layer, different parts capture different latent information. The
matrix factorization part captures the long-term preference of users and the
hierarchical gating network module models the short-term user interests. In the
third part, the item-item product represents the relations between various items.

Inspired by [19], we adopt the Bayesian Personalized Ranking objective to
optimize our proposed model by the pairwise ranking between the interacted
and unobserved items. The pairwise loss function is:

L =
∑

(u,Lu,v,v−)∈D
− log σ

(
r̂ (u, v) − r̂

(
u, v−))

+ λ
(‖Φ‖2) (5)

where Lu is one of the subsequences of user u, v is the target item that u
will interact, and v− denotes the unobserved negative item, Φ is the model
parameters, λ is the regularization parameter.

4.3 Streaming Sequential Model Updating Method

In this section, we extend our offline model to a streaming setting. Our aim is to
update our model with the new arrival data while keeping the knowledge learned
from the historical sequences.

To keep the long-memory of the historical data, the reservoir technique [25]
is widely used in the streaming database management systems. We conduct a
random sampling strategy to decide the data stored in the reservoir.

For sequential recommendation, we need to note that the items come one by
one in a streaming setting. However, we cannot view the items as individuals
because each item is closely related to the items in its neighbourhood. To keep
the sequence nature of coming data, we consider the L successive items together.
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We maintain the l-th successive L items in a user’s interaction history as a
subsequence Su,l. It is worth noting that when a new item comes over at time
t, we combine it with the (L − 1) previous items in a buffer to form the new
subsequence Su,t.

The subsequences stored in the reservoir are denoted as C, and the data
instance arrives at time step t . When |C| < t, we will store Su,t in the reservoir
with the probability:

pstore =
|C|
t

(6)

and uniformly replace a random subsequence already in the reservoir. Moreover,
to capture the information contained in the latest generated data, we update
the pre-trained model by training on the union of the reservoir C [8] and new
data Snew.

The reservoir sampling strategy above enables the model to continually
update according to the new and old data. However, in the streaming setting,
the limited computing resources decide that few data instances can be utilized to
update the model. Actually, it is more worthwhile to update the model with the
subsequence which can change the model most. Such a subsequence is called an
informative subsequence. Therefore, we propose an active sequential sampling
strategy that samples the most informative subsequence.

We use the prediction function MF, i.e., the inner product of the latent
factors, with the current parameters to compute the informativeness of a subse-
quence. Let pu ∈ R

1×d and qv ∈ R
1×d be the latent factors of user u and item v

respectively. Then, the inner product of pu ∈ R
1×d and qv ∈ R

1×d is denoted as
follows:

su,v = <pu, qv> = pu ⊗ qv (7)

The value of <pu, qv> shows how closely pu is related to qv and denotes how
much user u likes item v.

Traditional active learning strategy only samples one item at a time. How-
ever, in sequential recommendation, each subsequence is composed of several
successive items. As a result, we use the numerical sum of individual items to
measure the informative score of the subsequence. Given the i-th subsequence
Si = (v1, . . . , vL−1, vL), the informative score Sscore of the subsequence is com-
puted as:

Sscore
i =

∑L
k=1 su,k

L
(8)

Then we rank all the subsequences by their scores in a rank list in a descending
order. If a subsequence gets a low score from the prediction model, it means this
subsequence is worthwhile to be taken into consideration because it contains the
latest preference of a user that the current model cannot learn well. In other
words, the lower the rank is, the more likely it is to be selected. For subsequence
Si with ranki, the sampling probability is calculated as follows:

p (Si) =
ranki∑

si∈C∪Snew ranki
(9)
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Then we update our current model with new sampled subsequences. The detailed
construction of online training method is shown in Algorithm 1.

4.4 Adaptive Adversarial Negative Sampler

During the period of optimization, we sample the items that user u has never
interacted with as the negative samples. However, most existing negative sam-
pling strategies use popularity-biased sampling strategies [2] or random sampling
[1] to generate negative samples. These methods are not informative enough and
cannot capture complicated latent user or item representations. In addition, the
existing negative sampling strategies cannot capture the user interests drift in
streaming sequential recommendation, which greatly affects the effectiveness of
online training.

Algorithm 1: Online Update Method
Input:

the current model M , the current reservoir C, the new subsequences Snew

Output:
the updated model M ′ and the updated reservoir C′;

1: for each subsequence Si in C ∪ Snew do
2: Compute the subsequence score Sscore

i by Eq. 8;
3: end for
4: Compute the sample probability p (Si);
5: Sample the subsequence set S from C ∪ Snew according to Eq. 9;
6: Update current model M with S to M ′;
7: for each subsequence Si in Snew do
8: Update the reservior C to C′ with Si according to Eq. 6;
9: end for

In this section, to overcome the shortcomings of existing sampling meth-
ods, we propose an adversarial training framework based on GAN in streaming
sequential recommendation. There are two components in this framework: the
discriminator and the generator. The discriminator is the sequential recommen-
dation model and the target is to distinguish the true items from false items
generated by the generator. The aim of generator is to generate adversarial neg-
ative items which can confuse the discriminator.

4.4.1 Discriminator
Let Dθ denote the discriminator component, where θ denotes the set of all param-
eters in G. The loss function of D is:

LD =
∑

(u,Lu,v,v−)∈D
− log σ

(
r̂D (u, v) − r̂D

(
u, v−))

+ λ
(‖Φ‖2)

(
u, v−) ∼ PG

(
u, v− | u, v

) (10)
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Given a positive user-item interaction (u, v), the probability distribution for
generating negative interaction (u, v−) by the generator is PG (u, v− | u, v); r̂D

denotes the ratings of items calculated by the discriminator, which is the same as
r̂ defined in Eq. 5. We have described the optimization procedures in Sect. 4.2.3.
Equation 10 is different from Eq. 5 in that the negative item v− in Eq. 10 is
generated by the generator.

4.4.2 Generator
The generator aims to generate adversarial negative items and use them to
deceive the discriminator. We employ the metric learning approach to learn a
metric space to find the noise items which are most similar to the positive items.
The similarity between users and items is measured by Euclidean distance.

To enable the generator have the ability to generate more plausible items to
deceive the discriminator, the objective function maximizes the expectation of
−dD (u, v−):

LG =
∑

(u,v)∈S
E

[−dD

(
u, v−)]

(
u, v−) ∼ PG

(
u, v− | u, v

) (11)

The probability distribution PG (u, v− | u, v) is as follows:

PG

(
u, v− | u, v

)
=

exp (−dG (u, v−))∑
v−∈V−

u
exp (−dG (u, v−))

(12)

where dG (u, v) is the Euclidean distance between user u and item v measured
by the generator through a neural network.

In particular, in order to maintain the characteristic of sequential recommen-
dation, we use the latest successive L items Su,t that a user has interacted with
to represent the current user’s preferences.

We feed the embedded vectors into a multilayer perceptron (MLP) separately
so that the user u and item v can be represented in the same latent space. Then
we measure the distance dG between the output user and item vectors. V−

u is a
large set including all items which user u has not interacted with. In order to
improve the training efficiency, we only select T items to form a small subset V−

u

from the whole item set V−
u .

However, the original GAN and their variants are usually used to generate
continuous data in image processing domain. The gradient descent cannot be
directly applied to solve the GAN formulation because sampling from a multi-
nomial distribution is a discrete process. To tackle this challenge, some works [24]
adopt a policy gradient strategy such as reinforcement learning, which utilizes
a policy strategy to estimate the gradients of generator. However, this method
often suffers from high variance.
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We adopt the Gumbel-Softmax distribution [14] in optimization process to
improve the stability of training. It is a continuous approximation to a multi-
nomial distribution parameterized in terms of the softmax function. Let g be
a K-dimensional noise vector sampled from Gumbel(0, 1). Then we obtain the
sampled item v in an approximate one-hot representation:

vi =
exp ((log PG (vi) + gi) /τ)∑K

j=1 exp ((log PG (vj) + gj) /τ)
for i = 1, . . . , K (13)

where τ is an inverse temperature parameter. When τ approaches 0, samples
become one-hot and the Gumbel-Softmax distribution is the same as the multi-
nomial distribution PG. When τ approaches positive infinity, the samples are the
uniform probability vector. In this way, the whole process can be differentiable,
and the GAN on discrete data can be trained by using τ approaches a standard
backpropagation algorithm such as Adagrad. The detailed training process is
shown in Algorithm 2.

Algorithm 2: The Adversarial Training Algorithm
Input:

Training data S, number of epochs and batchsize;
Output:

The diacriminator D, the generator G;
1: Initialize the parameters θG and θD for D and G
2: for each epoch do
3: Sample a mini-batch sbatch ∈ S
4: for each u in sbatch do
5: Randomly sample T negative items: V −

u ;
6: Calculate the sampling probability distribution based on Eq. 12;
7: Sample a K-dimension g ∼ Gumble(0, 1);
8: Obtain a negative item v− based on Eq. 13;
9: end for

10: Update θG and θD;
11: end for

5 Experiments

In this section, we first introduce our experimental setup. Then we show the
results and compare with other methods to evaluate the effectiveness of our
proposed steaming sequential recommendation.

5.1 Datasets

We use two datasets MovieLens-20M and Amazon-CDs from different domains
as our experimental data source. MovieLens-20M 1 is a widely used dataset with
1 https://grouplens.org/datasets/movielens/20m/.

https://grouplens.org/datasets/movielens/20m/
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20 million user-movie interactions for evaluating recommender systems. Amazon-
CDs2 dataset is a Amazon consumer review dataset, which includes a huge
amount of user-item interactions, e.g., user ratings and reviews. We delete all
user-item interactions with ratings less than four because these interactions can-
not be considered as implicit feedbacks. We only retain the users with more than
nine ratings and the items with more than four ratings to prevent noisy data.
The statistics of two datasets after preprocessing are summarized in Table 1.

Table 1. Statistics of two datasets.

Dataset Users Items Interactions Density

MovieLens-20M 129,797 13,663 9,926,630 0.560%

Amazon-CDs 17,052 35,118 472,265 0.079%

5.2 Evaluation Setup

For sequential streaming recommendation, to mimic a real streaming recommen-
dation scenario, we follow the dataset splitting strategy used in [24]. We order all
user-item interactions records in time order and then split them into two parts
(60% and 40%). The first part forms an initial training set which denoted as
Dtrain. The remaining part is divided into four equal test sets denoted as Dtest

1

... Dtest
4 to simulate the streaming settings. First of all, we train our model on

first partition Dtrain to decide the initial parameters and the best hyper param-
eters. After the initial training, the four test sets are predicted one by one. We
use the previous test set Dtest

i−1 to update the model, and then use the newly
updated model to predicts the current test set Dtest

i . After testing on Dtest
i , the

model will be updated by the next test set Dtest
i+1 .

To evaluate the performance of our model, we utilize two popular evaluation
metrics commonly used in previous works: Recall@10 and top-k Normalized
Discounted Cumulative Gain (NDCG@10). Recall@k shows the percentage of
correctly predicted samples in all positive samples. NDCG@k represents the
position information of correctly predicted samples.

In our experiments, we set d = 50 for the latent dimension of all the methods.
For our proposed model, we set L = 5. The batch size is set to 1024. The learning
rate is set to 0.001 for MovieLens-20M dataset, and 0.0001 for Amazon-CDs.

2 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/


48 Y. Lv et al.

5.3 Baseline Methods

We compare our proposed model with the following sequential recommendation
baselines in streaming settings:

– GRU4Rec [11]: This method uses gated recurrent unit for recommendation.
It models user-items interactions by using recurrent neural networks to solve
the session-based recommendation problem.

– Caser [23]: It is a sequential recommendation model uses convolutional neural
network. It embeds the recent |L| items to latent spaces and learn sequential
patterns using convolutional filters.

– SASRec [16]: This method introduces Self-Attention to sequential recom-
mendation. SASRec models the user-item interactions and can consider the
interacted items adaptively.

– HGN [18]: Hierarchical gating networks. It captures long-term and short-
term user interests from feature and instance level without utilizing compli-
cated convolutional or recurrent neural networks.

To evaluate the streaming strategy in sequential recommendation system,
we further apply our SSRGAN model in four various streaming settings. Since
all existing sequential recommendation methods are not applied in streaming
scenario, we implement these streaming strategies on MovieLens-20M dataset
with huge amount of interactions, and compare SSRGAN with the following
variant versions:

– SSRGAN-Static: For this method, we simply use the offline pre-trained
model and eliminate the online update part.

– SSRGAN-New [15]: This method retrain the offline pre-trained model sim-
ply with only new coming events.

– SSRGAN-Item [6]: This method performs active item sampling strategy on
the union set of new arrival and the current reservoir.

– SSRGAN-Seq: This method samples the most informative subsequence
from the union set of the current reservoir and new arrival data actively.
It keeps the sequentiality of data at the same time.

5.4 Experimental Results

5.4.1 Streaming Sequential Recommendation Results
The general experimental results are shown in Fig. 2.
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Fig. 2. Results of streaming sequential recommendation.

We can see that our proposed model performs better than other baselines in
streaming settings on both datasets. Our SSRGAN obtains better results than
the state-of-the-art HGN model because we adopt an adversarial architecture
to train our model, which shows that it is important to generate informative
negative items to improve the recommendation results. The RNN-based method
GRU4Rec cannot perform well may because it is firstly designed for session-based
recommendation and ignores the long-term user interest. Caser and SASRec
both model the user-item and item-item to capture the long and short-term
preference of users. This could be a possible reason for their better performance
than GRU4Rec. HGN model performs better than other baselines because it
applies both instance and feature-level selection, which plays an important role in
modeling users preference. Also, the item-item relations between relevant items
was captured in HGN.

We can also notice that our SSRGAN method perform better in MovieLens-
20M than in Amazon-CDs. The main reason that is Amazon-CDs is sparaser
than MovieLens-20M. In Amazon-CDs, a user may has a small amount of
reviews, which is difficult to form subsequence of sufficient length.
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5.4.2 Effect of Different Streaming Update Strategies
The performances of SSRGAN with various streaming update strategies are
shown in Fig. 3.
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Fig. 3. Results of different streaming strategies.

We can see that our proposed SSRGAN model with active sequence sam-
pling strategy achieves the best performance in all situations. As time goes by,
the recommendation results get worse and worse in SSRGAN-Static because
users preference drifts in some degree. An important conclusion we can easily
get is that we should update the model in time because the static model can-
not capture the latent feature in new streaming data. The SSRGAN-Random
method has a improvement over the static method. However, this method does
not bring satisfactory results because randomly selected samples may not con-
tribute enough to the model update. Furthermore, the SSRGAN-Item method
cannot perform as well as our model mainly because it fails to maintain the
sequential information in active sampling. Our active sampling method which
chooses the most informative subsequences is proved to be effective in dealing
with the continuous, high speed streaming data.

5.4.3 Effect of Adversarial Training
Since other sequential recommendation baselines are not aimed for streaming
recommendation, We also conduct our experiments in offline settings. We elim-
inate the online streaming update part and retain the adversarial training part
to prove the effectiveness of GAN. Following [3], we use the 70% of data as the
training set and use the next 10% of interactions as the validation set to choose
the best hyper-parameter for all methods. The remaining 20% of data in each
user sequences are used as the test.

The performance comparison results are shown in Table 2. It can be observed
that: (1) Our SRGAN model is consistently better than these baselines by a large
margin in offline settings. (2) All results of all those offline methods are not as
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good as those methods in online settings. The most likely reason is that the
datasets are divided differently in online/offline settings.

Table 2. The offline performance comparison of all sequential recommendation
methods.

MovieLens-20M Amazon-CDs

Recall@10 NDCG@10 Recall@10 NDCG@10

GRU4Rec 0.0814 0.0826 0.0322 0.0244

Caser 0.1170 0.1293 0.0316 0.0242

SASRec 0.1069 0.1214 0.0371 0.0293

HGN 0.1224 0.1418 0.0462 0.0398

SRGAN 0.1290 0.1507 0.0505 0.0436

6 Conclusion

In this paper, we investigate the sequential recommendation problem in a stream-
ing setting and propose a novel SSRGAN model to tackle the encountered chal-
lenges. To deal with the continuous streaming sequential data, we introduce
a reservoir-based subsequence storage mechanism and an active subsequence
sampling strategy to update the model. Moreover, to improve the effectiveness
and efficiency of online model training, we propose a negative sampling strat-
egy based on GAN to generate the most informative negative samples and use
Gumble-Softmax to overcome the gradient block problem. We conduct extensive
experiments on two real-world datasets and the results show the effectiveness of
our approaches in streaming sequential recommendation task.
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science research in Universities of Jiangsu Province under grant number 20KJA520005.
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Abstract. Sequential recommendation attempts to predict next items
based on user historical sequences. However, items to be predicted next
depend on user’s long, short or mid-term interest. The multi-scale mod-
eling of user interest in an interpretable way poses a great challenge in
sequential recommendation. Hence, we propose a topological data anal-
ysis based framework to model target items’ explicit dependency on pre-
vious items or item chunks with different time scales, which are easily
changed into sequential patterns. First, we propose a topological trans-
formation layer to map each user interaction sequence into persistent
homology organized in a multi-scale interest tree. Then, this multi-scale
interest tree is encoded to represent natural inclusion relations across
scales through an recurrent aggregation process, namely tree aggrega-
tion block. Next, we add this block to the vanilla transformer, referred
to as recurrent tree transformer, and utilize this new transformer to gen-
erate a unified user interest representation. The last fully connected layer
is utilized to model the interaction between this unified representation
and item embedding. Comprehensive experiments are conducted on two
public benchmark datasets. Performance improvement on both datasets
is averagely 5% over state-of-the-art baselines.

Keywords: Multi-scale modeling · Sequential recommendation ·
Topological data analysis

1 Introduction

Sequential recommendation aims to predict the next items by treating user
historical interactions as sequences. Traditional multi-scale approaches aim to
obtain the latent user interest representation and make accurate predictions.
Here we put more emphasis on why a user interacted with an item at certain
time.

It is well known that long and short-term user interests play a critical role in
the next item prediction task. A sequence of rated movies from IMDB before time
t is depicted at different time scales in Fig. 1. We simply use its IMDB categories
to describe each movie. Long-term user interest represents the stable information
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Fig. 1. Illustration of multi-scale user interests on movies in MovieLens-100k

of the sequence shown as the top level in Fig. 1. Short-term user interest changes
dynamically along with time as the bottom level in Fig. 1. Only through the
long-term user interest, Eve’s Bayou (1997) labeled with “Drama” will be easily
predicted at time t. For movie “Gattaca(1997)” labeled with “Drama, Sci-Fi,
Thriller”, it is hard to be predicted only by the top and bottom level in Fig. 1.
Taking two middle levels into consideration, we can see that this example user is
obviously interested in “Drama, Sci-Fi, Thriller” as shown in the last category
cloud from each mid-term scale. It is necessary to incorporate multiple scales
user interests into the next item prediction task.

Though some studies [14,23] take the multi-scale nature into consideration,
user interests at different scales are only represented in a latent space and where
are they from remains unknown. Therefore, how to model multi-scale user inter-
ests in an explicit and explainable way becomes a great challenge. To tackle this
challenge, we propose a topological data analysis based framework. To explic-
itly capture multiple scales user interests, we introduce persistent homology in a
topological space. To understand which patterns contribute to the target item,
we propose a recurrent tree transformer to obtain a unified user interest represen-
tation by weighted average over different scales and drive each pattern’s support
value. Thus Topological Interpretable Multi-scale sequential recommendation
is proposed, referred to as TIMe.

Specifically, we first formalize interpretable multi-scale sequential recommen-
dation problem in terms of sequential pattern mining. Then, a topological trans-
formation layer is proposed to map the user interaction sequence into item com-
plex sequences with different diameters. Next, multi-scale interest tree is derived
from those item complex sequences to describe the inclusion relation between
complexes of different scales. Correspondingly, a tree transformer is proposed
to obtain a unified latent representation by recursively aggregating latent repre-
sentations of units in this user interest tree in a bottom-up manner. Attention
matrix from this transformer will tell us which units play an essential role in
next item prediction. Finally, a fully connected layer is introduced to model the
interaction between this unified representation of user interest and item embed-
ding. We conduct comprehensive experiments on two public benchmark datasets,
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MovieLens-100k and Amazon Movies & TV. Experimental results demonstrate
that performance improvement is averagely 5% over state-of-the-art baselines.

Our main contributions lie as follows. (1) We formalize the interpretable
multi-scale sequential recommendation problem as a sequential pattern mining
problem. (2) Topological transformation layer is proposed to explicitly model
multi-scale user interests as candidate causal patterns. (3) Tree aggregation
block is proposed to learn tree node embedding keeping parent-child relations
in a recurrent aggregation process. (4) Recurrent tree transformer is designed
to obtain a unified user interest representation and each pattern’s support value
from attention matrices.

2 Related Work

We briefly review the related studies on the sequential recommendation methods
and the topological data analysis methods.

2.1 Sequential Recommendation

General recommendation algorithms mainly take the user-item interaction his-
tory as a whole set by ignoring the time effect. Different from that, sequential
recommendation aims at identifying the sequential pattern from user historical
sequences and predict the next items according to these patterns [13]. Intuitively,
the time interval length of the pattern from the prediction point has effect on the
prediction task. According to different scales of focused patterns’ time interval
length, existing approaches usually fall into the following categories.

Long-Term Sequence Model. For the long-term sequence model, the whole
historical sequence is supposed to be significant to the next item prediction.
It adopts the global sequence to capture the user long-term interests, such
as DREAM [21], SASRec [9] and BST [1]. Dynamic Recurrent Basket Model
(DREAM) learns a user dynamic representation and global sequential patterns
among baskets through recurrent neural network. While Self-Attention based
Sequential model (SASRec) and Behavior Sequence Transformer(BST) capture
user’s long-term interests using an self-attention mechanism and powerful Trans-
former model respectively.

Short-Term Sequence Model. Considering the time sensitivity of user inter-
est, short-term sequence model tends to emphasize the effect of the last interac-
tion or at the near time on the prediction. It employs the local user sequence to
model user short-term interests, such as STAMP [11] and GRU4REC [7]. Short
Term Attention Memory Priority model (STAMP) explicitly takes the effect of
user current actions on the next item prediction into consideration from the
short-term memory of last items. GRU4REC captures the sequential click pat-
tern in a session by GRU [2] and predicts the next click by optimizing ranking
based measures.
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Long-Short-Term Sequence Model. Long-short-term sequence model aims
at modeling both long-term and short-term effect on the next item prediction,
such as HRM [20], LSIC [23] and MARank [22]. Hierarchical representation
model (HRM) represents global interest and local interest in a two-layer net-
work and combine them with non-linear operators, so it’s able to subsume some
existing models theoretically. Long-term information changes slowly across time
while short-term information sensitive to time. Long and Short-Term Informa-
tion in Context aware recommendation (LSIC) is leveraged by adversarial train-
ing, where long and short-term information are learned through matrix fac-
torization and recurrent neural network respectively. Suppose different levels of
transition dependencies among items provide different important information for
the next item prediction, Multi-order Attentive Ranking Model (MARank) is to
unify individual-level and union-level item dependency for preference inference.

Multi-scale Sequence Model. In fact, each user has static interest in nature
and also changes her personal interests. The static interest is viewed as the long-
term effect, but the changing interest is not only corresponding to the short-term
effect. In fact, there are multiple levels of dynamical interacting factors that have
influence on the next item prediction, such as MARank [22] and HPMN [14].
MARank introduces two levels of item transition dependency for prediction,
but the union-level item transition dependency is not explicitly modeled. To
capture the multi-scale sequential patterns, Hierarchical Periodic Memory Net-
work is proposed by a hierarchical and periodical updating mechanism within a
hierarchical memory network. Different from HPMN [14], we attempt to model
the multi-scale sequential patterns explicitly and explain which scales are more
important for the prediction task.

2.2 Topological Data Analysis and Persistent Homology

Topological data analysis (TDA) has been rapidly developed from theoretical
aspects to applications in recent years [12]. Homology is an algebraic topological
invariant that describes the holes in a space. The input to the persistent homol-
ogy is given by a filtration in the topological space. Due to the variety of filtration
diameters, persistent homology are widely used for capturing multi-scale topo-
logical features in data. Recent years have witnessed an increased interest in the
application of persistent homology to machine learning problems. PCNN [10]
investigates a way to use persistent homology in the framework of deep neural
networks for dealing with audio signals. TSCTDA [18] generates a novel feature
by extracting the structure of the attractor using topological data analysis to
represent the transition rules of the time series.

3 Topological Interpretable Multi-scale Sequential
Recommendation

To model the multi-scale user interests in an explainable and explicit way, we
propose a topological data analysis based method for sequential recommenda-
tion, referred to as TIMe. Specifically, we first define the interpretable multi-scale
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sequential recommendation problem in terms of sequential pattern mining prob-
lem. Then, the whole network structure is depicted in detail. Finally, we discuss
the relationship between TIMe and some other state-of-the-art sequential rec-
ommendation methods.

3.1 Formalization of Interpretable Multi-scale Sequential
Recommendation

Let U = {u1, u2, · · · , um} be a set of users, and I = {i1, i2, · · · , in} be a set of
items, where |U | = m, |I| = n. For each user u, a user behavior history before
time t is represented by an ordered list: L<t

u = (I1u, I2u, · · · , It−1
u ), where It−1

u ⊂ I
means a set of items interacted by user u at time t − 1.

Sequential pattern mining aims at finding the complete set of frequent sub-
sequences from a set of sequences given a support threshold [13]. In sequential
recommendation task, we want to identify such subsequence patterns to explain
why a certain item is to be predicted next time. The length of a causal sub-
sequence varies much, so only long and short-term patterns are not complete
enough for next item prediction. Multi-grains of subsequences are needed for
better explanation. Hence, we define an interpretable multi-scale sequential rec-
ommendation problem as below.

For a single scale sequential recommendation task, short term sequence mod-
els discover local sequential patterns like Ii

u → It
u and long term sequence models

identify global sequential patterns like
⋃t−1

i=1 Ii
u → It

u. For a two-scale sequential
recommendation task, long and short term sequence models attempt to learn
such local and global patterns jointly. For multi-scale sequential recommenda-
tion task, the goal is to obtain sequential patterns with different time scales
P → It

u,∀P ∈ Pu = {P j
u |P j

u ∈ I, j = 1, . . . , d} to predict the next items It
u.

3.2 Our Framework

To tackle this interpretable multi-scale sequential recommendation task, we pro-
pose the topological data analysis based method, namely TIMe. It maps the
item sequence into multi-scale interest tree to explicitly model user interests at
different time scales within persistent homology through the topological trans-
formation layer. For multi-scale interest tree, node representations are derived
by our proposed tree aggregation block. A novel tree transformer is proposed
to learn the dependency of next items on this tree. The whole architecture is
described in Fig. 2.

3.3 Topological Transformation Layer

Given a user historical sequence L<t
u , we treat each item i ∈ L<t

u as a point
and the sequence can be taken as a point cloud. To characterize the multi-scale
topological properties of L<t

u in sequential recommendation, we newly define
item i’s ε-ball, item complex and item complex sequence with diameter ε [12].
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Fig. 2. Architecture of TIMe

Then Vietoris-Rips filtration method [25] is employed to construct the persistent
homology. Specifically, we use item i’s ε-ball based on Definition 1 to construct
the topology for each item i.

Definition 1. Item i’s ε-ball. Bε(i) = {y ∈ I : du(y, i) ≤ ε} is the ball with
radius ε centered at i. du(y, i) = minty∈Tu(y),ti∈Tu(i) |ty − ti| is the time interval
between items as the distance metric in topological space. Tu(y) and Tu(i) means
the timestamp set of item y and i in the user u’s historical sequence respectively.

In Item i’s ε-ball, edges between i and other items in this ball are constructed.
An item simplex Δ is a topology with the item distance less than ε. Intuitively,
we mainly focus on two kinds of simplexes: connected components and holes.
Thus, the item complex can be built from item simplexes based on Definition 2.

Definition 2. Item Complex. An item complex of diameter ε is a Vietoris-
Rips complex C(ε) = {Δ|D(Δ) ≤ ε}. D(Δ) is the diameter of the simplex Δ,
which indicates the greatest item distance. The start time of item complex C(ε)
is ts(C(ε)) = minΔ∈C(ε) ts(Δ). The end time of item complex C(ε) is te(C(ε)) =
maxΔ∈C(ε) te(Δ).

Given a specific ε and a user sequence L<t
u , a set of simplexes are generated

from the sequence with the ε-ball method mentioned above. Each simplex Δ is
tagged with its start time ts(Δ) and end time te(Δ). For simplicity, we combine
simplexes with intersected time span as an item complex, to make sure that there
is no intersection between item complexes. Thus a sequence of item complexes
are generated in temporal order, denoted as L<t

u (ε) as Definition 3.
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Algorithm 1. Multi-Scale Interest Tree Construction
Input: item complex sequences L<t

u with diameters ε1×d

Output: T <t
u

1: create an empty tree T <t
u : = Tree()

2: get max diameter: εmax = ε[−1]
3: get item complexes: C0

u(εmax) = L<t
u (εmax)[0]

4: T <t
u .create node(data=C0

u(εmax),children=null)
5: p = 1
6: for i = 2, . . . , d do
7: for Cnode ∈ T <t

u .leaves() do
8: for Cj

u(ε[d − i]) ∈ L<t
u (ε[d − i]) do

9: if Cj
u(ε[d − i]) ⊂ Cnode.data then

10: T <t
u .create node(data=Cj

u(ε[d − i]),children=null,pos=p++)
11: T <t

u [Cnode.pos].children.add(T <t
u [p − 1])

12: return T <t
u

Definition 3. User u’s Item Complex Sequence with diameter ε. L<t
u (ε)

is an item complex sequence, i.e. C1
u(ε), · · · , Ck

u(ε). ∀Cp
u(ε), Cq

u(ε) ∈ L<t
u (ε), 1 ≤

p < q ≤ k, satisfy te(Cp
u(ε)) ≤ ts(Cq

u(ε)).

The increasing ε produces a filtration over this topological space of sequence
L<t

u . For example, ε1 = 1 min ≤ ε2 =60 min ≤ · · · generate item complex
sequences satisfying L<t

u (ε1) ⊂ L<t
u (ε2) ⊂ · · · . This subset inclusion is further

attributed to the element inclusion between two sequences with one diameter
smaller than the other. There exist Cq

u(ε2) ∈ L<t
u (ε2) satisfying Cp

u(ε1) ⊂ Cq
u(ε2)

for each Cp
u(ε1) ∈ L<t

u (ε1). To precisely describe inclusion relations between
complexes of different scales, we construct a multi-scale interest tree T <t

u from
complex sequences with multiple diameters in a top-down manner through Algo-
rithm 1.

ε1 = 0
ε2 = 5

ε3 = 10

ε4 = 15

(a) Item Complexes

({i1}, {i2}, {i3}, {i4}, {i5} )
( {i1, i2}, {i3, i4}, {i5} )

( {i1, i2}, {i3, i4, i5} )

( {i1, i2, i3, i4, i5} )

(b) Complex Sequences

i1 i2 i3 i4 i5

i1, i2 i3, i4 i5

i1, i2 i3, i4, i5

i1, i2, i3, i4, i5

(c) Multi-scale Interest Tree

Fig. 3. Illustration of an item sequence (i1, 0), (i2, 1), (i3, 12), (i4, 13), (i5, 15) through
topological transformation layer as follows: (a)→(b)→(c).

Topological transformation layer transforms the item sequence into a multi-
scale interest tree shown in Fig. 3. Through this layer, the basic unit of user inter-
action sequences are changed from item into item complex. When the diameter
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is very small (ε1 = 0), L<t
u (ε1)’s topology are disconnected points as the last line

in Fig. 3(a), and each point are an item complex, such as C0
u(0) = {i1}. When

the diameter is very large (ε4 = 15), the topology of L<t
u (ε4) is a connected

component, i.e., C0
u(15) = {i1, i2, i3, i4, i5}. Item complex sequence L<t

u (ε) in
Fig. 3(b) may exhibit appearance and disappearance of holes by changing the
diameter ε. In a sense, the diameter parameter ε can be regarded as a resolution
of the sequence L<t

u . The inclusion relation between scales can be represented as
multiscale interest tree through Algorithm 1 in Fig. 3(c). How to embed such a
tree remains a question for the following section.

3.4 Tree Aggregation Block

Let U ∈ R
m×r and V ∈ R

n×r denote the embedding matrix of users and items
respectively, where r is the latent dimension size. For each multi-scale interest
tree T <t

u , we propose to derive its representation from its leaves in a bottom-up
manner based on item latent representations V , namely Tree Aggregation Block.
For each leaf node T <t

u [p] at depth d − 1 (scale 1) of the tree (T <t
u [p].children

= null), its representation En[p] is equal to its item representation in V , and
“itemid” attribute in Eq. (1) is to get item ids in the current item complex. For
each non-leaf node at depth i (scale d − i, 0 ≤ i ≤ d − 2) of T <t

u , its representa-
tion En[p] is derived from the aggregation of its children’s representations. This
process will proceed recurrently in a bottom-up manner until the root represen-
tation is derived. Here the AGG operation can be sum, mean, max and min in
Eq. (1) and we use sum for experiments.

En[p] =

{
V [T <t

u [p].data.itemid, :] otherwise

tanh(AGG({En[Cnode.pos]}Cnode∈T <t
u [p].children

)) !T <t
u [p].children

(1)

3.5 Recurrent Tree Transformer

Traditional tree transformer is a transformer-based neural network to learn the
relationship between elements in tree-structured data [4]. To identify which item
complexes in multi-scale interest tree T <t

u are important for item prediction at
time t, we propose to update tree node embedding by Tree Aggregation Block
after self-attention, namely recurrent tree transformer in the right part of Fig. 2.

To encode the temporal order between item complexes in T <t
u , we add posi-

tional embedding to the current node embedding En. For each item complex
C ∈ T <t

u , we compute its timestamp as the averaged timestamp of items in C as
Eq. (2), where tC(k) means the timestamp that item k appears in C. Item com-
plexes in the multiscale interest tree are sorted according to their timestamps.
Each item complex’s rank is taken as its position and encoded in the original
way [19]. The corresponding position embedding matrix is denoted as Ep. The
input embedding for tree nodes are computed as E = En + Ep.

t(C) =
1

|C.itemid|
∑

k∈C.itemid

tC(k) (2)
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Self-attention only models the interaction between input nodes, but we focus
on the node weight for the next item prediction. So we concatenate these tree
nodes and an additional user node. With the recommendation timestamp as the
user node’s timestamp, its position is the number of tree nodes plus 1, which
can be represented in the same way as [19], denoted as Eu

p . The initialized user
node embedding is Eu

n = U [u, :]. We augment the tree node embedding matrix
E with a row for user node as X0

u = [E;Eu
n + Eu

p ] for initialization.
Taking the concatenation of tree nodes and user node as input, our proposed

recurrent tree transformer consists of two major building blocks: multi-head self-
attention block and tree aggregation block. The input of the attention module
consists of query, key, and value in Eq. (3) and Eq. (4). Here we only concern
of the user node’s effect on tree nodes by masking the unnecessary interactions
from tree nodes to the user node. So we use a zero matrix Mask and set Mask[:
,−1] = 1 in Eq. (3), where τ is small enough, such as −109 in our experiments.

For the b-th recurrent tree transformer layer, the output of self-attention
module is a weighted sum of the value in Eq. (4), where the weight matrix is
determined by query and its corresponding key in Eq. (3).

Ab
u = softmax(τMask +

(Xb−1
u WQ) · (Xb−1

u WK)T

√
l

) (3)

headb
i = Attention(Xb−1

u · WQ,Xb−1
u · WK ,Xb−1

u · WV ) = Ab
u · Xb−1

u WV

Sb
u = MH(Xb−1

u ) = Concat(headb
1, headb

2, · · · , headb
h)WH

(4)

where WQ,WK ,WV ∈ R
r×r are weight matrices for query, key and value respec-

tively, and h is the number of heads. Then tree aggregation block is used to
update tree node representations as Xb

u = TAB(Sb
u), whose detailed implemen-

tations are described in the above subsection. Both dropout and layer normal-
ization are utilized in two blocks.

We stack such B recurrent tree transformer layers. The output of the final
layer is corresponding to the unified user interest representation Ht

u = XB
u [−1, :]

derived from multi-scale interest tree T <t
u . The last fully connected layer is used

to model the interaction between items and users. Taking the multi-scale interest
representation Ht

u as input, the weight matrix WI ∈ R
r×n for the fully connected

layer can be used as the implicit item representation. It outputs scores over all
the items for user u at time t by Ot

u = Ht
u · WI . The predicted probability that

user u will buy or browse an item at time t is defined as Ît
u = softmax(Ot

u).
Next item prediction task at a certain time is reduced to a multi-class clas-

sification problem. Thus we use the cross entropy function as the optimization
objective in Eq. (5) to learn network parameters.

L = −
∑

It
u · log(Ît

u) + λ ‖Θ‖ (5)

It
u means the items that the user u is actually interacting with at time step t, λ

is the regularization factor, Θ are network parameters.
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3.6 Sequential Patterns Mined from TIMe

The interpretability of TIMe lies in the multi-scale interest tree. Take user u
at time t for example, all candidate sequential patterns can be derived from
multi-scale interest tree T <t

u as follows

{(T <t
u [p].data → It

u, ρ[p])|0 ≤ p ≤ |T .u<t|, ρ = f({Ab
u}B

b=1)}.

Support values ρ for all the candidate patterns are derived from the attention
matrix Ab

u in Eq. (3). Intuitively, we adopt the attention matrix AB
u from the

final recurrent tree transformer layer as support values, ρ = AB
u [−1, :].

3.7 Discussion

Theoretically, we show that our proposed TIMe subsumes several existing meth-
ods when choosing proper {εi}d

i=1. The key lies in the Topological Transforma-
tion Layer (TTL). Here we consider the following three special cases of TTL.
(1) d = 1 and ε1 is small enough that each simplex contains only one item in
the output sequence of TTL, such as SASRec [9] and BST [1]. (2) d = 1 and ε1
is large enough that TTL output a sequence with only one item complex. All
the items in this complex are taken as a set, such as matrix factorization based
recommendation approaches [15]. (3) d = 2 and ε1 is small enough while ε2 is
large enough. Some long and short sequence models [20,23] are of this kind.

4 Experiments

First, we compare TIMe with state-of-the-art baselines on public benchmark
datasets. Then the role of each component is explored. Finally, parameter anal-
ysis and qualitative analysis are further discussed.

4.1 Experiment Setting

Datasets. Experiments are carried out on two public benchmark datasets, i.e.
MovieLens-100k and Amazon Movies & TV. MovieLens-100k is a subset of the
MovieLens dataset [5]. It contains 100, 000 anonymous ratings of approximately
1, 682 movies made by 943 MovieLens users. All selected users have rated at least
20 movies. Amazon Movies & TV is a subset of the Amazon Product dataset [6].
In this paper, the dataset is preprocessed to obtain a 50-core subset [21], i.e. every
user rates in total at least 50 items and vice versa. The final dataset has 2, 074
users, 7, 352 movies and 268, 586 ratings. For both sets, we split the training
and test dataset with the ratio 8 : 2 according to the temporal order of user’s
historical behaviors. Given a minimum length M and a sequence L, we can
construct L[1 : M ], L[1 : M + 1], . . . , L[1 :] as training sequences.

Baseline Methods. Our baselines mainly include the following five groups. (1)
General recommendation methods: ItemKNN [17] and BPRMF [15]. (2) Long
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term sequence models: SASRec [9], S3Rec [24] and BST [1]. (3) Short term
sequence models: STAMP [11] and GRU4REC [7]. (4) Long Short term sequence
models: MARank [22]. (5) Multi-scale Sequence model: HPMN [14].

Implementation Details. We implement TIMe1 and baselines based on
NeuRec2. Generally, parameters with the best performance on the training
set is chosen for the test set. For all the models, the batch size is 256 and
the regularization coefficient is 0.001. For TIMe, the user and item embed-
ding size are both 16. The minimum length of the training sequence is 16,
the number of heads is 4 and the learning rate is 0.001. For MovieLens-100k,
ε ∈ [60, 3.6 × 103, 8.64 × 104, 3.1536 × 107] and blocks = 1. For Amazon Movies
& TV, ε ∈ [8.64 × 104, 6.048 × 105, 3.1536 × 107] and blocks = 3.

Evaluation Metrics. In this paper, we focus on the top-n recommendation
and our evaluation measures are ranking based metrics, such as Precision [16],
Recall [16], NDCG(Normalized Cumulative Gain) [8] and MRR(Mean Reciprocal
Rank) [3]. All the metrics are at the cut-off 10.

4.2 Performance Analysis

Here we compare the performance of TIMe with five groups of baselines. Com-
parison results on both datasets are shown in Table 1. Under all evaluation met-
rics, performance differences between the bold type and other corresponding
baselines are statistically significant with p − value < 0.01 in the two tailed
paired t-tests. Compared with the other multi-scale sequential recommendation
HPMN [14], the minimum and maximum relative improvement of TIMe occur
under the evaluation of MRR@10 on MovieLens-100k and Recall@10 on Ama-
zon Movies & TV respectively. Min.Imp.% and Max.Imp.% mean the relative
performance improvement of TIMe compared with each baseline method under
the corresponding evaluation condition respectively.

All sequential recommendation approaches outperform these two general rec-
ommendation methods on both datasets. The major reason lies in that sequential
recommendation methods take the temporal order among items into considera-
tion compared with general recommendation methods.

Most long term approaches (SASRec and S3Rec) perform better than short
term methods (STAMP and GRU4REC) on MovieLens 100k while they perform
worse than short term methods on Amazon Movies & TV. This phenomenon
coinsides with our intuition that the leading causal pattern for next item pre-
dictions is (global) long term user interests for some sequences, but (local) short
term user interests for others. Long term model BST in Table 1 achieves bet-
ter performances than short term methods on both sets because of explicitly
modeling relations between causal patterns and the target item. Here comes the
question: what about the combination of long and short term methods.

1 https://github.com/hustyuantao/TIMe.
2 https://github.com/wubinzzu/NeuRec.

https://github.com/hustyuantao/TIMe
https://github.com/wubinzzu/NeuRec
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Table 1. Performance comparison on two public benchmark datasets

Model MovieLens-100k Amazon Movies & TV Min.

Imp.%

Max.

Imp.%

Prec Recall NDCG MRR Prec Recall NDCG MRR

ItemKNN .1601 .1192 .1931 .3676 .0411 .0202 .0435 .1063 14 81

BPRMF .1616 .1196 .1894 .3507 .0376 .0189 .0385 .0967 19 92

SASRec .1843 .1349 .2156 .3953 .0603 .0257 .0630 .1471 6.3 42

S3Rec .1887 .1357 .2247 .4065 .0649 .0269 .0675 .1498 3.3 36

BST .1934 .1450 .2322 .4113 .0743 .0308 .0782 .1705 2.1 19

STAMP .1763 .1262 .2064 .3698 .0703 .0301 .0736 .1591 14 22

GRU4REC .1751 .1317 .2060 .3698 .0716 .0297 .0756 .1666 14 23

MARank .1916 .1397 .2253 .3987 .0728 .0305 .0776 .1718 5.4 20

HPMN .2055 .1448 .2419 .4185 .0792 .0331 .0839 .1884 .38 11

TIMe .2142 .1477 .2464 .4201 .0852 .0366 .0902 .1987 – –

Long short term methods, combination of long and short term methods,
perform better than all single scale methods on both sets except BST. This
comparison result tells us that long short term models with two scales are more
flexible to be adapted to sequences with different leading causal patterns. The
exception is mainly because of the explicitly modeling relations used in BST.
Are two scale (long and short term) methods good enough?

It is natural to introduce additional scales, such as mid-term scales, to verify
its effectiveness. The result is that multi-scale (more than two scales) models per-
form better than two scale (long and short term) methods consistently on both
sets. For most cases, HPMN outperforms BST on both sets. The phenomenon
empirically verifies the correctness of our motivation that mid-term scales play
an essential role in the next item prediction task. Is HPMN good enough for
multi-scale modeling of user interests?

Our proposed method TIMe outperforms HPMN by on both sets. On Movie-
Lens 100k, the relative improvement of MRR@10 is at least 0.38%. On Amazon
Movies & TV, the relative improvement of Recall@10 is 11%. The statistically
significant improvement suggests the advantage of multi-scale modeling method
in TIMe. One distinction is that TIMe explicitly models multi-scale causal pat-
terns in the topological space with persistent homology for better explanations
while HPMN only captures multi-scale implicit patterns in the latent space. The
other is that both pattern relations and relations between the pattern and tar-
get item are embedded in recurrent tree transformer layer of TIMe, while only
relations between the pattern and target item are computed in HPMN.

The absolute performance of each method is higher on MovieLens 100k than
that on Amazon Movies & TV correspondingly. For Amazon Movies & TV, the
number of users and items are more than that on MovieLens 100k. Due to the
long tail effect, the data sparsity is much more serious on Amazon Movies & TV.
However, our relative performance gain is higher on Amazon Movies & TV. The
major reason lies in that TIMe generates multiple complex sequences from each
item sequence through topological transformation layer. This can be treated as
augmenting training sequences, which alleviates the data sparsity problem.
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The relative MRR@10 improvement of TIMe is the smallest among four
evaluation measures compared with other methods. It suggests that TIMe is
better at identifying useful causal patterns for classifying which items will be
the target rather than for the top ranked item (MRR@10).

4.3 Hyperparameter Sensitivity Analysis

We conduct comprehensive experiments on the effect of different settings of the
number of time scales d and the number of recurrent tree transformer blocks B
on datasets. Take the minimum and maximum diameters as 2 scales, and then
gradually add intermediate diameters from small to large to obtain 3, 4 and 5
scales. Performance variations of TIMe with B = 1 and d ∈ {2, . . . , 5} on both
sets are shown in Fig. 4(a) and (b) respectively. Performance variations of TIMe
with B ∈ {1, 2, 3} and d = 4 on MovieLens 100k, d = 3 on Amazon Movies &
TV are shown in Fig. 4(c) and (d) respectively.

(a) d-MovieLens (b) d-Amazon (c) B-MovieLens (d) B-Amazon

Fig. 4. Performance variations on MovieLens 100k and Amazon Movies & TV with
change of the number of time scales d and blocks B.

With the increase of the scale number d from 2 to 5, the highest performance
improvement of TIMe is 3–5% on MovieLens 100k and 4–7% on Amazon Movies
& TV. TIMe achieves the highest point at d = 4 on MovieLens 100k and d = 3
on Amazon Movies & TV. After this point, its performance keeps steady on both
sets. This suggests the scale number d can be determined by properly selection.
The best choice d > 2 on both sets indicates that multi-scale modeling in TIMe
plays a positive role in promoting the recommendation performance.

With the increase of the block number B from 1 to 3, the highest perfor-
mance improvement of TIMe is 0.8–6% on MovieLens 100k and 2–6% on Amazon
Movies & TV. The highest point is achieved by TIMe at B = 1 on MovieLens
100k and B = 3 on Amazon Movies & TV. With more training sequences, Ama-
zon Movies & TV needs a more deeper model than MovieLens 100k.

4.4 Ablation Study

Tree Aggregation Block (TAB) and Recurrent Tree Transformer (RTT) are two
key components of TIMe. To explore their roles in the final recommendation per-
formance, we do the following ablation studies on MovieLens 100k. To observe
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the accumulative effect of tree node embedding, we set the block size B = 2.
(1) The recurrent tree transformer in TIMe is replaced with vanilla transformer,
denoted as TIMe-RTT. (2) The tree aggregation block is further removed from
TIMe-RTT, denoted as TIMe-RTT-TAB. We compare the performance of the origi-
nal method TIMe with TIMe-RTT and TIMe-RTT-TAB on MovieLens 100k shown
in Table 2. Imp.% column corresponds to the relative performance improvement
of each method compared with TIMe-RTT-TAB.

Table 2. TIMe’s different component effects on MovieLens-100k.

Model Precision Imp.% Recall Imp.% NDCG Imp.% MRR Imp.%

TIMe .2057 3.68 .1426 1.78 .2397 2.79 .4275 2.86

TIMe-RTT .2016 1.61 .1418 1.21 .2350 0.77 .4197 0.99

TIMe-RTT-TAB .1984 – .1401 – .2332 – .4156 –

The introduction of tree aggregation block improves the performance of TIMe
by 1% or so under all evaluation measures. Different from the naive node embed-
ding method in TIMe-RTT-TAB, tree aggregation block in TIMe-RTT initializes
node embedding which encodes parent-child relations in the multi-scale interest
tree. The inclusion relation will be learned through the recurrent aggregation
process. This is the major reason for TAB’s performance improvement.

The addition of recurrent tree transformer brings about 2% performance
improvement under all evaluation measures. Vanilla transformer in TIMe-RTT

takes patterns from all scales in a temporal order as input, but ignore pat-
tern relations from different scales, such as parent-child relations in the multi-
scale interest tree. So we introduce tree aggregation block to vanilla transformer,
and obtain recurrent tree transformer. This helps learn node/pattern embedding
encoding both parent-child relations across scales and temporal order relations
within a scale jointly. That’s why the performance improvement of RTT is higher.

4.5 Qualitative Study

To figure out How TIMe works, we take one small example sequence with 32
movies from MovieLens-100k dataset as the input sequence, and attempt to
predict the next movie. Through topological transformation layer, we obtain a
multi-scale interest tree with four scales d = 4 in Fig. 5.

Intuitively each movie is represented as a IMDB category. At the minute
scale, there are 23 nodes from a complex sequence at the bottom of this tree.
At the day scale, we obtain a complex sequence with three patterns, denoted
as ({drama, thriller, comedy, musical}, {romance, comedy, drama, action},
{romance, drama, comedy, sci-fi}). At the week scale, we obtain a complex
sequence with only one node, denoted as ({drama, romance, comedy, action}).
We obtain different compositions of movie genres at different scales. This com-
bination ability of multi-scale interest tree makes the matching between user
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Fig. 5. Example of multi-scale interest tree and attention visualization

interest and movies easy, because of the combinatorial nature of both user inter-
est and movies.

To predict movie “Evita (1996)” for user 554, the learned attention map is
depicted in the user’s multi-scale interest tree with support values and colors in
Fig. 5. Through this attention map, we identify many sequential patterns with
the attention weight as the support value from TIMe. For movie “Evita (1996)”
labeled with romance, drama and history, the most important pattern identi-
fied from TIMe is like “movies tagged with {romance,drama, comedy, sci-fi}” →
“Evita (1996)” with support value 0.2. This is consistent with our intuition.

5 Conclusion

We propose a topological data analysis based framework for interpretable multi-
scale sequential recommendation. Our proposed topological transformation layer
maps the item sequence into complex sequences with different diameters in the
form of multi-scale interest tree. The tree aggregation block is proposed to obtain
node embedding from this tree in a recurrent aggregation process. Introducing
this block to the vanilla transform, we obtain the recurrent tree transformer to
derive the unified user interest representation. Sequential patterns for next item
prediction will be obtained explicitly from the multi-scale interest tree and its
corresponding attention matrix. Empirical studies verify the effectiveness and
interpretability of our proposed method. In future, we will introduce the item
content information into TIMe.
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Abstract. Recommender systems generate personalized recommenda-
tions for users based on their historical data. However, if some users
have few interactions in the training data, i.e., few-shot users, recom-
mendations for them will be inaccurate. In this paper, we propose a
setwise attentional neural similarity method (SANS) for the few-shot
recommendation problem. Unlike general recommendation algorithms,
we eliminate direct representations of few-shot users. First, a neural sim-
ilarity method is proposed to effectively estimate the correlation between
items. Then, we propose a setwise attention mechanism to obtain rec-
ommendation scores by aggregating the correlations between a candidate
item and items in a candidate user’s historical interactions. To facilitate
model training in the few-shot scenario, training samples are generated
by episode sampling, and each training sample is assigned with an adap-
tive weight to emphasize the importance of few-shot users. We simulate
the few-shot recommendation problem on three real-world datasets and
extensive results show that SANS can outperform the state-of-the-art
recommendation algorithms in few-shot recommendation.

Keywords: Collaborative filtering · Few-shot learning · Neural
networks · Top-N recommendation

1 Introduction

Recommender systems recommend items to users based on their historical inter-
actions with other items. However, in practice, there are many newcomers or
inactive users who have few interactions in online services, i.e., few-shot users,
which makes it challenging to train accurate recommendation models for them.
Due to the long-tail distribution of user activities in online services, these few-
shot users are non-negligible and it is desirable to deliver high quality recom-
mendations for these few-shot users.
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Existing general-purpose recommendation algorithms cannot well address the
few-shot recommendation problem. In many recent recommendation algorithms,
especially deep learning-based ones [2,6], large number of training data are
required in model learning, e.g., learn the embedding vectors of users and items.
However, if a user has very few interactions, then the embedding vector of this
user cannot be well learned, resulting in poor recommendation performance. For
instance, many deep neural network-based methods adopt deep neural networks
to learn the representations of users/items and capture the complex non-linear
relationships among user/items, which may suffer from severe overfitting issue in
the few-shot recommendation scenario. Item-based recommendation algorithms,
such as FISM [8] and NAIS [5], can eliminate the overfitting issue on user mod-
eling. However, how to effectively estimate the correlation between items (e.g.,
similarity) in the few-shot scenario is still an open question.

In this paper, we propose SANS, an item-based deep recommendation algo-
rithm for few-shot recommendation. In SANS, we do not explicitly learn the
representations of users like many existing works but represent each user by the
set of items in his/her historical interactions. A neural similarity method is pro-
posed to estimate the correlation between each pair of items, i.e., the probability
that a user who likes one of the items will also like the other one. When recom-
mending items for a user, we propose a setwise attention method which utilizes
items in the user’s historical interactions as a support set, estimates importance
of each item in the support set via attention mechanism, and finally aggregates
the correlations between the candidate item and the support set to generate
the final prediction. To facilitate model training for few-shot users, we generate
training samples by episode sampling and propose a new weighted loss function
in which each training sample is assigned with an adaptive weight to emphasize
the importance of few-shot users.

In summary, the main contributions of this paper are as follows:

– We propose SANS, a deep recommendation algorithm consisting of a neural
similarity module and a setwise attention module to address the few-shot
recommendation problem.

– We design a weighted loss function in which weights are adaptively assigned
according to the number of user’s interactions. Combined with episode sam-
pling, the training of SANS is highly effective.

– We conduct extensive experiments on three real-world datasets, which demon-
strate that SANS can substantially outperform state-of-the-art recommenda-
tion algorithms on few-shot users.

The rest of this paper is organized as following: Sect. 2 defines the few-
shot recommendation problem and introduces item-based collaborative filtering.
Section 3 proposes the network architecture of SANS, the weighted loss and its
training procedure. Section 4 presents experimental results. Section 5 discusses
the related work about collaborative filtering, cold-start recommendation and
few-shot learning. Finally Sect. 6 concludes the paper.
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2 Preliminaries

This section first defines the few-shot recommendation problem and then intro-
duces the item-based collaborative filtering algorithm.

2.1 Few-Shot Recommendation

Let U and I donate the set of users and items, respectively. The training set S
consists of the user-item tuples S = {(u, i) : u ∈ U, i ∈ I}. We define the set of
items interacted by user u as I+

u = {i ∈ I : (u, i) ∈ S}. For each user-item tuple,

yui =

{
1, (u, i) ∈ S

0, (u, i) /∈ S
, (1)

where yui = 0 means the interaction between user u and item i hasn’t been
observed. Then, we formulate the problem of few-shot recommendation as fol-
lows.

Definition 1. (N-shot Recommendation) For a subset of users U∗, if ∀u ∈ U∗

satisfies |I+
u | = N (N > 0), the problem of recommending items to all users

within U∗ is N-shot recommendation.

When N is small, e.g., 3 or 5, we can call it few-shot recommendation. There
is a related problem in previous recommender system research called cold-start
[14]. However, the difference between few-shot and cold-start is that few-shot
users have no additional personal information other than few interactions. Few-
shot users are special cold-start users.

2.2 Item-Based Collaborative Filtering

The item-based collaborative filtering method [13] uses similarities between can-
didate items and users’ historical items to rank candidate items. For a user u
with historical interactions I+

u , the predicted score of user u on item i under the
implicit feedback setting is:

ŷui ∝
∑
j∈I+

u

aujsij , (2)

where sij denotes the similarity between item i and item j. The similarity can
be computed using different metrics such as cosine [12], Pearson [13], etc., or
learned from data [5,8]. auj donates the preference of user u on item j when
predicting u’s preference on i. auj is usually set to 1 in existing methods, i.e., all
historical interactions are equally important on predicting u’s preference on i.

The item-based collaborative filtering is well suited for few-shot recommen-
dation due to two reasons: 1) users are not explicitly modeled. Since there are
no user-related model parameters, the difficulty in training user models in few-
shot scenario doesn’t exist; 2) new users with few interactions can also have
recommendations, which is ideal for online services with newcomers everyday.
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Fig. 1. The network architecture of SANS.

3 SANS: Setwise Attentional Neural Similarity Method

3.1 Algorithm Design

The Overall Architecture. As illustrated in Fig. 1, where I+
u = {j1, j2,

. . . , jN}, SANS consists of two main components: 1) a neural similarity module,
which estimates the correlation of two items using neural network, i.e., the sim-
ilarity term in Eq. 2. More specifically, the neural similarity module outputs the
possibility of users who interacted with one of the items will also interact the
other item; 2) a setwise attention module, which estimates the preference of a
user over each item in his/her historical interactions, i.e., the preference term in
Eq. 2. More specifically, we assume that items from user history are not equally
important in reflecting user preference, and we obtain the relative importance
of different items via the proposed setwise attention module.

Neural Similarity. If each user has only one interaction, then the recommen-
dation problem becomes estimating the probability that a user u who likes item
i also likes another item j: Pr(yuj = 1|yui = 1). Let Pr(yuj = 1, yui = 1) donates
the joint probability that two items are favored by a user. The score of person-
alized item ranking for the user u who has only one interaction with item i is
computed as follows:

Pr(yuj = 1|yui = 1) =
Pr(yuj = 1, yui = 1)

Pr(yui = 1)
= Pr(yuj = 1, yui = 1), (3)

where Pr(yui = 1) = 1 since the item i has already been in the historical inter-
actions of user u. Pr(yuj = 1, yui = 1) is the probability of the co-occurrence
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Fig. 2. The network architecture of the neural similarity module.

of item i and item j on user u, which can be approximated using the following
equation:

Pr(yuj = 1, yui = 1) =
|U+

i ∩ U+
j |

|U | , (4)

where Ui/Uj is the set of users who interacted with item i/j. |U | (the number
of users) is a constant, which has no effect in ranking problems. Therefore, the
probability that a user who likes one item also likes another item is proportional
to the number of common users between two items:

Pr(yuj = 1|yui = 1) ∝ |U+
i ∩ U+

j |. (5)

In addition, previous works [1,2] have shown that multi-layer perceptron
(MLP) can help to capture the high-order relationships between entities. There-
fore, we combine the above two ideas and propose our neural similarity method
as shown in Fig. 2.

More formally, the neural similarity between item i and item j is as follows:

sij = |U+
i ∩ U+

j | + fθ(
[
pi

pj

]
), (6)

where pi and pj are embedding vectors for item i and item j, respectively. They
are concatenated together and then passed to an MLP fΘ:

z1 =ReLU(WT
1

[
pi

pj

]
+ b1)

z2 =ReLU(WT
2 z1 + b2)

. . .

fθ(
[
pi

pj

]
) =WT

LzL−1 + bL

, (7)



74 Z. Zhang et al.

where Wl and bl are the weight matrix and bias of the l-th layer. They are repre-
sented as Θ = (W1, . . . ,WL,b1, . . . , bL). The output of the MLP is finally added
to |U+

i ∩ U+
j |. The MLP can benefit the similarity learning due to two reasons:

1) it can capture high-order non-linear relationships between items in addition
to the number of common users; 2) it can estimate the similarity between two
items without common users via representation learning.
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Latent Factor 

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

Support Items 

Sum

Dot

So max

Fig. 3. The network architecture of the setwise attention module.

Setwise Attention. In the previous section, we have modeled the neural sim-
ilarity between items, based on which the probability that a user who has
more than one interactions will like another item can be obtained based on
the weighted sum overs the similarities between a set of support items and the
candidate item:

ŷui = σ

⎛
⎝ ∑

j∈I+
u

aujsij

⎞
⎠ . (8)

σ is the sigmoid function, which converts the weighted sum to a value between 0
and 1. The preference auj should be based on the set of items interacted by user
u. However, it is challenging to introduce parameters related to user u in the
few-shot recommendation problem. To this end, we propose the setwise attention
method as illustrated in Fig. 3, which is formally described as follows:

auj =
exp(

∑
k∈I+

u
hT

k hj)∑
i′∈I+

u
exp(

∑
k∈I+

u
hT

k hi′)
, (9)

where hk, hj and hi′ are embedding vectors of items. The setwise attention mod-
ule estimates a user’s preferences over items in his or her historical interactions.
If there are a few highly similar items in a user’s historical data, we can infer
that this user really likes this type of items and we should emphasize more on
recommending items that are similar to these items. Otherwise, we know that
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the user has no preference differences among his/her historical items, so that it
would be better to assign nearly equal weights to different items.

3.2 The Weighted Loss

For point-wise ranking problem, the binary cross-entropy loss function has been
widely adopted. However, treating each training sample as equally important
may not be optimal for model training [7]. Intuitively, users with many interac-
tions contribute more to the total loss than users with few interactions. Thus,
the model will converge when the users with many interactions are well trained
but the few-shot users are usually underfitted due to fewer gradient updates. To
remedy this, we propose a weighting mechanism to assign weights for each user
based on the number of interacted items as follows:

cu = c0
|I+

u |α∑
j∈U |I+

j |α , (10)

where c0 sets the magnitude of weights and α controls the impact of the number
of interactions on the weights. α is chosen in [−1, 0]. When α = 0, all users have
equal weights. When α = −1, the weight is inversely proportional to the number
of interactions.

The weights of users are then added into the binary cross-entropy loss forming
the proposed weighted loss function for SANS as follows:

L =
∑

(u,i,IS
u ,yui)∈D

cu(−yui log ŷuj − (1 − yui) log(1 − ŷuj))

+ λΘ‖Θ‖2 + λP ‖P‖2 + λH‖H‖2,

(11)

where IS
u is a support set sampled from I+

u , which mimics few-shot recommen-
dation in each training sample. λΘ, λP and λH are L2 regularization coefficients.

3.3 Model Training

In SANS, we have three sets of model parameters: Θ, P and H. Θ and P are
the parameters of the MLP and embedding matrix, respectively, in the neural
similarity module. H is the embedding matrix for the setwise attention module.

Algorithm 1 presents the learning details. First, we calculate the weights for
each user based on the number of interactions he/she has, then randomly initial-
ize all parameters using Gaussian distribution. Training samples are dynamically
generated in each iteration. For each user-item pair (u, i) in the dataset, a sup-
port set of items with size N is sampled from I+

u , and a negative item is sampled
from I \ I+

u . Then, each quadruple—the user u, the positive item i or negative
item j, the support set IS

u , and the label yui is added to the collection of train-
ing samples. Finally, the SANS model is trained using training samples by the
above episode sampling in each iteration, in which the model parameters can be
updated by the stochastic gradient descent (SGD)-based methods.
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Algorithm 1: LearnSANS
Data: Number of shots N , users U , items I, implicit feedback S, number of

epoches T , weight magnitude c0, weight strength α and regularization
strength (λΘ, λP , λH)

Result: SANS model weights (Θ,P,H)
1 foreach u ∈ U do

2 cu ←− c0
|I+

u |α
∑

j∈U |I+
j |α ;

3 Initialize (Θ,P,H) randomly;
4 for i ← 1 to T do
5 D = ∅;
6 foreach (u, i) ∈ S do
7 Sample a support set IS

u sized N from I+
u ;

8 Sample an negative item j from I \ I+
u ;

9 D ←− D ∩ {(u, i, IS
u , 1)};

10 D ←− D ∩ {(u, j, IS
u , 0)};

11 Train SANS using D with weighted loss (Eq. 11);

4 Experiments

In this section, we compare SANS with state-of-the-art algorithms in few-shot
recommendation scenario aiming to answer the following research questions:

– RQ1: how does SANS perform compared with state-of-the-art recommenda-
tion algorithms in few-shot recommendation?

– RQ2: how does each component in SANS affect the performance of the overall
model?

– RQ3: how does the performance of SANS change with different few-shot
scenarios?

4.1 Experimental Settings

Dataset. We evaluate the proposed SANS method on three real-world datasets:
Last.FM1, Steam2 and Douban3, which are publicly available. The statistics of
the three datasets are shown in Table 1.

– Last.FM was from HetRec 2011, which contains listening relationships
between users and artists. The interactions from Last.FM are implicit.

– Steam was shared by Kaggle users, which contains purchase or play records
of a set of Steam users. We convert all records into user-game tuples and
remove duplicate ones.

1 https://grouplens.org/datasets/hetrec-2011/.
2 https://www.kaggle.com/tamber/steam-video-games.
3 https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/

LA9GRH.

https://grouplens.org/datasets/hetrec-2011/
https://www.kaggle.com/tamber/steam-video-games
https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/LA9GRH
https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/LA9GRH
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– Douban was collect by Yin et al. [23], which contains ratings on books given
by Douban users. The raw dataset is large, so we sample 5,000 users out of
383,033 users and treat all the ratings as implicit positive feedback.

Table 1. Statists of the three datasets.

Dataset #Interaction #User #Item Sparsity

Last.FM 82,155 1,885 6,953 99.37%

Steam 103,594 2,189 3,933 98.80%

Douban 199,053 5,000 34,604 99.88%

Evaluation Protocols. We use a user-based splitting method to split the
dataset to simulate few-shot recommendation. First, we divide users into train-
ing users and test users by 8:2. All the interactions from training users are added
to the training set. Then, for each user in the test user set, we sample N interac-
tions from his or her interactions into the training set and put all the remaining
interactions to the test set if this user has more than N interactions in his or
her history. If the number of interactions from a user is less than N , we put this
user back to the training set. We evaluate the recommendation performance by
NDCG@10 [22] and Recall@10. For each user in the test set of Last.FM and
Steam datasets, we rank all the items by predicated scores and exclude items
that have already been interacted by the user in the training set to generate a
top-10 list of recommended items. For the Douban dataset, we sampled 10,000
items and mix them with ground truth items as candidate items for each user.
The NDCG@10 and Recall@10 values for that user can be calculated base on
interactions in the test set. The performance on the entire dataset is reported
by the average NDCG@10 and Recall@10 over all test users.

Compared Methods. We compare SANS with various types of methods
including baseline method, item-based methods, matrix factorization-based
methods, deep learning-based methods and metric learning-based method as
follows:

– ItemPop recommends top-N popular items to users. It is a non-personalized
baseline method.

– ALS [7] uses point-wise loss and treats all unknown feedback as negative to
learn the matrix factorization model. By taking advantage of its mathematical
property, their matrix factorization model can be trained using all negative
feedback.

– BPR [12] uses pair-wise loss and collects negative samples by sampling to
learn the matrix factorization model.

– KNN [13] first computes the similarity between each pair of items and then
sorts items by the sum of their similarities to the user’s interactions. We use
cosine similarity as the similarity metric in the experiments.
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– NAIS [5] is an item-based collaborative filtering method which models item
similarity by the dot product of two embedding vectors. Besides, attention
mechanism is used to generate weights for different items.

– NeuMF [6] is a deep learning-based collaborative filtering method, which
uses deep neural networks instead of a linear function to model the interac-
tions between users and items.

– CFNet [2] combines representation learning-based collaborative filtering
approach and matching function-based collaborative filtering approach using
neural networks to achieve higher performance.

– LRML [20] is a collaborative filtering method based on metric learning which
learns embeddings of users and items in a unified hyperspace. Items are ranked
by the Euclidean distance to a user by assuming that users will prefer items
that are close to them in the hyperspace.

The experiments are implemented using Tensorflow. We use the released code
from the authors to implement the following compared methods: NAIS4,
NeuMF5, CFNet6 and LRML7.

Hyperparameter Settings. Hyperparameters of each method are tuned by
the random search method. More specifically, all methods are tuned via a vali-
dation set and hyperparameters with the highest NDCG@10 are chosen as the
optimal ones. We tuned the learning rates of all methods in [0.001, 0.005, 0.01,
0.05] and the regularization coefficients in [0.1, 0.01, 0.001]. The optimal learn-
ing rates and regularization coefficients vary across datasets. For SANS, we
fixed c0 to 2,000 and tested the similarity embedding size of [8, 16, 32, 64],
the attention embedding size of [4, 8, 12, 16] and the weight strength α of
[−0.5,−0.1,−0.05,−0.01]. Finally, we set the dimension of the similarity embed-
ding to 32, the dimension of the attention embedding to 4, and the weight
strength α to -0.05. The architecture of MLP fΘ is 64 −→ 32 −→ 16. Deeper
neural networks tend to achieve higher performance, but there is a law of dimin-
ishing marginal utility on the depth of networks. The SANS model is learned by
the Adam optimizer [9].

4.2 Performance Comparison (RQ1)

We evaluate the performance of SANS and all the compared methods on three
datasets with the number of shots increasing from 1 to 3 in Table 2. We have
the following observations from the results:

– The performance of SANS is better than all other methods with N increasing
from 1 to 3, which demonstrates the advantage of SANS on the few-shot
recommendation.

4 https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model.
5 https://github.com/hexiangnan/neural collaborative filtering.
6 https://github.com/familyld/DeepCF.
7 https://github.com/cheungdaven/DeepRec.

https://github.com/AaronHeee/Neural-Attentive-Item-Similarity-Model
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/familyld/DeepCF
https://github.com/cheungdaven/DeepRec
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Table 2. Performance comparison between SANS and all compared methods in N-shot
recommendation on three datasets. Relative improvements over the strongest baselines
are also reported at the end of each table.

(a) Last.FM

Model
NDCG@10 Recall@10

N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

ItemPop 0.2655 0.2600 0.2521 0.0548 0.0552 0.0548

BPR 0.2424 0.3016 0.3486 0.0510 0.0656 0.0762

ALS 0.3270 0.3659 0.3983 0.0698 0.0801 0.0890

KNN 0.2759 0.3361 0.3858 0.0631 0.0765 0.0885

NAIS 0.3392 0.3828 0.4045 0.0708 0.0815 0.0880

NeuMF 0.3940 0.4285 0.4558 0.0820 0.0922 0.1009

CFNet 0.2676 0.2610 0.2574 0.0554 0.0559 0.0565

LRML 0.3522 0.4061 0.4326 0.0738 0.0880 0.0963

SANS 0.4205 0.4501 0.4839 0.0889 0.0978 0.1073

Improvement 6.72% 5.05% 6.17% 8.36% 5.98% 6.32%

(b) Steam

Model
NDCG@10 Recall@10

N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

ItemPop 0.3552 0.3432 0.3401 0.1210 0.1204 0.1226

BPR 0.3815 0.4380 0.4632 0.1567 0.1884 0.2100

ALS 0.3726 0.4402 0.4580 0.1442 0.1816 0.1976

KNN 0.3538 0.4551 0.4943 0.1411 0.1874 0.2127

NAIS 0.3891 0.4292 0.4461 0.1540 0.1769 0.1910

NeuMF 0.4361 0.4516 0.4551 0.1692 0.1874 0.2004

CFNet 0.3528 0.3390 0.3381 0.1175 0.1143 0.1184

LRML 0.4071 0.4377 0.4553 0.1460 0.1688 0.1976

SANS 0.4806 0.5206 0.5223 0.1849 0.2102 0.2244

Improvement 10.21% 14.30% 5.66% 9.29% 11.54% 5.50%

(c) Douban

Model
NDCG@10 Recall@10

N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

ItemPop 0.0180 0.0169 0.0171 0.0055 0.0054 0.0057

BPR 0.0998 0.1187 0.1271 0.0276 0.0353 0.0383

ALS 0.0726 0.0838 0.0910 0.0199 0.0246 0.0272

KNN 0.0895 0.1245 0.1468 0.0245 0.0365 0.0436

NAIS 0.0462 0.0534 0.0602 0.0125 0.0150 0.0177

NeuMF 0.0803 0.0883 0.0939 0.0222 0.0262 0.0280

CFNet 0.0142 0.0138 0.0142 0.0041 0.0038 0.0043

LRML 0.0761 0.1017 0.1136 0.0213 0.0307 0.0350

SANS 0.1161 0.1601 0.1841 0.0305 0.0450 0.0525

Improvement 16.31% 28.52% 25.42% 10.28% 23.04% 20.43%

– When N = 1, most of the compared methods have very low NDCG@10
and Recall@10, and some of them (e.g., BPR in Last.FM and CFNet in
Steam) even perform worse than ItemPop. This indicates that existing meth-
ods indeed cannot well address the few-shot recommendation problem.
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– Complex methods based on advanced techniques, e.g., matrix factorization
and neural networks do not always exhibit higher performance in few-shot
recommendation. For instance, KNN outperforms almost all compared meth-
ods in the Douban dataset (only except BPR with N = 1). This indicates
that complex models will easily overfit and be less desirable in the few-shot
recommendation problems.

– SANS is more desirable due to: 1) overfitting will be less problematic because
SANS does not learn user representations; 2) the proposed neural similarity
method is more robust than conventional similarity methods due to the com-
bination of simple and complex similarity modeling; 3) the proposed weighted
loss function can emphasize few-shot users during model training, which can
further alleviate inappropriate convergence on few-shot users.

4.3 Ablation Analysis (RQ2)

Here, we perform ablation analysis to investigate the impact of each component
in SANS. The experimental results are shown in Table 3. SANS-SIM uses the
linear part of neural similarity only, and SANS-MLP uses the MLP part of neural
similarity, SANS-BCE replaces the weighted loss with binary cross-entropy loss,
and SANS-AVG replaces setwise attention with the mean over neural similarities.

Table 3. Performance of SANS with each component removed in N-shot recommen-
dation on the three datasets.

Dataset Model NDCG@10 Recall@10

N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

Last.FM SANS 0.4205 0.4501 0.4839 0.0889 0.0978 0.1073

SANS-SIM 0.3703 0.4431 0.4732 0.0792 0.0967 0.1045

SANS-MLP 0.3665 0.3809 0.3897 0.0763 0.0822 0.0862

SANS-AVG – 0.4443 0.4657 – 0.0964 0.1034

SANS-BCE 0.4189 0.4477 0.4762 0.0886 0.0972 0.1053

Steam SANS 0.4806 0.5206 0.5223 0.1849 0.2102 0.2244

SANS-SIM 0.4592 0.4952 0.4943 0.1760 0.1957 0.2074

SANS-MLP 0.4235 0.4283 0.4454 0.1613 0.1733 0.1895

SANS-AVG – 0.5085 0.5199 – 0.2080 0.2221

SANS-BCE 0.4748 0.5114 0.5199 0.1818 0.2095 0.2209

Douban SANS 0.1161 0.1601 0.1841 0.0305 0.0450 0.0525

SANS-SIM 0.0826 0.1376 0.1684 0.0220 0.0390 0.0487

SANS-MLP 0.0260 0.0346 0.0350 0.0073 0.0100 0.0099

SANS-AVG – 0.1592 0.1832 – 0.0449 0.0527

SANS-BCE 0.1160 0.1596 0.1835 0.0304 0.0451 0.0530

Impact of Neural Similarity. SANS-SIM performs better than SANS-MLP
and is closer to SANS, suggesting that it is reasonable to use the number of com-
mon users to measure the similarity between items. Adding MLP to the neural
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similarity yields the best-performing model because MLP can fit the nonlinear
residual part of the neural similarity.

Impact of Setwise Attention. The attention mechanism is designed for rec-
ommendation that is more than one shot, so we only compare SANS-AVG with
SANS in N > 1 scenarios. The attention mechanism has significant impacts on
the Last.FM and Steam datasets, while the improvement is negligible on the
Douban dataset. The reason may be due to that Douban is much more sparse
and has much more items than the other datasets so that the interactions of the
few-shot users are too random to provide any additional information.

Impact of Weighted Loss. The weighted loss can help to emphasize few-shot
users when training the neural similarity module and setwise attention module in
SANS. We can see from the results that the weighted loss can contribute to sig-
nificant improvements on the Last.FM and Steam datasets but the improvement
on the Douban dataset is negligible. Again, this should be due to the sparsity
of the Douban dataset, so that most users are with very few ratings and giving
higher weights to few-shot users does not make significant differences.

4.4 Analysis on Number of Shots (RQ3)

To find the best scenarios for SANS, we evaluate SANS with different numbers
of shots. We split the three datasets with different numbers of shots from 2 to
16 by a step of 2. Due to space limitation, we only present the comparisons with
the five best-performing methods on all datasets.

(a) Last.FM–NDCG@10 (b) Steam–NDCG@10 (c) Douban–NDCG@10

(d) Last.FM–Recall@10 (e) Steam–Recall@10 (f) Douban–Recall@10

Fig. 4. Performance comparison between SANS and five compared methods in N-shot
recommendation with N varying from 2 to 16.
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The experimental results are shown in Fig. 4. The relative improvements of
SANS vary across different datasets. On the Last.FM dataset, SANS achieves
the best performance when N < 8. On the Steam dataset, SANS achieves the
best performance when N ≤ 4. But on the Douban dataset, SANS consistently
outperforms all the compared methods with significant margins. We have the
following observations from the results: 1) SANS is desirable for few-shot recom-
mendation on all datasets; 2) SANS is also more desirable on extremly sparse
datasets, e.g., the Douban dataset, than the other methods even with lots of
non-few-shot users; 3) KNN outperforms many recently proposed deep learning-
based methods, which indicates that deep learning-based methods may not be
appropriate for recommendations on few-shot users or on extremely sparse data
due to higher chances of overfitting.

5 Related Work

5.1 Collaborative Filtering

Collaborative filtering-based recommendation algorithms achieve competitive
performance in both rating prediction [11] and item ranking [2]. Classical col-
laborative filtering methods mainly includes matrix factorization-based methods
which learn user/item feature vectors by various learning algorithms [7,12,17]
and item-based methods which generate predictions based on item-item simi-
larity matrix [5,8]. However, many classical methods are linear and thus can-
not capture non-linear relationships between users and items, so that many
deep learning-based collaborative filtering methods have been proposed in recent
years [2,6,24]. Because of the representation power of deep neural networks, deep
learning-based methods outperform classical methods in most scenarios.

5.2 Cold Start Recommendation

Cold-start recommendation methods can also solve the few-shot recommenda-
tion problem if there is additional information to be exploited. For example,
the attribute-to-feature mapping method [4] learns the mapping from features
of users or items to their embedding vectors. Then, they generate embedding
vectors of new users or items based on their features. Social information is also
useful to alleviate the cold start problem [15,16]. In addition, cross-domain rec-
ommendation algorithm [19] can use feedback from source domains to address
cold-start recommendation in the target domain. However, additional informa-
tion is not always available, so that the above methods may fail in practice.
However, SANS does not require any additional information, i.e., more general
than these methods.

5.3 Few-Shot Learning

Few-shot learning was first proposed for object classification in computer
vision [3], which derives a new classifier for objects from new category using



Setwise Attentional Neural Similarity Method for Few-Shot Recommendation 83

few training samples. The performance of few-shot learning has been signifi-
cantly improved with the advances of deep learning and several neural network
structures have been recently proposed [10,18,21]. Siamese neural networks [10]
address one-shot learning by learning the similarity between samples using a
network architecture composed of twin networks with shared weights. Matching
networks [21] solve one-shot learning problems by conditional similarity. Proto-
typical networks [18] generate a prototypical vector for each few-shot category
and predictions can be calculated based on distances to prototypes. To the best
of our knowledge, there are very little prior works in few-shot recommendation.

6 Conclusion

This paper proposes SANS to address the few-shot recommendation problem.
SANS consists of a neural similarity module to estimate the similarity of each pair
of items and a setwise attention module to estimate user preferences. To facilitate
training, we propose an adaptive weighted loss function with episodic sampling.
Experimental studies on real datasets show that SANS can outperform state-of-
the-art recommendation algorithms in the few-shot recommendation problem.
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Abstract. Textual reviews, as a useful supplementary of the interac-
tion data, has been widely used to enhance the performance of recom-
mender systems, especially when the interaction data is sparse. However,
existing solutions to review-aware recommendation only focus on learn-
ing more informative features from reviews, yet ignore the insufficient
number of training examples, resulting in limited performance improve-
ments. To this end, we propose a co-training style semi-supervised
review-aware recommendation model, called Collaborative Factorization
Machines (CoFM), to augment the training dataset as well as increase its
informativeness. Our CoFM employs two FMs as base predictors, each
of which labels unlabeled examples for its peer predictor in the learning
process. Specifically, a user-leaded FM and an item-leaded FM are sepa-
rately built using different reviews to increase the diversity between two
predictors. Furthermore, to exploit unlabeled data safely, the labeling
confidence is estimated through validating the influence of the labeling of
unlabeled examples on the labeled ones. The final prediction is made by
linearly blending the outputs of two predictors. Extensive experiments on
three real-world benchmarks demonstrate the superiority of CoFM over
several state-of-the-art review-aware and semi-supervised recommenda-
tion schemes.

Keywords: Review-aware recommendation · Semi-supervised
learning · Factorization Machines

1 Introduction

Nowadays, recommender systems [5] have been an indispensable tool in provid-
ing personalized Web services for different users in the situations of information
overload. Collaborative Filtering (CF) [6], more specifically, Matrix Factoriza-
tion (MF) [11], has been one of key techniques to build recommender systems.
However, its performance is limited by the high sparsity and inferior expressive-
ness of the interaction data. One of promising solutions to improve prediction
is exploiting the rich side-information concerning users and items [21] to com-
plement interaction data, and a popularly used side-information is the textual
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reviews posed by users towards items (often existing alongside rating data),
which gives birth to review-aware recommendation.

User IDs Item IDs Reviews
posted by users La

be
ls

 

Reviews
received by items

(a) Labeled Examples

User IDs Item IDs Reviews
posted by users

Ps
eu

do
-la
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ls

Reviews
received by items

(b) Unlabeled Examples

Fig. 1. An illustration of the motivation of this paper: Exploiting unlabeled examples
to enhance review-aware recommendation.

Along this direction, some studies [2,13,16] combine MF [11] for predicting
ratings with Latent Dirichlet Allocation (LDA) [3] for analyzing the content of
reviews towards recommendation tasks, while others [7,20,26] try to learn better
features from reviews for users and items through deep learning architectures like
TextCNN [8]. Moreover, a recent empirical study [19] argues that the end-to-end
learning style schemes for review-aware recommendation are not more effective
than the shallow models integrating MF with LDA. In essence, review-aware
recommendation is belonged to the family of hybrid recommendation [1] that
leverages both interactions and rich side features of users and items for accurate
predictions. Factorization Machines (FM) [18] is a prevalent and generic hybrid
recommendation model, which can incorporate any side feature by concatenating
them into a high-dimensional and sparse feature vector. Inspired by this, we
illustrate the setup of a review-aware recommender system in Fig. 1(a), where
the feature vectors of the transactions (user-item interactions) consist of user IDs
(one-hot codes), item IDs (one-hot codes), and the textual features respectively
extracted from the reviews posted by users and the reviews received by items1,
while the labels of such transactions are the ratings posed by users over items.
The key advantage of FM is to learn low-dimensional embeddings for all the
feature dimensions. Some recent end-to-end learning solutions to review-aware
recommendation, such as [26] and [7], can be regarded as the extensions of FM.
1 The textual features can be extracted by either LDA (e.g., [2,13,16]) or DNN (e.g.,

[7,20,26]).
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Despite the success, the existing review-aware recommendation approaches
are suboptimal, since they only dedicate to increasing the informativeness of
training examples, but neglect of the insufficient amount of training data. From
the view of machine learning, the observed ratings can be regarded as the labeled
examples while the unobserved ones are the unlabeled examples. Due to the data
sparsity, the number of labeled examples is much less than unlabeled ones, and
thus it is challenging to train a reliable predictor purely based on the labeled
examples. By taking reviews into consideration, the feature vectors become more
informative, and thus the produced predictor often achieves better performance
than a pure Collaborative Filtering (CF) algorithm (e.g., MF). Note that, given
the sets of users and items, the number of training data used by review-aware
recommender systems is as same as a pure CF technique (i.e., the sparsity of
interaction data is not changed). We argue that, although labeled examples are
expensive to obtain in recommender systems, unlabeled data is readily available
and could be used as another data resource (beyond reviews) to aid the prefer-
ence learning. Considering this, we intend to devise a semi-supervised review-
aware recommendation model, illustrated by Fig. 1, which can exploit unlabeled
examples (Fig. 1(b)) in addition to labeled ones (Fig. 1(a)) in order to better
address the sparsity and inferior-informativeness of the interaction data. There
have been a few studies carried out on designing the semi-supervised CF algo-
rithms [24,25], but little effort has been dedicated to integrating unlabeled data
into the learning process of review-aware recommendation. More importantly,
such semi-supervised CF approaches are vulnerable in that they lack an effec-
tive measure of labeling confidence to choose appropriate unlabeled examples.
As demonstrated by [12], if improper unlabeled examples were used, the perfor-
mance of a semi-supervised learning algorithm might degrade sharply, and even
perform worse than its supervised version.

To address the limitations of previous work, we propose a co-training
style semi-supervised review-aware recommendation model, termed Collabora-
tive Factorization Machines (CoFM). Our CoFM employs two FM models as the
base predictors, each of which labels unlabeled examples for the other predictor
in each round of co-training iterations. Specifically, we construct a user-leaded
FM and an item-leaded FM by feeding different reviews to increase the diver-
sity between predictors. To exploit the unlabeled examples safely, the labeling
confidence is estimated through validating the influence of the labeling of unob-
served examples on the observed ones. The final prediction is made by linear
combination of the outputs from two base predictors. Our extensive empirical
study shows encouraging results in comparison to state-of-the-art recommenda-
tion techniques, including both review-aware and semi-supervised solutions.

The rest of this paper is organized as follows. In Sect. 2, we review related
work. Section 3 elaborates the proposed CoFM model, and Sect. 4 reports on the
experimental results. Finally, Sect. 5 concludes this paper.



88 J. Huang et al.

2 Related Work

In this section, we briefly review related work on review-aware recommendation
and semi-supervised collaborative filtering.

2.1 Review-Aware Recommendation

A popular solution to improve recommendation accuracy in the situation of
sparse data is to exploit textual reviews posted by users over items to comple-
ment user-item interactions. Roughly speaking, existing methods of review-aware
recommendation can be divided into two categories.

The first manner focuses on topic modeling with textual reviews towards rec-
ommendation tasks. For example, Hidden Factors as Topics (HFT) [16] employed
a LDA-like topic model on review text for users and items, and a MF model to
fit the ratings. TopicMF [2], jointly modeled user ratings with MF and textual
reviews with non-negative matrix factorization (NMF) to derive topics from the
reviews. One main difference between HFT and TopicMF is that HFT learns
the topics for each item, while TopicMF learns the topics for each review. Col-
laborative Topic Regression (CTR) [13] combined ideas of probabilistic matrix
factorization (PMF) and LDA for recommendation tasks, which jointly optimizes
the combined objective function of both PMF and LDA in an online learning
fashion. Different from HFT and TopicMF, CTR is to pursuit the efficiency and
scalability of the joint learning of MF and LDA. Another manner concentrates
on learning specific features from textual reviews with deep neural networks
towards recommendation tasks. For instances, DeepCoNN [26] learned embed-
dings for users and items from textual reviews by two parallel neural networks,
and then coupled them by a FM in the last layer for rating prediction. D-Attn [20]
modeled user preferences and item properties by convolutional neural networks
with dual local and global attention. NARRE [7] proposed a novel attention
mechanism to build recommendation systems and selected highly-useful reviews
simultaneously. NRPA [15] learned a personalized attention recommendation
model to select different words and reviews for different users and items.

Despite review-aware recommendation can improve the recommendation per-
formance by enriching the informativeness of labeled training data, the data
sparsity issue is not mitigated due to the unchanged labeled training size. This
is the major problem we try to tackle in this paper.

2.2 Semi-supervised Collaborative Filtering

A canonical solution to data sparsity is data imputation which selects a set of
user-item pairs whose values are unobserved, and then fills them with imputed
values before making recommendations, such as RCF [24] and AutAI [17]. Such
schemes are designed based on the idea of self-learning, a pioneer study of semi-
supervised learning, which labels a few unlabel examples with high confidence
to produce pseudo-labeled examples first, and then feed both label and pseudo-
label examples to refine the model. Since the label examples are insufficient and
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the learned predictor is not reliable, mislabeling is unavoidable. Therefore, the
expanded training set used for the next iteration will be noisy.

Disagreement-based semi-supervised learning employs ‘multiple predictors’
to smooth the labeling noisy. A prominent achievement in this area is the co-
training paradigm [4]. The most related work to our work is CSEL [25] model
which is a typical co-training style CF scheme. Concretely, CSEL generated
two different SVD++ [9] models with different context, and then applied the
predictions of each predictor on unlabeled examples to augment the training set
of the other. Although effective, such a solution is weak in estimating the labeling
confidence. Differently, we take labeling confidence validation into consideration
to build a safer semi-supervised recommendation system.

3 The Proposed CoFM Approach

In this section, we elaborate our proposed CoFM model that aims at exploiting
unlabeled examples in addition to labeled ones to alleviate the data sparsity
problem by a co-training solution, which consists of three key layers: 1) Data
Layer 2) Feature Layer 3) Learning Layer, shown in Fig. 2. We first give some
necessary preliminaries and then describe our CoFM model in details.

Fig. 2. The illustration of CoFM model, where the left and right parts are two different
recommendation modules, bridged by a co-training mechanism.

3.1 Preliminaries

In a practical recommendation system, the interactions between m users and n
items can be represented by a rating matrix R ∈ [0, 1]m×n, whose element rui
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indicates the rating user u scored on item i, otherwise rui = ∅. Without loss of
generality, we re-scale all ratings into the interval [0,1].

From a machine learning view, such a matrix R can be regraded as a dataset
D = {(xt, yt)}m×n

t=1 , where xt is a high-dimensional feature vector describing the
transaction between a user and an item, concatenated by user ID and item ID
(one-hot encoding), users’ and items’ review features, while yt = rui denotes
the label of such a transaction. Furthermore, let L = {(xt, yt)|yt ∈ [0, 1]}l

t=1

be the set of labeled examples (i.e., the observed user-item interactions), while
U = {(xt, yt)|yt = ∅}m×n

t=l+1 denotes the set of unlabeled examples (i.e., the
unobserved user-item interactions), and D = L ∪ U . It is well known that |L| �
|U| in recommender systems, where | • | denotes the size of a set.

3.2 Data Layer

Generally speaking, in order to generate different base predictors for increasing
model diversity, termed the user-leaded FM and the item-leaded FM respectively,
one way is to train the models with different label examples by manipulating
training set, while the other way is to build different views by manipulating the
textual review information, which are both adopted in our paper. A straight-
forward way to manipulate training set is Bootstrap. It randomly samples a set
of training examples T with replacement from the original training set, and the
remain serve as the valid set V. Specifically, for better modeling the user-leaded
view, we collect user u’s all reviews to represent its preference. In addition, we
add the textual review of user u on item i to couple user u and item i closely.
The same process can be done for the item-leaded view. All reviews received by
item i and the user u’s review on the item i can be used to represent the item
i’s review feature.

In this work, two base predictors are generated based on two different training
subsets and textual reviews, in which such two predictors can be reinforced each
other during a co-training process, which will be introduced in Sect. 3.4 in details.

3.3 Feature Layer

In the feature layer, two different views are built by diversifying the features
extracted from textual reviews for two base predictors. For the user-leaded FM,
its input includes user ID (pu), item ID (qi), and textual features extracted from
all reviews posted by user u (fu) as well as the review posted by user u on item
i (fui). We refer fui as ‘one-to-one review feature’ in the below. Differently, for
the item-leaded FM, we replace fu with fi (textual features extracted from all
reviews received by item i), and remaining parts of the item-leaded FM’s input
are same with the user-leaded FM’s. Here the textual features can be extracted
by either traditional Latent Dirichlet Allocation (LDA) model [3]) or modern
TextCNN [8] style techniques. A recent empirical study [19] reveals that using
LDA can achieve competitive performance with TextCNN in the tasks of review-
aware recommendation, and thus LDA is considered in this work due to its ease
of use.
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We can learn features from reviews for users and items through LDA or
TextCNN [8], but this study [19] argues that review-aware recommendations
using TextCNN are not more effective than the shallow models integrating MF
with LDA, so LDA model is used for textual feature extraction in our model.

In general, FM predicts the rating of user u on item i as follows:

ŷ = ω0 +
n∑

i=1

ωixi +
n∑

i=1

n∑

j=i+1

< vi,vj > xixj , (1)

where ω0 is the global bias and ωi is the feature bias. V ∈ R
f×n is the latent

matrix for all features, and every < vi,vj > models the interaction between i-th
and j-th feature dimensions. Therefore, V is the key reason why FM is an effec-
tive feature-based recommendation model, as it captures the rich information
interaction. In our proposed model, x = [pu,qi, fu(fi), fui] in Eq. (1) is concate-
nated by user u’s and item i’s one-hot encoded vector, user u’s review feature fu
(item i’s review feature fi) and one-to-one review feature fui for the user-leaded
FM (the item-leaded FM).

3.4 Learning Layer

We randomly sample a set of unlabeled examples Us from the set U , and feed
them into each base predictors to produce the pseudo-labeled examples L̂, then
apply these pseudo-labeled examples to refine its peer (the other base predictor).
It is noteworthy that the one-to-one review features are not available in these
pseudo-labeled examples, so we take the average of user u’s all one-to-one review
features as its one-to-one review feature when modeling the user-leaded view,
which is defined as follows:

f̃u =
1

|Ωu|
∑

i∈Ωu

fui, (2)

where Ωu is the observed rating set for user u and | • | is the size of a set. For the
item-leaded view, we can obtain the one-to-one review feature of pseudo-labeled
examples in the similar way,

f̃i =
1

|Ωi|
∑

u∈Ωi

fui, (3)

where Ωi is the observed rating set for item i.
One challenge here is how to determine the criteria for selecting unlabeled

examples from U so as not to deteriorate the performance of base predictors.
Inspired by semi-supervised regression [27], our mechanism for estimating the
labeling confidence is designed based on an intuition that the error of a base
predictor evaluated on the labeled example set should decrease if a confidently
pseudo-labeled example is added into its training set. In other words, the con-
fidently pseudo-labeled examples should be the ones that make the predictor
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consistent with the labeled example set. Benefited from bootstrap, we suggest
measuring the confidence of pseudo-labeled examples on the valid set. Let ΔL̂
denotes the result of MSE evaluated on the valid set. Concretely, the confidence
measure of pseudo-labeled examples is defined as

ΔL̂ =
∑

x∈V
[(y − h(x))2 − (y − h+(x))2], (4)

where h denotes the original predictor generated from T , while h+ denotes the
refined predictor learned from the enlarged training set T

⋃
L̂. We claim that L̂

is confident and added into training set if ΔL̂ > 0, otherwise it will be discarded.

3.5 Assembling Two Base Predictors

The final step of our proposed model is to assemble the results of two base
predictors boosted by co-training. A promising way is the linear combination,
the effectiveness of which has been verified in the Netflix contest [10]. We denote
h1 and h2 as the two base predictors enhanced with unlabeled examples, the
final prediction of our proposed model can be defined as:

h∗(x) =
2∑

j=1

αjhj(x), (5)

where αj can be determined by a linear regression algorithm. To learn appro-
priate α = [α1, α2]T , a new training set L̄ = {(x̄t, yt)|yt ∈ [0, 1]}l

t=1 is built
based on L = {(xt, yt)|yt ∈ [0, 1]}l

t=1, where x̄t = [h1(xt), h2(xt)]T . A linear
regression algorithm can learn a group of α which make a regressor fit L̄ best,
i.e., such α = [α1, α2]T achieve the best match between h∗(x) and yt. In this
sense, such α = [α1, α2]T can serve as the optimal weights for merging the two
base predictors.

3.6 Algorithm Framework

Putting everything together, we summarize the proposed CoFM model in Algo-
rithm 1, where Ak(Lk) returns a predictor generated from training set Lk by
algorithm Ak (e.g., A1, A2 respectively denote the user-leaded FM and the item-
leaded FM). The learning procedure stops when the maximum iterations T is
reached, or there is no pseudo-labeled example that is able to reduce the MSE
of any of base predictors on the labeled example set. Suggested by [4], a pool
of unlabeled examples Us (|U| � |Us|) is utilized to reduce the computational
load. At last, a linear combination of h1 and h2 is used to make the final predic-
tion, i.e., h∗(x) =

∑2
j=1 αjhj(x) where α = [α1, α2]T is determined by a linear

regression algorithm.
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Algorithm 1. The CoFM Algorithm
Input: labeled example set L, unlabeled example set U , maximum iterations of
co-training T , FM algorithm index A1, A2

1: Initialization:
2: (T1,V1) ← Bootstrap(L); (T2,V2) ← Bootstrap(L);
3: Generate review features fu, fi, fui for each u, i and (u, i) pair by LDA;
4: T ∗

1 ← {[pu,qi, fu, fui]|(u, i) ∈ T1},V∗
1 ← {[pu,qi, fu, fui]|(u, i) ∈ V1};

5: T ∗
2 ← {[pu,qi, fi, fui]|(u, i) ∈ T2},V∗

2 ← {[pu,qi, fi, fui]|(u, i) ∈ V2};
6: h1 ← A1(T ∗

1 ); h2 ← A2(T ∗
2 )

7: round = 0;
8: while round ≤ T do
9: round ← round + 1;

10: for k ∈ {1, 2} do
11: Generate a mini-batch Us by random sampling from U ;
12: Generate f̃u, f̃i according to Eq.(2) and Eq.(3) for (u, i) pair from Us

13: if k = 1 then
14: U∗

s ← {[pu,qi, fi, f̃i]|(u, i) ∈ Us}
15: % each predictor labels unlabeled data for its peer
16: L̂ ← h3−k(U∗

s );
17: L̂∗ ← {[pu,qi, fu, f̃u]|(u, i) ∈ L̂ ∪ T ∗

k };
18: else
19: U∗

s ← {[pu,qi, fu, f̃u]|(u, i) ∈ Us}
20: L̂ ← h3−k(U∗

s );
21: L̂∗ ← {[pu,qi, fi, f̃i]|(u, i) ∈ L̂ ∪ T ∗

k };
22: end if
23: h+

k ← Ak(L̂∗);
24: ΔL̂∗ ←

∑
x∈Vk

[(y − hk(x))2 − (y − h+
k (x))2]; % confidence validation

25: if ΔL̂∗ > 0 then
26: T ∗

k ← T ∗
k ∪ L̂; U ← U − L̂;

27: end if
28: end for
29: if neither of T ∗

1 and T ∗
2 changes then

30: exit;
31: else
32: % re-training with enlarged labeled sets
33: h1 ← A1(T ∗

1 ); h2 ← A2(T ∗
2 );

34: end if
35: end while
36: Create a new training set L̄ based on L and hj (j ∈ {1, 2});
37: Learn αjs for hjs from L̄ by a linear regression algorithm;

Output: Merged predictor h∗(x) =
∑2

j=1 αjhj(x)
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4 Experiments

In this section, we conduct extensive experiments on three real-world datasets
to demonstrate the effectiveness of our proposed CoFM model compared with
several state-of-the-art review-aware recommendation algorithms and a state-
of-the-art semi-supervised collaborative filtering technique. Table 1 summarizes
the statistics of these datasets, whose rating densities are range from 0.089% to
0.798%, covering a broad range of data sparsity for rating prediction tasks.

Table 1. Statistics of three datasets.

Datasets Users Items Ratings Density

Music Instruments 1,429 900 10,261 0.789%
Office Products 4,905 2,420 53,228 0.448%
Video Games 24,303 10,672 231,577 0.089%

4.1 Experimental Setting

For each dataset, we randomly divide it into training set (80%) and testing set
(20%). We randomly generate five splits and report the averaged performance.

We adopt Mean Square Error (MSE) to measure the recommendation quality,
which is widely used for rating prediction in recommender systems. A lower MSE
score indicates a better performance. Given a predicted rating R̂ui and ground-
truth rating Rui from the user u for the item i, the MSE is calculated as:

MSE =

∑
(u,i)(Rui − R̂ui)2

|T |

where |T | denotes the size of testing set.
To validate the effectiveness of CoFM, we compare our CoFM approach with

a conventional MF model, several state-of-the-art review-aware recommendation
algorithms and a semi-supervised collaborative filtering technique, including

– MF [11] is a canonical collaborative filtering method which decomposes a
user-item matrix into a shared low-dimensional latent space to recover the
observed user-item interactions as well as predict the unobserved ones.

– HFT [16] is a pioneer study on review-aware recommendation, which extends
MF with an additional regularizer that model the corpus likelihood using
LDA.

– DeepCoNN [26] is the first deep learning model for review-aware recommen-
dation, which utilizes the same CNN module to learn user and item embed-
dings based on their reviews.
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– D-Attn [20] is an improved version of DeepCoNN, which adds a dual-
attention layer at word-level before convolution, and preserves other com-
ponents of DeepCoNN.

– NARRE [7] is another extended version of DeepCoNN, which adds an atten-
tion weight at review-level.

– NRPA [15] is a recently proposed method that introduces neural attention
mechanism to build the recommender system using reviews. NRPA extends
DeepCoNN by adding the word-level and review-level attention layer.

– CSEL [25] is a co-training style CF method which takes two data-discrepancy
SVD++ models as the base predictors, and then such two predictors can
improve each other during co-training iterations. Note that CSEL model takes
context information into consideration. For fairness, we reconstruct CSEL
model with review text information instead of contexts in this paper.

Moreover, to verify whether each component used by CoFM is useful or not,
a series of degenerate variants of CoFM are also included in the comparisons:

– U-FM (user-leaded FM) & I-FM (item-leaded FM) are two base pre-
dictors used by CoFM. A major difference between them is that U-FM par-
tially focuses on modeling user’s reviews, while I-FM concentrates on item’s
reviews.

– Ens (Ensemble of two predictors) makes predictions by a linear blending
of two base predictors(U-FM and I-FM), where the blending weights of base
predictors are determined by a linear regression algorithm.

– CoFM-wCV (CoFM without Confidence Validation) is similar to
CoFM, except that CoFM-wCV omits the confidence validation step in each
co-training iteration.

– CoFM-wBS (CoFM without Bootstrap) is almost same with CoFM,
but the former dose not use bootstrap to diversify the training sets for two
base predictors.

The optimal experimental settings for all of above methods are determined
by grid search. For our method, we set the number of topics K = 50 for LDA
embedding vector, and feature dimensions of the factorization machine f =
10, learning rate η = 0.001, the maximum iterations T = 50, the pool size of
unlabeled examples Us = 500 for Music Instrument dataset and Office Products
dataset, and Us = 2000 for Video Games dataset.

4.2 Result Analysis

We first compare our proposed CoFM model with seven existing methods. The
corresponding experimental results are summarized in Table 2, where the best
performance is boldfaced and the percentages indicate the relative improvement
of our approach over other compared methods.

By examining all methods, several observations can be drawn from the exper-
imental results. First, we observe that five review-aware recommendation meth-
ods considerably outperform MF on all datasets, which indicates the effectiveness
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Table 2. Performance of CoFM compared with the state of the arts

Dataset Music Instruments Office Products Video Games

Metric MSE Improve MSE Improve MSE Improve
MF 0.848 15.2% 0.79 9.37% 1.197 9.02%
HFT 0.766 6.54% 0.754 5.04% 1.126 3.4%
DeepCoNN 0.784 8.29% 0.773 7.37% 1.82 7.87%
D-Attn 0.762 5.64% 0.754 5.04% 1.145 4.89%
NARRE 0.775 7.23% 0.763 6.16% 1.136 4.14%
NRPA 0.751 4.26% 0.749 4.41% 1.122 2.94%
CSEL 0.748 4.03% 0.731 2.09% 1.120 2.85%
CoFM 0.719 0.716 1.089

of complementing user-item interactions with textual reviews for rating predic-
tion tasks. Second, among the four deep models (DeepConn, D-Attn, NARRE
and NRPA), NRPA achieves the best performance due to its elaborate network
architecture and dual attention mechanism. Third, we find that HFT achieves
competitive performance with other deep review-aware recommendation models,
which is consistent with [19]. This observation demonstrates that the benefits
of deep learning based modeling techniques on textual review are overstated,
so LDA model is used for textual feature extraction in our model. In addition,
we observe that our proposed CoFM model and CSEL model achieves much
better performance compared to HFT on three datasets, which indicates that
the importance of exploiting unlabeled examples for rating prediction tasks.
Finally, it is impressive that our proposed CoFM model consistently outper-
forms CSEL model all the time. The major difference between such two models
is that CoFM model takes the safety of pseudo-labeled examples into considera-
tion, while CSEL model exploits pseudo-labeled examples directly. This implies
that confidence validation is very important to semi-supervised learning.

Next, we compare CoFM model with its two degenerate variants CoFM-wBS
and CoFM-wCV, in order to verify the effectiveness of such two specific mech-
anisms designed for our CoFM model, i.e., bootstrap and confidence validation.
Figure 3(a) illustrates the MSE of CoFM approach compared with CoFM-wBS,
and we observe that CoFM outperforms CoFM-wBS on all datasets. It verifies
that diversifying training data by bootstrap is useful to improve the effectiveness
of co-training. As illustrated by Fig. 3(b), Fig. 3(c) and Fig. 3(d), there is a large
gap between the performance curves of CoFM and CoFM-wCV. This observa-
tion again demonstrates that the confidence validation is beneficial to improve
the performance of semi-supervised learning.

At last, we further compare CoFM model with its other three degenerate
variants, including U-FM, I-FM and Ens. The corresponding quantitative results
in terms of MSE are tabulated in Table 3. We observe that CoFM model and Ens
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Fig. 3. Performance of CoFM compared with its degenerate variants.

Table 3. Performance of CoFM compared with its variants.

Dataset Music Instruments Office Products Video Games
Metric MSE Improve MSE Improve MSE Improve

U-FM 0.851 15.5% 0.738 2.98% 1.121 2.85%
I-FM 0.812 11.5% 0.748 4.28% 1.115 2.33%
Ens 0.768 6.38% 0.733 2.32% 1.107 1.63%
CoFM 0.719 0.716 1.089

model outperform U-FM and I-FM on all datasets, which verifies the superiority
of using multiple base predictors over single one. Comparing CoFM with Ens,
we find that CoFM model always achieves better performance than Ens model.
A major difference between such two schemes is that CoFM enhances the base
predictors using unlabeled examples before assembling them, while Ens directly
blends base predictors. It demonstrates that exploiting unlabeled data is helpful
for improving recommendation performance. That is, one key motivation of this
work is empirically verified. In addition, we also find that the improvement
of CoFM model over its degenerate variants grows as the increasing of rating
density. For example, CoFM model achieves the largest improvement on Movie
Instrument whose rating density is much denser than Office Products and Video
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Games. This phenomenon can be explained as follows. Given sparse datasets
(e.g., Office Products and Video Games), it is so difficult to train a reliable base
predictor in that the pseudo-labeled examples are not credible. In contrast, given
denser datasets (e.g., Movie Instrument), the base predictors become stronger
and can produce credible pseudo-labeled examples to further refine predictors.

5 Conclusions

Motivated by the fact that current review-aware recommendation is challenged
by the problem of learning with insufficient training data, this paper presented a
co-training style semi-supervised review-aware recommendation model, termed
Collaborative Factorization Machines (CoFM). In sharp contrast to existing
review-aware recommendation methods, CoFM learns embeddings for users and
items by exploiting both labeled and unlabeled instances. Different from current
semi-supervised CF techniques, we integrate the labeling confidence validation
into our proposed framework to exploit unlabeled examples more safely. Through
extensive experiments carried out on three benchmarks, we demonstrated that
our CoFM consistently outperforms the state-of-the-art review-aware and semi-
supervised recommendation approaches.

To our best knowledge, CoFM is the first semi-supervised framework for
enhancing review-aware recommendation, so we believe that it has a great poten-
tial to advance real-world recommender systems since CoFM can effectively
exploit the abounding unlabeled data. Inspired by the hashing-based recom-
mendation [14,22,23], we will develop the discrete version of CoFM to boost its
prediction efficiency.
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Abstract. Personalized news recommendation systems aim to alleviate
information overload and provide users with personalized reading sug-
gestions. In general, each news has its own lifecycle that is depicted by
a bell-shaped curve of clicks, which is highly likely to influence users’
choices. However, existing methods typically depend on capturing user
preference to make recommendations while ignoring the importance of
news lifecycle. To fill this gap, we propose a Deep Co-Attention Network
DCAN by modeling user preference and news lifecycle for news recom-
mendation. The core of DCAN is a Co-Attention Net that fuses the
user preference attention and news lifecycle attention together to model
the dual influence of users’ clicked news. In addition, in order to learn
the comprehensive news representation, a Multi-Path CNN is proposed
to extract multiple patterns from the news title, content and entities.
Moreover, to better capture user preference and model news lifecycle,
we present a User Preference LSTM and a News Lifecycle LSTM to
extract sequential correlations from news representations and additional
features. Extensive experimental results on two real-world news datasets
demonstrate the significant superiority of our method and validate the
effectiveness of our Co-Attention Net by means of visualization.

Keywords: News recommendation · Co-attention neural network ·
Recurrent neural network · Convolutional neural network

1 Introduction

In recent years, due to the rapid digital transformation of traditional newspaper
companies and the increasing scale of news aggregation platforms, a massive
number of news articles are published everyday. However, it is difficult to find
interesting content for users from a large number of news. Therefore, personal-
ized news recommendation systems are highly necessary to alleviate information
overload and provide users with personalized reading suggestions [9,13].
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Recently, a large number of deep learning-based methods have been applied
to news recommendation because of their powerful ability to both learn news
representation and capture user preference [21–24]. For example, Wang et al. [21]
propose DKN to learn news representation via a knowledge-aware CNN from the
news title and external knowledge, then capture user preference by applying an
attention mechanism to user’s clicked news and candidate news. Wu et al. [22]
propose NAML to learn news representation using a news encoder from the news
title, content and categories, then extract user preference with a user encoder
featuring an attention mechanism focused on user’s clicked news. Zhu et al. [24]
propose DAN, which learns news representation via a parallel CNN from the
news title and profile, then utilizes an attention-based neural network to learn
user preference with respect to candidate news. Wu et al. [23] propose CPRS
to learn news representation via a text encoder from the clicked news title and
content, then utilize a multilevel attention network to obtain user preference
by considering both click preference and reading satisfaction. However, these
methods typically depend on capturing user preference to recommend news while
ignoring news lifecycle, which may has the capacity to guide users’ choices.

Star Wars Olympic Games Swimming

News Lifecycle Influence
User Preference Influence

Wall Street

? Candidate News

t1 t2 t3 t4

c1 c2

c3 c4

News 
Lifecycle

User 
Preference

Fig. 1. An illustration of the influence of news lifecycle and user preference on users’
choices.

To fill this gap, the following observations is made. First, news lifecycle may
have a strong influence on users’ choices. As shown in Fig. 1, given a user’s
clicked history, each news story has its own lifecycle that is depicted as a bell-
shaped curve, where t represents user click’s time and c represents the number
of clicks. Intuitively, the first two news items have more clicks than other news
items, which might result in their high influence on the user’s choices. Second,
fusing news lifecycle and user preference may provide a boosted capacity to
influence users’ choices. For example, in Fig. 1, if the user prefers to click news
about “Olympic Games” and “Swimming”, we can infer that the user is prob-
ably interested in sport news, which might result in their high influence on the
user’s choices. Thus, if we only consider unilateral influence, the recommenda-
tion results for the user will probably come to a certain deviation. And if we
fuse news lifecycle and user preference, we may obtain the dual influence on
the user’s choices. For example, in Fig. 1, the second news article has both high
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clicks and user’s interested content, probably resulting in its greater influence on
the user’s choices. On the contrary, the fourth news article is not outstanding
in either aspect, which may mean that it is meaningless news in the user’s click
history.

In addition, news usually contains multiple information, such as the news
title, content and entity. Since the news title, content and entities (e.g., person
and location) can offer brief, detailed and key information of news respectively,
it is necessary to conduct these information and learn the comprehensive news
representation. Moreover, user preference usually changes rapidly and is easily
affected by the context information (e.g., user click’s time and location). For
example, if the user live in Tokyo, he is more likely to click news about “Olympic
Games”. And when the user travel to New York, he will more probably click
news about “Wall Street”. Therefore, considering the sequential correlation and
context information can better capture user preference.

Considering the above observations, in this paper, we propose a Deep Co-
Attention Network DCAN by modeling user preference and news lifecycle for
news recommendation. The main contributions of this paper are summarized
below:

– We propose a novel news recommendation method named DCAN, which is
equipped with a Multi-Path CNN which leans comprehensive news repre-
sentation from multiple news inputs, a User Preference LSTM and a News
Lifecycle LSTM which extract sequential correlations from news representa-
tions and additional features to better capture user preference and model
news lifecycle.

– We propose a Co-Attention Net by fusing user preference attention and news
lifecycle attention together to model the dual influence of users’ clicked news.
To the best of our knowledge, this is the first method that incorporates news
lifecycle into news recommendation.

– Extensive experimental results on two real-world news datasets demonstrate
the significant superiority of our DCAN and validate the effectiveness of our
Co-Attention Net by means of visualization.

2 Related Work

Over the past decades, a large number of news recommendation methods have
been proposed: these include collaborative filtering-based methods [2,15,19,20],
content-based methods, [8,11,12] and hybrid methods [3,14,18]. For example,
Rendle [20] proposes LibFM to make recommendations using featured-based
matrix factorization. However, these methods often encounter limitations when
faced with serious data sparsity or the cold-start problem in news recommenda-
tion.

Recently, deep learning-based methods [1,6,7] have attracted the attention
of many researchers due to their strong ability to extract nonlinear relations and
hidden features from complex data. For example, Huang et al. [7] propose DSSM
to rank documents using word hashing and fully connected layers. Cheng et al.
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[1] present Wide&Deep, which combines wide linear models and deep neural
networks and make recommendations. Guo et al. [6] propose DeepFM, which
merges factorization machines and deep neural networks for recommendation
purposes. However, these methods are not specialized for news recommendation,
resulting in their inability to improve experimental performance.

To address the above problem, some news recommendation methods employ-
ing deep neural networks have been proposed [21–24], such as DKN, NAML,
DAN and CPRS. Compared to these prior works, our method not only features
an improved capacity to learn news representation and capture user preference
but also proposes a Co-Attention Net by fusing user preference and news lifecycle
together, thereby achieving better performance than other methods.

3 Proposed Method

3.1 Problem Formulation and Architecture

In this paper, we consider multiple text of news N as text features {W t, W c,
W e}, where W t, W c and W e are title, content and entities of news, respectively.
Each W t, W c and W e consist of a sequence of words, which are defined as [w t

1,
w t

2, ..., w t
m], [w c

1, w
c
2, ..., w c

n] and [we
1, w

e
2, ..., we

l ], where m, n and l are the
number of words in title, content and entities of news, respectively. We consider
context information of news N as context features, which contain user click’s
time, location, device and referrer. We also consider time feature t and click
feature c of news N as lifecycle features, where t represents the time span from
news publication to being clicked and c represents the click rate calculated by
using current news clicks divided by total news clicks. As Fig. 2 shown, given a
user’s clicked news sequence {N 1, N 2, ..., N t} and a candidate news N c, where
N i (i = 1, ..., t) is the i -th news clicked by the user, we aim to predict the click
probability p̂ of the user on candidate news N c.

The complete architecture of our DCAN is illustrated in Fig. 2, DCAN takes
a user’s clicked news sequence {N 1, N 2, ..., N t} and a candidate news N c as
inputs. For each piece of news, we use a Multi-Path CNN to learn comprehen-
sive news representation from multiple text inputs, i.e., news title, content and
entities. Then, we apply a User Preference LSTM to extract preference-aware
sequential correlations from news representations and context features, we also
use a News Lifecycle LSTM to extract lifecycle-aware sequential correlations
from news representations and lifecycle features. Afterwards, we adopt a Co-
Attention Net fusing user preference attention and news lifecycle attention to
model the dual influence to obtain predicted news representation. Finally, the
predicted news representation and the candidate news representation are multi-
plied and fed into a dense layer to obtain the click probability p̂.

3.2 Multi-Path CNN

Multi-Path CNN (MPCNN) is designed to learn comprehensive news represen-
tation from multiple text inputs. As shown in Fig. 2 (b), given a news article, we
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Fig. 2. The framework of our DCAN method.

use the news title, content and entities as inputs of MPCNN. To handle these
multiple text inputs, MPCNN adopts two paths with convolutional layers [10]
to respectively learn the title and content representation, as well as a path with
a dense layer to learn the entity representation.

In the title path, given a news title [w t
1, w

t
2, ..., w t

m], we generate m fixed-
length word embeddings [wt

1, w
t
2, ..., wt

m] via the word embedding layer. Because
of the existence of local contexts in the word sequence, we apply a convolutional
layer to learn the title representation. Specifically, we sequentially concatenate all
the word embeddings of the title into a title embedding matrix as Wt ∈ Rm×d1 ,
where d1 is the dimension of the word embeddings. We then adopt a convolution
operation with filter Ft ∈ Rh1×d1 on Wt, where h1 denotes the window size of the
filter. And a title feature ĉt

i is extracted from a sub-matrix Wt
i:i+h1−1 ∈ Rh1×d1

by
ĉt
i = g(Ft ∗ Wt

i:i+h1−1 + bt), (1)

where g(·) is a ReLU function, ∗ is the convolution operator and bt ∈ R is a
bias term. The filter Ft is employed sequentially at every available position in
the title embedding matrix Wt to produce a title feature map ĉt = [ĉt

1, ĉt
2, ...,

ĉt
m−h1+1] ∈ Rm−h1+1. Afterwards, we send the title feature map ĉt into the

max-pooling layer to obtain the most valid title feature as

ct = max(ĉt) = max([ĉt
1, ĉ

t
2, ..., ĉ

t
m−h1+1]). (2)

We then utilize multiple filters to extract different title features and concatenate
them sequentially, after which we obtain the title representation ct = [ct

1, ct
2, ...,

ct
kt

] ∈ Rkt , where k t is the number of filters.
In the content path, we apply the same structure as the title path to learn

the content representation. Given a news content [w c
1, w

c
2, ..., w c

n], we generate
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n fixed-length word embeddings [wc
1, w

c
2, ..., wc

n] via the word embedding layer,
which is shared with the title path. Subsequently, we employ a convolutional layer
with filter Fc ∈ Rh2×d1 to obtain the content feature map ĉc ∈ Rn−h2+1 from
the content embedding matrix Wc ∈ Rn×d1 , where h2 represents the window
size of the filter Fc and is different from the window size of the filter Ft in the
title path. In the next step, a max-pooling layer is used to obtain the most valid
content feature cc from the content feature map ĉc. In a similar way to the
process for the title path, we utilize multiple filters to extract different content
features and concatenate them sequentially. As a result, we obtain the content
representation cc = [cc

1, cc
2, ..., cc

kc
] ∈ Rkc , where k c is the number of filters.

In the entity path, because of the discrete nature of the news entity input, we
adopt a dense layer to learn entity representation. Given the news entities [we

1,
we

2, ..., we
l ], which include persons and locations extracted from the news articles,

we use unique IDs to represent each of them individually and convert these IDs
into low-dimensional embeddings [we

1, w
e
2, ..., we

l ] via the entity embedding layer.
We then concatenate all low-dimensional embeddings into an entity embedding
vector we ∈ R(l∗d2), where d2 is the dimension of low-dimensional embeddings.
Moreover, we send we into the dense layer to learn the entity representation ce

∈ Rke by
ce = g(Vewe + be), (3)

where g(·) represents the ReLU function, Ve ∈ Rke×(l∗d2) and be ∈ Rke are the
weight matrix and bias vector.

Finally, we feed the concatenation of the multiple news representations ct,
cc and ce into a dense layer and obtain the comprehensive news representation
en ∈ Rkn .

3.3 User Preference LSTM and News Lifecycle LSTM

User Preference LSTM (UPLSTM) is designed to extract preference-aware
sequential correlations from news representations and context features. Since
this context features can easily affect user preference, instead of simply applying
an LSTM [4] to conduct news representations, UPLSTM incorporates context
features to better capture user preference. This context features includes user
click’s time, location, device and referrer. We utilize cos and sin functions for
continuous data to extract the periodicity of the feature. For example, the time
features are calculated by sin(2∗π∗i/24) and cos(2∗π∗i/24), where i represents
the i -th hour of the day. These features are then concatenated as time embed-
ding. We then convert the discrete data (i.e., user click’s location, device and
referrer) into dense embeddings. Finally, we concatenate all embeddings as con-
text representation ec ∈ Rkc .

As shown in Fig. 2 (a), given the news representations [en
1 , en

2 , ..., en
t ] and

context representations [ec
1, e

c
2, ..., ec

t ] of the user’s clicked news set {N 1, N 2, ...,
N t}, we employ UPLSTM to extract preference-aware sequential correlations.
Specifically, in the t-step of the UPLSTM cell, which takes news representation
en

t ∈ Rkn , context representation ec
t ∈ Rkc , hidden state hu

t−1 ∈ Rks and cell
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state cu
t−1 ∈ Rks as input, hu

t and cu
t are generated in the following steps:

fut = σ(Uu
fe

n
t + Vu

fe
c
t + Wu

fh
u
t−1 + bu

f ), (4)

iut = σ(Uu
i e

n
t + Vu

i e
c
t + Wu

i h
u
t−1 + bu

i ), (5)
õu

t = σ(Uu
oe

n
t + Vu

oe
c
t + Wu

oh
u
t−1 + bu

o ), (6)
c̃u

t = tanh(Uu
c e

n
t + Vu

c e
c
t + Wu

ch
u
t−1 + bu

c ), (7)
cu

t = fut ⊗ cu
t−1 + iut ⊗ c̃u

t , (8)
hu

t = õu
t ⊗ tanh(cu

t ), (9)

where fu
t , iut and õu

t represent the forget, input and output operation of the
UPLSTM cell, while σ(·) and tanh(·) represent sigmoid and hyperbolic tangent
functions, respectively. Uu ∈ Rks×kn , Vu ∈ Rks×kc and Wu ∈ Rks×ks are
weight matrices, bu ∈ Rks is bias vector and ⊗ is an element-wise multiplication
operation.

News Lifecycle LSTM (NLLSTM) is designed to extract lifecycle-aware
sequential correlations from news representations and lifecycle features. This
lifecycle features contain time feature t and click feature c, where t represents
the time span from news publication to being clicked, while c represents the click
rate calculated by using current news clicks divided by total news clicks. Given
the raw time feature t and click feature c, we generate the normalized features
as freshness f and popularity p, which are calculated by

f = −N(log1p(t)), (10)
p = N(c), (11)

where log1p(·) is log(x + 1), which can make input x more smooth. N (·) repre-
sents Z-score normalization and can make the input conform to Gaussian distri-
bution. Then, we concatenate freshness f and popularity p to obtain the news
lifecycle representation el ∈ R2. As shown in Fig. 2 (a), in a similar way to the
process of the UPLSTM, given the news representations [en

1 , en
2 , ..., en

t ] and
lifecycle representations [el

1, e
l
2, ..., el

t] of the user’s clicked news set {N 1, N 2,
..., N t}, we employ NLLSTM to extract lifecycle-aware sequential correlations.
Finally, we obtain the preference-aware sequential correlations [hu

1,h
u
2, ...,h

u
t ]

using the UPLSTM layer and obtain the lifecycle-aware sequential correlations
[hn

1 ,hn
2 , ...,hn

t ] using the NLLSTM layer.

3.4 Co-Attention Net

Co-Attention Net is designed to model the dual influence (i.e., co-attention
weight) of users’ clicked news and learn predicted news representation by fus-
ing together the advantages of news lifecycle attention net and user preference
attention net, both of which are highly useful in identifying influential news.

As shown in Fig. 2 (c), to model user preference attention, we extract user
preference from preference-aware sequential correlation hu. We denote the user
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preference attention weight of the i -th news clicked by the user as αu
i , which is

calculated as follows:

au
i = vu

i tanh(Wu
i h

u
i + bu

i ), (12)

αu
i =

exp(au
i )

∑t
j=1 exp(au

j )
, (13)

where vu
i ∈ Rku is a query vector, Wu

i ∈ Rku×ks and bu
i ∈ Rku are weight

matrix and bias vector, where ku is the number of user preference attention
heads.

To model news lifecycle attention, we learn news lifecycle from lifecycle-aware
sequential correlation hn. We denote the news lifecycle attention weight of the
i -th news clicked by the user as αn

i , which is calculated as follows:

an
i = vn

i tanh(Wn
i h

n
i + bn

i ), (14)

αn
i =

exp(an
i )

∑t
j=1 exp(an

j )
, (15)

where vn
i ∈ Rkn , Wn

i ∈ Rkn×2 and bn
i ∈ Rkn , where kn is the number of news

lifecycle attention heads.
After we model the above two attentions, we apply a fusion function to model

the co-attention weight. Here we define three types of fusion function f as

f(αn
i , αu

i ) = vec(αn
i , αu

i ) = σ(wco[αn
i , αu

i ] + bco), (16)
f(αn

i , αu
i ) = sum(αn

i , αu
i ) = αn

i + αu
i , (17)

f(αn
i , αu

i ) = mul(αn
i , αu

i ) = αn
i ∗ αu

i , (18)

where σ(·) is a sigmoid function, wco ∈ R2 and bco ∈ R are weight vector and
bias term. Finally, we calculate the co-attention weights with the preference-
aware sequential correlations and lifecycle-aware sequential correlations to obtain
the predicted news representation ep as

ep = Dense([
t∑

i=1

f(αu
i , αn

i )hu
i ,

t∑

i=1

f(αu
i , αn

i )hn
i ]). (19)

3.5 Loss Function

In Fig. 2 (a), given a predicted news representation ep and a candidate news
representation enc , we calculate the click probability of candidate news by an
element-wise multiplication and a dense layer, that is, p̂ = Dense(ep ⊗ enc ).
Then, we minimize the negative log-likelihood function to train our method as

L = −
∑

x∈Δ+

ylog(p̂) −
∑

x∈Δ−
(1 − y)log(1 − p̂), (20)

where x represents candidate news, Δ+ and Δ− are target news and negative
samples. For target news, the label is y = 1, and y = 0 is the label for negative
samples.
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4 Experiments

4.1 Datasets

We use two real-world datasets in our experiments, namely, Globo1 and Adressa2

[5]. The Globo dataset contains about 3 million clicks, 314,000 users and more
than 46,000 news articles over a period of 16 days from a Brazil news portal.
The Adressa dataset contains about 113 million clicks, 398,545 users and 93,948
news articles over a period of 90 days from a Norwegian news portal. More-
over, both datasets contain news text information3, user interaction information
and context information. For both datasets, we select the first week to conduct
experiments. Similar to [17], the datasets are ordered by time and grouped by
hours. After each 6-hour training, all the compared models are evaluated on the
news from the next hour and that hour’s news is also used for training after the
evaluation is done.

4.2 Baselines

We use the following state-of-the-art methods as baselines to evaluate the per-
formance of our DCAN: (1) LibFM [20] is a remarkable feature-based matrix
factorization method; (2) DSSM [7] is a deep structured semantic model for doc-
ument ranking using word hashing and fully connected layers; (3) Wide&Deep
[1] combines a wide linear channel and a deep neural network channel to make
recommendations; (4) DeepFM [6] combines factorization machines and deep
neural networks for make recommendations; (5) DKN [21] is a deep knowledge-
aware network based on knowledge-aware CNNs and an attention mechanism;
(6) NAML [22] is a neural attentive multi-view learning method based on news
encoders and a user encoder; (7) DAN [24] is a deep attention network based
on parallel CNNs and an attention-based RNN; (8) CPRS [23] is a multilevel
attention network based on title encoders and content encoders, with a clicked
predictor and a satisfaction predictor to make recommendations.

4.3 Experimental Settings

In our experiments, we utilize a large corpus pretrained by Word2vec [16] to rep-
resent the word embeddings of news titles, contents and entities, whose dimen-
sions are set to 250. We adopt MPCNN, which offer 128 filters with window
sizes of 5 in the title path and 10 in the content path, to learn news represen-
tations, whose dimensions are set to 250. We use UPLSTM and NLLSTM with
256 units and both attentions with 150 heads to model predicted news repre-
sentations, whose dimensions are set to 250. The negative samples are taken
from the popular news and the number of negative samples is set to 20. We
employ Adam as our optimizer and the learning rate is set to 0.001. These key
1 https://www.kaggle.com/gspmoreira/news-portal-user-interactions-by-globocom.
2 http://reclab.idi.ntnu.no/dataset/.
3 The Adressa dataset contains news title, content and entity information and the

Globo dataset only contains news content information.

https://www.kaggle.com/gspmoreira/news-portal-user-interactions-by-globocom
http://reclab.idi.ntnu.no/dataset/
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parameters are selected according to the validation set. The evaluation metrics
in our experiments include Recall@5, Recall@10, MRR@5, MRR@10, NDCG@5
and NDCG@10. The key parameter settings for baselines are the same as configu-
rations reported in DKN, and we adopt the authors’ recommended configurations
for NAML, DAN and CPRS.

4.4 Comparison Against Baselines

Table 1. Performance comparison on the Globo dataset.

Methods Globo

Recall@5 Recall@10 MRR@5 MRR@10 NDCG@5 NDCG@10

LibFM 0.6172 0.8194 0.3775 0.4045 0.4368 0.5022

DSSM 0.6444 0.8498 0.4023 0.4259 0.4623 0.5259

Wide& Deep 0.6312 0.8267 0.3923 0.4187 0.4514 0.5148

DeepFM 0.6407 0.8468 0.3999 0.4150 0.4595 0.5202

DKN 0.6500 0.8365 0.4042 0.4227 0.4651 0.5203

NAML 0.6677 0.8636 0.4186 0.4460 0.4802 0.5447

DAN 0.6734 0.8701 0.4234 0.4505 0.4853 0.5496

CPRS 0.6760 0.8737 0.4228 0.4531 0.4855 0.5526

DCAN 0.6903 0.8776 0.4444 0.4610 0.5053 0.5595

Table 2. Performance comparison on the Adressa dataset.

Methods Adressa

Recall@5 Recall@10 MRR@5 MRR@10 NDCG@5 NDCG@10

LibFM 0.5524 0.7718 0.3267 0.3565 0.3825 0.4538

DSSM 0.5861 0.8096 0.3493 0.3796 0.4079 0.4808

Wide& Deep 0.5748 0.7958 0.3435 0.3755 0.4007 0.4742

DeepFM 0.5835 0.8084 0.3466 0.3773 0.4051 0.4784

DKN 0.5920 0.8122 0.3563 0.3885 0.4146 0.4882

NAML 0.6158 0.8319 0.3696 0.3980 0.4305 0.5000

DAN 0.6208 0.8353 0.3733 0.4019 0.4345 0.5039

CPRS 0.6266 0.8409 0.3792 0.4086 0.4404 0.5104

DCAN 0.6412 0.8466 0.3928 0.4178 0.4543 0.5189

Table 1 and Table 2 show the overall performance of all the compared meth-
ods, with the best results highlighted in boldface. There are several noteworthy
observations from Table 1 and Table 2:
– LibFM is worse than other models in experimental performance because of

its traditional matrix factorization structure. It suggests that deep neural
networks are effective in extracting nonlinear relations and hidden features
from complicated data.
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– DSSM, Wide&Deep and DeepFM have an excellent experimental perfor-
mance, and they are all deep learning based methods. In particular, DSSM
outperforms Wide&Deep and DeepFM, probably because DSSM utilizes the
word hashing to model raw texts. However, these methods are not specialized
for news recommendation, resulting in their inability to effectively learn news
representation.

– DKN, NAML, DAN and CPRS outperform most of the algorithms, demon-
strating their powerful capability to learn news representation and capture
user preference. In particular, DAN considers the sequential correlations of
users’ clicked history, so DAN outperforms DKN and NAML in experimental
performance. In addition, CPRS uses a multilevel attention network to cap-
ture user preference, it consequently outperforms other baselines in terms of
experimental performance.

– Finally, these methods are inferior to our proposed method. We attribute the
superiority of our DCAN to its three advantages: (1) DCAN proposes a Co-
Attention Net by fusing user preference attention and news lifecycle attention
together, and it can better model the dual influence of users’ clicked news.
(2) DCAN designs a MPCNN to better learn news representation from mul-
tiple news inputs, i.e., news title, content and entities. (3) DCAN presents
UPLSTM and NLLSTM to extract sequential correlations from news repre-
sentations and additional information to better capture user preference and
model news lifecycle.

4.5 Comparison Among DCAN Variants

Table 3. Performance comparison among DCAN variants.

DCAN variants Globo Adressa

Recall@5 MRR@5 Recall@5 MRR@5

DCAN - news title – – 0.6303 0.3812

DCAN - news content – – 0.6207 0.3790

DCAN - news entities – – 0.6292 0.3835

DCAN with all news inputs 0.6903 0.4444 0.6412 0.3928

DCAN - context information 0.6759 0.4277 0.6214 0.3763

DCAN with context information 0.6903 0.4444 0.6412 0.3928

DCAN - both attentions 0.6605 0.4085 0.5899 0.3484

DCAN - user preference attention 0.6782 0.4291 0.6221 0.3735

DCAN - news lifecycle attention 0.6722 0.4258 0.6211 0.3749

DCAN with both attentions 0.6903 0.4444 0.6412 0.3928

DCAN with mul function 0.6737 0.4256 0.6201 0.3746

DCAN with sum function 0.6708 0.4267 0.6215 0.3754

DCAN with vec function 0.6903 0.4444 0.6412 0.3928
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We compare DCAN variants to demonstrate the validity of the design of our
DCAN based on the following four aspects: the usage of news title, content and
entities; the usage of context information; the usage of news lifecycle attention
and user preference attention; and the choice of fusion function. The results are
shown in Table 3, and we can conclude that:

– The absence of either news input of DCAN can lead to worse performance,
demonstrating the importance of various news inputs and the strong ability
of our MPCNN to conduct multiple text information. In particular, DCAN
without a news content has the lowest performance because the news content
can provide richer information for representing news.

– DCAN with context information greatly improves performance compared
with DCAN without context information, validating the importance of
context information and the effectiveness of our UPLSTM in extracting
preference-aware sequential correlations.

– DCAN with either attention is better than DCAN without both attentions,
suggesting that attention mechanism is effective in modeling the influence
of news. Further, DCAN with news lifecycle attention is a little higher than
DCAN with user preference attention, probably because news lifecycle has
the strong potential to find influential news. Moreover, DCAN with both
attentions performs best in four DCAN variants, validating the effectiveness
of our Co-Attention Net.

– The fusion function using vec has the best performance compared to other
functions. The sum and mul functions have similar results. This is mainly
because vec function with a deep structure is more effective to fuse both
attentions than simple linear operation sum and mul.

4.6 Parameter Sensitivity of both Attention Heads
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Fig. 3. Parameter sensitivity of both attention heads.

In this section, we analyze the effect of different numbers of user preference
attention heads ku and news lifecycle attention heads kn on performance by
using the term of Recall@5. Except for the parameters being analyzed, all other
parameters are set as optimal configuration. The numbers of both attention
heads are selected in set {50, 100, 150, 200}. According to Fig. 3, our DCAN
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achieves the best performance at ku = kn = 150, suggesting that such attention
heads setting can better fuse the advantages of both attentions. Additionally,
given the ku, the performance is initially enhanced with the growth of kn, and
then it drops as kn grows further. This is probably because that a smaller kn

has inadequate capacity to extract rich attention patterns, whereas a larger kn

can bring more noises. The case is similar for ku when kn is given.

4.7 Visualization of Attention Weights

Fig. 4. Visualization of attention weights.

To intuitively demonstrate the effectiveness of the usage of both attentions, we
randomly sample a user’s clicked history from the Adressa dataset. As shown
in Fig. 4, user preference attention can effectively capture user preference. For
example, the first three news about sport are highlighted that is probably because
the user is interested in sport. Additionally, the news lifecycle attention also
shows the strong power of recognizing influential news. In Fig. 4, the first news
has a relatively large freshness f and a large popularity p, resulting in its high
influence. Moreover, the Co-Attention Net can fuse the advantages of the two
attentions to model the dual influence of news. In Fig. 4, the first two news have
high co-attention weights, which signifies that they have both high clicks and the
user’s interested content. Further, the fourth news has the lowest co-attention
weight, proving that there are meaningless clicks in the user’s click history.

