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Preface

Welcome to DASFAA 2021, the 26th International Conference on Database Systems
for Advanced Applications, held from April 11 to April 14, 2021! The conference was
originally planned to be held in Taipei, Taiwan. Due to the outbreak of the COVID-19
pandemic and the consequent health concerns and restrictions on international travel all
over the world, this prestigious event eventually happens on-line as a virtual confer-
ence, thanks to the tremendous effort made by the authors, participants, technical
program committee, organization committee, and steering committee. While the tra-
ditional face-to-face research exchanges and social interactions in the DASFAA
community are temporarily paused this year, the long and successful history of the
events, which established DASFAA as a premier research conference in the database
area, continues!

On behalf of the program committee, it is our great pleasure to present the pro-
ceedings of DASFAA 2021, which includes 131 papers in the research track, 8 papers
in the industrial track, 8 demo papers, and 4 tutorials. In addition, the conference
program included three keynote presentations by Prof. Beng Chin Ooi from National
University of Singapore, Singapore, Prof. Jiawei Han from the University of Illinois at
Urbana-Champaign, USA, and Dr. Eunice Chiu, Vice President of NVIDIA, Taiwan.

The highly selective papers in the DASFAA 2021 proceedings report the latest and
most exciting research results from academia and industry in the general area of
database systems for advanced applications. The quality of the accepted research
papers at DASFAA 2021 is extremely high, owing to a robust and rigorous
double-blind review process (supported by the Microsoft CMT system). This year, we
received 490 excellent submissions, of which 98 full papers (acceptance ratio of 20%)
and 33 short papers (acceptance ratio of 26.7%) were accepted. The selection process
was competitive and thorough. Each paper received at least three reviews, with some
papers receiving as many as four to five reviews, followed by a discussion, and then
further evaluated by a senior program committee (SPC) member. We, the technical
program committee (TPC) co-chairs, considered the recommendations from the SPC
members and looked into each submission as well as the reviews and discussions to
make the final decisions, which took into account multiple factors such as depth and
novelty of technical content and relevance to the conference. The most popular topic
areas for the selected papers include information retrieval and search, search and
recommendation techniques; RDF, knowledge graphs, semantic web, and knowledge
management; and spatial, temporal, sequence, and streaming data management, while
the dominant keywords are network, recommendation, graph, learning, and model.
These topic areas and keywords shed light on the direction in which the research in
DASFAA is moving.

Five workshops are held in conjunction with DASFAA 2021: the 1st International
Workshop on Machine Learning and Deep Learning for Data Security Applications
(MLDLDSA 2021), the 6th International Workshop on Mobile Data Management,



Mining, and Computing on Social Networks (Mobisocial 2021), the 6th International
Workshop on Big Data Quality Management (BDQM 2021), the 3rd International
Workshop on Mobile Ubiquitous Systems and Technologies (MUST 2021), and the 5th
International Workshop on Graph Data Management and Analysis (GDMA 2021). The
workshop papers are included in a separate volume of the proceedings, also published
by Springer in its Lecture Notes in Computer Science series.

We would like to express our sincere gratitude to all of the 43 senior program
committee (SPC) members, the 278 program committee (PC) members, and the
numerous external reviewers for their hard work in providing us with comprehensive
and insightful reviews and recommendations. Many thanks to all the authors for
submitting their papers, which contributed significantly to the technical program and
the success of the conference. We are grateful to the general chairs, Christian S. Jensen,
Ee-Peng Lim, and De-Nian Yang for their help. We wish to thank everyone who
contributed to the proceedings, including Jianliang Xu, Chia-Hui Chang and Wen-Chih
Peng (workshop chairs), Xing Xie and Shou-De Lin (industrial program chairs),
Wenjie Zhang, Wook-Shin Han and Hung-Yu Kao (demonstration chairs), and Ying
Zhang and Mi-Yen Yeh (tutorial chairs), as well as the organizers of the workshops,
their respective PC members and reviewers.

We are also grateful to all the members of the Organizing Committee and the
numerous volunteers for their tireless work before and during the conference. Also, we
would like to express our sincere thanks to Chih-Ya Shen and Jen-Wei Huang
(proceedings chairs) for working with the Springer team to produce the proceedings.
Special thanks go to Xiaofang Zhou (DASFAA steering committee liaison) for his
guidance. Lastly, we acknowledge the generous financial support from various
industrial companies and academic institutes.

We hope that you will enjoy the DASFAA 2021 conference, its technical program
and the proceedings!

February 2021 Wang-Chien Lee
Vincent S. Tseng
Vana Kalogeraki
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Abstract. Most existing works on multi-label classification of long text
task will perform text truncation preprocessing, which leads to the loss
of label-related global feature information. Some approaches that split
an entire text into multiple segments for feature extracting, which gen-
erates noise features of irrelevant segments. To address these issues, we
introduce key-sentences extraction task with semi-supervised learning
to quickly distinguish relevant segments, which added to multi-label
classification task to form a multi-task learning framework. The key-
sentences extraction task can capture global information and filter irrele-
vant information to improve multi-label prediction. In addition, we apply
sentence distribution and multi-label attention mechanism to improve
the efficiency of our model. Experimental results on real-world datasets
demonstrate that our proposed model achieves significant and consistent
improvements compared with other state-of-the-art baselines.

Keywords: Multi-label classification · Key-sentences extraction ·
Sentence distribution

1 Introduction

Multi-label text classification (MTC) is an important task in the field of nat-
ural language processing (NLP) and text mining, which aims to train a model
to classify a text into one or multiple labels. In recent years, more neural net-
work classifiers [14,17,29,32] have been applied to multi-label classification (MC)
tasks than traditional classifiers [6,23,30]. The main reason is that neural net-
work approaches generalize adequately and perform robustly with the increase
of available data.

In real-world scenarios, many classified texts are document-level, such as
company introduction, legal case description, book abstract, etc. However, the
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previous methods [1,2,17,32] have two major shortcomings on multi-label text
classification of long text: 1) Most methods adopt the trick of text truncation
when the text is too long, which leads to the loss of label-related global feature
information. Text truncation is the most common and most straightforward way
for preprocessing long text in machine learning. Whether truncated at both ends
or randomly, a large amount of global context information related to labels will
inevitably be lost. Different with multi-class classification, the MTC task needs
more label-related textual information. So how to take advantage of more useful
information in the document-level text is something to consider. 2) To solve
the problems caused by text truncation, some methods [26,28] have typically
applied segment approaches that split an entire text into multiple sentences and
use encoding models (e.g., CNN, RNN, Transformer) to extract local features
and finally concatenate those features to predict multi-label. Although these
methods take into account global textual information, there are still some defects.
First, these methods will generate a large number of noise features of irrelevant
segments. Second, the contextual semantic information between sentences are
discarded.

To our knowledge, few methods employ global context learning to learn rep-
resentations for multi-label long text classification. The previous method mainly
focused on extreme multi-label text classification (XMTC) [5,17,29,32] and hier-
archical multi-label text classification (HMTC) [1,2,14,21,25], which solve the
problems of the number of multi-label and the hierarchy between labels respec-
tively. In fact, document-level text learning has been neglected in the above
tasks, which is necessary for multi-label long text classification. The reason is
that some sparse label-related features exist randomly in the text. In document-
level text learning methods [4,22,26,27], most ideas divide one document into
many sentences, then learn sentence-level representation, and finally concatenate
those global context information for downstream specific tasks. These methods
take advantage of each sentence representation by considering all sentences as
equally important, while actually, many sentences are not associated with the
labels.

To overcome these issues, we propose a novel neural multi-task learning
framework named KEMTC, for modeling Multi-label Classification of Long
Text Based on Key-sentences Extraction. We introduce key-sentences extraction
task based on semi-supervised learning and learn global feature information of
key-sentences to perform MTC task. In addition, we apply sentence distribu-
tion and multi-label attention mechanism [24,29] to further improve our model.
Specifically, we first conduct a low-cost and little sentence-level annotation for
each text and annotate the value (including yes, no) of each sentence, meaning
whether it is related to the labels. Next, we apply the light pre-training model
ALBERT [16] to encode sentences and form two sentence distributions to extract
key-sentences. Finally, we concatenate key-sentences features with a filter gate,
and then adopt AttentionXML [29] method for multi-label prediction. In our
KEMTC, we perform key-sentences extraction and multi-label prediction tasks
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and form two losses as the overall optimization objective, which helps filter out
irrelevant sentences and improve the prediction of MTC.

We conduct experiments on several real-world datasets to investigate the
advantage of our model. Experimental results show that our method significantly
and consistently outperforms other state-of-the-art models on all datasets and
evaluation metrics. To summarize, we make the following contributions in this
paper:

1. We propose a multi-task architecture which jointly trains a model to key-
sentences extraction with distance square loss and multi-label classification
task with cross-entropy loss, which can successfully mitigate the negative
effect of having too many irrelevant sentences.

2. We apply the light pre-training model ALBERT to get two representation
vectors of each sentence, one for sentence distribution and one for feature
learning, and adopt the sentence distribution method with semi-supervised
learning to simplify our model.

3. We use the multi-label attention mechanism to make the learned global fea-
tures related to the labels more distinctive. What is more, we conduct efficient
experiments on several real-world datasets, and our model significantly out-
performs other baselines for MTC task.

2 Related Work

2.1 Multi-Label Learning

Multi-label learning studies the problem where each example is represented by a
single instance while associated with a set of labels simultaneously [31]. During
the past decade, significant amount of algorithms have been proposed to learn-
ing from multi-label data. Traditional methods can be divided into two cate-
gories. 1) Problem transformation methods: Representative algorithms include
Binary Relevance [3], Calibrated Label Ranking [9], Random k-labelsets [23],
and so on. 2) Algorithm adaptation methods: Representative algorithms include
ML-kNN [30], ML-DT [10], and etc. In addition, deep learning methods have
been widely applied to multi-label tasks, which include XML-CNN [17], Atten-
tionXML [29], BERT-XML [32] for extreme multi-label text classification, HFT-
CNN [21], Attention-based Recurrent Network [14], capsule networks [1,33], and
hierarchical transfer learning [2] for hierarchical multi-label classification of text.
The former methods rarely consider the relationship between labels, while the
latter learn the hierarchical structure between labels. The above methods always
perform text truncation when input text too long in MTC task, which leads to
lose much helpful feature information. To avoid this problem, we adopt a multi-
task framework that employs a shared network and two task-specific networks
to derive a shared feature space. In key-sentences extraction, we employ the
semi-supervised iterative sentence distribution method that simply and quickly
extracts key-sentences. In multi-label prediction, we adopt the AttentionXML
method that learns the relations between global features and labels to improve
prediction.



6 J. Chen et al.

2.2 Multi-Task Learning

In general, multi-task learning is learning about multiple related tasks simul-
taneously, where the training process shares some feature spaces in order to
promote learning and improve the effect of generalization. Multi-task learning
frameworks [8,18,19,28] have been employed successfully in various NLP tasks.
He and W.S.[11] introduces a multi-task architecture to learn relation identifi-
cation task and relation classification task, and mitigate the negative effect of
having too many negative instances. Schindler and Knees [20] proposes an inter-
active multi-task learning network to address aspect-based sentiment analysis
task. Hu [13] introduces multi-task learning framework to predict the attributes
and charges of each simultaneously and combine these attribute-aware represen-
tations with an attribute-free fact representation to predict the final charges.

Fig. 1. An illustration of multi-label classification of long text based on key-sentences
extraction.

In addition, some researchers have applied multi-task learning to solve multi-
label classification problems. [4] proposes an RNN-based classifier that firstly
perform sentence classification and summarization extraction, and finally make
multi-label prediction. [20] presents an approach to multi-task representation
learning using multi-label embedding. Unlike existing methods, our proposed
model use sentence distribution methods for key-sentences extraction that filter
out too many irrelevant sentences and employ an multi-label attention mecha-
nism to capture the most relevant parts of texts to each label.
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3 Model

In this section, we propose a novel model that jointly models key-sentence extrac-
tion task and multi-label classification task in a unified framework, as shown in
Fig. 1. In the following parts, we first give definitions of key-sentence extrac-
tion and multi-label prediction. Then we describe the neural encoder of sen-
tences based on ALBERT, key-sentences extraction with semi-supervised learn-
ing, multi-label prediction based multi-label attention. At last, we show the loss
function of our model.

3.1 Task Definition

Key-Sentences Extraction. Given a long text sequence X = {x1, x2, .., xn},
where n represents the sequence length, xi ∈ V, and V is a fixed vocabulary.
Cut text into sentences set S = {s1, s2, ..., sT } by rules, where T represents
the number of sentences set. Form the key-Sentences distribution GK and non
key-sentences distribution GN from the sentence set S and CK , CN respectively
represent the center coordinates of the two distributions. Given an unknown
sentence si, the extraction task is to determine which distribution si belongs to.

Fig. 2. The visualization of sentences distribution of two samples. The red triangles
represent key-sentences and the blue dots represent non key-sentences. The details of
two datasets will be presented in Sect. 4.

Multi-label Prediction. Set the label space with L labels L = {l1, l2, .., lL}.
Given the sequence X, the multi-label prediction is to assign a subset y containing
m labels in the label space L to X. In our task, we consider each labels to be
parallel, so the prediction task can be modeled as finding an optimal label y∗

that maximizes the conditional probability p(y|x), which is calculated as follows:
p(y|x) =

∏m
i=1 p(yi|x).
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3.2 Sentence Encoder

ALBERT Pre-training. In this work, we apply ALBERT to represent input
text. The backbone of the ALBERT architecture is similar to BERT [7], but
ALBERT has undergone technical improvements to enhance the overall effect of
the model, mainly including factorized embedding parameterization, cross-layer
parameter sharing, inter-sentence coherence loss. ALBERT is a lite BERT that
is more suitable for downstream tasks.

Unlike many practitioners who use BERT models that have already been
pre-trained on a wide corpus, we trained ALBERT models from scratch on our
datasets to address the following issues. Firstly, each dataset contains a spe-
cific vocabulary that is not common within a general pretraining corpus, which
leads to many out of vocabulary (OOV) words. Secondly, We use sentence rep-
resentation to form sentence distributions that need to consider the context of
the sentence. We retrain the inter-sentence task of ALBERT to help form more
accurate distributions.

Sentence Representation. Given sentences set S = {s1, s2, ..., sT } from the
long text X, we encode each sentence by ALBERT pre-training model. The
standard architecture for sentence representation is to embed a [CLS] token
along with all additional inputs, yielding contextualized representations from
the encoder. Assume HS = {C,H} is the last hidden layer corresponding to the
[CLS] token and input tokens, where H = {h0, h1, .., ht}, t is the length of one
sentence.

Given a sentence si, there are two forms of sentence representation, including
Ci and Hi = {h0, h1, .., ht}. The Ci is the whole representation of the sentence,
and the Hi is the sequential representation of the sentence. We use Ci to form
sentence distributions and Hi perform feature extraction through downstream
fine-tuning. This simplifies the key-sentences extraction task, and learn more
features to enhance the multi-label prediction.

3.3 Key-Sentences Extraction with Semi-supervised Learning

Key-Sentences Distribution. For multi-label, related sentences are similar,
and similar sentences have the same distribution, as shown in Fig. 2. Based on
this assumption, We encode the annotated sentences by ALBERT and get the
sentence vector C to form two distributions: key-sentences distribution (GK)
and non key-sentences (GC). Then applying the K-Means method, we calculate
the centers (CK , CN ) of the two distributions separately. hcls, CK , CN ∈ R

1×dw ,
where dw is the dimension of word vectors.
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Algorithm 1. Distribution Iteration
1: Update CK ,CN ;
2: initialize CK , CN ←− GK , GN with labeled sentences
3: for si in batch iter() do
4: compute dist(Ci, CK), dist(Ci, CN )
5: compute r = p(y|Ci) follow Equation 1
6: if r = 1 then
7: add Ci to GK

8: else
9: add Ci to GN

10: CK , CN ←− GK , GN

11: return CK , CN ;

For an unknown sentence si and its vector Ci, we calculate its distance from
two centers, and then we can determine which distribution it belongs to.

dist(Ci, CK) =

√
√
√
√

dw∑

j=1

(esj − ecj )2

p(y|Ci) =

{
1, dist(Ci, CK) < dist(Ci, CN )
0, else

(1)

where esj , ecj are the coordinate values of the sentence and the center point, respec-
tively. dist(Ci, CN ) is calculated in the same way. So key-sentences extraction task
is to calculate unknown sentences which distribution center point close to.

Distribution Iteration. Due to the high cost of labeling key-sentences, we
propose a distribution Iteration method to improve the learning space of a small
number of labeled samples. Specifically, we add predicted sentences to their
respective distributions and recalculate the center point in each batch-training
process. This method can improve the prediction ability of key-sentences, and
also avoid labeling pressure. The iteration process is shown in Algorithm 1.

3.4 Multi-label Prediction Based Multi-label Attention

Concatenate Layer. After key-sentences extraction, we concatenate key-
sentences with a filter gate. For a set S from an input text, if num sentences are
predicted as key-sentences, the concatenated vector M is as follows. Here, filter
gate u = {u1, u2, ..., unum} for all sentences.

M =
T∑

i=0

uiHi

ui =

{
1, if si is key − sentence

0, else

(2)

where
∑

denotes element-wise multiplication, and M ∈ R
(num×t)×dw .
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Global Feature Extraction. To extract global N-gram features, we apply a
convolution filter F ∈ R

g×dw to a text region of g words Mi:i+g−1 to produce a
new feature.

ci = F � Mi:i+g−1 + b (3)

where � denotes the component-wise multiplication, and b ∈ R is a bias term.
Suppose f filters are used, and the f resulting feature maps are c = {c1, c2, .., cf}.
Next, we apply the Pooling operation to each of these f feature maps to generate
key-sentence feature vectors.

We adopt a Chunk-Max Pooling method in our model, which is inspired
by XML [?]. Instead of generating only one feature per filter by max-pooling
method, this method can capture richer information. In particular, we divide
feature maps c into p chunks and take the maximum value within each chunk.

v = [max(c1: plp ), ..,max(cpl− pl
p +1:pl)] (4)

which pl is the length of a feature map. The vector v={v1, v2, .., vk} contains
both important features and position information about these local important
features, where k is the number of N-gram features, and k = f ∗ p.

Multi-Label Attention. Inspired by AttentionXML [29], we experiment the
multi-label attention to predict and find it improves performance on our task.
AttentionXML computes the (linear) combination of feature vectors vi for each
label through a multi-label attention mechanism to capture various intensive
parts of a text. Compared with AttentionXML, our the label vector lj get from
ALBERT, and no parameter training is required. That is, the output of multi-
label attention layer zj of the j-th label can be obtained as follows:

aij =
exp(〈vi, lj〉)

∑k
i=0 exp(〈vi, lj〉)

zj =
k∑

i=0

aijvi

(5)

where aij is the normalized coefficient of vi and lj and also is the so-called
attention parameters.

Fully Connected and Output Layer. In our model, there is one fully con-
nected layer and one output layer. The same parameter values are used for all
labels at the fully connected layer, to emphasize differences of attention among
all labels. For label lj , it will be calculated shown below.

oj = tanh(Wozj + bo)
yj = σ(Wyoj + by)

(6)

Here, Wo, bo are shared parameters values in the fully connected layer. Wy, by

are weight matrix and bias parameters in the output layer.



Multi-label Classification of Long Text Based on Key-Sentences Extraction 11

3.5 Optimization

The training objective of our proposed model consists of two parts. The first one
is to minimize the cross-entropy between predicted label distribution y and the
ground-truth distribution ŷ. The other one is to minimize the square Loss about
the distance from each sentence to two centers.

In multi-label prediction, we treat it as a binary classification task for each
label. So we adapt the traditional extended cross-entropy loss. Specifically, con-
sider the extended cross-entropy loss function as

Llabel = − 1
N

N∑

i=1

L∑

j=1

yij log(ŷij) (7)

where yij is the ground-truth label, and ŷij is prediction probability. N is the
number of samples, and L is the number of labels.

In key-sentences extraction, We hope that some ambiguous sentences will
also be added to the key-sentences distribution, so as to capture as much infor-
mation as possible. To achieve this, we adjust the distance weights of the two
distributions. Specifically, we formulate the extraction loss as:

Lextr =
1
T

(γ
N∑

i=1

dist(Ci, CK)2 + (1 − γ)
N∑

i=1

dist(Ci, CN )2) (8)

where γ is a weight parameter to adjust sentence distributions bias, and T
is the number of sentences. Here we set γ = 0.55.

Considering the two objectives, our final loss function L is obtained by adding
Llabel and Lextr as follows:

L = Llabel + αLextr (9)

where α is a hyper-parameter to balance the weight of the two parts in the
loss function. Here we set α = 0.5.

4 Experiments

In order to verify the effectiveness of our model, we conduct experiments on
real-world datasets and compare our model with state-of-the-art baselines.

4.1 Data

We use two real-world Chinese datasets to verify the effectiveness and practica-
bility of our model:

– CompanyCategoryDataset (CCD): We construct a dataset of company
entities from online open-source data1, where each company entity may have

1 https://github.com/cjymz886/ACNet.

https://github.com/cjymz886/ACNet
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Table 1. Quantitative characteristics of both datasets.

Datasets CCD LCD

Number of texts 12492 388784

Number of labels 17 202

Average length of texts 604 763

Max length of texts 4294 56694

Percentage of text longer than 1500 5.1% 2.6%

Fig. 3. The text length distribution of both datasets.

multiple industry category labels. The dataset includes 12492 company enti-
ties and 17 labels. Each company entity has company name, industry category,
abstract common text attributes. We use company name and abstract to form
a document-level text for multiple industry category prediction, where the
average length of the texts is 604, and the maximum length is 4294. The label
collection includes [food and beverage, household life, medicine and health
care,...].

– LegalCaseDataset (LCD): We collect criminal cases published by the Chi-
nese government from China Judgments Online2. Each case in the dataset is
well structured and have penalty result, fact attributes. As a case may have
multi-penalty, we select the fact part of each case as our input. Specifically,
the label collection includes [fraud, theft, arson, intentional injury,...].

The input text of these two datasets is relatively long, and the longest can
reach 56694. The number of labels in the two datasets is 17, 202, respectively.
Those datasets are randomly split by patients into 70/10/20 train, dev, test
sets. The detailed statistics are shown in Table 1. In addition, we count the text
length distribution of the two datasets in Fig. 3, which shows both distributions
are similar to the long-tailed distribution, and samples are mainly concentrated
in the 2000 range. The percentages of text longer than 1500 are 5.1%, 2.6%,
respectively. According to these characteristics, we will truncate a small number
of extremely long samples in the experiment to avoid a single sample taking too
long to learn.
2 http://wenshu.court.gov.cn.

http://wenshu.court.gov.cn
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Table 2. The statistics of annotations.

Datasets CCD LCD

Number of annotations per label 50 10

Total number of annotations 850 2020

Number of key-sentences 1231 5689

Number of non key-sentences 7789 21891

4.2 Baseline Models and Evaluation Metrics

Baseline Models. We employ several typical multi-label text classification
models as baselines:

– CNN-Kim [15]: The CNN text classification model applies convolution-
pooling operation to extract n-gram features.

– LSTM [12]: We implement a two-layer LSTM with a max-pooling layer as
the local text encoder.

– XML-CNN [17]: The multi-label text classification uses dynamic max pool-
ing and hidden bottleneck layer for taking multi-label co-occurrence patterns
into account.

– AttentionXML [29]: The multi-label text classification proposes a multi-
label attention mechanism to capture the most relevant part of the text to
each label.

– Bert-XML [32]: Based on AttentionXML, it adapts the BERT architecture
for encoding input texts and labels.

In those baselines, we adopt text truncation and set the maximum length of the
text to 200. Besides, we also use 500-length text in CNN and LSTM, denoted as
CNN-500 and LSTM-500.

Evaluation Metrics. We chose P@k (Precision at k) [17] as our evaluation
metrics for performance comparison since P@k is widely used for evaluating the
methods for MLC.

P@k =
1
k

k∑

l=1

yrank(l) (10)

where y ∈ {0, 1}L is the true binary vector, and rank(l) is the index of the l-th
highest predicted label. In addition, we employ macro-F1 as another evaluation
metric.

4.3 Experimental Settings

ALBERT Pre-training. We pretrain two different ALBERT architectures on
two training set. The main purpose is to resolve some semantic gaps between
open source pre-training models and training scenarios and to improve sentence
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Table 3. Multi-label classification results of two datasets

Datasets CCD LCD

Metrics P@1 P@2 P@3 F1 P@1 P@2 P@3 F1

CNN 0.627 0.412 0.307 0.507 0.813 0.458 0.318 0.770

CNN-500 0.672 0.428 0.318 0.555 0.876 0.485 0.333 0.833

LSTM 0.613 0.390 0.289 0.493 0.793 0.425 0.299 0.755

LSTM-500 0.654 0.382 0.267 0.483 0.775 0.382 0.277 0.715

XML-CNN 0.705 0.443 0.338 0.570 0.884 0.493 0.343 0.836

AttentionXML 0.699 0.454 0.349 0.573 0.880 0.500 0.352 0.839

Bert-XML 0.707 0.523 0.424 0.608 0.918 0.513 0.407 0.847

KEMTC 0.718 0.585 0.467 0.615 0.910 0.556 0.436 0.843

representation. Note that we set max seq length = 50 in our pre-training models
while max seq length supported by ALBERT is 512. The reason is that short
sequence can obtain more accurate sentence representation, which is conducive to
the generation and iteration of sentence distribution. In addition, the sentence-
order prediction task in ALBERT focuses on modeling inter-sentence coherence
that helps to judge similarity between sentences. Other detailed parameters
include hidden-size= 768, layers= 12, attention-heads= 8.

Key-Sentences Annotation. As mentioned in the previous, we propose to
introduce key-sentences extraction to enhance multi-label prediction. Specifi-
cally, we annotate yes/no for each sentence to represent key-sentence and non
key-sentence. For extracting key-sentences, we conduct a low-cost annotation
over all datasets. Here, the low-cost annotation means we only need to annotate
a few texts for each label in each dataset, specific to 50 in CCD and 10 in LCD.

Before annotation, we use rules to split the text into sentences, where the
length of each sentence does not exceed 50. In practice, we adopt a looser anno-
tating scheme: if a sentence has a fuzzy relationship with the label, it is also
marked with yes. With these labeled sentences, we form two sentence distribu-
tions for key-sentences extraction. The detailed statistics are shown in Table 2.

Hyper-parameters. In all models, we set the size of word embedding size to
128, and the hidden state size of LSTM to 256. For the CNN based models,
we set the filter kernel to [2,3,4] with 64 filters. We use Adam as the optimizer
and set the learning rate to 0.001, the dropout rate to 0.5, and the batch size
to 64. Considering that short sentence representation vectors are easier to form
reasonable distributions, we set the maximum length of the segmented sentence
to not exceed 50.

4.4 Results and Analysis

As shown in Table 3, we can observe that our KEMTC significantly and con-
sistently outperforms all the baselines in CCD dataset, and achieves best per-
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Fig. 4. Training loss and validation loss on both datasets with different text lengths.

Table 4. Experimental results of ablation test

Datasets CCD LCD

Metrics P@1 P@2 P@3 F1 P@1 P@2 P@3 F1

KEMTC 0.718 0.585 0.467 0.615 0.910 0.556 0.436 0.843

w/o key-sentences extraction 0.722 0.522 0.408 0.581 0.917 0.447 0.402 0.849

w/o multi-label attention 0.722 0.531 0.411 0.593 0.909 0.452 0.419 0.841

formance on the p@1 and p@2 indicators on both datasets, which indicates
KEMTC improves the effect of multi-label classification and could captures
more label-related information. With the increase of k value, the p@K indica-
tor becomes worse in all existing methods, which demonstrates to classifying
more labels, the model need to learn more label-related features, preferably dis-
tinguishing features. Conversely, KEMTC achieves promising improvements on
the p@1 and p@2 (6.2%, 4.3%, and 4.3%, 2.9% absolutely on two datasets respec-
tively), which shows key-sentences extraction task improving the efficiency of our
model.

Bert-XML performs the best results among all baselines except our model,
which demonstrates that the powerful pre-training model can achieve rich repre-
sentation information. In addition, AttentionXML achieves higher performance
than others except using the pre-training model. All these indicate that the pre-
training method and the label attention mechanism have positive effects on our
task, which also confirms the rationality of our model construction.

The experiment shows CNN-500 is better than CNN. Then there was the
question of whether the longer the text, the better the model performs, so there
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is no need to segment the sentence. To test this hypothesis, We chose 4 different
text lengths (including 200, 500, 1000, 1500) with the CNN model. As shown in
Fig. 4, to a certain extent, increasing the length of the text can indeed improve
the training effect and generalization ability of the model. However, when the
input text is very long, the training effect is improved, but the verification loss
is increased, which shows the model is easy to overfit and learns more irrelevant
noise features. Therefore, when dealing with document-level text, it is necessary
to segment sentences to capture global information.

4.5 Ablation Test

Our method is characterized by the incorporation of key-sentences extraction and
multi-label attention mechanism. Thus, we design the ablation test respectively
to investigate the effectiveness of these modules. When taken off key-sentences
extraction, our method degrades into sentence segmentation and concatenating
method based on CNN for multi-label classification. When taken off the attention
mechanism, we replace attention mechanism with a fully connected layer with
sigmoid activation function for all labels.

As shown in Table 4, we can observe that the performance drops obviously
after removing the key-sentences extraction task or attention layer. The P@2,
P@3 decreases by an average of 8% and 4%, respectively on both datasets. There-
fore, it’s obvious that both key-sentences extraction and multi-label attention
mechanism play irreplaceable roles in our model.

4.6 Case Study

In this part, we select a representative sample to provide an intuitive illustration
of how the key-sentences extraction help to promote the performance of multi-
label classification of long text. In this case, many sentences are not related to

Fig. 5. Visualization of key-sentences extraction
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the company industry category, and the key-sentences related to the label are
randomly distributed in the text. Moreover, it is common some words in the
key-sentences that really affect the labels.

So we believe filtering out irrelevant sentences and learning feature words
in key-sentences are essential in multi-label classification of this case. As shown
in Fig. 5, our model correctly extracts key-sentences (S1,S7), and consequently
recognizes the N-gram feature words (red font) associated with the labels. If the
model does not learn the S7 sentence, then health foods related to the health
care label cannot be captured, so the prediction effect of this label is reduced,
or even cannot be predicted. From this figure, we observe that the key-sentences
extraction can improve the ability of the model to learn global useful features.

5 Conclusion

In this work, we focus on the task of multi-label classification of long text in two
real application scenarios. To avoid the loss of global information and excessive
noise features, we introduce key-sentences extraction into consideration and pro-
pose a novel multi-task learning model for multi-label long text classification.
Specifically, our model uses the semi-supervised sentence distribution method
to extract key-sentences and learns the global distinguishing features with the
multi-label attention mechanism.

In the future, we will explore the following directions: 1) There are more
complicated data scenarios, such as categories of movies, categories of books,
where sentences cannot be easily distinguished whether they are related to labels.
Thus, it is challenging to handle this multi-label long text classification. 2) In
this work, we get sentence representation vectors from the pre-training model
without considering the weight of words, while a word related to labels should be
given more weight. How to obtain more accurate representations of key-sentences
is expected to improve the interpretability of multi-label long text classification
models.

Acknowledgments. We thank all the anonymous reviewers for their insightful com-
ments. This work is supported by the National Natural Science Foundation of China
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Abstract. Phrase mining aims to automatically extract high-quality
phrases from a given corpus, which serves as the essential step in trans-
forming unstructured text into structured information. Existing statistic-
based methods have achieved the state-of-the-art performance of this
task. However, such methods often heavily rely on statistical signals to
extract quality phrases, ignoring the effect of contextual information.

In this paper, we propose a novel context-aware method for auto-
mated phrase mining, ConPhrase, which formulates phrase mining as
a sequence labeling problem with consideration of contextual informa-
tion. Meanwhile, to tackle the global information scarcity issue and the
noisy data filtration issue, our ConPhrase method designs two modules,
respectively: 1) a topic-aware phrase recognition network that incorpo-
rates domain-related topic information into word representation learning
for identifying quality phrases effectively. 2) an instance selection network
that focuses on choosing correct sentences with reinforcement learning
for further improving the prediction performance of phrase recognition
network. Experimental results demonstrate that our ConPhrase outper-
forms the state-of-the-art approach.

Keywords: Phrase mining · Quality phrase recognition · Information
extraction

1 Introduction

The explosive growth of unstructured text is becoming prohibitive. According
to [1], the total volume of data will increase from 33 zettabytes in 2018 to 175
zettabytes in 2025, and 80% of them will be unstructured text data. The large
amount of text data makes it difficult for people to access information efficiently.
Therefore, advanced technologies for better extracting valuable information from
the text are in great demand [2].

Phrase mining is an effective technique to obtain valuable information. It
refers to extract quality phrases from large text corpora and transforms docu-
ments from unstructured text to structured information. Moreover, compared
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with non-informative words (e.g. ‘paper’), mining quality phrases would extract
semantically meaningful word span as a whole semantic unit (e.g. ‘support vector
machine’). This semantic unit can further improve the understanding of texts and
support various downstream applications, such as named entity recognition [3–5],
keyword generation [6], topic modeling [7–9], and taxonomy construction [10].

Recent works mainly focus on general statistic-based methods, typically treat
phrase mining as a binary classification problem. The representative approaches
are SegPhrase [11] and AutoPhrase [12], which employ several raw frequency
and rectified frequency signals to classify phrase candidates into quality phrases
or non-quality ones. Such methods rely on statistical signals have achieved the
state-of-the-art performance. However, statistical signals of phrases tend to less
reliable in the medium (or small) corpus, fail to guide distinguishing high-quality
phrases from inferior phrases, as the following example demonstrates.

Table 1. A hypothetical example of phrases’ statistical signals in database domain

Text (with extracted phrase) Freq.
Relative Freq. Phrase? Phrase?

(PMI/OF/IDF) (assess by method) (assess by expert)

A [relational database] is
the major type of database.
A [relational database]
stores and organizes data
points that are related to
one another.

800 0.06/0.0008/0.006 Yes Yes

An implementation based on
[open source] code for
storage is released.

600 0.08/0.0006/0.005 Yes No

A [geographical database]
is the important type of
database.
A [geographical database]
stores and organizes data
points that are related to
objects in space.

100 0.04/0.0001/0.003 No Yes

* PMI: Pointwise Mutual Information; OF: Occurence Frequency; IDF: Inverse Document
Frequency.

Example (Statistic-Based Phrase Mining). Consider a database corpus
consisting of sentences with several frequencies shown in Table 1. The numbers
are hypothetical but manifest the following key observations: (i) both quality and
inferior phrases possess similar frequency signals (e.g. ‘relational database’ and
‘open source’); (ii) quality phrases assessed by expert may have the lower statis-
tical signal scores (e.g. ‘geographical database’); (iii) quality phrases can occur
under similar contexts (e.g. ‘relational database’ and ‘geographical database’).

In the above example, when statistical signals become less reliable, we observe
that it will be hard for statistic-based methods to distinguish the quality phrase
from the inferior one (i.e. ‘geographical database’, ‘open source’). However, by
observing the bold phrases in row 1 and row 3 of Table 1, we find that similar
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contextual information could help to capture high-quality phrases. For example,
the contexts of ‘geographic database’ are very similar to other database types’
context (e.g. ‘relational database’), indicating it may be a quality phrase. Exist-
ing approaches for phrase mining usually utilize statistical signals to extract
phrases, yet ignoring the contextual information of phrases. To consider the
effect of context information, we propose a novel context-aware method for
automated phrase mining, ConPhrase, which formulates phrase mining as a
sequence labeling problem.

In proposed context-aware method ConPhrase, we aim to study the problem
of automatically mining quality phrases from single sentences. Compared to the
statistic-based method that extracts phrases from a corpus containing hundreds
of documents, our method of identifying phrases from a single short sentence is
generally more difficult. We need to solve the following two challenges:

Challenge 1: Lack of Global Information. For the problem of extracting
phrases from a single sentence, the contextual information carried by the sentence
itself is limited. For example, Table 1 shows the inferior phrase ‘open source’
and the quality phrase ‘relational database’ with their contextual information.
We notice that without additional implicit information (e.g. global information
that both phrases appear in the ‘database’ domain), it is difficult to distinguish
which phrase is the high-quality one. Actually, high-quality phrases can reflect
the key information of multiple or all documents in the corpus to a certain extent.
The lack of key global information makes the phrases extracted from a single
sentence not of high quality. For example, the mined phrase ‘open source’, in
the database domain, is only a common word, not the quality phrase. Therefore,
how to effectively mining quality phrases by incorporating domain-related global
information is a challenging issue.

Challenge 2: Filtering Noisy Data. To effectively mining quality phrases
from sentences, large amounts of annotated data is usually needed as a prereq-
uisite. In the real-world text corpora, there have no ready-made labeled data
for training models. Manual labeling is a common way to obtain golden training
data, but it is often time-consuming and costly. Another alternative solution is
to use the open knowledge bases (or dictionaries) as distant supervision (DS) to
generate auto-labeled data [12]. However, unlike the expert-labeled data, the DS
auto-labeled data usually contains noisy annotations, including missing labels,
incorrect boundaries and types. Such noisy labeled data will cause the model
to learn incorrect patterns, further affect the prediction performance of phrase
recognition models. Therefore, how to select clean sentences from noisy data to
improve the performance of phrase mining is another challenging issue.

To overcome these issues, our ConPhrase method designs two modules,
respectively: 1) the topic-aware phrase recognition network that incorporates
domain-related topic information into word representation learning for identify-
ing quality phrases effectively. 2) the instance selection network that focuses on
choosing correct sentences by reinforcement learning for further improving the
prediction performance of phrase recognition network.
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Specifically, to tackle the global information scarcity issue, we take domain-
related topics into consideration. For a phrase in the single sentence, local con-
text refers to the semantic information of all the words surrounding the phrase,
which partially reflect the semantics of words. However, the topic information of
entire corpus can cover the key expressions of multiple or all documents, which
construct the prior knowledge of the domain and corresponding sub-domains.
That is consistent with the goal of mining quality phrases: it is expected that
the extracted quality phrases can reflect the key information of multiple texts.
Motived by this, we design a topic-aware phrase recognition network (TPRNet).
TPRNet utilizes the domain-related topic information to build a global context,
and then integrates it into the local context (i.e. word representation) through
the attention mechanism. Finally, TPRNet learns a topic-enriched word repre-
sentation for identifying quality phrases effectively.

Further, to solve the noisy data filtration issue, we introduce an instance
selection network (ISNet) with reinforcement learning, which learns a selection
policy to choose correct sentences from the noisy labeled data. But in select-
ing clean sentences process, there has no absolutely reliable signal to evaluate
whether the sequence labels annotated by DS are correct. So we need a trial-and-
error process to explore a reliable selection policy. Besides, to make the explo-
ration process converge as much as possible, ISNet uses high-scoring labeled
sentences as the silver seed set into the selection policy to guide the selection
process. To the end, ISNet learns a better selection policy to clean the noisy
labeled data, and provide cleaned data to train TPRNet for further improving
the prediction performance of quality phrase recognition.

The contributions of this work are as follows:

– We consider the effect of contextual information of phrases, propose a novel
context-aware method for automated phrase mining, ConPhrase, which for-
mulates phrase mining as a sequence labeling problem.

– To tackle the global information scarcity issue, we integrate topic information
into word representation for effectively recognizing quality phrases.

– To solve the noisy data filtration issue, we introduce an RL-based selection
policy that learns to select correct sentences from noisy labeled data.

2 Methodology

2.1 Problem Definition

We formally define the phrase mining task as follows: given a sequence of words
X = {x1, x2, ..., xL}, it aims to infer a sequence of labels Y = {y1, y2, ..., yL},
where L is the length of the word sequence, yi ∈ Y is the label of the word xi, each
label indicates the boundary information by using IOB schema. B represents the
word is Begin of a quality phrase, O and I represent Outside, Inside of the phrase.
Here, ‘fusidic acid’ in Fig. 1 is a high-quality phrase. A text corpus containing
many documents without sequence labels is available for mining quality phrases
in our paper.
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2.2 Overview

The overall process is shown in Fig. 1. Our ConPhrase consists of two compo-
nents: Topic-aware Phrase Recognition Network (TPRNet) and Instance Selec-
tion Network (ISNet). To obtain training data, the ConPhrase first automat-
ically labels domain data and computes the labeled score for each sentence.
Then, TPRNet obtains word representation by incorporating domain-related
topic information for recognizing quality phrases effectively. ISNet adopts a
stochastic policy and samples an action at each state, which focuses on select-
ing correct instances from the auto-labeled data by reward computation offered
by TPRNet. Obviously, the two components are intertwined together. TPRNet
will be fine-tuned with the cleaned data provided by ISNet, and ISNet obtains
rewards from TPRNet’s prediction to guide the learning of a selection policy.

Fig. 1. Overview of our ConPhrase for mining quality phrases.