5 Conclusion

In this paper, we proposed a Deep Co-Attention Network DCAN by modeling
news lifecycle and user preference for new recommendation. DCAN has made
remarkable contributions in the following three aspects: (1) To better model
influence of users’ clicked news, DCAN proposes a Co-Attention Net by fusing
user preference attention and news lifecycle attention, which both have the strong
ability to find influential news. (2) To better learn news representation, DCAN
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designs a MPCNN to learn various patterns from news title, content and entities,
which are all useful for representing news. (3) To better capture user preference
and model news lifecycle, DCAN presents UPLSTM and NLLSTM to extract
sequential correlations from news representations and additional information.
Extensive experimental results demonstrate the significant superiority of our
DCAN, as well as the effectiveness of our Co-Attention Net.
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Abstract. Different from the traditional recommender systems with
content-based and collaborative filtering, conversational recommender
systems (CRS) can dynamically dialogue with users to capture fine-
grained preferences. Although several efforts have been made for CRS,
they neglect the importance of interaction sequences, which seek to cap-
ture the ‘context’ of users’ activities based on actions they have per-
formed recently. Therefore, we propose a framework that considers inter-
action Sequence of historical items for Conversational Recommendation
(SeqCR). Specifically, SeqCR first scores candidate items through the
sequence which users interact with. Then it can generate the recommen-
dation list and attributes to be asked based on the scores. We restrict
candidate attributes to the ones with high-scoring (high-relevance) items,
which effectively reduces the search space of attributes and leads to user
preferences that can be hit more quickly and accurately. Finally, SeqCR
utilizes the policy network to decide whether to recommend or ask. We
conduct extensive experiments on two datasets from MovieLens 10M and
Yelp in multi-round conversational recommendation scenarios. Empiri-
cal results demonstrate our SeqCR significantly outperforms the state-
of-the-art methods.

Keywords: Conversational recommendation · Interactive
recommendation · Recommender system

1 Introduction

Recommender systems have been an effective way to seek a subset of items that
satisfy user preferences from the item pool [8,11,17]. It can recommend long-
tail items to the users or help them search for items they are interested in but
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difficult to find. Traditional recommender systems conduct recommendations by
inferring user preferences from user previous historical actions [8,15]. Although
it has achieved remarkable success and has been standard fixtures in many sce-
narios, there are some inherent limitations. For example, since it needs to acquire
the historical data of users, there is a cold start problem for users with less inter-
active data. Traditional recommender systems can only obtain user preferences
passively rather than interact with users actively. These limitations prevent the
system from conducting accurate recommendations.

Recently, the rapid development of the conversational recommender systems
(CRS) brings revolutions to the aforementioned limitations. Different from the
traditional recommendation system, it can capture and refine user preferences
by proactively asking users specific questions. There are two components in the
CRS – recommender component (RC, generating recommendation) and conver-
sational component (CC, interacting with the user) [12]. The two components
have been integrated to develop an effective CRS. [14] focuses on language under-
standing and item recommendation, [4,26] utilize knowledge graph to improve
the performance of CRS. But they only recommend based on the context of
the current conversation without the interaction history of users. Some works
consider historical interactions and use reinforcement learning to determine the
action of the dialogue. [21] uses the user’s ratings and the user’s query col-
lected in the current conversational to generate recommendations. [12,13] utilize
a factorization machine to estimate user’s preferences, then refine user’s current
interests through dialogue. However, they neglect the importance of the inter-
action sequence of historical items (later called sequence) for recommendation.
We argue that utilizing the sequences can not only better capture the user’s
‘context’, but also better improve the quality of questions and recommendations
raised by CRS.

To address the above problem, we present a conversational recommendation
framework called SeqCR based on the sequence and the context of the conversa-
tion. Inspired by the recent success of CRS [13], this paper models CRS as the
process of seeking items that satisfy user attribute preferences. We first utilize
the interaction sequence to score candidate items, then utilize the policy net-
work to determine the action. If this turn is a recommended action, SeqCR will
regard the items with the high-scoring among the candidate items as the recom-
mendation list. Otherwise, it will choose a suitable attribute of the high-scoring
items to ask. Finally, it updates preferences and candidate items according to
the feedback of users. In a conversation, SeqCR needs to alternate between rec-
ommendation and ask several times in order to minimize the number of turns.
Our method recommends items that contain user-accepted attributes and don’t
contain user-rejected attributes.

In summary, the main contributions of this work are summarized as follows:

• To the best of our knowledge, it is the first time that the interaction sequence
has been considered in the conversational recommender system.

• We propose a SeqCR framework to model conversational recommendation.
It can make recommendations and ask questions based on history sequences.
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Furthermore, we utilize high-scoring items to reduce the search space of can-
didate attributes.

• We examine the two datasets by simulating conversations, which demonstrate
our method outperforms state-of-the-art CRS methods.

2 Related Work

The success of the recommendation system depends on whether it can accu-
rately and timely provide relevant items to users. The traditional recommender
systems have achieved significant success in business. For example, Amazon and
Netflix will make personalized recommendations to users based on their histori-
cal behaviors (such as clicks, purchases, comments, etc.). At the initial stage, the
recommendation system was mainly based on collaborative filtering (CF) such
as matrix factorization [11,18] or content based [16] to infer user preferences.
They depend on the interactive information between the user and the item, yet
user-item interaction data is usually sparse. To tackle the data sparsity problem,
[1] proposed to utilize the side information of items, such as reviews.

Sequential Recommendation. Early works on sequential recommendations
are mainly based on Markov Chain (MC) assumption. It attempts to model
an item-item transition matrix to capture sequential patterns among successive
items. Rendle et al. [20] fused matrix factorization (MF) and an item-item transi-
tion for modeling global user preferences and short-term transitions, respectively.
Tang et al. [22] used a CNN-based convolutional sequence embedding method.
With the successful application of the self-attention network in NLP, [9] inte-
grated self-attention with the sequential recommendation and achieved signif-
icant success. But sequential recommendation can only conduct recommended
by utilizing the interaction sequence of historical items. Therefore it is difficult
to capture current interest preferences.

Conversational Recommendation. The critical point of conversational rec-
ommendation systems is to understand the user’s preferences fully, generate
proper responses, furthermore make accurate recommendations based on the
context. Early conversational recommender systems [6] mainly utilized prede-
fined actions to interact with users. Li et al. [14] proposed a structure with
four sub-components to understand user preferences in utterance, make rec-
ommendations, and use natural language to generate responses. Subsequently,
[4,26] combined CRS with the knowledge graph. In term to develop an effec-
tive CRS, [21] integrates a belief tracker over semi-structured user queries and
reinforcement learning (RL). [12] proposed a new solution named Estimation–
Action–Reflection (EAR) to tackle the deep interaction between CC and RC.
Recently, [13] proposed a general framework of conversational path reasoning,
which models conversation as a path reasoning problem on a graph. However,
none of them considers the impact of interaction sequences on the next recom-
mendation. Therefore we design a novel approach to fuse sequence and CRS,
which leads to better performance in generating recommendations and asking
questions.
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3 Problem Definition

Different from single-round of conversation, which only makes recommendations
once and the conversation ends even if the user refuses [5], this paper follows a
multi-round conversational scenario because it is the most realistic setting. CRS
aims to understand the user intentions and recommends suitable items through
multi-round of dialogue with the user. In CRS, the chat agent will analyze and
learn user preferences based on the context of conversation, and generate ques-
tions or recommendations. When the system feels confident, it will recommend
items to the user. Otherwise, if the information obtained is insufficient, the sys-
tem will ask until the maximum turn. Successful recommendation is considered
as the final goal.

Table 1. Main notations used in the paper.

Notation Description

u, v, p User, item, and attribute

Vp The item set that contain the attribute p

Vcand The candidate item set

Vu u’s interaction sequence of historical items

Pv Attributes of item v

Pua The attribute set accepted by u in a conversation

Pur The attribute set rejected by u in a conversation

Pcand The candidate attribute set

PVcand The attribute set of all candidate items

a The action of SeqCR, either aask or arec

We now introduce the notations used to formalize our setting. As shown in
Table 1, u ∈ U denotes a user from a user set U , v ∈ V denotes an item from
an item set V. Pv represents the attribute set of item v. We define all attributes
as P, and p ∈ P is a specific attribute from P. A conversation is started by the
user with a specific attribute p0 that the user likes [12,13,25]. In each turn t
(until the recommended item is accepted or the maximum conversation turn is
reached), the CRS will filter out the candidate set to retain items that contain
user-accepted attributes and remove items that contain user-rejected attributes.
Next, the CRS will choose an action to recommend or ask:

• recommend: If the action is recommend, we denote a recommended item list
Vrec ⊂ Vcand and the action as arec(Vrec). Then users provide feedback to
CRS according to their desired items. Assuming the feedback is positive, the
conversation ends. Otherwise, the system removes the Vrec from the candidate
item Vcand and moves to the next turn.
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• ask: If the action is ask, we denote the asked attribute as pt ⊂ Pcand and
the action as aask(pt). If the feedback of user is positive, add pt into Pua

to indicate that the user likes this attribute. Otherwise, add it into Pur
to

denote that the user does not like this attribute in this conversation. Then
system moves to the next turn.

4 Proposed Methods

We propose to utilize the interaction sequence of historical items for conversa-
tional recommendation (SeqCR). SeqCR uses the historical interaction sequence
and the context of conversation to recommend the next item. Figure 1 shows
the overall architecture, we can see that SeqCR mainly includes three modules.
The first is a sequential module, which is mainly used to model the sequence of
items that the user has interacted with. The second is a scoring module. It scores
candidate items and attributes based on the knowledge learned in the sequence
module. The last one is the policy network module, which is a reinforcement
learning model for deciding whether to recommend or ask. The three modules
are described in detail below.

4.1 Sequential Module

As shown in the bottom left corner of Fig. 1, given a interaction sequence of
historical items Vu = (V1

u,V2
u,V3

u, ...,V |Vu|
u ), then sequential module utilizes the

embedding layer, self-attention block and prediction layer to predict the next
item that user likes. We will introduce in detail below.

Our sequence module mainly refers to [9]. Since the length of the interac-
tion sequence of each user is different, for convenience, we convert the training
sequence V ′

u = (V1
u,V2

u,V3
u, ...,V |Vu|−1

u ) of each user to a fixed-length sequence
s = (s1, s2, s3, ..., sn), where n represents the maximum length of the new
sequence s. If the interaction sequence is less than n, we add n − (|Vu| − 1)
‘padding’ items to the left of the sequence. If it is longer than n, only the sequence
of the nearest n interaction items will be considered. In the embedding layer, we
embed all items and get the embedding matrix M ∈ R

|V|×d. Subsequently, we
apply a look-up operation to form the embedding matrix E ∈ R

n×d of sequence
s, where Ei = Msi . Furthermore, we integrate E with a learnable positional
embedding matrix P ∈ R

n×d:

ES = E + P. (1)

For self-attention, the three matrices Q (Query), K (Key), and V (Value)
all come from the same input. Attention is defined by a scaled dot-product [23]:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (2)
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Fig. 1. Overview of the SeqCR framework. It scores the candidate items and attributes
through the interaction sequence of historical items, and utilizes a policy network to
decide whether to make recommendations or ask questions.

where d is the dimension of a query and a key vector. The self-attention block
includes a self-attention layer and a point-wise feed-forward network. As men-
tioned above, when predicting the (k + 1)-th item, only the previous k items
should be considered. However, the k-th output (Sk) in the self-attention layer
also takes into account ones that after the k-th item. Therefore, we add a mask
operation to prevent the connection between Qi and Kj (i < j). But self-
attention is a linear model. In order to make the model nonlinear, we apply
a point-wise two-layer feed-forward network to all Sk. Based on the embedding
layer, we learn more complex item transformations by stacking multiple self-
attention blocks. Specifically, the b-th (b > 1) self-attention block is defined as
follows:

S(b) = SA(F(b−1)) = Attention(F(b−1)WQ,F(b−1)WK ,F(b−1)WV ),
F(b)

k = FFN
(
S(b)
k

)
= ReLU

(
S(b)
k W1 + b1

)
W2 + b2,

(3)

where the learnable matrices WQ,WK ,WV ,W1,W2 ∈ R
d×d and b1,b2 are

d-dimensional vectors. S(b)
k denotes aggregating the first k (k ∈ {1, 2, 3, ..., n})

items’ output of the self-attention layer in the b-th self-attention block. S(b)

and F(b) represent the output of the self-attention layer and the feed-forward
network in b-th block, respectively. The first block is defined as S(1) = SA(ES)
and F(1) = FFN(S(1)).

Multi-layer neural networks have a strong ability to learn features. How-
ever, simply adding more network layers will cause problems such as overfitting



SeqCR 121

and consuming more training time. This is because when the network becomes
deeper, the hidden danger of gradient disappearance will also increase, the model
performance will decrease. But residual connections [7] can alleviate these prob-
lems. We first normalize the input x of both the self-attention layer and the
feed forward network, then apply dropout to their output, next add the original
input x as the output.

After b self-attention blocks, we predict the next item by utilizing F(b)
k . In

other words, we predict the relevance of item i (in our method, the relevance is
regarded as the score of item i) through an MF layer:

ri,k = F(b)
k NT

i , (4)

where ri,k is the possibility of item i becoming the next item according to the
first k items, and N ∈ R

|V|×d is an item embedding matrix. In the network
training phase, we define et as the expected output at time step t. If st is a
padding item, we hope et = <pad>, otherwise, we define the expected output
as the next interaction item et = st+1(if t = n, let st+1 = V |Vu|

u ). We input the
sequence and minimize the binary cross entropy loss for optimization.

L = −
∑

Vu∈S

∑
k∈[1,2,...,n]

⎡
⎣log (σ (rek,k)) +

∑
j /∈Vu

log (1 − σ (rj,k))

⎤
⎦ . (5)

4.2 Scoring Module

In the conversational recommender system, it will ask the user questions or
make item recommendations. Before the conversation starts, the attribute set
Pua

accepted by the user and the attribute set Pur
rejected by the user are

empty, the candidate item set Vcand contains that the user has not interacted
with, and the candidate attribute set Pcand is empty. The dialog starts with
the user specifying a specific attribute p0. The candidate item set is updated
by Vcand = Vcand

⋂ Vp0 . When the user starts a conversation with the system,
the system needs to perform two scoring operations to determine which items to
recommender or which attributes to ask. The two operations will be introduced
in detail below.

Item Scoring. The first operation is the item scoring. In the top left corner
of Fig. 1, green vertices indicate all candidate items Vcand, and yellow vertices
indicate attributes related to candidate items. We define the attribute set related
to Vcand as follows:

P |Vcand|
Vcand

=
{(

Pv1

⋃
Pv2

⋃
...

⋃
Pv|Vcand|

)
|vi ∈ Vcand

}
. (6)

Pi
Vcand

represents the attribute set contained in the first i items in Vcand. The
link between the item and attribute vertice indicates that the item contains this
attribute. After getting candidate items Vcand, we take advantage of F(b)

|V′
u| (F(b)

|V′
u|
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obtained through feeding the historical sequence that the user u has interacted
into the multi-layer self-attention block) to score Vcand:

fitem(u,V ′
u,Vcand) = F(b)

|V′
u|N

T
v v ∈ Vcand,

Vcand = rank(Vcand ↔ fitem),
(7)

where V ′
u is user u’s training sequence of historical interaction items. The score of

each item v in Vcand considers the information of the sequence V ′
u, reflecting the

correlation between v and V ′
u. Then we rank Vcand from large to small according

to the score. After ranking, the top items in the candidate items may become
the next item to be recommended. Furthermore, the candidate attribute set is
updated by

Pcand = PL
Vcand

− Pua
− Pur

, (8)

where Pua
and Pur

denote the attributes that the user accepts and rejects,
respectively. In other words, Pcand is the attribute set that has not been inter-
acted in the top L candidate items. If this turn is item recommendation, the
system will recommend the top n items Vrec in the ranked Vcand. Supposing the
user accepts the item, the recommendation is successful and the conversation
ends. Otherwise, the recommendation fails, system removes the recommended
item from the Vcand, i.e., it is updated by Vcand = Vcand − Vrec. And the next
turn is entered until the maximum turn is reached.

Attribute Scoring. The second operation is attribute scoring. SeqCR can
decide which attribute to ask based on the current state. Therefore, it is impor-
tant to find the appropriate attributes. Eliminating the uncertainty of the items
is a better strategy. [24] has proven information entropy is an effective method.
It is a measure to eliminate information uncertainty. The lower probability of
an event, the greater information entropy that can be given when it happens.
Therefore, we use information entropy to score attributes, which is defined as
follows:

fatt (Pcand,Vcand) = −prob(p) · log2(prob(p)) p ∈ Pcand,

prob(p) =

∑
v∈Vcand∩Vp

σ (sv)
∑

v∈Vcand

σ (sv)
,

(9)

where σ is the sigmoid function, sv is the score of item v. Vp denotes the items
that include the attribute p. Instead of treating each item equally, we use the
weighted entropy method to assign higher weights to important items. In short, if
multiple items in the candidate items contain attribute p, then p is not a suitable
attribute. Because our purpose is to ask some attributes that the user likes as
much as possible, then filter Vcand to keep it containing the attributes accepted
by the user as much as possible. When SeqCR asks the attribute p contained
by multiple items, it will not be able to filter the candidate items effectively. If
the system asks in this turn, it needs to choose a suitable attribute to ask. In
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our model, we consider the attribute pi ∈ Pcand with the highest score as the
attribute to be asked. Assuming that the user accepts pi, we update the user-
accepted attribute set Pua

= Pua

⋃
pi and candidate items Vcand = Vcand

⋂ Vpi
.

Similarly, if a user rejects pi, we update the user-rejected attribute set Pur
=

Pur

⋃
pi and candidate items Vcand = Vcand −Vpi

. Therefore, the items in Vcand

only contain Pua
, don’t contain Pur

.

4.3 Policy Network Module

On the right side of Fig. 1, we utilize a policy network to learn whether to ask
or recommend, and use the standard Deep Q-learning [19] for optimization. The
system inputs state sss in policy network, then get a Q(sss, a) value about two
actions, indicates a reward for action aask or arec. We define sss as follows:

sss = ssshis ⊕ ssslen. (10)

ssshis encodes the history of conversation. Its size is maximum turns T, where
each dimension denotes user feedback at turn t [12]. The intuition is that if the
user accepts the attribute multiple times, the next turn may be a good time to
recommender. ssslen encodes the length of the current candidate items. It means
a system should recommend items when there are fewer candidate items. The
reward contains five kinds of rewards [13], rrec suc and rrec fail indicate whether
the recommendation is successful or not. rask suc and rask fail indicate whether
the attributes asked are accepted by the user. It will give a rquit if user quits
or the conversation reaches the maximum number of turns. The intermediate
reward rt at turn t is the weighted sum of these five.

Although some of our components refer to Simple Conversational Path
Reasoning(SCPR)[13], there are three significant differences between our model
SeqCR and SCPR. First, SeqCR predicts the next item that user desires by scor-
ing items based on the interaction sequence of historical items. Second, SeqCR
takes the attributes of the items with the high-scoring as candidate attributes,
which reduces the search space of attributes. Third, SeqCR believes that the
attribute rejected by the user is also an important feature, and considers this
feature when updating the candidate item set.

5 Experiments

In this section, we evaluate SeqCR on two real-world datasets. Our experiments
are designed to answer the following research questions:

• RQ1: How does the performance of SeqCR compare to existing conversational
recommendation methods?

• RQ2: Does restrict candidate attributes to the ones of the high-scoring can-
didate items really work?

• RQ3: Is it effective to consider the attributes rejected by the user?
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5.1 Datasets

Due to the lack of conversation datasets, we adopted a template conversation
method on the traditional recommendation datasets. SeqCR either recommends
the items or asks a question about an attribute. The feedback of users is “yes” or
“no”. Our model SeqCR needs a timestamp to process the sequence. Therefore,
we conduct experiments on MovieLens 10M (ml-10m)1 for movies recommen-
dation and Yelp2 for businesses recommendation. Lei et al. [12] manually built
a 2-layer taxonomy, which needs a lot of manpower and professional knowledge
and is expensive for real usage. So we only use original attributes. Statistics
about the datasets are shown in Table 2.

Table 2. Dataset statistics of MovieLens 10M and Yelp.

Dataset MovieLens 10M Yelp

#Users 69,861 25,000

#Items 6,673 152,975

#Attributes 14,162 2,083

#Interactions 8,065,720 1,437,418

5.2 Settings

5.2.1 Implementation Details
For all datasets, we treat reviews or ratings as historical items that users have
interacted with and use timestamps to determine the sequence order of interac-
tion. We discard users with fewer than ten interactions. We split the interaction
sequence Vu of each user u into three parts: (1) the last interaction V |Vu|

u for
testing, (2)the second most recent interaction V |Vu|−1

u for validation, and (3)
all remaining interaction for training. Note that during the testing, the train-
ing sequence contains the training set and the validation set. Considering the
patience of user and the requirement of SeqCR to capture user preferences, the
maximum turn T is set as 15. Furthermore, we restrict the attributes of the top L
= 10 high-scoring candidate items as candidate attributes. Following [12,13,21],
the training process contains two parts: (1) An offline training for the scoring
function in sequential module. We use two self-attention blocks (b = 2) and
use Adam optimizer [10] to optimize. The learning rate and the batch size are
0.001 and 128, respectively. The maximum sequence length n is set to 200. The
dropout rate is set 0.2. The goal is to score other items based on the interaction
sequence of historical items. (2) An online training for conversational in a scor-
ing module and a policy network module. We conduct conversations and train
1 https://grouplens.org/datasets/movielens/.
2 https://www.yelp.com/dataset/.

https://grouplens.org/datasets/movielens/
https://www.yelp.com/dataset/
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the policy network by using a user simulator. DQN parameters refer to [13]:
rrec suc=1, rrec fail = −0.1, rask suc = 0.01, rask fail = −0.1, rquit = −0.3, the
sample batch size is 128, and discount factor γ is 0.999. For the policy network,
we use the RMS optimizer and update the target network every 20 epochs.

5.2.2 User Simulator
It is unrealistic for CRS to chat with real humans during training, and therefore
utilizing a user simulator is a common alternative [2]. We follow [12,13,21] to
create a user simulator: given an observed user-item interaction (u, v), we regard
v as the ground truth that user u wants to seek and the attributes Pv of item
v are the preference attributes of u. In the beginning, we randomly selected an
attribute p0 ∈ Pv to start the dialogue. And (1) if the recommended item list
contains v, the user accepts the recommendation, (2) user only accepts attribute
pi ∈ Pv. This user simulator may have some flaws. For example, the user will
reject attributes that they like but do not belong to Pv. But it is a more practical
method at the current stage.

5.2.3 Baseline
Due to the different settings of the CRS model and the distinction in the datasets,
there are few suitable baselines. Therefore we use the following baselines to
compare with:

• AbsGreedy [6]. The baseline can only make recommendations in each turn
without asking, and then it will update the model based on user feedback
until it is successfully recommended. Its performance is similar to Thompson
Sampling [3].

• Max Entropy. This is a rule-based approach. The system either chooses an
attribute with the maximum entropy to ask or recommend items according
to a certain probability.

• CRM [21]. This is a CRS model that tracks user preferences through a belief
tracker, then utilizes reinforcement learning (RL) to select an action. It is
single-round recommendations. To achieve a fair comparison, we follow [12]
to change it to multiple the multi-round dialogue.

• EAR [12]. Estimation–Action–Reflection (EAR) is a three stages solution,
which integrates conversation component and recommender component. Its
goal is to achieve accurate recommendations in fewer turns.

• SCPR [13]. This is a state-of-the-art method of CRS. It is the first to intro-
duce a graph to conduct path reasoning. SCPR is a simple implementation of
Conversational Path Reasoning (CPR), which reduces the attribute candidate
space by using a graph structure. This inspires our SeqCR implementation
hence being the most comparable model.

5.2.4 Evaluation Metrics
The evaluation metrics follow [13]. We use success rate(SR@t) [22] to measure
the ratio of successful conversations, i.e., the ratio of successful recommendations
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in turn t. We also use average turns (AT) to represent the average number of
turns for all conversations. If successfully recommend in the t turn, and the turn
of this session is t. Assuming that the recommendation is not successful until
the maximum turn T , the turn of the session is recorded as T . Therefore, the
higher SR@t and lower AT indicate that model has better performance.

5.3 Performance Comparison with Existing Models (RQ1)

Table 3 shows the performance statistics of SeqCR and other baselines. We can
see that our SeqCR model achieves higher SR and lower AT than state-of-the-
art baselines, demonstrating the better performance of our model. In order to
compare intuitively, we have drawn the SR@t (1 � t � 15) of all models, where
SCPR serves as the blue line of y = 0 in the figures and Success Rate ∗(SR∗)
[12] denotes the difference of SR between each method and SCPR.

Table 3. Performance comparison of different methods on the two real-world datasets.
The best performance is highlighted in boldface. (p < 0.01) (RQ1).

MovieLens 10M Yelp

SR@5 SR@10 SR@15 AT SR@5 SR@10 SR@15 AT

Abs Greedy 0.630 0.703 0.728 5.72 0.121 0.187 0.242 12.73

Max Entropy 0.543 0.678 0.768 5.81 0.030 0.176 0.415 12.76

CRM 0.619 0.690 0.712 5.92 0.081 0.165 0.221 13.03

EAR 0.645 0.705 0.735 5.84 0.082 0.182 0.246 12.91

SCPR 0.621 0.782 0.951 4.89 0.047 0.303 0.552 11.77

SeqCR 0.877 0.931 0.971 2.36 0.055 0.487 0.721 10.13

As shown in Fig. 2, we can see that our model SeqCR is better than other
baselines. Interestingly, we can find that SeqCR has a significant advantage in 2
to 6 turns of MovieLens 10M and 9 to 14 turns of Yelp, respectively. It demon-
strates the effectiveness of training the sequence module by utilizing the sequence
of historical items. Specifically, SeqCR scores candidate items based on histori-
cal sequences, then ranks the candidate items. After ranking, the more relevant
items’ rank is higher in the candidate items. The attributes we ask are selected
from the top L candidate items. If ground truth ranks higher in the candidate
items, it will be easier for SeqCR to ask about its attributes. In this way, our
model can make accurate recommendations to the user in fewer turns. Simulta-
neously, we use a policy network to decide whether to recommend or ask, which
significantly reduces the action space. Therefore, SeqCR will achieve a significant
performance improvement in earlier turns. Compared with Yelp, the MovieLens
10M dataset has better sequence features (i.e., after ranking, the ground truth
ranks higher in the candidate items.), so it has a more remarkable performance
improvement in the first few turns.
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Compared with the Yelp dataset, MoviesLens 10M has a higher SR∗ and a
lower AT. Because there are more than 14000 attributes in the MovieLens 10M,
some of which are characteristic (i.e., only a few items have these attributes).
If SeqCR asks about these attributes and the user provides positive feedback,
the length of candidate items can be greatly reduced so that the system can
make accurate recommendations faster. This is why MovieLens 10M has higher
SR∗ and lower AT. Simultaneously, we can clearly see that SR∗ of SeqCR shows
a trend of the first upward and then downward. After ranking, assuming that
the ground truth ranks higher, since SeqCR prioritizes the attributes of the top-
ranked items, it is more likely to ask the attributes of ground truth according to
the ranked candidate items, so SR∗ in the previous turns has an upward trend
(i.e., it has a greater advantage than SCPR). When there are more dialogue
turns, it indicates that ground truth ranks lower in the candidate items. It is
difficult for SeqCR to ask about the attributes of the low-ranked items, which
prevents the system from capturing users’ preferences. Therefore, the SR∗ in
the next few turns shows a downward trend. This denotes that considering the
sequence of historical items can effectively reduce conversation turns.
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Fig. 2. The success Rate* of compared methods at different conversation turns on
MovieLens 10M and Yelp. SCPR serves as the blue line of y = 0 (RQ1).

The two RL-based methods, CRM and EAR, show better performance at
the beginning. But as the turns increase, their performance gradually decreases,
even lower than Max Entropy. This is because their policy network not only
decides whether to ask or recommend, but also decides which attribute is to ask.
In other words, their action space is |P|+1. For our datasets, they have 14162+1
and 2083+1 action spaces, respectively. It is very challenging for a policy network
to handle such a large action space. Similarly, Abs Greedy demonstrates a great
advantage in the first few turns. Because other models need to ask questions at
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the beginning of a conversation to capture user preferences, but Abs Greedy only
makes recommendations until the recommendation is successful or the maximum
turn is reached. Therefore, a higher success rate will be achieved in the early
stage.

5.4 Evaluation of the Methods to Restrict Candidate Attribute
(RQ2)

In order to prove the effectiveness of our method of restricting candidate
attributes, we design a comparison experiment named SeqCR-L, where L means
that we only consider the attributes of the first L high-scoring items as candi-
date attributes. SeqCR-all keeps the other parts unchanged, then considers the
attributes of all candidate items as candidate attributes. As shown in Fig. 3, since
MovieLens 10M has a better sequence feature, it has achieved better results in
the first few turns. The Yelp has a poor sequence feature, the SR∗ is very low in
the first few turns, but as the turns increase, SR∗ will get significantly improved.
We choose the length L to be 10. When L is less than 10, it indicates that
SeqCR restricts the candidate attributes too much, which prevents the model
from finding suitable attributes to ask. When L is higher than 10, SeqCR has too
few restrictions on candidate attributes, which increases the search space and
reduces the hit rate of the ground-truth of attributes. Therefore, too many or
too few restrictions on candidate attributes will reduce SR∗. In the intermediate
turns of MovieLens 10M, the L = 10 is not the best performance. The possible
reason is that these poorly sequential data require more candidate attributes to
determine the most suitable attributes.
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(RQ2).
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Fig. 4. Comparison of whether to consider attributes rejected by user (RQ3).

5.5 Evaluation of the Effectiveness to Consider Attributes Rejected
by Users (RQ3)

At the same time, we believe that the rejected attributes are also an important
feature. Different from SCPR, our model SeqCR removes items that contain
attributes rejected by users. Because we think this negative feedback of attributes
provides extra information. Based on such information, SeqCR can filter candi-
date items more accurately. We conducted a comparative experiment, SeqCR-r
means that the rejected attributes are not considered in SeqCR. As shown in
Fig. 4, SeqCR serves as y = 0. We can find that the performance of SeqCR-r is
lower than SeqCR. It demonstrates that considering the attributes rejected by
users is helpful to improve performance. On the Yelp dataset, one of its attributes
belongs to multiple items, furthermore, it has a higher AT (i.e., there are more
turns of conversations). Therefore, directly removing items in the first few turns
will affect the choice of attributes. But as the turn grows, candidate items are
getting more accurate, SeqCR will get a better performance improvement than
SeqCR-r.

6 Conclusion

In this work, we are the first to introduce the interaction sequence of historical
items in the conversational recommender system. Specifically, our model SeqCR
has a sequential module, which can model user interaction sequences. Further-
more, it utilizes the scoring module to score candidate items and attributes.
Finally, it can decide whether to ask or recommend through a strategy network
module. SeqCR not only uses sequences to improve the quality of recommen-
dations, but also restricts candidate attributes to the attributes of the first L
high-scoring items, which greatly reduces the attribute candidate space. Exten-
sive experiments show that our model outperforms state-of-the-art baselines. In
the future, we will incorporate natural language and other information (such as
comment content, knowledge graph) to make more accurate recommendations.
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Abstract. Knowledge graph (KG) has been widely studied and
employed as auxiliary information to alleviate the cold start and spar-
sity problems of collaborative filtering in recommender systems. How-
ever, most of the existing KG-based recommendation models suffer from
the following drawbacks, i.e., insufficient modeling of high-order corre-
lations among users, items, and entities, and simple aggregation strate-
gies which fail to preserve the relational information in the neighbor-
hood. In this paper, we propose a Knowledge-aware Hypergraph Neu-
ral Network (KHNN) framework to tackle the above issues. First, the
knowledge-aware hypergraph structure, which is composed of hyper-
edges, is employed for modeling users, items, and entities in the knowl-
edge graph with explicit hybrid high-order correlations. Second, we pro-
pose a novel knowledge-aware hypergraph convolution method to aggre-
gate different knowledge-based neighbors in hyperedge efficiently. More-
over, it can conduct the embedding propagation of high-order correla-
tions explicitly and efficiently in knowledge-aware hypergraph. Finally,
we apply the proposed model on three real-world datasets, and the empir-
ical results demonstrate that KHNN can achieve the best improvements
against other state-of-the-art methods.
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1 Introduction

With the rapid development of the Internet, recommender systems (RS) [5,10,
19,23] have been widely deployed to alleviate the impact of information overload-
ing [13]. A traditional recommendation method is collaborative filtering (CF),
in which users and items are represented as ID-based vectors, and then the his-
torical interactions of users and items are modeled by a operation such as inner
product [15] or a network such as neural collaborative filtering [5]. However, the
cold-start and sparsity problems generally exist in CF-based models. To address
these issues, multiple types of side information have been explored for improv-
ing recommendation performance, such as item attributes [14], item reviews [26],
and users’ social networks [11].

Knowledge graph (KG), which is strong to model comprehensive side infor-
mation, has attracted more and more attention in RS [16,19,20,22]. How to
efficiently integrate the side information into latent representation vectors of
users and items is important in the combination of knowledge graph and rec-
ommender systems. According to the methods dealing with the issue, existing
KG-based recommender system models can be categorized into two types, path-
based and graph neural network (GNN) based models. Path-based models [21]
explore multiple meta-paths between target user and item in KG to infer user
preference. Nevertheless, these models require domain knowledge. What’s more,
this type of models neglect abundant structural information stored in KG and
cannot well explore and utilize the comprehensive correlations between the target
user and item.

Fig. 1. An example of knowledge-aware hypergraph of u1. u1 is the target user whom
we need to provide recommendation for. i1 and i2 are the items, and e1, e2, and e3 are
the entities in the knowledge graph. The link r1 means i1 and i2 are interacted by u1,
r2 and r3 are defined relations in the knowledge graph.
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As more and more graph neural networks emerge, several GNN-based mod-
els [20,22] have been proposed and indicate satisfactory improvements by model
explicit high-order connectivity among entities in KG. However, these models
still have two restrictions: (L1) High-order correlations between users, items,
and entities in KG are essential for data modeling. These methods mainly apply
GNN to enrich the representation of a target node by recursively aggregating
their nearest neighbors in the KG, so have limitations on using high-order corre-
lation between the target node and unoriginal neighbors. In addition, the graph
structure, which is employed by existing methods, are insufficient to model and
utilize high-order relation, as a typical graph can only store pairwise connections.
(L2) During the neighborhood aggregation, simple aggregation operations such
as element-wise mean/sum or max-pooling or weighted aggregation operations
which only consider pair-wise connection are usually used as the aggregator to
get the neighborhood embedding. This aggregation destroys rich relational infor-
mation among neighborhood nodes. As a result, The neighborhood aggregation
is forced to ignore the fine structure of neighborhood relations.

To address the above limitation of existing KG-based recommendation meth-
ods, we propose an end-to-end model named Knowledge-aware Hypergraph Neu-
ral Network (KHNN). Specifically, KHNN is equipped with two designs: (1)
Knowledge-aware hypergraph construction, which is composed of initial hyper-
edge construction and knowledge hyperedge construction. For initial hyperedge
convolution, we construct hyperedges based on the user-item interaction. For
knowledge hyperedge construction, we construct hyperedges based on knowl-
edge graph and initial hyperedge. Based on these generated hyperedges, we
can construct two hypergraphs for the target user and item, respectively. As
depicted in Fig. 1, item i1 and item i2 can be associated by target user u1 with-
out direct connections, and entity e1, entity e2, and entity e3 in knowledge graph
can be associated by item i1 and item i2 without direct connections. (L1) (2)
Knowledge-aware hypergraph convolution, which is composed of neighborhood
convolution and hyperedge convolution. For neighborhood convolution, we use a
transform matrix to permute and weight entities in a hyperedge. For hyperedge
convolution, we just concatenate the hyperedge features to get the final embed-
dings of users and items. (L2) To sum up, our contributions are as follows:

• We propose a knowledge-aware hypergraph which explicitly exploring and
modeling the high-order correlations among users, items, and entities in the
KG.

• We propose to apply a novel knowledge-aware hypergraph convolution
method to model the rich relational information among neighborhood entities
in a hyperedge and support the explicit and efficient embedding propagation
of high-order correlations.

• We conduct sufficient experiments on all three recommendation scenarios.
The results of the experiments show the superiority of KHNN over other
state-of-the-art baselines.
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2 Related Work

In this section, we will introduce the representative models in knowledge aware
recommendation and hypergraph learning.

2.1 Knowledge-Aware Recommendation

Recently, Knowledge graph get more and more attention. Kg is widely applied in
recommender systems for extending correlations between user historical interac-
tion and candidate items. Some models apply KG-aware embeddings to improve
the quality of item embeddings such as DKN [17] and CKE [25]. Nevertheless,
these methods are insufficient to make use of high-order relations over KG. As
a result, several models [21,24] have been applied to explore multiple semantic
path (meta-path), which connect target users’ historical interactions and candi-
date items over KG. Then the prediction function is learned through multiple
path modeling and integrating. In spite of these models’ effectiveness, the path-
based models neglects comprehensive relational information stored in KG as each
explored path is modeled independently. As a newly research domain, graph neu-
ral network has demonstrated its ability in learning good node embeddings in
graph. RippleNet [16] diffuses users’ underlying interest and explores their rich
correlations in KG. KGCN-LS [18] and KGAT [20] conduct high-order infor-
mation propagation by applying multiple KG-aware GNN layers. CKAN [22]
utilizes the collaborative information by collaborative information propagation
through users’ historical interactions and it also apply a solution to combine col-
laborative information with knowledge information. Though GNN based models
have obtained some performance improvement, they still suffer inferior perfor-
mance, i.e., insufficient modeling of high-order correlations among users, items
and entities in knowledge graph and simple aggregation strategies which fail to
preserve the relational information in the neighborhood.

2.2 Hypergraph Learning

As a label propagation method, [27] first propose hypergraph learning to com-
plex high-order relations. With the development of deep learning, hypergraph
neural network have received much attention. Recent works focus on the learn-
ing of hyperedge weight. In these methods, the hyperedges or sub-hypergraphs
with higher significance will be allocated larger weight [3]. Hypergraph neural
network (HGNN) has been proposed as the first method to apply graph convo-
lution on hypergraph structure [2]. Besides learning label propagation on hyper-
graph, dynamic hypergraph neural networks (DHGNN) [7] has been proposed to
explore and model high-order relations among vertex in hypergraph. In addition,
hypergraph has been applied in recommendation. In dual channel hypergraph
collaborative filtering (DHCF) [6], hypergraph is used to learn the embeddings
of users and items, as a result, these two types of information can be well con-
nected while still maintaining their own features. Inspired by [6] and [7], we pro-
pose a way to apply the Knowledge-aware hypergraph for explicitly constructing
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knowledge-aware hyperedges to utilize the high-order correlations among users,
items, and entities in KG.

3 Problem Definition

In this section, we introduce the formulation of the Knowledge-aware Hyper-
graph Neural Network. In the Knowledge-aware recommendation scenario, M
users are represented as U = {u1, u2, ..., uM}, N items are represented as V =
{v1, v2, ..., vN} and a user-item interaction are represented as matrix Y ∈ R

M×N .
The matrix Y is constructed according to users’ implicit feedback, in which yuv
= 1 indicates that user u has interacted with item v, such as clicking, collect-
ing, or purchasing; otherwise yuv = 0. In addition, there is also a knowledge
graph GK = {(h, r, t)|h, t ∈ E , r ∈ R}. In the knowledge graph, each knowledge
triple (h, r, t) demonstrates that a relationship r exist between head entity h and
tail entity t. And the sets of entities and relations in the knowledge graph are
denoted as E and R. For instance, the triple (Back to the Future, directedby,
Robert Zemeckis) represents the fact that Robert Zemeckis is an director of the
movie Back to the Future.

An edge can only connects two nodes in a typical graph. However, a hyper-
edge connects two or more nodes in a hypergraph [1]. GH = (E ,H) denotes a
knowledge-aware hypergraph, in which E denotes the entity set, and H represents
the hyperedge set. A set A = {(v, e)|v ∈ V, e ∈ E} is used to conduct correlations
between items and entities. In A, (v, e) indicates that item v can be correlated
with entity e in the knowledge-aware hypergraph.

Given the knowledge-aware hypergraph GH with historical interaction matrix
Y, we aim to calculate the probability that user u would interact item v which
he has not engaged with before. To be specific, our ultimate goal is to learn
a prediction function ŷuv = F(u, v|Θ, Y,GH), where ŷuv denotes the predicted
probability that user u will interact item v, and Θ indicates the model parameters
of function F .

4 The Proposed Method

In this section, the proposed KHNN framework is introduced. As represented in
Fig. 2, the model contains three main components: 1) knowledge-aware hyper-
graph construction, which consists of initial hyperedge construction through
user-item interactions and knowledge hyperedge construction in knowledge
graph; 2) knowledge-aware hypergraph convolution, which consists of neighbor-
hood convolution which aggregates entities to hyperedge and hyperedge con-
volution which aggregates vectors of hyperedge to user u and item v; and 3)
prediction layer, which outputs the predicted click probability.
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Fig. 2. The proposed KHNN model consists of three components: knowledge-aware
hypergraph construction, knowledge-aware hypergraph convolution and prediction
layer.

4.1 Knowledge-Aware Hypergraph Construction

As shown in Fig. 2, knowledge-aware hypergraph construction is composed of two
major modules: initial hyperedge construction and knowledge hyperedge con-
struction. The initial hyperedge is constructed by explicitly encoding user-item
historical interaction into representations of both user and item. The knowledge
hyperedge is constructed by entities which have high-order relation with source
node in knowledge-aware hypergraph.

Initial Hyperedge Construction. It is obvious that users’ historical interac-
tions are able to representing the user’s interest to some extent. As a result, we
use user’s interacted items to represent user u. The interacted item set of user
u can be constructed as the initial hyperedge(entity set) in knowledge-aware
hypergraph through the correlations between items and entities. Following, the
initial hyperedge of user u is defined as:

h1
u = {e|(v, e) ∈ A and v ∈ {v|yuv = 1}} (1)

Simplistically, users who have similar historical interactions can also be used
to enrich the item’s feature representation. We use items, which have been
watched by the same user, to construct initial item set of item v as follows:

Vv = {vu|u ∈ {u|yuv = 1} and yuvu
= 1} (2)
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Integrating initial item set and correlation set, the initial hyperedge of item
v is defined as follows:

h1
v = {e|(vu, e) ∈ A and vu ∈ Vv} (3)

The user and item’s initial hyperedges are constructed now for the following
knowledge hyperedge construction.

Knowledge Hyperedge Construction. Entities in KG have close relations
with its neighborhood. We construct the knowledge hyperedge by taking advan-
tage of such close relations among entities in KG. As a result, knowledge hyper-
edges of different distances from the initial hyperedge are able to enrich the
latent embedding of user and item efficiently. The knowledge hyperedge for user
u and item v is recursively defined as:

hl
o =

{
t|(h, r, t) ∈ GK and h ∈ hl−1

o

}
, l = 2, 3, ..., L (4)

where l indicates the distance from the initial hyperedge, the subscript sym-
bol o1 is a uniform placeholder for symbol u or v.

Applying knowledge graph as auxiliary information to construct knowledge
hyperedges is helpful to enrich the features of user and item. As illustrated in
Fig. 2, the hyperedge is obtained through initial hyperedge construction and
knowledge hyperedge construction. Based on these generated hyperedges, we
can construct two hypergraphs for target user and target item.

Vectors in 
l-1-order 
hyperedge 

Vectors in 
l-order 
hyperedge 

Conv
Transform
matrix 

Mul

Conv

l-order 
Hyperedge

Vector

Vectors in 
l-order 
hyperedge 

Fig. 3. Neighborhood convolution module. For k concat vectors, a k × k transform
matrix is computed by convolution. We multiply transform matrix and input vector
matrix to get permuted and weighted vector matrix. Then we apply a 1-dimension
convolution to weighted vector matrix to get the 1-dimension hyperedge vector.

1 Symbol o is used as a uniform placeholder for both user and item.
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4.2 Knowledge-Aware Hypergraph Convolution

Knowledge-aware hypergraph convolution is composed of two sub-modules:
neighborhood convolution sub-module and hyperedge convolution sub-module.
Neighborhood convolution aggregates entity latent vectors to hyperedge and
then hyperedge convolution aggregates hyperedge latent vectors to a single
embedding for both user and item.

Neighborhood Convolution. Neighborhood convolution aggregates entity
latent vectors to the hyperedge. A simple solution is pooling method like max
pooling and average pooling. State-of-the-art methods like CKAN [22] employ
a fixed, pre-computed transform matrix generated from triples in kg for vertex
aggregation. However, such methods are unable to model comprehensive correla-
tion among entities in neighborhood well. Inspired by DHGNN [7], we propose a
novel neighborhood convolution method. We learn the transform matrix T from
the entity vectors in both l-order and l-1-order hyperedges for vector permuta-
tion and weighting, as is shown in Fig. 3. The transform matrix obtained by
convolution can make good use of the comprehensive correlation among entities
in neighborhood. To be specific, we use a 1-d convolution to generate transform
matrix T and use another 1-d convolution to aggregate the transformed vectors,
as is described by Eq. 5 and Eq. 6.

T l
o = conv1(hl−1

o ||hl
o) l = 2, 3, ..., L (5)

elo = conv2(T l
o · hl

o) l = 2, 3, ..., L (6)

where the subscript o is a uniform placeholder for both user and item. || is the
concatenation operation. conv1 and conv2 are 1-dimension convolution but with
different out channels.

Notice that, because the initial hyperedge has strong connections with orig-
inal user and item. Consequently, the initial hyperedge are added for both user
and item, as is described by Eq. 7 and Eq. 8.

T 1
o = conv1(h1

o) (7)

e1o = conv2(T 1
o · h1

o) (8)

It is noted that item v has its associated entities in kg to represent item v
itself while user u does not. The entity, which have direct correlation with item v,
contains most useful information to represent item v itself in kg. Consequently,
the entity is added to the representation set of the item v and the entity is
formulated as follows:

e0v = e (v, e) ∈ A (9)

After neighborhood convolution, we define the user representation set con-
taining hyperedge embeddings and item representation set containing both
hyperedge embeddings and additional embeddings for item v itself as follows:

Tu =
{
e1u, e2u, ..., eLu

}
(10)

Tv =
{
e0v, e

1
v, e

2
v, ..., e

L
v

}
(11)
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Hyperedge Convolution. Hyperedge convolution aggregates hyperedge vec-
tor to user u and item v, as is illustrated in Fig. 2. We apply three types of
aggregators to aggregate the multiple embeddings of hyperedge in Eq. 10 and
Eq. 11 into a single embedding for both user and item.

Sum aggregator perform summation calculations of multiple embeddings in
the set of representations:

aggosum =
∑

eo∈To

eo (12)

Pooling aggregator perform element-wise maximization calculations of mul-
tiple embeddings in the set of representations:

aggopool = poolmax(To) (13)

Concat aggregator concatenates multiple embeddings in the set of represen-
tations:

aggoconcat = ei1o ||ei2o ||...||eino (14)

where eiko ∈ To, and || is the concatenation operation. Specifically, since the
precondition of inner product operation is same dimensions of embeddings for
both user and item, we abandon the initial hyperedge embedding in the item
representation set to concatenate the rest representation vectors. The detail we
will discuss in Sect. 5.5.

4.3 Optimization

Model Prediction. The single embedding of user’s knowledge-aware hyper-
graph is defined as eu. Analogously, as to item, ev denote the item’s knowledge-
aware hypergraph. At last, we calculate the inner product and nonlinear trans-
formation of embeddings to predict the user’s score for the candidate item:

ŷuv = σ(eTu ev) (15)

Loss Function. For each user, we random select the same number of negative
samples with positive samples to make sure the effectivity of model training. We
will discuss the details of negative sampling in Sect. 5.1. Ultimately, we define
the loss function of the model KHNN as follows:

L =
∑

u∈U

(
∑

v∈{v|(u,v)∈P+}
J (yuv, ŷuv) −

∑

v∈{v|(u,v)∈P−}
J (yuv, ŷuv)) + λ||Θ||22 (16)

J is the cross-entropy loss, P+ is positive samples while P− means the nega-
tive samples. Θ is the model parameters, and ||Θ||22 is the L2-regularizer that
parameterized by λ.
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Table 1. Statistics of all the three datasets: Last.FM (Music), BookCrossing (Book)
and Movie-Lens20M (Movie).

Music Book Movie

# users 1,872 17,860 138,159

# items 3,846 14,967 16,954

# interactions 42,346 139,746 13,501,622

# inter-avg 23 8 98

# entities 9,366 77,903 102,569

# relations 60 25 32

# KG triples 15,518 15,1500 499,474

# link-avg 4 10 29

5 Experiments

In this section, we evaluate the KHNN model under three real-world scenarios
to answer the following research questions:

• Q1: How does KHNN perform compared with state-of-the-art KG-based rec-
ommendation methods?

• Q2: How do different components (e.g., knowledge-aware neighborhood con-
volution and aggregator selection in hyperedge convolution) affect KHNN?

• Q3: How do different hyper-parameter settings (e.g. number of hyperedge,
size of hyperedge) affect KHNN?

5.1 Dataset Description

We conduct experiments under three different scenarios: music, book and movie
recommendations. The three datasets are different in size, sparsity and domain.

• Last.FM2 contains 2 thousand users’ listening information from Last.fm
online music platform.

• Book-Crossing3 contains 1 million ratings (ranging from 0 to 10) of books
in the Book-Crossing community.

• MovieLens-20M4 that contains 138 thousand users who have watched 27
thousand movies with 20 million ratings (ranging from 1 to 5) on the Movie-
Lens platform.

The historical interactions in these three datasets are explicit feedback, as a
result, these historical records need to be transformed into the implicit records
in which 1 indicates the positive feedback. With regard to negative samples, we

2 https://grouplens.org/datasets/hetrec-2011/.
3 http://www2.informatik.uni-freiburg.de/cziegler/BX/.
4 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/hetrec-2011/
http://www2.informatik.uni-freiburg.de/cziegler/BX/
https://grouplens.org/datasets/movielens/
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randomly select same size with user’s positive feedback from items which he has
not interacted with.

The sub-KGs is constructed to guarantee the quality of entities in knowledge-
aware hypergraph. We follow the work in [16,19] to construct sub-KGs from the
Satori5. Each sub-KG, in which the confidence level of triple is higher than 0.9, is
a subset of the whole KG. We abandon the items correlated with multiple entities
and the items associated with no entity for accuracy. Table 1 is the summary of
detailed statistics of the three datasets: Last.FM (music), Book-Crossing (book),
MovieLens-20M (movie).

5.2 Baselines

We compare KHNN with following four types of recommendation models: CF-
based method (BPRMF), embedding-based model (CKE), path-based model
(PER) and GNN-based models(RippleNet, KGCN, KGNN-LS, KGAT, CKAN).

• BPRMF [12] is the Bayesian ranking model that uses Matrix Factorization
(MF) as the prediction component for recommendation. It utilizes the user-
item interaction to learn representations of users and items.

• CKE [25] is a typical embedding-based model, which use semantic embed-
dings derived from TransR [9] to enhance matrix factorization [12].

• PER [24] is a typical path-based model which use latent features derived
from the meta-path in KG to denote the correlation between users and items
in kg.

• RippleNet [16] is a GNN-based model which propagates user’s interest to
learn user and item embedding.

• KGCN [19] is a state-of-the-art GNN-based model which models the ultimate
embedding of a candidate item v by aggregating the embedding of entities in
the KG from neighbors of item v to item v itself.

• KGNN-LS [18] is another state-of-the-art GNN-based model which learn
user-specific item embeddings by identifying important knowledge graph rela-
tionships for a given user

• KGAT [20] is another state-of-the-art GNN-based model, which considers
user nodes as one type of entities in the knowledge graph and the interaction
between users and items as one type of relation

• CKAN [22] is another state-of-the-art GNN-based model, which utilizes the
collaborative information by collaborative information propagation through
users’ historical interactions and it also apply a solution to combine collabo-
rative information with knowledge information.

5.3 Experimental Settings

In our experiments, these three datasets are divided into training, evaluation, and
test sets with the proportion of 6:2:2. The following are the two recommendation
5 https://searchengineland.com/library/bing/bing-satori.

https://searchengineland.com/library/bing/bing-satori
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Table 2. The result of AUC and F1 in CTR prediction.

Model Last.FM Book-Crossing MovieLens-20M

AUC F1 AUC F1 AUC F1

BPRMF 0.756 0.701 0.658 0.611 0.958 0.914

CKE 0.747 0.674 0.676 0.623 0.927 0.874

PER 0.641 0.603 0.605 0.572 0.838 0.792

RippleNet 0.776 0.702 0.721 0.647 0.976 0.927

KGCN 0.802 0.708 0.684 0.631 0.977 0.930

KGNN-LS 0.805 0.722 0.676 0.631 0.975 0.929

KGAT 0.829 0.742 0.731 0.654 0.976 0.928

CKAN 0.842 0.769 0.753 0.673 0.976 0.929

KHNN 0.856 0.785 0.764 0.687 0.986 0.944

scenarios we take into account. (1) As to click-through rate (CTR) prediction,
we learn model parameters from the training set. Then we use the trained model
to predict the interest of user’s about the items in the test set. (2) As to top-K
recommendation, the model, which learn model parameters from the training
set, is used to choose K items with higher predicted score than other items in
the test set. The metrics of AUC and F1 are used in CTR prediction and the
metrics of Recall@K is selected in top-K recommendation. We use adam [8] to
optimize all models in training. We set the batch size as 1024 in training. We
apply the default Xavier initializer [4] to initialize the model’s parameters.

We implement our KHNN model in PyTorch6. The best hyper-parameters are
obtained by grid search. The learning rate is searched in {10−3, 5×10−3, 10−2, 5×
10−2}. The embedding size is tuned among {8, 16, 32, 64, 128, 256}. The coef-
ficient of L2 normalization is searched in {10−5, 10−4, 10−3, 10−2}. We search
the set size of hyperedge in {16, 32, 64, 128}. It’s note that we set same size of
hyperedge for user and item.
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Fig. 4. The result of Recall@K in top-K recommendation.

6 https://pytorch.org.

https://pytorch.org
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5.4 Performance Comparison (Q1)

The results of CTR prediction and top-K recommendation are presented in
Table 2 and Fig. 4, respectively. Analyzing the experimental results, we can
draw the following conclusions:

• KHNN shows overwhelming superiority over these state-of-the-art baselines
on all three datasets. Specifically, KHNN achieve improvements over the state-
of-the-art baselines w.r.t. AUC by 1.7% in Last.FM, 1.5% in Book-Crossing
and 1% in MovieLens-20M.

• In CTR prediction and top-K recommendation, the KHNN’s performance
is excellent. Compared with CKAN, the performance of KHNN demonstrate
the effectiveness of the knowledge-aware hypergraph convolution. The results’
difference among KHNN, KGCN and KGNN-LS demonstrate the importance
of explicitly encoding high-order correlation in knowledge graph.

• It is obvious that all models obtain the highest scores in the experiments
on the MovieLens-20M dataset. One possible reason is that the number of
average interactions and average links in kg are highest on the MovieLens-
20M dataset. Consequently, there is not sufficient interactions and links in the
poorer datasets for recommender models to learn the latent vectors specifi-
cally in kg-based models.

• According to the results of experiments, KG-based models achieve better
performance than CF-based models in most cases. This experimental results
illustrate that the usage of KG is helpful to capture underlying historical
interaction between users and items.

• According to the results of KG-based models, the GNN-based models achieve
better performance than the path-based models on all three datasets. This
demonstrates the importance of modeling the high-order connectivity of
neighbors in knowledge graph.

5.5 Study of KHNN (Q2)

Effect of Knowledge-Aware Neighborhood Convolution. To verify the
impact of knowledge-aware neighborhood convolution, we study two variants
of KHNN. For KHNNmean−1, we apply mean aggregator to aggregate embed-
dings in 1-order neighborhood. For KHNNmean−all, we apply mean aggregator to
aggregate embeddings in all neighborhood. In the analyses of data from Table 3.
From the results of experiments, we can observe that KHNN consistently perform
better than KHNNmean−1 and KHNNmean−all. We attribute the improvement to
the neighborhood convolution, which is able to model comprehensive correlation
among entities in neighborhood well.

Effect of Aggregator Selection in Hyperedge Convolution. To explore
the impact of aggregator selection in hyperedge convolution, we apply Sum, Pool
and Concat aggregator in KHNN to conduct hyperedge convolution. The results
of experiment are shown in Table 4. We can draw the following conclusion:
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aggconcat is superior to aggsum and aggpool. The results can be owed to that the
Concat aggregator is able to retain more information stored in embeddings than
Sum and Pool aggregators.

Table 3. The result of AUC w.r.t. effect of knowledge-aware neighborhood convolution.

Category KHNNmean−all KHNNmean−1 aggconcat

Music 0.811 0.840 0.856

Book 0.738 0.751 0.764

Movie 0.964 0.970 0.986

Table 4. The result of AUC w.r.t. different aggregators in hyperedge convolution.

Aggregator aggsum aggpool aggconcat

Music 0.835 0.844 0.856

Book 0.740 0.752 0.764

Movie 0.970 0.972 0.986

5.6 Hyper-Parameter Study (Q3)

Effect of Number of Hyperedge. To explore how the number of hyperedge
affects the performance, We vary the maximal number of hyperedge L of hyper-
edge construction. What’s more, the concat aggregator should use the same
number of embeddings used for calculation. However, the number of embed-
dings in Tu and Tv is different. As a result, we exclude e1v in Tv as a compromise
solution. For example, L = 2 means to aggregate e0v and e2v for item hyperedge
convolution. Table 5 show the results of experiment with different number of
hyperedge. It is obvious that the model achieve best performance when L is 3
in music, 2 in book and 2 in movie. The best results can be owed to the con-
struction and convolution of high-order hyperedge provides sufficient auxiliary
knowledge information. However, not only information but also noise are bring
when the number of hyperedge is large.

Effect of Size of Hyperedge. We set the size of hyperedge form 16 to 128.
The results is presented in Table 6. The best performance of music and book
is obtained when the size is taken as 64. For movie recommendation, the best
result is obtained when the size is taken as 128. One reasonable explanation is
that not only knowledge information but also noise are bring by hyperedge.
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Table 5. The result of AUC w.r.t. different number of hyperedge.

Number of Hyperedge 1 2 3 4

Music 0.835 0.842 0.856 0.850

Book 0.748 0.764 0.753 0.745

Movie 0.971 0.986 0.983 0.977

Table 6. The result of AUC w.r.t. different sizes of hyperedge.

Size 16 32 64 128

Music 0.827 0.842 0.856 0.848

Book 0.743 0.755 0.764 0.752

Movie 0.959 0.968 0.979 0.986

6 Conclusion

In this paper, we proposed a Knowledge-aware Hypergraph Neural Net-
work (KHNN) framework. First, the knowledge-aware hypergraph structure is
employed for modeling users items and entities in knowledge graph with explicit
hybrid high-order correlations. Second, a novel knowledge-aware hypergraph con-
volution method is proposed to aggregate different knowledge-based neighbors
in hyperedge efficiently and support the explicit embedding propagation of high-
order correlations in knowledge-aware hypergraph. Our extensive experimental
results on three real-world datasets demonstrated the superiority of KHNN over
other models. As to future work, we will focus on how to design a better way to
aggregate the multiple representations in hyperedge to get better performance.
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Abstract. Explainable recommendation is attracting more and more
attention in both industry and research communities. While some exist-
ing models utilize reviews for improving the performance of recommender
systems, most of them assume that user’s preference is static and each
review’s importance is user-independent. However, it is intuitive that
user’s preference is always dynamically changing and reviews from similar
users should be given more importance as they share similar tastes. More-
over, they achieve model explainability at either feature level that is too
concise or review level that is too redundant. To deal with these problems,
we propose a Personalized Dynamic Knowledge-aware Recommender
(PDKR) for dynamic user modeling and personalized item modeling. In
particular, we model user’s preference with defined entities and relations
in sequential knowledge graphs and capture its dynamics with a novel
interval-aware Gated Recurrent Unit (GRU). Furthermore, by leverag-
ing self-attention mechanism, we can not only learn each review’s user-
specific importance, but also provide tailored explanations for each user
at both feature level and review level. We conduct extensive experiments
on three benchmark datasets from Amazon and Yelp and the results
show that PDKR outperforms all the state-of-the-art recommendation
approaches in rating prediction task while providing more effective expla-
nations simultaneously.

Keywords: Recommender system · Knowledge graph · Gated
Recurrent Unit · Attention mechanism · Rating prediction

1 Introduction

Explainable recommendation has been attracting increasing attention as previ-
ous studies show that it can not only improve user’s acceptance of recommended
items [8,16], but also improve the transparency, persuasiveness, effectiveness,
trustworthiness and satisfaction of recommender systems [1,7,17,20]. To make
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 148–164, 2021.
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recommender systems more explainable, user reviews, which contain rich pref-
erence information, have been widely leveraged to improve the explainability
of recommendation models. For example, HFT [11] is proposed to explain the
recommendation results by linking each dimension of the latent vector with a
hidden topic learned from reviews. Following this idea, RBLT [15] achieves rec-
ommendation explanations by showing the topic words that have the highest
recommendability score learned from a unified semantic space. NARRE [3] uti-
lizes an attention mechanism to select the most useful reviews as the explanation.
DER [5] designs a “user-aware” attention network to select the most important
sentence as the explanation.

Despite their improvement in explainability, these methods suffer from some
inherent limitations. To begin with, while most of them take reviews as their
model input, they fail to fully exploit side information, such as user’s behavior
patterns and item’s attributes hidden in these reviews, and thus they would
lead to poor performance when the data is sparse. More importantly, most of
them represent each user as a static vector and do not take user’s preference
dynamics into consideration. It is worth mentioning that though some RNN-
based methods including DER aim to capture user’s dynamic preferences by
modeling each item chronologically, we believe that modeling user’s preference
based on each single discrete item may not be robust since a single item usually
cannot reflect user’s preference and would introduce occasionality into the model.
Besides, these models assume that each item has a global vector suitable for all
users. However, considering different users may have very different tastes, and
thus they may care about different attributes of the same item, we believe that
each item’s vector should contain more attribute information that the target
user cares about. Therefore, it is intuitive to give higher weight to the reviews
of the users who are similar to the target user and obtain a user-specific item
representation.

To tackle the problems mentioned above, we design a novel recommender
framework based on Knowledge Graph (KG), namely Personalized Dynamic
Knowledge-aware Recommender (PDKR), for dynamic user modeling and per-
sonalized item modeling, while providing hybrid explanations at both feature
level and review level. Firstly, we construct sequential knowledge graphs and
extract triples that can reflect user’s behavior patterns and item’s attributes
contained in each sequential knowledge graph. Then, we design a multi-layer
graph attention network to capture user’s short-term preference reflected in
each sequential knowledge graph. Next, we capture user’s dynamic preferences
by adopting Gated Recurrent Units (GRUs) as the basic architecture to incor-
porate user’s short-term preference and long-term preference. Though GRU is
good at modeling sequential information, it does not consider the time interval
information which is a very important signal since user’s preference is relatively
stable within a short period of time but can change dramatically when the time
gap is large. To overcome this limitation, we incorporate time interval into the
reset gate and the update gate to better distinguish user’s historical and current
preference. It is noteworthy that different from traditional RNN-based methods,
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we model user’s dynamic preferences based on each sequence of items rather
than each single discrete item. We further construct a self-attention layer, which
could automatically learn the similarity between users, in order to make item
representations more personalized. Finally, we improve the explainability of the
recommendation results by showing selected reviews from the most similar users
(review-level explanation) with featuring words highlighted (feature-level expla-
nation).

The main contributions of this work are summarized as follows:

– We design a novel KG-based framework that leverages rich side information
to achieve dynamic user modeling and user-specific item modeling simultane-
ously. To the best of our knowledge, it is the first attempt to combine knowl-
edge graph and GRUs to capture user’s dynamic preferences and address the
data sparsity problem in rating prediction tasks.

– We modify the original GRU architecture by introducing time interval to
make it aware of the user’s preferences evolving with time. We also leverage
a self-attention mechanism to learn the similarity between users and obtain
user-specific item representation. By combining review-level and feature-level
explanations, we can improve the effectiveness and satisfaction of the recom-
mendation.

– We conduct extensive experiments on three benchmark datasets to evaluate
the performance of our model. The favorable results verify our expectation
that the proposed framework can reach a high prediction accuracy and pro-
vide more effective explanation at the same time.

2 Related Work

2.1 Explainable Recommendation

Explainable recommendation models have proved to be quite useful in ranges of
applications. Many techniques have been proposed to improve the explainabil-
ity of recommendation models. Early works [4,11,21] mainly focus on improv-
ing the explainability of matrix factorization models and collaborative filtering
models while preserving their accuracy. For example, EFM [21] extends Matrix
Factorization by aligning latent dimensions with explicit features and provides
feature-level explanations. However, feature-level explanations can only provide
very limited information and sometimes lead to ambiguity without sufficient
contextual information. Recently, with the advance of deep learning, deep mod-
els [3,5,14] have been proposed to improve the accuracy and explainability of
recommendation simultaneously. Basically, in these models, side information like
reviews is utilized to enhance the explainability. NARRE [3], D-Attn [14] and
DER [5] automatically learn the importance of different sentences and select the
most important sentences as the review-level explanation of the recommenda-
tion. Although review-level explanation can provide more detailed description of
items, sometimes they contain too much redundant information which is useless
and distracting, thus affecting the quality of explanations.
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To address the problems mentioned above, our model provides review-level
explanations while highlighting the featuring words with their sentiment polar-
ity suggested in corresponding colors. Therefore, users can choose to look at
the featuring words only or refer to the review context when they cannot fully
understand the featuring words.

2.2 Knowledge Graph Based Recommendation

Knowledge Graph (KG) based recommendation is attracting more and more
attention since KG contains rich information about users and items, which can
help enhance recommendation performance and address the problem of data
sparsity. In general, existing KG-based recommendation studies can be divided
into two categories. The first category is embedding-based methods. For exam-
ple, Collaborative Knowledge based Embedding (CKE) [19] combines collabo-
rative filtering with auxiliary knowledge embeddings such as text embedding
and image embedding. The second category is path-based methods which lever-
age path information for recommendation. For example, Personalized Entity
Recommendation (PER) [18] treats each knowledge graph as a heterogeneous
information network and extracts meta-path-based latent features to represent
the connectivity between users and items.

Although these models achieve promising results, most of them do not take
user’s preference dynamics into consideration. To address this issue, we aim
to model user’s dynamic preferences by chronologically organizing knowledge
graphs as a sequence and utilizing a GRU architecture to incorporate user’s
historical and current preference.

3 Preliminaries

To formulate the problem, we first introduce the definitions of interaction
sequence and sequential knowledge graph.

Definition 1 (Interaction Sequence). Each interaction o = (u, v, r, w, t)
includes user ID u, item ID v, rating r, review w and time t, which denotes
that user u interacts with item v at time t by rating r and review w. Given a
historical interaction set O = [o1, o2, .., o|O|] of user u and sequence length λ, an
interaction sequence si = [oi,1, oi,2, ..., oi,λ] is a chronologically-ordered contin-
uous subset of O. The set of interaction sequences of user u is represented as
Su = [s1, s2, ..., sm], where m is the number of interaction sequences.

Definition 2 (Sequential Knowledge Graph). Given an interaction
sequence si, a sequential knowledge graph denoted as Gi = (E ,R) can be con-
structed by extracting defined entities and relations from si, where E is the set of
entities and R is the set of relations. All sequential knowledge graphs constructed
from Su is represented as Gu = {G1,G2, ...,Gm}.
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Problem Statement. Given a set of users U and their historical interactions
in the training set Dtr, we aim to accurately predict the rating r that a user u
will assign to item v by learning the embeddings of users and items, and provide
effective explanation at both review level and feature level.

Sequential Knowledge Graph Construction. This paper aims to leverage
reviews for product recommendation, which usually provides three kinds of enti-
ties including user entity, item entity and feature entity. To capture user behavior
patterns and item attributes, we convert the interaction between these entities
into the following four groups of triplet facts, which are illustrated in Fig. 1.

Fig. 1. One example of the sequential knowledge graph

(1) (u, Purchase, v) represents the interaction that user u bought item v. The
weight of the relation is defined as the rating that user u assigned to item v.

(2) (v,Own, f) represents the interaction that item v owns feature f . The weight
of the relation is defined as the sentiment polarity that the user expressed
on the feature, where 1 means the user likes the feature while 0.5 means the
user dislikes the feature1.

(3) (u,Mention, f) represents the interaction that user u mentioned feature f
more than once in her review history. The weight of the relation is defined
as the frequency that user u mentioned feature f .

(4) (v1, AlsoBought, v2) represents the interaction that item v1 and item v2
were bought together in one transaction more than once. The weight of the
relation is defined as the frequency that the two items appeared in the same
transaction.

An advantage of defining these relations is that user’s behavior patterns
and item attributes can be incorporated into a sequential knowledge graph in a
unified manner. More specifically, by defining relation Mention and AlsoBought,
user’s special preferences on some features and item’s interdependence with each
other can be captured. Besides, the strength of relations can be reflected by
the weights of them. Note that other kinds of entities (such as categories and

1 The sentiment polarity value should have been 1 (positive) or −1 (negative). We
modify the negative value -1 to 0.5, which can be seen as how well the item performs
on the feature.
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brands) and their corresponding relations can also be added to capture specific
user behavior patterns and item attributes.

All the weights are normalized within their relation types. With the entities
and relations defined above, we can now construct sequential knowledge graphs
by extracting triples (eh, r, et) from each interaction sequence si, where eh rep-
resents the head entity, et represents the tail entity and r represents the relation
between them.

4 The Proposed Model

Fig. 2. Framework overview

As shown in Fig. 2, our proposed Personalized Dynamic Knowledge-aware Rec-
ommender (PDKR) consists of three parts: user representation learning, item
representation learning and rating prediction. In the user representation learning
part, we first design a multi-layer graph attention network to learn user’s local
sequence representation which represents user’s short-term preference reflected
in the current session. Then, we re-design the architecture of GRU to incorporate
user’s long-term preference reflected in previous sessions and user’s short-term
preference reflected in the current session, and obtain user’s global sequence
representation eventually. In the item representation learning part, we leverage
a self-attention layer for user-specific item representation learning. Finally, we
combine user representation and item representation to obtain the predicted
rating in the rating prediction part.

4.1 Local Sequence Representation Learning

As illustrated in Fig. 3, given user u’s sequential knowledge graphs Gu =
{G1,G2, ...,Gm}, we first update the embeddings of entities and relations, and
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then aggregate all the entity embeddings in the sequential knowledge graph Gi

to obtain user u’s local sequence representation Si
l which represents user u’s

short-term preference reflected in the interaction sequence si.

Entity Embedding Update. To distinguish user entity from other kinds of
entities, we first transform user entity embeddings and other kinds of entity
embeddings into different latent space before the graph attention layer by apply-
ing the following equation:

h
user/else
i = W

user/else
1 xi, (1)

where xi ∈ R
d is the embedding of entity ei, W user

1 ,W else
1 ∈ R

d×d are the
transformation matrices of user entity and other kinds of entities respectively.

Fig. 3. Structure of user representation learning

In graph attention layer, we first calculate each triple’s relative attention
value, and then we concatenate the outputs of M independent attention lay-
ers where in each layer we calculate the weighted average of triple embedding
separately:

χijk = W2[hi‖hj‖gk]
cijk = wijkLeakyReLU(W3χijk)

αijk = softmax(cijk) =
exp(cijk)

∑
n∈Ni

∑
r∈Rin

exp(cinr)

h
′
i = ‖M

m=1σ(
∑

j∈Ni

αm
ijkχm

ijk),

(2)
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where hi and hj denote embeddings of entities ei and ej respectively, χijk

denotes the triple (ei, rk, ej), wijk denotes the weight of the relation in the triple
(ei, rk, ej), Ni denotes the neighbors of entity ei and Rin denotes the set of
relations between entity ei and entity en. As a common practice of multi-head
attention models, we employ averaging instead of concatenating in the final layer
to get the final embedding of entities.

Relation Embedding Update. Similar to [13], linear transformation is then
performed on the relation embedding matrix G to get the final relation embed-
ding.

G
′
= GWR (3)

Generating Local Sequence Representation. Considering that different
entities in the sequential knowledge graph should have different levels of priority
and hence different weights, we further adopt the soft-attention mechanism to
better model user’s preference reflected in her interacted entities.

βi = qT σ(W4h
user′

+ W5h
else′
i + ω)

Sϑ =
n∑

i=1

βih
else′
i ,

(4)

where q ∈ R
d, helse′

i is the updated embedding of entities except for user entity,
huser′

is the updated embedding of user entity and n is the number of all entities
involved in the sequential knowledge graph except for user entity.

Finally, we compute the local sequence representation of user u by taking
linear transformation over the concatenation of user embedding and the aggre-
gation of other entity embeddings Sϑ

2:

Sl = W6[huser′‖Sϑ] (5)

Sequential Knowledge Graph Learning. To better learn entity and relation
embeddings, we employ TransE [2], which learns embeddings such that for a
given valid triple (ei, rk, ej), the condition hi + gk ≈ hj holds. In particular, we
try to learn entity and relation embeddings to minimize the L1-norm dissimilarity
measure given by g(i, k, j) = ‖hi + gk − hj‖1. The loss function of sequential
knowledge graph learning is defined as follows:

LKG =
∑

(i,k,j,j′ )∈T
max{g(i, k, j) − g(i, k, j

′
) + γ, 0}, (6)

where T = {(i, k, j, j
′
)|(i, k, j) ∈ G ∧ (i, k, j

′
) /∈ G} and (i, k, j

′
) is a negative

triple (that does not exist in the sequential knowledge graph) constructed by
replacing one entity in a valid triple randomly and γ > 0 is a margin hyper-
parameter.
2 For simplicity, the label for discriminating different users and sequences is omitted.
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4.2 Global Sequence Representation Learning

Intuitively, a user’s preference is relatively stable within a short period of time
but could change dramatically after a long time. Therefore, it is necessary to take
the time interval into consideration while modeling user’s dynamic preferences.
To prevent the model from being too complicated, we adopt GRU [6] as the
basic architecture. However, it does not take the time interval information into
consideration. So we re-design the architecture of GRU by simply incorporating
time interval into the reset gate rt and the update gate zt. The newly designed
GRU (called I-GRU) can learn when to infuse more historical information with
its gate mechanism. The overall architecture of I-GRU is shown in Fig. 4.

Fig. 4. The architecture of the new-designed I-GRU

Given user’s previous global sequence representation Si−1
g and current local

sequence representation Si
l , the current global sequence representation Si

g can
be calculated as follows:

zt = σ(Wz[Si
l ,S

i−1
g ] − Δtwt)

rt = σ(Wr[Si
l ,S

i−1
g ] − Δtwt)

Si
g

′
= Tanh(Ws[Si

l , rt � Si−1
g ])

Si
g = zt � Si−1

g + (1 − zt) � Si
g

′
,

(7)

where wt ∈ R
d, Δt = ti − ti−1 and ti simply averages the interaction time

of the sequence si. Therefore, when the time interval Δt is larger, which leads
to smaller zt and rt, the influence of historical information Si−1

g (long-term
preference) is lowered by multiplying zt and rt, and the current input Si

l (short-
term preference) becomes the predominant factor, and vice versa.
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4.3 Item Representation Learning

Traditional item modeling methods assume that each item has a global repre-
sentation suitable for all users. However, considering different users may focus
on different features for the same item, we believe that each item should have a
user-specific representation for each user. Besides, it is intuitive that if user uj

is similar to target user ui, then user uj ’s review should be paid more attention
when recommending items to target user ui. To seamlessly integrate this obser-
vation into our model, we design a novel item representation learner adapted
from self-attention, which could automatically identify the importance of differ-
ent users’ reviews.

To begin with, for each target user ui, a query vector is defined as the linear
transformation of the global sequence representation of ui, which is denoted as
Sui

g .
Qui

= W QSui
g (8)

Given an item v, we can get the set of users U(v) who have reviews on item
v. For each user uj ∈ U(v), we can calculate her key vector as follows:

Kuj
= W KSuj

g (9)

Similarly, for each user uj ∈ U(v), we can calculate her value vector by
performing a linear transformation on her entity embedding of item v.

Vuj
= W V hv

uj
(10)

Obtaining the query vector of the target user ui and the key vector of user
uj , we can get the absolute attention value of uj as follows:

s
′
uj

= KT
uj

Qui
(11)

Softmax is applied on s
′
uj

to get the relative attention value of each user uj ,
which can be seen as the similarity between target user ui and user uj . It is worth
mentioning that the review of the user who is the most similar to the target user
ui will be selected as the review-level explanation, which will be discussed later
in the explainability study section.

suj
= softmax(s

′
uj

) =
exp(s

′
uj

)
∑

un∈U(v) exp(s′
un

)
(12)

To encapsulate more information contained in the item reviews, M indepen-
dent attention layers are applied to calculate the item embedding, followed by
an averaging layer to obtain the final user-specific item representation.

Y ui
v = σ(

1
M

M∑

m=1

sm
uj

V m
uj

) (13)
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4.4 Prediction

Latent Factor Model (LFM) [9] aims to predict the rating by multiplying user’s
representation vector and item’s representation vector based on matrix factor-
ization. We extend it by introducing auxiliary embeddings qu and pv for more
robust prediction. Specifically, the predicted rating is calculated as :

R̂u,v = W T
7 (qu + Su

g ) � (pv + Y u
v ) + bu + bv + μ, (14)

where Su
g and Y u

v are user’s global sequence representation vector and item’s
representation vector respectively, bu, bv and μ denote user bias, item bias and
global bias respectively.

4.5 Training

Since the goal of this paper is rating prediction, which is actually a regression
problem, we adopt Root Mean Square Error (RMSE) as the loss function:

Lrec =
∑

(u,v)∈Dtr

(R̂u,v − Ru,v)2, (15)

where Dtr denotes the set of user-item pairs in the training set.
Finally, we have the objective function to optimize Eq. 6 and 15 jointly as

follows:
LPDKR = Lrec + LKG + ξ‖Θ‖22, (16)

where Θ is the set of model parameters to be regularized.

5 Experiments

5.1 Datasets

In our experiments, we use three publicly available real-world datasets in dif-
ferent domains to evaluate our models and baselines. Two datasets are from
Amazon3: Movies and TV and Cell Phones and Accessories, which con-
tain user reviews and ratings of products in movie entertainment category and
electronic product category respectively. Another dataset is Yelp4 which is a
large-scale dataset consisting of restaurant reviews and ratings. Amongst them,
Yelp is the largest dataset that contains more than 2.1 million reviews while
Cell Phones and Accessories is the smallest dataset which contains about 106
thousand reviews. These datasets are selected to cover different domains and
scales, which can demonstrate the robustness of our model. Besides, we adopt the
state-of-the-art approach described in [10,22] to extract features from reviews.

For each user interaction sequence, we divide them into 6:2:2 for training,
validation and testing respectively. To ensure the KG quality, we filter out users
and items with less than 20 ratings. The characteristics of our datasets are shown
in Table 1.
3 http://deepyeti.ucsd.edu/jianmo/amazon/.
4 https://www.kaggle.com/yelp-dataset/yelp-dataset/data.

http://deepyeti.ucsd.edu/jianmo/amazon/
https://www.kaggle.com/yelp-dataset/yelp-dataset/data
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Table 1. Basic statistics of evaluation datasets

Datasets #user #items #features #reviews

Phones 4696 35011 697 106148

Movies 30161 41245 1987 1235945

Yelp 47944 58870 3660 2148994

5.2 Baselines and Implementation Details

To evaluate the performance of our proposed PDKR model, five state-of-the-art
methods are selected as baselines:

– PMF [12] is a traditional matrix factorization method that uses Gaussian
distribution to model the latent factors for users and items.

– HFT [11] is a traditional topic modeling based method that projects user’s
latent vector into the latent topic space with Latent Dirichlet Allocation
(LDA).

– DeepCoNN [23] is a deep recommendation model that jointly models user
behaviors and item properties using textual reviews. Authors have shown that
it outperformed other topic modeling based methods.

– NARRE [3] is a state-of-the-art explainable recommendation method that
first introduces a novel attention mechanism to explore the usefulness of
reviews.

– DER [5] is a state-of-the-art explainable method that introduces time-aware
GRU to model user’s dynamic preferences and provide review-level explana-
tion.

We implement our PDKR model using Pytorch. In our model, the batch size
is fixed at 64, the learning rate is initialized as 5 × 10−5, the margin hyper-
parameter γ is initialized as 1 and the weight decay parameter ξ is initialized as
1×10−5. The embedding size d is chosen in the range of {50, 100, 150, 200} and
the sequence length λ is chosen in the range of {3,5,7,9,11}. All the algorithms
are implemented on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz and four
GeForce GTX 2080 GPUs.

5.3 Evaluation Metric

To evaluate the performance of all methods, we select RMSE as the evaluation
metric, which is widely used for rating prediction in recommender systems. Given
a predicted rating R̂u,v and a ground-truth rating Ru,v from user u to item v,
the RMSE score is calculated as:

RMSE =

√
√
√
√

1
|Dts|

∑

(u,v)∈Dts

(R̂u,v − Ru,v)2, (17)

where Dts is the set of user-item pairs in the testing set.
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5.4 Evaluation on Rating Prediction

Table 2. Performances for all methods in terms of RMSE

Dataset Phones Movies Yelp

PMF 1.2164 1.2980 1.3716

HFT 1.0525 1.1528 1.2401

DeepCoNN 0.9546 1.0486 1.1637

NARRE 0.9365 1.0323 1.1571

DER 0.9278 1.0331 1.1404

PDKR 0.8371 0.9879 1.0492

Improvement of PDKR 9.8% 4.4% 8.0%

Overall Performance Comparison. From the results shown in Table 2, we
can see that: the simple PMF method performs the worst in all methods because
it is a traditional collaborative filtering model which only takes the rating infor-
mation into consideration and it fails to capture user’s dynamic preferences.
While HFT, DeepCoNN and NARRE all take review information as the model
input, NARRE performs the best. This is because NARRE leverages a novel
attention mechanism to identify more useful reviews, hence the impact of valu-
able reviews can be enhanced while the influence of noise from useless reviews
can be reduced. DER performs better than NARRE because it not only takes
the usefulness of reviews into account, but also leverages T-GRU to capture
user’s dynamic preferences. Our model PDKR achieves 9.8%, 4.4%, 8.0% rel-
ative improvement on Cell Phones and Accessories, Movies and TV and Yelp
respectively over DER, which demonstrates the superiority of our model. In our
model, we not only fully exploit review information with the defined entities and
relations in sequential knowledge graphs, but also propose a simple but power-
ful GRU variant to capture user’s dynamic preferences. Moreover, by leveraging
self-attention mechanism, we can obtain more user-specific item representation
for each item. Therefore, the latent representations for both users and items are
more accurate and eventually lead to higher accuracy in rating prediction.

Effect of Sequence Length. Sequence length λ is an important hyper-
parameter that directly influences how much information can be incorporated
into a sequential knowledge graph and eventually influences RMSE. Due to space
limit, we only report the results on Cell Phones and Accessories dataset and Yelp
dataset.

The sequence length is tuned in the range of {3,5,7,9,11}, and 5,7 is chosen
to be the default value of λ on Cell Phones and Accessories dataset and Yelp
dataset respectively. From the results shown in Fig. 5, we can observe that both
too high sequence length and too low sequence length would affect the model
performance negatively. To explain, when the number of entities in a sequential
knowledge graph is too large, it is difficult to find a suitable representation of
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Fig. 5. Effect of sequence length

the whole graph which contains too much information. On the other hand, when
few entities are used, the representation of a sequential knowledge graph cannot
reflect user’s preference, which would lead to poor performance.

Effect of Data Sparsity. To simulate the effect of data sparsity, We randomly
reduce the training data by a ratio of 5%, 10%, 15% and 20%.

Table 3. Effect of data sparsity on Cell Phones and Accessories and Yelp

Mask Model

Cell Phones and Accesories

PMF HFT DeepConn NARRE DER PDKR

0 1.2164 1.0525 0.9546 0.9365 0.9278 0.8371

5 1.2179 1.0748 0.9756 0.9464 0.9428 0.8451

10 1.2189 1.1037 0.9849 0.9541 0.9618 0.8752

15 1.2255 1.1102 1.0035 0.9827 0.9939 0.8852

20 1.2266 1.1583 1.0165 1.0105 1.0331 0.9095

Mask Model

Yelp

PMF HFT DeepConn NARRE DER PDKR

0 1.3716 1.2401 1.1637 1.1571 1.1404 1.0492

5 1.3809 1.2679 1.1715 1.1654 1.1491 1.0548

10 1.4121 1.2833 1.1817 1.1838 1.1664 1.0627

15 1.4247 1.3020 1.2081 1.1944 1.1792 1.0802

20 1.4592 1.3038 1.2313 1.2009 1.1799 1.0928

As shown in Table 3, when the data is sparser, all methods’ accuracies
decrease. However, PDKR still performs the best among all methods, which
indicates the robustness of our model. One possible explanation is that, with the
use of sequential knowledge graphs, we can explore more valuable information
from user’s reviews, which can remedy the problem of data sparsity to some
extent.
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5.5 Explainability Study

Previous works on explainable recommendation mainly focus on providing either
feature-level or review-level explanations. However, both of them suffer from
some inherent limitations. For feature-level explanations, simply providing a fea-
ture the user is interested in is too concise and often causes confusion without
contextual information, leading to low user satisfaction. For review-level expla-
nations, it is too redundant to take the whole review as the explanation since
reviews are highly subjective and often contain many useless personal feelings,
leading to low effectiveness. In this paper, we combine review-level explana-
tions and feature-level explanations. In particular, we select the most important
reviews of (dis)recommended item v for target user ui, and highlight the featur-
ing words and corresponding sentiment words in the reviews.

Fig. 6. The example of explanations generated for two different users on the same
item. The most important review learned by NARRE is labeled by italic. The reviews
from the most similar users selected by PDKR are presented in full line boxes while the
sentences selected by DER are presented in dotted line boxes. Green and red suggest the
explanation for why the target item is recommended and disrecommended respectively.
The target user and corresponding explanation are linked by a directed arrow. (Color
figure online)

To showcase the superiority of our model’s explainability, we present an
example in Fig. 6. Specifically, we compare the explanations of a target item
generated by NARRE, DER and our model PDKR for different users. As we
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can see, NARRE highlights the same review for different users due to its user-
independent attention mechanism while our model can provide personalized
review information, which is more practical and reasonable in real scenarios.
In the explanation generated by PDKR, featuring words are highlighted in blue
while opinion words are highlighted in green when the sentiment is positive
and in red otherwise. It should be noted that highlighting the featuring words
gives users more options. For example, when the featuring word is clear enough
as shown in user A2Z45XKR1707P4Q’s review, user can choose to ignore the
redundant body of the review. However, when the featuring word is confusing
as shown in user A1YOF7CINOIHR9’s review, user can refer to the context of
the review to better understand why the battery is described by the word “bro-
ken”, and thus both effectiveness and satisfaction of the recommendation can
be improved. Though DER selects different sentences for different users, it does
not exhibit such capability due to its lack of contextual information and would
sometimes lead to confusion as shown in the explanation it generated for target
user A3QQK02DVD45XF in the red dotted line box.

6 Conclusion

In this paper, we propose a novel knowledge-aware framework named PDKR,
which models user’s dynamic preferences and explores reviews’ user-specific use-
fulness simultaneously in the context of explainable recommendation. Extensive
experiments have been conducted on three large real-world datasets from Ama-
zon and Yelp. The proposed PDKR outperforms all the state-of-the-art recom-
mendation models in rating prediction task. Explainability study shows that we
can provide personalized explanations for target user on each (dis)recommended
item, which improves both effectiveness and satisfaction of the recommendation.

As for future work, we will investigate the potential of incorporating visual
information into knowledge graphs for better recommendation performance and
more comprehensive recommendation explanations.

Acknowledgements. This work is supported by NSFC (No. 61972069, 61836007,
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Abstract. We present Graph Attention Collaborative Similarity
Embedding (GACSE), a new recommendation framework that exploits
collaborative information in the user-item bipartite graph for represen-
tation learning. Our framework consists of two parts: the first part is to
learn explicit graph collaborative filtering information such as user-item
association through embedding propagation with attention mechanism,
and the second part is to learn implicit graph collaborative information
such as user-user similarities and item-item similarities through auxiliary
loss. We design a new loss function that combines BPR loss with adap-
tive margin and similarity loss for the similarities learning. Extensive
experiments on three benchmarks show that our model is consistently
better than the latest state-of-the-art models.

Keywords: Recommendation systems · Collaborative Filtering ·
Graph Neural Networks

1 Introduction

Personalized recommendation plays a pivotal role in many internet scenarios,
such as e-commerce, short video recommendations and advertising. Its core
method is to analyze the user’s potential preferences based on the user’s his-
torical behavior, to measure the possibility of the user to select a certain item
and to tailor the recommendation results for the user.

One of the major topics to be investigated in the personalized recommenda-
tion is Collaborative Filtering (CF) which generates recommendations by taking
advantage of the collective wisdom from all users. Matrix factorization (MF) [12]
is one of the most popular CF model, which decomposes the interaction matrix
between the user and item into discrete vectors and then calculates the inner
product to predict the connected edges between the user and item. Neural Col-
laborative Filtering (NCF) [19] predict the future behavior of users by learning
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 165–178, 2021.
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the historical interactions between users and items. It employs neural network
instead of traditional matrix factorization to enhance the non-linearity of the
model. In general, there are two key components in learnable CF models—1)
embeddings that represent users and items by vectors, and 2) interaction mod-
eling, which formulates historical interactions upon the embeddings.

Despite their prevalence and effectiveness, we argue that these models are
not sufficient to learn optimal embeddings. The major limitation is that the
embeddings does not explicitly encode collaborative information propagated in
user-item interaction graph. Following the idea of representation learning in
graph embedding, Graph Neural Networks (GNN) are proposed to collect aggre-
gate information from graph structure. Methods based on GraphSAGE [8] or
GAT [23] have been applied to recommender systems. For example, NGCF [17]
generates user and item embeddings based on the information propagation in
the user-item bipartite graph; KGAT [24] adds a knowledge graph and enti-
ties attention based on the bipartite graph and uses entity information to more
effectively model users and items. Inspired by the success of GNN in recommen-
dation, we build a embedding propagation and aggregating architecture based
on attention mechanism to learn the variable weight of each neighbor. The atten-
tion weight explicitly represents the relevance of interaction between user and
item in bipartite graph.

Another limitation is that many existing model-based CF algorithms leverage
only the user-item associations available in user-item bipartite graph. The effec-
tiveness of these algorithms depends on the sparsity of the available user-item
associations. Therefore, other types of collaborative relations, such as user-user
similarity and item-item similarity, can also be considered for embedding learn-
ing. Some works [25,27] exploit higher-order proximity among users and items
by taking random walks on the graph. A recent work [26] presents collaborative
similarity embedding (CSE) to model direct and in-direct edges of user-item
interactions. The effectiveness of these methods lies in sampling auxiliary infor-
mation from graph to augment the data for representation learning.

Based on the above limitation and inspiration, in this paper, we propose a
unified representation learning framework, called Graph Attention Collaborative
Similarity Embedding (GACSE). In the framework, the embedding is learned
from direct, user-item association through embedding propagation with atten-
tion mechanism, and indirect, user-user similarities and item-item similarities
through auxiliary loss, user-item similarities in bipartite graph. Meanwhile, we
combine adaptive margin in BPR loss [2] and similarity loss to optimize GACSE.

The contributions of this work are as follows:

– We propose GACSE, a graph based recommendation framework that com-
bines both attention propagation & aggregation in graph and similarity
embedding learning process.

– To optimize GACSE, we introduce a new loss function, which, to the best
of our knowledge, is the first time to combine both BPR loss with adaptive
margin and similarity loss for similarity embedding learning.
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– We compare our model with state-of-the-art methods and demonstrate the
effectiveness of our model through quantitative analysis on three benchmark
datasets.

– We conduct a comprehensive ablation study to analyze the contributions of
key components in our proposed model.

2 Related Work

In this section, we will briefly review several lines of works closely related to
ours, including general recommendation and graph embedding-based recommen-
dation.

2.1 General Recommendation

Recommender systems typically use Collaborative Filtering (CF) to model users’
preferences based on their interaction histories [1,3]. Among the various CF
methods, item-based neighborhood methods [5] estimate a user’s preference on
an item via measuring its similarities with the items in her/his interaction history
using a item-to-item similarity matrix. User-based neighborhood methods find
similar users to the current user using a user-to-user similarity matrix, following
by recommending the items in her/his similar users’ interaction history. Matrix
Factorization (MF) [12,13] is another most popular one, which projects users
and items into a shared vector space and estimate a user’s preference on an item
by the inner product between user’s and items’ vectors. BPR-MF [2] optimizes
the matrix factorization with implicit feedback using a pairwise ranking loss.
Recently, deep learning techniques has been revolutionizing the recommender
systems dramatically. One line of deep learning based model seeks to take the
place of conventional matrix factorization [7,11,19]. For example, Neural Collab-
orative Filtering (NCF) estimates user preferences via Multi-Layer Perceptions
(MLP) instead of inner product.

2.2 Graph Based Recommendation

Another line is to integrate the distributed representations learning from user-
item interaction graph. GC-MC [10] employs a graph convolution auto-encoder
on user-item graph to solve the matrix completion task. HOP-Rec [15] employs
label propagation and random walks on interaction graph to compute similarity
scores for user-item pairs. NGCF [19] explicitly encodes the collaborative infor-
mation of high-order relations by embedding propagation in user-item interac-
tion graph. PinSage [16] utilizes efficient random walks and graph convolutions
to generate embeddings which incorporate both graph structure as well as node
feature information. Multi-GCCF [9] constructs two separate user-user and item-
item graphs. It employs a multi-graph encoding layer to integrate the information
provided by the user-item, user-user and item-item graphs.
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3 Our Model

In this section, we introduce our proposed model called GACSE. The overall
framework is illustrated in Fig. 1. There are three components in the model:
(1) an embedding layer that can map users and items from one hot vector to
initial embeddings; (2) an embedding propagation layer, which consists of two
sub-layers: a warm-up layer that propagates and aggregates graph embeddings
with equal weight, and an attention layer that uses attention mechanism to
perform non-equal weight aggregation on the embedding of neighboring nodes;
and (3) a prediction layer that concatenates embeddings from embedding layer
and attention layer, then outputs affinity score between user and item. The
following descriptions take user as central node, if there is no special instruction,
it is also applicable to item as centre node.

Fig. 1. An illustration of GACSE model architecture. The flow of embedding is pre-
sented by the arrowed lines. FC1 and FC2 are shared parameters on user embedding
side and item embedding side. An illustration of attention aggregation is shown on
the left. FC-a transforms the concatenated vector into a new vector. FC-b transforms
vector into attention score.

3.1 Embedding Layer

Embedding layer aims at mapping the ids of user u and item i into embedding
vectors e(0)u ∈ R

d and e(0)i ∈ R
d, where d denotes the embedding dim. We use a

trainable embedding lookup table to build our embedding layer for embedding
propagation:

E = [

users embeddings
︷ ︸︸ ︷

e(0)u1
, · · · , e(0)uN

,

items embeddings
︷ ︸︸ ︷

e(0)i1
, · · · , e(0)iM

] (1)

where N is number of users and M is number of items.
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3.2 Embedding Propagation Layer

In order to establish the embedding propagation architecture for collaborative
information in graph, we define a embedding propagation layer. Our embedding
propagation layer consists of two parts: (1) a warm-up layer and (2) an attention
layer. Both layers have two steps: embedding propagation and aggregation.

Warm-Up Layer. To make the model expand the receptive field and grasp the
structure of the user-item bipartite graph, we set up a warm-up layer based on
the GNN [8,18] embedding propagation architecture.

Warm-Up Propagation. In the warm-up layer, we set all the embeddings to have
equal weight. We define warm-up embedding propagation function as:

{

m(0)
i→u = π

(0)
(u,i)W0e

(0)
i

m(0)
u→u = W0e(0)u

(2)

where W0 ∈ R
d1×d0 is the trainable weight matrix to distill important infor-

mation in embedding propagation. d0 is the dimension of e(0), and d1 is the
dimension of transformation. m(0)

i→u is the embedding from item i to user u.
m(0)

u→u is self-connection of u. π
(0)
(u,i) is the weight of the embedding that i passes

to u.
In embedding propagation of warm-up layer, we set the propagation weight

π0
(u,i) to be equal. Inspired by GCN [8], we define weight of each user’s interacted

item as:

π
(0)
(u,i) =

1
√|Nu‖Ni|

(3)

where Nu and Ni denote the first hop neighboring nodes of user u and item i.

Warm-Up Aggregation. After receiving the embeddings from neighbor nodes, we
need to aggregate these embeddings. We define embeddings aggregation function
in warm-up layer as:

e(1)u = σ
(

m(0)
u→u +

∑

i∈Nu

m(0)
i→u

)

(4)

where σ is nonlinear function such as LeakyReLU. Analogously, we can obtain
item i’s embedding e(1)i .

Attention Layer. Next, in order to further encode the variable weight of neigh-
bors, we build an embedding propagation and aggregation architecture based on
the attention mechanism. The attention mechanism explicitly captures the rel-
evance of interaction between user and item in bipartite graph.
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Attention Propagation. Intuitively, the importance of each item that interacts
with the user should be different. We introduce attention mechanism into embed-
ding passing function:

{

m(1)
i→u = π

(1)
(u,i)e

(1)
i

m(1)
u→u = e(1)u

(5)

where π
(1)
(u,i) is attention weight.

Inspired by several kinds of attention score functions, we define score function
of our model:

score(e(1)u , e(1)i ) = V�tanh
(

P
[

e(1)u ‖e(1)i

])

(6)

where V ∈ R
d2×1 and P ∈ R

d2×2d1 are trainable parameters. d2 is the dimension
of attention transformation. ‖ denotes concatenate operation. After calculating
attention score, we normalize it to get the attention weight via softmax function:

π
(1)
(u,i) =

exp(score(e(1)u , e(1)i ))
∑

j∈Su
exp(score(e(1)u , e(1)j ))

(7)

where Su is a set of user u’s one hop neighboring items sampled in this mini-
batch.

Attention Aggregation. After attention massage passing, the attention aggrega-
tion function is defined as:

e(2)u = σ(W1(m(1)
u→u +

∑

i∈Su

m(1)
i→u))+

σ(W2(m(1)
u→u �

∑

i∈Su

m(1)
i→u))

(8)

where σ is LeakyReLU non-linear function. W1, W2 ∈ R
d3×d1 are trainable

parameters. d3 is the dimension of attention aggregation. � denotes element-wise
product. Similar to NGCF, the aggregated embedding e(2)u does not only related
to e(1)i , but also encodes the interaction between e(1)u and e(1)i . The interaction
information can be represented by the element-wise product between mu→u

and
∑

i∈Su
mi→u. Analogously, item i’s attention layer embedding e(2)i can be

obtained. We incorporate the attention mechanism to learn variable weight π
(1)
(u,i)

for each neighbor’s propagated embedding m(1)
i→u.

3.3 Model Prediction

After embedding passing and aggregation with attention mechanism, we
obtained two different representations e(0)u and e(2)u of user node u; also analo-
gous to item node i, we obtained e(0)i and e(2)i . We choose to concatenate the
two embeddings as follows:

e∗
u = e(0)u ‖ e(2)u , e∗

i = e(0)i ‖ e(2)i (9)
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where ‖ denotes the concatenate operation. In this way, we could predict the
matching score between user and item by inner product:

yui = e∗
u

�e∗
i (10)

More broadly, we can define the matching score between any two nodes a and b:

yab = e∗
a

�e∗
b (11)

4 Optimization

To optimize the GACSE model, we carefully designed our loss function. Our
loss function consists of two basic parts: BPR loss with adaptive margin and
similarity loss.

4.1 BPR Loss with Adaptive Margin

We employ BRP loss for optimization, which considers the relative order between
observed and unobserved interactions. In order to improve the model’s discrimi-
nation of similar positive and negative samples, we define BPR loss with adaptive
margin as:

LBPR =
1

|B|
∑

(u,i,j)∈B
−σ(yui − yuj − max(0, yij)) (12)

where B ⊆ {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes the sampled data of mini-
batch. R+ denotes observed interactions, and R− is unobserved interactions. σ
is softplus function. max(0, yij) indicates that the more similar the positive and
negative samples of a node are, the larger the margin of the loss function is.

4.2 Similarity Loss

Other types of collaborative relations, such as user-user similarity and item-item
similarity in graph, can also be considered for embedding learning. The introduce
of similarity loss for both user-user and item-item pair can reduce the sparsity
problem by augmenting the data for representation learning. In this paper, the
2-order neighborhood proximity of a pair of users (or items) is defined as the
similarity.

In order to avoid similarity loss affecting the embedding in the embed-
ding propagation, we only calculate between E and context mapping embed-
ding matrices EUC and EIC for users and items, respectively. Context mapping
embedding matrices are defined:

EUC = [eUC
u1

, · · · , eUC
uN

]

EIC = [eICi1 , · · · , eICiM ]
(13)
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It should be noted that the dimensions of embeddings in E, EUC and EIC are
equal. The similarity loss for e(0) with context embeddings eUC ∈ EUC and
eIC ∈ EIC is defined as:

Lsimilarity = −
∑

log(σ(e(0)Tu eUC
u-pos)) +

∑

log(σ(e(0)Tu eUC
u-neg))

−
∑

log(σ(e(0)Ti eICi-pos)) +
∑

log(σ(e(0)Ti eICi-neg))
(14)

where σ is sigmoid function. eUC
u-pos and eUC

u-neg are a positive and negative samples
of user u, respectively. eICi-pos and eICi-neg are a positive and negative samples of
item i, respectively. We employ random walk and negative sampling to construct
positive and negative sample pairs for similarity loss.

4.3 Overall Loss Function

Finally, we get the overall loss function:

L = LBPR + λ1Lsimilarity + λ2‖Θ‖22 (15)

where Θ = {E,EUC,EIC,W0,W1,W2,V,P}. λ1 controls the strength of BPR
loss and λ2 controls the L2 regularization strength to prevent overfitting. We
use mini-batch Adam [28] to optimize the model and update the parameters of
model.

5 Experiments

5.1 Datasets

We evaluate the proposed model on three real-world representative datasets:
Gowalla1, Yelp20182 and Amazon-book3. These datasets vary significantly in
domains and sparsity. The statistics of the datasets are summarized in Table 1.

For each dataset, the training set is constructed by 80% of the historical
interactions of each user, and the remaining as the test set. We randomly select
10% of interactions as a validation set from the training set to tune hyper-
parameters. We employ negative sampling strategy to produce one negative item
that the user did not act before and treat observed user-item interaction as
a positive instance. To ensure the quality of the datasets, we use the 10-core
setting, i.e., retaining users and items with at least ten interactions.

1 https://snap.stanford.edu/data/loc-gowalla.htm.
2 https://www.yelp.com/dataset/challeng.
3 http://jmcauley.ucsd.edu/data/amazon/.

https://snap.stanford.edu/data/loc-gowalla.htm
https://www.yelp.com/dataset/challeng
http://jmcauley.ucsd.edu/data/amazon/


GACSE 173

Table 1. Statistics of the datasets

Gowalla Yelp2018 Amazon-Book

#Users 29,858 45,919 52,643

#Items 40,981 45,538 91,599

#Interactions 1.027m 1.185m 2.984m

Density 0.084% 0.056% 0.062%

5.2 Experimental Settings

To evaluate the effectiveness of top-K task in recommender system, we adopted
Recall@K and NDCG@K, which has been widely used in [17,19]. In this paper,
1) we set K = 20; 2) all items that the user has not interacted with are the
negative items; 3) all items is scored by each method in descend order except
the positive ones used in the training set. Average metrics for all users in the
test set is used for evaluation.

To verify the effectiveness of our approach, we compare it with the following
baselines:

– BPR-MF [2] optimizes the matrix factorization with implicit feedback using
a pairwise ranking loss.

– NCF [19] learns user’s and item’s embeddings from user-item interactions in
a matrix factorization, which by a MLP instead of the inner product.

– PinSage [16] combines efficient random walks and graph convolutions to
generate embeddings of nodes that incorporate both graph structure as well
as node feature information.

– GC-MC [10] is a graph auto-encoder framework based on differentiable
embedding passing on the bipartite interaction graph. The auto-encoder pro-
duces latent user and item representations, and they are used to reconstruct
the rating links through a bilinear decoder.

– NGCF [17] explicitly encodes the collaborative signal of high-order relations
by embedding propagation in user-item inter-action graph.

– Multi-GCCF [9] constructs two separate user-user and item-item graphs. It
employs a multi-graph encoding layer to integrate the information provided
by the user-item, user-user and item-item graphs.

We implement GACSE4 with TensorFlow. The embedding size is fixed to 64 for
all models. All models are optimized with the Adam optimizer, where the batch
size is fixed at 1024. The learning rate of our model was set to 0.0001; λ1 was
set to 1×10−4; λ2 was set to 1×10−5; Number of sampling neighbors was set to
64. Number of positive and negative samples for similarity loss was set to 5. All
hyper-parameters of the above baselines are either followed the suggestion from
the methods’ author or turned on the validation sets. We report the results of
each baseline under its optimal hyper-parameter settings.
4 For reproducibility, we share the source code of GACSE online: https://github.com/
GACSE/GACSE.git.

https://github.com/GACSE/GACSE.git
https://github.com/GACSE/GACSE.git
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Table 2. Overview performance comparison. Bold scores are the best in each column,
while underlined scores are the second best. Improvements are statistically significant.

Gowalla Yelp2018 Amazon-Book

Recall NDCG Recall NDCG Recall NDCG

BPR-MF 0.1291 0.1878 0.0494 0.0662 0.0250 0.0518

NCF 0.1326 0.1985 0.0513 0.0719 0.0253 0.0535

PinSage 0.1380 0.1947 0.0612 0.0750 0.0283 0.0545

GC-MC 0.1395 0.1960 0.0597 0.0741 0.0288 0.0551

NGCF 0.1547 0.2237 0.0581 0.0719 0.0344 0.0630

Multi-GCCF 0.1595 0.2126 0.0667 0.0810 0.0363 0.0656

GACSE 0.1654 0.2328 0.0672 0.0836 0.0386 0.0703

%Improv. 3.70% 4.06% 0.75% 3.21% 6.34% 7.16%

5.3 Performance Comparison

Overall Comparison. Table 2 summarized the best results of all models on
three benchmark dataset. The last row is the improvements of GACSE relative
to the best baseline.

BPR-MF method gives the worst performance on all datasets since the inner
product cannot capture complex collaborative signals. NCF outperforms BPR-
MF on all datasets consistently. Compared with BPR-MF, the main improve-
ment of NCF is that MLP can model the nonlinear feature interactions between
user and item embeddings.

Among all the baseline methods, graph based methods (e.g., PinStage, GC-
MC, NGCF, Multi-GCCF) consistently outperform general methods (e.g., BPR-
MF, NCF) on all datasets. The main improvement is that graph based model
explicitly models the graph structure in embedding learning.

Multi-GCCF are the strongest baseline. It outperforms other baselines on
all datasets except NDCG on Gowalla. NGCF gives the best performance of
NDCG on Gowalla. They all employ embedding propagation to obtain neigh-
bor’s information and stack multiple embedding propagation layers to explore
the high-order connectivity. This verifies the importance of capturing collabora-
tive signal in the embedding function. Moreover, Multi-GCCF compared three
different multi-grained representations fusion methods.

According to the results, GACSE preforms best among all baselines on three
datasets in terms of all evaluation metrics. It improves over the best baseline
method by 3.70%, 0.75%, 6.34% in terms of Recall on Gowalla, Yelp2018 and
Amazon-book. It gains 4.06%, 3.21%, 7.16% NDCG improvements against the
best baseline on Gowalla, Yelp2018 and Amazon-book respectively. Compared
with Multi-GCCF and NGCF, GACSE builds an embedding propagation and
aggregation architecture based on the attention mechanism. The attention mech-
anism enable GACSE to learn variable weights of embedding propagation for
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neighbors explicitly. Meanwhile it obtains high-order implicit collaborative infor-
mation between user-user and item-item through similarity loss.

Table 3. Ablation studies of GACSE. GACSE-sl means GACSE without similarity
loss. GACSE-am means GACSE without adaptive margin.

Gowalla Yelp2018

Recall NDCG Recall NDCG

GACSE 0.1654 0.2328 0.0672 0.0836

GACSE-sl 0.1632
(−1.33%)

0.2334
(+0.26%)

0.0641
(−4.61%)

0.0805
(−3.71%)

GACSE-am 0.1468
(−11.25%)

0.2149
(−7.68%)

0.0571
(−15.03%)

0.0728
(−12.92%)

Ablation Analysis. Table 3 reports the influences of similarity loss and adap-
tive margin of GACSE on Gowalla and Yelp2018 datasets. As expected, the
performance degrades greatly after removing adaptive margin and similarity
loss. This confirms the importance of adaptive margin and similarity loss for
embedding learning. Adaptive margin can improve model’s discrimination for
positive and negative sample with similar embeddings. Similarity loss for both
user-user and item-item pair can reduce the sparsity problem by augmenting
the data for representation learning. Similarity loss and adaptive margin can
enhance the effectiveness of attention mechanism for embedding propagation
and aggregation.

Fig. 2. Recall@20 on Gowalla Fig. 3. NDCG@20 on Gowalla

Test Performance w.r.t. Epoch. Figures 2, 3, 4 and 5 show the test perfor-
mance w.r.t. recall and NDCG of each epoch of MF and NGCF. We can see that,
NGCF exhibits fast convergence than MF on three datasets. It is reasonable since
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Fig. 4. Recall@20 on Yelp Fig. 5. NDCG@20 on Yelp

indirectly connected users and items are involved when optimizing the interac-
tion pairs in mini-batch. Such an observation demonstrates the better model
capacity of NGCF and the effectiveness of performing embedding propagation
in the embedding space.

6 Conclusion and Future Work

In this work, we explicitly incorporated collaborative signal and indirect similar-
ities into the embedding function. We proposed a unified representation learning
framework GACSE, in which the embedding is learned from direct user-item
interaction through attention propagation, and indirect user-user similarities and
item-item similarities through auxiliary loss, user-item similarities in bipartite
graph. In addition, we combine adaptive margin in BPR loss and similarity loss
to optimize GACSE. Extensive experimental results on three real-world datasets
show that our model outperforms state-of-the-art baselines.

Several directions remain to be explored. A valuable direction is to incorpo-
rate rich side information into GACSE instead of just modeling user & item ids.
Another interesting direction for the future work would be exploring multi-task
& multi-object embedding learning on heterogeneous graph for recommender
system.
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Abstract. User behaviour on purchasing is always driven by complex
latent factors, which are highly disentangled in the real world. Learn-
ing latent factorized representation of users can uncover user intentions
behind the observed data (i.e. user-item interaction) and improve the
robustness and interpretability of the recommender system. However,
existing collaborative filtering methods learning disentangled represen-
tation face problems of balancing the trade-off between reconstruction
quality and disentanglement. In this paper, we propose a controllable
variational autoencoder framework for collaborative filtering. Specifi-
cally, we adopt a modified Proportional-Integral-Derivative (PID) con-
trol to the β-VAE objective to automatically tune the hyperparame-
ter β using the output of Kullback-Leibler divergence as feedback. We
further introduce item embeddings to guide the system to learn repre-
sentation related to the real-world concepts using a factorized Gaussian
distribution. Experimental results show that our model can get a cru-
cial improvement over state-of-the-art baselines. We further evaluate our
model’s effectiveness to control the trade-off between reconstruction error
and disentanglement quality in the recommendation.

Keywords: Variational autoencoder · Disentangled representation
learning · Recommender system

1 Introduction

The personalized recommendation is now popular, aiming to find user interests
in different concepts. When users purchase on e-commerce platforms, many fac-
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Fig. 1. The aim of learning a disentangled representation is to encode a latent user
vector, each dimension of which stands for an independent concept of user intents.
For example, the first dimension represents the user preference on size, the second
dimension represents the preference on color, and so on.

tors are considered simultaneously (e.g. the price, size, or appearance), and these
factors are always disentangled. Figure 1 shows that disentanglement learning
is to find a factorized latent representation in which each unit is independent
and corresponds to a single user intent in the real-world. Therefore, learning
disentangled factors of users can uncover the real user preference hidden in the
interaction data. These independent factors are related to real-world concepts
and not sensitive to the misleading correlations of observed data, so they can
enhance the robustness and interpretability of recommendation [8]. Early models
like matrix factorization (MF) [25] project each user/item ID into a vectorized
representation (i.e. embedding). Some following studies [5,16] introduce user-
item interactions to extract the hidden feature of a user and combine embeddings
of items to enrich the representation. However, these existing latent represen-
tation methods fail to disentangle latent factors, and are prone to preserve the
mixed relationship of the factors mistakenly.

β-VAE [7], a modification of the Variational Autoencoder (VAE), is a com-
mon framework used to learn disentangled representation. β-VAE adds an extra
hyperparameter β to the KL divergence term in the VAE objective. Multi-
VAE [4] applies β-VAE to the recommender system first to learn the user rep-
resentation with multinomial likelihood. The article introduces β to the VAE
objective and sets it up to 0.2 to control the strength of regularization, weaken-
ing the constraint of the prior distribution. MacridVAE [8] is the first method to
learn disentangled representation in recommendation based on user behaviour
data. The author infers that user intentions are associated with several high-level
concepts, and divides the latent representation into several groups regarding
different concepts respectively. DGCF [21] devises a disentangled graph collab-
orative filtering model to disentangle user-item relationships. In these studies,
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they directly set β < 1 to achieve high reconstruction accuracy; the distribution
of each dimension among the latent representation is still not independent. We
claim that if we sacrifice the reconstruction ability a little, i.e., increasing the
hyperparameter β, the model can learn a factorized representation that unearths
real user intention, further improving the recommendation result. However, the
β-VAE framework is sensitive to the choice of β. If we set β large (e.g. 50), the
model can learn good disentangled representation, but the mutual information
between the latent factor and the input data becomes too little to reconstruct
the data. Therefore, we then face the challenge of how to achieve the trade-off
between reconstruction accuracy and disentangling quality during training.

Moreover, research shows that unsupervised disentangled learning is theo-
retically impossible without inductive bias, and the increased disentanglement
will not reduce the sample complexity of knowledge [5]. Based on this theory, it
is worth integrating item information and user-item interaction to increase dis-
entangled learning quality. [26] proposes a content-aware collaborative filtering
framework that combines item image information and collaborative informa-
tion together to learn item representations. However, the representation learned
from item images may only contain appearance factors and ignore many other
important features, such as price or material. We thus choose datasets with rich
item information, such as user reviews and item categories, to learn the item
embedding and integrate the embedding with our β-VAE model.

In this paper, we propose a controllable VAE framework based on β-VAE to
learn a better user representation, each dimension of which is associated with
the tailengleactual user preference in various concepts. In specific, we apply a
Proportional-Integral-Derivative (PID) control to tune the value of β automati-
cally. We modify the controller to fit the recommender system so that the system
can achieve a trade-off between data reconstruction and disentangled factor rep-
resentation. The input of the controller is the error between the true KL diver-
gence in the past training period and the desired value set beforehand. Similar
to the contribution of [2], the desired KL value is gradually increased from zero
to an amount large enough to maintain enough mutual information from the
input data. Moreover, we introduce a factorized Gaussian distribution into the
encoder layer to uncover independent factors hidden in the item embedding and
design a loss function based on the new distribution.

Our contributions can be concluded as follows:

– As far as we know, this is the first study to learn disentangled user represen-
tation in the recommender system by controlling the trade-off between data
reconstruction accuracy bounds and Kullback-Leibler constraints.

– We adopt a non-linear PID control to the β-VAE framework to control how
much information the model retains about each factor. We take item infor-
mation into account using a factorized Gaussian distribution to increase the
encoding capacity.

– We evaluate our model on three real-world datasets, and the results show
Controllable VAE is able to achieve a good disentangled representation indi-
cating user preference.
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2 Related Work

2.1 Latent Representation Learning of CF

Existing Collaborative Filtering recommendations have contributed much to the
latent representation learning of users and items. The most popular framework is
Matrix Factorization (MF) [15,25], which leverages user/item ID into an embed-
ding vector to learn the latent relationship between users and items. Further
studies, such as NCF [22]. SVD++ [24] combines domain model and hidden fac-
tor model together, and proposes a new globally optimized neighborhood model.
FISM [16] presents an item-based method that learns the item-item similarity
matrix as the product of two low dimensional latent factor matrices. CoSAN [13]
proposed a collaborative self-attention Network to learn the session representa-
tion. The autoencoder model is leveraged to learn user/item representation by
the encoder-decoder framework, and bayesian inference theory is applied to the
autoencoder to learn the distribution of user-item interactions, like CDAE [23],
Mult-VAE [14], and AutoRec [18]. All the works above are committed to learning
the representation, which indicates user intents and preference towards items.
Our work pays attention to disentangled user representation and aims to learn
independent distribution based on β-VAE model.

2.2 Disentangled Representation Learning

The goal of learning disentangled representation is not perfect inversion but
finding independent factors. There are many methods proposed to improve the
disentanglement of latent representation in generative models. InfoGAN [19]
achieves unsupervised learning of disentangled representation by introducing
mutual information to constrain the latent variable being associated with the
characteristic output of the generated data. β-VAE adds a coefficient β to the
KL divergence term in the VAE objective. Increasing the value of β can force the
framework to learn a good disentangled representation, but resulting in increased
reconstruction loss [2]. To counteract this trade-off between reconstruction and
KL divergence, both β-TCVAE [3] and FactorVAE [11] decompose the KL term
and put a heavy penalty on the total correlation to directly encourage factorized
distribution in the latent vector. [12] uses moment matching in VAEs to penalize
the co-variance between the latent dimensions.

These existing efforts have been majorly applied to the field of language
modeling and image generation [7,19]. Few methods consider disentangled user
representation in the recommender system. [8] divides user intentions into several
high-level concepts and learns disentangled representation based on user behav-
ior. [21] devises a disentangled graph model to learn user intents based on neural
graph collaborative filtering. However, these works pay attention to distinguish
the high-level concepts of user intents, and neglect the trade-off between the two
terms in the β-VAE objective.
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3 Preliminaries

3.1 β-VAE

The Variational Autoencoder (VAE) aims to learn the marginal likelihood of the
data x from an unobserved continuous random variable z. The VAE framework
consists of two parts: a recognition model and a generative model. The recogni-
tion model (i.e. the encoder) encodes the observed data x into a latent variable z
with the posterior p(z|x). And the generative model (i.e. the decoder) restitutes
the latent representation to the productive output. Since the true distribution
p(z|x) is intractable, the model is trained with the aid of an approximate poste-
rior distribution q(z|x). The training objective of VAE is written as the tractable
evidence lower bound (ELBO):

logp(x) ≥ L(θ, φ;x) = ELBO
= Eqφ(z|x)[logpθ(x|z)] − KL(qφ(z|x)||p(z))

(1)

The prior p(z) and the posterior q(z|x) are parameterized as standard Gaus-
sian distributions. In order to estimate gradients of the lower bound, ’Repa-
rameterization Trick’ is used to transform the continuous distribution into a
discrete relationship. The random variable z is parametrized as a differentiable
transformation of a noise variable ε ∼ N (0, 1):

z = μ + σ · ε (2)

where μ and σ represent the mean and variance of Gaussian distribution respec-
tively. β-VAE is a common modification of VAE. It introduces an adjustable
hyperparameter β to the original VAE objective:

ELBO = Eqφ(z|x)[logpθ(x|z)] − β(t)KL(qφ(z|x)||p(z)) (3)

Burgess et al. [2] discusses the effect of the hyperparameter from the perspec-
tive of information bottleneck, suggesting that β acts as a Lagrange multiplier,
limiting the capacity of the bottleneck. Further researches [3,11] resolve the KL
divergence and give an explanation of why putting a heavier constraint on the
KL term leads to a more disentangled representation. When β is large, the frame-
work tends to reduce the mutual information between the latent factor and the
input data, resulting in a more independent latent representation.

From the perspective of the information bottleneck, the gap between the
posterior distribution and the unit Gaussian prior is minimized by putting a
large constraint on KL divergence. However, the mutual information between z
and actual data x will become small and make it difficult to reconstruct from
the latent representation.

3.2 PID Control

Proportional-Integral-Derivative (PID) control is a simple linear control frame-
work that has been widely used in the industrial process. The general model is
defined as:
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y(t + 1) = Kpe(t)+Ki

∫ t

0

e(τ)dτ + Kd
de(t)
dt

e(t) =C − y(t)
(4)

where C is the desired value set beforehand. In specific, the control deviation is
formed according to the desired value and the actual output value, and the devi-
ation is formed by a linear combination of proportion, integral, and derivative
to control the objective.

Each part of the controller has its own advantages and disadvantages. Pro-
portional (P) control can respond to the change of errors quickly but cannot
eliminate steady-state errors. Integral (I) control will continue to increase as
long as there is an error in the system. That means if there is enough time,
Integral control can completely eliminate errors. However, if the integral output
changes too fast, it will cause over-integration and oscillation. Differential (D)
control is a supplement to the P and I control, which reduces the overshoot and
overcomes the oscillation, improving the stability of the system.

After understanding the effectiveness of each part of PID control, the method
becomes relatively simple. In this model, I and D control are set to 0 at first, and
the proportional gain is increased until the loop output starts to oscillate. When
increasing the proportional gain, the system becomes faster, but it must ensure
that the system does not become unstable. Once P control is set to get the desired
quick response, the integral term will increase to stop the oscillation. The integral
term will reduce the steady-state error but increase the overshoot. Reasonable
overshoot is necessary for a fast system so that it can respond immediately
to changes. Adjusting the integral term can achieve the minimum steady-state
error. Increasing the derivative term will reduce the overshoot and produce a
higher stability gain, but the system will become extremely sensitive to noise. In
most cases, engineers need to weigh various characteristics of the control system
when designing and then achieve trade-offs.

4 Methods

4.1 Controllable VAE Algorithm

Although the PID control has already been widely applied to the industrial field,
such as the temperature control system [6], it is rarely used in recommender
systems. Inspired by [17], we modify the PID control, illustrated in Fig. 2, to fit
the variational autoencoder framework. First, we replace the proportional control
with an unproportionate one, using the reciprocal of an exponential function.
Second, we turn the integral and differential term from a successive process to a
discrete one to fit the recommendation training model. Third, we add a constant
value β0 to determine the initial value range of β(t). In general, our modified
controllable model is defined as follows:

β(t) =
Kp

1 + exp(e(t))
− Ki

t∑
j=0

e(j) − Kd(e(t) − e(t − 1)) + β0 (5)
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Fig. 2. Framework of our modified PID control. It combines a controller with the VAE
framework to automatically tune the weight β(t) via the output of the KL divergence
in the objective.

where e(t) stands for the error between the set point C and the KL feedback at
training step t. With the help of the exponential function exp(.), the first term
ranges between 0 and Kp, avoiding the instability of P control caused by the
linear proportional term.

The second term sums the errors of all previous periods together. This inte-
gral term can create a progressively stronger correction. When the error of the
controller remains negative (KL divergence above the set point), this term will
continue to increase, leading to a larger β(t) and encouraging KL divergence to
shrink. In converse, when the error becomes positive (KL term below the set
point), the second term will continue to decrease, leading to a lower β(t) and
forcing the KL divergence to grow. In both cases, the change of the integral
control can force β(t) to change in a direction that guides the KL divergence to
approach the set point.

The third term is used to reflect the changing trend of the deviation signal.
As soon as an error is found to change larger or smaller, a control signal is
immediately yielded to resist its change and prevent the system from overshoot.

Finally, when the KL divergence is trained to an appropriate point, β(t)
will remain constant. Our model finds a balance between reconstruction and
disentanglement. The user representation learned from our model can extract
user intents over various concepts independently.

4.2 Parameter Choice for Controllable VAE

In this part, we discuss the choice of the parameters in the PID controller. Our
goal is to ensure that the controller reacts to the error sufficiently and alters the
output smoothly. We first consider the desired KL value C. As proposed in [2], C
is used to evaluate how much information the model chooses to retain about each
factor. The larger the desired value is, the more mutual information is retained
by the latent representation z. On the other hand, if the KL divergence keeps
very low continuously, the model will degenerate to an autoencoder model and
cause KL-vanishing [1]. In our controllable VAE framework, we linearly increase
C from a low value (e.g. 0) to a large one (e.g. 10). By doing so, the model will
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force KL divergence to be small and learn a good disentangled representation in
the beginning. With the increase of the desired value, the model will progressively
increase the KL divergence and decrease the reconstruction error until the system
becomes stable.

In terms of the modulus Kp, Ki, and Kd, we first consider the exponential
term. When the KL divergence is trained to a proper value close to the desired
one, the integral and differential term will keep constant. Therefore, the expo-
nential control acts as a determining role in the final value of β. In order to
ensure that β will not be too small, we commonly set Kp to be one during train-
ing. The integral and differential term are used to make the controller sensitive
to the change of errors, but if their sensitivity is too high, the system will be
unstable and oscillate. Empirically, we find that a value between 0.5 and 1 sta-
bilizes the training. Note that the parameters should not be too small to ensure
the effectiveness of the controller.

4.3 Feature Disentanglement

It is difficult to learn a good disentangled representation under unsupervised
training without inductive biases [5]. Therefore, we use additional information
associated with the true label as supervising signals. Let u ∈ R denote the
additional information, ui is corresponded to the i-th concept in real world. We
now define the posterior distribution qφ(z|x) for latent z as:

qφ(z|x) = qφ(z|x, u)q(u) (6)

where the latent substantive variable qφ(z|x, u) is a factorized Gaussian distri-
bution conditioning on the additional observation u:

qφ(z|x, u) ∼ N (μ(x)λ(u), σ(x)λ2(u)) (7)

We then follow the variational inference paradigm and rewrite the evidence
lower bound as follows:

ELBO =Eq(u)[Eqφ(z|x,u)[logpθ(x|z)]

− β(t)KL(qφ(z|x, u)||p(z))] + H[q(u)]
(8)

The posterior distribution captures the aggregated structure of the latent
variables based on the user feedback distribution. Therefore, the KL-term in
Eq. 8 can be decomposed as:

KL(qφ(z|x, u)||p(z)) = I(z, x) + KL(qφ(z|u)||
∏
j

p(zj))

+
∑

j

KL(qφ(zj |u)||p(zj))
(9)

The first term in Eq. 9 represents the Mutual Information (MI) between data
x and the latent variable z. The second term is referred to as the Total Corre-
lation (TC), which is a measure of the independence between the variables. A
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heavier penalty on the TC term forces the model to learn a factorized represen-
tation, each dimension of which is independent [3,11]. The third term is referred
to as the dimension-wise KL. This term functions to prevent individual variables
from deviating too far from their corresponding priors. Therefore, if we put a
strong penalty on the KL divergence, i.e., on the total correlation, our model can
find statistically independent factors from the observed data, inducing a more
disentangled representation.

4.4 Details of Implementation

In this section, we provide details of the implementation: p(z) (the prior), qφ(z|x)
(the encoder), pθ(x|z) (the decoder). And we present the algorithm of the PID
control. We optimize the parameter θ, φ to maximize the training objective fol-
lowing the implementation in [8].

Prior and Encoder. We set p(z) ∼ N (0, I) to achieve factorized representa-
tion. The encoder qφ(z|x) is to learn a latent representation z from the observed
data x. We assume qφ(z|x) =

∏N
i=1 qφ(zi|xi) =

∏N
i=1(qφ(zi|xi, ui)q(ui)). q(ui)

denotes the item embedding encoded from the content vector, and qφ(zi|xi, ui)
is a factorized Gaussian distribution ∼ N (μi(xi)λ(ui), σi(xi)λ2(ui)) to compute
zi with the combination of data vector xi and item embedding ui (see Eq. 7).
The mean and the standard bias are calculated by a neural network fnn. The
item embedding ui is encoded from the items’ content information.

Decoder. The decoder aims to reconstruct data using the multinomial likeli-
hood pθ(x|z). We assume pθ(x|z) =

∏N
i=1 gi

θ(zi) and the function gi(.) is defined
as a neural network parameterized by θ.

PID Control Algorithm. We summarize our PID control algorithm in Algo-
rithm 1. The input of the controller is the error between the desired value C and
the KL divergence at training step t. Line 4–6 calculates the P, I, D terms of
the controller respectively. Line 8–9 limits β(t) from not dropping too low and
ensures VAE objective can operate normally. Note that the desired value C is
gradually increased during training.

5 Experiment

5.1 Experimental Setup

In this section, we conduct experiments on three e-commerce datasets and answer
the following research questions:

• RQ1: How does our controllable VAE model perform on recommendation
compared with previous works?
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Algorithm 1. PID Control Algorithm
Input: desired KL value C, the KL divergence feedback KL(t), parameters

Kp, Ki, Kd, β0, βmin

Output: hyperparameter β(t)

1: Initialization: I(0) = 0, β(0) = 0
2: for t = 1 to N do
3: e(t) ← C − KL(t)

4: P (t) ← Kp

1+exp(e(t))

5: I(t) ← I(t − 1) − Kie(t)
6: D(t) ← Kd(e(t) − D(t − 1))
7: β(t) ← P (t) + I(t) + D(t) + β0

8: if β(t) < βmin then
9: β(t) ← βmin

10: return β(t)

Table 1. Details for the three Amazon datasets.

Dataset Users Items Interacts Density

Beauty 8635 1483 18357 0.14%

Toys & Games 6231 11364 72063 0.10%

Clothing 10912 48059 373578 0.07%

• RQ2: How does each component in the VAE objective affect the results, and
how does the controller enhance the robust of the recommender system?

• RQ3: How is the disentangled representation learned, and how does the rep-
resentation enhance the interpretability of the recommender system?

Datasets. To evaluate the effectiveness of our method, we adopt three real-
world publicly Amazon datasets [9,10]: Amazon-Beauty, Amazon-Toys& Games
and Amazon-Clothing. Amazon datasets contain detailed item descriptions for
us to learn the item embedding. We select users with more than 20 reviews in
Clothing, 10 reviews in Toys & Games and 5 reviews in Beauty for different levels
of item scale, as shown in Table 1. We extract UserID, ItemID, and the rating
scores to indicate whether the user purchased the item. We randomly select 20%
of the rated users as ground truth for testing and the remaining 70% and 10%
data for training and validation.

Metrics. Following previous works [4,8], we use two ranking-based metrics:
Recall@K and normalized discounted cumulative gain (NDCG@K). For each
user, both metrics compare the predicted rank of the held-out items with their
true rank. The Recall@K considers the proportion of cases ranked within the
top-K predicted items. The NDCG@K accounts for the position of the hit by
assigning higher scores to the top hits.
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Table 2. Overall performance comparison.

Method Beauty Toy & Games Clothing

N@20 N@50 R@50 N@20 N@50 R@50 N@20 N@50 R@50

Multi-DAE 0.00228 0.00249 0.00156 0.0431 0.0555 0.0905 0.469 0.474 0.448

Multi-VAE 0.00249 0.00256 0.00233 0.0458 0.0586 0.0970 0.472 0.477 0.448

CVAE 0.00267 0.00286 0.00248 0.0507 0.0656 0.1013 0.507 0.501 0.470

MacridVAE 0.00277 0.00282 0.00256 0.0615 0.0731 0.1148 0.519 0.524 0.477

Ours 0.00303 0.00308 0.00267 0.0646 0.0780 0.1196 0.538 0.541 0.481

Improv(%) 8.621 9.219 4.296 5.135 6.741 4.171 3.610 3.311 0.812

Baselines. We compare our method with the following competitive baselines,
with particular emphasis on VAE-based methods for comparison. The same con-
tent information is used for all content-based methods.

• Multi-DAE & Multi-VAE [4]: This is a classic latent representation model
based on denoising autoencoder and variational autoencoder. The implicit
feedback is generated from a multinomial likelihood for the recommendation.

• CVAE [20]: This is a content-based model that learns the item information.
It introduces a one-hot conditional label vector to the inference network to
help distinguish cluster users.

• Macrid-VAE [8]: This is a state-of-the-art model using β-VAE to learn dis-
entangled representation of user preference. In detail, it divides high-level
concepts into several parts and infers a set of one-hot vectors to denote which
concept each item respectively belongs to.

Parameter Setting. Each method’s dimension of latent factors is empirically
set to 100. The parameters of the PID control, i.e., Kp,Ki,Kd, are set to be
1, −1, −1, respectively, as discussed in Sect. 4.2. The upper bound of the desired
KL value is determined from the range {1, 5, 10, 20}. Other parameters are deter-
mined following the baseline [8]. Model parameters of the neural network are
initialized randomly at first, and the normal distributions are initialized with
mean 0 and standard deviation 0.001.

5.2 Recommendation Performance (RQ1)

We first compare the Top-K recommendation performance of our method with
the baselines mentioned above. The results are listed in Table 2. We observe that
our method outperforms the baselines across three datasets significantly, espe-
cially in small-scale datasets. In particular, its relative improvements over the
strongest baselines w.r.t. NDCG@20 are 8.62%, 5.13%, and 3.61% in Amazon-
Beauty, Toys & Games, and Clothing, respectively.

We attribute such improvements to the following aspects: 1) By introducing
the modified PID control into the VAE objective, our model can achieve a good
trade-off between the reconstruction loss and disentanglement representation
quality, which has been neglected by the previous works. Our method is able to



190 Y. Li et al.

Fig. 3. Performance comparison for different methods on two datasets. The first row
is the result of the experiment on Toys & Games (2000 training steps in total), and
the second row is the result of the Clothing data (4800 training steps in total).

find more independent factorized user preference towards products and enhance
the ability of prediction. 2) By taking item embedding into account, our model
can extract more useful features from item content information and get better
performance via semi-supervised training.

Comparing the results jointly across the three datasets, we find that our
model achieves the best improvement on the Amazon-Beauty dataset, while the
improvement on the Clothing dataset is much less than that on the Beauty.
This might suggest that it is easy to find disentangled factors for clothes. For
example, the characteristics of the dress and shoes are entirely different from
each other, and the model can disentangle the categories easily with a set of
one-hot parameter. But when it comes to the Beauty dataset, it is difficult to
distinguish high-level concepts via previous methods. Hence, our model can learn
a better user representation to disentangle latent factors that may be ignored
by traditional VAE-based methods and improve the recommender results.

5.3 Trade-Off Evaluation (RQ2)

We evaluate how our model achieves a trade-off and improves the robustness
of the recommender system in this section. Specifically, we train our model on
the Amazon-Clothing and Toys & Games datasets with 400 training epochs. We
record the value of β, reconstruction loss, and KL divergence at each training
step and compare the results of different models in the same graph (shown in
Fig. 3). Note that the total training step is 2000 for Toys & Games and 4800
for Clothing due to the different scales of the datasets. We have the following
findings from the figure:
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• As is shown in Fig. 3(a), the hyperparameter β(t) of our model is gradually
decreased from a large number (around 20) to a certain degree, while the
previous models using β-VAE directly set it to 0.2. Specially, when the desired
value C is set up to 10, β(t) will drop to βmin. When C is set up to 5, β(t)
will drop to a certain degree (see around 10 in our experiments), indicating
that the system finds a balanced trade-off.

• Figure 3(b) shows the comparison of the reconstruction loss for different mod-
els. We can see that the baseline, Multi-VAE, has the lowest reconstruction
loss among the three methods. However, as is shown in Table 2, Multi-VAE
does not make a great prediction. It indicates that lower reconstruction loss
does not necessarily mean a better prediction effect. On the contrary, sacrific-
ing reconstruction quality a little to learn a disentangled representation will
lead to a better prediction result.

• When it comes to the comparison of KL divergence, shown in Fig. 3(c), we
can see that the KL value of our model is much lower than the baselines,
indicating that our model has learned an excellent disentangled representa-
tion. Compared with the oscillated curve of the baselines, the change in our
model is smoother, and there is almost no difference between the values, no
matter setting C up to 5 or 10. It indicates our training model is more stable
and less sensitive to the choice of parameter. The controller can enhance the
robustness of the system.

Above all, the training objective of VAE can be divided into two parts: the
reconstruction function and the KL divergence. Reducing the reconstruction
loss aims to increase the mutual information between the latent factor and the
observed data, while lowering the KL divergence seeks to increase the indepen-
dence between the dimensions of the user representation. The goal of recommen-
dation is neither minimizing the reconstruction loss to regenerate user histories
nor minimizing the KL divergence to produce random results. Therefore, reach-
ing a balance between the reconstruction ability and disentanglement leads to a
better recommender quality.

5.4 Disentanglement Learning (RQ3)

In this section, we visualize the effect of disentangled representation from the
perspective of purchasing behaviour to see how does the disentangled represen-
tation enhance the interpretability of the recommender system. In specific, we
randomly select five users and train our model on the Amazon-Clothing dataset
to learn a user-item representation with 10 dimensions. Next, we select several
user-item pairs with the largest value in each dimension and extract the side
information (i.e. user reviews and item images), which possibly illustrates why
users purchase the items. The details of our processes follow that in [8]. We show
part of the side information in Table 3.

We analyze the contents of Table 3 one by one. Firstly, the interaction
(user2065, item17130) and (user2456, item4527) has the highest value in dimen-
sion 4. We view the user reviews of these interactions and see that feature ‘color’



192 Y. Li et al.

Table 3. Samples of the disentangled representation learning on Clothing dataset.

z dim UserID ItemID Review Image

z4
2065 17130

Perfect! I have bras in a lot of colors and locally
I can only find extenders in nude, white, and
black. These fit my Victoria’s Secret bras well.
I’ve recommended these to friends.

2456 4527 awesome! Loved another color so I bought this
one, too

z5
3431 10394

I got a size 14, they fit my waist but the thigh
holes are big. They remind me of little boy
shorts. I thought they would be more form fit-
ting. I’ll wear them just to be extra comfortable
but that’s it.

4229 19211 Oh gosh, these are wonderful, have bought more.

z8
2343 144

I bought this for my husband’s birthday. He is
tall and has trouble buying t-shirts that are long
enough. This one is plenty long enough and is
made with sturdy material. I think it will last a
long time.

4229 25150 Comfy, good length, pretty

is of high confidence being the user intents of the 4-th dimension. In terms of
dimension 5, we find it difficult to exact common ground from the review infor-
mation of interaction (user3431, item10394) and (user4229, item19211). We extract
the images of the items and find they are both trousers. We thus assume that
dimension 5 may represent the category of clothes. Similarly, the 8-th dimension
is likely to represent the size of clothes, as the interaction (user2343, item144) and
(user4229, item25150) both mention ‘good length’ in their reviews. In summary,
we infer that the dimension 4,5,8 of the user latent representation is associated
with ‘color’, ‘species’, and ‘size’ respectively.

In this section, we prove that our model can learn a disentangled representa-
tion by jointly analyzing user reviews and item images in the same latent dimen-
sion. Each dimension of the representation indicates users’ different preferences
on the products. The representation can be exposed to the users directly and
enable the users to change the single value based on their preference, enhanc-
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ing the interpretability and controllability of the recommender system. Note
that some concepts may still be unknown by our existing knowledge, such as
the material of the product or the reputation of the brand. This inspires us to
explore a better way to combine item embedding with the user-item interaction.

6 Conclusion

In this paper, we proposed a general controllable variational autoencoder frame-
work to learn a disentangled user representation in the recommendation. We
introduced the PID controller to the recommender system. The modified non-
linear controller is used to automatically tune the hyperparameter in β-VAE
objective using the feedback of KL divergence. We evaluated the effect of our
model on three real-world datasets and achieved better prediction results over
all the datasets, compared with the baselines. The results showed that learning
a good user disentangled representation can improve recommendation quality.
In future works, we will explore more effective ways to learn user intents and
enhance the recommendation quality.
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Abstract. Data features in real industrial recommendation scenarios
are diverse, high-dimensional and sparse. Effective feature crossing can
improve the performance of recommendation, which is of great signifi-
cance. Manual feature engineering is no longer applicable due to its high
cost and low efficiency. Factorization machines introduce the second-
order feature interactions to enhance learning ability. Deep neural net-
works (DNNs) have good nonlinear combination ability and can learn
high-order feature interactions. However, DNNs implicitly learn feature
interactions at the bit-wise level is not always effective. In this paper,
we propose a novel factorization cross network (FCN), which is based
on factorization to learn explicit feature crossing through neural net-
work. FCN can learn low- and high-order feature interactions at the
vector-wise level with linear time complexity. We introduce deep resid-
ual network (DRN) to learn implicit feature interactions. We further
use learnable parameters to combine FCN and DRN, and name the new
model as deep factorization cross network (DFCN). DFCN can automat-
ically learn low- and high-order explicit and implicit feature interaction
information. We have carried out comprehensive experiments on three
real-world datasets. Experimental results demonstrate the effectiveness
of DFCN, which performs best compared with other competitive models.

Keywords: Recommender systems · Feature interactions · Neural
networks · Factorization machines

1 Introduction

With the development of the Internet, recommender systems have been widely
used in scenarios such as e-commerce, music, advertising, and news [2,20]. As
the scale of the Internet expands, the number of users and items increases expo-
nentially. It has become an important research direction to mine effective feature
interactions from massive data [28].

Large-scale recommendation systems have rich features [1,2,7], including
attribute features, behavior features, context features, etc. These features are
always diverse, high-dimensional and sparse [22], which makes it difficult to learn.
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In order to effectively improve recommendation accuracy, it is necessary to learn
feature interactions, which mainly include explicit interactions and implicit inter-
actions [4,25]. Explicit feature interactions can be well understood. For exam-
ple, we found in our research that women often buy skirts in summer to cool
off. This is a typical interaction of gender, season, and product type. In addi-
tion to explicit feature interactions, many implicit feature interactions are also
important [18,29]. A classic example is that men often choose to buy beer and
diapers at the same time when shopping in the supermarket. Implicit feature
interactions are often valuable but require effective models to mine [6].

Implicit feature interactions can learn hidden and invisible features [18], and
explicit feature interactions can combine different features in a direct and effec-
tive way [13,19]. It is difficult to define whether explicit or implicit feature inter-
actions are ultimately more effective. A better approach is to combine them
and consider both explicit and implicit information [4,6,17,25,29]. A combina-
tion method is to use deep neural network (DNN) [16] to learn high-order feature
interactions based on the explicit interaction features that have been constructed.
Factorisation-machine supported neural network (FNN) [29] uses the pre-trained
factorization machines for field embedding before applying DNN. Another com-
bination method is to use two sub-networks to learn explicit and implicit feature
interactions. DeepFM [6] uses factorization machine (FM) [19] to learn explicit
feature interactions on the wide side, and uses DNN to learn implicit feature
interactions on the deep side.

In addition, the expressive ability of low- and high-order combination features
is also different. Low-order feature interactions can extract direct and effective
information while high-order feature interactions can mine more complex feature
information. The most efficient way is to combine explicit and implicit features
of both low and high order [6,25]. Motivated by this, we propose a novel model,
which is composed of a factorization cross network (FCN) and a deep residual
network (DRN) [8]. FCN is a simple but effective network. It is based on fac-
torization and performs second-order crossing of features at each layer. FCN
transmits low-order information to the deep layer through residual connection,
so the explicit feature interactions can be effectively learned. According to the
fusion strategy proposed by us, we use learnable parameters to fuse low- and
high-order explicit module FCN and implicit module DRN together, and name
the new model as deep factorization cross network (DFCN). The main contribu-
tions of this paper can be summarized as follows:

– We propose a novel model DFCN, which can efficiently and automatically
learn low- and high-order explicit and implicit feature interactions, avoiding
manual feature engineering.

– We designed a simple but efficient model FCN. FCN can efficiently learn low-
and high-order explicit feature interactions in a linear time complexity at
the vector-wise level, and the order of feature interactions increases with the
deepening of the network.

– We propose a new fusion strategy, which enables the model to automati-
cally learn the weights between FCN and DRN for different datasets through
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learnable parameters. We conducted comparison experiments on three real
datasets, and our model DFCN and FCN perform best compared with other
competitive networks.

2 Related Work

For the traditional small-scale recommendation scenarios with fewer users and
items, the neighbor-based collaborative filtering algorithms [21,24] have been
applied to the recommendation scenarios due to its interpretability. The collab-
orative filtering algorithms based on matrix factorization (MF) [15] introduce
latent vectors to mine the deeper implicit information of users and items, and
further improve the prediction accuracy. Although these collaborative filtering
algorithms have some effect, they cannot be effectively applied to large-scale
sparse datasets [19,28].

Logistic regression (LR) [11] has been widely used in recommender systems,
which is easy to parallelize and process hundreds of millions of data. However,
LR has limited learning ability and requires feature engineering [23] to increase
the learning ability of the model. In practical application scenarios, different
features often appear in combination, which requires feature interactions for
expression. FMs [19] introduce the second-order cross terms of features by fac-
torization, which can enhance the learning ability of the model. On the basis
of FMs, field-aware factorization machines (FFMs) [13] improve model perfor-
mance by introducing fields, taking into account the differences in interactions
between different features.

With the continuous expansion of recommendation scenarios, data features
show sparseness, continuous and discrete mixing, and high-dimensionality [22].
Traditional feature interaction methods can no longer meet the needs [28]. Many
models combining FM and DNNs are beginning to be proposed, with the goal of
learning low- and high-order explicit and implicit feature interactions. FNN [29]
initializes model parameters based on FM pre-training, and then uses DNNs to
learn high-order feature interactions. Product-based neural network (PNN) [18]
designs a product layer to combine features with the inner product and outer
product operations. Neural factorization machine (NFM) [9] refers to using DNN
to learn high-order combination features based on second-order feature interac-
tions in FM. Wide & Deep [4] incorporates feature engineering on the wide side
and feature interactions of DNNs on the deep side. While DNNs is used to learn
implicit high-order feature interactions on the deep side, DeepFM [6] directly
uses FM on the wide side for second-order crossing of features, and Deep &
Cross Network (DCN) [25] explicitly performs low- and high-order feature inter-
actions by designing cross network on the wide side.

In addition, Deep matrix factorization (DMF) [27] is a deep neural network
structure that maps users and projects into a potentially structured space. Neu-
ral collaborative filtering (NCF) [9] is proposed to replace the inner product of
MF with any function through neural structure, so as to solve the expression
limitation of MF. Moreover, deep interest network (DIN) [31] and deep interest
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evolution network (DIEN) [30] based on the sequence of user historical behavior
are also proposed. By introducing attention mechanism to establish the relation-
ship between different historical behaviors and candidate ad, DIN can effectively
capture the diverse interest information of users.

3 Model

In this section we will elaborate on the architecture of Deep Factorization Cross
Network (DFCN). A DFCN model starts with an embedding layer, followed by
a factorization cross network and a deep residual network, and ended with the
prediction layer which fuse the outputs of the two networks. The complete DFCN
model is presented in Fig. 1.

Fig. 1. The architecture of the Deep Factorization Cross Network (DFCN).

3.1 Embedding Layer

Data features in real industrial recommendation scenarios are diverse, high-
dimensional and sparse [22]. For example, one input instance {user id=u10,
gender=female, season=summer, clicked item cates=[skirt, dance]} is normally
encoded into high-dimensional sparse binary vector. Multi-hot encoding is usu-
ally used for multi-category features, while one-hot encoding is used for the
others. In this way, the input instance can be encoded as:

[0, 0, 1, · · · , 0]
︸ ︷︷ ︸

user id

[1, 0]
︸︷︷︸

gender

[0, 1, 0, 0]
︸ ︷︷ ︸

season

[1, 0, 0, 1, · · · , 0]
︸ ︷︷ ︸

clicked item cates

(1)
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In order to solve the problem that high-dimensional sparse features are diffi-
cult to learn, we use embedding layer to map sparse vectors to low-dimensional
dense vectors. Then all the embedding vectors are concatenated together to
obtain the overall representation vector. The embedding layer is shown in Fig. 2,
which is defined as follows:

ci = we
i xi (2)

where ci ∈ Rk represents the embedding vector of the i-th field feature, xi

denotes the input vector, we
i ∈ Rk×k is the parameter matrix. By connecting

the embedding vectors of each field, we obtain the dense representation vector
as c = [cT

1 , cT
2 , · · · , cT

m ], where m denotes the number of fields.

Fig. 2. The architecture of Embedding Layer.

3.2 Factorization Cross Network (FCN)

The core idea of FCN is to learn explicit feature interactions through neural
network based on factorization. FCN can effectively learn low- and high-order
explicit feature interactions. The factorization cross network is composed of fac-
torization cross block. Figure 3 illustrates the architecture of FCN.

Through stacking factorization cross block, the low- and high-order interac-
tive information can be continuously learned and transmitted to deep layers. As
Fig. 3 shows, each factorization cross block has the following formula:

zl+1 = fFC(zl ,wl) + zl (3)

where zl+1,zl ∈ Rk are vectors represent the outputs of the l-th and l+1-th
factorization cross layer. The feature interaction function fFC : Rk → Rk fits
the residual of zl+1 − zl . wl ∈ Rk×k is the parameter matrix to be learned. k
denotes the number of neurons in each layer.

The mapping function fFC is the representation of the second-order feature
interactions in factorization machines [19]. With the input zl = [e1, e2, · · · , en]
of i-th layer, the second-order interaction term of factorization machines is as
follows:

fFM =
n−1
∑

i=1

n
∑

j=i+1

〈vi ,vj 〉 eiej (4)

where latent vector vj ∈ Rk represents the factorization information for each
element ej ∈ R, k ∈ N+ is a hyper parameter that defines the dimension of



200 W. Yang and T. Hu

Fig. 3. The components and architecture of the Factorization Cross Network (FCN).

the latent vector, n represents the number of input features. By optimizing the
operation, we can get the simplified formula as follows:

fFM =
1
2

k
∑

t=1

((
n

∑

i=1

vi,tei)2 −
n

∑

i=1

v2
i,te

2
i ) (5)

Factorization machines take the sum of k computation results as the represen-
tation of interaction information. But from another point of view, k computation
results can actually be viewed as a k-dimensional vector. Each element of this
vector represents the second-order interaction information of the original fea-
tures. We further take this k-dimensional vector as the k neurons of the neural
network. Therefore, we can define the factorization cross function for vector-level
feature interaction as:

fFC = BN(
1
2
[(zlwl)2 − z2

l w
2
l ]) (6)

where wl = [v1,v2, · · · ,vj ]T ∈ Rk×k is the parameter matrix of each layer,
which is composed of latent vectors. zl = [e1, e2, · · · , ek] ∈ Rk is the input of
each layer when we set n equal to k. BN refers to batch normalization [12],
which is used to ensure the stability of data distribution. Through fFC we can
obtain the second-order feature interactions of each layer.

By stacking factorization cross blocks, the network can not only learn rich
feature crossing, but also transmit low-order combination information to deep
layer. Therefore, the output of the network contains both low- and high-order
feature interactions. The order of feature interactions increases with the increase
of the number of layers L.
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Complexity Analysis. Let L denote the number of layers of FCN, and k denote
the dimension of latent vector vj . The time complexity of FCN is:

O(knL)

The time complexity is linear, and the calculation process of FCN can be easily
achieved by matrix multiplication and addition. Compared with DNN, the com-
putational complexity of FCN is very small. The space complexity is O(k2L),
which is the same with DNN, will not take any more space than DNN.

The low computational complexity ensures the speed of the model, and the
appropriate parameters ensure the expressiveness of the model. FCN can fully
learn the combination information of low- and high-order features at a fast speed,
and obtain the maximum expression ability.

3.3 Deep Residual Network (DRN)

FCN can learn explicit feature interactions by neural network, but it cannot
learn implicit feature interactions. We use deep neural network to learn implicit
feature interactions, which can be a supplement to FCN.

All the previous methods directly use DNN as the deep network. Although
DNN can effectively learn implicit feature interactions, we hope that the net-
work can not only learn high-order information, but also low-order information.
Therefore, we use the deep residual network (DRN) [8] to learn the implicit
combination of features, which is shown in Fig. 4.

Fig. 4. The components and architecture of the Deep Residual Network (DRN).

The input of deep residual network is the vector generated by the embedding
layer. FCN and DRN share the same embedding layer, which can be optimized
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by both subnetworks simultaneously to be more accurate. DRN is composed
of residual block, which can implicitly learn nonlinear feature interactions. As
Fig. 4 shows, each residual block has the following formula:

al+1 = ReLU(wlal + bl) + al (7)

where al+1 ∈ Rd, al ∈ Rd are the outputs of the l+1-th and l-th layer, wl ∈
Rd×d, bl ∈ Rd are model weight and bias, and ReLU is an activation function.
d denotes the number of neurons in each layer of the residual network.

By stacking residual blocks, the network can not only implicitly learn high-
order feature interactions, but also transmit low-order feature interaction infor-
mation to deep layers. The output of the last layer contains both low-order and
high-order feature interactions.

3.4 Prediction Layer

The model consists of explicit feature interactions subnetwork and implicit fea-
ture interactions subnetwork. The accuracy and effectiveness of the model can
be maximized by learning rich feature interactions.

FCN can learn explicit feature interactions of second-order and high-order
through neural network, but first-order feature interactions are also important.
In order to learn explicit information more effectively, we introduce a first-order
combination of the original input features as follows:

ylinear = w0 +
n

∑

i=1

wixi (8)

where wi ∈ R is the coefficient of each feature, and w0 ∈ R is the bias. Then we
get the learning result of the total explicit feature interactions as:

yFCN = ylinear + yfcn = w0 +
n

∑

i=1

wixi + wL1zL1 (9)

where yFCN ∈ R represents the output of explicit learning, wL1 ∈ Rk is the
weight vector, zL1 is the output from the factorization cross network, L1 denotes
the depth of the cross network. In addition, we can get the output of DRN as
follows:

yDRN = wL2aL2 (10)

where yDRN ∈ R represents the output of implicit learning, wL2 ∈ Rd is the
weight vector, aL2 is the output from the deep residual network, L2 denotes the
depth of the residual network.

After obtaining the outputs of the two subnetworks, most previous work
simply adds two outputs together, without taking into account the relationship
between the two parts. We consider the output of the two parts to be of different
importance. FCN can effectively learn explicit feature interactions, while DRN
can learn implicit feature interactions. We cannot determine whether explicit or
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implicit information is more effective, and cannot simply assume that they are
equally important.

Therefore, in order to combine the two parts more accurately and effec-
tively, we introduce learnable parameters for the model to automatically learn
the importance of different parts from the data. The final output of the model
is:

p = sigmoid(λ1 ∗ yFCN + λ2 ∗ yDRN ) (11)

where p ∈ (0, 1) denotes the output probability of each sample, sigmoid denotes
the sigmoid function, λ1 ∈ [0, 1] and λ2 ∈ [0, 1] are weighted coefficients repre-
senting the importance of the two networks. λ1 and λ2 are designed as follows:

λ1 =
eθ1

eθ1 + eθ2

λ2 =
eθ2

eθ1 + eθ2

(12)

where θ1 ∈ R, θ2 ∈ R are learnable parameters for weighing importance. By
introducing learnable parameters, FCN and DRN can be effectively combined.
In addition, the model also has good universality and can automatically learn
personalized parameters for different datasets.

3.5 Network Learning

DFCN can be applied to a variety of tasks in recommended scenarios, including
CTR, Ranking. For regression tasks, we can define mean square loss or mean
absolute loss. For the ranking task, we can use pairwise ranking loss or triplet
ranking loss. In this work, we mainly optimize Log loss for classification task,
which is defined as:

Loss = − 1
N

N
∑

i=1

[yi log pi + (1 − yi) log(1 − pi)] (13)

where yi ∈ {0, 1} is the true label of each sample, and pi is the prediction
probability of each sample, N is the total number of all input samples.

4 Experiment

In this section, we conduct extensive experiments to answer the following ques-
tions:

– RQ1 How does our proposed FCN perform individually in learning feature
interactions than other competitive methods?

– RQ2 Is it necessary to combine explicit and implicit feature interactions as
the final output? And how can we combine them?

– RQ3 How does the settings of networks affect the performance of DFCN?
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4.1 Experimental Settings

Datasets. We evaluate our proposed models on the following three datasets:

MovieLens1 Dataset [7]. It is a widely adopted benchmark dataset in movie
recommendation, which contains 6,040 users, 3,900 movies and 1,000,209 sam-
ples. We take the samples with rating greater than 3 as positive samples and the
others as negative samples. The task is to predict whether a user would give a
movie a positive rating based on historical behavior.

Frappe2 Dataset [1]. Frappe is a context-aware mobile app recommender sys-
tem. Researchers collect an app usage log as the frappe dataset, which con-tains
user ID, item ID and context features such as weekday, weather, country and so
on. It consists of 96203 entries by 957 users for 4082 apps used in various con-
text. We randomly sample an unused app as a negative sample for each posi-tive
sample.

Last.FM3 Dataset [3]. It contains social networking, tagging, and music artist
listening information from a set of 2000 users from Last.fm online music system.
It consists of 92834 user-listened artist relations. Because of the sparsity of the
dataset, we randomly sample an unused item as a negative sample for each
positive sample.

The details of the datasets are presented in Table 1.

Table 1. Statistics of the evaluation datasets.

Datasets #instances #users #items #features

MovieLens 1,000,209 6,040 3,900 9,794

Frappe 192,406 957 4,082 5,382

Last.FM 185,668 1,892 17,632 19,524

Evaluation Metrics. We adopt the Area Under the ROC curve (AUC) to
evaluate the predict performance of our model. AUC also considers the classifier’s
ability to classify positive and negative examples. In the case of unbalanced
samples, AUC can still make a reasonable evaluation of the classifier. Besides,
RelaImpr [10] metric is used to measure relative improvement over models, and
RelaImpr is defined as:

RelaImpr = (
AUC(measured model) − 0.5

AUC(base model) − 0.5
− 1) × 100% (14)

Baselines. To evaluate the performance of our model DFCN, we compared with
the following competitive models, which are specifically designed for sparse data
prediction:
1 https://grouplens.org/datasets/movielens/.
2 https://www.baltrunas.info/research-menu/frappe.
3 http://www.lastfm.com.

https://grouplens.org/datasets/movielens/
https://www.baltrunas.info/research-menu/frappe
http://www.lastfm.com
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– FM [19]: Factorization machine is a model based on latent vector to solve the
problem of feature interactions. FM and its variants have been widely used
in real recommendation systems. We set FM as the base model.

– DNN [5]: Multi-layer fully connected neural network can effectively perform
implicit feature interactions without manual feature engineering. It has been
widely used in industrial scenarios as a basic model of deep learning.

– Wide & Deep [4]: Wide & Deep is an effective model for CTR prediction task,
which consists of wide part and deep part. The wide part is constructed by
feature engineering. The deep part is composed of MLP, which can automat-
ically learn implicit feature interactions.

– PNN [18]: PNN designed a product layer to capture interactive patterns be-
tween features through inner product and outer product. Then high-order
feature interactions are learned by multiple fully connection layers.

– NFM [9]: NFM performs a second-order combination of input features based
on embedding vectors. On this basis, high-order feature interactions are
learned through multiple fully connection layers.

– DeepFM [6]: DeepFM uses FM to learn explicit feature interactions on the
wide side, and uses DNN to learn implicit feature interactions on the deep
side. Moreover, wide part and deep part share the same embedding layer.

– DCN [25]: DCN is composed of cross network on the wide side and DNN on
the deep side. The cross network can learn explicit feature interactions. DNN
can learn implicit feature interactions and act as a complement to the cross
network.

Parameter Settings. We randomly split each dataset into training set (90%)
and testing set (10%), and we randomly take 10% from training set as validation
set for tuning hyper-parameters. The embedding size was searched in [8, 16, 32,
64, 128, 256, 512], the number of hidden layers was searched in [1, 2, 3, 4, 5].
All methods were optimized with Adam [14], where the batch size was set to
512 with considering both training time and convergence rate. The learning rate
was searched in [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]. To prevent overfitting, we
used dropout for all neural network models. The dropout ratio was searched in
[0, 0.1, 0.2, 0.3, 0.4, 0.5], respectively. Batch normalization was applied to neural
networks for all methods. The stopping strategy was performed in training, where
we stopped training process if the AUC score on validation set decreased for 5
successive epochs. Moreover, we empirically set the size of the hidden layer the
same as the embedding size. For DFCN, we set the size of latent vector as
embedding size for simplicity, and we applied batch normalization and dropout
to avoid overfitting.

4.2 Performance Comparison with FCN (Q1)

We want to know how FCN performs on its own. It has been proved that it is
necessary to construct high-order explicit feature interactions. For example, DCN
introduces the cross layer to explicitly carry out high-order feature interactions.
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Similarly, FCN learns low- and high-order explicit feature interactions through
factorization cross block.

Table 2 shows the experimental results of all models on the three datasets.
Surprisingly, our FCN performs better than other models on all datasets, includ-
ing DeepFM with low- and high-order feature interactions, and DCN with cross
network. For example, The AUC score of FCN on the MovieLens dataset is
0.8126, which is larger than 0.8121 of DeepFM and 0.8118 of DCN, and 1.76%
higher than that of the base model FM. In fact, FCN can construct high-order
feature interactions by combining features layer by layer, and transmit low-order
feature information to the deep layer by adding residual connection. The exper-
imental results strongly prove that our FCN model has a powerful ability in
feature interactions, because it can learn both low-order and high-order feature
interaction information. It is clear that FCN is a very simple but efficient feature
interaction learning model.

Table 2. Performance of different models on MovieLens, Frappe and LastFM datasets.

Models MovieLens Frappe LastFM

AUC RelaImpr AUC RelaImpr AUC RelaImpr

FM 0.8072 0.000% 0.9795 0.00% 0.7906 0.00%

DNN 0.8082 0.33% 0.9814 0.40% 0.7920 0.48%

Wide&Deep 0.8105 1.07% 0.9838 0.90% 0.7995 3.06%

PNN 0.8113 1.34% 0.9845 1.04% 0.8002 3.30%

NFM 0.8116 1.43% 0.9844 1.02% 0.7989 2.86%

DeepFM 0.8121 1.60% 0.9847 1.08% 0.8011 3.61%

DCN 0.8118 1.49% 0.9849 1.13% 0.8006 3.44%

FCN 0.8126 1.76% 0.9851 1.17% 0.8013 3.68%

FCN & DRN 0.8126 1.76% 0.9848 1.11% 0.8007 3.48%

DFCN 0.8134 2.02% 0.9865 1.50% 0.8022 3.99%

4.3 Performance Comparison with DFCN (Q2)

It is well known that combining explicit and implicit information is effective. As
shown in Table 2, DeepFM and DCN perform much better than FM and DNN.
The proposed DFCN is the combination of explicit FCN and implicit DRN.
However, how to effectively combine the two networks is a key problem. Due to
the small parameter capacity of cross network, the expressive ability of DCN is
limited. DNN of implicit high-order feature interactions should be combined as a
supplement. The experiment in Q1 proves that FCN has a strong learning ability,
and it is important to fuse FCN and DRN effectively. Therefore, in addition to
the weighted fusion strategy proposed by us, we simply add the results of FCN
and DRN for experimental comparison, just like most of the previous work.
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Table 2 shows the experimental results of simple addition of FCN and DRN,
as well as the performance of our comprehensive model DFCN. It can be seen
that simply adding FCN and DRN does not lead to a meaningful improvement,
indicating that we need to combine them in a more appropriate way. DFCN
outperformed the base model by 2.02% on the MovieLens dataset, 1.50% on
the Frappe dataset, and 3.99% on the LastFM dataset. DFCN achieves the best
results on all datasets and makes a meaningful improvement over FCN. On the
one hand, it proves that it is necessary to combine explicit and implicit fea-
tures, on the other hand, it shows that our weighted fusion strategy is very
effective. By weighted fusion of FCN and DRN, DFCN can fully learn feature
interaction information, including low- and high-order explicit and implicit fea-
ture interactions. In addition, the model can automatically learn the weights of
two subnetworks for different datasets.

4.4 Hyper-Parameter Study (Q3)

In this section, we study the impact of hyper-parameters on both FCN and
DFCN.

Impact of the Number of Neurons per Layer. To simplify, we set the
dimension of latent factor and hidden layer as embedding size. Embedding size
increased gradually from 8 to 512, and the performance on the Frappe dataset
is shown in Fig. 5 (a). The Frappe dataset contains rich contextual features
that describe the data information in detail. Therefore, with the increase of the
number of neurons, both DFCN and FCN can more fully learn the information
contained in the features, so as to continuously improve the performance of the
model.

(a) Number of neurons per layer (b) Number of layers

Fig. 5. Impact of number of neurons per layer and number of layers on performance.

Impact of the Depth of Network. We gradually increased the network depth
from 1 to 5 to study the effect of network depth on the model. We can see the
model performance on the Frappe dataset in Fig. 5 (b). With the increase of the



208 W. Yang and T. Hu

number of network layers, the performance of DFCN decreases gradually. This
is because the abundant features have fully described the characteristics of the
dataset, and the data information can be well learned only by combining features
of low order. High-order feature interactions will cause the model to learn too
much noise from the training data, resulting in overfitting. The performance of
FCN increases first and then decreases as the number of layers increases. This
indicates that FCN is not sufficient to fully learn the data information by only
performing low-order feature combination. But too much feature interactions
will also lead to overfitting of the model.

Impact of the Dropout Ratio. Dropout enables the neural network to effec-
tively avoid overfitting problems. We added dropout at each layer of FCN
and DRN and kept their dropout ratios consistent. We gradually increased the
dropout ratio from 0 to 0.5 at an interval of 0.1, and the performance on the
Frappe dataset is shown in Table 3. The most suitable dropout ratio of DFCN
is 0.3. The right dropout ratio can improve the generalization of the model. Too
small dropout ratio leads to overfitting, while too large leads to underfitting.
With the increase of dropout ratio, FCN performs better. It indicates that FCN
has a strong learning ability and needs to use dropout to avoid overfitting.

Table 3. Impact of dropout ratio on performance.

Droupout Ratio AUC

FCN DFCN

0.0 0.9829 0.9840

0.1 0.9833 0.9859

0.2 0.9847 0.9860

0.3 0.9845 0.9864

0.4 0.9850 0.9862

0.5 0.9851 0.9862

5 Conclusion

In this paper, we propose a simple but efficient model named deep factoriza-
tion cross network (DFCN), which is composed of a factorization cross net-
work (FCN) and a deep residual network (DRN). FCN is a novel model, which
can not only perform explicit feature crossing with linear time complexity, but
also learn the low- and high-order feature interactions. According to the fusion
strategy proposed by us, we use learnable parameters to fuse FCN and DRN
together. Therefore, DFCN can effectively learn low- and high-order explicit
and implicit combination information of features, avoiding manual feature engi-
neering. Experiments show that our DFCN model performs best on the three
real datasets compared with all other competitive models.
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There are two directions for future study. First, we consider adding attention
mechanisms [26] to the network to improve the learning ability of the model.
Because the importance of the interaction between different features is not the
same, it is necessary to use attention mechanism to capture different information.
In addition, we also plan to explore the interaction of explicit and implicit feature
vectors. By introducing the interaction matrix, the complex relationship between
explicit and implicit feature vectors can be further explored.
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Abstract. Next Point-of-Interest (POI) recommendation estimates user
preference on POIs according to past check-in history, suffering from
the intrinsic limitation of obtaining dynamic user preferences. Conversa-
tional Recommendation System (CRS), which can collect dynamic user
preferences through conversation, brings a solution to the above limita-
tion. However, none of the existing CRS methods consider the spatio-
temporal factors in the action selection phase, which are essential for POI
conversational recommendation. In this paper, we propose a new Spatio-
Temporal Conversational Recommendation System (STCRS) to fuse the
spatio-temporal and dialogue information for next POI recommendation.
Specifically, STCRS first learns the spatio-temporal information in the
user’s check-in history. Then reinforcement learning is used to decide
which action (asking for an attribute or recommending POIs) to take at
the next turn to achieve successful POI recommendation within as few
turns as possible. Finally, our extensive experiments on two real-world
datasets demonstrate significant improvements over the state-of-the-art
methods.
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1 Introduction

Next Point-of-Interest (POI) recommendation systems are emerging as an essen-
tial means of facilitating user’s information seeking in many scenarios, like
Restaurants and Food (e.g., Yelp) and travel (e.g., Trip Advisor). However, exist-
ing methods cannot communicate with users and can only obtain passive feed-
back from users in the process of POI recommendations since they solely infer
user preference on POIs from the historical spatio-temporal check-ins. Users
can not actively express his/her immediate preferences, which are often drifting
with time. For instance, a user may not be interested in the Great Wall initially,
but once he/she happens to watch a video about it, he/she may like it and
then become interested in POIs nearby. Such limitation makes it hard to obtain
dynamic user preferences, preventing the system from providing accurate POI
recommendation.

The Conversational Recommendation System (CRS), which is a recently
emerging research topic, brings a solution to the limitation mentioned above. It
allows a recommendation system to dynamically obtain user preferences through
dialogue and make recommendations appropriately. As the conversational rec-
ommendation system became a hot topic, the community began to make great
efforts to explore its various settings. Li et al. [8] recommended movies by focus-
ing on natural language understanding and generation. Liao et al. [9] built a
multi-modal dialogue systems which can capture rich semantics in the visual
modality such as product images. Sun and Zhang [13] get the user attribute pref-
erences by analyzing user utterances and feed them into a policy network. But
it only handles single-round recommendation and does not consider the inter-
action between Conversational Component and Recommend Component. The
single-round recommendation ends the conversation after only one recommen-
dation and will not recommend again if the recommendation fails. In contrast,
Lei et al. [6] proposed a method on multi-round recommendation setting and
considered the interaction between the Conversational Component and the Rec-
ommend Component. Multi-round conversational recommendation will continue
to ask or recommend after the recommendation is rejected, until the maximum
conversation round is reached. Lei et al. [7] proposed a graph-based CRS, which
reduces the space of candidate attributes and items by introducing the graph
structure.

However, none of the existing methods consider POI conversational recom-
mendation, where spatio-temporal information is essential. Integrating spatio-
temporal information can benefit POI conversational recommendation, signifi-
cantly reducing candidate attribute and item space and hence shortening inter-
action turns.

To this end, in this paper, we propose a novel POI conversational recom-
mendation framework called Spatio-Temporal Conversational Recommendation
System (STCRS), in which an agent can assist users in finding POIs interactively.
The agent contains two components, i.e., Spatio-Temporal POI Recommendation
module and Spatio-Temporal Policy Network module. Specifically, the Spatio-
Temporal POI Recommendation module performs POI prediction via modeling
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the user’s spatio-temporal sequential check-ins and immediate preference con-
firmed by the user in conversation; the Spatio-Temporal Policy Network module
decides which action to take based on state vector with spatio-temporal infor-
mation. The action may be to ask the user if they like a certain attribute or
recommend a ranked list of POIs. We train a policy network with reinforcement
learning, maximizing the reward based on the conversation state which inte-
grates spatio-temporal information. Inspired by Lei et al. [6], recommendations
will be updated with users’ online feedback.

To validate the effectiveness of STCRS, experiments are conducted on CA1

and Ant Financial2 datasets. Performances are compared with state-of-the-art
CRS methods [6], which also use the information of user, POI, and attribute but
do not use spatio-temporal information. We analyze each method’s properties
under different settings, including binary question and enumerated question. The
experimental results show that STCRS outperforms the existing approaches.

In summary, our contributions are listed as follows:

• To the best of our knowledge, this is the first work to investigate POI con-
versational recommendation systems.

• We propose the STCRS framework to integrate spatio-temporal information
into a conversational recommendation system for next POI recommendation.

• We conduct extensive experiments on two real-world datasets. Our experi-
mental results show the superiority and effectiveness of STCRS, comparing
with the state-of-the-art methods via comprehensive analysis.

2 Related Work

In this section, we give a brief review of next POI recommendation and conver-
sational recommendation system.

2.1 Next POI Recommendation

The goal of the next POI Recommendation is to recommend a ranked list for
user based on his/her historical check-ins. The next POI to be visited by the
user should have a higher ranking. Cheng et al. [2] combines the localized region
constraints with personalized Markov chains and predicts next POI through the
transition probability. However, Markov chains cannot learn complex transitions
between POIs. With the development of deep learning, researchers began to try
to use neural networks to solve this problem. Feng et al. [4] captures the user
transition patterns by using a metric embedding method to embed users and
POIs into the same latent space. Xie et al. [15] embeds relationship among
POI, Region, Time and Word into a shared low dimensional space. And it uses
the linear combination of inner products to compute the score of POIs. Zhang
et al. [17] leverages the temporal dependency in user’s check-in sequence to

1 https://github.com/WeiqiXu/FoursquareData.
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=58.

https://github.com/WeiqiXu/FoursquareData
https://tianchi.aliyun.com/dataset/dataDetail?dataId=58
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model user’s dynamic preferences. With the continuous development of research,
methods of extending existing neural networks have also been proposed. Liu et
al. [10] is the first method to model spatio-temporal information for the next
POI recommendation, it models spatio-temporal information by replacing the
simple transition matrices of RNN with spatio-temporal transition matrices.
Zhao et al. [18] is proposed to incorporate spatio-temporal gates to learn the
spatio-temporal information of check-in sequences. Xu et al. [16] and Luo et al.
[11] use self-attention network for recommendation. J. Ni et al. [12] use a decay
function and self-attention block to model time and distance intervals for next
POI recommendation. Although significant progress has been made, the intrinsic
limitation of obtaining dynamic user preference cannot be avoided.

2.2 Conversational Recommendation

Conversational recommendation system makes it possible to obtain user explicit
feedback. Users can interact with CRS using natural language. There are differ-
ent settings for various problems.

Li et al. [8] built a system which recommend movies through sentiment anal-
ysis and movies mentioned in the dialogue. But it only uses mentioned movies
for recommender and recommender cannot help generate better dialogue. Chen
et al. [1] solved the above two defects by introducing knowledge graph. [9] built
a multi-modal dialogue systems which can understand the user’s intention more
clearly by using the visual information. Zhang [13] built a single-round CRS and
used supervised learning and reinforcement learning to train a policy network.
But it does not consider the interaction between Conversational Component
and Recommend Component. Subsequently, Lei et al. [6] proposed a method
on multi-round recommendation setting and consider the interaction between
the Conversational Component and the Recommend Component. Recently, Lei
et al. [7] proposed a graph-based CRS, the policy network of it has a smaller
action space, so it does not require pre-training as adopted in [6,13]. Zhou et
al. [19] improved the conversational recommendation by integrating both item-
based preference sequence and attribute-based preference sequence. But they
don’t consider problem about the spatio-temporal factors.

We believe that obtaining a user’s dynamic preference and recommend POIs
upon attribute feedback is the key to POI conversational recommender system.
However, none of the existing CRS works have considered the spatio-temporal
information into the conversation. We believe that utilizing the spatio-temporal
information will help decrease interaction turns and accurate next POI recom-
mendations.

3 Preliminaries

In this section, we discuss how to integrate spatio-temporal and dialogue infor-
mation to improve the effect of next POI recommendation. Our framework has
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Fig. 1. The workflow of our Spatio-Temporal Conversational Recommendation System.

two components: the Spatio-Temporal POI Recommendation module and the
Spatio-Temporal Policy Network module.

We now introduce the notation uesd to formalize our setting. Let u and U
denote a user and the user set. v and V denote a POI and the POI set. Each POI
v is associated with a set of attributes Pv, such as “School”,“Hotel”, or “Theme
Park” for businesses in CA. p and P denote a specific attribute and all attribute.
The check-in records of each user are sorted into a sequence Lu = (vu

1 , vu
2 , ..., vu

|L|)
by time. And each check-in record vu

i is associated with its timestamp tui and its
geographic coordinates su

i .
STCRS aims to recommend POIs that users are interested in within as few

turns as possible. The system asks questions based on Lu and the current time
to determine the u’s current preferences and makes personalized POI recom-
mendations when appropriate to complete the conversation successfully.

Figure1 presents the workflow of our proposed STCRS framework. A CRS
session is started with u’s current preference attributes p0, then the CRS removes
POIs that do not contain attribute p0 from the current POI candidate set Vcand.
Then in each turn t, the STCRS needs to choose an action based on Lu: recom-
mend or ask.

• If action is recommend, the Spatio-Temporal POI Recommendation module
will rank the Vcand, and recommend a list. If the list contains the POI which
user is interested in, user will accept the recommendation and this session
ended successfully. Otherwise, user will reject the recommendation.

• If action is ask. User needs to clearly express whether he/she prefers the
attribute selected by the Spatio-Temporal Policy Network (where the asked
attribute is denoted as pt ∈ P ). If the feedback is positive, STCRS will keep
the POIs which contain attribute pt in the Vcand and add pt into Pu (The
user preferred attribute set determined through the dialogue). Otherwise, we
only remove the POIs which contain attribute pt.

A CRS session will continue as above until the POI is successfully recom-
mended or the maximum number of turns is reached.
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4 Proposed Methods

In this section, we will describe each module in our framework in detail. Figure 2
shows the architecture of STCRS, which contains the Spatio-Temporal POI Rec-
ommendation module and the Spatio-Temporal Policy Network module. STCRS
executes a loop many times to complete the CRS session. This loop has the fol-
lowing steps:

First, the Spatio-Temporal POI Recommendation module models spatio-
temporal information of Lu and scores candidate POIs. Second, the spatio-
temporal information learned from Lu will be transformed into four Spatio-
Temporal States (sst−ent, sst−pre, sspatial and stemporal) and fed into the Spatio-
Temporal Policy Network module. Third, the Spatio-Temporal Policy Network
module decides which action (asking an attribute or recommending a POI list) to
take based on the spatio-temporal and dialogue information. Then, the user sim-
ulator generates a reply to the action. Finally, using the information generated
by the user simulator’s reply to update the corresponding module. Specifically, if
the user rejects the recommendation, we use the rejected POIs as negative sam-
ple to update the Spatio-Temporal POI Recommendation module. If the user
gives feedback on attribute, we update the candidate set and dialogue state.

Fig. 2. The architecture of our proposed STCRS. The Spatio-Temporal POI Recom-
mendation Module scores the candidate POIs and offers Spatio-Temporal States to the
Spatio-Temporal Policy Network Module. The Spatio-Temporal Policy Network Mod-
ule decides whether to ask or recommend at each turn. The user simulator responds to
questions from the Spatio-Temporal Policy Network Module or recommendations from
the Spatio-Temporal POI Recommendation Module. The reply of it is used to update
the corresponding module.
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4.1 Spatio-Temporal POI Recommendation Module

The goal of Spatio-Temporal POI Recommendation module is to calculate the
scores of POIs that user may visit at next time step, given Lu.

To effectively merge spatio-temporal information in conversational recom-
mendation, we use Spatio-Temporal Self-Attention Network (STSAN) to extract
spatio-temporal information in Lu. STSAN consists of Embedding layer, Spatio-
Temporal weight block, Self-Attention block and Prediction layer.

Embedding Layer: As the length of Lu is not fixed and the check-ins that are
too early can not correctly reflect the u’s current preferences, we only consider
u’s recent check-ins of a fixed length. Let m denote the fixed length. And we
denote L̂u = (vu

1 , vu
2 , ..., vu

m) as the u’s recent m check-ins. If the length of u’s
recent check-ins is less than m, we employ zero-padding to fill the left side of
u’s recent check-ins sequence until the sequence length is m. We create a POI
embedding matrix M ∈ R

|V |×d to encode POI into a unique latent vector, where
d is the latent dimension. And we create a positional matrix P ∈ R

m×d to encode
m positional information in L̂u. As we mentioned above, each POI v in L̂u has
two embedding (Mv and Pi, i is the position of v in L̂u). We add them to form
the input matrix, the input matrix is defined as follows:

E =

⎡
⎢⎢⎣

Mv1 + P1

Mv2 + P2

· · ·
Mvm

+ Pm

⎤
⎥⎥⎦ (1)

Spatio-Temporal Weight Block: We calculate the temporal and spatial tran-
sition matrices Tu and Su based on the temporal and spatial sequence associated
with L̂u (i.e., (tu1 , tu2 , ..., tum) and (su

1 , su
2 , ..., su

m)).

Tu
ij =

{
Δtuij , i � j,
0, i < j,

(2)

Su
ij =

{
Δdu

ij , i � j,
0, i < j,

(3)

where Δtuij and Δdu
ij are the time and distance intervals between check-in vu

i and
check-in vu

j . A decay function is used to convert Δtuij and Δdu
ij into a weight.

Therefore the temporal and spatial weight matrix T̂
u

and Ŝ
u

can be calculated
as follows:

T̂
u

ij =
{

g(Δtuij), i � j,
0, i < j,

(4)

Ŝ
u

ij =
{

g(Δdu
ij), i � j,

0, i < j,
(5)
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where g(x) = 1/log(e + x)., we use g(x) as the decay function. We utilize a
weight factor ρ to balance the influence of the temporal and spatial information.
We use the weight factor ρ as follows:

H = ρ · T̂ + (1 − ρ) · Ŝ, (6)

where 0 < ρ < 1. Finally we use linear transformation on H:

Ĥ = WH + b, (7)

Self-attention Block: We convert the input matrix E obtained from the
embedding layer as follow:

WSA = softmax(
EWQ(EWK)T

√
d

), (8)

F = ĤWSA(EWV ), (9)

where WQ, WK , WV ∈ R
d×d are used to project E into three matrices and Ĥ

is the output of the Spatio-Temporal weight block. We use layer normalization
and residual connection on F. Finally, we feed F̂ into a two-layer fully-connected
layer.

F̂ = E + LayerNorm(F), (10)

O = ReLU(F̂W1 + b1)W2 + b2. (11)

Prediction Layer: We calculate the dot product of Mvi
and Ot to get a score

rvi,t of vi. Ot is the t-th line of O. The higher the score of vi, the more likely vi

will be visited.

Network Training: We take the last POI of each user sequence Lu in the
training set as a positive sample vu

pos and perform negative sampling to form
the positive and negative sample pairs (vu

pos, vu
neg). We optimize the network

according to the following formula:

loss = −
∑

u

∑
(vu

pos,vu
neg)

[log(σ(rvu
pos,t)) + log(1 − σ(rvu

neg,t))]. (12)

4.2 Spatio-Temporal Policy Network Module

The goal of Spatio-Temporal Policy Network module is to learn a policy which
selects an action based on the dialogue state at each turn, in order to accomplish
successful POI recommendation within as few conversation rounds as possible.

We use the policy network in deep reinforcement learning as our Spatio-
Temporal Policy Network. For more introduction about reinforcement learning,
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please see [14]. The structure of the policy network is shown in the lower left
part in Fig. 2. The basic component of reinforcement learning is state, action,
reward and policy.

State: The state st is the description of the current conversation session. It is
composed of sst−ent, sst-pre, shis, slen, sspatial and stemporal. sst-ent, sst-pre, sspatial
and stemporal come from the Spatio-Temporal POI Recommendation module
and contain spatio-temporal information. We believe that such a design can
effectively use spatio-temporal information.

• sst-ent : This vector encodes the attribute entropy of the top-k POIs in Vcand.
The intuition is that using u’s historical spatio-temporal information to score
Vcand and obtaining attribute entropy of the top-k POIs. The attribute with
the larger entropy is asked, the more information we can get.

• sst-pre : We treat the POI score as the POI’s attribute score. And we use
the score of top-k POIs in Vcand to calculate the score of attributes. For CA
dataset, we calculate the average score of each attribute; For Ant Financial
dataset, we calculate the score of each first-level attribute by dividing the
total score of second-level attributes by the number of second-level attributes
that are not repeated. We use tanh to transform the attribute score. The
intuition is that the attributes with higher scores are more likely to be user
preference attributes.

• shis : This vector records the dialogue history. Its size is the number of max-
imum turns. Specifically, we use -1 to represent recommendation is rejected,
0 to present u dislikes the attribute we asking, 1 to present u gives posi-
tive feedback to the attribute we asking, 2 to present make a successful POI
recommendation.

• slen : This vector is the binary code of the length of Vcand. The shorter the
length of Vcand, the greater the probability of successful recommendation.

• sspatial : We denote the average geographic coordinates of L̂u as meanhis
pos,

the average geographic coordinates of the top-k POIs in Vcand as meancand
pos ,

the variance of the geographic coordinates of L̂u as varhis
pos, and the variance

of the geographic coordinates of the top-k POIs in Vcand as varcand
pos . Using

meanhis
pos

⊕
meancand

pos

⊕
tanh(varhis

pos/varcand
pos ) as spatial information of the

current dialogue round.
⊕

is used for vector concatenate. The intuition is
that if the spatial information of Vcand and L̂u is similar , a recommendation
should be made.

• stemporal : We assume that tui is the time u seeked POI recommendations.
According to the time period (morning or afternoon) when u visited vu

i , count
the attribute ratio of POIs during this time period in L̂u. We denote this
ratio as fhis. And we count the attribute ratio of the top-k POIs in Vcand. We
denote this ratio as fcand. The cosine similarity of fhis and fcand is denoted
as coshis cand. Using fhis

⊕
fcand

⊕
coshis cand as temporal information of

the current dialogue round. The intuition is that if one attribute is visited
multiple times by u in a period of time, u is more likely to prefer this attribute
in the same period of time, and we should ask questions about it.
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Action: The Spatio-Temporal Policy Network module needs to select an action
at at time step t. Two kinds of actions can be selected. One is to make a POI
recommendation. The other is to ask an attribute that the user may prefer in
this CRS session. So the space of action is the number of attribute |P | + 1.

Reward: The reward follows [6], (1) rrec suc, we give a strongly positive reward
when the POI recommendation is successful, (2) rrec unsuc, a slightly negative
reward is given when the recommendation is rejected, (3) rask suc, a strongly pos-
itive reward when the user accept the asked attribute, (4) rask unsuc, a slightly
negative reward, (5) rfail, a strongly negative reward if the user quits the conver-
sation, (6) rprev, a slightly negative reward to avoid overly length conversations.

Policy: We denote the policy network as π(at|st). It maps the current conversa-
tion state st into the action space. The Spatio-Temporal Policy Network module
selects an action at according to the result of output layer and gets an immediate
reward rt at each turn. The goal of the Spatio-Temporal Policy Network module
is to maximize the episodic expected reward of a CRS session. Policy Network
will select high-value action after trial and error. The policy gradient method is
used to optimize the network, formulated as follows:

θ ← θ − α∇logπθ(at|st)Rt, (13)

Rt =
∑T

t′=t
γT−t

′
rt′ , (14)

where θ and α are the parameters and learning rate of policy network respec-
tively, γ is the discount factor. Note that if θ is initialized randomly, the learning
can converge slowly or fail. To address this issue, we follow [6] to conduct the
rule-based pre-training.

5 Experiments

In this section, we conduct experiments to evaluate our proposed STCRS frame-
work on two real-world datasets. Our experiment are guided by the following
Research Questions(RQs).

• RQ1. How does STCRS perform compared to the state-of-the-art methods
for conversational recommendation?

• RQ2. Is the design of the state vector effectively utilize the spatio-temporal
information to complete the POI conversational recommendation?

• RQ3. How does the hyper-parameters affect the method performance (e.g.,
the discount factor γ and the learning rate α of the Spatio-Temporal Policy
Network module)?
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Table 1. Datasets statistics.

Dataset CA Ant Financial

#Users 2389 2481

#POIs 9144 1481

#Check-ins 93598 26808

#Attributes 34 142

5.1 Settings

5.1.1 Datasets
For better comparison and make POI conversational recommendation, we con-
duct experiments on two datasets: CA and Ant Financial. CA is a Foursquare
dataset from users whose homes are in California, collected from January 2010
to February 2011 and used in [5]. Ant Financial is an Internet financial ser-
vices company in China and the dataset provides shop information and Ali-
pay user’s payment log and users’ browsing log from 07.01.2015 to 10.31.2016
(except 2015.12.12). Follow [6], we remove the duplicated user-POI check-ins in
our datasets and only keep the first check-in. The statistics of the two datasets
are summarized in Table 1. We sort the check-ins of each user by time and take
the early 70% of user’s check-ins as the training data, the last 10% as the testing
data, the remaining 20% as the validation data.

For better comparison, we follow [6] to conduct experiments on CA for binary
question scenario and Ant Financial for enumerated question scenario. In binary
question scenario, the user answers yes or no when the user is asked a question
about attribute. In enumerated question scenario, we build a 2-layer taxon-
omy which includes 15 first-layer categories and 142 second-layer categories. For
example, The first-level category “city” includes 88 second-level categories, and
each second-level category represents a specific city.

5.1.2 User Simulator
Conversational recommendation is a process of continuous interaction with users.
CRS needs to interact with user to obtain the dynamic user preferences and
make POI recommendations. But CRS is too expensive to be applied to real
users to train from scratch. To solve these problems, we follow [6] to build a
user simulator. When the user simulator simulates one conversation session for
a user-POI (u, v) check-in, it restricts u to only prefer the attributes in Pv and
only accepts the recommendation containing v.

5.1.3 Training Details
We set the length of recommendation list as 10, maximum turn as 15 on CA
dataset, and maximum turn as 6 on Ant Financial dataset. Maximum turn of
CA follows [6] and the standard for setting maximum turn of Ant Financial



222 C. Li et al.

is that the highest success rate of Max Entropy just exceeds 90%. Following
[6,13], we perform two-stage training: (1) An offline training for Recommend
Component. We use the training set to optimize Spatio-Temporal POI Recom-
mendation module (Eq. (12)). The goal is to assign higher score to the check-in
POI for each users. All hyper-parameters are tuned on the validation set: For
CA dataset, the batch size is set as 64, the learning rate is 0.0001, the m is 10,
the embedding size is 40, the dropout rate is 0.5, and the size of block and head
is 1; For Ant Financial dataset, the learning rate is set to 0.001, the m is 9,
the embedding size is 110, and the other are the same as the CA dataset. (2)
An online training for Conversational Component. We use a user simulator to
interact with STCRS to train the Spatio-Temporal Policy Network module using
the validation set. The k is set as 100. The rewards are as follow: rprev = −0.01,
rrec suc = 1 + rprev, rfail = −0.3, rask suc =0.1 + rprev, rask unsuc = rprev. On CA
dataset, rrec unsuc=rprev; On Ant Financial dataset, rrec unsuc= −0.1. We use
the AdamOptimizer to optimize the policy network.

5.1.4 Evaluation Metrics
To evaluation follows [6]. We use Success Rate (SR@t) [13] and Average Turns
(AT) which is average conversation rounds for successful POI recommendations
to measure the ratio of successful POI conversational recommendation and the
effectiveness of conversation. Larger SR denotes better performance and shorter
AT denotes more efficient conversation. In the offline training of Recommend
Component, we use the NDCG@10 and HR@10 to find the best Recommend
Component.

5.2 Baselines

To emphasize the importance of spatial-temporal information and the fairness
of comparison, we compared our framework with the following CRS methods.

• Max Entropy. A ruled-based method. Generating random numbers based
on the current number of candidate items to decide whether to ask or recom-
mend. When asking a question, it chooses an attribute which has not been
asked and has the maximum entropy in the candidate set. We use it for pre-
training. Details can be found in [6].

• Abs Greedy [3]. This method only have a recommendation component.
It only recommends items and updates itself when the recommendation is
rejected, until it recommends the correct item or failed after reach the maxi-
mum number of turn.

• CRM [13]. This is a CRS method using reinforcement learning. It uses belief
tracker to analyze the preferences expressed by user utterances. The output
of belief tracker is fed into policy network for deciding which action should
take at next step. We follow [6] to adapt it to the multi-round conversational
recommendation scenario.

• EAR [6]. This method is based on multi-round conversational recommenda-
tion setting and emphasizes the interaction between conversation component
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and recommendation component. Using BPR algorithm to update attribute-
aware FM.

5.3 Performance Comparison (RQ1)

In this section, we compare our framework STCRS with four state-of-the-art
baselines.

Table 2. Experimental results of STCRS and baselines (RQ1).

CA Ant Financial

SR@5 SR@10 SR@15 AT SR@2 SR@4 SR@6 AT

Max Entropy 0.052 0.141 0.199 13.656 0.066 0.639 0.920 4.169

Abs Greedy 0.204 0.288 0.339 11.831 0.381 0.614 0.718 3.804

CRM 0.197 0.292 0.357 11.846 0.116 0.769 0.941 3.76

EAR 0.193 0.317 0.394 11.69 0.106 0.792 0.968 3.673

STCRS 0.216 0.349 0.416 11.388 0.058 0.805 0.984 3.879

Table 2 presents the statistics of method’s performance. As can be clearly
seen, our STCRS significantly outperforms the state-of-the-art baselines on var-
ious setting. This proves our hypothesis that considering spatio-temporal infor-
mation in conversational recommendation can better make POI conversational
recommendation. In order to better show the performance of STCRS and com-
pare it with other baselines, we analyze the performance of STCRS in each round
in Fig. 3.

Figure3 shows the Success Rate* (SR*) @t at different turns (t = 1 to 15
on CA and t = 1 to 6 on Ant Financial). SR* denotes the comparison of each
method against the strongest baseline EAR, indicated as y = 0 in the figure.

Fig. 3. Success Rate* of compared methods at different conversation turns on CA and
Ant Financial (RQ1).
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There is a common trend in two datasets. The performance of STCRS is
weak at the beginning of a conversation, but it starts to grow and reach a stable
state in the subsequent turns. The poor performance at first and the significant
improvement afterward illustrate that it is difficult to successfully recommend
the POI that the user is interested in by only using the Spatio-Temporal POI
Recommendation module to extract the spatial-temporal information from the
user’s historical check-in records at the beginning of conversation, but the user’s
dynamic preferences obtained through the conversation can effectively improve
the success rate of the POI recommendation. The subsequent excellent perfor-
mance shows that introducing user’s spatio-temporal information in the conver-
sational recommendation can help the Spatio-Temporal Policy Network module
choose the attributes that users are more likely to prefer to ask questions and
improve the success rate of the POI conversational recommendation.

The performance of Max Entropy on Ant Financial gradually improve in
turns 4–6. But the performance on CA continues to decline. The key reasons are
that the POI in Ant Financial has more attribute information and the setting of
Ant Financial is to ask enumerated question. User’s response will sharply shrink
the candidate POIs in this setting.

Comparing with EAR, STCRS has a greater advantage on CA. As we men-
tioned above, the POI in CA has fewer attributes and the setting of CA is to ask
binary questions, so the performance of STCRS shows that the spatio-temporal
information is helpful to choose the right attributes to ask questions and better
complete POI conversational recommendations.

5.4 Ablation Studies on State Vector (RQ2)

In order to explore the effect of each part of the state vector, we remove or replace
these parts one by one and check the change. Table 3 presents the statistics of
our framework’s performance on two conversation scenarios (binary questions
and enumerated questions). sent and spre is the attribute entropy and attribute
preference of all POIs in Vcand.

As can be clearly see, sst-ent is the most important part on two conversation
scenarios. If we remove sst-ent , although it obtains improvement at the beginning
of conversation, SR@6 and SR@15 greatly suffers, due to the system makes POI
recommendation before obtaining enough information. We replace sst-ent and
sst-pre with sent and spre . Except for SR@2, the performance of other indicators
have a decline. This shows that it is necessary to introduce spatio-temporal
information in attribute entropy and attribute preference. Apart from sst-ent and
sst-pre , sspatial and stemporal also have a positive contribution to our framework.
The spatio-temporal information is more important for CA (binary question). A
reasonable explanation is that POI in CA has fewer attributes than POI in Ant
Financial, so spatio-temporal information is more important to select attributes
which users prefer at the current time.
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Table 3. Performance of removing or replacing one component of state vector from
STCRS (RQ2).

CA Ant Financial

SR@5 SR@10 SR@15 AT SR@2 SR@4 SR@6 AT

-sst-ent 0.218 0.296 0.35 11.664 0.182 0.629 0.836 4.024

-sst-pre 0.229 0.344 0.404 11.352 0.088 0.779 0.976 3.911

-sst-ent + sent 0.184 0.271 0.326 11.724 0.051 0.789 0.98 3.901

-sst-pre + spre 0.242 0.342 0.4 11.253 0.069 0.778 0.973 3.921

-sspatial 0.235 0.332 0.393 11.354 0.051 0.794 0.976 3.89

-stemporal 0.201 0.295 0.352 11.839 0.074 0.794 0.977 3.855

STCRS 0.216 0.349 0.416 11.388 0.057 0.813 0.982 3.86

5.5 Sensitivity Analyses of Hyper-parameters (RQ3)

In this section, we explore the influences of the discount factor γ and the learning
rate α in STCRS.

Influence of the Learning Rate α. We first fix optimizer of the policy network
is Adam, γ is 0.6 on CA, γ is 0.8 on Ant Financial and vary α to explore the
influence of α. We choose α in {0.0002, 0.0005, 0.001, 0.002}. As is shown in
Table 4, when α is 0.0005, the performance of STCRS is best on two datasets.
Although some indicators are better when α is set as other values, 0.0005 is the
best value for the overall effect.

Influence of the Discount Factor γ. To explore the influence of γ, we fix the
learning rate α as 0.001. And we search γ from {0.6, 0.7, 0.8, 0.9, 0.95, 0.99}.

Table 4. Influence of the learning rate α and the discount factor γ (RQ3).

CA Ant Financial

SR@5 SR@10 SR@15 AT SR@2 SR@4 SR@6 AT

α 0.0002 0.233 0.333 0.404 11.351 0.051 0.794 0.978 3.883

0.0005 0.228 0.356 0.418 11.266 0.051 0.814 0.983 3.923

0.001 0.216 0.349 0.416 11.388 0.057 0.813 0.982 3.89

0.002 0.198 0.29 0.338 11.885 0.091 0.779 0.97 3.882

γ 0.6 0.216 0.349 0.416 11.388 0.056 0.788 0.976 3.867

0.7 0.224 0.331 0.395 11.45 0.061 0.801 0.982 3.917

0.8 0.23 0.34 0.404 11.372 0.057 0.813 0.982 3.89

0.9 0.164 0.319 0.385 11.847 0.058 0.805 0.984 3.879

0.95 0.204 0.352 0.414 11.437 0.048 0.787 0.981 3.89

0.99 0.169 0.337 0.429 11.645 0.036 0.801 0.985 4.038
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From Table 4, we can see that the best γ for SR@2 is 0.7, the best γ for SR@5,
SR@4 and AT on CA is 0.8, the best γ for SR@10 is 0.95, and the best γ for
SR@15 and SR@6 is 0.99. From the perspective of successfully completing as
many POI conversational recommendations as possible, the best γ is 0.99.

6 Conclusion

In this paper, we proposed a novel framework Spatio-Temporal Conversational
Recommendation System (STCRS). We employed the Spatio-Temporal Self-
Attention Network to extract the spatio-temporal information of user’s check-
in history, and used reinforcement learning to train a policy network to make
decision at each turn. The state vector was designed carefully, which can build
a bridge between Spatio-Temporal POI Recommendation module and Spatio-
Temporal Policy Network module for communication. To the best of our knowl-
edge, STCRS is the first method to use the spatio-temporal and dialogue infor-
mation for next POI recommendation. We compared the Success Rate and the
Average Turns of STCRS with CRS methods, and our experimental results show
the improvement of our framework.
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Abstract. The user’s interactions with the system within a given time
frame are organized into a session. The task of session-aware recommen-
dation aims to predict the next interaction based on user’s historical
sessions and current session. Though existing methods have achieved
promising results, they still have drawbacks in some aspects. First, most
existing deep learning methods model a session as a sequence, but neglect
the complex transition relationships between items. Second, a single
account is usually regarded as a single user by default, where the sce-
nario of multiple users sharing the same account is ignored. To this
end, we propose a Multi-user Identification network named MISS for
the Shared-account Session-aware recommendation problem. MISS con-
sists of two core components: one is the Dwell Graph Neural Network
(DGNN), which incorporates item dwell time into the gated graph neu-
ral network to capture user interest drift across sessions. The other is
a Multi-user Identification (MI) module, which draws on the attention
mechanism to distinguish behaviors of different users under the same
account. To verify the effectiveness of MISS, we construct two data sets
with shared account characteristics from real-world smart TV watching
logs. Extensive experiments conducted on the two data sets demonstrate
that MISS evidently outperforms the state-of-the-art recommendation
methods.

Keywords: Shared-account recommendation · Session-aware
recommendation · Graph neural networks · Attention

1 Introduction

Recommender systems have a wide range of applications in many fields, such
as e-commerce, news information websites, music and video websites [5,10,16].
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User’s interactions within a given time frame are usually organized in chronolog-
ical order into a session. The goal of session-based recommendation aims to pre-
dict the next interaction for each independent session. Generally, the user’s his-
torical sessions reflect the user’s long-term preferences, while the current session
represents the main purpose at the moment. Therefore, some studies combine
both the historical sessions and the current session to make recommendations,
which is called session-aware recommendation.

Most session-aware recommendation studies are conducted on the session-
based recommendation methods [31]. Recurrent neural network can reasonably
model sequential characteristics in session [6,7,22]. Other neural networks, such
as attention mechanism and graph neural networks, have also been successfully
applied to session-based recommendation, capturing user interest in each session
[26,28]. The aforementioned session-based recommendation methods only make
recommendations for each anonymous session, but do not take into account the
influence of long-term preferences in the user’s historical sessions. Therefore, on
this basis, many subsequent works have carried out research on session-aware
recommendation methods. To capture user’s long- and short-term preferences,
the work of [17] proposes a hierarchical RNN framework to model user’s interest
drift across sessions. The work in [29] designs a hierarchical architecture based on
GRU and Temporal Convolutional Network to capture the long-term interests
and short-term interactions. In [31], the authors improve the session-graph in
[26] and propose a personalized graph neural network with attention mechanism
to model the effect of historical sessions on current session.

Despite the effectiveness, few existing studies have considered the shared-
account problem, where multiple individual users share the same account in
the system. Such shared-account scenarios are very common in many real-world
application fields. Take Fig. 1 as an example, in the smart TV recommenda-
tion scenario, members of a family share the same account to watch videos.
The watching logs of different members are mixed together and recorded as
behaviors of a single account, which makes it harder to generate accurate per-
sonalized recommendations for each member. As shown in Fig. 1, three family
members use the same account to watch their favorite video types. The man
usually watches action films or war films while the woman prefers romantic love
stories, and the little girl likes animated films. When the little girl is watching
videos on the smart TV, she expects to be recommended for animated films
that she will be interested in. However, since the watching logs of all members
are mixed together, she will be recommended for not only animated films, but
also action or romantic films that other members like. Identifying the individ-
ual users of the shared-account to recommend the items is the main challenge
of shared-account recommendation. Prior recommendation methods for shared
accounts usually capture user preferences by extracting latent features from high
dimensional spaces that describe the relationships among users under the same
account [23,25,30]. However, important sequential features are usually ignored in
these studies, or they rely on explicit user ratings [15]. Therefore, these methods
cannot be applied directly to shared-account session-aware recommendations.
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Fig. 1. An example of a shared-account scenario: multiple family members share the
same account to watch videos on smart TV, and their watching logs are mixed together.
When the little girl is watching videos on the family account, she will not only be
recommended for her favorite animated films, but also for action movies or romantic
movies that other family members prefer.

To address the above issues, we propose a novel multi-user identification
framework MISS for shared-account session-aware recommendation problems.
The MISS model consists of two core components: one is the Dwell Graph Neural
Network (DGNN), which incorporates item dwell time into the gated graph
neural network to capture complex items transition relationships across sessions.
The other is a multi-user identification (MI) module, which utilizes attention
mechanism to distinguish different user behaviors under the same account, thus
to recommend the right item to the right user.

To verify the effectiveness of MISS, we construct two data sets with shared
account characteristics, named FamTV-SA and FamTV-SAS. Both data sets
are obtained from real-world smart TV watching logs. Extensive experiments
are conducted on the two data sets, and the experimental results show that
MISS significantly outperforms the state-of-the-art recommendation methods.

The main contributions of this work are summarized as follows:

– We introduce the task of shared-account session-aware recommendation,
which has rarely been paid attention to in existing research. A novel MISS
model is proposed to solve the problem.

– We propose a dwell graph neural network (DGNN) and a multi-user identifi-
cation (MI) module, which can capture complex items transition relationships
and distinguish different user behaviors under the same account.

– We conduct empirical studies on two real-world data sets. Extensive experi-
ments demonstrate the performance of our proposed method and the contri-
bution of each component.
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2 Related Work

2.1 Session-Based Recommendation

Collaborative filtering algorithms have been widely used in traditional recom-
mendation systems. The item-to-item approaches [14,19] recommended similar
items for users, where the similarities were calculated based on the simultaneous
occurrences in the same session. These methods are insufficient in considering
items sequence order and give recommendation merely based on the last inter-
action, thus cannot well model the continuous preference information of items in
the session. Subsequent researches applied the Markov chains to the recommen-
dation method, predicting the next click based on the user’s previous interaction.
The work of [21] treated recommendation generation as sequential optimization
problem and proposed a Markov Decision Process (MDPs) based method, cal-
culating the next action through the state transition probabilities among items.
In [3] the authors took playlists as Markov chains, and proposed Latent Markov
Embedding (LME) to learn the representations of songs for playlists predic-
tion. The main drawback of Markov-chains-based method is that the state space
quickly becomes unmanageable when considering all possible sequences [11].

In recent years, deep neural networks have been successfully applied to rec-
ommendation [24]. The work of [6] first applied the recurrent neural networks
(RNNs) to session-based recommendation, and introduced several modifications
to classic RNNs making it more viable for this specific problem. The initial
work has been extended in subsequent research. In [7] they proposed a num-
ber of parallel RNN architectures to model sessions based on rich items fea-
ture representations such as pictures and text description. The work of [22]
proposed data augmentation technique and considered shifts in the input data
distribution to enhance the performance of RNN-based models. In [8] a hybrid
method that combines the RNN-based model with the kNN method was pro-
posed, where the co-occurrence signals were used to predict sequential patterns.
Recent work [26] modeled session sequences as graph-structured data, and uti-
lized the Gated Graph Neural Networks to model complex transition relation-
ships between items. However, these methods mentioned above can only use the
current anonymous session or single sequence to make recommendations.

2.2 Session-Aware Recommendation

Session-aware recommendation aims to predict the next interaction based on the
user’s historical sessions and current session. In [17], the authors believed that
historical interactions reflect user’s interest, and thus proposed a hierarchical
RNN model to capture user’s long- and short-term preferences. The work [12]
introduced a dual attentive neural network to exploit user’s personalized prefer-
ence and main purpose in current session. In [29] a hierarchical architecture that
contains GRU and Temporal Convolutional Network was proposed, capturing
both the long-term interests and the short-term interactions within sessions to
output a dynamic user embedding and make recommendations. Recent work [31]
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proposed a personalized session-aware recommendation method, which utilized
graph neural network to extract user personalized information and attention
mechanism to model the effect of historical sessions on current sessions. Despite
the effectiveness, none of the above studies take account of the shared account
scenario.

2.3 Shared-Account Recommendation

There are relatively few recommendation studies focusing on shared accounts.
The work of [30] used linear subspace clustering to study user identification,
and recommended items that are most likely to be rated highly by each user. In
[25], the authors supposed different users within a shared account get used to
consuming services in different period. They decomposed users based on min-
ing different preferences over different periods from consumption logs, and then
utilized a standard User-KNN to make recommendation for each identified user.
The work [1] used the Apriori algorithm to decompose users under the same
account. By analyzing the similarity of the proportion of each type of items
under a time period, the work [27] judged whether a session is generated by the
same user and then made personalized recommendation to the identified users.

Although these studies have been proven to be effective in many applications,
they are designed for static rating data, or ignore the important sequential char-
acteristics of sessions. None of these methods can be directly applied in the
shared-account session-aware recommendation scenario.

3 Method

3.1 Problem Formulation

Let I denote the set of all items and K denote the set of all accounts involved in
the system. For each account k ∈ K, the interactive items within a certain time
frame are organized in chronological order as a session si = {vi,1, vi,2, ..., vi,mi

},
where vi,j ∈ I stands for an item the user has clicked within the session si, and
mi represents the total number of items in session si. All sessions of account k
are represented as Sk = {s1, s2, ..., snk

}, where nk is the number of sessions of
the account k. For convenience, we use n instead of nk. The last session in Sk is
the current session Sk

c = {sn}, and the remaining sessions are historical sessions
Sk
h = {s1, s2, ..., sn−1}. The goal of session-aware recommendation is to predict

the next interactive item vn,mn+1 of current session Sk
c based on the historical

sessions Sk
h and current session Sk

c .
Different from traditional session-aware recommendation, our research

focuses on the existence of shared accounts. In this scenario, a single account k

may be shared by multiple users, which can be denoted as U = {ui}|U|
i=1, and ui

represents an individual user of the shared account. Sk is a mixture of behav-
iors from these users. Therefore, the key problem is to distinguish different user
behaviors in historical sessions Sk

h and identify the operating user uc of current
session Sk

c .
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Fig. 2. An overview of the proposed MISS method.

3.2 Overview

Figure 2 provides an overview of the proposed MISS method. MISS consists of
two main components: the dwell graph neural network (DGNN) and the multi-
user identification (MI) module. For each account k, we model all sessions Sk

as an account session graph Gk. Then Gk is fed into the DGNN unit to capture
complex transition relationships among items. We use the mean-pooling layer to
generate session embedding. After that, the MI unit takes all sessions as input to
distinguish the information of different latent co-users under the same account,
and tries to filter the information belonging to the current operating user and
generate the current user representation. Using the representation, we calculate
the recommendation scores of all items, and the items with top-N scores will be
the candidate items for recommendation.

3.3 Dwell Graph Neural Network (DGNN)

Session-Graph Construction. For each account k ∈ K, all sessions Sk can be
modeled as a directed graph Gk = (Vk, Ek). The node i in graph Gk represents
an interactive item vi ∈ I of the account k, and the edge vi → vj means an
account interacts vj after vi within a session. Inspired by previous work [2,26],
we make the following assumptions:

– In the edge vi → vj , the effect of vi on vj is totally different from the effect
of vj on vi.

– Longer dwell time on an item means greater interest in it.

To model these different transition relationships, we define two types of
directed edges with different weights, the outgoing dwell edge with weights of
wo

ij and the incoming dwell edge with weights of wi
ij . We set a time threshold td,
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(a) account’s sessions (b) session graph (c) adjacent matrices

Fig. 3. An example of all sessions of an account as well as corresponding session graph
and adjacent matrices.

dj,i→j means the time that the user stays on vj after interacted vi, and di,i→j

represents time on vi. The weights are calculated as:

wo
ij =

�dj,i→j

td
�

∑
vi→vq

�dq,i→q

td
�
, (1)

wi
ij =

�di,i→j

td
�

∑
vi→vq

�di,i→q

td
�
. (2)

The account session graph Gk can be represented by two adjacent matrices Ao
k

and Ai
k, which are written as:

Ao
k[i][j] = wo

ij , (3)

Ai
k[i][j] = wi

ij . (4)

Figure 3 shows an example of all sessions of an account as well as the correspond-
ing session graph and adjacent matrices.

Graph Neural Network. Graph neural networks [20] are well-suited to solve
the session-aware recommendation problem, because it can automatically extract
features of session graphs with considerations of rich node connections [26]. The
construction of the session graphs has been introduced above, and then we will
demonstrate the learning process of node vectors in each session graph. At each
time of node update, we first calculate the aggregated incoming and outgoing
dwell information of node i as:

ati = Ak,i:[vt−1
1 ,vt−1

2 , ..,vt−1
n ]�W + b, (5)

where W ∈ Rd×2d controls the weight, vi ∈ Rd represents the latent vector
of node i, and � denotes the transpose of the matrix. Ak ∈ Rn×2n is the
concatenation of the two adjacency matrices Ao

k and Ai
k, and Ak,i: ∈ R1×2n

are the two columns of block in Ak corresponding to node i. Then we utilize
the GRUs [4] to update each node’s hidden state by incorporating the hidden
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state of other nodes at the previous timestep. The update functions are given as
follows:

zti = σ(Wzati + Uzvt−1
i ), (6)

rti = σ(Wrati + Urvt−1
i ), (7)

ṽt
i = tanh(Woati + Uo(rti � vt−1

i )), (8)

vt
i = (1 − zti) � vt−1

i + zti � ṽt
i , (9)

where zti and rti respectively represents the update and reset gate, σ(·) is the
sigmoid function, and � is the element-wise multiplication operator. Wz, Uz,
Wr, Ur, Wo, Uo are trainable weight parameters shared by all accounts.

After T propagation steps, we can obtain the final hidden state vector vT
i

of each node i in the session graph Gk. For convenience, we use vi instead. The
final hidden state contains information from both the node itself and its T-order
neighbors.

3.4 Multi-user Identification (MI)

In the shared account recommendation scenario, the behaviors of different latent
co-users under the same account are mixed together. Most existing recommen-
dation methods ignore this issue and generate a single embedding vector for each
account. As a result, the recommendation for the currently operating user may
be affected by the behavior of other users. Therefore, we generate multiple user
vectors based on the historical sessions of the account, where each user vector
represents a latent user under the account. Then the current user representation
vector is obtained by comparing these user vectors with the information of the
current session.

Latent Co-user Representations. Through the output of DGNN, we have
obtained the embedding of account k’s all sessions Sk. For each session ski =
{vi,1, vi,2, ..., vi,mi

} ∈ Sk, we use mean-pooling to calculate its embedding repre-
sentation hk

i ∈ Rd as:

hk
i = mean(vi,1,vi,2, ...,vi,mi

), (10)

then the historical sessions Sk
h = {sk1 , s

k
2 , ..., s

k
n−1} can be represented as an

matrix Hk
h = [hk

1 ,h
k
2 , ...,h

k
n−1], and the current session Sk

c = {skn} is denoted
as Hk

c = [hk
n]. In this work, we adopt the self-attentive method [13] to generate

the multiple user representations. We assume that each account is shared by M
latent co-users Uk = {u1, u2, ..., uM}. For each user ui, we use the self-attention
mechanism to obtain the weights vector a ∈ Rn−1:

a = softmax(w2 tanh(W1H�
h )), (11)

where w2 ∈ Rda and W1 ∈ Rda×d are trainable parameters shared by all
accounts. The vector a represents the latent user ui’s attention weight of accounts
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historical behaviors. Then according to the attention weight, we sum up the
embeddings of historical behaviors and obtain the vector representation of ui,
which can be calculated as:

ui = aHh. (12)

In order to obtain all latent users’ representation vectors, we need to perform
M times of attention. Thus we extend the vector w2 into a matrix W2 ∈ RM×da ,
and the attention weights of the account can be represented as a matrix A as:

A = softmax(W2 tanh(W1H�
h )), (13)

and the final matrix of latent users can be written as:

Uk = AHh. (14)

Current User Representation. After obtaining the latent co-user embed-
dings Uk, for the current session embedding Hk

c , we compute its weight vector
ac as:

ac = softmax(HcU�
k ), (15)

then the current user embedding uc can be summed up by:

uc = acUk. (16)

At the same time, the user’s local interest also plays a vital role in recom-
mendation. We use the representation of the current session and the last clicked
item to represent the user’s local interest zl ∈ R2d. It can be written as:

zl = hn ‖ vn,m, (17)

where ‖ is the concatenation operation, vn,m means the embedding of the last
clicked item within current session, and hn is the embedding of current session.
The final user embedding zu is computed as follows:

zu = [uc ‖ zl]W3, (18)

where W3 ∈ R3d×d compresses the combined embedding vectors into the latent
space Rd.

3.5 Making Recommendation

After obtaining the representation vector zu of the current user, for each item
vi ∈ I we calculate a recommendation score and obtain a score vector ẑ as:

ẑ = z�
u v, (19)

where v is the embedding of all items. Then a softmax function is applied to
generate the probabilities that items will be interacted in the next time:

ŷ = softmax(ẑ). (20)
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For each account session graph, we employee the cross-entropy loss between
the predicted recommendation ŷ and the ground truth y, which can be written
as follows:

L(ŷ) = −
|I|∑

i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)). (21)

The back-propagation through time (BPTT) algorithm is utilized to learn
all parameters and the item embeddings in our proposed MISS.

4 Experiments

In this section, we will conduct experiments on two real-world data sets and
demonstrate the efficacy of our proposed model MISS. We aim to answer the
following research questions:
– RQ1 Does our proposed MISS outperform the existing state-of-the-art meth-

ods in shared-account session-aware recommendation scenario? (Sect. 4.5)
– RQ2 How well do the various components improve the performance of rec-

ommendation? (Sect. 4.6)
– RQ3 Does incorporating dwell time help improve the performance of recom-

mendations? (Sect. 4.6)
– RQ4 How does the hyper-parameter M (the number of latent co-users) influ-

ence the recommendation performance? (Sect. 4.7)

4.1 Data Sets

Our model focuses on the shared account problem in session-aware recommenda-
tion, but there is no publicly available data set for the issue. Therefore, we collect
39k user watching logs from April 1st to June 30th 2020, and construct two data
sets with shared account characteristics, named FamTV-SA and FamTV-SAS.
The watching logs are obtained from a well-know smart TV platform, includ-
ing which video is playing, when to start the playing and when to end. We
analyze the watching logs of these accounts and find that the watching logs of
some accounts contain children or educational videos, which indicates that this
account may be shared by multiple family members. We mark such accounts as
shared accounts. FamTV-SA only contains the watching logs of shared accounts,
while FamTV-SAS is a mixed data set of both shared accounts and single-user
accounts.

For both data sets, we first filter out users who have less than 10 watching
logs, and merge the records of the same item watched by the same user within an
adjacent time less than 10 min. Then we organize the same account interactive
items with an interval of less than 30 min into a session in chronological order.
After that, we filter poorly informative sessions by removing sessions which have
less than 3 interactions, and ensure that each account has 5 sessions or more to
have sufficient cross-session information.

For each account, we select 75% of sessions as the train set, 10% as the
validation set and the remaining 15% as the test set. The statistics of the two
data sets are shown in Table 1.
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Table 1. Statistics of data sets after processing.

Data set Accounts Items Sessions Train
sessions

Validation
sessions

Test
sessions

FamTV-SA 20,213 25,819 969,739 727,304 96,974 145,461

FamTV-SAS 22,347 25,921 1,082,119 811,589 108,212 162,318

4.2 Baseline Methods

We compare our proposed model with the following methods, including conven-
tional, session-based and session-aware recommendation methods.

– POP recommends the most popular items to users.
– Item-KNN [19] recommends items similar to the previously clicked items in

the session by calculating the cosine similarity between item vectors.
– BPR-MF [18] is a widely used matrix factorization method. Like [6], we

represent the user feature vector with the average latent factors of items that
appeared in the session so far.

– GRU4Rec [22] applies recurrent neural network to session-based recommen-
dation.

– SR-GNN [26] uses the gated graph neural networks to model complex item
transition relationships within sessions.

– HGRU4Rec [17] uses a hierarchical RNNs to model user’s interest evolution,
in which a session-based RNN to capture current session information while a
user-level GRU depicting user history information.

– HierTCN [29] utilizes a hierarchical architecture that consists of RNN and
Temporal Convolutional Network to capture the long-term interests and
short-term interactions.

4.3 Evaluation Metrics

To evaluate the performance of different methods, we adopt Recall@N and
MRR@N as the evaluation metrics, which are also widely used in other related
works.

Recall@N is widely used as a measure for predictive accuracy, which repre-
sents the percentage of correct items among the top-N recommended items.

MRR@N (Mean Reciprocal Rank) is the average of reciprocal ranks of the
correctly-recommended items. When the ground truth item is not in the rec-
ommendation list, the reciprocal rank is set to 0. MRR considers the rank of
recommended items, and larger MRR values indicates that correct recommen-
dations in the top of the ranking list.

In our experiment, N is set to 5, 10 and 20.
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Table 2. Model Performance on data sets.

Methods FamTV-SA FamTV-SAS

Recall MRR Recall MRR

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

POP 0.35 0.58 0.76 0.11 0.14 0.16 0.39 0.62 0.81 0.12 0.14 0.17

Item-KNN 8.40 11.23 14.66 5.97 6.12 6.37 8.64 11.40 14.89 6.05 6.34 6.71

BPR-MF 4.71 6.98 8.99 2.76 3.24 3.65 4.77 7.09 9.10 2.77 3.30 3.67

GRU4Rec 15.37 21.88 29.88 9.96 9.81 10.37 15.78 22.63 30.59 9.27 10.18 10.73

SR-GNN 22.29 30.28 38.69 13.65 14.87 15.62 22.32 30.40 38.77 13.71 14.98 15.70

HGRU4Rec 17.30 24.93 33.38 9.85 10.86 11.44 17.77 25.47 33.98 10.18 11.20 11.79

HierTCN 23.46 30.78 38.72 14.83 15.81 16.36 23.70 31.13 39.11 15.03 16.02 16.58

MISS 24.61 33.01 42.00 15.07 16.19 16.81 24.81 33.17 42.13 15.22 16.33 16.87

4.4 Parameter Setup

We set item embedding dimension d = 100 for both data sets. For the dell
time threshold of the DGNN, we set td = 300. In the MI unit, we set a hyper-
parameter M to indicate the number of users in the shared account. M is set
to 4 for both data sets. As for the propagation step T , we set T to be 4. All
parameters are initialized using a Gaussian distribution with a mean of 0 and
a standard deviation of 0.1. The model is trained with Adam [9] optimizer,
where the initial learning rate is set to 0.001. Moreover, the coefficient of L2
normalization is set to 0, and the batch size is 100.

4.5 Comparisons with Baselines (RQ1)

Results of MISS and other baselines on two data sets are shown in Table 2,
with the best results highlighted in bold-face. Clearly, our proposed MISS model
outperforms all baselines in terms of Recall and MRR on both data sets. We can
make the following observations:

As we can see from Table 2, strong baseline HierTCN achieves best results
among all baselines, which is also outperformed by MISS on both data
sets. The performance improvement over HierTCN on shared-account-only
data set FamTV-SA are 4.90%, 7.24% and 8.47% respectively in terms of
Recall@5/10/20. This verifies the effectiveness of the two core components
DGNN and MI in our model. The effect of DGNN and MI will be analyzed
in Sect. 4.6.

It is obvious that RNN-based models perform better than traditional models,
which demonstrates that RNN-based methods are good at modeling sequential
information within sessions. The performance of MISS and HierTCN are better
than pure session-based methods SR-GNN and GRU4Rec, which proves that
taking historical sessions into account is effective in improving recommendations.
Compared with GRU4Rec and HGRU4Rec, the performance of SR-GNN verifies
the superiority of graph-based methods.
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Table 3. Performance of MISS compared with four ablation models.

Methods FamTV-SA FamTV-SAS

Recall MRR Recall MRR

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

MISS(-D) 24.54 32.93 41.91 14.97 16.10 16.72 24.73 33.08 42.05 15.14 16.22 16.78

MISS(-G) 22.97 29.24 35.90 13.72 14.67 15.11 23.04 29.35 36.07 13.87 14.87 15.48

MISS(-M) 23.51 30.90 38.67 13.97 14.87 15.76 23.74 31.26 38.87 14.16 15.09 15.93

MISS(-G-M) 21.34 27.51 34.02 11.74 12.58 13.07 21.37 27.64 34.11 11.81 12.70 13.28

MISS 24.61 33.01 42.00 15.07 16.19 16.81 24.81 33.17 42.13 15.22 16.33 16.87

4.6 Ablation Study (RQ2 & RQ3)

To verify the effectiveness of the proposed DGNN and MI modules, we com-
pare our method with different variants and the results are shown in Table 3.
MISS(-D): MISS without incorporating dwell time into GNN; MISS(-G): MISS
has no DGNN component; MISS(-M): MISS without MI, that is, it makes rec-
ommendation without considering filtering information of different latent users;
MISS(-G-M): MISS neither has the DGNN component nor the MI.

From Table 3, we can see that MISS consistently outperforms MISS(-G) and
MISS(-M), which indicates the importance of modeling historical information
and filtering latent users in shared accounts. MISS also performs better than
MISS(-D). It proves that the assumption is reasonable that users’ interests are
related to their dwell time on items.

We can also observe that the performance of MISS(-M) is better than MISS(-
G), which means that the DGNN module is more effective than the MI module
in MISS. However, MISS(-G) still outperforms most of the baselines listed in
Table 2. On FamTV-SAS, the gap between MISS(-M) and MISS is smaller than
on FamTV-SA. One possible reason is that we assume the same number of latent
users in all accounts, while there are a certain percentage of non-shared accounts
in FamTV-SAS. Besides, in the real shared account scenario, different accounts
are usually shared by a different number of latent users. The proposed MI module
fails to identify the number of latent users; it remains as a topic for future work
to design even better MI modules. Additionally, MISS(-G-M) gets the lowest
performance amongst the four ablation methods. In summary, capturing users’
historical interests and distinguishing information from different latent users are
useful.

4.7 Influence of Hyper-parameters (RQ4)

In Sect. 3.3, we propose the multi-user identification module and introduce a
hyper parameter M , which represents the number of latent co-users under the
shared account. To study how the performance change with M , we compare the
recommendation performance under the different M values while keeping other
settings unchanged. Figure 4 illustrates the experimental results. We can find
that for both data sets, the performance reaches the best values when M is 4.
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(a) Recall@5 (b) Recall@10 (c) Recall@20

(d) MRR@5 (e) MRR@10 (f) MRR@20

Fig. 4. Performance of MISS with different hyper-parameter M .

5 Conclusion

In this paper, we have proposed the new task of shared-account issue in the
session-aware recommendation scenario. To address this task, we propose a novel
framework named MISS. Through the Dwell Graph Neural Network and Multi-
user Identification module, our framework is able to capture and distinguish the
preference drift of different co-users under the same account. To evaluate the
effectiveness of MISS, we construct two data sets with shared-account character-
istics, while one contains only shared accounts and the other contains both shared
and non-shared accounts. Experiments conducted on two data sets demonstrate
that MISS evidently outperforms the state-of-the-art recommendation methods.

A limitation of MISS is that we assume the same number of latent users in all
shared accounts. For future work, we will optimize the multi-user identification
module to automatically detect the number of co-users, so as to achieve better
performance.
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Abstract. Visualization recommendation systems measure the impor-
tance of visualizations to make suggestions. While considering each visu-
alization individually may be enough to gauge its importance in spe-
cific scenarios, it ignores the relations between visualizations under a
visual analysis context. This paper is to study a strategy via a more
general method called VizGRank which models the relations between
visualizations as a graph, then calculates the importance of visualiza-
tions by adopting a graph-based algorithm. In this model, the relations
derived from the visual encoding of the visualizations and the underly-
ing data schema are used for recommendation. Due to the lack of public
benchmarks, the effectiveness of the model is evaluated on the synthetic
results from an existing public benchmark IDEBench as a workaround.
However, since the existing benchmark is specific and synthetic and does
not reflect the realistic scenarios of visualization recommendation com-
pletely, a new benchmark for visualization recommendation is designed
and constructed by collecting real public datasets. Extensive experiments
on both the public benchmark and the new benchmark demonstrate that
the VizGRank can better capture the relative importance of visualization
and outperforms the existing state-of-the-art method.

Keywords: Visualization recommendation · Benchmark · Visual
analytics · Inherent relation

1 Introduction

During visual analysis, the analysts inspect and understand the datasets to gain
interesting insights. Traditionally, the analysts iteratively browse visualizations
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to search for satisfactory ones. Since this process is rather tedious and time-
consuming, the analysts may end up having explored only a fraction of the
visualization space and chosen an inferior visualization, possibly missing critical
insights hidden in the data.

Visualization recommendation systems emerged to ease this effort by suggest-
ing important visualizations. Below we use an example to show the principles
of visualization recommendation. Consider a relational table sales (Quantity,
InvoiceDate, UnitPrice, Country, Sales, StockCode, CustomerID) about sales
data in an e-commerce application1, as shown in Table 1.

Table 1. An excerpt of sales data from a UK retailer.

Quantity InvoiceDate UnitPrice Country Sales StockCode CustomerID

6 2010-01-12 2.55 EIRE 15.3 22727 12583

24 2010-04-12 3.75 France 90 10002 12662

8 2011-01-12 4.95 Germany 39.6 22326 14911

24 2011-03-02 1.79 Germany 42.96 21731 12472

... ... ... ... ... ... ...

According to different ranking metrics, different methods will recommend
different visualizations. For example, Fig. 1 shows possible visualizations that
may be recommended by different systems or methods. Figure 1(a) is a pie plot of
InvoiceDate and Quantity recommended by Quickinsights [7] with high priority,
since the first season of 2011 dominates by accounting for more than 50% of total
sales. Figure 1(b) is a bar plot of InvoiceDate, Sales, and Country scored high in
SeeDB [20] since the distributions of sales of these two countries demonstrate a
large deviation. Figure 1(c) is a scatter plot of Quantity, UnitPrice and Country
recommended by DeepEye [13], since the score is high according to their proposed
partial order model.

(a) by Quickinsights (b) by SeeDB (c) by DeepEye

Fig. 1. Possible recommended visualizations for the sales data in Table 1.

1 https://www.kaggle.com/carrie1/ecommerce-data.

https://www.kaggle.com/carrie1/ecommerce-data
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Fig. 2. The analysis space of the data in Table 1 in the form of a visualization graph.

In all the above methods, visualizations are ranked according to a specific
utility function for individual visualizations. The utility function actually repre-
sents a user preference in the ranking. However, only using these utility functions
has two limitations. On the one hand, it is subjective, since it depends on the
interest and the knowledge of the analysts. On the other hand, it ignores the rela-
tion of visualizations. Adopting a certain utility function without knowing the
visual analysis context, preferences may become biased and negatively impact
recommendation effectiveness. Instead, we consider the importance of visualiza-
tion based on the relation of visualizations. The relation inherently reflects the
associations between visualizations and influences the relative importance of each
visualization in the visual analysis context. In this way, the model is more gen-
eral and objective since it is based on inherent relations between visualizations
and it can also incorporate these preferences into the ranking.

Intuitively, various visualizations from one specific dataset are possibly linked
[8]. During visual analysis, the analysts specify visualizations continuously and
move from one visualization to another by creating new visualizations, modify-
ing old ones, and revisiting previous ones. These visualizations constitute the
analysis space as shown in Fig. 2, from which the analysts continuously pick
visualizations for inspection.

As an example, suppose that the retailer wants to analyze the data in Table 1.
To do so, she might start with the attribute Sales. She starts by examining a
line plot of daily sales (node ‘Viz0’ in Fig. 2). Then she continues on overviews
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of Sales from different perspectives, for example, by adding another attribute
Country to the current line plot (resulting in node ‘Viz2’ in Fig. 2) or by trans-
forming InvoiceDate into seasonal granularity (getting a pie plot of sales as node
‘Viz5’ in Fig. 2). These plots are linked intrinsically since they present different
aspects of the information related to Sales. As shown in Fig. 2, node ‘Viz0’ links
with more visualizations. Thus, ‘Viz0’ is more likely to have higher importance
than other visualizations. After inspecting visualizations of Sales, she turn to
visualizations of Quantity shown as ‘Viz1’ in Fig. 2. Following this line, visual-
izations of Quantity are also intrinsically linked.

Based on the observation above, visualizations linking with more visualiza-
tions may represent the focuses of the analysts and thus should have higher
relative importance. We believe that such an intrinsic relation will affect the
importance of visualizations. Thus, we propose a model to capture in a graph
the relations with a relation function and solve the ranking problem using a
graph-based method. The relation function is defined mainly on the data schema
and the visual encoding of visualizations. Besides, the utility function presents a
user preference for a specific scenario on the ranking and should not be ignored
in the recommendation. Thus, our model can also incorporate different utility
functions into the ranking to implement a more comprehensive recommendation.

To verify the effectiveness of the proposed model, unlike previous methods
[7,20,22] that usually conduct a user study which is difficult to reproduce, we
adopt quantitative methods (e.g., precision and normalized discounted cumula-
tive gain) to evaluate the performance of the recommendation. Due to the lack
of benchmarks, evaluations are performed on the synthetic results from a public
benchmark called IDEBench [8] as a workaround. However, due to its limitations,
we also construct a new benchmark for evaluation ourselves.

IDEBench is a public benchmark of interaction logs for interactive data explo-
ration. It contains workflows generated using a Markov chain. The query results
generated from these workflows can be merged to generate an ordered list of
visualizations (the more interactions and the more important) and be used to
evaluate the performance of recommendation. However, IDEBench has a few
obvious problems. IDEBench is designed for a specific scenario: (1) There is
only one dataset available, possibly resulting in a bias. (2) Although IDEBench
is designed for visual analysis, it focuses more on query performance than visu-
alization results. (3) The workflows of IDEBench contain queries on binning and
aggregating using count or average, mainly resulting in histogram and binned
scatter. However, our scenario focuses on grouping and aggregations using sum,
average, and count, resulting in various plots such as bar, pie, scatter, and line.
IDEBench is synthetic and is not directly from real visualization results: (4) The
workflows and query results are random since it is generated based on configured
probability (e.g., choosing a specific attribute with a probability of 20%).

To provide an alternative to IDEBench and to replace or supplement user
study, we construct a new benchmark using real datasets collected from Kag-
gle2. Kaggle is a popular data analysis website containing plenty of visualization

2 https://www.kaggle.com/.

https://www.kaggle.com/
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results in the notebooks. With these notebooks collected, we derive a visual-
ization recommendation benchmark, called KaggleBench, with ordered visual-
izations by merging visualization results from different notebooks. KaggleBench
has been published and openly available to the research community3.

In conclusion, the main contributions of our work are as follow:

– We propose VizGRank, a graph-based method that takes advantage of the
relations between visualizations to calculate the importance of visualizations.

– We construct a benchmark KaggleBench with 18 real datasets to enrich the
public availability of benchmark datasets and to evaluate the proposed model.
And KaggleBench (see Footnote 3) has been published for further research.

– Extensive experiments on both IDEBench [8] and KaggleBench demonstrate
the effectiveness of our model VizGRank and we conclude that VizGRank
achieves better results than the state-of-the-art method does.

The rest of the paper is organized as follows. We formulate the problem
in Sect. 2 and explain the VizGRank model in Sect. 3. We elaborate on the
construction of KaggleBench in Sect. 4, demonstrate the experiments and discuss
the results in Sect. 5, and summarize related works in Sect. 6 before concluding
with Sect. 7.

2 Problem Formulation

We first give a formal definition for visualization, relation function, and utility
function. Then, we formulate the problem of the paper.

Visualization. Aggregation-based analysis dominates in the visual analysis [8,
12], thus we view a visualization as the composition of the group-by dimension,
the aggregated measure, and the visualization type. For example, the dimension
of the line plot (node ‘Viz0’) in Fig. 2 is InvoiceDate, the measure is Sales, the
transformation is raw since it groups data by the raw InvoiceDate (it can be
season of the pie plot in Fig. 1(a) and so on), the aggregation is sum, and the
visualization type is line. Thus we define a visualization as:

Definition 1 (Visualization). Given a relation R(A), where A is the set of
attributes, a visualization is determined by the group-by dimension (denoted
d) and the aggregated measure (denoted m), the transformation of the group-
by dimension d (denoted g), the aggregation of the measure m (denoted a)
and the visualization type (denoted t). Hence, a visualization is defined as:
VR(g(d), a(m), t).

Relation Function. As the example in Fig. 2, the relation between ‘Viz0’ and
‘Viz2’ can be measured based on their common attributes InvoiceDate and Sales.
Relation describes the connection between the two visualizations. We introduce
a relation function to describe this intrinsic relation.
3 https://github.com/vengeji/vizrec bench.

https://github.com/vengeji/vizrec_bench
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Definition 2 (Relation Function). For two visualizations Vi and Vj, Vi �= Vj,
the relation function F gives a score to measure relation between Vi and Vj. The
relation function F is F (Vi, Vj) that gives a relation score ∈ [0, 1]. We require
the relation to be symmetric, i.e., F (Vi, Vj) = F (Vj , Vi) for all Vi and Vj.

Visualization Graph. Based on the given relation function, we can construct
a visualization graph G. As in the graph shown in Fig. 2, ‘Viz0’ and ‘Viz1’ have
common attributes InvoiceDate and ‘Viz0’ and ‘Viz5’ have common attributes
InvoiceDate and Sales. Thus, they are connected via the relation function that
considers the context (i.e., the similarity of the group-by and the measure
attributes). Relation function can thus be used to define a visualization graph.

Definition 3 (Visualization Graph). Given the relation function F , a set
of visualizations V , a visualization graph G is an undirected edge labeled graph
defined as G = (V,E), where E = {((Vi, Vj), F (Vi, Vj))|Vi, Vj ∈ V and Vi �= Vj},
and F (Vi, Vj) is used as the label of the edge (Vi, Vj).

Utility Function. The utility function presents a user preference on the ranking
of individual visualization and is also considered in our model. It is worth noting
that the utility function is not a compulsory part, since there are cases where we
may not have preferences on individual visualizations. Thus, by default, when
no utility function is given, the utility score of each visualization is set to be 1.

Definition 4 (Utility Function). The utility function U gives a score to
describe the utility score of a visualization Vi. The higher the score, the greater
the utility. The utility function U is a function that maps a visualization to a
utility score, which is a number in [0, 1].

Importance. To measure the importance of each visualization, our model com-
bines the relation function and the utility function to calculate the importance
of each visualization. Thus, the importance of visualization is defined as:

Definition 5 (Importance). Given relation function F , the visualization
graph G, and the utility function U , the importance I(Vi) of a visualization
Vi is a score to measure the importance of each visualization Vi. We denote the
importance of Vi as I(Vi) when G,F,U are understood in the context.

Definition 6 (Problem). Given a relational dataset R(A), a set VR with n
visualizations, a graph G constructed based on the relation function F , and a
utility function U , find top k visualizations Vi that have the greatest importance
value I(Vi) in the graph G.

3 VizGRank Model

In this section, we describe our model and show how the model works.
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3.1 Relations Between Visualizations

Based on the example in Sect. 1 that the analysts specify the next visualizations
based on previous ones, we design different relation functions to capture different
relationships, namely similarity-based and deviation-based.

Similarity-Based Relation. As shown in the example in Sect. 1, the ana-
lyst focuses on certain visualizations and modifying repeatedly the attributes
used in group-by and aggregation. The intuition is that another visualization
contains relevant information (same attributes) as this one. Based on this, visu-
alization having more neighbors with similar data schema and visual encoding
is more important. So, first, we define the context of a visualization based on
the attributes it contains, the transformations on the attributes, and the visual-
ization type. Then, we propose a similarity-based relation based on the context
defined.

Definition 7 (Context). For a visualization Vi(g(d), a(m), t), the context is
defined as a set CVi

= {g, d, a,m, t}.
Then, we measure the similarity between two visualizations based on the context
using the Jaccard similarity between two sets CVi

and CVi
:

sim(Vi, Vj) =
|CVi

∩ CVj
|

|CVi
∪ CVj

| (1)

Taking node ‘Viz0’ and ‘Viz5’ in Fig. 2 for example, the context of
‘Viz0’ is {raw, InvoiceDate, sum, sales, line} and the context of ‘Viz5’ is
{season, InvoiceDate, sum, sales, pie}. Thus, the similarity between ‘Viz0’ and
‘Viz5’ is sim(V iz0, V iz5) = |{InvoiceDate,sum,sales}|

|{InvoiceDate,sum,sales,season,pie,raw,line}| = 3
7 =

0.429.

Deviation-Based Relation. In the example, after analyzing the visualization
‘Viz0’ of the attribute Sales, the analyst turns to another visualization ‘Viz1’
of Quantity or ‘Viz4’ of UnitPrice. The context of visualizations with Quan-
tity or UnitPrice is more deviated from Sales (i.e., with lower similarity). Thus,
we define deviation-based relation to model this relation. Intuitively, deviation-
based relation will promote visualizations with different contexts, improving cov-
erage of different contexts. The deviation is defined as:

devi(Vi, Vj) = 1 − sim(Vi, Vj) (2)

For example, the deviation of node ‘Viz0’ and ‘Viz5’ is 1 − 3
7 = 0.571.

3.2 Calculating the Importance

We give an intuitive description that highly linked (by the relation) visualizations
are more likely to be more important than visualizations with fewer linkages and
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a visualization has higher importance if the importance of its neighbors is high.
Then the importance can be obtained by using algorithms like PageRank [3,23]:

I(Vi) =
∑

Vj∈V

F (Vi, Vj) · I(Vj)∑
Vk∈V F (Vj , Vk)

(3)

Consider the graph in Fig. 2. The importance is calculated as shown in
Fig. 3. First, we derive a relation matrix using the relation function, as shown
in Fig. 3(a). Then we can obtain a stochastic matrix through row normalization
(Fig. 3(b)). Finally, based on Markov Convergence Theorems [2], the importance
of each visualization has a convergent state shown in Fig. 3(c).

Viz0 Viz1 Viz2 Viz3 Viz4
Viz0 0 0.667 0.833 0 0.25

Viz1 0.667 0 0 0.429 0

Viz2 0.833 0 0 0.375 0.375

Viz3 0 0.429 0.375 0 0

Viz4 0.25 0 0.375 0 0

Viz5 0.429 0.25 0 0 0.111

Viz5
0.429

0.25

0

0

0.111

0

Viz0 Viz1 Viz2 Viz3 Viz4
Viz0 0 0.306 0.383 0 0.114

Viz1 0.495 0 0 0.319 0

Viz2 0.526 0 0 0.237 0.237

Viz3 0 0.533 0.467 0 0

Viz4 0.34 0 0.509 0 0

Viz5 0.543 0.317 0 0 0.14

Viz5
0.197

0.186

0

0

0.151

0

Viz0 Viz1 Viz2 Viz3 Viz4
0.277 0.18 0.207 0.116 0.107

Viz5
0.113

Row

normaliza on

(a) Rela on matrix (b) Rela on matrix (c) Final importance

Fig. 3. The process of calculating the importance of each visualization in Fig. 2.

3.3 Incorporating Utility Function

Our model can incorporate a utility function to give a personalized ranking to
a user preference. Then, the importance of visualizations is obtained by:

I(Vi) = (1 − α) · U(Vi) + α ·
∑

Vj∈V

F (Vi, Vj) · I(Vj)∑
Vk∈V F (Vj , Vk)

(4)

where α is the damping factor that can be set between 0 and 1 accordingly.

Available Utility Functions. Previous methods [7,13,20] are feasible for the
utility function of VizGRank. SeeDB [20] only considers the importance of bar
plots in its recommendation and Quickinsights [7] considers complex filter condi-
tions that do not fit well in our scenario. So, to enable comparison, we adopt the
utility function in DeepEye [13]. DeepEye constructs a partial order model based
on three factors including matching quality M(v), the transformation quality
Q(v), and the importance of attributes W (v) to recommend visualizations.

3.4 Different Schemes

There are different ways of using the VizGRank algorithm, with a choice of the
relation and the utility function. Each choice is a scheme of VizGRank, as shown
in Table 2. We can use relation without utility (e.g., Sim and Devi). And we
can also incorporate a specific utility (e.g., Sim-DE and Devi-DE).
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Algorithm 1. The VizGRank Algorithm
Input: The set of visualizations, V ; The relation function, F ; The utility function

given, U
Output: an ordered list of Visualizations, Vsorted

1: utility = [ ]
2: for each vi ∈ V do
3: utility[vi] = U(Vi) or 1 if not given U
4: end for
5: k = 0; importance = utility
6: while δ > ε do
7: for each vi ∈ V do
8: importancek+1(vi) = (1 − α) · utility[vi] + α · ∑

vj∈V

F (vi,vj)·importancek(vj)∑
vk∈V F (vj ,vk)

9: end for
10: δ = ‖importancek+1 − importancek‖1

11: k = k + 1
12: end while
13: Vsorted = Sort(V, importancek)
14: return Vsorted;

Table 2. Different schemes of VizGRank.

Name Relation Utility

Sim Similarity –

Devi Deviation –

Sim-DE Similarity Partial order

Devi-DE Deviation Partial order

3.5 VizGRank Algorithm

The VizGRank algorithm is presented as pseudo-code in Algorithm1. To enable
comparison with DeepEye [13], the input visualization set V is generated based
on their generation algorithm. First, we initialize the importance of each visual-
ization based on the utility function given (line 1–5). Then, for each visualization
Vi, we update the importance based on its neighbors’ importance until the pro-
cess convergences (line 6–13). Finally, we sort the visualization candidates and
output an ordered list of visualizations (line 14) as the recommendation results.

4 Benchmark from Real Datasets

We construct a benchmark called KaggleBench to verify the VizGRank model.
Next, we elaborate on the details of KaggleBench. A sample of the dataset in
KaggleBench is shown in Fig. 4, see KaggleBench4 for details.

4 https://github.com/vengeji/vizrec bench.

https://github.com/vengeji/vizrec_bench
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Fig. 4. A sample dataset in the KaggleBench. For more details see KaggleBench (see
Footnote 4). For each dataset, we collect visualization results in JSON format recorded
in files kickstarter *.json (A, B). Then we merge results based on the votes to generate
an ordered list with 25 visualizations in file kickstarter.json (C).

4.1 Criteria and Collection

Criteria. In Kaggle, each dataset has several notebooks containing analysis
results (queries or visualizations). We have collected 18 datasets and correspond-
ing notebooks as the source of our benchmark. To ensure the quality of the
benchmark, datasets collected obey the following criteria:

(1) Scenario Consistence. Notebooks should contain visualization results.
(2) Type Variety. The dataset should contains various data types of temporal,

categorical, and numerical. Notebooks should contain various visualization
types of bar plot, line plot, pie plot, and scatter plot.

(3) Number Limitation. The number of attributes of the dataset used is
within 5 to 30. Too few attributes make no sense for the recommendation,
and too many attributes make it difficult to conduct a comprehensive anal-
ysis.

(4) Coverage Constraint. The notebooks should contain more than 15 differ-
ent visualizations covering all the attributes in the dataset used.

Collection. We manually select notebooks that contain visualization outputs to
guarantee Scenario Consistence and Number Limitation. To satisfy Type
Variety, we only select datasets with multiple types of attributes and notebooks
with multiple types of visualizations. We guarantee Coverage Constraint by
dropping unused attributes and merging visualizations from other notebooks to
reach more than 15 visualizations for each dataset.
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4.2 Processing

To obtain an ordered list of visualizations, we merge visualizations in different
notebooks together for each dataset based on votes collected from Kaggle. The
merging principles are listed as follow:

(1) Early Construction. Within a notebook, the visualizations constructed
earlier in the process are allocated higher score and thus ranked higher.

(2) Multi Construction. Visualizations that are constructed in multiple note-
books receive a higher score and thus ranked higher.

(3) User Votes. The more votes a notebook has, the higher score the visual-
izations within it get, and thus the higher the rank.

Algorithm 2. The Votes-based Merging Algorithm
Input: The list of notebooks of dataset R, nbR; The list of votes of notebooks, voteR

Output: an ordered list of visualizations for dataset R, VR

1: sort nbR according to voteR

2: merged[nbRi ] = merge nbRi with other nbRj ∈ nbR in the order of voteR

3: assign a rank score |nbRi | − k + 1 to each vk ∈ nbRi , |nbRi | is the length of nbRi
4: for each nbRi ∈ merged do
5: for each v ∈ nbRi do
6: V = find v in all other notebooks nbRj

7: v.score =
voteRi ∗v.rank

sum(voteR)
+

∑
vj∈V

voteRj ∗vj .rank

sum(voteR)

8: end for
9: nbRi = Sort(nbRi , key = v.score)

10: end for
11: return merged;

The algorithm is shown in Algorithm2. We first sort all nbRi according to
voteRi . For each visualization set V in nbRi , we merge visualizations of other
notebooks to it according to the order of voteRi (line 2). Next, we assign each
visualization in it a rank score (line 3). Then for each visualization in each note-
book, we find corresponding visualizations in other notebooks (line 6). Finally,
we calculate the score of each visualization as the weighted sum of rank scores
among different notebooks (line 7) and sort them (line 9) as the result.

Reviewing the principles above, we assign a rank score to each visualiza-
tion according to the occurrence within each notebook (line 3) to follow Early
Construction (e.g., the first plot of notebook receive a rank of 1 as shown in
Fig. 4B.). Merging duplicate visualizations in different notebooks (line 6) make
sure that visualizations created by multiple notebooks get a higher score, fol-
lowing Multi Construction. For example, there are 3 notebooks as shown in
Fig. 4A, and we calculate the score of each visualization as the weighted sum of
rank scores among different notebooks (line 7) based on User Votes.

The resulting sets of visualizations (Fig. 4C) of each dataset make up Kag-
gleBench (see Footnote 4). To conclude, we have collected 18 datasets, each of
which has a set of visualizations each of which has a rank score.



Context-Aware Visualization Recommendation Based on Relations 255

5 Experiments

5.1 Experiments Setup

Setup. All the following experiments are implemented in Python (3.7.4). They
are conducted on a Ubuntu Linux 18.04.4 LTS machine with 32 Intel Xeon Silver
4208 CPU and 64GB RAM.

Datasets. Our experiments are performed on the following datasets:

– Synthetic Dataset. We merge all the default workflows of IDEBench [8] to
generate a count-based ordered list of visualizations.

– KaggleBench Dataset. The benchmark described in Sect. 4.

Baselines. We compare our model VizGRank with the following baselines.

– Random: We shuffle the generated visualizations 10000 times and calculate
the average performance as the baseline.

– DeepEye [13]: This is a state-of-the-art automatic visualization system.

Schemes. The schemes used in the experiments are summarized in Table 2. We
first compare how different relations without utility (namely, Sim and Devi)
function perform on KaggleBench and IDEBench. Then we compare our method
in the given schemes with the state-of-the-art method DeepEye. We also incor-
porate DeepEye as a utility function in our model (namely, Sim-DE and Devi-
DE) to demonstrate the flexibility of VizGRank.

Evaluation Metrics. We adopt commonly used metrics in recommendation
systems5 to measure the effectiveness of the top-K results of the recommendation
as follows. Usually, the K is set to 10 or 20. However, we consider the relative
importance of all visualizations, so we set the K to cover most results in the
output. Thus, we set K = {5, 10, ..., 95, 100} with a step of 5.

For each dataset in KaggleBench (18 in total) and IDEBench (only one), we
run the algorithm and calculate the values of these metrics at different K. Then
we average them across all the datasets as the performance indicator.

As a premise, for each dataset, some visualizations in the top-K output are
the same as those in the benchmark, which we call relevant visualizations.

F1-score@K. F1-score@K is the evenly weighted harmonic mean of preci-
sion@K and recall@K. Precision@K refers to the proportion of relevant visu-
alizations that appear in the top-K output. Recall@K refers to the fraction of
relevant visualizations over the total amount of visualizations in the benchmark.

AP@K. AP@K (Average precision) takes into account both the number of
relevant visualizations in the top-K and the positions of these visualizations. For
each position i of relevant visualizations, we can get a precision@i, then average

5 https://en.wikipedia.org/wiki/Evaluation measures (information retrieval).

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)
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precision is the sum of each precision@i and normalized by the total number of
visualizations in the corresponding dataset of the benchmark.

NDCG@K. NDCG@K (Normalized Discounted Cumulative Gain) considers
the rank score and position of each relevant visualization in the output. Cumu-
lative gain (CG) is the sum of rank scores of relevant visualizations. NDCG
assumes highly relevant visualizations are more important and the greater the
ranked position i of a relevant visualization the less important. Thus, the CG
is discounted (DCG) by the position i using 1/log2(i + 1). Since the output
may vary in size of different datasets, to compare the performance the DCG is
normalized by ideal DCG calculated by sorting visualizations according to rank
scores.

5.2 Performance of Relations

We first experiment different relations without utility to see which relation cap-
tures the relation of visualizations during analysis better.

Evaluation on IDEBench. We compare our methods using IDEBench [8]
first. The results are shown in Fig. 5.

(a) Average F1-score@K (b) Average AP@K (c) Average NDCG@K

Fig. 5. The performance of different schemes without utility on IDEBench.

In terms of f1-score, the results of Devi are better than Random. Sim is
worse than Random. However, for average precision and NDCG, the perfor-
mance of Sim is high at the beginning and decreases as the number K increases.
This is because in the result of Sim the first plot is relevant as in IDEBench,
leading to a higher score at the first position. And the subsequent precipitous
drop is due to the lack of relevant items in the following positions. Although the
relevance of the first position is important, our work focuses more on the relative
importance of visualizations. Sim is even worse than Random with large K,
demonstrating the instability of the Sim method.

The limitations of IDEBench are also sources of this instability: as described
in Sect. 1, there is only one dataset available in IDEBench, resulting in a bias,
and the IDEBench is designed for interactive data exploration scenario, which
does not fit well in our scenario. Thus, IDEBench is not completely applicable
to our scenario.
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Evaluation on KaggleBench. We then compare our methods using our bench-
mark. The results are shown in Fig. 6.

(a) Average F1-score@K (b) Average AP@K (c) Average NDCG@K

Fig. 6. The performance of different schemes without utility on KaggleBench.

The Sim relation has the worst performance in this experiment which is
even worse than the Random. In fact, the similarity-based scheme results in
most similar visualizations (e.g., most bar plots) clustered at the front of the
recommendation list. Although as described in the example in Sect. 1, the ana-
lyst may focus on visualizations with similarity at certain periods, in a broader
perspective, analyzing these visualizations is only a small part of the analysis.
Therefore, the context similarity is not key to the relative importance of visual-
izations in this scenario.

The Devi scheme performs much better than Sim. This is intuitive: at the
beginning, the analyst prefers to browse through as many different attributes as
possible, then conduct further analysis. This is also known as the Visual Informa-
tion Seeking Mantra: ‘Overview first, zoom and filter, then details-on-demand’
[8,17]. Besides, [15] also suggested that previous approaches recommend similar
and redundant results, and the diversity of results should also be considered.

Results on our benchmark are more stable than on IDEBench since our
benchmark contains more datasets and can cover more cases. In conclusion, the
performance of the Devi is better on our benchmark since our scenario focuses
on the initial phase of the visual analysis, where analysts are more likely to
browse through different visualizations (i.e., with more deviation) to get famil-
iar with the data. And on average, Devi is more able to capture the context and
relation of visualizations during the analysis in this scenario.

5.3 Comparison with DeepEye

We compare our model without utility (i.e., Sim and Devi) with the state-of-the-
art system DeepEye. Also, we experiment whether the utility function defined by
DeepEye is useful on our evaluation dataset by incorporating DeepEye’s utility
function into our model (i.e., Sim-DE and Devi-DE).

Evaluation on KaggleBench. We first compare our model with DeepEye on
KaggleBench. The results are shown in Fig. 7.
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(a) Average F1-score@K (b) Average AP@K (c) Average NDCG@K

Fig. 7. Comparison of performance with DeepEye on KaggleBench.

The difference of performance is obvious: without incorporating the utility
function, the Devi scheme outperforms DeepEye a lot in all metrics. And the
result of DeepEye is even worse than the random shuffle-based result. It is easy
to understand: DeepEye defines three factors including matching quality, trans-
formation quality, and importance of attributes. The former two capture the
perceptual quality of the visualization (i.e., how well the data matches the visu-
alization). Only the third factor captures the importance of attributes. DeepEye
lacks an awareness of the analysis context and is not general to most analysis
scenarios. Thus, DeepEye’s utility function is limited and can only be used as
a preference upon the ranking. However, our model is based on the characteris-
tics and relations of the underlying data itself and is more general in different
scenarios with different data since the relation of visualizations is more inherent.

Besides, incorporating DeepEye’s utility function into our model impedes the
overall performance of our model, which results in the performance of our model
being closer to that of the random method (as demonstrated by Devi-DE).

(a) Average F1-score@K (b) Average AP@K (c) Average NDCG@K

Fig. 8. Comparison of performance with DeepEye on IDEBench.

Evaluation on IDEBench. We then compare our model with DeepEye on
IDEBench. The results are shown in Fig. 8.

Without incorporating DeepEyes’s utility function, VizGRank performs bet-
ter than DeepEye on IDEBench. However, due to the bias of IDEBench and the
utility function, Sim-DE and Devi-De both perform worse than Random and
DeepEye, suggesting that an inappropriate utility function can bring much bias
to the result. Sim and Devi only use inherent features of the data to calculate
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the relative importance of the visualizations, making the model more general
across different datasets.

6 Related Work

Most methods are based on utility functions capturing different information. We
categorize them as visual effectiveness, data content, and user goal/preferences.

Visual Effectiveness. Methods in this category consider visual quality as the
ranking metric. APT [14] introduces expressiveness rules to prune invalid visu-
alizations and effectiveness rules to rank the remaining visualizations. Voyager
[22] uses a set of expressiveness criteria based on perceptual effectiveness metrics.
VizML [10] trains models to predict better visualization choices.

Data Content. Methods in this category try to measure the interestingness of
data to make recommendation. Metircs for interestingness including: (1) simple
descriptive statistics such as entropy, variance, skewness, kurtosis, and correla-
tion. This approach is exemplified by DIVE [11] and DataSite [6]; (2) inferential
statistics such as the chi-square test and the p-value test. Examples are AutoVis
[21] and ETKI [19]; (3) specific score functions based on data content such as
deviation in SeeDB [20] and similarity in zenvisage [18].

User Goal/Preference Methods in this category try to model the user. They
investigate models that calculate how much a visualization satisfies the user’s
visualization or analysis goal/preference. Examples are HARVEST [9], VizAssist
[1], and VizRec [16].

These methods regard visualizations as individuals and ignore the relations
between visualizations. Inspired by the graph model for item recommendation
such as [4,5], our method creatively considers the relations between visualiza-
tions for recommendation and can also incorporate previous methods as utility
functions to the model, achieving a more comprehensive recommendation.

7 Conclusion

In this paper, we proposed VizGRank, a general graph-based model based on
the relations between visualizations. To compare their performance fairly, we
collected datasets to construct a benchmark called KaggleBench. Experimental
results show that VizGRank performs well on both KaggleBench and IDEBench
in the literature, which verifies the applicability and practicability of VizGRank.
Discovering more generic relations (e.g., learning relations from examples) and
relations based on more data features can be our future research direction.
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Abstract. Model-based collaborative filtering (CF) methods can be
divided into user-item methods and item-item methods. In most cases,
both of them can be seen as modeling the user-item interaction and the
only difference between them is that they adopt different ways to build
user representations. User-item methods obtain user representations by
directly assigning each user a real-valued vector and do not consider
users’ historical item information. However, users’ historical item infor-
mation can reflect users’ preferences to some extent and can alleviate the
problem of data sparsity. Ignoring this information may lead to incom-
plete construction of user representations and vulnerability to data spar-
sity. Although existing item-item methods address this problem by using
the users’ historical items to build the user representations, they always
use the same vector to represent the same historical item for different
users, which may limit the expressiveness and further improvement of the
models. In this paper, we propose Deep User Representation Construc-
tion Model (DURCM) to construct user presentations in a more effective
and robust way. Specially, different from existing item-item methods that
directly use historical item vectors to build user representations, we first
adopt a conversion module to convert a user’s historical item vectors into
personalized item vectors, which enables that even the same item has dif-
ferent expressions for different users. Second, we design a special atten-
tion module to automatically assign weights to these personalized item
vectors when constructing the users’ final representations. We conduct
comprehensive experiments on four real-world datasets and the results
verify the effectiveness of our proposed methods.

Keywords: Recommendation systems · Collaborative filtering · User
representation

1 Introduction

In the era of information explosion, recommender systems make great contribu-
tion to alleviating information overload. They help determine which information
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should be offered to individual customers and allow users to quickly find the
information that meet their need. Due to the efficacy and accuracy, recommender
systems have been widely deployed in online services, such as e-commerce plat-
forms [23], online video websites [3] and social media application [6].

Over the past decades, collaborative filtering (CF) methods have been widely
employed to build recommendation systems. They predict users’ preference for
target items based on the users’ past interactions [19]. The early research on
collaborative filtering mainly focused on memory-based methods, which make
recommendations by simply finding similar users or items from the user-item
interaction matrix [13,17]. However, since their performance is so poor on large
and sparse data, they are replaced by model-based collaborative filtering meth-
ods recently, which can provide better recommendation performance.

Model-based CF methods can be divided into two classes, user-item meth-
ods and item-item methods. User-item methods directly model the user-item
interaction. For example, matrix factorization (MF), the most well-known user-
item method, represents each user and each item with a low-dimensional vector
and uses inner product to learn their interaction function. Item-item methods,
such as FISM, capture the interaction between target items and users’ histor-
ical items. Although they construct the models from a different perspective,
by simple transformation, most of item-item methods can be seen as modeling
user-item relations.

Although both user-item models and item-item models are well developed,
they have corresponding disadvantages, which come from the ways they con-
struct their user representations. In user-item methods, the user representations
are directly obtained by associating each user with a real-valued vector. It do
not consider information of users’ historical items. However, users’ historical
items can reflect their preferences in some degree, ignoring these information
may lead to incomplete construction of the user representations. Furthermore,
using users’ historical item information to construct user representations can
alleviate the problem of data sparsity. While in item-item methods, user repre-
sentations are exactly constructed based on users’ historical item vectors, which
makes them have better invulnerability to data sparsity. However, in terms of
making recommendation on dense data, item-item methods are generally inferior
to user-item methods. This is because existing item-item methods use the same
vector to represent the same historical item for different users, which may limit
the expressiveness and further improvement of the models.

In this paper, we mainly study how to construct the user representations
in a more efficient and reasonable way. To address this problem, we propose
Deep User Representation Construction Model (DURCM). In DURCM, there
are two key steps to construct a user’s final representations. First, different
from existing item-item methods that directly use the historical item vectors to
build the user representations, we use a conversion module to convert a user’s
historical item vectors to personalized item vectors. By the conversion, even the
same historical item can have different representations for different users. Second,
we use a special attention network to automatically assign different weights to
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these personalized item vectors according their importance to the users, and then
integrate them into the users’ final representations. Then we conduct extensive
experiments on four real-world datasets to verify the effectiveness of our proposed
method to construct the user representations.

2 Related Work

Model-based collaborative filtering methods have been widely investigated
recently and they can be generally divided into two categories, user-item models
and item-item models, according to the relations that they model.

User-item models usually directly capture the user-item relations. One clas-
sical example is matrix factorization (MF) [12,14,18]. In MF, each user and
each item is associated with a low-dimensional vector. Then the users rating on
the item is estimated by the inner product of the corresponding user vector and
item vector. However, the inner product function limits the expressiveness of MF
models are not suitable for capturing the complex user-item relations in real life.
To solve the problem, He et al. [9] proposed NCF (Neural Collaborative Filter-
ing) framework, which employs a multi-layer perceptron to learn the user-item
interactions. NCF provides an effective framework to learn user-item relations
based on deep neural network and several variants of NCF have been proposed,
such as ONCF [7], NNCF [1] and NGCF [20]. Instead of using neural network
to learn the user-item interaction function, DeepMF [22] uses DSSM, a deep
learning model widely used in web search, to learn the user and item represen-
tations from the rating matrix, and then matches them by cosine similarity. To
achieve a more robust model, DeepCF [4] unifies representation learning based
CF methods and matching function learning based CF methods to combine their
advantages and it demonstrates promising performance.

Instead of directly capture user-item relations, item-item models model the
interaction between the target items and users’ historical items. SLIM [15], one
of the earliest model-based item-item models, tries to recover a sparse and non-
negative matrix from the historical interaction data to learn the hidden item-item
similarity in the user-item interaction matrix. Based on SLIM, Christakopoulou
and Karypis proposed HOSLIM [2] to model high-order item-item relations.
They first find a group of itemsets that are frequently co-rated by users, and
then use an extended SLIM model to jointly learn the item-item similarity and
item-itemset similarity. SLIM and its extensions are efficient to learn item-item
similarity. However, if there exist two items that are not co-rated by any user
in the rating matrix, it is impossible for these models to calculate their similar-
ity. To solve this problem, inspired by matrix factorization methods, FISM [11]
uses embedding-based strategy that represents each item as two low-dimensional
vectors, one for being target item and the other for being historical item. Then
a user’s preference on a target item can be estimated by the summation of the
inner product between the target item vector and each historical item vector.
NAIS enhances FISM by introducing an attention network to discover important
items among a user’s historical items [8]. When interacted with the target items,
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different historical items will be assigned with different importance weights by
the attention network. Similar to NCF model, DeepICF [21] uses a multi-layer
perceptron to learn the complex high-order item-item interactions, which is not
captured by previous work.

In most cases, both user-item methods and item-item methods can be seen
as modeling the interaction between user vectors and item vectors, and the only
difference between them is that they construct the user representations from
two different ways, which leads to their corresponding disadvantages: user-item
methods are more vulnerable to data sparsity and item-item methods can not
provide highly accurate personalization recommendation results on dense data.
This drives us to design a new model to construct user representations more
effectively.

3 Preliminaries

3.1 Problem Statement

In this paper, we focus on implicit feedback since it is much more accessible
and abundant than explicit feedback in real world [16]. Let M and N denote
the number of users and items. Correspondingly, we have a partially observed
user-item interaction matrix Y ∈ R

M×N . Each entry yui is a binary value and
denotes whether there is an interaction between user u and item i. Then the
recommendation problem with implicit feedback can be defined as estimating
the values of these unobserved entries in user-item interaction matrix Y .

3.2 Analysis of User-Item Models and Item-Item Models

In this subsection, We take MF and FISM as examples to analyze the similarities
and differences between user-item models and item-item models based on their
forms.

MF is a classic example of user-item models. It represents each user and each
item by a low-dimensional vector and uses inner product function to capture the
user-item relations, which can be formulated as

ŷui = puqi, (1)

where pu and qi denotes the corresponding user vector and item vector for user
u and item i, and ŷui denotes the prediction score for yui.

FISM is an example of item-item models. It represents each item by two
low-dimensional vectors, one for being the target item and the other for being a
user’s historical item. Then FISM also uses the inner product function to capture
the item-item relations, which can be formulated as

ŷui = (
1

|R+
u |α

∑

j∈R+
u

pj)qi, (2)
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where R+
u denotes the index set of user u’s historical items and α is a hyper-

parameter that controls the normalization effect. pj denotes the historical item
vector and qi denotes the target item vectors.

If we take the bracketed content in Eq. 2 as a whole, we can find that both
MF and FISM can be regarded as modeling the interaction between user vectors
and item vectors. The only difference is that the user vectors in the two models
come from different sources. In MF, each user is directly assigned with a user
vector and it does not consider users’ historical item information, which leads
to two major problems. First, users’ historical item information can reflect their
preferences in some degree, which may be important for user representation con-
struction. Second, only using users’ ID feature to construct user representations
easily leads to invulnerability to data sparsity. While in FISM, user vectors are
constructed based on historical item vectors, so FISM are more invulnerable to
data sparsity than MF and construct the user representations more completely.
However, it suffers from another problems. It uses the same vector to represent
the same historical item of different users, which may limit the expressiveness
and further improvement of the models. These conclusions can be easily gener-
alized to most user-item methods and item-item methods and drive us to design
a more complete and reasonable way to construct user representations.

4 Our Proposed Method

Figure 1 illustrates the architecture of our proposed model, Deep User Represen-
tation Construction Model. It mainly is composed of two parts. The lower part
is used to construct the user representations, which is the focus of this model;
the upper part is used to capture the interaction between the constructed user
vectors and target item vectors. In the next, we will introduce them in details.

Input and Embedding Layer. DURCM takes the target item ID, the user’s
historical item IDs and the user ID as input. For target item i, we apply one-hot
encoding on the ID feature. Then the item ID is projected into an embedding
vector qi ∈ R

k, where k denotes the embedding size. For user u’s historical items,
we apply multi-hot encoding on their ID feature. Then for each historical item
j ∈ R+

u , it will be projected into an embedding vector sj ∈ R
k. As for user

ID, we also apply one-hot encoding to it and each user ID will be projected
into two kinds of embedding vectors, conversion vector mu and attention vector
zu. Note that the two vectors here are different from the user vectors used in
user-item models. While the user vectors in user-item models represent the final
representations of the users, the two kinds of vectors in our model are designed
for participating in user representation construction and we will introduce their
specific functions latter.

Thus, the outputs of embedding layer are an embedding vector qi, a set of
historical item vectors Su = {sj |j ∈ R+

u } and two special vectors mu and zu

associated with user u.
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Fig. 1. The architecture of DURCM

Conversion Module. Different from most existing item-item models that con-
struct the user representations directly based on the historical item vectors,
DURCM first uses a special module named conversion module to convert the
historical item vectors into personalized item vectors for different users. For user
u’s each historical item, its vector will be processed in conversion module as
follows.

tuj = f(sj |Θu), (3)

where f denotes the conversion function, Θu denotes the parameters for con-
version of user u’s historical item vectors and tuj denotes the corresponding
personalized item vector for user u. For simplicity, we set the size of tuj equal
to that of sj . An intuitive approach to implement Eq. 3 is linear transformation,
which is defined as

tuj = Musj , (4)

where Mu is a square matrix with trainable parameters.
However, in this case, we need to use Nk2 parameters to learn the represen-

tations of all the Mu, which is easy to result in over-fitting problem when the
user-item interaction matrix is highly sparse. Thus in this paper, we degener-
ate Mu to conversion vector mu and use element-wise product to replace Eq. 4,
which is formulated as

tuj = mu � sj , (5)

where � denotes the element-wise product. Equation 5 only captures the lin-
ear interaction between the historical item vector and user conversion vector.
To learn the non-linearity and complex pattern of the conversion process, we
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stack several multi-layer perceptron to process Eq. 5 further. Figure 2 illustrates
the architecture of our designed conversion module. Then the personalized item
vector can be obtained by

tuj = mu � sj ,

t1 = ReLU(W1t0 + b1),
t2 = ReLU(W2t1 + b2),
...,

tuj = tL = ReLU(WLtL−1 + bL),

(6)

where Wn, bn and en denote the weight matrix, bias vector and output vector
of the n-th hidden layer. Thus, the output of conversion module is a set of
personalized historical item vectors Tu = {sj |j ∈ R+

u }.

Fig. 2. The architecture of our proposed conversion module. Here softmax’ layer is a
special variant of standard softmax layer.

Pooling Layer. Now we can use these personalized item vectors to construct
user u’s representations. Since Tu may have different size for different users, we
use a pooling layer to operate on T to produce a vector with fixed size. This
process is defined as

pu =
∑

j∈R+
u

wujtuj , (7)

where pu denotes the constructed user representation for u and wuj denotes the
importance of historical item j to user u. Notice we do not assign the item vectors
with the same weights like FISM because this may lead to inferior performance.

To implement Eq. 7, we can regulate that wuj is a trainable parameter and
learn its value during the model training. But this simple strategy to assign
the weights does not bring about a significant performance improvement to our
model. To address this problem, we design a special attention network to learn
the weights.
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Inspired by the recent success of using neural networks to model the attention
weights, we similarly use a multi-layer perception (MLP) to parameterize the
attention function.

Fig. 3. The architecture of our proposed attention module

Figure 3 illustrate the architecture of our designed attention network. To
learn the importance of item j to user u, we first associate each user u with an
attention vector zu, which is obtained from the embedding layer. Then for each
personalized item vector tj of user u, we concatenate it with the attention vector
and feed the combined vector into a hidden layer to produce the corresponding
attention weight. This process can be defined as

wuj = a(tuj) = softmax′(hT ReLU(W
[
tujzu

]
+ b)), (8)

where a denotes the attention function, W ∈ R
k′×k and b ∈ R

k′
denotes the

weight matrix and bias vector of the hidden layer, and k’ denotes the size of the
hidden layer. h ∈ R

k′
denotes the weights of the output layer of the attention

network. softmax’ is a variant of the softmax function, which is formulated as

softmax′(a(tuj)) =
exp(a(tuj))[∑

j∈R+
u

exp(a(tuj))
]β

, (9)

where β is a hyper-parameter that controls the normalization effect. Compared
with the standard softmax function, softmax’ is more suitable for CF datasets,
since the variance of the number of historical items for different users is very
large, as is argued in [8].

The Other Layers. We have obtained the user vector pu and the target item
vector qi. Then we use a deep neural network following NCF (Neural Collabora-
tive Filtering) framework to model their interactions, which can be formulated
as
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e0 = pu � qi,

e1 = ReLU(W1e0 + b1),
e2 = ReLU(W2e1 + b2),
...,

eL = ReLU(WLeL−1 + bL),
ŷui = σ(houteL),

(10)

where Wn, bn and en denote the weight matrix, bias vector and output vector of
the n-th deep interaction layer, and L denotes the depth of the deep interaction
layer. hout is the edge weights of the output layer and σ denotes the sigmoid
function that maps the prediction score ŷui into the range of [0,1], which is more
suitable for implicit feedback.

Objective Function. To learn the model parameters, we adopt the point-wise
log loss as the loss function, which is defined as

L = −
∑

(u,i)∈R+R−
[yuilog(ŷui) + (1 − yui)log(1 − ŷui)] + λ||Θ||2, (11)

where R+ denotes the set of positive training instances, which are equal to the
whole observed user-item interactions. R− denotes the set of negative training
instances, which are sampled from the remaining unobserved interactions. For
each positive instance in R+, we need to sample NS negative instances, where
NS is a hyper-parameter that denotes the sampling ratio. λ is another hyper-
parameter that controls the strength of L2 regularization to avoid over-fitting.
And Θ denotes the set of all the trainable parameters in the model.