2.3 Data Process

Auto-Labeled Data Generation. One benefit of our proposed ConPhrase is
that it can automatically assign weak labels to the unlabeled domain data, which
helps enlarge the size of the training set with little cost. To obtain such labeled
training data, we employ Distant Supervision (DS) [2,4] to automatically label
the domain data by several approaches. There are two major sources to consider:

– Linguistic Analysis: We extract single words or word sequences as candidates
if they matched the POS patterns, or are detected by pre-trained noun phrase
chunking models [2].

– Knowledge Base: We extract single words or word sequences if they are
detected by the DBPedia Spotlight linking model or domain dictionary [2,4].
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The ConPhrase first assigns a labeled weight for each source, and then each
source can vote score to phrase candidates. ConPhrase automatically selects
high-scoring phrase candidates above threshold r for labeling one sentence
through the majority voting. As a result, we can construct a noisy labeled train-
ing set D and obtain a high-scoring labeled sentence set Dl.

2.4 Topic-Aware Phrase Recognition Network (TPRNet)

To enrich local context for accurately recognizing high-quality phrases, we
design a topic-aware phrase recognition network (TPRNet) by incorporating
global topic information into consideration. Specifically, TPRNet first learns the
domain-related topic information to build a global context. Then it employs
the Context2Topic attention mechanism to supplement local context (i.e. word
contextual representation) with global context information(i.e. topic represen-
tations), which is expected to bring prior knowledge for learning a good rep-
resentation. Finally, TPRNet obtains a topic-enriched word representation for
recognizing quality phrases effectively. Next, we detail how to utilize such topic
information to learn a topic-enriched word representation.

Representation Layer. For each sentence X, we represent it as a list of vectors
W = {w1, w2, ..., wL} by a look-up table, the length of sentence is L. Each
representation vector consists of two parts: one is the word embedding which
obtained from word2vec; the other is the character embedding which based on
Convolutional Neural Networks (CNN). TPRNet then adopts Bi-LSTM to obtain
word contextual representation and topic representations as follow:

Word Embeddings. To capture both past and future contextual information
for each word, we employ Bi-LSTM to stack a forward LSTM and a backward
LSTM, and to produce corresponding hidden states of a word in context (denoted
as

−→
ht = fLSTM (wt, ht−1) and

←−
ht = fLSTM (wt, ht+1). Thus, the contextual rep-

resentation for a word is ht =
[−→
ht ,

←−
ht

]
∈ R

2d, which forms a local context.

H = (h1, h2, ..., hL) ∈ R
2d×L (1)

Topic Embeddings. While the contextual representation above only considers
the local context of each word, it is suggested that quality phrases should be
relevant to the global information of the documents. To enrich the local content,
we extract domain-related topics from the entire corpus as global information
via the topic model, such as Latent Dirichlet Allocation(LDA) [13]. LDA is used
to extract I topics and top N non-universal words tin of correlated topic, which
formally denoted each topic as T i =

(
ti1, t

i
2, ..., t

i
N

)
, i ∈ [1, I]. Then, we use the

same Bi-LSTM to represent topic sequences T i by concatenating the last hidden
states of two directions, i.e. ui =

[−→
h i

N ;
←−
h i

1

]
∈ R

2d. Finally, all I corpus-level
topic representations U forms the global context information.

U =
(
u1, u2, ..., uI

) ∈ R
2d×I (2)
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Context2topic Attention. Inspired by the attention mechanism in [14,15],
we design a context2topic attention in TPRNet for linking and fusing local con-
textual information and global topic information.

The inputs to the layer are vector representations of words H and domain
topics U . The outputs of the layer incorporate topic information into represen-
tation learning, further generate the topic-enriched word representation.

We first compute a similarity matrix S ∈ R
L×I to score how well a context

word and a topic match:

Sli = ϕ (H:l, U:i) ∈ R
L×I (3)

where Sli indicates the semantic relatedness between l-th context word and
i-th topic information. ϕ is a trainable scalar function that encodes the similarity
between two input vectors, H:l is l-th column vector of H, and U:i is i-th column
vector of U . We select ϕ (h, u) = W� [h;h ◦ u], where W ∈ R

4d is a trainable
weight vector, ◦ is elementwise multiplication, [; ]is vector concatenation.

Context2topic attention implies which topics are most relevant to each con-
text word, and puts an attention on U to capture important topic information.
For a hidden word hl, the attention weights on topics T i is defined as:

αl = softmax (Sl:) ∈ R
I (4)

Then, the attentive representation rl is obtained by multiplying the weighted
attention of every topic representation (i.e. αi

lU:i) with the topic distribution of
word sequences

(
β1, β2, ..., βI

)
inferred from LDA model:

rl =
∑I

i=1
βiαi

lU:i (5)

Further, conditioned on {r1, r2, ..., rL}, we generate the topic-enriched word
representations H ′ over corresponding word hidden states H according to:

H ′ = ([h1; r1] , [h2; r2] , ..., [hL; rL]) (6)

Phrase Recognition Layer. In phrase recognition phase, TPRNet uses classic
sequence labeling model, including softmax layer and CRF layer, and predict
each word’s label Y ′:

Pxi,yi
= softmax (WH ′

i + b) (7)

s(X,Y ) =
∑|X|

i=1
Pxi,yi

+
∑|X|

i=0
Ayi,yi+1 (8)

P (Y |X) = es(X,Y )/
∑

ỹ∈YX

es(X,ỹ) (9)

We estimate the score Pxi,yi
for the word xi being the label yi, where label

in set {B, I,O}. Ayi,yi+1 is the transition score from label yi to yi+1 that is
learned in CRF layer. During the training process, we minimize the negative log-
likelihood function Eq. (9) of ground truth over all possible labeled sequences YX .
For inference, we apply the Viterbi algorithm to maximize the score of Eq. (8)
to extract quality phrases for each input sequence.
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2.5 Instance Selection Network (ISNet)

We introduce an instance selection network (ISNet) with reinforcement learning,
aims to selecting correct instances D′ from the noisy auto-labeled dataset D for
training a better phrase recognition model TPRNet.

Following [16], we cast instance selection as a reinforcement learning problem.
The ISNet is trained as an agent, which interacts with the environment and
makes a decision at the sentence-level. Based on the environment consisting of
auto-labeled data and the TPRNet model, ISNet agent adopts a stochastic policy
to samples an action (i.e. retain or delete) at each state. The action could decide
whether the current sentence should be retained or deleted from the training
data D. After all the selection are finished, the TPRNet provides a delayed
reward to update agent.

Obviously, the above selection process is inefficient, because it needs to scan
the entire training data before only updating the policy function once. To obtain
more reward feedback and speed up the training process, we divide all sentence
instances in dataset D into M small bags B, i.e. D =

{B1,B2, ...,BM
}

. For each
instance in k-th bag Bk, the ISNet agent takes action to select whether retains
or deletes the sentence, according to the policy function. After completing all
actions on a bag, TPRNet feedbacks a delayed reward. Then, the agent merges
the correct sentence instances retained in each bag to build a cleaned dataset
D′, fine-tuning the TPRNet at the sentence-level.

Next, we suppose that one bag B consists of T sentences, and detail the
procedures (i.e. state, action, policy, and reward) used in the ISNet as follow.

State. The state st encodes the current t-th instance and previous chosen
instances of the bag. Formally,

st = [H
′
t ;H

′
1→t−1], t ∈ [1, T ] (10)

where st represents the following information: 1) The vector representation of
the current instance H

′
t , which is obtained from the topic-enriched representation

of TPRNet by Eq. (6); 2) The representation of the previous instances H ′
1→t−1,

which are the average of the vector representations of all previous sentences
(before t step) chosen by the policy.

Action and Policy. Our selection policy is expected to select more instances
annotated with correct labels for training TPRNet at the sentence-level. To
implement this process, we adopt binary actions at ∈ {0, 1} to indicate an
instance can be chosen or not in a bag. The action space is {Retain,Delete},
where Retain indicates that the instance annotated with correct labels is retained
in a bag, and Delete means that the instance is deleted and it has some incorrect
word labels. The value of action at is sampled from a stochastic policy function
πΘ:

πΘ (at|st) = σ (Wπst + bπ) (11)
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Algorithm 1: Reinforcement Learning Algorithm of ConPhrase
Input: 1) Episode number L.

2) the noisy training dataset D, which is represented by a set of bags
D =

{B1, B2, ..., BM
}
. Each bag Bk contains T instances.

3) the TPRNet’s parameter Φ; the ISNet’s parameter Θ.
1 for all episode e ← 1 to L do
2 for all bag B ∈ D do
3 for all time step t ← 1 to T do
4 Compute the state vector st by the TPRNet ;
5 Sample an action at ∼ πΘ(at|st) from the selcetion policy πΘ;

6 Compute the dealyed reward rT of the selected B′
by the TPRNet;

7 Update the parameter Θ of ISNet:

Θ ← Θ + α
∑T

t=1(γ
T−trT )∇ΘlogπΘ(at|st)

8 Update the weights Θ of ISNet;
9 Update the parameter Φ of TPRNet using the cleaned data D′;

where st denotes the state vector, πΘ (at|st) is the probability of choosing
the action at, and σ (·) is logistic function. We utilize a single-layer network to
parametrize the selection policy with Θ = {Wπ, bπ} to be learned.

Reward. The reward function is a feedback of all chosen sentences’ quality
to guide the selection policy learning. Once all the actions of current bag are
sampled by the policy, a delayed reward at the terminal state T will be calculated
from the TPRNet. Before the selection is finished, the rewards at other states
are set to zero. Hence, the reward is described as follows:

rt =

{
0 , t < T

1
|B′ |

∑
〈instance,labels〉 log(P (Y |X)), t = T

(12)

where B′
is the set of selected sentences, and P (Y |X) denotes the predicted

phrase recognition probability of an instance 〈instance, labels〉, which is calcu-
lated by Eq. (9).

After all the actions sampling by the policy, TPRNet gives a delayed reward
rT to measure the quality of instances in B′

. However, such reward is not an
absolutely reliable signal due to the noisy training data of TPRNet. Inspired
by [17], we introduce a high-scoring labeled sentence set Dl (from chapter §2.3)
as a silver seed set into the reward function, guiding the selection process more
accurately. Therefore, for each bag B, the silver seed set is added as chosen
instances and used together with the instances in B′

to calculate the terminal
reward. All terminal rewards can supervise the ISNet to maximize the likelihood
of all the instances in training dataset D.
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Optimization. We optimize the parameters of ISNet by adopting policy gra-
dient method [18], aiming to maximize the expected total reward of selections.
The objective function is defined as:

J(Θ) =
∑T

t=1
RtπΘ(at|st) (13)

For the bag B, we sample a trajectory τ = (s1, a1, ..., sT , aT ) determined
by the current policy πΘ and obtain a corresponding terminal reward rT . Since
ISNet only has a non-zero terminal reward rT and rt = 0(t ∈ [1, T − 1]), the value
Rt gradually decreases for states from sT to s1, namely Rt =

∑T
t=1 γT−trt =

γT−trT . We can update the gradients of Θ by using the likelihood trick:

∇ΘJ(Θ) ≈
∑T

t=1
(γT−trT )∇ΘlogπΘ(at|st) (14)

where γ is discount factor (γ ≤ 1).

2.6 Training Details

Since the TPRNet module and the ISNet module are intertwined together, they
need to be trained jointly. We first pre-train the TPRNet on the auto-labeled
data and use the gradient descent method to minimize its objective function (i.e.,
average negative log-likelihood of Eq. (9)). Then, after freezing the parameters
of TPRNet, we pre-train the ISNet by using the delay rewards provided from
TPRNet. At last, we jointly train all the two networks (detailed in Algorithm
1). In each episode, ISNet could select more correct sentences with the reward
mechanism of the TPRNet. Meanwhile, TPRNet fine-tunes its phrase recognition
performance using the cleaned data provided by ISNet.

3 Experiments

We conduct experiments on the BC5CDR dataset to evaluate and compare our
proposed ConPhrase with other methods. We further investigate the effectiveness
of incorporating topic information in TPRNet phase and the impact of RL-based
selection policy.

3.1 Experimental Setup

Datasets. We evaluate our ConPhrase on the biomedical dataset BC5CDR [19].
Dataset BC5CDR annotates Chemical and Disease quality phrases and is proper
for the phrase mining task. It consists of 1,500 PubMed articles, which has been
separated into training set (500), development set (500), and test set (500). The
dataset has 20,217 raw sentences and 28,787 quality phrases, including 15,935
Chemical and 12,852 Disease phrases, meet our requirements of phrase mining.

Only raw texts without labels are provided as the input of our ConPhrase
and statistic-based approach, while the gold training set is not used. We use
development set and test set for the model’s early stopping and performance
comparison, respectively.
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Parameters and Model Training. The classical LDA with Gibbs Sampling
technique is used to provide top-N(N = 100) words of each topic for obtaining
the topic information. In this paper, we set the number of topics to I = 10, and
then remove universal words like “rats” and “who” in the corpus. Table 2 shows
some of the topics for the BC5CDR corpus learned by the LDA model.

Table 2. Examples of topic words for the BC5CDR corpus.

No. Topic words

T 1 Lithium, kidney, nephropathy, sodium, chronic, creatinine

T 2 Syndrome, liver, anemia, heparin, reaction, tacrolimus

T 3 Heart, cardiac, myocardial, ventricular, coronary , infarction

T 4 Pressure, hypotension, hypertension, plasma, arterial, infusion

T 5 Pain, neuropathy, muscle, complication, hyperalgesia, surgery

For TPRNet, LSTM hidden states are 200 dimensional, the optimizer is
Adam with 10 mini-batch size and 5e–4 learning rate. We use dropout with
0.5 ratio after the input layer and the representation layer to relieve overfitting.
For a better stability, we use gradient clipping of 5.0. Furthermore, we employ
the early stopping in the development set. For ISNet, we set the max number
of sentences in one bag to T = 200. The learning rate is 2e–5, and the discount
factor is γ = 0.9.

Pre-trained Word Embeddings. For the biomedical dataset BC5CDR, we
use the pre-trained 200-dimension word vectors from [20], which are trained
on the whole PubMed abstracts, all the full-text articles from PubMed Central
(PMC) and English Wikipedia.

Evaluation Metrics. We use the micro-averaged F1 score as the evaluation
metric. Meanwhile, precision and recall are presented.

Baseline Approaches. We mainly compare with the state-of-the-art statistic-
baed method AutoPhrase. For ablation test, we also compare ConPhrase with
its two variants (i.e. TocPhrase and TocPhrase−) as described below:

– AutoPhrase is the state-of-the-art phrase mining technique, which combines
the candidate phrase generation and quality estimation to extract salient
phrases from text documents with little human labeling. We follow the set-
tings recommended by the original paper and the released code.

– DS Match is our DS auto-labeled data generation method. Specifically, we
apply it to the testing set directly to obtain quality phrases with exactly the
same surface name. By comparing with it, we can check the improvements of
neural models over DS noisy data.
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– TocPhrase does not include the ISNet module in ConPhrase, directly training
TPRNet on the auto-labeled data.

– TocPhrase− removes the ISNet module and topic representations in Con-
Phrase, and only utilizes word context to build the model compare with
TocPhrase.

3.2 Experimental Results

Table 3. Phrase mining performance comparison. The bold-faced scores represent
the best results among all methods

Method BC5CDR

Precision Recall F1

AutoPhrase 70.26 60.27 64.89

Dictionary Match 94.52 57.31 71.35

TocPhrase- 90.29 60.59 72.52

TocPhrase 87.67 65.40 74.91

ConPhrase 86.02 67.75 75.80

We present F1, precision, and recall scores of different approaches on BC5CDR
datasets in Table 3. From the table, one can observe that our ConPhrase achieves
the best performance when there has only DS auto-labeled data, in terms of recall
and F1 measurement. Even though AutoPhrase is based on several well-chosen
frequency features, ConPhrase outperforms it in almost all metrics.

Unlike TocPhrase− which only considers the local context of a single sen-
tence, TocPhrase incorporates global topic information of the domain corpus.
Since the addition of informative topic representations, we can observe that a
significant performance improvement. For instance, TocPhrase’s recall rate and
F1 increased by 4.5% and 2.4%, respectively, compared with TocPhrase−. Such
observation illustrates that considering domain-related topic information during
learning word representations can bring useful prior knowledge to assist quality
phrase recognition and achieve performance improvements.

To select correct instances in noisy training data, the proposed ConPhrase
introduces an instance selection component based on reinforcement learning
techniques. The improvement from TocPhrase to ConPhrase demonstrates that
applying reinforcement learning to guide clean data selection can boot the per-
formance to best results of two metrics (67.75% Recall, 75.80% F1).

3.3 Impact of Topic Information

We have shown latent topic information useful for quality phrase recognition in
Sect. 3.2. Here we further analyze the impact of topic information.
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Table 4 shows the golden quality phrases in one sentence whose labels are
wrongly predicted by TocPhase− but accurately predicted by TocPhase. With-
out implicit global information, TocPhrase− wrongly recognizes ‘patient’ and
‘effect’ as quality phrases. Similarly, new researchers who are not familiar with
the biomedical domain will make the same mistakes as TocPhrase−. However,
when researchers know that the phrases ‘patient’ and ‘effect’ have balanced
attentive vectors for all I topics, they will realize that the phrases ‘patient’ and
‘effect’ are just common words in the biomedical field, not high-quality phrases.
For the quality phrases ‘pain’ and ‘Musculoskeletal’, their attentive vectors pay
more attention to the topic T 5 (see Table 2). Incorporating such topic informa-
tion as the global context, the phrases ‘pain’ and ‘Musculoskeletal’ obtain the
domain-related prior knowledge, can be easily recognized. This example verifies
the critical impact of incorporating topic information in mining quality phrases.

Table 4. Examples: Only TocPhrase predicts the quality phrase accurately, while
TocPhrase− fail to predict.

Example of quality phrase prediction

Raw sent.: Musculoskeletal pain may be an important side effect in these patients

TocPhrase−: O B O O O O O B O O B

TocPhrase: B I O O O O O O O O O

3.4 Effectiveness of Selection Policy

We then evaluate the effectiveness of the RL-based selection policy from two
aspects. First, we evaluate whether the cleaned dataset provided by the instance
selection module is useful for quality phrase recognition. Second, a case study is
used to illustrate the results of the RL-based selection policy.

Quality Phrase Recognition on Cleaned Data. To evaluate the ability
of our RL-based selection policy to select correct sentences, we conduct qual-
ity phrase recognition experiments on cleaned data. We first use an RL-based
selection policy to select a high-quality sentence set D′ from the noisy auto-
labeled data D, and then train the TocPhrase on the cleaned data (denoted as
TocPhrase+). In contrast with the original model (F1 score 74.91%) trained on a
noisy data D, the performance of TocPhrase+ has some improvement, achieved
75.32% of F1 score. The result indicates that the model performs better on
the selected data than the original data set. It also reveals that the RL-based
selection policy possesses the ability to select the correct sentences, improving
the quality of automatic labeling data and ensuring better phrase recognition
performance.
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Table 5. Examples of noisy labeled sentences deleted by selection policy. The words
marked in blue are recoginized correctly in the gold labels. The words marked in red
are recoginized wrongly by auto-labeled generation method.

Example of noisy labeled sentences

Raw Sent.: Known causes of movement disorders were eliminated after evaluation .

Auto-label: O B O B O O O O O O

Gold-label: O O O B I O O O O O

Raw Sent.: Mechanisms of FK 506-induced hypertension in the rat .

Auto-label: O O O O B O O B O

Gold-label: O O B I I O O O O

Case Study. The two sentences in Table 5 are filtered from the auto-labeled
dataset through the RL-based selection policy. For instance, in the first example,
this sentence wrongly labeled two words with incorrect types, such as the word
‘cause’ label with wrong type ‘B’, and word ‘disorders’ with ‘O’ type. The case
indicates that the RL-based selection policy can effectively delete the incorrectly
labeled instances.

4 Related Work

The study of phrase mining originates from the NLP community, with the closest
works being noun phrase chunking and named entity recognition. A number of
phrase mining algorithms have been proposed, and the process of extracting
phrases usually divides into two steps: candidate phrases generation and phrase
quality ranking.

The first step is to use heuristics to generate a list of candidate phrases.
When these candidates are ready for further filtering, a large number of can-
didates will be generated in this step to increase the probability of retaining
most of the correct phrases. The main methods of extracting candidate phrases
include retaining word sequences that match certain part-of-speech tag patterns
(for example, nouns, adjectives) [21], and extracting important n-gram or noun
phrases [11,12,23,24].

The second step is to score the likelihood of each candidate phrase becoming
a high-quality phrase in a given corpus. The sorted candidate list is returned as
output, and downstream applications can use quality phrases that exceed a cer-
tain threshold in the sorted list. Here, the statistic-based methods are widely used,
which typically treat phrase mining as a binary classification problem, and various
types of learning methods and features have been explored [9,11,12,22–27].

Recent works mainly focus on utilizing statistical features of candidates
acquired from a massive corpus to further estimate phrases’ quality. Pitler [23]
evaluates candidate phrases based on comparison of a phrase’s frequency with its
sub-(or /super-)phrases from web-scale corpus. Ahmed [8] uses several indicators,
including frequency and statistical significance score (i.e. t-statistic), to assess
candidate phrases. Li [9,25,26] proposes statistical signals based on χ2-test to
measure lexical collocation in a complete phrase. The representative approaches
are SegPhrase [11] and AutoPhrase [12], which employ several raw frequency and
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rectified frequency features to classify phrase candidates into quality phrases or
non-quality phrases. Such statistic-based methods have achieved the state-of-
the-art performance of this task. However, statistical signals of phrases tend to
less reliable in the medium (or small) corpus, and fail to guide distinguishing
high-quality phrases from inferior ones.

Our proposed ConPhrase resolves the phrase mining task in entirely differ-
ent ways, which joint processing of the candidate phrases generation and phrase
quality ranking steps. Meanwhile, ConPhrase focuses on the effect of contex-
tual information, and formulates phrase mining as a sequence labeling problem.
Moreover, in the distantly supervised labeled data process, ConPhrase confronts
with the noisy data filtration problem. We introduce reinforcement learning (RL)
to our phrase mining task inspired by some works applying RL into distantly
supervised tasks, such as stance detection [15,28] and relation extraction [16].
Thus, ConPhrase designs an ISNet module, which first selects correct sentences
with reinforcement learning and then fine-tunes the TPRNet module with the
cleaned data.

5 Conclusion

In this paper, we explore the problem that statistic-based phrase mining meth-
ods rely on statistical signals to extract phrases, ignoring the effect of contextual
information. Therefore, we propose a novel context-aware method for automated
phrase mining, ConPhrase, which formulates phrase mining as a sequence label-
ing problem. We also focus on two challenging issues of extracting phrases from
a single short sentence: global information scarcity issue and noisy data filtra-
tion issue. ConPhrase overcomes the first issue by integrating topic information
into word representation learning, and introduces an RL-based selection policy
to choose clean data for resolving the second issue. Experimental results show
that our ConPhrase is superior to the existing approach.
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Abstract. Text summarization aims to produce a brief statement cov-
ering main points. Human beings would intentionally look for key entities
and key concepts when summarizing a text. Fewer efforts are needed to
write a high-quality summary if keywords in the original text are pro-
vided. Inspired by this observation, we propose a keyword-aware encoder
(KAE) for abstractive text summarization, which extracts and exploits
keywords explicitly. It enriches word representations by incorporating
keyword information and thus leverages keywords to distill salient infor-
mation. We construct an attention-based neural summarizer equipped
with KAE and evaluate our model extensively on benchmark datasets
of various languages and text lengths. Experiment results show that
our model generates competitive results comparing to state-of-the-art
methods.

Keywords: Deep learning · Natural language processing · Text
summarization

1 Introduction

Text summarization is a challenging task which aims to generate informative
and non-redundant summary. Related techniques can mainly be classified into
extractive methods and abstractive methods. Extractive summarization methods
identify and concatenate relevant words from the original text, while abstractive
methods try to express the main content in a condensed way, possibly using
words that are not in the original text. Early studies explored various approaches
including manually designed rules [35], syntactic tree pruning [19] and statistical
machine translation techniques [3]. In this paper, we focus on abstractive text
summarization.

Recently, neural network models have achieved an impressive performance
in abstractive summarization task. Many of the works [27,36] benefit from the
attention-based encoder-decoder framework [2], which is originally designed to
tackle the machine translation problem. Firstly, an encoder converts an input
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sequence to a list of distributed representations, and then a decoder generates
each output word by calculating a soft alignment over all input states before
using their weighted combination as the current context state.

In machine translation, the attention mechanism calculates a soft alignment
over all source words, which is preferable because the meaning of every word in
the source text needs to be translated one way or another. In text summarization,
however, many words in the source text do not provide useful information for
the final summary.

In most cases, only a few words in the original text can capture most of
the information, which we call primary information. Therefore, the rest of the
words provide little additional information, which we call secondary information.
Intuitively, it would be of great help if we can somehow identify these highlighted
words in advance and tell a summarizer to focus on them. On the contrary,
too much attention on secondary information would hinder a summarizer from
focusing on the core concepts and could even be misleading, resulting in sub-
optimal or even low-quality summaries. This is often the case with a standard
attention-based decoder, whose attention mechanism distributes weights over
the entire input sequence and may assign an undesirable amount of weights to
words that only contain secondary information. Table 1 gives an example of the
attention weight distribution of a attention-based decoder at each decoding step.

Table 1. Sum of the Top K soft alignment weights over an input text of 35 words
when a decoder generates each output word in the leftmost column.

Output words Top 2 Top 5 Top 8

Toyota 0.2981 0.5124 0.6486

are 0.3496 0.6389 0.7802

Banned 0.4157 0.6160 0.7301

for 0.3468 0.5963 0.7132

a 0.3484 0.6121 0.7681

Year 0.4868 0.6832 0.8127

<eos> 0.3726 0.5960 0.7209

In this example, there are 6 output words, which means the number of input
words that contain primary information is close to 6. Yet, as shown in Table 1, the
sum of top 8 out of 35 attention weights at any decoding step is only around 0.8,
which indicates that about 20% attention weights are assigned to input words
that only contain secondary information. This problem is more noticeable when
the input text is longer, as the attention weight distribution is more scattered.

Although there are methods proposed to alleviate this problem such as local
attention [23], selective gate [36] and stacked self-attention encoder [32], we argue
that neural summarization models can benefit more from exploiting keywords
explicitly. Humans would intentionally look for key entities and key concepts



Keyword-Aware Encoder for Abstractive Text Summarization 39

when summarizing a text, and these key entities and key concepts are often in
the form of keywords. Keywords provide a natural way to narrow down primary
information and filter out secondary information, so that the attention-based
decoder can be more concentrated on primary information.

Due to aforementioned motivations, we propose a keyword-aware encoder
(KAE) for abstract text summarization task in this paper. KAE consists of four
encoders: a text encoder, a keyword encoder, a merge encoder and a refinement
encoder. The text encoder generates word embeddings of the input text, while
the keyword encoder generates keyword embeddings after the keywords are iden-
tified. Then for each input word, the merge encoder accomplish three tasks: (1)
using its word embedding to calculate a weighted sum of keyword embeddings
to form its keyword context embedding; (2) computing a merge gate that com-
bines its word embedding and keyword context embedding into a keyword-aware
embedding; (3) computing a selection gate that controls the information flow of
the keyword-aware embedding. Finally, the refinement encoder fuses the output
of the merge encoder at each time step to form state embeddings, which are used
by an attention-based decoder to generate summary.

We use Term Frequency-Inverse Document Frequency (TF-IDF) to determine
keywords in a text and then sort the keywords according to their post-order
traversal order in the dependency tree. Despite of its simplicity, TF-IDF is a
strong baseline method in many information retrieval tasks. And the dependency
tree helps us with the inner connection between keywords. Our experiments show
that TF-IDF works very well with our KAE model, though it can be replaced
by any other keyword-extraction method.

To evaluate the effectiveness of our KAE model, we conducted extensive
experiments on three benchmark datasets of various languages and text lengths,
namely Gigaword in English, and LCSTS, TTNews in Chinese. Experiment
results show that our approach outperforms the state-of-the-art methods and
generates better-quality summaries.

2 Related Work

Thanks to the advancement of deep learning, many neural network-based
approaches, especially attention-based sequence-to-sequence models, have been
proposed to tackle the abstractive text summarization problem. [27] introduced
an attention-based summarization (ABS) model which consists of an attention-
based encoder and a neural language model (NNLM) decoder. The encoder mod-
els the input sentence by a convolutional neural network and the decoder is a
standard feed-forward neural network.

Much attention has also been directed at introducing new structures to
enhance the neural summarization model. [14] noticed that in many tasks, words
in the output sequence could be found directly in the input sequence. Hence,
they proposed CopyNet which combines word generation with a copying mecha-
nism. [36] proposed Selective Encoding for Abstractive Sentence Summarization
(SEASS) which adds a selective gate on the sentence representation to control
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Fig. 1. Architecture of our KAE model. Keywords are in red. (Color figure online)

the information flow from the encoder to the decoder. [6] and [28] both intro-
duced a coverage mechanism to prevent the model from generating repeated con-
tent. [21] proposed deep recurrent generative decoder (DRGD) which leverages
the latent structure information of summaries to improve the summary qual-
ity. DRGD uses Variational Auto-Encoders (VAE) to learn the latent structure.
[25] used rewards from policy gradient in reinforcement learning as a new objec-
tive function. They also proposed an intra-attention mechanism in the encoder to
record previous attention weights and a sequential intra-attention in the decoder
that takes into account all words that have been generated. [32] used a similar
intra-attention mechanism as well. They proposed Transformer, which dumps
the recurrent structure and relies entirely on self-attention mechanism. In the
encoder, it uses positional embeddings to encode position information in the
input sequence and uses a multi-head self-attention mechanism to utilize dif-
ferent positions of the input sequence to compute a representation of the input
sequence. A similar structure is used in the decoder. Although Transformer was
targeted at machine translation, it is a promising model to be applied to short-
text summarization task. [4,33] and [11] first retrieves similar sample data and
uses its summary as soft template to guide the process of summarization. [8] uses
BERT as teacher model to distill bi-directional context information into summa-
rization model.[31] proposed a graph-based attention mechanism in a hierarchical
encoder-decoder framework. It combines traditional attention mechanisms and
graph-based extractive summarization techniques to address the saliency issue in
summarization on sentence level. Its motivation is quite similar to ours; however,
our KAE model addresses the saliency issue mainly on word level.

3 Model Description

We propose to leverage keywords to enrich word embeddings and filter out sec-
ondary information. As shown in Fig. 1, the model consists of a keyword-aware
encoder and a decoder, both of which use Long Short-Term Memory (LSTM)
[15]. In KAE, there are four encoders: a keyword encoder, a text encoder, a
merge encoder. Firstly, the keyword encoder and text encoder use multi-layered



Keyword-Aware Encoder for Abstractive Text Summarization 41

bidirectional LSTMs to process keyword sequence k = (k1, ..., km) and input
sequence x = (x1, ..., xl) respectively to build corresponding keyword embed-
dings (hk

1 , ...,h
k
m) and word embeddings (hx

1 , ...,hx
l ). The merge encoder uses

hx
i to compute the merge gate gmi and the selection gate gsi . Then, it computes

keyword context embedding ckt by a weighted combination of keyword embed-
dings (hk

1 , ...,h
k
m). After merging keyword information into word embeddings by

the merge gate gmi and distilling primary information by the selection gate gsi ,
another LSTM-based reads the embedding sequence and produces state embed-
dings (hm

1 , ...,hm
l ). The decoder is an attention-based decoder with input feeding

[23], which computes a soft alignment over state embeddings at each decoding
step to generate the summary y one word at a time.

3.1 Keywords Extraction

Keywords play an important role in writing a good summary. Although many
methods to extract keywords exist, we use the simplest but an effective one, TF-
IDF, to determine keywords, though any other method can be applied in our
framework. We compute the TF-IDF value of each word using the whole training
dataset (including the target summaries), and pick top K words with highest
TF-IDF values as keywords. After examining the exact word overlap ratio with
the target summary, we can see that the keyword sequence has more condensed
information compared to the original input text, as shown in Table 2. We also
pre-trained an keyword-extraction model using parallel corpus constructed from
summarization dataset(mark the keyword showed in both original text and sum-
mary as keyword), but the results shows that TF-IDF is an simple but efficient
method.

Table 2. Comparison of word overlap with target summary between input text and
extracted keywords (top 50%) on Gigaword training set. The average overlap ratio is
calculated as the average number of overlapped words divided by the average length
of the sequence.

Statistics Input text Keywords

Average length 31.35 15.42

Average # word overlap 5.22 3.18

Average overlap ratio 16.65% 20.62%

3.2 Dependency-Based Keyword Sequence

One natural way to organize the keywords is sorting them according to their first
appearance in the input text and remove keywords that do not belong to the
source vocabulary Vs. Every input text x has a corresponding keyword sequence
k = (k1, ..., km) where m < l.
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Note that the keyword sequence generated in the above way is not a natu-
ral sentence anymore, and the inner connection among words could be missing.
Since we want the order of the keyword sequence better characterize the orig-
inal structure of source text, here we introduced the grammatical dependency
tree (DT) to generate a more integral and reasonable keyword sequence. We
first generate a dependency tree of the original text and then sort the keywords
according to their post-order traversal order in the dependency tree. This oper-
ation is performed independently in each sentence.

3.3 Keyword-Aware Encoder

To get a semantic embedding, we employ a multi-layered bidirectional LSTM
(BiLSTM) to encode the word sequence. At each layer, the BiLSTM consists of
a forward LSTM and a backward LSTM. The forward LSTM reads the input
sequence from left to right to get hidden states (

−→
h 1, ...,

−→
h e) and the backward

LSTM reads the input sequence from right to left to generate hidden states
(
←−
h 1, ...,

←−
h e).

−→
h i = LSTM(inputi,

−→
h i−1),

←−
h i = LSTM(inputi,

←−
h i+1) (1)

Concatenate
−→
h i and

←−
h i, and we get hi = [

−→
h i;

←−
h i]. The text encoder and

keyword encoder stack multiple BiLSTMs and read input text and extracted
keywords respectively to generate word embeddings (hx

1 , ...,hx
l ) and keyword

embeddings (hk
1 , ...,h

k
m).

For each hx
t , the merge encoder determines its relevance with keyword embed-

ding (hk
1 , ...,h

k
m) and generate a keyword context embedding ckt as a weighted

combination of keyword embeddings.

scorekt,i = hx
t
TWxkh

k
i (2)

relevancet,i =
exp(scorekt,i)∑m
j=1 exp(scorekt,j)

(3)

ckt =
m∑

j=1

relevancet,j hk
j (4)

where Wxk is a weight matrix.
Next, the merge encoder uses hx

t to compute the merge gate gm
t and the

selection gate gs
t .

gm
t = σ(Wmhx

t + bm) (5)

gs
t = σ(Wsh

x
t + bs) (6)

where Wm and Wb are weight matrices, bm and bs are bias vectors, and σ
denotes sigmoid activation function. The merge gate gm

t controls how to merge ckt
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and hx
t , while the selection gate gs

t distills primary information. After applying
the two gates, the merge encoder outputs a new embedding sequence (hg

1, ...,h
g
l ).

hg′
t = gm

t � hx
t + (1 − gm

t ) � ckt (7)

hg
t = gs

t � hg′
t (8)

where � denotes element-wise multiplication.
A refinement encoder further uses a stacked BiLSTMs to fuse (hg

1, ...,h
g
l )

into state embeddings (hm
1 , ...,hm

l ) to be used by decoder. Its main purpose is
to smooth out the embedding sequence outputted by the merge encoder.

Apart from using Eq. 5, we have also found it feasible to exploit the cosine
similarity between keyword and word embeddings to compute the selection gate
gs
t . It reduces the number of parameters to learn while achieving a better per-

formance if a proper vocabulary size is used. For an input text x = (x1, ..., xl)
and the corresponding keyword sequence k = (k1, ..., km), we can construct a
matrix Md. The gs

t now is a scalar and is obtained by picking the largest value
in the corresponding row.

Md
i,j =

emb(xi) · emb(kj)
||emb(xi)|| ||emb(kj)|| (9)

gst = max
j∈[1,m]

Md
t,j (10)

where emb is a function to get word/keyword embedding.

3.4 Summary Decoder

Many variants of summary decoder have been proposed to improve the sum-
mary’s quality. Following [23,30], we use an attention-based stacked LSTM
decoder with input feeding so that we can keep our focus on KAE.

Due to space limitations, we do not describe the details of summary decoder
here. The summary decoder generate a probability distribution p(yt|x,y<t).

3.5 Objective Function

Like most sequence-to-sequence models, our goal is to maximize the output
summary probability given the input text and keywords. Hence, we use the
negative log-likelihood to define our loss function

J(θ) = − 1
|D|

∑

(x,k,y)∈D
log p(y|x,k) (11)

where D represents the training dataset, θ denotes all model parameters. We use
the Adaptive Gradient [10] with mini-batch to learn the parameters θ.
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4 Experiments

We have evaluated our KAE model on several benchmark datasets of various
languages and text lengths. In this section, we will describe the datasets, baseline
models, evaluation metrics, implementation details and experiment results.

4.1 Datasets

Gigaword is an English sentence summarization dataset constructed from the
Annotated English Gigaword corpus by extracting the first sentence from each
article with the headline to form a sentence-summary pair. We directly download
the dataset used by [27]. This dataset contains about 3.8M sentence-summary
pairs for training and 2,000 pairs for testing. However, among the 2,000 test
pairs, there are empty titles and meaningless input sentences. We remove those
pairs and end up with 1,943 pairs for testing.

LCSTS is a large-scale Chinese short-text summarization dataset collected
from Sina Weibo, which contains 2.4M training text-summary pairs and 1,106
test pairs [17]. Test set and part of the training set are manually scored to indi-
cate the relevance of the short text and the corresponding summary. Following
[17], we remove those test pairs with score below 3 and end up with 725 pairs
for testing. In our experiments we take the word-based approach and use LTP
[5] to segment Chinese words. After word segmentation, the average length of
the articles is 61 Chinese words.

TTNews is a Chinese long-text summarization dataset from NLPCC17
shared task 3 [18]. The training set contains 50K pairs of news articles and
corresponding human-written summaries. This dataset also provides 2,000 pairs
for testing. After word segmentation, the average length of the articles is 587
Chinese words.

4.2 Baselines

We compare our KAE model with the following baselines and state-of-the-art
methods:

– CopyNet [14] introduces a copy mechanism. CopyNet dynamically chooses
to generate words from the vocabulary or copy words from input text.

– SEASS [36] introduces selection gate to distill salient information for gener-
ating a summary.

– DRGD [21] uses VAE to model the latent structure of summaries.
– TopicNHG [34] applies Latent Dirichlet Allocation to assign topic labels to

documents and build sequence-to-sequence models for each topic respectively.
– s2s+att We use stacked BiLSTMs with attention in the encoder-decoder

framework as our baseline model.
– Transformer [32] is a neural machine translation model. It uses positional

encoding, multi-head attention and self-attention to encode and decode texts.
– Reˆ3Sum [4] is a very competitive model that first retrieve a similar data

sample from the training dataset, then use it as a soft-template to guide the
generation of summary.
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4.3 Evaluation Metric

Following previous works, we use the full-length F1 Rouge [22] to evaluate our
model. The ROUGE measures the quality of a summary by its overlap with
references in terms of unigram, bigram, longest common subsequence (LCS)
etc. Full-length F1 ROUGE removes the length limit and penalizes longer sum-
maries. We report evaluations of full-length F1 ROUGE-1 (unigram), ROUGE-2
(bigram) and ROUGE-L (LCS) on all datasets.

4.4 Implementation Details

We used PyTorch to implement our model. And we use Stanford Dependencies
[1] to generate the dependency tree of the original text.

Model Parameters. For Gigaword, since this dataset has already substituted
infrequent words with the UNKNOWN tag, we leave it untouched and get a
source vocabulary and a target vocabulary of 120K and 69K distinct words
respectively. Top 50% words in the sentence with highest TF-IDF values are used
as keywords. We set the word embedding size to 300, the dimension of hidden
states to 500, and the number of layers in LSTM to 2. Dropout [29] is applied
with probability of 0.3. We also use the pretrained GloVe word embeddings [26].

For LCSTS, we remove infrequent words and obtain a 127K source vocabu-
lary and a 53K target vocabulary. Top 25 words in the short text with highest
TF-IDF values are used as keywords. All other settings on the LCSTS dataset
are the same as those on Gigaword.

For TTNews, after removing infrequent words we obtain a 157K source
vocabulary and a 22K target vocabulary. Top 25 words in the document with
highest TF-IDF values are used as keywords. We set the number of layers in
LSTM to 1. All other settings on the TTNews dataset are the same as those on
LCSTS.

Training. All model parameters are initialized by a Gaussian distribution with
Xavier scheme [13]. The batch size is set to 64, 64 and 4 for the Gigaword,
LCSTS and TTNews dataset respectively. The learning rate is set to 0.15 with
an initial accumulator value of 0.15. We halve the learning rate if the loss on the
development set increases for 10 consecutive runs of 1000 batches. The gradient
clipping with range [-5,5] is applied during training.

Decoding. During decoding, we use beam search with the beam size set to 6.
Following [36], we average the ranking score along the beam path by dividing
it by the number of generated words. To handle a generated UNKNOWN tag,
we simply replace it with the source word that has the highest attention weight.
We report experiment results of using beam search, and beam search with the
replacing-the-unknown trick.
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4.5 Evaluation

Table 3 summarizes the evaluation of full-length F1 Rouge-1, Rouge-2, and
Rouge-L on the Gigaword test set. We have three observations here: 1) our
KAE model outperforms all other models by a large margin, e.g., with improve-
ments of 1.02 Rouge-L scores over Rê 3Sum; 2) the full KAE model performs
better than its variant KAE w/o DT which ordering keywords via a plain order,
verifying the effectiveness of DT-based keywords organizing; and 3) those models
aiming to filter out secondary information, including SEASS, Transformer, and
our KAE model, generally achieve better results compared with the others.

Table 3. Full-length F1 ROUGE evaluation results on the English Gigaword test set.

Models RG-1 RG-2 RG-L

s2s+att 34.68 17.10 32.10

Transformer 35.79 17.72 33.24

SEASS‡ 36.15 17.54 33.63

DRGD‡ 36.27 17.57 33.62

Rê 3Sum 37.04 19.03 34.46

KAE (w/o DT) 37.82 18.85 35.17

KAE 38.24 19.17 35.48

The Rouge evaluation results on the LCSTS test set are shown in Table 4.
Our KAE model also achieves the highest score. It is worth mentioning that
TopicNHG actually trains five models, each for a topic, which makes it an ensem-
ble method in effect. Without considering TopicNHG, models that alleviate the
impact of secondary information all outperform the other models by a large
margin.

On the long-text TTNews dataset, our model outperforms the baseline model
s2s+att. The results are summarized in Table 5. In order to train Transformer
on this dataset on our device, we have to reduce the number of layers and the
dimension of hidden layers to make it work, which leads to a compromised result.
Thus we choose not to report the result.

Table 4. Full-length F1 ROUGE evaluation results on the Chinese LCSTS test set.

Models RG-1 RG-2 RG-L

CopyNet‡ 35.00 22.30 32.00

s2s+att 36.23 24.12 33.63

DRGD‡ 36.99 24.15 34.21

TpoicNHG‡ 38.40 26.60 36.10

Transformer 38.96 26.00 35.64

KAE (w/o DT) 41.31 27.94 38.06

KAE 41.70 28.18 38.36



Keyword-Aware Encoder for Abstractive Text Summarization 47

Table 5. Full-length F1 ROUGE evaluation results on the Chinese TTNews test set.

Models RG-1 RG-2 RG-L

s2s+att 45.18 30.51 40.33

KAE (w/o DT) 51.26 37.31 46.07

KAE 51.71 37.69 46.30

5 Discussion

5.1 Visualization of Gates and Attention Weights

To gain a better understanding of our KAE model, we will first use an example to
visualize the attention weights on keyword embeddings of each keyword context
embedding and the behavior of merge gate and selection gate.

In Fig. 2, we can see that words in a sentence tend to attend to those keywords
that have similar meanings to generate corresponding keyword context vectors.
For example, the words “german,” “chemical,” “giant” and “hoechst” all pay
attention to the keyword “hoechst.” Furthermore, most function words like “to,”
“in,” “with” produce keyword context embeddings by equally attending to each
keyword.

Figure 3 shows that the selection gate (top) gives a free pass to those key-
words and depresses secondary information flow. In comparison, the values of
the merge gate (bottom) are less polarized. For some words that are not selected
as keywords, it injects a fair amount of keyword context embedding into the
word embedding.

5.2 Influence of Keyword Extraction Ratio

In order to analyze the influence of keywords on the quality of the summary, we
conducted several experiments on Gigaword with different keyword extraction

Fig. 2. A sample from the Gigaword test set illustrating the composition of keyword
context embeddings. The sentence lies on the x-axis, while the extracted keywords are
listed on the y-axis. The darker the square, the higher the attention weight.
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Fig. 3. A sample from the Gigaword test set illustrating the information flow controlled
by the selection gate (top) and merge gate (bottom). Since the gate at each time step
is a high-dimensional vector, we calculate the mean value of all dimensions. The darker
the square, the higher the value.

ratios and have observed the following trend: as the ratio increases from 0.1
to 0.5, the performance improves in terms of evaluation metrics; but when the
ratio further increases from 0.5 to 0.9, the performance drops. This indicates that
there is a delicate balance between too many and too few keywords extracted.

To further analyze the influences of different keyword extraction ratios, we
define “Keyword Extraction Precision” as the ratio of the number of extracted
keywords that occur in the generated summary to the length of the summary, and
“Keyword Extraction Recall” as the ratio of the number extracted keywords that
appear in the generated summary to the number of all extracted keywords. The
calculated Keyword Extraction Precision and Recall of the generated summaries
of KAE model as well as the golden summary with different keyword extraction
ratios are shown in Fig. 4.

Firstly, we can see that the generated summary of KAE has higher “Keyword
Extraction Precision” and “Keyword Extraction Recall” than golden summary
at all ratios, which is conceivable since KAE focuses on information from key-
words while humans may choose to rewrite some of the keywords according to
personal habits.

Fig. 4. Comparison of the generated summary of KAE and the golden summary in
terms of Keyword Extraction Precision and Recall as the keyword extraction ratio
varies from 0.1 to 0.9.
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Secondly, we can see that the “Keyword Extraction Precision” increases
as the keyword extraction ratio increase, while “Keyword Extraction Recall”
decreases for both KAE and golden summary. This also indicates that, the
amount of keyword to be considered matters, and it is necessary to use a bal-
anced keyword extraction ratio in our KAE model.

5.3 Analysis of Content Selection Methods

Many recent works can be categorized as content selection methods which select
key information first and then use it help generating summary. Content selection
could be applied in different levels: word or entity level [12,20,24] which our
model KAE also uses, sentence level [7,16,31] and section level [9]. How to select
and utilize content are two key concerns.

In theory, any keyword extraction algorithm can replace TF-IDF in KAE.
We did try using TextRank to extract keywords, and it yielded a result
(37.87/18.95/35.01 in RG-1/2/L on Gigaword test set) similar to that of TF-IDF
(38.24/19.17/35.48).

[31] proposed to extract linked entities and transform a list of entities into a
topic embedding, whereas we propose to extract keywords, which may contain
key entities, but we don’t model the relations between entities explicitly. Their
approach heavily depends on the quality of off-the-shelf entity linking system,
while our approach does not rely on external knowledge.

[12] proposed to train a content selector first to predict which words in the
input document may appear in the summary in a supervised fashion and then
restrict the copy mechanism to attend to only these words. We propose to use
unsupervised methods to extract keywords to guide the information flow during
abstractive summarization, and the ratio of extracted keywords can be fine-
tuned, which is a simper and more flexible way for content selection.

5.4 Case Study

We compare some summaries generated by our KAE model (with keyword ratio
of 0.1 and 0.5). The source texts, golden summaries and generated summaries
are listed in Table 6.

We observe that since KAE takes the keyword information into account
explicitly, its generated summary would highly attend to the keyword informa-
tion. But the ratio of keywords is also important. KAE (0.1) misses the important
information “smoking causes cancer” in the first example and misses ‘offseason”
in the second, while KAE (0.5) successfully captures this information.
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Table 6. Generated summaries from Gigaword test set.

S(1): vice president al gore thursday welcomed liggett group ’s admission
that smoking causes cancer and its decision to help state officials sue fellow
cigarette makers .

Golden: gore welcomes liggett admission that smoking causes cancer
UNK refiling

KAE(0.1): gore welcomes liggett admission

KAE(0.5): gore welcomes liggett group ’s admission of smoking causes
cancer

S(2): jason terry , hero of dallas ’ game one national basketball
association finals win over miami , may need off-season surgery on an
injured thumb that he has been nursing for four months .

Golden: mavs hero terry may need surgery to fix injured thumb

KAE(0.1): dallas ’s terry may need offseason surgery

KAE(0.5): terry may need surgery on injured thumb

6 Conclusion

In this work, we propose keyword-aware encoder (KAE), which extends RNN-
based encoder and is used in the sequence-to-sequence framework. It merges
keyword information into word representations and uses keywords to distill
salient information. Experiments on benchmark datasets of various languages
and lengths show that our KAE model significantly improves performance and
is comparable to the latest SOTA that uses additional data for training. We will
further discover the use of keyword in the text summarization task.
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Abstract. Review summarization aims to generate condensed text for
online product reviews. Existing methods always focus on word-level
representation of reviews and ignore different informativeness of differ-
ent sentences in a review towards summary generation. In addition, the
personalized information along with reviews (e.g., user/product and rat-
ings) is also highly related to the quality of generated summaries. Hence,
we propose a review summarization method with hierarchical personal-
ized attention including a review encoder and a summary decoder. The
encoder contains a sentence encoder to learn sentence representations
with word-level attention, and a review encoder to learn review repre-
sentations with sentence-level attention. Both the two attentions are of
personalized paradigm whose attention vectors are derived from person-
alized information of input reviews instead of randomly initialized. Thus,
our encoder could focus on important words and sentences in the input
review. Then a summary decoder is employed to generate target sum-
maries with hierarchical attention likewise, where the decoding scores
are not only related to word information, but re-weighted by another
sentence-level attention. We further design an adversarial discrimina-
tor which takes the generated summary and personalized information as
inputs to force the generator adapting the generation policy accordingly.
Extensive experimental results show the effectiveness of our method.

1 Introduction

In recommender systems, review summarization could generate brief summaries
for product reviews. Recently, with the development of E-commerce platforms,
this task has attracted more and more attention because it is able to not only
help sellers understand the feedback of products quickly, but also help consumers
learn the reviews of other users towards the target product and make more
precise purchasing decisions.

Although text summarization [21–23] have been widely studied in natural
language processing, review summarization in recommender system is quite dif-
ferent and challenging. In addition to the text in reviews, there are always other
c© Springer Nature Switzerland AG 2021
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personalized information along with reviews (e.g., user, product and rating) that
could be utilized for summary generation. Recently, many works have been pro-
posed in review summarization; these methods always are based on sequence-
to-sequence framework, and focus on how to integrate the review with the per-
sonalized information for a better summary generation. Ma et al. [18] design a
jointly end-to-end framework for improving text summarization and sentiment
classification simultaneously by using ratings as sentiment label. Liu et al. [17]
map the user and product ID to the fix-sized embedding and conduct a memory
network for history reviews of the corresponding user and product to further
capture the user and product information. Considering that different users care
about different contents in the same review, Li et al. [10] design a user-aware
sequence network for personalized summarization, which generates summaries
by computing a score for each word in reviews to select more important words.

Review: Love the magnet easel... great for moving to different areas... Wish it had some sort of non skid pad on 
bottom though...
Summary: it works pretty good for moving to different areas
Rating: 4.0

Review: As many other reviewers have men�oned, the quality of manufacture for this game is really poor. The 
pieces are made of very thin cardboard with no coa�ng over the image side for added strength durability 
unlike most cardboard game pieces. When you ini�ally receive the game, the pieces are all stuck together as 
part of a thin cardboard page and you have to pop the pieces out. ||…|| Our daughter is 712an. She likes this 
game. She’ll play it alone or with others. I don’t know how long it will last due to the poor quality of 
manufacture. But for the �me being she's happy. Summary, young kids like it but it's very poorly made.
Summary: fun for young kids but very poor quality construction
Rating: 3.0

Fig. 1. Two examples of online reviews and the corresponding summary and rating.

Although these methods have achieved great summary generation perfor-
mance, there remain some crucial challenges. First, not only different words but
the different sentences in a review are of different informativeness towards the
summary generation. As shown in Fig. 1, some sentences of the review have
strong semantic relevance with the user preferences and product characteristics
and contribute more to the review representation. For example, in the first case,
the sentences marked in green describe the main product characteristic, and the
target user think the quality is poor but the young kids like it. In the second
case, the second sentence shows the product characteristic that the target user
cares about, i.e., “great for moving to different areas”. Besides, we observe that
some words in the important sentence are more likely to be useful in the sum-
mary generation process. For example, the sentiment words “poor” and “like” in
the first case are more salient than other words, because they indicate the user
preference and sentiment towards the current product. Hence it is necessary to
distinguish informative words and sentences from reviews both in the encoder
and decoder phases. Besides, the personalized information (i.e., ratings, users
and product information) have significant influence on the salient information
identification. For example, different users have different preference and different
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products have different characteristic; hence, even if the same reviews may have
different summaries under different users or products. As a result, we should
fully exploit these personalized information for summary generation.

In this paper, we propose a Neural Adversarial Review Summarization
method (NARS) with hierarchical attention. Our method is based on the
encoder-decoder framework, which contains a review encoder to learn review
representation from words and sentences, and a summary decoder to generate
target summaries.

In the encoder, we propose to design a sentence encoder to learn sentence fea-
tures from words, and a review encoder to learn review features from sentences.
In the above two encoders, we apply personalized attention to select important
words and sentences hierarchically. Different from general attention, the query
vectors in our proposed personalized attention are derived from the personalized
information along with the review. Hence, in our encode phase, we could learn
more personalized representation for reviews via our hierarchical attention.

Our summary decoder is implemented based on Pointer Generator Net-
work [22] which not only generates words from the fixed-size vocabulary but
also copy words from the input review by probability. In addition to identify
the keywords in the review, it is important to identify the important sentences,
in which words should be more salient. Hence, we combine both personalized
features of words and sentences in reviews to compute the alignment weights
in the decode step (i.e., re-weighting the weights of words using the sentence
weights). To further improve the quality of the generated summaries, we develop
an adversarial training framework, where a discriminator is designed to evaluate
the generated summary and force the summary decoder to generate high-quality
summaries. During training, we update the generator and discriminator alter-
nately to optimize the parameters in our model better.

The main contributions of our model are:

(1) We propose a neural adversarial review summarization model with hierar-
chical attention based on the encoder-decoder framework to generate brief
summaries for online reviews.

(2) We propose to apply word- and sentence-level attention which integrates per-
sonalized information to focus on the important and informativeness words
and sentences in reviews.

(3) Extensive experiments including performance evaluation and case studies
validate the effectiveness of our proposed method, which could generate
high-quality summaries.

2 Related Work

Review summarization aims to generate brief summaries for product reviews in
many E-commerce platforms, and it is an important task in recommendation
system. Previous researches [2,5] have demonstrated that abstractive methods
perform better than the extractive methods [7] for review summarization. Thus
in our paper we focus on abstractive generation works.
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Table 1. Characteristics of different models. Especially, “Sentence-level” and “Word-
level” denote the hierarchical structure of the source review. And, “Adversarial”
denotes the adversarial training with discriminator to evaluate the generated sum-
maries.

S2S+Attn[1] PGN[22] HSSC[18] memAttr[17] USN[10] Dual-View[3] NARS

User ID × × × √ √ × √

Product ID × × × √ × × √

Rating × × √ × × √ √

Word-level
√ √ √ √ √ √ √

Sentence-level × × × × × × √

Adversarial × × × × × × √

Different from the text summarization methods [22], review summarization
should take various personalized information into consideration, such as the user,
product and the rating along with reviews. The user and product information
have been proved to be helpful in many recommender system task, such as
sentiment classification [4,26], text generation [6,15]. Chen et al. [4] conduct
sentiment classification by incorporating the user and product information into
a well-designed hierarchical neural network to capture crucial semantic com-
ponents. Dong et al. [6] generate product reviews by conditioning on the given
attribute information, e.g., ratings, users and products. Therefore, some methods
propose to utilize the personalized information (e.g., ratings, user and item infor-
mation) [10,11,14,18,25] to improve the quality of the generated summaries. Ma
et al. [18] and Chan et al. [3] propose to use a jointly end-to-end neural network
model for improving text summarization and sentiment classification by using
ratings as sentiment label. Li et al. [14] conduct tips generation by considering
persona information which is learned via applying adversarial variational auto-
encoder on the history reviews and summaries of users and products. Li et al. [11]
take the authors attributes (e.g., gender, age and occupation) into account to
generate personalized summaries for users towards the same reviews. However,
these methods treat the source review as a long sequence while ignoring that
different components contribute differently to summarization at both sentence-
level and word-level. Therefore, in this paper, we try to capture the different
usefulness of different components of source reviews by applying a hierarchical
personalized attention. We list characteristics of several advanced methods and
our model in Table 1.

Generative adversarial network ([8,12,20]) shows great advantage in text gen-
eration by leveraging discriminator to adjust the generation policy of the gen-
erator. For example, Li et al. [13] combine the maximum likelihood estimator
with a summary quality estimator to make the generated summaries indistin-
guishable from the human-written ones. Hence, motivated by [20], we design an
adversarial training framework to enhance the summary generation.
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3 Proposed Method

In this section, we will first present the problem formulation, and then introduce
our proposed model for review summarization. There are two main modules in
our approach, i.e., a review encoder to learn review features from words and
sentences, and a point-network based summary decoder to generate target sum-
maries for source reviews. The overall architecture of our approach is shown in
Fig. 2.

Fig. 2. The framework of our model. The left part is the review encoder which contains
personalized sentence- and word-level attention. The right part is the summary decoder
with re-weighted attention and the top is the discriminator for adversarial training.

3.1 Problem Formulation

Given an input review containing L sentences S = {X1,X2, · · · ,XL}, along
with the corresponding user and product information (u, v, r) where u is the
user ID, v is the product ID and r is the rating given by user u to product
v, our model aims to produce a summary Ŷ = {ŷ1, ŷ2, ŷ3, · · · , ŷN ′ }, where N

′

denote the number of words in a summary. Each sentence Xi is represented as
Xi = {wi1, wi2, · · · , wiM}, where M denote the number of words in a sentence.
In addition, we denote the gold summary sequence as Y = {y1, y2, y3, · · · , yN},
where N is the length of the summary.

3.2 Review Encoder

In this section, we design a review encoder with word- and sentence-attention
via integrating the personalized information to learn review representations. We
will first introduce the personalized information (i.e., user, product and rating),
which would be used to derive the attention vectors. Then the two hierarchical
encoders will be described in details.
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Personalized Information Embedding. In recommendation system, the user
and product interactions indicate the user preferences and product characteris-
tics, and the ratings given by users to products show the sentiment tendency of
the corresponding reviews. In this paper, we treat the ratings, user and product
features as personalized information of reviews, which can be regarded as
the useful auxiliary information to learn more precise representations of source
reviews. In this way, even if the contents in reviews are similar, the representa-
tions would be various while considering the personalized information.

Hence, given the personalized information (u, v, r) of the review, we first
embed the corresponding user and product as real-valued ID embedding u ∈ Rd

and v ∈ Rd respectively, where d is the vector dimension for the user and product
ID embeddings. And for ratings, we transform the rating, ranging from 1 to 5,
into a one-hot vector r ∈ R5. Then the personalized feature of the review is
denoted as:

p = [u : v : r] , (1)

where : is the concatenation operator.
We propose to adopt hierarchical personalized attention in the following

review encoder to indicate the importance of words and sentences of the source
review. Hence, we derive the attention vectors from the personalized feature p
via two multilayer perceptrons (MLP):

qw = MLP(p),qs = MLP(p), (2)

where qw is used as the word-level attention vector, and qs is the sentence-level
attention vector in the following hierarchical review encoder.

Personalized Word-Level Attention. Based on the learned personalized
query vectors, we use a sentence encoder to learn the sentence representation by
applying attention mechanism on the words in a sentence.

In fact, not all words contribute equally to the sentence representation for dif-
ferent users and products, and these words should get different attentions. Thus,
we incorporate personalized information into attention mechanism to select these
key words.

Given a sentence Xi in the input review, the words are firstly mapped to
real-valued low-dimensional vectors via word embedding technology, and then
fed into a bidirectional Gated Recurrent Unit (GRU) one by one:

−→
hw
i =

−−→
GRU(wi),

←−
hw
i =

←−−
GRU(wi), (3)

where wi is the word embedding of the i-th word in the current sentence. We
concatenate them to obtain the word representation, i.e., hw

i = [
−→
h w

i :
←−
h w

i ].
Then, we use the word-level attention vector qw as query to calculate atten-

tion weight αi for each word hw
i and aggregate the vectors of these words to
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form the sentence representations Xi:

αi = softmax(wT
wtanh(Wwqqw + Wwhhw

i )),

Xi =
M∑

i=0

αihw
i ,

(4)

where ww, Wwq, Wwh are matrix parameters of the model. And Xi is the
final representation of the sentence Xi in the source review, which involves the
personalized information and word-level informativeness.

Personalized Sentence-Level Attention. Based on the learned sentence rep-
resentation, this part learns the review representation by applying the attention
on the sentences in a review, which is then utilized to generate a summary in
the decoder module and judge the quality of generated summaries in the dis-
criminator module.

After obtaining the representations of the sentences in a review, in this
section, we will utilize the sentence-level attention to learn the representations
of the review. Likewise, different sentences are of different importance for review
representation learning. Thus, we again incorporate the personalized information
into attention mechanism to identify more salient sentences.

To get the review representation, we first define a bidirectional GRU to learn
the relatedness among sentences in the review.

−→
hs
i =

−−→
GRU(Xi),

←−
hs
i =

←−−
GRU(Xi), (5)

We can obtain the high-level feature vector for each sentence: hs
i = [

−→
h s

i :
←−
h s

i ].
Then, we apply another personalized attention, and adopt qs as query vector

to calculate the salient score αi for each sentence:

αi = softmax(wT
s tanh(Wsqqs + Wshhs

i ))

d =
L∑

i=0

αihs
i

(6)

where ws, Wsq, Wsh are model parameters, and d is the final personalized
representation of the input source review.

3.3 Abstractive Summary Generation

Decoder with Hierarchical Attention. After obtaining the review represen-
tation d from the hierarchical review encoder, this module generates summary.
We build the decoder upon the pointer generator network [22] with 2-layer GRU.
First, we utilize the input review embedding d to initialize the hidden states hd

0

of the decoder:
hd
0 = tanh(W0d), (7)
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where W0 is the model parameter. At each step t, the GRU receives the word
embedding of the previous step yt−1 and output the hidden state hd

t .
Most previous review summarization works only consider the word-level

importance in the attention mechanism between the encoder and the decoder.
However, some product reviews are long and only a few sentences contribute sig-
nificantly to the summarization. Thus, we design a hierarchical attention which
can identify the salient information at both sentence-level and word-level. In
detail, we first calculate the sentence-level score βti for the ith sentence in step
t, based on the sentence representations hs

i .

βti = softmax(WT
β tanh(Whshd

t + Wtshs
i )), (8)

where Wβ , Whs and Wts are model parameters. For the jth word in the ith sen-
tence, we re-weight the word-level attention weight αtij with the corresponding
sentence score βti to highlight the words in the important sentences.

αtij = softmax(βtiWT
αtanh(Whwhd

t + Wtwhw
ij )), (9)

where Wα, Whw and Wtw are model parameters. Finally, the context vector
ct is computed as the weighted sum of the representations of words in the input
review.

ct =
L∑

i=1

M∑

j=1

αtijh
w
ij . (10)

Then, the vocabulary distribution Pvocab is computed by applying softmax
function over the concatenation of decoder sate hd

t , the context vector ct and
the review representation d:

Pvocab = softmax(WT
v tanh(Wc[hd

t : ct : d])), (11)

where Wv, Wc are model parameters. Pvocab is the probability distribution over
all words in the fixed size vocabulary and our model predicts word yt from it. Like
See et al. [22], we also use the copy mechanism to copy out-of-vocabulary words
from the input review. The generation probability Pgen at time t is calculated
from the decoder hidden state hd

t , at embedding at previous step yt−1, context
vector ct and the review representation d.

pgen = σ(Wg[hd
t : yt−1 : ct : d] + bgen), (12)

where Wg and bgen are model parameters, and [:] denotes the concatenating
operator. Then, pgen is used to decide that the word ŷt should be generated
from the vocabulary with probability Pgen or be copied from the source with
probability 1 − Pgen.

P (ŷt) = pgenPvocab + (1 − pgen)
∑

i,j:wij=yt

αstij (13)
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During training, we use the negative log-likelihood as the loss func-
tion(NLLLoss) in summary generation module:

Lφ(Ŷ |X) =
T∑

t=0

−logP (ŷt), (14)

where T is the length of the generated summary.

Discriminator. After previous modules, we get the generated summary for the
input review. Motivated by [13], in this module, we design an adversarial training
framework to further enhance the summary generation. The gold summary Y
is the positive sample and the generated summary Ŷ is the negative sample.
Especially, we feed the summary, the review and the corresponding personalized
feature(i.e., review, rating, user and product embeddings) into the discriminator.
As a result, the generated summary matches with the review and is consistent
with the personalized features simultaneously.

In the adversarial training framework, the generator is the decoder with
hierarchical attention which generates the summary based on the output of the
review encoder. In discriminator, we employ a bidirectional GRU to learn the
representation for input summaries.

hY =
1
T

T∑

t=1

[
−→
hY

i :
←−
hY

i ]. (15)

And for other feature, we employ the vector d from the review encoder. Then
we feed the concatenation of the summary representations hY with the vector
d into a multilayer perceptron and obtain a vector s ∈ R2.

s = f(hY,d), (16)

where, f is a MLP network followed by a softmax layer and s is a binary label
variable. Like [13], we use cross entropy as loss function J (θ) to train the dis-
criminator, where θ are parameters in the discriminator.

And we update the generator parameters φ via policy gradient [24] and treat
the first dimension of s as the quality score, i.e., the reward in policy gradient
r = s[0].

� Jφ =
T∑

t=1

�logP (ŷt) · r. (17)

The policy parameters φ are updated as following:

φ = φ − α2 � Jφ. (18)

4 Experimental Setup

To validate the effectiveness of our method, we conduct extensive experiments,
we will first introduce the experiment setups, including dataset description, base-
line methods and experimental settings.
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4.1 Datasets

To evaluate our method, we conduct experiments on four real-world datasets
from Amazon1: Toys & Games, Sports & Outdoors, Cloting, Shoes and
Jewelry, Movies & TV, the dataset statistics are shown in Table 2. Each data
sample is consist of the user ID, product ID, rating, review text, and summary
text. We build vocabulary for each dataset by selecting the high-frequency words
from the review and summary text. In this paper, we only reserve the reviews
given by active users to popular products, where each user and each product
has at least 10 reviews. Following previous work [18], we randomly select 1000
samples for the validation set and test set separately, and the rest of the dataset
are training set.

Table 2. Dataset statistics.

Dataset Toys & Games Sports & Outdoors Clothing & Shoes Movies & TV

Users 19, 412 35, 598 39, 387 123, 960

Products 11, 924 18, 357 23, 033 50, 052

Reviews 167, 504 296, 214 278, 653 1, 697, 471

4.2 Baseline Methods

Here, we compare with many competitive summarization methods:

– TextRank [19]: is a famous extractive approach that ranks the sentences
with the graph-based algorithm.

– S2S+Attn [1] is a sequence-to-sequence model with attention mechanism.
– HSSC [18]: a joint framework for abstractive summarization and sentiment

classification.
– PGN [22]: a popular abstractive summarization method with copy mecha-

nism to copy words from the input text.
– memAttr [17]: a neural review summarization method that leverages the

user and product history reviews to enhance the model performance.
– USN [10]: a personalized review summarization model that generates sum-

maries by designing a user-aware encoder and a user-specific vocabulary.
– Dual-view [3]:a very-recent dual-view model which introduces an inconsis-

tency loss to make the generated summary have the same sentiment tendency
with the input review.

1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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4.3 Experimental Settings

We build vocabulary for each dataset separately by reserving the high fre-
quency words, meanwhile the hierarchical encoder and decoder module share
the same vocabulary. For the hyper-parameters in our model, we tune them
from the validation dataset. The hidden states of GRU is set to 512 (tuning in
[64,256,512,1024]). The size of user and item ID embedding is set to 300 (tuning
in [200, 300, 400]) and we use dropout with probability 0.3 for all datasets (tun-
ing in [0.1, 0.3, 0.5, 0.7]). The encoder and decoder are both 2-layer GRU. We
use the Adam [9] optimizer to train our model. The batch size is set to 48. For
adversarial training, we pre-train the generator with the NLLLoss according to
Eq. 14, like previous work [27].

Following the previous works, we utilize ROUGE [16] as our evaluation met-
ric. ROUGE counts the number of overlapping units(i.e. n-gram) between the
generated summaries and the references. In the experimental results, we report
F-measures of ROUGE-1, ROUGE-2 and ROUGE-L.

5 Result and Discussion

5.1 Performance Evaluation

Table 3. ROUGE performance on the five datasets.

Dataset Metric TextRank S2S+Attn PGN HSSC memAttr USN Dual-view NARS

Toys Rouge-1 3.98 14.71 16.08 14.77 15.81 15.54 15.80 19.21

Rouge-2 0.78 2.84 4.08 3.98 3.85 3.10 4.85 5.12

Rouge-L 3.51 14.35 15.69 14.49 15.46 15.23 15.45 18.56

Sports Rouge-1 3.91 15.12 16.35 15.44 17.50 14.93 16.63 18.69

Rouge-2 0.72 3.86 4.99 4.08 5.54 5.08 5.12 6.55

Rouge-L 3.42 14.98 16.25 15.25 17.37 14.81 16.30 18.39

Clothing Rouge-1 2.53 14.13 16.10 15.86 17.15 16.24 16.03 18.54

Rouge-2 0.45 3.25 4.71 4.89 4.96 4.95 5.02 5.06

Rouge-L 2.27 14.09 15.97 15.81 16.90 16.05 15.90 17.93

Movie Rouge-1 3.16 11.55 12.59 12.32 13.71 13.59 13.06 15.63

Rouge-2 0.52 2.90 3.82 3.54 4.27 4.11 3.78 4.20

Rouge-L 2.78 11.29 12.21 12.05 13.31 13.22 12.73 14.22

The comparison results of different methods are reported in Table 3. We have
the following observations. First, abstractive methods outperform the extractive
method (i.e., TextRank) with a large margin, which only extracts some original
sentences from the source reviews. The reasons are that the extracted sentences
in reviews are always noisy and the gold summaries usually cover content across
multiple sentences.
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Second, for abstractive methods, compared with the basic seq2seq model
(e.g., S2S+Attn), the models with copy mechanism (e.g., PGN, NARS, etc.)
perform better. This is because these methods solve the out-of-vocabulary prob-
lem by copying words from the input text. It is obvious that our method NARS
outperform HSSC which only utilize the rating information to control the senti-
ment tendency of the generated summaries. The reason is that user and product
attributes are crucial to the review modeling in the summarization. We can also
see that our method NARS performs better than memAttr. It is because that our
method considers the hierarchical structure of text in both encoder and decoder
and utilizes adversarial training to generate high quality summaries.

Third, our approach NARS can consistently outperform all the baseline
methods compared here. This is because our method considers the hierarchical
structure of review rather than treats the review as a long sequence. In detail,
we integrate the personalized information into the encoder to learn more com-
prehensive feature of the review (e.g., at word- and sentence- level), and conduct
re-weighting the word importance by the sentence importance in the decoder to
better identify the salient information. The experimental results demonstrate
the effectiveness of our proposed method NARS.

5.2 Ablation Study

Fig. 3. Ablation study on the Toys & Games dataset.

There are several key components in our model and they play different roles
in our model, i.e., the personalized attention vectors, word- and sentence-level
attention in encoder/decoder, and the adversarial training part. In order to eval-
uate the effect of the different components of our method, we perform ablation
experiments on the “Toys & Games” dataset and report the result in Fig. 3. We
design four variants in our experiments:

(1) “-C” denotes that we remove the personalized attention vectors and adopt
the same attention vectors for all users and products in the review encoder.
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(2) “-HE” denotes that we remove the hierarchical attention in review encoder
and learn review representation from words directly without considering the
sentence-level information.

(3) “-HD” denotes that we remove the hierarchical attention in summary
decoder and directly calculate the weights for words in the source review.

(4) “-D” denotes that we remove the discriminator in the adversarial training
framework and only train the model with the negative log-likelihood loss.

As shown in Fig. 3, we can observe that removing any key component in our
method would lead to a performance decline in terms of ROUGE-1, ROUGE-2
and ROUGE-L, i.e., the personalized information (“-C”), hierarchical attention
in both the encoder and decoder (“-HE” and “-HD”), and the adversarial
training (“-D”). The results validate that the effectiveness of our method and
meet our motivation denoted above.

5.3 Case Study

In this section, we conduct two case studies to further demonstrate the method
intuitively.

Recall that we incorporate the ratings as part of condition into the gen-
erator and discriminator to control the sentiment tendency of the generated
summaries. Thus, we select some real cases under different ratings and list the
result in Table 4. When the rating is larger than or equal to 3, gold summaries
and generated summaries both contain the positive words (e.g., “great”, “fun”,
“beautiful”, etc.), while they both contain the negative words (e.g., “worst”,
“terrible” etc.) when the rating is lower than 3. However, our model performs

Table 4. Generated summaries for some reviews. In each row, the first line is the gold
summary and the second line is the generated summary.

Rating Summaries

5 Beautiful high-quality puzzle

Beautiful puzzle

5 Great family fun- no pictures though

Great family game

4 Quality seems fine not too sure about the sizing

Good gloves but not for me

3 Nice puzzle to learn numbers

Fun puzzle but not as the letter

2 Cheesy

Not worth it

1 Terrible terrible movie

One of the worst movies ever
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relatively poorly on the samples whose ratings are lower than 3, because the
proportion of these samples is much smaller in datasets.

Table 5. The generated summaries of our model and comparative methods

Review: This is basically a ker-plunk game played with bees and a bee hive... but still it’s

very fun and colorful. My wife uses it at school with her kids and they love it. It’s easy to

set up and

Use... and the kids the mechanical aspect of setting it up and letting it all fall down

S2S+Attn: fun for the whole family

HSSC: great game for the whole family

PGN: great game for kids

memAttr: fun and fun for kids

NARS: fun and colorful game for kids

Gold Summary: very fun, colorful easy to use toy

Review: These gloves feel solid and offer decent wrist support. Which is a good thing,

because even

Though they’re marked 34;large,34; there’s no way I could get them on over wraps. They are

Bright pink, so maybe it’s a women’s size? I don’t know. But I do recommend trying them

on in a

store unless you want to risk having to send them back. That said, do try ’em – they’re

comfortable

To wear and seem built to last

S2S+Attn: good gloves

HSSC: good gloves

PGN: solid gloves

memAttr: solid gloves

NARS: good gloves but not for me

Gold Summary: quality seems fine; not sure about the sizing

In Table 5, we show a sample of generated summaries in our model and
baseline methods on Toys & Games dataset. The result shows that the generated
summaries of baselines are similar and always contains the high frequency word
great. However, our model can select the salient words, e.g., word colorful in the
first case. In the second case, we can see that the user bought the product just
because that the product is cute, but the product is not suitable for the 6 month
grandson. And our model could generate more precise summary All baselines just
generate summaries ignoring the semantic information that covers across all the
sentences. Our model performs better than baselines through the hierarchical
attention network to compute the saliency weight score for each sentence of the
source review.

5.4 Visualization of Attention

To validate that user and item information is able to select the important sen-
tences and words in the input reviews, we visualize the attention from sentence-
level and word-level of two samples from Toys and Sports datasets in Fig. 4. In
each Review, every line is a sentence (sometimes a sentence covers two lines due
to sentence length). In the first case, the first sentence and the second sentence
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Rating: 4.0
Gold Summary: quality seems fine; not sure about the sizing

Review: 
These gloves feel solid and offer decent wrist support. 
Which is a good thing, because even though they're marked &#34;large,&#34;there's no way I 
could get them on over wraps. 
They are bright pink, so maybe it's a women's size? 
I don't know. 
But I do recommend trying them on in a store unless you want to risk having to send them back. 
That said, do try 'em -- they're comfortable to wear and seem built to last.

Rating: 4.0
Gold Summary: very fun, colorful easy to use toy
Review: 
This is basically a ker-plunk game played with bees and a bee hive...but still 
it's very fun and colorful.
My wife uses it at school with her kids and they love it.
It's easy to set up and use...and the kids the mechanical aspect of setting it up 
and letting it all fall down.

Fig. 4. Attention visualization. The blue denotes the sentence-level attention and the
pink denotes the word-level attention in each sentence. (Color figure online)

get more attention at sentence-level, which represent ‘quality seems fine” and the
“size” problem, respectively. In the second case, compared with the gold sum-
mary, our model select the key words “fun” and “colorful” in the first sentence
which is also selected as the important sentence. Especially, the result in Table 5
show that only the generated summary of our model contains the personalized
word “colorful”.

6 Conclusion

In this paper, we propose a neural adversarial review summarization method.
Our model captures the different informativeness of different components of the
review by applying a hierarchical attention at word-level and sentence-level in the
review encoder and summary decoder. Especially, we utilize the user, the product
and the rating, along with the review, as personalized attention query vector to
identify the salient parts of the review. Besides, we design an adversarial training
framework which makes the generated summaries controlled by the personalized
information. The experimental results show that our model achieve the best
performance than baselines.
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Abstract. Generating contextually coherent responses has been one of
the most critical challenges in building intelligent dialogue systems. Key
issues are how to appropriately encode contexts and how to make good
use of them during the generation. Past works either directly use (hier-
archical) RNN to encode contexts or use attention-based variants to fur-
ther weight different words and utterances. They tend to learn dispersed
focuses over all contextual information, which contradicts the facts that
humans tend to respond to certain concentrated semantics of contexts.
This leads to the results that generated responses are only show seman-
tically related to, but not precisely coherent with the given contexts. To
this end, this paper proposes a contextually coherent dialogue generation
(ConDial) method by first encoding contexts into structured semantic
vectors using self-attention, and then adaptively choosing key semantic
vectors to guide the response generation. Based on the structured seman-
tics, it also develops a calibration mechanism with a dynamic vocabulary
during decoding, which enhances exact coherent expressions by adjusting
word distribution. According to the experiments, ConDial shows better
generative performance than state-of-the-arts and is capable of generat-
ing responses that not only continue the topics but also keep coherent
contextual expressions.

Keywords: Dialogue generation · Contextual coherence · Structured
vectorized semantics · Calibration mechanism

1 Introduction

Developing intelligent dialogue agents that can contextually coherently converse
with humans is attracting more attention from academia and industry [16,21].
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Contextually coherent dialogues help mitigate user confusion, maintain topic
continuity and keep long-term user engagement. Researchers have proposed var-
ious types of methods, including the retrieval-based [3], rule-based [3] and gener-
ative methods [11,12,18,22], based on which contextual coherence is researched.
Among them, generative methods are proven the most promising, since they can
automatically generate flexible responses without heavy manual handcrafts.

Generative dialogue methods train under the encoder-decoder framework
using large-scale dialogue datasets. To be more specific, the encoder compresses
necessary information of contexts into a fixed-size vector, conditioned on which
the decoder generates responses word by word. Under the framework, one chal-
lenge for contextually coherent dialogues is how to precisely encode key informa-
tion from contexts to guide coherent responses. (1) Some previous works directly
use (hierarchical) RNN to encode contexts. For example, [14] proposed a recur-
rent language model based method, which is conditioned on past dialogue utter-
ances that provide contextual information. [10] adopted a hierarchical recurrent
encoder-decoder (HRED) method, where contexts are encoded using two RNNs.
However, results show that they fail mainly because they “equally” encode words
or utterances in contexts and key information can not be emphasized. (2) Other
previous works use attention-based [1] variants to further assign different weights
on contextual words or utterances. For example, [20] also treated context encod-
ing as a hierarchical modeling process, particularly, it joined two-level attention
mechanism, which considered the importance of tokens and utterances. How-
ever, such attention mechanism is originally designed for machine translation
with alignment relationships between sources and targets, and is not suitable
for dialogues, where sources and targets follow a centralized correspondence.
To sum up, they are still far from contextually coherent that requires a tighter
correspondence between a generated response and the counterpart of its context.

Table 1. Examples of contextually coherent dialogs with three semantic aspects. under-
line:“discussion of picnic” aspect; wave underline:“weather preference” aspect; dashed
underline:“memories of pet” aspect; bold: contextually coherent local words. “(neg.)”
shows a negative response that is only semantic related but not coherent with contexts.

Context A:
�
I
����
really

���
like

��
the

������
weather

����
today, and I miss old days when we were out for a picnic

B: Yes, I remember picnics are your favourite and you always take your dog Chico

A: What about going out for a picnic today?

Response B: Nice! Point Pelee National Park is best for picnic

(neg.) Response B: We plan to go hiking to enjoy the good day

On the contrary, as argued by authors in [15], responses from humans are
determined more by certain semantic aspects indicated by word subsets, rather
than disperse attention over every word. For example, as shown in Table 1, there
could be more than one semantic aspects in given contexts (especially in multi-
turn dialogue with long contexts), where there are three semantic aspects in
context, i.e., “preference of weather”, “discussion of picnic issue”, “memories of
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pet” and each aspect is described by a set of key words. The response is generated
by attending to the “discussion of picnic issue” aspect. Besides, the response
also keeps the same keyword “picnic” with contexts. This example suggests us
that simply (weighted) aggregating all words or disperse attention over all words
does not appropriately encode contextual information. A more reasonable way
of encoding contexts is to discover the multiple semantic aspects, and to attend
to the most promising ones to respond. Moreover, keywords in contexts should
be assigned extra importance to ensure local coherence.