Pre-training. Due the non-linearity of neural network model and the non-
convexity of the objective function, optimization with gradient descent based
methods can easily lead to local minimums [5]. Therefore, the initiation of model
parameters plays an important role to the convergence and final performance of
the model. We empirically find that random initiation of all the parameters has
an negative impact on the performance of our proposed model. To address this
problem, we pre-train DURCM with FISM since DURCM can be seen as an
extension of FISM. Specifically, we first train FISM until convergence, then we
use the trained item embedding vectors to initiate the corresponding parts of
the parameters in DURCM. As for the other parameters including the conver-
sion vectors and attention vectors, they are randomly initiated with a Gaussian
distribution.

5 Experiments

To verify the effectiveness of our proposed methods, we conduct experiments to
answer the following research questions:
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– Does the proposed model DURCM outperform the state-of-the-art collabo-
rative filtering methods?

– Are our proposed pre-training strategy really helpful for improving the per-
formance of DURCM?

– How do the key modules in DURCM, attention module and conversion mod-
ule, impact the model performance?

5.1 Experimental Setting

Datasets. We conduct experiments on four publicly accessible datasets: Movie-
Lens 100K (ml-100k), MovieLens 1M (ml-1m), Amazon Music (AMusic) and
Amazon Movies (AMovie)1,2. The former two are movie rating datasets that are
widely used to test the performance of CF methods. Since the data in MovieLens
is explicit feedback, we transform it into implicit data by retaining all the inter-
action signals but ignoring the rating values. Amazon datasets are comprised
of users’ reviews and ratings on different categories of products. We merge the
review data and rating data and represent them as implicit data uniformly. Fur-
thermore, since the original data of Amazon is highly sparse, we filter them such
that only users with at least 20 interactions and items with at least 5 interactions
are retained. The statistics of these four datasets are listed in the Table 1.

Table 1. Statistics of the datasets

Dataset #user #item #rating Sparsity

ml-100k 944 1,683 100,000 93.70%

ml-1m 6,040 3,706 1,000,209 95.53%

AMusic 1,776 12,929 46,087 99.67%

AMovie 16,136 70,649 895,240 99.92%

Evaluation Protocal. We adopted the widely used leave-one-out evaluation
protocol to evaluate the performance of these models. For each user, we held-out
the item of the last interaction to construct the test set and use the rest of data
for training. Since it is too time-consuming to rank all items for each user during
evaluation, following the common strategy, for each user we randomly sampled
100 items that are not interacted by the user, and then ranked the test item
with the 100 sampling items according to their prediction scores. Furthermore,
we adopted two widely used metric, HR (Hit Ratio) and NDCG (Normalized
Discounted Cumulative Gain), to evaluation the performance of a ranked list.
We truncated the ranked list at length of 10 for both metrics. As such, HR@10

1 https://grouplens.org/datasets/movielens/.
2 http://jmcauley.ucsd.edu/data/amazon/.

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/
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demonstrates whether the test item is present on the top-10 list, and NDCG@10
evaluates the ranking quality by assigning higher scores to the hits at top ranks.
We calculate both metrics for each user and report the average scores.

Compared Methods. We compare DURCM with the following collaborative
filtering method:

– eALS [10] is a well-known MF-based recommendation methods. It optimizes
a special point-wise squared loss function by treating all missing data with a
popularity-based weight.

– JRL [1] feeds the element-wise product of the user vector and item vector
into a multi-layer perceptron to model user-item interaction.

– NeuMF [9] combines the hidden layers of two different deep learning based
user-item methods to make final prediction. It can provide state-of-the-art
performance. In this paper, we choose the pre-trained version.

– FISM [11] is a classic item-item model that uses inner product function to
capture item-item relations.

– DeepICF [21] is a state-of-the-art item-item model that improves FISM by
using a deep network to learn high-order item-item relations. In this paper,
we choose the pre-trained version.

These methods are intentionally chosen to cover a diverse range of recom-
mendation methods. Among these methods, the former three models are rep-
resentatives of user-item models and the latter two are competitive item-item
models. eALS and FISM are traditional linear models while the other three mod-
els are deep learning based CF methods. Furthermore, NeuMF and DeepICF can
provide state-of-the-art performance.

Implementation Details. We implement DURCM based on Pytorch. To
determine the hyper-parameters of DURCM, we randomly sample a positive
item for each user in the training set to construct the validation set and tune
the hyper-parameters on it. As for the regularization coefficient λ, we tune value
in the range of [10−6,10−5,...,1]. For normalization coefficient β, we test the
value in the range of [0.1, 1] at an interval of 0.1. Negative sampling ratio NS
is searched in [1, 2, 3,..., 10]. We employ three hidden layers for the deep inter-
action layer following the design of tower structure of [9]. Without additional
mention, We pre-train DURCM as discussed in Sect. 4 and after feeding the
model parameters, we tune the value of learning rate in the range of [0.001, 0.05,
0.01, 0.1].

5.2 Performance Comparison (RQ1)

We first make a comparison between DURCM and the selected approaches. For a
fair comparison, the embedding size is set to 64 for all these methods. The com-
parison is based on two aspects, recommendation accuracy and invulnerability
to data sparsity.
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Table 2. Comparison results of recommendation accuracy on the four datasets

Dataset ml-100k ml-1m AMusic AMovie

Method HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

eALS 0.632 0.366 0.697 0.419 0.618 0.347 0.509 0.304

JRL 0.658 0.385 0.710 0.432 0.632 0.357 0.521 0.310

NeuMF 0.672 0.398 0.728 0.446 0.638 0.368 0.528 0.321

FISM 0.647 0.368 0.692 0.420 0.625 0.350 0.517 0.307

DeepICF 0.654 0.379 0.712 0.437 0.643 0.372 0.533 0.326

DURCM 0.684 0.408 0.735 0.455 0.664 0.388 0.552 0.340

Comparison of Recommendation Accuracy. Table 2 illustrates the perfor-
mance of the six methods on the four datasets. The best and second best scores
are shown bold and underlined, respectively. We can see that DURCM achieves
the best performance on all the cases. Except DURCM, user-item model NeuMF
provides the best performance on m1-100k and m1-1m. However, on Amazon
datasets comprised of highly sparse data, the performance of NeuMF is sur-
passed by item-item model DeepICF. This is because user-item models perform
well on dense data but are more vulnerable to data sparsity, as we discussed
before. Compared with the second best scores achieved by the other methods,
the average relative improvements of DURCM are 2.15% (on m1-100k), 1.49%
(on ml-1m), 3.78% (on AMusic) and 3.93% (on AMovie). We attribute such
improvements to that DURCM construct the user representations in a more
robust and effective way. These results demonstrate the superiority of DURCM
over state-of-the-art methods in terms of recommendation accuracy.

Invulnerability to Data Sparsity. To test the invulnerability to data sparsity
of these methods, we first create datasets with different levels of data sparsity
based on the four datasets. For each user, we randomly sample a subset of the
user’s whole interactions according to four different sample ratios, 20%, 40%,
60% and 80%, which leads to four derived datasets with different levels of data
sparsity for each original dataset.

Figure 4 and Fig. 5 illustrate the performance and corresponding percentage
decrease of performance of theses models on the datasets with different levels of
sparsity in terms of HR@10. Since the results of NDCG@10 show almost the same
trends, they are omitted for space limitation. At first, we can see that DURCM
achieves the best performance on all the datasets with different sparsity lev-
els. Compared with the best scores achieved by the other methods, the relative
improvements of DURCM on different levels of data sparsity are 2.78% (Level
1), 3.02% (Level 2), 2.94% (Level 3) and 3.02% (Level 4). Furthermore, the per-
formance of DURCM decreases at a slow rate with the increase of data sparsity.
Besides DURCM, the item-item models (FISM and DeepICF) also achieve good
performance on these datasets, and their percentage decrease of performance is
close to that of DURCM. On the contrary, the user-item models (eALS, JRL
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and NeuMF) provide poor performance on the datasets of high level of sparsity.
Their performance drops sharply as the data sparsity increases. In the worst
case (AMovie of the highest level of sparsity), their performance has dropped
by more than 55%, while the performance of DURCM and item-item models
only drops by less than 45%. These results demonstrate DURCM have strong
invulnerability to data sparsity and we attribute such ability to that DURCM
encodes the signals of users’ historical items into the user representation.
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Fig. 4. Performance of these methods on datasets with different levels of data sparsity
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Fig. 5. Percentage of performance decrease of these methods on datasets with different
levels of data sparsity

5.3 Effectiveness of Pre-training (RQ2)

The initialization of parameters plays an important role in the convergence and
final performance of neural network models. To verify the effectiveness of our
proposed pre-training strategy, we also make a comparison between two versions
of DURCM, with and without pre-training. For DURCM without pre-training,
we use Adam to optimize it with random parameter initialization.

As is illustrated in Table 3, the DURCM with pre-training achieves the bet-
ter performance in all the cases than the version without pre-training. On aver-
age, the relative improvements of pre-training strategy is 1.91% (on ml-100k),
1.37%(on ml-1m), 1.58% (on AMusic) and 1.54% (on AMovie), respectively.
These results demonstrate the usefulness of our proposed pre-training method
for DURCM initialization.
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Table 3. Performance of DURCM with and without pre-training

Factors ml-100k m1-1m

Without pre-training With pre-training Without pre-training With pre-training

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

k=8 0.637 0.373 0.650 0.381 0.683 0.410 0.691 0.416

k=16 0.652 0.381 0.663 0.389 0.704 0.430 0.712 0.434

k=32 0.665 0.392 0.674 0.399 0.717 0.441 0.726 0.448

k=64 0.673 0.398 0.684 0.408 0.723 0.447 0.735 0.455

Factors AMusic AMovie

Without pre-training With pre-training Without pre-training With pre-training

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

k=8 0.616 0.352 0.622 0.357 0.509 0.308 0.516 0.313

k=16 0.631 0.366 0.639 0.373 0.524 0.319 0.529 0.324

k=32 0.647 0.375 0.658 0.382 0.538 0.326 0.542 0.332

k=64 0.653 0.381 0.664 0.388 0.542 0.332 0.552 0.340

5.4 Effectiveness of Key Modules (RQ3)

In DURCM, there are two key modules, conversion module and attention mod-
ule, to construct the user representations. In this part, we perform compari-
son experiment to verify the effectiveness of the two modules. We create two
additional kinds of DURCM, DURCM without conversion module (denoted as
DURCM-woc) and DURCM without attention module (denoted as DURCM-
woa). For DURCM without conversion module, we directly use the historical
item vectors to construct the use vectors; for DURCM without attention mod-
ule, we assign the personalized item vectors with the same normalized weights.

Table 4 illustrates the experimental results on the four datasets. We can see
that the standard DURCM achieves the best performance on all the cases among
the three versions. Compared with DURCM without conversion module, the
average relative improvements of performance are 2.38% (on ml-100k), 1.92%
(on ml-1m), 1.97% (on AMusic) and 2.37% (on AMovie). We attribute such
improvements to that conversion module can personalize the historical item
vectors for different users, which increases the expressiveness of our model.
And compared with DURCM without attention module, the average relative
improvements are 2.11% (on ml-100k), 1.89% (on ml-1m), 1.93% (on AMusic)
and 2.47% (on AMovie). We believe these improvements come from attention
module, which can automatically distinguish the important item for a user and
then assign higher weights to the corresponding personalized item vectors when
constructing the user representations.
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Table 4. Comparison results of the three versions of DURCM on the four datasets

Factor Dataset DURCM DURCM-woc DURCM-woa

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

k=8 ml-100k 0.650 0.381 0.638 0.372 0.640 0.373

ml-1m 0.691 0.416 0.680 0.410 0.682 0.411

Amusic 0.622 0.357 0.611 0.348 0.614 0.350

Amovie 0.516 0.313 0.501 0.303 0.501 0.301

k=16 ml-100k 0.663 0.389 0.647 0.380 0.646 0.381

ml-1m 0.712 0.434 0.690 0.425 0.692 0.428

Amusic 0.639 0.373 0.631 0.365 0.629 0.364

Amovie 0.529 0.324 0.518 0.317 0.518 0.318

k=32 ml-100k 0.674 0.399 0.654 0.391 0.657 0.390

ml-1m 0.726 0.448 0.715 0.440 0.714 0.438

Amusic 0.658 0.382 0.645 0.374 0.647 0.373

Amovie 0.542 0.332 0.535 0.327 0.533 0.325

k=64 ml-100k 0.684 0.408 0.669 0.398 0.672 0.401

ml-1m 0.735 0.455 0.722 0.447 0.720 0.445

Amusic 0.664 0.388 0.650 0.382 0.649 0.382

Amovie 0.552 0.340 0.535 0.332 0.537 0.333

6 Conclusion and Future Work

In this paper, we first analyse the ways of user-item methods and item-item
methods to construct their user representations and point out the corresponding
drawbacks of them. Then we propose a novel model, DURCM, which utilizes
users’ historical items to recover the user representations in a more effective
way. Before constructing user representations, DURCM uses conversion mod-
ule to project the historical item vectors into different personalized item vec-
tors for different users. Then the user representations are constructed based on
these personalized item vectors with a special attention network to automatically
assign corresponding weights according to their importance to the user. Finally,
DURCM uses a multi-layer perceptron to model the interaction between the
constructed user vectors and the target item vectors and make final prediction.
Extensive experimental results demonstrate the effectiveness of our proposed
method. As for future work, we plan to explore other kinds of conversion to
investigate which conversion functions are efficient and can provide the best
performance.
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Abstract. Generative Adversarial Network (GAN) has recently been
introduced into the domain of recommendation due to its ability of
learning the distribution of users’ preferences. However, most existing
GAN-based recommendation methods only exploit the user-item inter-
actions, while ignoring to leverage the information between user’s inter-
acted items. On the other hand, Convolutional Neural Network (CNN)
has shown its power in learning high-order correlations. In this paper,
combining with the strengths of both GAN and CNN, we propose a
Dilated Convolutional Generative Adversarial Network (DiCGAN) for
recommendation, in which we first embed the interacted items of per
user into an image in a latent space, and then use several dilated convo-
lutional filters and a vertical convolutional filter to capture the high-order
correlations among the interacted items. Moreover, an attention module
is employed before convolution to generate attention maps for adaptive
feature refinement. Experiments on several public datasets verify the
superiority of DiCGAN over several baselines in terms of top-N recom-
mendation. Further more, our experimental results show that when the
dataset is more large and sparse, the performance gain of DiCGAN is
also more significant, demonstrating the effectiveness of the CNN compo-
nent in extracting high-order correlations from interacted data for better
performance.

Keywords: Recommender systems · Generative Adversarial Network ·
Convolutional neural network · Attention module

1 Introduction

Since its debut in NeurIPS 2014, Generative Adversarial Networks (GAN) [6],
which uses a discriminative model to guide the training of the generative model,
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has enjoyed considerable success in tasks such as image generation [2] and natu-
ral language generation [28]. Recently, GAN has also gained increasing attention
in recommender systems [1,4,16,18,20–22,24,27]. IRGAN [22] first utilizes a the-
oretical minimax game to iteratively optimize generative (G) and discriminative
(D) models, which demonstrates GAN’s potential in collaborative filtering based
recommendation. But IRGAN suffers the inherent limitation of discrete item
index generation approaches. That is, for the same item, the index is sometimes
labeled as fake and other times as real, which makes D significantly confused.
To address this problem, Chae et al. [1] proposed CFGAN, in which G tries to
generate a plausible interact vector of a user composed of real-valued elements,
rather than to sample a single item index that the user may be interested in.
Though having solved the contradicting labels problem in IRGAN, CFGAN still
has two limitations: 1) It requires much more space to store the interaction vec-
tors for all users, and hence is more susceptible to data scale. Too large vector
size (equals to the item size) makes CFGAN rather difficult to train and even
fail to achieve significant ranking accuracy sometimes. 2) The same as IRGAN,
CFGAN still only exploits the interaction vector of per user but ignores the
high-order correlations among the user’s interacted items, which limits its per-
formance gains.

To address the above limitations, in this paper, we propose a Dilated Con-
volutional Generative Adversarial Network (DiCGAN) for recommender sys-
tems. The proposed DiCGAN first embeds the interacted items of per user into
an image to compress the feature dimensions, and then leverages the convolu-
tional neural network (CNN) to learn the high-order correlation features among
user’s interacted items, to represent user’s preferences. In fact, CNN has shown
its power in learning high-order correlations in recommender systems, such as
Caser [17] and NextItNet [29]. The success of both GAN and CNN in recom-
mendation motivates us to push forward to combine their strengths for further
performance improvements.

In DiCGAN, we employ CNN to replace the multi-layer perceptron (MLP)
part of the generator in CFGAN. Specifically, the CNN in our model contains
several dilated convolutional filters [14,26], which are responsible for extracting
high-order correlation features among a user’s interacted items, and a verti-
cal convolutional filter [17], which is responsible for extracting the high-order
correlation features among the latent dimensions of a user’s interacted items.
Moreover, considering that the attention mechanism can help improve the rep-
resentation of user’s preference, we employ channel and spatial attention mod-
ules [23] to generate attention maps that can adaptively refine the feature maps
in the channel and spatial axes, respectively.

Since GAN-based methods themselves can alleviate the data sparsity prob-
lem to some extent by augmenting user-item interaction information [5], with
CNN’s help on extracting high-order correlation features, DiCGAN can yield to
remarkable performance improvement over existing GAN-based recommendation
models, especially for high-sparsity datasets. In summary, the main contributions
of this work are as follows:
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– We combine GAN with CNN for recommendation by proposing a Dilated
Convolutional Generative Adversarial Network (DiCGAN), in which a CNN
that contains several dilated convolutional filters and a vertical convolutional
filter is designed to serve as the generator of a GAN-based model, with the
objective of extracting high-order correlation features for better performance.

– An attention module is employed in DiCGAN to generate attention maps that
can be multiplied to the feature maps for adaptive refinement of features.

– Extensive experiments are conducted on three benchmark datasets and the
results verify the superior performance of DiCGAN over state-of-the-art
methods. Moreover, the experimental results also show that the proposed
CNN component can yield to remarkable performance improvement, espe-
cially when dealing with large and sparse datasets.

2 Related Work

In recent years, GAN [6] has received increasing attention due to its ability to
fit the complex data distributions. There are some good attempts on apply-
ing GAN for recommendation [1,22,24]. Motived by seqGAN [28], IRGAN [22]
is first proposed to use policy gradient to solve the problem that the discrete
data cannot be directly optimized by gradient descent as in the original GAN.
However, due to the confusion of selection, discriminators in IRGAN cannot
be properly trained to detect the difference between true and false items. To
address this problem, by constructing multiple diverse item sets for a specific
user, PD-GAN [24] is proposed to decrease the probability of assigning contra-
dicting labels to the same items, but it ignores user preferences for different
categories. CFGAN [1] addresses the contradicting labels problem of IRGAN by
using a vector-wise adversarial training. But as mentioned in the introduction,
there are still two limitations in CFGAN.

Due to its strong ability in learning complex high-level correlations, recently,
there are also some research efforts on utilizing CNN to improve recommendation
performance. For example, Convolution matrix factorization [12] alleviates the
data sparsity problem by integrating CNN into probabilistic matrix factorization
to capture contextual information of the documents. ONCF [9] learns high-order
correlations among embedding dimensions by using CNN and the outer product.
Caser [17] embeds the interacted items of per user into an image and employs
CNN to learn user features for the sequential recommendation. But this method
introduces max-pooling, which limits the model’s expression ability in that it
is impossible to fully utilize the location information of important data. To
capture the relations between items, NextItNet [29] abandons the pooling layer
and exploits dilated convolution to extracts feature from the image constructed
by interacted items. The above-mentioned works indicate the potential of using
CNNs for a better recommendation.

To address the shortcomings of the above mentioned GAN-based methods,
DiCGAN improves the generative capacity of the generator by combining GAN
with CNN, where CNN is used to extract higher-order correlation features among
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the interacted items. But different from previous CNN-based recommendation
methods, our CNN component introduces dilated convolution and adopts the
attention module to refine the convolution feature maps.

3 Preliminaries

We consider a recommender system with m users U = {u1, u2, . . . , um} and n
items I = {i1, i2, . . . , in}. Let Iu = {iu1 , iu2 , . . . , iut } denote the set of t items
that user u has interacted with. User’s implicit feedback on items is represented
by a sparse interaction matrix Y ∈ R

m×n, where an element yui is 1 if i is
contained in Iu, and 0 otherwise. Moreover, we use yu = Yu,∗ ∈ R

n×1 to denote
u’s interaction across all items. The goal of collaborative filtering (CF) [11] is
to predict u’s preference score on i (denoted by ŷui, where i ∈ I\Iu), reflecting
how much likely u will interact with i, and then recommend a subset of items
with scores that are the highest to u.

Model-based CF methods [3,8,10,25] generally derive ŷui by assuming there
is an underlying model, which can be abstracted as learning ŷui = f(u, i|Θ),
where Θ denotes the set of model parameters and f denotes the function that is
parameterized by Θ and maps a given pair of user u and item i to a predicted
score. Θ can be learned by optimizing an objective function with Y as training
data. Existing model-based CF methods usually optimize the traditional point-
wise or pair-wise objective functions to train the CF model.

GAN-based CF methods train the model in a different way. Instead of opti-
mizing the point-wise or pairwise objective functions, GAN-based methods try to
achieve more satisfactory accuracy in recommendation by borrowing the adver-
sarial training approach through a competition process involving a generative
model (G) and a discriminator model (D). In IRGAN, G tries to generate the
indices of items relevant to a given user, and D tries to discriminate the user’s
ground truth items from those synthetically generated by G. In CFGAN, G tries
to generate a plausible interact vector of a given user, while D tries to discrim-
inate the user’s ground truth interact vector from that generated by G. In this
work, in view of the inherent limitation of IRGAN, we adopt vector-wise adver-
sarial training similar to CFGAN to generate a plausible interaction vector of a
user. But different from CFGAN, we employ CNN, rather than MLP, to extract
the high-order correlations among user’s interacted items.

4 Proposed Method

4.1 Framework Overview

As shown in Fig. 1, DiCGAN contains two parts: the generator (G) and the dis-
criminator (D). G consists of an embedding layer, a convolutional layer and a
fully connected layer. Firstly, the user-item interaction matrix is mapped into
a latent space as an image with height L. Then, the convolutional layers apply
several dilated filters and a vertical filter to get feature zdc (high-order correla-
tion feature among u’s interacted items) and zvc (high-order correlation feature
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Fig. 1. Framework overview of DiCGAN

among the latent dimensions of u’s interacted items) respectively. Moreover, an
attention module is employed before convolution to generate attention maps for
adaptive feature refinement. Finally, through a fully connected layer, the user
feature (pu) combined with the item feature (zdc and zvc) are transformed into
a user-item interaction vector ŷu, which reflects u’s preference distribution on
items. The D part tries to discriminate u’s ground-truth interaction vector yu

from that generated by G. The training phase of DiCGAN is a minimax game,
after training, G predicts the preference scores of user u for all the items, and
the N items with the highest predicted scores are suggested to u.

4.2 Generator

Embedding Layer. Since we consider pure collaborative filtering, we use only
the ID of a user and an item as the input feature. Specifically, we use u ∈ R

1×m

to denote the one-hot vector of u, and use iuk ∈ R
1×n to denote the one-hot

vector of item iuk ∈ Iu. Let P ∈ R
m×d and Q ∈ R

n×d denote the latent factor
matrices for users and items, respectively, where d is the dimension of the latent
space. We can get the latent representation of u by pu = uP. For each item
iuk ∈ Iu, we can get its latent representation by qiuk

= iukQ. Then, by retrieving
the latent representations of L items in Iu and stacking them together, we can
obtain an image represented by a matrix E ∈ R

L×d,

E =

⎡
⎢⎣

qiu1
...

qiuL

⎤
⎥⎦ (1)
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Channel Attention Spatial Attention

reshape

Mc
Ms

Fig. 2. Attention module

Recall that t is the number of u’s interacted items. If t < L, the same as
Caser [17], the missing values in matrix E are filled in with 0. If t ≥ L, we
only choose the first L items that have interacted with u to construct matrix E.

Attention Module. Considering that different items have different attentions,
inspired by [23], we employ an attention model before performing the convolution
operation. As shown in Fig. 2, we first conduct a simple reshape operation to
convert E with shape (L, d) to E′ with shape (L, 1, d). Then, the input feature
map is passed through a channel attention module to get the channel attention
map,

Mc(E′) = σ(W1(W0(E′
cavg)) + W1(W0(E′

cmax))) (2)

where W0 ∈ R
d/η×d and W1 ∈ R

d×d/η are weighted matrices, η represents
the reduction ratio, E′

cavg and E′
cmax denote average-pooled feature and max-

pooled feature to aggregate spatial information respectively, and σ(·) represents
the Sigmoid function. Note that W0 and W1 are shared for both inputs and
the ReLU activation function is followed by W0. Afterwards, E′ and Mc(E′) are
multiplied to get a feature map,

F = Mc(E′) ⊗ E′ (3)

where ⊗ represents the element-wise multiplication. Next, F is input into a
spatial attention module to get a spatial attention map,

Ms(F ) = σ(g(fAM , [Fsavg ⊕ Fsmax])) (4)

where g(·) is the filter function, fAM represents the convolution filter we used
with size 7 × 1, Fsavg and Fsmax denote the average-pooled feature and max-
pooled feature across the channels respectively, and ⊕ represents the concatena-
tion operation. Finally,

E = F ⊗ Ms(F ) (5)

Dilated Convolutional Layers. This part is shown in the top half of the con-
volutional layer of G in Fig. 1. Due to its advantages of expanding the receptive
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Input Output

Fig. 3. An example of dilated convolution with three layers

field but without losing the accuracy and adding the number of layers, dilated
convolution plays an important role in computer vision and natural language
processing. Motivated by Wavenet [14], we utilize dilated convolution to con-
struct our generator model. The basic idea of dilation is to extend the filter by
using 0, so as to apply the convolution filter to the field with larger length than
the original one.

For convenience, we use a standard CNN with filter fs×1 to illustrate the
dilated convolution process. The input of dilated convolution is the feature map
after the attention module, i.e., E. Suppose the number of the dilated convolution
layer is M . We set the dilated factor of the j-th convolution layer to be λj = sj−1.
The height hj of the dilated convolution filter fDC

j : hj × 1 for the j-th dilated
convolution layer can then be derived by hj = (s−1)λj +1. With stride of 1, the
height of the feature map of the j-th dilated convolution layer is lj = lj−1−hj+1,
and l0 = L. It is not difficult to see that the receptive filed of this M -layer
dilated convolution is sM . The j-th dilated convolution operation Dicj(Ej−1),
i.e., g(fDC

j , Ej−1) can be formally defined as,

Ej = Dicj(Ej−1) =

⎡
⎢⎢⎢⎢⎢⎣

g1(fDC
j , E

[1:hj ]

j−1 )

g2(fDC
j , E

[2:hj+1]

j−1 )
...

glj (f
DC
j , E

[lj :lj−1]

j−1 )

⎤
⎥⎥⎥⎥⎥⎦

(6)

where glj (·) denotes one step operation of the filter function g(·), and E
[x:y]

j−1

denotes the image from the x-th row of Ej−1 to the y-th row of Ej−1. Finally,
through M -layer dilated convolution operation, we can get,

Zdc = DicM (DicM−1(. . . (Dic1(E0)))) (7)

where E0 = E. Since Zdc ∈ R
1×1×d, we reshape it to derive zdc ∈ R

1×d.
Figure 3 gives an example for helping understand the dilated convolution

process (assuming that the number of channels does not change during convo-
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lution). The standard convolution filter is set as f2×1, the number of dilated
convolution layers is M = 3, and the dilated factor λj of the three layers are
1, 2 and 4 respectively. As can be observed, the shape of the input image is
(8, 1, d). Through the first dilated convolution layer, it becomes (7, 1, d), and
then becomes (5, 1, d) after the second layer. Finally, it becomes (1, 1, d). In this
example, the receptive filed is 23 = 8.

Note that in the actual convolution operation process for obtaining zdc, we
use a variety of standard filters and dilated factors to expand the receptive
filed. By utilizing the dilated convolution, we can explicitly encode item inter-
dependencies to capture the high-order correlations among the items that u has
interacted with.

Vertical Convolutional Layer. This part is shown in the bottom half of the
convolutional layer of G in Fig. 1. We first perform a simple reshape operation
to convert E with shape (L, 1, d) to Ẽ with shape (L, d, 1). In this layer, we use
a vertical filter fV C ∈ R

L×1. Specifically, for Ẽ, we slide d times from left to
right, interact with each column of Ẽ, to get the result of vertical convolution
zvc = [z1vc, z

2
vc, . . . , z

d
vc] ∈ R

1×d. Obviously, this result is equal to the weighted
sum over the L rows of Ẽ with fV C as the weights. Therefore,

zvc =
∑L

b=1
fV C

b · Ẽ[b] (8)

where fV C
b is the b-th element of fV C , and Ẽ[b] denotes the b-th row of Ẽ.

By using vertical convolution, we aggregate the potential representations of u’s
interacted items, and capture the feature of each dimension of u’s interacted
items.

Fully Connected Layer. In order to capture u’s general preference, we first
concatenate u’s latent feature pu, the feature zdc from the dilated convolution
layers, and the feature zvc from the vertical convolution layer together. Then,
we input them into a fully connected neural network, so as to project them
to the output layer with n dimensions, and predict u’s preference distribution
ŷu ∈ R

n×1 by,
ŷu = Wout[pu ⊕ zdc ⊕ zvc]T + bout (9)

where Wout ∈ R
n×3d and bout ∈ R

n are the weight matrix and bias vector of
the output layer, respectively.

4.3 Discriminator

The discriminator part is shown in the bottom half of Fig. 1, which is a fully
connected network with X layers. To alleviate the influence of sparsity on train-
ing and prevent G from finding an easy but useless solution to approximate the
ground truth (e.g., generating the interaction vector having all of its elements
as 1 but without considering u’s relative preference at all), we employ a mask
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operation. Let mu ∈ R
n×1 denote the selected negative items vector for u with

a given negative sampling ratio γ. The mask operation is achieved by,

yu = ŷu ⊗ (yu + mu) (10)

Taking the real user preference distribution (interaction vector) yu and the gen-
erated distribution yu as input y, the discriminator outputs a single scalar value
S ∈ R

1, indicating the probability that its input comes from the real value rather
than the generator. Formally,

h0 = WD
0 y

h1 = tanh(WD
1 h0 + bD

1 )
· · · · · ·

hX−1 = tanh(WD
X−1hX−2 + bD

X−1)

S = σ(WD
XhX−1 + bD

X),

(11)

where tanh(·) and σ(·) represent the Tanh and Sigmoid functions respectively,
while WD

x and bD
x denote the weight matrix and bias of the x-th layer, respec-

tively.

4.4 Optimization

We train a minimax game to unify G and D. Specifically, G attempts to generate
u’s preference distribution vector (ŷu) to cheat D, while D attempts to distin-
guish u’s ground-truth preference distribution (yu) from the one generated by
G. The objective functions, denoted by JG and JD, are designed as follows,

Algorithm 1: Learning DiCGAN
Input: Interaction matrix Y , learning rate for G and D: μG and μD, minibatch

size of G and D: BG and BD.
Output: θG.

1 Initialize G’s and D’s parameters: θG and θD;
2 while not converged do
3 for G-epoch do
4 Sample minibatch of BG users;

5 Generate fake preference distribution vectors {ŷ1, ŷ2, . . . , ŷBG};

6 Update G by θG ← θG − μG
BG

· ∇θGJG;

7 end
8 for D-epoch do
9 Sample minibatch of BD users;

10 Get true preference distribution vectors {y1,y2, . . . ,yBD};

11 Get fake preference distribution vectors {ŷ1, ŷ2, . . . , ŷBD};

12 Update D by θD ← θD − μD
BD

· ∇θGJD;

13 end

14 end

15 return θG
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Table 1. Statistics of the three datasets

Dataset #User #Item #Interaction Mean-Interaction Sparsity

Ciao 1,081 8,444 24,755 22.90 0.9973

ABaby 6474 20358 100104 15.46 0.9992

AVideo 7,992 25,476 144,387 18.07 0.9993

JG =
∑

u
log(1 − D(ŷu|u, {iu1 , iu2 , . . . , iut })) (12)

JD = −
∑

u
(log(D(yu)) + log(1 − D(ŷu|u, {iu1 , iu2 , . . . , iut }))) (13)

We use random gradient descent with minibatch and back propagation to train
G and D, and alternately update the parameters θG and θD, i.e., fixing one when
updating the other one. Algorithm 1 gives the detailed description of learning
DiCGAN.

5 Experiments

To validate the effectiveness our proposed models, we conduct experiments to
answer the following research questions:

– RQ1. Do our proposed DiCGAN models outperform the state-of-the-art top-
N recommendation methods?

– RQ2. Does the convolutional neural network help improve the performance
by learning from interactive data?

– RQ3. How do the key hyper-parameters affect the performance of DiCGAN?

5.1 Experimental Settings

Datasets. We conduct experiments on three publicly available datasets: Ciao
DVD1 [7] (Ciao for short), Amazon Baby (ABaby for short) and Amazon
VideoGame (AVideo for short)2 [13]. Note that all the three datasets provide
users’ explicit ratings on items, we convert them to 1 (indicating an interaction)
to get implicit feedback data. Moreover, to ensure the quality of the datasets,
we filter them to retain the users with at least 10 interactions and at most 100
interactions. The statistics of the datasets after preprocessing are summarized
in Table 1.

1 https://www.librec.net/datasets.html.
2 http://jmcauley.ucsd.edu/data/amazon/.

https://www.librec.net/datasets.html
http://jmcauley.ucsd.edu/data/amazon/
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Compared Methods. We compare our proposed method DiCGAN3 with the
following methods4:

– BPR-MF [15] optimizes the standard matrix factorization model with a
pair-wise bayesian personalized ranking loss.

– MLP [10] takes advantage of multi-layer perceptron to replace inner product
to learn the non-linear relationship between users and items.

– IRGAN [22] is the first GAN-based CF method, in which G tries to generate
the indices of items relevant to a given user, while D tries to discriminates
the user’s ground truth items from those generated by G.

– CFGAN [1] is a GAN-based CF model in which G tries to generate a plausi-
ble interaction vector of a user composed of real-valued elements, rather than
to sample a single item index that the user may be interested in.

– Caser [17] is the first method that utilizes convolutional filters to learn users’
sequential patterns for sequential recommendation5. We have modified Caser
to make it adaptable to our experiment settings.

– DiC-Solo is a degraded version of DiCGAN, which denotes the method that
only contains the G component of DiCGAN using point-wise objective func-
tions. In this way, DiC-Solo is a non-GAN-based but CNN-based method.

Evaluation Metrics and Methodology. To evaluate the performance and
cover as many aspects of recommendation as possible, we employ three popular
metrics for top-N recommendation: Precission@N, Recall@N and Normalized
Discounted Cumulative Gain (NDCG@N). The first two metrics focus on how
many correct items are recommended, while the third one accounts for the ranked
quality of correct items in the recommendation set. We set N as 5 and 10. For
each dataset, we hold the first 80% items in each user’s interaction as the training
set, and the remaining 20% items are used as the test set. Similar to [19], we use
the test set as a positive sample and randomly select 9 times negative samples.
Based on such a strategy, the recommendation methods can generate a ranked
top-N list to evaluate the metrics as mentioned above.

Implementation Details. We first determine some hyper-parameters that
empirically perform well, regardless of the combination of the other hyper-
parameters or datasets used: height of the input image L = 80, learning
rate μG = μD = 0.001, the number of dilated convolution layers M = 7,
the standard convolution filter height s = (3, 3, 5, 6, 5, 4, 3), dilated factor

3 https://github.com/georgeguo-cn/dicgan.
4 Since the source code of PD-GAN is not available and hard to reproduce, we do not

include it as a competitor.
5 Note that NextItNet [29] is also designed for sequential recommendation, but in

NextItNet, each item corresponds to the probability of predicting the next item.
Therefore, it cannot be modified to fit our experiment requirements, especially when
t < L.

https://github.com/georgeguo-cn/dicgan
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Table 2. Performance comparison in terms of Precision@N, Recall@N, NDCG@N. Best
performance in existing methods is underlined and best performance in our models is
in boldface. The percent of improvement is about the best results between ours and
existing methods.

Datasets Metric Compare methods Ours Improv.

BPR-MF MLP IRGAN CFGAN Caser DiC-Solo DiCGAN

Ciao Precision@5 0.2120 0.2118 0.2111 0.2120 0.2189 0.2209 0.2229 1.86%

Recall@5 0.2515 0.2498 0.2375 0.2478 0.2581 0.2624 0.2638 2.19%

NDCG@5 0.4048 0.4140 0.4157 0.4186 0.4132 0.4158 0.4371 4.41%

Precision@10 0.1633 0.1647 0.1625 0.1626 0.1669 0.1680 0.1685 0.94%

Recall@10 0.3732 0.3767 0.3654 0.3679 0.3728 0.3811 0.3818 1.34%

NDCG@10 0.4387 0.4462 0.4470 0.4561 0.4471 0.4497 0.4687 2.76%

ABaby Precision@5 0.1924 0.1928 0.1900 0.1930 0.1938 0.1974 0.2014 3.94%

Recall@5 0.2849 0.2839 0.2808 0.2855 0.2861 0.2908 0.2955 3.27%

NDCG@5 0.4601 0.4636 0.4586 0.4628 0.4645 0.4717 0.4757 2.40%

Precision@10 0.1450 0.1469 0.1439 0.1447 0.1458 0.1488 0.1509 2.69%

Recall@10 0.4235 0.4283 0.4207 0.4233 0.4257 0.4339 0.4385 2.38%

NDCG@10 0.4957 0.5024 0.4961 0.5018 0.5025 0.5091 0.5117 1.81%

AVideo Precision@5 0.2333 0.2359 0.2022 0.2032 0.2468 0.2719 0.2721 10.25%

Recall@5 0.3127 0.3146 0.2701 0.2705 0.3312 0.3675 0.3677 11.01%

NDCG@5 0.4908 0.5063 0.4645 0.4645 0.5236 0.5632 0.5635 7.61%

Precision@10 0.1744 0.1792 0.1466 0.1462 0.1809 0.1953 0.1953 7.97%

Recall@10 0.4552 0.4655 0.3794 0.3802 0.4727 0.5111 0.5111 8.13%

NDCG@10 0.5230 0.5442 0.4942 0.4950 0.5517 0.5850 0.5859 6.21%

λ = (1, 2, 4, 6, 4, 3, 1). For the key hyper-parameters, the negative sampling ratio
γ = 0.01, the embedding size d = 64 and the number of hidden layers X = 1. In
addition, we employ an early-stop strategy, in which the training process will stop
if the precision do not increase after 50 steps. Note that different L corresponds
to different data scales and different selection of the dilated factors. To see how
the performance fare with different L, we have also conduct experiments with
L = 8, s = (2, 3, 3), λ = (1, 2, 1) and L = 40, s = (3, 3, 4, 4, 3), λ = (1, 2, 4, 5, 3).
The experimental results exhibit similar trends as that of L = 80, and thus are
omitted due to space concern.

(a) Ciao (b) ABaby

Fig. 4. Precision@5 during training on Ciao and ABaby.
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5.2 Performance Comparison (RQ1)

Table 2 reports the summarized results for all the compared methods. We can
see that DiCGAN in general achieves the best results among all the evaluated
methods on the three datasets, which validates the effectiveness of our philoso-
phy on combining CNN with GAN for better performance. Moreover, with the
increase of the sparsity of the dataset, the performance improvement of DiCGAN
is also more significant. Besides, we have the following key observations:

– Caser in general performs better than BPR-MF and MLP, while DiCGAN
consistently outperforms CFGAN. This demonstrates the effectiveness of the
convolutional structures on achieving better recommendation performance,
due to their powerful ability in capturing high-order correlation features
among user’s interacted items. More concretely, the larger the item space
is and the more sparse the dataset is, the smaller the proportion of 1 in the
user’s interaction vector, but the number of 1 does not vary much. For tra-
ditional neural network models that take the user’s interaction item vectors
as input, when the sparsity of the dataset increases, the effective data (with
value 1) proportion will decrease, which may affect their ability to extract
features. Different from them, DiCGAN depends on the stack of the interac-
tion item vectors, which are only related to the number of interacted items
but not its proportion. Moreover, as shown in Table 1, the mean number of
interactions per user is independent with the scale and sparsity of the dataset.
Therefore, our model can still extract abundant information, even for sparse
datasets.

– DiCGAN consistently outperforms Caser and DiC-Solo, which are non-GAN-
based but CNN-based methods. This demonstrates GAN’s unique advantages
in fitting approximate preference distribution, which is better than traditional
CF methods that try to optimize point-wise objective functions. It is worth
noting that the performance gap between DiCGAN and DiC-Solo is not sig-
nificant, this is mainly because the structure of the discriminator in DiCGAN
is relatively simple.

– DiCGAN and CFGAN achieve better results than IRGAN on the three
datasets, mainly due to that they both use vector-wise adversarial training.
Moreover, with the increase of item space, the improvement of DiCGAN over
CFGAN is more significant. This result shows that CFGAN, which exploits
user-item interaction vectors, is more susceptible to data sparsity, whereas
DiCGAN, which only relies on user’s interacted items, is less sensitive to
data sparsity.

Figure 4 shows the Precision@5 trend of CFGAN and DiCGAN on Ciao and
ABaby during training. As can be observed, in both datasets, DiCGAN exhibits
faster learning speed than CFGAN. This is mainly due to that the generator of
CFGAN is more sensitive to data scale. When the item space is large, CFGAN
is more difficult to train and sometimes may even fail to achieve good perfor-
mance. In contrast, DiCGAN utilizes the vectors of interacted items to perform
convolution skillfully, which is less sensitive to the size of the datasets, and thus
can achieve faster and better learning.
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Table 3. Performance of CNN Components. Best performance is in boldface.

Datasets Metric DiG-Vc DiG-Dic DiG-WoA DiCGAN

Ciao Precision@5 0.2187 0.2178 0.2213 0.2229

Recall@5 0.2555 0.2556 0.2599 0.2638

NDCG@5 0.4234 0.4370 0.4280 0.4371

Precision@10 0.1678 0.1651 0.1686 0.1685

Recall@10 0.3826 0.3729 0.3840 0.3818

NDCG@10 0.4618 0.4620 0.4594 0.4687

ABaby Precision@5 0.1943 0.1928 0.1946 0.2014

Recall@5 0.2859 0.2848 0.2863 0.2955

NDCG@5 0.4677 0.4640 0.4678 0.4757

Precision@10 0.1427 0.1414 0.1451 0.1509

Recall@10 0.4158 0.4121 0.4241 0.4385

NDCG@10 0.4995 0.4979 0.5029 0.5117

AVideo Precision@5 0.2259 0.2243 0.2262 0.2721

Recall@5 0.3018 0.2997 0.3021 0.3677

NDCG@5 0.4938 0.4938 0.4944 0.5635

Precision@10 0.1701 0.1693 0.1701 0.1953

Recall@10 0.4435 0.4416 0.4442 0.5111

NDCG@10 0.5248 0.5250 0.5275 0.5859

5.3 Effectiveness of CNN Layers (RQ2)

Performance of CNN Components. We use DiG-Vc (DiG-Vc is short for
DiCGAN-Vc) and DiG-Dic to represent respectively the degraded versions of
DiCGAN that only uses the vertical convolution in G (without attention), and
that only uses the dilated convolution in G (without attention). Further, we use
DiG-WoA to denote the variant of DiCGAN without the attention module in G.

As shown in Table 3, the performance of DiG-Dic is generally the same
as that of DiG-Vc. But the model using both dilated convolution and vertical
convolution (DiG-WoA) performs much better than the former two variants,
demonstrating that a user’s preference can be better captured by learning high-
order correlation features from the perspective of user’s interacted items and
the latent dimensions of user’s interacted items simultaneously. Moreover, the
comparison between DiCGAN and DiG-WoA reveals that applying the attention
model in general can achieve better results.

Impact of Pre-training. To show the effect of pre-training on DiCGAN,
we conducted experiments to compare its performance with and without pre-
training for generator. As shown in Table 4, the results of our model with pre-
training are consistently better than those without pre-training. This validates
the effectiveness and necessity of pre-training.
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Table 4. Performance with/without pre-training. Best performance is in boldface.

Datasets Metric Without pre-training With pre-training

Ciao Precision@10 0.1681 0.1685

Recall@10 0.3813 0.3818

NDCG@10 0.4619 0.4687

ABaby Precision@10 0.1453 0.1509

Recall@10 0.4231 0.4385

NDCG@10 0.5050 0.5117

AVideo Precision@10 0.1802 0.1953

Recall@10 0.4641 0.5111

NDCG@10 0.5425 0.5859

5.4 Hyper-parameter Sensitivity (RQ3)

To evaluate the effect of the negative sampling ratio γ, embedding size d and
hidden layer number X, we conduct experiments on Ciao by varying the value
of them. Note that we have also conducted the same experiments on ABaby and
AVedio, the results exhibit the similar trend and hence are omitted here due to
space concern.

– Negative Sampling Ratio. As shown in Fig. 5 (a), DiCGAN achieves the
best performance when γ is 0.01. With larger γ, G would pay too much
attention to making outputs close to zero, rather than achieving its original
goal of generating real preference distribution, and this may deteriorate the
model performance.

– Embedding Size. Different embedding sizes carry different feature infor-
mation. As shown in Fig. 5 (b), the performance of DiCGAN increases with
the growth of d, and reaches the best when d = 64. This shows that the
model can get better results by introducing more prediction factors to obtain
a stronger representation ability. However, when embedding size is too large,
it will affect the training of the model, resulting in the decline of the accuracy.

Fig. 5. Effect of Hyper-Parameter, i.e. γ, d, and X on Ciao
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– Hidden Layer Number. As shown in Fig. 5 (c), the best performance in
general is achieved when X = 1, and stacking more layers does not neces-
sary improve the performance. The reason may be related to the training of
the discriminator. The more hidden layers, the more parameters need to be
trained, and the more difficult it is for the discriminator to reach a stable
state.

6 Conclusion

In this paper, we proposed DiCGAN, a Dilated Convolutional Generative Adver-
sarial Network for top-N recommendation. By expressing the interactions of per
user into an image, we propose to exploit CNN’s powerful high-order correla-
tion learning ability in a GAN-based recommendation model. With the help of
several dilated convolutional filters and a vertical convolutional filter, the high-
order correlation features among user’s interacted items are captured. Moreover,
an attention module was employed to generate attention maps that can be mul-
tiplied to the feature map for adaptive refinement of features. Experimental
results on three public datasets demonstrate that, compared with state-of-the-
art GAN-based and CNN-based recommendation methods, DiCGAN can achieve
remarkable performance improvement, and is less sensitive to data sparsity.
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Abstract. A knowledge graph (KG) has been widely adopted to
improve recommendation performance. The multi-hop user-item connec-
tions in a KG can provide reasons for recommending an item to a user.
However, existing methods do not effectively leverage the relations of
entities and interpretable paths in a KG. To address this limitation,
in this paper, we propose a novel recommendation framework called
relation-enhanced knowledge graph reasoning for recommendation (RE-
KGR) that combines recommendation and explainability by reasoning
user-item interaction paths (UIIPs). First, instead of applying an align-
ment algorithm for preprocessing, RE-KGR directly learns the semantic
representation of entities from structured knowledge by stacking relation-
based convolutional layers to take full advantage of the KG. Moreover,
RE-KGR infers user preferences by calculating the sum of all UIIPs
between users and items. Finally, RE-KGR selects several UIIPs with
the highest probabilities as possible reasons for the recommendations.
Extensive experiments on three real-world datasets demonstrate that
our proposed method significantly outperforms several state-of-the-art
baselines and achieves superior performance and explainability.

Keywords: Recommender systems · Graph neural networks ·
Knowledge graphs

1 Introduction

A knowledge graph (KG), which is a heterogeneous network composed of struc-
tured knowledge, has been widely applied in various fields, such as informa-
tion retrieval and question answering. Inspired by the successful use of KG,
researchers have attempted to link user-item interaction data to a KG, and con-
structed a collaborative knowledge graph (CKG) for recommendation tasks [12].

Existing KG-based methods can be classified into two categories. The first
category is path-based (PB) methods [4], which extract various patterns of meta-
paths carrying high-order information between entities and feed them into a pre-
diction model to obtain recommendations. However, PB methods rely heavily
on a manually designed meta-path extraction algorithm, which requires domain
knowledge and is difficult to optimize in practice [11]. In addition, PB methods
c© Springer Nature Switzerland AG 2021
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also suffer from the path explosion phenomenon. The CKG has an extremely
large path space as the number of path hops grows, which makes training
more difficult. The second category is embedding-based (EB) methods [12,13],
which align entity embeddings by KG embedding algorithms [7] and aggregate
the entity embeddings from their neighbors to compute similarity. EB methods
exhibit greater flexibility than PB methods in capturing high-order connections;
however, existing EB methods do not fully use the relations between entities
during high-order aggregation, which leads the model to inadequately learn the
semantic representation of entities from structured knowledge.

To address these limitations, we propose relation-enhanced knowledge graph
reasoning (RE-KGR), an end-to-end recommendation framework. Specifically,
we employ a simple embedding method that is widely used in collaborative fil-
tering (CF) based models [3,8] to encode entities and relations. Then, we project
entities from the entity space to the corresponding relation space, and aggregate
the entities and their neighbors. Moreover, we apply the attention mechanism
[10,12] to help distinguish the importance of local neighbors. To alleviate the
over-smoothing problem [6] and improve the information flow between convo-
lutional layers, we adopt a dense connectivity pattern [5] that is widely used
in convolutional neural networks. We then compute the similarity of adjacent
entities for user-item interaction path (UIIP) reasoning and generate the recom-
mendations and explanations. Experimental results on three real-world datasets
show that our proposed approach significantly outperforms baseline methods.

2 Preliminaries

In a recommendation scenario, we typically have a set of users U =

{u1, u2, ..., uM } and set of items I = {i1, i2, ..., iN }, where M and N denote the
number of users and items, respectively. We also have a KG Gkg = {(h, r, t)|h, t ∈
E, r ∈ R}. Here h, r, and t denote the head, relation, and tail of a knowl-
edge triplet, respectively, E and R denote the set of entities and relations in
the KG. We map items into the KG via title matching to build the CKG
G = {(h, r, t)|h, t ∈ E ∪ U ∪ I, r ∈ R ∪ {Interact}}. We formulate the recom-
mendation task to be addressed in this paper as follows: Given a CKG G, we
aim to infer the probability ŷui that user u is interested in item i, and provide
potential reasons P

q
ui.

3 Methodology

The framework of RE-KGR is illustrated in Fig. 1, which consists of four main
components: 1) an embedding layer, which parameterizes each entity and rela-
tion as a dense vector; 2) relation-based graph convolution (RGC) layers, which
recursively aggregate entities by their neighbors’ representations according to the
relations between them; 3) a local similarity layer, which is applied to learn the
similarity between connected entities; and 4) a prediction layer, which reasons
UIIPs and infers possible interactions according to the local similarity scores.
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Fig. 1. The framework of relation-enhanced knowledge graph reasoning.

Furthermore, for RGC layers, we also adopt an attention mechanism [10,12]
to distinguish the importance of neighbors and dense connections [5] to reduce
over-smoothing [6].

3.1 Embedding Layer

For a massive-scale CKG, the entities and relations are often trained on sparse
binary features with one-hot encoding. We use the embedding table lookup oper-
ation to obtain the embeddings of entities and relations:

ei = Eentityoi , e
(l)
r = E(l)

relation
or, (1)

where o denotes one-hot vectors, ei denotes the embedding of entity i, and e(l)r
denotes the embedding of relation r used in the l-th RGC-layer.

3.2 RGC Layer

First-Order Aggregation. A CKG is a semantic network; thus, the entity
h and t in a triplet (h, r, t) ∈ G usually contains various types and attributes.
Therefore, we first project each entity t to a different semantic space conditioned
to the relation r:

hr
t = Wret . (2)

Here, et is the embedding of entity t, Wr ∈ R
k×d is the projection matrix.

To characterize the first-order proximity structure of entity h and aggregate
its neighbors’ representations, we compute the combination of h’s closed neigh-
borhood:

e(1)
h

= σ
��
�

∑

(h,r,t)∈Nh

π
(h,r,t)hr

t
��
�
, (3)
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where Nh denotes the closed neighborhood of h, e(1)
h

is the first-order represen-
tation of h, σ(·) denotes an activation function, such as ReLU(·) = max(0, ·), and
π
(h,r,t) is the attention score defined as follows:

π
(h,r,t) = (Mr−1hr

h + er )�Mrhr
t . (4)

Here, Mr−1,Mr are mapping matrices, and r and r−1 are a pair of inverse relations,
such as AuthorOf and WrittenBy.

We employ the softmax function to normalize the coefficients across all closed
neighborhoods of h:

π
(h,r,t) =

exp(π
(h,r,t))∑

(h,r′,t′)∈Nh
exp(π

(h,r′,t′))
. (5)

High-Order Aggregation. We further stack more aggregation layers to
explore high-order connectivity. In addition, to reduce the over-smoothing prob-
lem and improve the information flow between RGC layers, we adopt dense
connectivity, which is proposed in DenseNet [5]. More formally, in the l-th steps,
we formulate the representation of an entity h as follows:

e(l)
h

= σ
��
�

∑

(h,r,t)∈Nh

π
(h,r,t)hr

t
(l)��
�
, (6)

wherein the attention scores and projection of entities are formulated as follows:

π
(h,r,t) = (M (l)

r−1
hr
h
(l) + e(l)r )

�M (l)
r hr

t
(l), (7)

hr
t
(l) = W(l)



l−1
k=0

ekt . (8)

Here, ‖ is the concatenation operator, and e(0) denotes initial embeddings.

3.3 Local Similarity Layer

We define the local similarity score between two connected entities h and t with
relation r as follows:

s
(h,r,t) = (Mr−1 ‖

L
k=0e

(k)
h

+ ‖

L
k=0e

(k)
r )

�Mr ‖
L
k=0e

(k)
t , (9)

where Mr and Mr−1 are mapping matrices.

3.4 Prediction Layer

RE-KGR uses the local similarity of entities to reason probable UIIPs and further
infer user preferences. More formally, we use PUIIP = {(h, r, t)|(h, r, t) ∈ G)} to
describe an acyclic UIIP. The probability of the UIIP is calculated as follows:

p(PUIIP) =
∏

(h,r,t)∈PUI I P

s
(h,r,t), (10)
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wherein the local similarity of an entity h is normalized across its neighbors by
adopting the softmax function.

To infer user preferences, we use Pui to denote all acyclic UIIPs that start
and end with user u and item i, respectively. Then, we combine the UIIPs’
probabilities to compute the preference score of user u for item i:

ŷui =
∑

PUIIP∈P(u,i)

p(PUIIP). (11)

3.5 Optimization

To increase the efficiency of training the recommendation model, we adopt BPR
[9] loss:

LCKG = −

∑

(h,r,t,t′)∈T

ln sigmoid
(
s
(h,r,t) − s

(h,r,t′)

)
, (12)

where T = {(h, r, t, t ′)|(h, r, t) ∈ G, (h, r, t ′) �G}, (h, r, t ′) is a negative sample con-
structed by randomly replacing an entity in (h, r, t). In addition, we adopt L2
normalization to prevent overfitting.

4 Experiments

4.1 Datasets and Evaluation Metrics

Three benchmark datasets were utilized for the evaluation of RE-KGR:

Amazon-Book1: Amazon-Book is a subclass of Amazon-Review, which is a
widely used dataset for product recommendation.

Last-FM2: Last-FM is a music listening dataset collected from the Last.fm
online music system, wherein tracks are viewed as items. We selected a subset
of the dataset in which the timestamp was from January 2015 to June 2015.

Yelp20183: Yelp2018 is a dataset from the 2018 edition of the Yelp challenge,
which consists of user ratings of local businesses such as restaurants and bars.

We cleaned the data by applying the 10-core setting [12]. We randomly split
the datasets into training (70%), validation (10%), and test (20%) sets. We used
Freebase4 to construct the KG for each dataset, and mapped items into the KG
via title matching to build the CKG. For Yelp2018, we extracted exclusive KG
data from the local business information network. To ensure the effectiveness of
the extracted entities, we preprocess the three KG parts by removing sparsely
connected entities (i.e., lower than 10 in both datasets) and retaining relations
appearing in at least 50 triplets. We employed two widely used evaluation pro-
tocols to evaluate the performance of our model: recall@K and ndcg@K. We
computed both protocols for each test user and reported the average score at K
= 20.
1 http://jmcauley.ucsd.edu/data/amazon.
2 https://grouplens.org/datasets/hetrec-2011/.
3 https://www.yelp.com/dataset/challenge.
4 https://developers.google.com/freebase.

http://jmcauley.ucsd.edu/data/amazon
https://grouplens.org/datasets/hetrec-2011/
https://www.yelp.com/dataset/challenge
https://developers.google.com/freebase
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4.2 Baselines and Experimental Setup

To evaluate the effectiveness of RE-KGR, we compared our proposed model
with CF methods (FM [8] and NFM [3]), EB methods (CKE [13], CFKG [1],
and KGAT [12]), a PB method (RippleNet [11]), and a graph neural network-
based method (GC-MC [2]). The embedding size of all models was fixed at
64 except for that of RippleNet, which was 16 due to its high computational
cost. We applied dropout for NFM, GC-MC, and KGAT, where the ratio was
tuned in {0, 0.1, · · · , 0.8}. Furthermore, node dropout was employed for CG-MG
and KGAT, where the ratio was searched in {0, 0.1, · · · , 0.8}. For RippleNet, the
number of hops and memory size was set to 2 and 8, respectively. For KGAT,
we set the depth to 3 with hidden dimensions 64, 32, and 16. We selected 3 as
the length of UIIPs inferred by our RE-KGR.

4.3 Performance Comparison

Table 1 presents an overall performance comparison of all methods for the
top-K recommendation task on three datasets. RE-KGR significantly outper-
formed state-of-the-art methods on all datasets. Specifically, RE-KGR out-
performed the state-of-the-art methods by 63.06%, 40.23%, 30.90% in recall@K
and 93.64%, 76.91%, 49.94% in ndcg@K for the Amazon-Book, Last-FM, and
Yelp2018 datasets, respectively.

Table 1. Performance comparison of all methods

Data Metrics FM NFM RippleNet GC-MC CKE CFKG KGAT Ours Improve

Amazon-Book recall 0.1345 0.1366 0.1336 0.1316 0.1343 0.1142 0.1489* 0.2428 63.06%

ndcg 0.0886 0.0913 0.0910 0.0874 0.0885 0.0770 0.1006* 0.1948 93.64%

Last-FM recall 0.0778 0.0829 0.0791 0.0818 0.0736 0.0723 0.0870* 0.1220 40.23%

ndcg 0.1181 0.1214 0.1238 0.1253 0.1184 0.1143 0.1325* 0.2344 76.91%

Yelp2018 recall 0.0627 0.0660 0.0664 0.0659 0.0657 0.0522 0.0712* 0.0932 30.90%

ndcg 0.0768 0.0810 0.0822 0.0790 0.0805 0.0644 0.0867* 0.1300 49.94%

4.4 Study of RE-KGR

Effect of UIIP Reasoning and Relation-Based Graph Convolution.
Table 2 shows the results of comparing RE-KGR with its variants. We replaced
the prediction layer with direct calculation of the similarities between users and
items as in [12], called w/o UIIP, and replaced the projection matrices (2) with
a unique matrix, called w/o RGC.
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Table 2. Effect of UIIP reasoning and
RGC.

Amazon-Book Last-FM Yelp2018

recall ndcg recall ndcg recall ndcg

RE-KGR 0.24280.19480.12200.23440.09320.1300

w/o UIIP0.1307 0.0984 0.0812 0.1332 0.0613 0.0810

w/o RGC0.2279 0.1826 0.1101 0.2229 0.0878 0.1249

Table 3. Effect of model depth.

depthAmazon-Book Last-FM Yelp2018

recall ndcg recall ndcg recall ndcg

2 0.2179 0.1620 0.1165 0.2171 0.0665 0.0940

3 0.2421 0.19560.12620.24200.0919 0.1267

4 0.24280.1948 0.1220 0.2344 0.09320.1300

The experimental results in Table 2 can be summarized as follows:
1) UIIP reasoning was substantially superior to directly calculating simi-

larities between users and items. This may be because the model optimized by
maximizing the similarity between directly connected entities, which is measured
via the inner product, is unavailable for indirectly connected entities. The lack
of explicit constraints on different types of connections leads to the uncertain
direction of vectors. The inner product reflects the linear correlation between
vectors; however, it ignores the direction and therefore fails to compute the sim-
ilarity between indirectly connected entities.

2) Removing RGC dramatically degraded the model’s performance in each
case. One possible reason is that disabled RGC weakens the model’s ability to
distinguish different types of connections, resulting in over-smoothing.

Effect of Model Depth. We varied the number of RGC layers to observe
changes in the performance of RE-KGR. The results are presented in Table 3.
Comparing the 2-layer and 3-layer model, it can be seen that increasing the
depth of the model can effectively enhance performance. This suggests that
deeper models can learn representations with more side information and make
more accurate predictions. The further stacked 4-layer model led to marginal
improvements and even reduced performance in some cases. We attribute this
to local over-smoothing. More than 99% of items could be connected by UIIPs
within three hops; therefore, too many layers of the model led to repeated aggre-
gation of entities.

4.5 Case Study

To intuitively demonstrate the explainability of RE-KGR, we randomly selected
one user, u55463, from Amazon-Book and one recommended item, i940. Figure 2
presents the visualized process of UIIP reasoning.

Fig. 2. Visualization of user-item interaction paths (UIIPs).
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Benefiting from UIIP reasoning, the tracked UIIPs can be seen as reasons
why an item is recommended for a user. For instance, the path (u55463

0.11
−−−→

The Messenger
0.0839
−−−−−→ Daniel Silva

0.04
−−−→ The Mark o f the Assassin) has the

highest probability; therefore, we can generate the explanation “You might be
interested in The Mark of the Assassin since you have read The Messenger writ-
ten by the same author, Daniel Silva.”

5 Conclusion

In this paper, we propose the RE-KGR framework that combines the advan-
tages of both EB and PB recommendation methods. RE-KGR can learn entity
representations with latent semantic information in a more flexible way than
PB methods, and can provide more diverse explanations than EB methods. The
proposed framework encodes structured knowledge and collaborative signal by
recursively performing relation-based graph convolution, and provides explain-
able recommendations by reasoning UIIPs. Extensive experiments on three pub-
licly available datasets demonstrate that our method can substantially improve
the performance and explainability of knowledge-aware recommendation.
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Abstract. Collaborative filtering (CF) is the dominant technique in
personalized recommendation. It models user-item interactions to select
the relevant items for a user, and it is widely applied in real recom-
mender systems. Recently, graph convolutional network (GCN) has been
incorporated into CF, and it achieves better performance in many rec-
ommendation scenarios. However, existing works usually suffer from lim-
ited performance due to data sparsity and high computational costs in
large user-item graphs. In this paper, we propose a linear graph convolu-
tional CF (LGCCF) framework that incorporates the social influence as
side information to help improve recommendation and address the afore-
mentioned issues. Specifically, LGCCF integrates the user-item interac-
tions and the social influence into a unified GCN model to alleviate data
sparsity. Furthermore, in the graph convolutional operations of LGCCF,
we remove the nonlinear transformations and replace them with linear
embedding propagations to overcome training difficulty and improve the
recommendation performance. Finally, extensive experiments conducted
on two real datasets show that LGCCF consistently outperforms the
state-of-the-art recommendation methods.

Keywords: Recommender systems · Graph convolutional network ·
Collaborative filtering · Social network

1 Introduction

Collaborative filtering (CF) has seen great success due to its relatively high per-
formance [9]. However, their recommendation performance is unsatisfactory due
to the sparsity of user-item interaction data. Recently, the graph convolutional
network (GCN) has been incorporated into CF achieving better performance in
many recommendation scenarios, e.g., PinSage [10] and NGCF [7]. Despite the
relative success of GCN-based recommendation, we argue that it still faces two
challenges: (i) current GCN-based recommendation models usually only con-
sider the user-item bipartite graph. However, the social influence enables users
to build relationships and create different types of items. Hence, considering how
c© Springer Nature Switzerland AG 2021
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to incorporate social graphs into the GCN models will improve recommendation
performance in the long run; (ii) we argue that the designs of these models are
rather burdensome and difficult to train. Because GCN was originally designed
for graph classification tasks, its many operations are unnecessary for the CF
task. Therefore, it is very important to simplify the GCN model and make it
efficient for recommendation.

In this paper, we propose a linear graph convolutional CF (LGCCF) with
social influence to address these two challenges. First, we integrate the user-item
bipartite graph and the user-user social graph into a unified GCN model through
user nodes. Second, we carefully design a linear embedding propagation rule
for graph convolutional operations, including the essential components of GCN
neighborhood aggregation for CF. Empirically, we apply LGCCF to two real-
world datasets, Yelp and Flickr, in extensive experiments. The results show that
LGCCF achieves substantial gains over state-of-the-art GCN-based methods for
recommendation.

2 Preliminaries

Problem Definition. In a recommendation scenario, we have a set of M users
U = {u1, u2, . . . , uM} and a set of N items I = {i1, i2, . . . , iN}. The historical
user-item interactions can be represented as a bipartite graph G1 = 〈U ∪ I,R ∈
R

M×N 〉, where U and I denote the user and item nodes, respectively, and R
denotes the user-item interaction matrix. We use Ru and Ri to respectively
denote the set of items interacted with by user u and the set of users who have
interacted with item i. In addition to the user-item interactions, we use the social
network as auxiliary information to enrich user-item interactions. The social
network can be represented as a user-user social graph G2 = 〈U,S ∈ R

M×M 〉,
where U is the user nodes and S represents the social matrix. We use Su to
represent the set of users that user u follows.

Given a user-item bipartite graph G1 and a user-user social graph G2, we aim
to predict whether user u has potential interest in item i with which he has had
no interaction before. Our goal is to learn a prediction function r̂ui = F(u, i),
where r̂ui denotes the probability that user u will click on item i.

Problems in GCN. Although the current GCN-based recommendation models
are relatively successful, we argue that these models’ propagation rule is not rea-
sonable enough. Firstly, the role of nonlinear feature transformation in current
GCN-based recommendation models is unclear. GCN was originally designed for
node classification tasks. Therefore, it is not necessarily useful for the CF task.
Secondly, nonlinear feature transformation incurs high computational costs and
increases training difficulty. Recently, SGCN [8] demonstrated that nonlinear fea-
ture transformation has a negative effect on node classification tasks. Therefore,
simplifying the GCN model to overcome training difficulty and high computa-
tional costs is a highly challenging problem.
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3 Methodology

In this section, we describe the LGCCF whose structure is shown in Fig. 1.

Fig. 1. The overall architecture of the proposed model, which contains three major
components: embedding layer, linear embedding propagation, and model prediction

3.1 Architecture

Embedding Layer. Given a user-item bipartite graph G1 and a user-user social
graph G2 as input, each user u (and item i) is encoded as a free embedding
eu ∈ R

d (ei ∈ R
d), where d is the free embedding size. And then, we additionally

integrate user u’s feature embedding e′
u ∈ R

d (e.g., user profile) and item i’s
feature embedding e′

i ∈ R
d (e.g., item text representation, item visual represen-

tation). Finally, by fusing the free embedding and feature embedding, we define
the output of the embedding layer to user u and item i as:

e0u = eu + e′
u, e0i = ei + e′

i, (1)

where + is the element-wise addition operation.

Linear Embedding Propagation. Next, we propose the linear embedding
propagation layers, which adopt a simple weighted-sum aggregator and abandon
the use of feature transformation and nonlinear activation, to recursively propa-
gate each user u’s and each item i’s embeddings along higher-order connectivity.

User Embedding. For each user u, let eku denote the k-th layer embedding. As
users play a central role in both the user-item bipartite graph G1 and the user-
user social graph G2, two aggregations are introduced to respectively process
these two different graphs. The first is item aggregation, let ek+1

Ru
denote user u’s

aggregated embedding from the neighbor nodes Ru in the graph G1:

ek+1
Ru

=
1

|Ru|
∑

a∈Ru

eka, k = 0, 1, · · · ,K − 1, (2)

where 1
|Ru| means the item’s neighbor nodes contribute the same weight to u.

The other is social aggregation and it can help model users from the social
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perspective. Let ek+1
Su

represent the embedding of aggregation from the u’s social
neighbors at the k+1-th layer:

ek+1
Su

=
1

|Su|
∑

b∈Su

ekb , k = 0, 1, · · · ,K − 1, (3)

where 1
|Su| implies the social neighbor nodes contribute the same weight to u.

Unlike the traditional GCN-based recommendation model, we use a simple
linear embedding propagation rule to get user u’s updated embedding ek+1

u at
the k+1-th layer after obtaining item aggregation and social aggregation:

ek+1
u = eku + (γ1ek+1

Ru
+ γ2ek+1

Su
), k = 0, 1, · · · ,K − 1, (4)

where eku ensures self-information from layer k can be retained at layer k+1. ek+1
Ru

and ek+1
Su

are the item aggregation and social aggregation of user u, respectively.
In order to distinguish between the influence of these two different neighbor types
in the embedding propagation step, we set the item influence weight γ1 and the
social influence weight γ2. In our experiments, we find that setting γ1 = γ2 = 0.5
generally leads to good performance.

Item Embedding. For each item i, we denote its k-th layer embedding as eki .
Item i’s embedding is only influenced by its user neighbors Ri. We also use the
linear embedding propagation rule to aggregate the item’s embedding eki with
its user neighbors:

ek+1
i = eki + ek+1

Ri
, ek+1

Ri
=

1
|Ri|

∑

c∈Ri

ekc , k = 0, 1, · · · ,K − 1, (5)

where 1
|Ri| implies the user neighbor nodes contribute the same weight to i.

Model Prediction. After the linear embedding propagation processes with K
times, we obtain multiple embeddings for user node u and item node i. Then,
we concatenate them to constitute the final embeddings for user u and item
i. The model prediction is defined as the inner product of user and item final
embeddings:

e∗
u = e0u‖ · · · ‖eKu , e∗

i = e0i ‖ · · · ‖eKi , r̂ai = e∗�
u e∗

i . (6)

3.2 Model Optimization

We adopt a ranking criterion, i.e. the Bayesian Personalized Ranking [5], to
optimize the model parameters of LGCCF:

LBPR =
∑

(u,i,j)∈O

− ln σ (r̂ui − r̂uj) + λ‖Θ‖2, (7)
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Table 1. Statistics of the datasets

Dataset Yelp Flickr

Number of Users 17237 8358

Number of Items 38342 82120

Number of Ratings 207945 327815

Rating Density 0.031% 0.048%

Number of Social Connections 143765 187273

Social Relations Density 0.048% 0.268%

where O denotes the positive and negative training data. σ(x) is a sigmoid
function. Θ = {E} denotes the trainable model parameters; E is the embedding
matrix for all user and item nodes. λ controls the L2 regularization strength to
prevent overfitting. We employ the mini-batch Adam [4] as the optimizer in our
implementation to optimize the objective function. Moreover, the dimensions of
the embedding in the linear embedding propagation layer are the same.

3.3 Time Complexity Analysis

O
(∑K

k=1 |G1 + G2| dldl−1 +
∑K

k=1 |G1 + G2| dl
)

is the overall time complexity of
the classical GCN model, where |G1 + G2| and dl and dl−1 are the number of
interactions in G1 and G2 and the current and previous transformation sizes,
respectively. The time cost of classic GCN models usually result from the matrix
multiplication O

(∑K
k=1 |G1 + G2| dldl−1

)
. Here, we propose a computationally

efficient method. Since it uses linear embedding propagation and does not have
any hidden layers, we do not need the matrix multiplication for feature learn-
ing. Therefore, the overall time complexity of LGCCF is O

(∑K
k=1 |G1 + G2| dl

)
,

which is the time cost of the whole training epoch in the prediction layer.

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Metrics. We adopt two real-world datasets for
empirical study, Yelp and Flickr, to evaluate the effectiveness of our model.
Since Yelp is the explicit feedback data, we transform it into implicit feedback.
We provide some statistics on these two datasets in Table 1. As our focus is
recommending items to users, we use two commonly adopted ranking metrics
for top-N recommendation evaluation: HR@N and NDCG@N.
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Table 2. Overall performance comparison

Yelp Flickr

HR NDCG HR NDCG

N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15

BPR 0.1695 0.2632 0.3252 0.1231 0.1554 0.1758 0.0651 0.0795 0.1037 0.0603 0.0628 0.0732

FM 0.1855 0.2825 0.3440 0.1341 0.1717 0.1876 0.0989 0.1233 0.1473 0.0866 0.0954 0.1062

SocialMF 0.1739 0.2785 0.3365 0.1324 0.1677 0.1841 0.0813 0.1174 0.1300 0.0723 0.0964 0.1061

TrustSVD 0.1882 0.2939 0.3688 0.1368 0.1749 0.1981 0.1089 0.1404 0.1738 0.0978 0.1083 0.1203

GraphRec 0.1915 0.2912 0.3623 0.1279 0.1812 0.1956 0.0931 0.1231 0.1482 0.0784 0.0930 0.0992

NGCF 0.1992 0.3042 0.3753 0.1450 0.1828 0.2041 0.0891 0.1189 0.1399 0.0819 0.0945 0.0998

SGCN 0.2036 0.3071 0.3823 0.1465 0.1872 0.2089 0.1053 0.1424 0.1612 0.0912 0.1107 0.1308

DiffNet++ 0.2503 0.3694 0.4493 0.1841 0.2263 0.2497 0.1412 0.1832 0.2203 0.1269 0.1420 0.1544

LGCCFw/o feature0.2268 0.3364 0.4172 0.1692 0.2079 0.2309 0.1099 0.1395 0.1703 0.1001 0.1104 0.1214

LGCCFw/o social 0.2403 0.3595 0.4394 0.1719 0.2160 0.2401 0.1606 0.2118 0.2506 0.1398 0.1575 0.1700

LGCCF 0.27160.38870.46610.20130.24330.26670.20060.25070.29340.17820.19470.2091

%Improv 8.51% 5.22% 3.94% 9.34% 7.51% 6.81% 42.06%36.84%33.18%40.42%37.11%35.42%

Baselines and Parameter Settings. We compare our model with three
groups of baselines, including traditional recommendation models (BPR [5]
and FM [6]), social recommendation models (SocialMF [3] and TrustSVD [2]),
and GNN-based recommendation models (GraphRec [1], NGCF [7], SGCN [8],
and DiffNet++ [9]). Moreover, to further verify the efficacy of the social net-
work and the feature embeddings, we designed two variants of the LGCCF:
LGCCFw/o social, where LGCCF’s user-user social graph is removed; and
LGCCFw/o feature, where the feature embeddings are removed in Eq. 1.

The optimal parameter settings for all the comparison methods are achieved
by either empirical study or adopting the original papers’ settings. The embed-
ding size is fixed at 64 for all models, and the batch size is fixed at 512. In our
model, we try the regularization parameter λ in the range {0.0001, 0.001, 0.01,
0.1} and the learning rate γ in the range {0.001, 0.003, 0.01, 0.03}. We find
λ = 0.001 and γ = 0.003 achieve the best performance.

4.2 Performance Study

Performance Comparison. We first compare the recommendation perfor-
mance of all methods. The performance comparison results are presented in
Table 2. Thus, we have the following observations:

We note that our method achieves the best performance among all the meth-
ods on both datasets in terms of HR and NDCG. Our model provides a linear
graph convolutional operation to integrate the user-item bipartite graph and
the user-user social graph. We assume this is because the feature transformation
operations and nonlinear operations may not benefit the recommendation per-
formance. These results demonstrate the effectiveness of our model. In Table 2,
LGCCFw/o social performs worse than LGCCF. It confirms that combining the
user-user social graph with GCN can help in learning user or item embeddings
and improve recommendation performance. We can also see that without user
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Table 3. Performance comparison between LGCCF and LGCCFnonlinear

Dataset Yelp Flickr

Layer Method HR@10 NDCG@10 Time Cost HR@10 NDCG@10 Time Cost

1 Layer LGCCFnonlinear 0.3618 0.2260 10 s 0.1832 0.1391 13 s

LGCCF 0.3735 0.2362 9 s 0.2090 0.1614 12 s

2 Layer LGCCFnonlinear 0.3658 0.2263 15 s 0.1858 0.1427 20 s

LGCCF 0.3820 0.2407 14 s 0.2426 0.1859 16 s

3 Layer LGCCFnonlinear 0.3684 0.2287 22 s 0.1945 0.1486 23 s

LGCCF 0.3887 0.2433 17 s 0.2507 0.1940 20 s

4 Layer LGCCFnonlinear 0.3588 0.2210 27 s 0.1805 0.1369 29 s

LGCCF 0.3809 0.2353 24 s 0.2421 0.1829 26 s

and item features, the performance of LGCCFw/o feature significantly deterio-
rates. This confirms that both user and item features are important for learning
node latent factors in the graph and boosting the recommendation performance.

Effectiveness Analysis of Linear Embedding Propagation. We perform
the analysis to demonstrate the validity of our proposed linear embedding prop-
agation rule. We design a variant of the LGCCF: LGCCFnonlinear. This variant
of LGCCF retains feature transformation and nonlinear activation. A thorough
comparison with LGCCF is carried out. Table 3 shows the outputs at various
layers (1 to 4). The following are the main observations:

In all cases, LGCCF outperforms LGCCFnonlinear by a large margin, but the
training time of LGCCF was always less than the that of LGCCFnonlinear. These
results illustrate that nonlinear feature transformations in traditional GCN mod-
els are unnecessary for the recommendation task and removing them can greatly
improve the recommendation performance and reduce training difficulty. Table 3

Fig. 2. Performance under different data sparsity on Flickr : The background his-
tograms indicate the number of users involved in each group, and the lines demonstrate
the performance with regard to NDCG@10
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also shows the results of LGCCF at different depths. When the number of lay-
ers is 3, LGCCF achieves the best performance. This suggests that increasing
the depths enables the efficient modeling of higher-order connectivity. However,
when we further increase the layers to 4, the performance drops. This might be
because adding more layers introduces unnecessary neighbors and noise to the
representation learning.

Performance Under Different Data Sparsity. We show the performance
of various models under different sparsity levels. Figure 2 illustrates the results
with regard to NDCG@10 on different user groups in the Flickr dataset. Our
proposed model, LGCCF, outperforms all other baselines on all user groups.
LGCCFw/o social performs worse than LGCCF. This reconfirms the efficacy of
our model, which uses the higher-order connectivity and social graphs to solve
the data sparsity issue.

5 Conclusion

In this paper, we present LGCCF, a linear graph convolutional collaborative
filtering with social influence. We integrate the user-item bipartite graph and
the user-user social graph into one graph. We further design a new GCN model
to capture the higher-order representations of the nodes in this graph. In this
GCN model, we remove the nonlinear transformations and replace them with
linear embedding propagations. We compare LGCCF with state-of-the-art mod-
els on two real-world datasets, and the superior results of LGCCF on top-N
recommendation demonstrate its effectiveness.
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Abstract. Many practical recommender systems recommend personal-
ized items for different users by mining user-item interaction sequences.
The interaction sequences, as a whole, imply the manifold collaborative
relations among users and items. Further, from the view of users, the
item orders and time intervals between interactions could expose the
evolution of user interests, and from the view of items, attributes of the
items on interaction sequences may reveal the variation of item popular-
ity. However, most of the existing recommendation models ignore those
valuable information, and cannot fully explore the intrinsic implication of
interaction sequences. In the paper, we propose a method named Sirius,
which develops GNNs (Graph Neural Networks) to model the collabora-
tive relations and capture the dynamics of time and attribute features
in sequences. We give the workflow of the Sirius method, and describe
the implementations about graph construction, item embedding genera-
tion, sequence embedding generation and next-item prediction. Finally,
we give an example of Sirius recommendations, which visually shows the
impact of feature information on the recommendation results. At present,
Sirius has been adopted by MX Player, one of India’s largest streaming
platforms, recommending movies for thousands of users.

Keywords: Recommender system · Deep learning · Graph neural
network · Sequential recommendation

1 Introduction

In recent years, recommendation has been an effective way to solve the informa-
tion overload and meet personalized requirements of different users. Among rec-
ommendation tasks, sequential recommendation refers to recommending items to
users according to the user-item interaction sequences in the recent period. For
example, on e-commercial platforms, products are recommended to users on the
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basis of the recent user-product clicking records. Likewise, on video streaming
platforms, recommending videos to users is largely based on historical watching
records.

The early sequential recommendation methods often model an interaction
sequence as a kth-order Markov chain, and predict the user’s next action by pre-
vious k actions [5,13]. Obviously, under the assumption that a user’s next action
relates to previous k actions, these methods can capture short-term dependency
in the sequence and perform well on recommendation. However, in reality, user’s
next action might have a certain relation to earlier actions instead of previous k
actions.

With the boom of deep learning, a variety of different methods have
been applied successively to the sequential recommendation. First, inspired by
sequence modeling capability of RNNs (Recurrent Neural Networks), RNN-based
methods [3,4] are proposed. They can capture the long-term dependency in the
sequence, but they are prone to generate fake dependency and cannot explicitly
model the complex transitions between items in the sequence. Next, in order to
differentially treat the interactions or items, attention mechanisms, used alone
or added in other neural networks as an extra component, are applied to sequen-
tial recommendation [6–8]. Recently, GNNs which combine the flexible expres-
siveness of graph data and the strong learning capability of neural networks,
have emerged as a promising way to achieve sequential recommendation. The
advantage of GNNs lies in the capability of capturing complex transitions of
items, which helps generate effective embeddings for items, users, even interac-
tion sequences [15,16].

We note that an interaction sequence is in essence a time series, in detail,
two items in the sequence not only have a relative order, but also have a time
interval, often differing from the other two. If an item in the sequence has a
large time interval with the previous item, it means that its relation with the
previous item is likely to be weak, and it may be more related to the user’s
long-term interests. That is, the time feature accompanied by an interaction
sequence, depicted by the timestamps of items in the sequence, might reflect
the evolution of user interests with a high probability. Recently, some work has
payed attention to the temporal information in the sequences [7,9,17].

On the other hand, an interaction sequence is also associated with the
attribute feature which is depicted by the attributes of items in the sequence. If
the interaction sequences are observed from the view of item attributes, then the
roles of different attributes in attracting users could be understood and further
the variation of item popularity could be discovered. For example, if most of
movies in a movie sequence are found to belong to the sci-fi genre, then this
directly indicates that sci-fi movies are the user’s favorite movies.

Unfortunately, from existing work, we discover none of sequential recommen-
dation models or methods can simultaneously model complex transition relation-
ships, time feature and attribute feature in sequences. Therefore, modeling the
interaction sequences in a more accurate and comprehensive way to achieve more
effective recommendations is still a challenge.
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Fig. 1. Workflow of Sirius.

In the paper, we propose the Sirius method for sequential recommendation.
Sirius can both model the collaborative relations and capture features in inter-
action sequences. In the following section, we give the overall workflow of the
Sirius method, and outline our implementation of each step in the method as
well as some possible implementations different from our choices.

2 Overview of Sirius

We denote the item set by V = {v1, v2, . . . , v|V |}, and the historical interaction
sequence of user u over a period of time by su = [vu,1, vu,2, . . . , vu,n], where vu,i ∈
V, i = 1, 2, . . . , n, and {vu,i} is sorted by the timestamp of user u interacting
item v in ascending order. At the same time, we extract the timestamp for
each item in sequence su to form timestamp sequence tsu = [tu,1, tu,2, . . . , tu,n].
Furthermore, we confine the item description to k attributes, and then define a
group of attribute mapping functions, i.e., pj(v), v ∈ V, j = 1, 2, . . . k, each of
which maps the item v to one or multiple values in Aj according to attribute j
of item v, where Aj is the range of attribute j.

Our goal is to build a model to predict vu,n+1 for user u, where the input of
the model is the set of item sequences {su}, the set of corresponding timestamp
sequences {tsu} and attribute mapping functions pj(v), j = 1, 2, . . . k.

For the goal, in the Sirius method, we first construct graphs from an inter-
action sequence. Next, we build GNNs to learn embedding vectors of nodes on
graphs. Then, we generate the representation vector of the sequence through
the item aggregation. Finally, for each user, we score each item according to the
sequence representation vector and the corresponding item embedding, gener-
ating the next-item recommendation. Figure 1 gives the workflow of the Sirius
method. Sirius is mainly composed of four steps, each of which may be imple-
mented in different ways in practice.

Building Graphs. Graph-based representation is more expressive, especially
to represent the complex transition relationships of the items in the sequence,
therefore we convert sequence data (including items and various features) into
graph-based representations. Given a sequence, we build an item graph, using
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all distinct items in the sequence as nodes on the graph and constructing
directed edges according to the adjacent relationship of items in the sequence
[15], although there are some other strategies [11,12] to build the item graph.
Then we construct k attribute graphs where the nodes are the same as the ones
in the item graph. We treat attributes as a kind of relation between items, con-
structing the edges between item nodes according to whether two items have the
same attribute value.

Generating Item Embeddings. We need to design GNNs to learn the embed-
ding of nodes on the graph, using the above graphs as input. There are many
different implementations, such as GGNN [10] used in SR-GNN [15] and GC-
SAN [16], and GAT [14] with weights used in FGNN [12]. We borrow the GNN
components in the message passing model [1] and design two kinds of GNNs (i.e.,
I-GNN and A-GNN) for two kinds of graphs to update node embeddings by three
stages: message construction, message propagation and embedding update. In
particular, we treat the time interval between items as a feature of correspond-
ing edge on the item graph, regarding this time interval as a discrete feature
and generating the corresponding embedding. During the message propagation
of I-GNN, the embedding of the time interval between items is first transformed
and then fused into the message vector. Although the time interval is also able
to be modeled as a continuous feature, the experimental results do not support
this practice. Further, since for an item, we have 1 + k item embeddings derived
from 1+k GNNs (i.e., one from I-GNN and the others from A-GNNs), we apply
a gated mechanism to fuse multiple item embeddings, generating the final item
embedding.

Generating Sequence Embedding. After getting the embedding vectors of
items, we need to gather the vectors of all the items to generate the represen-
tation vector of the sequence. There are many kinds of aggregation methods,
the simplest of which is the pooling method (e.g., mean pooling, max pooling,
etc.). Some models use more complex aggregation. For example, in FGNN [12],
GRU units are used to learn the aggregation order of nodes. In addition, some
other features, such as the position of the item in the sequence, can also be
considered to better determine the importance of different nodes. Our choice is
to aggregate item embeddings from the view of the user’s short-term and long-
term interests. We take the last item in the sequence as the short-term interest
and the previous items as the long-term interest, and obtain the representation
vector of the sequence through the attention mechanism. Further, we consider
the time distance of the item to the last interaction when calculating the atten-
tion coefficient of the item, integrating the time decay effect into the sequence
embedding.

Predicting Next Item. The key to the prediction is how to calculate the item
score. The most commonly used method is to calculate the inner product of
the sequence representation vector and the item embedding vector, but such
a calculation tends to score high on popular items [2], so a more appropriate
method is to use cosine similarity. In our prediction step, we also consider the
prediction interval (i.e., the interval between the prediction time and the time
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Fig. 2. Recommendations of Sirius.

of the last item in the sequence), because the user’s interest may change to
varying degrees, depending on the length of the prediction interval. For fusing
the prediction interval into the sequence representation vector, we first obtain
the embedding vector of the prediction interval (via the similar method used
for the time interval of items), and then fuse it into the sequence representation
vector by element-wise addition, where the element-wise multiplication is also
workable but is not adopted, due to the relatively poor experimental results.

3 Recommendation Case

In this section, we give a recommendation case, which visually shows the influ-
ence of time and attribute features in the sequence on the recommendation
results.

As shown in Fig. 2, the left side shows a historical interaction sequence,
containing six movies. The genres of each movie are listed on the top of its
poster. All the six movies are in Hindi whose time intervals are roughly one
day. From the sequence, we notice that the user mainly watches action movies
but the latest watched movie has a different genre. Sirius gives two different
recommendation results, depending on the time of the user’s next visit. If the user
visits the MX player App again within one day, the recommendation results from
Sirius are in the top right corner, which are in line with the user’s most recent
viewing behavior, because Sirius tends to infer the recent interest of the user.
If the user visits the App after 10 days, the recommendation results from Sirius
are in the bottom right corner. The last two recommended movies reveal that
Sirius considers the user’s general interest. In addition, all the recommendation
results are movies in Hindi, illustrating Sirius has known that the user’s language
preference is Hindi.
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Abstract. In the recommendation area, the concept of meta-path is
famous for inferring explicit and effective relationships between nodes
such as users and items. To extract useful information from the instances
of meta-paths, existing methods embed meta-path instances separately.
However, they ignore the complicated semantics presented by multiple
instances. These complicated semantics not only provide additional infor-
mation but also affect the semantics of single instances. Without con-
sidering the complicated semantics, the information extracted from the
instances may be incomplete and less effective. To solve the problem,
we propose to learn the complicated semantics by combining meta-path
instances into layer-wise graphs (instance-graphs) for recommendation.
Following the idea, we develop an Instance-Graph based Recommen-
dation method (IGR). IGR combines meta-path instances into layer-
wise instance-graphs. Then, the instance-graphs are investigated layer
by layer to generate effective embeddings. Finally, these embeddings are
discriminatively merged into user/item embeddings to make predictions.
Extensive experimental results show that IGR outperforms various state-
of-the-arts recommendation methods.

Keywords: Meta-paths · Recommender systems · Neural networks ·
Heterogeneous information networks

1 Introduction

In the recommendation area, meta-paths are widely used to capture structural
features and extract semantics from heterogeneous information networks (HIN)
[5,9] for recommendation. However, existing meta-path based recommendation
methods embed each meta-path instance separately, which ignores the compli-
cated semantics presented by multiple instances. For example, with the three
meta-path instances shown in Fig. 1(a) as input, existing methods separately
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embed the instances and predict the preference of Sam for I Am Legend. Nev-
ertheless, in practice, these instances together present a complicated semantic
that Sam and Ben have watched three same movies (i.e., Titanic, Skyfall, and
Casino Royale) shown in Fig. 1(b). As existing methods may not capture the
complicated semantics, the similarity between Sam and Ben may be underesti-
mated, and the three meta-path instances may be regarded as less convincing.
Hence, the movie I Am Legend that Ben has watched may not be recommended
to Sam, which is actually a good recommendation.

(a)

Skyfall Casino Royale

Sam Sam Sam

Ben Ben Ben

Titanic

(b)

Skyfall Casino Royale

Sam

Ben

Titanic

I Am LegendI Am Legend I Am Legend I Am Legend

Fig. 1. In Figure (a), three meta-path instances which link user Sam and movie I Am
Legend are presented. In Figure (b), the three instances are combined according to the
shared components (i.e., Sam, and Ben→I Am Legend), and the instances together
present a complicated semantic that Sam and Ben have watched three same movies.

To learn the complicated semantics presented by multiple instances, we pro-
pose a new framework to utilize meta-path. The framework consists of two steps.
First, for each meta-path, its instances are combined into a layer-wise instance-
graph according to their shared components. Second, the instance-graphs are
embedded for the following recommendation. The framework has two major
advantages: (1) With the shared components (i.e., nodes, edges, and sub-paths)
of instances, the complicated semantics can be naturally revealed. Consider the
example in Fig. 1, with the shared node Sam and sub-path Ben→I Am Legend,
the three instances are properly combined, and the complicated semantic that
Sam and Ben have watched three same movies is easily revealed. (2) the seman-
tics of single instances can also be captured. The reason is that an instance-graph
and its corresponding meta-path have similar structures, and single instances can
be regarded as sub-graphs.

Following the framework, we propose an Instance-Graph based Recommen-
dation method (IGR) which is illustrated in Fig. 2. IGR implements the frame-
work with three steps. First, to reveal the complicated semantics, we propose
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a meta-path instance combining module which combines instances and gener-
ates layer-wise instance-graphs. Second, to investigate the instance-graphs, we
propose a sequential instance-graph embedding module. In this module, as the
instance-graphs are layer-wise and sequential, we propose a Layer-wise Graph
Convolutional Network (LGCN) to embed them layer by layer in the order of the
corresponding meta-paths. Third, to evaluate the importance of instance-graphs
for users/items, we apply an attention guided merging module that discrimina-
tively evaluates and merges the instance-graph embeddings.

Fig. 2. The overall architecture of IGR.

2 Preliminaries

In this section, we introduce three definitions that are frequently used in this
paper.

Definition 1. Heterogeneous Information Network. On a graph G =
(V, E), two functions φ : V → A and ϕ : E → R can be defined. The func-
tions map nodes and edges to node and edge types, respectively. A graph is a
HIN if |A| + |R| > 2.

In this work, the entities such as the users, items, and auxiliary data are
taken as nodes on HIN, and the relationships between entities are represented
as edges.

Definition 2. Meta-path. A meta-path is a conceptual path that has limita-
tions on the types of nodes and edges.

Meta-path can be represented in the form of A0
R1−→ A1

R2−→ · · · Rl−→ Al.
For clarity, the meta-path can be abbreviated as A0A1 · · · Al. Such a meta-path
contains l edges and l + 1 nodes, so it is called a l-hop meta-path. A meta-
path instance belongs to this meta-path can be represented as v0v1 · · · vl, where
v0 ∈ A0, · · · , vl ∈ Al.
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Definition 3. Instance-Graph. In this work, we define instance-graphs as the
layer-wise graphs which are generated by combining meta-path instances.

3 Proposed Method

Following the proposed framework, we propose an Instance-Graph based Recom-
mendation method (IGR) which reveals and captures the complicated semantics
presented by multiple instances. As shown in Fig. 2, IGR contains a meta-path
instance combining module, several sequential instance-graph embedding mod-
ules, and an attention guided merging module.

3.1 Meta-path Instances Combining Module

To reveal the complicated semantics presented by multiple instances, we propose
the meta-path instance combining module. This module combines the meta-
path instances into layer-wise instance-graphs. For each meta-path, its instances
are aligned according to their starting nodes, and the shared components are
combined according to their positions. The generated instance-graphs are called
layer-wise graphs because the nodes in the same position have the same type,
and these nodes can be regarded as node layers.

Such a module has two advantages. First, it is appropriate to utilize the
shared components to connect instances, since the shared components play sim-
ilar roles in the same positions in different instances. Second, either a single
instance or a combination of multiple instances is a subgraph of the correspond-
ing instance-graph.

Besides, as the nodes are merged according to their positions, one node only
appears once in a layer. With this premise, the instance-graphs can be built by
generating node layers with nodes in the same positions and then linking edges
between layers, which avoids the cost of listing all instances and merging them.

3.2 Sequential Instance-Graph Embedding Module

To extract information from the instance-graphs generated by the above module,
we propose a sequential instance-graph embedding module. In this module, we
treat every two adjacent layers in the instance-graphs as a directed graph. With
the above premise, an instance-graph is regarded as a series of directed graphs
that only contain two adjacent layers. To embed these two-layer directed graphs,
we propose a Layer-wise Graph Convolutional Network (LGCN). Through stack-
ing the LGCN layers, the directed graphs are sequentially embedded and form
the embeddings of instance graphs.

Single LGCN Layer. For each directed graph, we apply one LGCN layer.
Given a two-layer directed graph represented as A0

R1−→ A1 in an instance-graph,
LGCN layer is defined as:

L(1) = (D(1))− 1
2 A(1)(D(0))− 1

2 , (1)
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H(1) = Tanh(L(1)H(0)W (1) + b(1)), (2)

in which A(1) ∈ R
n1×n0 is the adjacent matrix between A0 and A1, H(0) ∈

R
n0×d0 and H(1) ∈ R

n1×d1 are the feature vectors of the start nodes and the
end nodes, W (1) ∈ R

d0×d1 and b(1) ∈ R
1×d1 are parameters of the dense layer. n

represents the number of nodes on a layer, and d denotes the feature length. D(0)

and D(1) are diagonal matrices, where D
(0)
ii =

∑n1
j=1 Aji and D

(1)
jj =

∑n0
i=1 Aji.

The major difference between LGCN layers and general GCN layers is the
definition of nodes. LGCN layers define nodes as start or end nodes and have a
clear direction between two types of nodes. In GCN layers, the nodes simultane-
ously act as start and end nodes, making them hard to handle the node layers
in the instance-graphs.

Stacking LGCN Layers. As a single LGCN layer transfers the information
of the start nodes to the end nodes, LGCN layers can be stacked by taking
the output of a layer as another layer’s input. Through stacking LGCN layers
along the instance-graphs, the instance-graph embeddings are generated. The
instance-graph embeddings are in the form of collections of feature vectors.

As the instance-graph embeddings are generated for recommendation, we
select meta-paths end with User or Item. Since meta-paths have different seman-
tics, we apply different LGCNs for different instance-graphs. Following [1], we
randomly block nodes with a probability p to avoid overfitting.

3.3 Attention Guided Merging Module

To evaluate the importance of instance-graphs for users/items, we propose an
attention guided merging module. Given instance-graph embeddings, this mod-
ule discriminatively evaluates and merges the instance-graph embeddings.

Suppose that there are Cuk k-layer instance-graph embeddings
H

(k)
U,1, · · · ,H

(k)
U,Cuk

∈ R
n×d, they are rearranged into Ĥ

(k)
U,1, · · · , Ĥ

(k)
U,n ∈ R

Cuk×d

which denote the instance-graph embeddings for users u1, · · · , un, respectively.
To evaluate the importance of different instance-graphs of the same length,

we apply an attention layer on the rows of Ĥ
(k)
U,i since these rows are generated

from instance-graphs of length k. The attention layer is inspired by [10] and
defined as:

α
(k)
U,i = Softmax(W (k)

U,2tanh(W (k)
U,1(Ĥ

(k)
U,i )

T )), (3)

F
(k)
U,i = α

(k)
U,iĤ

(k)
U,i . (4)

In this layer, the embeddings of instance-graphs of the same lengths are merged.
To further merge the embeddings F (k) into final user/item embeddings F ,

we apply another attention layer. Suppose the lengths of selected meta-paths are
in {1, · · · , l}, the attention layer is defined as follows:

β
(k)
U,i = Softmax(WU,4tanh(WU,3(F

(k)
U,i )

T )), (5)
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Table 1. Statistics of three datasets and the meta-paths selected from them.

Dataset User Item Interactions Auxiliary data Selected meta-paths

Frappe 957

Users

4,082

Apps

96,203 User−Nation,

User−City

AU, NU, CU | UA

UAU, UNU, UCU | AUA

AUAU | UAUA, UNUA,

UCUA

Last.fm 1,892

Users

17,632

Artists

92,834 User−User,

Artist−Tag

AU, UU | UA, TA

UAU, UUU | AUA, UUA

AUAU, ATAU | UAUA

MovieLens 1M 6,040

Users

3,706

Movies

1,000,209 User−Occupation,

Movie−Type

MU, OU | UM, TM

UMU, TMU | MUM, OUM

MUMU, MTMU | UMUM,

UOUM

FU,i =
l∑

k=0

β
(k)
U,iF

(k)
U,i . (6)

In the above equations, α
(k)
U,i ∈ R

1×Cuk , β
(k)
U,i ∈ R

1×l are the weights generated by

the attention layers. W
(k)
U,1 ∈ R

d′×d, W
(k)
U,2 ∈ R

1×d′
, WU,3 ∈ R

d′×d, WU,4 ∈ R
1×d′

are attention parameters which are different for users and items. The embedding
F

(0)
i is the direct embedding of node i.

3.4 Training Details

To predict the preferences of users for items with the user/item embeddings, we
apply bilinear operation on user and item embeddings FU,i, FI,j :

y = FU,iQ(FI,j)T , (7)

in which Q ∈ R
d×d is a diagonal parameter matrix. To train IGR, a pair-wise

loss is applied, which is defined as:

L =
∑

−ln(sigmoid(y+ − y−)), (8)

in which y+ and y− are the predicted scores of a pair of positive and negative
samples. The user-item interactions are regarded as positive samples, and the
negative samples are randomly sampled from items that have not been interacted
by users.

3.5 Pre-training

As the instance-graphs have various semantics and are embedded through differ-
ent numbers of LGCN layers, the LGCNs may disturb each other while training.
To avoid this problem, IGR is pre-trained to stable the parameters in LGCNs.
In detail, the parameters for the instance-graphs with different lengths are sep-
arately pre-trained, and then these parameters are taken as the initialization of
the final IGR.
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Table 2. Overall performance on three datasets.

Model Frappe Last.fm MovieLens 1M

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

NIRec 0.708 0.561 0.776 0.631 0.706 0.430

CFM 0.698 0.567 0.835 0.682 0.716 0.440

GCMC 0.718 0.572 0.839 0.683 0.721 0.442

Ours 0.741 0.587 0.842 0.687 0.726 0.446

4 Experiment

In this section, we perform comprehensive experiments on three popular
datasets: Frappe1, Last.fm2, and MovieLens 1M3. These datasets contain both
auxiliary data and user history interactions with items. The statistics of these
datasets and the meta-paths selected from the datasets are presented in Table 1.

For IGR, Adam [8] is applied as the optimizer. The keep probability of node
dropout is set to 0.5, the learning rate is 10−3, and the batch size for optimization
is 1024 positive and negative sample pairs. In Frappe and Last.fm datasets, the
direct embeddings of users/items F (0) take part in the recommendation, while
these embeddings are not used in the MovieLens dataset. For a fair comparison,
the length of embeddings of all methods is set to 64, and other parameters are
tuned as the baselines proposed.

We select NIRec [7], CFM [11], and GCMC [1] as our baselines. For a fair
comparison, all the baselines along with IGR are given same auxiliary data.

For evaluation, we adopt the widely used leave-one-out method [3,4]. The
method holdouts the latest interactions of each user as the test set, the second
latest interactions as the validation set, and the remaining interactions are the
training set. For the Frappe and Last.fm dataset, since there is no timestamp
information, we randomly select the interactions. For each positive sample in
the test set, 99 items that do not interact with the user are randomly sampled
to be negative samples. To evaluate the models, we apply two popular metrics
HR and NDCG [6].

Following the discussion in [2], we get the number of training epochs from
validation sets to get more convincing results. In the test sets, we further require
both the positive samples and the negative samples to be unique, which is not
required in [2,4].

4.1 Performance Comparison

The overall performance of IGR and all baselines are presented in Table 2. On
three datasets, IGR consistently outperforms state-of-the-art methods on both

1 http://baltrunas.info/research-menu/frappe.
2 http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset.
3 https://grouplens.org/datasets/movielens/latest/.

http://baltrunas.info/research-menu/frappe
http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset
https://grouplens.org/datasets/movielens/latest/


328 M. Qian et al.

Table 3. Ablation study on three datasets.

Model Frappe Last.fm MovieLens 1M

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Default 0.741 0.587 0.842 0.687 0.726 0.446

Remove attention 0.728 0.581 0.815 0.656 0.721 0.443

Remove 1-hop 0.725 0.578 0.790 0.644 0.689 0.412

Remove 2-hop 0.719 0.569 0.784 0.631 0.721 0.440

Remove 3-hop 0.725 0.576 0.795 0.640 0.722 0.441

HR@10 and NDCG@10 evaluation. By combining meta-path instances into
instance-graphs and applying LGCNs to embed these graphs, IGR is capable of
capturing the complicated semantics presented by multiple instances, so as to
generate effective embeddings for recommendation.

4.2 Ablation Study

Since there are several components in IGR, we analyze their impacts via an
ablation study. The performances of IGR and its four variants on three datasets
are presented in Table 3. We introduce and analyze the variants respectively as
follows:

– Remove Attention. Without the attention guided merging module, the
instance-graph embeddings are directly rearranged and stacked to form the
final user/item embeddings. This variant impairs the performance due to the
imbalance between different embeddings.

– Remove meta-paths of different lengths. We find that different meta-paths are
suitable for different datasets. Presumably, this is because the connections
between nodes have different degrees of closeness on different datasets, which
affects the power of meta-paths of different lengths.

5 Conclusion

In this work, we aim to take the complicated semantics presented by multiple
instances into account for meta-path based recommendation. To achieve this
goal, we propose a novel framework to utilize meta-paths. That is, guided by
shared components, we combine the meta-path instances into layer-wise instance-
graphs and embed these graphs for recommendation. Following the idea, we pro-
pose an Instance-Graph Based Recommendation method (IGR). In IGR, for each
meta-path, its instances are combined into a layer-wise instance-graph. Then, we
propose a sequential instance-graph embedding module to extract information
from the instance-graphs. After that, we propose an attention guided merging
module to evaluate the importance of the instance-graphs for users/items. Exten-
sive experiments are conducted on three datasets, and the results show that IGR
outperforms various state-of-the-art methods.
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6. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant
documents. In: SIGIR Forum, pp. 243–250 (2017)

7. Jin, J., et al.: An efficient neighborhood-based interaction model for recommenda-
tion on heterogeneous graph. In: SIGKDD, pp. 75–84 (2020)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
9. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-K sim-

ilarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11),
992–1003 (2011)

10. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
11. Xin, X., Chen, B., He, X., Wang, D., Ding, Y., Jose, J.: CFM: convolutional fac-

torization machines for context-aware recommendation. In: IJCAI 2019 (2019)



GCAN: A Group-Wise Collaborative
Adversarial Networks for Item

Recommendation

Xuehan Sun1, Tianyao Shi1, Xiaofeng Gao1(B), Xiang Li2, and Guihai Chen1

1 Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

{Peter suntain,sthowling}@sjtu.edu.cn,
{gao-xf,g-chen}@cs.sjtu.edu.cn

2 Beijing University of Chemical Technology, Beijing, China
lixiang@mail.buct.edu.cn

Abstract. Recommendation System aims to provide personalized rec-
ommendation for different users. Recently, Generative Adversarial Net-
works based recommendation systems have attracted considerable atten-
tion. In previous research, GAN has shown potential and flexibility to
learn latent features of users’ preferences. However, GANs are hard to
train to converge and waste many processes of fulfilling empty data, espe-
cially when meeting with the data sparsity problem.

In this paper, we propose a new group-wise framework, namely Group-
wise Collaborative Adversarial Networks (GCAN) to solve the data spar-
sity problem and enable GAN to converge faster. We combine GAN
with traditional collaborative filtering methods to generate recommen-
dations (CAN), and then propose binary masking and sample shifting to
achieve GCAN. Binary masking separates binary user-item interaction
and abstracts group-wise relationship from these binary vectors, while
sample shifting is designed to avoid incorrect learning process. A noise
corruption parameter is then introduced with experiments to show the
robustness of GCAN. We compare GCAN with other baseline methods
on Yelp and SC dataset, where GCAN achieves the state-of-the-art per-
formances for personalized item recommendation.
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1 Introduction

Recommendation system (RS) aims to provide accurate personalized recommen-
dations for different users. Most of the recommenders learn the behavior of users
through user-item interactions, among which Collaborative Filtering (CF) stands
out as an effective method to abstract latent relationship [6]. In recent years,
deep learning based RS has garnered considerable attention for its effectiveness
to learn the latent features and achieve excellent performances [10]. Since the
success of IRGAN [9], Generative Adversarial Networks (GAN) has shown its
great potential to employ Collaborative Filtering on deep learning models while
utilizing the advantage of both methods [1,8]. However, when applying GAN on
some real-life purchase scenarios of recommendation system, this model exhibits
drawbacks: When meeting with data sparsity problem in the user-item interac-
tion matrix, GAN has been criticized for its long training process [1,4,7]. Since it
is difficult to get users’ specific preferences on every item, many of the user-item
interactions are left empty [2]. When training GAN to make predictions on such
items, generator needs to fulfill these empty data one by one repeatedly and
the discriminator also needs to distinguish them in the similar way, significantly
prolonging the training process.

In this paper, we propose a new scheme for solving these two problems
in GAN based RSs, named Group-wise Collaborative Adversarial Networks
(GCAN). With GAN as the basic building block, we initially apply collabora-
tive filtering methods on GAN and construct Collaborative Adversarial Networks
(CAN). Then we extend CAN to group-wise with two techniques, binary mask-
ing and sample shifting : i) Binary masking separates binary interactions and
abstracts group-wise relationship from this binary vector. Then we mask the
generated group-wise relation from binary values to ranking values to obtain the
recommendation of the top-k items. ii) Sample shifting is used to avoid the gen-
erator learning incorrectly. Through each iteration, we collect items outside the
group relation and assemble them as other groups. Besides, for items with empty
data, we set their values close to but not exactly zero. Such methods prevent the
group-wise vector from making the whole missing items as one group and learn
the latent features of empty data effectively. To verify the robustness to noise
corruption, we introduce a random noise parameter to the user-item interactions
and compare the resistance of noise of CAN and GCAN in experiments.

Our main contributions are summarized as follows:

– To the best of our knowledge, this is the first group recommendation system
that combines collaborative filtering with generative adversarial networks on
group-level from the perspective of items.

– Group-level recommendations are further integrated to improve the perfor-
mance of GAN-based methods. As a byproduct, the data sparsity problem
in the training process and incompetence in predicting real purchase amount
can also be alleviated.

– Extensive experiments are conducted on two large data sets. Quantitative
and qualitative analyses justify the effectiveness and rationality of group-
wise collaborative adversarial networks. GCAN also outperforms other deep



332 X. Sun et al.

learning based RS methods and achieves state-of-the-art performances for
personalized item recommendation.

Fig. 1. Framework of GCAN.

2 Proposed Methodology

In this section, we propose Collaborative Adversarial Networks (CAN), intro-
ducing collaborative methods into Generative Adversarial Networks. To extend
CAN to group-wise, we design two methods, binary masking and sample shifting,
and propose Group-wise Collaborative Adversarial Networks (GCAN). Binary
masking separate binary user-item interactions from the original matrix. Then,
through group abstraction, we learn the group-wise relation from binary masking
vectors. Sample shifting is proposed to promote the generator correctly learn-
ing the group-wise features. Then we introduce a noise parameter and further
discuss the robustness of GCAN for noise corruption in Sect. 3.2 (Fig. 1).

2.1 Collaborative Adversarial Networks

Define rui as the implicit preference feedback by user u for item i, where u ∈ user
set U , and i ∈ item set I. Each (u, i) pair represents the interactions between u
and i. Hence, rui has a feedback value if there are interactions in (u, i), and is
empty otherwise. Let R = (rui)n×m form a sparse matrix. Collaborative Adver-
sarial Networks (CAN) introduces traditional collaborative filtering methods
into generative adversarial networks. Given the interaction matrix Rm×n, the
target for CAN is to predict a accurate results r̂ui for user u’s preferences of
item i. CAN then train the generator G and discriminator D through a mini-
max adversarial process:

Loss(G,D)(r|Θ) =Er∼Pdata(r) [log D(r|Θ)] + Er̂∼Pφ(r̂) [log(1 − D(r̂|Θ))] (1)
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where pdata(r) denotes the true distribution of r, pφ(r̂) denotes the distribution of
generating predictions, Θ denotes given condition parameters and Θ = {pu, qi}.
pu is a n-dimensional vector for user u’s interactions with items; qi is a m-
dimensional vector for item i’s corresponding records with users. The corre-
sponding loss function for discriminator D is defined in Eq. (2).

θ∗ � arg max
1
K

∑

u,i

(
log σ(fθ(r|Θ)) + log (1 − σ(fθ(r̂|Θ)))

)
(2)

where K is the size of the sampling set, σ(·) is the sigmoid function,
fφ(r|Θ) represents the latent semantics learning function for generator G and
is defined through the collaborative filtering forms by matrix factorization
fφ(r|Θ) = bφ,i+bφ,u+pt

uqi, where bφ,i+bφ,u denotes the total bias for item i and
user u respectively. And for generator G, we originally intend to optimize it by
minimizing the difference between the generated distribution and ground-truth.
Then we reformulate it through maximize optimization, which is implemented
in Eq. (3).

φ∗ = arg max
1
K

∑

u,i

log
(
(1 + exp fθ(r̂|Θ))

)
(3)

2.2 Extension to Group-Wise

To extend CAN to group-wise recommendation, we introduce a mapping vector
cs×n representing the mapping from group set G = {g1, g2, . . . , gs} to item set
I = {i1, i2, . . . , in}. Each gl, 1 ≤ l ≤ s is an m-dimensional vector, inside which
the corresponding value is a zero-one value: when item i belongs to a certain
group gl, corresponding value equals to 1 and when i does not belong, it equals
to 0. Then we extend loss functions for D and G to group-wise through Eq. (4).

Loss(G,D)(h|Θ) =Eh [log σ(fθ(h|Θ))] + Eĥ

[
log(1 − σ(fθ(ĥ|Θ)))

]
(4)

where ĥ = r̂uĉT . The maximum size of a certain group is controlled by
Ωg, which is maxl ||gl||≤ Ωg, 1 ≤ l ≤ s and ||·|| represents the L2-norm. We
use binary masking method to obtain group-wise relation from binary purchase
vector. Binary masking method extends original element binary vector to group-
wise ranking matrix. To accelerate the generator and prevent it from producing
trivial results, sample shifting is used to guide G to correctly learning the latent
features.

Binary Masking. To learn the relationship of group-wise, we propose Binary
Masking (BM) methods. When the generator produce group mapping binary
vector cs×n, we use the ranking number as the matrix value instead of just 0
or 1. For example, the purchase vector is {0.81, 45.7, 69.0, 2.15} and the relevant
binary vector is {0, 1, 1, 0}. Then inside the group-relation vector, we mask the
original {0, 1, 1, 0} as {0, 1, 2, 0}. Binary masking methods represent the relation
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inside a certain group. When use the reverse mapping of ĉ, we sorted items inside
group gi by their ranking value.The values for the group matrix is calculated by
cli =

∑
i∈g rui�H(gl)∑

l H(gl)
, where H(·) is the Heaviside Step Function.

Sample Shifting. When training generator G through the adversarial process,
trivial mapping vectors can be generated, such as mapping all items into the same
group gl or mapping them all not belonging to gl. Denote the whole item set as I,
we use Izero to represent items with no interaction with user u. We reconstruct
part of the Izero as values close to 0 but not exactly 0. Such reconstruction
will not effect the final recommendation of GCAN, since their group values are
small (close to 0), but this methods will prevent the generator from producing
0-value vectors, and promote the convergence process. We reconstruct items’
values with eui = 1 to rank them better. The sample rate for changing values
is α1. Another kind of Sample Shifting is used to ensure that in each iteration,
there will be enough new groups. During each iteration, we collect items i ∈ I at
rate α2 and make them as a new independent groups. Hence, G avoid producing
useless predictions, and concentrate on mapping non-purchased items to accurate
recommendation:

Loss(G,D) =Eh [log σ(fθ(h|Θ))] + Eĥ

[
log(1 − σ(fθ(ĥ|Θ)))

]

+ β
∑

j

||ĥ(u,j) − h(u,j)||2+γ||ĝl − gl||2 (5)

2.3 Noise Tolerance

A robust recommendation system should be insensitive to small corrupting ran-
dom noise. To evaluate the robustness of GCAN, we introduce another parameter
ε representing for random noise and further denote D(ĥ|Θ+ε) for the probability.
Hence, the total loss function of GCAN is:

Loss(G,D) =Eh [log D(h � e|Θ + ε)] + Eĥ

[
log(1 − D(ĥ � ê|Θ + ε))

]

+ β
∑

j

||ĥ(u,j) − h(u,j)||22+γ||êu − eu||22
(6)

where β is the coefficient for controlling the importance of constructing
shifted samples for item j and γ is the coefficient for controlling binary masking
vectors, ||ε||≤ Ωε, Ωε denotes the upper bound to control the maximum noise.
The influence of noise will be further discussed in Sect. 3.2 about the robustness
of GCAN.
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3 Experiments

3.1 Experiments Settings

Data Sets. We conduct our experiments with two large datasets: SC and Yelp,
the characteristics of which are described in Table 1. SC is an implicit feedback
commercial dataset constructed by Sihailvcang, containing over 1,100,000 users’
purchasing records, especially in fruits and vegetables. Yelp is a dataset consist-
ing of different users’ ratings on commercials. We filter out those users and items
with less than 10 interactions.

Metrics. We use two metrics for performance evaluating: Hit Ration and
Normalized Discounted Cumulative Gain. HR@N = Hits

TestNums , NDCG@N =∑N
p=1

DCG
IDCG where Hits represents the hitting results, TestNums represents

the overall number, DCG, IDCG represents the discounted cumulative gain
(DCG), normalized DCG at position p which are calculated by: DCG =∑p

i=1
2reli−1
log2(i+1) , IDCG =

∑|REL|
i=1

2reli−1
log2(i+1) where reli is the graded relevance of

the result at position i, |REL| is the list of relevant items in the corpus up to
position p.

Table 1. Descriptions of the experimented datasets

Dataset # Interaction # User # Item Sparsity

SC 97, 638 1, 629 462 95.73%

Yelp 730, 790 25, 677 25, 815 99.89%

Baselines. We compare the performances of the proposed methods with the
following methods:

BPR [5]: Bayesian Personalized Ranking (BPR) is a pairwise recommender
model for item ranking which takes use of users’ preferences for purchased and
non-purchased item pairs. BPR assumes that in implicit feedback, clear obser-
vations should be attached more importance than unobserved ones.

SVD [3]: SVD is the basic model for matrix factorization. It maps user-item
interaction into a joint latent semantic space along with user and item relative
bias. It also evolves into some other models, like SVD++ and Time-Aware SVD.
Here we use the traditional formation of SVD as the baseline.

IRGAN [9]: This method trains two models through adversarial training,
a generative one G and a discriminative D. We implement IRGAN by the code
released by the authors on github1. Policy-gradient based reinforcement learning
is applied to updating G.

RAGAN [1]: This method is a Rating Augmentation framework based on
Generative Adversarial Networks. It adds negative items to avoid biases to high
ratings through one-class collaborative filtering. We set the hyper-parameters
the same as is mentioned in their papers [1].
1 https://github.com/geek-ai/irgan.

https://github.com/geek-ai/irgan
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Fig. 2. Learning curves of CAN and GCAN

3.2 Results

Training Process. Figure 2 shows the learning curves generated by CAN and
GCAN on Yelp. Compared to CAN methods, GCAN outperforms in two aspects:
i) GCAN converges more quickly in around 300 epochs while CAN does not meet
the trend of convergence until 500 epochs. ii) GCAN exceeds CAN in both HR@K
and NDCG@K. Especially, GCAN achieves better performances on smaller data
sets with the effect of group-wise training. There is an interesting observation
that when N for top-K recommendation enlarges, the benefit of GCAN also
becomes more obvious, which may arouse from users’ specific tastes for groups
of items.

Table 2. The impact of random noise on CAN and GCAN on HR.

epsilon =0.3 epsilon =0.5 epsilon =1.0

CAN GCAN CAN GCAN CAN GCAN

Yelp −6.7% −3.3% −8.3% −5.1% −14.9% −7.2%

SC −17.3% −5.7% −21.5% −15.6% −52.1% −29.4%

Robustness to Noise Corruption. GCAN has a wider item range and a more
accurate purchase prediction for group-wise vectors, thus enabling the training
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process more robust to noise. Table 2 reports the impact of random noise of
GCAN and CAN. The results suggest that GCAN is less sensitive to random
noise when compared with CAN. For example, GCAN exceeds CAN with 5.7%
on SC compared with CAN’S 17.3%. This justifies that GCAN is more robust to
random noise which is an important feature indicating the good generalization
ability of our model.

3.3 Comparisons with Other Methods

We now compare the accuracy of GCAN with other baselines mentioned in
Sect. 3.1. Table 3 illustrates the results for two datasets on HR@5, HR@20,
NDCG@5, and NDCG@20. Our model GCAN achieves the best performances
in most cases. For most recommendation, GCAN is able to recommend the user’s
preferred ones and rank them in correct order. Only on Yelp NDCG@20, GCAN
achieves 4.29% compared to AMF’s 4.37%. In all the other cases, GCAN outper-
forms the other baselines. Hence, we believe GCAN is a stat-of-the-art method
for personalized item recommendation. The improvement of GCAN from other
models is relatively remarkable. RAGAN is a newly proposed method, specially
designed through rating augmentation to cope with the data sparsity problem
in item recommendation. GCAN outperforms it by 6.25% on average, which is a
remarkable increase allowing for the size of the user-item matrix. Furthermore,
GCAN is modeled by only introducing group-wise purchase vectors, which is a
rather easy implementation than what is proposed in RAGAN.

Table 3. Comparisons with baselines for recommendation performances under HR
and NDCG. The best result of each column is highlighted in bold font formation. ∗
indicates the best results of all previous methods. The last column IR represents the
average improving rates of GCAN over other existing models.

Yelp SC IR

HR@5 HR@20 NDCG@5 NDCG@20 HR@5 HR@20 NDCG@5 NDCG@20

BRP 0.0706 0.1359 0.0295 0.0384 0.2563 0.4132 0.1953 0.2763 35.38%

SVD 0.1074 0.1565 0.0244 0.0379 0.3193 0.4463 0.2451 0.3015 19.61%

IRGAN 0.1125* 0.1468 0.0326 0.0426 0.3528 0.4596 0.2542 0.332 10.14%

RAGAN 0.1119 0.1775* 0.0315 0.0396 0.3568 0.5015* 0.2638* 0.3514 6.25%

GCAN 0.1156 0.1877 0.0351 0.0429 0.3767 0.5225 0.2727 0.3797 –

4 Conclusions

In this paper, we proposed a new framework for item recommendation inspired
by the group distribution feature of items. We identified the group distribu-
tion feature of user-item interaction and point out the hardness of embedding
group-wise vector into adversarial networks. To cope with the problem, we pro-
posed group-wise embedding with negative sampling and binary masking to
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avoid adversarial networks from over-fitting and converging too long. Our work
achieves state-of-the-art methods on two large real-life datasets with metrics of
Hit Ratio and Normalized Discounted Cumulative Gain.

For future work, we plan to employ the inspiration of group-wise to other
recommendation systems, such as transfer learning and neural machines, which
can cope with a wide range of common problems in recommender scenarios, such
as cold-start, implicit feedback and so on. The challenge here is how to properly
embedding the input data and correctly training them in a fast-convergence way.
Lastly, it is still worth mentioning that our proposed methods group-wise embed-
ding not only specifically used in item recommendation, and it is also widely used
in other information retrieval areas, such as web search, text retrieval, question
answering and so on. The potential of GCAN on these areas still needs exploring
and we will further dig into these areas on extending GCAN to these fields.
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Abstract. Unlike blockchain systems in public settings, the stricter
trust model in permissioned blockchain opens an opportunity for pur-
suing higher throughput. Recently, as the consensus protocols are devel-
oped significantly, the existing serial execution manner of transactions
becomes a key factor in limiting overall performance. However, it is not
easy to extend the concurrency control protocols, widely used in database
systems, to blockchain systems. In particular, there are two challenges to
achieve parallel execution of transactions in blockchain as follows: (i) the
final results of different replicas may diverge since most protocols just
promise the effect of transactions equivalent to some serial order but
this order may vary for every concurrent execution; and (ii) almost all
state trees that are used to manage states of blockchain do not support
fast concurrent updates. In the view of above challenges, we propose a
parallel execution engine called PEEP, towards permissioned blockchain
systems. Specifically, PEEP employs a deterministic concurrency mech-
anism to obtain a predetermined serial order for parallel execution, and
offers parallel update operations on state tree, which can be implemented
on any radix tree with Merkle property. Finally, the extensive experi-
ments show that PEEP outperforms existing serial execution greatly.

Keywords: Blockchain · Permissioned · Execution optimization

1 Introduction

Blockchain technology provides data integrity, transparency and immutability
to tackle trust problems among untrusted parties. For different goals, a number
of blockchain systems have been implemented in both permissionless [12,17]
and permissioned [1,4] environment respectively. Unlike blockchains in public
settings, which are more concerned about the security and reliability at the cost
of performance, permissioned blockchains, instead, seek higher throughput under
stricter assumptions. For example, energy-efficient consensus protocols such as
PBFT [6] or Raft [13] achieve much better performance among known and static
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 341–357, 2021.
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participants. With faster consensus, the execution of transactions takes dominion
over the system performance beyond other factors. To corroborate our point,
we have conducted experiments on PBFT consensus and transaction execution
within four replicas in a private network. The results show that the performance
of PBFT can reach over 15K TPS while the execution merely handles about 8K
read/write operations per second. There is a big gap between them, which comes
into our view.

Conventional blockchains commonly adopt sequential execution where trans-
actions are executed one-by-one, to entail a consistent final state among all
replicas. However, such sequential scheme cannot fully utilize the modern multi-
core machines since most processors sit idle, yielding a low utilization of system
resources and poor performance. Therefore, there are great potential benefits
to empower concurrency over blockchains, but the core problem lies in that the
effect of concurrent execution on different replicas may vary under most existing
concurrency controls including both pessimistic and optimistic controls.

Some works try to incorporate concurrency in blockchain, such as Fab-
ric [4] and its optimized version [15]. Fabric follows an execute-order-validate
(EOV) architecture, where transactions are pre-executed on specified peers called
endorsers and then proposed along with simulation results to ordering service for
consensus. Next, peers commit each transaction after consensus if the validation
for it passes. The simulations for all transactions are performed on endorsers
concurrently. On the contrary, the validations for transactions still follow the
serial manner, which couldn’t fulfill the performance gap between ordering and
execution. Therefore, the EOV architecture is not our focus.

In this paper, we present PEEP, a parallel execution engine exploiting con-
current execution of blockchain under order-execute architecture used in Ten-
dermint [5]. More specifically, PEEP executes transactions following a two-phase
design. Once a block is agreed by consensus, the first phase executes transac-
tions concurrently with the coordination of a schedule layer, then the second
phase applies the updates produced by the first phase to the underlying state
trie. The state trie, i.e. Merkle Patricia trie (MPT) [17] in Ethereum, is a special
Merkle tree used to manage states accessed by transactions. Surely, PEEP also
parallelizes the updating on state trie to further improve the performance in
contrast to existing sequential updating on Merkle trees. In addition, the com-
mitment of state trie, including hash recalculation and node persistence, blocks
the entire workflow, making higher throughput impossible. To eliminate this
blockage, PEEP parallelizes this process to the consensus for next block and
further increases the utilization of various system resources.

In summary, this paper makes the following contributions:

– We propose PEEP, a novel execution engine towards blockchain, which allows
each replica to execute transactions independently and concurrently while
promises deterministic serial order.

– We decouple the updating on state trie from execution and parallelize it
separately. Specifically, we propose a lock-free parallel update algorithm and
realize the non-blocked workflow by a deferred commit strategy to achieve
better utilization of resources.
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Fig. 1. Example of transaction execution flow.

– We implement a prototype for PEEP integrating above techniques and con-
duct comprehensive experiments. The results show that PEEP outperforms
the serial and blocked execution significantly.

The rest of this paper is structured as follows. First, Sect. 2 introduces back-
ground and related works. Then, Sect. 3 overviews the design of PEEP, and
Sect. 4 details the deterministic concurrent execution. Section 5 presents the
parallel update algorithm and deferred commit strategy. Last, Sect. 6 reports
thorough evaluations before Sect. 7 concludes this paper.

2 Background and Related Work

In this section, we provide necessary backgrounds and survey some related works.

Transaction Execution Flow. Figure 1 illustrates the detailed execution flow
for transactions in the block agreed by a quorum of system. During the execution
of every transaction, each replica reads/writes the latest states to a temporary
memory cache called StateDB, which is built on top of the tries to reduce
duplicate memory operations. This cache loads missed states from the under-
lying trie and will be reset per block. After all transactions are executed, the
changes of states, denoted by green squares, are flushed to the trie in a batch.
Subsequently, the hashes of dirty nodes are recalculated to generate a root hash
that characterizes the global world state. Note that tries are logically organized
in memory, so every dirty node on tries should be stored as a separate record to
underlying key-value store for persistence.

Optimized Execution. Some works are proposed recently to enhance the per-
formance of serial execution towards blockchain. A typical way is to exploit a
two-phase execution framework [7,14] to parallelize the execution. In the first
phase, the leader (or miner) executes transactions concurrently in an arbitrary
order, and the other replicas repeat this concurrency based on the schedul-
ing information forwarded by miner. ParBlockchain [2] adopts an order-execute
paradigm and utilizes a dependency graph to keep determinism while leveraging
transaction parallelism. Fabric and its variants follow a new paradigm, where
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transactions are first simulated concurrently and then each peer validates the
results of simulation after consensus. Fabric++ [15] decreases the abort ratio in
validation phase by aborting unserializable transaction earlier. However, in this
paradigm, the validation is still performed serially.

State Trees. Merkle tree is the first choice to organize state data with authenti-
cation towards blockchain where fault tolerance [9] is guaranteed under a poten-
tially hostile environment. Therefore, a number of variants are proposed, such
as Merkle Bucket Tree [4], Merkle B+ tree and Merkle AVL tree [5]. Compared
with them, trie with Merkle properties is more popular in blockchain systems
for three reasons: (i) less space overhead, the keys of records are hidden in the
path; (ii) structural invariance, the final structure of trie is just determined by
inserted records but not the order; and (iii) multi-version store, all versions of
every record are saved. The Merkle Patricia trie (MPT) [17] in Quorum and
Libra Sparse Merkle trie (SMT) [3] are two typical implementations, which both
persist each node of trie to a key-value store such as LevelDB or RocksDB. Addi-
tionally, to the best of our knowledge, few works explore concurrency on Merkle
trees. Angela [10], as one of the few, proposed a highly concurrent Merkle tree
through the finer grain conflict locking scheme.

3 System Overview

In this section, we overview the proposed execution engine PEEP, which achieves
both parallelism and determined serializable order. We first present assumptions
about our target system and then depict the architecture of PEEP.

3.1 Assumptions

The PEEP works in a blockchain system with three basic assumptions as follows.

Early Read/Write-Set Acquisition. The read/write keys of transactions
handled by PEEP can be known in advance before execution by some techniques
such as simulation or static analysis. This information of transfer transaction can
be obtained easily, i.e., just the from and to address. However, it becomes com-
plex if we want to gain the keys of states accessed by smart contract written in
turing-completed language without any execution. We will discuss this case if
this assumption doesn’t hold in Sect. 4.3.

Order-Execute Workflow. Different from Fabric, PEEP handles blocks in
an order-execute manner without a simulation phase. For the ordering service,
PEEP needs the blockchain to employ a deterministic consensus protocol (i.e.,
no forks), such as the PBFT [6]. The transactions of each block are only executed
after consensus on all replicas including the leader of PBFT. In some blockchains
adopting PBFT, the leader executes transactions in every block before consensus
to obtain the digest of world state and the other replicas execute transactions
repeatedly to decides their votes during consensus. Instead, we move execution
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to the end and allow some invalid transactions in the block to achieve better
parallelism, which is elaborated in Sect. 5.2.

Adversary Model. The adversary model of PEEP is the same as PBFT con-
sensus protocol, where at most f replicas can be malicious out of n replicas, such
that n ≥ 3f + 1. The faulty replicas can misbehave in arbitrary ways, including
broadcasting conflict messages, keeping silent or even colluding.

3.2 Architecture

Figure 2 shows the workflow of our system, including three phases: ordering,
execution and finalization. The latter two phases consist of our proposed PEEP.
In the execution phase, the schedule layer coordinates the parallel execution
of transactions, including the lock management for states and thread schedul-
ing. Particularly, the schedule layer employs the ordered locking mechanism [16]
to eliminate the non-determinism from parallel execution, resulting in identical
results every time. In the finalization phase, the updates outputted by execu-
tion are applied to state trie in parallel to maximal the capacity of multi-core
hardware. Note that the structural invariance of state trie is utilized to support
parallel write operations. Besides, to make the entire workflow not be blocked
by the commit of state tree, PEEP performs the commit of current block and
consensus for next block in parallel, which is regarded as the deferred commit
mechanism. More Specifically, PEEP distinguishes itself with the following three
main techniques.

First, the schedule layer allows parallel execution with deterministic serial
order but incurs no additional network communication among replicas for nego-
tiation of the final result. Therefore, each replica can execute transactions in
parallel independently. Second, PEEP accelerates the serial updates on state
tree significantly by a parallel update algorithm. Last, PEEP prevents the com-
mit of state tree from blocking the entire workflow by deferring this heavy pro-
cess to consensus for next block. Therefore, various system resources of each
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Fig. 3. Case for non-determinism and determinism.

replica are fully utilized, i.e., apart from the computational resources, the com-
mit of state tree and consensus for block consume the disk I/O and network
I/O respectively. To achieve this goal, PEEP needs to modify the structure of
blocks slightly. However, we think this modification is acceptable and will detail
it further in Sect. 5.2.

Summarized, the design of PEEP is a novel thus practical approach to
improving overall performance towards permissioned blockchain systems, by con-
current execution of transactions, parallel update on state tree and deferred
commit strategy.

4 Scheduling and Execution

4.1 The Case for Determinism

In blockchain, a crucial feature of parallel execution is deterministic, which
assures consistency among multiple replicas. We further distinguish the non-
deterministic and deterministic scheduling as depicted in Fig. 3. Three transac-
tions T1, T2, T3 are executed concurrently on four replicas R1∼R4, L(i, s) indi-
cates Ti acquires the lock on state s and U(i, s) represents Ti releases the lock on
state s. Figure 3(a) shows the results of an non-deterministic lock scheme, two-
phase locking (2PL), while in Fig. 3(b), replicas leverage deterministic ordered
locking to execute transactions. As can be seen, in Fig. 3(a), the execution result
of R1 is equivalent to serial order 〈T3, T2, T1〉 rather than 〈T1, T2, T3〉 defined
by block, since T3 acquires the lock on A before T1 due to the unpredictable
behaviour of thread scheduling. Furthermore, the result of R1 diverges from
that of R4, yielding inconsistent states. On the contrary, Fig. 3(b) guarantees
the determinism through an additional rule that the lock requested by multiple
transactions should be strictly granted to them in the predefined order. Follow-
ing this rule, T1 always acquires lock on A before T3 on all replicas, promising
the determinism.

4.2 Parallel Execution

PEEP designs a schedule layer to take charge of scheduling transactions and pro-
ducing final dirty states. The schedule layer contains two core components: (i)
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lock manager, which grants locks to transactions following the ordered locking
scheme; and (ii) thread scheduler, which coordinates the execution of transac-
tions, such as worker thread assignment and management. The functions of both
components are detailed as follows.

Lock Manager. The lock manager is implemented on a single thread, which
grants locks to transactions according to the predefined order. At the beginning,
all transactions stay inactive. Then, the lock manager scans inactive transactions
and grants currently available locks to them based on their read/write-set. Once
a transaction gathers all of its required locks, it becomes active and can be
delivered to the buffer of the thread scheduler for execution. After a transaction
finishes its execution, all its acquired locks are released for re-granting to other
inactive transactions.

Thread Scheduler. The thread scheduler sets up multiple worker threads to
execute transactions concurrently. The scheduler will assign every transaction
in the buffer to an idle worker thread for execution. During the execution, the
worker thread may abort a transaction if it encounters illegal access or error
behaviors. This behavior is guaranteed to be identical among all replicas. After
successful execution, the worker thread writes the updates of transactions to a
state buffer, which will be flushed to state trie in a batch later.

Algorithm 1 describes pseudo-codes of the scheduler layer. When the sched-
uler layer receives a batch of transactions B, it forwards B to the lock manager
for execution (lines 1–9). At the beginning, all transactions are put in the set S of
inactive transactions and cannot be executed directly (line 2). In particular, the
lock manager is single-threaded, which ensures the ordered lock granting. Then,
the lock manager grants locks on transactions serially (lines 3–8). When dealing
with a transaction t, the lock manager tries to grant locks on states of t’s read-
set and write-set by function grant locks(·) obeying the ordered locking scheme.
The function grant locks(·) returns two variables cnt and records, namely the
number of un-acquired locks and information of locks info (line 5). Next, the
lock manager updates the information by function update locks information(·),
registering available locks to t (line 6). Last, if t obtains all locks on the states
of its read/write-set (i.e., cnt = 0), t becomes active and is shifted from S to R
for parallel execution (lines 7–9).