This work aims to generate contextually coherent responses (as “response”
in Table 1), instead of semantic related responses (as “neg. response” in Table 1).
To this end, we initially propose the Contextually Coherent Dialogue Genera-
tion method (ConDial for short) as shown in Fig. 1. It architecturally employs
the state-of-the-art conditional variational encoder-decoder (CVED) [13] as the
backbone. Firstly, to enable the agent understand the multi-aspect semantics
within long utterances, we develop a self-attention-based hierarchical encoder
module to encode each utterance into multiple vectorized semantic aspects. Since
each utterance is structurally separated into multiple parts, each part being
encoded as a vector representing partial semantics, we named it as structured
vectorized semantics (SVS for short). Secondly, to focus on the promising SVS
aspects and mitigate the influence of irrelevant ones, the agent then employs an
aligned attention mechanism to adaptively attend to each semantic aspect. Here
we evaluate whether they are promising or not by calculating semantic distances
between each semantic aspect and previously-given dialogue history. The key
idea is that more promising SVS aspect keeps closer semantic distance to dia-
logue history. Thirdly, to strengthen contextually coherent expressions as much
as possible, conditioned on SVS, the agent employs a calibration mechanism
during decoding, where the probabilities of words within contexts are properly
increased, such that they are more likely to be generated.

To sum up, main contributions of this work are as follows:

– We propose to learn structured multi-aspect vectorized semantics within long
utterances and focus on the most promising ones to respond, such that dia-
logue agent can avoid simple aggregation or disperse attention over contexts
and perform better in keeping contextual coherence.

– We integrate calibration mechanism to adjust word distribution when decod-
ing, which strengthens coherent expressions in a more accurate way.

– We conduct extensive experiments to evaluate our method in various evalu-
ation metrics and show superior performance over state-of-the-art methods.

2 Related Work

With the great advances in semantic learning of natural languages, more related
work address how to encode contexts into real-valued vectors, such that
response semantics could be well-guided accordingly. For example, The
Seq2Seq dialogue model [17] initially organized contexts as a list of sequen-
tially concatenated utterances, and directly encoded them through a recurrent
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encoder. Then, [10] proposed to organize contexts using a hierarchical archi-
tecture with two-level recurrent encoders. Moreover, [11] further introduced a
stochastic latent variable at context level to improve the diversity of contex-
tual information. Later, [20] introduced attention mechanism [1] and presented
a hierarchical recurrent attention architecture to model contexts, taking both
word-level attention and utterance-level attention into account. Built upon them,
[21] further introduced the static and dynamic attention in context encoding,
which weights the importance of each utterance using two attention mechanisms
and obtains better context vectors. Existing work generally encode contexts
by (weighted) aggregating representations of words or utterances or disperse
attention, which contradicts the fact that humans-being usually receive contex-
tual information from a centralized semantic perspective. Our work will take
a step forward to build contextually coherent dialogue systems using central-
ized representation of contexts, instead of scatterly combining representations of
words/utterances.

Another significant difference between our work and the above-mentioned
work is that, our work also addresses how contextual information directly
affects the decoding process, such that coherent words can be precisely
maintained. There are mainly two types of works that address generating spe-
cific words. The first type generates specific types of words by using a fixed-size
pre-defined vocabulary. For example, [23] proposed to generate responses that
are not only grammatical but also emotionally consistent using a pre-defined
external emotional vocabulary. [19] proposed to generate appropriate questions,
where all words in each question are classified into one of three types, and each
type is associated with a pre-defined external vocabulary. In such cases, the to-
be-generated words are usually limited to a small fixed vocabulary and does not
agree with the situation of generating context-related words that hold a con-
stantly changing vocabulary. The second type relies on the copy mechanism [4].
They integrate regular decoder with the new copying mechanism which first
chooses sub-sequences in the contexts and then puts them at proper places in
the output responses. However, the use of whole context vectors to guide the
prediction are proved to be not discriminative and sufficient enough. Our work
overcomes the challenges of both types of methods, which uses a dynamic vocab-
ulary to properly adjust probabilities of to-be-generated words, and uses more
precise partial contextual vector to guide the prediction.

3 Method

3.1 Model Overview

The problem is formally defined as follows. At the T-th turn, given the dialogue
history (also referred as dialogue contexts) x = {u1, ...ut..., uT }, the model aims
to generate a next response y = uT+1 that is semantically coherent with the
given contexts. Here each utterance is a sequence of discrete words with varying
length ut = {wt,1, wt,2, ..., wt,|ut|}. Specifically, semantic coherence is defined
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in detail, which means both globally inheriting exact SVS aspects from contexts
and locally keeping coherent expressions, as exemplified in Table 1.

Figure 1 presents the overview architecture of our Contextually Coherent
Dialogue method (ConDial for short). It uses the state-of-the-art conditional
variational encoder-decoder (CVED) as the backbone, and specifically consists
of three major components, i.e., the Hierarchical Centralized Encoder (HCE),
the Inference Network (IN), and the Context-calibrated Decoder (CCD).

The model generally works as follows. (1) Given the contexts x, HCE first
attempts to understand and extract its inherent semantics via a structured self-
attention mechanism [7]. In this way, each utterance of contexts ut is encoded into
multiple vectors, where the vector mi

t represents the i-th partial semantic aspect
(denoted as SVS aspects). Then, it employs another standard attention mecha-
nism [1] over the multiple SVS vectors, and adaptively attends to aspects with
different weights αi

t, which ultimately generates the utterance representation ct.
Finally, all utterance representations ct(1 ≤ t ≤ T ) are properly aggregated to
generate a dialogue context representation kT . (2) The agent employs context
representation kT to perform inference over the latent variable, which models
the distribution of high-level characteristics of dialogues from a stochastic per-
spective. The latent variable representation z is obtained by sampling from the
learned stochastic distribution. (3) Last, conditioned on the last utterance rep-
resentation cT and the context-level latent variable representation z, the agent
decodes new responses ŷ = {wT+1,1, ..., wT+1,|uT+1|} word by word. Particularly,
during decoding, the learned SVS aspects are also used to adjust the output
word distribution through a calibration mechanism, which guarantees coherent
local expressions with contexts.

Fig. 1. The overview architecture of ConDial, consisting of three components: the hier-
archical centralized encoder, the inference network and the context-calibrated decoder.

3.2 Hierarchical Centralized Encoder

The HCE takes contexts x = {u1, ..., ut, ..., uT } as inputs, and outputs last utter-
ance representation cT and the context representation kT . The HCE structure
is depicted as Fig. 2. HCE generally has three modules, including self-attended
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utterance encoder, connected attention, and context encoder. Details of each
module are presented as follows.

Fig. 2. HCE detailed structure, consisting of three modules, namely self-attended utter-
ance encoder (subfigure a), connected attention and context encoder (subfigure b).

Self-attended Utterance Encoder Module. This module is intended for
encoding utterances into utterance embeddings.

Firstly, given an utterance u = {wt,1, wt,2, ..., wt,|u|} (the subscript t indi-
cating the number of utterance in contexts is omitted for simplicity), it is first
encoded into a list of hidden states, denoted as H = {h1, h2, ..., h|u|}, through a
recurrent net with GRU unit. The hi denotes the i-th utterance encoder hidden
states, d means the hidden dimension, and e(wi) is the embedding of word wi.

hi = fGRU(hi−1, e(wi)),H |u|×d = {h1, h2, ..., h|u|}
Secondly, the hidden states are imposed with the self-attention mechanism to

generate multiple semantic vectors. Given hidden states H = {h1, h2, ..., h|u|},
a weight matrix A is first calculated by transforming H through multi-layer
perceptrons, as follows.

Ar×|u| = fsoftmax(Ws2ftanh(Ws1H
T ))

where Ws1 and Ws2 are weight matrices respectively with the shape of da-by-d
and r-by-da, da is an intermediate dimension and r represents the number of
possible semantic aspects. The weight matrix A has the shape of r-by-|u|. Then,
by multiplying weight matrix A and hidden states H, we shall obtain the final
utterance embedding M , with the shape of r-by-d.

Mr×d = Ar×|u|H |u|×d

Unlike previous work [10,11] where each utterance is encoded into one single
vector, the final utterance embedding M has r different vectors. Each vector is
of d-dimension and focuses on different partial aspects of the input utterance.
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Connected Attention Module. This module aims to assign appropriate
weights on multiple semantic vectors and generate the semantic-aspect-based
utterance-level context. At the t-th turn, the connected attention module takes
two inputs, including the t-th Mt from HCE and the (t-1)-th hidden states
of context encoder module (referred to kt−1). This module first computes a
probability distribution over the r vectors within Mt and generates r weights
β = {β1

t , β2
t , ..., βr

t }. Then all the r semantic vectors within Mt are multiplied
by corresponding weights and are combined together, forming semantic-aspect-
based utterance-level context ct. To be more specific, it is formalized as follows.

βi
t =

efg(kt−1,mi
t)

∑r
i=1 efg(kt−1,mi

t)
, i ∈ [1, r], ct =

r∑

i=1

βi
t ∗ mi

t

where mi
t represents the i-th semantic vector within Mt, fg(∗) computes the

similarity between both inputs. Here it uses a bilinear function fg(kt−1,m
i
t) =

V T ftanh(W1kt−1 + W2m
i
t), where V T ,W1 and W2 are parameter matrices. ct is

computed by weighted sum combining all promising semantic aspects within the
utterance, which agrees with our initial motivation of encoding utterance from
the semantic perspective.

Context Encoder Module. The context encoder module further encodes
inputs at the context level. It uses another GRU and we use kt to represent its
hidden states at the t-th step. At the t-th step, it takes three inputs, including
the previous hidden states kt−1, semantic-aspect-based utterance-level context
Ct from connected attention module, and the traditional utterance embedding
h|ut|, as follows.

kt = fGRU(kt−1, ht,|ut|||ct)

The last hidden states kT of context encoder is considered as the summarization
of all contextual information, i.e., a dialogue-level context.

3.3 Inference Network

We follow past studies [11,12] to use the same inference network structure shown
in Fig. 1. Latent variables are assumed to take the form of Gaussian distribution,
thus two parameters (mean and variance) remain to be inferred. For the prior
distribution, it inputs context vector kT , and outputs the mean μpriorand the
variance σ2

prior values via multi-layer perceptrons. For the posterior distribution,
it takes both the context vector kT and the encoded vector of the target response
h|uT+1| as inputs, and outputs the mean μpost and the variance σ2

post via another
multi-layer perceptrons. The whole process is as follows.

[
μprior, log σ2

prior

]
= fprior (kT ), zprior ∼ N(μprior, σ

2
prior)

[
μpost, log σ2

post

]
= fpost(kT , h|uT+1|), zpost ∼ N(μpost, σ

2
post)

During training, the latent variable is sampled from the posterior distribution.
During inference phase, the latent variable is sampled from the prior distribution.
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3.4 Decoder with Calibration Mechanism

For a general decoder, at each decoding step, each word is directly sampled from
the vocabulary word distribution computed by decoder states. That is to say, the
word distribution is only determined by the decoder states. However, we argue
that not only the current decoder state but also the context-related information
would have influences on the word distribution, especially for the appropriate
SVS aspects of dialogue history.

This is illustrated by Table 1. When conditioning on “Nice! Point Pelee
National Park is best for” and predicting the next word, there could be several
words that are of high probability, such as “playing”, “running” and “picnic” etc.
However, since “picnic” has appeared in contexts and is the key information of
crucial SVS aspects, its probability should be even higher. Therefore, to increase
probabilities of key words that have been mentioned in contexts, we rewrite the
decoding probability at the n-th step as follows.

Pθ(yn|y<n, z, x) =
∑

t∈{t1,t2}
Pθ(yn, t|y<n, z, x)

=
∑

t∈{t1,t2}
Pθ(t|y<n, z, x)Pθ(yn|t, y<n, z, x)

(1)

where y<n represents the first n − 1 words of the response, and t is the word
type distribution of current to-be-predicted word. Values t1 and t2 respectively
are probabilities of being context-related and context-free (thus t1 + t2 = 1).

Fig. 3. Illustration of calibration mechanism.

The calibrated mechanism is depicted in Fig. 3. The decoder also uses a
recurrent network, and we denote its hidden state at the n-th step as sn. At
the n-th decoding step, given previous decoder hidden state sn−1 and context-
related information (including the latent variable sample z and the combined
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semantic vector of the last utterance cT ), the recurrent process is as follows.

sn = fGRU(sn−1, e(wn)||z||cT )
[t1, t2] = fsoftmax(fmlp(sn, z, cT ))
ot1 = Wo1sn, ot2 = Wo2sn ⊗ mask
ŵn ∼ ot = t1 ∗ ot1 + t2 ∗ ot2

where Wo1 , Wo2 are linear weight matrices and mask is a vocabulary-size boolean
vector, where context words are labeled 1 and others are 0. The mask can be
directly obtained from original contexts.

3.5 Loss Function

The loss function of ConDial consists of multiple terms. In the next, we respec-
tively introduce each optimization loss term in details.

Since ConDial is based on the CVED framework, it has the following evidence
lower bound (ELBO) to be maximized.

LELBO = −EQφ(z|x,y)[log Pθ(y|z, x)] + KL[Qφ(z|y, x)||Pθ(z|x)] (2)

The ELBO has two sub-terms. The first part is the reconstruction error, which
is calculated as the cross-entropy between the predicted word distribution and
the expected distribution in the training set. The second part is the KL diver-
gence, which is calculated by minimizing the differences between approximated
posterior distribution and the prior distribution of latent variables.

Considering that the HCE is built upon the structured self-attention, as
argued by [7], we introduce an additional penalty term, encouraging the multiple
semantic vectors to learn different information. Therefore, the following loss term
LP is minimized, where A represents the weight matrix in self-attention module,
|| ∗ ||F means Frobenius norm and I is an identity matrix.

LP = ||AAT − I||2F (3)

Besides, we apply supervision on the word types. This loss term as follows is
minimized, where ty represents the true word type label, which is binary.

LT = −E[log p(t = ty|y<n, x, z)] (4)

To sum up, ConDial is optimized by minimizing the following objective.

L = −LELBO + LP + LT (5)
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4 Experiments

4.1 Experimental Settings

Datasets. Arguably collecting appropriate dialogue datasets is one of the chal-
lenges, and this is especially true when we focus on complicated dialogues that
contain multiple semantic aspects in contexts [5]. Fortunately, previous works
have contributed good-quality multi-turn datasets, such as DailyDialog1 and
Switchboard2. We formulate required data by treating the last utterance as
response and concatenating the remaining ones as contexts. Dataset statistics
are listed in Table 2.

1. DailyDialog covers 10 real-life topics (e.g., politics and finance). It totally
consists of 13118 dialogue sessions. It is split into train, valid and test sets,
with 10118, 1500 and 1500 dialogues. It has an average of 7.9 turns per
dialogue, 14.6 words per utterance and a vocabulary with 17016 words.

2. Switchboard covers 70 open-domain topics. We randomly collect a subset
(367380 dialogues) for experiments. It is split into train/valid/test sets with
357380, 5000 and 5000 dialogues. The average turns per dialogue is 6.0 and
the average words per utterance is 15.3. The vocabulary is built from 20000
the most frequent words, covering 99.8% of the entire set of words.

Table 2. Statistics of datasets.

Datasets #train #valid #test # turns/dialog #words/utterance #vocab(%)

DailyDialog 10118 1500 1500 7.9 14.6 17016(100%)

Switchboard 357380 5000 5000 6.0 15.3 20000(99.8%)

Baseline Methods. Several baseline methods are selected for comparison.
(1) Seq2Seq [17] adopts encoder-decoder framework and minimizes the cross-
entropy in an end-to-end manner. The contexts are encoded using one single-
layer RNN. (2) HRED [10] adopts a hierarchical recurrent encoder-decoder
network. The contexts are encoded using two RNNs, where the first (utter-
ance RNN) encodes each utterance into real-valued vector and the second (con-
text RNN) takes utterance vectors as inputs and output context vectors. (3)
VHRED [11] is built upon HRED and additionally incorporates latent variables
to model high-level variation of contextual information. (4) WSI [16] shares the
same architecture with HRED. Unlike HRED that takes the last hidden states of
context RNN as context vectors, it takes weighted summarization of all hidden
states as context vectors. (5) HRAN [20] is based on HRED and addition-
ally joins two-level attention mechanism, which jointly models the importance
of tokens and utterances respectively. (6) Static/Dynamic [21] are based on
HRED and respectively add static and dynamic attention. Here we take Static,
which performs better between the two, as a baseline.
1 http://yanran.li/dailydialog.html.
2 https://github.com/cgpotts/swda.

http://yanran.li/dailydialog.html
https://github.com/cgpotts/swda
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Training Setups. For fair comparison, we implement our ConDial and base-
lines using Tensorflow3 and train them on the same machine with three 1080Ti
GPUs. We use a validation set to tune parameters and finally measure metrics
on the test set. We used the Adam optimizer with the learning rate initialized
to 0.0005 and decayed under default settings. The batch size was set to 32/64
for DailyDialog/Switchboard. Both utterance encoder and decoder adopts single-
layer unidirectional GRUs with 256 units. The context encoder uses a single-layer
unidirectional GRU with 512 units. The latent variable dimension is 256 and the
embedding size is 200. During training, we apply truncated back-propagation
and gradient clipping with maximum gradient norm to be 5. During inferring, we
use beam-search decoding with beam width 5. As reported in previous works [2],
models with latent variables (VHRED and ConDial) would suffer from KL van-
ishing problem, where the latent samples are ignored and the whole models
degenerate into auto-regressive models. We follow previous works to solve it
with KL annealing technique [2] and bag-of-word loss [22]. All experiments are
performed 10 times and the average results are reported to avoid randomness.

4.2 Automatic Metric-Based Evaluation

Metric Settings. We choose two types of metrics. First, from the word-
level perspective, we follow previous work [10,11,22] to use PPL [8] and BLEU
scores [9]. PPL is defined as the exponentiation of the word entropy, while BLEU
score is based on the idea of modified n-gram precision (here we use normalized
BLEU-1 to 2). Both measures to which degree the generated responses match
golden standards verbatim. Smaller PPL and larger BLEU scores indicate bet-
ter performance. Second, from the sentence-level perspective, we follow existing
works to use embedding-based metrics: Average, Extrema and Greedy [8,11].
They describe the semantic fit between generated and golden responses, and
larger values indicate better semantic similarities.

Results and Analysis. Table 3 shows the metric-based results, including both
word-level and sentence-level results. Key observations are as follows.
Word-level Generative Performance. Firstly, we focus on validating detailed
design of methods. (1) Comparing Seq2Seq and HRED, we can see HRED per-
forms significantly better, with (10.82, 0.269, 0.0086) and (2.72, 0.0032,0.004)
advantages for the three metrics (PPL, BLEU-1, BLEU-2) respectively on Dai-
lyDialog and Switchboard. It suggests that hierarchical modeling of contexts
indeed improves the quality of generated responses, and validates the motiva-
tion of using a hierarchical structure as the backbone of HCE component. (2)
Since WSI, HRAN, and Static are all based on the HRED model and directly
incorporate attention mechanisms in different ways, by respectively comparing
each of them with HRED, we find that none of them show stable advantages
for all metrics. This validates our initial motivation that standard attention

3 https://github.com/tensorflow/tensorflow.

https://github.com/tensorflow/tensorflow
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mechanisms does not necessarily promote the quality of context encoding. Since
they learn a dispersed attention over all words, it does not effectively high-
light key contextual semantics while weakens unimportant information, which
can also hurt response generation. (3) Additionally, we also find that VHRED
stably outperforms HRED with (2.49,0.0008,0.0236) advantages on DailyDialog
and (2.09,0.077,0.0506) advantages on Switchboard, proving the effectiveness of
using latent variables to model the distribution of high-level semantics.

Secondly, the proposed ConDial generally achieves competitive word-level
results than other methods, as is marked in bold. It proves that responses gener-
ated by ConDial best fits golden standards word by word. Besides, ConDial com-
bines all designs mentioned above, and it also proves that the three techniques
are compatible and can be combined together to achieve improved performance.

Table 3. Performance of response generation from word/sentence-level perspective.

Models #Params PPL (KL) BLEU-1 BLEU-2 Extrema Average Greedy

DailyDialog Seq2Seq 13×106 44.49 (–) 0.2728 0.1790 0.2183 0.4173 0.4339

HRED 19×106 33.67 (–) 0.2997 0.1876 0.2346 0.4158 0.4344

VHRED 23×106 31.18 (3.78) 0.3005 0.2112 0.2635 0.4549 0.4479

WSI 19×106 33.24 (–) 0.2804 0.2404 0.2040 0.3952 0.4190

HRAN 21×106 45.48 (–) 0.2089 0.1132 0.2097 0.2681 0.3935

Static 20×106 32.20 (–) 0.2440 0.2001 0.2182 0.2760 0.3952

ConDial 23×106 28.10 (3.92) 0.3103 0.2410 0.3066 0.4640 0.4682

Switchboard Seq2Seq 18×106 61.02 (–) 0.0628 0.0458 0.2126 0.2468 0.3199

HRED 26×106 58.30 (–) 0.0660 0.0498 0.2207 0.2524 0.3446

VHRED 31×106 56.21 (2.20) 0.1430 0.1004 0.1825 0.2303 0.3055

WSI 26×106 63.30 (–) 0.0698 0.0402 0.1452 0.1680 0.2238

HRAN 29×106 72.30 (–) 0.0609 0.0411 0.2015 0.2110 0.3080

Static 26×106 62.45 (–) 0.0830 0.0460 0.1326 0.1662 0.2304

ConDial 32×106 42.20 (4.19) 0.1493 0.1180 0.2731 0.2613 0.3682

Sentence-level Generative Performance. We observe that our ConDial method
outperforms other baselines in terms of embedding-based metrics with compara-
ble model size. It proves that responses from ConDial show better topic similarity
with ground-truths, thus are more likely to semantically correspond to contexts.
Specifically, Seq2Seq, WSI, HRAN and Static perform less well, as is predicted
in previous subsection. For Seq2Seq, long contexts are encoded using a simple
RNN, where long-distance information is easy to attenuate and there’s no fil-
tering of redundant information, thus resulting in poor performance. For WSI,
HRAN and Static, such attention mechanisms lead to dispersed attention dis-
tribution over input contexts. ConDial and VHRED share the same variational
auto-encoder architecture, but use different encoder and decoder, and we find
that ConDial presents stably better results, which proves the effectiveness of
HCE and Cali mechanisms.
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4.3 Manual Evaluation
Metrics and Settings. For subjective evaluation, we compare our ConDial
with baselines (including Seq2Seq, HRED, VHRED, WSI, HRAN, and Static),
thus forming 6 comparison pairs, as Table 4 shows. We randomly sampled 100
contexts from the test set. We feed each context data into each comparison pair
to generate responses (from two models), and generate the to-be-annotated sam-
ple in the form of (contexts, response1, response2). Therefore, we totally have
100 × 6 = 600 to-be-annotated samples. Note that within each to-be-annotated
sample, both responses are messed up in order, and only experiment designer
knows the true order. We then let 3 volunteers who are not related to this work
to annotate these samples by the following rules. (1) Each volunteer is asked
to independently choose among win and loss (win: response1 is better; loss:
response2 is better) in terms of certain factor. (2) Each volunteer is asked to con-
sider two factors, including being fluent/grammatical (denoted as appropriate)
and being contextually coherent. (3) We adopt the strategy of majority voting.
Thus, for each comparison pair in terms of each factor, there are totally 100 to-be-
annotated samples, each receiving 3 votes, corresponding result being reported
in the form of percentage comparison, (#votes1

300 × 100%) : (#votes2
300 × 100%)

(#votes1 + #votes2 = 300).

Table 4. Results of manual evaluation.

Comparison Appropriate (100%) Coherent (100%)

ConDial vs Seq2Seq 51.3:48.7 94.7:5.3

ConDial vs HRED 49.0:51.0 63.3:36.7

ConDial vs VHRED 49.3:50.7 70.0:30.0

ConDial vs WSI 76.7:23.3 85.3:14.7

ConDial vs HRAN 66.7:33.3 83.0:17.0

ConDial vs Static 63.0:37.0 86.7:13.3

Results and Analysis. Table 4 summarizes the results. As can be seen, Con-
Dial outperforms other baselines significantly in the consistency metric, which
agrees with the results of automatic evaluation. Putting aside the consistency
factor and only considering appropriateness, results are as follows. Comparing
with Seq2Seq, HRED, and VHRED, ConDial achieves comparable results, where
the vote gap is less than 2%. Comparing with WSI, HRAN, and Static, ConDial
shows competitive advantages, where the dominant vote gap is more than 20%.

Not considering much on consistency, we observe that the other models tend
to generate responses that are shorter and simpler, and some even just generate
general and safe responses, like “I don’t know” and “that is right”. Researchers
have also ever reported similar observations [6,15]. They have less chances to
make mistakes in grammar and syntactics. In order to keep contextual coherent,
responses from ConDial are statistically longer and more information-rich (see
Table 6), thus they are more likely to make mistakes in appropriateness.
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4.4 Further Analysis of Our Method

Ablation Study. Firstly, to evaluate the effectiveness of HCE component, we
experimented by replacing HCE with other different strategies of encoding con-
texts, including the standard RNN encoder (denoted as ConDial rpl. RNN-enc),
the HRED encoder (denoted as ConDial rpl. HRED-enc), the WSI encoder (Con-
Dial rpl. WSI-enc), the Static encoder (denoted as ConDial rpl. Static-enc). Sec-
ondly, to evaluate the effectiveness of Calibration mechanism, we experiment
by removing it from ConDial (referred as ConDial rm. Cali) and using a gen-
eral decoder. Considering the fact that automatic metrics cannot discriminate
slight differences of generated responses, we use manual evaluation for ablation
study, in order to provide subjective and discriminative results. We randomly
select 120 contexts from DailyDialog. For each context, we let each model gen-
erate corresponding response, and then ask 3 volunteers to vote for the best one
considering the above two factors. Thus there are totally 120 × 3 = 360 votes
allocated among 6 models. Table 5 shows the results of ablation studies.

Table 5. Results of ablation study.

Model Vote ratio ( #votes
#total votes

× 100%)

ConDial 21.1%

ConDial rm. Cali 19.4%

ConDial rpl. RNN-enc 8.3%

ConDial rpl. HRED-enc 16.1%

ConDial rpl. WSI-enc 18.7%

ConDial rpl. Static-enc 16.4%

We can observe ConDial get the highest votes. By removing calibration mech-
anism, the number of votes reduces by 1.7%, indicating that calibration mecha-
nism have positive effects on response generation. However, the gap is small. It is
worth noting results between ConDial and ConDial rm. Cali are largely affected
by the dataset, where the gap would be larger if datasets contain more cases that
require keeping coherent expressions, and vice versa. By replacing HCE with
other encoding strategies, the number of votes drops to varying degree, prov-
ing the effectiveness of HCE. Among them, ConDial rpl. HRE+aggr shows the
minimal drop (2.2% drop), ConDial rpl. SRE shows the maximal drop (12.8%
drop), ConDial rpl. HRE+last & ConDial rpl. HRE+attn show similar drop
ratio (around 5% drop). We also observe, replacing HCE (>2.2% drops) influ-
ences more than removing calibration mechanism (<2% drops), which indicates
the HCE component plays the major role in contributing to the improvements.
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Effects on Response Diversity. Intuitively, we know that making responses
more coherent with given contexts would correspondingly reduce diversity since
the contextual information restricts the semantic space of responses. There-
fore, assessing to which degree response diversity has been damaged
remains to be an important question. We use the widely-accepted Distinct-
1/2 metrics [6] to measure the diversity of generated responses. They are calcu-
lated as the number of unique uni-grams or bi-grams in the predicted responses
scaled by total number of tokens. Larger values means better diversity. Figure 4
shows results. Note that diversity analysis on both datasets achieve similar
results, and here we take the results on DailyDialog for illustration.

Fig. 4. Comparison of response diversity of the models.

Both VHRED and ConDial achieve more competitive results in diversity due
to latent variable, Comparing VHRED with ConDial, responses from ConDial
are less diverse than those from VHRED. As is expected, both diversity and
contextual coherence hold a trade-off relationship. ConDial further improves
coherence, which would naturally hurt diversity in a way. Fortunately, results
show it is just a low degree reduce, and ConDial still significantly outperforms
all the others (VHRED excluded) in diversity.

4.5 Case Study

We present several generated examples in Table 6. As we can see, Seq2Seq gen-
erates responses that are grammarly and syntactically good, but hardly carry
semantic information. After modeling contexts with hierarchical architecture,
HRED can generate responses that are longer with richer semantics, however,
the responses are hardly semantically related to contexts. Built upon HRED,
the WSI, HRAN, and Static incorporate weighted attention mechanisms in dif-
ferent ways. Correspondingly, we observe that their generated responses can
have terms related to contextual words, however at a low frequency. Besides, the
responses are not that informative as HRED. This could because, the ways they
incorporate attention mechanism did not help select useful information, instead,
reducing information indeed hurt the generative process. We observe that gener-
ated responses from ConDial are the most contextually coherent among all cases,
where they show continuous topics and keep the same key words as contexts.
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Table 6. Cases of generated responses from different models. ⇒ means change of turns.
The words marked in bold are re-mentioned expressions. GT means the ground truth.

contexts If you ’d like further information on this , there ’s a guidebook in

several languages on sale at the information desk .⇒do you have a

chinese edition of this ?

Seq2Seq Yes , i do

HRED Yeah but there are various ways to find chinese money in the world

VHRED Yes, it’s very interesting. you’ll have to pay for the final decision

WSI Yes, but i have no idea of it

HRAN I ’m sorry , but i do n’t

Static I ’ve never been a mango

ConDial Yes, i do. i find it informative. the only thing is the excellent <unk>

in this information

GT I’m afraid we do n’t . wo n’t an english edition do ?

contexts What can i do for you , miss ?⇒i am looking for a pair of shoes

Seq2Seq What kind of color do you like ?

HRED What size do you want to have ?

VHRED How about this one ?

WSI What do you think of your present one?

HRAN I’m sorry about that

Static What kind of juice do you prefer ?

ConDial What kind of shoes are you looking for ?

GT Do you like high heels or flat shoes ?

contexts What do you think are the qualities a nurse should have ?⇒they are

responsibility , skill , patience , quietness , and so on

Seq2Seq I think you’ll have to do it

HRED I do n’t know . what do you think ?

VHRED I think you’ll have to make a decision in the kitchen

WSI I think that ’s good

HRAN What’s the matter ?

Static I think that they got into a fight and then decided to go to the

school

ConDial But i do n’t know what you mean . what do you think about the

patience ?

GT What kind of medicines does the doctor usually prescribe to

children who get highfever ?

5 Conclusion

In this paper, we proposed a contextually coherent dialogue model named Con-
Dial. It was constructed with CVED as backbone model. Particularly, instead of
encoding dialogue contexts from the word-level and utterance-level perspectives,
it encoded dialogue contexts into structured semantic blocks and then used an
attention mechanism to adaptively attend to multiple semantic aspects, using
the hierarchical centralized encoder component. To further keep coherent words
as contexts, a calibration mechanism is incorporated into decoding. We evaluated
it on two datasets from multiple aspects and experiments show effectiveness of
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the proposed method compared to other state-of-the-arts. By encoding contexts
from the semantic-level perspective, and using contexts to adjust decoding word
distribution, ConDial is capable of generating contextually coherent responses.
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Abstract. BERT based ranking models are emerging for its superior
natural language understanding ability. The attention matrix learned
through BERT captures all the word relations in the input text. How-
ever, neural ranking models focus only on the text matching between
query and document. To solve this problem, we propose a graph recur-
rent neural network based model to refine word representations from
BERT for document ranking, referred to as Latent Graph Recurrent
Network (LGRe for short). For each query and document pair, word rep-
resentations are learned through transformer layer. Based on these word
representations, we propose masking strategies to construct a bipartite-
core word graph to model the matching between the query and docu-
ment. Word representations will be further refined by graph recurrent
neural network to enhance word relations in this graph. The final rele-
vance score is computed from refined word representations through fully
connected layers. Moreover, we propose a triangle distance loss func-
tion for embedding layers as an auxiliary task to obtain discriminative
representations. It is optimized jointly with pairwise ranking loss for ad
hoc document ranking task. Experimental results on public benchmark
TREC Robust04 and WebTrack2009-12 test collections show that LGRe
(The implementation is available at https://github.com/DQ0408/LGRe)
outperforms state-of-the-art baselines more than 2%.

Keywords: Ad hoc retrieval · Graph neural network · Transformer

1 Introduction

Neural ranking models focus on learning query-document matching patterns, i.e.,
knowledge about search tasks. Recently, pretrained neural language models learn
such knowledge from an extensive text collection and provide new opportunities
for document ranking.

Word embedding [17] applied to document ranking is pretrained with a large
corpus based on word co-occurrences within a window of the input text. Unlike
such word embedding only encoding the local context, word representations
learned from BERT are a function of the entire input text. Taking the con-
catenation of query and document as input, BERT is naturally fit for the search
c© Springer Nature Switzerland AG 2021
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task. The reason lies in that the attention matrix contains query-document inter-
action on the word level. In this sense, BERT based ranking model belongs to
interaction based neural ranking models [7].

However, interaction based models only care for matching patterns between
query and document. The attention matrix learned from BERT brings about
additional word relations in the query-document matching process, such as
query-query and document-document word relations. Whether these additional
word relations are useful to derive the query-document relevance pattern remains
unknown. One interesting observation is that long natural language queries per-
form better than short keyword queries for BERT based ranking models in doc-
ument ranking tasks [2]. The problem that additional relations are dominant in
the attention matrix is more serious for short queries.

To solve this problem, we propose a graph recurrent neural network based
method to refine word embedding learned from BERT in the document ranking
task. For each query and document pair, BERT first takes their concatenation as
input and obtain word representations. Then, a masking method is adopted to
construct a bipartite-core word graph as the matching between query and doc-
ument, which is a masked attention matrix derived from learned word represen-
tations. Distinguished from explicitly defined graphs, the latent graph is learned
from BERT for the following word representation refinement layer. To enhance
word relations in this graph, word representations are updated through a gated
recurrent unit. The final query and document pair representation is summarized
from refined word representations and used for prediction. Pairwise ranking loss
is a function of relevance scores. Moreover, a triangle distance loss is proposed as
function of query, document and query-document pair representations to learn
discriminative representations. Both loss functions are optimized jointly in an
end-to-end manner. Experiments on public benchmark datasets Robust04 and
WebTrack2009-12 are conducted to show the effectiveness of LGRe. Detailed
implementations are further analyzed in experiments, such as the effect of addi-
tional word relations on query-document relations.

To sum up, our major contributions lie in the following aspects:

• We explore masking strategies applicable to building a bipartite-core word
graph as the matching between query and document.

• We refine word representations on this graph through graph recurrent neural
network to alleviate useless word relation’s effect.

• We propose a triangle distance loss function for the embedding layer, which
helps learn discriminative representations for the downstream ranking task.

2 Related Work

Here we briefly review some related studies in terms of neural ranking models
without BERT, BERT based ranking models and Graph neural network.
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2.1 Interaction Based Neural Ranking Models

Interaction based neural ranking models assume that relevance is in essence
about the relation between input texts and it is more effective to learn from
interactions rather than individual representations. They focus on designing the
interaction function to produce the relevance score. Existing interaction func-
tions are divided into two kinds: non-parametric and parametric interaction
functions [7].

Traditional non-parametric interaction functions includes binary indicator,
cosine similarity, dot product and radial basis function so on. DRMM [6] con-
verts a local interaction matrix for the query-document word pair to a fixed-
length matching histogram for relevance matching. MatchPyramid [16] pro-
duces a query-document relevance score by convolution operations over a query-
document similarity matrix. Parametric interaction functions are to learn the
similarity/distance function from data. For example, Conv-KNRM [4] uses con-
volutional neural network to represent n-grams of various lengths, matches them
in a unified embedding space for the kernel pooling and learning-to-rank layers
to generate the final ranking score. Arc-II [8] performs convolution and pooling
on the word interaction between two sentences. In this sense, BERT based rank-
ing models can also be treated as parametric interaction based neural ranking
models.

2.2 Pretrained Neural Language Models for IR

Pretrained Neural Language Models (PNLM), e.g., BERT [5] and ELECTRA [1],
have achieved state-of-the-art results in many NLP tasks. As mentioned above,
it works for the ad hoc ranking because the attention matrix in BERT can
be regarded as an interaction function. BERT based ranking models have been
shown to be superior to neural ranking models without BERT.

BERT-MaxP [2] splits a document into overlapping passages. The neural
ranker predicts the relevance score of each passage independently. Document
score is the score of the best passage. CEDR [14] incorporates BERT’s classifica-
tion vector into existing neural models, such as DRMM [6] and Conv-KNRM [4].
PARADE [10] leverages passage-level representations to predict a document rel-
evance score without passage independence assumption. Rather than fine tun-
ing BERT-base on a Bing search log, PARADE improves performance by fine
tuning on the MSMARCO passage ranking dataset. Other researches focus on
how to improve the efficiency of PNLM in retrieval tasks. PreTTR [13] precom-
putes part of the document term representations at indexing time, and merge
them with the query representation at query time to compute the final ranking
score. DeepCT [3] maps the contextualized term representations from BERT
into context-aware term weights for efficient passage retrieval.

2.3 Graph Neural Network

Graph neural network (GNN) has recently been widely studied in many fields
because of its high-order relation capture ability. The information propagation
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step is key to obtain the hidden states of nodes (or edges) for GNN. According to
different information propagation methods, GNN can be divided into convolution
based, attention based and recursive based models so on [20]. Convolution based
GNN, extending convolution operation to the graph domain, includes spectral
approaches and spatial approaches. Through the attention mechanism, attention
based GNN focuses on important nodes in the graph and important informa-
tion of these nodes for the sake of improving the signal-to-noise ratio of the
original data [18]. Recursive based GNN attempts to use the gate mechanism
like GRU [11] in the propagation step to improve the long-term propagation of
information across the graph structure.

3 Method

We first formalize the ad hoc document retrieval task. To overcome the inherent
weakness of BERT for ranking, the network architecture of our proposed LGRe
is described. Additionally, we propose a triangle distance loss function for better
representations to aid the downstream ranking task. Both the triangle distance
and pairwise ranking loss functions are optimized jointly.

3.1 Formalization

Ad hoc document retrieval task is to produce the ranking of documents in a
corpus given a short query. There are Q queries {qi}Qi=1 for training. Each query
q is represented as a word sequence sq = wq

1,w
q
2, . . . ,w

q
m and also associated with

a document set Dq = {(dj , yj)}nq

j=1. yj ∈ {0, 1} is the ground truth relevance label
of document dj . Non-relevant documents from Dq are denoted as D−

q (|D−
q | =

n−
q ) and relevant documents denoted as D+

q (|D+
q | = n+

q ). Document d ∈ Dq

is denoted as a word sequence sd = wd
1,w

d
2, . . . ,w

d
n. How to model the text

matching between query and document is key to neural ranking models.

3.2 Architecture

As mentioned before, BERT has such a natural advantage to become a ranker
that its learned attention matrices model the query and document interaction.
However, its disadvantage is also evident that these learned attention matrices
describe all possible word relations without emphasis on the query-document
word relations. To solve this problem, we mask these unnecessary word relations
and introduce a refinement process over this masked graph. Through this refine-
ment process, word representations will be more suitable to derive the relevance
score between query and document. The whole architecture is depicted in Fig. 1.

Transformer Layer. For each query-document pair (q, d), two word sequences
are concatenated, i.e. s(q,d) = [[CLS], sq, [SEP], sd, [SEP]]. Its input embedding
I(q,d) is derived from the sum of the word embedding and its corresponding posi-
tion embedding. Then I(q,d) is fed into BERT stacked with L identical layers. For
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Fig. 1. Latent graph recurrent network architecture

example, L = 12 in BERT-base. For each word i at each layer l = 1, . . . , L, its
word representation E(q,d)

l (i) ∈ R
dk is obtained by weighted summing represen-

tations of the other words in Eq. (2), dk is the dimension of word representations.

A(q,d)
l−1 = softmax(

(WBE(q,d)
l−1 )(WBE(q,d)

l−1 )′
√

dk
) (1)

E(q,d)
l (i) = E(q,d)

l−1 (i) +
∑

j

A(q,d)
l−1 (i, j)E(q,d)

l−1 (j) (2)

where A(q,d)
l−1 is the attention matrix learned in the l − 1-th layer and E(q,d)

0 =

I(q,d). Through this layer, we obtain L attention matrices {A(q,d)
l }Ll=1 for the

query-document pair (q, d). Each attention matrix A(q,d)
l naturally models the

query-document word interaction.