348 Z. Chen et al.

Algorithm 1: Schedule Layer
Input: B: batch of transactions with prior knowledge, R: buffer of active

transactions, W : collection of worker threads, D: buffer of dirty states
1 � Lock manager (single thread):
2 S ← B /*set of inactive transactions */
3 for t ∈ S do
4 /*cnt: number of locks not acquired */
5 cnt, info ← grant locks (t)
6 update locks information (t, info)
7 if cnt = 0 then
8 S ← delete(t)
9 R ← add (t, R)

10 � Thread scheduler:
11 for w ∈ W do
12 /*run in parallel */
13 t ← get transaction (R)
14 err, write set ← execute (t)
15 if err �= null then
16 abort (t)
17 release locks (t)

18 else
19 for 〈k, v〉 ∈ write set do
20 D ← write state (k, v, D)

21 release locks (t)

All worker threads in the thread scheduler constantly try to fetch active
transactions to execute (lines 10–21). For each worker thread w, if it fetches
transaction t from buffer R successfully, w will execute t directly based on t’s
read-set. Afterward, PEEP writes the updates of transactions into a buffer D
of dirty states first and then flush them to state trie for the parallel update.
Therefore, during the execution, the worker thread may have to read values
of states from both D and state trie. In this phase, since there are only read
operations on state trie, all worker threads can access state trie concurrently
with no contention. If t is aborted due to some reasons, such as transaction logic
or mismatch between pre-acquired and real read/write-set, w will abort t and
then release all relevant locks (lines 15–17). If the execution for t succeeds, the
worker thread writes updates to buffer D, which is later flushed to state trie in
a batch (lines 19–21).

Figure 4 gives an example to further elaborate Algorithm 1. The lock manager
sets a queue for each state and serially push a transaction to queues respecting
to states what it requests. When a lock is available, the lock manager grants it
to the front transaction of the corresponding queue. More specifically, exclusive
lock is granted to the write request while successive read requests can be granted
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shared locks. In Fig. 4(a), as for T1, it has been granted the lock on state A. Based
on this figure, T1, T3 and T4 have acquired all of their locks and thus become
active for scheduling. On the other hand, T2, T5 and T6 remain inactive and wait
for re-granted locks. After successful execution of T1 and T3, locks on them are
released and re-granted to T2 and T6 by the lock manager, as shown in Fig. 4(b),
which turns T2 and T6 into active.

4.3 Speculative Execution

If the assumption about early read/write acquisition doesn’t hold, we still can
use a speculative deterministic execution algorithm to execute transaction con-
currently as proposed in Sparkle [11]. The basic principle obeys that the effects
produced by the speculative deterministic execution must be always equivalent
to the serial order defined by block. A transaction executed speculatively will be
aborted and re-executed if its execution violates the predetermined order.

5 Parallel Update and Commit on State Trie

5.1 Parallel Update

The concurrent execution writes the latest states (also called dirty states) to the
in-memory StateDB in the key-value form, and these dirty states are then flushed
into state trie for digest calculation and persistence. However, the existing state
tries apply updates in a completely serial manner, where the states are handled
one after another. Instead, to enable parallel update on state trie, two main
issues should be considered. (i) The nodes of state trie closer to the root face
more conflicts, which is hard to deal with when handling updates concurrently.
(ii) There’s no requirement to optimize this processing because the bottleneck
of system doesn’t lie in the overhead for update operations on in-memory state
trie but the cost of disk I/O for cache missing caused by node loading from
underlying DiskDB as illustrated in Fig. 1.

For the first issue, a straightforward solution is to lock the entire state trie for
each update. However, this approach is the same as the serial manner. Another
practical idea is to design a locking mechanism based on the finer node granu-
larity. Nevertheless, due to the existence of dependency between a node and its
children, the nodes closer to the root will suffer from a higher race if multiple
threads apply updates concurrently. Regarding the second issue, it is reasonable
to assume that we maintain the entire latest state trie in memory since repli-
cas in permissioned blockchain are more likely equipped with larger memory
resources. For example, an MPT managing 1 million accounts with the latest
states occupies merely about 200 MB memory space and a few Gigabyte space
is enough for more than 10 million accounts. Note that we just need to cache
the latest version of each state in memory and the historical versions are still
persisted on DiskDB.

Based on the memory assumption, PEEP employs a lock-free parallel update
algorithm on state trie to improve its performance. We decouple the read and



350 Z. Chen et al.

Algorithm 2: Parallel update on state trie
Input: ST : state trie, S: batch of dirty states, Nt: number of worker threads,

W : collection of worker threads, M : map between node and list of tasks
1 � Stage1: task distribution
2 cnt ← 0
3 for 〈k, v〉 ∈ S do
4 idx ← cnt mod Nt, cnt ← cnt + 1
5 task assign (W [idx], 〈k, v〉)

6 � Stage2: parallel descending
7 for w ∈ W do
8 /*run in parallel */
9 task set ← get tasks(w)

10 for 〈k, v〉 ∈ task set do
11 nodec ← find conflict node(ST, 〈k, v〉)
12 lt ← M [nodec], lt ← append(lt, 〈k, v〉), M [nodec] ← lt

13 � Stage3: node distribution
14 cnt ← 0
15 for 〈nodec, lt〉 ∈ M do
16 idx ← cnt mod Nt, cnt ← cnt + 1
17 node assign(W [idx], 〈nodec, lt〉)

18 � Stage4: parallel node modification
19 for w ∈ W do
20 /*run in parallel */
21 node set ← get nodes(w)
22 for nodec ∈ node set do
23 lt ← M [nodec]
24 for 〈k, v〉 ∈ lt do
25 inplace update(ST, nodec, 〈k, v〉)

write operation on it and consider the natural batch feature of blockchain.
Specifically, the updates generated by transactions of the same block are merged
into state trie in a batch. Therefore, we can analyze the conflicting relationship
between nodes to be modified called conflict nodes of state trie and maximize
the parallelism through a lock-free schedule.

For the parallel update on state trie, we regard each update 〈k, v〉, where
k and v are the key and value of state respectively, outputted by transaction
execution as a task. Note that if v is “⊥”, it means the deletion of state with
k. To achieve look-free, we first detect the potential contention among tasks
and then put conflicting tasks, which modify the same node of trie, to the same
worker thread. Roughly, the processing of a batch of tasks can be finished in
four stages as presented in Algorithm 2. The input of the algorithm contains the
state trie ST , a batch of dirty states S, a thread set W with Nt worker threads,
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and a map M between trie nodes and a list of tasks. We explain the map M
in detail later. First, all tasks are dispatched to worker threads evenly through
function task assign(·) by a modulo manner (lines 1–5).

Second, each worker thread handles tasks in parallel (lines 6–12). For
each task 〈k, v〉, it descends to the conflict node nodec by function
find conflict node(·) (line 11). We regard nodec as the conflict node if it should
be modified when 〈k, v〉 is applied to ST . If multiple nodes should be modified,
the node closest to root is the conflict node. For example, suppose state k is
deleted from ST , since k stays in the leaf node, we should modify its parent
to empty the pointer referring to it. Then the parent is the conflict node. If
two tasks share the same conflict node, there is a race condition between them.
We append them to a lock-free list lt which accumulates tasks for the target
conflict node (line 12). Note that map M records all conflict nodes and is also
implemented as lock-free.

Third, the tasks accumulated on the same conflict node are handled by a
single worker, which is similar to Stage1 (lines 13–17). Tasks are redistributed
over all worker threads for lock-free parallel update. Last, each worker thread
processes tasks serially (lines 21–25). In particular, for each nodec, worker thread
w applies all updates in its list by function inplace update(·). It should be noted
that a task 〈k, v〉 overwriting an existing state doesn’t have conflict node, so we
can apply the update directly in Stage2. Only the insertion and deletion would
incur the modification on its parent.

Our algorithm can be applied to any state trie as well as storage trie to
parallelize the batch updates. The key factor that our approach can work is the
structural invariance feature of trie. The structural invariance means the final
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structure of a trie is independent of the order of updates but depends on the
batch. Therefore, the parallel update still ensures the deterministic structure of
state trie, which is crucial to blockchain. Besides, our algorithm can easily scale
due to its lock-free design theoretically.

Figure 5 illustrates an example of parallel update on a state trie MPT, which
compresses path by short node type. Figure 5(a) shows the six dirty states s1 ∼ s6
represented by squares, where “I(·)” and “D(·)” indicate insertion and deletion
of state respectively. All these tasks (states) are distributed uniformly over three
worker threads distinguished by three colors. Figure 5(b) indicates the second
stage that three worker threads descend on trie in parallel to find the conflict
nodes of tasks and append tasks to corresponding lists. Take workera represented
by yellow as an example, it handles two tasks, task s2 and s6 assigned by Stage1.
Then it descends through the trie node 1, 3, 6 and again node 1, 2, 5 ending
with two conflict nodes: node 5, 6. After all workers finish descending, tasks
are accumulated in lists according to the conflict nodes. Four conflict nodes,
namely node 5, 6, 8, 9, are dispatched with their tasks to three worker threads
for final modification. Considering load balance, task s2 and s5 belong to different
conflict nodes are assigned to the same worker thread, so that all threads obtain
similar workloads as depicted in Fig. 5(c). Last, as shown in Fig. 5(d), each thread
modifies conflict nodes based on tasks parallelly.

5.2 Deferred Commit Strategy

In some blockchains like Ethereum, the root hash of state trie, which reflects
the effects of transactions in block B, is included in the block header. This
requires the proposer (i.e., the leader in PBFT or miner in PoW) of B to execute
transactions to generate the commitment and other replicas have to validate the
execution of the proposer. As a result, the entire workflow is blocked by two-
phase execution on the proposer and other replicas respectively, leading to poor
performance. To increase the parallelism, we move the execution after consensus,
so that both proposer and replicas can execute in parallel. This design will cause
the invalid transactions may be included in block since a transaction may abort
for some reasons by application logic, such as insufficient balance of transfer
transaction. However, we consider this compromise is acceptable if we ensure
invalid transaction won’t take effect and mark it invalid explicitly like the Fabric.
Through this approach, the state root cannot be fulfilled in current block header
further, and we solve this issue next.

Another key factor to the performance is the commitment of state trie, includ-
ing hash recalculation and node persistence. Specifically, our extension experi-
ment shows that the overhead of commitment has exceeded the one of execution.
Observe that hashing and persistence mainly consume the computation and disk
I/O resources while the consensus consumes the network I/O. A natural choice
is to perform them in parallel to utilize the system resources fully. To achieve
this goal, we pipeline the commitment of state trie at block height h and the
consensus at block height h+ 1. In particular, when the execution finishes, each
replica enters commit and consensus for block height h and h + 1 respectively,
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leading to a non-blocked workflow. Ideally, when the block Bh+1 gets agreed,
the commitment for block Bh is finished, then replicas can continue to process
commitment for Bh+1. Therefore we use a parallel hash calculation and a write-
oriented DiskDB LevelDB for persistence to accelerate the commitment.

To apply the deferred commit strategy, a left problem is state root padding.
PEEP no longer requires each block to contain its state root. Instead, we mis-
place the state root and block header which means we can practically fill the
state root for block Bh in the block header of block Bh+2 at the cost of delayed
authenticated query. Since the commitment for block height h can be finished
before the consensus for Bh+2, we attach it to the header of Bh+2 and then agree
on it. Surely, we cannot deploy any authenticate query on state at block height h
due to the lake of state root during this delay. On the other hand, since the faster
consensus is available and PEEP optimizes the execution and commitment, we
think this limitation is acceptable.

0.2 0.4 0.6 0.8 1.0

100

150

200

250

300

L
at

en
cy

 (m
s)

# of TXs (M)

Serial (Disk)
PEEP (Memory)
PEEP (Memory+2 Threads)
PEEP (Memory+4 Threads)

(a) Latency

0.2 0.4 0.6 0.8 1
0

4

8

12

16

T
hr

ou
gh

pu
t(

kp
s)

# of TXs (M)

Serial (Disk) PEEP (Memory)
PEEP (Memory+2 Threads) PEEP (Memory+4 Threads)

(b) Throughput

Fig. 6. Overall performance of PEEP against number of transactions.

6 Performance Evaluation

6.1 Implementation

PEEP is entirely written in Golang. We adopt go-Ethereum1 as library and
integrate an open-source PBFT realization in Hyperledger Fabric 0.62 into our
system. In the schedule layer, we set up one thread to order transactions and
multiple worker threads to execute. To support parallel execution of smart con-
tracts, we set an EVM (Ethereum VM) pool with multiple instances to provide
the execution environment. Besides, we reuse the MPT component in Ethereum
and implement our parallel update algorithm upon it. Note that the number
of workers that descend and process tasks is set the same as in the schedule
layer. Meanwhile, we activate the parallel hash computation to accelerate hash
calculation.

1 https://github.com/ethereum/go-ethereum.
2 https://github.com/hyperledger-archives/fabric.

https://github.com/ethereum/go-ethereum
https://github.com/hyperledger-archives/fabric
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6.2 Experimental Setup

All experiments are conducted on four qualified machines with an Intel Core
i7-7700HQ CPU @ 2.80 GHz of 4 cores, 16 GB RAM and 1 TB disk space. These
machines are connected via 10 GB Ethernet. We use Ubuntu 16.04 plus Go 1.14.2
and run every experiment three times to report the average.

Benchmark. We use benchmark proposed by BlockBench [8] to generate the
test dataset consists of 1 million transactions. Specifically, a SmallBank contract
as Macro-benchmark in BlockBench is deployed on one account and 1 million
transactions are sent by 200 thousand accounts to invoke this smart contract
under Zipfian distribution. A function called updateBalance is invoked by trans-
actions, which leads to evenly one read and one write operations related to the
invoker. Besides, a block is limited to contain at most 1 thousand transactions.

6.3 Overall Performance

We first evaluate the overall performance of PEEP in terms of throughput and
latency per block without consensus. Figure 6(a) and Fig. 6(b) report the latency
and throughput against the number of transactions respectively. In the former
figure, Serial(Disk) represents serial execution under the case that there is no
memory cache for state trie and storage trie, then all these tries’ nodes should
be directly loaded from disk, causing a serious amplification as the number of
transactions increases. Other lines are implementations of PEEP varying from
number of worker threads under our assumptions. Note that the amplification
reduces sharply since most trie nodes can hit in memory due to a large memory
cache. As shown in the latter figure, PEEP reaches over 14 thousand TPS which
is a nearly 50% enhancement than the serial execution under the same assump-
tion. Note that the overall transaction flow includes persistence at the end of
execution which is hard to optimize. The improvement of PEEP is evident as
can be seen in both figures. In conclusion, PEEP outperforms the serial ones
significantly due to exploiting the multi-core processor’s performance.

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

# of times an account(k) is called

s=0.0001
s=0.2
s=0.8

(a) CDF of # account calls

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

T
hr

ou
gh

pu
t(

kp
s)

# of TXs (M)

1 Thread 2 Threads   
4 Threads    8 Threads

(b) Throughput

0.8 0.8 0.2
0

10

20

30

40

50

T
hr

ou
gh

pu
t(

kp
s)

1.00x

1.61x

2.82x
3.04x

value of s

Serial  PEEP(4 Threads)

0.0001

(c) Performance degrada-
tion

Fig. 7. Performance of parallel execution



PEEP: A Parallel Execution Engine for Permissioned Blockchain Systems 355

6.4 Individual Analysis

Analysis of Schedule Layer. We calculate a CDF of the number of times
accounts are called as Fig. 7(a). For example, s = 0.2 means 20% of the accounts
are related to 90% of all transactions based on the figure. As can be seen, the
lower the parameter s is, the higher contention will be. To evaluate the per-
formance of parallel execution, we then conduct experiments based on s = 0.8
against number of worker threads shown in Fig. 7(b). As the number of worker
threads increases, throughput keeps increasing, while the proportion improved
reduces due to thread switching overhead and potentially single-point bottle-
neck of the lock thread since it grants locks sequentially. Furthermore, if a block
contains a high-contention of transactions, throughput will be restrained due to
the locking scheme. As depicted in Fig. 7(c), with the rise of contention caused
by parameter s, the throughput decreases accordingly. Under extreme condition
such as s = 0.0001, execution is closer to the serial manner and the performance
lower by one order of magnitude consequently.

Performance of Parallel Trie. Two critical factors including the density of
trie and the number of worker threads bear on the parallelism degree. We first
measure the number of accessed trie nodes during updates per block to represent
the density of trie. Since MPT is a compressed trie, it will expand as it becomes
denser. In this experiment, each transaction directly modifies two different states.
As reported in Fig. 8(a), the number of accessed nodes increases quickly then
tends to stabilize as the number of block increases owing that trie becomes nearly
completely expanded with no path compression, bringing higher parallelism at
the cost of a slightly longer descending path. Figure 8(b) shows the empowerment
of parallel operations compared to serial manner. Recall that all dirty nodes will
be loaded during the execution phase, so update operations are fast due to
no interaction with the disk. It reports that the parallel operations consists of
parallel update and commit reduce the latency by 43%, which also contributes
to overall performance enhancement.
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Fig. 8. Performance of parallel trie.

Efficiency of Deferred Commit Strategy. We test the impact of the deferred
commit strategy of PEEP. For the ordering phase, a block with 1K transac-
tions consumes nearly 60 ms per round for consensus based on our measurement.
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Fig. 9. Efficiency of deferred commit strategy

Figure 9(a) shows the proportion of each sub-phases under different assumptions.
Serial(Disk) suffers read amplification and serial constraints that make the exe-
cution phase dominant while PEEP optimizes it. Besides, the commit and persist
sub-phases share a nearly similar proportion with consensus so that it is practi-
cal to apply our deferred commit strategy. We implement the strategy with one
round deferral, the average latency per block is reduced by 38% as reported in
Fig. 9(b) since the asynchronous commitment allows the block to be confirmed
early and does not obstruct the process for the next block.

7 Conclusion

This paper introduces PEEP, a parallel execution engine designed for permis-
sioned blockchain systems for higher throughput. We apply a deterministic con-
current scheduling and a parallel update in particular to adding parallelism to
execution. Besides, the deferred commit strategy is proposed for better utiliza-
tion of system resources, yielding a non-blocked workflow. The experimental
results support the practicability and effectiveness of our work. Future works
are expected to exploit more efficient authenticated data structures and design
complete pipelined execution of blockchain.
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Abstract. Crowdsensing is a prominent paradigm that collects data by
outsourcing to individuals with sensing devices. However, most exist-
ing crowdsensing systems are based on centralized architecture which
suffers from poor data quality, high service charge, single point of fail-
ure, etc. Some studies have explored decentralized architectures and
implementations for crowdsensing based on blockchain, while incentive
mechanisms for worker participation and miner participation, which
serve as a crucial role in blockchain-based crowdsensing systems (BCSs),
are ignored. To address this issue, we propose an incentive mechanism
design named URIM to maximize participants’ utilities, which consists
of worker-centric and miner-centric incentive mechanisms for BCSs. For
the worker-centric incentive mechanism, we model it as a reverse auction,
in which dynamic programming is utilized to select workers, and pay-
ments are determined based on the Vickrey-Clarke-Groves scheme. We
also prove this incentive mechanism is computationally efficient, individ-
ually rational and truthful. For the miner-centric incentive mechanism,
we model interactions among the requester and miners as a Stackelberg
game and adopt the backward induction to analyze its equilibrium at
which the utilities of the requester and miners are optimized. Finally,
we demonstrate the significant performance of URIM through extensive
simulations.

Keywords: Crowdsensing · Blockchain · Incentive mechanism ·
Reverse auction · Game theory

1 Introduction

In recent years, sensing devices (such as smartphones, wearable devices and
tablets) have been emerging in our daily life. The proliferation of devices capa-
ble of sensing and computing leads to the prosperity of a new sensing paradigm
called crowdsensing. Crowdsensing leverages “humans-as-sensors” to enable tra-
ditional Internet of Things (IoT) application by combing perception capabilities
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and crowdsourcing in many important fields, such as intelligent transportation,
public safety, environmental monitoring and urban public management.

In the previous studies, most research on crowdsensing adopted centralized
system architecture which generally consists of three roles: centralized platform,
task requesters, and crowdsensing workers (also known as the data providers)
[10]. However, there exists some drawbacks in the centralized crowdsensing sys-
tems, such as poor data quality, high service charge, single point of failure and
privacy disclosure [13]. Therefore, some studies have explored decentralized tech-
niques for crowdsensing systems, wherein a very popular solution is blockchain.
Blockchain-based crowdsensing systems (BCSs) have following advantages. The
decentralization, immutability and security of blockchain can facilitate the coop-
eration among mutually distrusted participants without service fees charged by
the centralized platform and ensure the audibility of the crowdsensing data.
Moreover, the decentralized blockchain architecture can avoid the single point
of failure which may cause shutdown of traditional centralized systems. The
anonymity of blockchain transactions can reduce risks of privacy disclosure.

Existing studies of BCSs mainly focus on architecture design and smart con-
tracts implementation, while the incentive mechanisms for user engagement,
which serve as a crucial role in crowdsensing systems, are ignored. Nowadays,
most incentive mechanisms are designed for traditional centralized crowdsensing
systems [15,19]. However, BCSs operate automatically via smart contracts with-
out a centralized reliable intermediary. Thus, the incentive mechanism of BCSs
is designed to optimize the utilities of participants when interacting with the
blockchain, rather than the centralized platform. Although there are some stud-
ies on the incentive mechanisms for BCSs, they mainly focus on selection and
reward allocation for workers [2,3,9]. They omit an exclusive and important role
called miner in BCSs to handle and validate all operations. Existing incentive
mechanisms generally involve the task requesters and workers, but ignore min-
ers. Hence, existing incentive mechanisms are not fully compatible with BCSs.
Due to the lack of appropriate incentive mechanisms, the utilities of participants
cannot be maximized, and the efficiency of BCSs decreases.

There is an urgent need to design appropriate incentive mechanisms for BCSs,
but it is a challenging task. First, BCSs allow participants to exchange data with-
out a centralized truthful intermediary. It is crucial and challenging to build a
system model of BCSs that can be compatible with holistic incentive mechanism
design. Second, it is difficult to formalize how multiple roles interact with each
other and how to optimize their utilities. Compared with traditional crowd-
sensing systems, a new role called miner is involved in BCSs. Miners directly
determine the operating efficiency and security of BCSs, while how to select
efficient miners in a safe and reliable way is not easy. Meanwhile, there are com-
plex interactions between workers, miners and requesters, which aggravate the
complexity of utility optimization in the incentive mechanism design.

Based on the above background, we focus on: How to design holistic incentive
mechanisms for BCSs to maximize utilities of participating roles? To solve this
problem, we propose a utility-oriented role-centric incentive mechanism design
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named URIM which aims to maximize utilities of participating roles in BCSs.
According to the processes and participants of BCSs, workers and miners directly
determines the performance of BCSs. Hence, URIM is designed to consist of
worker-centric and miner-centric incentive mechanisms. In the worker-centric
incentive mechanism (WCIM), the task requester publishes its task to BCSs
through smart contracts. Then each worker submits its solution of the task
and corresponding bidding price. Smart contracts on BCSs automatically selects
workers by a dynamic programming algorithm and determines their payments
by Vickrey-Clarke-Groves (VCG) scheme. The above interactions among the
task requester, workers and smart contracts are modeled as a reverse auction.
In the miner-centric incentive mechanism (MCIM), we first adopt cryptographic
sortition to select eligible miners. For motivating miners to validate transactions
and mine blocks, the task requester announces total transaction fees shared by
all transactions related with its task. Then miners decide their mining strategies
to validate different number of transactions and compete for the corresponding
transaction fee. The above interactions among the task requester and miners are
modeled as a Stackelberg game to optimize utilities of the task requester and
miners. The main contributions of this paper are as follows:

• We propose a utility-oriented role-centric incentive mechanism design named
URIM for BCSs. To the best of our knowledge, this is the first work on holistic
incentive mechanism design for BCSs to ensure the utility maximization of
all roles.

• We design a reverse auction based WCIM which adopts dynamic program-
ming to select desirable workers and determine payments based on VCG
scheme. We theoretically prove that WCIM is computationally efficient, indi-
vidually rational and truthful.

• We design the MCIM that selects miners by cryptographic sortition and for-
mulates mining competition by a two-stage Stackelberg game. Through back-
ward induction, we analyze and validate the best response strategies of miners
and the unique Stackelberg equilibrium where the utilities of the requester
and miners are jointly maximized.

• We demonstrate the significant performance of URIM through extensive sim-
ulations.

The remainder of the paper is organized as follows. In Sect. 2, we review
the related work of blockchain-based crowdsensing systems and incentive mech-
anisms for crowdsensing. In Sect. 3, we present the system model of BCSs with
the design of URIM. We then present two compositions of URIM in Sect. 4 and
5. We present performance evaluations in Sect. 6. Finally, we conclude this paper
in Sect. 7.

2 Related Work

In this section, we mainly review related research on the blockchain-based crowd-
sensing systems and incentive mechanisms for crowdsensing.



URIM for Blockchain-Based Crowdsensing 361

Blockchain-Based Crowdsensing Systems. Blockchain and automated exe-
cution of smart contracts greatly enhance the decentralized communication and
cooperation without an intermediary in many fields [5]. In particular, the crowd-
sensing system can take the benefits of blockchain to achieve fair and trust-less
collaboration. Crowdbc [13] proposes a decentralized crowdsensing framework
based on blockchain and implements the main concepts in the framework through
the usage of smart contracts. Zebralancer [14] shows how an anonymous decen-
tralized crowdsensing system can be implemented on top of blockchain, which
ensure the privacy of the crowdsensing data while preserves the transparency of
blockchain systems. In [2], authors build a decentralized crowdsensing platform
for data trading on blockchain. The research of homomorphic encryption for fair
and secure BCSs is discussed in [21]. Zero-knowledge proof technique is pro-
posed to enable data providers to submit data through a privacy preserving and
secure way in BCSs [6]. The location privacy attack in the crowdsensing system
is discussed in [20]. This work proposes a blockchain-based privacy preservation
framework for protecting location of workers. These efforts are mainly aimed at
how to implement crowdsensing on the blockchain.

Incentive Mechanism for Crowdsensing. The existing incentive mechanisms
for crowdsensing systems can be divided into monetary and non-monetary incen-
tive mechanisms. In monetary incentive mechanisms, auction is a common app-
roach to pay workers with either real money or virtual tokens [7,11]. The radp-
vpc mechanism is proposed in [12], which aims to minimize the platform cost
and maintain the participation level of workers. Yang et al. propose a reverse
auction based incentive mechanism to determine winners and their payments
[19]. Some studies have attempted to provide monetary incentive mechanisms
based on BCSs. An et al. propose a blockchain-based crowdsensing data trad-
ing system with truthful and confidential incentive mechanisms in [2]. Truthful
and cost-optimal incentives for mobile user participation are designed in [3].
Hu et al. design the workflow of BCSs with the help of automatic smart con-
tracts and they leverage a three stage Stackelberg game to motivate participants
in [9]. The above works [2,3,9] only consider the participation of workers, but
they ignore the mining competition and consensus achievement. Non-monetary
incentive mechanisms provide comprehensive and long-term incentives for par-
ticipants. In [1], a reputation management framework is proposed to evaluate
both the contributions quality and the trust level of participants. Crowdsensing
data trustworthiness are quantified based on statistical and vote-based reputa-
tion scores in [17].

3 System Overview

In this section, we present the system model of BCSs with the holistic incentive
mechanism design. As shown in Fig. 1, there generally exists three roles partici-
pating in BCSs: the task requester, workers and miners. The task requester and
workers can also be regarded as miners when they join in the mining competition.
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Fig. 1. System model of blockchain-based crowdsensing.

1. Task requester. Let R be the task requester (hereinafter referred to as
requester), and R publishes crowdsensing task ST to the BCS. ST defines the
sensing requirement including the task budget B, task duration and descrip-
tion of target data. To motivate workers to enhance the quality of sensing
information, and miners to validate transactions related with ST , a certain
amount of compensation will be paid to workers and miners respectively.

2. Worker. Let W = {w1, w2, · · · , wm} be the set of all workers. Worker wi

should submit its solution SLi and bidding price bi before the task ending
time if wi is interested in task ST .

3. Miner. The responsibility of miners is to secure the blockchain network and
to deal with every transaction in it. Each miner validate transactions in its
block to compete for the mining reward which includes a specific block reward
and fees sent with validated transactions. Miners are selected from those
requesters and workers by a specific selection manner.

In Fig. 1, the workflow of BCSs with utility-oriented role-centric incentive
mechanism contains five stages as follows:

1. Participants register. In the beginning, the requester and workers join in
this system. Each registered participant has a unique public/private key pair
to secure its transactions.

2. Publish crowdsensing task. In this stage, the requester publishes the
crowdsensing task to BCSs via smart contracts.

3. Submit crowdsensing information. Workers can retrieve crowdsensing
tasks they are interested in by interacting with blockchain. Workers submit
crowdsensing solutions and bidding prices before the task deadline.

4. Select workers and determine payments. After receiving crowdsensing
solutions, BCSs automatically select desirable workers and determine their
payments via smart contracts.
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5. Select miners and generate blocks. Based on participants’ computing
power, cryptographic sortition is adopted to randomly and unpredictably
select miners. Selected miners pack bundled transactions into a block, then
compete for mining rewards with proof of work (PoW) consensus.

The goal of incentive mechanism design for BCSs is to motivate participants and
maximize their utilities. Other issues in the design and implementation of smart
contracts in BCSs is out of the scope of our paper. People can refer to [2,13,21]
for these issues. Both workers and miners play an important role in determining
the performance of BCSs, so we need to design incentive mechanisms for them.
In Stage 4, we propose a worker-centric incentive mechanism, in which eligible
workers are paid a reasonable return according to their contribution and bidding
price. In Stage 5, we propose a miner-centric incentive mechanism, in which
miners compete with each other for a total transaction fee.

4 Worker-Centric Incentive Mechanism

In this section, we propose a reverse-auction-based worker-centric incentive
mechanism named WCIM to select workers by dynamic programming, and deter-
mine their payments through VCG scheme.

After the requester R posts the task ST on BCSs, reverse-auction-based
WCIM will output a subset of workers S ∈ W as winners and determine the
payment for each winner wi ∈ S by taking workers’ contribution vi and bidding
price bi as input. These processes are performed automatically on smart con-
tracts. The sum of all winners’ contributions is represented as

∑
wi∈S vi. The

utility of R is the difference between winners’ contributions and their social costs,
which is represented as

∑
wi∈S (vi − bi). WCIM aims to maximize the utility of R

while satisfying the budget control. Hence, WCIM can be formulated as follows:

Maximize
∑

wi∈S

(vi − bi), Subject to
∑

wi∈S

bi ≤ B. (1)

The WCIM is designed to satisfy properties as follows:

– Computational Efficiency. The incentive mechanism is computationally
efficient if its computation runs in polynomial time.

– Individual Rationality. The incentive mechanism is individually rational
if each worker has non-negative utility.

– Truthfulness. The incentive mechanism is truthful if no worker could obtain
higher utility by reporting a false bid that deviates from its true cost no matter
what others report.

4.1 Implementation of WCIM

From the above, WCIM consists of workers selection and payment determination.
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Wokrers Selection. We reduce the workers selection to 0–1 Knapsack problem
which is constructed as follows and use dynamic programming for the optimal
solution in Algorithm 1.

Workers are denoted by set W = {w1, · · · , wm}. Workers’ bidding prices
and contributions are denoted by {b1, · · · , bm} and {v1, · · · , vm}. We map work-
ers’ bidding set {b1, · · · , bm} to a non-negative integer set {βb1, · · · , βbm} by
multiplying each bidding price with amplification factor β. Meanwhile, we use
xi ∈ {0, 1} , i ∈ {1, · · · ,m} to represent if worker wi will be selected. The work-
ers selection problem is constructed to determine X = {x1, · · · , xm} to

Maximize
m∑

i=1

(vi − bi) · xi, Subject to
m∑

i=1

βbixi ≤ βB. (2)

Payment Determination. We propose a VCG [18] based payment determina-
tion algorithm illustrated in Algorithm 2. In the generalized VCG auction, each
winner is required to pay “harm” imposed on other workers, i.e., the difference
between the optimal utility of the requester with and without this winner [18].
We define V (S)−wi

W as the optimal utility of R excluding the contribution of
worker wi, which can be represented as

V (S)−wi

W = V (S)W − (vi − bi) . (3)

Then, we define V (S)W\{wi} as the optimal utility of R excluding the partic-
ipation of worker wi. Thus, the payment pi of worker wi can be represented
as

pi = vi −
(
V (S)W\{wi} − V (S)−wi

W

)
. (4)

4.2 Theoretical Analysis of WCIM Properties

In this subsection, we prove that WCIM satisfies mentioned three properties:
computational efficiency (Lemma 1), the individual rationality (Lemma 2) and
the truthfulness (Lemma 3).

Lemma 1. WCIM is computationally efficient.

Proof. The winners selection has been reduced to 0–1 Knapsack problem, as
illustrated in Algorithm 1 and it takes O (nβB) time. The payment determi-
nation illustrated in Algorithm 2 takes O (mnβB) time. WCIM is executed by
Algorithm 1 and 2 sequentially and its running time is the sum of them. Hence,
WCIM is a polynomial-time mechanism and computationally efficient. ��
Lemma 2. WCIM is individually rational.

Proof. Based on (4), we have

pi = vi −
(
V (S)W\{mi} − V (S)−mi

W

)
= vi −

(
V (S)W\{mi} − V (S)W + vi − bi

)

= V (S)W − V (S)W\{mi} + bi.

(5)
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Algorithm 1. The Winners Selection Algorithm
Input: The worker set {w1, w2, · · · , wm}, their bid set {b1, b2, · · · , bm}, their contribution set
{v1, v2, · · · , vm} and the budget B, the amplification factor β;
Output: The selected worker set S;

1: S ← �, H [i, j] ← 0;
2: for i from 1 to m do
3: for j from 0 to βB do
4: if βbi ≤ j && H [i − 1, j − βbi] + (vi − bi) > H [i − 1, j] then
5: H [i, j] ← H [i − 1, j − βbi] + (vi − bi);
6: X [i, j] ← 1;
7: else
8: H [i, j] ← H [i − 1, j];
9: X [i, j] ← 0;
10: end if
11: end for
12: end for
13: V ← H [m, βB];
14: B′ ← 0;
15: for j from βB downto 0 do
16: if H [m, j] == V then
17: B′ ← j/β;
18: end if
19: end for
20: for i from m downto 0 do
21: if X

[
i, βB′] == 1 then

22: S ← S ∪ {wi};
23: B′ = B′ − bi;
24: end if
25: end for
26: return S;

Since S is the winner set, it is easy to find V (S)W ≥ V (S)W\{mi}, and thus
pi ≥ bi. Hence, WCIM is individually rational. ��
Lemma 3. WCIM is truthful.

Proof. If wi reports a truthful bidding price, its utility can be represented as
follows:

U (wi) = pi − bi = V (S)W − V (S)W\{wi} + bi − bi

= V (S)W − V (S)W\{wi} .
(6)

In (6), wi is unable to influence the value of V (S)W\{wi}. After reporting
the untruthful bidding price b

′
i from the truthful bidding price bi, the utility of

wi is changed as follows:

ΔU (wi) = U
(
w

′
i

)
− U (wi) = V (S)W ′ − V (S)W ′\{wi} −

(
V (S)W − V (S)W\{wi}

)

= V (S)W ′ − V (S)W
(7)

From Lemma 2, we can obtain V (S)W ′ ≤ V (S)W , and then ΔU (wi) ≤ 0.
Thus, the worker wi cannot get higher utility by reporting an untruthful bidding
price. Hence, WCIM is truthful. ��
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Algorithm 2. The Payment Determination Algorithm
Input: Winner set S = {w1, w2, · · · , wm}, their bid set {b1, b2, · · · , bm} and contribution set
{v1, v2, · · · , vm};
Output: The winner payment set P ;

1: P ← �;
2: for j from 1 to m do

3: V (S)
−wi
S = V (S)S − (vi − bi)

4: Calculate V (S)S\{wi} according to Algorithm 1

5: pi = vi −
(

V (S)S\{wi} − V (S)
−wi
S

)

6: P ← P ∪ {pi}
7: end for
8: return P ;

5 Miner-Centric Incentive Mechanism

In this section, we model the miner-centric incentive mechanism as a Stackelberg
game to decide how to optimize the utility of the requester and miners.

5.1 Blockchain Mining with Crowdsensing

Fig. 2. Mining competition

As shown in Fig. 2, the block mining competition includes 5 steps that are, in
order, miners selection, transaction fee announcement, transaction validation,
block mining and block validation. In the beginning, eligible miners are selected
by cryptographic sortition according to their computing power. Cryptographic
sortition has sufficient randomness and unpredictability to eliminate manipula-
tion of consensus led by the collusion among requesters, workers and miners [4].
We refer to and improve the work [16] so that participants with higher computing
power could be selected with more chance.
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Hence, a participant can be selected as the miner mj at epoch τ if this con-

dition is met:
HASH(〈τ‖rand(τ)〉mj )

2L · 1−e−kI

1+e−kI ≤ Iτ
j where rand (τ) is a public ran-

domness that can be extracted from the blockchain at epoch τ , 〈τ‖rand (τ)〉mj

is a signature of message τ‖rand (τ) produced with private key of mj , HASH
is a deterministic hash function, L is the bits of the output of HASH, Iτ

j is the
fraction of mj ’s computing power over all miners in BCSs at epoch τ .

Unlike traditional mining in which transaction fee is paid by each initiator,
the requester R has to pay transaction fees to motivate miners to pack and vali-
date transactions since all transactions are related to its task. After the selection
of miners, R announces total transaction fee F that all miners compete for. If one
miner successfully solves a crypto puzzle, it will broadcast its solution to BCSs.
After the solution reaches Proof-of-Work (PoW) consensus, a new block is mined
successfully and its miner obtains the mining reward which includes voluntary
transaction fees of this block and a fixed block reward. The voluntary transac-
tion fees depend on the number of transactions in the block, in other words, the
miner can earn more voluntary transaction fees if it packs and validates more
transactions.

Winning a mining reward depends on mining and propagating a block as
quickly as possible. During the mining process, whether a miner can mine
a new block depends on its relative computing power μ. However, the block
may be orphaned by subsequent blocks and hence its miner will not be paid
because of propagation time lag [8]. The occurrence of mining a block fol-
lows the Poisson distribution, and the probability of block being orphaned is
Porphan = 1− e−λT (r), where λ = 1/600 and T (r) represents the block propaga-
tion time which depends linearly on r [8]. Therefore, the probability of winning
the mining reward is denoted by P = μ (1 − Porphan) = μe−λεr, where ε is a
delay factor reflecting the impact of r on T (r).

Given the set of selected miners, denoted by M = {m1, · · · ,mn}, each miner
mj ∈ M decides to include rj transactions in its block. The utility of mj is
determined by two parts: 1) the mining reward, and 2) the electricity and other
costs associated with mining. Thus, the utility of mj is presented by

U j
m =

(
rjF∑

mn∈S rn
+ D

)

Pj − cj =

(
rjF∑

mn∈S rn
+ D

)

μje
−λεrj − cj (8)

where rjF∑
mn∈S rn

means transaction fees obtained by mj according to the ratio
of its number of transactions, and D means the fixed block reward. The utility
of the requester R is

UR (F ) = f (r1, · · · , rn) − F (9)

where f (r1, · · · , rn) is the satisfaction function with respect to the number
of verified transactions from selected miners. We made a realistic and general
assumption that f (0, · · · , 0) = 0 and f (r1, · · · , rn) is a strictly concave function
in variables r1, · · · , rn and monotonically increasing in each rj [19].
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5.2 Two-Stage Stackelberg Game Formulation

According to Sect. 5.1, we can formulate MCIM as a two-stage Stackelberg game.
In the stage I of MCIM, R announces a total transaction fee F to motivate miners
to pack transactions into their blocks. Since no rational miners will join in the
mining competition with negative earnings, so we consider that F > 0. In the
stage II of MCIM, each miner mj ∈ M decides to pack a different amount of
transactions rj in block mining competition to maximize its utility. Let Φ =
{r1, · · · , rn} denote the strategy profiles consisting of all miners’ strategies and
Φ−j denotes the strategy profile excluding rj . Thus in MCIM, the requester
is the leader and miners are the followers. The objective of MCIM is to find
the Stackelberg equilibrium where R can maximize its utility with the response
strategies of miners, which is represented as follows:

– In stage I:
Maximize UΦ

R (F ) , Subject to F > 0. (10)

– In stage II:
Maximize U j

m, Subject to rj ≥ 0. (11)

5.3 Equilibrium Analysis for MCIM

In this section, we analyze the optimal strategy of miners and the utility maxi-
mization of the requester. We apply the backward induction method to analyze
the Stackelberg equilibrium of MCIM. In the stage II of MCIM, given the total
transaction fee F , miners compete with each other to maximize their own utility
by choosing their individual strategy, which can be considered as a block mining
game (BMG) GM =

{
M,Φ,

{
U j

m

}
mj∈M

}
, where M is the set of miners, Φ is

miners’ strategy set and U j
m is the utility of miner mj .

Definition 1. A set of strategies Φ∗ = {r∗
1 , · · · , r∗

n} is the Nash equilibrium of
the BMG if U j

m

(
r∗
j , Φ∗

−j

) ≥ U j
m

(
rj , Φ

∗
−j

)
for any rj ≥ 0.

Theorem 1. A Nash equilibrium in BMG GM =
{

M,Φ,
{
U j

m

}
mj∈M

}
exists.

Proof. We compute the first order and second order derivatives of U j
m defined

in (8) with respect to rj :

∂U j
m

∂rj
=

(
F

∑
mn �=j∈S rn

(∑
mn∈S rn

)2 − λε

(
Frj∑

mn∈S rn
+ D

))

· μje
−λεrj (12)

and

∂2U j
m

∂r2j
= − λεμje

−λεrj

(
F

∑
mn �=j∈S rn

(∑
mn∈S rn

)2 − λε

(
Frj∑

mn∈S rn
+ D

))

−

μje
−λεrj

(
2F

∑
mn �=j∈S rn

(∑
mn∈S rn

)3 + λε

(
F

∑
mn∈S rn − Frj

(∑
mn∈S rn

)2

))

< 0.

(13)
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Thus, U j
m is strictly concave with respect to rj . Hence, given any F > 0 and

any strategy profile Φ−j of the other miners, the best response strategy of mj is
unique when rj ≥ 0. Accordingly, the Nash equilibrium of noncooperative BMG
GM exists.

Further, by setting the first derivative of U j
m to 0, we have

(
F

∑
mn �=j∈S rn

(∑
mn∈S rn

)2 − λε

(
Frj∑

mn∈S rn
+ D

))

· μje
−λεrj = 0, (14)

and we can obtain the best response strategy of mj which is denoted as β (rj)
in (15):

β (rj) =

{
0, otherwise.
√

F λε

(
F λε

∑
mn �=j∈S rn+4D+4F

)
∑

mn �=j∈S rn−λε(2D+F )
∑

mn �=j∈S rn

2λε(D+F ) , F ≥ 0.

(15)
According to (14), we have

λεD

(
∑

mn∈S

rn

)2

+ λεFrj

∑

mn∈S

rn = F
∑

mn �=j∈S

rn. (16)

Then, we can get (λε |M | D + λεF )
∑

mn∈S rn = F (|M | − 1) by summing up
(16) over all selected miners. Thus,

∑

mn∈S

rn =
F (|M | − 1)

λε |M | D + λεF
. (17)

By substituting (17) into (16), we have the unique Nash equilibrium for miner
mj in BMG, as shown in (18):

r∗
j =

(
F 2 + DF

)
(|M | − 1)

λε |M | (|M | D + F ) (F − D)
. (18)

��
According to the above analysis, the requester knows that there exists a

unique Nash equilibrium for selected miners for any F > 0. Thus the requester
can maximize its utility by choosing the optimal transaction fee F .

Theorem 2. There exists the unique Stackelberg Equilibrium
(
F ∗, rne

j

)
in the

MCIM game, where F ∗ is the unique maximizer of the requester’s utility in (9)
and rne

j is given by (18) with F ∗.

Proof. Since rational miners will not participate in mining when F = 0,
UR (F ) = 0 for F = 0 and approaches to −∞ when F goes to ∞. Note
that f (r1, · · · , rn) is a strictly concave function in variables {r1, · · · , rn}, hence
UR (F ) has a unique maximum value when F = F ∗ that can be efficiently cal-
culated by either bisection or Newton’s method [19]. Therefore, there exists a
unique Stackelberg Equilibrium

(
F ∗, rne

j

)
in MCIM. ��
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6 Performance Evaluation

In this section, we conduct extensive simulations to evaluate and investigate
impacts of key parameters on performance of URIM. We present simulation
settings, metrics and results as follows.

6.1 Simulation Setup

In the simulation, we consider multiple workers compete to complete the task,
and submit their bidding prices and solutions. Then, miners are selected to pack
transactions and compete for transaction fees. For evaluating the WCIM, the
bidding price b and the contribution v of each worker is normally distributed
over [0.1, 1] and [0.01, 0.5] respectively. The number of workers |W | varies from
100 to 1000 with the increment of 100. For evaluating the MCIM, the utility
of the requester is set as UR (F ) = θ log

(
1 +

∑
mj∈M rj

)
− F that satisfies the

assumptions in Sect. 5.1. We set θ to 104. The fixed block reward D is fixed
at 100 and the delay factor is fixed at 10−4. For each miner, its mining cost is
randomly generated from [10, 20] and μ is randomly generated from [0.001, 0.1].
All simulations are performed in Python 3.7.0 and Solidity 0.7.0 on a Windows
machine with Intel Core i7-7700 CPU and 16 GB memory.

Fig. 3. Running time. Fig. 4. Individual ratio-
nality.

Fig. 5. Truthfulness.

Fig. 6. Overpayment ratio
at varied budgets.

Fig. 7. Overpayment ratio
at fixed budget.

Fig. 8. Utility of requester.



URIM for Blockchain-Based Crowdsensing 371

6.2 Evaluation of the Worker-Centric Incentive Mechanism

To investigate the performance of WCIM, we present following metrics: run-
ning time, individual rationality, truthfulness, overpayment ratio and utility of
requester. Furthermore, we compare WCIM with greedy winner selection (GWS)
proposed in [2].

Running Time: We first demonstrate the running time of WCIM in Fig. 3.
The budget is set as |W | multiplied by {0.03, 0.05, 0.07} respectively. We can
find the running time increases slowly with increasing |W |. Additionally, the
running time has slight changes when the budget increases. These results show
WCIM can efficiently select workers and calculate their payments.

Individual Rationality and Truthfulness: Then we verify the individual
rationality and truthfulness of WCIM. We demonstrate the individual rationality
by comparing each payment and the related real cost (truthful bidding). We
randomly set |W | as 200 and 600 in Fig. 4, and we find each payment is greater
than the related real cost. To verify the truthfulness, we randomly pick two
winners (ID = 20, 29) and change their claimed bidding prices, then recalculate
their utilities. We illustrate results in Fig. 5 and find two winners can only obtain
their maximum utility if they bid the real cost Cost20 = 0.15, Cost29 = 0.17.

Overpayment Ratio: Figure 6 plots the overpayment ratio when |W | changes
from 100 to 1000 and the budget equals |W | multiplied by {0.03, 0.05, 0.07}
respectively. Figure 7 shows the overpayment ratio decreases with the increase
of |W | when the budget is fixed at 1000. We find that the overpayment ratio
is always less than 0.25, which means that the requester does not have to pay
much extra money to induce truthfulness.

Utility of Requester: Figure 8 plots the utility of requester when |W | change
from 100 to 1000. |W | multiplied by 0.05 is set as the budget. With the increase of
workers and budget, more workers will be selected to complete the task and the
utility of requester increase spontaneously. As seen from Fig. 8, WCIM outputs
higher utility of requester than GWS because WCIM adopts dynamic program-
ming which can always obtain the global optimal solution.

6.3 Evaluation of the Miner-Centric Incentive Mechanism

To evaluate MCIM, we reveal impacts of total transaction fee F and the number
of miners |M | on the number of total transactions TX and the utility of the
requester UR (F ).

Number of Total Transactions: Figure 9 depicts the impact of F on TX
when |M | is fixed at 1000. It is found that TX increases as F increases. This
is because increased F incentivizes miners to pack more transactions into their
blocks. Figure 10 depicts the impact of |M | on TX when F is fixed at 20000. We
can find that with the increase of |M |, TX increases with a slowdown, which is in
line with (18). The reason is that more involved miners intensify the competition
for the transaction fee, which incentivizes miners to validate more transactions.
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Fig. 9. Impact of
F on TX.

Fig. 10. Impact of
|M | on TX.

Fig. 11. Impact of
F on UR (F ).

Fig. 12. Impact of
|M | on UR (F ).

Fierce competition, however, reduces the probability of winning mining rewards.
As a result, the growth trend of total transactions is slowing down.

Utility of Requester: For the utility of requester, we first evaluate the impact
of F on it when |M | is fixed at 1000 and present results in Fig. 11. We find
that as F increases, UR (F ) decreases gradually. The intuitive reason is that,
the margin utility descends with more transaction fees. Although the requester
announces more transaction fees, there is a diminishing marginal effect on the
contributions of miners, which fails to cover the corresponding increase of F .
As shown in Fig. 12, we evaluate the impact of |M | on UR (F ) when F is fixed
at 20000. It is found that the requester can achieve greater utility when more
miners join in the mining, which indeed demonstrates diminishing returns when
|M | increases and is in line with UR (F ). Combining Fig. 11 and 12, we find the
requester can optimize its utility with more miners and fewer F .

7 Conclusion

In this paper, we have proposed a utility-oriented role-centric incentive mecha-
nism design named URIM for BCSs, which consists of worker-centric and miner-
centric incentive mechanisms. Through both rigorous theoretical analyses and
extensive simulations, we have demonstrated that the worker-centric incentive
mechanism is computationally efficient, individually rational and truthful, and
the miner-centric incentive mechanism can maximize the utility of the requester
based on optimal strategies of miners. In the future work, we will further explore
non-monetary incentive mechanisms for BCSs and evaluate our design in real-
world applications.

Acknowledgements. This work was supported by the Scientific Research Program
of Science and Technology Commission of Shanghai Municipality under Grant No.
19511102203.
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Abstract. Permissioned Blockchain enables distributed collaboration
among organizations that may not trust each other. However, existing
systems cannot efficiently support the ordering and execution of trans-
actions in different workflows parallelly, which seriously affects system
scalability and performances in terms of throughput and latency.

In this paper, we present a partial consensus mechanism named PAS
to achieve fault tolerance and parallelism of transaction processing. In
PAS, transactions in different workflows only need to be confirmed by
the involved subset of nodes, which significantly enhances the system
performance and scalability. Specifically, we introduce a novel data struc-
ture, called the hierarchical consensus tree (HCT). It is maintained in
each node and used to coordinate the consensus process. HCT guarantees
that the consistency reached in different sets of nodes is eventually agreed
by all nodes without conflicts and rollbacks. Since there are many valid
HCTs with different system improvements, we introduce an optimization
problem, named OHCT, to obtain an HCT with respect to the optimal
enhancement. We prove OHCT is NP-hard and propose a general frame-
work with efficient algorithms to address it. Finally, we implement PAS
on PBFT-based Hyperledger fabric and conduct extensive experiments
to show the performance and scalability of PAS.

1 Introduction

The permissioned Blockchain (e.g., Hyperledger [2], Multichain1, and Tender-
mint [5]), where the node identities are controlled and known by each other,
builds a dedicated environment to prompt accountable interactions among users.
However, its performance and scalability issues caused by the underlying con-
sensus mechanism arise many concerns [10].

Most existing permissioned chains require every node to maintain a single
ledger and treat the system as a replicated state machine to reach global consis-
tency by involving all nodes at any time [2], meanwhile, transactions are executed
and ordered sequentially. Thus, it fails to parallelize the transactions that are
not dependent on each other, which leads to low system performance and scal-
ability. Consider a supply chain management example described in [24] where a
role in the supply-chain workflows has multiple instances as shown in Fig. 1.
1 https://www.multichain.com/.
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Example 1. Suppose there are two under processing workflows: Workflow 1:
A factory F1 has produced some products P1 and stored them in a warehouse
W2. Currently, a retailer R3 places an order O1 to purchase these products.
Workflow 2: A retailer R1 places an order to purchase product P2 firstly. Now,
factory F1 confirms the order and places another order to P2’s material supplier
S1. Meanwhile, F1 and S1 agree to deliver the material M2 by carrier C1.

Fig. 1. Example in the supply-chain scenario

Here, companies collaborate to accomplish different supply-chain workflows
which can be divided into several tasks with different service-level agreements
(SLAs) agreed by related users to determine the data to read/write and the
responsibility of each user. These SLAs can be represented in smart contracts
[23]. Participants of each task modify the task data by transactions. Specifically,
contracts O1 and O2 record data states of two tasks (R3 orders product P1 and
F1 orders material M2). Since the data in O1 and O2 do not have overlap and
dependency, participants of two tasks can order and execute task transactions
internally and parallelly, because they are the only current valid modifiers of the
task data. Notice that, each company can participate in multiple tasks simul-
taneously (e.g., factory F1 produces different products in both tasks) and join
or leave a task at any time (e.g., carrier C1 only participates in O2 for a while
and after the delivery, later state of O2 is irrelevant to C1). Thus, to maintain
a complete Blockchain modification history, the participation order of each user
in each task needs to be preserved and globally agreed without conflicts.

In summary, to work in a more general scenario and obtain high performance
and scalability, a Blockchain should satisfy at least the following three require-
ments: (1) Users can flexibly join or leave the modification processes of different
data with separate SLAs. (2) Transactions modifying data without dependency
can be ordered and executed in parallel. (3) The total order of transactions with
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dependencies and the users’ participation order of the data modifications can be
eventually agreed by the entire system under a Byzantine fault environment.

Most existing works satisfy requirement (2) by introducing sharding of nodes.
For example, Hyperledger fabric v1.0+ uses channels and CAPER [1] uses appli-
cations to separate nodes. Such a mechanism enables processing transactions in
different shards in parallel. However the settings of shards are static, it is inflexi-
ble for a user to join or leave a shard that fails to efficiently support requirement
(1). Moreover, to fulfill requirement (3), fabric adopts a trusted channel to deal
with cross-channel transactions [3] which breaks the decentralization principle
of the Blockchain. While, to order the cross-application transaction in CAPER,
all system nodes are involved which brings high communication cost in running
the BFT consensus protocol. Especially, when the cross-application transactions
occupy the majority, the system latency increase dramatically [1].

To overcome the shortcomings of existing approaches, in this paper, we pro-
pose a novel consensus mechanism called PAS. In particular, to satisfy require-
ment (1), we separate the transactions into tasks. In a period, specific data can
only be updated by users in one task. We use a special transaction to globally
specify the task participants, such that a user can join or leave a task at any
time. To satisfy requirement (2), we order and execute transactions in differ-
ent tasks in parallel. A scope of involved nodes reach strong consistency by the
BFT protocol (e.g., PBFT [7]). To satisfy requirement (3), we propose a data
structure named hierarchical consensus tree (HCT) to coordinate the consensus
process to ensure the eventual agreement on every partial consensus without
conflicts and rollbacks. Besides, as different HCT constructions can affect the
system performance and scalability, to get the optimal HCT, we define an opti-
mization problem. Though the problem is NP-hard, we managed to propose
efficient solutions to it. We summarize our contributions as follows:

(i) We separate transaction types in the distributed collaboration scenario and
identify the challenges to order them in parallel. Then we propose a partial
consensus mechanism named PAS to address these challenges.

(ii) We propose a structure named hierarchical consensus tree (HCT) to sup-
port our consensus mechanism and introduce the OHCT problem to obtain
an optimal HCT with the maximum system performance and scalability
improvement.

(iii) We prove the NP-hardness and approximation hardness of the OHCT prob-
lem. Thus, we propose efficient algorithms to construct the HCT.

(iv) We implement PAS on PBFT-based Hyperledger Fabric as an example,
and conduct extensive experiments to evaluate the system improvement as
well as the effectiveness and efficiency of HCT construction algorithms.

The rest of the paper arranged as follows: Sect. 2 reviews related works.
Section 3 overviews the PAS mechanism. Section 4 and Sect. 5 introduce the
consensus in PAS and propose the HCT to realize the mechanism. Section 6
introduces the OHCT problem and the general framework with efficient algo-
rithms to address it. Section 7 shows experiments and evaluations. We conclude
in Sect. 8.
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2 Related Work

Sharding Techniques. To achieve requirements 1 and 2, the sharding tech-
nique divides and maintains system states in several shards. The maintainers of
shards consent in parallel on the execution order of transactions updating the
states within each shard. However, to fulfill the requirement 3, the biggest chal-
lenge is to deal with the cross-shard transactions updating states in different
shards simultaneously. Existing solutions (i.e., RapidChain [27], OmniLedger
[14] and Elastico [17]) are limited to the UTXOs transaction model. A recent
work [9] applies sharding with SGX [18] under general workloads. It relies on
a dedicated committee running BFT protocol to deal with cross-shard trans-
actions. However, without a well-designed system state sharding schema, the
majority of transactions can be cross-shard that is costly to deal with. Thus,
in the worst case, the performance is merely the same as the system without
sharding.

Hyperledger shards the users in different workflows by channels which are
partitions of the network. However, channels are isolated from each other. It is
inflexible for a node to join or leave a workflow at any time since the config-
uration of channels is fixed. Moreover, interactions between channels rely on a
trusted channel [3] or an atomic commit protocol [2], which either breaks the
decentralization or still treat the system as an entirety. Meanwhile, CAPER [1]
adopts a similar idea to shard the users into applications based on their collabo-
ration workflows and process transactions of each application internally. To solve
the cross-application transactions, additional BFT protocols are designed. How-
ever, the protocols still need to involve all nodes. Moreover, if such transactions
occupy the majority, the system latency increase dramatically [1].

Directed Acyclic Graph (DAG). By changing the chain-like structure to
a directed acyclic graph, transactions can be appended to multiple branches
in parallel which satisfy requirements 1 and 2. For example, IOTA [20] and
Byteball [8] are two DAG-based permissioned chains. To satisfy the requirement
3, IOTA enforces each new transaction to pick two existing transactions as its
predecessors and use the number of transactions’ descendants and a PoW nonce
as the proof to prevent conflicts. However, similar to PoW, the security of such
protocol is nondeterministic and it is limited to cryptocurrency applications.
While Byteball relies on a set of privileged users to order the transactions which
breaks the decentralization principle and can easily become the performance
bottleneck.

3 Overview of PAS

To satisfy all the requirements, PAS shards users into scopes. We use tasks and
a special transaction to specify valid modifiers of a set of system states. We
organize the scopes into a tree-like structure with each tree node accompanied
by a Blockchain ledger. For each transaction, we determine which user scopes
are compulsory to reach the consensus based on modified states and current
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valid state modifiers. Such that, the order of each transaction can be determined
immediately after only a portion of all nodes reaching consensus. The result is
eventually propagated to the system which significantly improves the parallelism.

Similar to prior works [9,14,19], we make two assumptions on the network:
(i) Nodes are fully connected with each other. (ii) The message sent by an honest
node can be eventually received by others within a maximum delay.

User and Validator. We denote users in PAS by U = {u1, u2, .., un}. Besides,
like other permissioned chains, a set of nodes known as validators process trans-
actions and ensure the consistency of states on behalf of the users. In PAS, we set
the number of validators and users equally. Moreover, cryptography signatures
are used to ensure the integrity and authenticity of a message sent by each node.

Consensus Scope and Ledger. With the similar idea of node partitions [12,13,
25], in PAS, we partition validators to several disjoint sets named consensus scope
with the cardinality in the range of [k, 2k). Details will be discussed in Sect. 4.
Validators in each scope maintain a ledger consisting of the transactions ordered
within the scope. PAS works in epochs denoted by e. In each epoch, validators
are shuffled to serve different scopes. Besides, each user is assigned to one scope
to process transactions. Different from validators, the user-scope assignment is
static. Therefore, the user-scope assignment also determines the structure of
consensus scopes. We use N = {N1, . . . ,Nm} to denote the consensus scopes
where Ni also represents the users assigned to scope i (Ni ⊂ U). The organization
of the consensus scope is shown at the top of Fig. 2.

Fig. 2. Overview of the system

Data Model. Beyond UTXO-based model [19], we focus on the state-based
model introduced in Ethereum [23]. Specifically, the system states denoted by
S = {S1, S2, . . . , Sn}, can be created, updated or deleted by transactions.

Task and Participant. We define a task as successive modifications on a set of
system states within a group of users (task participants). Besides, modifications
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may depend on other states within but not beyond the task (otherwise, those
states should be involved in this task as well). Thus, the transaction execution
order within a task is determined by its participants. In Fig. 2, there are two
tasks with different users to update different states. For instance, once the system
agrees on states (S1, S2) and participants (u1, u2, u3) involved in task 1, until
finishing the task 1, only its participants are authorized to generate transactions
and determine their execution order to modify states in the task.

Transactions. We divide the transaction in PAS into two types based on the
functionality. One is the internal transaction used to modify states in a task.
In Fig. 2 task 1, u1, u2 and u3 use transaction t1,2 to modify S2 from the original
state S1

2 to S2
2 . The other is the external transaction to change the task

participants or create a new task. In Fig. 2, between task 1 and task 2, an
external transaction tex1 changes the valid modifiers of S2 with the confirmation
of S2’s final state (S2

2) after task 1 which is also the initial state of S2 in task 2.
Importantly, the external transaction determines valid modifiers of each state.

Definition 1. Transaction. A transaction is a tuple t = (id, S, op, i, P, P ′, Σ),
where id is the unique order of transactions modifying a set of states S. op is
the operation with parameters. i is the initiator where ∀i, ui ∈ U . P is the set of
current valid modifiers of S where P ⊆ U and P ′ is the new valid modifiers of S
where P ′ ⊆ U . Σ is a set of signatures signed by validators who have ordered t.

The id is to specify the order of transactions and the Σ is obtained during the
consensus. For the validation of a transaction t, suppose a function P (s) returns
current valid modifiers of state s based on the records kept by each validator, if
∃s ∈ t.S, P (s) �= t.P or t.i /∈ P (s), t is treated as invalid.

Threat Model. In this paper, we assume the malicious nodes are less than 1
3 ,

since the BFT protocol is one of our security guarantee. The attackers are adap-
tive like described in [9,15,17,27] where the corruption of the validator takes
time to achieve. Different from other sharding works [9,15,27], instead of assum-
ing all the shards perform honestly, we do not assume all the consensus scopes
perform honestly. Instead, nodes in a consensus scope can perform maliciously
together to cheat others outside the scope for their profit.

4 Partial Consensus in PAS

Achieve Partial Consensus. As we assign users to scopes and rely on val-
idators to process transactions, given a transaction t, after determining which
users are relevant to t, validators in corresponding scopes run the BFT protocol
to order and execute t. Besides, we need to identify in which consensus scope t
has been consented. We denote PC(t) ⊆ N as scopes where t has been ordered.
Since validators in each scope are periodically shuffled, after current validators
in PC(t) reach strong consistency, they will sign on t accompanied by the current
epoch index e and commit t on the Blockchain ledger of the scope. Others can
verify the authority of t through t.Σ. Notice that all existing BFT protocols are
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applicable for PAS. Examples are PBFT [7], Tendermint [5], Zyzzyva [16], Hot-
Stuff [26] and MirBFT [21] where all of them can achieve �n−1

3 	 fault-tolerant.

Validator Assignment. For safety, validators shuffling needs to be unbi-
ased. Omniledger combines RandHound [22] with the verifiable random func-
tion (VRF) based leader election algorithm [11] to assign validators which can
be used in PAS as well. Specifically, with a bounded message transmission delay
δ, in each epoch, validators compute a hash value and gossip it to others for
a time δ. Then, the one who gets the lowest value is selected as the leader to
run the RandHound protocol to generate and broadcast a bias-resistant random
number rnde with correctness proof. Finally, others can use rnde to get the
validator-scope assignment. We refer the details and its security analysis to [15].

Consensus Scope Size. The size of a scope is the number of inside validators
and we set it in the range of [k, 2k) to seek a balance between security and
performance. Fewer validators lead to lower latency and higher throughput [10].
However, it also reduces the safety, especially for the scope with the minimum
size k. Since the validator assignment can be treated as random sampling without
replacement, we consider the probability to form a fault scope directly. Suppose
there are V validators with αV malicious, the random variable X denotes the
number of malicious nodes in the scope with k validators. X should follow the
hypergeometric distribution where X ∼ (k, V, αV ). Given a BFT protocol with f
(e.g., for PBFT f = n

3 ) malicious tolerance, the probability to form a fault scope

is Pr[X ≥ f ] =
∑k

x=f
(αV

x )((1−α)V
k−x )

(V
k) . For example, with V = 128, α = 0.2, k = V

8 ,

by using PBFT, Pr[X ≥ k
3 ] = 6%. As stated in [9], when k is large enough (e.g.,

k ≥ 600), the probability is considered negligible (e.g., ≤ 2−20).

5 Eventual Consistency

After reaching partial consensus, validators propagate the result to others. Thus,
every node will eventually receive all consensus results. However, if we want to
finalize a transaction t when only a subset of nodes reaches partial consensus on
its execution order, it is vital to prevent the subsequential transactions conflicting
with t from being adopted. Therefore, we first analyze possible conflicts.

Definition 2. Conflict Transactions. For two valid transactions t1 and t2
within the same task (t1.P = t2.P

∧
t1.S ∩ t2.S �= ∅)) where t1 is the first to

reach partial consensus, if one of the three conditions holds, t2 conflicts with
t1. 1. internal conflict: t1.op �= t2.op

∧
t1.P

′ = t2.P
′. 2. external conflict:

t1.op = t2.op
∧

t1.P
′ �= t2.P

′. 3. dual-conflict: t1.op �= t2.op
∧

t1.P
′ �= t2.P

′.

We only focus on the conflict within a task, because, if t1, t2 are from two
tasks, there must be one external transaction tex in between of the tasks. As long
as we ensure that tex can be eventually agreed by the system without conflict
(has been covered in condition 2 in Definition 2), t1, t2 do not have conflict
anymore.
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Internal Conflict. This happens when the participants of a task concurrently
modify the same state with different operations by two transactions with the
same id. Since task participants remain the same, validators need to reach partial
consensus on their order are the same as well.

External Conflict. This happens when two external transactions t1, t2 (with
the same id) change modifiers of the same state S with the final value (say S∗)
to different users. To order t1 or t2 both current and new modifiers need to be
involved. Suppose the current modifiers are in scope N0. When validators in
N0 act maliciously, they can reach two conflict partial consensus (switching the
modification authority to users in scopes N1 and N2) with the validators in N1

and N2 simultaneously. Meanwhile, users and validators in N1 and N2 cannot
detect the deviation respectively which leads to the system inconsistency.

Dual-conflict. This happens when the modifier change and state update happen
simultaneously. When shifting the state modifiers, an external transaction must
specify it is based on which internal transaction to explicitly inform the final
state values to new modifiers. For example, in Fig. 2, tex1 is generated after t1,2

(tex1.id = t1,2.id+1) specifying the value of S2 is S2
2 . For an internal transaction

tin (tin.id = tex1.id) modifying S2 based on the value S2
2 , if tex1 reaches partial

consensus first, tin should not be accepted anymore, vice versa.

Hierarchical Consensus Tree. To prevent the conflicts, our idea is to control
the consensus scopes where a transaction is ordered. We introduce a data struc-
ture named hierarchical consensus tree (HCT) kept by each node to organize
the scopes and Blockchain ledgers and used to coordinate the consensus process.
By leveraging a tree structure, any two scopes will share a common root. We
restrict a transaction involving users in different scopes to be ordered by all val-
idators under the common root of these scopes. Thus, the conflict can always be
detected and we set rules to prevent the acceptance of conflicts.

For a transaction t, all possible combinations of PC(t) (scopes have reached
consensus on t) form a join semi-lattice which is a partial order of the set include
operation (⊆). Given a pair of scopes N1 and N2, a least upper bound (LUB) �
exists. N̄ = N1�N2 is a LUB of {N1,N2} iff ∀N ∗,N1 ⊆ N ∗ ∧ N2 ⊆ N ∗ ⇒ N1 ⊆
N̄ ∧ N2 ⊆ N̄ ∧ N̄ ⊆ N ∗. Based on LUB we can have the following definition.

Definition 3. Monotonic Consensus Semi-lattice (MCSL). MCSL refers
to PC(t) with the properties: (1) Forms a semi-lattice ordered by ⊆. (2) Merging
two scopes Ni and Nj involves consensus scopes included in the LUB of {Ni,Nj}.
(3) Scope changing is non-decreasing (PC(t) can only accept new scopes).

For a transaction t involving users in scopes N1,N2, it needs to be ordered
at least by validators in N1 and N2. According to the MCSL, it equals to merge
the partial consensus results in N1 and N2 and t should be ordered in all scopes
included in the LUB of {N1,N2}. However, for another scope N3, it is still
possible that (N1 � N2) ∩ (N1 � N3) = N1 which means users in N1 can still
generate conflict transactions without letting nodes in N2 and N3 be aware.
Therefore, we further define the HCT to address this problem.
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Definition 4. Hierarchical Consensus Tree (HCT). HCT is a restricted
MCSL with the constraint that each scope set can only have one ancestor. In an
HCT, each leaf node is a single consensus scope. Each internal node is accompa-
nied by a Blockchain ledger recording the transactions ordered by all validators
covered by the consensus scope set of the internal node. Moreover, for two conflict
transactions t1 and t2, if PC(t2) ⊂ PC(t1), t2 is treated as invalid.

(a) Hierarchical Consensus Tree (b) Malicious behavior

Fig. 3. Hierarchical Consensus Tree examples

Figure 3a shows an HCT example. The represented consensus scope of a
tree node is the union of its two children’s scopes. Precisely, each tree node
ledger is maintained by validators in the scope of the tree node. A transaction
involving users in different scopes should be ordered on the ledger of the tree
node representing the LUB of these scopes. Now we prove HCT can prevent the
conflict transactions being adopted during the eventual consistency process.

Theorem 1. By following the hierarchical consensus tree to reach partial con-
sensus, when a transaction t fulfills (t.P

⋃
t.P ′) ⊆ PC(t), its conflict transaction

t∗ cannot be accepted by any correct node.

Proof. Suppose a transaction t has reached partial consensus and its later gen-
erated conflict transaction is represented as t∗ (by Definition 2, t.P = t∗.P ). We
use S1 to denote the set of consensus scopes where users of t.P are assigned.
Also, we use S2, S3 to denote the scopes where t.P ′ and t∗.P ′ are assigned
respectively. Based on the HCT, PC(t) = S1 � S2. For different conflicts:

Internal conflict (t.op �= t∗.op
∧

S2 = S3). To order t∗, it must have PC(t∗) =
S1 � S3 = S1 � S2 = PC(t). Since the order of t has reached partial consensus in
PC(t) before t′ is generated, honest nodes will treat t′ as invalid.

External conflict (t.op = t∗.op
∧

S2 �= S3). To order t∗, it must have PC(t∗) =
S1�S3. If S3 ⊂ (S1�S2) ⇒ (S1�S3) ⊂ (S1�S2) ⇒ PC(t∗) ⊂ PC(t). According to
Definition 4, t∗ is invalid. If S3 �⊂ (S1 �S2), there must be at least one consensus
scope N where N �∈ (S1 � S2)

∧ PC(t) ⊂ (S1 � {N}). It means to order t∗,
validators who have ordered t must be involved in the process. Thus, validators
in PC(t) can prove that t.Σ contains their signatures during the execution of
the BFT protocol such that other honest validators in S1 � S3 can deny t∗.
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Dual-conflict (t.op �= t′.op
∧

S2 �= S3). If t is an external and t∗ is an internal
transaction, there must be S1 �= S2

∧
S1 = S3, meanwhile, S1 = (S1 � S3) ⊂

(S1 � S2) ⇒ PC(t∗) ⊂ PC(t). According to Definition 4, t∗ is invalid and will be
discarded. Else if t is an internal transaction and t∗ is an external transaction,
there must be S1 = S2

∧
S1 �= S3, we also consider two cases where S3 ⊂ (S1�S2)

or S3 �⊂ (S1 � S2). Thus, the rest proof is the same as external conflict.

Based on Example 1, we give an HCT example shown in Fig. 3b, to illustrate
how it can prevent the generation of conflict transactions.

Example 2. Suppose a transaction t is sent by F1 to appoint O1’s carrier as C1

and allow C1 to modify the state of O1.condition and t has been ordered by
validators in N1,1. Meanwhile, F1, C2 and C3 are malicious and try to generate
an external conflict transaction t∗ granting the same permission to another user:

Case 1: F1 grants permission to C2 which needs to be ordered by the validators
in N2,1. Since N2,1 ⊂ N1,1 and F1, C2 know the existence of t during their partial
consensus, by Definition 4, t∗ is invalid and will be discarded by the validators.

Case 2: F1 grants permission to C3 which needs to be ordered by the validators
in N0. Since the honest validators in N1,1 has obtained the confirmation signa-
tures on t, they can prove the existence of t to deny t∗ during the running of the
BFT protocol and other honest validators will discard t∗ as well.

Notice that, for each node, in the path from its position to the tree root,
the ledger of each internal node will always be up-to-date. Because whenever
an update is made on those ledgers, the nodes will be involved in the consensus
process to reach strong consistency. For instance, in Example 2, C1 always knows
the latest transactions committed on the ledgers of N2,2,N1,1 and N .

6 HCT Optimization

The bottleneck to scale the system is the communication cost to consent the
transactions [10], while, transaction generation frequency (TGF) of users
(the interaction frequency between users) contributes to the cost.

Definition 5. Interaction Frequency. A matrix Fn×n where n = |U | records
the interaction frequency in users. fi,j in F is the generation frequency of trans-
actions involving ui and uj where ui, uj ∈ U and fi,j = fj,i.

For instance, in Example 1, if retailer R3 often places order O1, the interaction
frequency between F1,W2, F1, R3 and W1, R3 will be high. Notice that, the TGF
is an estimation result in a period or determined by actual applications. It is used
to establish and reconfigure the system based on the demands of users.

Optimal HCT Problem. The consensus message complexity denoted by T (μ)
where μ is the number of involved validators, is determined by the used BFT
protocol (e.g., for PBFT T (μ) ∈ O(n2)). Observe that T (μ) ∝ μ. Suppose
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users u1 and u2 are in scopes N1 and N2, the message complexity to consent
transactions related to u1 and u2 is f1,2T (μ1,2) where μ1,2 is the number of
validators in the scopes under N1 � N2. Therefore, a well-structured HCT can
further reduce the message complexity which leads to better system performance
and scalability. We define the HCT optimization problem as below:

Definition 6. Optimal Hierarchical Consensus Tree (OHCT) Problem.
Given the interaction frequency matrix Fn×n, the complexity function T (·) of the
BFT protocol and the scope validator cardinality constraint [k, 2k). Our goal is:

minimize
∑

ui,uj∈U

fi,j T (μi,j) (∀fi,j : i ≤ j)

subject to min
ui,uj∈U

{μi,j} ≥ k, max
ui,uj∈U

{μi,j} < 2k

Hardness Analysis. We prove the NP-hardness by studying a special case of
OHCT and reducing the minimum bisection problem (MBP) [4] to it.

Theorem 2. OHCT problem is NP-hard.

Due to the space, we only show our proof sketch. Consider a special case of
OHCT problem where k = |U |

2 . In this case, we can only bisect users in two sets
S1, S2 with all transactions completion cost as a constant T (|U |) and minimize
T (|U |)∑

ui∈S1,uj∈S2
fi,j . Then, we can reduce the MBP to the case. Besides, we

further analyze the hardness to get an approximation solution to OHCT.

Theorem 3. There is no algorithm with constant approximation ratio for
OHCT.

The sketch of the proof is to use the conclusion in [6] that for a fixed ε > 0,
it is NP-hard to approximate the MBP problem with an additive term of n2−ε

[6].

Solution Framework. To solve the OHCT problem, a general framework is
to 1. construct an optimal HCT by regarding each user as a single consensus
scope first and 2. pruning and merging to fulfill the cardinality constraint.

Top-down Construction Algorithm. Intuitively, the greedy way to do the
construction is to pair two users into a binary tree first. Then, each time we
randomly pick one user from unassigned users. Starting from the tree root, we
compare the normalized interaction frequency between the picked user and all
users in the left and right sub-tree. Then we go into the root of sub-tree with
higher normalized interaction frequency. We stop until we find the suitable leaf
node position for all users. Details are shown in Algorithm 1.

Pruning And Merging Algorithm. After we obtain an HCT with each leaf
to be one user, we perform DFS on the root. Each time, if the leaf number |t|
of an internal node is greater than 2k, we continue. If |t| ∈ [k, 2k), we group its
leaves to one scope. If |t| < k, we reinsert each user in the leaf to the sibling
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sub-tree using the top-down construction algorithm. Because, since one sub-tree
and its sibling are grouped under the same LUB by the construction algorithm,
it means they have more frequent interactions. By merging the sub-tree into its
sibling, it will bring less additional completion cost. Details are in Algorithm 2.

Complexity Analysis. Since |U | = n, for Construction with Algorithm 1, it
recurrently decides the position for each user. In an average case, the algorithm
takes O(n2 log n). For Pruning and Merging, the worst case of its DFS takes O(n)
while the worst case cost of merge is O(k log n). In total, it takes O(nk log n).
Since k � n, the total complexity is O(n2 log n).

Bottom-up Construction Algorithm. Although the Algorithm 1 is efficient,
its performance is affected by the input order of users. Thus, we can enhance the
HCT construction by always considering every users. The idea is that each time
we merge two sub-trees with the highest average transaction completion cost.
Then, we recompute the cost between the new sub-tree and other sub-trees. We
terminate until all users are rooted in the same tree. The intuition is to merge
sub-trees with higher average transaction completion cost as earlier as possible
to reduce the involved consensus scopes to the most. Details are in Algorithm3.

Complexity Analysis. In n − 1 rounds merging, the most time consuming
part is to maintain the heap which provides the highest interaction frequency
among sub-trees. It takes O(max{|ti| × |tj |, (n − t)log(n2)}) ∈ O(nlogn2) in
average. Thus, using Algorithm 3 makes the time complexity of the framework
be O(n2logn2).
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Algorithm 3: Bottom-up HCT Construction
Input : Interaction frequency matrix F , Users U and cost function T .
Output: tree root of a hierarchical consensus tree.

1 subTrees ← U;
2 foreach ti ∈ subTrees do
3 foreach tj ∈ subTrees do
4 avgC(ti, tj) ← F [i][j] × T (2); //avgC: average completion cost

5 while |subTrees| ! = 1 do
6 Merge ti, tj with the maximum avgC(ti, tj) into t∗ and remove ti, tj from subTrees;
7 foreach t ∈ subTrees do

8 avgC(t∗, t) ← (
avgC(ti,t)×|ti|

T (|ti|+|t|) +
avgC(tj ,t)×|tj |

T (|tj |+|t|) ) × T (|ti|+|tj |+|t|)
(|ti|+|tj |) ;

9 subTrees.append(t∗);

10 return subTrees.first;

7 Experiment and Evaluation

In this section, we first evaluate the effectiveness and efficiency of our HCT
construction algorithms on both real and synthetic datasets. Then, we choose
hyperledger fabric v0.6 as a permissioned Blockchain example to implement PAS
and measure the performance and scalability enhancement brought by PAS.

7.1 HCT Construction Evaluation

Real Dataset. To obtain the real interaction frequency of Blockchain users, we
use the dataset extracted from Ethereum blocks during the period from Dec 17,
2017, to Feb 23, 2018. It contains 14,393,250 unique addresses and 64,719,559
transactions. Specifically, we treat the token transform from one user to another
as one task modifying the states of two account balances. We uniformly sample
and group the unique addresses to form different sizes of user groups and obtain
the interaction frequency distribution matrix among the groups.

Table 1. Synthetic datasets

Number of users |U | 4, 8, 16, 32, 64, 128

σ of normal distribution 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

a of power-law distribution 1, 2, 3, 4, 5, 6

Minimum scope size k 1, 4, 7, 10, 13, 16

Synthetic Dataset. We generate synthetic interaction frequencies by following
uniform (in the range of [0,1]), normal (with μ = 0.5) and power-law (with
c = 1) distributions. Table 1 shows the parameter settings we used in synthetic
datasets and default values are in bold. Similarly, we construct transactions
between users as the token transform. We first generate a |U | × |U | triangular
contribution matrix (the sum of all elements is 1) by following the distributions
mentioned above. This matrix denote the contribution of each pair of users to the
transaction generation frequency (TGF mentioned in Sect. 6). Given the system
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TGF , we can obtain the interaction frequency matrix by multiplying the TGF
and the contribution matrix. Notice that, TGF is not selected as a parameter.
Because the interaction frequency fi,j between two users pi and pj is computed
by TGF ×di,j where di,j is the frequency contrition of user pair ui and uj . Thus,
the overall message complexity is represented by TGF

∑
ui,uj∈U di,jT (μi,j). For

the same experiment settings, TGF is a constant which will not affect the result.

Implementation and Metrics. We implement our HCT construction algo-
rithms in Python 3.7. The experiments are conducted on a server with Intel(R)
Core(TM) i5 3.0 GHz CPU with 16 GB RAM. Each experiment is repeated 30
times and we report the average results. We choose PBFT as our baseline con-
sensus protocol and set its T (μ) = μ2. In each experiment case, we measure and
compute the total message complexity result of each method and the enhance-
ment percentage (1 − algorithm

baseline ) compared with the baseline whose message
complexity is TGF |U |2. We compare our solution framework with the HCT
construction algorithms of top-down, bottom-up and the random pair which
randomly forms a valid HCT. The aim is to show the performance of the PAS
even if in a random construction fashion.

Experimental Results. Since the real dataset tends to follow the normal dis-
tribution, due to the space, we only report the results on the real dataset and
synthetic dataset following the power-law distribution.

Impact of Number of Users |U |. The first row of Fig. 4 shows the results
of varying |U | in both real and power-law synthetic dataset. The line chart
shows the total consensus message complexity, while, the bar chart shows the
enhancement percentage comparing with the baseline. For the top-down and
bottom-up algorithms, the message complexity reduction is from 25% to 56%.
The enhancement of the bottom-up is better than the top-down algorithm from
2% to 10% since the bottom-up always takes T (μ) into consideration, while, the
time cost of bottom-up increases dramatically when |U | increase. With increasing
|U | the enhancement of HCT also increases but the incremental speed becomes
slower. Because HCT does not change the intrinsic complexity of the protocol
itself. PBFT, as an example, with more validators, its O(n2) message complexity
becomes obvious making the enhancement of HCT be a constant factor.

(a) Power-law. (b) Time cost. (c) Real dataset. (d) Time cost.

(e) Power-law. (f) Time cost. (g) Power-law. (h) Real dataset.

Fig. 4. Results of the comparison of HCT construction algorithms
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Impact of a in Power-law Distribution. Figure 4e shows the impact of a
in power-law distribution. With a larger a, the enhancement of HCTs built by
three algorithms all decrease. Because a larger a means most of the interaction
frequency is very small. Thus, the enhancement brought by the reduced valida-
tors in each consensus process becomes insignificant. Especially, the top-down
algorithm is more sensitive to a, since it only considers a single node at each
time which is more likely to reach local optimal.

Impact of Consensus Scope Cardinality k. Figure 4g and Fig. 4h show the
results on varying k. With larger k, there are fewer consensus scopes in the HCT
making the average number of validators need to be involved in each consensus
process increase. Thus, the HCT enhancements all decrease. However, even if we
only have 2 consensus scopes (k = 16), the performance enhancement can still
reach 35% indicating to have a better balance between performance and security,
it is not necessary to divide the consensus scope into extremely small ones.

Summary of the Results. From the above discussion, with HCT, the total
consensus message complexity can always be reduced. Especially, bottom-up
construction algorithm can achieve better performance than others with the
reduction of PBFT message complexity by at least 30%. Moreover, the HCT
enhancement is better when the interaction frequency distribution tends to fol-
lows a normal distribution. It means when all users frequently interact with
each other, our mechanism can better improve the system. Besides, the cardi-
nality constraint k will not influence the performance too much. The difference
between k = 1 and k = 16 in a 32 nodes system is nearly 10%. Therefore, for
better security, it is reasonable to set the k constraint higher.

7.2 PAS Evaluation

We evaluate the actual performance of PAS by implementing it on Hyperledger
Fabric v0.6 and evaluate the systems with and without PAS.

Implementation and Metrics. The main aim of PAS is to make transactions
be ordered in different consensus scopes based on involved users. Thus, the PAS
system should support validators from the same Blockchain network in achieving
consensus within different sub-networks. Therefore, we implement an external
HCT module to make validators participate in the partial consensus of multiple
subnets simultaneously. Specifically, the HCT module mainly does two things: 1.
Compute and record the structure of HCT: Since the HCT is constructed
based on the estimated interaction frequency among users, after obtaining the
interaction frequency from others (consensus may be required), nodes can build
the HCT by running the construction algorithm by themselves. This process
is only conducted when forming a new network, or the interaction frequency
changes dramatically. Users (even only in a branch of the HCT) can decide
to reconstruct the entire (or a sub) tree. 2. Routing transactions: When a
transaction is received by the validator, it will use the HCT module to determine
in which scope to reach partial consensus to execute and order the transaction.
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Simple key-value storage is implemented to record the valid modifiers of each
system state obtained by the transaction history on the ledgers they maintain.

The experiments are conducted on the Azure cloud service cluster. We create
validators with 16 GB RAM, 500 GB hard drive, running Ubuntu 18.04 LTS on
each of them. They are connected to each other via a 1GB bandwidth network.
The aim of our experiment is to measure the peak throughput of each system on
varying the number of users/validators (from 4 to 16). We use the official chain-
code transferring token between users as the task in the workflow. Then we use
client nodes to simulate the transaction generation by following the interaction
frequency distribution obtained from the real dataset. In each experiment, we
steadily increase the overall system TGF to obtain the peak throughput which
is measured by the completion rate from the time a transaction is generated
until receiving the commit message of the block which contains the transaction.

Fig. 5. Result of throughput on varying |U |

Experimental Results. Figure 5 shows the throughput comparison between
PAS-based and original Hyperledger. The throughput of Hyperledger is between
100 to 142 tps, while, PAS can reach 134 to 234 tps. With the bottom-up con-
structed HCT, the performance enhancement is at least 50%. Meanwhile, despite
the slightly lower enhancement of the top-down algorithm, as compared in Fig. 4
the lower time complexity of the top-down algorithm makes it more suitable for
large scale systems. With more users, the enhancement ratio also increases which
is similar to what we observed in the HCT construction experiments. Besides,
with the nodes increasing, the throughput tends to decrease. In fact, in Hyper-
ledger, to confirm connectivity between nodes, messages such as PeersMessage
are sent periodically to check the connection status. When the number of valida-
tors in the network increases, such requests also increase, which affects the overall
performance of the network to a certain extent. For example, the throughput of
the two systems drops linearly from 8 to 16 nodes. Meanwhile, the dropping
speed of HCT-based is slower than the original Hyperledger, which can also
prove the better scalability of PAS.
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8 Conclusions

In this paper, we introduce PAS, a consensus mechanism for permissioned Block-
chain to satisfy the requirements in the general distributed collaboration sce-
nario. Specifically, PAS enables a user to join or leave different tasks flexibly
by using the transaction to specify the valid modifiers of each system state. We
introduce the partial consensus to order transactions in different tasks in paral-
lel. Moreover, to ensure the order of transactions determined by a set of nodes
can be eventually agreed by all nodes with the BFT guarantee, we propose the
hierarchical consensus tree (HCT) to coordinate the consensus process. When a
transaction is ordered, the acceptance of its conflict transaction is strictly pre-
vented. We also propose the OHCT problem to obtain an optimal HCT with
the maximum system enhancement. We proved the NP-hardness and approxi-
mation hardness of the OHCT problem and propose a framework with efficient
algorithms to solve it. Finally, we implement PAS on Hyperledger and conduct
extensive experiments to evaluate it. The result shows that PAS can significantly
improve system performance and scalability.
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Abstract. Emerging persistent memory (PM, also termed as non-
volatile memory) technologies can promise large capacity, non-volatility,
byte-addressability and DRAM-comparable access latency. Such amazing
features have inspired a host of PM-based storage systems and applica-
tions that store and access data directly in PM. Sorting is an important
function for many systems, but how to optimize sorting for PM-based sys-
tems has not been systematically studied yet. In this paper, we conduct
extensive experiments for many existing sorting methods, including both
conventional sorting algorithms adapted for PM and recently-proposed
PM-friendly sorting techniques, on a real PM platform. The results indi-
cate that these sorting methods all have drawbacks for various workloads.
Some of the results are even counterintuitive compared to running on a
DRAM-simulated platform in their papers. To the best of our knowledge,
we are the first to perform a systematic study on the sorting issue for
persistent memory. Based on our study, we propose an adaptive sorting
engine, namely SmartSort, to optimize the sorting performance for dif-
ferent conditions. The experimental results demonstrate that SmartSort
remarkably outperforms existing sorting methods in a variety of cases.

Keywords: Persistent memory · Sorting algorithm · Pointer-indirect ·
Wear-leveling

1 Introduction

Emerging persistent memory (PM) is a new type of non-volatile storage device.
Unlike traditional SSD, HDD or Flash, PM technologies such as STT-RAM [1],
PCM [2] and 3DXPoint [3] can provide byte-addressability, DRAM-comparable
read and write latency. Applications can access data in PM with simple
load/store instructions. PM has inspired a host of researches on redesigning
persistent storage systems, such as memory management systems [9,28,29], file
systems [7,8,30], KV-Stores [31,34] and DBMSs [10,35].

For many storage systems, sorting is one of the most commonly-used func-
tions. For instance, the ‘ORDER BY’ SQL command will automatically call

c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-73200-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73200-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-73200-4_27


394 Y. Hua et al.

the embedded sorting engine in a DBMS. The sorting component will sort the
records in a table by a specified key1. While many PM-optimized storage sys-
tems have been proposed, only a few works discuss how to optimize sorting for
PM. An intuitive thinking is simply to apply conventional sorting algorithms in
PM-based systems.

However, such a naive migration has many limitations for traditional sorting
methods. For internal sorting algorithms, first, since PM has the limited write
endurance [5,6,32], simply migrating traditional sorting algorithms from DRAM
to PM causes heavy write traffic to PM, which will reduce the lifespan of PM.
This is mainly caused by the allocated PM space for large-size records and
their swap during sorting. Second, long time consumption exists during record
swap for large values. For instance, fixing the keys to be 8-byte in size and
record number to be one million, sorting the records with 4 KB values will spend
26.1 s using quick sort while the records with 8-byte values only cost 224 ms.
Large values also make it hard to exploit cache locality. Third, employing sorting
methods directly in PM costs more time than with the assistance of DRAM in
some cases (see more details in Sect. 3). For external sorting algorithms, data
loaded from PM to DRAM for sorting as performed in DRAM-Disk architecture
not only consumes large DRAM space, but also takes many runs in the merging
phase. First, external sort is heavily dependent on DRAM resource. When the
available DRAM space is scarce, it may suffer from frequent data migration
between DRAM and PM, which leads to the read/write amplification problem.
Second, since disk/SSD is block addressable, sorting records using external sort
can only load block-size data from disk to DRAM, which induces heavy time
overhead in both loading and sorting phases.

With a specific study for these commonly-used sorting algorithms, we find
that no single sorting method can be the best-level fit (i.e., both time-efficient
and memory space-efficient) for different workloads and situations. For instance,
although quick sort in PM performs well for many cases, it is worse than external
sort for large-size records when the DRAM space is sufficient in a DRAM-PM
hybrid memory architecture2. External sort, on the contrary, has worse perfor-
mance when the DRAM size is very small. We have verified these bottlenecks
by conducting multiple experiments on the Intel Optane DC Persistent Memory
(Optane) platform (see more details in Sect. 3).

Since it is reported that PM should have much higher write latency than
read latency, and PM may suffer from the limited write endurance issue (e.g.,
PCM is reported to be worn out after 106–108 writes) [5,6,32], a few researchers
have proposed PM-friendly sorting methods [12,13,36] to decrease PM writes.
For example, segment sort [12] intends to trade off fewer writes for additional
reads and allows a tunable combination of external sort and selection sort. The

1 In this paper, we call the attribute for sorting in a record as key and the other
attributes as value.

2 In this paper, we assume that PM is always large enough to accommodate all records
and unsorted records are initially stored in PM while DRAM is not always sufficient
relative to PM.
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reason is that although the read complexity of selection sort is O(N2), its write
complexity is merely O(N). Another work B*-sort [13] develops a binary tree-
based structure for sorting records in PM, which has O(N) complexity for writes
and O(NlogN) complexity for reads. Luo et al. [36] utilize a heap structure and
observe that if a node is close to the heap root, it is more likely to be read and
written frequently. Thus, in order to reduce the average writes to PM, nodes
close to the root are placed into DRAM while those close to the leaves are placed
into PM. All these methods are evaluated on a DRAM-simulated platform and
show good experimental results. However, when we run them on the real PM
hardware, their performance is far from the expected result (e.g., much worse
than the simple quick sort, a conventional sorting algorithm; see more details in
Sect. 3).

We believe that there are at least three reasons. First, these three PM-friendly
sorting methods heavily rely on the assumption that the latency of PM read
should be much better than PM write. However, this is not the case for Optane.
A recently-published paper [14] shows that Optane’s write latency is comparable
to DRAM but its read latency is 2x–3x worse than DRAM. Second, they cannot
exert the full potential of cache locality, which makes them worse than quick
sort in actual execution. For instance, the selection sort used in segment sort
has to scan the entire portion each turn. As for B*-sort, it links records with
left-child and right-child pointers, and hence all reads and writes are made to
be random. For NVMSort, the node swap in the heapify process has to search
nodes in both PM and DRAM. Third, they introduce extra PM read and write
overhead despite of the relatively lower time complexity. For example, B*-sort
allocates PM for all the left-child and right-child pointers, extra tunnel lists and
metadata, leading to heavy additional overhead.

The limitations that exist in both conventional sorting methods and PM-
friendly sorting methods inspire us to rethink the design of sorting in persistent
memory. We first notice that the byte-addressability feature of PM allows us to
index records with simple pointers (i.e., data addresses), which is quite different
from the DRAM-Disk storage architecture. We propose a pointer-indirect mech-
anism in this paper to speed up the sorting performance for large-size records.
Based on the analysis that no single sorting method is the best fit for different
conditions, we then design and implement an adaptive sorting engine, SmartSort.
SmartSort can automatically pick the best-suited embedded sorting method in
an ad-hoc style. Our contributions are summarized as follows.

• To the best of our knowledge, we are the first to make a systematic study for
sorting methods in PM. We demonstrate that existing sorting methods have
non-negligible limitations.

• Taking advantage of PM’s byte-addressability, we propose a pointer-indirect
sort mechanism, which not only reduces the PM read and write overhead, but
also does good to PM wear-leveling.

• Combined with the advantages of various sorting methods, we develop an
adaptive sorting engine, namely SmartSort, to minimize the sorting overhead
in PM for different conditions.
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• We conduct extensive experiments on the Optane platform and the results
show that SmartSort remarkably outperforms existing sorting methods for
various workloads and situations.

The rest of this paper is organized as follows. Section 2 and 3 introduce
the background and motivation of our work, respectively. Section 4 presents our
proposed pointer-indirect sort mechanism and adaptive sorting engine, namely
SmartSort, in detail. We evaluate SmartSort in Sect. 5 and discuss related work
in Sect. 6. In Sect. 7, we finally conclude this paper.

2 Background

2.1 Persistent Memory

Persistent Memory (PM) such as PCM [2], STT-RAM [1] and 3DXPoint [3] is
a new type of memory technology that has large capacity, non-volatility, byte-
addressability, and limited write endurance [5,6]. Attaching PM to the main
memory bus provides a raw storage medium that can be orders of magnitude
faster than modern persistent storage medium such as disk and SSD [30]. Intel
Optane DC Persistent Memory (Optane for short) is the first commercially-
available PM product [4]. The emergence of PM has inspired a lot of researches
for building persistent storage systems and applications [7,9,28,29].

2.2 Review of Conventional Sorting Methods

Sorting is one of the most important components in many storage systems
and indexing structures, such as DBMSs [10,35], KV-Stores [31,34], and B+-
Trees [19,20]. Traditional sorting algorithms can be divided into two types: inter-
nal sort and external sort. Internal sort executes the sorting procedure for all
records directly in memory space. By contrast, external sort is used for large
data size that does not fit in memory and depends on a two-phase sorting pro-
cedure: 1) divide all the records into several chunks and each time load a single
chunk into memory from disk/SSD to perform an internal sort (e.g., quick sort)
on the chunk, then write out the sorted chunk to disk/SSD; 2) use merge sort in
memory to combine multiple sorted chunk records into globally-sorted records.
Table 1 provides the average time and space complexity for some representative
internal sorting algorithms. Clearly, selection sort has the lowest write complex-
ity while it suffers from high read complexity. Insertion sort has both high read
complexity and write complexity. Other sorting algorithms, such as quick sort,
merge sort and heap sort, achieve more balanced read and write complexity (i.e.,
both are O(NlogN)).

2.3 Sorting in Persistent Memory

Although there are a lot of researches on both PM-based system design and
in-memory data sorting optimizations, few open discussions have been made
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Table 1. Average time and space complexity of traditional sorting algorithms.

Read time complexity Write time complexity Space complexity

Insertion sort O(N2) O(N2) O(1)

Selection sort O(N2) O(N) O(1)

Quick sort O(NlogN) O(NlogN) O(logN)

Merge sort O(NlogN) O(NlogN) O(N)

Heap sort O(NlogN) O(NlogN) O(1)

on combining these two points together and redesigning the sorting engine in
persistent memory. An intuitive idea is to apply conventional sorting algorithms,
such as quick sort [22], selection sort [23], merge sort [24], and external sort [25]
for PM-based systems. However, such a naive migration for sorting methods in
PM can lead to huge writes, which could reduce the lifespan of PM. In addition,
sorting records directly in PM will lead to heavy time overhead with an increasing
record size.

A few researchers have proposed PM-friendly sorting methods [12,13,36]
by exploiting the unique features of persistent memory device. Due to the
commonly-believed read/write asymmetry feature (i.e., write latency is much
higher than read latency), they seek to trade off fewer writes for additional
reads or minimize the write complexity assisted with special data structures.
Segment sort [12] allows a tunable combination of external sort and selection
sort. That is, α (0 ≤ α ≤ 1) of all records are sorted by external sort and
the remained (1 − α) portion are sorted by selection sort. These two portions
are then merged into the final sorted records. The reason is that although the
read complexity of selection sort is O(N2), its write complexity is merely O(N).
Given that PM’s read latency is much lower than write latency, segment sort is
supposed to achieve better performance than simple external sort or selection
sort with a proper α setting. B*-sort [13] develops a binary tree-based structure
for sorting records in PM, which has O(N) complexity for writes and O(NlogN)
complexity for reads. B*-sort also uses extra tunnel lists and register metadata
to optimize the worst-case read complexity. Luo et al. [36] improve traditional
heap sort by placing nodes near the heap root in DRAM and those near the
leaves in PM to reduce writes in PM based on the observation that nodes close
to the root are more likely to be accessed.

3 Motivation

Although the adapted conventional sorting algorithms and recently-proposed
PM-friendly sorting techniques can be applied for persistent memory scenarios,
we claim that both types of sorting methods have non-negligible limitations,
such as high read/write complexity, severe write overhead due to large value
size, and remarkable performance decrease caused by limited DRAM resource.
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To observe the bottlenecks of existing sorting methods for PM, we conduct a
series of experiments on randomly-generated records, each of which only contains
a key (fixed 8-byte in size) and a value (varied-size). The detailed configuration
of our experimental platform is provided in Sect. 5.1.

Table 2. Execution time (ms) of typical traditional sorting algorithms.

10K 100K 1M 10M 100M 1B

Selection sort 123 12195 1232723 Too long Too long Too long

Insertion sort 186 18376 1911156 Too long Too long Too long

Quick sort 3.7 23 199.1 2581 24291 296782

Merge sort 4.6 28.4 343.2 4271 43871 569731

Heap sort 5.8 33.5 416.6 7975 78128 1526177

Table 3. Execution time (s) with different value size.

In-PM In-DRAM PM-DRAM

8B 64B 512B 4KB 8B 64B 512B 4KB 8B 64B 512B ,KB

Selection sort 12.2 13.5 18.3 30.6 12.2 13.5 18.2 30.2 12.2 13.5 18.2 30.3

Insertion sort 18.4 27.9 130.2 Too long 18.4 27.6 127.9 Too long 18.4 27.6 127.9 Too long

Quick sort 0.02 0.04 0.14 0.95 0.02 0.03 0.07 0.41 0.02 0.03 0.09 0.53

3.1 Comparison of Typical Traditional Sorting Algorithms

Table 2 shows the time consumption of typical traditional sorting algorithms
to sort records with 8-byte values from 10 thousand to 1 billion. We have two
observations. First, selection sort has better performance among the algorithms
with O(N2) time complexity. It has 1/3 less time consumption compared to
insertion sort. Second, quick sort achieves the best time efficiency among all
the compared sorting algorithms. Although merge sort and heap sort have the
same read and write complexity as quick sort, they have lower performance in
practical running. We infer that it is because quick sort can better utilize memory
cache locality while merge sort always writes its temporary sorted results to new
memory space and heap sort has more non-adjacent elements comparison. The
drawback of quick sort, however, is that it has more writes than selection sort.

3.2 The Impact of Value Size

Table 3 shows the execution time of three traditional sorting algorithms (i.e.
selection sort, insertion sort and quick sort) for sorting 100 thousand records with
the value size growing. The In-PM mechanism means that the sorting procedure
is directly executed in PM; the In-DRAM mechanism indicates that the records
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are loaded into and sorted in DRAM (but not stored back to PM); the PM-
DRAM mechanism represents that the records are loaded into and sorted in
DRAM, and finally stored back to PM.

From Table 3, we have three main observations. First, with the value size
growing, the time consumption of sorting algorithms can increase remarkably.
For instance, insertion sort and quick sort incur 7.1x and 4.7x time overhead in
PM, respectively, when the value size increases from 8B to 512B. This is because
more reads and writes are performed during the sorting procedure. Second, for
both selection sort and insertion sort, the In-PM time consumption is similar to
that of In-DRAM and PM-DRAM. This indicates that their time consumption
for sorting is too heavy due to O(N2) time complexity. Third, for quick sort, the
PM write overhead plays an important role in the final performance. It can be
seen that In-DRAM and PM-DRAM quick sort outperform In-PM quick sort by
2.3x and 1.79x respectively, when the value size is 4 KB. Notice that compared
to In-PM quick sort, PM-DRAM quick sort can also reduce writes to PM (i.e.,
merely N writes for storing sorted records), and hence alleviate the risk of PM
wear out.

Fig. 1. The impact of available relative DRAM capacity on external sort.

3.3 The Impact of DRAM Capacity

In conventional storage architecture, data is first loaded from disk/SSD to
DRAM, and the actual sorting procedure is executed in DRAM. However, com-
pared to the durable storage device, DRAM space can be relatively more scarce,
and hence it cannot store all the records in some cases. To address this problem,
external sort is employed. Records in disk/SSD are divided into multiple chunks,
each of which can be fitted in DRAM space and sorted. Each sorted chunk will
be written back to disk/SSD and they will be merged as a final sorted file via
properly using the limited DRAM resource. In a DRAM-PM hybrid architecture,
external sort can still work in the similar way. Figure 1 shows the performance
effect on external sort with different relative DRAM capacity. The number of
records is ten million and the In-PM quick sort is considered as a baseline.

From Fig. 1, we can observe that the performance of external sort decreases
with the relative DRAM capacity being smaller, but the sharp performance
drop is mainly in the shift from full record capacity to 1/2 record capacity. For
instance, with 8-byte value size, the time consumption climbs by 2.2x, when
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changing the DRAM capacity from full record space to 1/2 record space. How-
ever, only 18% extra time is incurred when shifting the DRAM capacity form 1/2
record space to 1/4 record space. Second, external sort is better than (In-PM)
quick sort in performance with sufficient DRAM capacity and worse than (In-
PM) quick sort if the DRAM capacity is smaller than the total record size. Notice
that compared to In-PM quick sort, external sort has much better wear-leveling
capability because it requires only O(N) PM writes.

3.4 Performance Study of PM-Friendly Sorting Methods

Segment sort [12], B*-sort [13] and NVMSort [36] are three recently-proposed
PM-friendly sorting methods that show good performance on a DRAM-
simulated platform. Currently, since the real PM product is available, it should
be interesting and useful to study their real performance.

Segment sort is a combination of external sort and selection sort, and its
main idea is to trade off fewer writes for additional reads since PM is expected
to have much higher write latency than read latency. Viglas et al. [12] believe that
there will be an optimal ratio to make segment sort reach the best performance.
However, we observe a different result on Optane-based platform. Figure 2(a)
shows the time consumption of segment sort with different ratio to sort 100
thousand records. For simplicity while maintaining the spirit of segment sort,
we replace the external sort with In-PM quick sort, which has higher write
complexity but lower read complexity than selection sort. The merging phase is
kept as the previous design.

(a) Segment sort. (b) NVMSort and B*-sort.

Fig. 2. Performance study for PM-friendly sorting methods.

In Fig. 2(a), α = 0 means that segment sort only uses selection sort; by
contrast, α = 1 indicates that segment sort only utilizes quick sort. We can
learn from Fig. 2(a) that as α decreases, the time overhead grows as well. In other
words, the larger the ratio of quick sort is employed, the better the performance
of segment sort is achieved. Segment sort can gain no time profits from selection
sort by trading off fewer writes for additional reads. We believe that there are two
reasons for it. First, the read latency is not better than write latency. A recent
study on Optane’s performance [14] shows that the random 8-byte read (i.e.,
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load) latency can be 300 ns while the random 8-byte write (i.e., store) latency
can be merely 100 ns. Optane’s write can be faster than its read in terms of
latency. While the read bandwidth of Optane is higher than write, we infer that
the bottleneck for sorting is not bandwidth based on several experiments. For
example, for 10 million 16-byte records, quick sort takes 304.99 s while random
write takes merely 4.32 s. Thus, for Optane, segment sort just trades off faster
writes for slower reads. Second, selection sort is not as efficient as quick sort in
utilizing cache locality, and the portion of records using selection sort becomes
the bottleneck in the entire sorting procedure. In conclusion, segment sort is
worse than the simple quick sort algorithm.

B*-sort [13] adopts a binary search tree structure to reduce the complexity of
PM writes to O(N) and limit the average complexity of PM reads to O(NlogN).
To avoid the worst case for reads, it also utilizes additional tunnel lists and
register metadata. NVMSort trades off part of PM writes for DRAM writes.
While the theoretic complexity of B*-sort and NVMSort is much better than
quick sort, the performance results on Optane-based platform are much worse.
Figure 2(b) compares the time consumption among B*-sort, NVMSort, (In-PM)
quick sort, (In-PM) merge sort and external sort for one million records when
DRAM capacity is 1/2 the total record size. We can draw two takeaways from
Fig. 2(b). First, for small-size values, B*-sort and NVMSort have much higher
time overhead than quick sort. For instance, the time consumption of B*-sort
is 6.1x and 5.5x higher than quick sort with the value size of 8B and 64B,
respectively. There are two reasons for this: 1) B*-sort is a pointer-based data
structure and hence incurs a lot of random reads and writes during sorting.
NVMSort has a lot of non-adjacent data swap. They not only fail to utilize cache
locality but also incur severe time overhead [3,4]; 2) the additional tunnel lists
and register metadata in B*-sort add more PM-allocated overhead in the critical
path. Second, for larger-size values, B*-sort can be comparable to quick sort. It
is observed that with 4 KB value size, B*-sort is much better than NVMSort
and merge sort while obtains merely less than 15% time consumption compared
to quick sort. This is because each tree node access can benefit from sequential
reads and writes. In conclusion, B*-sort is worse than the simple quick sort
algorithm in performance but better for the wear-leveling goal.

4 SmartSort

As Sect. 3 demonstrates, both traditional sorting algorithms and recently-
proposed PM-friendly sorting methods have limitations, which include 1) perfor-
mance issue caused by large value size, limited DRAM capacity, and random PM
read/write overhead; 2) wear-out concern caused by PM writes during sorting.
Furthermore, no single sorting method can beat others in all cases. For instance,
while quick sort is better in time efficiency than selection sort and B*-sort, it
is not better in wear-leveling. While PM-DRAM quick sort can be better than
In-PM quick sort, it heavily depends on the space consumption of DRAM and
when the available DRAM capacity is limited, it will transform to external sort
and the performance can drop sharply.
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Based on these key observations and conclusions, we claim that it is nec-
essary to redesign the sorting engine for persistent memory. In this paper, we
propose an adaptive sorting engine, which is named SmartSort, to address the
challenges we mentioned. In this section, we first present the overall structure
of SmartSort, then introduce the PM-enabled pointer-indirect sort mechanism,
and finally provide the details of how SmartSort works.

Fig. 3. Architecture of SmartSort.

4.1 Overview

SmartSort is an adaptive sorting engine that targets at providing the appropri-
ate sorting technique for each workload according to the workload features and
other significant related conditions. Figure 3 shows the architecture of Smart-
Sort. SmartSort is composed of four core components: Sensor (SS), Decision
Engine (DE), Sorting Algorithm Library (SAL) and Execution Engine (EE).
Among these components, SS is designed for extracting the useful information
from unsorted records, requirements of users, workloads and the hardware in
system (shown in 1 ), and conveying the information to DE (shown in 2 ).
The information includes four aspects: 1) information of unsorted records, such
as the size of total records, the number of total records, and the value size of
records; 2) requirement information of users, such as the wear-leveling require-
ment of application and the persistence requirement of the sorted results; 3)
workload information, such as the limited write size of PM and limited sorting
time; 4) hardware information, such as the available DRAM capacity and the
PM write endurance. Based on the above collected information, DE is respon-
sible for selecting the appropriate sorting technique from SAL (shown in 3 ).
SAL is a suite of sorting techniques, including adapted conventional sorting algo-
rithms, existing PM-friendly sorting techniques and pointer-indirect-optimized
sorting methods (see Sect. 4.2 for more details). After that, the selected sorting
method will be transmitted to EE, and EE performs it on the unsorted records
(shown in 4 ). Finally, the sorted results are generated as output (shown in
5 ). They may be either persisted in PM or simply copied to the user buffer.
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4.2 PM-Enabled Pointer-Indirect Sort

For traditional DRAM-Disk storage architecture, records should be first loaded
into DRAM for sorting, with internal or external sorting algorithms. The loading
procedure is performed in a block-based style. That is, blocks containing the full
record information (i.e., keys and values) are loaded into DRAM. The main
bottleneck is the I/O overhead. Now, with PM, the records can be stored in PM
directly for storage systems and applications, and the sorting procedure can be
executed in PM as well. But as we point out in Sect. 3, the sorting performance
drops remarkably with the growth of value size, which incurs more PM reads
and writes. Some main memory database systems enable to use pointers for data
indexing [37], which reduces the movement for the actual large-size value during
scan or some other operations. Inspired by this, we devise the pointer-indirect
sort mechanism to speed up the sorting performance for PM-resided records
which have large-size values.

The key step of the the pointer-indirect sort mechanism is building the map-
ping <key, pointer> records, based on the original <key, value> records. Con-
cretely, a new region (either in DRAM or PM) is created, and each <key, value>
record is transformed to a much smaller <key, pointer> record, where the pointer
is an indirection (i.e., address) to the original <key, value> record. Suppose that
the key is fixed-size with 8B, then we can limit the <key, pointer> record to be
merely 16B. Due to the space-efficiency of <key, pointer> records, with a given
DRAM capacity, a much larger number of records may be loaded into DRAM
for sorting when it is compared to traditional full-record loading mechanism.

Instead of directly conducting a sorting algorithm on large-size records, the
pointer-indirect sort mechanism enables to sort the much smaller-size <key,
pointer> records, and hence reduces a lot of PM reads and writes. It is also
easy to read out sorted records via the sorted pointers. We have studied the
result reading overhead in Sect. 5, which is very lightweight compared to the
actual sorting overhead. In conclusion, the pointer-indirect sort mechanism is
beneficial to both sorting performance and PM wear-leveling. Notice that the
pointer-indirect mechanism is not limited to the use of a single sorting method.
It can be combined with all existing sorting algorithms and techniques, such as

Table 4. Complicated sorting conditions and corresponding sorting methods.

Value size Sufficient

DRAM

Wear-leveling Persistence Best-suited sorting method

small (large) Yes Yes Yes (pointer-indirect) PM-DRAM quick sort

Yes Yes No (pointer-indirect) In-DRAM quick sort

Yes No Yes (pointer-indirect) In-PM quick sort

Yes No No (pointer-indirect) In-DRAM quick sort

No Yes Yes (pointer-indirect) external sort

No Yes No (pointer-indirect) In-PM B*-sort

No No Yes (pointer-indirect) In-PM quick sort

No No No
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quick sort, external sort and B*-sort. As shown in Fig. 3, pointer-indirect sort is
a core mechanism of the SAL component.

4.3 Adaptive Sorting

To achieve the best sorting performance with SmartSort, we should 1) clearly
distinguish different workloads and situations as different conditions, and 2)
select the most-suitable sorting method for the corresponding condition.

We study a variety of sorting conditions and provide the most appropri-
ate sorting method for each condition in Table 4. We consider the value size
to be small if it is smaller than 8 bytes, otherwise it is marked as large. The
DRAM capacity is considered to be sufficient if DRAM can store all the <key,
value> records or the corresponding <key, pointer> records using the pointer-
indirect mechanism. The wear-leveling requirement indicates if the writes should
be shorten to O(N) times and the persistence requirement tells if the sorted
results should be stored as a persistent object.

(a) Sufficient DRAM space. (b) Insufficient DRAM space.

Fig. 4. Comparison of the execution time for different sorting methods.

The corresponding best-suited sorting method is carefully selected based on
our experimental observations. As we discuss in Sect. 4.2, the pointer-indirect
sort mechanism should gain many performance benefits when the value size
is large. Figure 4(a) shows the time consumption for eight candidate sorting
methods to sort ten million records when DRAM capacity is sufficient. We can
observe that the performance of QuickSort-PMPtr (i.e., pointer-indirect In-PM
quick sort) is much higher than QuickSort-PM (i.e., pure In-PM quick sort)
when the value size varies from 64B to 4KB (e.g., 2.2x, 6.9x and 36.8x for 64B,
512B and 4KB values, respectively). However, when the value size is small (i.e.,
8B), there is no need to employ the pointer-indirect mechanism because their
performance is nearly equal.

From Fig. 4(a), we can also observe that using DRAM can bring benefits to
the sorting performance. For instance, QuickSort-PM-DRAMPtr (i.e., pointer-
indirect PM-DRAM quick sort) outperforms QuickSort-PMPtr (i.e., pointer-
indirect In-PM quick sort) by up to 1.4x when the value size is 4KB. In addition,
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sorting in DRAM will reduce writes in PM a lot. Therefore, when wear-leveling
is required, SmartSort should utilize DRAM for sorting. Concretely, when per-
sistence for sorted results is required, it should utilize PM-DRAM quick sort;
otherwise, it should use In-DRAM quick sort. By contrast, if wear-leveling is not
a critical concern, SmartSort can simply choose In-PM quick sort and In-DRAM
quick sort according to different persistence requirements.

Fig. 5. Write size in PM for different pointer-indirect sorting algorithms.

When DRAM capacity is not sufficient, and if there is no restriction on wear-
leveling, then it could be very straightforward to select the In-PM quick sort due
to its efficiency. However, if wear-leveling is set as a target, then SmartSort should
shift the sorting method. Notice that both external sort and B*-sort have the
PM write complexity of O(N), which should be the candidate sorting methods
for this case. But which one is better? To answer this question, we conduct
another experiment to compare the performance of B*-sort with external sort
for different relative DRAM capacity. Figure 4(b) shows the results for sorting
ten million records and QuickSort-PMPtr (i.e., pointer-indirect In-PM quick
sort) is used as performance baseline. It can be observed that when the relative
DRAM space is larger than or equal to 1/16, ExternalSort-Ptr (i.e., pointer-
indirect external sort) is better than B*-Sort-PMPtr (i.e., pointer-indirect In-PM
B*-sort). When the relative DRAM capacity gets even smaller, B*-Sort-PMPtr
starts to outperform ExternalSort-Ptr. Although NVMSort-Ptr (i.e., pointer-
indirect NVMSort) performs better than ExternalSort-Ptr and B*-Sort-PMPtr
when the relative DRAM space is smaller than or equal to 1/16 in Fig. 4(b),
its PM write size is comparable to that of QuickSort-PMPtr in that case as
Fig. 5 shows. Thus, NVMSort-Ptr is not a suitable choice when wear-leveling is
required. In our current implementation, we set the (relative DRAM capacity)
switch boundary between external sort and B*-sort as 1/16. Compared with the
baseline, SmartSort has a limited boundary of extra time overhead (i.e., 4.5x)
to guarantee wear-leveling, which should be acceptable in practical use.

Based on the experiments and analysis above, we have demonstrated that
each employed sorting technique in SmartSort is the best-suited one for the cor-
responding condition. Notice that the selection for a sorting method in SmartSort
each time is not manually-configured. That is why we call SmartSort an adaptive
sorting engine.
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5 Experimental Evaluation

5.1 Experimental Setup

We implement SmartSort using C++ on a Linux server (CentOS 7.8) with
2.60 GHz Intel(R) Xeon(R) Gold 6240 CPU. This CPU has 36 physical cores,
with a 24 MB L3 cache. We use 600 GB of overall Optane DIMM space in
the maximum to ensure all records accommodated in this paper. DRAM size in
Sect. 3 and 4 varies according to the record number, value size and relative ratio
to PM as detailed in each picture. In Sect. 5, DRAM size is fixed as 4GB (large
enough to store all records or pointers), 64 MB (nearly 1/3 of the total pointer
size) and 4 MB (1/40 of the total pointer size). Throughout our experiments, the
key size is fixed as 8B by default (i.e., keys are randomly-generated integers),
and the value size is allowed to vary from 8B to 4KB. To guarantee data per-
sistence and consistency in PM, similar to many prior works [7,28], we properly
utilize clwb+sfence instructions to force flushing out the records from caches.
We use the standard benchmarks [27] to evaluate the sorting performance of
SmartSort. Since the source code of B*-sort and NVMSort is not available in
public, we implement them faithfully according to their papers. To demonstrate
the benefit of SmartSort, we compare SmartSort with six traditional sorting
algorithms (i.e., selection sort, insertion sort, external sort, quick sort, merge
sort, heap sort) and three PM-friendly sorting techniques (i.e., segment sort,
B*-sort, NVMSort).

(a) 64MB DRAM. (b) 4GB DRAM.

Fig. 6. The execution time for different sorting algorithms.

5.2 Sorting Performance for Different Workloads

Figure 6 compares the execution time for sorting ten million records between
SmartSort and other sorting methods. The DRAM capacity in Fig. 6(a) and
Fig. 6(b) is 64 MB (i.e., insufficient DRAM space) and 4 GB (sufficient DRAM
space), respectively. We can observe that SmartSort is remarkably better than
the other sorting methods and has good scalability with the value size growing.
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For 64 MB DRAM capacity, SmartSort will adaptively select quick sort for 8-
byte value size and pointer-indirect quick sort in PM for larger value size when
wear-leveling is not a restricted factor. For 4 GB DRAM capacity, SmartSort will
adaptively select PM-DRAM quick sort and pointer-indirect PM-DRAM quick
sort (or In-DRAM quick sort and pointer-indirect In-DRAM quick sort if there is
no need to persist the sorted results) for 8-byte and larger value size respectively.

Fig. 7. Sorted record number in 1 min. Fig. 8. Write size in PM.

Figure 7 shows the maximum number of records that can be sorted in one
minute by different sorting methods. We set the DRAM capacity as 64 MB,
which is insufficient to contain all records. In this case, SmartSort prefers In-PM
quick sort for a small value size and pointer-indirect In-PM quick sort for a large
value size. Insertion sort and selection sort complete the fewest records due to
their O(N2) time complexity. Figure 8 shows the total PM write size (in bytes)
of sorting ten million records for the compared methods when DRAM is 64 MB
and 4 GB. For 64 MB DRAM capacity, SmartSort will adaptively select pointer-
indirect external sort. For 4 GB DRAM capacity, SmartSort will adaptively select
pointer-indirect PM-DRAM quick sort (or In-DRAM quick sort if there is no
need to persist the sorted results).

(a) 4GB DRAM. (b) 64MB DRAM. (c) 4MB DRAM.

Fig. 9. The best and worst performance to persist sorted result.

Given ten million records, Fig. 9 provides the upper bound and lower bound
of SmartSort for both time consumption and PM writes with different DRAM
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configurations when sorted results need to be persisted. With the decrease of
DRAM capacity, the upper bound of SmartSort’s time consumption gradually
increases due to the use of (pointer-indirect) external sort and B*-sort. While the
gap between the worst-case time consumption and the best-case time consump-
tion varies remarkably under different conditions, the gap between the worst-case
PM writes and the best-case PM writes is stable, which can be represented by
O(NlogN)/O(N).

(a) 8B. (b) 64B. (c) 512B. (d) 4KB.

Fig. 10. Time overhead of reading sorted records for different value size.

5.3 Comparison of Time Overhead on Reading Sorted Records

In addition to the sorting time cost, the overhead of reading sorted records (i.e.,
load all the sorted records to the user buffer) should be also studied since it
may be in the critical path of an application request (e.g., SELECT command
in DBMSs). Figure 10 compares the time overhead between SmartSort and the
non-pointer-indirect sorting algorithm.

It can be observed that when the value size is larger than 8 bytes, it is
slower to read out the records that are sorted by SmartSort. There are two
reasons. First, the pointer-indirect mechanism employed by SmartSort requires
an additional PM load operation for each record read. Second, the reads into the
actual records cannot exploit the cache locality since only the pointer records
are sorted. It can also be observed that with the value size getting larger, the
performance gap becomes smaller. Concretely, when the value size is 512B, the
pointer-indirect sort mechanism generates 2.48x time overhead compared with
normal quick sort, for reading ten million sorted records. When the value size
increases to 4 KB, the relative time overhead caused by pointer-indirect sort is
merely 1.46x. Although SmartSort requires more time to read sorted results from
PM to the user buffer for large-size records, the reading overhead is much smaller
than that of sorting (i.e., only 10.7% of quick sort for ten million records with
4KB values), and the sorting performance is improved by 12.3x. Therefore, the
overall request overhead can be remarkably reduced by SmartSort.

6 Related Work

Due to the interesting features of emerging persistent memory technologies, a
few researches have been proposed to optimize the sorting performance for PM.
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For example, segment sort [12] assumes that a proper ratio between selection
sort and external sort will lead to a better performance in PM, by trading off
slower write operations for much faster read operations in PM. However, we
have demonstrated that segment sort is consistently worse than quick sort on
the Optane-based platform. B*-sort [13] utilizes the binary search tree structure
to restrict the write complexity to O(N) (i.e., write-once property) and main-
tains the average read complexity to O(NlogN). It also develops a tunnel list
structure and adds register metadata to optimize the worst-case read complex-
ity to O(NlogN) as well. Unfortunately, it is observed that although B*-sort
has better wear-leveling effect, it is slower than the simple quick sort algorithm
on the Optane-based platform. Based on a heap structure, Luo et al. [36] place
nodes near the heap root in DRAM and those near the leaves in PM to reduce
PM writes according to the observation that nodes near the root are more likely
to be read or written. However, it runs on a DRAM-simulated platform and the
write latency it sets is far longer than real PM. On the Optane-based platform,
it performs worse than quick sort in our experiments. Compared to these PM-
friendly sorting technique proposals, SmartSort provides a more comprehensive
solution for the best-level sorting performance under different conditions.

Sorting is a significant function in many storage systems and index structures.
The representative is B+-Tree, which internally sorts the records within one B+-
Tree node for each insert operation. Some PM-optimized B+-Trees [18–20] have
developed efficient techniques to minimize the sorting overhead. For instance,
wB+-Tree [19] utilizes the indirection slot array, which is similar to our pointer-
indirect mechanism in spirit, to avoid the actual sorting for records, and hence
reduces a lot of PM write overhead. The limitation of the indirection array,
however, is that the indirection number is limited (e.g., 8 or 16 in wB+-Tree).
NV-Tree [18] only sorts records for In-DRAM inner nodes but leaves the records
in In-PM leaf nodes out of order, thus totally avoiding the sorting overhead
in PM. Each insert operation in NV-Tree just appends a new log to the last
record (i.e., a log). The trade-off is the extra overhead of probing the entire node
for each single read and the garbage collection overhead for invalid log records.
Compared to the sorting techniques proposed in these B+-Trees, SmartSort is
a more universal sorting engine, rather than being limited to sort only a small
number of records (e.g., only in a B+-Tree node).

7 Conclusion

In this paper, we make a systematic study on sorting in PM and point out that
existing sorting methods have limitations when using the real PM product. We
propose an adaptive sorting engine, SmartSort, which can dynamically adjust its
internal sorting technique to the corresponding condition to achieve the best-level
performance. The experimental evaluation demonstrates the merit of SmartSort.
We hope that SmartSort can inspire further researches in the area of PM sorting
and we believe that more intelligent decisions on proper sorting techniques should
be explored.
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Abstract. Electronic Medical Records (EMRs), which record visits of
patients to the hospital, are the main resources for medical data analysis.
However, plenty of missing values in EMRs limit the model capability
for various researches in healthcare. Recently, many imputation methods
have been proposed to address this challenging problem, but they fail to
take medical bias into account. Medical bias is a ubiquitous phenomenon
that the missingness of medical data is missing not at random because
doctors prone to measure features related to the disease of patients. It
reflects the physical conditions of patients, which helps impute missing
data with accurate and practical values. In this paper, we propose a
novel joint recurrent neural network (RNN) model called ImputeRNN,
which considers medical bias for EMR imputation. We model the medical
bias by an additional RNN based on a mask (missing or not) matrix,
whose hidden vectors are incorporated into the model as contexts by
a fusion layer. Extensive experiments on two real-world EMR datasets
demonstrate that ImputeRNN outperforms state-of-the-art methods on
imputation and downstream prediction tasks.

Keywords: Electronic Medical Records · Missing values ·
Imputation · Medical bias · Recurrent neural network

1 Introduction

Electronic Medical Records (EMRs) consist of substantial heterogeneous medical
data, which provide abundant resources for carrying out extensive researches on
human healthcare and medical diagnosis [15,22,30]. However, EMRs are always
incomplete and contain plenty of missing values due to various reasons, such as
collection fault, transmission errors, and so on [3,8,27]. The existence of missing
values in EMR data leads to insufficient information and inaccurate analysis for
medical researches [18,21,33]. Therefore, it is significant to address the problem
of missing data in EMRs.
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Imputation is useful for solving the problem of missing data [3,25]. Compared
with incomplete data, imputed data contains additional information that avoids
inaccurate analysis [4,28]. Massive work has shown that various analysis methods
yield the best results based on imputed data [12,14,16,17]. Thus it is necessary
to impute missing values before data analysis. Traditional imputation methods
are based on statistics and machine learning [5,23]. However, the effectiveness of
these methods is limited when there are a lot of missing values [10,26]. Recently,
some deep learning methods utilize finite observed values to impute incomplete
data and achieve remarkable performance [14,31]. State-of-the-art methods for
EMR imputation are based on RNN, which captures temporal relations of data
[2,16,17,28]. Nevertheless, existing imputation methods typically concentrate on
feature regularity of data. Due to the lack of consideration of medical bias, these
methods fail to impute missing values appropriately in EMRs [21,33].

Fig. 1. An example of the medical bias in ICU EMRs. The abscissa is the time, and
the ordinate is the medical feature. The upper four medical features are liver-related,
and the lower four are kidney-related.

Medical bias is a ubiquitous phenomenon that the missingness of EMRs is
missing not at random [1,21,29]. The measurements of patients are not recorded
randomly, because doctors prone to measure patients for more related features
[33]. Figure 1 describes an example of the medical bias in ICU EMRs. We find
that the missingness of records for the patient with different diseases is distinct.
The patient of AIH (Autoimmune Hepatitis) has more records on liver-related
features, while the patient of AKI (Acute Kidney Injury) has more records on
kidney-related features. It is a noteworthy medical bias that the missingness
of features is related to the physical condition of patients. The related features
have more records because their values are always abnormal and changeable that
need to be recorded. Others have fewer records because their values are normal
and stable that don’t need to be recorded. Therefore, the missingness of EMRs
reflects a medical bias that normal values have a higher missing probability than
abnormal values [7,20]. In conclusion, the medical bias helps determine the value
change range of features, which is useful for EMR imputation.

In this paper, we propose a novel joint RNN model, called ImputeRNN, to
utilize both values and the medical bias for EMR imputation. The model is made
up of two RNN structures (an imputation GRU and a mask GRU). We exploit
the imputation GRU to capture the regularity of values. Then we introduce a
mask matrix to embody the medical bias and model it by the mask GRU. To
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employ medical bias, we incorporate the hidden vectors of the mask GRU into
the imputation GRU by a fusion layer. Finally, we construct an imputation layer
to impute missing values by previous information and current observed values.
In this way, ImputeRNN achieves remarkable performance for EMR imputation.

In summary, the contributions of this paper are as follows:

– We realize that medical bias is a universal phenomenon in EMRs. Reasonable
use of medical bias is beneficial for EMR imputation.

– We propose ImputeRNN to incorporate medical bias for EMR imputation.
We treat the missingness of data as an expression of medical bias, and then
we design an additional RNN to model the medical bias.

– We conduct extensive experiments on two real-world EMR datasets. The
results show that our model achieves state-of-the-art performance on both
imputation and downstream prediction tasks.

2 Related Work

2.1 EMR Imputation

The existence of missing values in EMRs is an inevitable problem, and many
traditional imputation methods are applied to address it. Fixed values filling
[8] is a universal method that replaces missing values with statistic variables.
MICE [27] imputes incomplete data by chained equations. KNN [6] utilizes the
weighted average of k nearest similar neighbor samples to impute missing parts.
Matrix Factorization [23] factorizes the original incomplete matrix into low-rank
matrices and then fills missing values by recovering a complete matrix. GAIN
[31] is a GAN-based imputation model that introduces a hint vector for training.
These algorithms are suitable for most missing value scenarios, including EMR
imputation. However, they do not consider the temporal information, which leads
to a disappointing imputation performance for temporal medical data of EMRs.

Recently, some generative models based on RNN are proposed to impute
time series, and they achieve noteworthy performance for EMRs imputation.
M-RNN [32] interpolates within streams and imputes across streams. BRITS [2]
is a bidirectional recurrent dynamical system for time series imputation. LGnet
[28] designs a memory module that contains global information for imputation.
Luo et al. propose a two-stage GAN model to impute multivariate time series
[16]. To raise time efficiency and gain reasonable imputed values, they improve
the previous GAN model with a compressing and reconstructing strategy [17].
This model got remarkable results in imputation and prediction tasks. However,
these methods ignore the medical bias, which has a disadvantageous impact on
EMR imputation. Zheng et al. [33] point to there is a strong bias in EMRs. They
conduct a Hidden Markov Model (HMM) variant to capture temporal relation
and medical bias, but this model has little ability to capture long-term temporal
relations. Instead of the HMM, we construct a joint RNN model that has a well
capacity for temporal relation mining. Meanwhile, our model pays attention to
medical bias, which is significant for EMR imputation.
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2.2 Medical Bias

Medical bias is a universal phenomenon in EMRs, and many medical papers have
studied it. Phelan et al. [20] illustrate that interactions between patients and
healthcare systems result in medical bias. Agniel et al. [1] design a retrospective
observational study to evaluate the influence of bias on EMR researches. Vassy et
al. [29] assess and address the medical bias with data visualization. MacNamee
et al. [18] deal with medical bias in training data by stratified sampling and
boosting. Pivovarov et al. [21] propose a method that leverages record frequency
to identify and mitigate laboratory test bias in EMRs. In conclusion, medical
bias is an inevitable problem in medical researches. Ignoring medical bias results
in a misinterpretation of medical analysis. Therefore, we regard the medical bias
as an auxiliary and incorporate it into our model for EMR imputation.

3 Preliminaries

For a patient, we take his medical record as a d-dimensional time series observed
at T = (t1, . . . , tn)�. We denote it by a value matrix X = (x1, . . . ,xn)� ∈ R

n×d.
It includes n time steps and each step ti contains d variables which represent
d medical features of the patient. Then we express medical bias by missingness
of data and we introduce a mask matrix M = (m1, . . . ,mn)� ∈ {0, 1}n×d to
denote the missingness:

mij =
{

1, if xij is observed
0, otherwise ,

where xij is the j-th variable of the i-th time step, mij is 1 if xij existed,
otherwise 0.

Then we get two vital matrices that are concerned with time. An intuitive
example is given as follows:

X =

⎡
⎣ 2 NA 1 · · · NA

NA 9 7 · · · NA
14 26 NA · · · 32

⎤
⎦

�

,M =

⎡
⎣1 0 1 · · · 0

0 1 1 · · · 0
1 1 0 · · · 1

⎤
⎦

�

, T =
[
0 4 9 · · · n

]�
.

Moreover, we deduce a time matrix δ ∈ R
n×d to represent the time interval

from timestamp of last observed value to current timestamp. The formula and
the example of time matrix δ are shown as follows:

δij =

⎧⎨
⎩

0, if i = 0
ti − ti−1, if m(i−1)j = 1, i > 0
ti − ti−1 + δ(i−1)j , if m(i−1)j = 0, i > 0

, δ =

⎡
⎣0 4 9 · · · δn1

0 4 5 · · · δn2

0 4 5 · · · δn3

⎤
⎦

�

,

where m(i−1)j is missingness of the j-th variable at (i − 1)-th time step, ti and
ti−1 are timestamps of the current step and the last step.

In this paper, we concentrate on filling missing values in incomplete EMRs.
We propose a joint RNN model with two GRUs to learn regularities of values (X)
and medical bias (M) simultaneously to recover missing values. Our purpose is
to impute the vacancies of EMR data with accurate and suitable values.
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4 Methodology

4.1 Architecture

Figure 2 describes the whole architecture of ImputeRNN. The model receives
a value matrix and a mask matrix as inputs and generates imputed data as
outputs. The backbone of ImputeRNN is a joint RNN model which is made up
of two GRUs. We introduce a fusion layer to combine the hidden variables of
these two GRUs. Then a new hidden variable, produced by the fusion layer, is
filtered by the time decay gate. This variable is passed to the next cell of the
imputation GRU and simultaneously is mapped to be an imputation candidate.
The original value is mapped to be another candidate by feature regression. We
design an imputation layer that receives these two candidates to generate final
imputed data. The imputation GRU takes this imputed data as the input of cells.
In the following subsections, we explicate modules of ImputeRNN in detail.

Fig. 2. The architecture of ImputeRNN. The mask GRU is modeled for the mask
matrix M , and the imputation GRU is modeled for the value matrix X .

4.2 Joint RNN

The entire joint RNN model is assembled by two standard GRUs, which are
typical RNN structures for capturing the temporal relation of data. The cell of
GRU contains a reset gate and an update gate for saving and renewing stored
memory information. The abbreviated formulas of these two GRUs are GRUM

and GRUX , which are modeled for the mask matrix and the value matrix.
Besides, ui and vi are hidden variables of these two GRUs.

ui = GRUM (mi), (1)
vi = GRUX(xi). (2)
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The upper GRU in Fig. 2 is the mask GRU trained to model the mask matrix
M (medical bias). When a patient becomes healthier gradually, he visits hos-
pitals less often. There are more missing values in data and more 0s in M .
Considering the physical condition of patients, these missing values probably
are normal or stable values in reality. It signifies that the regularities of the
mask matrix M is useful for imputation. The i-th cell of the mask GRU takes
mi as input and produces a hidden variable ui that is passed to the (i + 1)-
th cells of two GRUs. The hidden variable ui is an indicator that helps infer
the physical condition of patients. It is crucial auxiliary information for EMR
imputation.

The lower GRU in Fig. 2 is the imputation GRU trained to model the value
matrix X (values). It is similar to the upper one, besides the hidden variables
vi−1 and the input xi are processed before they are transmitted to the i-th
cell. The fusion layer merges vi−1 with ui−1 to produce a variable ĉi−1. This
variable is filtered to be a new hidden variable ci−1 by the time decay gate γi−1

which is calculated from time interval δi−1. Then the ci−1 is mapped to be an
imputation candidate pi. For the input xi, a feature regression function maps it
to be another candidate qi. The imputation layer combines these two candidates
to generate a variable oi as the final result for EMR imputation. Meanwhile,
this variable is the new input of the i-th imputation GRU cell.

4.3 Fusion Layer

In this subsection, we describe the internal design of the fusion layer. This layer
combines information of missingness and value from the mask GRU and the
imputation GRU. Then it introduces a time decay gate to filter the information
according to the time interval. Although the missingness and the value have some
inherent connections, the connotations of them are quite different. Moreover, the
data types of them are also different: the missingness is boolean, while the value
is numeric. Therefore it is reasonable to regard them as two kinds of information
and merge them by different fusion strategies [11,19].

Fig. 3. The illustration of the fusion layer for combining information of missingness
and values. (a) Linear concatenation strategy. (b) Gated unit strategy.
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Figure 3 displays the structure of the fusion layer. There are two classic fusion
strategies: linear concatenation and gated unit. They take hidden variables of
two GRU as inputs ui and vi. Then they generate a new variable ci for the next
hidden cell of the imputation GRU. Meanwhile, they produce an imputation
candidate variable pi, which is transmitted to the imputation layer.

Linear concatenation is shown in Fig. 3 (a). This strategy combines two
hidden variables by concatenation operation and endows equal attention weight
to them. By this means, the missingness and the value contribute equivalent
effectiveness to the model. The formula of Linear concatenation is:

ĉi = tanh(Wc [ui,vi] + bc), (3)

where Wc is the weight parameter and bc is the bias parameter.
Gated unit is shown in Fig. 3 (b). This strategy transforms the hidden

variable ui of the mask GRU to be a weighted gate through a sigmoid activation
function [19]. By this means, the value plays a pivotal role in the model, and the
missingness serves as a filter that not only preserves valid information but also
discards what is futile. The formula of Gated unit is:

gi = σ(Wgui + bg) , (4)
ĉi = tanh(Wc [gi � vi] + bc), (5)

where Wg is the weight parameter and bg is the bias parameter.
Then we introduce a time decay gate γi to filter output hidden variable

ĉi. This gate is derived from the time interval δi. Intuitively, the longer the
time interval, the weaker the influence from the previous step. Thus we apply
a monotonically decreasing function to calculate γi from δi. We restrict value
range of γi from 0 to 1. The final hidden variable ci is generated as follows:

γi = 1/emax(0,Wγδi+bγ), (6)
ci = γi � ĉi, (7)

where Wγ is the weight parameter and bγ is the bias parameter.
We think that the gated unit plays better than the linear concatenation for

EMR imputation. Because the former takes unequal importance weight for the
missingness and the value. The imputed values are more relevant to the value.
Therefore, models should pay more attention to the value, and the missingness
does duty for an assistant to improve imputation performance. Our experiments
confirm that the gated unit is indeed superior to linear concatenation.

4.4 Imputation Layer

In this subsection, we describe the operating mechanism of the imputation layer.
At each time step, this layer receives two variables pi and qi as imputation
candidates. Then the mask vector mi and the value vector xi are combined into
this layer as auxiliaries. In the end, the two candidates are integrated to generate
the final precise imputed value oi.
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The first candidate is pi which is transformed from the fusion hidden variable
ci−1 of the fusion layer. The variable ci−1 is a representation that characterizes
the patient’s current latent physical condition by summarizing the previous regu-
larities of the missingness and the value. Based on this representation, we obtain
an imputation candidate by a fully connected layer:

pi = Wpci−1 + bp, (8)

where Wp is the weight parameter and bp is the bias parameter.
As for the other candidate qi, we infer it from current observed values xi

by the feature regression. This method relies on feature correlations among all
variables to estimate missing values. It generates the imputation candidate based
on the patient’s current observed physical condition. The unobserved values are
zero so that they contribute little effect to qi. Our feature regression function
is:

qi = Wqxi + bq, (9)

where Wq is the weight parameter and bq is the bias parameter. The diagonal
elements of Wq are 0s since we do not use xij to estimate qij .

Finally, we combine two candidates to generate the final imputed result oi.
We transform the missingness mi into a gate parameter βi. It decides the weight
of two candidates. When most values exist, the candidate qi is more important
because observed values provide enough information for imputation. When there
are plenty of missing values, the candidate pi based on historic information plays
a more significant role in imputation. We get the final result by:

βi = σ(Wβmi + bβ), (10)
ôi = (1 − βi) � pi + βi � qi, (11)
oi = (1 − mi) � ôi + mi � xi, (12)

where Wβ is the weight parameter and bβ is the bias parameter.

4.5 Loss

To optimize ImputeRNN, we define a two-part loss. The first part is the impu-
tation loss and the other is the prediction loss. The former is a squared error
between estimated values and original observations on the non-missing part of
data. It promotes imputed values to be as close to real values as possible. The
latter is a loss function f on physiological labels such as mortality, ICD-9 codes.
These labels manifest the physical condition of patients that determines the
range of estimated values. As an example, we take mortality as target y and
predict its result ŷ by the last hidden variable of the imputation GRU:

ŷ = Wypn + by, (13)

where Wy is the weight parameter and by is the bias parameter.
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We calculate the two-part loss by accumulating the imputation loss and the
prediction loss with a hyper-parameter λ. This hyper-parameter decides the
weight proportion of these two losses:

L = ‖(X − Ô) � M‖2 + λf(y, ŷ). (14)

5 Experiments

In this section, we conduct various experiments on two real-world EMR datasets
to compare our proposed model ImputeRNN with baselines.

5.1 Datasets

PhysioNet. It is a public medical dataset that comes from PhysioNet Challenge
2012 [24]. It is made up of ICU records from 4000 patients where 554 of them
died in the hospital. For the record of each patient, it is a multivariate time series
collected in 48 h, and it consists of 41 features. It is worth noting that there are
up to 80.67% missing values, which indeed influences the downstream analysis
tasks. We divide the dataset into the training set, validation set, and testing set
according to 80%, 10%, 10% to ensure the validity of our experiments.

MIMIC-III. It is an authoritative EMR database collected at Beth Israel Dea-
coness Medical Center [9]. It contains abundant medical features and is already
a benchmark dataset for medical researches. Following the work of predecessors
[22], we extract admission records from 11869 patients that 1031 of them died in
the hospital. Then we filter features that may be insignificant (i.e. the missing
rate of which is more than 98%), leaving 86 features. Moreover, we intercept the
first 48-h record to align data. Then the missing rate of the dataset is 86.98%.
At last, we take the same data division processing as Physionet.

5.2 Baselines and Implementation Details

To appraise the performance of ImputeRNN, we compare our model against ten
imputation baselines of two categories.

– Non-RNN methods:
Mean Imputation replaces the missing values by the corresponding global
mean value of each variable. KNN [6] combines the weighted average of
k nearest neighbor samples to impute. Matrix Factorization [23] factor-
izes the incomplete matrix into low-rank matrices and then fills vacancies by
recovering. MICE [27] imputes the missing values by multiple imputations
with chained equations. GAIN [31] is a GAN based imputation method that
introduces a hint vector to reveal partial information about the missingness.
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– RNN methods:
M-RNN [32] interpolates within data streams and imputes across streams
simultaneously. BRITS [2] treats missing values as RNN variables and
imputes them during backpropagation in a bidirectional recurrent system.
LGnet [28] designs a memory module which contains global temporal infor-
mation to impute missing values. GAN-2-Stage [16] is a two-stage GAN
model for multivariate time series imputation, which including model train-
ing and “noise” vector optimization. E2GAN [17] utilizes a compressing and
reconstructing strategy to replace the “noise” vector optimization stage of
GAN-2-Stage, and it achieves state-of-the-art imputation performance.

For evaluation, we implement two different fusion strategies on our model:
ImputeRNN with linear concatenation (ImputeRNNlc) and ImputeRNN with
gate unit (ImputeRNNgu). We compare them with baselines for imputation
and prediction tasks. To evaluate the imputation performance of models, we
calculate the distance between imputed values and original values by the root
mean squared error (RMSE). Furthermore, we evaluate the mortality prediction
performance on imputed data by the area under the ROC curve (AUC) score.

To ensure the comparability and validity of experiments, we guarantee the
experiment settings of baselines are consistent with ours. We execute all models
on the same hardware and process datasets identically. For non-deep learning
baselines, we implement them by a versatile python package “fancyimpute1”.
For deep learning baselines, we implement them by TensorFlow 1.12 framework
according to the corresponding papers. Moreover, we conduct the same training
strategies for them, such as shuffle, early stopping, and drop out.

For our model, we construct ImputeRNN based on GRU and train them by
the ADAM [13] optimizer. The learning rate of ADAM is a hyper-parameter that
ranges from 0.001 to 0.01. The hidden unit number of GRU is 64 for PhysioNet,
while 100 for MIMIC-III. The batch sizes are both 128. To avoid overfitting, we
set the dropout rates to 0.5 for training. We normalize all input variables to be
zero mean and unit standard deviation. Besides, we use early stopping on the
validation set to find the best values for hyper-parameters, and then we report
the results on the testing set from 10-fold cross validation.

5.3 Imputation Performance

To evaluate imputation performance, we randomly eliminate 10% of existed val-
ues and calculate RMSE between original values and estimated. Table 1 shows
the imputation results on two datasets. We find that the methods based on RNN
models achieve smaller results than Non-RNN models, which means better per-
formance. We speculate that RNN helps the model take full advantage of the
temporal information, which is a benefit for time series imputation. Moreover,
all our models outperform the baselines for imputation performance on both
datasets. The RMSE of ImputeRNNgu is 0.5312 on Physionet and 0.4722 on

1 https://github.com/iskandr/fancyimpute.

https://github.com/iskandr/fancyimpute
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Table 1. The Imputation performance in terms of the RMSE.

Categories Methods Physionet MIMIC-III

Non-RNN Mean 0.6132± 0.0001 0.5752± 0.0001

KNN 0.5981± 0.0082 0.5369± 0.0077

MF 0.6354± 0.0164 0.6423± 0.0204

MICE 0.6314± 0.0113 0.6438± 0.0104

GAIN 0.6241± 0.0074 0.5743± 0.0068

RNN M-RNN 0.5874± 0.0043 0.5268± 0.0034

BRITS 0.5726± 0.0030 0.5244± 0.0021

LGnet 0.5646± 0.0040 0.5207± 0.0029

GAN-2-Stage 0.5782± 0.0069 0.5217± 0.0046

E2GAN 0.5623± 0.0034 0.5131± 0.0020

Our models ImputeRNNlc 0.5423± 0.0027 0.4896± 0.0021

ImputeRNNgu 0.5312±0.0025 0.4722±0.0018

MIMIC-III, which are the best results on two datasets. For our models, we find
that ImputeRNNgu performs better than ImputeRNNlc. It demonstrates that
the gate unit is a more suitable medical bias fusion strategy for EMR imputation
than the linear concatenation. Additionally, we present the standard deviations
of each RMSE result, and our models have a low-level variation of the standard
deviation. It means that the results of our models are stable for imputation tasks.

5.4 Prediction Performance

In most cases, the missing data is imputed to assist downstream analysis models
to be more efficient and powerful. Therefore, we conduct prediction experiments
based on imputed complete datasets to validate the imputation performance
indirectly. We take the in-hospital mortality as the prediction target, and we use
the AUC score as the metric because of imbalanced datasets (i.e. the death is
in the minority). We utilize different classifiers to predict the target. They are
logistic regression (LR), random forest (RF), support vector machine with RBF
kernel (SVM), and RNN.

Table 2 shows the mortality prediction performance on both datasets. All of
our models outperform baselines, and the ImputeRNNgu achieves state-of-the-
art results for every classifier. We discover the results of MIMIC-III are generally
better than those of Physionet. We think that the more samples and features of
MIMIC-III making a difference for the ability of models. For different classifiers,
the RNN is superior to others, and the ImputeRNNgu achieves the best AUC
scores on both datasets by the RNN classifier. They are 0.8867 for Physionet
and 0.9057 for MIMIC-III. It is a remarkable improvement compared to the
previous best model E2GAN. Besides, the ImputeRNNgu performs better than
the ImputeRNNlc on prediction tasks. This result is similar to the imputation
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Table 2. The mortality prediction performance in terms of the AUC score.

Categories Methods Physionet MIMIC-III

LR RF SVM RNN LR RF SVM RNN

Non-RNN Mean .7013 .7391 .7943 .8273 .7646 .7842 .8275 .8410

KNN .7120 .7443 .7881 .8318 .7428 .7856 .8168 .8430

MF .6968 .7364 .7909 .8231 .7203 .7609 .8130 .8357

MICE .7057 .7291 .7762 .8193 .7183 .7782 .7913 .8208

GAIN .7054 .7371 .7936 .8267 .7601 .7868 .8253 .8397

RNN M-RNN .7149 .7727 .8060 .8473 .7791 .7973 .8326 .8671

BRITS .7321 .7870 .8149 .8502 .7752 .8172 .8411 .8719

LGnet .7458 .7816 .8117 .8719 .7948 .8073 .8391 .8804

GAN-2-Stage .7212 .7546 .8157 .8603 .7817 .8052 .8354 .8764

E2GAN .7677 .7998 .8201 .8724 .8021 .8104 .8425 .8813

Our models ImputeRNNlc .7784 .8053 .8412 .8819 .8184 .8225 .8614 .8982

ImputeRNNgu .7926 .8130 .8494 .8867 .8249 .8305 .8722 .9057

performance. It proves that the appropriate use of medical bias is beneficial
to impute EMRs with more realistic and logical values. These imputed values
make sense for downstream applications. In conclusion, reasonable imputation is
significant for downstream tasks, and the missing values imputed by our models
truly enhance the prediction performance of downstream analysis methods.

5.5 Discussion

Time Efficiency. Firstly, we discuss the time efficiency of the training step to
assess the computational complexity of the model. We compare our models with
RNN-based baselines for how long the model needs to be trained. To ensure
credible comparability, we set the same datasets, hardware, training strategies,
and other parameters for all models. The result of time efficiency is shown in
Table 3. We notice that all our models are more time-efficient compared to
RNN-based baselines, especially GAN models. It demonstrates that ImputeRNN
achieves the best performance with an acceptable complexity.

Missing Rate. We further consider the model imputation performance with
different missing rates. We randomly select 10%, 20%,..., 90% data to discard
from datasets. Then we impute the vacancies by ImputeRNNgu and baselines.
Figure 4 presents the imputation results on two datasets. We find that RNN
models perform better than Non-RNN models, especially for high missing rates,
and our model performs the best. As the missing rate increases, the performance
of all models becomes worse because insufficient data cannot provide enough
information. However, ImputeRNNgu still achieves the best results for all missing
rates. It indicates that our model is suitable for scenarios with high missing rates.

Loss Weight λ. We investigate the influence of loss weight λ in imputation
and prediction tasks. It is a hyper-parameter that decides the proportion of
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Table 3. Comparison of the time efficiency.

Categories Methods Physionet MIMIC-III

RNN M-RNN 213± 5s 669± 3s

BRITS 202± 2s 566± 4s

LGnet 268± 4s 693± 4s

GAN-2-Stage 2650± 10s 5253± 13s

E2GAN 274± 5s 736± 6s

ImputeRNN ImputeRNNlc 176±3s 448±3s

ImputeRNNgu 189± 2s 453± 4s

Fig. 4. The imputation performance comparison for different missing rate percentages
on Physionet and MIMIC-III datasets.

imputation and prediction losses. When it becomes smaller, the imputation loss
is stronger. Figure 5 shows the results of ImputeRNNgu. We observe that the
imputation task attains the minimum RMSE on two datasets when λ is 0.001
and 0.0001 rather than 0. It demonstrates that the prediction loss is useful for
imputation. Similarly, the result of the prediction task is worse if λ becomes
too big. The AUC scores on two datasets reach maximums when λ is 0.01 and
0.1. Comparing the optimal λ of two tasks, we find that λ of the prediction
task is larger than the imputation task. It is reasonable because a slightly larger
prediction loss makes imputed values more consistent with the prediction task.
To summarize, both losses are essential for imputation and prediction.

5.6 Ablation Study

Finally, we research the effect of different modules in ImputeRNN. We remove
feature regression (FR), prediction loss (PL), and mask GRU (MG) modules of
ImputeRNNgu separately and conduct contrast tests. Table 4 shows the results
of the ablation study. We find that the original complete model performs better
than modified incomplete models. It indicates that all modules are necessary for
imputation. We also observe that the model without mask GRU attains the worst
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Fig. 5. The influence of loss weight λ in imputation and prediction tasks on Physionet
and MIMIC-III datasets.

results. We conclude that mask GRU does play a vital role in ImputeRNN. It
demonstrates that incorporating medical bias is significant for EMR imputation.

Table 4. The ablation study for imputation and prediction tasks.

Datasets Methods RMSE AUC

LR RF SVM RNN

Physionet ImputeRNNgu 0.5312 0.7926 0.8130 0.8494 0.8867

Without FR 0.5491 0.7814 0.7943 0.8253 0.8759

Without PL 0.5478 0.7797 0.7816 0.8124 0.8588

Without MG 0.5907 0.7202 0.7460 0.8023 0.8344

MIMIC-III ImputeRNNgu 0.4722 0.8249 0.8305 0.8722 0.9057

Without FR 0.4913 0.8103 0.8194 0.8520 0.8941

Without PL 0.4846 0.8027 0.8135 0.8440 0.8795

Without MG 0.5326 0.7699 0.7964 0.8304 0.8583

6 Conclusion

In this paper, we propose a novel joint RNN model called ImputeRNN to learn
regularities of values and medical bias simultaneously to impute missing values
in EMRs. We regard the missingness of data as an expression of medical bias and
model it by a mask GRU. Then we apply a fusion layer to employ medical bias.
Finally, we construct an imputation layer to impute missing values in EMRs.
Empirical experiments on two real-world EMR datasets show that ImputeRNN
achieves state-of-the-art performance for EMR imputation. For future work, we
are interested in imputing EMR datasets that contain discrete variables.
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Abstract. The recent advancements in deep neural networks (DNNs)
are revolutionizing the healthcare domain. Although many studies try to
build medical DNNs model based on historical Electronic Health Records
(EHR) and have achieved promising performance in many clinical pre-
diction tasks, recent studies show that DNNs are vulnerable to adver-
sarial attacks. Much of the interest in adversarial examples has stemmed
from their ability to shed light on possible limitations of DNNs. How-
ever, related research has been receiving sustained attention in com-
puter vision community, how to design adversarial examples for EHR
data remains a rarely investigated. To figure out this problem, we pro-
pose a novel approach for generating EHR adversarial examples, named
as TSAttack, which explores temporal structure contained in EHR to
achieve an effective and efficient attack. Based on the generated EHR
adversarial examples, we further propose a procedure to discover suscep-
tible temporal patterns (STP) in a patient’s medical records, which pro-
vide clinical decision support for dynamic monitoring. Extensive exper-
iments on the real-world longitudinal EHR database MIMIC-III have
demonstrated the effectiveness of our approach is yielding better perfor-
mance in adversarial settings.

Keywords: Adversarial attack · Medical data · Susceptible temporal
patterns

1 Introduction

Electronic Health Records (EHR) contain rich historical clinical information
about patients, how to create accurate predictive models from EHR data, which
is one of the important research in clinical informatics. Recent years have wit-
nessed the rapid development of deep learning (DL), a series of state-of-the-art
medical predictive models based on DL have been designed for various clinical
tasks [6,12,20]. In particular, many studies try to adapt powerful sequential neu-
ral models to analyze clinical time series data and achieve superior performance
[9].
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However, the “black box” nature of the DL leads to models that lack trans-
parency. A well-trained DL model can be vulnerable to adversarial examples,
which are maliciously crafted to mislead the model to output wrong predictions
[17]. A primary reason is that adversarial samples are located in some areas in
the high-dimensional feature space which are not learned during training. Due
to the high-dimensionality characteristic of EHR data, the decision boundaries
could be more vulnerable in the adversarial setting. Theoretically, for any given
original example near the decision boundary, we can craft adversarial perturba-
tions to generate a new sample that crosses the decision boundary of the model
to the target class. Thus, adversarial examples expose regions of the input space
where the model performs poorly, which can aid in understanding and improv-
ing the model. Additionally, EHR systems contain numerous data collecting and
processing pipelines. There are many potential adversaries and are thus vulner-
able at many different stages [7]. Most healthcare-associated applications are
safety-critical, while eager to deploy DL technologies. Therefore, investigating
the adversarial vulnerability on EHR data thus becomes a valuable research
topic in both theory and practice.

Despite fruitful studies of the adversarial attack on computer vision com-
munity (e.g., image data) [5,11,13], how to craft adversarial examples for EHR
data remains rarely explored. Sun et al. [16] are the first to consider adversar-
ial example generation on deep predictive models for EHR data. Different from
attacking image or textual data, their aim is to detect susceptible medical mea-
surements by analyzing the adversarial perturbations, which provide guidance
for clinicians/nurses. However, since the inherent characteristic of EHR data
such as temporality, heterogeneity, and high-dimensionality, existing adversarial
attack methods for the image or textual data cannot be directly applied to EHR
data, how to develop an adversarial attacks approach on temporal EHR data
still remains two major issues.

Challenges. (1) static vs temporal. EHR contains a sequence of multivariate
clinical time series data. Compared with static image data, the most critical dif-
ference is the temporal structure contained in EHR data. Temporal information
within the clinical time series data reflects changes in the patient’s condition. In
order to provide a more efficient method to attack temporal EHR data, we need
to fully utilize and model the temporal information. (2) semantic-less vs feature
significance. For image data, individual pixels value has no specific meaning. In
contrast, each medical feature differs in clinical significance and corresponds to
a specific clinical event, thus small changes in EHR data would easily change the
clinical observations of a patient. Therefore, the ground truth label of an EHR
adversarial example is more ambiguous.

Motivation. To address these issues, our idea is to design an effective and
efficient EHR adversarial example generation method by incorporating temporal
information into the attacking. The incorporated temporal information not only
can lead to reducing the cost of attacking but also suggests the susceptible
changes in the patient’s condition. Specifically, adversarial perturbations in EHR
data can inform which temporal patterns are susceptible. Therefore, beyond
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designing an EHR adversarial attack method, we are motivated by the question:
“Which certain temporal patterns could be more susceptible to adversarial attack
than others for a given patient?”

Overview. To summarize, in this paper, we propose a novel approach for gen-
erating EHR adversarial examples, TSAttack (Temporal Sparse Adversarial
Attack), which explores temporal structure contained in EHR to achieve spar-
sity. Inspired by the sparse attack method [4,5], TSAttack adopts an optimal
adversarial attack strategy to generate EHR adversarial examples. To extract key
temporal structures, we construct a novel temporal sliding window that applies
on the adversarial perturbations. During the optimization procedure, TSAttack
employs lp-norm perturbation regularization and the proposed temporal spar-
sity regularization that encodes temporal structures simultaneously. Then, we
extract the susceptible regions from adversarial examples according to the time-
level susceptibility score, which is defined by the magnitude and structure of
adversarial perturbation. To obtain Susceptible Temporal Patterns (STP), the
raw time series data of susceptible regions are first abstracted into a series of
higher-level, meaningful concepts (e.g., ‘Decreasing Respiratory rate’). Finally,
we adopt temporal patterns mining algorithm to discover frequently temporal
patterns within the susceptible regions.

To our knowledge, it is the first time that explores temporal structures when
implementing adversarial attacks on EHR data. Furthermore, we provide a gen-
eral procedure to discover susceptible temporal patterns in the patient’s med-
ical records based on adversarial perturbation. Extensive experiments on the
real-world longitudinal EHR database MIMIC-III [10] have demonstrated the
effectiveness of our approach.

2 Related Work

Adversarial Attack. Early works on adversarial attacks focus on computer
vision community. The Fast Gradient Sign Method (FGSM) [8] is a single-step
attack that uses the sign of the gradient of the loss function with respect to the
input for crafting an adversarial image. Iterative Fast Gradient Method (IFGM)
[11] is an iterative version of FGSM. DeepFool [13] first assumed the DNNs is
linear, and then find the closest distance from the original input to the decision
boundary of adversarial examples. Optimization-based attack methods C&W [4]
and EAD [5] serve as another line of research, which found an adversarial example
by jointly minimizing its l2-norm distortion and a differentiable loss function
based on the logit layer outputs of DNNs. The above studies are all based on
images, [18] firstly presented the l2,1-norm based optimization algorithm for
adversarial videos based on the perturbation propagation.

A few prior works (e.g., [2,16]) propose to generate EHR adversarial exam-
ples. Sun et al. [16] adopted C&W method for attacking deep predictive models
of EHR, which aims to detect susceptible locations in medical records. The work
[2] proposed a saliency score based adversarial attack on longitudinal EHR data,
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named LAVA attack. In their method, medical features are binary coded so it is
not suitable to directly apply this study to continuous value.

Temporal Patterns Mining. Since analysis on time-intervals, rather than on
the raw time series data, may shed light on the interpretative and meaningful
temporal patterns within the temporal dimension. Temporal patterns mining
seeks for the most frequent patterns across a set of temporal relations amongst
the symbolic intervals. A typical approach to represent the temporal relations
among the time-intervals is Allen’s temporal relations [1]. Moskovitch et al. [14]
proposed KarmaLego framework that exploits the transitivity of temporal rela-
tions to generate candidates for finding frequent temporal patterns, which can
be adapted as features to learn the clinical classifier.

3 Preliminaries

Assuming there are N patients’ longitudinal EHR data. For each patient, the
EHR data containing a sequence of multivariate observations. We use x(n) =
{x

(n)
1 ,x

(n)
2 ,x

(n)
3 , ...,x

(n)

T (n)} to represent an instance with T (n) visit records. To
minimize clutter, in the following we drop the superscript (n) whenever it is
unambiguous. Each visit xt ∈ R

D is a D-dimensional vector corresponding to
clinical features. Given an input instance x, medical prediction task aims to pre-
dict a future clinical event (e.g., mortality risk prediction, physiologic decom-
pensation and phenotype classification). Formally, we denote the DNNs model
by f is trained to learn the mapping from the input space to the label space :
X → Y. The network f is parameterized by θ and we denote it as fθ.

Definition 1. (EHR Adversarial Examples) Given an arbitrary x ∈ X , and a
trained neural network model fθ(·), x∗ = {x∗

1,x
∗
2,x

∗
3, ...,x

∗
T } is an adversarial

example of x when:

arg min
x∗ ‖ x − x∗ ‖p s.t. fθ(x) �= fθ(x∗) (1)

‖ · ‖p is the lp norm distance, which is a metric to quantify the magnitude of the
similarities between x and x∗.

To be explicit, we write the perturbation added to an original medical record
x as: δ = x−x∗. Here we focus on the setting of targeted attacks, the adversarial
example targeting at label yc∗ can be generated through solving an optimization
problem:

arg min
δ∗

‖ δ ‖p s.t. fθ(x + δ) = yc∗ (2)

Definition 2. (Temporal Sliding Window) To better explore the temporal struc-
ture in EHR data, we introduce a novel temporal sliding window applies on
the adversarial perturbations. A temporal sliding window W with stride s and
size D × w. To divide δ into a set of groups {δGi

}, i ∈ {1, 2, ..., |Gi|}, where
|Gi| = (T − w)/s + 1.
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Fig. 1. Overview of the Susceptible Temporal Patterns (STP) discovery method. The
proposed framework consists of two components: adversarial EHR examples are first
generated by TSAttack, and then used to discover STP in patient’s medical records,
which provide clinical decision support for dynamic monitoring.

In the adversarial attacks step, we slide a window through time to capture
temporal information hidden in the raw input space. When s = 1, the sliding
window W moves one timestep at a time. Different splitting schemes can be
selected by adjusting the value of stride s and size w.

Definition 3. (Temporal Pattern) Temporal pattern is a higher-level, meaning-
ful representation that aims to capture the dynamic behavior of the multivariate
time series. We use TP = (S,R) to denote a discovered temporal pattern, where
S = {S1, S2, . . . , Sk} represents the set of abstract concepts and R is an upper
triangular matrix that describes the temporal relations between each abstract con-
cept.

Here, we follow the widely adopted Temporal Abstraction (TA) [14,15] meth-
ods to represent time-stamped raw data as a set of time interval-based abstrac-
tions. In particular, we use the Trend abstraction, is denoted by the change
directions (e.g., Decreasing, Increasing, Stable) of raw time series data. Then
Allen’s temporal relations [1] can be easily described all of the pairwise relations
between time interval-based.

4 Methodology

In this section, our core idea is to discover susceptible temporal patterns in
EHR data by adversarial attacking. We present the Temporal Sparse Adversarial
Attack approach to the EHR data, named TSAttack. Then we leverage adversar-
ial examples to discover susceptible temporal patterns. The overall architecture
for the proposed method is presented in Fig. 1. We start with introduce how to
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explore the temporal structure contained in EHR data to achieve a more effec-
tive attack. Based on the generated adversarial EHR data, we finally describe
our novel perturbation strategy to discovering susceptible temporal patterns.

4.1 Attack Setting

Attack Strategy. In the attack setting, we adopt an optimal adversarial attack
strategy to develop the components of adversarial example generation, since it
has been shown to be effective in attacking image DNNs [4,5]. To obtain the
adversarial sample x∗, we aim to solve the optimization problem in (Eq. 2) to
learn an effective perturbation strategy. However, it is hard to directly optimize.
Existing works [4,5,16] turn to relax it into the following objective function:

arg min
δ∗

‖ δ ‖p − �(fθ(x∗),yc∗) (3)

Intuitively, the well-trained DNNs model corresponds to a decision boundary.
When crafting adversarial examples based on x, with iteratively optimizing the
objective function, the sample will move towards the gradient of the loss function
until it across the decision boundary.

Threat Models. For the medical prediction task, the Recurrent Neural Net-
works (RNNs) and its variants have achieved remarkable performance in various
clinical time series data modeling [9]. Such as long short-term memory (LSTM)
recurrent neural networks, which is designed to capture long term dependencies
in sequence data. At time t, the LSTM updates the hidden vector of the state
representation as: ht = LSTM(xt, ht−1). Therefore, the temporal information
hidden in the input sequence data can be effectively transmitted through the
network. In particular, we assume adversarial perturbations share similar char-
acteristics. Technically, adversarial perturbations can propagate between differ-
ent visit steps. In other words, the added perturbations of the current t− 1 visit
can propagate to the next t visit, and then change the output of the predictive
model.

4.2 Temporal Sparse Attack

Compare to statistic images, the main difference lies in the temporal structure
contained in EHR data. The dimensionality of temporal EHR data is much
higher as EHR data have both time and feature dimensions. On the one hand,
there are potential interactions between medical features. On the other hand,
there are temporal dependencies between the visit at different timesteps. Besides,
the perturbation on EHR data would easily change the clinical observations of
a patient. The dense adversarial attack in images domain is not suitable for
temporal EHR data. Hence, we expect that the adversarial perturbations have
the sparse property in both time and feature dimensions.

To address these issues, we introduce the proposed TSAttack for crafting
EHR adversarial examples. Considering the temporal information hidden in the



STP Discovery for Electronic Health Records via Adversarial Attack 435

input data, TSAttack employs lp-norm perturbation regularization and the pro-
posed temporal sparsity regularization that encodes temporal structures simul-
taneously. Based on optimal adversarial attack strategy, we cast our problem as
an optimization problem of the following form:

arg min
δ

F(x + δ,yc∗) + λ1L(δ) + λ2D(δ) (4)

Where δ is the adversarial perturbations that misclassify the generated adver-
sarial example x∗ = x + δ to a target label yc∗ . Here, F(x + δ,yc∗) denotes
a loss function to measure the difference between the prediction and the target
label. L(δ) is a distortion function, which is used to control the magnitude of the
adversarial perturbations. D(δ) is the proposed temporal sparsity function can
ensure the sparsity of generated adversarial perturbations. And the non-negative
regularization parameters λ1, λ2 are constant to balance the two terms in the
objective function. Next, we describe the details of the proposed method.

Adversarial Loss Function. Following C&W [4] and EAD [5] attack, we adopt
the same loss function F(.) to enforces the DNNs model predicts its most likely
class to be the target class yc∗ . Given the original EHR data x, and the threat
model fθ. To assign the target label yc∗ to the most probable label for x, we
would like to collect the outputs before the Softmax layer in the considered DNNs
model: Logit(x, θ) = [[Logit(x, θ)]1, ..., [Logit(x, θ)]K ] ∈ R

K . By minimizing
the difference between the [Logit(x, θ)]c∗ and the maximum output in the logit
layer, the prediction result closer to the target label yc∗ . Formally, we optimize
the following adversarial loss function:

F(x + δ,yc∗) = max{max
j �=c∗

[Logit(x + δ)]j − [Logit(x + δ)]c∗ ,−κ} (5)

where κ ≥ 0 is a confidence parameter that is usually set to zero.

Distortion Function. A key point for crafting adversarial examples is to eval-
uate the distance between the original examples and the adversarial ones. As
mentioned before, we desire to generate adversarial samples that the perturba-
tions are added on as few locations as possible. Following [16], we use l1-norm
as distortion function to evaluate the adversarial perturbations: L(δ) = ‖ δ ‖1
=

∑
n

∑
m |δnm|.

Temporal Sparsity Function. To perform the temporal sparse attack, we
propose to adopt the sliding window strategy that injects time interval-wise
sparsity into the adversarial attack. First, with the above defined temporal slid-
ing window W, we assume the adversarial perturbations δ is split into a set of
sub-regions {δGi

}. Next, inspired by the setting of group Lasso [19] and l2,1 norm
[18], we apply temporal sparsity function across the {δGi

} as follows:

D(δ) =‖ {δGi
} ‖2,1=

|Gi|∑

i

‖ δGi
‖2 (6)
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Algorithm 1: TSAttck
Input: A medical predictive DNNs model fθ(·); a clean EHR data x, target

label yc∗ ; iterations number STEPS; step size α
Output: An adversarial EHR data x∗

1 Initialize x∗
0 = x

2 i ← 0
3 while i ≤ STEPS do
4 x∗

i+1 ← {x∗
i − α · [�J(x∗

i )]}
5 where J(.) is the objective function in Eq. 4
6 x∗

i+1 ← Clip(x∗
i+1, dom(X ))

7 if fθ(x
∗
i+1) = yc∗ then

8 x∗ = x∗
i+1

9 break

10 end
11 i ← i + 1

12 end
13 return x∗

Different from directly optimize the lp norm regularization, the temporal
sparsity function is expected to select a few key timesteps in EHR data to attack.
Thus, the adversarial perturbations added on a few timesteps can be propagated
along with the temporal structure to misleads DNNs. Besides, the distribution of
the sparse perturbation providing some insights into the vulnerability of different
time intervals of EHR on the adversarial attack. In our setting, by adjusting the
temporal sliding window size r, we can obtain different partition set {δGi

} to
control the sparsity.

Training Algorithm. To generate EHR adversarial samples such that (Eq. 4)
is satisfied, we can implement iterative optimization algorithms to solve the
problem. Algorithm 1 describes the generation procedure via TSAttack method.
We can iteratively perturb x∗ by minimizing objective function with first-order
optimization methods. Since the adversarial attack strategy cannot ensure per-
turbated features are still valid in clinical. For example, the value of Respiratory
rate cannot be negative. At each iteration, we clip the features of x∗

i+1 into the
original input domain of X : x∗

i+1 ← Clip(x∗
i+1, dom(X )). The dom(X ) includes

the statistical information for each medical feature, such as the maximum, mini-
mum, and variance. We wish to enhance perturb in locations of high variance to
have less recognizable modifications. In the implementation, we use the Adaptive
Moment Estimation (Adam) optimizer to train with a learning rate of 0.015.

4.3 Evaluation of Adversarial Perturbation

In this section, we introduce the perturbation evaluation metrics of EHR data
and then present how to compute the susceptibility score for the adversar-
ial examples. Recall that the significant difference between attacking static
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image data and temporal EHR data, we follow [16] and use three mea-
sures to quantify the degree of attacking. Let Δ ∈ R

n×D×t the optimal
adversarial perturbation for all patients X = [x(1),x(2), ...,x(n)]. The mea-
sure M1(Δ, i, j) = max

1≤k≤n
(|Δk,i,j |) indicates the global maximum perturba-

tion for i timestep and medical feature j. The global average perturbation
M2(Δ, i, j) = 1

n

∑n
k=1(|Δk,i,j |) focuses on the magnitude of the adversarial

perturbations at each time-feature grid. The measure M3(Δ, i, j) = ‖Δ .i,j‖0
n

denotes the probability of being added perturbation.
Then, we can denote a time-level susceptibility score to indicate overall sus-

ceptibility or vulnerability at different timesteps via the following formula:

TS(Δ, i) =
D∑

j=1

{M2(Δ, i, j) � M3(Δ, i, j)} (7)

4.4 Susceptible Temporal Patterns Mining

Here, we propose a new procedure to discover Susceptible Temporal Patterns
(STP) in the patient’s medical records, which provide clinical decision support
for dynamic monitoring. Its core idea is based on temporal structure of the per-
turbation distribution, mining the frequent temporal patterns that exist in EHR
adversarial examples. In specific, (1) We firstly extract the susceptible regions
from EHR according to time-level susceptibility score. (2) Generate a collec-
tion of interval-based temporal patterns appearing in the susceptible region. (3)
Finally, mining the frequent temporal patterns in the above collection.

Screening Susceptible Region. After generating adversarial sample x*, we
take a further step and mining temporal patterns that are more possible to
be attacked to fool the medical predictive model. Since different EHR data x
requires a different subset of susceptible timesteps to attack, we first extract sub-
regions that are highly vulnerable to the adversarial perturbations. It is worth
noticing that thanks to the sparsity function and propagation of perturbations,
TSAttack can select a few key sub-regions to apply spares attack. Thus, we
assign the sub-regions near the maximum time-level susceptibility score as the
susceptible region for analysis.

Modeling Temporal Patterns. To describe the multivariate time series data
more intuitive, it is essential to transform the numeric variables into high-level
semantic (usually with symbolic values) time intervals. Especially, without med-
ical knowledge guidance that it will be hard to understand the raw EHR data.
Additionally, time-intervals can reduce inherent random noise in the data (due to
the irregularity of EHR). As defined in section, we construct temporal patterns
by temporal abstraction and temporal relations methods. Figure 2 describes an
example of temporal patterns of a series of raw time-point data.

In the temporal abstraction phase, numeric time-stamped data can be con-
verted to time interval sequences using Knowledge-based TA. Following [14], we
define a symbolic time interval E = <start, end, sym>. E.start and E.end denote
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Fig. 2. Illustration of susceptible temporal patterns mining procedure.

the start timestep and end timestep of E, respectively. E.sym represents one of
the abstract concepts set S, such as the Trend abstraction (e.g., Decreasing,
Increasing, Stable). In the temporal relations phase, Allen’s scheme [1] is widely
adopted to describe the temporal relation between two time-intervals using 13
possible relations. Here, we choose the set R of 7 pairwise temporal relations in
our task, include Before, Meets, Overlaps, Contains, Finish-by, Equal, Starts.

Temporal Patterns Mining. We adopt the KarmaLego algorithm [14] for
mining frequent temporal patterns. Given a set of T = {TP1, TP2, ..., TPM},
where M is the total number of discovered temporal patterns in all susceptible
regions. IF a TPi has vertical support above the predefined minimal threshold
minSup, it is referred to as frequent temporal pattern (FTP). The KarmaLego
algorithm exploits the transitivity of temporal relations to significantly reduce
the number of candidate temporal patterns.

5 Experiments and Analysis

In our experimental evaluation, we designed experiments to answer the following
research questions:

– RQ1: Can the TSAttack effectively attack on EHR data? Whether the gen-
erated adversarial samples are meaningful in clinical?

– RQ2: How the proposed TSAttack method compare to other benchmark
attack methods?

– RQ3: Cases for showing the susceptible temporal patterns discovery.

We begin by introducing the experiment settings include dataset and evaluation
metric.

5.1 Experiment Settings

Dataset. To measure the performance of our proposed model, we used EHR
data from MIMIC-III [10]. The MIMIC-III dataset is a publicly available EHR
dataset, which is widely used in many medical deep predictive tasks [9,20].
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MIMIC-III consists of medical records of 7,499 intensive care unit (ICU) patients
between 2001 and 2012. Following [9], we introduce the problems of In-hospital
mortality as our clinical prediction tasks. We use a subset of the MIMIC-III
database containing more than 31 million clinical events that correspond to 17
clinical variables.

Evaluation Metrics. In our experiments, we adopt different metrics to evalu-
ate predictive and attack performance.

Predictive Performance. For the medical predictive task, the positive and
negative labels in the dataset are imbalanced. We adopt area under the receiver
operating characteristic (AUROC) as the main metric. Besides, we also report
the precision score (Precision) and F1-score (F1) to evaluate.

Attack Performance. We not only want to generate EHR adversarial samples
successfully but also want to perturb as few locations as possible. Thus, attack
success rate and distortion of adversarial samples are the main metrics of the
corresponding task. We set X ∗ denotes the set of adversarial examples. Following
the attack evaluation criterion [4,5,13], we use the attack success rate (ASR) to
define the proportion of inputs that are generated as the adversarial examples:

ASR =
1

|X ∗|
∑

(x∗,yt)∈X ∗
(fθ(x∗) = yt) (8)

As we introduced in Sect. 4.3, we aim to measure the adversarial perturba-
tion in both magnitude and structure. The average M1, M2, and M3 distortion
metrics of successful adversarial examples are also reported.

5.2 Empirical Analysis of TSAttack

In order to answer RQ1, we want to examine how the medical predictive DNNs
model fθ(·) accuracy degrades on the adversarial examples compared with the
performance on the clean data, i.e. datasets that are not attacked. Moreover,
to verify whether the generated adversarial samples are meaningful in clinical,
we conduct a novel experiment to test the EHR adversarial examples with the
traditional scores methods.

Evaluation on Clean and Adversarial Examples. The experimental results
are shown in Fig. 3. We report the attack performance of TSAttack by the extent
to which it reduces the prediction performance of threat models. It is observed
that our proposed method TSAttack achieves the high attack success rate on the
In-hospital mortality task. While proposing the TSAttack method, we assume
that exploiting perturbation propagation can enhance the effectiveness of adver-
sarial attacks. To verify that, we also report the ASR of different iterations of
TSAttack in Fig. 3. The GRU and LSTM model achieved a better performance
drop than VanillaRNN. A possible reason is that GRU and LSTM were designed
to capture long-term dependencies, and long memory is one of the important fac-
tors to the propagation of perturbations, which satisfy our expectations.
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Fig. 3. The attack performance of TSAttack with different threat models on the
MIMIC-III dataset. The solid line represents the prediction of mortality within a fixed
time 48-h window, and dotted line represents within a fixed time 24-h window.

Table 1. Comparison of traditional scores system and DNNs model with TSAttack.

Methods Clean Attack

AUC-ROC Precision F1 AUC-ROC Precision F1

SAPS-II 0.701 0.611 0.158 0.689 0.601 0.148

APS-III 0.690 0.597 0.146 0.657 0.589 0.137

LSTM 0.851 0.731 0.662 0.103 0 0

Quality of the EHR Adversarial Samples. Since it is hard to directly eval-
uate whether an EHR adversarial example is meaningful in clinical or not, we
design an experiment to analyze the quality of them. Before the extensive body of
research on clinical predictions using deep learning, traditional statistics research
modeling the risk of mortality via scoring systems based on knowledge prede-
fined by experts. Such as SAPS-II (Simplified Acute Physiology Score) score and
APACHE II (Acute Physiologic and Chronic Health Evaluation) score [3]. The
ground truth label of adversarial examples unchanged only when attacking does
not affect the scoring system’s performance. The results are reported in Table 1.
When attacking against LSTM, the predictive accuracy drops sharply. However,
it has little impact on the scoring system. This shows that adversarial samples
generated by TSAttack, are not only successfully adversarial attack the DNNs
model but also still meaningful in clinical.

Attack Effects Under Different Parameter Setting. We further carefully
examine the effect of two parameters in TSAttack. Overall, parameter λ1 empha-
sis the magnitude of adversarial perturbations, we can see from Fig. 4(a) that
increasing λ1 leads to a larger adversarial perturbation. However, when λ1 <
0.001, the attack rarely succeeds. For another parameter λ2, our experiment
results show that it controls the temporal structure and sparsity of adversarial
perturbations. Figure 4(b) presents how the perturbation propagation impacts
the distribution of adversarial perturbations added by TSAttack. In particu-
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(a) Effect of λ1 (b) Effect of λ2

Fig. 4. Effect of parameters in TSAttack. (a) Attack performance of TSAttack by
varying λ1 (setting λ2 = 1), lower numbers are better. (b) An example of distribution
with adversarial perturbations added by TSAttack and C&W methods.

lar, the Mean Absolute Perturbation (MAP) of each timestep generated by the
C&W method (when λ2 = 0) focuses on the recent timesteps, which have a
stronger influence on the prediction output but more likely to be detected. For
TSAttack method, the adversarial perturbations present the characteristics of
periodic propagation. While effectively reducing the cost of the attack, it can
also reveal the vulnerable time-level regions. It provides the foundation for our
subsequent analysis of STP discovery.

Table 2. Performance comparison of different adversarial attacks methods on MIMIC-
III dataset.

Attack methods Attack (0⇒1) Attack (1⇒0)
ASR M1-Avg M2-Avg M3-Avg ASR M1-Avg M2-Avg M3-Avg

FGM-l1 11.5 8.244 8.244 0.160 86 3.407 3.407 0.070

FGM-l2 100 0.419 16.534 0.350 100 0.112 7.143 0.140

FGM-l∞ 100 0.069 28.169 0.690 100 0.012 3.440 0.120

IFGM-l1 98 0.185 9.962 0.190 100 0.033 2.188 0.100

IFGM-l2 100 0.268 10.127 0.210 100 0.038 2.449 0.080

IFGM-l∞ 100 0.047 18.472 0.390 100 0.015 2.461 0.080

C&W 100 0.251 5.214 0.160 100 0.071 1.241 0.070

TSAttack 100 0.235 3.198 0.100 100 0.063 0.723 0.050

5.3 Attack Performance Comparison

To answer RQ2, we evaluated TSAttack against the several existing adversarial
attack baselines. Since adversarial attack on temporal EHR is a novel task, there
are very few baselines that we can compare with. We consider the following
methods for comparison:
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(1) FGSM attack [8]: Fast Gradient Sign Method is a one-step method to
fast generate adversarial examples. It linearized the objective function with
a first-order Taylor series approximation. Compared to the iterative attack
strategy, FGSM addresses the demands of that need to generate a large num-
ber of adversarial examples with lowly expensive. The FGSM attacks using
different perturbation regularizations are denoted by FGSM-l1, FGSM-l2
and FGSM-l∞.

(2) IFGSM attack [11]: It is a basic iterative extension of FGSM. The FGSM
attacks using different perturbation regularizations are denoted by IFGSM-
l1, IFGSM-l2 and IFGSM-l∞.

(3) C&W attack [4]: The proposed model C&W aimed to evaluate the defen-
sive distillation strategy for mitigating the adversarial attacks. The work in
[16] firstly adopted C&W method for attacking predictive models of medical
records.

Attack Evaluation. Table 2 presents the results of all the comparison methods
across different performance metrics. With the help of bringing in more temporal
information, TSAttack method achieves the best performance with significantly
reduces the M2 and M3 distortion metrics respectively. Since M2 and M3 distor-
tion metrics effectively reflect that the magnitude and structure of the adversarial
perturbation. For the attack success rate, both baselines and our method yield
100% ASR results. It is worth noting that M1 focuses on the maximum per-
turbation, which is consistent with l∞ perturbation regularizations. Therefore,
FGSM and IFGSM attack with l∞ perturbation regularizations, leading to a
drop in M1 metrics.

5.4 Detailed Analysis of STP Discovery

In this subsection, we conduct experiments to answer RQ3. We select correct
classified samples to experiment. Following the same experimental setting in
Sect. 5.1, we apply TSAttack on the test set to generate adversarial examples
for STP discovery. In the experiment, we started by extracting the susceptible
regions from adversarial examples according to the time-level susceptibility score.
Then for susceptible time-level regions, we discover a total of 189,13 interval-
based temporal patterns that appeared at least once within at least 20% of the
adversarial examples. To discover STP sets that are informative, we select top-k
STP according to the Information-Gain feature selection method. As shown in
Table 3, we list the top-3 frequent STP that are most susceptible to In-hospital
mortality prediction task in the test set of the ICU patient cohorts.
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Table 3. The top-3 discovered STP and their support level.

6 Conclusion

In this paper, we proposed a novel approach for generating EHR adversarial
examples, TSAttack, which explores temporal structure contained in EHR to
achieve an effective and efficient attack. By utilizing information hidden in the
adversarial perturbations, we further developed a procedure to discover suscepti-
ble temporal patterns (STP) in a patient’s medical records. To our knowledge, it
is the first time that explores temporal structures when implementing adversarial
attacks on EHR data. Extensive experiments conducted on MIMIC-III dataset
demonstrated the effectiveness and interpretability of the proposed method.
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Abstract. Heart failure (HF) affects the health of millions of people
worldwide and the early detection of HF risk plays a vital role in preven-
tion and prompt treatment. Various decision support systems based on
machine learning have been presented recently to predict HF. However,
the existing systems usually assumed that all features add equal weight
to the prediction result, which could not properly simulate the diagnostic
status. In this study, a decision support system is proposed for HF pre-
diction using MSE Back Propagation Method (MSEBPM) and weighted
naive Bayes. First, the feature selection method eliminates irrelevant
features to improve accuracy and decrease computational times. Second,
the proposed MSEBPM computes a weight vector for features based on
their contributions, trying to minimize the MSE loss of the predicted
class probabilities. Finally, the trained weight vector is applied to the
weighted naive Bayes model for HF risk prediction. The proposed system
is evaluated with a published dataset of 899 patients, and compared with
conventional data mining techniques and other state-of-the-art systems.
The results show that our proposed system leads to 82.96% accuracy in
HF risk prediction, which suggests that it could be used to early detect
HF in the clinic.

Keywords: Feature selection · Feature weighting · Weighted naive
Bayes · Decision support system

1 Introduction

Heart failure (HF) is the main cause of morbidity and mortality nowadays. It
has been proved that early detection of HF is crucial to properly treat patients
before a heart attack, and thus this prompt treatment could prevent heart stroke
to some degree. Although there have been large achievements in the medical
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treatment for HF, the early detection of it still remains an enormous challenge
[21]. Therefore, the development of an accurate and easy-to-use decision support
system would be especially useful to aid physicians in the early detection of HF.

Recently, various decision support systems have already been proposed. A
group of systems [12] directly utilize data mining models to predict HF risks.
Meanwhile, another group is a set of hybrid systems [16,22], consisting of two
stages. In the first stage, feature engineering techniques, including feature selec-
tion and feature weighting, are applied to select significant features or identify
feature weights. In the second stage, the subset or weight vector is used as input
to improve the HF prediction accuracy. According to our investigation, most of
those hybrid systems put more emphasis on feature selection. They assumed that
all features add equal weight to the prediction result, which could not properly
simulate the diagnostic status.

In order to address this problem, we propose a decision support system for
HF prediction using MSE Back Propagation Method (MSEBPM) and weighted
naive Bayes. First, to eliminate the negative impact of irrelevant features, infor-
mation gain is employed to select a set of significant features. In the medical
field, a large number of features are stored in the database as the model input,
including the one that is irrelevant to our current task. The random distribu-
tions of irrelevant features would add noise to the prediction results. Therefore,
the reduced input features could improve the performance of the classification
model in terms of accuracy as well as computational times. Second, the proposed
MSEBPM is trying to calculate an optimal weight vector based on the contri-
butions of the selected features. MSEBPM minimizes the difference between
predicted results and the ground-truth labels under an MSE objective function.
By utilizing backpropagation, the weight vector is converged to an optimal value.
Third, the trained weight vector is applied to weighted naive Bayes, which is a
variant of naive Bayes by adding additional weight parameters. This classification
model could absorb feature weighting information, and therefore the accuracy
could be further improved. The extensive experimental results demonstrate that
our proposed system is more superior compared to other existing systems in HF
risk prediction. The main contributions of this paper are as follows.

– First, a decision support system is proposed to predict HF risks by processing
both physiological data and EMR data.

– Second, the information gain method is utilized to distinguish significant fea-
tures from irrelevant ones, and MSEBPM is used to identify weight for each
selected one. Both feature engineering techniques could improve the accuracy
of HF prediction.

– Third, weighted naive Bayes is used as the classification model, adding weight
information to the classification results to achieve a higher accuracy of nearly
83% in comparison with other state-of-the-art systems.

The rest of the paper is organized as follows. Section 2 briefly reviews the lit-
erature on existing HF prediction systems and relevant techniques. In Sect. 3, the
overall structure of the decision support system is proposed. Section 4 presents
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the involved methods in detail, including feature selection, feature weighting,
and the classification model. Section 5 presents and discusses the results of the
experiments compared with other state-of-the-art methods. The paper is con-
cluded in Sect. 6.

2 Related Work

This section briefly introduces works on existing heart diagnostic systems and
relevant techniques, including the feature selection method and naive Bayes.

2.1 Heart Failure Detection Systems

In recent years, various data-driven decision support systems for diagnostic pre-
diction have been intensively developed in the field of medical treatment, such
as HF2HM [23], RESKO [14], SHMS [3].

More specifically, for HF detection, a few relevant works [7,13,18] are inves-
tigated by researchers. Recently, Machine Learning (ML) has been successfully
used to improve prediction accuracy. For example, [2] applied the decision tree
model to identify heart disease from patients. In [16], a novel kernel random
forest ensemble is used to produce significantly better quality results. Further-
more, ANN-based methods have been widely adopted in medical diagnosis due
to its powerful ability to address linear and non-linear problems. [10] uses ANN
as the classification model for detecting the absence or presence of HF. How-
ever, those diagnostic systems suffer from a major limitation that each attribute
is assumed to add equal weight to the diagnostic outcome, which is the key
distinction between them and our proposed system. [20] utilizes Fuzzy AHP to
properly rank and compute a weight vector for HF attributes, and apply the
weight vector to the ANN model for classification. This is the closest work to
ours and will be implemented and compared in the experimental section.

Additionally, HF prediction systems always take sensor-based signals as their
input, like ECG signals. Various signal analysis techniques are applied. [8] uti-
lizes Discrete Wavelet Transform (DWT) to decompose heart rate signals into
frequency sub-bands to extract features for HF risk prediction. [1] proposes a
CNN model using two and five seconds durations of ECG signal segments for
automated detection of heart disease. Due to the lack of sensor-based signals,
our system solves the situation that signals have already been preprocessed by
data managers, that is, signal analysis is not the scope of our study.

2.2 Feature Selection Methods

Feature selection methods are supposed to select a subset of features, which
present most of the important information of classes. A survey [26] summarized
two categories for feature selection. One is based on label information. Accord-
ing to the proportion of labeled samples, supervised [17], semi-supervised [6]
and unsupervised [24] methods are used. Each feature is evaluated and ranked
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based on its correlation with class labels, and meanwhile trying to reduce the
correlation to any other selected one.

The other category, consisting of filters, wrappers, and embedded methods,
is based on different searching strategies. Filter methods rank all features based
on statistical and intrinsic characters of the dataset, including information gain
[19]. Wrapper methods utilize the learning algorithm or classifiers to evaluate
the features, such as the Laplacian Score proposed in [9]. Embedded methods
[5] incorporate the feature selection process as part of the training process. In
our work, the information gain method is utilized to select a subset of features
to improve the performance of our system.

2.3 Naive Bayes

Naive Bayes (NB) is one of the most widely used algorithms to classify samples.
Given a sample x = (a1, a2, ..., aN ), NB uses Bayes formula (see Eq. 1) to esti-
mate probability for each class, and the one with the largest value is chosen as
the output label.

c(x) = arg max
c∈C

P (c)
∏N

i=1 P (ai|c)
∑

c′∈C P (c′)
∏N

i=1 P (ai|c′)
, (1)

where C is the set of all class labels, ai is the ith attribute of the test sample, and
N is the total number of attributes. To simplify the algorithm, Eq. 1 is modified
to:

c(x) = arg max
c∈C

P (c)
N∏

i=1

P (ai|c). (2)

When using Eq. 2 to classify x, it is assumed that all attributes are fully inde-
pendent given the class label. Only under this circumstance, P (a1, a2, ..., aN |c) is
equal to

∏N
i=1 P (ai|c). However, this constraint condition could be rarely satisfied

in the real world, which would definitely have a negative effect on classification
performance. Therefore, this paper proposes an end-to-end pipeline to alleviate
this negative influence by carefully selecting a subset of attributes and assigning
them with different weights.

3 System Architecture

In this section, the structure of the proposed decision support system is discussed
(see Fig. 1). This system is designed to provide physicians and patients with the
predicted HF risk diagnosis by analyzing the input sensor data and EMR data.

The system has two main data sources. The first one is physiological data,
which is collected by wearable sensors and transmitted to the medical database
through wireless techniques (WIFI, Bluetooth, etc.). The physiological data con-
sists of ECG, blood pressure, blood sugar, respiration rate, heart rate, choles-
terol level, and EEG, which belong to the real-time monitoring data. The other
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Fig. 1. The structure of the decision support system for HF risk prediction.

is EMR data, which includes medical history, lab reports and questionnaires
provided by the collaboration between physicians and patients. The EMR data
could offer basic information on patients, family history like diabetes history,
and detailed clinical examinations. The two parts of data are both stored in the
medical database. Afterward, data managers with specific domain expertise can
preprocess original data and transform it into either numerical or nominal type
for future prediction.

The HF risk prediction engine is the kernel part of our system. There are
three steps to process and analyze the input structured data, and finally the
prediction results of heart failure are sent back to physicians and patients
for further medical treatment. The first step is feature selection. In the real
world, medical records normally consist of a large number of features, includ-
ing the one that is irrelevant to our current prediction task. Under this situa-
tion, a well-designed feature selection strategy would reduce noise and therefore
improve the prediction performance afterward. Several feature selection methods
[11,15,27,28], such as sequential forward selection, weighted least squares, rough
sets, and univariate feature selection, are already implemented in healthcare sys-
tems. In our system, information gain is utilized for feature selection, and the
detailed algorithm is presented in Sect. 4.1. The second step is feature weight-
ing. After feature selection, the remaining features should share a weight vector
w = (w1, w2, ..., wN ). The weight wi for each feature (attribute) ai reflects its
relevance to the prediction task, that is, how much attention should be paid to
each feature in the classification model. In our system, we propose MSEBPM to
calculate the weight vector, which will be elaborated in Sect. 4.2. The third step
is weighted naive Bayes, which is the classification model used in our system to
predict the absence or presence of heart disease. It is a binary classification task.
Weighted naive Bayes could introduce feature weights into the model and con-
sider the different significance of each feature in the process of classification. The
weight vector obtained in the second step works by increasing the influence of
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relevant features and by contrast decreasing the influence of irrelevant ones dur-
ing the classification process. Therefore, weighted naive Bayes is chosen to be
the classification model in our system.

4 Methodology

In this section, the feature selection algorithm is firstly presented, and then the
feature weighting method MSEBPM as well as the weighted naive Bayes model
are described in detail.

4.1 Feature Selection

Information gain [4] is used to determine which attribute in a given set of training
feature vectors is most useful for discriminating between the classes to be learned,
and indicate how important a given attribute is. The calculation of information
gain is to find an attribute ai that maximizes the difference between prior entropy
and post entropy of the dataset. The information gain of the dataset D when
using attribute ai as the splitting one is defined as:

Gainai
(D) = Info(D) − Infoai

(D), (3)

where Info(D) is the prior entropy and Infoai
(D) is the post entropy. They

are defined in Eq. 4 and Eq. 5, respectively.

Info(D) = −
C∑

i=1

pi log2(pi), (4)

where pi is the prior probability of each class and C is the number of classes
in dataset D.

Infoai
(D) =

k∑

j=1

|Dj |
|D| × Info(Dj), (5)

where k is the number of values of attribute ai, and dataset D can be split to
k subset (D1,D2, ...,Dk) according to the value of ai. After measuring the infor-
mation gain for each attribute ai (i = 1, 2, ..., N), the least important attributes
are deleted to improve the effectiveness and efficiency of the classification model.

4.2 MSEBPM and Weighted Naive Bayes

Different from traditional naive Bayes, weighted naive Bayes adds an additional
weight parameter wi (i = 1, 2, ..., N) to Bayes formula (see Eq. 1). The weighted
naive Bayes is therefore defined as:

P̂ (c|x) =
P̂ (c)

∏N
i=1 P̂ (ai|c)wi

∑
c′∈C P̂ (c′)

∏N
i=1 P̂ (ai|c′)wi

. (6)
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ĉ(x) = arg max
c∈C

P̂ (c|x) (7)

The prior probability P̂ (c) and the conditional probability P̂ (ai|c) are calcu-
lated by the m-estimation employed by [25], which are defined as:

P̂ (c) =

∑L
j=1 δ(cj , c) + 1

C

L + 1
, (8)

P̂ (ai|c) =

∑L
j=1 δ(aij , ai)δ(cj , c) + 1

Li
∑L

j=1 δ(cj , c) + 1
, (9)

where the function δ(α, β) = 1 if α = β and otherwise δ(α, β) = 0. L is the
number of training samples, C is the number of classes, cj is the class label of
jth training sample, aij is the ith feature value of the jth training sample, and
Li is the number of values for attribute ai.

To obtain the weight vector w = (w1, w2, ..., wN ), we propose MSEBPM,
which is MSE distance-based backpropagation method to learn the weight vector.
The detailed learning procedure is depicted in Algorithm 1. It is observed that
the weight vector is all initialized to 1, that is, we start the learning procedure
from the original naive Bayes.

In our system, we use the mean squared error (MSE) as the objective func-
tion, and the goal is to minimize it. The objective function is defined as:

f(w) =
1
2

∑

x∈D

∑

c∈C

(P (c|x) − P̂ (c|x))2, (10)

where P (c|x) = 1 if c is the true label of the sample x, otherwise P (c|x) = 0.
In order to execute the learning procedure presented in Algorithm 1, the

gradient of the objective function f(w) with respect to w should be derived.
Under the situation of binary classification, Eq. 10 can be rewritten as:

f(w) =
1
2

∑

x∈D

(P (c0|x) − P̂ (c0|x))2 +
1
2

∑

x∈D

(P (c1|x) − P̂ (c1|x))2. (11)

Therefore, the derivative of objective function f is:

∂f(w)

∂wi
= −

∑

x∈D

(
(P (c0|x) − P̂ (c0|x))

∂P̂ (c0|x)

∂wi
+ (P (c1|x) − P̂ (c1|x))

∂P̂ (c1|x)

∂wi

)
,

(12)
combining with Eq. 6, we have:

∂P̂ (c0|x)
∂wi

=
∂

θc0 (w)
∑

c∈C θc(w)

∂wi
=

∂θc0 (w)

∂wi∑
c∈C θc(w)

− θc0(w)∂
∑

c∈C θc(w)

∂wi

(
∑

c∈C θc(w))2

=
1

∑
c∈C θc(w)

[
∂θc0(w)

∂wi
− P̂ (c|x)

∂
∑

c∈C θc(w)
∂wi

]

,

(13)
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Algorithm 1. MSEBPM(D, f(w), η)
Input: a training set D, an objective function f(w), learning rate η
Output: the weight vector w

1: initialize the weight vector w = (w1, w2, ..., wN ) = (1, 1, ..., 1)
2: while not converged do
3: for each instance x in D do
4: estimate the prior probability P̂ (c) of each class by Eq. 8
5: estimate the conditional probability P̂ (ai|c) of each attribute ai with respect

to each class c by Eq. 9
6: estimate the probability P̂ (c|x) for each class by Eq. 6
7: optimize the objective function f(w) and update w for a batch of x:
8: gw ← −∇wf(w)
9: w ← w − η × RMSProp(w, gw)

10: return the trained weight vector w

where C = {c0, c1} in our binary classification task, and

θc(w) = P̂ (c)
N∏

i=1

P̂ (ai|c)wi , (14)

then we have:
∂θc(w)

∂wi
= θc(w) log P̂ (ai|c). (15)

Using Eq. 13, Eq. 14 and Eq. 15, the first part of derivative in Eq. 12 is cal-
culated as:

∂P̂ (c0|x)
∂wi

= P̂ (c0|x) log P̂ (ai|c0) − P̂ (c0|x)
∑

c∈C

P̂ (c|x) log P̂ (ai|c). (16)

Similarly, the second part of derivative in Eq. 12 is calculated as:

∂P̂ (c1|x)
∂wi

= P̂ (c1|x) log P̂ (ai|c1) − P̂ (c1|x)
∑

c∈C

P̂ (c|x) log P̂ (ai|c). (17)

The derivative of the objective function is finally obtained by combining
Eq. 12, Eq. 16 and Eq. 17. By repeatedly executing the backpropagation process
on the training set, the weight vector w is converged to an optimal value. Then,
as for a sample from the testing set, the class is estimated by the weighted naive
Bayes formula (Eq. 6 and Eq. 7).

5 Experiments and Results

5.1 Dataset

The proposed method is evaluated with 4 heart disease datasets, which are
collected from 4 medical institutions worldwide including Cleveland, Hungar-
ian, Switzerland and Long Beach VA. These datasets are taken from the UCI
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online ML and data mining repository (http://archive.ics.uci.edu/ml/datasets/
Heart+Disease). The dataset consists of 899 cases with 76 features (one predicted
feature included), and the statistical information is presented in Table 1.

Table 1. Statistical information of datasets.

Institution Class 0 Class 1 Class 2 Class 3 Class 4 Total

Cleveland 157 50 31 32 12 282

Hungarian 188 37 26 28 15 294

Switzerland 8 48 32 30 5 123

Long Beach VA 51 56 41 42 10 200

There are 5 classes in the dataset. Class 0 represents the absence of heart
disease, while 1–4 indicate the presence of heart disease with different degrees.
In our system, only the absence or presence of heart disease will be predicted.
Therefore, class 1–4 are combined into one and the multi-label task is simplified
to a binary classification task.

5.2 Evaluation Metrics

Several metrics are used to illustrate the performance of our method compared
with others, as shown in the following:

1. True positive (TP): It is the number of abnormal cases that are correctly
classified by the model.

2. True negative (TN): It is the number of normal cases that are correctly clas-
sified by the model.

3. False positive (FP): It is the number of normal cases that are wrongly classi-
fied as abnormal ones by the model.

4. False negative (FN): It is the number of abnormal cases that are wrongly
classified as normal ones by the model.

5. Acc: It denotes the percentage of all cases that are correctly classified by the
model, which is defined as:
Acc = TP+TN

TP+TN+FP+FN
6. Precision (P): It measures the success of the classification model. We have:

Precision = TP
TP+FP

7. Recall (R): It is the percentage of abnormal cases that are correctly classified
by the model. We have:
Recall = TP

TP+FN
8. F1: F1-score is the harmonic mean of precision and recall, which is defined

as:
F1 = 2 · precision·recall

precision+recall .

http://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Heart+Disease
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5.3 Results and Discussion

This section presents the experimental results on different stages of our proposed
decision support system, including results based on feature selection, results
based on feature weighting and comparison results with other existing systems.
All experiments are implemented using Python 3.7 and the dataset is randomly
divided into 70% training set and 30% testing set.

Table 2. Comparison results of the classifiers before and after feature selection.

Method Before feature selection After feature selection

Acc (%) P R F1 Acc (%) P R F1

RF 78.89 0.81 0.84 0.82 80.74 0.84 0.84 0.84

KNN 71.48 0.75 0.77 0.76 71.48 0.77 0.74 0.75

NB 75.93 0.80 0.79 0.80 80.37 0.82 0.86 0.84

SVM 58.89 0.59 0.99 0.74 59.63 0.60 0.99 0.74

MLP 76.30 0.83 0.76 0.79 77.41 0.85 0.75 0.80

Ours 77.41 0.81 0.81 0.81 82.96 0.82 0.91 0.86

Results Based on Feature Selection. In order to prove that the proposed
feature selection method works, various machine learning models are imple-
mented, including Random Forest (RF), KNN, Naive Bayes (NB), Support Vec-
tor Machine (SVM) and Multi Layer Perceptron (MLP).

In this experiment, various numbers of features are selected to find the best
subset for HF prediction. Figure 2 shows the changes in classification accuracy
based on different numbers of selected features. It can be observed that all models
perform best under the circumstances that 15 features are selected. Detailed
information on the 15 selected features is listed in Table 4.

To further indicate the impact feature selection method has on the HF risk
prediction task, Table 2 shows the comparison results of these machine learning
models and our method before and after applying feature selection. It is observed
that all models, except for KNN, have a higher accuracy after applying feature
selection. In particular, the accuracy of naive Bayes is increased from 75.93%
to 80.37%, which is a substantial performance increase. Different from other
models, naive Bayes simply assumes that all input features are fully indepen-
dent. However, this assumption is hard to be satisfied when a large number of
features are used. Therefore, the feature selection method could eliminate noise
and largely increase the accuracy by removing irrelevant and redundant features.
The classification model used in our system is weighted naive Bayes, which is a
variant of naive Bayes. The assumption that features should be independent is
the same, and therefore the feature selection method also works in our proposed
system. The accuracy of our method is increased from 77.41% to 82.96%, which
indicate the efficiency of proposed feature selection method.
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Fig. 3. The weights of each attribute in heart failure dataset.

Results Based on Feature Weighting. By investigating recent decision sup-
port systems, few of them apply feature weighting methods. Samuel et al. [20]
propose Fuzzy AHP to properly rank and compute the local weights of HF fea-
tures. Therefore, we compare the weight vector calculated by our MSEBPM
method with the one generated by Fuzzy AHP.

Fuzzy AHP calculates the weights of 13 selected attributes, which is illus-
trated in Fig. 3(a). It is observed that chest pain (CP), maximum heart rate
(MHR) and heart status (THAL) are the top 3 most significant features. Mean-
while, our proposed MSEBPM obtains an optimal weight vector of the 15 selected
features till the algorithm is converged. The weight distribution for each feature
is shown in Fig. 3(b). The top 3 most significant features also include CP and
MHR, but they have a higher difference compared with other values. This is
quite close to the way of physicians’ manual diagnosis, that is, pay much atten-
tion to 3–4 medial measurements to quickly evaluate the risk levels. Additionally,
our method indicates the crucial significance of exercise induced angina (EIA),
which is neglected by Fuzzy AHP.
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Fig. 5. Accuracy comparison of our system and the state-of-the-art using ROC curve.

Although Samuel et al. apply the weight vector to an ANN model for HF
prediction, our experiment decides to apply it to weighted naive Bayes, which is
the classification model in our system, to further demonstrate the effectiveness
of the weight vector obtained by our MSEBPM. Weighted naive Bayes takes
discrete features as input, and thus numeric features will be discretized through
transformation rules presented in Table 4. The results are shown in Fig. 4. The
accuracy of weighted naive Bayes using our MSEBPM is 82.96%, while the one
using Fuzzy AHP is 81.11%. The experimental results demonstrate that our
MSEBPM is a more efficient and reasonable feature weighting method.

Comparison with Existing Systems. To further evaluate the performance
of our proposed system, we compare it with other existing systems in terms of
accuracy. The results are presented in Table 3.

Samuel et al. [20] use fuzzy AHP for feature weighting and an ANN model
for classification, achieving an accuracy of 75.19%. It is worth mentioning that
the accuracy could be increased to 81.11% if we use our weighted naive Bayes in
place of the ANN for classification. It suggests that the feature weights obtained
by fuzzy AHP are effective. However, the attributes are fed into the network by
multiplying the value of each attribute with their corresponding weight, which
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is not the right way of fully utilizing the weight information. Latha et al. [12]
directly use an ensemble classifier and achieve an accuracy of 78.52%. Muzammal
et al. [16] utilize a correlation-based feature selection strategy and kernel random
forest for classification, achieving an accuracy of 79.26%. Ahmed et al. [2] obtain
an accuracy of 77.04% by using relief feature selection and decision tree. Tuli
et al. [22] use PCA for feature selection and deep learning for classification,
obtaining 79.26% accuracy. By contrast, the accuracy of our proposed system
can achieve to nearly 83%, which suggests that it could be used for early HF
detection in the clinic.

Table 3. Comparison results of recent works.

Authors/Year Feature
selection/Feature
weighting

Classifiers Overall
accuracy (%)

Samuel et al. [20]/2017 –/Fuzzy analytic
hierarchy process

Artificial
neural
network
(ANN)

75.19

Latha et al. [12]/2019 –/– Ensemble
classifiers

78.52

Muzammal et al. [16]/2020 Correlation-based
feature selection/–

Kernel
random forest

79.26

Ahmed et al. [2]/2020 Relief feature
selection/–

Decision tree 77.04

Tuli et al. [22]/2020 Principal component
analysis/–

Deep learning 79.26

Our method Information
gain/MSEBPM

Weighted
naive Bayes

82.96

In the medical field, ROC curve is always used to reflect the performance of
a classification model at various thresholds settings. Figure 5 presents the ROC
curve of the proposed method in comparison with others. It could be observed
that the green line covers a larger area between the diagonal and the upper-
left corner of the curves than others, which indicates that our method performs
better than others in the prediction of HF risks.
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Table 4. Detailed information of the 15 selected features from the heart disease dataset.

Label Feature Description Discrete value Range Type

A1 Age Age of the patient Young

Medium

Old

Very old

<33

34–40

41–52

>52

Numeric

A2 Sex Gender of the patient – 0, 1 Nominal

A3 CP 4 types of chest pain: 1 = typical

angina, 2 = atypical angina, 3 =

non-anginal pain, and 4 =

asymptomatic

– 1, 2, 3, 4 Nominal

A4 RBP The resting blood pressure in mm Hg

on admission to hospital

Low

Medium

High

Very high

<128

128–142

143–154

>154

Numeric

A5 CHOL The serum cholesterol in milligrams per

deciliter (mg/dl)

Low

Medium

High

Very high

<188

189–217

218–281

>281

Numeric

A6 SY The number of years as a smoker Low

Medium

High

Very high

Seriously high

1–10

11–20

21–30

31–40

>40

Numeric

A7 FBS If the fasting blood sugar reaches

120mg/dl (1 = true, 0 = false)

– 0, 1 Nominal

A8 FH If the family has history of coronary

artery disease (1 = true, 0 = false)

– 0, 1 Nominal

A9 RECG The resting electrocardiographic results:

0 = normal, 1 = having ST-T wave

abnormality, and 2= showing probable

or definite left ventricular hypertrophy

– 0, 1, 2 Nominal

A10 MHR The maximum heart rate Low

Medium

High

<112

112–152

>152

Numeric

A11 EIA If exercise induced angina happens (1 =

true, 0 = false)

– 0, 1 Nominal

A12 OPK ST depression induced by exercise

relative to rest

Low

Risk

Terrible

<1.5

1.5–2.55

>2.55

Numeric

A13 Slo The slope of the peak exercise ST

segment: 1 = up slope, 2 = flat, and 3

= down slope

– 1, 2, 3 Nominal

A14 CA The number of major vessels colored by

fluoroscopy

– 0, 1, 2 Nominal

A15 THAL Period of exercise test in minutes It

demonstrates the heart status: 3 =

normal, 6 = fixed defect, and 7 =

reversible defect

– 3, 6, 7 Nominal

6 Conclusion

In this paper, we propose a decision support system for HF risk prediction. Three
crucial issues are discussed, including feature selection using information gain,
identification of the significance of each feature by employing MSEBPM, and
heart disease prediction using a weighted naive Bayes model. We demonstrate
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that the weight information is beneficial for the weighted naive Bayes model
to better predict HF. The results show that our system achieves remarkable
improvements in HF detection compared with others.
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Abstract. Clinical diagnosis, which aims to assign diagnosis codes for
a patient based on the clinical note, plays an essential role in clinical
decision-making. Considering that manual diagnosis could be error-prone
and time-consuming, many intelligent approaches based on clinical text
mining have been proposed to perform automatic diagnosis. However,
these methods may not achieve satisfactory results due to the following
challenges. First, most of the diagnosis codes are rare, and the distribu-
tion is extremely unbalanced. Second, existing methods are challenging
to capture the correlation between diagnosis codes. Third, the lengthy
clinical note leads to the excessive dispersion of key information related to
codes. To tackle these challenges, we propose a novel framework to com-
bine the inheritance-guided hierarchical assignment and co-occurrence
graph propagation for clinical automatic diagnosis. Specifically, we pro-
pose a hierarchical joint prediction strategy to address the challenge
of unbalanced codes distribution. Then, we utilize graph convolutional
neural networks to obtain the correlation and semantic representations
of medical ontology. Furthermore, we introduce multi attention mecha-
nisms to extract crucial information. Finally, extensive experiments on
MIMIC-III dataset clearly validate the effectiveness of our method.

Keywords: Clinical automatic diagnosis · Hierarchical assignment ·
Co-occurrence graph · Graph Convolutional Network

1 Introduction

The clinical note is an essential part of Electronic Health Record (EHR), which
contains lengthy and terminological text records about medical history, chief
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complaint, current symptoms, and laboratory test results. To avoid the redun-
dancy and ambiguity caused by the text, the World Health Organization recom-
mends using the diagnosis codes in the International Classification of Diseases
(ICD) for each disease, symptom, and sign to represent the patient’s condition.
The goal of clinical diagnosis is to assign the most likely diagnosis codes for the
patient based on the clinical note. Traditionally, clinical diagnosis is completed
by well-trained clinical coders, which is labor-intensive and error-prone because
the diagnosis codes system is vast and growing. For example, in the United
States, about 20% of patients are misdiagnosed at the primary care level, and
one-third of the misdiagnosis will cause later severe injury to the patients [22].

Fig. 1. Illustration of clinical automatic diagnosis task. The input and output of the
model are EHR and diagnosis codes, respectively. The text related to the diagnosis
code in the EHR is marked in colored font.

Consequently, the automatic clinical diagnosis based on EHR has aroused
widespread attention in the industrial and academic circles [4]. Among the pro-
posed methods, supervised machine learning methods were trained to learn shal-
low feature combinations for clinical note [7,19]. Recently, most deep learning
models treated this task as a sequence learning problem, including used Convo-
lutional Neural Networks [9,16] and Recurrent Neural Networks [3,21] to cap-
ture complex semantic information. On this basis, medical ontology was further
introduced as auxiliary knowledge. Specifically, Bai et al. [1] incorporated the
disease encyclopedia of Wikipedia into the model to enhance its predictive abil-
ity. Besides, the patient’s history and demographic information could also be
leveraged to enhance the prediction of future admissions [1,14,20]. Although
these methods have made significant progress in automatic diagnosis, they may
also fail due to the following challenges:

– C1: The number of diagnosis codes is enormous, and the distribu-
tion is extremely unbalanced. For example, the MIMIC-III [6] dataset,
which is widely used for automatic diagnosis, contains 8,925 codes, but 4,344
appear less than five times in all data. The severe long-tail distribution makes
it difficult to assign proper codes to rare diseases, which may cause irreparable
damage to the patients.

– C2: The correlations between diagnosis codes are greatly over-
looked. However, the medical relationship between diseases can help us iden-
tify diseases that are not clearly reflected by the clinical note. As shown in
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Fig. 1, we can extract clues (colored fonts) from the text to assign diagnosis
codes to the patient. For example, from the text “Hospital Acquired Pneumo-
nia”, we can easily infer the code “486 (Pneumonia Organism Unspecified)”.
Nevertheless, it is difficult to infer the code “410.81 (Acute Respiratory Fail-
ure)” only from the text. Fortunately, we can infer the code “410.81” from the
relationship between it and the code “486”, that is, “Pneumonia Organism
Unspecified” will in all probability cause patients to have the symptom of
“Acute Respiratory Failure”.

– C3: In clinical note, only a few key fragments can provide valuable
information for automatic diagnosis. For example, in the MIMIC-III
dataset, clinical notes usually contain more than 1,500 tokens, but only a few
tokens are related to specific diagnosis codes. Extracting crucial tokens for
specific diagnosis codes is as tricky as finding a needle in a haystack.

To this end, we propose a model named Inheritance-guided Hierarchical
Assignment with Co-occurrence-based Enhancement (IHCE) to address these
challenges. First, for C1, we design a hierarchical assignment method based on
the hierarchical inheritance structure of diagnosis codes defined by ICD, which
makes assignment level by level. As shown in Fig. 2, “405.0 (Malignant renovas-
cular hypertension)” and “405.1 (Benign secondary hypertension)” are mutually
exclusive. Moreover, “405.01 (Malignant renovascular hypertension)” inherits
the information of “405.0”. Consequently, if we assign “405.0” at the high level,
we will tend to further assign “405.01” instead of the children of “405.1”. With
the inheritance-guided hierarchical assignment, we can use the diagnostic results
of a high level to guide the low level, which addresses the challenge of unbal-
anced distribution. Second, for C2, we construct a co-occurrence graph based on
EHR data and use GCN to obtain the diagnosis codes’ semantic representations.
In this way, the representations of the diagnosis codes contain the correlation
between diseases, which help us to assign codes to diseases for where it is chal-
lenging to find textual clues from the clinical note. Third, for C3, we enhance the
ability to extract the tokens related to the diagnosis codes based on the attention
mechanism which models the interaction between diagnosis codes’ ontology rep-
resentations and the clinical note. Finally, experiments on a real medical dataset
show that IHCE is superior to the SOTA methods on all evaluation metrics.

Fig. 2. An example of diagnosis codes’ descriptors and their hierarchical inheritance
structure based on ICD.



464 Y. Du et al.

2 Related Work

2.1 Clinical Automatic Diagnosis

Clinical automatic diagnosis has become a research hot spot in medicine, aiming
to solve manual diagnosis limitations. In recent years, deep learning technolo-
gies [9,16,21] have shown substantial advantages over traditional machine learn-
ing methods [7,19] and have been widely used for this task. Most researchers
modeled this task as a multi-label text classification task based on the free text
in EHR. Among them, Shi et al. [21] proposed a character-perceived LSTM
network that generated written diagnosis descriptions and representations of
diagnosis codes. Baumel et al. [3] proposed a hierarchical-GRU with a label-
dependent attention layer to alleviate excessive text problem. Wang et al. [23]
proposed a label-word joint embedding model and applied the cosine similarity
to assign the codes. Moreover, some researchers incorporated external knowledge
into the model [1,14,20]. For example, Knowledge Source Integration (KSI) [1]
calculated the matching score between the clinical note and each knowledge doc-
ument based on the intersection of clinical notes and external knowledge for this
task. Our method is different from these methods, considering the hierarchy and
co-occurrence relationship to achieve better performance in automatic diagnosis.

2.2 Graph Convolutional Network

In the past few years, Graph Convolutional Network (GCN) [8] has been widely
used in various tasks to encode advanced graph structures, such as healthcare [11,
25], recommender systems [12], business analysis [10], machine translation [2],
text classification [18,24]. Specifically, in order to promote the sharing of disease
among patients, Liu et al. [11] applied GCN on text corpus to collect high-order
neighbor information, and predicted for patients based on projection. Yao et
al. [24] proposed Text-GCN, which was utilized to learn the representations of
words and documents to improve text classification. Peng et al. [18] proposed a
recursive regularized GCN to perform large-scale text classification on word co-
occurrence graphs. Inspired by this, we apply GCN to obtain a good correlation
between diagnosis codes and represent the medical ontology. Furthermore, we
utilize the ontology representations as interactive information to improve the
performance of automatic diagnosis.

3 Preliminaries

For a patient, the word sequence S = {w1, w2, ..., wn} of the patient’s clinical
note is included, where n is the length of S. Furthermore, a set of diagnosis
codes L =

{
l1, l2, ..., l|L|

} ∈ {0, 1}|L| are also contained to denote the diseases
of the patient, where |L| is the number of diagnosis codes. In addition, we also
introduce hierarchical inheritance structure L =

{
L1, L2, ..., LT }

to expand L
based on external knowledge (i.e., the hierarchical inheritance structure based
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on ICD in Fig. 2), where Lt =
{

lt1, l
t
2, ..., l

t
|Lt|

}
means all diagnosis codes of the

level-t, and T is the total number of hierarchical levels. Note that, LT = L, which
means that the last hierarchical level is the same as the patient’s diagnosis codes.
With above description, we can define the clinical automatic diagnosis task with
inheritance guidance as follows:

Definition 1. Given the patient’s clinical note sequence S and the diagnosis
codes hierarchical inheritance structure L, our goal is to predict the patient’s
diagnosis codes set L̂t =

{
l̂t1, l̂

t
2, ...

}
∈ {0, 1}|L̂t| level by level, and finally use the

last level L̂T as the prediction of the patient’s diagnosis.

4 The Proposed Model IHCE

As shown in Fig. 3, IHCE mainly contains three components: (1) Document
Encoding Layer (DEL), (2) Ontology Representation Layer (ORL), and (3) Hier-
archical Prediction Layer (HPL). Specifically, we first utilize the DEL to obtain
representations of the clinical note and diagnosis codes. Secondly, we apply the
ORL to obtain the correlation and semantic representations of medical ontol-
ogy. Finally, we design HPL to predict the patient’s diagnosis codes based on
hierarchical dependence and attention mechanism.

Fig. 3. The architecture of IHCE.

4.1 Document Encoding Layer

The goal of DEL is to generate unified representations for the clinical note and
diagnosis codes. We first utilize the Embedding Module to encode the patient’s
clinical note and diagnosis codes. Then, we apply the Feature Extraction Module
to enhance the semantic representation of the clinical note.
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Embedding Module. First, given the word sequence S = {w1, w2, ..., wn}, we
use the word vector matrix E =

[
e1, e2, . . . , e|E|

] ∈ R
|E|×de to obtain the word

embedding sequence X = [x1, x2, . . . , xn] ∈ R
n×de , where |E| is the size of the

vocabulary, and de is the dimension of the word vector. Similarly, we generate
the diagnosis code ontology embedding for each code lti ∈ Lt via averaging the
word embedding of its descriptor sequence:

vt
i = 1

|Nt
i |

∑
j∈Nt

i
ej , i = 1, . . . , |Lt|

V t =
[
vt
1, v

t
2, . . . , v

t
|Lt|

]
∈ R

|Lt|×de
, (1)

where N t
i is the text descriptor index set of lti , and vt

i denotes the word embedding
of the lti , and V t indicates the representations of all codes of the level-t.

Feature Extraction Module. As shown in the lower part of the Fig. 3, we
apply the multi-filter residual convolutional neural network [9] architecture for
deep feature extraction on clinical note’s embedding matrix X.

First, we utilize convolutional neural networks containing m filters to capture
different length patterns of word sequence:

X1 = F1 (X,W1) = tanh
[
. . . , WT

1 Xj:j+s1−1, . . .
]

. . .
Xm = Fm (X,Wm) = tanh

[
. . . , WT

mXj:j+sm−1, . . .
] ,where j = 1, 2, ..., n, (2)

Let us take the k-th operation as an example. Fk (X,Wk) denotes the con-
volution operation on the matrix X, where Wk ∈ R

(sk×de)×dc is the parameter
matrix, and dc indicates each convolutional layer’s feature mapping dimension.
s1, s2, ..., sm denote different convolution kernel sizes, and Xj:j+sk−1 ∈ R

sk×de

is the input matrix of the j-th to the (j + sk − 1)-th rows in X. Note that,
we set padding and stride as floor(sk/2) and 1. Finally, the feature matrices
Xk ∈ R

n×dc , k = 1, 2, ...,m can be obtained. In order to express conciseness, the
bias is ignored in all the calculation formulas in this paper.

Next, we connect m parallel residual blocks after the multi-filter convolutional
layer, capturing longer text features by expanding the receptive field. Taking the
k-th unit as an example, the residual block is formally defined as:

Xk1 = Fk1 (Xk,Wk1) = tanh
[
. . . , WT

k1
Xj:j+sk−1

k , . . .
]
,

Xk2 = Fk2 (Xk1 ,Wk2) =
[
. . . , WT

k2
Xj:j+sk−1

k1
, . . . ,

]
,

Xk3 = Fk3 (Xk,Wk3) =
[
. . . , WT

k3
Xj:j

k , . . .
]
,

Xres
k = tanh (Xk2 + Xk3) ,

(3)

where j = 1, 2, ..., n, and Wki
is the weight matrix of the ki-th convolution layer

in the residual block, specifically Wk1 ∈ R
(sk×dc)×dr ,Wk2 ∈ R

(sk×dr)×dr ,Wk3 ∈
R

(1×dc)×dr . The output of each residual block is Xres
k , k = 1, 2, ...,m, where dr

indicates the feature mapping dimension. Finally, we concatenate them together
by rows to obtain an enhanced clinical note’s representation:

Xres = concat (Xres
1 , . . . , Xres

m ) ∈ R
n×dres ,where dres = (m × dr). (4)
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4.2 Ontology Representation Layer

Comorbidities and complications manifest the correlation between the diagnosis
codes ontology and play an auxiliary role for codes that are difficult to predict
based on the clinical note alone. To this end, we first use co-occurrence features at
each hierarchical level to construct a co-occurrence graph (co-graph) of diagnosis
codes ontology. Then, we use GCN to capture the ontology’s representations,
which contain the correlation between the ontology. Here we take the level-t as
an example to introduce the process.

Co-graph Construction. The co-graph is represented by Gt = (Lt, Et), where
Lt and Et indicate the diagnosis codes set and edge set of the level-t, respectively.
For any diagnosis code lti , if there is another code ltj in the EHR data that co-
appears, there is an edge e(lti , l

t
j) between them. And the corresponding weight

is calculated as follows:

e(lti , l
t
j) =

count(lti , l
t
j)∑

ltk∈Lt count(lti , l
t
k)

, (5)

where count(·, ·) indicates the number of times the two codes co-appear in the
whole EHR dataset, which can represent prior knowledge. After that, the edge
set Et can be described as follows:

Et = {e(lti , l
t
j) | lti , l

t
j ∈ Lt}. (6)

Co-graph Propagation via GCN. Now we turn to represent the diagnosis
codes. First, we can obtain the feature matrix Ht,(0) = V t ∈ R

|Lt|×de of the
diagnosis codes ontology by Eq. (1). For the sake of simplicity, we omit the
superscript t in the rest of this subsection. Then, we apply the GCN to propagate
the representations of the diagnosis codes on the co-graph G, which takes the
feature matrix H(l) and the matrix Ã as input, and update the embedding of
the codes by utilizing the information of adjacent codes:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

)
, (7)

where Ã = A + I, A is the adjacency matrix of G, I is the identity matrix,
D̃ii =

∑
i Ãij , and W (l) is a layer-specific trainable weight matrix. σ(·) denotes

an activation function, such as the ReLU(·) = max(0, ·). H(l) ∈ R
L×dg is the

matrix of activations in the l-th layer, where dg indicates the hidden layer size
of GCN. Then the last hidden layer is used to represent the diagnosis codes
ontology, i.e., Ht = Ht,(l+1) ∈ R

|Lt|×dg .

4.3 Hierarchical Prediction Layer

To simulate human diagnosis’s gradual progress from shallow to deep, we pro-
pose an inheritance-guided hierarchical joint learning mechanism. To be specific,
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Fig. 4. Hierarchical prediction module.

according to the hierarchical structure of the codes, the patient is diagnosed pro-
gressively from coarse-grained to fine-grained.

Figure 4 shows the core module Hierarchical Prediction Module(HPM) of
HPL. Specifically, HPM is mainly composed of three parts, namely Multi Atten-
tion Unit (MAU), Code Predicting Unit (CPU) and Dependency Passing Unit
(DPU) respectively. For the level-t, the input of HPM includes three parts, i.e.,
the clinical note’s representation Xres, the medical ontology representations Ht,
and the dependency information ct−1 of the previous level:

Rt = MAU (Xres,Ht) ,
Y t = CPU

(
ct−1, Rt

)
,

ct = DPU
(
ct−1, Ỹ t

)
.

(8)

We first utilize the MAU part to obtain the correlation representation Rt between
the clinical note and medical ontology. Next, the CPU part assigns the diagnosis
codes Ỹ t to the patient based on the Rt and ct−1. Finally, the DPU part generates
the level dependency information ct for the next level based on the previous
level’s memory and the current level’s assignment results. Note that we set c0 to
0 since the current level is 0 and does not contain the previous level’s information.
Next, we introduce each unit of the HPM at level-t.

Multi Attention Unit. By the operations above, we can obtain the clinical
note representation Xres and medical ontology representations Ht. Intuitively,
the patient’s clinical note is composed of a large number of lengthy text descrip-
tions and different codes may focus on different aspects of the document. There-
fore, for level-t, we need |Lt| aspects to focus on different codes to represent the
overall semantic of the whole clinical note. Next, we introduce the two attention
mechanisms we use.

Ontology Guided Attention. For some diagnosis codes that are difficult to predict
using only clinical text, we can improve it by interacting between the clinical
note and medical ontology. First, we pass the document feature matrix Xres

through a simple feed-forward neural network:

O′
t = tanh(W ′

t · (Xres)T ), (9)
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where W ′
t ∈ R

dg×dres is the transform matrix, dg is consistent with the dimension
of the columns of Ht, and O′

t ∈ R
dg×n is the intermediate result. Then, for each

code lt ∈ Lt, we can generate the attention vector guided by the ontology:

αlt = softmax(hlt · O′
t), (10)

where hlt ∈ Ht is the feature vector of label lt, and softmax(·) is the normalized
exponential function for row operations. The attention αlt ∈ R

1×n is then used
to compute vector representation for each label:

xatt
i

′ = αlt · Xres, (11)

Finally, we concatenate the xatt
i

′(i = 1, .., |Lt|) to obtain the ontology guided
document representation, denoted as Xatt

t
′ = [xatt

1
′
, xatt

2
′
, ..., xatt

|Lt|
′] ∈ R

|Lt|×dres .

Code Specific Attention. Similar to ontology guided attention, the code specific
attention is formalized as:

O′′
t = tanh(W ′′

t · (Xres)T ),
A′′

t = softmax(U ′′
t · O′′

t ),
Xatt

t
′′ = At

′′ · Xres,
(12)

where W ′′
t ∈ R

da×dres is the intermediate parameter matrix. da is a hyperpa-
rameter, O′′

t ∈ R
da×n is the intermediate result matrix and U ′′

t ∈ R
|Lt|×da is the

code-specific attention parameter matrix. Finally, Xatt
t

′′ ∈ R
|Lt|×dres denotes

code-specific document representation.
With the above description, we apply Rt = concat(Xatt

t
′
,Xatt

t
′′) ∈ R

|Lt|×2dres

as the output of the MAU.

Code Predicting Unit. For the level-t, we combine the result Rt of MAU
with the inherited information ct−1 of the previous level to assign diagnosis
codes to the patient. Specifically, the CPU uses a linear layer following a sigmoid
transformation for each code:

Xcls
t = concat(broadcast(ct−1), Rt),

Ỹ t = σ
(
Xcls

t · W t
y

)
,

(13)

where broadcast(·) is the process of making matrixes with different shapes have
compatible shapes for arithmetic operations, σ(·) denotes an activation function,
such as the sigmoid(x) = 1

1+e−x , W t
y ∈ R

(2dres+dt−1
c )×1 is the parameter of the

CPU, and Ỹ t ∈ R
|Lt|×1 is the prediction results of the level-t.

Dependency Passing Unit. We aim to preserve important information while
reducing the harm caused by the previous level’s error transmission. Therefore,
we employ the combination of a linear layer and sigmoid function to imitate the
gating mechanism to filter and integrate information as follows:
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Z = concat((Ỹ t)T , ct−1),
ct = σ(Z · W t

dpu),
(14)

where Z ∈ R
1×(|Lt|+dt−1

c ) and W t
dpu ∈ R

(|Lt|+dt−1
c )×dt

c is the parameter matrix.
Then, we can get the inter-level dependence ct ∈ R

1×dt
c based on the previous

level’s memory information and the prediction results of the current level.

4.4 Training

For training, we combine all levels of multi-label binary cross-entropy as the loss:

loss =
T∑

t

losst =
T∑

t

Lt
∑

i=1

[−yi log (ỹi) − (1 − yi) log (1 − ỹi)] ,where ỹi ∈ Ỹ t,

(15)
where losst indicates the loss function of level-t.

5 Experiments

5.1 Dataset and Evaluation Metrics

In this paper, we conduct experiments on a real-world dataset: the MIMIC-III
dataset, which is widely used in clinical automatic diagnosis. Following previous
studies [9,16], we use the discharge summaries as the model’s input and use
the full codes and the top 50 most common codes for experiments. Specifically,
for the MIMIC-III full setting, it includes the 8,925 codes, 47,719, 1,631, and
3,372 discharge summaries used for training, validation, and testing, respectively.
For the MIMIC-III top-50 setting, it includes 8,067, 1,574, and 1,730 discharge
summaries used for training, validation, and testing, respectively. In addition,
we expand the codes from fine to coarse according to the hierarchical inheritance
structure of ICD because EHR data only have the finest-grained codes (i.e.the
level-4 in Table 1). The specific statistical results are shown in Table 1.

The evaluation metrics used in the experiments are Precision@K (K = 5, 8,
and 15), Macro-F1, Micro-F1, Macro-AUC and Micro-AUC.

5.2 Implementation Details

We utilize PyTorch [17] to implement IHCE model and train it on a server with
4 × V100 GPU. For the training setting, we use AdamW [13] for learning and
set the learning rate and weight decay to 0.0001 and 0.00005, respectively. We
set the dropout probability 0.4 and set the batch size to 16. We also apply an
early stop mechanism, in which the training will stop if the Micro-F1 score on
the validation set does not improve in 10 continuous epochs. Since our model
has a number of hyperparameters, it is infeasible to search optimal values for
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Table 1. The statistics of hierarchical levels.

Statistics Full Top-50

# codes in level-1 199 25

# codes in level-2 1,175 40

# codes in level-3 5,125 48

# codes in level-4 8,925 50

# avg codes per EHR in level-1 11.02 4.70

# avg codes per EHR in level-2 13.75 5.37

# avg codes per EHR in level-3 15.30 5.71

# avg codes per EHR in level-4 15.86 5.77

all hyperparameters. We keep the hyperparameters of the Feature Extraction
Module consistent with Li [9]. Specifically, the word embedding dimension de =
100, the number of convolution kernels m in feature extraction is 6, and the size
of the convolution kernels s1, s2, ...sm are set to “3, 5, 9, 15, 19, 25”, dc = de
and dr = 50. Besides, we pre-train word embeddings on all the text in the
training set using the word2vec [15] implemented by gensim1. The maximum
length of a token sequence is 2,500, and the one that exceeds this length will
be truncated. For the remaining parameters, we use the grid to search for the
optimal hyperparameters. Specifically, we set the number of hidden layers to
1, and the hidden layer size dg = 300 for GCN. In addition, we set da=300
for ORL’s attention dimension, and dtc = 500(t = 1, 2, ..., T − 1) for all DPUs’
parameters dimension.

5.3 Baselines

We compared IHCE with the following baselines, including machine learning and
deep learning models:

– LR: which is a bag-of-words logistic regression model.
– H-SVM [19]: which designs a hierarchical SVM algorithm from root to leaf

node by utilizing the hierarchical structure of diagnosis codes.
– Bi-GRU [16]: which employs bidirectional gated recurrent units to learn

clinical note’s representation for automatic diagnosis task.
– C-MemNN [20]: which combines the memory network with iterative com-

pression memory representation to improve diagnosis accuracy.
– C-LSTM-Att [21]: which uses an LSTM-based language model to gener-

ate clinical note and diagnosis code representations as well as an attention
mechanism to resolve the mismatch between notes and codes.

– LEAM [23]: which is proposed for text classification task by projecting labels
and words in the same embedding space and using the cosine similarity to
predict the label of text.

1 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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– HARNNN [5] which is initially used for multi-label text classification and
considers the hierarchy of categories. We apply it to the automatic diagnosis.

– CNN [16]: which uses a single layer convolutional neural network and a max-
pooling layer for automatic diagnosis task.

– CAML and DR-CAML [16]: which assign diagnosis codes based on clinical
text by using CNN to aggregate information among the clinical note and
attention mechanism to select the most relevant segment for each possible
code. DR-CAML further uses text description as a regularization.

– MultiResCNN [9]: which utilizes multi-fliter convolutional neural networks
and residual networks for automatic diagnosis and becomes the SOTA model
on MIMIC-III.

5.4 Overall Performance

In this section, we compare the IHCE with existing works for clinical automatic
diagnosis. Table 2 shows our overall performance on MIMIC-III full setting and
MIMIC-III 50 setting. T = 3 means that our experiment is based on the last
three levels (i.e., level-2 to level-4 in Table 1) in the hierarchy. Our model IHCE
surpasses all baselines on both settings. The results indicate that IHCE is able to
effectively perform clinical automatic diagnosis by exploiting the hierarchy and
co-occurrence structure of the medical ontology and the attention mechanism.
The specific analysis is as follows:

Table 2. Overall performance on MIMIC-III, where “–” means that the baseline did
not report the result of the corresponding metric.

Models MIMIC-III full MIMIC-III top-50

AUC F1-score P@K AUC F1-score P@K

Macro Micro Macro Micro 8 15 Macro Micro Macro Micro 5

LR 56.1 93.7 1.1 27.2 54.2 41.1 82.9 86.4 47.7 53.3 54.6

H-SVM – – – 44.1 – – – – – – –

C-MemNN – – – – – – 83.3 – – – 42.0

C-LSTM-Att – – – – – – – 90.0 – 53.2 –

HARNN – – – 40.5 – – – – – – –

BiGRU 82.2 97.1 3.8 41.7 58.5 44.5 82.8 86.8 48.4 54.9 59.1

LEAM – – – – – – 88.1 91.2 54.0 61.9 61.2

CNN 80.6 96.9 4.2 41.9 58.1 44.3 87.6 90.7 57.6 62.5 62.0

CAML 89.5 98.6 8.8 53.9 70.9 56.1 87.5 90.9 53.2 61.4 60.9

DR-CAML 89.7 98.5 8.6 52.9 69.0 54.8 88.4 91.6 57.6 63.3 61.8

MultiResCNN 91.0 98.6 8.5 55.2 73.4 58.4 89.9 92.8 60.6 67.0 64.1

IHCE (T = 3) 92.9 98.9 10.4 57.3 73.5 58.7 91.0 93.6 64.7 69.6 65.2

(1) In the MIMIC-III full setting, compared with the SOTA method Mul-
tiResCNN, the IHCE improves Macro-AUC, Macro-F1 and Micro-F1 by 2.1%,
22.4% and 3.8%, respectively. It is worth noting that all models have low Macro-
F1 scores on MIMIC-III full setting because the diagnosis codes space is too large,
and the distribution is extremely unbalanced. Nevertheless, what is exciting is
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that our model has 18.2% and 22.4% improvements in this metric compared to
CAML and MultiReCNN, respectively. The reason is the IHCE considers hierar-
chical inheritance structure and dependencies. So the IHCE can assists the pro-
cessing of low-frequency codes based on high-level prediction results. Similarly,
we can observe that H-SVM with a hierarchical structure is better than BiGRU
without a hierarchical structure in Micro-F1. However, the performance of H-
SVM is lower than that of CAML and MultiReCNN because CAML and Multi-
ReCNN utilize a primary attention mechanism to improve the ability to retrieve
critical information. Furthermore, compared to CAML and MultiResCNN, our
model has multiple attention mechanisms, so our model has more robust key
information retrieval capabilities and surpasses them in all metrics.

(2) In the MIMIC-III top-50 setting, compared with the SOTA method Mul-
tiResCNN, the IHCE improves Macro-F1 and Micro-F1 by 6.8% and 3.9%,
respectively. Although there are only 50 diagnosis codes in MIMIC-III top-50
setting, it still shows a slight long-tail effect. The IHCE has a significant improve-
ment on the Macro-f1, indicating that our model can employ the hierarchical
structure to alleviate this problem. It is worth noting that even though DR-
CAML utilize codes description as regularization to assist in the allocation of
diagnosis codes that are difficult to predict, the effect is still limited compared
to CNN. However, the IHCE utilizes the co-occurrence structure between codes
to solve this problem better.

5.5 Ablation Study

In this section, to verify each component’s effectiveness in the IHCE, we per-
form ablation studies. The specific results are shown in Table 3. It is observed
that removing each component will cause F1 to decrease, which illustrates the
effectiveness of each component of our model. (1) HPL’s effectiveness: After
removing the HPL module, the macro-average metrics drop significantly, indicat-
ing that the inheritance-guided hierarchical assignment mechanism introduced
by our IHCE has a significant effect on solving the long-tail effect. (2) ORL’s
effectiveness: After ORL is removed, the overall performance of IHCE declines
because the method cannot model disease co-occurrence relationships. However,
this ability is beneficial for assigning diseases for which it is not easy to find
textual clues in the clinical note. (3) Attention mechanism’s effectiveness:
We only retain the Code Specific Attention module, which expands the atten-
tion mechanism in MultiResCNN and improves almost all metrics. It shows that
our attention mechanism can better extract essential information to prevent the
situation of finding a needle in a haystack.

5.6 Performance at Different Levels

In the clinical automatic diagnosis task, it is important to assign the diagnosis
codes of the last level to the patient. It is also essential to evaluate the per-
formance at different levels because, in some cases, a different granularity of
codes may be required. Therefore, we compared the performance of IHCE and
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Table 3. Ablation study results, where “w/o” indicates without.

Models MIMIC-III full MIMIC-III top-50

Macro-AUC Macro-F1 Micro-F1 Macro-AUC Macro-F1 Micro-F1

MultiResCNN (SOTA) 91.0 8.5 55.2 89.9 60.6 67.0

w/o ORL& HPL 91.0 8.7 55.9 89.9 61.2 66.9

w/o HPL 92.6 9.2 56.0 89.9 62.1 67.5

w/o ORL 93.1 10.0 56.7 90.6 63.6 68.5

IHCE (T = 3) 92.9 10.4 57.3 91.0 64.7 69.6

IHCE-DPU at each hierarchical level. Note that this comparison is based on
T = 3. The IHCE-DPU ignores the dependency between the levels by removing
the DPU in the HPM. In Fig. 5, we can see that the performance of IHCE at
almost all levels is better than IHCE-DPU. Moreover, we can also notice that
the performance on all metrics tend to decrease when the hierarchy deepens,
and the trend on Macro-F1 in MIMIC-III full setting is the most obvious. The
reason is that as the level deepens, the number of codes of this level will increase
rapidly (e.g., the MIMIC-III full setting has 5,125, 8,925 unique codes in level-
3 and level-4 respectively, as shown in Table 1). Moreover, we can notice that
IHCE reduces this negative factor compared with IHCE-DPU by modeling the
dependency among different hierarchical levels.

(a) MIMIC-III top-50

(b) MIMIC-III full

IHCE IHCE-DPU

Fig. 5. Performance at different levels in hierarchy.

5.7 Effect of the Number of Hierarchical Levels

In this section, we turn to figure out the effect of the number of hierarchical
levels, i.e., T . To that end, a series of experiments are conducted to evaluate the
effectiveness under different settings. Specifically, T = n means choosing the last
n levels in Table 1. For example, T = 2 means that we choose level-3 and level-4.
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From Fig. 6, we can conclude that the models that consider hierarchical structure
preform much better than models that do not. The performance rises when the
number T of levels increases because high-level information has a guiding effect
on the low level. However, the performance decreases when the T continuously
increases. The reason is that when the number of codes between different levels is
not an order of magnitude, errors caused by high-level results will still seriously
affect low-level levels, although DPU has a mitigating effect. Specifically, for the
MIMIC-III full setting, when T = 4, the model will extend level-1 with only 199
diagnosis codes, which is not in the same order of magnitude as other levels. For
the MIMIC-III top-50 setting, each level’s magnitude is not much different, and
the impact of this error will also be reduced.

Fig. 6. Performance by varying the number of hierarchical levels.

6 Conclusion

In this paper, we proposed a novel Inheritance-guided Hierarchical Assign-
ment with Co-occurrence-based Enhancement (IHCE) framework for clinical
automatic diagnosis, which could jointly exploit code hierarchy and code co-
occurrence. We utilized GCN to obtain the correlation between medical ontol-
ogy. Moreover, we proposed a hierarchical joint prediction strategy based on the
attention mechanism. Experimental results on real medical datasets show that
our model has obtained state-of-the-art performance with substantial improve-
ments in different evaluation metrics. We believe that our method can also be
used for other tasks that require the application of hierarchical structure and
label co-occurrence, such as hierarchical multi-label classification.
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Abstract. Intel Optane DC Persistent Memory (PM) is the first com-
mercially available PM product. Although it meets many hypothesises
about PM in previous studies, some other design considerations are
observed in subsequent tests. For instance, 1) the internal data access
granularity in Optane DC PM is 256B, accesses smaller than 256B will
cause read/write amplification; 2) the locking overhead will be ampli-
fied when the PM operations are included in the critical area or the
lock is added on PM. In this paper, we propose a novel persistent index
called BPTree to fit with these new features. The core idea of BPTree
is to buffer multiple writes in DRAM first, and later persist them in
batches to PM to reduce the write amplification. We add a buffer layer
in BPTree to enable the batch persistence, and design a GC-friendly log
structure on PM to guarantee the buffer’s durability. To improve the
scalability, we also implement a hybrid concurrency control strategy to
ensure most of the operations on PM are lock-free, and move the lock
from PM to DRAM for the operations that must be locked. Our experi-
ments on Optane DC PM show that BPTree reduces 256B PM writes by
a factor of 1.95–2.48x compared to the state-of-the-art persistent indexes.
Moreover, BPTree has better scalability in the concurrent environment.

1 Introduction

Technologies of persistent memory (PM) have been studied for over a decade. PM
provides comparable performance and much higher capacity than DRAM. More
important, it is persistent, which makes failure recovery faster. These properties
make PM attractive for index structures (e.g., B+-Tree) in database: the index
can be directly accessed and persisted in PM and recovered instantly, which
saves a lot of rebuild time and eases the effort to manage a large index.

Intel unveiled Optane DC Persistent Memory (PM) in 2019, which is the first
commercially available PM product. The previous studies about persistent B+-
Tree [2,4,9,12] are all designed based on PM emulation or simulation. According
to the existing available informations [5,10,11], we identified that Optane DC
PM meets many hypothesises about PM in previous researches, such as higher
write latency and power failure might cause inconsistent data. However, there are
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some new design considerations when using Optane DC PM: read/write ampli-
fication and locking overhead amplification. These new characteristics make the
previous studies unable to achieve the best performance on Optane DC PM [7],
which provide new challenges for the design of persistent B+-Tree. LB+-Tree [8]
is the latest work based on Optane DC PM, it designs a novel tree node structure
to avoid a write operation acrossing multiple 256B. But its write amplification is
still very serious, because the update area of a write operation is usually smaller
than 256B. Moreover, it does not pay attention to the second problem, and still
adds lock on PM, which limits the scalability.

In this paper, we present BPTree, an efficient persistent B+-Tree designed for
Optane DC PM. To reduce the cost of consistency maintenance, BPTree adopts
the selective persistence scheme like previous works [8,9], where non-leaf nodes
are in DRAM and leaf nodes are in PM. In BPTree, we add a buffer leaf layer
on top of the PM leaf layer to support batch persistence. Write operations are
first buffered in DRAM, and then persisted in batches to PM to reduce the write
amplification. To guarantee the buffer’s durability, we also design a GC-friendly
log structure on PM. Meanwhile, concurrency control is fundamental to high
scalability. Existing persistent B+-Trees [2,8,9,12] most use locks to achieve
concurrency control, the scalability is limited by the higher locking overhead
on PM. In BPTree, we redesign a hybrid concurrency control strategy, which
uses the concurrency protocol of B-Link tree [6] to handle the concurrency of
in-memory structures, ensures most of the operations on PM are lock-free, and
moves the lock from PM to DRAM for the operations that must be locked.

2 Background

Optane DC Persistent Memory. Intel Optane DC Persistent Memory (PM)
is the first commercially available PM product, it has the common features
offered by the previous PM assumptions: 1) byte-addressability, 2) non-volatility
and 3) performance in the range of DRAM’s. In addition to these, Optane DC
PM has some other design considerations: 1) Read/Write amplification [10,11].
The internal data access granularity in Optane DC PM is 256B, accesses smaller
than 256B will cause read/write amplification. 2) Locking overhead amplifica-
tion. Since the write latency of PM is higher than DRAM, the locking time will
be longer when PM operations are included in the critical area, resulting in lower
concurrency of upper layer. Besides, if the lock is added on PM, frequent lock
and unlock operations will make it becomes a hot spot, whose latency is much
higher than that of random or sequential write [10].

Persistent B+-Trees. There are several considerations in designing persistent
B+-Tree. To reduce persists, wB+-Tree [2] keeps leaf unsorted and relies on 8B
atomic write for bitmap and logging to achieve consistency. Similarly to wB+-
Tree, NV-Tree [12] employs unsorted leaf with bitmap and reduced persistence
guarantee of internal nodes. Internal nodes are rebuilt from the persistent leaves
on recovery. FPTree [9], a persistent and concurrent B+-Tree, employs such
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GC-friendly Logging

DRAM

Optane DC PM Base Leaf layer

Non-leaf layers

Bu er Leaf layerMeta cache
Write bu er

Fig. 1. Architecture of BPTree.

design. The internal nodes are placed in DRAM and leaves in PM. Bitmap,
logging, and fingerprints are used for crash consistency and reducing PM reads.
FASTFAIR [4], a persistent and concurrent B+-Tree, propose FAST and FAIR
techniques to keep node sorted by exploiting properties of modern CPUs. The
above works are all designed based on PM simulation or emulation, the main
problem to be solved is how to reduce the number of PM writes under the premise
of ensuring crash consistency. LB+-Tree [8] is a persistent B+-Tree designed
on Optane DC PM, it uses entry moving technique to reduce the number of
256B writes in a write operation. However, its write amplification is still very
serious, because the update area of a write operation is much smaller than 256B.
Moreover, it doesn’t pay attention to the locking overhead amplification, and still
adds lock on PM, which limits the scalability.

3 Design

As shown in Fig. 1, BPTree adopts the selective persistence scheme [9] to reduce
the overhead of consistency maintenance, where the non-leaf nodes are in DRAM
and the leaf nodes are in Optane DC PM.

To reduce the write amplification on PM, we add a buffer leaf layer under
the non-leaf layers to enable batch persistence, which is also DRAM resident.
Write operations (Insert/Update/Delete) are first performed on the buffer leaf
layer . When the buffer size reaches a threshold, we persist them in batches to
the leaf nodes in PM (base leaf layer). We also design a GC-friendly logging
scheme to guarantee the durability of buffer leaf layer .

The buffer leaf layer is not only beneficial for write, but also helps read. Point
query first traverses the entries in buffer leaf node (write buffer), if the key is
found, the query directly returns the latest value, which can avoid the access of
base leaf node. Otherwise, the query accesses the base leaf node. Here, we cache
the entry’s metadata of base leaf node in buffer leaf, the query can first access
the cached metadata (meta cache) to find the position of target value and then
precisely get it from base leaf node, which further reduces the number of PM
reads. For range queries, both leaf layers are scanned, and results are merged.
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Fig. 2. Crash consistent batch persistence.

3.1 Buffer Leaf Layer

Buffer leaf layer is an in-memory structure and contains many memory blocks,
each block serves one base leaf node at a time, which is called a buffer leaf node.

Buffer Leaf Node. As shown in Fig. 1, a buffer leaf node consists of two parts:
write buffer and meta cache.

Write buffer is used to record the update of write operations, it’s structure
is the same as conventional sorted leaf nodes. Write operations are first recorded
in write buffer, and then persisted into the base leaf node when the buffer is full.

Meta cache is used to cache the metadata (bitmap and fingerprints) of base
leaf node. If there is no meta cache, the query requires first reading the metadata
from base leaf and then accessing the target data. In this process, the metadata
and target data may not in the same 256B, then the query needs multiple 256B
PM reads. If the metadata is cached in buffer leaf node, we can get the target
data with only one 256B PM read.

GC-Friendly Logging. Since buffer leaf layer is an in-DRAM structure, its
durability needs to be guaranteed by a PM write-ahead log. For a write opera-
tion, we first persist the log through one PM write and then update the buffer leaf
node. Here, the log content contains the key-value entry and a 4-bit checksum,
where the checksum is used to check the invalid log caused by power failure.

In BPTree, we do not persist the entire buffer leaf layer into PM at intervals.
Instead, a buffer leaf node is persisted as long as it is full, regardless of other
buffer leaf nodes. After the persistence is completed, the corresponding logs
will be cleared. If using the traditional log structure - all logs are stored in
chronological order, the overhead of garbage collection (GC) in our design will
be higher, because the logs of a buffer leaf node maybe not in a contiguous
address space. To address this, we redesign a GC-friendly log structure using
the advantage of PM byte addressing. Logs in BPTree are stored in the form
of a linked list, and each linked list node records the logs of a buffer leaf node.
After a buffer leaf node is persisted, the corresponding log node can be directly
deleted from the linked list.
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Fig. 3. Hybrid concurrency control in BPTree.

3.2 Base Leaf Layer

Base leaf layer is the complete leaf layer of BPTree, stored in PM, and all write
operations will be batch persisted to it eventually.

Base Leaf Node. To reduce the number of PM writes, we adopt the unordered
leaf node structure like FPtree [9]. As shown in Fig. 2, each base leaf node con-
tains a metadata and an entries pool. The metadata consists of an alt bit, a
bitmap, an array of fingerprints, and two next pointers. The alt bit specifies one
of the two alternative next pointers. The bitmap tracks the allocation status
of the key-value slots. The fingerprints array stores one-byte hashes of the keys
stored at the corresponding positions of the entries pool, it serves to filter out
unnecessary PM reads.

Crash Consistent Batch Persistence. Since base leaf layer is in PM, the
batch persistence needs to be crash-consistent. For this, we exploit the append-
only technique - never modify the old data before the persistence is completed.

When a buffer leaf is full, it will be persisted into the base leaf. The detailed
persistence process is shown in Fig. 2: 1) Traverse the write buffer and meta cache
to obtain two pieces of information: a. append count : the number of entries to be
appended in the base leaf. We only append insert and update, delete only need
to modify the bitmap; b. conflict positions: the positions of key conflict between
write buffer and base leaf. Since the conflict keys will be rewritten, we require
finding the positions of their old values to be released after the new entries
are persisted; 2) Choose the suitable insert positions from bitmap according to
the number of entries to be appended; 3) Persist the entries and corresponding
fingerprints in the base leaf; 4) Modify and persist the bitmap atomically: the
new inserted positions are set to 1, and the conflict positions are reset to 0. The
base leaf node will split when it is also full. To reduce the logging overhead, we
use the logless node split in LB+-Tree [8] to execute the split.

4 Concurrency Control

Most existing persistent B+-Trees [2,4,9,12] use locks to achieve concurrency
control, but the overhead of locking will be amplified when it is added on PM or
PM operations are included in the critical area. For this, we redesign a hybrid
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concurrency control strategy. Figure 3 gives the hybrid concurrency control flow
of insert and search.

Concurrent insert: 1. Atomic find the leaf node using the method of OLFIT
tree [1], which is lock-free. 2. Lock-free logging. We implement a lock-free log
structure to avoid the higher locking overhead on PM. 3. Modify the buffer leaf
by locking. 4. When a buffer leaf is full, it needs to be persisted into the base
leaf. Here, before the base leaf split, we can achieve lock-free concurrency through
asynchronous persistence (see Fig. 3(a)). When the base leaf split, since the asyn-
chronous persistence will bring additional overhead, we execute synchronous per-
sistence by locking (see Fig. 3(b)), where the lock is added on buffer leaf instead
of base leaf. 5. After base leaf split, we continue to handle the concurrency write
on non-leaf layers by locking.

Concurrent search: 1. Atomic read the non-leaf and buffer leaf without lock,
the read atomicity is still ensured using the method of OLFIT tree [1]. 2. Lock-
free access to the base leaf. Here, the base leaf read is atomic at any time, no
other operations are required to determine the read state.

Next, we mainly discuss the concurrency of PM structures: lock-free logging,
concurrent bath persistence and lock-free read on base leaf.

4.1 Lock-Free Logging

As we introduced in Subsect. 3.1, the log is stored as a linked list on the PM.
In BPTree, the modifications on the log linked list include: Insert, Update and
Delete. Among these operations, there is no conflict between Update and other
operations. Then for the rest conflicts, we design a lock-free concurrency con-
trol method to solve them. To solve the conflict between insert, each thread
corresponds to a log linked list, and the newly allocated log node only can be
inserted into their own linked list. Next is the update operation, we can regard
the log node as a part of the buffer leaf node, and then implement the concur-
rent update of the log node by locking the buffer leaf node. To solve the conflict
between delete operations, the deleted log node is only marked at first, and then
uniformly recycled by a background thread. At last, for the conflict between
delete and insert, since the insert operation only occurs at the end of the linked
list, we delay the GC of the last node to avoid the conflict.

4.2 Concurrent Batch Persistence

In a concurrent scenario, there are two ways of batch persistence: synchronous
persistence and asynchronous persistence. 1) Synchronous persistence is to per-
sist a full buffer leaf directly into the corresponding base leaf, and the new writes
that on the same base leaf will be blocked. 2) In asynchronous persistence, a full
buffer leaf will first become read-only and named as static buffer leaf, then a new
buffer leaf is created to serve new writes, and the static buffer leaf is persisted
into the corresponding base leaf in the background. Here, we named the buffer
leaf serving write as dynamic buffer leaf to distinguish it from static buffer leaf.
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Fig. 4. Single-threaded performance with different data sizes
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Fig. 5. Multi-threaded performance under mixed workload with different read ratios

Asynchronous persistence can achieve higher write throughput by not blocking
the later writes, but it brings additional load in some scenarios.

To obtain high throughput and avoid additional overhead, we adopt a selec-
tive persistence scheme. When the dynamic buffer leaf is full, we first determine
whether the base leaf will split after inserting the new entries: if not split, the
batch persistence can be executed asynchronously; if split, we execute the batch
persistence synchronously.

4.3 Lock-Free Read on Base Leaf

In BPTree, the access of base leaf can ensure atomicity without any method.
For the update operation on base leaf, we all use the append technique to keep
all the old data not changed during the update, which is like maintaining two
versions of data. Bitmap acts as a version number to ensure we read a snapshot
of base leaf. Before modifying the bitmap, we can only read the old data, and
the new data only can be read after bitmap is modified atomically. Note that,
even after the bitmap is modified, the current read that getting the old bitmap
can continue to read, because the old data will not change until the next update.

5 Experiment

We run experiments on a Linux (7.8) server equipped with two Inter(R) Xeon(R)
Gold 6240M CPUs. The system is equipped with 186 GB DRAM and 1.5 TB
Optane DC PM memory (6 × 256 GB DCPMMs) configured in the App Direct
mode, each CPU has 3 DCPMMs. In our experiments, we avoid the NUMA
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effects by setting the CPU affinity of our programs to run on CPU 0, and making
sure that the programs only access DRAM and PM local to the CPU. Yahoo!
Cloud Serving Benchmark (YCSB) [3] is chose to generate the workloads. By
default, we run the experiment under a uniform key distribution, and each run
starts with a new tree pre-filled with 1 million records with 8-byte keys and
8-byte values. We evaluate the BPTree against other state of the art persistent
B+-Tree structures including FPTree [9] and LB+-Tree [8]. Each persistent B+-
Tree has the same node size, where 2 KB inner node and 1 KB leaf node.

5.1 Single-Threaded Performance

We first examine the single thread performance of each tree. Figure 4(a) shows
the average latency of insert with varying data sizes. In general, BPTree has 1.27–
1.31x lower latency than LB+-Tree and 1.46–1.53x than FPTree as the data size
increases. We also test the amount of 256B PM writes generated by 1 million
inserts, which can illustrate the reason for the latency gap. The experiment result
is shown in Fig. 4(b), where BPTree has 1.95x lower amount of 256B PM writes
than LB+-Tree and 2.48x than FPTree. Figure 4(c) gives the average latency of
search with varying data sizes. In the figure, the latency of BPTree is always
lower than that of LB+-Tree and FPTree. It is because the buffer leaf layer in
BPTree contains a number of latest target values, which can avoid some reads
of base leaf node. Besides, BPTree caches the bitmap and fingerprints of base
leaf in the buffer leaf, further reduces the number of PM reads.

5.2 Multi-threaded Performance

Figure 5 shows the multi-threaded throughput of all trees under the mixed work-
load with different read ratios (5%, 50%, 95%). Firstly, with the increase of
threads, the throughput of BPTree is 1.4–1.5x higher than that of LB+-Tree
and 1.6–2x higher than that of FPTree. In terms of scalability, FPTree and
LB+-Tree show the same trend of change, which reach the peak when the num-
ber of threads increases to 16. However, BPTree shows better scalability than
FPTree and BPTree, its throughput increases almost linearly with the increase
of threads. Secondly, with the increase of read ratio, the scalability of all trees
are improved. When the read ratio increases from 5% to 50%, the max through-
put of BPTree and FPTree are improved by 1.38x and 1.34x respectively, while
LB+-Tree is only increased by 1.24x. This is because BPTree has better read
performance than FPTree and LB+-Tree. In conclusion, BPTree has better scal-
ability in the concurrent environment.

6 Conclusion

This paper presents a novel persistent B+-Tree called BPTree to meet the new
challenges of Optane DC PM. In BPTree, we add a buffer layer to enable batch
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persistence to reduce the write amplification, and design a GC-friendly log struc-
ture on PM to guarantee the buffer’s durability. We also implement a hybrid
concurrency control strategy to ensure most of the operations on PM are lock-
free, and move the lock from PM to DRAM for the operations that must be
locked. Experimental results show that BPTree reduces 256B PM writes by a
factor of 1.95–2.48x compare to the state-of-the-art persistent B+-trees. More-
over, BPTree has better scalability in the concurrent environment.
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Abstract. Location-based services (LBS), which provide personalized
and timely information, entail privacy concerns such as unwanted leak of
current user locations to potential stalkers. Existing works have proposed
dummy generation techniques by creating a cloaking region (CR) such
that the user’s location is at a fixed distance from the center of CR.
Hence, if the adversary somehow knows the location of the center of
CR, the user’s location would be vulnerable to attack. We propose an
improved dummy generation approach for facilitating improved location
privacy for mobile users. Our performance study demonstrates that our
proposed approach is indeed effective in improving user location privacy.

Keywords: Location-based service · Privacy · Privacy preservation ·
Location privacy · Cloaking region · Dummy generation · Infeasible
regions

1 Introduction

Advances in mobile communications technology coupled with the widespread
use of GPS devices have resulted in the ever-increasing popularity of location-
based services (LBS). Mobile users typically issue location-based queries. While
such location-based queries constitute an essential class of mobile applications,
the downside is that malicious entities (or even LBS servers themselves) may
infer the location of any user by analyzing her location-based data [7]. This can
lead to severe attacks e.g., illegal tracking of mobile users and leaking of mobile
users’ personal data to third parties [10]. The issue is to develop an approach to
provide LBS to users while effectively reducing user location privacy violations.

Existing location-based privacy preserving techniques can be broadly cate-
gorized into three types, namely anonymization, obfuscation and dummy gen-
eration. In anonymization-based approaches, user locations are cloaked using
anonymizers [4,6,11]. Anonymizers mix a given user’s actual location with at
least k − 1 other real users. Hence, the LBS provider cannot identify the actual
user location with a probability of more than 1/k. Such methods need to pool
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user locations. They assume a trusted third-party server to mediate interactions
between the users and the LBS server. However, it is often practically challenging
to deploy a completely safe third-party server. Methods that use mobile peer-
to-peer collaboration [4,6] suffer from the same location privacy problem since
users share their location information with strangers. These methods also fail to
anonymize a user’s location if relatively few users are present nearby the user.

Obfuscation-based approaches [1,2,5] focus on substituting a given user’s
real location with a nearby intersection or landmark to obscure the user’s real
location. However, if the user is in a position with no appropriate intersections
or landmarks in his/her vicinity, the substitute locations would be far from the
user’s actual location, thereby degrading the quality of LBS. Obfuscation-based
approaches may also use the spatial transformation method [5], which distorts
the actual user locations by adding random noise. However, as shown in [9], the
amount of random noise necessary to prevent tracking attacks is enormous.

In dummy generation approaches [3,8,14,15], the user sends k-1 dummy
locations along with the user’s real location, thereby making k indistinguish-
able locations with 1/k probability for an adversary to find the real user. The
LBS provider then provides a list of services from each location (i.e., the user’s
and the dummies’ locations) in the query. The user can then filter out the list
of services associated with the dummies’ locations and choose only the infor-
mation relevant to her actual location. The Circle-divided Dummy Generation
(CDG) technique [15] generates dummies by considering an angle. Moreover, the
Obstacle-based Dummy Generation (ODG) approach, which considers the sur-
rounding environment, was proposed in [3]. Furthermore, the Efficient Dummy
Generation (EDG) approach [14] created dummies not on the circumference of
the circle, but rather on a thick strip of a circle (forming an annulus) to reduce
the probability of exposing the user’s location in areas with a high density of
infeasible regions. A geographical region is defined as an infeasible region for an
entity if the entity cannot possibly be physically present at that location. Exam-
ples include locations without any road infrastructure, restricted government
facilities, military zones and forest areas for preserving endangered species.

Notably, none of the existing approaches works in regions with a higher
number of infeasible regions, while keeping LBS users safe from an adversary,
who somehow knows the center of the cloaking region (CR). Hence, there is an
opportunity to improve the user location privacy from an adversary if we develop
a mechanism to randomize the user’s distance from the center of CR. In this
regard, we propose the Annulus-based Gaussian Dummy Generation (AGDG)
approach. AGDG randomizes the distance between the user and the center of CR
by predetermining the user’s placement using a virtual CR. Moreover, in case of
areas with a higher number of infeasible regions, we randomize the placement of
candidates based on the proposed annulus-based cloaking region with a Gaussian
probability distribution. Hence, it becomes difficult to know the user’s actual
location even if an adversary somehow knows the center of CR. Furthermore,
AGDG is more flexible with the construction of its CR w.r.t. existing approaches.
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We conducted experiments to demonstrate that AGDG is indeed effective in
providing improved location privacy w.r.t. existing approaches.

The paper is organized as follows. Section 2 presents our AGDG approach.
Section 3 reports the performance study. Finally, we conclude in Sect. 4.

2 Proposed Approach

This section presents our proposed Annulus-based Gaussian Dummy Generation
(AGDG) approach.

Basic Idea: The main idea behind our proposed AGDG approach is to random-
ize the distance between the center of our cloaking region and the user’s location,
thereby making it more difficult for an adversary to determine the actual location
of the user. For this, we propose the notion of a virtual annulus-based cloaking
region, where we predetermine the placement of the user as well as the dummies.
Moreover, under our proposed AGDG approach, dummies are placed such that
even in locations with a higher number of infeasible regions, location privacy is
maintained. For this, we propose a notion of an annulus-based cloaking region
with a Gaussian probability distribution for placing the candidates such that the
distance between candidates is increased.

Proposed AGDG Approach: AGDG comprises the following steps: (1) Con-
structing the virtual cloaking region (VCR), (2) Determining the placement of
the user in VCR, (3) Computing the real cloaking region, and (4) Determining
the placement of dummies. Now we shall discuss each of these steps in detail.

Step 1 - Constructing the Virtual Cloaking Region (VCR): We construct
a VCR to predetermine the user placement w.r.t. the VCR by randomizing the
distance between the center of the VCR and the user. This makes our approach
independent of the user’s placement. To construct VCR, a virtual circle with
center C is constructed using a user-defined cloaking area Amin. The radius Rmax

of the virtual circle should satisfy πR2
max ≥ Amin. We simply choose Rmax =√

Amin

π . Another circle with radius Rmin at the same center C is constructed,
thereby forming an annulus (ring shape) with Rmax and Rmin as the outer radius
and the inner radius respectively. Here, Rmin is a user-specified constant. Since
the virtual circle is used to create a VCR, we have more control over the range
of Rmin, which can range from 0 to Rmax. To achieve k-anonymity, this annulus
is divided into k equal sectors. These k sectors are denoted as 〈S1, S2, · · · , Sk〉.
Either the real user or one of the dummy users would later be placed in each
sector. In the example in Fig. 1a, k = 7 and 〈S1, S2, · · · , S7〉 represent the sectors
of the annulus. Here, the angle projected by any sector is 2π

7 .

Step 2 - Determining the Placement of the User in VCR: Since the
user’s placement must be independent of the distance from the center of the
cloaking region, a probability distribution at each point in the cloaking region is
formed using a Gaussian distribution. This probability distribution ensures that
the user in Si is placed closer to ESi, where Si is a sector of the VCR and ESi is
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Fig. 1. Virtual cloaking region Fig. 2. Multiple cloaking regions after
rotation

at the edge of Si, as depicted in Fig. 1a. This randomizes the distance between
the center of the cloaking region and the user, while keeping maximum distance
between any two candidates, thereby maximizing the cloaking region. Let (x,
y) be a point in sector Si. The probability distribution Φi(x, y) is given as fol-

lows, Φi(x, y) = 1
σ

√
2π

e
− 1

2

(
dist((x,y),ESi)

σ

)2

. Here, dist((x, y), ESi) is the distance
between the point (x, y) and ESi. Figure 1b shows the probability distribution
Φ, where white represents a higher probability of placing the user, while black
indicates a lower probability of placing the user. Then any random sector is
selected, and the user’s placement is determined in the virtual cloaking region
using the Φ distribution. Then we superimpose our virtual cloaking region onto
the real-world map with the determined users’ placement coinciding with the
actual geographical location of the real user on the map.

Step 3 - Computing the Final Cloaking Region: To place the annulus
in the best possible region, we now rotate this annulus n times with an angle
of θ= 2π

n with the real user’s position as the pivot (see Fig. 2). In Fig. 2, n =
4 and θ = 90◦. Here, the shaded regions are considered as infeasible regions,
and n is constant. Then we deal with all infeasible regions using the equation
CRf = (CRRmax

−CRRmin
)−CRir and select the final cloaking region with the

least amount of infeasible regions (see Fig. 3a). CRf is the area of the cloaking
region after removing all infeasible regions. CRRmax

is the area covered by the
larger circle and equals πR2

max. CRRmin
is the area covered by the smaller circle

and equals πR2
min. CRir is the region occupied by infeasible regions.

After selecting the cloaking region with least infeasible regions as the final
cloaking region, we readjust the sector sizes in the final cloaking region using
the equation θf × (i − 1) ≤ Si < θf × i, where θf = 2π−θir

k . θir is the total angle
projected by the infeasible region at the center of annulus C (see Fig. 3b).

Step 4 - Placing Dummies in the Final Cloaking Region: Once the final
cloaking region has been selected, we compute the appropriate placement of
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Fig. 3. Stages of annulus in AGDG

dummies in the final cloaking region. We normalize Φ such that sum of all prob-
abilities of valid cells (locations with no infeasible regions) in a sector Si equals
1. Any privacy-preserving scheme tries to maximize the similarity between the
dummy and the real user’s location. To achieve this, a new Gaussian distribu-
tion is required to increase the chance of dummies being placed at locations
with query probability closer to that of the real user’s. Query probability of a
location is the probability that a user from that location has issued a query to
the LBS provider in the past [12]; hence, it is based on querying history. Let
(x, y) be a point in sector Si and Px,y be the query probability at (x, y). Let
(xr, yr) be the location of the real user and Pxr,yr

be the query probability
at (xr, yr). Then the probability distribution Ψi(x, y) is given by the equation

Ψi(x, y) = 1
σ

√
2π

e
− 1

2

( |Pxr,yr −Px,y|
σ

)2

. To consider all infeasible regions and also to
ensure that the sum of the values of Ψ in a given sector equals 1, we normalize Ψ .
Then we combine the two probability distributions as Ω = aΨ+bΦ

a+b , where a and
b are the weight coefficients for each distribution. Using probability distribution
Ω, we now deploy dummies at each sector (see Fig. 3c).

Since we use virtual cloaking regions to determine the real user’s placement,
our approach is relatively safe from attackers with knowledge of the location of
cloaking region’s center. Additionally, since we use the annulus-based cloaking
regions, our approach has better privacy-preserving performance even in loca-
tions with a higher number of infeasible regions. Since we try to maximize both
CR and similarity between the user and the dummies’ query probability, our app-
roach can be reasonably expected to perform better than existing approaches.

3 Performance Evaluation

Our experiments consider a two-dimensional layout with 1000 × 1000 cells. Each
cell has a dimension of 10 × 10 m2. The basic CR requested by the user was
assumed to be 1963.4 (π × 25 × 25) cells i.e., Rmax = 25. Infeasible regions
were randomly arranged in the layout, depending on the infeasible region ratio
(IRR), which ranged from 0 to 0.9. Our performance study parameters were
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adopted from the existing work in [14]. Table 1 summarizes all the performance
study parameters. Each experiment was conducted 100 times, hence the results
presented here represent the average values over 100 runs of each experiment.

Table 1. Parameters used in our experiments

Parameter Default Variations Parameter Default Variations

k 10 [2, 3, · · · , 29, 30] n 4 –

IRR 0.3 [0,0.1, · · · , 0.8, 0.9] a, b 1 –

Rmin 15 – σΦ 0.001 –

Rmax 25 – σΨ 2 –

To evaluate the performance of our approach, we use two metrics.