Bipartite-Core Word Graph Construction. These attention matrices also
contain query-query and document-document word interaction, which are not
obviously useful for query-document matching in the current ranking task. Par-
ticularly, some studies [2] show that these additional interactions may harm
the retrieval performance. Here we propose to mask some relations to build
a bipartite-core word graph to model the text matching between query and
document. Intuitively, there are three different implementations. One extreme
case is to keep all the word relations in the attention matrix without mask-
ing, which can be treated as the summation of query-document bipartite word
adjacent matrix, full document word adjacent matrix and full query word adja-
cent matrix, referred to as Full Word Graph. The other extreme case is to keep
only query-document bipartite word relations in the attention matrix and mask
these other relations, namely Query-Document Bipartite Word Graph. In the
middle, we keep some document neighbor word relations and query-document
bipartite word relations in the attention matrix and obtain the summation of
query-document bipartite word adjacent matrix and document neighbor word
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adjacent matrix, namely Query-Document Bipartite and Neighbor Word Graph.
All three kinds of graphs are bipartite-core graphs. For each transformer layer
l, we define a masking matrix M(q,d)

l for each implementation, and the masked
word adjacent matrix of the bipartite core graph is derived as Eq. (3), where ε
is small enough.

Â(q,d)
l = softmax(

(WAE(q,d)
l )(WAE(q,d)

l )′
√

dk
+ ε(1 − M(q,d)

l )) (3)

(a) Full (b) Bipartite (c) Bipartite+Neighbor

Fig. 2. Bipartite-core word graphs constructed from three strategies. Blue, green and
grey color represent the word attention score between query and query, document and
document, query and document separately. White means no word relation. (Color figure
online)

• Full Word Graph. We keep all the word relations in s(q,d). No relations will
be masked, so M(q,d)

l = 1(m+n+3)×(m+n+3), where 1(m+n+3)×(m+n+3) is a
matrix with all elements 1. The masked attention matrix is shown in Fig.
2(a).

• Query-Document Bipartite Word Graph. In terms of query-document text
matching, there are two types of words. We only keep all the relations between
two types of words. As shown in Fig. 2(b), word relations within a query and
a document are removed, and white means there are no edges between two
corresponding nodes. The up-triangle masking matrix is obtained from Eq.
(4) for i ≤ j, and the down-triangle masking matrix is filled according the
symmetry M(q,d)

l (j, i) = M(q,d)
l (i, j). Thus the whole masking matrix M(q,d)

l

is applied in Eq. (3) to obtain the query-document bipartite word adjacent
matrix.

M(q,d)
l (i, j) =

⎧
⎪⎨

⎪⎩

1 1 ≤ i ≤ m,m + 2 ≤ j ≤ m + n + 2
1 i = j

0 otherwise
(4)
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• Query-Document Bipartite and Neighbor Word Graph. Word order informa-
tion plays an important role in the search task, especially for the long doc-
ument. Thus we take some local document word relations into consideration
and keep its left and right r neighbors word relations. As shown in Fig. 2(c),
the sliding window size is 2r + 1 over the document and nearly 2r + 1 diago-
nals are colored here. In bipartite attention matrix in Fig. 2(b), there is only
one diagonal. The up-triangle masking matrix is set as Eq. (5) for i ≤ j, and
the down-triangle masking matrix is filled with M(q,d)

l (j, i) = M(q,d)
l (i, j)

according to its symmetric property. Thus the whole masking matrix M(q,d)
l

is applied in Eq. (3) to obtain the query-document bipartite and neighbor
word adjacent matrix.

M(q,d)
l (i, j) =

⎧
⎪⎨

⎪⎩

1 1 ≤ i ≤ m, m + 2 ≤ j ≤ m + n + 2
1 m + 2 ≤ i ≤ m + n + 2, j = i, . . . , i + r

0 otherwise
(5)

Word Representation Refinement. Through the above layer, we remove
the unnecessary information from the word graph A(q,d)

l and obtain the bipar-
tite core graph Â(q,d)

l . Similarly, word representations E(q,d)
l learned from BERT

also need to be refined to separate the relevant information from these noisy
relations. We use Gated Graph Neural Networks (GGNN) [11] to update word
representations over the bipartite-core graph Â(q,d)

l . At each propagation step,
GGNN aggregates neighbor word representations for each word in the graph
Â(q,d)

l and concatenates word representations from the last iteration and from
neighborhood aggregation this iteration as the input embedding of Gated Recur-
rent Unit (GRU) in Eq. (7). This will help utilize high-order word relations to
obtain fine-grained representations. Word attention matrix is computed accord-
ing to Eq. (8). The query-document pair representation is aggregated as Eq. (9).

h0 = E(q,d)
l (6)

ht = GRU([ht−1, Â(q,d)
l ht−1]) (7)

hatt
T = (WahT ) · (WhhT )′ (8)

hGq,d

l = [sum(hatt
T ) + max(hatt

T ),E(q,d)
l (0)] (9)

After T propagation steps, a final graph level representation for each query-
document pair is learned denoted as hGq,d

l for each transformer layer l. Then it
is fed into the last fully connected layer with weight matrix Ws to predict the
relevance score sl(q, d) in Eq. (10). The final relevance score f(q, d) is determined
by the linear combination of all the relevance scores {sl(q, d)}Ll=1 in Eq. (11).

sl(q, d) = Wsh
Gq,d

l + bs (10)

f(q, d) = wf (sl(q, d))1×L + bf (11)
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3.3 Loss Function

To derive a robust ranking function, the pairwise ranking loss is usually used for
optimization. Additionally, we introduce a metric learning task as an auxiliary
task to learn discriminative representations.

From the embedding perspective, we propose a triangle distance loss to place
constraints on query, document and query-document representations. Cosine dis-
tance [9] was first introduced to make examples with different labels separated
from each other in the classification problem. Similarly treating query-document
pair as an instance, we define the distance between query-document represen-
tations with different labels as this cosine distance, referred to as pairwise
cosine distance. The pairwise cosine distance is computed for transformer
and refinement layer respectively, whose query-document representations are
E(q,d)

L (0) = e(q,d)L and hGq,d

L correspondingly. The distance summation of both
layers is shown in Eq. (12). It only puts constraints on query-document represen-
tations in Fig. 3(b). We further split this unified query-document representation
E(q,d)

L into query representation Eq
L and document representation Ed

L. Moreover,
we define the pointwise cosine distance between a query and document rep-
resentations in this ranking scenario as Eq. (13). This pointwise distance only
puts constraints between a query and document representations without docu-
ments of different labels as Fig. 3(a). Neither pairwise nor pointwise distance
will produce compact representations for query, document and query-document
representations. So we propose a triangle distance to combine both pairwise
and pointwise cosine distance as Eq. (14). As shown in Fig. 3(c), this triangle dis-
tance place constraints not only on the distance between a query and document
representations but also on the distance between different documents.

Cpair(q,Dq) =
1

2n+
q n−

q

∑

d+∈D+
q

d−∈D−
q

2+cos(e(q,d+)
L , e(q,d−)

L )+ cos(h
Gq,d+
L ,h

Gq,d−
L ) (12)

Cpoint(q,Dq) =
1
nq

nq∑

j=1

1 + (1 − 2yj) cos(Eq
L,Edj

L ) (13)

Ltriangle(q,Dq) = Cpoint(q,Dq) + Cpair(q,Dq) (14)

From the ranking perspective, we introduce a margin based pairwise ranking
loss as follows

Lrank(q,Dq) =
1

|D+
q ||D−

q |
∑

d+∈D+
q

∑

d−∈D−
q

max (0, 1 − f(q, d+) + f(q, d−)) . (15)

We train both tasks in a multi-task learning framework with the optimization
of λLtriangle(q,Dq) + Lrank(q,Dq).
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(a) Pointwise Distance (b) Pairwise Distance (c) Triangle Distance

Fig. 3. Illustration of different constraints’ effect on learned query/document represen-
tations

4 Experiments

We compare our proposed model LGRe with state-of-the-art baselines to inves-
tigate its effectiveness on two public benchmark datasets. Moreover, ablation
studies for each component of LGRe are also explored.

4.1 Experimental Setting

Datasets. We use two TREC collections, Robust04 and WebTrack2009-12.
Robust04 uses TREC discs 4 and 51, and WebTrack 2009-12 uses ClueWeb09b2

as document collections. Note that the statistics are obtained only from the doc-
uments returned by BM25. Both data sets are white-space tokenized, lowercased,
and stemmed using the Krovetz stemmer. Consistent with the baselines of the
corresponding dataset, Robust04 uses Indri3 for indexing, and WebTrack2009-12
uses Anserini [19] for indexing. Table 1 provides detailed information on these
two data sets.

Table 1. Statistics of datasets.

#Docs Avg. Doc. Len #Queries Avg. Query Len #Docs/Query

Robust04 37, 500 428.2 250 3.62 150

WebTrack2009-12 19, 590 1, 393.0 200 2.64 100

Baselines. Three kinds of baselines are compared over these two datasets. (1)
BM25: Candidate documents for each query are usually generated by BM25 in
the first stage ranking. (2) Interaction based Neural Ranking Models (without
BERT): DRMM [6] and ConvKNRM [4]. (3) BERT based Neural Ranking Mod-
els: Vanilla BERT, BERT-MaxP [2], CEDR-KNRM [14], and PARADE [10].

1 520k documents, https://trec.nist.gov/data disks.html.
2 50M web pages, https://lemurproject.org/clueweb09/.
3 http://www.lemurproject.org/indri.php.

https://trec.nist.gov/data_disks.html
https://lemurproject.org/clueweb09/
http://www.lemurproject.org/indri.php
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Training Setting. For all BERT based baselines in our experiments, we make
domain adaptation on MSMARCO.4 Simple domain adaptation of BERT leads
to a pre-trained model with both types of knowledge that can improve related
search tasks where labelled data are limited [2]. Some performance results on
Robust04 come from the paper aggregation site “Papers With Code”.5 Since
WebTrack2009-12 does not have a unified data preprocessing pipeline similar to
Robust04, we compare all baselines based on our data preprocessing pipeline.

Evaluation Setting. With the same division on both datasets, we use five fold
cross validation with three folds for training, one fold for validation and one fold
for test. The number of training epochs is 20 with batch size 32. The learning
rate of BERT fine-tuning and LGRe is 1e−5 and 5e−5 respectively. λ is 1e−2.
All these hyperparameters are chosen according to performances in terms of the
P@20 and nDCG@20 on the validation set, which are computed using script
trec eval.6

4.2 Effectiveness Analysis

The ranking performance of LGRe (bipartite and neighbor masking strategy +
triangle distance) on both document ranking datasets is shown in Table 2. All the
performances are averaged on five test sets for each dataset. Imp.% column in the
table corresponds to the relative performance improvement of LGRe compared
with each baseline. From Table 2, we observe the following phenomena.

Table 2. Ranking performance comparison among different models on Robust04 and
WebTrack2009-12. Best results are in bold. The relative performance improvement is
statistically significant with p < 0.01 in two-tailed paired t-test.

Robust04 WebTrack2009-12

Model P@20 Imp.% nDCG@20 Imp.% P@20 Imp.% nDCG@20 Imp.%

BM25 0.3123 53.38 0.4140 31.96 0.2805 27.95 0.1772 53.78

DRMM 0.2892 65.63 0.3040 79.70 0.3077 16.64 0.2015 35.24

Conv-KNRM 0.3408 40.55 0.3871 41.13 0.3155 13.76 0.213 27.93

Vanilla BERT 0.4042 18.51 0.4541 20.30 0.3253 10.32 0.254 7.28

BERT-MaxP 0.4277 11.99 0.4931 10.79 0.3373 6.40 0.2613 4.28

CEDR-KNRM 0.4667 2.64 0.5381 1.52 0.3481 3.10 0.2653 2.71

PARADE 0.4604 4.04 0.5399 1.19 – – – –

LGRe 0.479 – 0.5463 – 0.3589 – 0.2725 –

4 https://microsoft.github.io/TREC-2019-Deep-Learning.
5 https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04.
6 https://trec.nist.gov/trec eval.

https://microsoft.github.io/TREC-2019-Deep-Learning
https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04
https://trec.nist.gov/trec_eval
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(1) Compared with the best state-of-the-art baseline on each dataset, LGRe’s
relative performance gain is not less than 2% in terms of Precision@20. This
improvement is statistically significant in the ranking task.

(2) Among all three kinds of baselines, BERT based ranking models achieve the
best performance. One reason is that these interaction based ranking models
without BERT usually derive the interaction matrix based on shallow pre-
trained word embedding, such as word2vec [15]. These shallow word embed-
ding only capture the local context, such as synonym, but cannot obtain
complex or global patterns among words. This problem is solved by BERT
with global word interactions, which makes it possible. The other reason is
that interaction based ranking models like DRMM [6] predefine the query-
document interaction matrix as input ignoring the query and document
representation learning. All the interaction matrix, query and document
representations are dynamically learned from data for BERT based ranking
models. These learnable parameters make ranking models more flexible and
suitable for different datasets.

(3) Compared with Vanilla BERT, LGRe’s performance improvement agrees
with our motivation that vanilla BERT has an inherent weakness though
it naturally considers with the document ranking task. LGRe is mainly
composed of BERT and word representation refinement process based on
BERT. To a certain degree, LGRe’s performance improvement also indicates
the necessity of the following word refinement process in its architecture as
Fig. 1.

(4) For all methods in Table 2 except DRMM [6], the ranking performance
is higher on Robust04 than it on WebTrack2009-12. Dataset statistics show
that the averaged query length is shorter and the averaged document number
of each query is fewer on WebTrack2009-12. Fewer training instances may
be one reason. So we will make a further study to verify the effect of query
length on the ranking performance.

4.3 Ablation Study for Masking Strategy

Three candidate strategies for the bipartite-core word graph construction are
compared: (1) Full Word Graph: denoted as LGRe(Full). (2) Query-Document
Bipartite Word Graph: denoted as LGRe(Bipartite). (3) Query-Document Bipar-
tite Core and Neighbor Word Graph: denoted as LGRe(Bipartite+Neighbor).
Note that all the methods in Table 3 have the same setting except the masking
strategy, such as adopting the pairwise ranking loss plus the triangle cosine dis-
tance loss as the loss function. Imp.% column means the relative performance
improvement of each other method compared with LGRe(Full), i.e. no masking.

The primary comparison result in Table 3 is that masking some word rela-
tions in the attention matrix will bring about the performance gain. The rela-
tive performance gain is statistically significant, at least 0.5%. It indicates that
some word relations, such as query-query and document-document, learned from
BERT are noise for the query-document text matching problem. The masking
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Table 3. Ranking performance comparisons with different masking strategies on
Robust04

Model P@20 Imp.% nDCG@20 Imp.%

LGRe (Full) 0.471 – 0.5359 –

LGRe (Bipartite) 0.4764 1.15 0.5447 1.64

LGRe (Bipartite+Neighbor) 0.4771 1.3 0.5403 0.82

strategy for graph construction is essential for LGRe. Additionally, keeping doc-
ument neighbor word relations does not always promote the ranking perfor-
mance. The relative NDCG@20 decreases by 0.82% due to document neighbor
word relations, although the relative P@20 increases by 0.15%. The introduc-
tion of document neighbor word relations makes adjacent word representations
learned from the word graph much closer. This leads to a smaller distinction
between relevant documents’ representation, which are originally near to each
other. That is why the addition of document neighbor word relation will increase
the hit rate of relevant documents, and hurt the ranking of relevant documents.

(a) Full (b) Bipartite (c) Bipartite+Neighbor

Fig. 4. Attention matrices learned from LGRe with different masking strategies. The
green box represents exact term matching. The blue box represents synonym matching.
The yellow line is the dividing line between query and document. (Color figure online)

For an intuitive understanding, we choose a specific query and document
from Robust04. Query: “international, organized, crime”. Document (stop words
removed): “individual, regions, country, crime, international, spread, remote, for-
eign, parts, nearby”. Attention matrices learned from different masking strate-
gies are shown in Fig. 4. As we know, the meaning of short queries are vague,
and forms of short queries are incomplete. For the full word graph in Fig. 4(a),
the exact matching signals on “international” and “crime” is overwhelmed by
many relations in documents. For the bipartite word graph in Fig. 4(b), the
exact matching signals on ‘international” and “crime” are obviously enhanced
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by masking query and document word relations. For Fig. 4(c), the addition of
document neighbor word relations will promote the exact matching signals and
strengthen the relation of semantically similar words, such as “international”
and “foreign”, “organized” and “country”. Meanwhile, relating some unrelated
words may become possible noise for the final ranking. This case study gives a
better explanation of the performance gain of both LGRe (Bipartite) and LGRe
(Bipartite+Neighbor) in Table 3.

4.4 Ablation Study for Distance Learning Task

We introduce the cosine distance learning task as the auxiliary task for docu-
ment ranking in LGRe. Whether this task is an essential part will be studied
here. If it is necessary, which distance definition among three kinds in the Loss
function section is the best choice. We compare LGRe with different loss func-
tions on Robust04: (1) LGRe+none: only the pairwise ranking loss without any
distance loss. (2) LGRe+point: the linear combination of pairwise ranking loss
and pointwise cosine distance loss. (3) LGRe+pair: the linear combination of
pairwise ranking loss and pairwise cosine distance loss. (4) LGRe+triangle: the
linear combination of pairwise ranking loss and triangle cosine distance loss.
Experimental results are shown in Table 4. Imp.% column corresponds to the
relative performance improvement of each method compared with LGRe+none.

Table 4. Ranking performance comparisons among LGRe with different distance def-
initions on Robust04

Model P@20 Imp.% nDCG@20 Imp.%

LGRe+none 0.4771 – 0.5403 –

LGRe+point 0.4769 −0.04 0.5419 0.30

LGRe+pair 0.4778 0.15 0.5427 0.44

LGRe+triangle 0.479 0.39 0.5463 1.11

In most cases, the auxiliary task, i.e. cosine distance learning task, plays a
positive role in the document ranking problem in Table 4. The only exception
is LGRe+point under the P@20 evaluation. Obviously, the relative performance
gain for both LGRe+point and LGRe+pair is limited. However, the performance
improvement from the combination of pointwise and pairwise cosine distance
loss, i.e. triangle distance loss, is much higher than the summation of performance
gains from pointwise and pairwise distance loss separately. This 1 + 1 > 2 effect
on ranking performances shows the advantage of triangle cosine distance loss.
Whether the cosine distance loss will help learn discriminative and compact
representations remains unknown. Thus, we analyze a specific query, and plot
query and document representations through dimension reduction with t-sne[12]
shown in Fig. 5.
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(a) LGRe+none (b) LGRe+point

(c) LGRe+pair (d) LGRe+triangle

Fig. 5. Query and document representations from LGRe with different losses. The
pentagram means the mass center of each group.

Several results are obtained from Fig. 5. (1) (a) v.s. (b) and (c) and (d).
The cosine distance learning task makes query, relevant and non-relevant docu-
ment representations apart from each other. The reason lies that the embedding
loss constrains representations directly, while the pairwise ranking loss takes
indirectly effect on learned representations. (2) (b) v.s. (d). LGRe+point only
defines a query and document point distance, and requires non-relevant doc-
ument point far from and relevant document point near by the query point.
This may lead to the problem in Fig. 5(b) that some relevant and non-relevant
document points are mixed together. (3) (c) v.s. (d). LGRe+pair only defines
a relevant and non-relevant document point distance, and requires non-relevant
document points are far from relevant document points. This may lead to the
problem in Fig. 5(c) that two kinds of distances from query to relevant and
non-relevant document points respectively are not distinguishable. Generally, it
is better to choose the triangle distance learning task as the auxiliary task to
learn a discriminative representation for all the query, relevant and non-relevant
documents.

4.5 Query Length Analysis

As mentioned before, one possible reason for the lower performance on WebTrack
2009-12 is shorter queries. To further explore the effect of query length on the
ranking performance of BERT based ranking models, we conduct a group study
on different query lengths. Robust04’s queries are divided into two groups: one
group with query length ≤ 3, the other group with query length > 3. The
number of queries in two groups is 144 and 106 respectively. We randomly select
100 queries from each group, and randomly divide them into training, validation,
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and test set with a ratio of 8 : 1 : 1. Performance comparisons on the test set with
vanilla BERT and BM25 are shown in Table 5. Imp.% column represents the
relative performance improvement of each other method compared with BM25.

Table 5. Ranking performance comparisons on two subsets of Robust04 with different
query lengths.

QLEN≤3 QLEN>3

Model P@20 Imp.% nDCG@20 Imp.% P@20 Imp.% nDCG@20 Imp.%

BM25 0.3857 – 0.4689 – 0.425 – 0.4851 –

Vanilla BERT 0.3935 2.02 0.4729 0.85 0.4291 0.96 0.4876 0.52

LGRe 0.4357 12.96 0.5058 7.89 0.44 3.53 0.493 1.63

For all the methods, absolute performances on the shorter query subset are
usually lower than these on the longer query subset. This suggests that document
ranking for shorter queries is more difficult. Due to the concatenation of query
and document pair as input, BERT models the global word interaction over the
query-document text. This helps query words find their related words, which
will alleviate the difficult short query problem to some degree. In this sense,
both BERT based ranking models obtain higher performances gain on shorter
queries than these on longer queries in Table 5. Due to the addition of the word
representation refinement process, LGRe’s relative performance improvement
is much higher than vanilla BERT’s. Compared with longer queries, the global
word interaction learned from BERT is easier to generate a query-document rep-
resentation submerging the query information. The refinement process of LGRe
makes the query part emerge in the query-document representation.

5 Conclusion

To overcome the inherent weakness of BERT in the ranking task, we propose
LGRe to refine word representations. We propose to mask the attention matrix
from BERT to construct a bipartite-core word graph as the text matching
between query and document. Then, word representations are updated through
recurrent propagation steps to remove the useless information from original word
embedding. Additional, triangle distance learning task is proposed to serve as
the auxiliary task for document ranking.
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Abstract. This paper concerns the problem of Unsupervised Domain
Adaptation (UDA) in text classification, aiming to transfer the knowl-
edge from a source domain to a different but related target domain.
Previous methods learn the discriminative feature of target domain in
terms of noisy pseudo labels, which inevitably produces negative effects
on training a robust model. In this paper, we propose a novel criterion
Conditional Mean Discrepancy (CMD) to learn the discriminative fea-
tures by matching the conditional distributions across domains. CMD
embeds both the conditional distributions of source and target domains
into tensor-product Hilbert space and computes Hilbert-Schmidt norm
instead. We shed a new light on discriminative feature adaptation: the
collective knowledge of discriminative features of different domains is nat-
urally discovered by minimizing CMD. We propose Aligned Adaptation
Networks (AAN) to learn the domain-invariant and discriminative fea-
tures simultaneously based on Maximum Mean Discrepancy (MMD) and
CMD. Meanwhile, to trade off between the marginal and conditional dis-
tributions, we further maximize both MMD and CMD criterions using
adversarial strategy to make the features of AAN more discrepancy-
invariant. To the best of our knowledge, this is the first work to defi-
nitely evaluate the shifts in the conditional distributions across domains.
Experiments on cross-domain text classification demonstrate that AAN
achieves better classification accuracy but less convergence time com-
pared to the state-of-the-art deep methods.

Keywords: Unsupervised Domain Adaptation · Discriminative
feature · Kernel method

1 Introduction

In practice, annotating sufficient training data is usually an expensive and time-
consuming work for diverse application domains. Unsupervised Domain Adap-
tation (UDA) aims at solving this learning problem in the unlabeled target
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 104–119, 2021.
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domain by utilizing the abundant labeled data in an existing domain called
source domain, even when these domains may have different distributions [20].
This technique has motivated research on cross-domain text classification where
the knowledge in the source domain is transferred to the target domain.

One of the popular approaches of UDA discovers a domain-invariant rep-
resentation by minimizing a distance metric of domain discrepancy, such as
Maximum Mean Discrepancy (MMD) [24], or introducing adversarial learning
[4,8]. However, this strategy fails to gain expected performance in the pipeline
of Pre-trained Language Models (PLM) (e.g., BERT [6]) for cross-domain text
classification. This is because the representations of BERT already display very
domain-invariance characteristics compared to TextCNN-based model as shown
in Fig. 1(a) and 1(b). PLMs have enjoyed tremendous success in Natural Lan-
guage Processing (NLP) where transferable factors underlying different popu-
lations can be extracted efficiently. We observe that there is no explicit deci-
sion boundary to distinguish the two classes of the target data as shown in
Fig. 1(b). To alleviate this problem, it is critical to explore class information to
learn discriminative features of the target domain. Self-training [22,28,30] uses
the classifier trained with source labeled data to generate pseudo labels for tar-
get domain. Thus, the high-confidence predictions are retained as the labels of
unlabeled target data, over which the classifier is trained to capture the discrim-
inative features. However, self-training learns discriminative features in terms of
noisy hard labels generated by cluster algorithms [12] or predicted by classifiers
[22,28], which inevitably produces negative effects on training a robust model.

Fig. 1. Visualization of representations that are extracted from BERT-based and
TextCNN-based [13] classifiers trained over the source data (using t-SNE [18]). Refer
to Sect. 4 for experiment details. (a) BERT-based representations of source and target
data; (b) BERT-based representations of target data w.r.t. ‘Positive’ and ‘Negative’
classes. The points are labeled with ◦ and � markers in terms of the predictions from
the classifier. (c) TextCNN-based representations of source and target data.

In this paper, we adapt the discriminative feature to the target domain by
matching conditional distributions across domains. The conditional distributions
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of different domains cover abundant class-related information of domains. The
discriminative features are shared across different domains by minimizing the
shifts in the conditional distributions. Recent works attempted to approximately
reason about the discrepancy between conditional distributions in an implicit
manner including constructing multiple conditional discriminators [21,29] and
making an explicit hypothesis between conditional distributions [7]. However,
the actual shifts in the conditional distributions still cannot be observed and
evaluated intuitively. It is necessary to direct our attention on the way to mea-
sure how close the conditional distributions between source and target domains
are, analogous to MMD and A-distance for marginal distributions matching.
To tackle the challenges, we define a conditional mean discrepancy (CMD) in
tensor-product Hilbert space to measure the shifts in the conditional distribu-
tions explicitly. Compared to self-training, we shed a new light on discriminative
feature adaptation: we discover the collective knowledge of discriminative fea-
tures across different domains by minimizing CMD instead of leveraging noisy
pseudo labels. Essentially, CMD dynamically decides whether the target data
share the same labels with the source data according to a conditioning variable
computed using all the data in the source and target domains.

In this paper, we present Aligned Adaptation Networks (AAN) to match
both the marginal and conditional distributions across domains for UDA. Specif-
ically, AAN is learnt by joint optimizing both MMD and CMD criterions
across domains. CMD measures the Hilbert-Schmidt norm between Hilbert space
embeddings of the conditional distributions of source and target data. Similar to
MMD, a theorem is given to answer the question in what condition that CMD is
equal to 0. We can draw a min-batch of samples to estimate the CMD criterion,
and implement it efficiently via backpropagation. In addition, it is important to
automatically balance the influence between marginal and conditional distribu-
tions [25]. We further maximize both two criterions using adversarial strategy
to make the extracted features more discrepancy-invariant, i.e., AAN is insen-
sitive to the weights between two criterions. We experiment under two Amazon
review datasets for text classification with three backbones: fully connected net-
works, TextCNN and BERT models. We demonstrate that our model has obvious
advantages of high accuracy, and stable and fast convergence in all settings.

2 Preliminary

2.1 Kernels and Hilbert Space Embedding

A popular approach to measure the similarity between structured objects is to
use kernel methods. Let X be a non-empty set. A function k : X × X �→ R is
called a kernel if there exists a reproducing kernel Hilbert space (RKHS) H and
a feature map φ : X �→ H such that ∀x,y ∈ X ,

k(x,y) � 〈φ(x), φ(y)〉H
where φ(x) = k(·,x) ∈ H is the explicit feature map of x. In a RKHS H ,
the kernel function k(·, ·) satisfies the reproducing property, i.e., 〈f, φ(x)〉H =
〈f, k(·,x)〉H = f(x) for ∀f ∈ H and ∀x ∈ X .
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The kernel embedding represents a probability distribution P (x) by an ele-
ment in RKHS endowed by a kernel k,

μP � EP [φ(x)] =
∫
x∈X

k(·,x)dP (x)

where the distribution is mapped to the expected feature maps. If EP

√
k(x,x′) <

∞, then μP exists and is an element in H [2]. Given a dataset DX = {xi}n
i=1

drawn from P (x), the embedding μP can be estimated empirically using finite
samples, i.e., μ̂P = 1

n

∑
i φ(xi). Maximum Mean Discrepancy (MMD) is a fre-

quentist estimator for answering the question that two distributions are iden-
tical. Given distributions P (x) and Q(x), formally, MMD defines the following
discrepancy, M(P,Q) � supf∈F |EP (f(x)) − EQ(f(x))| = ‖μP − μQ‖H where
F is a unit ball in H . If H is a universal RKHS, then M(P,Q) = 0 if and only
if P = Q [2].

2.2 Hilbert Space Embedding of Conditional Distributions

Suppose k : X × X �→ R and l : Y × Y �→ R are the positive definite kernels
with feature maps φ(·) and ψ(·) for domains of X and Y , respectively that
corresponds to RKHS H and G . Let UY |X : H �→ G and UY |x ∈ G be the
conditional embeddings of the conditional distributions P (Y|X) and P (Y|X =
x) respectively, and they satisfy two properties:

UY |x = EY |x[ψ(y)|X = x] = UY |Xk(x, ·),

EY |x[g(y)|X = x] = 〈g,UY |x〉G ,∀g ∈ G .

The work [23] defines UY |X as CY XC−1
XX that satisfies the above two properties

simultaneously where CY X : H �→ G is an uncentered cross covariance operator:
CY X = EY X [ψ(y)⊗φ(x)]. Given a dataset D = {(xi,yi)}n

i=1 of size n drawn i.i.d.
from P (X,Y), the conditional embedding UY |X can be empirically estimated as

ÛY |X = Ψ(ΦTΦ + εnI)−1ΦT

where I is an identity matrix, Ψ = (ψ(y1), · · · , ψ(yn)), Φ = (φ(x1), · · · , φ(xn))
and ε serves as regularization to hold the existence of UY |X in a continuous
domain [19,23].

3 Proposed Model

In UDA, we are given a source domain Ds = {(xs
i ,y

s
i )}m

i=0 ⊂ X × Y with m
labeled samples, and a target domain DXt = {xt

j}n
j=0 ⊂ X with n unlabeled

samples. Assume that the target domain shares the same label space with the
source domain. The marginal distributions and conditional distributions of two
domains are both different, i.e., P (Xs) �= Q(Xt) and P (Ys|Xs) �= Q(Yt|Xt).
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The goal of this paper is to design a deep neural network y = f(x) to enable min-
imizing the target expected risk Rt(f) = E(x,y)∼Q(Xt,Yt)[f(x) �= y] by formally
reducing the shifts in both the marginal and conditional distributions across
domains simultaneously.

Formally, suppose T : X �→ Z is a nonlinear operator (e.g., deep neural net-
work) that transforms domain samples into a unified latent space Z. Maximum
Mean Discrepancy (MMD) as a kernel two-sample test statistic, has been widely
applied to measure the discrepancy in marginal distributions P (Zs) and Q(Zt)
over latent space Z [24]. Let φ : Z �→ H be feature map for space Z with corre-
sponding RKHS H . Let DXs = {xs

1, · · · ,xs
m} and DXt = {xt

1, · · · ,xt
n} be the

sets of samples from distributions P (Xs) and Q(Xt). MMD and its empirical
estimation over space Z are defined as:

M(P,Q) � ‖EP [φ(Tx)] − EQ[φ(Tx)]‖H
M̂(P,Q) �

∥∥∥∥ 1
m

Φs − 1
n
Φt

∥∥∥∥
F

(1)

where Φs = (φ(Txs
1), · · · , φ(Txs

m)) and Φt = (φ(Txt
1), · · · , φ(Txt

n)) are implic-
itly formed feature matrices, and ‖ · ‖F is the Frobenius norm. Using kernel
tricks, we can estimate MMD only in term of kernel gram matrices,

M̂2(P,Q) = tr(KH) (2)

K =
[
Ks Kst

Kts Kt

]
,H =

[
1

m2 1m×m
−1
mn1m×n

−1
mn1n×m

1
n2 1n×n

]

where Ks = ΦT
s Φs, Kt = ΦT

t Φt and Kts = ΦT
t Φs are gram matrices, and 1m×n

is an m × n matrix with all elements equal to 1.
In this paper, our goal is to intuitively learn the discriminative features

by reducing the shifts between two conditional distributions P (Ys|Zs) and
Q(Yt|Zt) over latent space Z. Long et al. [17] derive a criterion called Joint
MMD (JMMD) to evaluate the discrepancy in distributions P (Zs1, · · · ,ZsN )
and Q(Zt1, · · · ,ZtN ) where Zs1, · · · ,ZsN are activations of N task-specific lay-
ers in deep networks. They use JMMD to approximate the shifts in the joint
distributions P (Xs,Ys) and Q(Xt,Yt). But, this method is heavily dependent
on the specific architecture of deep networks and thus cannot apply to BERT-
based networks directly. In addition, some shallow methods [16,25] use P (Zt|Yt)
to approximately reason about the conditional distribution P (Yt|Zt). To date
there is no explicit metric to evaluate the discrepancy between two conditional
distributions.

Figure 2 shows the overview of our Aligned Adaptation Networks (AAN).
First a new metric called conditional mean discrepancy (CMD) is proposed to
learn the discriminative features over target domain by matching the conditional
distributions, and then adversarial training is introduced to balance the influ-
ence between the marginal and conditional distributions, which is an important
problem in domain adaptation [25].



Discriminative Feature Adaptation via CMD for Text Classification 109

Fig. 2. The overview of Aligned Adaptation Networks (AAN). The green components
U and V are introduced in the adversarial version of AAN (AAN-A).

3.1 Conditional Mean Discrepancy

Following the virtue of MMD, we use the Hilbert space embedding of condi-
tional distributions to measure the discrepancy of two conditional distributions
P (Ys|Zs) and Q(Yt|Zt). We call this metric Conditional Mean Discrepancy
(CMD) defined as follows.

Definition 1. Define a nonlinear operator T : X �→ Z. Suppose φ(·) : Z �→ H
is a feature map for domain of Z with corresponding RKHS’s H . We use parallel
notation ψ(·) and G for domain of Y. Let Us

Y |Z : H �→ G and U t
Y |Z : H �→ G be

conditional mean embeddings of P (Ys|Zs) and Q(Yt|Zt) respectively. Let Ds =
{(xs

i ,y
s
i )}m

i=0 ⊂ X × Y and Dt = {(xt
j ,y

t
j)}n

j=0 ⊂ X × Y be samples composed
of i.i.d. observations obtained from P (Xs,Ys) and Q(Xt,Yt) respectively. We
define Conditional Mean Discrepancy (CMD) over latent space Z and its average
empirical estimator as

C(P,Q) �
∥∥∥Us

Y |Z − U t
Y |Z

∥∥∥
HS

Ĉ(P,Q) �
∥∥∥∥ 1

m
Ψs(ΦT

s Φs + mεIm)−1ΦT
s − 1

n
Ψt(ΦT

t Φt + nεIn)−1ΦT
t

∥∥∥∥
F

(3)

where Φs = (φ(Txs
1), · · · , φ(Txs

m)), Φt = (φ(Txt
1), · · · , φ(Txt

n)), Ψs = (ψ(ys
1),

· · · , ψ(ys
m)) and Ψt = (ψ(yt

1), · · · , ψ(yt
n)) are implicitly formed feature gram

matrices, and ‖ · ‖HS is the norm of Hilbert-Schmidt operator mapping from H
to G .

Using kernel trick, the empirical estimation of C(P,Q) is given by

Ĉ2(P,Q) = tr(LK̃−1K̄K̃−1) (4)

L =
[
Ls Lst

Lts Lt

]
, K̃ =

[
mK̃s 0

0 nK̃t

]
, K̄ =

[
Ks −Kst

−Kts Kt

]
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where Ls = ΨT
s Ψs, Lt = ΨT

t Ψt and Lst = ΨT
s Ψt are the gram matrices for Y

domain, and K̃s = (Ks + εmIm) and K̃t = (Kt + εnIn) are regularization gram
matrices.

Further, similar to MMD, we give a theorem to answer the question in what
condition that CMD is equal to 0.

Lemma 1. If G is a universal RKHS, given a fixed point z0 ∈ Z,
∥∥∥Us

Y |z0

− U t
Y |z0

∥∥∥
G

= 0 if and only if P (Ys|Z = z0) = Q(Yt|Z = z0).

Theorem 1. If G is a universal RKHS and T is bijective, C(P,Q) = 0 if and
only if P (Ys|X = x0) = Q(Yt|X = x0) for every fixed x0.

Proof. Necessity. Since C(P,Q) = 0, for ∀z0 ∈ Z, we have
∥∥∥Us

Y |z0
− U t

Y |z0

∥∥∥
G

=
∥∥∥Us

Y |Zk(·, z0) − U t
Y |Zk(·, z0)

∥∥∥
G

≤
∥∥∥Us

Y |Z − U t
Y |Z

∥∥∥
HS

‖k(·, z0)‖G = C(P,Q) ‖k(·, z0)‖G = 0

Since T is bijective, there exists a unique x0 ∈ X for ∀z0 ∈ Z. According to
Lemma 1, P (Ys|X = x0) = Q(Yt|X = x0) holds for every fixed x0.
Sufficiency. Denote UY |Z = Us

Y |Z − U t
Y |Z . It is obvious that UY |Z : H �→ G is

a bounded linear operator and thus its Hilbert-Schmidt norm is defined as,

∥∥UY |Z
∥∥
HS

= sup
‖f‖H <∞

∥∥UY |Zf
∥∥
G

‖f‖H ,∀f ∈ H

Let H0 � span[{k(·, z)}z∈Z ] ⊆ H denote the pre-RKHS that is dense in H [1].
Each element g in H0 can be written as g =

∑
z∈Z αzk(·, z) where (αz)z∈Z ∈

R
|Z| is the coordinate of g in H0. Lemma 1 guarantees

∥∥∥Us
Y |z − U t

Y |z
∥∥∥ = 0 for

each z = Tx ∈ Z under the condition P (Ys|X = x) = Q(Yt|X = x) for every
fixed x ∈ X . Therefore, for each g ∈ H0, the norm ‖UY |Zg‖G is equal to 0
according to

∥∥∥Us
Y |Zg − U t

Y |Zg
∥∥∥ =

∥∥∥∥∥
∑
z∈Z

αz(Us
Y |z − U t

Y |z)

∥∥∥∥∥ ≤
∑
z∈Z

|αz|
∥∥∥Us

Y |z − U t
Y |z

∥∥∥ = 0

where the property Us
Y |Zk(·, z) = Us

Y |z is leveraged. Since H0 is dense in H ,
for ∀f ∈ H , there exists a Cauchy sequence {gn} in H0 converging to f , i.e.,
limn→∞ gn = f . We prove ‖UY |Zf‖ = 0 for any f ∈ H , because

∥∥UY |Zf
∥∥ =

∥∥∥ lim
n→∞ UY |Zgn

∥∥∥ = lim
n→∞

∥∥UY |Zgn

∥∥ = 0.

Therefore, C(P,Q) = ‖UY |Z‖HS = 0 holds.
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Remark: Taking a close look on the objectives of MMD (Eq. (2)) and CMD
(Eq. (4)), we can find some interesting connections. Intuitively, M̂2(P,Q) =∑

i,j αijk(zi, zj) where αij is a real-valued weight including 3 fixed cases, i.e.,
1/m2, 1/n2 and −/mn. Instead of applying uniform weights, CMD applies non-
uniform weights βij ,

Ĉ2(P,Q) =
∑
i,j

βij l(yi,yj) (5)

where βij = (K̃−1K̄K̃−1)i,j is, in turn, determined by the conditioning variables.
These non-uniform weights reflect the effects of conditioning on Hilbert space
embeddings. When the sample i comes from the target domain, CMD computes
a dynamic weight βij to decide whether the sample i shares the same label
with each sample j in the source domain. All previous deep transfer learning
models have not addressed the issue of measurement of shifts in the conditional
distributions P (Ys|Zs) and Q(Yt|Zt).

3.2 Aligned Adaptation Networks with Adversarial Learning

We propose an end-to-end Aligned Adaptation Network (AAN) with min-batch
training to align both the marginal and conditional distributions across domains
simultaneously. Specifically, the nonlinear operator T (·; θT ) : X �→ Z is mod-
eled as a neural network to extract features. To match the marginal distribu-
tions over Z, it is required to minimize MMD criterion with the parameters θT :
LM (P,Q; θT ) = M̂(P,Q). Meanwhile, the target classifier D(·; θD) : Z �→ Y
is constructed to predict labels for target samples. To align conditional distri-
butions across domains, we minimize CMD criterion in terms of the datasets
Ds = {(xs

i ,y
s
i )} and Dt = {(xt

j , ŷ
t
j = D(T (xt

j)))} with the parameters θT , θD:
LC(P,Q; θT , θD) = Ĉ(P,Q). Overall, AAN aims at minimizing the source risk
and the distribution discrepancies (MMD and CMD) simultaneously,

J(μ) =
1
m

m∑
i=1

L(D(T (xs
i )),y

s
i ; θT , θD) + μLM (P,Q; θT ) + LC(P,Q; θT , θD)

(6)
where

∑
i L(·, ·) is the source risk of source domain (e.g., cross-entropy loss) and

μ is a hyperparameter to control the influence of two discrepancies. We can draw
a min-batch of samples to estimate MMD and CMD criterions, and implement
it efficiently via backpropagation. Note here that CMD supervises the predicted
target label ŷt

j to move towards or away from source label ys
i determined by

non-uniform weights βi,j in Eq. (5) when the samples i and j comes from source
and target domains respectively. Different from self-training methods [22,28,30],
all the target data is used to learn the discriminative feature of target domain by
substituting the artificial rules as dynamic weights. We explore the correlation
between the features and target labels that can guide D to learn the unique
patterns of the target domain in a unsupervised manner.