(a) Effective Cloaking Region (ECR): Effective Cloaking Region is a widely used
metric [12] to compare the effectiveness of a privacy preservation algorithm. It
is a measure of the maximum area covered by k location points (k − 1 dummy
locations and a real user location). We have computed ECR by summing up
the area of triangles formed by all the adjacent locations and the center of CR.
ECR =

∑k
i=1 Area(li, l(i+1)%(k+1), C), where the Area function returns the area

of a triangle, given three vertices. Thus, ECR is equal to 0 for k ≤ 2.

(b) Entropy (H): Entropy is widely used to measure the degree of anonymity in
location-based services [13]. It indicates the uncertainty to determine the real
location of an individual from all the candidates. Usually, query probability (p) of
each possible location is used as accessory information to construct the entropy-
based privacy metric. We thus assign each possible location a query-probability,
denoted by pi, and the sum of all probabilities pi is 1. As a result, the entropy of
identifying the real user from k candidate set can be computed by the equation
H =

∑k
i=1 − pi∑k

i=1 pi
log2

(
pi∑k

i=1 pi

)
. Thus, maximum entropy Hmax = log2k is

achieved when all the k locations have the same probability of 1/k.
We compare our proposed AGDG approach with the CDG [15], ODG [3] and

EDG [14] approaches. We adapt these reference approaches with essentially the
same setup as that of our approach to have a fair and meaningful comparison.

(a) H (b) ECR

Fig. 4. Effect of variation in k

(a) H (b) ECR

Fig. 5. Effect of variation in IRR
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Effect of Varying the Number of Candidates: We first evaluate the rela-
tionship between k and the entropy (H) in Fig. 4a. Observe that in all the
approaches, H increases with an increase in k. This is because the greater the
number of dummies, the harder it will be for the adversary to find the real user.
Both EDG and CDG have the worst performance because they do not consider
the surrounding query probability. On the other hand, ODG and AGDG have
higher H because, here candidates are placed by considering the query probabil-
ity of the environment. It can be observed that AGDG has better performance
as compared to that of ODG. Moreover, H in AGDG is close to the best pos-
sible value because we use Φ distribution to place dummies such that query
probabilities of the locations are close to that of the real user.

Our experimental results at IRR = 0.3 are shown in Fig. 4b. Observe that
CR increases with an increase in k because the greater the number of candi-
dates, the more area they will cover in a given region. It can be observed that
CDG has the worst performance because CDG does not consider the placement
for infeasible regions. Hence, there is a chance of dummies being placed in the
infeasible regions. On the other hand, AGDG has better performance than all
the other approaches. This is because in AGDG, we place dummies using the Ψ
distribution, thereby making candidates far apart from each other.

Effect of Varying the Ratio of Infeasible Regions: Privacy preservation
schemes should ensure that dummy locations closely resemble the real user’s
location, even in locations with higher number of infeasible regions. We evaluate
the entropy (H) with the probability of placing infeasible regions on the layout
(IRR) in Fig. 5a. CDG has a drastic decrease in H as IRR increases. This is
because CDG does not consider the placement for infeasible regions. All the
other approaches have nearly constant H throughout the experiment since they
consider feasible regions, thereby making them immune to any changes in the
amount ratio of infeasible regions (IRR). EDG has less H than ODG and AGDG
because EDG does not consider the query probability of its environment. On the
other hand, AGDG has better performance than ODG because AGDG uses the
Φ distribution to place dummies in locations such that their query probabilities
are close to that of real user locations.

We evaluate the effective cloaking region with the probability of placing infea-
sible regions on the layout (IRR) in Fig. 5b. Observe that AGDG, ODG and CDG
have similar ECR when there are no infeasible regions because here candidates
are placed at the cloaking region’s circumference when there are no infeasible
regions. EDG has less ECR than AGDG, ODG and CDG since in EDG, dummies
are placed in the annulus randomly. Observe that CDG has a drastic decrease
in ECR as IRR increases. This is because CDG does not consider placement
of infeasible regions. Similarly, even in ODG with an increase in IRR, ECR
decreases. This is because in case of ODG, candidate placement is restricted
only on the circumference of the circle. Hence, as IRR increases, candidates tend
to form clusters along the circumference of the circle, thereby reducing ECR.
On the other hand, both AGDG and EDG show a smaller decrease in CR as
IRR increases, because here dummies are placed in annulus, unlike ODG and
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CDG. Moreover, AGDG has better CR than EDG because in AGDG, we use
Ψ probability distribution for the placement of candidates, whereas in EDG,
candidates are placed randomly on the annulus.

4 Conclusion

The issue with LBS is that malicious entities may infer user locations by ana-
lyzing their location-based data. Incidentally, existing dummy generation and
obfuscation-based approaches are not adequate to protect user location privacy
for regions with a higher number of infeasible regions. Hence, we have proposed
an improved dummy generation approach for facilitating improved location pri-
vacy for mobile users. Through experimental results, we have shown that our
proposed approach is indeed effective in improving user location privacy. In the
near future, we will extend our approach to handle more advanced adversaries.
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Abstract. A lot of online marketing campaigns aim to promote user
interaction. The average treatment effect (ATE) of campaign strategies
need to be monitored throughout the campaign. A/B testing is usually
conducted for such needs, whereas the existence of user interaction can
introduce interference to normal A/B testing. With the help of link pre-
diction, we design a network A/B testing method LinkLouvain to mini-
mize graph interference and it gives an accurate and sound estimate of
the campaign’s ATE. In this paper, we analyze the network A/B test-
ing problem under a real-world online marketing campaign, describe our
proposed LinkLouvain method, and evaluate it on real-world data. Our
method achieves significant performance compared with others and is
deployed in the online marketing campaign.

Keywords: Graph neural networks · Graph partitioning · Graph
clustering · Network A/B testing

1 Introduction

Recently, Alipay launched an online marketing campaign that encourages users
to invite others to join the campaign, so they can all receive discounts or cash
rewards. Such user interaction-promoting services (IPS) are common to increase
user engagement. Various strategies are developed for this campaign, and design-
ing an A/B testing solution to quantify their average treatment effects is cru-
cial. However, normal A/B testing solutions for IPS are improper because edges
(user invitations) exist between different test groups and introduce bias to ATE;
A/B testing addressing such interference is called network A/B testing. Under
a thorough analysis of real-world graphs, we develop a graph clustering method
LinkLouvain for network A/B testing and deploy it in the online marketing
campaign. LinkLouvain has the following strengths:

1. Scalability. It conducts on graphs of billions of nodes and tens of billions of
edges in 10 h.
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Fig. 1. Visualization of our online marketing campaign. Coupons are handed out to
users (colored red in left figure), and users can invite their friends to join this marketing
campaign, and they all receive a cash coupon (colored red in right figure). (Color figure
online)

2. Simplicity. It is a static method that runs only once before the online mar-
keting campaign. There is no need for additional streaming support (Fig. 1).

3. Effectiveness. It reduces network interference and reduces the heterogene-
ity of test groups throughout the campaign lifecycle (7 days). We develop
two metrics estimator bias and estimator variance to measure the network
interference and heterogeneity, respectively. Results show LinkLouvain out-
performs others.

1.1 Interaction-Promoting Services (IPS)

For consumer-facing online products, encouraging user interactions is a common
practice to increase user engagement. Some examples are ‘People You May Know’
on Facebook, ‘Connections You May Know’ on LinkedIn, and online marketing
campaigns where coupons can be shared with others on Alipay. Such services,
referred to as interaction-promoting services (IPS), are designed to encourage
user interaction, and therefore benefit user engagement of the product.

All users and their interactions on the Alipay platform construct a real-world
thorough social network with billions of nodes and tens of billions of edges. Users
(nodes) and user invitations (edges) in our online marketing campaign form a
subgraph of this thorough social network. Engaging nodes and edges increase
throughout the campaign, and this time-evolving graph is always a subgraph of
the social network.

In our paper, we analyze the growth properties of the network and the inter-
ference patterns from the campaign for a sound understanding of the following
network A/B testing problem.

1.2 Network A/B Testing

For IPS, users who do not receive new services may still be affected through
interactions with those who do receive new services. It introduces interference
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for user-level A/B testing; thus, a direct estimation of the ATE is no longer
unbiased. Network A/B testing solutions are of great interest (Fig. 2).

Fig. 2. Visualization of estimation bias in different A/B testing scheme. Left : In user-
level randomization, users are randomly selected for the treatment (colored yellow)
and the control group (colored cyan). However, the online marketing campaign in the
treatment group may affect users in control group. In this case, both the treatment
group and the control group has the same number of invited users, and the A/B testing
misleadingly concludes that the treatment does not make any difference. Right Network
A/B testing clusters users with interference together, and the cluster-level metrics show
that the treatment group has more invited users. (Color figure online)

There are mainly two approaches to conduct an unbiased estimation of ATE
under network interference. The first is afterward correction. For example, [4]
assumes the interference is linear-additive, estimates the exposure probability,
and weighs the estimation accordingly. The performance of this type of approach
relies on making the right decision for the form of interference. We analyze the
interference in a real social network, and in our case, however, the linear-additive
model is over-simplified and a panacea solution is missing.

The other approach is to perform randomization at the cluster-level. That is,
clusters of users, instead of users themselves, are used as randomization units.
This approach assumes no/low interference between clusters. Our method falls
into this category.

1.3 Graph Clustering

Many clustering algorithms have been studied to reduce the interference between
their resulting clusters. [11] proposes a clustering algorithm r-net. Label prop-
agation and modularity maximization algorithms are also studied in [4], and
it suggests modularity maximization outperforms the other. However, these
approaches usually assume their graphs are restricted-growth graphs (formally
defined later) to perform better, which is hard to meet through our analysis of
real social networks. Later, we’ll introduce our LinkLouvain approach built on
Louvain1.

1 A fast and parallel approximation for modularity maximization.
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We also consider graph partitioning methods to generate balanced test groups
with minimal edges between groups. Dynamic graphs at scale impose great chal-
lenges for graph partitioning. Most existing algorithms can not scale to billions
of nodes. Graph theory based algorithms aiming to solve the optimal min-cut
graph partitioning task have been proven NP-hard. Classical graph partitioning
methods such as Metis [5] also have high computational complexity. To handle
rapidly evolving graphs, classical methods are not favorable for efficiency issues
and dynamic graph partitioning algorithms [7,8] are proposed by constantly
updating labels and graph structure changes that require additional streaming
support.

Our method also focuses on rapidly evolving graphs, however, in a more
static manner. Unlike other static methods [9,10] that run periodically to obtain
continuous partitioning results, we make a guess on the graph structure in the
future (e.g. in a week) and partition the predicted graph for only once. In the
beginning, we obtain an ‘omniscient’ view of all users and all possible interactions
between them. Also, we have a campaign graph in the early stage campaign. Then
we predict possible edges with graph neural networks (GNNs) to gain knowledge
of a future snapshot of the campaign graph. The current snapshot and future
snapshot are formed by invitations in the campaign, while the omniscient graph is
irrelevant to specific applications. The predicted edges form a guess of the future
snapshot, and it’s then clustered by efficient graph clustering methods with
linearithmic time such as Louvain. Finally, the clusters are randomly merged
to p desired test groups for A/B testing.

2 Preliminaries

2.1 Problem Formulation

In this paper, we are interested in the task of network A/B testing. More specif-
ically, we aim at estimating a precise and sound ATE. Estimating ATE when
launching or updating IPS, however, is non-trivial. In the absence of interactions,
user-level A/B testing is commonly used to estimate potential effects [6]. The
estimation is unbiased if the Stable Unit Treatment Value Assumption (SUTVA)
holds. This assumption requires the response of a unit (in this case, a user) to
be invariant to treatments assigned to other units [1]. With this assumption, the
average treatment effect (ATE) of a new service can be defined as

ATE =
1
N

∑

i

y1(i) − y0(i),

where y0(i) is the outcome for user i if not treated and y1(i) is the outcome for
user i if treated. N represents the number of users.

However, the ground-truth ATE in real-world network A/B testing is impos-
sible to obtain. Our work designs an estimator of ATE in the presence of network
interference by splitting graph to clusters. The estimator is formulated as

ˆATE =
1
M

∑

i

∑

j

y1(qij) − 1
N

∑

i

∑

j

y0(cij),
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where qij is i-th user in j-th cluster of the treatment group Q and cij is i-th user
in j-th cluster of the control group C. M and N represent numbers of users in
Q and C, respectively.

Our goal is to design an ATE estimator that minimizes the estimation bias
and variance. Therefore, the estimated ATE can guide business decisions.

2.2 Two Graphs of Interest

In our online marketing campaign, we have access to two graphs: a stable social
graph G = (V,E) and a time-evolving label graph L = (VL, EL). We collect the
social graph G containing all users of Alipay as nodes V and their historical
interactions as edges E. It contains billions of nodes and tens of billions of edges
and lays the foundation for predicting users’ future interactions.

Additionally, as the new online marketing campaign goes on, we collect a
label graph L, where users who participate in the online marketing campaign
form node set VL and user invitations form edge set EL. L0 and LT represent
the label graph in its early stage and by the end of the campaign of lifecycle
T , respectively. It is called a label graph since the interaction data provides a
strong hint for the form of interference. Previously, labeled data is less discussed
because users already participated cannot join a new round of A/B testing. The
novelty of LinkLouvain is that it uses link prediction to generalize the form of
interference from this label graph to all users in the social graph G, and predicts
an “estimator bias” for all edges V .

Various properties of the two collected graphs are analyzed in Sect. 4.1.

3 The Proposed Framework

To cluster a rapidly evolving graph, we train a GNN based link prediction model
to predict possible edges in the evolving graph. Then we apply a traditional graph
clustering algorithm such as Louvain to split the graph into small clusters. To
use these clusters in A/B testing, we randomly combine them into desired p test
groups. The procedure is shown in Fig. 3. Label comes from the edges (positive
labels) in the current campaign graph and non-edges (negative labels) that exist
only in the social graph G.

Fig. 3. Processing pipeline of the proposed LinkLouvain framework.
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3.1 GNN Based Link Prediction Models

GNNs are a set of deep learning architectures that aggregate information from
nodes’ neighbors using neural networks. Deeper layers aggregate more distant
neighbors, and the kth layer embedding of node v is

hk
v = σ(Wk · AGG(hk−1

u ,∀u ∈ N (v) ∪ {v}))

where the initial embedding h0
v = xv is its node feature vector, σ is a non-linear

function, and AGG is an aggregation function that differs in GNN architectures.
Figure 4 shows a naive GNN based link prediction algorithm with a twin-

tower architecture. Each target node of an edge aggregates its own neighbors for
K times. After aggregation of K-hop neighbors, the final embeddings hK

A and
hK
B of two target nodes A and B are concatenated and fed to the final dense

layer.

Fig. 4. Model architecture for link prediction. G: 1-hop neighborhood of a node; X:
edge features; h: GNN embeddings; one-hot vectors: node labeling.

Moreover, we add structural features called node labeling [12] to naive link
prediction. Node labeling assigns a one-hot vector to each node in the K-hop
neighborhood of two target nodes A and B. It marks nodes’ different roles in
this neighborhood. For example, the left graph in Fig. 4 has 5 nodes in A and
B’s 1-hop neighborhood. There are three roles in the neighborhood: A and B are
target nodes; C and D are nodes connecting both target nodes; E is a node that
only connects to one target. The node labeling vector is appended to each node’s
original feature vector and tells GNN its relative location around the edge to be
predicted. It helps GNN to have more accurate predictions on link existence.
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Comparison of Link Prediction Models in Online Marketing Cam-
paign. In the early stage of the online marketing campaign, we collect and
sample user interactions as positive training samples and non-invitation rela-
tions as negative training samples. All training samples exist in our social graph
G. There are 1.5 million positive edges and 1.5 million negative edges. Each edge
has 128 features representing user interaction history. We compare the following
models for the link prediction task:

– DNN: a dense neural network of five layers with layer size [512, 256,
128, 64, 16].

– NG-LP: a naive GNN link prediction method with 2-hop neighbors (K = 2)
and embedding size 64.

– NL-LP: a node labeling link prediction method with 2-hop neighbors (K = 2)
and embedding size 64.

The main results are summarized in Table 1. F12, KS3, and AUC 4 are widely
used binary classification metrics. NL-LP performs the best by taking structural
information into account.

Table 1. Link prediction task comparison.

DNN NG-LP NL-LP

F1 0.88 0.89 0.91

KS 0.74 0.79 0.84

AUC 0.91 0.92 0.96

3.2 Graph Filtering

The output scores on edges represent possibilities of future online interactions.
We filter out less possible edges and set the prediction score as edge weight.
Graph filtering is crucial for a billion-node graph and the reasons are two-fold:

– Computation resources are limited for graphs of such size.
– Clustering algorithms like Louvain tend to generate unbalanced clusters when

handling densely connected graphs. They undermine A/B testing perfor-
mance heavily. Removing unnecessary edges help prevent long tails of result-
ing clusters.

However, if we set the threshold (γ) to abandon or keep an edge too high,
we could drop too many possible edges. This introduces great bias on ATE esti-
mates. We choose γ considering the trade-off between efficiency and effectiveness.

In the online marketing campaign, we set the threshold to be 0.5, and clus-
tering the remaining graph costs 0.6 h.
2 https://en.wikipedia.org/wiki/F1 score.
3 https://en.wikipedia.org/wiki/Kolmogorov-Smirnov test.
4 https://en.wikipedia.org/wiki/Receiver operating characteristic.

https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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3.3 Graph Clustering

To generate clusters of users as randomization units, we use Louvain to cluster
the filtered graph G′. Clustering algorithms are well-discussed. In [4], researchers
investigate several distributed clustering algorithms, such as label propagation
and Louvain. Their result shows that Louvain performs better in preserving more
intra-cluster edges and reducing network interference. Experiment results in the
next section (Table 2) also support this conclusion.

The resulting clusters are finally randomly merged into partitions of the
desired size p. These are the p test groups in A/B testing.

Fig. 5. Left : The vertex degree distribution of our real social network G at different
growth levels, as well as G after graph filtering by LinkLouvain. Right : Since the treat-
ment effect of a user depends on his/her neighborhood’s treatment status, there exists
interference. Moreover, this influence is non-linear to the fractional exposure level, and
cannot be corrected afterward easily.

4 Application on Online Marketing Campaign

4.1 Patterns of Our Real-World Graphs

Though G is a large social network that does not change frequently, the size of
L grows quickly as users joining our campaign. Therefore we can analyze the
growth property of our social network. As the number of nodes in L reaches 1,
10, 40, 160 millions, we construct a subgraph of G with all nodes in L, and keep
all edges between these nodes. Hence we can analyze the growth property of our
social network retrospectively. We compare the graph properties of these four
subgraphs of G, as well as the full graph G, which contains more than 1 billion
nodes.

Maximum Degree Growth Is Unbounded. In Fig. 5 Left, we compare the
degree distribution of G at different growth levels. We find that as the network
grows larger, customers build more connections with each other, and the degree
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distribution shifts right. The long right tails of all five series suggest that the
degree of this social network has a right-skewed distribution regardless of the
network size. Moreover, diverged from bounded maximum degree assumptions
[11], the maximum degree grows almost linearly to the number of nodes in the
graph, and thus, unbounded.

In Fig. 5 Left, We also plot the degree distribution of the full graph G after
graph filtering by LinkLouvain. It is clear that the degree distribution is less
skewed compared to the original distribution of the full social graph G (labeled
“>1B”). The intuition behind is that not all edges in G have the same influence
on our online marketing campaign. Therefore we can eliminate many edges that
are not likely to have interactions with LinkLouvain and hence reduce interfer-
ence in our cluster-level randomization scheme.

Network Interference. We examine network interference patterns on our
social network by estimating the ATE on different neighborhood fractional expo-
sure level [4] (share of neighbors that are in the treatment group) to see if there
is any pattern. We divide users into subgroups according to their different frac-
tional exposure levels and plot estimate ATEs with respect to each group as
a curve in Fig. 5 Right. We can draw two main conclusions. First, the treat-
ment effect of a user depends on his/her neighborhood’s treatment status, which
means that the interference exists. Second, the interference does not follow a
linear-additive pattern; in other words, the ATE is not linear with the fractional
exposure level.

This explains the difficulty of using the afterward correction approach: there
is no universal assumption for the form of interference suitable for all cases.
The true form of interference might be complicated, and the linear-additive
assumption might be over-simplified.

4.2 Metrics

Lower estimator bias and variance indicate more accurate and sound estimations.
Here we introduce how to measure them.

Estimator Bias is measured by the degree of network interference between
test groups. Clusters of users are randomly merged to p desired A/B test groups.
Edges of graph LT exist between test groups, and their interference is denoted
as I = |E−|

|ET
L | , where ET

L is the set of all edges (invitations in the campaign) in

graph LT , and E− is the set of edges in graph LT connecting nodes across test
groups.

Estimator Variance represents the statistical power of designed estimators.
To get higher statistical power, our estimator should generate clusters where the
ATE metric of the clusters has a lower variance, which means online experiments
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are more sensitive. We use the following formula from [2] to calculate the variance
of clusters in an estimator,

Var(Y ) ≈ 1
Kμ2

N

(
σ2
S − 2

μS

μN
σSN +

μ2
S

μ2
N

σ2
N

)
,

where Ȳ is the total estimated conversion rate in this A/B testing group. K is
the number of clusters in the group. S and N are the random variables of the sum
of individual conversion and individual number respectively. μ and σ calculate
the mean and variance/covariance of the corresponding random variables. We
evaluate the metric variance with the same group size (1% of the total traffic).

4.3 Methods for Comparison

The methods in our comparative evaluation are as follows.

– Geo: the classical strategy to cluster users by their geographic locations.
– LinkLouvain: our proposed method with graph filtering threshold γ.
– Louvain: an ablation study that removes the link prediction stage and the

graph filtering stage.
– HRLouvain: an ablation study that replaces the link prediction stage and the

graph filtering stage by removing hotspots (nodes with more than θ neigh-
bors).

– LinkLouvain-UW: an ablation study that replaces link prediction edge weight
by 1 in our proposed method.

– LinkLabel: an ablation study with Louvain replaced by label propagation for
graph clustering.

4.4 Evaluation

Table 2 summarizes the evaluation results of all the methods on our campaign.
Metrics include estimator bias and estimator variance described in Sect. 4.2 as
well as computation time. The number of clusters is also summarized for refer-
ence.

In general, LinkLouvain shows effectiveness in delivering precise and sound
estimates and efficiency to run within 6 h.

Consistency. We compare three sets of threshold γ (0.2, 0.3, and 0.5) for
LinkLouvain, and their key metrics are consistent. It leads to an easier tuning
process during experiments.

Computational Performance. We run clustering methods with 40 workers
on GRAPE [3]. Table 2 summarizes the computation time, and LinkLouvain
with γ = 0.5 and HRLouvain with θ = 40 are the most efficient in graph based
methods.
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Table 2. Evaluation summary. (Louvain runs for more than one day and drains com-
putational resources. Its results are not available.)

Methods # of clusters I (%) V ar(Ȳ ) (10−8) Time (h)

Geo 346 52 47890 0.2

LinkLouvain, γ = 0.2 206M 50 1.17 12.7

LinkLouvain, γ = 0.3 248M 49 1.15 9.8

LinkLouvain, γ = 0.5 359M 52 1.11 5.6

Louvain – – – >24

HRLouvain, θ = 40 367M 82 1.10 5.4

HRLouvain, θ = 100 145M 67 32.45 12.1

HRLouvain, θ = 200 98M 66 232.62 12.6

LinkLouvain-UW 442M 64 1.07 6.1

LinkLabel 351M 67 1.37 10.2

Comparison with Geo-Based Methods. A popular way to run A/B testing
in online services is to use geographic regions as randomization units. It serves
as a practical baseline for comparison. It is easy to use since it only requires
locations of user queries. We compare our method with geo-based partitioning,
and the results show we achieve much lower variance compared to this popular
approach.

4.5 Online Results

The online campaign run for 7 days and our LinkLouvain (γ = 0.5) method was
deployed to give estimates of ATE of different campaign strategies such as giving
discount coupons or cash coupons. The ATE is the average payment made by
users who receive coupons, and the ATE estimate of the best strategy is 1.05
times better than baseline (giving everyone a small amount of cash) without
increasing the campaign budget. The A/B test was run on 2% users in the
campaign, and after monitoring strategies for a day, the best coupon-distributing
strategy was applied to 100% users. The performance of the campaign exceeds
expectations with the help of LinkLouvain.

5 Conclusion

In this paper, we discuss network A/B testing motivated by interaction-
promoting services. We analyze this problem in a real social graph and our
label graph and develop LinkLouvain to address network A/B testing. The pro-
posed approach is computationally efficient and achieves the preferable balance
between estimator bias and estimator variance with the help of link prediction.
It is deployed on a real marketing campaign and gives accurate and sound esti-
mates of ATEs.
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Abstract. A common solution of automatic question-answering (QA)
systems is retrieving the most similar question for a given user query
from a QA knowledge base. Even though some models have got promis-
ing performance on this task, it may be hard for them to achieve
a balance between accuracy and efficiency. In this paper, we propose
an enhanced convolutional inference model with StructBert distillation,
called StructBert-ECIM, to achieve such balance.

Keywords: Question answering · StructBert · Text matching

1 Introduction

Two kinds of techniques are commonly used in most QA systems: Information
Retrieval (IR)-based ones and generation-based ones. We focus on building up an
IR-based QA system, and question-knowledge matching is the most important
technique. The enhanced sequential inference model (ESIM) [1] was proposed to
measure the relationship between a pair of sentences by sequential encoding and
attention-based alignment. Considering the good performance and decomposable
implementation of ESIM, we refer to it and propose a modified version.

The emergence of transfer learning with large-scale language models (LM),
such as Bert [2] (we call it GoogleBert, for differing from other per-train Bert
model), has led to dramatic performance improvements across a broad range
of tasks. However, GoogleBert does not make the most of underlying language
structures. StructBert [4] was proposed which incorporates language structures
into GoogleBert pre-training, getting better generalizability and adaptability.

The size and memory footprint of these large LMs make it difficult for them
to be deployed in many scenarios. Recent research points to knowledge distilla-
tion as a potential solution, showing that when training data for a given task is
abundant, it is possible to distill a large (teacher) LM into a small task-specific
(student) model. In this paper, we propose an enhanced convolutional inference
model with StructBert distillation, called StructBert-ECIM. We take the advan-
tage of ESIM, and speed it up by integrating CNN-based component. In the
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 511–515, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73200-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-73200-4_35


512 S. Song et al.

following of this paper, we will show the problem formalization and introduce
our proposed model, along with the experimental results.

2 The Proposed Model

The architecture of the proposed StructBert-ECIM is given in Fig. 1:

Fig. 1. Architecture of StructBert-ECIM.

1. StructBert: We utilize StructBert as the pre-training model. Dialog data
from chatbots is a specific user generated content (UGC), riddled with typos
and solecisms. StructBert can well fit UGC by leveraging the structural infor-
mation.

2. Enhanced Convolutional Inference Model: ESIM consists of two infor-
mation collection steps: one uses the sequence model to collect the context
information of words, and the other uses the tree model to collect the clause
information. With respect to the simple structure of ESIM, it can be used in
online systems. However, the sequence model in ESIM is time-consuming, so
we design an enhanced convolutional inference model (ECIM), a revision of
ESIM, to improve the model speed by replacing the sequence model with a
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convolution model. In Fig. 1, we can see the graphical presentation of a block,
which consists of a convolution level, an attention level, a fusion level and a
project level. These blocks are connected by an augmented version of residual
connections.

3. Distillation: Fig. 2: 1) In SepFinetune, we first fine-tune the preliminary
pre-trained StructBert by feeding the given in-domain labeled data, then get
the predicted results for prepared unlabeled data. Afterwards we feed such
an amount of predicted results to train ECIM, by treating the predicted
value from structBert as soft labels. Finally we fine-tune the trained ECIM
model with the help of the original labeled data, which aims at adapting the
annotation domain better. 2) We propose the JointFinetune, in which we
fine-tune the StructBert by feeding all public resources we have, and let the
all-in-one fine-tuned structBert predict the unlabeled data from such different
domains, and then collect all predicted data as training set for ECIM. Finally,
we use the in-domain annotation set to fine-tune ECIM, which is identical to
the SepFinetune process.

Fig. 2. Two pipelines for distillation mechanisms.

3 Experiments

1. Data Description: 1) Gov: we build chatbots for government affairs, such
as medical insurance, tax and ID card. 2) Timi: a platform of chatbot solution
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Table 1. Comparison of two distillation mechanisms.

Models AUC

Gov Timi Youku Quora

SepFinetune 0.753 0.854 0.832 0.864

JointFinetune 0.768 0.864 0.841 0.889

for merchants of taobao and tmall. 3) Youku: one of China’s top online video
platforms, which we build a chatbot for. 4) Quora: a dataset for the NLI
task with two classes indicating whether one question is a paraphrase of the
other, which contains about 400k question pairs. (https://www.kaggle.com/
c/quora-question-pairs/data).

2. Experimental Results: AUC is employed as the evaluation metric, and
Table 1 shows the comparison between two pipelines of distillation mech-
anisms. JointFinetune outperforms the other one on each subtask as LM
can learn more semantic information. Therefore, we adopt JointFinetune in
follow-up experiments. We compare ECIM with following models: 1) BCNN
is a model which incorporates element-wise comparisons on top of the base
model [5]; 2) MatchPyramid is a model based on sentence interactions [3];
3) ESIM has been described before. Besides, distillation models of those 3
baselines and ECIM with GoogleBert or StructBert are also taken for com-
parisons. Table 2 shows the evaluation results. BCNN and MatchPyramid
perform high speed, but their average AUC with StructBert distillation are
lower than 0.8. Although ECIM is slower than BCNN and MatchPyramid, it
still can sufficiently support online chatbot systems. As for ESIM, it shows
that the speed is 27 times slower than ECIM, and the AUC results are aver-
agely 1.36% lower than ECIM. Therefore we consider ECIM the best choice
for our online chatbots.

Table 2. Evaluation results. (Inference time on Intel Core i7 CPUs.)

Models AUC Speed

Gov Timi Youku Quora

BCNN 0.689 0.744 0.714 0.768 ≈0.57ms

GoogleBert-BCNN 0.725 0.771 0.749 0.797

StructBert-BCNN 0.744 0.800 0.782 0.833

MatchPyramid 0.694 0.750 0.720 0.775 ≈0.41ms

GoogleBert-MatchPyramid 0.727 0.778 0.765 0.805

StructBert-MatchPyramid 0.757 0.803 0.799 0.839

ESIM 0.696 0.788 0.779 0.825 ≈221ms

GoogleBert-ESIM 0.728 0.829 0.790 0.840

StructBert-ESIM 0.750 0.845 0.823 0.863

ECIM 0.715 0.789 0.780 0.836 ≈8.1 ms

GoogleBert-ECIM 0.739 0.831 0.806 0.861

StructBert-ECIM 0.768 0.864 0.841 0.889

https://www.kaggle.com/c/quora-question-pairs/data
https://www.kaggle.com/c/quora-question-pairs/data
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4 Conclusion

In this paper, we presented the StructBert-ECIM model and demonstrated its
effectiveness and efficiency on the QA task. Considering its high efficiency and
strong performance, the model is quite suitable for a wide range of applications.
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Abstract. In this paper, we propose a configurable topic modeling
framework named Familia. Familia supports an important line of topic
models that are widely applicable in text engineering scenarios. In order
to relieve burdens of software engineers without knowledge of Bayesian
networks, Familia is able to conduct automatic parameter inference for a
variety of topic models. Simply through changing the data organization
of Familia, software engineers are able to easily explore a broad spectrum
of existing topic models or even design their own topic models, and find
the one that best suits the problem at hand. With its superior extend-
ability, Familia has a novel sampling mechanism that strikes balance
between effectiveness and efficiency of parameter inference. Furthermore,
Familia is essentially a big topic modeling framework that supports paral-
lel parameter inference and distributed parameter storage. The utilities
and necessity of Familia are demonstrated in real-life industrial appli-
cations. Familia would significantly enlarge software engineers’ arsenal
of topic models and pave the way for utilizing highly customized topic
models in real-life problems. Source code of Familia have been released
at Github via https://github.com/baidu/Familia/.

Keywords: Topic modeling · Familia · Text engineering

1 Introduction

Topic models have become one kind of important tools for text engineering. In
the last decade, a wide spectrum of topic models has been proposed in academia
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and demonstrates promising performance. However, for industrial topic mod-
eling, Probabilistic Latent Semantic Analysis (PLSA) [7] and Latent Dirichlet
Allocation (LDA) [1] are the working horses so far [2,16]. With the richness
of the other topic models, we rarely witness employment of them in industrial
applications. The huge gap between the abundance of topic models proposed in
academia and their rare appearance in industry is mainly caused by the following
reasons:

1. Most of existing topic models do not have industrial implementation for con-
venient usage. Implementing these topic models from scratch is both time-
consuming and error-prone;

2. Although many tasks cannot be suitably supported by existing topic models,
designing a proper topic model and the corresponding parameter inference
algorithms are daunting for engineers;

3. Most advanced techniques for efficient parameter inference are exclusively
designed for PLSA/LDA. Lacking highly efficient parameter inference algo-
rithm impedes most topic models’ applicability in industry.

Due to the above reasons, engineers’ topic modeling choice is usually limited
to PLSA or LDA, which, however, may not fit well their task at hand. Such
improper practice heavily undermines the effectiveness of topic models in real-
life applications.

In this paper, we propose a novel topic modeling framework, Familia, which is
easily configurable and can be utilized as off-the-shelf tool for software engineers
without much knowledge of Bayesian networks. Familia supports a broad line of
topic models, which are of significant presence in the literature as well as heavily
demanded in industry. Software engineers can investigate many topic models for
their tasks at hand by simply changing the training data organization. Moreover,
Familia takes over all the burdens of parameter inference, parallel computing
and post-modeling utilities. Specifically, Familia contains two parameter infer-
ence methods: Gibbs sampling (GS) and Metropolis Hastings (MH) with alias
table [10], based on which a hybrid sampling mechanism is designed to strike a
balance between effectiveness and efficiency. To meet the requirements of topic
modeling for massive data, Familia is inherently built upon the Parameter Server
(PS) architecture [4,11,21]. Multiple computing nodes can be harnessed for par-
allel parameter inference and distributed storage. Furthermore, Familia contains
multiple built-in post-modeling utilities such as dimensionality reduction and
semantic matching, which can be readily applied in many downstream applica-
tions. The contributions of this paper are summarized as follows:

1. We opensource a novel framework, named Familia, to bridges the huge gap
between topic model research in academia and industrial practice of topic
modeling. To the best of our knowledge, it is the first framework that supports
multiple topic models in a user-friendly manner.

2. We systematically investigate the performance of GS and MH with different
topic models. We further propose a hybrid sampling mechanism to balance
the effectiveness and efficiency of parameter inference. Based on the earned
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insights, we provide practical suggestions on choosing sampling method for
different topic models.

The rest of this paper is organized as follows. In Sect. 2, we review the related
work. In Sect. 3, we discuss the mathematical foundations of Familia. In Sect. 4,
we detail the parameter inference algorithms. In Sect. 5, we present the experi-
mental results. Finally, we conclude this paper in Sect. 6.

2 Related Work

The present work is related to a wide range of topic models in the literature and
the recent advances of sampling-based parameter inference algorithms.

2.1 Topic Models

LDA [1] plays an important role in the field of topic modeling. In the last decade,
many extensions of LDA have been proposed to meet specific needs of many
applications. For example, Topic-over-Time (TOT) [20] is presented to capture
latent topics and their changes over time. Supervised LDA [13] captures the
regularity of labelled documents by introducing response signals. GeoFolk [17]
focuses on discovering latent topics from social media by using text features
as well as spatial information. Sentence LDA [9] is proposed and it assumes
all words in a single sentence are generated from one topic. A bilingual topic
model is proposed in [5] as a language modeling framework, in which the topics
are learned from query-title pairs. Pair Model [8] derives word-pairs from click-
through data, and maps queries and documents into a topic space spanned by
word-pairs. Multi-Faceted Topic Model (MfTM) [18] is proposed to capture the
temporal characteristics of each topic by jointly modeling latent semantics among
terms and entities. Although the aforementioned ones take only a small portion
of topic models in the literature, they are suitable choices in many industrial
scenarios. There are also many existing industrial topic model systems such as
PLDA+ [12], LightLDA [23] and Gensim [15]. However, compared to Familia,
these existing systems only support limited kinds of topic models.

2.2 Efficient Sampling Algorithms

Another major research trend of LDA parameter inference is to design efficient
sampling algorithms. Conventional Gibbs sampling [6] has a complexity of K per
sample when the topic amount is set to K. FastLDA [14] has a complexity of sig-
nificantly less than K per sample. SparseLDA [22] contains both an algorithm
and data structures for efficiently conducting Gibbs sampling. A much faster
algorithm is proposed in [10] which scales linearly with the number of instan-
tiated topics in the document. As one step further, LightLDA [23] achieves an
O(1) Metropolis-Hastings sampling algorithm, whose running cost is agnostic
of model size. Recently, [3] proposed WarpLDA, which achieves both O(1) time
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complexity per token and O(K) scope of random access. With their effective-
ness, these techniques are exclusively designed for LDA. Their applicability has
never been explored in a broader scope of topic models, on which how to conduct
efficient sampling is still an open question.

3 Generative Assumption

In this section, we discuss the details of Familia by describing its mathematical
foundations. We describe Familia in conventional topic model terminologies, and
three newly introduced terminologies are formally defined as follows:

1. item: the basic unit of an observed variable, such as a word, a timestamp, etc.
2. factor: the basic unit in which all the item are generated by the same dis-

tribution and the same topic. In terms of the distribution being continuous
or discrete, the factors can be further categorized as continuous factor and
discrete factor

3. blob: the basic unit in which all the items are generated by the same topic

The generative process is depicted in Algorithm 1. In order to generate a
document d, we first draw θd, which is a Multinomial distribution over topics.
Then, for each blob, we draw a topic z. Based upon z, for each discrete factor i,
we generate discrete items u according to the corresponding discrete distribution
φiz. The continuous items are generated in an analogous approach. Finally, if
the topic model needs to capture the supervised signal (e.g., the category of the
document or the rating of the quality of the document), the signal is further
drawn from a Gaussian distribution that uses zd as parameters. Specifically,
zd = 1

N

∑N
n=1 zn, where N is the amount of tokens in the document.

It is easy to see that Algorithm 1 is a generic process for many topic models.
A variety of topic models can be modeled by Algorithm1, to name a few, LDA
[1], Supervised LDA [13], Sentence LDA [9], TOT [20], Bilingual Topic Model
[5], Pair Model [8], GeoFolk [17], LATM [19] and Multifaceted Topic Model [18].
Besides these existing models, users can design their own topic models for specific
tasks as long as they follow the generative process in Algorithm 1.

4 Parameter Inference

We proceed to discuss how to conduct parameter inference for Familia.
We detail the mathematical derivation for the most complicated scenario
where there simultaneously exist discrete factors, continuous factors and the
supervised response. The other simpler scenarios can be trivially derived
based upon the following discussion. By translating the generative process
of Algorithm 1 into joint distribution, we aim to maximize the likelihood
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Algorithm 1: Generative Process of Familia
1 for each topic k ∈ 1, ..., K do
2 for each discrete factor i ∈ 1, ..., M do
3 draw a discrete factor distribution φik ∼ Dirichlet(βi)
4 end
5 for each continuous factor j ∈ 1, ..., N do
6 generate a continuous factor distribution ψjk

7 end

8 end
9 for each document d ∈ 1, ..., D do

10 generate topic distribution θd ∼ Dirichlet(α)
11 for each blob b in d do
12 generate a topic z ∼ θd
13 for each discrete factor i ∈ 1, ..., M do
14 generate items u ∼ φiz

15 end
16 if there exists continuous factor then
17 for each continuous factor j ∈ 1, ..., N do
18 generate items v ∼ ψjz

19 end

20 end

21 end
22 if there exists supervised signal then
23 draw signal yd ∼ P (yd|zd, η, σ2), where P (yd|zd, η, σ2) = N(yd|ηT zd, σ

2)
24 end

25 end

of the observed items and the supervised signals. The complete likelihood
P (u1...M ,v1...N ,y1...D, z|α, β, Ψ, η, σ) is presented as follows:

P (u1...M ,v1...N ,y1...D, z|α, β, Ψ, η, σ) =

P (z|α)
M∏

i=1

P (ui|z, β)

︸ ︷︷ ︸
discrete factors

N∏

j=1

P (vj |z, Ψ)

︸ ︷︷ ︸
continuous factors

D∏

d=1

P (yd|zd, η, σ
2
)

︸ ︷︷ ︸
supervised signal

=
( Γ (

∑T
z=1 αz)∏T

z=1 Γ (αz)

)D
D∏

d=1

∏T
z=1 Γ (mdz + αz)

Γ (
∑T

z=1(mdz + αz))

M∏

i=i

( Γ (
∑Ui

ui=1 βui
)

∏Ui
ui=1 Γ (βui

)

)T
T∏

z=1

∏Ui
ui=1 Γ (nzui

+ βui
)

Γ (
∑Ui

u=1(nzui
+ βui

))

N∏

j=1

D∏

d=1

Ld∏

l=1

P (vjdl|ψzjdl
)

D∏

d=1

P (yd|zd, η, σ
2
)

(1)

where mdz is the number of sentences that are assigned to topic z in document
d. nzv is the number of times that v is assigned to topic z through Multino-
mial distribution and Γ (·) indicates Gamma function. The goal of parameter
inference is to estimate Θ, Φ, Ψ , η and σ in Algorithm 1 through sampling the
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latent topic z of each blob. In this following two subsections, we describe how
to sample z through Gibbs sampling and Metropolis Hastings based on Eq. (1).
Utilizing the sampled z to estimate the parameters of discrete distributions is
well-documented in literature [9]. We will detail how to utilize z to estimate the
parameters of continuous distribution in Sect. 4.3.

4.1 Gibbs Sampling

By applying Bayes rule to Eq. (1), the full conditional of assigning topic k to
blob b in document d is as follows:

P (zb = k|u1...M ,v1...N ,y1...D, z−b, α, β, Ψ, η, σ) =

mdk + αk∑K
k′=1(mdk′ + αk′ )

M∏

i=i

Γ (
∑Ui

u=1(nku + βu))

Γ (
∑Ui

u=1(nku + βu + Nbu))

∏

ui∈b

Γ (nkui
+ βui

+ Nbui
)

Γ (nkui
+ βui

)

N∏

j=1

Lb∏

l=1

P (vjl|zk) × P (yd|zd, η, σ
2
)

(2)

In order to sample a new topic for the blob b, we need to calculate the above
conditional probability for all topics and conduct normalization. Hence, the time
complexity for sampling a topic for a blob is O(K), where K is the topic amount.

4.2 Metropolis Hastings

If the topic amount K is large, the O(K) per blob complexity is time-consuming.
We now propose an efficient alternative based upon Metropolis Hastings (MH),
which has been successfully applied in [10,23] for LDA. For the convenience of
designing proper proposals for MH, we first conduct approximation to Eq. (2) as
follows:

P (zb = k|u1...M ,v1...N ,y1...D, z−b, α, β, Ψ, η, σ) ≈
mdk + αk

∑K
k′=1(mdk′ + αk′)

M∏

i=i

∏

ui∈b

nkui
+ βui

∑Ui

u=1(nku + βu)

N∏

j=1

Lb∏

l=1

P (vjl|zk) × P (yd|zd, η, σ2)

(3)

The above equation approximates Eq. (2) when an item appears multiple times
with in a blob. Based on this approximation, we discuss the MH sampling method
for Familia. MH needs proper proposals to work. We now discuss four proposals
which fall into two major categories: document-based proposals and item-based
proposals.

Document-Based Proposals. The first document-specific proposal is the
document-topic proposal :

Ξd(k) ∝ mdk + αk
∑K

k′=1(mdk′ + αk′)
(4)

The second document-specific proposal is the supervised signal proposal :

Ξyd
(k) ∝ P (yd|zd, η, σ2) (5)
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Item-Based Proposals. The first item-based proposal is the discrete item-
topic proposal, which is denoted as Ξu(k):

Ξu(k) ∝ nkui
+ βui

∑Ui

u=1(nku + βu)
(6)

The second item-based proposal is the continuous Item-topic proposal, which is
denoted as Ξv(k):

Ξv(k) ∝ P (vjl|zk) (7)

It is easy to see that each proposal encourages the sparsity of their correspond-
ing component in Eq. (3). For fast sampling from each proposal, a data structure
named alias table [10,23] is utilized to reduce the sampling complexity. Theo-
retically, an alias table need to be created for each document and each item. A
caveat is that document-topic proposal does not need to explicitly establish alias
table [23], because sampling from the document-topic proposal can be cheaply
simulated through returning the topic assignment of a randomly sampled blob
in the document. The MH method is formally presented in Algorithm2. When
sampling a new topic for a blob, the algorithm sequentially utilizes document-
based proposals and item-based proposals to update the topic candidates. For
each topic candidate, the algorithm chooses whether to accept it according to the

Algorithm 2: Metropolis Hastings of Familia
1 for each document d ∈ 1, ..., D do
2 for each blob b in d do
3 for a predefined number of MH steps do
4 propose a topic z1 based on document-topic proposal

5 update the topic to z
′
1 according to acceptance ratio

6 propose a topic z2 based on alias table of yd

7 update the topic to z
′
2 according to acceptance ratio for each

discrete factor i ∈ 1, ..., M do
8 for item u in this factor do
9 propose a topic zu3 based on alias table of u

10 update the topic to z
′
u3 according to acceptance ratio

11 end

12 end
13 for each continuous factor j ∈ 1, ..., N do
14 for item v in this factor do
15 propose a topic zv4 based on alias table of v

16 update the topic to z
′
v4 according to acceptance ratio

17 end

18 end

19 end

20 end

21 end
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acceptance ratio, just like the standard Metropolis Hastings. Note that this pro-
cess can be repeated for several iterations and each iteration is formally defined
as an MH step. In the experiment section, we will show the extent to which the
number of MH steps can affect the performance of the MH method.

4.3 Issues of Continuous Distributions

For topic models with continuous factors, updating the parameters of continu-
ous distributions is computationally expensive, especially for distributed envi-
ronment in which the synchronization of these parameters is needed. In Familia,
we choose a well-adopted practice [17,20]: we update the parameters of the con-
tinuous distributions after each major iteration (i.e., scanning through the whole
corpus of training data). For Gaussian distributions, we straightforwardly update
the parameters by the sample mean and sample variance. If the continuous dis-
tribution is Beta distribution Beta(ψk1, ψk2), we update the parameters ψk1 and
ψk2 for the kth topic as follows:

ψk1 = s̄k(
s̄k(1 − s̄k)

v2
k

− 1), (8)

ψk2 = (1 − s̄k)(
s̄k(1 − s̄k)

v2
k

− 1) (9)

where s̄k and v2
k denote the sample mean and biased sample variance of topic

k’s items. As for supervised signals [13], we denote the (D × K) matrix whose
dth row is zT

d as A, and the D × 1 vector of supervised signals as Y , the η and
σ are updated as follows:

η = (AT A)−1AT Y, (10)

σ =
1
D

(Y T Y − Y T A(AT A)−1AT Y ) (11)

In practice, the above matrix manipulation can be approximated by techniques
to reduce the computational cost and scale to large data set.

4.4 Hybrid Sampling Mechanism

So far, we have discussed two basic sampling techniques that are supported
in Familia. The major advantage of MH is efficiency: the per blob sampling
complexity can be reduced as low as O(1) for some topic models through utilizing
alias tables. However, as we will show later in Sect. 5, the models trained by GS
are usually better than MH. Hence, it is desirable to design a mechanism that
tradeoffs the efficiency of MH and effectiveness of GS. To meet this requirement,
Familia enables the users to choose the sampling method for each iteration. Such
flexibility makes it possible to investigate many hybrid sampling mechanisms
which collectively apply GS and MH.
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4.5 Data Organization

In Familia, data organization is critical for automating parameter inference
because it provides basic information of Bayesian network structure of the topic
model. Based on data organization, Familia can deduce each component in
Eq. (2) and Eq. (3) and then conduct parameter inferences without imposing
any burden on human to derive the mathematical equations. Documents are
grouped as blocks to facilitate distributed computing. In each document, the
blob is utilized as the basic unit whose content shares the same topic. A blob
contains multiple factors and a factor can contain any amount of items. The
data organization of Familia is presented as follows:

block

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

document1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

supervised signal

blob1

⎧
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Since the “item” in Familia data organization can be specialized into
words(discrete), tags(discrete) or even timestamps(continuous), the above data
organization is generic. It supports a variety of existing topic models such as
LDA, Supervised LDA, Sentence LDA, TOT, Bilingual Topic Model, Pair Model,
GeoFolk, LATM and Multifaceted Topic Model as well as user-designed models
for special tasks as long as they follows the generative process in Algorithm 1.

5 Experiments

In this section, we report the experimental results. We first investigate the per-
formance of a series of sampling methods across topic models and data sets in
Sect. 5.1. Then we demonstrate the scalability of Familia in Sect. 5.2.

5.1 Performance of Sampling Methods

We systematically investigate the performance of different sampling methods in
terms of LDA, Sentence LDA and TOT. In order to minimize effect beyond algo-
rithmic performance, experiments in this subsection are conducted on a single
computing node. NIPS dataset from UCI Bag of Words Data Set1 is utilized for
experiments of LDA. Amazon data2 is utilized for Sentence LDA. As for TOT,
1 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words.
2 http://uilab.kaist.ac.kr/research/WSDM11.

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://uilab.kaist.ac.kr/research/WSDM11
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we utilize the 21 decades of U.S. Presidential State-of-the-Union Addresses3 for
the experiments. Due to space limitation, we present the results when the topic
amount is set to 50. Similar insights can be obtained when the topic amount is
set to other values.

Fig. 1. Comparison of sampling methods (iteration) (Best Viewed in Color)

Fig. 2. Comparison of sampling methods (time) (Best Viewed in Color)

The log likelihood of each sampling methods is plotted against iteration in
Fig. 1 and against time in Fig. 2. Therein, MH-step1 is MH with only one MH
step. Analogously, MH-step2 and MH-step4 are MH with 2 and 4 MH steps
respectively. 4MH-1GS is the sampling method that performs one iteration of GS
after every 4 iterations of MH. 9MH-1GS performs one iteration of GS after every
9 iterations of MH. GS-to-MH starts with GS for the first 100 iterations and then
switches to MH for the remaining iterations. MH-to-GS starts with MH for the
first 100 iterations and then switches to MH for the remaining iterations. Note
that space limitation prevents us from presenting more parameter settings for
each sampling method. However, the results shown in Figs. 1 and 2 are sufficient
to showcase our insights obtained from this study.

We first investigate the performance of MH in terms of the number of steps.
From Fig. 1, we observe that larger MH steps usually result in better perfor-
mance. In most cases, 4-step is better than 2-step and further better than 1-step.
3 http://www.gutenberg.org/dirs/etext04/suall11.txt.

http://www.gutenberg.org/dirs/etext04/suall11.txt
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The experimental results of all the three topic models verify the above argument.
We proceed to compare the performance of different sampling methods. A pos-
sible explanation is that more MH steps help the sampling method to explore
more states if the Markov chain has low conductance. 4MH-1GS usually achieves
the best performance while MH (including all the three MH methods with dif-
ferent steps) usually demonstrates the worst performance. The performance of
GS and the other hybrid methods is between 4MH-1GS and MH. 4MH-1GS is
better than 9MH-1GS, showing that fairly high frequency of switching MH and
GS is effective to improve the model quality. The hybrid methods have higher
chance to prevent the sampling algorithm getting “stuck” in a subset of Markov
chain states. Hence, MH is not a good choice if the quality of the resultant model
is highly valued. From Fig. 2, we observe that MH-step1 achieves a fairly good
model within the least time while GS takes the longest time. The time consumed
by hybrid sampling methods is between MH-step1 and GS. The superiority of
MH in efficiency is achieved by reusing the alias tables, which can reduce the
amortized time complexity to as low as O(1) per blob. In contrast, the complex-
ity of GS is O(K) per blob, since it needs to calculate the probability for each
topic.

Based upon above observations, we obtain the following important insights,
which are valid across the three different topic models: 1. GS achieves higher
likelihood than MH while MH consumes less time to achieve a fairly good result;
2. Some hybrid sampling methods can achieve even better result than GS while
consumes less time than GS. 3. If the quality of the model is the emphasis, hybrid
sampling methods like 4MH-1GS should be chosen because it achieves the best
model quality with fairly good efficiency. If efficiency is the focus, MH may be
chosen since it consumes the least time to generate a reasonably good model.

5.2 Scalability of Familia

We proceed to demonstrate the scalability of Familia with 1, 5, 10 and 20 comput-
ing nodes. The log likelihood of LDA trained on 10 nodes is presented in Fig. 3a,
from which we observe that the results obtained from 10 nodes is aligned with
those from a single node, showing that the quality of these three models trained
by different sampling methods is not heavily affected by the distributed envi-
ronment. Although all sampling methods achieve slightly lower log likelihood
than those of single node, such degradation is modest in practice. In distributed
environment, 4MH-1GS is the method with the best performance and MH meth-
ods usually achieve the lowest likelihood. The insights discussed in Sect. 5.1 still
hold for training topic models in distributed environment. Similar phenomenon
is observed for Sentence LDA and TOT or when the number of nodes is set to
5 or 20 and their results are skipped.

Another important question is how much speedup we obtain when multi-
ple computing nodes are involved. The speedup analysis of LDA is presented in
Fig. 3b. High speedup ratio is an indicator of low communication and synchro-
nization cost. With training topic models with PS, low communication cost is
primarily achieved by the sparsity of the model under training. The sparser the
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(a) Comparison of Sampling Meth-
ods (Parallel-Iteration): LDA (node=10,
K=100)

(b) Speedup Analysis: LDA (K=100)

Fig. 3. Scalability analysis (Best Viewed in Color)

model is, the less the parameters that each worker needs to pull from servers.
When sorted by speedup ratio, the ranking of these sampling methods varies
from model to model, showing a specific sampling method has different capabil-
ity of promoting the sparsity of a topic model. However, GS always has the best
speedup ratio, indicating that GS is quite effective in promoting the sparsity of
the model. Similar phenomenon is observed for Sentence LDA and TOT and
their results are skipped due to space limitation.

6 Conclusion

In this paper, we propose a configurable topic modeling framework named
Familia for industrial text engineering. The framework provides novel function-
alities such as topic model customization, automatic parameter inference and
post-modeling utilities. Based on the hybrid sampling mechanism of Familia,
we further provide practical suggestions of choosing proper sampling methods
for different topic models. Equipped with Familia, software engineers can easily
test different assumptions of the latent structure of their data without tediously
deriving mathematical equations and implementing sampling algorithms from
scratch. Familia would help the technique of topic modeling to be utilized in
more proper and convenient manner in industrial scenarios.
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Abstract. Advertisement (Ad) title plays a significant role in the effec-
tiveness of online commercial advertising. However, it’s difficult for most
advertisers to think of attractive titles for their products. By mining key-
words from current ad material, traditional retrieval methods and neural
text generation models have been applied to solve this problem. How-
ever, few of them focus on personalized ad titles generation. Ad titles
from different advertisers can be very diversified, and there is massive
previous advertising data available, which can tell the style, content, and
vocabulary of specific advertisers. Based on massive previous advertis-
ing data and current ad material, we propose an Ad-Profile-based Title
Generation Network (APTGN) to automatically generate personalized
titles for ads. The model utilizes massive advertising data and current
ad material to construct a profile for each ad, which is further integrated
into the generation model to help recognize the preferences of specific ads.
Automatic evaluation metrics and online A/B testing both show that our
model significantly outperforms all the baselines, increasing the adoption
rate of recommendation titles by 27.22%. Through our deployed model,
once an advertiser needs to customize an ad title for their products, sat-
isfactory titles can be recommended automatically without bothering to
write any words.

Keywords: Personalized advertisement title generation ·
Advertisement profile · Feature extraction

1 Introduction

Advertisement titles are often the first impression to attract potential consumers
and thus trigger conversion behavior in online commercial advertising. When
making ads, advertisers are usually inclined to use informative and intriguing
titles to promoting their products. Those ads are exposed to potential consumers
on the media. Consumers usually take a glance at the ad titles, and only when
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 529–540, 2021.
https://doi.org/10.1007/978-3-030-73200-4_37
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Fig. 1. Simple illustration of advertising process. Inside the red box is title for this ad.
The translation is “Where do people who never post in WeChat Moments share their
thoughts? It’s in Soul.”. (Color figure online)

attracted by the titles, will they continue to click on the ad to know more
about the products. Thus, the ad titles serve as a bridge between customers
and products, which is the key for advertisers and the related parties to make
higher revenue through online advertising (Fig. 1).

However, how to generate correct and attractive ad titles that meet the adver-
tisers’ needs effectively remains a troublesome problem. First, making ad titles
manually is a big challenge. In industrial applications, ad titles are commonly
either written by the advertisers or generated based on designed templates.
Larger advertisers may hire professional copywriters to write titles for their
ads. Those titles are often more relevant, specified, and attractive but cost a
lot of time and money. It’s difficult for medium and smaller advertisers to gen-
erate titles in this way. The template-based method is another popular way to
make titles [2]. But titles generated by pre-defined templates are stereotyped,
even incorrect. Second, different advertisers have different preferences on the ad
titles. It’s difficult to generate personalized titles for each ad.

To free the advertisers of the ad title making process, some work has been
done to utilize text generation algorithms to generate ad titles automatically.
But only limited information (customer keywords [1] or texts on the landing
pages [5]) is used to help generation. Thus, generated titles may fail to meet
the different preferences of different advertisers. In personalized advertisement
recommendation systems, user modeling has been widely used and proved to
receive great success [4,10]. But few of those techniques have been explored in
personalized advertisement generation.

In this paper, we propose an Ad-Profile-based Title Generation Network
(APTGN) to automatically generate personalized titles for each ad. Ads from
different advertisers usually differ a lot in their content and style while ads from
the same advertiser share many similarities. Those features can be fully reflected
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in their previous ads, which are not utilized in current title generation methods.
Therefore, to generate personalized titles, we first conduct an in-depth explo-
ration of the recorded basic information of the advertiser and their previous ads.
Twenty features are extracted to make a full depiction of the ad from three
aspects, including basic information, stylistic information, and current informa-
tion. Second, we use a feature extraction module to vectorize the constructed
features. Given all the feature vectors, a transformer-based generation model is
used to generate titles for each ad.

The main contributions of this paper can be summarized as follow. We design
an Ad-Profile based Title Generation Network to automatically generate person-
alized and intriguing titles for advertisers. Leveraging massive related previous
advertisement, this model can get the advertiser rid of making ad titles com-
pletely. This model has already been deployed to the online advertising platform
in this company and the adoption rate of recommended titles has shown a con-
tinuous increase. Once the advertiser comes to the platform and starts making
ads, satisfactory titles will be recommended immediately without requiring the
advertiser to write any words, which speeds up the ad making process. Higher
quality ad titles also gain more revenue for both advertisers and advertising
platforms.

2 Ad-Profile-Based Title Generation Network

In this section, we describe in detail the proposed APTGN model. The overall
model framework is shown in Fig. 2.

The advertising platform contains a large amount of previous ad data, includ-
ing basic target information, query (keywords provided by advertisers to make
ad titles, optionally), title, landing page, and so on. When an advertiser creating
an ad on the advertising platform, all the related information can be retrieved
on this platform. First, we use a feature construction module to build a profile
for each ad, namely, twenty features are designed to depict the ad from three
aspects, basic, stylistic, and current information. Those features are usually long
and massive texts. Hence, a feature extraction module is designed to give a rep-
resentation vector of each feature. Given all the features, a transformer-based
generation model is used to generate titles for each ad automatically.

The problem can be formulated as follows: given an ad, which includes its
landing page, query (optional), the model aims to generate a title making full
use of all the available information. Namely, given all the available information
X = (x1, · · · , xM ), where each xi represents one kind of related information, the
title generation model aims to take X as input, and generates an ad title Y =
(y1, y2, · · · , yN ) word by word. The log conditional probability can be formalized
as:

logPr(Y |X; θ) =
N∑

j=1

logPr(yj |X, y≤j ; θ) (1)

where y≤j = (y1, y2, · · · , yj−1) and θ indicates model parameters.
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Fig. 2. Overview of Ad-Profile-based Title Generation Model.

2.1 Ad Profile Construction

When an advertiser comes to the advertising platform preparing ad titles, all the
related information collected by the advertising platform can be used to assist
in the auto-generation of titles. To help understand, a brief introduction of the
hierarchical advertising system will be given first. In a general advertising system,
a customer is a virtual unit, which can register multiple advertiser accounts. Each
advertiser can release multiple ad groups. Each ad group contains multiple ads
and each ad mainly includes one title, one image, or one video promoting the
product [7]. Ad groups and ads can be updated over time.

The data collection platform in this company records the relationship among
customers, advertisers, ad groups, and ads. The detailed information of each ad
is also collected, including query, selected title, and the landing page of the ad.
Based on this information, we construct a profile for each ad as follows.

Basic Info: The basic information of each ad mainly depicts its static property,
which not only gives useful direction but also restriction of title generation.

– Advertiser Industry. The advertiser industry is important for title generation.
Given query “ (apple)” without knowing the industry information, the
model may be confused at generating titles like “ (this
kind of apple tastes good)” or “ (Apple computers are on
sale)”.

– Target Information. Target information covers the basic information of tar-
geting audiences, including target industry, target area, target age, target
gender, and target platform. With this information, the model can gener-
ate more personalized and correct titles. For example, given target gender
“ (female)”, the model will prefer to generate “ (beautiful)” instead of
“ (handsome)”.
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Current Info: When generating titles for a given ad, the textual information
we can make use of mainly comes from query and texts on the landing page,
both are quite relative to the ad title.

– Landing Page. The landing page displays the details of the ad, which can be
regarded as the embodiment of the condensed ad title. Thus it can provide
much information for title generation.

– Query. Query reflects the current interest of the advertiser, which is most
related to the title to be generated.

Stylistic Info: Similar ads can provide great insight for title generation of the
current ad. The advertiser’s preference (including style, content, vocab, and so
on) for the current ad can be reflected in the related previous ads. Considering
the hierarchy advertising system, we take the following four kinds of similarity
into account.

– Customer. Ads from the same customer would share some similarities. As
mentioned in Current Info, the landing page and query are the most direct
references for title generation. So we retrace previous landing pages, queries,
and titles from the same customer as the current ad to help generate titles.

– Advertiser. Same as Customer, previous landing pages, queries, and titles
from the same advertiser are used as supplemental features to help title gen-
eration.

– Landing Page. Ads on the same landing page are usually similar. Therefore,
previous queries and titles on the current landing page are integrated into the
title generation model.

– Ad Group. Previous information from the same ad group can provide much
useful help to current title generation. Same as the above, previous queries
and titles from the same ad group as the current ad are used.

2.2 Feature Extraction

In Sect. 2.1, We have constructed basic, current and stylistic features for each
ad. Basic information are all discrete features, so we directly construct a feature
matrix Wi (i ∈ {1, 2, · · · , N}, N is the number of basic features) for each basic
feature, where Wi = {wi1, wi2, · · · , wis}, s is the number of all possible values for
this feature. Those feature matrices are randomly initialized and learned during
the training process.

However, it is more complicated for stylistic features. As mentioned, stylistic
information is mainly textual features, which is of large amount. For instance,
a single landing page may have tens of thousands of characters. Thus, a feature
extraction model is trained to distill useful information from the landing pages,
previous titles, and previous queries.

Model. Our feature extraction model uses GPT2 framework [8], which can be
treated as a black box. Input a text sequence x, it outputs an embedding f(x).
And the training task is to do binary classification (as shown in Fig. 3). For
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convenience, we assume that a title (or landing page or query) of a specific ad
is closer to all other titles (or landing pages or queries) of the same ad that
it is to any titles (or landing pages or queries) of any other ad. To this end,
we employ triplet loss [9] that directly reflects what we want to achieve in the
feature extraction.

Fig. 3. Illustration of feature extraction model.

Instead of the offline generation of whole triplets, we construct anchor-
positive pairs offline while selecting hard negative exemplars online from within
a mini-batch. Namely, take titles, for example, we traverse titles from the same
ads and pair them up to form anchor-positive pairs. At each step of training, a
mini-batch of anchor-positive pairs are fed into the model, a hard negative xn

i is
selected for each anchor-positive such that argminxn

i
||f(xa

i ) − f(xn
i )||2. Besides,

we append a special type token at the beginning of each input sequence to help
the model distinguish query, title, and landing page.

Thus, the loss can be formulated as:

L =
N∑

i

[||f(xa
i ) − f(xp

i )||22 − ||f(xa
i ) − f(xn

i )||22 + α]+ (2)

where N is the cardinality of the training set, and (xa
i , x

p
i , x

n
i ) is a triplet in the

training set, referring to anchor, positive and negative sample respectively.

Feature. Since there are thousands of previous ads available, we simply take the
most recent k previous titles, landing pages, and queries to construct stylistic
features. Take titles of the same customer, for example, the most recent k titles
are fed into the pre-trained feature extraction model, and we get f(xi), i ∈
{1, 2, · · · , k}. Then, a simple summation is performed to get one feature vector
for previous titles of same customer, namely, f(xct) =

∑k
i f(xi). The same

technique is used on all stylistic features. Besides, the current landing page also
contains many texts so, for convenience, we directly use the feature embedding
f(xcu) learned from this model to represent it.

2.3 Model Framework

The transformer model [11] is adapted for this ad title generation task. The
input embedding is replaced by our record embedding to better incorporate the
rich related information.
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Fig. 4. Illustration of Transformer-based title generation model.

Record Embedding. The input of ad title generation model is a sequence of
records. Each record is a tuple of twenty features as constructed in Sect. 2.1.
Inspired by previous work [6], we embed features into vectors (as illustrated in
Sect. 2.2), and use the concatenation of feature embeddings as the embedding
of record. Additionally, to help the model better distinguish different types of
features, we add type embedding (a feature matrix T randomly initialized and
learned through training) to each feature embedding. The current query shares
the same vocabulary with the target title, and to make the model aware of its
sequential information, positional encoding [11] is added to query embedding (as
shown in Fig. 4). So, the final embedding of each record is formulated as follows:

ei = [ei,1; ei,2; ei,3; · · · ; ei,20] (3)
eij = efeaturej + etypej , j ∈ {1, 2, · · · , 19} (4)

eij = efeaturej + etypej + epos, j = 20 (5)

where ei ∈ Rdim is the ith record embedding in the input sequence and ei,j ∈
Rdim is the jth feature embedding in ith record.

Title Generation. We simply use the whole Transformer model to do title
generation. The encoder first maps the input record embedding to a context
embedding H that integrates all the input information as encoder output. At
each decoding step, the decoder computes the output probability over the whole
vocabulary conditioned on the context embedding and previous output words.

H = Transformer-Encoder(e) (6)
P (yt|x, y≤t) = Transformer-Decoder(y≤t,H) (7)

where e is the record embedding for one sample, H is the encoder output, y is
the ground-truth title.

Therefore, the model’s training objective is to minimize the negative log-
likelihood of the training data concerning all the parameters, as denoted as θ.

L = −
N∑

i=1

|y(i)|∑

j=1

logP (y(i)
j |x(i), y

(i)
≤j ; θ) (8)

where N is the cardinality of the training set, (i) refers to the ith training sample,
|y(i)| is the length of the ith ground-truth title.
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3 Experiments

In this section, we first introduce the experimental setup and the baseline meth-
ods in comparison to APTGN. Then the implementation details and the evalu-
ation results are given before a case study and some discussions.

3.1 Dataset

All the experiments are conducted on a real dataset, which is collected by the
data collection platform in this company. The detailed information of each ad
is well recorded, including its creation time, customer, advertiser, advertiser’s
industry, targeting industry, age, gender, platform, landing page, input query
and finally selected titles, and so on. We use 30,000,000 records for training,
each record contains a title and 20 features as constructed in Sect. 2.1.

3.2 Baselines

Ad title generation methods commonly used in the industry are selected as
our baselines, including traditional retrieval model and transformer-based text
generation models.

Retrieval Model. This is a traditional search-based method. Previous ad titles
and relevant text snippets are collected in ElasticSearch, which is a distributed
retrieval framework. Each text is represented by the TF-IDF feature. When rec-
ommending titles, the cosine similarity between the input query of the advertiser
and texts in the title database is considered, and titles with the higher similarity
scores are retrieved and recommended to the advertisers. When there is no query
available, we will use keywords mined from texts on the current landing page
and previous titles instead.

Query-to-Title. This is a transformer-based generation model. We collect
advertisers’ input queries and titles for final ads as training data. Same as
retrieval model, when there is no query, keywords mined from texts on the cur-
rent landing page and previous titles will be used as query. With the queries
as input, this model is trained to generate suitable titles for the corresponding
queries to minimize the cross-entropy loss. The transformer model used here is
the same as that in APTGN, which is also pre-trained.

Bidirectional Continuation. This model is the same as Query-to-Title, but
with different training data. Instead of directly using input query, here we con-
struct multiple query-title pairs with one title by traversing all the possible
N -grams. Each N -gram is paired with the title as a training sample.

3.3 Implementation Details

We pre-train the transformer module used in our title generation model and
GPT2 module used in the feature extraction model with 3T Chinese news corpus
separately. The size of word embedding is set to 768 and the embeddings are
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updated during fine-tuning. The size of feature embedding is also set to 768.
Once the feature extraction model finishes training, the feature embedding for
certain feature remains fixed. For the feature extraction model, the threshold
for triplet loss α is set to 0.5 and the threshold for most recent k records is
set to 500. For the title generation model, all titles and queries are padded to
a maximum sentence length of 65. We perform a mini-batch cross-entropy loss
training with a batch size of 64 records for 5 epochs. We use Adam optimizer,
and the learning rate is specified as 5e−5, where warm-up is performed for the
first 20000 steps. We adopted nucleus sampling with a probability of 0.75 to
promote the diversity of generated titles.

3.4 Automatic Evaluation

The evaluation package released by Chen et al. [3] is used to do the automatic
evaluation for the generated titles, including BLEU, METEOR and ROUGE
scores. We randomly select 1000 records as a test set. Experimental results on
the test set are shown in Table 1. From this table, we can see that our proposed
APTGN achieves the best performance on these metrics.

3.5 Online A/B Testing

To further verify the effectiveness of our proposed model, we test our method in
the real-world advertising platform using A/B testing. During online A/B test-
ing, advertisers are split equally into two groups according to their unique ID
and are directed into a baseline bucket and an experimental bucket. For adver-
tisers in the baseline bucket, ad titles are generated by three baseline models,
where the generated titles of the three models are randomly ranked and merged
according to equal probability. For advertisers in the experimental bucket, ad
titles are generated by all the baseline models plus APTGN, where the gener-
ated titles of all the four models are also randomly ranked and merged, but with
different probabilities, our model with probability 1

2 , and each baseline model
with probability 1

6 . All conditions in the two buckets are identical except for the
available title generation models. We apply the adoption rate to measure the
performance of models.

Adoption Rate =
Number of adoption
Number of request

(9)

the event that one advertiser comes to the platform and selects titles is regarded
as one request, and the action that he finally selects titles from our recommended
titles (no matter modified or not) is viewed as one adoption.

We deployed A/B testing for 14 days. The overall adoption rate of recom-
mended titles in the baseline is 18.58% while that in the experimental bucket
is 23.64%, with a 27.22% improvement compared to baseline. Table 2 shows
the adoption rate of different models in the baseline bucket and experimental
bucket separately. In the experimental bucket, the adoption rate of our proposed
model outperforms the other three models. Compared to the baselines, when our
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proposed model is added, the adoption rates of the baseline models experience
a great decline. This reflects that titles generated by our proposed model are of
higher quality in terms of the advertisers’ favor.

Table 1. Auto metric scores on test set of different model.

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L

Retrieval 23.64 14.52 9.50 6.42 10.88 19.13

Query-to-Title 28.12 18.54 13.17 9.67 13.19 23.70

BiContinuation 29.25 19.45 13.90 10.26 13.62 24.13

APTGN 38.05 27.86 21.38 16.82 18.30 32.64

Table 2. Adoption rate of different models in baseline and experimental buckets.

Models Experiment Baseline

Request Adoption Adoption rate Request Adoption Adoption rate

Retrieval 22738 554 2.44% 22593 1693 7.49%

Query-to-Title 22902 561 2.45% 23397 2014 8.61%

BiContinuation 20228 585 2.89% 20727 1960 9.46%

APTGN 22843 4722 20.67%

Table 3. Sample titles generated by different models.

Query (listen to storytelling)

Ground-
Truth

(Classic story-
telling [Biography of Yue Fei], online lis-
tening to genuine resources for free!)

(Super simple planner,
milk tea stick figure, summer is coming,
draw a cup of milk tea for yourself.)

Retrieval (Recently discover an arti-
fact, the storytelling resources inside are
really nice)

(Still drinking
creamer tea? Go home and squeeze the
juice! Net red juicer limited grab)

Query-
to-Title

(Complete works of Shan Tian-
fang’s classic storytelling, fast update,
online access to genuine resources)

(Milk tea is too cheap! Milk
tea is selling at this price at this shop!)

BiConti-
nuation

(Tired of reading nov-
els? Come to the Himalaya to listen to
the storytelling)

(Net red burst
teacups, only a few dollars a day, no
longer need to go to the store to buy
milk tea!)

APTGN (The classic sto-
rytelling ”Biography of Yue Fei”, the
genuine resource is free to listen to, the
update is fast and does not hurt the
eyes!)

(Super cute hand-
painted planner, various hand-painted
styles, come and download )
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3.6 Case Study

We present some titles generated by different models to have an intuitive under-
standing of title quality. Two general situations are considered, one is with a
query and the other without query.

From the second column, we can see that with a query, generally, all the
models can generate proper titles. But titles generated by our model can be
more detailed and specific. For example, when the query is “ (listen to
storytelling)”, titles generated by baseline models seem more general while title
generated by our model can directly give the detail about the subject “
(Biography of Yue Fei)” of the ad.

When there is no query available, the results can show the advantage of our
model. From the last column in Table 3, we can see that titles generated by
baseline models deviate from the ground-truth to a certain extent, with a wrong
subject for example. However, the title generated by our model is very similar
to the ground truth. This shows that the traditional way of using previous ads
by directly mining keywords from them is not efficient. Our model can make
full use of all the available information, thus generate more correct and specific
titles. In a real-world application, one goal the platform wants to achieve is
to recommend satisfactory titles for advertisers once they come to the platform
without bothering to input anything. In this sense, our model has great practical
value.

3.7 Discussion

Experiments have shown that our proposed model outperforms all the baseline
models. In this section, we make further analysis of those models.

In the case where we already have an extensive title database, the retrieval
method can be a quick and effective way to generate titles. However, the long-
term use of this method is not appropriate. Duplicate titles would reduce the
effectiveness of advertising. A simple keyword-based generation model combined
with a nucleus sampling decoding strategy can increase the diversity of gener-
ated titles to a certain extent. But due to the limited input information, the
relevance and correctness cannot be promised. Besides, all these methods have
higher requirements on the input query, which requires the advertisers to pro-
vide query keywords as accurately as possible. This violates the motivation of
the title recommendation system. Once there is no input query from the adver-
tiser available, the quality of titles generated by keywords mined from landing
page and previous ads has shown a relatively large decline. When generating
titles for a new ad, it’s crucial to know the current interest, basic background,
and expression preferences of the advertiser. Current ad material only contains
limited information, failing to provide enough details to the generation model.
APTGN model leverages massive related advertising data to give a comprehen-
sive description of each ad, thus, the generated titles can be correct and specific.
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4 Conclusion

Recommending satisfactory titles for ads is of great significance in real-world
applications. Considering the dilemma that limited current information of ad
is available while lots of related previous advertisement data wasted, we pro-
pose an Ad-Profile-based model to help generate titles for ads automatically. A
profile is constructed for each ad with twenty features, which covers three dimen-
sions, basic, current, and stylistic information. Also, a feature extraction model is
designed to give a representation vector of each feature. The transformer model
is adapted to do title generation taking all the constructed features as input.
Automatic metrics and online A/B testing both show that our proposed model
significantly outperforms the baseline models which have been commonly used in
the advertising platform. In the future, we will further explore how to integrate
all the features into the model in a better way.
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Abstract. The relation tuple is the basic unit of the knowledge graph.
Conventional relation extraction methods can only identify limited rela-
tion classes and not recognize the unseen relation types that have no
pre-labeled training data. In this paper, we explore the zero-shot rela-
tion extraction to overcome the challenge. The only requisite information
about an unseen type is the label name. We propose a Parasitic Neu-
ral Network (PNN), where unseen types are parasitic on seen types to
get automatic annotation and training. The model learns a mapping
between the feature representations of text samples and the distribu-
tions of unseen types in a shared semantic space. Experiment results
show that our model significantly outperforms others on the unseen rela-
tion extraction task and achieves effect improvement of more than 20%
when there are not any manual annotations or additional resources. This
model, with good performance and fast implementation, can support the
industrial knowledge graph populating.

Keywords: Relation extraction · Zero-shot learning · Neural
network · Knowledge graph

1 Introduction

The relation extraction (RE) task aims to determine relational facts from the
unstructured text. A relational fact usually comprises of a resourceful relation
and two entities, which expresses a certain semantic connection between enti-
ties, e.g., (Michael Jordan, place of birth, New York). RE is a key link in the
construction of knowledge graphs (KGs), especially to populate knowledge bases
in an automatic manner.

The conventional methods (including one/few -shot learning) [5,14] cannot
meet the practical needs of the KG populating in industrial applications. Gener-
ally, there are massive fine-grained types of relations in the real KGs. However,
these methods are often to distinguish the limited relational taxonomy, where
c© Springer Nature Switzerland AG 2021
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Fig. 1. The architecture of the parasitic neural network.

the relation types are seen and each type must have a certain number of pre-
labeled samples. They are unable to generalize to new (unseen) relations (i.e.,
they will break down when predicting a type that has no training examples).
Collecting sufficient labeled instances for training on all expected categories is
almost impossible, in contrast with the limited number of relation types covered
by existing datasets.

To address the challenge, we develop a zero-shot relation extraction (ZRE),
which is under the restriction that the extractor should identify facts of new rela-
tion types after learning from limited labeled instances of seen types. The ZRE
is a promising learning paradigm by reducing annotation costs and improving
application efficiency. However, it is immature and has received limited attention.
The existing popular methods address the ZRE task to develop specific trans-
fer learning procedures by reading comprehension [11], textual entailment [19],
and so on. We consider these methods to be indirect-trick. They need much
unnatural descriptive information to improve the understandability of relation
types. Annotation costs severely decrease their applicability to new types. In
this paper, we are committed to the direct-trick method. It does not need any
manual intervention to pre-describe relation types. Instead, it just uses the name
of type labels that is a natural expression of relation semantics.

Furthermore, we raise a zero-shot learning framework that learns the map-
ping between the text feature representations and the relation type embeddings
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(prototypes) in a shared semantic space. To prevent over-fitting seen types and
successfully adapt to unseen types, the model requires to solve a principal prob-
lem: How to understand the distributions of unseen relation types in the shared
space. And to this end, we propose the parasitic neural network model.

In summary, our key contributions are presented as follows. (1) We develop a
general zero-shot learning framework for unseen relation extraction by the direct-
trick. It emphasizes the non-use of manual annotations or external knowledge. (2)
Based on the Parasitism, we propose the PNN that leverages the association of
the relation types in a shared semantic space to learn the distributions of unseen
types automatically. (3) Our experiment results achieve significant improvement
than other methods, both in the direct- and indirect-trick cases.

2 Related Work

The conventional relation extraction was usually regarded as a standard clas-
sification task with the pre-fixed relational taxonomy [3,14]. The classifiers
were usually involved in minimizing the softmax cross-entropy loss function.
They heavily depended on time-consuming and labor-intensive annotated data.
Distant-supervision was a primary way to annotate adequate amounts of train-
ing data by heuristically aligning knowledge bases and text [17]. However, the
distant-supervision could produce a large number of mislabeling. Besides, many
researchers formulated relation extraction as the few/one-shot learning tasks
which aimed to learn extraction models from one, or only a few, training sam-
ples [5,28]. However, a shortcoming common to the above methods was that
they would break down when predicting a type that had no training examples.
Thus zero-shot extraction was irreplaceable because the training set could not
contain such numerous relation categories at once.

Most of the works of zero-shot learning were focused on the area of computer
vision, such as the tasks of object recognition [10], image segmentation [12,
18], image retrieval [29], and so on. In the area of natural language processing,
the applications of zero-shot learning have been emerging in recent years, such
as machine translation [8,30], entity typing [20,21], event extraction [2,6], and
knowledge graph completion [4,23].

As for zero-shot relation extraction, it was immature and had received limited
attention. By analyzing linguistics, old-fashioned approaches developed unsuper-
vised models (e.g., clustering) based on combinations of manual features, pat-
terns, or corpus-level resources [9,16,27]. They tended to be inefficient and con-
sumed a lot of manpower. The recent methods were to transfer other tasks to pro-
duce relations. Levy et al. [11] formulated relation types as various parametrized
natural-language questions, then used a reading comprehension model to process
the questions to obtain relation facts. By considering the text and the relation
description as the premise and hypothesis respectively, Obamuyide et al. [19]
transformed the extraction task to determine the truthfulness of the hypothesis
by a textual entailment model. It was expensive to manually formulate reading
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comprehension questions or entailment rules. In addition, transfer-based meth-
ods were constrained by the capability of indirect tasks whose errors or defects
could be cascaded into relation extraction.

In this paper, we take a universal and all-inclusive manner, which is to model
the mapping between text instances and relation type prototypes [25,26]. More
importantly, we explore the ZRE via the direct-trick. Because of the extremely
scarce relation type information, we set up the parasitic learning.

In addition, it’s worth noting that the ZRE is different from the open relation
extraction task [1,7]. While open extraction systems need no relation-specific
training data, such open relation is rough and non-standardized and should
align from different relation phrasings. Here, we hope to extract the canonical
relations independent of how the original text is phrased.

3 Methodology

3.1 Parasitism Thought

Let S = {Ss | s = 1, · · · , NS} denotes a set of seen relation types and U =
{Uu | u = 1, · · · , NU} unseen types, with S ∩ U = ∅. Suppose that the dataset
D = D

S ∩ D
U is a collection of text instances. The D

S
s =

{
xS
s,i | yS

s = Ss

}
is as

the set of labeled training instances belonging to seen types Ss. The D
U =

{
xU
j

}

is as the set of testing instances, meanwhile, yU
j ∈ U is to be predicted as the

corresponding type labels for xU
j . In semantic embedding space R

z, the instance
x will be embedded to χ and it is assumed to belong to one category. The types
will be vectorized as type prototypes ϕ =

{
ϕS ,ϕU

}
. Overall, the ZRE task is

defined as: Given D
S , the ZRE system learns the mapping f (·) : χ → ϕ, which

can classify testing instances D
U (i.e., to predict yU ).

Fig. 2. The distributed associations of a set of relation types {Ss, Sr, Up, Uq}. The
definition of these symbols is consistent with the Algorithm 1.

The instances with the same relation type will cluster around a single pro-
totype in the shared semantic space, whereas they are far away from other type
prototypes. Meanwhile, the more similar types are distributed closer in the space
[25,26]. Therefore, we determine the semantic distance Dis (·) between the fea-
ture representations χ and the type prototypes ϕ. Here, the semantic distance
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Algorithm 1. Parasitic neural network training algorithm.
Require: S, DS , ϕS , U , ϕU .
1: Initialize
2: Calculate the semantic distances of seen types S to unseen types U , as,

D(Ss, Uu) = Dis(ϕS
s ,ϕ

U
u ) | s = 1, ..., NS , u = 1, ..., NU .

3: Obtain the array R by ranking the D(S,U ) (from small to large),
∀{ s = 1, ..., NS , m = 1, ..., NU−1} s.t.

R[s][m] ∈ U ∧ D(Ss,R[s][m]) � D(Ss,R[s][m + 1]).
4: for Ss (as Host) in S do
5: for xS

s,i in D
S
s do

6: Select Sr from S randomly;
7: Select any Up = R[s][m′] from R[s][1 : NU−1 ] as Parasite;
8: Select any Uq = R[s][m′′] from R[s][m′ : NU ] as Parasite.
9: Construct four sets of inputs for PNN sub-networks, as

(xS
s,i, Ss), (x

S
s,i, Sr), (x

S
s,i, Up), (x

S
s,i, Uq).

10: Run PNN to
11: learn the χS

s,i of instance xS
s,i;

12: obtain the corresponding prototypes ϕS
s , ϕS

r , ϕU
p , ϕU

q ;

13: calculate Dis(χS
s,i,ϕ

S
s ), Dis(χS

s,i,ϕ
S
r ), Dis(χS

s,i,ϕ
U
p ), Dis(χS

s,i,ϕ
U
q ).

14: Minimize the Joint energy function in Eq. 2.
15: end for
16: end for

is a quantification of the mapping f (·). The smaller the distance, the better the
mapping fit.

Furthermore, we can establish the following assumptions of the premise:
(1) Given any relation type R1 and a corresponding instance x, it should be
sure that the semantic distance between x and R1 is the smallest (or even 0),
compared with the distance between x and any other types. (2) For arbitrarily
given type R2 and type R3 (R1 �= R2 �= R3), if the semantic distance between R2

and R1 is smaller than that between R3 and R1, the semantic distance between
R2 and x should be smaller than that between R3 and x.

The above premises imply the association among the relation types in the
shared semantic space. According to this correlation among seen types {Ss, Sr}
and unseen types {Up, Uq}, as vivid shown in Fig. 2, we can create annotations
for unseen types (Parasite) by considering the instances of seen types as Host,
just like “Parasitism”. The Algorithm 1 (lines 1 to 8) shows the process of data
creation. Then, we train the PNN model to learn the distributions of unseen
types.

Joint Energy Function. As described in Algorithm 1, each sub-network pro-
duces a semantic distance metric. They interact with each other and then
joint together. In detail, we establish a series of trunks, shaped like {Branch1,
Branch2}, including {Dis(χS

s,i,ϕ
S
s ),Dis(χS

s,i,ϕ
S
r )}, {Dis(χS

s,i,ϕ
S
s ),Dis(χS

s,i,

ϕU
p )}, and {Dis(χS

s,i, ϕU
p ),Dis(χS

s,i,ϕ
U
q )}. According to the premises mentioned

above, we will compare the semantic distance between the two in each trunk.
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Motivated by the triplet loss [22], we set the σ function to ensure that the
Branch1 is smaller than the Branch2 by at least a margin m, as,

σ(Branch1, Branch2,m) = max(Branch1 − Branch2 + m, 0). (1)

Thus, the joint energy function is defined as,

L(Θ) =
NS∑

s=1

|DS
s |∑

i=1

(Γ | χS
s,i,ϕ

S
s , ϕS

r , ϕU
p , ϕU

q ; Θ), (2)

Γ =
σ(Dis(χS

s,i,ϕ
S
s ), Dis(χS

s,i,ϕ
S
r ), m1) +

β σ(Dis(χS
s,i,ϕ

S
s ), Dis(χS

s,i,ϕ
U
p ), m2) +

γ σ(Dis(χS
s,i,ϕ

U
p ), Dis(χS

s,i,ϕ
U
q ), m3)

, (3)

where we employ the cosine distance (within the range [0, 2]), β and γ are the
trade-off parameters.

3.2 Network Architecture

As shown in Fig. 1, the PNN consists of four sub-networks that accept distinct
inputs but are then joined by a joint energy function.

The parameters between the sub-networks are tied, that is, each network
computes the same metric on a shared workbench (shared by Host and Parasite
that seems to be a parasitic energy community). Tying guarantees that two
inputs of an identical class cannot be mapped by their respective networks to
very different locations, in the semantic space, and each sub-network can also
distinguish inputs of varied types.

Text Embedding. The sub-network takes as input one piece of text and a
relation label, and the text contains pre-identified head and tail entities. We
transform the text instance x into its distributed representation x by adopting
triple embeddings {xw,xc,xp}. The xw denotes the word embedding. To deal
with unregistered words, we use a convolutional neural network to encode char-
acter embedding xc of each word, as [15] doing. The xp represents the position
embedding to specify entity pairs. Similarly to [13], it is defined as the combi-
nation of the relative distances from the current word to head or tail entities.

Relation Type Prototype. We achieve the prototype ϕ with the word embed-
dings of type labels’ names. Word embeddings capture distributional similarities
from a large text corpus. Semantically similar words are embedded as nearby
vectors, while semantically dissimilar words are presented as vectors far apart.
Therefore, word embeddings can effectively reflect the semantic distance between
relation types. Each prototype is an average of word embeddings of the core
words (i.e., nouns, adjectives, etc., except prepositions, conjunctions) in its label
name. We can fine-tune these embeddings along with training.1

1 We do not fine-tune these embeddings during training.
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Learning Feature Representation from Text. The sample text has latent
feature information that is category-invariant and implied in content, syntax,
etc. We feed the text embeddings into the bidirectional ordered neurons long
short-term memory network (ONLSTM) [24] to encode feature representation
χ. The ONLSTM performs tree-like syntactic structure composition operations
on a sentence without destroying its sequence form. It can learn context tem-
poral semantics, meanwhile, capture potential syntactic information involved in
natural language.

Notably, this syntactic information is critical to the relation extraction task
[7]. There are strict semantic associations and formal constraints that the head
argument is the agent of the relation and the tail argument is the object of the
relation. Integrating syntax-semantics into a neural network can encode better
representations of natural language sentences.

Based on the new activation function cumulative softmax (cumax()), the
ONLSTM promotes differentiation of the life cycle of information stored inside
each neuron: high-ranking neurons will store long-term information, while low-
ranking neurons will store short-term information. In detail,

f t = sigmoid (W fxt + Ufht−1 + bf ) (4)

it = sigmoid (W ixt + U iht−1 + bi) (5)

ĉt = tanh (W cxt + U cht−1 + bc) (6)

f̃ t = cumax(W f̃xt + U f̃ht−1 + bf̃ ) (7)

ĩt = cumax(W ĩxt + U ĩht−1 + bĩ) (8)

ωt = f̃ t ◦ ĩt (9)

ct = ωt ◦ (f t ◦ ct−1 + it ◦ ĉt) +
(
f̃ t − ωt

)
◦ ct−1 +

(
ĩt − ωt

)
◦ ĉt (10)

ot = σ (W oxt + Uoht−1 + bo) (11)

ht = ot ◦ tanh (ct) . (12)

In the above formulas, f t, it, ot, f̃ t, ĩt, ct, ht represent the forget gate, input
gate, output gate, master forget gate, master input gate, cell memory and hidden
state, respectively. The W and U are the trainable parameter matrixes, b is the
bias. The ◦ denotes the Hadamard product.

Extracting Unseen Relations. Once the model is optimized, we determine
the possible relation that a test instance xU

j may represent, if any. The top
ranked prediction from the candidate predicted types U , denoted as C(xU

j , 1),
is given by:

C(xU
j , 1) = argmin Dis(χU

j ,ϕU
u ), u = 1, 2, . . . , NU (13)

Moreover, C(xU
j ,K) denotes the Kth most probable relation type predicted for

xU
j .
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4 Experiments

4.1 Settings

Dataset. We evaluate models using the zero-shot relation extraction dataset of
[11]. It consists of 120 relation types that are from the knowledge base Wikidata.
We use the positive labeled relation instances in this dataset. There are 225,060
samples. By applying a similar process to [11] and [19], we randomly select 24
classes as a testing set, 10 classes as the dev set, and the rest as the training set.
The results reported for each experiment are the average taken over five runs
with independent random initializations. Given different thresholds regarding
distance, we can measure the precision (P), recall (R), and F1 of the results. We
report the optimal values.

Hyperparameters. We implement the neural network by the Keras. The word
embedding is from the GloVe2 with 100 dimensions. The character embedding
is initialized randomly as 50 dimensions. The size of the ONLSTM unit is 100.
Parameter optimization is performed with Adam optimizer. To mitigate over-
fitting, we apply the dropout and early-stopping methods. Besides, we empiri-
cally set m1 = 0.1, m2 = 0.1, m3 = 0.08, β = γ = 1.

Comparison Systems. We examine several major components in our model.
(1.1) We test the influence of word embedding on prototypes, increasing noise
by randomly zeroing its value in varied proportions. (1.2) We compare the bidi-
rectional ONLSTM to the bidirectional LSTM. (1.3) We verify the choice of dis-
tance, including logistic regression probability (LR), euclidean distance (EU ),
and cosine distance (COS ). We compare our PNN-based systems to external
systems. (2.1) 120-Softmax is a conventional 120-dimensional softmax classi-
fier, but we only use seen types to train it. (2.2) NaiveMAP learns the mapping
between the samples and seen types, by using the single mapping distance as loss
directly (Single) [23], or by adopting a tied network with triplet loss (Triplet)
[6]. (2.3) Model of Levy et al. [11]3 is via reading comprehension, by using dif-
ferent descriptions for relation types (i.e., NL - the label’s name, SQ - only a
single question template per relation type, MQ - multiple questions, and QE - an
ensemble learning way). (2.4) Model of Obamuyide et al. [19] is based on textual
entailment, where TE transforms external entailment corpus for training, and
MD represents training with manual annotations.

4.2 Results and Analysis

Ablation Study. The upper part of Table 1 shows our PNN-based models with
different factors. The relation prototype is crucial to the model, and it depends
2 https://nlp.stanford.edu/projects/glove/.
3 Notably, the methods of Levy et al. input an instance with head entity and relation

(question) to predict tail entity (answer), however, our model inputs an instance
with head and tail entities to predict relation. But from the perspective that we all
aim to obtain fact triples, their results are valuable for reference.

https://nlp.stanford.edu/projects/glove/
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on the quality of the embedding. Fortunately, just using the usual embedding
GloVe, we have achieved the F1 value of 58%. Compared with the LSTM, the
ONLSTM improves model performance by 7%. It shows that the potential syn-
tactic information captured by the ONLSTM is pretty useful for relation extrac-
tion. However, the LSTM explicitly imposes a chain structure on a sentence that
is contrary to the potential hierarchical structure of language, resulting in a loss
of syntactic information [24]. The choice of distance metric is also important,
where the cosine distance (COS) can well improve the effectiveness of a PNN.

Comparison with Other Methods. The middle part of Table 1 presents
the results of several direct-trick models. Our PNN (with ONLSTM and COS)
remarkably outperforms others. As expected, the conventional classifier 120-
Softmax has almost no effect and is at the level of random guessing. The
NaiveMAP+Single is insufficient in a zero-shot setting since it cannot capture
the association information between types. Furthermore, the NaiveMAP+Triplet
has an F1 improvement of more than 40% than NaiveMAP+Single, which proves
that the configuration of the tied network structure is appropriate. However, the
NaiveMAP+Triplet tends to over-fit seen types. Our model can alleviate this
over-fitting effectively by learning the semantic distributions of unseen relation
types explicitly, resulting in more than 5% F1 improvement. Besides, our model
achieves effect improvement of more than 20% than the model of Levy et al.
when there are no manual annotations or additional resources.

Table 1. The performance of the PNN-based models (ablation study) and external
systems (for comparison). ∗ indicates the model via the indirect-trick.

Models P R F1

PNN 10%Noise COS ONLSTM 50.91 44.97 47.75

5%Noise COS ONLSTM 57.68 49.48 53.26

0%Noise COS LSTM 58.47 45.45 51.13

COS ONLSTM 63.40 53.79 58.20

LR ONLSTM 57.96 43.28 49.55

EU ONLSTM 61.75 52.32 56.64

120-Softmax (with ONLSTM) 3.30 3.30 3.30

NaiveMAP (with COS and ONLSTM) Single 10.12 8.97 9.51

Triplet 55.15 50.93 52.95

Levy et al. [11] NL 40.50 28.56 33.40

SQ ∗ 37.18 31.24 33.90

MQ ∗ 43.61 36.45 39.61

QE ∗ 45.85 37.44 41.11

Obamuyide et al. [19] TE ∗ – – 44.38

MD ∗ – – 64.78

PNN (with ONLSTM)∗ 75.15 72.83 73.98
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As shown in the bottom of Table 1, by introducing manual guidance4, the
performance improvement of PNN is significantly, and other methods by the
indirect-trick are inferior to our model. These indirect-trick methods are con-
strained by extra annotation effort. The less quantity and lower quality of anno-
tation information, the worse the models will perform.

Analyze the Impact of Training Set Size. Figure 3 shows the results of
our model after being trained with varying proportions of seen types. As the
seen types in the training set increasing, the performance of unseen relation
extraction will become better. The reason may be that the diversity of training
set reduces the tendency of the model to over-fit seen types. In addition, most of
the correct extractions appear in the front part (i.e., top K � 5) of the candidate
type ranks. It proves that our model can understand the distributions of unseen
relation types in the shared space, where the semantic distance between each
sample and its corresponding prototype tends to be minimal.

Fig. 3. The effects of our model trained with varying number of seen relation types.
The hits@K represents the F1 of correct extractions ranked in the top K in Eq. 13.

Case Study. We sample an unseen relation type “father” and its corresponding
instances from the test set. The 1st row of Table 2 presents several unseen types
and their respective semantic distance from the target type “father”. The 3rd

and 5th rows of Table 2 show the semantic distances between each text instance
and the relation types. The distance between each instance and the target type is
minimum. Besides, the smaller the semantic distance between a relation type and
the target type, the smaller the semantic distance between it and the instance
corresponding to the target type can be. Therefore, the case demonstrates that
our model can learn the category-invariant semantics of text to match the dis-
tribution of unseen type prototypes.

4 We manually annotate a sample for each relation type, and use the way in Sect. 3.2
to learn the expression of the text, it is as the relation type prototype.
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Table 2. Examples of unseen relation type “father”.

father
(0)

named after
(0.361)

employer
(0.644)

chairperson
(0.889)

[Samuel Dirksz van Hoogstraten]entity trained first with his father [Dirk van

Hoogstraten]entity and stayed in Dordrecht until about 1640

0.403 0.562 0.726 1.119

[Bertrade de Montfort]entity was the daughter of [Simon I de Montfort]entity

and Agnes, Countess of Evreux

0.362 0.531 0.728 1.122

5 Conclusion

Knowledge graphs have been widely used in the industry. However, the acqui-
sition of large-scale knowledge makes it challenging for relation extraction. To
this end, ZRE is evolving to identify unseen relations. Previous solutions for ZRE
rely on expensive annotations that are hard to get, and we suggest an approach
to overcomes such limitations. Via the direct-trick, we propose a general zero-
shot relation extraction framework. Furthermore, we develop the parasitic neural
network. Inspired by parasitism, it owns a tied network structure and expands
annotations automatically for unseen relation types to learn their distributions.
The experimental results are excellent. In practice, our model has been able to
assist workers in populating KGs, which has improved productivity.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grant 72071145 and the 2020 Tencent Rhino-Bird Elite Training
Program.
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Abstract. Aiming to discover competitive new products, sales fore-
casting has been playing an increasingly important role in real-world
E-Commerce systems. Current methods either only utilize historical sales
records with time series based models, or train powerful classifiers (e.g.,
DNN and GBDT) with subtle feature engineering. Despite effectiveness,
they have limited abilities to make prediction for new products due to
the sparsity of product-related features. With the observation on real-
world data, we find that some additional time series features (e.g., brand
and category) implying product characteristics also play vital roles in
new product sales forecasting. Hence, we organize them as a new kind of
dense feature called CPV (Category-Property-Value) and propose a Time
Series aware Heterogeneous Graph (TSHG) to integrate CPVs and prod-
ucts based time series into a unified framework for fine-grained interac-
tion. Furthermore, we propose a novel Graph Attention Networks based
new product Sales Forecasting model (GASF) that jointly exploits high-
order structure and time series features derived from THSG for new prod-
uct sales forecasting with graph attention networks. Moreover, a multi
trend attention (MTA) mechanism is also proposed to solve temporal
shifting and spatial inconsistency between the time series of products
and CPVs. Extensive experiments on an industrial dataset and online
system demonstrate the effectiveness of our proposed approaches.

Keywords: Time series aware Heterogeneous Graph · Graph attention
networks · Multi trend attention

1 Introduction

With the development of E-Commerce, the user scale on E-Commerce platform
is constantly expanding and the consumer demand is increasingly diversified.
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c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 553–565, 2021.
https://doi.org/10.1007/978-3-030-73200-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73200-4_39&domain=pdf
https://doi.org/10.1007/978-3-030-73200-4_39


554 C. Xu et al.

Fig. 1. (a) Illustration of CPVs for wireless headphone. (b) A toy example of TSHG
in our scenario. (c) Illustration of CPV structure.

Discovering and supplying high-quality new products has been becoming the
core technology to meet diversified needs of customers. According to the statis-
tical data in Alibaba1, millions of new products are released everyday and they
contribute 40% of GMV (Gross Merchandise Volume) in the platform. Therefore,
new product sales forecasting, which aims to discover competitive new products,
has played a fundamental role in enhancing the productivity of E-Commerce and
satisfying user experience.

Intuitively, the new product sales forecasting in E-Commerce can be formu-
lated as a time series prediction problem, which is well explored in numerous
studies. Naturally, conventional solutions propose to adopt time series models
(e.g., Auto-Regressive Integrated Moving Average (ARIMA) [2] and Long Short
Term Memory network (LSTM) [7]) for prediction, which only utilize histori-
cal sales records. However, the sparsity and instability of historical records of
new products may harm the performance of these models. Besides, a series of
feature based methods are proposed to perform subtle feature engineering for
each product, and then train a powerful classifier (e.g., Gradient Boosting Deci-
sion Tree (GBDT) [4] and Deep Neural Networks [3]) for prediction. Due to the
powerful ability of feature learning, these methods have achieved a considerable
improvement on sales forecasting task. Nevertheless, we argue that the existing
methods have three major limitations for new product sales forecasting.

– L1: They commonly utilize product-related features (e.g., user behavior fea-
tures and product static information) to make prediction for product sales
in future. Unfortunately, these features are sparse or even absent for new
products in real-world application, which seriously hinders the forecasting
performance.

– L2: These approaches treat new products and its additional features (e.g.,
category and brand) separately, which ignores the interaction between them,
resulting in sub-optimal performance in the complex scenario.

– L3: With the analysis of real-world data, we find the temporal shifting and
spatial inconsistency (we will revisit temporal shifting and spatial inconsis-

1 https://www.alibaba.com/.

https://www.alibaba.com/
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tency in latter sections) between the time series of products and additional
features in our business scenario, which is poorly explored in the existing
approaches.

To address these issues, we aim to comprehensively explore and exploit abun-
dant product-related features and time series features in a more proper way, and
propose a novel Graph Attention network based Sales Forecasting approach,
called GASF shortly.

Inspired from daily business experience that the sales of new products are
mainly determined by whether their characteristics meet the market trend,
besides original time series features, we propose to construct Category - Prop-
erty - Value (called CPV shortly) features to characterize the trends of new
products more comprehensively. Figure 1(a) shows an example. Wireless head-
phone is described by the CPV “Wireless Earpads - Function - Wireless”, which
denotes that it belongs to the “Wireless Earpads” category and has the “Wire-
less” “Function”. Note that a product can be described by multiple CPVs and
a CPV can also be used to describe multiple products. In contrast with histor-
ical sales records, the proposed CPV features capture the sales trends in the
macro level, especially for new products with limited features or interactions
(L1). Therefore, it is quite likely to take full advantage of time series features
for improving the performance on sales forecasting task by integrating above two
aspects of information together.

On the other hand, graph has been proposed as a general approach to model
various types of objects. In order to jointly consider products and extracted
CPVs together, we propose Time Series aware Heterogeneous Graph ( TSHG
for short) to effectively capture underlying specialities of new products for sales
forecasting. As shown in Fig. 1(b), products and their CPVs are connected and
objects (products or CPVs) in TSHG contains time series. With the help of
recently emerging graph neural networks [15], high-order structure derived from
TSHG and time series features in products and CPVs can be naturally explored
in an unified framework (L2).

With the observation of real data in our E-commerce scenario, we find the
temporal shifting and spatial inconsistency between the time series of products
and CPVs, which means the response speed (i.e., temporal) and intensity (i.e.,
spatial) of products and CPVs are quite different for the hot spot in the market.
To fill this gap, we proposed a novel Multi Trend Attention (MTA) mechanism
in GASF, which (1) shifts the trend of the product over multiple time units on
the time axis to get multiple distances of the product and CPV trends (spatial
inconsistency), and (2) gets the time series trend by taking first-order derivative
and ensures the trend in the same space (spatial inconsistency) (L3). With MTA,
our model is expected to learn fine-grained interaction of time series between
products and CPVs beyond topological structure.

To sum up, we make the following contributions:

– Inspired from daily business experience, we construct a new kind of hetero-
geneous feature called CPV in E-Commerce to overcome the sparsity of new
products. Moreover, we propose to frame the new product sales forecasting
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problem in the setting of TSHG, which integrates the products, CPVs and
time series in an unified framework.

– We propose GASF, an end-to-end approach to simultaneously extract time
series and structural information in TSHG. To our best knowledge, it is
the first attempt to introduce deep graph learning with attention mecha-
nism for sales forecasting task, which provides a new perspective to capture
fine-grained interaction between products and other objects in real-world E-
commerce scenarios.

– With the analysis of real data, the temporal shifting and spatial inconsistency
between the time series of products and CPVs is uncovered and a novel multi
trend attention mechanism is designed in GASF model to solve it.

– We perform extensive experiments on an Alibaba dataset for product sales
forecasting. The results demonstrate that our model consistently and signifi-
cantly outperform various state-of-the-arts. Moreover, our model also achieves
significant performance improvement on online system.

2 Preliminaries

In real-world E-Commerce systems, a new product is associated with a series
of basic information (i.e., category, property and value) when it is released. In
order to comprehensively characterize new products for sales forecasting, we
proposed to extract category-property-value (CPV) features with normalization
as follows:

– Category: we apply the clustering technology and calculate frequencies for
category names in each cluster, the name with highest frequency will be
selected as the standard category and other category names are mapped to
it.

– Property: We summarize properties on category and normalize them via
Word2vec [11,12]. After representing each property as embedding, we follow
the same process flow of category to obtain standard properties with cluster-
ing and mapping.

– Value: We summarize values on category-property. These values can be nor-
malized by synonyms and Word2vec algorithm.

We show an example of well-established CPV structure in Fig. 1(c). CPV is
defined as a kind of property and value under a category in E-Commerce. For
example, we can observe that “Product2” can be describe as “Woman Dress -
Brand - Zara” or “Woman Dress - Material - Wool” in Fig. 1(c).

In this paper, we aim at leveraging above CPV features and time series to
effectively capture underlying specialities of new products for sales forecasting.
Hence, we frame our task in the setting of time series aware heterogeneous graph,
which considers the CPV features and time series in an unified framework.
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Fig. 2. The overall architecture of the proposed GASF approach.

Definition 1 Time series aware heterogeneous graph (TSHG). A TSHG
is defined as a directed graph G = {V, E , T }, where V = VCPV

⋃
VPro consists

of the CPV node set VCPV and the product node set VPro and E contains edges
connecting products and corresponding CPVs. T = {tv| ∈ V} is the set of times
series on nodes (products or CPVs). Moreover, tv = {τ1, ..., τM}, where τ i is a
fixed-length time series and indicates that tv is a M -channel time series composed
of M different single-dimensional time series.

The TSHG provides a flexible way to model various complex interactions
between products and CPVs in an unified framework, which could be used to
enhance sales forecasting. Given the above preliminaries, we are ready to formu-
late our task.

Definition 2 TSHG enhanced sales forecasting. Given an time series
aware heterogeneous graph G, for each product p ∈ P, we aim to learn prediction
functions FC(p|G;ΘC) and FR(p|G;ΘR) to estimate whether product p will be
sold in the future (classification) and its total sales over a time period (regres-
sion), respectively. Here ΘC and ΘR represent the parameters of the prediction
function FC and FR, respectively.

3 Proposed GASF Model

In this section, we present GASF, an unified model to leverage CPV features
and time series for new products sales forecasting with graph attention network.
We show the framework of our proposed model in Fig. 2.

3.1 Feature Extraction

Since the original time series for products are multi-channel time series, we firstly
present how to extract features to characterize products and CPVs, as show in
Fig. 2. Following the well-established technology in previous work [13,18], we set
up multiple convolution neural network (CNN) layers for dimension reduction
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and feature extraction. Specifically, we adopt two 1-D CNN layers with “VALID”
padding and the number of filters of second CNN layer is set to be 1. Hence,
each node v ∈ V can be represented as a fixed-length vector hv. It is worthwhile
to note that node v can be a product or a CPV in TSHG.

3.2 GASF Layer

As mentioned above, we propose a TSHG to flexibly model various complex
interactions between products and CPVs in an unified framework. We now build
upon the architecture of graph attention network [15] to recursively capture
structural information in TSHG. Distinct from previous works [8,9,15], we pro-
pose a multi trend attention (MTA): Rd ×R

d → R to generate attentive weights
between nodes, which overcomes the temporal shifting and spatial inconsistency
between products and CPVs in our scenario. Here we start with the description
of a single GASF layer, consisting of information propagation and information
aggregation, followed by the stack of multiple GASF layers.

Information Propagation. Intuitively, a certain node (a product or a CPV)
in TSHG can be easily influenced by its neighbors. In order to capture such
fine-grained interactions, we perform information propagation between a target
node and its neighbors. Formally, given a node v, we use Nv to denote its neigh-
bor set. We use linear weighed combination to characterize the local structural
information for node v:

hNv
=

∑

c∈Nv

α(v, c)hc, (1)

where α(v, c) weighs the importance of each propagation on edge v ← c. We
implement α(v, c) via multi trend attention, which will be introduce later.

Information Aggregation. Next, we aggregate the node representation hv

and its neighborhood representation hNv
to enhance the expressive ability. We

simply takes summation of target node and its neighbor representation as follows:

fSum = ReLU(hv + hNv
). (2)

High-Order Propagation. Since a single GASF may be inadequate in captur-
ing complex interactions between products and CPVs in TSHG, we further stack
multiple GASF layers to explore the information propagated from high-order
neighbors. Formally, given a node v, we recursively obtain its representation
through information propagation and aggregation in the l-th step as follows:

h(l)
v = f(h(l−1),

∑

c∈Nv

α(v, c)h(l−1)
c ). (3)

Here, we recursively propagate the representations from a target node’s neigh-
bors to refine the node’s representation in THSG. Moreover, we set h(0)

v = hv

at the initial information propagation iteration.
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3.3 Multi Trend Attention

The key idea of attention mechanism is to learn a weighted representation across
target node and its neighbors, which aims to propagate more informative fea-
tures from neighbors to target node. Hence, attention mechanism is naturally
implemented to learn the similarity between time series of products and CPVs
in our well-established TSHG. The more similar the time series trends of the
two nodes are, the more relevant they are. This implementation is based on the
assumption that products and CPVs have the similar response to the hot spots in
market, but temporal shifting and spatial inconsistency between the time series
of products and CPVs are widely existed in our scenario.

– Temporal shifting means products and CPVs have different response times
to market trends, which may lead to a gap between the time series of prod-
ucts and CPVs on the temporal view. In Fig. 3(a) we observe that the trend
of product and CPV2 are more similar, which indicates that they are more
related to each other. However, CPV2 responds to the market more slowly
than the product, resulting in the temporal shifting of time series between
between them. This phenomenon is very common in E-Commerce. For exam-
ple, the release of “Iphone” may subsequently lead to the growth of CPV
“Iphone protective cover - Style- Cartoon” over a period of time.

– Spatial inconsistency indicates the different response intensity of time
series of products and CPVs for hot spots in market. As shown in Fig. 3(a), it
is clear that the euclidean distance of product between CPV1 is smaller than
that of product between CPV2, even though the time series trend of CPV2
is more similar to the product. In Fig. 3(b) we notice that these time series
trends are comparable in a space where the euclidean distance of the product
and CPV2 becomes smaller and more reasonable. It shows that time series
trend reflects the similarity between time series in a better way.

Temporal shifting and spatial inconsistency between the time series of prod-
ucts and CPVs reveal that products and CPVs have different response speed
and intensity for hot spots in market, which cannot be captured by traditional
attention mechanism. Hence, we propose a novel multi trend attention mecha-
nism to overcome this issue, aiming to calculate the relevance of products and
CPVs. For convenience, we denote the target product and CPV node in TSHG
as e and c, respectively. For each product, we move q times unit for the time
series of product e, where q > 0 means move forward and q < 0 means move
backward. Note that we retain the time series where product e and CPV c over-
lap on the time axis, and thus missing values before and after the retained time
series are filled with the first and last value, respectively. Subsequently, we can
get fixed-length vectors for product e and CPV c, and denote them as hq

e and
hq
c . Now we can get their trends ṫqe and ṫqc as follow:

ṫqe =
hq
e[1 : d] − hq

e[0 : d − 1]
hq
e[0 : d − 1] + λ

, ṫqc =
hq
c [1 : d] − hq

c [0 : d − 1]
hq
c [0 : d − 1] + λ

, (4)
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Fig. 3. (a) represents sales volume of product, cpv1 and cpv2. (b) represents the approx-
imate 1st-order right partial derivative of these time series. Temporal shifting represents
the time difference between the reaction of the product and CPV to the market. Spa-
tial inconsistency represents magnitude of the reaction of the product and CPV to
the market, i.e. there exist dimensional inconsistency between the time series of the
product and CPV.

where hq
e[0 : d − 1] and hq

e[1 : d] denotes the first and last (d− 1) -dimension
features of hq

e, respectively (hq
c [0 : d − 1] and hq

c [1 : d] are similar). λ is a
smoothing parameter. In addition, we apply Eq. (4) to ṫqe and ṫqc to get their
trend ẗqe and ẗqc , which can reveal the speed of time series trend change.

Next, we calculate the similarity between the trend of the product e and the
CPV c (i.e., ṫqe and ṫqc) as well as the speed of their trend changes with q time
units interval, which is defined as:

ṡq(e, c) = g(ṫqe, ṫqc), s̈
q(e, c) = g(ẗqe, ẗqc), (5)

where g(·, ·) measures the similarity of two vectors, which is set as the inverse of
euclidean distance in our paper.

By integrating above information together, we are ready to formulate the
attention score of product e and CPV c with q time units interval as follows:

αq(e, c) = ReLU(W[ṫqe || ṫqc || ẗqe || ẗqc || ṡq(e, c) || s̈q(e, c)] + b), (6)

where W and b is the weight matrix and bias, respectively. And || is the con-
catenation operation.

Since the time unit interval for each product-CPV pair is different from
each other, we choose the maximum interval of Q time units to obtain the final
attention score as follows:

α(e, c) = max
−Q≤q≤Q

αq(e, c) (7)

3.4 Model Learning

After L-th propagation, we denote h
(L)
v as the final representation, which cap-

tures both time series and structural information in TSHG. Inspired by [6,19],
we concatenate the initial vector (i.e., hv) and high-order representation (i.e.,
h
(L)
v ) for later prediction.

hf
v = tanh(Wf [h0

v||h(L)
v ] + bf ), (8)
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where Wf and bf is the weight matrix and bias vector, respectively. And ||
denotes the concatenation operation.

As mentioned above, we aim to predict whether a product will be sold in
the future (classification) and its total sales over a time period (regression),
respectively. In our work, we feed hf into MLP module for classification in
order to implement a nonlinear function for feature interaction, while a linear
transformation is adopted for regression. To guide the learning progress, we
choose the cross entropy function with negative sampling for classification [14]
and mean squared error function for regression [1].

4 Experiments

In this section, we conduct comprehensive experimental studies to verify the
effectiveness of our method by answering the following three questions:

RQ1 Does our proposed GASF model outperform other state-of-the-art methods
on both classification and regression tasks?

RQ2 How does the proposed GASF perform for new products sales forecasting
at different released times ?

RQ3 How sensitive is the proposed GASF model to the hyper-parameters ?

4.1 Experimental Settings

Datasets. To demonstrate the effectiveness of the proposed approach, we con-
duct experiments on an Alibaba2 real dataset. The dataset contains 8428378 new
products and 1765293 CPVs, new products are released over the time period
from 01-05-2019 to 30-10-2019. Also, products and CPVs are 7-channel time
series composed of 7 different single-dimensional time series. These time series
are extracted from online traffic logs and represent seven different user behaviors
such as exposure page views (PV), exposure unique visitor (UV), click PV, click
UV, add to cart UV, pay UV and order UV. The length of each behavior time
series is 60, representing the number of such behavior in the past 60 days. The
labels of each product are whether it would be sold in the next 30 days (classi-
fication) and its total sales in the next 30 days (regression). In our experiment,
the training set is taken over 08-21-2019 to 08-30-2019. The testing set is taken
in 09-30-2019.

Evaluation Protocol. We evaluate the performance of the proposed model on
two main tasks, namely binary classification and regression. Two metrics are
used here for binary classification evaluation: 1) Area Under Curve (AUC) to
evaluate the model’s ranking performance; and 2) Precision at Top-N (P@N)
to evaluate the model’s ability of distinguishing top products. Regression task
aims to predict the total sales for a product. We introduce two classical metrics

2 https://www.1688.com.

https://www.1688.com
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[13] for the performance evaluation: weighted Mean Absolute Percentage Error
(wMAPE) and Mean Absolute Error (MAE).

Baselines. We compare our model with the following methods:Historical
Average (HA) is a heuristic-based baseline. Lasso takes the historical sales
records as input for Logistic Regression/Linear Regression with L1 regulariza-
tion. Gradient Boosting Decision Tree (GBDT) is a common used tech-
nique for both classification and forecasting regression problem in industry, we
carefully design 70 features from these 9 log indicators. DNN is a simple neural
network architecture with 3 fully connection layers and a linear regression layer.
GBDT-CPV adds CPV features on the basis of GBDT. We apply a pooling
(average, maximum, median) to all neighbor heterogeneous features to improve
the acquirement of information. CNN-WD [20] is a convolutional neural net-
work based model for sales forecasting in E-Commerce.

Parameter Settings. For all approaches, we tune the model parameters by grid
search and report the performance on the testing dataset. For GBDT models,
we take these parameters: num rounds = 200, max depth = 6, subsample = 0.8
and learning rate = 0.1. For DNN model, the dimensions for fully connected
layers are [256, 128], a dropout with p = 0.2 is applied to the output of last fully
connected layer and learning rate is set to 0.001. For GASF model, the kernel
sizes and number of filters for 1-D CNNs are [3, 7] and [20, 1], the dimensions for
fully connected layers are [256, 128] and λ = 0.00001, we use Adam as optimizer
[10] with a learning rate 0.0001.

4.2 Performance Comparison (RQ1)

Now we compare the performance of our GASF with the baselines. The com-
parison results are shown in Table 1. The main observations are summarized as
follows:

1. GASF achieves the best performance on both classification and regression
tasks. One-sample paired t-test shows that all the improvements are statisti-
cally significant (p < 0.005). We think that the outperformance of our GASF
would benefit from the design of GATs in capturing the spatial and temporal
features from the input jointly.

2. Among all the baselines, HA and ARIMA typically underperform machine
learning and deep learning based models, mainly because they only rely on
historical sales records of new products. GBDT-CPV model outperforms orig-
inal GBDT by absolute 3 points in AUC, indicating the significance of CPVs.

3. Thanks to the Multi Trend Attention (MTA), GASF-MTA outperforms
GASF for both tasks. This shows the effectiveness of the proposed MTA
and also indicates the importance of taking temporal shifting and spatial
inconsistency of the time series into account.
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Table 1. Overall performance comparison.
The best performance of each setting is high-
lighted as bold font.

Methods Binary classification Regression

AUC P@30KP@300KP@1M MAE wMAPE

HA 0.6834 0.5597 0.1044 0.0541 4.0135 0.8891

Lasso 0.7854 0.5785 0.1045 0.0539 2.9324 0.6495

GBDT 0.8286 0.6492 0.1529 0.0589 2.6822 0.5941

GBDT-CPV0.8591 0.6566 0.1566 0.0591 2.6746 0.5914

DNN 0.8441 0.6531 0.1584 0.0578 2.5137 0.5570

CNN-WD 0.8475 0.5825 0.1577 0.0581 2.5006 0.5541

GASF 0.8669 0.68270.1650 0.0592 2.4354 0.5396

GASF-MTA0.87500.6821 0.1661 0.05942.40560.5329

Table 2. Performance compari-
son over different released period.
The best performance of each set-
ting is highlighted as bold font.

Methods AUC

1day 2–10

days

11–30

days

31–90

days

HA 0.5237 0.5967 0.7114 0.7913

GBDT 0.7403 0.7963 0.8547 0.8860

GBDT-CPV0.7618 0.8117 0.8664 0.8914

CNN-WD 0.6745 0.7815 0.8611 0.8977

GASF-MTA0.78070.8324 0.8732 0.8995

4.3 Performance for Different Released Times (RQ2)

In real business, the released period of new products ranges from 1 day to 90
days. The shorter the released period of a new product, the less information the
forecasting model can obtain. Additional heterogeneous features are particular
useful to alleviate such a “cold-start” problem in new product forecasting. Here,
we study the forecasting performance w.r.t. the released periods, which varies
in the set of {1 day, 2–10 days, 10–30 days, 30–90 days}. We show the AUC
comparison results on the classification task in Table 2. The main observations
are summarized as follows:

1. With the increase of the released time, all models has achieved a better perfor-
mance. This is due to the enhancement of new product historical information.

2. For all released period, our proposed GASF-MTA model shows a significant
outperformance than other models. Improvements increase as release time
decrease, this shows the effectiveness of our proposed model for new product
sales forecasting.

3. Among all the GBDT approaches, GBDT-CPV outperforms GBDT for all
released period. We should note that the improvements stem from the CPV.
This shows the effectiveness of our proposed CPV for new product sales fore-
casting.

(a) L (b) Q

Fig. 4. The impact of key hyper-parameters for GASF (L: the number of the GASF
layers; Q: the maximum interval of time units).
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4.4 Hyper-Parameter Study (RQ3)

In this section, we explore the impact of key hyper-parameters for GASF and
how L and Q empirically influence the learning effect of GASF.

Figure 4(a) shows the performance of GASF with respect to L. We can see
that L = 2 is better than L = 1; however, increasing L beyond 2 gives marginal
returns in performance. This makes sense because larger L includes information
of further nodes and thus needs deeper GASF to learn, which is more difficult
to optimize. In this case, it may be easily over-fitting with more layers [5].

Figure 4(b) shows the performance of GASF with respect to Q. We can see
that with the increasing of Q, the performance is improved to a maximum, and
then decrease. This indicates the positive effect of using a larger interval for tem-
poral shifting. However, too large interval may introduce noise and compromise
the performance.

4.5 Comparison with Online System

We have successfully deployed our proposed GASF in our real promotion busi-
ness scenario of Alibaba, and compare it with the best online baseline model
(i.e., GBDT-CPV) on Dec 2020. The experimental results shows that has a
relative gain by 3.4% and 7.6% than on GMV and number of deduplicated
buyers (BYR) respectively. This observation demonstrates the effectiveness and
business value of our proposed approach in E-Commerce.

5 Conclusion and Future Work

In this paper, a novel GAT architecture model is presented for new product
sales forecasting in E-Commerce, named GASF. GASF models products and
their CPVs by a general graph-structured time series and extracts spatial and
temporal features simultaneously. The experiments on two real-world tasks and
online system demonstrate a significant outperformance of our proposed model.
To the best of our knowledge, this is the first time to apply GATs for sales
forecasting. For further improvements, we will pursue two directions. The first
is to explore more heterogeneous relations such as completing relation between
substitutable products, which may enhance the representation ability of our
model. The second is to incorporate side information [16,17] into our multi trend
attention, which can provide more flexibility to learn the weights of different
product-CPV pair.
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Abstract. Recent years have witnessed the widespread use of online
map services to recommend transportation routes involving multiple
transport modes, such as bus, subway, and taxi. However, existing trans-
portation recommendation services mainly focus on improving the overall
user click-through rate that is dominated by mainstream user groups, and
thus may result in unsatisfactory recommendations for users with diversi-
fied travel needs. In other words, different users may receive unequal ser-
vices. To this end, in this paper, we first identify two types of unfairness
in transportation recommendation, (i) the under-estimate unfairness
which reflects lower recommendation accuracy (i.e., the quality), and
(ii) the under-recommend unfairness which indicates lower recommen-
dation volume (i.e., the quantity) for users who travel in certain regions
and during certain time periods. Then, we propose the Fairness-Aware
Spatiotemporal Transportation Recommendation (FASTR) framework
to mitigate the transportation recommendation bias. In particular, based
on a multi-task wide and deep learning model, we propose the dual-focal
mechanism for under-estimate mitigation and tailor-designed spatiotem-
poral fairness metrics and regularizers for under-recommend mitigation.
Finally, extensive experiments on two real-world datasets verify the effec-
tiveness of our approach to handle these two types of unfairness.

Keywords: Transportation recommendation · Personalized
recommendation · Fairness machine learning

1 Introduction

Transportation recommendation is a one-stop routing service, which aims to
help users find the most proper transport mode (e.g., bus, subway, and taxi)
and combinations, by given the Origin-Destination pair of users. As an emerging
map service in various online navigation applications (e.g., Baidu Maps, Google
Maps), transportation recommendation has deeply penetrated the citizens’ daily
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 566–578, 2021.
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lives. For instance, the transportation recommendation service on Baidu Maps
is answering over ten million queries made by millions of users in China per day.

Due to the practicality of transportation recommendation, there has been
an increasing attention to this field from both academia and industry. Recently,
different strategies are proposed to recommend transport modes for users, such
as historical trajectories based strategy [20], shortest distance based strategy [10]
and city graph based strategy [13,14,19]. Although existing works can achieve
good performance in transportation recommendation, they overlook two types of
unfairness that we observe from large-scale historical recommendation log. One
is under-estimate unfairness, which may lead to lower recommendation accuracy
on minorities. Since the majority loss functions minimize the overall error of
model that benefits mainstream groups, this under-estimate unfairness (e.g., big
performance gap between different transport modes) is becoming increasingly
prevalent. The other is the under-recommend unfairness, which may lead to
lower recommendation volume for minorities’ transportation needs. For instance,
bus and subway that concentrated in the center of the city are the protagonists
during rush hour, which may greatly squeeze the recommendation volume of
other transport modes like taxi. In other words, users who live in suburban and
need taxi at that time can not be recommended and satisfied. Furthermore, these
two types of unfairness may increase homogeneity and decrease utility [5] of the
recommender services.

Recently, the machine learning fairness community primarily focuses on fair-
ness in classification and has proposed various definitions of fairness [3,17], such
as group fairness [4,8] that restricts any two groups to having equal probability
of being assigned to the positive predicted class, and equality of opportunity [12]
that restricts any two groups to having equal false negative rate. For an unbiased
recommendation, [1] and [2] focus on fairness in pointwise and pairwise accuracy
of learning to rank, respectively. However, these fairness metrics can not sat-
isfy the spatiotemporal settings in transportation recommendation. Therefore, a
more comprehensive solution is still urgently required for these challenges.

To that end, we propose the Fairness-Aware Spatiotemporal Transportation
Recommendation (FASTR) framework for effective and fair transportation rec-
ommendation. Specifically, we first introduce a wide and deep learning model [7]
modified with multi-task mechanism for capturing feature co-occurrence and
high-order interaction relationships. Besides, we propose a dual-focal mecha-
nism to mitigate under-estimate unfairness, which consists of task-level focal
loss for enhancing the prediction of each individual task and relation-level focal
loss for mitigating performance gap between tasks. Then we propose multiple
well-designed spatiotemporal fairness metrics to quantify the under-recommend
unfairness in certain regions and time periods. Furthermore, with the help of the
proposed fairness metrics, a series of tailor-designed regularizers are proposed to
guide the optimization for mitigating the under-recommend unfairness.

Overall, the major contributions of our work can be summarized: 1) To the
best of our knowledge, our FASTR model is among the first product-level intelli-
gent transportation recommender that focuses on mitigating under-estimate and
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under-recommend unfairness, 2) We utilize multi-task wide and deep model with
the well-designed dual-focal loss for under-estimate unfairness mitigation, and
we propose tailor-designed spatiotemporal fairness metrics and regularizers to
mitigate under-recommend unfairness, 3) Extensive experiments on real-world
datasets verify the effectiveness of our approach on handling under-estimate and
under-recommend unfairness.

2 Data Description and Analysis

In this section, we first introduce the datasets and the constructed features
used in our work, and we analyze how unfairness appears in transportation
recommendation subsequently. Specifically, we collected our datasets from Baidu
Maps, a large-scale navigation application, from July 2019 to September 2019
in Beijing and Shanghai. And according to user interaction loop, our source
data D can be further categorized into query records, click records and the
corresponding context features. In short, for each sample in our datasets D, its
query record represents one transportation search (e.g., Origin-Destination pair)
from a user on Baidu Maps, and its click record indicates the user’s feedback
on different recommendations (e.g., a user may click on specific transportation
recommendation for him/her). Meanwhile, the corresponding context features
for each sample consist of spatial features, temporal features, meteorological
features, user features and transport mode features, where the details are shown
in Table 1. Totally, we have 5,327,897 samples with 1,177,844 clicks in Beijing, as
well as 5,120,561 samples with 1,190,813 clicks in Shanghai. And for each sample,
we consider 7 transport modes can be recommended in datasets D (Bus, Bus +
Bicycle, Walk, Bus + Taxi, Bicycle, Taxi and Drive).

Table 1. Corresponding context features for each sample

Feature Composition

Spatial features District category, Point-Of-Interest (POI) category,
POI count, Transport Mode Click count

Temporal features Hour, Minute, Day of Week, Day of Month, Workday

Meteorological features Weather, Temperature, Air Quality Index, Wind
Speed, Wind Direction

User features Demographic Attribute, Social Attribute, User
Historical Transport Mode Distribution

Transport mode features Price, Time, Distance

To further understand the unfairness phenomenon in transportation recom-
mendation, we analyze our datasets from under-estimate and under-recommend
aspects in Beijing with our original model [15]. Note that we have similar obser-
vations in Shanghai. Since user clicks can proxy the recommendation accuracy
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Fig. 1. Distribution and performance of Beijing dataset. (a) queries distribution in
region aspect; (b) clicks distribution in region aspect; (c) temporal distribution of aver-
age query percentage and clicks rate per hour; (d) the precision, f1-score and precision
performance on different transport modes in Beijing.

and volume, we first calculate the distribution of click rate in different regions
and time periods to reveal the unfairness. As shown in Fig. 1(a) and Fig. 1(b)
that depict the region distribution of queries and clicks respectively in Beijing,
the click rate in rectangles of Fig. 1(a) and Fig. 1(b) is much lower or even close
to zero compared with other regions, which indicates under-estimate and under-
recommend unfairness happened in certain regions. In Fig. 1(c), we can see that
the average click rate at 23 o’clock is much lower than 8 o’clock even though they
have the same query volume, which shows that transportation recommendation
suffers under-estimate and under-recommend unfairness in certain time periods.
Furthermore, as shown in Fig. 1(d), we calculate recall, precision and f1-score
for each transport mode in Beijing by the original model [15]. The results show
the original model can not give a balanced quality of services for each transport
mode and its users, where under-estimate unfairness happened.

3 FASTR Framework

3.1 Overview

The overall workflow of FASTR is shown in Fig. 2, we first input the features
mentioned in Sect. 2 to a multi-task wide and deep model for capturing feature
co-occurrence relationships. Then, we propose the dual-focal mechanism and the
spatiotemporal fairness metrics as well as regularizers to mitigate under-estimate
and under-recommend unfairness respectively. Finally, with these well-designed
mechanism, metrics, and regularizers, we can have a more balanced quality of
recommendation on transport mode for users.
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3.2 Multi-task Wide and Deep Learning Model

To capture the co-occurrence and high-order interaction relationships between
different features, we adopt the wide and deep learning model [7] that is
widely used in many recommender system, and extend it with the multi-task
paradigm [16] to serve as our basic model, where the multi-task mechanism
improves the performance on minorities and helps to mitigate the under-estimate
disparity [9].

Fig. 2. The overall workflow of FASTR.

Wide and Deep Learning Model. Wide and deep learning consists of a
wide component for low-level feature co-occurrence memorization and a deep
component for high-level feature co-occurrence generalization. Thus, the wide
component with shallow structure is defined as ŷi = w�xi + b , where xi is the
i-th input feature vector, w is the learnable weighted matrix and b is the bias.
The deep component stacks multiple neural network layers to capture higher-
order feature representations. Each fully connected layer transform input vector
as zl+1 = ReLU(w�

l zl + bl) , where zl and zl+1 are the input and output of l-th
layer, wl and bl are the weight and bias parameters of layer l. With both wide and
deep components, the final prediction of wide and deep learning model can be
formulated as ŷi = σ(w�

wxi + w�
d zf + b) , where ŷi is the final output, σ stands

for the activation function, ww is the weight parameter of the wide component,
and wd is the weight parameter of the final output of the deep component zf .

Multi-task Mechanism. To promote the recommendation performance for
users who prefer different transport modes, we follow the settings in [9] who
claimed prediction is more accurate when treating the recommendation of each
transport mode as an independent task. In particular, we apply the multi-task
strategy to divide transportation recommendation into several binary classifica-
tion tasks that predict whether a user will click on a specific transport mode,
where lower-level parameters in the wide and deep components of wide and deep
learning model are shared cross all tasks [16]. Notice that we treat the prediction
of a transport mode as a binary classification task, where we have 7 tasks (i.e.,
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7 transport modes) totally in our work. For each transport mode m, the binary
classification task of m can be formulated as follows:

ŷm
i = σ(wm�

w xi + wm�
d zf + b), (1)

where wm
w and wm

d are the task-specific parameters of the wide component and
the deep component respectively. And ŷm

i ∈ [0, 1] indicates the probability of
users click on transport mode m.

3.3 Dual-Focal Mechanism for Under-Estimate

As described before, the under-estimate unfairness is usually caused by the
performance gap between transport modes in transportation recommendation.
Thus, we intuitively need a mechanism that can promote the prediction perfor-
mance on each transport mode and mitigate the performance gap. In particular,
we apply Focal Loss, which has been widely used for computer vision [18] and
pays more attention to samples that are more difficult to distinguish for miti-
gating the under-estimate unfairness. Firstly, we propose task-level focal loss for
each binary classification task, which aims to improve the ability of each task
on serving the minority users who prefer the task corresponding transport mode
but difficult to distinguish. Therefore, we denote task-level focal loss for under-
estimate mitigation as the summarization of each binary classification task:

LD
task = − 1

|D||M|
∑

i∈D

∑

m∈M

[
αmym

i (1 − ŷm
i )γ logŷm

i

+ (1 − αm)(1 − ym
i )(ŷm

i )γ log(1 − ŷm
i )

]
,

(2)

where M,D are the set of transport modes and source data respectively.
ym

i ∈ {0, 1} is the ground truth that indicates whether user i clicks transport
mode m. αm is the hyperparameter to alleviate binary class imbalance, and γ
is the hyperparameter to regulate attentions on the samples that are difficult to
distinguish. Taking ground truth ym

i equals 1 as an example, when the predicted
probability ŷm

i of the i-th sample is nearly 1.0 which means easy to distinguish,
the attentions on this sample can be reduced through (1 − ŷm

i )γ . And the larger
the γ is, the more attention are paid to difficult samples, and vice versa.

Beyond the task-level that focuses on the performance of individual task,
we propose relation-level focal loss for mitigating the performance gap between
tasks. Specifically, since minority transport modes (i.e., bicycle, taxi and drive)
hold less data than the mainstream group, minorities may suffer insufficient
training and poor recommendation as described in Sect. 2. Therefore, we apply
relation-level focal loss between tasks as follows, where more attention can be
paid to minority transport modes.

LD
relation = − 1

|D||M|
∑

i∈D

∑

m∈M
βmym

i (1 − ŷm
i )γ logŷm

i , (3)
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Fig. 3. Demand and recommend tensor construction.

where βm is the hyperparameter to alleviate multiple class imbalance. With
task-level and relation-level focal losses, our dual-focal mechanism can mitigate
the under-estimate unfairness by promoting the prediction performance on every
transport mode. The overall dual-focal mechanism can be formulated as follows:

LD
UE = LD

task + LD
relation. (4)

3.4 Spatiotemporal Metrics and Regularizers for Under-Recommend

To mitigate the under-recommend unfairness on recommending lower volume in
certain regions and time periods, we first construct demand and recommend ten-
sor in regions and time periods aspects. Then we design a series of spatiotemporal
oriented metrics to measure the degree of under-recommend through demand and
recommend tensor. And the corresponding regularizers are proposed to mitigate
under-recommend unfairness.

Demand and Recommend Tensor Construction. As shown in Fig. 3, we
first let r ∈ R be the r-th square region of the study area of R, t ∈ T be the t-th
o’clock in one day, and m ∈ M be the m-th transport mode. Then, we calculate
the ground truth number of demands to mode m in region r and time t as cr,m

and ct,m respectively. Thus we can construct our demand tensor as shown in
Fig. 3. What’s more, to reflect the under-recommend unfairness of recommender
system, we denote ĉr,m and ĉt,m as the recommend volume of recommender
system on transport mode m in region r and time t respectively. Then, with
the calculated ĉr,m and ĉt,m, we formulate recommend tensor in Fig. 3 to proxy
recommendation volume.

Region-based Fairness (RF) Metric. Now we formally define our spatial
metric RF in the region R as:

RF = P{(u(r) − u(r′)) ≤ ε | r �= r′, r, r′ ∈ R}, (5)

where u(r) denotes the degree of under-recommend in region r, and lower u(r)
indicates lower under-recommend. And RF can be interpreted as for any two
regions, the differences between u(r) and u(r′) are not greater than ε. To be
more direct and remove the interference on selecting ε, we modify our RF metric



Transportation Recommendation with Fairness Consideration 573

as follows to measure the degree of under-recommend unfairness in the spatial
aspect, which is same to Formula 5.

RF = max
r∈R

(u(r)) − min
r∈R

(u(r)). (6)

Intuitively, we design under-recommend degree of transport mode m in region
r as the scaled differences between demands cr,m and recommend volume ĉr,m:

u(r,m) = ReLU
(

cr,m − ĉr,m

cr,m

)
, (7)

where function ReLU(·) is utilized to filter out the transport mode that not
under-recommend. With u(r,m), u(r) can be calculated as follows:

u(r) =
∑

m∈M u(r,m)∑
m∈M sign(u(r,m))

, (8)

where sign(·) is a function that treats positive numbers as 1 and 0 for others.

Temporal-based Fairness (TF) Metric. Similar to RF, we define temporal
metric TF as follows:

TF = max
t∈T

(u(t)) − min
t∈T

(u(t)), (9)

where TF measures how different the degree of under-recommend over different
transport modes from the perspective of time periods. And u(t) can be calculated
as follows:

u(t) =
∑

m∈M u(t,m)∑
m∈M sign(u(t,m))

,

u(t,m) = ReLU
(

ct,m − ĉt,m

ct,m

)
.

(10)

Region-Temporal Fairness (RTF) Metric. To measure the whole degree
of under-recommend from both spatial and temporal perspective, we formally
define RTF, the overall degree of under-recommend, as follows:

RTF =
∑

r∈R u(r)
|R| =

∑
t∈T u(t)
|T | . (11)

Spatiotemporal Regularizer for Under-recommend. Since ĉr,m and ĉr,t

can not be calculated directly during model training, we follow the randomized
experiments in [1] and collect an experimental data P. Specifically, we rebalance
P to have approximately the same transportation demand distribution at arbi-
trary regions and time periods. Note that further data restrictions can be applied
for alternative goals, and P is independent of the source data D. Based on RF,
TF and experimental data P, we define our spatiotemporal oriented regularizer
to constrict under-recommend unfairness:

LP
UR = λR

∑
r∈R u(r)
|R| + λT

∑
t∈T u(t)
|T | , (12)
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where λR and λT are the weight terms. And the ultimate goal of our mission
can be summarized as follows:

L = LP
UR + LD

UE . (13)

4 Experiments

In this section, we evaluate the performance of our FASTR framework on two
real-world datasets described before by the transportation recommendation task.

4.1 Experimental Settings

A) Evaluation Metrics. As described in Sect. 3.4, RF, TF and RTF metrics
are utilized to measure the under-recommend degree of our transportation rec-
ommender system in the perspective of spatial, temporal and spatiotemporal
respectively. Note that lower in RF, TF, and RTF, better in fairness. Besides,
we choose to apply macro-recall, variance-recall and maxmin-recall to reveal the
performance on mitigating under-estimate unfairness of FASTR in recommend-
ing different transport modes. Specifically, the weight of macro-recall for every
transport mode is the same, which leads to a fairer evaluation of models. And
variance-recall are calculated to measure the differences of performance on pre-
dicting different transport modes, where larger the variance is, larger the degree
of under-estimate. We also propose the maxmin-recall to describe the difference
between the maximum and the minimum recall of transport modes.

B) Baselines & Variants. We compare our approach with four learning-based
methods, which are widely used and recognized in the industry, and three vari-
ants of our FASTR. Specifically, Logistic Regression (LR) and XGBoost [6] as the
most representative models for classification tasks are compared, and the inputs
of LR and XGBoost are as same as FASTR. Wide&Deep [7] and DeepFM [11] are
two widely acclaimed models for recommendation, who incorporate both shal-
low and deep relationships between features. Here, we also use the same input as
FASTR for them. The ablation study is conducted with three variants defined
as follows, 1) FASTR-MR masks dual-focal loss and spatiotemporal regulariz-
ers of our FASTR, and we utilize cross-entropy loss for each binary classier, 2)
FASTR-MD replaces dual-focal loss with cross-entropy loss, and 3) FASTR-MM
masks the multi-task mechanism of our FASTR.

C) Implementation Details. In the implementation phase, we constructed
our FASTR by PaddlePaddle1, which supports a variety of AI-empowered prod-
ucts in Baidu. Specifically, we first transformed categorical features into 32-
dimensional embedding vectors, and concatenated them with all other continu-
ous features as the input vector. Then, we fed the input vector into multi-task
wide and deep learning model, where the deep component consists of four fully
connected layers with 400, 256, 64 and 32 hidden units respectively. And we
1 https://www.paddlepaddle.org.cn/.

https://www.paddlepaddle.org.cn/
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chose to use Sigmoid as our activation function. When implementing our fair-
ness constricts, the class weight αm and βm for dual-focal loss were set through
balance strategy2, and the hyperparameter γ was set to 3.0. For LP

UR, we set λR
and λT both equaled to 0.5. Finally, we set the batch size to 128, learning rate
to 5e-4 and trained them with Adam optimizer [21].

4.2 Quantitative Evaluations of FASTR

Performance onMitigating Under-estimate Unfairness. Figure 4(a), 4(b),
and 4(c) show the overall performance on mitigating under-estimate of our
FASTR and other methods. And we find three observations through these results.
Firstly, as shown in Fig. 4, the macro-recall of our FASTR and its variants are
better than other methods, and FASTR achieves much lower variance-recall and
maxmin-recall, which means we can provide unbiased transportation recommen-
dation for users without causing too much harm to the overall quality (i.e.,
macro-recall) compared to other methods. Secondly, FASTR consistently out-
performs Wide&Deep and FASTR-MM in terms of macro-recall, variance-recall
and maxmin-recall metrics, which proves the effectiveness of multi-task mecha-
nism on mitigating under-estimate unfairness. Thirdly, comparing FASTR and
FASTR-MD, the former has better performance on variance-recall and maxmin-
recall than the later, which demonstrates the effectiveness of our task-level and
relation-level focal loss on mitigating under-estimate unfairness.

Fig. 4. Overall performance on transportation recommendation.

Performance on Mitigating Under-recommend Unfairness. Figure 4(d),
4(e), and 4(f) depict the ability of baselines, variants and our FASTR on mitigat-
2 https://scikit-learn.org.

https://scikit-learn.org
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ing under-recommend unfairness. And we have three observations through these
results. Firstly, our FASTR framework achieves better performance than other
methods on RF, TF and RTF metrics, which demonstrates the effectiveness of
our spatiotemporal regularizer LP

UR on mitigating under-recommend unfairness
in both region and temporal perspective. Specifically, our FASTR framework
beats other methods on RF, TF and RTF up to 18.12%, 21.23% and 50.62%
in Beijing, and 17.54%, 17.39% and 56.22% in Shanghai respectively. Secondly,
DeepFM and Wide&Deep have similar performance on RF and TF metrics but
DeepFM’s RTF degree is much higher than Wide&Deep. Since DeepFM has
a better fitting ability than Wide&Deep, the bias in datasets may cause this
gap in RTF. Comparing FASTR with FASTR-MR and FASTR-MD, we find
both spatiotemporal regularizer and dual-focal mechanism are useful to miti-
gate under-recommend unfairness, where the specially designed spatiotemporal
regularizer plays better. Thirdly, we compare FASTR with the best baseline
XGBoost and draw Fig. 5 by calculating the distribution of RTF in Beijing. We
find that our FARSTR framework recommends more densely than XGBoost, as
shown in the black box in Fig. 5(b) and Fig. 5(c), which indicates our FASTR
suffers lower under-recommend unfairness.

4.3 The Cost of Fairness in Transportation Recommendation

In this paper, we propose to use dual-focal mechanism with spatial and temporal
oriented regularizers to mitigate under-estimate and under-recommend unfair-
ness. However, as shown in Fig. 4, the big improvement in fairness brings perfor-
mance degradation for the mainstream group. To further reveal the impact of
our fairness constraints, we apply our FASTR to an online A/B test in November
2019 in Beijing. And we find there has less than 1% decreasing in overall click-
through rate with more than 6% improvement in minorities, which means our
FASTR provides fair services for more users. Quantitatively, compared with our
original model [15], we have 11.3%, 40.1%, 30.6%, 60.8%, 74.5%, 18.8% improv-
ing on macro-recall, variance-recall, maxmin-recall, RF, TF, RTF respectively.
The results show that our FASTR is acceptable because of its big improvement in
fairness for minority groups but little degradation on performance for the main-
stream group, and we can provide fairness-aware transportation recommendation
for a better user experience.

(a) Distribution of Queries (b) FASTR on RTF (c) XGBoost on RTF

Fig. 5. Distribution of RTF. (a) queries distribution in Beijing. (b) RTF distribution of
FASTR. (c) RTF distribution of XGBoost. Notice that the redder region means lower
under-recommend unfairness.
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5 Conclusion

In this paper, we investigated the fairness problem in transportation recom-
mendation by mitigating the under-estimate and under-recommend unfairness
for users with different travel needs. Specifically, we proposed a Fairness-Aware
Spatiotemporal Transportation Recommendation framework (FASTR), which
consists of multi-task wide and deep model with dual-focal mechanism for under-
estimate unfairness mitigation and tailor-designed spatiotemporal metrics and
regularizers for under-recommend unfairness mitigation. Extensive evaluations
on real-world datasets validated the effectiveness of our FASTR on mitigating
these two types of unfairness, which lead to an unbiased transportation recom-
mendation for users. Besides, through the urban scale A/B test, we confirmed
the practicability of our FASTR framework.
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Abstract. Decision rules are widely used due to their interpretability,
efficiency, and stability in various applications, especially for financial
tasks, such as fraud detection and loan assessment. In many scenar-
ios, it is highly demanded to generate decision rules under some specific
constraints. However, the performance, efficiency, and adaptivity of pre-
vious methods, which take no consideration of these constraints, is far
from satisfactory in these scenarios, especially when the constraints are
relatively tight. In this paper, to deal with this problem, we propose
a constraint-adaptive rule mining algorithm named CARM (Constraint
Adaptive Rule Mining), which is a novel decision tree based model. To
provide a practical balance between purity and constraint fitness when
building the trees, an adaptive criterion is designed and applied to bet-
ter meet the constraints. Besides, a rule extraction and pruning process
is applied to satisfy the constraints and further alleviate the overfit-
ting problem. In addition, to improve the coverage, an iterative covering
framework is proposed in this paper. Experiments on both public and
business data sets show that the proposed method is able to achieve bet-
ter performance, competitive efficiency, as well as low rule complexity
when comparing with other methods.

Keywords: Rule induction · Confidence constraint · Adaptive criteria

1 Introduction

The rule-based classification model is one of the most straightforward and inter-
pretable predictive models. A rule-based classification model consists of a set or a
list of IF-THEN decision rules, which consist of several attribute conditions and
a label as a prediction. In contrast with other models, the rule-based classifica-
tion model has a multitude of advantages. On one hand, the IF-THEN structure
of rules is straightforward to understand. On the other hand, the inference of
rule is fast, since only a few binary statements need to be checked to find out
which rules are satisfied.

Due to the aforementioned advantages, decision rules are widely employed
in industry, especially in financial fields [5,6], and methods for rule mining are
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 579–591, 2021.
https://doi.org/10.1007/978-3-030-73200-4_41
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widely studied and improved in recent years [3,14]. Fraud detection, loan assess-
ment, and many other applications have a high demand for interpretability, and
tree-based methods are widely applied [16,17] when building machine learning
models. Furthermore, these tasks always utilize decision rules to solve binary
classification or concept learning problems due to business requirements.

In these real-world tasks, various requirements may arise, which can be for-
malized as constraints in the rule learning problem. Confidence and coverage
are two representatives of these constraints. Confidence is defined as the relative
frequency of target (positive) samples in the samples covered by rules, i.e., the
precision of the rules. Coverage is defined as the relative frequency of covered
target (positive) samples in the whole target (positive) samples, i.e., the recall of
the rules. In industry fields, problems of rule mining under specified constraints,
especially confidence constraints, are very common and highly demanded.

Nevertheless, the problem of rule mining under specific constraints faces cru-
cial challenges, and few studies have been performed to handle them. The per-
formance of traditional rule mining methods, which take no consideration of
confidence constraints, may be far from satisfactory, especially when the con-
straints are tight. Rules induced by these methods may violate the constraints
or have a low coverage on target samples within the constraints. Therefore, it
is a crucial challenge to mine constraint-adaptive decision rules, especially for
a relatively high confidence constraint on class-imbalanced data. Besides, for
industrial tasks, the amount of real business data is usually huge, which intro-
duces exceptionally high requirements for space and time complexity.

To solve the decision rule induction problem with confidence constraint,
we propose a constraint-adaptive rule mining algorithm named CARM, which
ensures adaptivity, computational efficiency, and the other requirements men-
tioned above. First of all, we propose a new decision tree algorithm to extract
decision rules, together with a new criterion for the selection of the best split
points in the tree building process. The new criterion considers both impurity
and constraint fitness of the rules related to the split choice (the feature and cor-
responding threshold) when the tree node is split. If the fitness score is far from
satisfying the confidence constraint, the constraint fitness is punished. Besides,
a rule extraction method is employed to obtain the rules that satisfy the con-
straint, and we further apply a pruning process to alleviate the overfitting prob-
lem. What’s more, we propose an iterative framework to improve coverage of
the resulting rules. The proposed method can efficiently improve coverage while
satisfying the confidence constraint at the same time.

2 Related Work

Previous work on rule mining is extensive. There are numerous proposals for
greedy or heuristic rule mining [2,10–13], especially tree-based methods. These
tree-based approaches convert decision tree to rules. For instance, CART is one
of the decision trees that have been widely used. The criteria used for splitting
in CART is the Gini index. For each candidate split, the impurity calculated by
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the Gini index of all the sub-partitions is summed, and the split that leads to
the maximum reduction in impurity is chosen. Other decision tree methods like
ID3 [11] and C4.5 [12] use different kinds of greedy splitting criteria and pruning
techniques. An attempt to directly combine the advantages of decision-tree and
rule-based learning is the PART [4] algorithm, which does not learn the next
rule in isolation but learns a global model in form of a decision tree. However,
the splitting criteria of these tree-based methods only measure the impurity but
take no consideration of any constraints.

Another specific rule mining approach is called Bayesian Rule Lists [8] (BRL
for short). BRL uses Bayesian statistics to learn decision lists from frequent
patterns that are pre-mined with the FP-tree algorithm. The goal of the BRL
algorithm is to learn an accurate decision list using a selection of the pre-mined
conditions while prioritizing lists with few rules and short conditions. SBRL [15],
which is later proposed for large data sets, is two orders of magnitude faster
than previous work. Unfortunately, it is claimed that it takes about 2.5 h to
train a model with one million samples. The efficiency is still not acceptable for
industry tasks which are always with tens of millions of samples. What’s more,
the constraints are not considered in these methods.

Constraint-based rule methods are also proposed by some previous works.
Apriori [1] and CARS [9] only exploit the minimum support and the minimum
confidence constraint for frequent rule filtering. These two methods face the
effective problem on large databases due to a combinatorial explosion of frequent
itemsets and are not easy to deal with continuous features. Dense-Miner [7] is
designed to exploit constraints such as minimum confidence and a new con-
straint called minimum improvement during the mining phase. The minimum
improvement constraint prunes any rule that does not offer a significant predic-
tive advantage, which increases the efficiency of the algorithm. But the enumer-
ation search of Dense-Miner still costs too much training time, which will hinder
its application to large scale tasks.

To apply rule mining techniques to solve the confidence-constraint problem
in real-world applications, especially for industrial tasks, the adaptivity, perfor-
mance, and efficiency of the methods as mentioned earlier are still far from sat-
isfactory. Methods with these above-mentioned characters are in high demand,
and in this paper, a novel tree-based method is proposed towards this direction.

3 Problem Statement

Rule learning is considered as a concept learning problem in many industry
applications, especially in financial tasks. The concept learning task is to learn
a set of rules that describe a single target class. We are given a set of positive
samples, for which we know they belong to the target concept, and a set of
negative samples, for which we know they do not belong to the target concept,
as training information. In this case, it is typically sufficient to learn theory for
the target class only. All instances that are not covered by any of the learned
rules will be classified as negative.
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In concept learning, samples are either positive or negative samples of a given
target class, and they are covered (predicted positive) or not covered (predicted
negative) by a rule R or a set of rules RS. A perfect set of rules is one that covers
all positive samples and covers no negative samples. Confidence of a single rule
R or a set of rules RS is defined as the relative frequency of positive samples
in the covered samples by rule or rules. This measure or metric is known as
several different names, including confidence, precision, and rule accuracy. For
simplicity, we call it confidence in the later statement. Coverage of a single rule
R or a set of rules RS is defined as the relative frequency of covered positive
examples in the positive examples.

In this paper, we consider the confidence-constrained rule learning task, in
which confidence constraint is appended upon the traditional rule learning task,
and this task can be regarded as a particular case of the concept learning task.
The same as concept learning, the goal of confidence-constrained rule learn-
ing is to learn rules for the target class such as high-risk applicators in a loan
assessment task, fraud applications for insurance, and other practical targets in
industrial tasks. Furthermore, the rules must satisfy the confidence constraint,
which means the confidence of the learned rules must exceed a threshold θ, which
is set by users in advance of the training process. Additionally, another crucial
goal of the confidence-constrained rule learning task is to achieve high coverage.
More formally, the objective of this problem is to obtain a rule set RS∗ that each
rule of this rule set satisfies the confidence constraint and maximize coverage of
the target class, which is shown in Eq. 1:

RS∗ = argmax
Conf(R)>=θ

(Cov(RS)) (1)

In addition, high efficiency is required so that the solution can be deployed
in large scale applications. The performance of rules should be stable on training
and validation data and the overfitting problem should be avoided.

4 Proposed Method

4.1 Overview

We propose a constraint-adaptive rule mining algorithm (CARM) to solve the
confidence-constrained rule learning problem. Concretely, we design a novel tree-
based method to learn the rules and design a new criterion to build the trees.
A measure called constraint fitness is introduced to describe the fitness level
of the splitting result under the constraints, and we take both the impurity
and the constraint fitness into consideration while selecting the best split points
in the tree building process. Besides, our rule extraction process is designed
to satisfy the confidence constraint, and we further apply a rule pruning to
alleviate the overfitting problem. Since the coverage and performance may not
be satisfactory with rules obtained from one single tree, we propose to utilize an
iterative covering framework to expand the rule set, and improve the coverage.
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With our proposal, not only the confidence constraint can be satisfied but
also the coverage and performance can be improved efficiently. Also, the proposed
method can be deployed in distributed mode to satisfy the industrial settings.

4.2 Adaptive Decision Tree

Basically, all decision tree algorithms require a splitting criterion that splits a
node to form a tree. In most cases, the criterion depends on a single attribute.
There are various splitting criteria based on impurity of a node. The main aim
of these splitting criteria is to reduce the impurity of a node. These splitting
measures are defined in terms of the class distribution of the samples before
and after splitting. We denote p = (p1, ..., pj) as the sample proportions of each
class in a node D, and φ(D) as the impurity function. φ(D) has a maximum
when all pj are equal and reaches the minimum when one of the pj equals 1
and the others equals 0. Suppose the samples will be divided into left child node
DL and right child node DR after splitting with feature s and threshold t, then
the impurity-based goodness of this split can be defined as the Φ(s, t), which
measures the difference between the weighted impurity score of parent node and
two child nodes, as shown in Eq. 2.

Φ(s, t) = φ(D) − |DL|
|D| φ(DL) − |DR|

|D| φ(DR) (2)

in which |D| denotes the sample size in node D. The most commonly encountered
impurity functions are Gini index and information entropy. However, these two
criteria only consider the impurity of the splitting. In confidence-constrained rule
learning tasks, only considering impurity is far from enough.

In this paper, we design a new criterion for the generation of decision trees.
A measure called constraint fitness is proposed to describe the fitness level of
the splitting result with regard to the constraints, and the criterion takes both
impurity and constraint fitness of the corresponding rule into consideration when
performing the splitting process.

Concretely, we first define the constraint fitness for a node. The samples in
a node D can be regarded as the covered (predicted positive) samples of the
corresponding rule R (the path from the root to this node), so we define the
confidence Conf(D) of node D as the confidence Conf(R) of the corresponding
rule R, i.e., Conf(D) = Conf(R). The constraint fitness ψ(D) of the node
is calculated by considering the fitness of the confidence with regard to the
constraint, which is shown in Eq. 3. The fitness score will be 0 if the confidence
Conf(D) in node D satisfies the constraint, i.e., Conf(D) ≥ θ, and will get a
punishment θ − Conf(D) if the confidence Conf(D) in node D doesn’t satisfy
the constraint, i.e., Conf(D) < θ.

ψ(D) = min (0, Conf(D) − θ) (3)

and the constraint fitness of this split (with feature s and threshold t) is defined
as the maximum fitness of the resulting child nodes after the split, which is
shown in Eq. 4:
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Ψ(s, t) = max (ψ(DL), ψ(DR)) (4)

in which DL and DR are the resulting child nodes after the split. The intuition
is that if the split results in a child node (no matter which child) that satisfies
the constraint, which means the corresponding rules from the root to this child
node satisfy the constraint, the split choice turns out to be feasible.

We use WSM (weighted sum model) to concatenates the impurity-based
goodness and the constraint fitness with a parameter ω, and the impurity-based
goodness is divided by the number of samples for normalization. The adaptive
goodness ρ(s, t) of the split (with feature s and threshold t) is defined as:

ρ(s, t) =
Φ(s, t)
|D| + ω ∗ Ψ(s, t) (5)

Notably, the value of ω is set to infinity, if the maximum allowable depth is
reached. In this situation, the constraint should be a rigid constraint.

4.3 Rule Extraction and Pruning

Rules can be easily extracted from the adaptive decision tree. In conventional
practices, the path from the root node to the leaf node corresponds to a single
rule with the splitting condition of each non-leaf node in the path joint with
“AND”. Furthermore, since confidence constraint is required in our setting, rules
should be filtered from these extracted rules into a rule pool RSpool. The process
of extraction and selection is illustrated in Fig. 1, with the confidence (only the
confidence on training set for simplicity) of each node annotated. The rules
corresponding to leaf nodes D, E, G, H and I are firstly extracted, and if we set
the threshold as θ = 0.5, then the rules corresponding to nodes D, E and H are
selected into the rule pool RSpool since the confidence of these nodes satisfies
the constraint.

However, the rules extracted and selected with the confidence constraint
(i.e., the rules in RSpool) are likely to overfit if the length of these rules is
relatively long. In order to solve this problem, a constraint-adaptive post-pruning
is proposed as shown in Algorithm 1 and Fig. 1. For every rule Rj in rule pool
RSpool, we try to prune it and its brother rule Rj

brother, and replace them with
their parent rule Rj

parent. The parent rule and brother rule of a specific rule are
defined as the rule extracted with the path from the root node to its parent node
and brother node (the other child node which shares the same parent node) in
a decision tree. As an example, in Fig. 1, Node F is the parent node for H, while
I is its corresponding brother node, and the rules related to these two nodes are
the parent rule and brother rule for the rule related to node H. If the confidence
of the parent rule satisfies the confidence constraint (i.e., Conftrain(Rj

parent) ≥ θ

and Confval(R
j
parent) ≥ θ) when applying to training and validation data sets,

the rule and its brother rule are pruned and replaced with their parent rule. The
post-pruning algorithm traverses all the rules in the rule pool until no rules can
be pruned and replaced to reduce the complexity of the rule set, then the pruning
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Fig. 1. An illustration of rule extraction, selection and pruning. The numbers in the
node represent the confidence of the rule (node).

process can be terminated. For the example in Fig. 1, the rules corresponding
to nodes D, E and H are pruned and replaced with the rules corresponding to
nodes B and F, which will be collected to make up the pruned rule set.

Algorithm 1. Pseudo-code of Pruning
Input: The raw data set Dtrain and Dvalid; confidence constraint CC(Conf(R) >=

θ); a set of previously extracted rules RSpool

Output: the pruned rule set RSpruned

1: RSpruned ← ∅
2: while RSpool �= ∅ do
3: Pick a non-pruned rule Rj ∈ RSpool

4: Find the parent rule Rj
parent and the brother rule Rj

brother of Rj

5: Calculate the confidence Conftrain(Rj
parent) and Confval(R

j
parent) of the par-

ent rule Rj
parent applied on Dtrain and Dvalid

6: if Conftrain(Rj
parent) ≥ θ and Confval(R

j
parent) ≥ θ then

7: RSpool = RSpool \ Rj

8: if Rj
brother ∈ RSpool then

9: RSpool = RSpool \ Rj
brother

10: end if
11: RSpool = RSpool ∪ Rj

parent

12: else
13: RSpruned = RSpruned ∪ Rj

14: end if
15: end while
16: return RSpruned

In most cases, this post pruning method described above can not only avoid
overfitting and reduce the complexity of the rule set, but also increase the cov-
erage obviously when a rule is pruned and replace by its parent rule while his
brother rule is not in the rule pool (i.e., the brother rule does not satisfy the
confidence constraint). Due to the post-pruning, the target (positive) samples
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covered by its brother rule can be involved in the covered samples. For concrete
illustration in Fig. 1, the target (positive) samples covered by the rule corre-
sponding to node I are recalled to improve the coverage of the final rule set,
without a violation of the confidence constraint.

4.4 Iterative Covering Framework

The rules generated from a single adaptive tree may not perform satisfactorily.
Generally, a decision tree with a high depth is not intelligible and likely to overfit,
so it is a common practice to restrict the depth of the decision tree. However, if
the tree is trained with a strictly restricted depth, followed by the rule extraction
and pruning process as described in the last subsection, only a small quantity
of rules will be finally obtained. Maybe only a small amount of target samples
will be covered, which means that the coverage of the resulted rule set may be
far from satisfactory.

In this paper, we propose to employ an iterative framework to alleviate this
problem. Note that there may be many target samples that are not covered by
the learned rules, and one possible reason is that the building process of the
adaptive tree is dominated to cover other target samples, which may have very
different behavior when compared to the uncovered target samples. To handle
this, in the subsequent process, the samples that have been covered will be
removed so that they will not influence the learning process of the subsequent
adaptive trees. Concretely speaking, an adaptive decision tree is firstly built, and
rules are extracted and pruned as mentioned in the last two subsections. Then,
each sample that covered by the rules is removed, no matter it is positive or not.
After that, a new adaptive decision tree is learned with the remaining samples,
and the obtained rules are combined with the preceding ones. This process is
repeated until no sample is left or other stop condition encounters.

In each iteration, several rules are obtained, and the size of the remaining
samples will gradually reduce so that the efficiency is acceptable. By employing
this iterative covering framework, the coverage can be obviously improved, and
the effectiveness of the resulting rules can be enormously enhanced.

5 Experiment

5.1 Experiments on Benchmark Data Sets

We first conduct experiments on eight benchmark data sets, with different sample
and feature size. All these data are available on the OpenML database1. All
experiments are performed on a 4-core computer with 16 GB of RAM.

1 https://www.openml.org/.

https://www.openml.org/
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Table 1. Classification performance (coverage, %) on benchmark data sets (Bold:
Best among interpretable models; Italics: Best overall.)

Dataset Constraint Interpretable Non-interpretable

RIPPER PART CART SBRL CARM LR RF SVM

adult

positive rate= 0.24

conf 0.3 54.3 69.1 80.3 84.2 91.9 78.4 75.2 64.4

conf 0.5 54.3 54.2 50.4 48.0 67.7 58.8 62.5 54.6

conf 0.7 – 36.1 30.4 30.2 54.1 37.8 48.3 43.8

conf 0.9 – 19.1 17.4 – 21.3 15.6 – 15.1

bank-mkt

positive rate= 0.12

conf 0.3 38.8 50.2 54.3 44.7 77.2 98.8 99.3 49.0

conf 0.5 38.8 43.9 39.1 36.2 55.0 97.5 97.3 35.4

conf 0.7 12.8 20.4 – – – 94.8 93.2 –

conf 0.9 – 8.5 – – – 81.0 83.5 –

banknote

positive rate= 0.46

conf 0.5 96.6 98.3 97.4 98.3 98.3 98.6 99.3 100.0

conf 0.7 96.6 98.3 97.4 88.8 96.6 97.3 97.9 100.0

conf 0.9 96.6 98.3 97.4 79.3 96.6 91.8 94.5 100.0

ionosphere

positive rate= 0.37

conf 0.5 86.7 86.7 86.7 60.0 86.7 66.7 86.7 86.7

conf 0.7 – 13.3 – – – 60.0 86.7 86.7

conf 0.9 – 13.3 – – – – 60.0 –

magic

positive rate= 0.35

conf 0.5 100.0 100.0 100.0 87.1 100.0 99.6 100.0 99.2

conf 0.7 100.0 100.0 100.0 85.3 100.0 97.6 100.0 98.1

conf 0.9 100.0 100.0 100.0 83.8 100.0 91.5 99.9 96.3

tic-tac-toe

positive rate= 0.34

conf 0.5 97.1 98.5 95.6 66.2 100.0 97.1 89.7 98.5

conf 0.7 97.1 98.5 95.6 66.2 97.1 97.1 61.8 94.1

conf 0.9 97.1 77.9 95.6 – 94.1 64.7 17.6 73.5

transfusion

positive rate= 0.24

conf 0.3 34.2 39.5 57.9 68.4 78.9 100.0 97.3 21.1

conf 0.5 34.2 39.5 36.8 – 52.6 100.0 92.9 7.9

conf 0.7 – – – – – 76.1 89.4 2.6

WDBC

positive rate= 0.39

conf 0.5 84.6 89.7 84.6 66.7 87.2 98.4 96.8 94.9

conf 0.7 84.6 87.2 84.6 66.7 87.2 96.8 93.7 94.9

conf 0.9 – 69.2 – 66.7 84.6 88.9 90.5 84.6

Average 54.0 61.9 57.8 47.2 66.4 80.2 81.3 64.5

Table 2. Rule complexity (count/length) on benchmark data sets

Dataset RIPPER PART CART SBRL CARM

adult 7/3.3 943/5.4 53/5.8 22/2.0 12.8/4.8

bank-mkt 17/3.3 895/4.4 60/5.9 18/2.6 18.0/5.2

banknote 8/2.3 8/1.6 20/4.9 13/1.4 6.5/3.1

ionosphere 3/1.0 7/2.6 13/4.6 3/1.3 6.3/2.7

magic 2/1.0 2/1.0 2/1.0 14/1.5 1.0/1.0

tic-tac-toe 9/2.8 26/2.8 33/5.4 8/1.6 12.0/3.6

transfusion 3/2.0 7/1.4 35/5.5 5/1.0 22.3/5.0

WDBC 5/1.6 7/1.7 15/4.5 3/1.7 5.5/2.9

Average 6.8/2.2 236.9/2.6 59.1/5.5 10.8/1.6 12.7/3.8
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Algorithms for Comparison. We compare CARM with many other rule-
based methods and a set of “non-interpretable” methods. For rule-based meth-
ods, RIPPER, PART, SBRL and CART are chosen as baselines. Support vector
machine (SVM), logistic regression (LR), random forests (RF) are chosen to
represent “non-interpretable” methods. RIPPER and PART are implemented
in Weka and SBRL is available as R package in Python. CART, SVM, LR and
RF are implemented in Python using the scikit-learn package. We use the confi-
dence and coverage of the induced rule list/set that satisfies the constraint as the
evaluation metric. The coverage on each data set are obtained from 5-fold cross-
validations and all the methods are tested with default setting. Gini index is used
as the impurity function while building the adaptive trees. Since the parameter
of maximum rule length has a great influence on rule-base methods, we set this
parameter of these rule-based methods to 6. The encoding of categorical features
and normalization of numerical features are conducted if necessary.

Rule Performance. We evaluate the confidence and coverage of these meth-
ods with different constraint setting. Only high-confidence constraint problem
are tested because the low-confidence constraint problem can be transformed
to high-confidence constraint problem by reverse the problem target. On every
benchmark data set, we set several discrete confidence constraints, which are all
higher than the proportion of positive samples.

Table 1 lists the classification performances on benchmark data sets. The
number in the table represents the coverage of rules that satisfies the specific
confidence constraint. If there are no rules generated, the cell is filled with ‘–’.
It can be seen that the proposed method CARM has a competitive performance
among the “interpretable” methods. CARM wins in 16 of 26 cases with an
average confidence of 66.4%. It is 3.5% percentages ahead of PART which is in
the second place in terms of performance.

Influence of Pruning and Iterative Covering Framework. We then vali-
date the influence of the pruning process and iteration covering framework. We
set the iteration round to 5, and run experiments with/without the pruning
process. Figure 2 shows the result on data set bank-mkt. As we can see, with
the pruning process, the coverage of rule set is consistently improved. What’s
more, as the iteration proceeds, the performance can be evidently boosted, which
validates the effect of the iteration covering framework.

Fig. 2. The performance on different iterations (bank-mkt)
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Rule Complexity. Table 2 lists the rule complexity of different methods on
benchmark data sets. We evaluate the number of rules and the average length of
rules. It can be seen the rules generated by CARM are relatively shorter and less
among the “interpretable” methods especially on large data sets (i.e., adult and
bank-mkt). The rule count of CARM is significantly less than PART which is in
second place in terms of performance. This good property can further provide
better efficiency in the deployment stage.

5.2 Experiments on Business Data Sets

Experiments on extra-large scale business data sets are further conducted to
verify the effectiveness and scalability of the proposed method on real industrial
tasks. The data sets come from the tasks for three different areas. Data set
A is from a task of loan assessment, which aims at finding the most at-risk
customers with higher overdue probability, so that the system can reduce their
credit limit. Data set B is from a task of fraud detection in the insurance area,
which aims at detecting fraud applications for insurance, so that the system
can reject these applications to avoid the economic losses. Data set C is from
the task of intelligent self-service. It is for discovering the potential users of a
telephone App who need a specific self-service and the App can push the self-
service automatically. Table 3 presents the detailed information of these data
sets. As shown, the number of samples or features is extremely large (e.g., up to
10 million samples for data set A), and these data sets are class-imbalanced. All
parameters of the evaluated models are set as the default values as above.

Table 3. The information of the business data sets

Dataset #Train #Valid #Test #Dim

Data A 6000000 2000000 2000000 19

Data B 3000000 1000000 1000000 72

Data C 5175057 1725019 1725019 12

The results are shown in Table 4. SBRL is not compared due to its out-
of-memory problem for extremely large data sets. As we can see, the CARM
achieves better performance, which validates the effectiveness of the proposed
method when applying it in real industrial tasks and make it a choice for perform-
ing constraint-based rule induction adaptively for extremely large scale industrial
data sets. Actually, this work has been deployed in our system, providing help
for many different real-world tasks.
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Table 4. Classification performance (coverage, %) on business data sets (Bold: Best
among interpretable models)

Dataset Constraint RIPPER PART CART CARM

Data A
Positive rate= 0.003

conf 0.1 1.0 4.2 4.2 9.4

conf 0.2 1.0 0.3 - 2.9

Data B
Positive rate= 0.006

conf 0.1 60.1 87.3 65.2 95.6

conf 0.2 60.1 86.6 40.1 89.7

conf 0.3 59.6 75.4 31.0 80.9

conf 0.4 55.2 61.8 22.1 74.5

Data C
Positive rate= 0.008

conf 0.1 6.4 53.0 52.6 68.6

conf 0.2 6.4 35.7 38.1 49.9

conf 0.3 6.4 18.5 20.3 33.1

conf 0.4 6.4 11.6 10.4 20.4

6 Conclusion

In this paper, we propose a constraint-adaptive rule mining algorithm to deal
with the constraint-based rule induction problem. A novel decision tree model
with an adaptive criterion is designed to solve this specific problem effectively,
and an iterative covering framework is proposed to increase the coverage. We
perform experiments on both benchmark and extra-large scale business data
sets, which validate the effectiveness of the proposed method.
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Abstract. Recently, how to evaluate SPARQL queries over federated
RDF systems has become a hot research topic. However, most existing
studies mainly focus on implementing and optimizing the basic queries
over federated SPARQL systems, and few of them discuss top-k queries.
To remedy this defect, this demo designs a system named FedTopK
that can support top-k queries over federated RDF systems. FedTopK
employs a cost-based optimal query plan generation algorithm and a
query plan execution optimization strategy to minimize the top-k query
cost. In addition, FedTopK uses a query decomposition optimization
scheme which allow merge triple patterns with the same multi-sources
into one subquery to reduce the remote access times. Experimental stud-
ies over real federated RDF datasets show that the demo is efficient.

1 Introduction

In recent years, Resource Description F ramework (RDF ) has been widely used
in many applications. Many data providers publish their datasets using the RDF
model at their own sites, and provide the SPARQL interfaces to support users
to submit SPARQL queries. In this paper, an autonomous site with a SPARQL
interface is called an RDF source. To integrate multiple RDF sources, federated
RDF systems have been proposed [2–4].

Right now, practitioners are showing a growing interest in top-k queries,
which impose an order on the result set and limit the number of results. Top-k
queries can be expressed in SPARQL by including the ORDER BY and LIMIT
clauses. However, existing federated RDF systems can only support to alter the
sequence of solution mappings after the full evaluation of the graph pattern in
the WHERE clause. Therefore, this paper implement a federated RDF system,
named FedTopK, which optimize evaluation of top-k queries over federated RDF
systems. In summary, FedTopK has the following unique features:

– FedTopK have an incremental query execution strategy in accordance with
the characteristics of top-k queries, which can greatly improve the query effi-
ciency by terminating the execution as soon as the requested number of final
results has been obtained.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 595–599, 2021.
https://doi.org/10.1007/978-3-030-73200-4_42
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– FedTopK can minimize query cost by a cost-based optimal query plan gener-
ation algorithm, which can optimize the join order of subqueries.

– FedTopK can reduce the remote access times effectively by a query decompo-
sition scheme, which allows merge triple patterns with the same multi-sources
into one subquery.

2 System Architecture and Key Techniques

Figure 1 shows the system architecture of our proposed federated RDF system
FedTopK. It consists of a control site and some RDF sources. We assume that
queries are submitted to the control site. The control site decomposes the query
into several subqueries on relevant sources and generate a query plan. Then, the
decomposed subqueries are sent to their relevant sources and executed. Last,
matches of subqueries are returned to the control site and joined to form com-
plete matches according to the query plan. In summary, there are three steps
during the query processing of FedTopK: query decomposition and source selec-
tion, cost-based query plan generation and query execution.

Fig. 1. Scheme for query processing in FedTopK

Query Decomposition and Source Selection. When an user submit a
top-k query Q online, the query Q is decomposed into a set of subqueries,
Q = {q1@S1, q2@S2, ..., qn@Sn}, where Si is the set of relevant sources for qi.
FedTopK can merge triple patterns with the same multi-sources into one sub-
query by maintaining the triple patterns merge conditions from RDF sources
offline. It can reduce the communication overhead effectively by reducing the
number of subqueries. For example, Fig. 2 shows an example query decomposi-
tion and source selection result.
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Fig. 2. Example query decomposition and source selection result

Fig. 3. Example query plan

Cost-Based Optimal Query Plan Generation. A query plan represent a
join order of subqueries Q = {q1@S1, q2@S2, ..., qn@Sn}. Different query plans
have different query costs. FedTopK designs a cost model to calculate the query
cost and join cost of subqueries in accordance with the statistics data maintained
from RDF sources offline. On this basic, the optimal query plan can be obtained
by a optimal query plan generation algorithm. For example, Fig. 3 shows an
example query plan for the query decomposition and source selection result, and
we assume this query plan is the optimal one.

Query Execution. The query plan determines the execution order and execu-
tion mode (serial and parallel) of subqueries. For query plan in Fig. 3, sub-
query q2@{dbpedia} is executed firstly. Then, subqueries q1@{swdfood} and
q5@{gnames, dbpedia, swdfood, nyt} can be executed in parallel, and so on.
Among that, we propose an optimization in accordance with the characteristics
of top-k query. During query execution, when a subquery containing the top-k
constraint is executed, its results are sorted and incrementally used to gener-
ate the final results in order. The execution can stops as soon as the requested
number of final results has been obtained.

3 Demonstration

In this demo, we use two famous comprehensive RDF benchmark suites, Larg-
eRDFBench [5] and WatDiv [1], to show the demonstration of FedTopK. The
federated RDF system FedTopK can efficiently support both SPARQL basic
queries and top-k queries. More demonstrations can be referred with http://47.
111.92.242:8080/FedTopK/Demo/index.html.

http://47.111.92.242:8080/FedTopK/Demo/index.html
http://47.111.92.242:8080/FedTopK/Demo/index.html
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Fig. 4. Query page of FedTopK

Fig. 5. Query result page of FedTopK

Figure 4 and Fig. 5 demonstrate the two main pages of FedTopK. Users can
enter a SPARQL top-k query or select a query statement from the query sam-
ple list in Fig. 4. In the top of Fig. 5, FedTopK shows the detail query process
including current SPARQL query statement, the set of subqueries after query
decomposition, the optimal query plan and the value of query performance indi-
cators. Finally, the query results can be found in the bottom of Fig. 5.

4 Conclusion

FedTopK is a federated RDF system that can support top-k SPARQL queries. It
can improve query performance by a cost-based optimal query plan generation
algorithm and a query plan execution optimization strategy. It also reduces the
remote requests by a query decomposition optimization.
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Abstract. When shopping online, customers usually compare com-
modities with each other before making their purchase decision. In addi-
tion to the product price, they also concern the word-of-mouth. How-
ever, marketing strategies from various e-commerce platforms, along with
the diverse online commodities, make it difficult for customers to distin-
guish the most cost-effective products. Present cross-platform commodity
comparison applications merely focus on product prices, without jointly
concerning the reviews. In this demonstration, we developed a web-
based application, CoSurvey, which matches commodities from various
e-commerce platforms and analyzes product comment sentiment on the
base of the proposed Attention-BiLSTM-CNN Model. The model uses
an attention-based Bi-LSTM network to learn sentence sequence infor-
mation, uses a CNN to learn sentence structure information, and uses
a multilayer perceptron (MLP) to learn meta-information. The meta-
information in the comment sentiment analysis task includes comment’s
like number, reviewer level, additional image, deliver time, and sentence
length. Besides the keyword query, CoSurvey provides customers a survey
of cross-platform products price changing trends and comment sentiment
evolutions. The high concurrency requirements and load balance are also
concerned.

Keywords: Sentiment analysis · Entity resolution · E-commerce ·
Multiple neural network · Attention mechanism

1 Introduction

With the permeation of online shopping, customers usually shop around on dif-
ferent e-commerce platforms. Besides the price and the brand, product reviews
play a decisive role in the final purchase decision making as they can reflect
on customer’s preferences for the product. However, the inconsistency of cross-
platform product descriptions, along with massive product reviews, bring about
overwhelming information overload. During shopping festivals such as Singles
Day (11.11) and Black Friday, this situation aggravates further.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12683, pp. 600–603, 2021.
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Although there exist some cross-platform commodity comparison applica-
tions, such as Kelkoo1, and Goggle Product Search2, these applications only
focus on the price comparison and overlook the product review analysis jointly.
Therefore, we develop CoSurvey, which surveys the product information from
different e-commerce platforms to help the customer make a wise shopping deci-
sion. The application meets two challenges: (1) Product matching, which aims
to align the same product of different e-commerce platforms; (2) Product review
sentiment analysis, which concerns not only comment text but also its valuable
meta information, such as when the review is delivered, how many consumers
agree with the review, etc. Since different platforms have different comment meta
information, we normalize them by extracting comments’ like number, reviewer
level, additional image, deliver time, and sentence length.

Our implementations can be summarized as follows:

– We propose and train a deep fusion neural network - Attention-BiLSTM-CNN
model – which takes both comment and its meta-information to classify the
sentiment polarity. The experimental results demonstrate that our model’s
precision achieves 94.48%, recall is 94.29%, F1 value is 94.38%.

– We also train Attention-BiLSTM-CNN model to calculate the product pairs’
match possibility. The blocking strategy[2] is applied to decrease complexity.

– The system concerns high concurrency. Linux Virtual Server and multi-Nginx
servers are employed to implement the load balance.

2 CoSurvey System Overview and Key Techniques

As shown in Fig. 1, CoSurvey system consists of five layers: data layer, NLP layer,
business layer, gateway layer, and visual layer. NLP layer provides key techniques
for product matching and review sentiment analysis task, which mainly includes:
Data Pre-Process. Data pre-processing steps include filtering out missing val-
ues, normalizing comment meta information and product names, etc.
Sentiment Classification. The Attention-BiLSTM-CNN model is applied to
predict product review sentiment. The model will be detailed in Sect. 2.1.
Product Matching. An Attention-BiLSTM-CNN model is trained to match
products from different platforms. The input of the model is a pair of product
descriptions from different platforms. The output is the possibility of whether the
descriptions identify the same product. The blocking strategy is used to divide
the whole dataset into several subsets by the product brand. The best-matched
pairs are stored in the database.

CoSurvey crawls different platforms’ commodity information and stores them
in MongoDB. Elasticsearch3 and Redis4 are used to moderate database pressure.
CoSurvey meets high concurrency requirements. We employ multiple LVS and
Nginx servers in Openresty5 to implement the load balance. CoSurvey also pro-
1 https://www.kelkoo.co.uk/.
2 https://shopping.google.com/?nord=1.
3 https://www.elastic.co/cn/elasticsearch/.
4 https://redis.io/.
5 http://openresty.org/cn/.

https://www.kelkoo.co.uk/
https://shopping.google.com/?nord=1
https://www.elastic.co/cn/elasticsearch/
https://redis.io/
http://openresty.org/cn/
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Fig. 1. The framework of CoSurvey Fig. 2. Attention-BiLSTM-CNN
model architecture

vides customers an interactive web-based interface to browse all commodities or
search for a specific commodity using keywords or product characteristics. For
both query modes, CoSurvey presents all the selling links of the commodity and
gives out a detail comparison of its review and price. According to these com-
parisons, customers can obtain the latent relationship between promotion and
product feedback.

2.1 Attention-BiLSTM-CNN Model

Model Structure. The model consists word embedding layer, sentence repre-
sentation encoder (SRE), comment meta information encoder (CMIE), sentence-
meta information fusion layer, and output layer, as is shown in Fig. 2.

The word embeddings are initialized by ERNIE [6] model, which has demon-
strated outperform BERT in Chinese corpus. The word embedding was fine-
tuned during the training process. In SRE, we fuse CNN and BiLSTM via atten-
tion mechanism [3] to fully utilize sentence structural and sequential information.
Specifically, Bi-LSTM output R and CNN output C are used to calculate the
attention result H = softmax(K

TQ√
d
V ) (where K,V = C,Q = R). C is also

fed into an sqrt-pooling layer to obtain the pooling result Cpooling. In CMIE,
we obtain high-dimensional meta-information representation E through MLP.
Then, the fusion layer concatenates the outputs of SRE and CMIE, forming a
fusing representation V HCE = [H; Cpooling; E]. Finally, V HCE is fed into a
fully-connected layer with softmax to obtain the sentiment polarity.

Experiments. We compare our model to CNN [1] model, LSTM [4] model,
and AT-LSTM [5] model. The experiment results show that our model reaches
94.48% in precision and outperforms other models by 1.65%. We also perform
an ablation study, which shows that meta-information makes an improvement
by 0.4% in precision in the sentiment classification task.

3 System Demonstration

We provide customers a highly interactive demonstration of our system. Figure
3 shows the main scenarios of the demo. (1) Customers can shop around com-
modities from different e-commerce platforms and search for products using
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keywords or product characteristics. (2) Customers can overview the price, the
comment number, and the feedback rate distribution of the products. (3) Cus-
tomers can browse the detailed comparison information for a specific product,
like the current lowest price, the word cloud, and the price trends of this prod-
uct. (4) Customers can view the product sentiment evolution of the product,
where the static surveyed emotion, the dynamic emotional tendency, and the
supported or inconsistent feedback rates are presented.

Fig. 3. System Demonstration

4 Conclusion

In this demonstration, we develop a distributed application called CoSurvey
to survey the product information across different e-commerce platforms. We
apply Attention-BiLSTM-CNN Model to implement both the sentiment analysis
task and the product matching task. CoSurvey provides cross-platform product
information survey service to help customers make a wise purchase decision. The
application also provides operators insightful feedback to improve the production
and the marketing strategy.

Acknowledgements. This work is supported by National Key Research and Devel-
opment Program (2019YFB2102600).
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Abstract. An efficient data-driven public transportation system can
improve urban potency. In this research, we propose IntRoute, an Inte-
ger Programming (IP) based approach to optimize bus route planning.
Specifically, IntRoute first contracts bus stops via clustering and then
derives a new bus route via a mixed integer linear program (ILP). This
two-phase strategy brings three major merits, i.e., a single bus route
without any transfer, the minimal total time consuming, and an efficient
optimization algorithm for large-scale problems. Experimental results
show that our IntRoute significantly reduces the traditional commuting
time in Sydney from 31.53 min down to 18.06 min on average.

1 Introduction

In this study, we consider an important data-driven public transportation prob-
lem: finding the best bus route that minimizes passengers’ overall commuting
time. Given a bus transportation system as well as the requests of specific pas-
sengers who commute from different starting locations to a fixed destination,
the goal of the problem is designing a new bus route to satisfy the passengers’
demand without any transfer.

Previous studies on bus transfer problems were mostly not data-driven [2]
due to data skewness problems [3]. In this work, we proposed a new integer-
programming based method, which we call IntRoute, to find the route that min-
imizes the total time cost of the targeted passengers. Specifically, our IntRoute
contains two main phases, i.e., the contraction of bus stops via K-means cluster-
ing and the derivation of new bus route via a mixed integer linear programming
(ILP). The major contributions of this research are listed below.

– We design a single bus route in which all passengers with an identical desti-
nation are delivered without any transfers.

– We present a two-phase framework to minimize the total time expense of the
specific passengers.

– We develop a genetic algorithm (GA) to solve the integer linear programming
(ILP) for large-scale instances.

c© Springer Nature Switzerland AG 2021
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Fig. 1. The framework of the IntRoute. Fig. 2. Graph transformation.

2 Methodology

The main framework of our two-phase IntRoute method are shown in Fig. 1.

Phase 1: Contraction of Bus Stops. In the first phase of IntRoute, we
contract multiple requests into a super node by using clustering approaches
and determine a pickup bus stop for all the requests inside the super node.
In each super node, passengers are asked to walk to the pickup bus stop and
wait for buses. The walking time is counted into the total commuting time. We
employ K-means clustering, as it consumes the least walking time compared with
hierarchical clustering and density-peaks clustering. Then we exploit silhouette
method and elbow method to determine the number of pickup stops, i.e., the
cluster number n. Both methods indicate the best clustering number should
be n = 20. Therefore, this phase finds 20 pickup stations that minimizes the
passengers total walking time.

Phase 2: Design of One Alternate Route. In the real-world transportation
network, an arbitrary node pair (i, j) may be connected (Fig. 2 left). To solve
the problem via mathematical IP model, we introduce the multi-level graph G′

(Fig. 2 right), where each level represents a possible sub-route from one stop to
the next one. The red paths in G and G′ are equal. The graph G′ indicates the
order of visiting the pick-up stops directly by the levels.

Modelling via Integer Programming. We denote the node set as N =
{1, 2, . . . , n} ∪ {S, T}, where S and T represents the source and destination,
respectively. The arc set is A = {(i, j)|i ∈ N, j ∈ N, and i �= j}. The travel
time from node i to node j is denoted as cij , and ri is the number of passengers
who want to go to the destination. xl

ij ∈ {0, 1} represents a binary variable, indi-
cating whether the bus goes from node i to node j at level l on G′. ylijk ∈ {0, 1}
represents a binary variable which denotes if request k travels through arc (i, j)
at level l. vlk ∈ {0, 1} represents a binary variable, indicating if request k is served
at the level l. Formally, the IP model is formulated as:

min
∑

l

∑

k

∑

(i,j)∈A

ylijkcijrk, s.t.

∑
(i,j)∈Ax

l
ij = 1, for l = 0, 1, . . . , n (1)

∑
(j,i)∈Ax

l
ji =

∑
(i,k)∈Ax

l+1
ik ,∀i;∀l (2)
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∑
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0
Si =

∑
(i,j)∈Ax

1
ij (3)

∑
(i,j)∈Ax

n−1
ij =

∑
(j,T )∈Ax

n
jT (4)

∑
i

∑
lx

l
ij ≤ 1, for j = 1, 2, . . . , n, T (5)

vlk ≤ v
(l+1)
k ,∀k,∀l (6)

∑
kv

l
k = l, for l = 1, 2, . . . , n (7)

xl
ij ≤ vli, for (i, j) ∈ A, l = 1, 2, . . . , n (8)

ylijk ≤ (xl
ij + vlk)/2, ∀(i, j) ∈ A,∀k,∀l (9)

ylijk ≥ (xl
ij + vlk) − 1, ∀(i, j) ∈ A,∀k,∀l (10)

xl
ij ∈ {0, 1}; vlk ∈ {0, 1}; ylijk ∈ {0, 1} (11)

where (1) ensures that each level is exactly passed once. (2)–(4) ensure that flow
conservation of the graph. (5) ensures that each node can be entered at most
once. (6) ensures that request k must be served at level l + 1 if it is served at
level l. (7) ensures that l requests are on the bus when the bus is serving level
l. (8) ensures that if arc (i, j) is picked at level l, request i should be served at
level l. (9) and (10) ensure that the request k is served at level l on the arc (i, j)
if both xl

ij and vlk are equal to one. (11) shows xl
ij , v

l
k, and ylijk are all binaries.

Optimization via Genetic Algorithm. We design a genetic algorithm (GA)
to solve this IP problem. Specifically, the chromosome represents possible
sequence of the node set {1, 2, . . . , n}, and the population is a set of chromo-
somes.

Algorithm 1: Genetic Algorithm for
Solving the IP Problem
Input: T = 1000, Rc = 0.1, Rm = 0.05
Output: The chromosome with the best

fitness function
1 Initialize the population with size

M = 500;
2 for i = 1 to T do
3 Select new population Pi from Pi−1;
4 for individual p ∈ Pi do
5 offspring←− Crossover(p,Rc);
6 offspring←−

Mutate(offspring, Rm);
7 p ←−offspring ;

8 end

9 end
10 return The best chromosome.

As shown in Algorithm 1, a
new chromosome can be gener-
ated by the crossover between
two parent bus routes with a
probability of crossover rate Rc.
The mutation is defined as the
position exchange between two
randomly selected near-by bus
stoops with a probability of Rm.
There are two steps in our GA:
(1) the randomly population ini-
tialization with a given size M ,
and (2) the population evolution
for T generations by crossover
and mutation according to a fit-
ness function. We adopt a 2-
OPT technique to avoid the
cross sub-paths. Besides, we pro-
pose a decomposition technique that clusters the optimal route into three sub-
route via k-means. We concatenate the clusters in a reverse order, i.e., from the
destination node to the start node. This strategy greatly reduces the travel time.
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Table 1. Routing time before optimization

Bus route C′ C

2153142, 2155252, 2148445,

2153226, 2121125, 2074117,

212225, 211220, 211118,

2137134, 212746, 2150145,

2145561, 2150302, 2190145,

2135206, 213447, 203833,

200721, 201635, CBD

33.62min 31.53min

Fig. 3. Bus route without transfer

Table 2. Commute time

Methods Time

Original route 31.53

Greedy algorithm [1] 53.41

GA 31.27

GA + 2-OPT 33.62

GA + decomposition 18.06
Fig. 4. Bus routes after optimization

3 Experiments and Analysis

Data. The experiment is performed based on publicly available real-world com-
muting data, retrieved from the card-based transit payment system1 in Sydney,
Australia, including approximately three million trips.

Results. The routing time before optimization are listed in Table 1, where
routes are represented by the IDs of the bus stops. Here C denotes the time
cost without transfer and without optimization (also demoed in Fig. 3), and C ′

denotes that of the original commute with transfers. The new route after our
optimization is shown in Fig. 4, while the time costs of the bus routes optimized
by different methods are listed in Table 2.

Conclusions. Our IntRoute method greatly reduces the time expense for pas-
sengers from 31.53 min to 18.06 min on average, saving about 43% of commute
time. In future, we plan to investigate more optimization methods for further
improving our solutions.
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Abstract. Co-location pattern mining, which refers to discovering neighboring
spatial features in geographic space, is an interesting and important task in spatial
data mining. However, in practice, the usefulness of prevalent (interesting) co-
location patterns generated by traditional frameworks is strongly limited by their
huge amount, which may affect the user’s following decisions. To address this
issue, in this demonstration,we present a novel schema, namedNRCP-Miner, aim-
ing at the redundancy reduction for prevalent co-location patterns, i.e., discovering
non-redundant co-location patterns by utilizing the spatial distribution informa-
tion of co-location instances. NRCP-Miner can effectively remove the redundant
patterns contained in prevalent co-location patterns, thus furtherly assists the user
to make the following decisions. We evaluated the efficiency of NRCP-Miner
compared with related state-of-the-art approaches.

Keywords: Spatial data mining · Co-location pattern mining · Prevalent
co-location patterns · Redundancy reduction · Decision-making system

1 Introduction

The explosive growth of the spatial data results in significant demand for spatial data
mining. Co-location pattern mining, as an important spatial data mining task, has been
extensively studied for discovering neighboring relationships of spatial features. A spa-
tial co-location pattern commonly demonstrates neighboring relationships of spatial
features. Spatial co-location patterns may yield important insights in many applications,
including Earth Science, public health, biology, transportation, etc.

To measure how interesting a co-location pattern is, the PI (Participation Index)
value proposed by Huang et al. [1] is commonly used. Given a user-specified minimum
prevalence thresholdmin_prev, for a co-location pattern c, if PI(c) ≥ min_prev satisfies,
c is called a prevalent co-location pattern (PCP). As a PCP is a set of spatial features,
given a spatial dataset containing m spatial features, the number of generated PCPs
can reach as much as 2m. Furthermore, the PI measure satisfies the anti-monotonicity
property [1], i.e., if a PCP c is prevalent, all its subsets are also prevalent. However,
most of its subsets are redundant by considering their prevalences or PI values, which
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may affect the decisions of the user. Thus, it is crucial to reduce the number of PCPs by
redundancy reduction.

To reduce the number of PCPs, two classic condensed representations have been
proposed—maximal co-location patterns [2] (MCPs) and closed co-location patterns [3]
(CCPs), respectively. However, MCPs are considered as a lossy representation because
they ignore the PI values of co-location patterns. Although CCPs are lossless represen-
tations considering both prevalences and PI values of co-location patterns, they contain
redundancies. Thus, Wang et al. [4] proposed an algorithm called RRClosed to select
non-redundant co-location patterns from CCPs. Later, they introduced a new lossless
and non-redundant representation called SPI-closed (Super Participation Index-closed)
co-location patterns (SCPs), and proposed a method called SPI-Miner [5] to efficiently
discover SCPs.

In this demonstration, we present a novel and efficient system, named NRCP-Miner,
to discover SCPs. Instead of RRClosed or SPI-Miner, we adopt a clique-based approach
[6] to discover PCPs, and then furtherly select SCPs. Because the clique-based approach
constructs a hash structure that can be stored permanently and is independent of the
prevalence threshold, our proposed system performsmore efficiently than RRClosed and
SPI-Miner, especially when the system needs to be executed multiple times. Besides,
as SCPs are subsets of PCPs, our proposed NRCP-Miner can be applied to domains of
PCPs. For example, themobile service providermay be interested inmobile service SCPs
frequently requested by geographical neighboring users. Botanists may be interested in
SCPs consisting of symbiotic plant species.

2 System Overview

NRCP-Miner undergoes six steps to generate SCPs, as shown in Fig. 1.

Step 1:Materialization of the inputted spatial data. This step first gathers all neighboring
relationships of each instance by considering a user-given distance threshold min_dist,
and then groups the neighboring relationships as a neighbor list.
Step 2:Generation of complete cliques. This step aims to generate complete cliques using
the neighbor list. As the enumeration of maximal cliques is considered as an NP-hard
problem, we adopt a linear method [6] to generate complete cliques.
Step 3: Compression of the complete cliques. As the calculation of the PI value of a
co-location c is only based on the instances participating in c, thus, the complete cliques
can be compressed into a hash structure.
Step 4:Generation of PCPs. Given the instance hash, the PI value of any co-location pat-
tern can be efficiently calculated by considering the user-specified prevalence threshold
min_prev.
Step 5: Selection of CCPs. As the CCPs are subsets of PCPs, thus, all CCPs can be
selected from PCPs by the definition of CCPs, i.e., removing the PCP whose PI value
equals the PI value of one of its supersets.
Step 6: Generation of SCPs. To generate the SCPs from CCPs, we adopt the latter part
of the RRClosed method [4], which generates SCPs from CCPs by designing a NET
structure and a lemma for pruning.
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Generation Selection Generation

Compression

Spatial data set 
Distance threshold (min_dist) 
Prevalence threshold (min_prev) 

Neighbor list Complete cliques

Instance hashPCPsCCPsSCPs

Materialization Generation

Fig. 1. System description

3 Demonstration Scenarios

NRCP-Miner is well encapsulated with a friendly interface, what the user faces is only
a simple user interface. In this demonstration, we use part of the data set from points of
interests (POI data) in Beijing to show the demonstration and efficiency of NRCP-Miner.
The selected POI data set contains 5,000 POIs (spatial instances).

Demonstration. Figure 2 shows the main interface of NRCP-Miner. Figure 2(a) gives
the original spatial instances read from a file or a database, each instance is represented
as <feature name, location <x, y>>. The detailed distribution of instances described
in Fig. 2(a) is drawn in Fig. 2(b). The parameters with their specified values are listed in
Fig. 2(c). Figure 2(d) shows the generated SCPs based on the settings in Fig. 2(c) from
the spatial data shown in Fig. 2(a), as well as the number of per-size SCPs and removed
CCPs.

Fig. 2. Demonstration of NRCP-Miner
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Efficiency Evaluations. We evaluated the efficiency of NRCP-Miner from two aspects:
the compression ratio to CCPs and the running time compared with RRClosed and SPI-
Miner. As shown in Fig. 2(d), NRCP-Miner removes 56.3% of PCPs, and 25% of CCPs,
and also runs faster than RRClosed and SPI-Miner with the change of the prevalence
threshold min_prev, as shown in Fig. 3, this is because the hash structure generated by
NRCP-Miner is independent ofmin_prev, while the other algorithms have to restart their
mining processes with the change of min_prev.

0

10

20

30

0.1 0.3 0.5 0.7 0.9

Ru
nn

in
g 

Ti
m

e(
s)

min_prev

RRClosed
SPI-Miner
NRCP-Miner

Fig. 3. Efficiency comparison with related literature

4 Conclusion

This demonstration presents a novel and efficient system called NRCP-Miner to discover
a newly proposed lossless condensed representation of prevalent co-locations SPI-closed
co-locations. Unlike similar approachesmainly focusing on pruning strategies for reduc-
ing the number of candidates by using the prevalence threshold, NRCP-Miner gets rid of
the constraint of the prevalence threshold. Thus, it can effectively assist the user to find
a satisfying prevalence threshold within much less time, and furtherly can well support
the decision-making of the user.
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Abstract. In this paper, we develop a tool to efficiently and effec-
tively calculate agricultural machinery’s working area based on farming
machinery’s GPS data. The tool works as follows. First, we pre-process
GPS data by removing duplicate data, abnormal data and invalid data.
Data projection is performed using Gauss-Kruger and the minimum
value after projection is used for data transforming and shifting. Sec-
ond, the tool operates farming machinery trajectory fitting. Finally, an
algorithm of area calculation is developed to form the farming machin-
ery’s area based on trajectory data produced in the first two steps. The
algorithm achieves an error rate 0.29%, and takes 0.03 s to process about
60 GPS records collected in one minute.

Keywords: Farming machinery · GPS data preprocessing · Acreage
calculation

1 Introduction

Due to the widespread use of GPS-enabled devices such as smartphones and
vehicles, the recording of position data has become very easy, and huge amounts
of such data are collected. In the field of agriculture, farming machinery is pro-
gressively equipped with positioning equipment. GPS data collected by those
devices record agricultural machinery’s trajectory in the agricultural field. Agri-
cultural machinery plays an important role in the agricultural field. The common
mechanical way of farming machinery is rotary tiller and tractor supporting the
operation. In Jiangsu province, hundreds or thousands of rotary tillers are sold
per year. Due to the wide application of agricultural machinery used on the farm-
land, it is an important issue to compute the cultivated land area. In daily life,
manual records can calculate the size of cultivated land but cause some prob-
lems. To obtain high wages, workers deliberately exaggerated the area of arable
land, causing enterprise losses. It is possible to estimate the area of arable land
based on the actual land, but the actual farming land may be an irregular shape.
Consequently, it is not easy to calculate the area. Even if the farming land is
c© Springer Nature Switzerland AG 2021
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regular which is easy to calculate, the actual farming land area is not equivalent
to the farming land area because the farming task maybe not complete.

GPS data sampling of agricultural machinery is affected by a number of
factors such as equipment, sampling frequency and storage mode. Raw GPS
data usually contain noise data [2]. Furthermore, latitude and longitude values
are not appropriate for area calculation due to numeric problems. Therefore,
data transforming and shifting is performed.

To support a fast and accurate calculation of cultivated land area, a software
tool named ARCA (Area Calculation) is developed based on GPS data. The
input is raw GPS records. The calculation task is achieved by the following
steps: data preprocessing, trajectory fitting, region formation by expanding the
trajectory, area calculation, and operations of calculating the cultivated land
area. The developed tool, (i) achieves an error rate 0.29% and (ii) takes 0.03 s
on average to process about 60 GPS records collected in one minute.

2 ARCA

2.1 An Overview

We outline the tool ARCA in Fig. 1. There are three layers: (i) data layer, (ii)
functional layer and (iii) display layer. The data layer defines data types mpoint,
line, and region. The functional layer includes preprocessing modules and data
conversion modules. The display layer shows the cultivated area and the shape
of the cultivated land by agricultural machinery.

Fig. 1. ARCA structure

2.2 Data Preprocessing

Each GPS record contains a list of attributes among which the following ones
have primary information: ID, time, longitude, and latitude. The procedure of
removing data noise mainly solves the problems of data duplication, invalidity,
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and abnormality. Agricultural machinery is likely to collect repeated data which
refers to the points that are (i) from consequent GPS records of the same ID
and (ii) the distance between each other is zero or close to zero. We use the
SNM [1] algorithm performing the sort-detect-merge and eliminating to remove
duplicate data. Invalid data refers to the data whose longitude or latitude is
zero. Abnormal data refers to data exceeding the defined range.

Latitude and longitude very little in one city, increasing the difficulty of
area calculation. To avoid the numeric problem, we use Gauss-Kruger [4] to
project latitude and longitude into a rectangular coordinate system, and take
the minimum x and y axes from all GPS data to transform x and y axes.

2.3 Area Calculation

There are three alternative solutions for area calculation based on points. Convex
hull [5] is a popular algorithm, but will calculate the area of unfinished arable
land in the middle, leading to the result larger than the actual value. The square
area method takes the GPS point as a center point and expands along the
moving direction to form a square area. Farming machinery’s width is set as
the square side length. All GPS data are used, and all the created squares are
involved to calculate the area. The disadvantage of this method is that sparse
data points lead to incomplete area calculations. We propose a solution that
solves the problems in the two methods.

Our algorithm performs the area calculation in four steps, as demonstrated in
Fig. 2. Step 1, GPS data is connected in chronological order to form a trajectory
li. Step 2, two new trajectories are formed by shifting the trajectory li with
distance w/2 (w refers to the width of farming machinery.). lli is on the left
side of li and lri is on the right side of li. The two regions are constructed by
connecting endpoints on the same side respectively. The regl is on the left and
regr is on the right. Step 3, regl and regr are merged to form the last cultivated
area reg1. Step 4, reg1 is merged with reg2 (formed in steps 1–3) to form the
final cultivated area.

Fig. 2. Area calculation procedure
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3 Demonstration

The tool is developed in an extensible database system SECONDO [3], run-
ning Intel(R) Core I3-2120 3.3 GHz, 4 GB RAM, Ubuntu14.04 64 bit operating
system.

Table 1. Experimental statistics

Group A Group B Group C

Data size 15,458 9,433 14,378

Duplicate values 1,914 1,181 1,787

Preproccess(s) 0.97 0.60 0.91

Data conversion(s) 6.58 3.85 6.93

average value(s) 0.029 0.028 0.032

Table 2. Error rate

Group A Group B Group C

Reference 35867.59 24523.94 19181.69

Convexhull Results 33092.46 23306.14 17628.41

Test Results 35975.01 24628.82 19211.17

Error Rate 0.30% 0.43% 0.15%

(a) Overall display (b) Partial enlarged view of system

Fig. 3. Demo display

The experimental records are shown in Table 1. Three groups of three agricul-
tural machinery data are collected for experimental testing. The preprocessing
includes denoising, projection and translation and the processed data is to be



616 S. Song et al.

trajectory fitting. The tool cuts the trajectory at the inflection point, translates
the trajectory to form the cultivated land boundary, forms the area, and per-
forms the merging. Finally, the area calculation is executed in SECONDO. This
tool takes about 0.03 s to process 60 GPS data records collected in one minute.

The calculated error rate is shown in Table 2. The average error rate is 0.29%.
The width of farming machinery is set 4 m. The frequency of GPS records is 1 s.
At present, we do not have the ground truth of the area of arable land. Therefore,
the square area method is selected as the alternative method to obtain the area’s
reference value. The results of the convex hull solution are shown also. The unit
of area is square meters. The system demonstration is shown in Fig. 3. The blue
dots represent GPS data after preprocessing and the area within the black frame
is the area of cultivated land.
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3. Güting, R.H., Behr, T., Düntgen, C.: SECONDO: a platform for moving objects
database research and for publishing and integrating research implementations.
IEEE Data Eng. Bull. 33(2), 56–63 (2010)

4. Kong, X.Y., Guo, J.M., Liu, Z.Q.: Foundation of Geodesy. Wuhan University Press
(2010)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-77974-2

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2


LSTM Based Sentiment Analysis
for Cryptocurrency Prediction

Xin Huang1(B), Wenbin Zhang1, Xuejiao Tang2, Mingli Zhang3,
Jayachander Surbiryala4, Vasileios Iosifidis2, Zhen Liu5, and Ji Zhang6

1 University of Maryland, Baltimore County, Baltimore, USA
{xinh1,wenbinzhang}@umbc.edu

2 Leibniz University Hannover, Hanover, Germany
{xuejiao.tang,iosifidis}@stud.uni-hannover.de

3 McGill University, Montreal, Canada
mingli.zhang@mcgill.ca

4 University of Stavanger, Stavanger, Norway
jayachander.surbiryala@uis.no

5 Guangdong Pharmaceutical University, Guangzhou, China
liu.zhen@gdpu.edu.cn

6 University of Southern Queensland, Toowoomba, Australia
ji.zhang@usq.edu.au

Abstract. Recent studies in big data analytics and natural language
processing develop automatic techniques in analyzing sentiment in the
social media information. In addition, the growing user base of social
media and the high volume of posts also provide valuable sentiment
information to predict the price fluctuation of the cryptocurrency. This
research is directed to predicting the volatile price movement of cryp-
tocurrency by analyzing the sentiment in social media and finding the
correlation between them. While previous work has been developed to
analyze sentiment in English social media posts, we propose a method
to identify the sentiment of the Chinese social media posts from the
most popular Chinese social media platform Sina-Weibo. We develop
the pipeline to capture Weibo posts, describe the creation of the crypto-
specific sentiment dictionary, and propose a long short-term memory
(LSTM) based recurrent neural network along with the historical cryp-
tocurrency price movement to predict the price trend for future time
frames. The conducted experiments demonstrate the proposed approach
outperforms the state of the art auto regressive based model by 18.5%
in precision and 15.4% in recall.

1 Introduction

Since the birth of Bitcoin, there has been an enormous rise and interest in
the cryptocurrency, a decentralized digital asset developed by the blockchain
technology. This digital currency draws a lot of attention due to its volatility
which provides the opportunity for digital trading with high return. The total
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market capitalization of cryptocurrencies has increased from 1 billion dollars to
400 billion dollars in the past decade, with the number still increasing.

On the other hand, the emergence of social media such as Twitter, Reddit
and Facebook also makes the latest news and social media posts about financial
markets widely accessible. Investors have therefore been utilizing such a variety of
digital resources to make trading decisions. Previous studies discovered evidence
of such correlation between stock price movement and social media [1]. Sentiment
on cryptocurrency social media content with negative emotions, e.g., fear and
sadness, neutral emotions, e.g., calm and not sure, or positive emotions, e.g.,
trust and happiness, can be used to predict cryptocurrency price fluctuations
and further to assist the investment decision making. This paper focuses on
this trending theme, proposing a recurrent neural network with long short-term
memory (LSTM) by utilizing the sentiment analysis of social media to predict
the real time price movement of the digital currency.

2 Related Work

Over the past decades, a variety of machine learning techniques have been devel-
oped to predict the price movement for the stock market using social media, such
as opinion analysis of twitter feeds [3]. [1] used neural networks and daily Twit-
ter feeds as extra predictors to forecast the daily up and down changes in the
closing values of the Dow Jones Industrial Average. Moreover, [7] found the
Long Short-Term Memory (LSTM) combined with a Twitter sentiment analysis
outperforms other machine learning models such as Support Vector Machine in
predicting the stock price.

Recent studies have also successfully applied sentiment analysis in various
applications, such as predicting the movie revenues [6], analysing sentiment
towards US presidential candidates in 2012 [8]. In the English sentiment anal-
ysis, Valence Aware Dictionary and sEntiment Reasoner (VADER) [5] is used
to classify sentiment in tweets. In this paper, we designed a crypto sentiment
dictionary that is customized to cryptocurrency and Chinese Weibo posts. We
use LSTM [4] as the neural network learning layer and combine it with the sen-
timent analysis method to develop a crypto sentiment analyzer that can predict
the price movement of cryptocurrency.

3 Methodology

Figure 1 shows the end to end architecture of the LSTM based sentiment deep
learning model in predicting the real time price fluctuations. We crawled user
posts from China’s most popular social media platforms Sina-Weibo, and created
a crypto-specific sentiment dictionary with domain-expert knowledge, and then
the LSTM recurrent neural network was used to model the sentiment information
and make real time prediction for the price trend.
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3.1 Data Collection

Chinese investors exchange crypto information via news articles and social media
platforms, especially using Sina-Weibo, Wechat and QQ groups. We collect a
large-scale Weibo corpus from crawling Chinese microblogs on Sina-Weibo with
the cryptocurrency keyword, in particular, Bitcoin, ETH or XPR. The number of
crawled cryptocurrency tweets from Weibo is 24,000, as well as 70,000 comments
to them, from the most recent 8 days.

Data Collect
(Web Crawler)

Sina-Weibo Posts Generate Crypto
Vocabulary 

LSTM Sentiment
AnalyzerEmbedding Prediction 

(Majority Vote)

Fig. 1. Architecture of LSTM based cryptocurrency sentiment analysis and price move-
ment prediction. Crypto sentiment dictionary is created to generate the crypto word
embedding, LSTM is to learn the sentiment information, and the majority voting on
the output of LSTM sentiment analyzer is used to predict the price going up or down.

3.2 Crypto Sentiment Dictionary

The general sentiment dictionary created by natural language processing (NLP)
is not applicable in the crypto domain. We introduce a novel way to build a
crypto specific sentiment dictionary that can capture the unique characteristics
of the crypto social communities. Table 1 shows an example dictionary that is
particular to the Chinese crypto words in Sina-Weibo. The first step of generating
a crypto sentiment dictionary is to create the vocabulary of the crypto words. We
manually label the crawled Weibo posts with ranking, and use seed sentiment
words selected by crypto domain experts to do bootstrapping, which adds high
frequency new words in highly positive/negative weibo posts into the crypto
corpus.

After the crypto corpus is generated, we then create an index mapping dic-
tionary in such a way that the frequently occurring crypto words are assigned
lower indexes, similar to the traditional natural language processing. Finally we
generate a crypto word encoding for each individual post and use that encoding
vector as the training data for the RNN model in sentiment analysis.

Table 1. Crypto specific sentiment dictionary building for Chinese words.
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3.3 LSTM Based Sentiment Analyzer

We develop a long short-term memory network (LSTM) based sentiment ana-
lyzer for crypto social media posts. LSTM enables the network to learn long-term
relation, by utilizing forget and remember gates that allow the cell to decide
which information to block or transmit based on its strength and importance.

The social media post is first tokenized according to crypto word vocabulary
and fed into the embedding layer, which converts the word token into the crypto
word embedding. The LSTM based recurrent network is trained by taking the
sequence of the embedding feature vector. A fully connected layer is used to
transform the output of the LSTM later and activated with sigmoid to output
the prediction. The labels of the posts used in training were manually labeled
and encoded with positive (1), neutral (0) and negative (−1).

4 Evaluation

We used the most recent 7 days’ Sina-Weibo posts from top 100 crypto investors
accounts as training data and the next 1 day’s posts as testing. We use Precision
and Recall to measure the performance of our LSTM sentiment predictor. Pre-
cision measures the model’s ability to return only relevant instances and recall
measures the model’s ability to classify all relevant instances.

We compare our method with the time series auto regression (AR) approach
[2] to evaluate the performance. As Table 2 shows, our approach outperforms
the AR approach by 18.5% in precision and 15.4% in recall, exemplifies the
effectiveness of the LSTM in analyzing the sentiment of social media content.

Table 2. Precision and recall on evaluating LSTM sentiment analyzer and AR.

Method Precision Recall

Auto regression 73.4% 80.2%

LSTM sentiment analyzer 87.0% 92.5%

5 Conclusion

In this paper we introduce a crypto sentiment analyzer by utilizing the recurrent
neural network to model the social media sentiment. The model is developed
using LSTM and achieves higher precision and recall than the traditional auto
regressive approach. The current sentiment analyzer can be used to predict the
price fluctuation of the cryptocurrency and integrated to an autonomous trading
system to assist the buying or selling of digital assets.
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Abstract. With the development of blockchain, blockchain has a broad
prospect as a new type of data management system. However, limited
to the data modeling method of blockchain, the usability of blockchain
is restricted; In addition, every blockchain system has its own native
but naive interfaces, when developing based on the different blockchain
systems, which will leads to low development efficiency and high develop-
ment costs. In this study, we construct a SQL-Middleware for blockchain
system to solve these problems. The SQL-Middleware first performs rela-
tional modeling of blockchain data, mapping the blockchain data into a
relational table; On the basis of modeling the blockchain data, SQL-
Middleware encapsulates a set of SQL interfaces for blockchain system,
thus realizing the unification of interface access methods of different
blockchain systems. At last, we implement the SQL-Middleware based
on the open source blockchain system CITA. Demonstration shows that
the SQL-Middleware greatly improves the data management capabilities
of blockchain and simplifies the blockchain access steps.

Keywords: Blockchain · Middleware · Data modeling · SQL

1 Introduction

Blockchain, as a distributed ledger formed by multi-party consensus, can build a
credible interactive platform for multiple parties who do not trust each other. As
a new type of data management system, blockchain has many drawbacks: First,
the expressive capability of blockchain data is weak [1], all data is modeled in
a unified transaction format, which limits the potential value of data; Second,
from the perspective of evolution of the data management system: from SQL to
NoSQL, and then NewSQL, the continuous changes in data management meth-
ods have made us aware of the irreplaceable role of SQL in data management,
however, generally, blockchain can be classified as a NoSQL system and only
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supports RPC-based naive interfaces. These features restrict the evolution of
the blockchain to be an excellent emerging data management system.

In addition, it is worth mentioning that we observe that transactions are
structured data, which provides a basis for relational modeling. Based on this
observation, we design a middleware called SQL-Middleware for blockchain sys-
tem to abstract blockchain system as a relational data management system.
The middleware we designed has nothing to do with the blockchain consensus
and execution process. The reason for adopting the form of middleware is that
middleware can transplant to other systems easily and not just limited to a
specific blockchain system [2]. However, there are two challenges when build-
ing SQL-Middleware for blockchain system: i) How to convert a monotonous
transaction-based model into different models towards different scenarios; ii)
How to provide developers with efficient query interfaces. To solve these chal-
lenges, we use the Data in the transaction as an application-related field and
encapsulate the application data into Data uniformly, and then we establish
a schema for Data so that the data in the blockchain system has rich seman-
tic models; Then, we implement part of SQL interfaces for blockchain system,
application developers can interact with blockchain system through these SQL
interfaces; Finally, we implement a Terminal based on the SQL-Middleware
which we implemented.

In related research works, there are existing research works, but these works
cannot be well compatible with different blockchain systems [1], and cannot sup-
port efficient query operations [2,3] or will bring relatively large storage over-
head. On the contrary, SQL-Middleware solves these problems very well.

Fig. 1. System overview.
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2 System Overview and Key Designs

The overall architecture of the system is shown in Fig. 1. Using SQL-Middleware,
we abstract the underlying blockchain system into a SQL-based data manage-
ment system. On the one hand, the SQL-Middleware model the blockchain sys-
tem as a relational data management system, which enhance the expressive abil-
ity of blockchain data. On the other hand, SQL-Middleware encapsulates the
RPC-based interfaces provided by the blockchain system into SQL interfaces,
which makes the blockchain system behave like a database. The modules of
SQL-Middleware include: i) JDBC interface module, applications can transmit
SQL statements and result set through this module; ii) SQL parser module,
which is responsible for parsing the SQL statements transmitted by the appli-
cation and checking the validity of SQL statements based on locally maintained
schema information; iii) Transaction Creator and Data Extractor, which are
responsible for constructing transactions based on the results of SQL parser,
and querying the required data based on the obtained blockchain data; iv) RPC
Connector module, this module directly connects with the blockchain node by
RPC, sends the constructed transaction to the blockchain node for consensus,
and pulls the on-chain data from blockchain node.

2.1 Data Modeling and SQL Interfaces

Taking the popular blockchain systems as examples (e.g., Ethereum or CITA
all transactions have unified structure. In transactions that used for invoking
smart contracts, all parameters needed to call the contract are included in Data
(Transaction.Data= {param1, param2, et al.}), that is, all application-related
data is included in Data, resulting in a monotonous blockchain transaction
model, which limits the data expression capability of blockchain data. To solve
this problem, we parse the Data in transaction and model it into a table, and
each parameter in Data is mapped into a field of table. Specifically, we map each
function in the smart contract that can be called externally into a table. When
smart contract is called, it is equivalent inserting an item into the database.

SQL query is an efficient query method, through SQL query interfaces, com-
plicated query logic can be supported, which is an important support in data
mining. However, as far as we can tell, only RPC-based naive interfaces are pro-
vided in blockchain system. Compared with SQL, native interfaces of blockchain
only support simpler query logic and cannot support rich and efficient query
operations. In order to solve this problem, we use the RPC-based interfaces pro-
vided by the blockchain system to encapsulate a set of SQL interfaces. We mainly
implement three interfaces: CREATE, SELECT, and INSERT. The functions of
these SQL statements that supported by SQL-Middleware are shown in Table 1.

3 Demonstrations Details

We develope a SQL-Middleware in C++ using CITA as a case. Based on SQL-
Middleware, we implement a Terminal. Using this terminal, developers can per-
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Table 1. Supported SQL statements and their functions.

SQL Function Processing flow

CREATE Create schemas for
on-chain data

Establish schema info to model
on-chain data and use schema info to
describe on-chain data, then persist
it in schema file

INSERT Insert data into the
blockchain

Extract the field info in the INSERT
statement, construct it into a
transaction format and forward it to
blockchain node

SELECT Read on-chain data that
meets the requirements

Pull data on the blockchain node
and extract required data according
to the schema information

Fig. 2. Terminal panel when performing different operations. (Color figure online)

form assisted work on the blockchain, including designing or viewing the struc-
tures or contents of the tables in blockchain. Figure 2 shows the Terminal panel
when performing different operations. The yellow-marked field represents the
locally established schema information. In the green-marked field, we can input
SQL statements and send them to our SQL-Middleware, then SQL-Middleware
executes the SQL statements and displays the results in the blue-marked field,
and red-marked attributes are blockchain attributes of the data. In addition, we
develop a blockchain front-end layer based on SQL-Middleware, other systems
can access the blockchain system through blockchain front-end layer by POST
Request, which greatly expands the usage scenarios of blockchain system and
deeply excavates the value of blockchain system as a data management system.
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Abstract. The declarative programming language in SystemDS simpli-
fies users to implement machine learning algorithms. It is able to generate
execution jobs on different data processing engines including MapReduce
and Spark. The GUI in data processing engines typical visualizes the low-
level execution process (e.g., RDD transformation in Spark). However,
the low-level description in Spark GUI does not show the relationship
between DML operations and RDD primitives. In this work, we propose
Loupe, a tool to visualize high-level execution plans in SystemDS to ease
users to understand the execution process. This paper introduces the
design of the tool and demonstrates a visualization case.

Keywords: SystemDS · Execution plan · Visualization

1 Introduction

With the growing trend of the magnitude of datasets spurred by applications
such as search engines, distributed data processing engines like MapReduce [3]
and Spark [5], etc., have emerged. It is non-trivial for users to implement sophis-
ticated algorithms by low-level operators in aforementioned data processing sys-
tems. To bridge the gap between users’ familiar high-level programming lan-
guages and complex low-level implementations, SystemDS [2] which originates
from SystemML [1,4] has been developed by data management community. It
allows users to implement the data science algorithms in DML, a declarative
machine learning language. SystemDS compiles and optimizes these algorithms,
so as to generate runtime jobs on MapReduce or Spark.

Execution plan in SystemDS describes how an algorithm would be compiled
and optimized. Hence, this plan plays an important role in the execution pro-
cess of an algorithm. For example, SystemDS would optimize multiple matrix
multiplications by rearranging the order of operators. It is necessary for users to
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Fig. 1. The architecture of Loupe.

clearly understand execution plans, so that they might be able to identify the
performance bottleneck and then improve their implementations. SystemDS can
generate different jobs running on a single node, MapReduce, and Spark (i.e., in
local mode, MapReduce mode, and Spark mode, respectively). For example, in
Spark mode, existing GUI in Spark provides a visualization tool for execution
plans in the form of DAGs (Direct Acyclic Graphs) to represent RDD trans-
formations. However, the visualized DAG depicts a low-level RDD transforma-
tion, which does not show the relationship between DML operations and RDD
transformations. Consequently, the DAG is difficult for users to understand the
execution process of programs in DML. In local mode, there is even no tool to
visualize the execution process.

In this work, we propose Loupe, a tool to visualize the high-level execution
plans in SystemDS. Loupe provides a clear description on high-level execution
plans, which supplements the low-level DAG visualization in Spark. Moreover,
Loupe is able to visualize the execution process on a single node, since it does not
tightened with the dedicated data processing engine. In the rest of this paper,
Sect. 2 gives an overview of the architecture of Loupe, and Sect. 3 demonstrates
the visualization.

2 Architecture

Figure 1 provides the architecture of Loupe. It is composed of two parts: the parse
module and the visualization module. The parse module is responsible to retrieve
execution plans from SystemDS and transform them into hierarchical blocks,
while the visualization module will get these blocks and draw an interactive
graph on a web page.

Parse Module. Given the execution plan in plain text format, the parse mod-
ule is in charge of extracting operators and variables information from it. The
parse module splits the whole plan into blocks, which represent logical rela-
tions between different parts of an algorithm. There are two types of blocks:
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Fig. 2. The block graph.

logic blocks and generic blocks. The logic blocks show the control flow of an
algorithm such as If and For, while the generic blocks describe how operators
and variables are arranged in the part of programs. After variables and opera-
tors have been attached to the corresponding block, the parse module organizes
these blocks in a hierarchical structure according to the logic relations.

Visualization Module. The visualization module retrieves hierarchical blocks
with operators and variables information from the parse module. It then provides
users with an user-friendly graph with interactive features on a web page.

3 Demonstration

In this section, we will briefly demonstrate how Loupe works. The demonstration
uses PageRank, a classical algorithm employed by the search engine.

3.1 Configuration and Submission

Attendees are supposed to configure the log path first so that the parse module
could retrieve execution plans correctly. Then, after submitting the PageRank
algorithm written in DML script to SystemDS, attendees could view the graph
through a web page.

3.2 Visualization

Visiting the web page, attendees first see a block graph, which denotes logical
relations between different parts of the algorithm. For example, Fig. 2 shows the
block graph of PageRank. Generic block 1 contains initial steps like handling
input data. The while block is a logic block indicating that its child blocks are
in a While loop. Therefore, attendees are able to sort out that generic block
4 inside the while block represents the iterative process of PageRank, which is
executed multiple times until convergence.

Upon clicking one block, attendees are able to explore details of a part of the
execution plan, visualize the plan and observe how SystemDS compiled and opti-
mized the given algorithm. For example, Fig. 3 shows visualizations of execution
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(a) Local Mode (b) Spark Mode

Fig. 3. Visualizing execution plan for PageRank

plans for PageRank on varying execution mode. Figure 3a depicts the execu-
tion plan for PageRank running on local mode. SystemDS compiled the matrix
multiplication to a ba+* operator, the multiplication operator in local mode.
Figure 3b depicts the execution plan for PageRank running in Spark mode. The
red board block shows that SystemDS compiles the matrix multiplication to a
mapmm operator which broadcasts one of the matrices to compute products in
Spark. This is one kind of the implementations of matrix multiplication in Spark.
Via the visualization graph, users learn which operator SystemDS employs to
implement the matrix multiplication and whether this operator becomes the per-
formance bottleneck. If so, users are supposed to modify their code or change
the execution mode to achieve a better performance. Hence, users would gain a
better understanding on the execution plan in SystemDS via Loupe, especially
about those compilations and optimizations.
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Abstract. Learning algorithms have become the basis of decision mak-
ing and the modern tool of assessment in all spares of human endeav-
ours. Consequently, several competing arguments about the reliability
of learning algorithm remain at AI global debate due to concerns about
arguable algorithm biases such as data inclusiveness bias, homogeneity
assumption in data structuring, coding bias etc., resulting from human
imposed bias, and variance among many others. Recent pieces of evidence
(computer vision - misclassification of people of colour, face recognition,
among many others) have shown that there is indeed a need for con-
cerns. Evidence suggests that algorithm bias typically can be introduced
to learning algorithm during the assemblage of a dataset; such as how
the data is collected, digitized, structured, adapted, and entered into a
database according to human-designed cataloguing criteria. Therefore,
addressing algorithm fairness, bias and variance in artificial intelligence
imply addressing the training set bias. We propose a framework of data
inclusiveness, participation and reciprocity.

Keywords: AI fairness · Inclusion · Participation · Cross-validation

1 Introduction

Artificial Intelligence; essentially learning algorithms has become a compelling
tool for making systematic decisions, based on a large amount of data and facts.
This exhilarating field of research has gained wide application and acceptance
owing to its peculiar physiognomy and surpassing edge of minimizing space of
precariousness and ambivalence. Government and private companies globally
rely laboriously on the output of learning algorithms before taking any decision.
We have seen the application of learning algorithms in crime detection, com-
puter vision, pattern recognition, weather forecast, robotic and face recognition,
economic and financial forecasting, and budgeting etc.

Therefore, learning modelling/algorithms have become the basis of decision
making and the modern tool of assessment in all spares of human-daily activi-
ties. Consequently, several competing arguments about the reliability of learning
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algorithm remain at various AI global debate due to concerns about arguable
algorithm biases such as data inconsistent (non-inclusiveness) bias, diversity bias,
unrepresentative, coding bias resulting from human imposed bias, and variance
among many others.

Cross-validation is arguably the simplest and widely used model assess-
ment and selection among many other procedures. The importance of cross-
validation has resulted in diverse innovative approaches and methods of the
cross-validation. Hence, several cross-validation algorithms have been proposed
in the literature and with various degrees of pros and cons. This study aims to
modify an existing (or propose a new) cross-validation approach to update the
existing gap in the literature to address the algorithm bias, data inclusiveness,
improve algorithm validation (participation), reliability and bias assessment.

1.1 Problem Statements and Motivation

Artificial intelligence (such as machine learning) remain the game-changer in the
new world order of computational, decision and analytic science. It has gained
global acceptance and becomes the driven force of decision-making tools in all
spheres of human endeavours. However, algorithm bias in artificial intelligence
continues to be a major constraint and concern for many particularly the under-
represented groups.

Algorithm bias happens when an active learning algorithm under-performed
in real-life application. That is, it describes systematic and repeatable errors in
a computer system that create unfair outcomes, such as privileging one arbi-
trary group of users over others. Bias can emerge due to many factors, including
but not limited to the design of the algorithm or the unintended or unantici-
pated use or decisions relating to the way data is coded, collected, selected or
used to train the algorithm, Cormen et al. (2009). As algorithms expand their
ability to organize society, politics, institutions, and behaviour; sociologists have
become concerned with how unexpected output and misrepresentation of data
can impact our world. Because algorithms are often rated to be neutral and
unbiased, they can erroneously project greater authority than human expertise,
and progressively, reliance on algorithms can displace human responsibility for
their outcomes.

Recent evidence (such as in; crime and arrest AI algorithm, computer vision
- misclassification of people of colour, see Fig. 1 and 2; face recognition, among
many others) have shown that there is indeed need for concerns. Weizenbaum
(1976) suggests that bias could arise from the data used in training, but also
from the way a program is coded. Hence addressing bias and variance in artificial
intelligence implies addressing the training set bias.

Thus, to address algorithm fairness, transparency and accountability, we
must address the issue of data inclusiveness, and equal representation (in train-
ing) and participation in all algorithm designs. We cannot continue to pretend
as if gender, colour, race, ethnicity, and origin are insignificant in our societies
any longer. They are the nucleus of every community and should also be the
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Fig. 1. President Barrack Obama misclassify as Whiteman. Credit: Robert Osazuwa
Ness @osazuwa 2020.

nucleus of all algorithmic frameworks. This work aims to address the issue of AI
algorithm bias from a data-driven/processes point of view.

Bias and Variance. According to Gillespie et al. (2014), bias can be intro-
duced to an algorithm in several ways. During the assemblage of a dataset,
data may be collected, digitized, adapted, and entered into a database according
to human-designed cataloguing criteria. Although, modellers play a crucial role
in the direction and functionality of algorithm which could be subject to indi-
vidual bias, preference or judgment. That is, programmers can assign priorities
(personal bias), or hierarchies, for how a program assesses (e.g., program design)
and sorts the data. This requires human decisions about how data is categorized,
and which data is included or discarded, Gillespie et al. (2014) and Diakopoulos
(2017).

While this is true, the work of modelling typically follows some standard sta-
tistical procedures and are often taken very seriously by the modellers. According
to Alake (2020), it could be said that learning models cannot be directly biased
by design, and any emergence or cause of bias is external to the architecture and
design of the learning framework. Thus, modellers often time have limited juris-
diction over the dataset made available for training and model validation, and
criteria set by sponsors perhaps intentionally or unintentionally (environmental
bias) limited or under-representative dataset to pose or place some particular
race, or people above or below others.

More so, the goal of such a project can influence the programmer priority
leaving behind the data (inclusion) ethics. This is the point where algorithm bias
plants the seed of unexpected output leading to inequality. Hence, non-inclusive
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Fig. 2. Bias profiling of people of colour against white. Credit: Nicolas Kayser-Bril
@nicolaskb 2020.

or under-representative data promote algorithm bias and result in the source of
most biases in model estimation.

Cross-validation approach is an essential tool of all learning algorithms. The
goal of cross-validation is to test the model’s ability to predict new data that
was not used in estimating it, to flag problems like overfitting or selection bias,
Cawley and Talbot (2010). In statistics and machine learning, the bias-variance
tradeoff is the expression of a set of predictive models whereby models with
a lower bias in parameter estimation have a higher variance of the parameter
estimates across samples, and vice versa. The bias-variance dilemma or bias-
variance problem is the conflict in trying to simultaneously minimize these two
sources of error (bias and variance) that prevent supervised learning algorithms
from generalizing beyond their training set, Kohavi and Wolpert (1996) and
Luxburg and Scholkopf (2011).

Nadkarni (2016) made a data bias case against CV. He noted that even
though CV remains a robust technique regardless of variation within the dataset,
CV does not have any robust performance against a systematic bias in the choice
of data that is adopted for training set particularly when there is built-in bias.
More so, the homogeneous assumption in the distribution of training data is
associated with the majority of the existing CV. To address the inherent issues
of algorithm bias, a cross-validation approach; which is a data-driven method is
quite suitable if it accounts for the inherent heterogeneity in training data and
proposes a data inclusion approach.

1.2 Aim and Objectives

This study aims to examine the existing cross-validation approaches and propose
a modified approach to address the inherent homogeneous assumption leading
to algorithm bias and variance associated with the existing CV methods in the
model assessment and validation. Hence, the goal of this thesis is to address the
issue of algorithm bias and variance from its natural source: data.
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Objectives

1. To modify an existing V–fold and Distributed Balanced Stratified (DBS) CV
approach leading to the confirmatory CV approach.

2. To assess the performance of the proposed CV on Hold-out, regular CV and
DBS CV.

3. In light of 2, to examine in an application, the relevance of the new approach
over the existing V-fold, DBS, and other CV approaches.

Essentially, this work aims to propose a CV method that will have a min-
imal loss, accounts for the inherent heterogeneity in training data, and ensure
data inclusion to address under-representation and misclassification. We expect
that this procedure will have a robust performance over the existing (random
and deterministic) CVs and address bias in AI algorithms due to lack of data
inclusion.
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Abstract. The multi-site real-time transactional data-analysis based applications
and the underlying research efforts to improve the performance of such applica-
tions have got renewed attention by researchers in the last four years. It reveals
that the current scenario possesses numerous unanswered and truly relevant issues
and challenges requiring a multi-disciplinary research approach to work on and
solve the core database transaction processing related issues. Our focus is to cover
most of the issues and challenges with transaction scheduling algorithms in one
place to put out the current research status. At a high level, the domains covered
are—real-time priority assignment heuristics, real-time concurrency control pro-
tocols, and real-time commit processing. The article indeed guides towards the
immediate-future directions requiring actions/ efforts by the modern data-driven
research community.

Keywords: Data analysis · End-to-end application · Priority inversion ·
Real-time applications · Resource conflicts

1 Introduction

These days, a distributed set of external devices are required to perform complex real-
time analysis and the decision-making task. To formulate and drive such application
requirements, the study of a distributed real-time database system (DRTDBS) is of
utmost importance. It is a collection of time-constrained distributed data items with the
transaction as only themedium of update [1]. TheDRTDBS should be designed in a way,
so that, it can ensure that the timing requirements are satisfied while the data collection/
update.

The transactions have been categorized into three types based on the consequences
of deadline misses—Soft deadline transactions, Firm deadline transactions, and Hard
deadline transactions [2]. Violations of soft, firm, and hard deadlines result in completely
different consequences. The outcome has some value even after the soft deadline issue
(though lesser) (though lesser), no value if the deadline is firm, and a negative value
(catastrophic consequences) when the deadline is hard [3].

The paper structure is noted in this paragraph. Section 2 discusses various existing
research problems important to DRTDBS performance. Section 3 describes the relation
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of the work to the state of the art in DRTDBS transaction management. The proposed
protocols and their novelty with respect to the problems addressed are discussed in
Sect. 4. The scope of future contributions to various issues and research problems in
distributed computing systems for the real-time environment are discussed in Sect. 5.
At the end, conclusions are drawn in Sect. 6 (conclusion section).

2 DRTDBS Research Problems

The single most desirable objective in the DRTDBS performance study is the transaction
deadline miss percent metric. The lesser the miss-percent, the greater is the acceptabil-
ity of the firm DRTDBS application. On discussing one level down in the transaction
processing hierarchy, the above transaction miss percent metric is mainly affected by
the selection of the following set of real-time transaction processing algorithms—pri-
ority assignment heuristic, concurrency control protocol [4, 5], and commit processing
[6, 7]. When being at the last level of the hierarchy, some of the known and unan-
swered/inadequately answered problems associated with the above algorithms are dead-
line computation (the deadline of transaction and/or data), data conflicts, CPU schedul-
ing, themulti-read single-write problem, priority inversion, the pseudo priority inversion,
the slow priority inheritance mechanism, distributed deadlock, resource wastage, cyclic
restart, the interaction between the lender-borrower and priority inheritance approach,
etc.

The above set of problems, associated with real-time transaction processing in a
multi-site data-intensive system, can be a challenge as well as a driving force for today’s
database researchers. The solution to these problems requires a collective coordinated
effort across the globe.

3 Literature Work

The DRTDBS design concerns revolve around the scheduling of transactions. Though
one can see mature transaction scheduling related research literature available, the con-
stantly changing requirements make the existing algorithms inefficient and in some
use cases unacceptable as well [8]. Transaction scheduling, in a broad sense, includes
both data scheduling as well as CPU scheduling. The scheduling (of data and CPU) is
done in accordance with assigned transaction priorities. Therefore, the role of all three
sub transaction scheduling modules—priority assignment, concurrency control protocol
and commit processing, is crucial as they are major high-level functions in deciding the
system performance.

The design of a priority assignment heuristic is highly dependent on the fact that
data required to be utilized by the transaction are known before its initiation or not.
The growing complexities—priority inversion and data contention, need to be addressed
soon.Moving furtherwith transactions having priorities, the transactions experience con-
flicts while concurrently executing and trying to access the same data item. The conflict
converts into an even bigger problem named priority inversion if the transaction holding
the conflicting data has a priority lower than the transaction requesting it. In such cases,
honoring the priority of the transaction should be considered in designing a protocol.
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However, it is not possible to honor the transaction priority if the conflicting lock-holding
low priority sub-transaction is in a PREPARED state—such sub-transactions cannot uni-
laterally decide as a part of atomic commit processing requirements. A fresh perspective
along these lines may be the next step. To get a broader insight into work done in the past,
one can refer to [8]. It presents a survey of key transaction scheduling protocols, and
various unresolved issues in the context of developing modern time-driven transaction
processing systems.

4 Thesis Contributions

The main contributions of this thesis are as follows.

1. To address the issue of high data contention, the Most Dependent Transaction First
(MDTF) heuristic has been proposed [9]. The MDTF injects the size of depen-
dent transactions of all directly competing transactions in the computation of their
priority value. Performance studies have shown that MDTF provides a trade-off
between the NL and EQS heuristics from the performance perspective due to its bet-
ter handling of data contention. As an extension to the MDTF, we further proposed
the contention-aware equal slack (CA-EQS) policy [10]. The CA-EQS is advanced
version of MDTF—it performs better than MDTF.

2. We proposed a “Reduction of lengthy transactions starvation effect, Avoidance
of deadlock & pseudo priority inversion, and Conditional-restart for an Efficient
Resource Utilization” (RACE) concurrency control protocol [11]. The key contribu-
tions of this protocol are—reduced wastage of the system resources by eliminating
the deadlock, avoiding unnecessary aborts. The protocol also ensures to some extent
that long global transactions are not starved.

3. We proposed a “Sophisticated Time and message utilization centred Priority inher-
itance” (STEP) concomitant protocol [12] that reduces the priority inherit message
dissemination time up to half. It also eliminates the priority de-boosting process,
since it happens towards the end of execution of a low priority transaction, and
therefore, it is needless.

4. The RAPID protocol [13] is the first protocol that addresses the multi-read single-
write sequence of events resulting in the write transaction starvation problem. The
above problem may result in a bigger performance/ architectural challenge when it
occurs hand in hand with the priority inversion problem. RAPID suggested to go
with the controlled multi-read environment—it seems to be a win-win tradeoff as
switching off multiple-read feature badly hurts concurrency while uncontrolled read
may result in the severe high priority write transaction starvation problem.

5. The Early Data Lending Based Distributed Real-time Commit (EDRC) protocol
optimistically utilized the Lender-Borrower approach [14]. It re-categorized the
data conflict as a locking-locking conflict, locking-processing conflict, and locking-
committing conflict. The novel feature of this protocol is that it facilitates to initiate
of data lending just after the completion of the data processing task of the cohort.
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5 Future Research Challenges

With set goals mainly increased concurrency, stricter consistency (no compromises
with data quality), firm time-bound transaction processing requirements, and contin-
uous change in application requirements, it became more challenging to come up with
the solutions and their enhancements on a regular basis. As of today, the following
research open questions require attention.

1. A widely used performance metric for the firm DRTDBS is the ‘transaction miss
percent’. However, we are of the view that several newmetrics, for instance, resource
utilization, conflict percent, rollback percent, etc. should be utilized/developed to get
a transparent view on the acceptability of the transaction scheduling algorithms [15,
16].

2. The discussion of priority inversion problem can be widened to nested DRTDBS,
mobile DRTDBS, replicated DRTDBS [17, 18], active DRTDBS, energy-aware
RTDBS query processing, and the mobile ad-hoc network (MANET) databases.

3. There is one other data-processing research area that we almost stopped looking
into as most of the researchers chosen to work on time-constraint databases which is
fascinating and in demand [19, 20]. It is a conventional transaction scheduling algo-
rithm. As a lot of work is happening with the focus on the advanced database model,
it will be really rewarding if we simply look back at our conventional algorithm with
a view that how we can include good features of some of the real-time transaction
scheduling algorithms [21].

6 Conclusions

The role of priority inversion in multi-site real-time transactional data analysis is a
critical topic that needs to be investigated with a broader perspective. More specifically,
the method used to address the above issue in one scenario cannot be applied in the
other scenario without careful scientific study and findings because of the increasing
complexity and versatility of applications involved.
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Abstract. A great number of companies and institutions use spread-
sheets for managing, publishing and sharing their data. Though effective,
spreadsheets are mainly designed for being interpreted by humans, and
the automatic extraction of their content and interpretation is a com-
plex task. The task becomes even harder when tables present different
kinds of mistakes and their layout is complex. In this paper, we outline
the approach that we wish to develop during the PhD for answering the
research question “how to semi-automatically extract coherent semantic
information from heterogeneous and complex spreadsheets?”.

Keywords: Heterogeneous spreadsheet tables · Semantic table
interpretation · User interfaces · Machine learning

1 Introduction

Recently, our research group was involved in the problem of integration of hetero-
geneous spreadsheet files that a debt collection agency daily receives from local
authorities (e.g. municipalities, tax agency) containing batches of thousand of
invoices to be rescued. These spreadsheets are big, heterogeneous and do not
follow any standard format or notation (Fig. 1 shows an example). The first row
reports the column headers, however, the access keys are not always present and
do not follow any specific format. Data occurring in the same column sometimes
adhere to different types. For example, the column SSN/VAT contains different
data types (actually expressing that invoices can be titled to individual citizens
or to companies). Sometimes columns present strings from which different kinds
of information can be extracted, as in the case of the “address” column, where
different alternative patterns represent the street name, and street/apartment
number. Blanks and semi-blank rows can occur in the main table. Semi-blank
rows usually contain totals or aggregated data. Blank rows are sometimes used
for aesthetic reasons while others for separating rows representing correlated
invoices. Indeed, the information about an invoice is not always contained in a
single table row. For example, in Fig. 1 there is a correlation among two rows
(the fourth row contains the reference to the legal representative associated with
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Fig. 1. A spreadsheet example

the invoice in the fifth row). This kind of correlation can be expressed by fol-
lowing different patterns. Last but not least, the information contained in these
spreadsheets can contain different kinds of typographical, grammatical and mis-
calculation errors. The variability of organizations of these spreadsheets prevent
the use of well studied approaches for table understanding (e.g. [3]), data repairs
and extraction (e.g. [5]), data transformation (e.g. [6]), programming by example
(e.g. [4]), and semantic characterization of the information (e.g. [8]). Standard
approaches for NLP cannot be applied on short texts like the one that can occur
in spreadsheets for extracting patterns. We believe that a completely automatic
approach that exploits sophisticated machine learning (ML) techniques cannot
properly be used in this context. A semi-automatic approach can be devised
to support the user during the process of data cleaning, transformation and
semantic characterization that involve the user in the loop in order to tune
the prediction system depending on the feedback obtained while processing new
spreadsheets. Users need to be supported by easy-to-use graphical interfaces for
correcting mistakes and improve the overall performance of the system.

In order to reach this goal, we propose the adoption of a three-phase app-
roach. Phase I is responsible for the spreadsheet cleaning, the identification of the
column types and the synthetic error correction. Phase II aims to create a seman-
tic characterization of the table content to be extracted from the spreadsheet
and relies on the use of a domain Ontology and, when possible, a Knowledge
Base. Phase III relies on the identification of semantic constraints and assertions
that need to be checked and maintained on the considered Ontology. The pur-
pose of this phase is to point out semantic mistakes that can be fixed on the
RDF representation of spreadsheet tables.

2 The Three-Phase Approach

Phase I: Table Identification and Cleaning. The main purpose of this
phase is to correct syntax errors occurring in the data, identifying the corre-
lations existing among table rows, and identifying basic types of each column.
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For identifying correlation among table rows, we wish to adopt a declarative
pattern-based language for specifying when a correlation exists. Moreover, we
wish to develop interfaces for further supporting the users in their manual iden-
tification and thus learning new patterns for the interaction. Moreover, we wish
to develop a multi-label classification approach for the identification of the cell
and column types. Several basic types, domain-specific types and also pattern-
based types will be supported. Patterns will be exploited for extracting values
from complex strings like for example the address “12 Abbey Road, London” in
Fig. 1. A multi-label approach is considered for facing situations like the column
“company name/surname” that contains both the company name or the citizen
surname. The automatically identified types, however, can contain errors due to
the occurrence of mistakes in the data. Therefore specific interfaces should be
developed for their easy correction. Moreover, the large amount of invoices to
be processed requires the adoption of solutions that apply a single correction to
many invoices at the same time.

Phase II: Semantic Characterization of Table Content. The aim of Phase
II is to provide a semantic meta-model description of the spreadsheet tables by
means of annotations w.r.t. a Domain Ontology. Even if many approaches have
been proposed so far for this problem, in our research we wish to face the vari-
ability of data types identified in the first phase that usually is not considered.
Moreover, the semantic meta-model should be coupled with a graphical repre-
sentation that makes easier to the user checking the automatically generated
model and correcting mistakes when needed. Moreover, a ML algorithm will be
applied for learning annotations relying on previously established mappings. The
user can also change manually the annotations, these modifications should be
exploited for tuning the predictions. Our semantic meta-model is inspired by the
one used in Karma [7] but differs from it because it is created starting from the
types identified in the first phase and allows the extraction of several data from
a single column (while Karma only makes a 1:1 correspondence from the data
in the spreadsheet to the Ontological concepts).

Phase III: Verification of Semantic Constraints and Assertions. The
semantic meta-model is finally used for the automatic extraction and transfor-
mation of data in an RDF format according to the domain Ontology. In this
phase, we wish to use the semantic constraints and assertions identified on the
Ontology to point out semantic mistakes. For example, the total debt amount in
Fig. 1 is correct and corresponds to the sum of the single debt imports, the zip
code of an address can be validated against the municipality. These are semantic
constraints w.r.t. the syntactic constraints identified in Phase I.

3 Concluding Remarks

In this paper, we outlined our main research question and the related problems
that should be faced in the next two years of the PhD program.

At current stage, we have started working on a survey on related works in the
context of table understanding and semantic interpretation of tables [2]. In this
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survey, we have outlined the different phases in which the table understanding
problem can be organized (localization, segmentation, functional and structural
analysis and integration) and presented the main approaches proposed in the last
fifteen years. Moreover, an initial solution for the first phase is proposed in [1] by
introducing a methodology for determining the value/column types contained
in CSV tables that exploits a multi-label prediction algorithm that has been
trained on a simulation of typical data available in the considered domain that
takes into account the errors occurring in data. This automatic approach has
been combined with graphical user interfaces with which the user can check the
predicted types and modify them when needed. The modifications can be applied
at type-level, thus many values can be modified by a single specification. This
initial activity needs to be further enhanced for identifying correlated rows and
cells containing an aggregation of other cells and also functional relationships
that need to be preserved on data (e.g. the occurrence of an SSN requires the
presence of name and surname of an individual).

We are currently working on the second phase of the approach by specifying
the semantic-description of a spreadsheet table and its graphical representation.
Moreover, an approach for the semi-automatic construction of the model is evolv-
ing that takes into account the previously specified meta-models and similarity
measures for evaluating their adequateness to the new scenario.
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G. (eds.) ICIST 2019. CCIS, vol. 1078, pp. 59–75. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30275-7 6

7. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Learning the semantics
of structured data sources. J. Web Semant. 37, 152–169 (2016)

8. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+.
Semant. Web 8(6), 921–957 (2017). https://doi.org/10.3233/SW-160242

https://doi.org/10.1007/978-3-030-67731-2_39
https://doi.org/10.1007/978-3-030-67731-2_39
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1007/978-3-030-30275-7_6
https://doi.org/10.1007/978-3-030-30275-7_6
https://doi.org/10.3233/SW-160242


Abstract Model for Multi-model Data

Pavel Čontoš(B)
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Abstract. In recent years, many so-called multi-model database man-
agement systems have emerged, mainly as extensions of the existing
single-model systems, regardless they used to be relational or NoSQL.
These new database systems make new demands on their users. From
the point of view of the conceptual and logical representation, the so
far widely used approaches, especially ER and UML, prove not to be
sufficient enough in many aspects due to the specific properties of multi-
model data. In addition, it is also difficult to query data that is repre-
sented in various and often overlapping data models at the logical level.

Keywords: Multi-model data · Abstract model · Transformations ·
Querying · Evolution management · Category theory

1 Introduction

Currently, besides the traditional single-model NoSQL systems, the family of so-
called multi-model database management systems (MMDBMSs) [10] emerged,
allowing us to work with multiple data models at once. These systems are often
based on various proprietary approaches, yet they have no unifying formal back-
ground. This may bring many issues and challenges:

– Traditional representation of data at the conceptual layer becomes insuffi-
cient. The modeling languages like ER [4] and UML [11] are suitable for the
relational/object model rather than a combination of multiple data models.

– The level of support of multiple data models in MMDBMSs varies greatly [5],
e.g., these systems offer different ability to query across various models.

– There are no unified approaches, nor generally applicable methods, allowing
us to work with multi-model data.

Example 1. Figure 1 illustrates an example of an ER schema and the correspond-
ing data represented by multiple logical models that are, moreover, overlapping
each other. In other words, we illustrate a typical scenario for a multi-model
database.
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Fig. 1. Example of multi-model data

Although there is a variety of database systems, the usage of multiple sin-
gle model databases (a polystore) or one multi-model database is a challenging
task. If nothing else, the users must then be aware of all the particular involved
models and query languages they are working with. In addition, having a query
expression spanning over multiple models, external model transformations are
required due to joins of data represented by different models at the logical layer.

We believe that category theory [2] allows us to formally describe and repre-
sent multi-model data more straightforwardly than the widely used approaches.
Therefore, we will exploit the category theory to 1) design an abstract model for
the purpose of schema and data instance representation in multi-model database
systems, 2) provide internal and external transformations within the abstract
model and between the abstract model and particular logical data models, and
3) propose a formal description of multi-model data conceptual querying.

2 Related Work

The idea of an abstract model is not new. Tuijn et al. [14] exploited category
theory to describe an approach partially involving the relational and object-
relational model. Spivak et al. proceeded with the idea and applied category
theory on the relational model, also focusing on querying over the relational
model using a proprietary language [12], and model transformations, namely
from relational data to RDF triples [13]. Lately, an approach proposed by Liu
et al. [9], inspired by Tuijn and Spivak, attempts to transform relational data to
document-oriented data, e.g., JSON documents. All the approaches are based
on the idea of a category backed by a directed multigraph called typegraph [14],
unfortunately bringing many limitations, e.g., assumption of the existence of
only one and only simple entity identifier.

Considering the logical layer of multiple data models, a unified view of
key/value, wide-column, and document model provides the NoSQL Abstract
Model (NoAM) [1]. The data is represented using named collections of blocks
that consist of key/value pairs. The Tensor Data Model (TDM) [8] represents the
data using tensors (multidimensional matrices). Similarly, associative arrays [6]
represent data in tables. However, none of the mentioned approaches can handle
graph logical models in a natural way that would allow efficient implementation
of data manipulation operations. Finally, there are also recent approaches [3,7]
dealing with a similar problem in the area of polystores.



Abstract Model for Multi-model Data 649

Abstract InstanceAbstract Model (Schema)

Relational
Schema

Key / Value
Schema

Wide Column
Schema

Document
Schema

Graph
Schema

ER schema

R KWDG

Fig. 2. The concept of a proposed approach

3 Proposed Approach and Methodology

The idea of our approach is illustrated in Fig. 2. We will begin with a proposal
of a novel abstract model (i.e., its schema and instance) that would allow us to
connect a real-world conceptual schema with the logical layer of a MMDBMS.
Having the model, we will then provide algorithms for internal and external
model-to-model transformations. Finally, we intend to use the transformations
to the evolution management of multi-model data, various data migrations, as
well as a foundation for a unified multi-model query processing.

Exploiting category theory, we will start with a translation of the ER model
into a proposed abstract model. We believe that such a categorical model based
on name/value pairs would potentially be better applicable even on not yet
existing data models when compared to the existing and limited models based on
entity and relationship types (e.g., tables, documents). Without further details,
a concept of the intended abstract model corresponding to the ER schema from
Example 1 is presented in Fig. 3.

Next, we plan to use the categorical approach, namely functors, to describe
transformations between the models. Figure 4 illustrates its application, e.g., a
data migration. In this particular case, a functor is used to migrate a model
to another model, e.g., by splitting the Name attribute into Firstname and
Lastname attributes, yet representing the same data at the conceptual layer.

These model-to-model transformations can then be directly exploited in
multi-model evolution management and query processing. In the former case,
such transformations may express changes of the data, i.e., the evolution. In the
latter one, the ability of transformations of data in different models is essential
for the evaluation of join operations.
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Paid

Salary

SalId Amount

EmpId NameSince

DepId Name

Fig. 3. Abstract model concept
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Fig. 4. Data migration
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4 Conclusion

To conclude this paper, we provide a list of our near-future plans we believe
should contribute to the current state-of-the-art.

– We will attempt to provide a unification layer for the data models supported
in MMDBMS.

– We will propose a formal background for multi-model data, as well as mutual
transformations of the abstract model and particular logical models.

– We will introduce a unified multi-model query processing.
– We will describe transformations that allow for a correct propagation of

changes to data, schemas, and queries induced by the evolution management.
– Within the design of the abstract model, we will consider model extensibility,

i.e., the ability to add new models that currently do not exist.
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Abstract. Recommendation systems are used to predict the interests
of users through the analysis of historical preferences. Collaborative
filtering-based approaches usually ignore the sequential information and
sequential recommendation usually focus on the next item prediction. In
this work, we would like to determine the next top-k recommendation
problem. We propose User Preference Translation Model (UPTM) with
item influence embedding and social relations between users. In addition,
we will also solve the cold start problem in UPTM.

Keywords: Next top-k recommendation · Influence diffusion
embedding · Social recommendation · Cold-start problem

1 Introduction

Recommendation systems are trying to learn the low dimensional representation
of users and items. Many features can be adopted in recommendation systems,
for example, user-item interactions, user features, item features, and other infor-
mation such as the temporal factor.

Collaborative filtering-based approaches focus on learning users’ preference
and predict the items which users will have interest. The sequential relations in
users behavior are usually ignored in collaborative filtering. In our opinion, the
trigger relations between items are important for users behavior. For example,
people usually watch a series of related movies after they watch one of the
movie in this series. We would like to discover the target items which can trigger
users to buy as much related items as possible. Therefore, we adopt the social
influence propagation concept to model the trigger relations between items. In
social network, people spread influence to their neighbors and receive influence
from their neighbors at the same time. People usually be activated by their
friends, family, and followees. Same as the social network, assume an item-item
network is formed from users’ sequential interaction behavior with item. The
propagation of item influence can be used to indicate the likelihood of a user
interacting with a related item based on their interaction with the target item.
c© Springer Nature Switzerland AG 2021
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In sequential recommendation research, we consider the sequential informa-
tion in users behavior. Given the users’ interaction behavior, the problem can be
defined as predicting the next item which user will interact. However, we would
like to recommend the next k items which users will interact in the future. First,
we address the recommendation problem as the next top-k recommendation
problem. We propose a User Preference Translation Model with item influence
embedding, abbrev. as UPTM, to solve this problem. In the future, we would
like to join the social relations between user and propose the social recommen-
dation with UPTM. In addition, the cold start problem is usually ignored in the
sequential recommendation systems. We will propose a new scheme to deal with
the cold start problem in UPTM.

2 Related Works

2.1 Collaborative Filtering with Deep Neural Network

Collaborative filtering solves the recommendation problem by assuming that
users with similar behaviors exhibit similar preferences for items. He et al. [2]
propose NeuMF to combine the multi-layer perceptron and matrix factorization
to learn the user and item embedding. Wang et al. [4] propose NGCF which is
based on the graph neural network. They encodes the collaborative signal which
represents the high-order connectivities by performing embedding propagation.
Another kind of Generative Adversarial Networks-based methods try to apply
GAN to recommendation. Chae et al. [1] suggest a new direction of vector-wise
adversarial training and propose the GAN-based CF framework.

2.2 Social Recommendation Systems

On social network, people spread influence to their neighbors and receive influ-
ence from their neighbors at the same time. A user is activated by another
user since they have same opinion tendency. Social recommendation systems
that examine the propagation of influence among network members end up with
users who share similar interests connected along diffusion paths. Wu et al. [5]
propose DiffNet to model the recursive social influence propagation process and
learn the user and item representation in social recommendation. Zhu et al. [6]
propose Social Collaborative Mutual Learning Model to combine the item-based
collaborative filtering and social collaborative filtering.

3 Methodology

3.1 Problem Definitions

In the current study, recommendations are generated by using previous behavior
patterns to predict the items that are likely to interest the user in the future.
In the following, U = {u1, u2, ...um} denotes the user set and I = {i1, i2, ..., in}
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denotes the item set. Each user u has preference record Pu = (iu,1, iu,2, ...iu,t),
where t is the interactive order. Based on a given Pu, our objective is to recom-
mend the next k items Ru = {iu,t+1, iu,t+2, ..., iu,t+k} with which user u is likely
to interact.

3.2 User Preference Translation Model

The proposed translation-based recommendation model is illustrated in Fig. 1.
The model includes a simulation of item embedding and a translation of user
preferences. The proposed scheme is based on the assumption that users are likely
to interact with items that are associated with other items that they already
possess. We propose using influence diffusion to learn the relationships among
items. We first generate item influence diffusion paths from social influence paths
sampled from the item-item relation graph from which UPTM learns the item
influence embedding by which to encode user preferences. UPTM then learns
the parameters in the hidden layer to output the item embedding and generate
a recommendation list from the decoder of the translation module, to which is
applied a softmax function and top-k sampling.

Multi-Head Attention

FeedForward

Mask Multi-Head 
Attention

FeedFoward

Item Influence Embedding

...

Encoder-Decorder 
Attention

Encoder Decoder

Softmax

Top-K Sampling

Item 1 Item 2 Item 3

Output Probabilities

Item 5 Item 6 Item 7 Item 8

User interaction

User Preference
Output Embedding

Fig. 1. The framwork of user preference translation model with item influence diffusion
embedding

3.3 User Preference Translation Model for Social Recommendation

We would like to apply UPTM on social recommendation by adding the users’
social relation in the item embeddings. Each user are encoded into a user embed-
ding to represent the user’s social relations in the social network. Then, we add
the user embedding into the items to translate the user preference.

4 Experimental Results and Future Works

For evaluating the performance of proposed model, we compare UPTM model
with other existing model on real several datasets such as Movielen, Amazon,
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and Yahoo datasets. We use the precision, recall and NDCG metrics to evaluate
the performance for UPTM. In Table 1, we only show the results of NDCG. For
overall performance comparison, UPTM outperforms other comparing methods
on three metrics for the next k item recommendation problem. All experimental
results are shown in our UPTM works [3]. In addition, we will propose the User
Preference Translation Model with social recommendation. The social recom-
mendation consider the users’ preference and users’ social relation simultane-
ously.

Table 1. Overall performance comparison

Methods Movielens 1M Movielens 20M Amazon Book Yahoo E-commerce

ND@5 ND@10 ND@20 ND@5 ND@10 ND@20 ND@5 ND@10 ND@20 ND@5 ND@10 ND@20

BPR-MF 0.086 0.0812 0.0901 0.0786 0.0864 0.0916 0.0118 0.0107 0.0129 0.0138 0.0141 0.0153

CFGAN 0.1066 0.0962 0.0916 0.0856 0.0986 0.09 0.0166 0.0152 0.0188 0.0152 0.0154 0.0178

NeuMF 0.0945 0.1033 0.1131 0.1193 0.1168 0.1231 0.0135 0.0141 0.0166 0.0144 0.0164 0.0177

NGCF 0.1168 0.1157 0.1235 0.0931 0.0921 0.098 0.0191 0.0176 0.0184 0.0156 0.0187 0.0215

UPTM 0.1888 0.1996 0.1946 0.2001 0.2185 0.2327 0.0268 0.0283 0.0245 0.0189 0.0201 0.0197

However, most sequential recommendation cannot deal the cold start problem
since the new items are not shown in the training process. The sequential rec-
ommendation usually ignore this problem. In previous recommendation systems,
they usually use the popularity of items or the similarity of users’ preference to
recommend. We would like use the users’ social relation and give the initial item
embedding for cold start items. We will join this idea to solve the cold start
problem in UPTM.
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A critical issue in big data management is to address data variety. Data come
from disparate sources and may be presented in various models – structured,
semi-structured, or unstructured. The increasing availability of multi-model data
has triggered the development of Multi-Model DataBase (MMDB) systems [6].
We have found 86 DBMSs1 (361 systems in total) claimed that they sup-
port multi-model data. These MMDBs typically integrate multiple data stores
together to accommodate data in the formats that fit the sources best, e.g.,
key/value pairs, relational tables, graphs, or XML/JSON documents. They also
provide unified query languages, which allow users to retrieve data of different
models in a single query, i.e., cross-model query. Specifying users’ interests with
a formal query language is a typically challenging task, which becomes even
harder in the context of multi-model data. It usually lacks a unified schema
to help the users issuing queries, or has an incomplete schema as data come
from disparate sources. Similarly, these challenges also incur extra complexity
on query evaluation and optimization.

Scope of the Tutorial. In the past decades, many data models have been
proposed for practical purposes. Some of them are widely adopted by database
systems, i.e., the relational model [3] and its extensions [4], graph model [2], and
semi-structured model [1]. Dozens of query languages have been implemented
for retrieving multi-model data, such as AsterixDB’s SQL++ and ArangoDB’s
AQL. This tutorial is to offer a comprehensive investigation on these languages
and to make a comparative study on their processing paradigms. Multi-model
query languages can be classified as four types, i.e., SQL-extensions, document-
based language extensions, graph-based language extensions, and native multi-
model query languages. We will discuss these languages from the 4 perspectives
and will make in-depth comparisons of them from three related aspects: (1) the
processing paradigms for cross-model query, (2) their essential semantics, and
(3) the strategies for query optimization. We will also discuss the open problems
in cross-model query processing of MMDB systems and provide insights on the
research challenges and directions for future work. In addition, Finally, we will
demonstrate how cross-model queries are processed in MMDB systems such as
ArangoDB and OrientDB.

1 DB-Engines Ranking: https://db-engines.com/en/ranking.
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Difference with Our Previous Tutorial. Part of the content in this tutorial
was presented in CIKM 2020 [5], which is the first tutorial to discuss state-
of-the-art research works and industrial trends on multi-model data query lan-
guages. In tutorial [5], we mainly focused on the syntax of query languages
and their semantic difference. Furthermore, we invited the participants to write
and run cross-model queries2 with ArangoDB AQL and UniBench [7]. In this
tutorial, we will discuss these languages in 4 groups and concentrate on the
paradigms for evaluating cross-model queries. We will also provide a hands-
on section to demonstrate the cross-model query processing in MMDB systems
such as ArangoDB and OrientDB. We will ensure this tutorial has a significant
amount of new content(more than 50%) comparing to the previous tutorial.

Tutorial Organization. The tutorial is divided into 5 parts:
Part I: Introduction to multi-model data query languages (10 min)
Part II: SQL-based multi-model query extensions (30 min)
Part III: Document-based multi-model query extensions (20 min)
Part IV: Graph-based multi-model query extensions (15 min)
Part V: Native multi-model query languages (20 min)
Part VI: Demonstration (20 min)
Part VII: Open challenges and future directions (5 min)

Short Bibliographies.

Qingsong Guo is a Postdoctoral Researcher at the University of Helsinki. His
research interests include multi-model data management and automatic man-
agement of big data with deep learning algorithms.

Jiaheng Lu is a Professor at the University of Helsinki. His main research inter-
ests lie in the Big Data management and database systems. He has published
more than one hundred journal and conference papers.

Chao Zhang is a senior Ph.D. candidate at the University of Helsinki. His
research topic lies in multi-model database benchmarking.

Shuxun Zhang is a Ph.D. candidate at the University of Helsinki. His research
topic lies in multi-model database.
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1 Introduction

Aims & Learning Objectives. How can we perform deep learning efficiently?
Deep learning is one of the most widely used machine learning techniques, and
is a key driving force of the 4th industrial revolution. Deep learning outperforms
many existing algorithms and even humans especially for many difficult tasks
including speech recognition, go, language translation, game, etc. One crucial
challenge of deep learning, however, is its efficiency both in training and infer-
ence. Deep learning requires a lot of parameters which need huge amount of
time and space for storage and running. The problem becomes worse in mobile
devices like smart phone since they have a limited amount of storage and com-
puting power. It is necessary to design an efficient method for learning and
inference in deep learning, which is exactly the goal of this tutorial.

We start with a very brief background of deep learning, including its history,
application, and popular models including feedforward neural network, convo-
lutional neural network, and recurrent neural network. Then we describe how
to compress deep learning models using techniques including pruning [1], weight
sharing [4], quantization [3], approximation, and knowledge distillation [2]. The
audience is expected to gain substantial knowledge about reducing time and
space in using deep learning.

Outline. Here is the outline of the tutorial.

– Brief overview of deep learning
– Pruning technique
– Weight sharing
– Quantization
– Low-rank approximation
– Distillation

Previous Presentation. The tutorial was presented in IEEE BigComp 2019
conference, and had attracted significant interests.

Length. We plan to deliver a 1.5 h tutorial. We will spend 1/3 of the time on
overview of deep learning, and remaining 2/3 of the time on model compression
techniques.
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Target Audience. The target audience consists of data mining professionals
who wish to have a comprehensive understandings on model compression. The
audience will learn recent developments on model compression and how they
could utilize these tools for real-world problems that they are facing with in the
wild.

2 About the Instructors

U. Kang is an associate professor in the Department of Computer Science and
Engineering of Seoul National University. He received Ph.D. in Computer Sci-
ence at Carnegie Mellon University, after receiving B.S. in Computer Science
and Engineering at Seoul National University. He won 2013 SIGKDD Doctoral
Dissertation Award, 2013 New Faculty Award from Microsoft Research Asia,
2016 Korean Young Information Scientist Award, and four “best paper” awards
including 2018 ICDM 10-year best paper award. He has published over 90 ref-
ereed articles in major data mining, database, and machine learning venues. He
holds four U.S. patents. His research interests include big data mining, deep
learning, and machine learning.
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1 Motivation

In the past decades, community discovery has attracted great attention in both
academia and industry. This tutorial highlights significant ideas and focuses on
the typical techniques for community discovery and community-related research
problems arising from urgent practical needs. It consists of the following three
main parts: community detection, community search, and applications of com-
munities. The community detection part presents some classical methods and a
procedure-oriented benchmark for community detection. The part of community
search (a.k.a. local community detection) reviews the representative methods of
community search, and brings forward several extensions of this task, including
community search with spatial or temporal information, community focusing,
forbidden nodes aware community search, and so on. In the part of applications
of communities, three interesting studies are demonstrated. The tutorial is never
presented anywhere else. The intended length of the tutorial is two hours.

2 Outline

Part I. Introduction and background
- The concept of community and the importance of community structures.

Part II. Community detection
- Review of community detection [12].
- Benchmarks and tools of community detection [9].

Part III. Community search
- Review of community search [1, 2, 14].
- Community search extensions [ 3, 5, 8, 10, 11, 13].

Part IV. Applications of communities
- Subgraph matching [6].
- Algorithm recommendation for community detection [4].
- Synthetic graph generator [7].

Part V. Challenges and Opportunities

This work is supported in part by the National Natural Science Foundation of China
(No. 61872207).
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Abstract. Urban computing is an interdisciplinary field that combines com-
puting technologies, such as wireless networks, sensors, computational power,
and data analytics to improve quality of life in urban areas. Recently, urban
computing draws from the evolution of computer science, internet of things
(IoT), data science, and artificial intelligence to improve the dealing of imme-
diate citywide events. Two important urban computing issues will be introduced
in this work: one is citywide informatics forecasting, while the other one is route
planning in urban spaces. These two topics are highly-correlated with city
governance.

Keywords: Urban computing � Artificial Intelligence � Spatial-temporal
prediction � Route planning � Urban governance

1 Introduction

Urban informatics can be generally defined as signals collected in different locations
with time information. For example, stations are deployed to monitor the air quality in
different areas for every hour. Or, a travel company may analyze users’ check-in
behaviors to learn about their preferences and come up with new business strategies.
Forecasting urban informatics can help the government or enterprises prepare for
emergencies well in advance, and even predict the future of a city to reap profit. For
example, the work [4] predicts the possible number of illegal-parking events in big
urban spaces. Based on the results, the government can distribute more patrol force to
illegal parking hot spots in advance. However, it is challenging to forecast urban
informatics, since various features should be considered jointly. Some features (e.g.,
hourly weather, traffic volume, check-ins) are dynamic, while others (e.g., road net-
work, points-of-interest, population) are rarely updated. In this work, we would like to
explore how advanced data engineering technologies and spatial-temporal AI models
effectively use heterogeneous urban big data to make predictions and improve urban
governance.
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Research focused on routing algorithm in urban computing has developed swiftly
over years [2]. With the rapid growth of metropolis and conurbation, the construction
and modification of the transportation system have turned out to be one of the most
crucial factors to facilitate quality of life [6]. When it comes to transportation in cities,
most people rely on either private vehicle, which uses road networks, or mass transit,
which uses public transportation networks. Despite the differences, both networks can
be naturally transformed into directed graphs [1]. Meanwhile, several methods utilizing
various strategies are also proposed to deal with multi-criteria route planning in urban
places [3]. On the other hand, with the flourish of hybrid computational intelligent
systems that synergize learning-based inference models in recent years, studies that
concentrate on targets including recommendation, planning, scheduling according to
first-stage inference results are proposed [5]. Despite the promising results achieved by
using hybrid computational intelligent systems, several challenges of route planning in
urban space still exist and are worth discussing.

2 Biographies of the Presenters

Hsun-Ping Hsieh is an Associate Professor at Department of Electrical Engineering,
National Cheng Kung University, Taiwan. H.P.’s research interests include Urban
Science, Big Data Mining, and Urban and Geo-social Computing. He had published a
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SIGIR, CIKM, SIGSPATIAL, Multimedia, ICDM, ECML-PKDD, TIST, and KAIS.
H.P.’s academic recognitions include: 2020 MediaTek Social Innovation Special
Award, 2019 MOST Einstein Young Scholar Fellowship, 2013 and 2014 Garmin
Research Fellowship, and 2013 Excellent Stars of Tomorrow of Microsoft Research
Asia.

Fandel Lin is a M.S. student in Institute of Computer and Communication Engineering
at National Cheng Kung University, Taiwan. His research interests lie in Urban
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Competition in ACM SIGSPATIAL’18 and the second place award of ACM Student
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