It is important to balance the influence between the marginal and condi-
tional distributions adaptively [25]. The works [26,29] trade off the importance
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by evaluating an appropriate hyperparameter μ based on A-distance. However,
they may suffer from heavily evaluation offset of μ because the process of dis-
crepancy balancing is separated from the transfer learning. To circumvent this
issue, instead of directly searching for μ explicitly, we integrate the discrep-
ancy balancing into transfer learning using adversarial training. Specifically, we
multiple fully connected layers U parameterized by θU to MMD, i.e., Φs =
(φ(U(Txs

1)), · · · , φ(U(Txs
m))) and Φt = (φ(U(Txt

1)), · · · , φ(U(Txt
n))) in Eq. (2)

while another fully connected layers V (·; θV ) are multiplied to CMD in Eq. (4):
Φs = (φ(V (Txs

1)), · · · , φ(V (Txs
m))) and Φt = (φ(V (Txt

1)), · · · , φ(V (Txt
n))).

We maximize MMD and CMD with respect to these new parameters θU and θV

to misalign two distribution discrepancies. Then, the objective J(μ) with param-
eters θT is minimized to obtain discrepancy-invariant features by confronting this
misalignment such that AAN is insensitive to the weights between two criterions.
Therefore, this leads to a new adversarial aligned adaptation network (AAN-A)
as,

min
θT ,θD

max
θU ,θV

J(μ = 1) (7)

The adversarial version AAN-A is inspired by the work in [8,17], but differs
in that we use MMD and CMD as discrepancy adversary to balance the impor-
tance of discrepancies adaptively, while [8,17] leverage adversarial training to
distinguish different domains.

4 Experiments

We evaluate the Aligned Adaptation Networks with state of the art transfer
learning and deep learning methods in the cross-domain text classification. Code
is available at https://github.com/gregbuaa/aan model.

4.1 Setup

Amazon-Review1 is a benchmark dataset for domain adaptation in text clas-
sification task. Two versions of Amazon Review datasets are used to evaluate
models. The work [3] provides a simplified Amazon-Review dataset (Amazon-
Feature) comprising 3,996 samples with 400d feature vectors and 2 categories
(positive and negative) collected from four distinct domains: Books (B), DVD
(D), Electronics (E) and Kitchen (K). A larger dataset called Amazon-Text
is also constructed from Amazon-Review with the same domains in Amazon-
Feature to test the model performance for large-scale transfer learning. The
review texts are divided into two categories according to user rating, i.e., pos-
itive (5 stars) and negative (1 star). There are 10,000 original review texts in
each category and 20,000 texts in each domain. The notation S → T represents
the transfer learning from the source domain S to target domain T.

Baselines. For the bulk of experiments the following baselines are evalu-
ated. The Source-Only model is trained only over source domain and tested
1 http://jmcauley.ucsd.edu/data/amazon/.

https://github.com/gregbuaa/aan_model
http://jmcauley.ucsd.edu/data/amazon/
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over target-domain data while Train-on-Target model is trained and tested
over target-domain data directly. We compare with conventional and state-of-
the-art transfer learning and deep learning methods: Transfer Component Anal-
ysis (TCA) [20], Balanced Distribution Adaptation (BDA) [25], Geodesic Flow
Kernel (GFK) [10], Deep Domain Confusion (DDC) [24], Domain Adversarial
Neural Networks (RevGrad) [8] and Dynamic Adversarial Adaptation Network
(DAAN) [29].

For Amazon-Feature dataset, the extractor T (·; θT ) is simply modeled as a
typical 2-layer fully connected network (MLP) to transform 400 dimensional
inputs into 50 dimensional latent feature vectors. Two types of networks are
leveraged for Amazon-Text dataset to extract the latent features from original
texts, i.e., TextCNN and BertGRU. TextCNN is a text conventional network
proposed in [13] that consists of 150 conventional filters with 3 different window
sizes. We also evaluate the performance of transfer learning on a pre-training
language model, i.e., BERT [6]. We freeze BERT model and construct a 2-layer
bi-directional GRU [5] to learn from the representations produced by BERT. A
2-layer fully connected network is leveraged to model the target classifier D(·, θd)
for all the datasets. For AAN-A, U and V are modeled as weight matrices. For
MMD-based methods (e.g., TCA, BDA, GFK and DDC) and AAN, we adopt
Gaussian kernel with bandwidth set to median pairwise squared distances on
the training data [11]. DDC model that we construct in the experiment is same
with our AAN model except for μ = 0.0 in Eq. (6).

We implement all deep methods based on Pytorch framework, and BERT
model is implemented and pre-trained by pytorch-transformers2 [27]. We fix
μ = 0.1 for AAN. AAN is trained end-to-end using Adam optimizer [14] with
batch size of 128 and learning rate of 0.001. Since easy to optimize, AANs are not
required to adjust the learning rate dynamically or pre-train over source domain
as the works [8,24,29] do. Classification accuracy is used as the evaluation metric.

4.2 Results

The classification accuracy results on the Amazon-Feature dataset for domain
adaptation based on MLP are shown in Table 1, in which AAN and AAN-A out-
perform other comparison methods on most transfer tasks. Some of the obser-
vations and analysis are listed as follows. (1) The performance of traditional
shallow transfer learning models (e.g., TCA, GFK and BDA) is poor and even
worse than Source-Only model, i.e., negative transfer learning occurs in all trans-
fer tasks for traditional models. The traditional models directly define kernel over
original input vectors which are highly sparse in Amazon-Feature that the kernel
function cannot capture sufficient features to measure the similarity. (2) Deep
transfer learning models (e.g., DDC, RevGrad, DAAN and proposed AANs) sub-
stantially outperform both Source-Only model and traditional transfer learning
models. It verifies the positive effect of embedding domain adaptation module
into deep networks to reduce domain discrepancy. (3) AAN, DDC and RevGrad

2 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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Table 1. Classification accuracy (%) on Amazon-Feature dataset using MLP Extractor.

Model D→B E→B K→B B→D E→D D→E B→K E→K Avg

Source only 73.5 71.1 68.5 79.9 69.3 75.3 75.8 81.0 74.3

Train on target 81.7 81.7 81.7 82.3 82.3 85.5 85.8 85.8 83.4

TCA [20] 62.2 59.5 64.0 62.4 62.7 66.3 65.1 73.8 64.5

BDA [25] 62.7 58.7 62.5 64.3 62.1 67.0 63.4 74.5 64.4

GFK [10] 66.5 63.0 65.5 66.3 63.4 64.0 69.2 73.3 66.4

DDC [24] 77.7 74.8 73.1 79.6 77.8 80.3 78.5 83.5 78.2

RevGrad [8] 76.9 74.7 74.7 80.2 76.1 79.4 79.3 84.1 78.2

DAAN [29] 78.4 70.9 68.5 77.0 75.5 77.3 78.7 84.0 76.3

AAN (our) 77.3 74.9 73.7 80.7 75.5 78.6 81.8 85.8 78.5

AAN-A (our) 78.7 75.9 74.8 80.1 78.4 79.1 81.2 85.2 79.2

get the similar performance over Amazon-Feature while the accuracy of AAN-A
is slightly 1.0% higher than DDC and RevGrad overall.

Table 2 shows the classification performance of deep transfer learning mod-
els based on TextCNN and BertGRU over a larger dataset Amazon-Text. For
TextCNN extractor, we have the following analysis. (1) AAN and AAN-A
achieve superior performance over previous methods by larger margins com-
pared to small dataset Amazon-Feature. In addition to obtain domain-invariant
features by reducing marginal discrepancy as DDC and RevGrad do, AAN
also adapts the discriminative feature to the target domain via CMD criterion.
We fully correct the shifts in the marginal and conditional distributions across
domain. DDC, RevGrad and DAAN only focus on learning a shared represen-
tation and generalize a classifier over source domain to target domain. But, our
AAN sheds a new light on optimizing the target classifier D(·; θD) by supervising
target labels explicitly using CMD criterion. This direct supervision also leads to
obvious advantages of stable and fast convergence particularly in large dataset
(refers to the next subsection). DAAN is required to construct multiple binary
discriminators to distinguish class features where target samples are fed into all
discriminators with the weights computed by the target classifier. It relies on
the accuracy of target classifier where the model may be driven to instability
especially during early training process. (2) Exception occurs when AAN is per-
formed in task D → E. The cause of exception is mainly because that the μ = 0.1
is a bad hyperparameter to balance influence between two discrepancies. How-
ever, AAN-A substantially has a nice performance for all transfer tasks, which
shows that adversarial strategy enables AAN-A to trade off between MMD and
CMD adaptively.

By going from TextCNN to extremely deep BertGRU, we attain a more
in-depth understanding of feature transferability. (1) BertGRU-based methods
outperform TextCNN-based methods by large margins. This suggests that the
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Table 2. Classification accuracy (%) on Amazon-Text dataset using TextCNN and
BertGRU Extractors.

Model E→B K→B B→D E→D K→D B→E D→E D→K Avg

Using TextCNN as extractor

Source only 68.7 69.7 81.2 75.8 70.3 68.7 62.8 64.9 70.3

Train on target 83.7 83.7 89.1 89.1 89.1 85.4 85.4 85.5 86.4

DDC [24] 69.6 69.9 82.0 76.8 76.5 72.5 70.2 63.4 72.6

RevGrad [8] 71.7 72.0 81.9 78.5 68.8 70.2 69.2 69.4 72.7

DAAN [29] 73.3 65.1 83.0 76.1 73.1 73.5 67.9 68.1 72.5

AAN (our) 74.5 73.3 84.7 79.8 78.8 74.7 65.0 74.8 75.7

AAN-A (our) 73.1 70.5 84.8 80.0 79.8 75.6 74.6 75.4 76.7

Using BertGRU as extractor

Source only 86.4 87.2 91.6 89.2 90.2 87.8 84.2 85.2 87.7

Train on target 93.2 93.2 94.9 94.9 94.9 92.6 92.6 94.4 93.8

DDC [24] 87.8 86.6 92.2 91.2 90.9 87.3 87.0 87.4 88.8

RevGrad [8] 87.5 83.7 92.7 90.5 88.2 85.0 87.2 86.6 87.7

DAAN [29] 88.7 85.7 92.0 89.8 90.4 85.5 86.6 88.8 88.4

AAN (our) 89.1 88.4 92.9 90.5 91.8 88.0 88.6 88.6 89.7

AAN-A (our) 90.5 90.7 93.5 91.9 92.4 89.1 88.3 89.9 90.8

pre-trained language (PLM) models, e.g., BERT, not only learn better repre-
sentations for general natural language task but also learn more transferable
representations for domain adaptation. PLMs not only adapt in fine-tuning task
with small labeled dataset but only adapts in domain adaptation task with-
out target labels. (2) The accuracy of DDC, RevGrad and DAAN are slightly
higher than Bert-based Source-Only method. PLM models can be easily trans-
ferred to other domain by fine tuning over small labeled datasets and achieve a
nice performance. The features directly generated from BERT already have very
domain-invariance characteristics. It is useless to only reduce the marginal dis-
tribution discrepancy for DDC and RevGrad. (3) The gap between our AAN-A
and BertGRU-based Train-on-Target model narrows to 3%, indicating that our
AAN can learn the discriminative features across domains via CMD efficiently.

4.3 Analysis

Some other important analysis results are shown in Fig. 3.
Distribution Discrepancy. Figure 3(a) shows MMD and CMD values on task
E→D and B→K with features of AAN-A, DDC and RevGrad extracted from
Amazon-Feature dataset. We observe that the sum of MMD and CMD using
AAN-A is much smaller than that using DDC and RevGrad, which validates that
AAN successfully reduces the shifts in marginal and conditional distributions to
learn more transferable representations. Furthermore, MMD roughly matches
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Fig. 3. Analysis. (a) MMD & CMD values on Amazon-Feature; (b) Parameter sensitiv-
ity of µ for AAN; (c) Target Loss w.r.t. the number of Iterations on Amazon-Feature;
(d) Target Error w.r.t. the number of Iterations on Amazon-Text with TextCNN.

CMD for AAN-A while other methods have a great gap between MMD and
CMD. It reveals the necessity of integrating adversarial training into AAN to
balance the discrepancies adaptively.
Discrepancy Balancing. We check the sensitivity of AAN hyperparameter
μ, i.e., an important factor to trade off the marginal and conditional distribu-
tions. Figure 3(b) shows the classification accuracy of AAN based on MLP and
TextCNN respectively by varying μ ∈ {0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0} for
transfer task E → D. The accuracy of AAN first increases and then decrease
as μ varies. The result reveals two interesting observations. (1) AAN is very
sensitive to μ for some transfer tasks where the accuracy may drop more than
10.0% when setting a worse μ. For different transfer tasks, AAN is required to
select different μ to balance the influence between discrepancies. (2) AAN-A has
the similar performance with AAN equipped with the best μ. It implies that
AAN-A can trade off the marginal and conditional distribution discrepancies
adaptively by introducing adversarial learning. This result further certifies that
the adversarial learning enables AAN to obtain discrepancy-invariant features
and thus enhance transferability without searching for an appropriate μ.
Convergence Performance. We testify convergence performance of AAN-A
compared with RevGrad as they involve two different types of adversarial train-
ing procedures. Figure 3(c) and 3(d) show the target loss (i.e., cross-entropy loss
on target domain) and target error on task E→D where the extractor T is set
to MLP and TextCNN on Amazon-Feature and Amazon-Text respectively. The
adversarial methods (AAN-A and RevGrad) converge slower than AAN. How-
ever, compared to RevGrad, AAN-A shows obvious advantages of stable and fast
convergence and high accuracy. AAN-A and AAN have the similar convergence
speed for small dataset (Amazon-Feature) and a large dataset (Amazon-Text)
while RevGrad is required to train more iterations for larger datasets which is
unfriendly to large-scale transfer learning task.
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5 Related Work

Unsupervised Domain Adaptation (UDA) aims at learning a model which can
generalize across different domains following different probability distributions
[20]. Early works [10,20,25,26] adopt the shallow features to adapt the domain
adaptation. They usually have three independent subtasks: 1) projecting original
complex data (e.g., images and text) into general representations, 2) learning
kernel parameters by minimizing defined domain discrepancy and 3) training a
classifier (e.g., SVM) to predict the target labels. These methods cannot learn the
domain-specific representations from complex data with the shallow extractors.

Domain adaptation methods equipped with powerful deep networks can
remarkably boost transfer performance. Existing works mainly focus on how
to learn domain-invariant features and discriminative features that are shared
across different domains. Some methods correct the shifts in marginal distribu-
tions to obtain domain-invariant features. For examples, some works propose to
learn the transferable features with deep networks by minimizing a distance met-
ric of domain discrepancy [24], such as Maximum Mean Discrepancy (MMD),
or maximizing the domain discriminator to make the features domain-invariant
[8]. Unfortunately, only aligning marginal distributions may fail to gain expected
performance particularly in the pipeline of PLM because the features of PLM
already have very domain-invariance characteristics.

To learn discriminative features for UDA, self-training methods [9,22,28,30]
are widely explored. To enhance the confidence level of pseudo labels, these works
committed to improve the methods of pseudo-label selections including introduc-
ing mutual learning [9] and dual information maximization [28]. However, plenty
of target data with low-confidence predictions are not utilized effectively, which
also contribute to discriminative features equally. The other line of learning dis-
criminative features is to match the conditional distributions across domains,
which is known as a difficult problem. The work [7] introduces perturbation
ε to the conditional distributions, i.e., Q(Yt|Xt) = P (Ys|Xs) + ε to increase
flexibility. The works [15,17] learn a transfer network by aligning the joint dis-
tributions of multiple domain-specific layers across domains. DAAN [29] learns
multiple binary classifiers to preserve class-related features to align conditional
distributions. Our work mainly differs from these works by evaluating the dis-
crepancy of conditional distributions explicitly in Hilbert embedding space and
trading off the importance of marginal and conditional distributions without any
hyperparameters.

6 Conclusion

This paper proposed a novel method of deep transfer learning, which enables end-
to-end learning of transferable representations. We defined a new metric called
Conditional Mean Discrepancy (CMD) to learn the discriminative features of
the target domain. To the best of our knowledge, this is the first work to def-
initely evaluate the shifts in the conditional distributions. Based on MMD and
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CMD criterions, Aligned Adaptation Network (AAN) was proposed to match
both marginal and conditional distributions between different domains simulta-
neously. We also introduced the adversarial version of AAN to trade off these two
criterions adaptively. Experiments testified the efficacy of the proposed approach
in cross-domain text classification.
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Abstract. Most existing aspect-term level sentiment analysis (ATSA)
approaches combined neural networks with attention mechanisms built
upon given aspect to generate refined sentence representation for bet-
ter predictions. In these methods, aspect terms are always provided in
both training and testing process which may degrade aspect-level anal-
ysis into sentence-level prediction. However, the annotated aspect term
might be unavailable in real-world scenarios which may challenge the
applicability of the existing methods. In this paper, we aim to improve
ATSA by discovering the potential aspect terms of the predicted senti-
ment polarity when the aspect terms of a test sentence are unknown.
We access this goal by proposing a capsule network based model named
CAPSAR. In CAPSAR, sentiment categories are denoted by capsules
and aspect term information is injected into sentiment capsules through
a sentiment-aspect reconstruction procedure during the training. As a
result, coherent patterns between aspects and sentimental expressions are
encapsulated by these sentiment capsules. Experiments on three widely
used benchmarks demonstrate these patterns have potential in exploring
aspect terms from test sentence when only feeding the sentence to the
model. Meanwhile, the proposed CAPSAR can clearly outperform SOTA
methods in standard ATSA tasks.
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1 Introduction

Aspect-level sentiment analysis is an essential building block of sentiment analy-
sis [24]. It aims at extracting and summarizing the sentiment polarities of given
aspects of entities, i.e. targets, from customers’ comments. Two subtasks are
explored in this field, namely Aspect-Term level Sentiment Analysis (ATSA)
and Aspect-Category level Sentiment Analysis (ACSA). The purpose of ATSA
is to predict the sentiment polarity with respect to given targets appearing in the
text. For example, consider the sentence “The camera of iPhone XI is delicate,
but it is extremely expensive.”, ATSA may ask the sentiment polarity towards
the given target “camera”. Meanwhile, ACSA attempts to predict the sentiment
tendency regarding a given target chosen from predefined categories, which may
not explicitly appear in the comments. Take the same sentence as an example,
ACSA asks the sentiment towards the aspect “Price” and derives a negative
answer. In this paper, we aim at addressing the ATSA task.

Conventional approaches [5,15,19] incorporated linguistic knowledge, such as
sentiment-lexicon, syntactic parser, and negation words, etc., and tedious feature
engineering into the models to facilitate the prediction accuracy. Recently, super-
vised deep neural networks, e.g. Recurrent Neural Network (RNN) [36,49], Con-
volution Neural Network (CNN) [21,46] and attention mechanism [1,8,16,28–
30,37,39,43] have shown remarkable successes without cumbersome feature
designing. These models are able to effectively screen unrelated text spans and
detect the sentiment context about the given target.

Despite these efforts, there is still a major deficiency in previous deep neural
network based studies. Specifically, fully labeled aspect terms and their locations
in sentence are explicitly required in both training and test process for recent
methods, which may derive them degrade to sentence-level prediction and would
fail for the test data without such annotations. To acquire aspect terms on pre-
dicted sentences, automatic aspect term detection may lead to error accumula-
tion [45], and manually identifying is inefficient even infeasible. To support more
authentic applications, it calls for an approach that is able to predict potential
aspect-related sentiments based on the sentence and what it has learned from
the training set. To this end, we propose a capsule network-based approach to
remedy the above problem. Compared with previous studies, our method is able
to explore featured sentiments so as to answer the question: “What are the pro-
tagonists of the predicted sentiment polarity?” We access this goal by leveraging
the capsule network1 [34], which has achieved promising results in computer
vision [12,34], natural language processing [7,17,50–52] and recommendation
tasks [23].

The core idea of capsule network is the unit named capsule, which consists
of a group of neurons in which its activity vector can represent the instantiation
parameters of a specific type of entity. The length of activity vector denotes the

1 Here we refer to the capsule network proposed by [34]. Though the models in [44]
and [45] also called capsule network in their papers, they are basically built upon
RNN and attention mechanisms with distinct concepts and implementations.
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probability that the entity exists and its orientation can encode the properties
of the entity. Inspired by that, we propose CAPSAR (CAPsule network with
Sentiment-Aspect Reconstruction) framework by leveraging capsules to denote
sentiment categories and enforce the potential aspect information as the cor-
responding properties. Specifically, during the training process, the sentence is
first encoded with given aspects through a location proximity distillation. Then
the encoded sentence representations are fed to hierarchical capsule layers and
the final capsule layer represents all the concerned sentiment categories. To cap-
ture coherent patterns among aspects and sentimental expressions, the sentiment
capsules are encouraged to encode the information about the aspect terms. We
implement such procedure by reconstructing the aspect with the sentiment cap-
sules. The reconstruction loss is taken as an additional regularization during the
training. During the test phase, if the annotated aspect term is unseen by the
model, CAPSAR can also make prediction and the potential aspect terms in the
sentence could be detected by de-capsulizing the sentiment capsules. We evaluate
the proposed methods on three widely used benchmarks. The results show the
model has potential in unearthing aspect terms for new sentences, and it can
also surpass SOTA baselines in standard aspect-term level sentiment analysis
tasks.

2 Related Work

The related researches in literatures can be categorized as follows, including
sentiment analysis based on neural network, aspect level sentiment classification
and jointing learning methods for aspect level tasks.

Sentiment Analysis Based on Neural Network. Neural network appro-
aches have achieved promising results on both document level [27,41,47] and
sentence level [35] sentiment classification tasks without expensive feature engi-
neering. Some works [10,11] even exploited available interactions between doc-
ument level and sentence level sentiment classification. [44] firstly adopted cap-
sules into document-level sentiment analysis, but their capsule is still based on
RNN and attentions, which is different from the capsule designs in [34].

Aspect Level Sentiment Classification. Aspect level sentiment classifi-
cation is an emerging essential research topic in the field of sentiment anal-
ysis. The purpose is to infer the polarity with respect to aspect phrase or
predefined aspect categories within the text. [36,49] used multiple RNN lay-
ers to jointly model the relations between target terms and their left and
right context. Attention-based methods were brought to this field by many
researches [1,3,8,9,16,20,25,29,37,38,43] to exploit contextual and positional
proximity of aspect terms for prediction and have achieved promising results.
In addition, graph convolution networks (GCN) [48] were also utilized in this
task. However, the final representation may still fail to capture the accurate
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sentiment due to target-sensitive problem [42] or because of the noise in data.
Models based on convolution neural networks [21,46] are alternatives achieving
competitive results, but some key information for modeling local meaning and
overall sentiment may be blurred during the pooling operations. Recently, [45]
proposed to use capsules to perform aspect-category level sentiment analysis.
However as their previous work [44], the basic capsule module is based on atten-
tion mechanisms, which is entirely different with ours. And other works lever-
aging capsule network [7,17] for aspect-level sentiment analysis require explicit
aspect annotation during prediction while our method does not require.

Joint Learning for Aspect Level Tasks. There are some recent joint learning
methods striving to combine different aspect level tasks into a unified learning
process. For example, some studies proposed to extract aspect terms and pre-
dict corresponding sentiment polarities in a pipeline or an integrated model. The
pipeline models [14,33] are extract-then-classify processes and were proposed to
solve the two tasks successively. For integrated models, [22,40] extracted aspect
terms with polarities by collapsed tagging that is a unified tagging scheme to link
two tasks. [26] considered the relationship between the two tasks and attempted
to investigate useful information from one task to another. In addition, some
emerging methods [2,11,31] proposed to extract opinion words in sentences as
auxiliary information to further improve the performance of aspect level senti-
ment classification.

3 The CAPSAR Model

3.1 Model Overview

The overall architecture of CAPSAR is shown in Fig. 1. It starts from an embed-
ding representation of words. In particular, we represent the i-th sentence in a
dataset D with m sentences as {w

(i)
1 , w

(i)
2 , . . . , w

(i)
ni }, where i ∈ [1, . . . , m], ni is

the sentence length, and w(i)
. ∈ W denotes a word where W is the set of vocabu-

lary. The embedding layer encodes each word w
(i)
t into a real-value word vector

x
(i)
t ∈ R

Dx from a matrix M ∈ R
|W |×Dx , where |W | is the vocabulary size and Dx

is the dimension of word vectors. The sentence is encoded by a sequence encoder
to construct a sentence representation. Next, the output of the sequence encoder
is fed to 3-layer capsules. The up-most capsule layer contains C sentiment cap-
sules, where C is the number of sentiment categories. The capsules layers are
communicated with a simple yet effective sharing-weight routing algorithm.

During training, one objective of our model is to maximize the length of senti-
ment capsules corresponding to the ground truth since it indicates the likelihood
of potential sentiments. Meanwhile, these active vectors of the sentiment cap-
sules are used to model the connections between the considered aspect terms and
its corresponding sentiment via an aspect reconstruction. The distance between
the reconstructed aspect representation produced by sentiment capsules and the
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Fig. 1. The network architecture of CAPSAR.

given aspect embedding2 is regarded as an additional regularization. In this
manner, we encourage the sentiment capsules to learn the aspect information as
their active vectors’ orientations. In the test process, a sentiment capsule will be
“active” if its length is above a user-specific threshold, e.g. 0.5. All others will
then be “inactive”. The sentiment prediction of a test sentence will be deter-
mined by the sentiment category associated with the active sentiment capsules.

3.2 Sequence Encoder

In our model, we adopt Bi-GRU as the sequence encoder for simplicity. For i-th
sentence at step t, the corresponding hidden state h

(i)
t are updated as follows.

h
(i)
t =

[−→
h

(i)
t←−

h
(i)
t

]
=

[−−−→
GRU(x(i)

t )←−−−
GRU(x(i)

t )

]
, t = 1, . . . , ni, (1)

where h
(i)
t concatenates hidden states of the t-th word in the i-th sentence

from both directions. Note that more advanced encoders such as LSTM [13]
2 The aspect embedding is calculated by the average of the word embeddings that

form the aspect term.



Aspect Reconstructed Capsule Network 125

or BERT [4], can also be utilized as the sequence encoder. We will introduce
how to combine CAPSAR with BERT in the following part.

3.3 Location Proximity with Given Aspect

In order to highlight potential opinion words that are closer to given aspect
terms, we adopt a location proximity strategy, which is observed effective in [1,
21]. Specifically, we calculate relevance l

(i)
t between the t-word and the aspect3.

l
(i)
t =

{
1 + max(0, α + ni/β − |γ ∗ (k − t)|) t ≤ ni

0 t > ni
(2)

where k is the index of the first aspect word, ni is the sentence length, α, β and
γ are pre-specified constants.

We use l to help the sequence encoder locate possible key words w.r.t the
given aspect.

ĥ
(i)
t = h

(i)
t ∗ l

(i)
t , t ∈ [1, ni], i ∈ [1,m] (3)

Based on Eq. 2 and 3, the salience of words that are distant to the aspect
terms will be declined. Note that such location proximity could be optional in
the test process when the annotated aspect terms are unavailable.

3.4 Capsule Layers with Sharing-Weight Routing

The capsule layers of CAPSAR consist of a primary capsule layer, an interme-
diate capsule layer and a sentiment capsule layer. The primary capsule layer
contains a group of neurons which are constructed by the hidden vectors of the
sequence encoder. Specifically, we simply perform convolutional operation over
h
(i)
ni for i-th sentence and take its output to formulate the primary capsules. As

a result, the primary capsules may contain the sentence coupled with aspect
representations.

Next, the primary capsules are transformed into the intermediate layer and
the subsequent sentiment capsule layer via a sharing-weight routing mechanism.
Unlike the conventional dynamic routing algorithm in [34], our routing algorithm
simultaneously keeps local-proximity information and significantly reduces train-
ing parameters.

The sharing-weight routing algorithm shares the weights between different
children and the same parent. Specifically, we denote the output vector of a
capsule i at level L and the total input vector of a capsule j at level L + 1 as
pi ∈ R

DL and q̃j ∈ R
DL+1 , respectively. We use a unified transformation weight

matrix Wj ∈ R
DL+1×DL for the capsule j at level L+1 to compute the prediction

vectors, i.e. p̂j|i ∈ R
DL+1 , for every possible child capsule i at level L. As a result,

the total input q̃j of capsule j is updated as

q̃j =
∑
i

cij p̂j|i, p̂j|i = Wjpi (4)

3 t is possibly larger than ni because of sentence padding.
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where cij denotes coupling coefficients between capsule i and j and is initial-
ized with equal probability. During the iterative dynamic routing process, cij is
updated to qj · p̂j|i, where qj is the output vector of capsule j computed by the
squash function.

qj =
||q̃j ||2

1 + ||q̃j ||2
q̃j

||q̃j || (5)

Compared with the conventional dynamic routing algorithm, the sharing-
weight routing algorithm clearly reduces the number of parameters and saves
computational cost. For example, if two consecutive capsule layers have M and N
capsules and the dimensions are DL and DL+1 respectively, then the number of
parameters to be learned in this layer will be reduced by (M−1)×N×DL×DL+1

compared with the original routing algorithm in [34].

3.5 Model Training with Aspect Reconstruction

The training objective of this model is two-fold. On one hand, we aim to maxi-
mize the length of the correct sentiment capsules since it indicates the probability
that the corresponding sentiment exists. To this end, we use a margin loss for
every given sentence i

L
(i)
1 = v

(i)
mask max(0,m+ − ||v(i)

prob ||)2 + (1 − v
(i)
mask )max(0, ||v(i)

prob || − m−)2

(6)
Here v

(i)
prob = (||q(i)1 ||, · · · , ||q(i)C ||) where q

(i)
j denotes the output vector of

sentiment capsule j for the sentence i. Each element in such v
(i)
prob indicates the

existence probability of the corresponding sentiment in sentence i; v
(i)
mask is the

mask for sentence i; m+ and m− are hyper-parameters.
On the other hand, we attempt to encourage the sentiment capsules to

capture interactive patterns between the aspect and their corresponding sen-
timents. To this end, we utilize the output vectors of all the sentiment capsules
qj(j ∈ [1, C]) to participate in reconstructing the representation of aspect terms.
Specifically, suppose vmask is a one-hot mask4 whose element representing the
ground truth sentiment is 1, and the rest values are 0. Then we derive two vec-
tors, namely vrecon1 and vrecon2 , through this mask and the sentiment capsules.
First, we mask out all but the output vector of the correct sentiment capsule by
vmask . Then vrecon1 is derived by transforming the masked output vector through
a fully-connect layer. vrecon2 can be derived in a similar manner where 1−vmask

is used as the mask. We force both vrecon1 and vrecon2 have the same dimension
of word embedding, i.e., vrecon1 , vrecon2 ∈ R

Dx , and they are contributed to the
aspect reconstruction during the training.

Suppose a given aspect embedding5 of the sentence i is denoted as v
(i)
asp ,

another training objective in our CAPSAR is to minimize the distance between
4 The dimension of vmask is C.
5 If there are more than one aspect in a same sentence, every aspect will be separately

trained.
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vasp and vrecon1 , and to maximize that between vasp and vrecon2 .

L
(i)
2 = −v(i)

asp

v
(i)
recon1

||v(i)
recon1||

+ v(i)
asp

v
(i)
recon2

||v(i)
recon2||

(7)

Finally, the overall loss is the combination of L
(i)
1 and L

(i)
2 , and a hyper-

parameter λ is used to adjust the weight of L2.

Loss =
∑
i

(L(i)
1 + λL

(i)
2 ) (8)

For prediction, a sentence and an optional aspect in the sentence are fed to
the network and the polarity attached to the sentiment capsule with the largest
length will be assigned.

3.6 Combining CAPSAR with BERT

Our CAPSAR is meanwhile easily extended that utilizes the features learnt from
large-scale pre-trained encoders, e.g. BERT [4]. An upgraded model, namely
CAPSAR-BERT, is achieved by replacing the sequence encoder with BERT in
CAPSAR. The other structures are kept the same. In this manner, the strength
of BERT and the proposed structures could be combined.

4 Experiments

In this section, we verify the effectiveness of CAPSAR. Firstly, we verify the
ability of CAPSAR on perceiving the potential aspect terms when they are
unknown. Secondly, we investigate the performance of CAPSAR on standard
ATSA tasks, where the aspect terms are always known for test sentences. Finally,
we demonstrate the detailed differences of compared methods by case studies.

4.1 Datasets

Three widely used benchmark datasets are adopted in the experiment whose
statistics are shown in Table 1. Restaurant and Laptop are from SemEval2014
Task 46, which contain reviews from Restaurant and Laptop domains, respec-
tively. We delete a tiny amount of data with conflict labels which follows previous
works [37,43]. Twitter is collected by [6] containing twitter posts. Though these
three benchmarks are not large-scale datasets, they are the most popular and
fair test beds for recent methods.

6 http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools.

http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
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Table 1. Statistics of datasets.

Dataset Restaurant Laptop Twitter

Train Test Train Test Train Test

Neg. 807 196 870 128 1562 173

Neu. 637 196 464 169 3124 346

Pos. 2164 728 994 341 1562 173

4.2 Compared Methods

We compare our method with several SOTA approaches.
ATAE-LSTM [43] appends aspect embedding with each input word embed-

dings. TD-LSTM [36] employs two LSTMs to model contexts of the targets
and performs predictions based on the concatenated context representations.
IAN [29] interactively learns the context and target representation. Mem-
Net [37] feds target word embedding to multi-hop memory to learn better rep-
resentations. RAM [1] uses recurrent attention to capture key information on
a customized memory. MGAN [8] equips a multi-grained attention to address
the aspect having multiple words or larger context. ANTM [30] adopts atten-
tive neural turing machines to learn dependable correlation of aspects to con-
text. CAPSAR and CAPSAR-BERT are models proposed in this paper.
BERT [4] is also compared to show the improvement of CAPSAR-BERT.

4.3 Experimental Settings

In our experiments, we implement our method by Keras 2.2.4. The word embed-
ding is initialized by Glove 42B [32] with dimension of 300. The max length for
each sentence is set to 75. The batch size of training is 64 for 80 epochs, and
Adam [18] with default setting is taken as the optimizer. For sequence encoder,
we adopt the Bi-GRU with the dropout rate of 0.5 for CAPSAR. The pre-trained
BERT of the dimension of 768 is used in CAPSAR-BERT. For hyper-parameters
in Eq. 2, α, β, and γ are set to be 3, 10 and 1. For the capsule layers, there are 450
primary capsules with dimensions of 50, 30 intermediate capsules with dimen-
sions of 150 and 3 sentiment capsules with dimensions of 300. The default routing
number is 3. For hyper-parameters in the loss function (cf. Eq. 8), we set m+,
m−, λ to be 1.0, 0.1 and 0.003 respectively. Evaluation metrics we adopt are
Accuracy and Macro-F1, and the latter is widely used for recent ATSA tasks
since it is more appropriate for datasets with unbalanced classes.

4.4 Results on Standard ATSA

Main Results. Table 2 demonstrates the performances of compared methods
over the three datasets on the standard ASTA tasks. On such setting, every
aspect term is known to all the models, and each model predicts the correspond-
ing polarity for a given aspect term. Here we only consider the longest sentiment



Aspect Reconstructed Capsule Network 129

Table 2. The average accuracy and macro F1-score on standard ATSA tasks. The
results with ‘*’ are retrieved from the papers of RAM, and other results of baselines
are retrieved from corresponding papers.

Models Restaurant Laptop Twitter

Accuracy F1 Accuracy F1 Accuracy F1

Baselines ATAE-LSTM 0.7720 NA 0.6870 NA NA NA

TD-LSTM 0.7560 NA 0.6810 NA 0.6662∗ 0.6401∗

IAN 0.7860 NA 0.7210 NA NA NA

MemNet(3) 0.8032 NA 0.7237 NA 0.6850∗ 0.6691∗

RAM(3) 0.8023 0.7080 0.7449 0.7135 0.6936 0.6730

MGAN 0.8125 0.7194 0.7539 0.7247 0.7254 0.7081

ANTM 0.8143 0.7120 0.7491 0.7142 0.7011 0.6814

Ablation test CAPSAR w/o R 0.8185 0.7216 0.7484 0.7039 0.7255 0.7067

CAPSAR w/o H 0.8188 0.7226 0.7461 0.7054 0.7298 0.7080

CAPSAR 0.8286 0.7432 0.7593 0.7221 0.7368 0.7231

Combine BERT BERT 0.8476 0.7713 0.7787 0.7371 0.7537 0.7383

CAPSAR-BERT 0.8594 0.7867 0.7874 0.7479 0.7630 0.7511

capsule is active. All the reported values of our methods are the average of 5
runs to eliminate the fluctuates with different random initialization, and the per-
formance of baselines are retrieved from their papers for fair comparisons. The
best performances are demonstrated in bold face. From the table, we observe
CAPSAR has clear advantages over baselines on all datasets. Our model can out-
perform all the baselines by a large-margin on both evaluate measures except
the F1 on Laptop dataset. Meanwhile, we also observe that CAPSAR-BERT
further improves the performance of BERT. It demonstrates the advantages by
combining CAPSAR with advanced pre-trained model.

Ablation Test. Next we perform ablation test to show the effectiveness of
component of CAPSAR. We remove the aspect reconstruction and intermediate
capsule layer, respectively, and derive two degrade models, namely CAPSAR
w/o R and CAPSAR w/o H. Their performance on the three datasets are
exhibited in Table 2, and we can observe the degraded model gives a clear weaker
performance than CAPSAR, without the sentiment-aspect reconstruction. We
conjecture such a regularizer might be able to learn the interactive patterns
among the aspects with the complex sentimental expressions. Meanwhile, we
also observe the advantage of the intermediate capsule layer, which illustrates
the hierarchical capsule layers may be stronger in learning aspect-level sentiment
features.

Case Studies. Then we illustrate several case studies on the results of ATSA
task in Table 3. The predictions of CAPSAR, ANTM, MGAN and RAM are
exhibited. We directly run their available models on test set to get the results.
The input aspect terms are placed in the brackets with their true polarity labels
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Table 3. Prediction examples of some of the compared methods. The abbreviations
Pos, Neu and Neg in the table represent positive, neutral and negative. ✗ indicates
incorrect prediction.

Sentence CAPSAR ANTM MGAN RAM

1. The [chocolate raspberry
cake]Pos is heavenly - not too sweet ,
but full of [flavor]Pos.

(Pos,Pos) (Pos,Neg✗) (Neg✗,Pos) (Pos,Neg✗)

2. Not only was the sushi fresh , they
also served other [entrees]Neu allowed
each guest something to choose from
and we all left happy (try the
[duck]Pos!

(Neu,Pos) (Pos✗,Pos) (Pos✗,Pos) (Pos✗,Pos)

3. The [baterry]Pos is very longer . Pos Neg✗ Pos Neg✗

4. [Startup times]Neg are incredibly
long : over two minutes.

Neg Neg Pos✗ Pos✗

5. However I chose two day
[shipping]Neg and it took over a week
to arrive.

Neu✗ Neu✗ Pos✗ Pos✗

as subscripts. “Pos”, “Neu” and “Neg” in the table represent positive, neutral
and negative, respectively. Different targets are demonstrated by different colors,
such as blue and red, etc. The context which may support the sentiment of targets
is manually annotated and dyed with the corresponding color.

For instance, in the first sentence, one target is “chocolate raspberry cake”
of which the sentiment is positive and the context “is heavenly” supports this
sentiment. In this case, the results of CAPSAR, ANTM, and RAM are correct.
For the second aspect “flavor”, our method and MGAN predict correctly. We
conjecture the reason is the sentence contains turns in its expression, which may
confuse the existing neural network models. Similar observation is achieved on
the second sentence in which only our method can predict different sentiments
for distinct aspects.

Next we discuss a target-sensitive case which is shown by the third and
the fourth sentences in the same table. The word “long” in the exhibited two
sentences indicates entirely opposite sentiment polarities, since the expressed
sentiment also depends on the considered aspects. These cases are challenge
for algorithms to identify the sentiment of each sentence correctly. Among the
demonstrated methods, only our approach can predict them all successfully.
ANTM, as a strong competitor, can predict one of them correctly. The others
fail to give any correct prediction. We do not claim our CAPSAR can perfectly
address the target-sensitive cases, however, the results give an initial encour-
aging potential. We argue that it is the sentiment-aspect reconstruction in our
model which makes aspect and its corresponding sentiment become more cou-
pled, and it might be one of the essential reasons why our model achieves a
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Table 4. The average Precision@1, Recall@5 and mAP on aspect term detection. The
column “Avg. Aspect” and “Avg.SenLen” indicate average number of words on aspect
terms in each sentence and average length of each sentence on the test set, respectively.

Datasets Avg. Aspect Avg. SenLen Pre.@1 Rec.@5 mAP

Restaurant 2.76 16.25 0.8233 0.7884 0.7139

Laptop 2.54 15.79 0.6408 0.7557 0.6173

salient improvement on ATSA task. How to specifically explore capsule networks
for target-sensitive sentiment analysis is out of the scope of this paper.

For error analysis, we find that all the listed models cannot predict correctly
on the last sentence of Table 3. By looking closer to this sentence, we recognize
that the sentiment polarity of this sentence comes from implicit semantics instead
of its explicit opinion words. It indicates implicit semantics inference behind
sentences is still a major challenge of neural network models, even exploiting
capsule networks.

4.5 Results on Aspect Term Detection

Next, we investigate whether CAPSAR can detect potential aspect terms when
they are unknown during the test. We use the trained model to predict every
test sentence on Restaurant and Laptop datasets but we intentionally conceal
the information about the aspect terms in the input. In another word, the model
is only fed the test sentence without any other additional input. Then we de-
capsulize the sentiment capsule whose length is longer than 0.5 and compute
normalized dot-product between its reconstructed vector and every word embed-
ding in the test sentence. These dot-products can be regarded as the probabilities
representing the possibility of the word to be part of an aspect term.

A sentence may simultaneously contain multiple sentiments (c.f. the 2nd sen-
tence in Table 3), which derives more than one sentiment capsule whose length
surpasses 0.5. As a result, we detect the potential aspect terms for every active
sentiment capsule, respectively, in our evaluation. There could be more than
one aspect terms for each sentiment category in the same sentence (c.f. the 1st
sentence in Table 3). Hence we compute Precision@k, Recall@k and mean Aver-
age Precision (mAP) to comprehensively verify the effectiveness of CAPSAR on
aspect term detection.

We retrain our CAPSAR five times and use the trained model to detect
aspect terms on the test set. Table 4 shows the average results. From the table
we observe that CAPSAR shows an encouraging ability to extract aspect terms
even though they are unknown in new sentences. Meanwhile, the model achieves
better performance on Restaurant dataset. We conjecture the reason is the Lap-
top dataset has more complicated aspect terms such as “Windows 7”.

Finally, we visualize two test sentences in this evaluation shown as Fig. 2
and 3. Figure 2 demonstrates a case that only one sentiment capsule is active.
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Fig. 2. The visualization of aspect term detection when single sentiment capsule is
active. The real aspect terms are marked in bold face in the sub-figure (b).

Fig. 3. The visualization of aspect term detection when multiple sentiment capsules are
active. The real aspect terms are marked in bold face in the sub-figure (b), respectively.

The sentiment capsule length is exhibited in Fig. 2(a), and the corresponding
dot-products are demonstrated as Fig. 2(b). The darker the color in Fig. 2(b),
the higher value the dot-product is, which means the corresponding word is more
likely to be a part of an aspect term. From this figure, we observe that the two real
aspect terms hold much higher weights compared with the other words, which
derives a correct detection. We can also obtain similar observations from the case
shown as Fig. 3 in which two sentiment capsules are active. In this case, there are
two aspect terms, namely “food” and “service”. From the sentence, we observe
that this review has a strong negative sentiment towards on “service” while has
a neutral attitude to “food”. After we de-capsulize the active sentiment capsules,
we find both “service” and “food” are perceived by the negative capsule because
of the overall negative sentiment of the whole sentence. While in the neutral
capsule, only the corresponding aspect term “food” is highlighted.

5 Conclusion

In this paper, we proposed, CAPSAR, a capsule network based model for improv-
ing aspect-level sentiment analysis. The network is piled up hierarchical capsule
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layers equipped with a shared-weight routing algorithm to capture key features
for predicting sentiment polarities. Meanwhile, the instantiation parameters of
sentiment capsules are used to reconstruct the aspect representation, and the
reconstruction loss is taken as a part of the training objective. As a consequence,
CAPSAR could further capture the coherent patterns between sentiment and
aspect information and is able to detect potential aspect terms by parsing the
sentiment capsules when these aspect terms are unseen. Experimental results on
three real-world benchmarks demonstrate the superiority of the proposed model.
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Abstract. In text classification tasks, the high dimensionality of data
would result in a high computational complexity and decrease the clas-
sification accuracy because of high correlation between features; so, it is
necessary to execute feature selection. In this paper, we propose a Dis-
criminant Mutual Information (DMI) criterion to select features for text
classification tasks. DMI measures the discriminant ability of features
from two aspects. One is the mutual information between features and
the label information. The other is the discriminant correlation degree
between a feature and a target feature subset based on the label infor-
mation, which could be used for judging whether a feature is redundant
in the target feature subset. Thus, DMI is a de-redundancy text fea-
ture selection method considering discriminant information. In order to
prove the superiority of DMI, we compare it with the state-of-the-art
filter methods for text feature selection and conduct experiments on
two datasets: Reuters-21578 and WebKB. K-Nearest Neighbor (KNN)
and Support Vector Machine (SVM) are taken as the subsequent classi-
fiers. Experimental results shows that the proposed DMI has significantly
improved the classification accuracy and F1-score of both Reuters-21578
and WebKB.

Keywords: Text classification · Feature selection · Mutual
information · Discriminant information · Redundant features

1 Introduction

Today, text is a kind of carriers for information and can carry data through var-
ious files, such as news reports, product reviews, and blogs. To analyze text, it is
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necessary to perform text processing. As a kind of text processing methods, text
classification plays an important role in sentiment analysis, spam e-mail filtering,
topic detection, and various real-word applications. Usually, machine learning-
based text classification methods must change texts into a feature matrix using
a bag-of-word model [17], so that the dimensionality of texts is relatively high.
In order to avoid the curse of dimensionality and obtain a good performance, it
is necessary to perform feature selection in text classification tasks.

The main goal of feature selection is to select the optimal feature subset
from the original feature set that performs well in subsequent classification
tasks. Generally, methods for feature selection can be divided into three cat-
egories [23]: wrapper, filter and embedded methods. Wrapper feature selection
methods, initially proposed by Kohavi et al. [9], combine with classifiers and
use the performance of classifiers as the selection criterion. Filter methods are
the most commonly used ones to select the optimal feature subset by evaluating
features with specific evaluation criteria that are independent of classifiers. The
embedding methods combine the characteristics of the wrapper methods and
the filter methods, which train machine learning algorithms to assign the weight
coefficients to each feature and select the optimal feature subset from the original
feature set. It is unavoidable to have redundancy features in high-dimensional
data.

Text data has the characteristics of both high dimensionality and high spar-
sity. text feature selection is often based on document frequency or term count
because text data is usually in form of feature matrix with elements represent-
ing the number of times a feature appears in the document [17]. Usually, filter
methods are developed for text feature selection. Uysal and Gunal [19] designed
criteria for measuring the importance of a term in corpus, and proposed a Distin-
guishing Feature Selector (DFS) based on those criteria. Rehman et al. [16] pro-
posed a Relative Discrimination Criterion (RDC) that considers the frequency
of each feature in the positive and negative samples and relies on the label infor-
mation of a given dataset. Labani et al. [10] proposed a Multivariate Relative
Discrimination Criterion (MRDC), which combines RDC with Pearson correla-
tion coefficients for feature selection.

As a commonly used feature selection method, Mutual Information (MI)
plays a great role in text feature selection and has achieved good results [3,14].
There are some different definitions on MI. For example, a common way to
calculate mutual information is given in [3]. Xu et al. thought this way is in
conflict with the definition of MI derived from information theory and introduced
a novel way [21]. However, it is unnecessary to consider the absence of the term.
In this paper, we adopt a way proposed in [18] and compare it with other ways
in experiments.

In a general way, to consider the relationship between features, Peng et al.
[13] provided the theoretical analysis of the relationships of dependency, rel-
evance and redundancy. A heuristic minimal-Redundancy-Maximal-Relevance
(mRMR) framework was proposed to minimize redundancy of features based
on MI. Hoque et al. [8] also combined the feature-class mutual information
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with the average feature-feature mutual information to perform feature selec-
tion using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Lin et al.
[11] took into account the feature dependency and the feature redundancy in the
multi-label learning and proposed an evaluation measure that combines the max-
dependency and min-redundancy (MDMR) with mutual information. However,
MDMR needs to calculate the relevance between terms and categories under a
given feature subset in each step of the feature selection process, which leads to
a high time complexity. At the same time, MDMR calculates both the relevance
of terms and the relevance of terms related to categories and deals with them by
subtraction. In this way, the redundancy of terms may be weakened. In a word,
as far as we know, existing MI-based methods that can eliminate the redundancy
of features are not designed for text feature selection at present.

To effectively remove redundant features and select relevant features, this
paper presents a novel text feature selection based on MI, called Discriminant
Mutual Information (DMI) that can describe the discriminant ability of features.
DMI is a de-redundancy text feature selection method considering discriminant
information. First, DMI adopts MI to calculate the discriminant ability of fea-
tures in terms of the relationship between features and the label information.
Second, DMI judges the redundancy of features by calculating a discriminant
correlation degree between a term and a target feature subset based on the label
information, which takes into account the discriminant information. We conduct
experiments on the Rueters-21578 and WebKB corpus to verify the proposed
method.

The rest of this paper is organized as follows. Section 2 introduces the related
work of text feature selection. Section 3 describes the structure of the proposed
DMI. Section 4 gives experimental setting and results in details. Section 5 con-
cludes this paper and prospects future research directions.

2 Related Work

2.1 Text Representation

Text is a set of ideographic symbols that has been used by humans to record
and express information for a long time, which cannot be directly processed
as the way like numerical data. Text representation is to quantify text data
and express it into a format that can be recognized and processed by a com-
puter. Common text representation methods include boolean model [1], Vec-
tor Space Model (VSM) [4], probabilistic model [6], and word embedding [12].
Boolean model based on boolean algebra represents only whether the feature
word appears in a document. VSM, proposed by Salton et al. in the1970s, maps
features and documents into a two-dimensional array and records the weights
of each feature in each document. Probabilistic model is to represent text based
on the probabilistic queuing theory and uses the conceptual correlation of term-
term and term-document. The word embedding model generates a distributed
representation of feature words by training a neural network, which well reflects
the relationship between feature words and has good semantic characteristics.
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In this paper, the bag-of-word model [17], one of the most commonly used
vector space models, is adopted for text representation The bag-of-word model
takes all feature words in all texts as features and treats each text as a sample.
Assume that there is a data set of texts X = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where n is the number of texts (samples), xi = [xi1, xi2, . . . , xif ]T is the sample
distribution of the i-th text, f is the number of features, yi ∈ {1, . . . ,m} is the
label of xi, and m is the number of categories. Let C = {c1, c2, · · · , cm} be
the category set and F = {t1, t2, · · · , tf} be the set of features. For term tj , its
feature representation is denoted as fj = {x1j , x2j , . . . , xnj}.

2.2 Mutual Information

In [3], MI can be used to select the optimal feature subset that is highly rele-
vant to the category based on the mutual information of labels and document
frequency of terms. Given term ti, its mutual information in class ck can be
expressed as [3]:

MI(ti, ck) = log2
p(tj , ci)

p(tj)p(ci)
(1)

where p(ti) means the prior probability of term ti, p(ck) means the prior proba-
bility of category ck, and p(ti, ck) is the joint probability of term ti and category
ck. For multi-class classification tasks, there are generally two ways to calculate
the mutual information of term ti on C:

MImax(ti, C) =
m

max
k=1

MI(ti, ck) (2)

and

MIave(ti, C) =
m∑

k=1

p(ck)MI(ti, ck) (3)

Xu et al. [21] considered the sum of mutual information of a term existing
or not as the mutual information between the term and a category. In [21], the
mutual information of term ti on C is defined as follows:

MI(ti, C) =
m∑

k=1

p(ti, ck) log2
p(ti, ck)

p(ti)p(ck)
+

m∑

k=1

p(t̃i, ck) log2
p(t̃i, ck)

p(t̃i)p(ck)
(4)

where t̃i means that the term ti is absence, and p(t̃i) is the prior probability of
term t̃i, p(t̃i, ck) is the joint probability of term t̃i and category ck.

We thought that it is superfluous to consider the absence of a term when
calculating mutual information, so we adopt the MI algorithm proposed in [18],
where the mutual information of term ti on C can be calculated as:

MI(ti, C) =
m∑

k=1

p(ti, ck) log2
p(ti, ck)

p(ti)p(ck)
(5)



140 J. Wang and L. Zhang

2.3 mRMR

Mostly, MI provides the mutual information between features and labels. Consid-
ering the feature redundancy, Peng et al. [13] proposed the minimal-Redundancy-
Maximal-Relevance (mRMR) framework to minimize redundancy and give an
implementation based on mutual information. Although mRMR is not designed
for text feature selection, it still can be used for text feature selection if text has
been represented by applying VSM.

Let S ⊆ F be a feature subset and C be the category set. The relevance
of S and C is the average mutual information between S and C, which can be
described as:

D(S,C) =
1

|S|
∑

ti∈S

∑

ck∈C

MI(ti, ck) (6)

At the same time, the redundancy of S is determined by the mutual information
between features in S, which can be calculated by

R(S) =
1

|S|2
∑

ti,tj∈S

MI(ti, tj) (7)

where

MI(ti, tj) = log2
p(ti, tj)

p(ti)p(tj)
(8)

which is modified from (1).
mRMR combines the above two constraints to form its evaluation criterion:

max φ(S,C) = D(S,C) − R(S) (9)

which indicates that mRMR could get a feature subset with minimal redundancy
and maximal relevance.

3 Discriminant Mutual Information

In this section, we propose a novel text feature selection method named dis-
criminant mutual information. We first describe the preprocessing of texts, then
present DMI, and finally give the algorithm description of DMI.

3.1 Text Preprocessing

Text needs to be changed to its numerical value representation that can be
directly handled by feature selection algorithms. In our method, we express text
as vector space using bas-of-words. In the text data, not all words are helpful
for text classification tasks; so it is necessary to perform text preprocessing to
reduce the amount of words.

The preprocessing of the text data mainly includes the removal of stop-
words, stemming, and the removal of high frequency and low frequency words,
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etc. Removing stop-words is mainly to remove some common words that are
not helpful for text classification, such as “a”,“the”, “that”, etc. These words
often appear in the expression of text, but do not carry any practical mean-
ing. Stemming aims to remove affixes from various forms of words and convert
them into their root forms uniformly. For example, “stemming”, “stemmer”,
and “stemmed” should be transformed into the form of the root “stem”. Here,
we use Porter’s Stemmer [15], which is uses a set of rules for stemming. At
the same time, high-frequency and low-frequency words should be removed [7].
High-frequency words often appear in each category and low-frequency words
may appear only once or twice. These words do not carry information that is
beneficial to the classification task. In the preprocessing stage, we reserve words
with the frequency of appearing documents more than 3 and less than 25% of
the number of total documents.

After this preprocessing stage, it is necessary to perform word statistic on the
processed corpus to generate the feature space. Then, documents are sequentially
mapped to the feature space to form a feature matrix, where each entry records
whether a term appears in a document or not.

3.2 Discriminant Mutual Information

The traditional mutual information for text feature selection considers only the
relationship between the term and the category. However, terms with similar
meanings are usually similar in sample distributions. It is easy for MI to con-
centrate on selecting terms that are very close to each other in categorical dis-
tribution; so the redundancy between the selected features cannot be ignored.

Theoretically, eliminating redundant terms in the selection process is benefi-
cial to subsequent classification tasks. In this paper, we propose a criterion based
on the discriminant information of data for measuring the redundancy of terms.
The criterion is to calculate the discriminant correlation degree of a given term
and other term based on the label information. We have the following definition.

Definition 1. Let C = {c1, · · · , cm} be the category set and F = {t1, · · · , tf}
be the feature set. The discriminant correlation degree of term ti ∈ F and tj ∈ F
on C is defined as:

DC(ti, tj |C) =
m∑

k=1

p(ti, tj , ck)
p(ck)

(10)

where p(ti, tj , ck) is the jointly probability of term ti, tj, and category ck, and
p(ck) is the prior probability of category ck.

DC(ti, tj) means the relevance of ti and tj under all categories. The greater
the value of DC(ti, tj) is, the more possible ti is redundant with tj . The purpose
of de-redundancy is to reduce the redundancy of a candidate term and the target
feature subset.
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Definition 2. Let C = {c1, · · · , cm} be the category set and F = {t1, · · · , tf}
be the feature set. If S ⊆ F is the target feature subset, then the discriminant
correlation degree of term ti ∈ (F − S) and S on C is defined as:

DC(ti, S|C) =
∑

tj∈S

DC(ti, tj |C) =
∑

tj∈S

m∑

k=1

p(ti, tj , ck)
p(ck)

(11)

On one hand, one of principles for feature selection is to avoid the redun-
dancy of the candidate term with the target feature subset as much as possible.
Obviously, if the candidate term ti makes DC(ti, S) great, then ti is possibly
redundant with terms in S. In this case, ti could not be merged into the target
feature subset. Therefore, we need the candidate term that is to minimize the
redundancy of it and C on S. Namely,

min
ti∈(F−S)

DC(ti, S|C) (12)

On the other hand, it requires maximizing the relevance of the candidate
term and categories in feature selection tasks, which can be measured by mutual
information. Namely,

max
ti∈(F−S)

MI(ti, C) (13)

DMI provides a novel feature selection criterion by combining mutual infor-
mation and discriminant correlation degree. Given the target feature subset S
and category set C, we select the candidate term ti with the maximal mutual
information and the minimal discriminant correlation degree at the same time.
Namely,

max
ti∈(F−S)

DMI(ti|S,C) = λMI(ti, C) − (1 − λ)DC(ti, S|C) (14)

where 0 < λ ≤ 1 is a parameter defined by users, which can balance the impor-
tance of MI(ti, C) and DC(ti, S). When λ = 1, DMI is reduced to MI.

The DMI algorithm is to iteratively find t∗ that has the highest DMI(t∗|S,C)
with DMI(t∗|S,C) ≥ DMI(ti|S,C), t∗, ti ∈ (F − S) and merge it into the
target feature subset S. The algorithm description is shown in Algorithm 1.
When the target feature subset S is an empty set, it is not necessary to judge
the redundancy of candidate terms; thus, only the term with the highest mutual
information is taken as the optimal term, as shown in Steps 4–8. The termination
condition of DMI is that the target feature subset consists of nSlct terms, where
nSlct is defined by users. In fact, the target feature subset can reflect the feature
ranking of the first nSlct terms.

4 Experiments and Analysis

4.1 Datasets

In this section, we perform experiments on Reuters-21578 and WebKB corpora
and compare our method with MI and the state-of-the-art filter methods for text
feature selection.
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Algorithm 1. DMI

Input: Text set X, category set C, the number of remained terms nSlct, and λ.
Output: Target feature subset S.

1: Initialize S = ∅ and F = {t1, . . . , tf};
2: while |S| < nSlct do
3: if S = ∅ do
4: for ∀ti ∈ (F − S) do;
5: Calculate MI(ti, C) by Eq. (5);

6: end for
7: Merge t∗ into S, or S = S ∪ {t∗}, where t∗ = argmaxti∈(F−S) MI(ti, C);

8: Remove t∗ from F , or F = F − {t∗};
9: else
10: for ∀ti ∈ (F − S) do
11: Calculate DC(ti, S|C) by Eq. (11);
12: Calculate DMI(ti|S, C) = λMI(ti, C) + (1 − λ)DC(ti, S|C);
13: end for
14: Update S = S ∪ {t∗}, where t∗ = argmaxti∈(F−S) DMI(ti|S, C);

15: Update F = F − {t∗};
16: end if
17: end while

The Reuters-21578 corpus is an economic news collected by Reuters news
agency and is the most widely used dataset for text classification currently.
The original Reuters-21578 dataset has a total of 135 categories. The category
distribution of documents is relatively unbalanced and some documents contain
multi-labels. Similar to the experimental setting in [2], we also select the subset of
Reuters-21578 in our experiments. This subset consists of only single-label data
and has 8 frequently occurring categories, called the R8 dataset. The information
of this dataset is given in Table 1.

WebKB is a collection of webpages of some university computer science
departments collected by the World Wide Knowledge Base project in 1997. These
webpages are divided into four categories: course, project, faculty and student.
Table 2 shows the data information of the WebKB dataset.

According to Sect. 3.1, we carry out the preprocessing of text data. In the
processed texts, all stop-words are deleted, the words with a character length
of less than 3 are deleted, and the words with too high and too low frequency
are also deleted. At the same time, the stemming operation is performed. In
experiments, we choose to retain the terms whose document frequency is greater
than 3 and less than n/4. After texts are processed, the R8 dataset retains 4954
terms, and the WebKB dataset 6124 ones. Next, we represent these text data in
the form of a feature matrix using the bag-of-words model.

4.2 Classifiers and Evaluation Measure

In experiments, we use Support Vector Machine (SVM) [20] and K-nearest
Neighbor (KNN) [5] to classify the data after text feature selection, both of
which are implemented by using the sklearn library in Python3.6. The accuracy
and F1-score are used to evaluate classification results.
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Table 1. Information of the R8 dataset

No. #Category #Training #Test

1 Acq 1596 696

2 Crude 253 121

3 Earn 2840 1083

4 Grain 41 10

5 Interest 190 81

6 Money-Fx 206 87

7 Ship 108 36

8 Trade 251 75

Table 2. Information of the WebKB dataset

No. #Category #Training #Test

1 Project 336 168

2 Course 620 310

3 Faculty 750 374

4 Student 1097 544

For binary classification tasks, the calculation way of accuracy is as follows:

Acc =
TP + TN

n′ (15)

and that of F1-score as follows:

F1 =
2TP

2TP + FN + FP
(16)

where TP is the number of positive samples that are classifies correctly (true
positive), TN is the number of negative samples that are classifies correctly (true
negative), FN is the number of negative samples that are classifies falsely (false
positive), and n′ is the total number of test samples.

For multi-category classification tasks, the accuracy and F1-score of category
ci is recorded as Acci and F1i, respectively. The final the accuracy and F1-score
are the average on all categories. Namely,

Acc =
1
m

m∑

i=1

Acci (17)

and

F1 =
1
m

m∑

i=1

F1i (18)

where m is the total number of categories.
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4.3 Experimental Results

Comparison of MI Algorithms: To compare three MI algorithms, we observe
the classification accuracy obtained by KNN on the R8 dataset. The number of
selected features takes values in the set {10, 20, 50, 100, 200, 500, 1000, 1500}.

Table 3. Accuracy obtained by KNN on the R8 dataset

Method Number of selected features

10 20 50 100 200 500 1000 1500

MI (Eq. (5)) 68.66 78.67 89.95 89.40 89.36 84.47 82.78 80.45

MI (Eq. (4)) 72.13 80.90 89.04 89.17 88.58 84.51 82.73 80.4

MI (Eq. (1)) 49.47 34.76 55.87 60.21 70.81 76.7 76.24 75.56

Table 3 show the comparison of the classification accuracy obtained by KNN
on the R8 dataset, where the best results are in bold type and the second best
ones are underlined. It is obvious that MI used in our method is more effective
than others, which shows that it is correct for us to use Eq. (5) as the mutual
information of text features.

Hyperparameter Analysis of DMI: DMI has a hyperparameter λ, which
takes value in the interval (0, 1]. To observe the effect of λ on the performance
of DMI, we set λ ∈ {0.1, 0.2, · · · , 0.9}.

Figure 1 shows the curves of classification accuracy vs. λ obtained by SVM
under different datasets, where the number of selected features varies from 50
to 1000. From Fig. 1, we can see that λ has a an great effect on the classification
performance of DMI. When λ is very small, the relevance of terms and categories
would be ignored so that we miss features with a high discriminant ability. If λ
is very close to 1, the performance of DMI approaches to that of MI. Thus, an
appropriate value for λ is required. For the R8 dataset, λ > 0.3 can provide a
better performance. On the WebKB dataset, we should set λ > 0.5. To balance
the two terms in Eq. (14), we set λ = 0.5 in the following experiments.

Comparison of DMI and MI: As mentioned before, MI is in the framework of
DMI. If we set λ = 1 in Eq. (14), DMI is actually MI. Here, we observe the effect
of the second term in Eq. (14) on the performance of algorithm by comparing
DMI and MI.

The number of remained features varies from 10 to 3000 with a span of 10.
The comparison curves of performance indexes vs. number of features are plotted
in Figs. 2 and 3.

Figure 2 gives the experimental results on the R8 dataset, Figs. 2(a) and 2(c)
are the results obtained by KNN, and Figs. 2(b) and 2(d) obtained by SVM. It
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Fig. 1. Classification accuracy vs. λ obtained by SVM on the R8 dataset (a) and the
WebKB dataset (b).

can be seen from Fig. 2 that it is necessary for text classification to select fea-
tures. No matter what classifier is used and what performance index is adopted,
the best classification performance is achieved when the number of features is
less than 300 on the R8 dataset. Specifically, KNN with DMI reaches the best
accuracy of 92.33% when the number of selected terms is 110, which is 2.83%
higher than KNN with MI under the same dimension. SVM with DMI needs 140
terms to achieve its best accuracy of 93.01%, which is higher than SVM with
MI by 1.83% under the same dimension. From the figures about F1-score, we
have a similar conclusion. DMI is much better than MI when both classifier are
applied to, which indicates that the discriminant correlation degree indeed plays
an important role in feature selection.

Figure 3 gives the experimental results on the WebKB dataset, Figs. 3(a)
and 3(c) are the results obtained by KNN, and Figs. 3(b) and 3(d) obtained
by SVM. The necessity of feature selection can be obviously observed from both
Figs. 3(a) and 3(c) when KNN is the subsequent classifier. DMI is rather superior
to MI in both accuracy and F1-score. Although Figs. 3(b) and 3(d) show that the
performance indexes seem to be increased as increasing the number of selected
features, the best performance is achieved at 700 terms that is less than 3000;
thus, feature selection is an essential stage.

The experimental results lead us to conclude that the effectiveness of DMI is
due to eliminating the redundancy of terms using the discriminant correlation
degree. The classical MI cannot remove the redundancy of terms so that MI is
worse than DMI in the comparison of classification performance.

Comparison of More Methods. To further validate the effectiveness of
the proposed method, we compare it with more related methods, including
mRMR [13], MDMR [11], MI [18], RDC [16], MRDC [10], DFS [19] and Infor-
mation Gain (IG) [22]. IG is a feature evaluation criterion in the ID3 decision
tree, which can be applied to text feature selection. Other compared methods
are mentioned in Sect. 1.
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Fig. 2. Classification results on the R8 dataset
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Fig. 3. Classification results on the WebKB dataset
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Above experiment results tell us that the maximum number of selected
feature is less than 1000 on both datasets. In the following experi-
ments, the number of selected features takes values only in the set
{10, 20, 50, 100, 200, 500, 1000, 1500}.

Table 4. Accuracy obtained by KNN on the R8 dataset

Method Number of selected features

10 20 50 100 200 500 1000 1500

DMI 74.00 82.60 90.59 92.23 91.46 88.21 83.83 81.96

MI 68.66 78.67 89.95 89.40 89.36 84.47 82.76 80.45

mRMR 69.76 72.59 78.03 87.67 87.62 88.76 82.37 79.53

MRDC 52.99 75.38 70.35 81.96 82.91 86.25 82.64 80.81

RDC 64.92 71.36 84.74 86.34 86.71 84.79 83.10 80.90

DFS 49.47 49.66 50.43 53.77 61.44 62.40 63.13 65.65

IG 49.47 49.47 49.61 50.80 51.16 53.54 53.95 54.77

Tables 4 and 5 show the comparison of the classification accuracy obtained
by KNN and SVM on the R8 dataset, respectively, where the best results are in
bold type and the second best ones are underlined. On the R8 dataset, Tables 4
and 5 show that the best results can be achieved under most cases. When using
KNN as a classifier, DMI can achieve the best accuracy for all sizes of feature
subset among compared methods. The highest accuracy Moreover, KNN with
DMI reaches the highest accuracy of 92.23% that is 2.17% higher than the second
highest KNN with MI when the number of selected feature is 100. When using
SVM as a classifier, DMI is superior to others for sizes of 50, 100, 200 and
500. SVM with DMI achieves the highest accuracy of 92.65% among all feature
numbers.

Table 5. Accuracy obtained by SVM on the R8 dataset

Method Number of selected features

10 20 50 100 200 500 1000 1500

DMI 72.86 78.48 90.41 92.28 92.65 91.82 90.82 90.86

MI 71.12 79.85 90.36 90.32 91.64 91.41 90.45 90.22

mRMR 65.97 73.18 80.68 87.80 89.26 91.64 92.01 91.18

MRDC 73.41 75.06 77.94 81.82 84.33 89.31 88.76 88.99

RDC 65.10 73.32 83.14 88.76 91.59 91.69 91.27 90.73

DFS 49.47 49.38 50.11 54.87 61.63 62.13 62.31 65.05

IG 49.47 49.25 53.13 53.95 55.37 57.74 59.21 60.44
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Table 6. Accuracy obtained by KNN on the WebKB dataset

Method Number of selected features

10 20 50 100 200 500 1000 1500

DMI 68.91 74.43 74.50 70.27 72.06 75.93 67.77 67.12

MI 63.83 67.84 70.77 71.35 68.77 67.12 64.40 64.54

mRMR 46.79 57.95 61.25 61.39 65.47 67.26 64.40 63.90

MRDC 59.24 59.03 60.74 62.46 61.46 62.54 63.25 64.68

RDC 66.83 69.48 69.91 67.41 68.05 66.12 65.04 64.18

DFS 34.31 46.99 52.36 51.36 57.31 64.76 65.26 65.47

IG 38.97 38.97 38.97 38.97 39.90 41.76 31.09 41.83

Table 7. Accuracy obtained by SVM on the WebKB dataset

Method Number of selected features

10 20 50 100 200 500 1000 1500

DMI 67.84 74.21 76.93 78.08 79.08 80.09 81.02 80.59

MI 64.61 71.42 75.50 78.37 79.30 80.73 80.01 80.23

mRMR 57.02 58.09 60.24 65.83 69.34 75.07 79.15 80.16

MRDC 58.95 61.89 63.32 64.68 65.11 63.47 64.76 68.19

RDC 71.13 72.99 77.01 77.36 80.01 80.09 80.52 79.87

DFS 41.98 47.21 55.37 57.31 66.26 76.50 79.37 80.37

IG 38.97 38.97 38.97 38.97 38.25 40.69 41.62 39.97

Tables 6 and 7 show the comparison of the classification accuracy of obtained
by KNN and SVM on the WebKB dataset, respectively, where the best results
are in bold type and the second best ones are underlined. When using the KNN
classifier, DMI has the highest accuracy when the number of features is 500,
the value is 75.93%. Among other compared methods, the highest accuracy in
Table 6 is 71.35% obtained by MI, when the feature number is 100. When using
the SVM classifier, DMI achieves the best classification with 1000 terms, which
is 0.29% higher than the second best method MI.

In summary, experimental results shown in Tables 4–7 show that DMI on the
R8 dataset and WebKB dataset has been improved to a certain extent.

5 Conclusion

In this paper, we aim at the issue of redundancy in the feature subset selected by
the method based on mutual information. First of all, we choose MI to measure
the mutual information of text features. After that, we design the discriminant
correlation degree for judging redundancy of a term on a given feature subset
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and combine it with MI to propose DMI. Experiments are conducted on Reuters-
21578 and WebKB datasets. Two classifiers KNN and SVM are used to classify
the selected feature subsets. First, we compare different MI ways and show that
the one used in DMI can achieve the best performance in most instances. Second,
we compare DMI with MI on two datasets. Experiment results indicate that DMI
is much better than MI, which is due to the term of discriminant correlation
degree. Finally, we compare DMI with more related methods, such as RDC,
DFS, and mRMR. When using KNN, DMI is obviously superior to others under
most of feature sizes. Although SVM with DMI is not always better than other
methods under all levels, it still can achieve the best performance among all
methods and all sizes.

Although DMI is satisfactory in our experiments, it ignores the information
of term counts when evaluating terms. In future research, we will introduce term
counts into DMI by assigning weights to terms that appear different times in
documents, and then construct a more powerful text feature selection algorithm.
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Abstract. Machine Reading Comprehension (MRC) is an important
NLP task with the goal of extracting answers to user questions from
background passages. For conversational applications, modeling the con-
texts under the multi-turn setting is highly necessary for MRC, which
has drawn great attention recently. Past studies on multi-turn MRC usu-
ally focus on a single domain, ignoring the fact that knowledge in dif-
ferent MRC tasks are transferable. To address this issue, we present a
unified framework to model both single-turn and multi-turn MRC tasks
which allows knowledge sharing from different source MRC tasks to help
solve the target MRC task. Specifically, the Context-Aware Transferable
Bidirectional Encoder Representations from Transformers (CAT-BERT)
model is proposed, which jointly learns to solve both single-turn and
multi-turn MRC tasks in a single pre-trained language model. In this
model, both history questions and answers are encoded into the contexts
for the multi-turn setting. To capture the task-level importance of dif-
ferent layer outputs, a task-specific attention layer is further added to
the CAT-BERT outputs, reflecting the positions that the model should
pay attention to for a specific MRC task. Extensive experimental results
and ablation studies show that CAT-BERT achieves competitive results
in multi-turn MRC tasks, outperforming strong baselines.

Keywords: Machine reading comprehension · Question answering ·
Transfer learning · Pre-trained language model

1 Introduction

Conversational search [22,31], a way of seeking information through conversa-
tions, has become a heated topic in the filed of Information Retrieval (IR). The
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core task of conversational search is to answer user questions in a multi-turn sce-
nario. In the literature, such task can modeled as multi-turn Machine Reading
Comprehension (MRC) [27], whose goal is to answer user questions based on a
given passage, by means of multi-turn interactions between machines and users.

According to previous research, there are mainly two challenges faced by
multi-turn MRC [27]. i) Some questions that users raise in the dialogue are
unanswerable as the questions may belong to a wrong topic, or the information
from which the answers can the extracted is missing in the passage. Thus, the
answers to this type of questions can be categorized as “CANNOT ANSWER”.
ii) As a question raised by users usually depends on previous answers sent by
machines (i.e., chatbots), modeling the dialogue history is important and chal-
lenging for answering the question in the multi-turn setting. Therefore, many
phenomena may occur, such as co-references and omissions. For example, to
answer the question “What happened to him?”, where “him” is covered in the
previous answer “Mr. David found the dog was lost and became very sad at that
moment”, one has to know that “he” refers to “Mr. David”.

To address the above-mentioned challenges, recent studies consider incor-
porating contextual information into MRC models. Typical methods include
prepending previous questions and answers [32], adding history answer markers
to the passage [16], or using attention mechanisms to select the dialogue his-
tory [17]. There are also studies applying context-aware neural networks such
as recurrent neural networks and graph neural networks to convey the infor-
mation in past turns [2,6,11,28]. However, these methods often ignore the fact
that knowledge in many kinds of MRC tasks are transferable. To be more spe-
cific. both multi-turn and single-turn MRC tasks share some commonalities, such
as unanswerable question recognition and knowledge reasoning. The knowledge
learned from one MRC task may benefit the learning of other MRC tasks, espe-
cially when the tasks are closely related. Hence, it is crucial to leverage transfer
learning to capture the shared knowledge from different multi-turn and single-
turn MRC tasks for mutual reinforcement of the model performance.

To better leverage the cross-domain, cross-task knowledge, we present
a unified framework to solve both single-turn and multi-turn MRC tasks,
named Context-Aware Transferable Bidirectional Enoceder Representations
from Transformers (CAT-BERT). The overview CAT-BERT framework is shown
in Fig. 1. Inspired by the recent success of pre-trained language models, we
extend Bidirectional Encoder Representations from Transformers (BERT) [4]
to consider both history questions and answers to the model the contextual
information. Thus, the learned text representations are more robust across dif-
ferent MRC tasks. Observing the fact that different MRC tasks may possess
some unique task-dependent attributes [9], we further augment our model with
a task-specific attention layer to capture the task-level importance of different
layer outputs.

To the best of our knowledge, our study is the first to present a unified
framework for both multi-turn and single-turn MRC tasks. Our framework can
also be easily combined with other tasks by multi-task learning.
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Fig. 1. An overview of the proposed Context-Aware Transferable BERT framework,
which unifies three tasks, i.e., two multi-turn MRC tasks (QuAC [3] and CoQA [19]),
and one single-turn MRC task (SQuAD 2.0 [18]). In the middle part, the context-
aware BERT backbone is employed as the shared encoder, where the index in the input
representation is the history answer index. The training policy selects the training data
to feed into the context-aware BERT backbone, and then pass the data to task-specific
attention and output layers to generate task-specific outputs.

We need to further claim that although multi-task learning has been recently
studied for MRC (e.g., MultiQA [21], MT-DNN [10], MT-SAN [25]), CAT-BERT
differs from these approaches in the following two perspectives. i) We focus on
multi-turn MRC and propose a unified framework that can bridge the gaps
between multi-turn and single-turn MRC tasks. ii) We seek to boost the perfor-
mance of the MRC task in the target domain and better capture the transferable
knowledge from other domains by considering task-specific attention.

To summarize, the contributions of this work are three-fold:

– We are the first to propose a unified framework named CAT-BERT for jointly
learning multi-turn and single-turn MRC tasks. This sheds the light on how
to leverage knowledge from large-scale single-turn MRC datasets to boost the
performance of models for multi-turn MRC tasks.

– We propose a task-specific attention mechanism to model the task dependen-
cies on each layer of CAT-BERT. Qualitative experiments show the attention
weights learned are insightful and intuitive.

– Our method achieves competitive results in the QuAC leaderboard - a large-
scale multi-turn MRC benchmark dataset. Extensive experiments demon-
strate our method is effective. The model ablation studies show the impor-
tance of different integral parts of our model.

The reminder of this paper is summarized as follows. Section 2 briefly intro-
duces the related work. The techniques of the CAT-BERT model is elaborated
in Sect. 3. Experimental results are reported in Sect. 4. Finally, we draw the
conclusion and discuss the future work in Sect. 5.
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2 Related Work

In this section, we present a brief summarization on the related work of CAT-
BERT, including the MRC task and transfer learning.

2.1 Machine Reading Comprehension

Our work is closely related to the MRC task. Unlike the typical question answer-
ing task [1,23,24], MRC [29] is a task to understand a given passage and use the
passage to answer user questions. Different from single-turn MRC, we specifically
focus on the multi-turn setting, where the user and the system interacts multiple
times. The main challenging for multi-turn MRC is modeling the rich context
of the multi-turns of human-machine interaction. In the literature, SDNet [32]
takes the contexts into consideration by appending the history questions and
answers to the inputs. HAE [16] adopts the marker to indicate the positions of
history answers in the passage. HAM [17] further employs attention mechanisms
to select the related history questions. However, these methods may fail when
the context dependencies are more complicated.

There are also studies trying to model the contextual information using neu-
ral networks such as Recurrent Neural Networks (RNNs) and Graph Neural
Networks (GNNs). For example, GraphFlow [2] views the relations between con-
text words in each turn as a graph, and applies GNN to capture the information
flow. FlowQA [6] employs RNNs to convey word representations of past turns
and incorporates them with the current turn’s representations. FlowDelta [28]
further extends the FlowQA model to explicitly model the information gains by
delta operations. MC2 [30] adopts convolution neural networks to better cap-
ture the flow information in a more fine-grained manner with three perspectives.
We notice that these studies only focus on one single domain for the MRC task,
while we unify single-turn and multi-turn MRC tasks in different domains.

2.2 Transfer Learning

Moreover, our work is closely related to transfer learning, as we consider the
joint learning of multiple MRC tasks in various domains. There are some studies
to adopt multi-task and transfer learning to address MRC. The study in [20]
transfers models trained on large span-level QA datasets to sentence-level QA
datasets. MT-SAN [25] is a multi-task learning framework for MRC. The results
of MT-SAN shows that performance on the target task can be improved by
knowledge transfer. MT-DNN [10] further extends this idea to natural language
understanding by multi-task training of a series of different tasks such as senti-
ment analysis, text matching and MRC. Li et al. [8] extend a similar method for
the task of story ending prediction. Apart from these methods, MultiQA [21] is
an empirical investigation of transfer learning in ten single-turn MRC tasks. The
paper shows that training on multiple MRC datasets can make the underlying
model more general and robust. However, these works do not consider multi-turn
MRC tasks yet.
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With the rapid development of deep neural networks, knowledge transferred
from unsupervised tasks can be used for learning task-specific models. For
instance, pre-trained word embeddings such as Word2vec [13] and Glove [14] are
the key components for NLP tasks. With deeper models and more data, large-
scale pre-trained language models such as ELMO [15], BERT [5], ALBERT [7],
RoBERTa [12] and XLNet [26] show their effectiveness on many downstream
NLP tasks. Different from the existing studies that address general NLP tasks,
our study proposes a unified framework for both single-turn and multi-turn MRC
tasks. We further design the CAT-BERT model to leverage information from
source MRC tasks to help the learning of the target MRC task.

3 The CAT-BERT Model

In this section, we start with the task description. After that, we introduce the
CAT-BERT model and its transfer learning procedure.

3.1 Task Description and Overall Framework

The CAT-BERT model is designed to address the following problem. Let P =
[wp1 , wp2 , . . . , wpi

] be the input passage, where wpi
stands for i-th word in the

passage. The history question answer pairs are represented as:

history = [(Q1, A1), (Q2, A2), . . . , (Qn−1, An−1)] (1)

where Qi and Ai denote the question and the answer in the i-th turn. Given
the passage P , the history question answer pairs history and the question Qn

in n-th turn, our goal is to predict the correct answer span Ân in the passage.
Note that history is specifically employed to model the multi-turn MRC task.
If there is no history, the problem setting will become the normal single-turn
MRC task.

Figure 1 shows the high-level overview of the framework. It can be referred
to as Context-Aware Transferable BERT, CAT-BERT for short. In this model,
we design a unified input representations for both single-turn and multi-turn
MRC tasks. The context-aware BERT model backbone is employed as the shared
encoder for each task, with model modifications to handle both history questions
and answers. After that, a token-wise task-specific attention is introduced to
model the task dependencies on each layer. Finally, a dynamic training policy is
adopted to train the model for multi-task learning of these tasks.

3.2 Context-Aware BERT Encoding

As shown in Fig. 2, our model augments the original BERT model with context
modeling and a task-specific attention based transfer learning framework. Details
of the model are introduced in the subsequent sections.
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Fig. 2. The details of the context-aware BERT. We showcase an example of a BERT
model with 3 layers. αi is denoted as the token-wise layer attention for i-th token.

Modeling History Answers. Following [16], we introduce the History Answer
Embedding (HAE) technique to the BERT model, in order to model history
answers. Here, every token in the passage has an embedding index. If the embed-
ding index of a token is non-zero, it means that this token is a part of the answer.
For example, if the token “it” belongs to the answer of last third question, its
embedding index is set to 3. Then, all embedding vectors of each token, including
token embeddings, position embeddings, segment embeddings and history answer
embeddings, will be summed together. Then the summed vector sequences serve
as the input of the context-aware BERT encoder. For all questions and passage
words that have not been used as an answer, the embedding index is 0.

Modeling History Questions. Besides history answers, it is also important
to incorporate history questions. We consider a simple strategy to append the
latest k history questions to the current n-th question. The history questions are
separated by the special symbol [SEP]. For example, when k is 2, we append
the previous two questions, in the format of followings:

[CLS]Qn[SEP]Qn−1[SEP]Qn−2[SEP]P[SEP] (2)

where Qn and P refer to the tokens of the current n-th question and the passage.
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3.3 Transfer Learning with Task-Specific Attention

We then present the transfer learning component for multi-task learning of dif-
ferent MRC tasks. Briefly speaking, the framework learns multi-turn and single-
turn MRC tasks simultaneously, where all tasks share the context-aware BERT
but with different task-specific layers and task-specific attention weights.

Task-Specific Attention. To learn the dependencies of tasks on specific lay-
ers, we equip the model with task-specific token-wise attention. We denote the
i-th token representation in j-th layer as Hij . We employ the soft attention
mechanism to adapt the importance of the outputs of different levels in the
context-aware BERT encoder. Formally, we define St

i , the final representation of
i-th token for the task t, as follows:

St
i =

∑

j

αt
ijHij , (3)

where t ∈ {T1,T2,. . . ,Tk} (i.e., the MRC task collection). αt
ij is the attention

weight corresponding to i-th token at j-th layer for the task t.
The attention weights are then defined as follows:

αt
ij = e

Ht
ij∗Wt+btj

∑
j e

Ht
ij

∗Wt+bt
j
, (4)

∑
j αt

ij = 1. (5)

Note that btj in the above formula can be viewed as the layer bias. It is designed
for helping the attention module to know the layer depth in the neural net-
work, which plays a similar role to the position embeddings in the original token
representations. Meanwhile, the attention weights are task-specific, which are
essential for the model to capture the unique characteristics for different tasks.

We further denote the output from the shared context-aware BERT encoder
as the matrix St ∈ R

d×m, where d is the dimension of each token’s output vector
and m is the length of input sequence. We add two output layers on St to predict
the start position and end position of the answer spans. Formally, we have:

P s
t = Softmax(W t

sS
t + bst ), (6)

P e
t = Softmax(W t

eS
t + bet ), (7)

where t is the task index. W t
s , W t

e ∈ R1×d, bts and bte ∈ R1×1 are the corresponding
projection matrices and bias terms. s and e stand for the start and end positions
of the answer spans, respectively. After we obtain the probabilities P t

s and P t
e

for each word as the start and end positions of the answer span, during the
inference phase, top c words with the highest probabilities are selected to form
valid answer candidates.
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Algorithm 1. CAT-BERT Training Procedure
Require: Batched context enhanced training examples B = {B1, B2, . . . , BK} from

the task set {T1,T2,. . . ,Tk}, where Bt = {Bt
1, B

t
2, . . . , B

t
p}

Ensure: The CAT-BERT model M
1: Freeze parameters in task-specific attention and output layers. Set other parameters

(wt) to be trainable.
2: while steps < N1 do
3: Sample a task t from a pre-defined task distribution.
4: Read a batch Bt

p from Bt.
5: Run through the CAT-BERT model to obtain the task-specific loss Lt.
6: Calculate the gradients ∇wtLt.
7: Update the parameters wt = wt - λ∇wtLt where λ is the learning rate.
8: end while
9: Freeze the parameters of the context-aware BERT encoder. Set parameters in task-

specific attention and output layers (w′
t) to be trainable.

10: while steps < N2 do
11: Sample a task t from a pre-defined task distribution.
12: Read a batch Bt

p from Bt.
13: Run through the CAT-BERT model to obtain the task-specific loss Lt.
14: Calculate the gradients ∇w′

t
Lt.

15: Update the parameters w′
t = w′

t− λ∇w′
t
Lt.

16: end while

Learning Objectives. For a given MRC task, we adopt the negative log like-
lihood as the loss function. Formally, the sample-wise loss function for the start
position is:

Lossts = − log P t
si (8)

The sample-wise loss for the end position Losste can be obtained in a similar
way. Hence, the total loss of the task t is the sum of two prediction losses, i.e.

Losst =
Lossts + Losste

2
. (9)

For simplicity, we omit all the regularization terms in the loss functions.

3.4 Dynamic Training Policy

The training policy is defined as a probability distribution for each MRC task,
which can also be viewed as the coefficient weights of different tasks. By utiliz-
ing the dynamic training policy, our framework can be more flexible to handle
different tasks. For ease of implementation, we adopt a simple strategy in this
work, where we sample data from each task with equal probability. We leave the
design and analysis of complicated training policies as future work.

Here we explain how to transfer knowledge from source MRC tasks to the
target MRC task. The procedure is also shown in Algorithm1. The whole process
has two stages: (1) multi-task training and (2) task-specific fine-tuning:
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Multi-task Training. We select a task t according to the training policy, and
read the batch from the task t to do a forward pass. Then we make a backward
pass and update all the parameters except task-specific attention parameters.
This is achieved by simply set the attention weights α as fixed, where we set αt

ij

as 1 if j is the last layer’s index, and 0 otherwise. This helps to train a shared
context-aware BERT encoder.

Task-Specific Fine-Tuning. For this stage, we fix the parameters in the
context-aware BERT encoder and only update the token-wise task-specific atten-
tion and task-specific output layers. This stage seeks to tune task-specific param-
eters to capture task-specific characters so as to boost the end-task performance.

4 Experiments

In this section, we conduct extensive experiments to examine our model per-
formance. Firstly, we show that the CAT-BERT model is highly effective for
multi-turn MRC. Next, we conduct experiments to examine the benefits brought
by transfer learning and our context modeling method. Finally, we qualitatively
evaluate the learned task-specific attention weights, and discuss the insightful-
ness of task-specific attention.

4.1 Datasets

In this work, all the experiments are conducted on three public MRC datasets:
QuAC [3], SQuAD 2.0 [18] and CoQA [19]. The statistics of these datasets are
shown in Table 1. We take SQuAD 2.0 [18] and CoQA [19] as source domain
datasets and QuAC [3] as the target domain dataset. Both QuAC and CoQA are
famous datasets for multi-turn conversational MRC tasks, thus multi-turn inter-
action knowledge learned from CoQA can be potentially transferred to QuAC.
Below, we briefly introduce the three datasets:

– QuAC: The QuAC dataset aims to simulate the information-seeking scenario
in real life. It contains 14k dialogues and 100k question-answers pairs in total.
The passages are collected through crowdsourcing from one single domain in
Wikipedia.

– CoQA: The CoQA dataset also belongs to conversational question answering,
which contains 127k question-answer pairs and 8k conversations. Text pas-
sages are selected from seven different domains in Wikipedia. The abstractive
answers and the supporting evidence are also provided.

– SQuAD 2.0: The SQuAD 2.0 dataset focuses on single-turn MRC. It augments
the version 1.0 of the SQuAD dataset with additional 50k negative question
answers.
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Table 1. The statistics of QuAC, CoQA and SQuAD 2.0 datasets. Both QuAC and
CoQA are multi-turn MRC datasets, while SQuAD is a singe-turn MRC dataset.

QuAC CoQA SQuAD 2.0

Train Dev Test Train Dev Test Train Dev Test

Questions 83,568 7,354 7,353 108,647 7983 - 130,31 11,873 -

Dialogues 11,567 1,000 1,002 7199 500 - 19,035 1,204 -

Questions/dialogue 7.2 7.4 7.3 15.1 16.0 - 6.8 9.9 -

Tokens/question 6.5 6.5 6.5 5.5 5.5 - 9.9 10.1 -

Tokens/answer 15.1 12.3 12.3 9.3 9.2 - 3.2 3.2 -

Avg. tokens/passage 397 440 446 276 266 - 117 127 -

% Unanswerable 20.2 20.2 20.2 19.0 13.2 - 33.4 50.1 -

4.2 Experimental Setup

We follow the evaluation settings used in QuAC1 to examine our method and
all the baselines. We adopt three metrics to evaluate our model: the word-level
F1 score measures the overlap between the prediction and gold answers, HEQQ
refers to the percentage of questions in which the model exceeds human, and
HEDD measures the percentage of dialogues where the model exceeds human.

In the experiments, we set the learning rate as 3e−5, the batch size as 12, and
the max sequence length as 512. The training step is 24k for single task, and we
double the training steps if we add another task. For the BERT-WWM model2

on the three-task setting, the learning rate is set to 2e−5 and the training step is
48k. We sample batches from tasks with equal probability (which is the training
policy). The max answer length is set to 50. For QuAC, CoQA and SQuAD
2.0 tasks, we append the token “CANNOT ANSWER” and “UNKNOWN” to
the end of the passage. All the models are implemented with TensorFlow and
trained with NVIDIA Tesla V100 GPU.

4.3 Overall Results

Table 2 shows the CAT-BERT performance on the QuAC test set3. Over-
all, our model achieves competitive results on the leaderboard, outperforming
some strong baselines include BERT-FlowDelta, ConvBERT, BertMT, etc. For
the results of history answer embeddings, we suggest readers to refer to the
paper [16], as it makes a full comparison with the effects caused by different
turns in history answer embeddings.

Note that there are two methods using data augmentation strategies achieve
better results on the leaderboard. We will also consider such data augmentation
strategies in near future as well. We also note that there is an concurrent study

1 https://s3.amazonaws.com/my89public/quac/scorer.py.
2 It refers to the BERT model with whole word masking.
3 For fair comparison, we omit the ensemble methods and those methods with data

augmentation in the QuAC leaderboard.

https://s3.amazonaws.com/my89public/quac/scorer.py


162 C. Chen et al.

Table 2. A comparison of the proposed model and methods from the QuAC leader-
board. † means the score is copied from leaderboard. Note that, our final model was
originally named as TransBERT in the leaderboard. To avoid confusion with other
models, we name it as CAT-BERT in this work.

Methods F1 HEQQ HEQD Total

BiDAF++ † 50.2 43.3 2.2 95.7

BiDAF++ w/2-Context † 60.1 54.8 4.0 118.9

BERT+HAE † 62.4 57.8 5.1 125.3

FlowQA† 64.1 59.6 5.8 129.5

GraphFlow† 64.9 60.3 5.1 130.3

BERT w/2-context† 64.9 60.2 6.1 131.2

HAM† 65.4 61.8 6.7 133.9

zhiboBERT† 67.0 63.5 8.6 139.1

ConvBERT† 68.0 63.5 9.1 140.6

BertMT† 68.9 65.2 8.9 143.0

Context-Aware-BERT † 69.6 65.7 8.1 143.4

BERT-FlowDelta† 67.8 63.6 12.1 143.5

CAT-BERT (Our model) 71.4 68.1 10.0 149.5

History-Att-TransBERT that achieves slightly better results, which shows the
helpfulness of transfer learning. However, due to the lack of the published paper
and the source code of the model, it is difficult to assess their method and
compare our method with theirs.

4.4 Comparison of Transfer Policies

In this section, we compare the impacts of different transfer learning policies
and the task-specific output layer. In Table 3, we conduct experiments using
three types of transfer learning policies with different choices of source-domain
tasks. We denote the sequential task learning setting as Seq and the mixed task
learning as Mix. Our approach can be viewed as a mixed task training policy
augmented with task-specific output layers, denoted as Co. From the results,
we can see that our method achieves the best scores among all policies under
the same tasks. Comparing with mixed task learning, our method also attains a
better performance, due to the design of the task-specific output layer.

From the results, we can also find that sequential learning can obtain a lit-
tle higher results than the mix training setting in F1 and HEQQ. However,
in sequential learning, the training order does matter. The performance drops
especially when a different type of task is inserted between two same tasks. Read-
ers can observe the results of Seq (CoQA-SQuAD 2.0-QuAC) v.s. Seq (SQuAD
2.0-CoQA-QuAC). Additionally, a good training order requires prior knowledge.
Thus, it might be easier yet beneficial to incorporate task-specific output lay-
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Table 3. The experimental results of different transfer policies are presented. The task
order in Seq stands for the task learning order. -L and -W refer to results obtained
from BERT-Large and BERT-WWM models, respectively.

Policy Tasks F1 HEQQ HEQD

None QuAC 65.8 61.8 7.2

Seq CoQA, QuAC 67.6 63.9 8.2

Seq SQuAD 2.0, QuAC 67.2 63.2 8.6

Seq CoQA & SQuAD 2.0 & QuAC 68.1 64.3 7.7

Seq SQuAD 2.0 & CoQA & QuAC 68.3 64.7 9.3

Mix CoQA & QuAC 67.6 63.4 8.4

Mix SQuAD 2.0 & QuAC 66.8 62.9 8.8

Mix QuAC & SQuAD 2.0 & CoQA 68.4 64.5 8.3

Co CoQA & QuAC 67.9 64.3 8.9

Co SQuAD 2.0 & QuAC 67.8 64.0 9.6

Co QuAC & SQuAD 2.0 & CoQA 68.7 65.0 9.4

Co-L QuAC & SQuAD 2.0 & CoQA 70.2 66.5 9.9

Co-W QuAC & SQuAD 2.0 & CoQA 73.1 69.9 13.3

Table 4. The effects of task-specific attention mechanism. (w/o attn) means without
the using of attention mechanisms.

Model F1 HEQQ HEQD Total

CAT-BERT-12 68.6 64.8 9.2 142.6

CAT-BERT-6 68.7 65.0 9.4 143.1

CAT-BERT-3 68.7 65.1 9.6 143.4

CAT-BERT (w/o attn) 68.4 64.6 8.3 141.3

CAT-BERT-WWM-24 73.2 70.0 13.1 149.9

CAT-BERT-WWM-12 73.3 70.1 12.9 156.3

CAT-BERT-WWM-6 73.3 70.1 13.4 156.8

CAT-BERT-WWM-3 73.3 70.1 13.0 156.4

CAT-BERT-WWM (w/o attn) 73.1 69.9 13.3 156.3

ers in the mix policy to capture the task differences, so the potential negative
transfer brought by the other tasks can be reduced. We also show the improve-
ments made by employing better pre-trained language models. The results show
that increasing the model size (see Co-L) and adopting the whole word masking
technique for BERT (see Co-W) can improve all metrics greatly.

We notice that (SQuAD 2.0 & QuAC) always achieves better HEQD than
(CoQA & QuAC). This means that the single-turn dataset SQuAD helps more
than the multi-turn dataset CoQA for the QuAC task, although QuAC belongs
to the category of the multi-turn MRC task. Benefiting from our unified frame-
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work, we can easily train a model to learn the shared knowledge between single-
turn and multi-turn MRC tasks.

4.5 The Benefit from the Attention Mechanism

Table 4 shows the results with respect to the different numbers of layers that
employ the attention mechanism. The upper part shows the performance of
attention applied to the last 12, 6, 3 layers. The model size of the CAT-BERT
backbone is the same as the BERT-Base model. The bottom part shows the
performance of attention mechanism, with the backbone changed to the BERT-
Large model with whole word masking. We can observe that, with the incor-
poration of the token-wise attention technique, the performance scores using
both BERT-Base (denoted as CAT-BERT) and BERT-Large-WWM (denoted as
CAT-BERT-WWM) as backbones are improved. For example, for CAT-BERT-
WWM, F1 improves from 73.1 to 73.3, HEQQ from 69.9 to 70.1. This shows it
is beneficial to incorporate the attention mechanism to capture the token-wise
task-specific information to further improve the model performance.

Furthermore, we visualize the attention scores of the last three layers from
our final model CAT-BERT-WWM on a randomly chosen example for both
QuAC and SQuAD 2.0 tasks, as shown in Fig. 3. On the QuAC task (left), most
of the attention weights are close to 1 on the last two layers; while on the SQuAD
2.0 task (right), the larger attention weights appear only in the last layer. The
figure further demonstrates the necessity to introduce the task-specific token
level attention mechanism to our framework to deal with the task differences
among various MRC tasks.

4.6 Error Analysis

To analyze the shortcomings of our model, we randomly sample 50 wrong answers
from predictions. The main errors can be categorized into two types:

– Logical Error. A typical error of the model is that the internal semantic
changes in the passage are sometimes ignored. For example, the question
is “Did Davies recover?”, with two descriptions provided: “He subsequently
collapsed after a drug overdose and was taken to hospital”, and then “Ray
recovered from his illness as well as his depression”. The model only regards
the first description as the answer and ignores the second description. This
type of errors contributes mostly to the poor performance.

– Indirect Description. Although some answers are contained in the pas-
sages, they may be indirectly described, where complicated reasoning may be
required for answering those implicit questions. For example, the question is
“How profitable was the last album?” and the gold answer should be “the
biggest-selling German music act in history”. But the model gives a wrong
prediction “CANNOT ANSWER”. In this case, it is necessary to enhance the
reasoning ability of the model, which is a non-trivial task.
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Fig. 3. The visualization of task-specific attention scores in the last three layers from
the CAT-BERT-WWM model. The left is from the QuAC task, with the right from
the SQuAD 2.0 task.

5 Conclusion and Future Work

In this work, we propose a deep BERT-based transfer learning model named
CAT-BERT to unify the learning of multi-turn and single-turn MRC tasks. In
this model, a task-specific token-wise attention mechanism is proposed to cap-
ture the dependencies on different layers for each task. Extensive evaluation
results show thee proposed method is effective and achieves competitive results.
Qualitative results also demonstrate that the attention weights learned by the
model are insightful.
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Abstract. End-to-end neural machine translation (NMT) heavily relies
on parallel corpora for training. However, high-quality parallel corpora
are usually costly to collect. To tackle this problem, multimodal content,
especially image, has been introduced to help build an NMT system with-
out parallel corpora. In this paper, we propose a reinforcement learning
(RL) method to build an NMT system by introducing a sequence-level
supervision signal as a reward. Based on the fact that visual information
can be a universal representation to ground different languages, we design
two different rewards to guide the learning process, i.e., (1) the likelihood
of generated sentence given source image and (2) the distance of atten-
tion weights given by image caption models. Experimental results on
the Multi30K, IAPR-TC12, and IKEA datasets show that the proposed
learning mechanism achieves better performance than existing methods.

Keywords: Neural machine translation · Multimodal · Reinforcement
learning

1 Introduction

End-to-end neural machine translation (NMT) has shown its superiority on sev-
eral resource-rich language pairs [2,10,28], which is mainly attributed to the
quality and scale of available parallel corpora [7]. However, it is usually quite
difficult to collect adequate high-quality parallel corpora, since preparing such
corpora is very expensive and time-consuming.

To tackle the issue where no parallel corpora are available, pivot-based NMT
methods indirectly learn the alignment of the source and target languages with
the help of another language [9,17,34]. Although promising results have been
obtained, this kind of methods still demands large scale parallel source-pivot and
pivot-target corpora. On the other hand, nowadays, we can easily find abundant
monolingual text documents with rich multimedia content as the side infor-
mation, e.g., text with photos or videos posted to social networking sites and
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 168–185, 2021.
https://doi.org/10.1007/978-3-030-73197-7_11
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Fig. 1. (a) The teacher-student approach, (b) the 2-agent approach and (c) our rein-
forcement learning approach. X, Y and Z denote source, target sentences and image,
respectively. We use a dashed-line box to denote that the image and sentence are paired.

blogs1 2. These visual media are expected to be more or less correlated to the
counterpart texts. How to utilize the multimodal content, especially image, to
build NMT systems remains an open question.

To achieve modeling of source-to-target NMT using multimodal content only,
the efforts in the literature can be divided into two classes. One is to learn a
fixed-length modality-agnostic representation matching images and sentences in
different languages in the same space [11,22]. Although this approach enables
translation without parallel corpora, the use of a fixed-length vector is a bottle-
neck in improving translation performance [2,7]. The other class of work tries to
generate pseudo parallel corpora by translating images into sentences in another
language for given monolingual multimodal corpora using a pre-trained image
captioning model. Then, the translation model could be learned with standard
maximum likelihood estimation [6,7]. Although this kind of approach is easy to
implement, the mistakes made by the image captioning model would propagate
to the translation model, thus hurt the performance.

In fact, to effectively leverage the visual information for NMT, an important
fact should be noticed is that we can generally understand the content of images
taken in other countries regardless of which language we speak . The major chal-
lenge here is how to leverage such a fact to guide the learning of the translation
model with unpaired multimodal content.

We address this challenge by casting the unpaired multimodal machine trans-
lation task as a reinforcement learning (RL) problem. Specifically, we introduce a
sequence-level supervision signal by estimating the relevance between source and
target sentences with the help of an image, which aims to evaluate the quality of
the target sentence. Referring the translation model as policy, we formulate this
sequence-level supervision signal as reward and directly optimize it. Intuitively,
for a given source-language sentence and its corresponding image, a better trans-
lation in the target language should have a closer connection with the image.
Based on this observation, we design two different reward functions to guide the

1 http://blog.flickr.net/.
2 https://mobile.twitter.com/.

http://blog.flickr.net/
https://mobile.twitter.com/
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learning process. Then, the policy is updated by the REINFORCE algorithm
[29]. Compared with previous methods [6,7], our approach allows direct evalua-
tion of source-target sentence pairs, without the need of translating images into
sentences. Thus, this strategy avoids the problem of error propagation. Figure 1
shows the comparison between our method and previous approaches.

Our main contributions are summarized as follows:

(1) To effectively leverage the visual information for NMT, we proposed to cast
the unpaired multimodal NMT task as an RL problem.

(2) We introduce sequence-level reward by estimating relevance between source
and target sentences with the help of images. Specifically, we propose two
kinds of reward to guide the training of the NMT model.

(3) Experiments on three translation tasks over three datasets show that the
proposed rewards can provide good supervision on unlabeled multimodal
corpora, and achieve better performance than existing methods.

2 Background

Neural Machine Translation. Given the source language space X and target
language space Y, an NMT model takes a sample from X as input and maps to
space Y. In common practice, the NMT model is represented by a conditional
distribution Pθ(Y |X) parameterized by θ, where X ∈ X and Y ∈ Y. In stan-
dard supervised learning, given a parallel corpus DX,Y , the translation model is
learned by maximizing the likelihood of the training data:

L(θ) =
∑

〈X,Y 〉∈DX,Y

log Pθ(Y |X). (1)

Grounding Language to Visual Image. There exists monolingual multi-
modal content (images with text descriptions) on the Web. It is possible to
ground natural language to a visual image through image captioning, which
annotates a description for an input image with natural language [18,32]. Given
a multimodal corpus in DZ,Y where Z is an image and Y is a sentence describing
Z in the target language, an image captioning model PφZ→Y

(Y |Z) can be built,
which “translates” an image to a sentence. The model parameters φZ→Y can be
learned by maximizing the log-likelihood of DZ,Y :

L(φZ→Y ) =
∑

〈Z,Y 〉∈DZ,Y

log PφZ→Y
(Y |Z) (2)

Unpaired Multimodal NMT. In fact, parallel corpora are usually not readily
available for low-resource language pairs or domains. Moreover, if these corpora
are directly used for training, the linguistic dissimilarity and language mismatch
between source language and target language will seriously decrease the transla-
tion performance [12]. Fortunately, it is possible to bridge the source and target
languages with the multimodal information. The problem can also be called
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unsupervised multimodal neural machine translation [27]. Assuming that there
are a source-language multimodal corpus DZ,X = {〈Z(m),X(m)〉}M

m=1 and a
target-language multimodal corpus DZ,Y = {〈Z(n), Y (n)〉}N

n=1 where DZ,X and
DZ,Y don’t have to overlap, to achieve modeling of source-target NMT, intu-
itively there are two ways. First, as shown in Fig. 1(a), given DZ,Y , we can build a
model PφZ→Y

(Y |Z) which can translate an image to a target-language sentence.
Thus, for source-language corpus DZ,X , we can translate the images to target-
language sentences using PφZ→Y

(Y |Z), forming pseudo source-target sentence
pairs. Thus, source-target translation model can be build with Maximum Like-
lihood Estimation (MLE) training. This procedure is the same as the teacher-
student approach in [6], except for replacing the pivot language with image. Sim-
ilarly, for target-language corpus DZ,Y , we could form pseudo source-target cor-
pus by translating images to source-language sentences with pre-trained image
captioning model PφZ→X

(X|Z), then achieve modeling of source-target trans-
lation via the 2-agent communication game [7]. This procedure is shown in
Fig. 1(b). In these approaches, the mistakes made by the image captioning model
would be propagated to the translation model, thus hurt the translation perfor-
mance. Different from these methods, in this paper, we propose a reinforcement
learning approach to learn translation model. Below we formally define the RL
training procedure, which is a general learning framework for training NMT
model with unpaired multimodal documents only.

3 Methodology

3.1 Problem Definition

In this section, we define the problem of unpaired neural machine translation.
On both the source and the target sides, the data comes in the paired form
of (x, z) ∈ X × Z and (y, z) ∈ Y × Z. Here we define two kinds of tasks. (1)
Zero-resource translation: in this setting, the image that corresponds to x
and the image that corresponds to y don’t overlap, i.e., not the same image.
(2) Translation with comparable sentences: in this settings, the source
language x and target language y describe the same images. The main purpose
is to learn a multi-modal translation model X → Y with the help of image Z.
Note there is no explicit paired information cross two languages, making it hard
to straightforwardly optimize the supervised likelihood. Our method can achieve
excellent performance on both of the tasks.

3.2 Overview

In this section, we introduce a more straightforward approach to build NMT sys-
tem leveraging the property that visual information can be a universal represen-
tation to ground different languages. The basic idea is that based on the property
of visual information, we can estimate the relevance between source and target
sentence by exploiting the relation between sentences and images, and explicitly
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Fig. 2. An example of En-De translation from the Multi30K dataset. The figure shows
a picture of two dogs. The generated language of the translation model matches the
image well but has a serious mismatch with the source language.

optimize the estimated relevance. Formally, we formulate the translation task as
an RL problem as follows.

Specifically, the NMT model can be viewed as an agent, which interacts with
the environment. The environment in our paper refers to the image caption
model that interact with the model to produce feedback (reward). The parame-
ters of this NMT model (agent) defines a policy, whose execution results in the
agent picking an action a. In this case, an action refers to generating the next
token at each time step. After taking each action, the agent updates its state.
A terminal reward is received once the agent finished generating a complete
sequence Ŷ , denoted as R(Ŷ ). Note that the reward R(Ŷ ) is a sentence-level
reward, i.e., a scalar for each complete sentence Ŷ . Then, the goal of the train-
ing is to maximize the expected total reward. As show in Fig. 1(c), our approach
is different from the teacher-student and 2-agent method since during training
we don’t need to use image captioning model to translate images into sentences.
Instead, we leverage the alignment information between images and sentences to
estimate the relevance between sentences. Thus, the problem of errors produced
by the image captioning model propagating and hurting the translation model
can be relieved.

3.3 Reward Computation

It is critical to set up appropriate rewards R(Ŷ ) for RL training. In this section,
we propose two methods to obtain the reward based on two observations respec-
tively. To be first, the target language is a description of the image, so the
generated language and the corresponding image need to be well matched.
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(1) The Likelihood of the Generated Sample Given the Source Image.
Our first observation is that for an image-sentence pair 〈Z,X〉 ∈ DZ,X and
a generated target-language sentence Ŷ , if Ŷ is a good translations for X, Ŷ
should have close connection with Z. Based on this observation, if Ŷ has a closer
connection with Z, it should be a better translation for X. Since an image
captioning model could tell the probability of a sentence given an image, we
train a target-language image captioning model PφZ→Y

(Y |Z) with corpus DZ,Y .
Then, the reward is set as:

R1(Ŷ ) = log PφZ→Y
(Ŷ |Z), (3)

The above-proposed method can improve the consistency between the gen-
erated language and corresponding images, but it also has a serious problem. As
shown in Fig. 2, the generated translation in German, which means the brown
dog and the black dog are running on the beach. It matches the image well,
but it has a serious mismatch between the source language. The source lan-
guage focuses on the dog’s movements, but the generated language focuses on
the location beach, resulting in inconsistent translations. So the attention dif-
ferences paid to the image areas cause the inconsistency in the translation. To
tackle this problem, we propose to use the distance of attention weights of the
source and generated language as the reward.

(2) The Distance of Attention Weights from Image Captioning Mod-
els. We have observed that for an image-sentence pair 〈Z,X〉 ∈ DZ,X and
a generated target-language sentence Ŷ , if X and Ŷ are translations for each
other, Ŷ and X should have similar alignment information with Z. Since an
image captioning model with an attention mechanism can tell the alignment
information between images and sentences with attention weights, we compute
R(Ŷ ) as the distance of the attention weights obtained from pre-trained image
caption models for both languages. Specifically, we represent the source sentence
and generated target sentence as X = (x1, x2, . . . , xS) and Ŷ = (ŷ1, ŷ2, . . . , ŷT ),
where S and T denote the length of source and target sentences respectively. We
use pre-trained CNNs [15] for image feature extraction and then denote the image
as a matrix Z = (z1,z2, . . . ,zL), where each of the L rows consists of a feature
vector and the feature vector represents one grid in the image [4]. Then, for X
and Ŷ , using soft attention computed by image captioning models PφZ→X

(X|Z)
and PφZ→Y

(Y |Z), we could obtain the normalized alignment matrice between
all the image patches and the target word to be emitted at time step, i.e., the
attention weights AZ

X = (aZ
x,1,a

Z
x,2, . . . ,a

Z
x,S) and AZ

Ŷ
= (aZ

ŷ,1,a
Z
ŷ,2, . . . ,a

Z
ŷ,T )

respectively, where each column aZ
x,s or aZ

ŷ,t is a L-dimension vector represent-
ing the attention vector of the current word. Then, we compute the sum of the
attention vector as:

αZ
X =

S∑

s=1

aZ
x,s,

αZ
Ŷ

=
T∑

t=1

aZ
ŷ,t.

(4)
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αZ
X and αZ

Ŷ
are both L-dimension vectors. Since S and T have no guarantee to

be equal, to make αZ
X and αZ

Ŷ
comparable, we normalize them as α̂Z

X and α̂Z
Ŷ

respectively. Then, the reward is computed as:

R2(Ŷ ) = sim(α̂Z
X , α̂Z

Ŷ
). (5)

where sim is computed with cosine similarity in this work. Note that here we
use a simple and effective method to calculate the attention weights similarity.
There are many other potential designs. We leave these for future work.

3.4 Objective Function

Given the source-language multimodal corpus DZ,X = {〈Z(m),X(m)〉}M
m=1, the

goal of RL training is to maximize the expected reward:

ORL =
M∑

m=1

EŶ ∼Pθ(Ŷ |X(m))R(Ŷ )

=
M∑

m=1

∑

Ŷ ∈Y
Pθ(Ŷ |X(m))R(Ŷ )

(6)

where Y is the space of all candidate translation sentences, which is exponentially
large due to the large vocabulary size, making it impossible to exactly maximize
ORL. In practice, REINFORCE [29] is usually leveraged to approximate the
above expectation via sampling Ŷ from the policy Pθ, leading to the gradient of
θ as:

∇θORL =
M∑

m=1

R(Ŷ )∇θ log Pθ(Ŷ |X(m)) (7)

Since the REINFORCE algorithm suffers from high variance in gradient esti-
mation caused by using single sample Ŷ to estimate the expectation, to reduce
the variance, we subtract an average reward from the returned reward as in [24].

3.5 Training Details

Our training process consists of two steps. We first pre-train the image captioning
and translation models and then train the translation model with the image
captioning model fixed via RL. It is important to note that our translation model
only pre-trains on the same dataset to provide an initialization that alleviates
the instability of reinforcement learning [30]. We do not leverage additional data.

Specifically, since image captioning models are required when computing
reward, we pre-train the captioning models with maximum likelihood estimation
leveraging monolingual datasets DZ,X and DZ,Y . For the translation model, as
discussed in [24], the large action space (since the vocabulary is large) makes
it extremely difficult to learn with an initial random policy. Thus, we pre-train
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the policy with some warm-start schemes. Since DZ,X and DZ,Y are not guaran-
teed to overlap, there may be two real-world situations: (1) DZ,X and DZ,Y don’t
overlap. In this scenario, we can pre-train the translation model with the 2-agent
approach [7] and teacher-student (shorted as TS) approach [6]; (2) It is also pos-
sible in the real-world that each image is annotated with some source-language
descriptions and some target-language descriptions, i.e., DZ,X and DZ,Y overlap
with the same Z. It is worth mentioning that since each sentence is usually gen-
erated independently by different people, any source-target pair of descriptions
for a given image could be considered a comparable translation pair but not
translations of each other. Therefore, it is possible to use this kind of corpora
either by considering the cross product of each source and target descriptions [3].
We adopt the cross product of each source and target descriptions as training
corpus and use MLE to pre-train the translation model on the same datasets.
The MLE objective is as follows:

OMLE =
M∑

i=1

log P
(
Y (m) | X(m)

)
(8)

After the pre-training of image captioning and translation models, we start
the RL training process. We apply deep RL techniques [1] by adopting delayed
policy with the purpose to prevent divergence. In order to further stabilize the
training process, we linearly combine the MLE training objective and RL objec-
tive [21,31] as follows:

OCOM = (1 − α) ∗ OMLE + α ∗ ORL. (9)

Especially, the MLE training objective is the same as that in the pre-training
procedure. The entire training process is described in Algorithm 1.

Algorithm 1. REINFORCE algorithm for multimodal NMT
Require: Initial policy Pθ(Y |X), source image captioning model PφZ→X and tar-

get image captioning model PφZ→Y with random weights θ, φZ→X and φZ→Y

respectively; a reward function R(Ŷ ); monolingual multimodal corpora DZ,X =
{〈Z(m), X(m)〉}M

m=1 and DZ,Y = {〈Z(n), Y (n)〉}N
n=1

1: Pre-train PφZ→X , PφZ→Y and Pθ(Y |X)
2: Initial delayed policy P ′

θ′ with the same weight: θ′ = θ
3: repeat
4: Randomly receive an instance 〈Z, X〉 ∈ DZ,X

5: Generate a sequence of actions Ŷ from P ′

6: Set the reward of the generated sequence as r = R(Ŷ )
7: Update policy weight θ using the training objective in Eq. (9)
8: Update delayed policy with a constant γ: θ′ = γθ + (1 − γ)θ′

9: until model converged
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4 Experiments

4.1 Datasets

Our method is evaluated on three publicly available multilingual multimodal
datasets, i.e., Multi30K and IAPR-TC12 as in [7,22], and IKEA dataset [35].
Specifically, Multi30K [8] is a multilingual extension of Flickr30k corpus [33]. It
has 29K, 1K and 1K images in the training, validation, and test splits respec-
tively with English and German descriptions. We adopt the Multi30K task2
corpus in our experiments, which consists of 5 independently collected English
and German descriptions per image, i.e., these descriptions The IAPR-TC12
dataset [13] has a total of 20K images as well as each image’s multiple English
descriptions and the corresponding German translations. Following [7], we use
only the first description of each image and split the dataset into training, vali-
dation, and test sets with 18K, 1K, and 1K images respectively. For the IAPR-
TC12 dataset, we evaluate our approach on both German-English (De-En) and
English-German (En-De) tasks. To our knowledge, task2 of the Multi30K dataset
and IAPR-TC12 dataset only have one language pair of English and German. To
better understand the proposed method, we further evaluate our method on the
English-German (En-De) and English-French (En-Fr) tasks of the IKEA dataset
[35]. The data splits are the same as [35].

To fit the situation where the source and target multimodal corpora don’t
overlap, following [7], we randomly split the images in the training and validation
datasets into two parts with equal size. Thus, the two splits have no overlapping
images, and we have no direct English- German parallel corpus. The sentences
in the datasets are normalized and tokenized with the Moses Toolkit [20]. For
Multi30K and IKEA dataset, we adopt joint byte pair encoding [25] with 10K
merge operations to reduce vocabulary size. For the IAPR-TC12 dataset, we
construct the vocabulary with words appearing more than 5 times in the training
set and replace the remaining words with UNK.

Table 1. BLEU scores on Multi30K German-English translation test set with testing
methods Test-1 and Test-2 in zero-resource scenario.

Training strategy Test-1 Test-2

3-way model 15.9 14.2

UMNMT 19.9 18.2

2-agent-PRE 19.5 18.0

2-agent-JOINT 20.1(+0.6) 18.2(+0.2)

TS-PRE 19.8 19.2

TS-JOINT 20.3(+0.5) 19.5(+0.3)

2-agent-PRE+RL-R1 21.2(+1.7) 19.4(+1.4)

2-agent-PRE+RL-R2 21.5(+2.0) 19.9(+1.9)

TS-PRE+RL-R1 20.9(+1.1) 20.1(+0.9)

TS-PRE+RL-R2 21.1(+1.3) 20.3(+1.1)
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4.2 Baseline Methods

To demonstrate the effectiveness of our method, we compare our implementa-
tions with state-of-the-art baselines as follows.

(1) leftskip8pt 3-way model [22]. This method adopts an end-to-end training
strategy and trains the decoder with image and description.

(2) leftskip8pt UMNMT [27]. This method is the state-of-the-art zero-resource
multimodal neural machine translation method. It adopts the Transformer
model with a controllable attention mechanism that encodes both image and
language and leverages cycle-consistency loss. For a fair comparison, we train
the model from the used datasets and do not use the model that was not
pre-trained on the tens of millions of data. We also use the same Transformer
architecture with the same number of layers and feature dimensions.

(3) leftskip8pt 2-agent-PRE, 2-agent-JOINT [7]. In this method, 2-agent-PRE
keeps the captioner fixed and only trains the translator until the model
converges, then 2-agent-JOINT jointly trains the captioner and translator
based on 2-agent-PRE.

(4) leftskip8pt TS-PRE, TS-JOINT [6]. Similarly, TS-PRE keeps the captioner
fixed and only trains the translator until the model converges, then TS-
JOINT jointly trains the captioner and translator based on TS-PRE.

4.3 Implementation Details

To extract image features, we follow the suggestion of [3] and adopt ResNet-
50 network [15] pre-trained on ImageNet without fine-tuning. We use the
(14,14,1024) feature map of the res4fx (end of Block-4) layer after ReLU. Then,
we vectorise this 3-tensor into a 196 × 1024 matrix.

We adopt the Transformer3 model with base setting as defined in [28] for all
the translation tasks. For pre-training, we consider two situations: (1) when the
source and target multimodal corpora don’t overlap, we pre-train the translation
model with 2-agent-PRE and TS-PRE on both datasets in this zero-resource
scenario. In this scenario, our proposed reward is calculated based on the source
image that corresponds to the source sentence; (2) when the source and target
multimodal corpora overlap with the same images, we pre-train the translation
model with MLE on Multi30K dataset with these comparable sentences. The
optimizer used for MLE is Adam [19], and we follow the same learning rate
schedule in [28]. During training, roughly 4, 096 source tokens, and 4, 096 target
tokens are paired in one mini-batch. Each model is trained using a single Tesla
K80 GPU. For RL training, the model is initialized with parameters of the
pre-trained model, and we continue training it with a learning rate of 0.0001.
Hyper-parameter α is 0.5 and 0.7 for R1 and R2 respectively, and the delay
constant γ is 0.1.

For evaluation, all models are quantitatively evaluated with BLEU [23]. Espe-
cially, for the Multi30K dataset, since each image is paired with 5 English and 5
3 https://github.com/tensorflow/tensor2tensor.

https://github.com/tensorflow/tensor2tensor
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Table 2. BLEU scores on IAPR-TC12 English-German and German-English transla-
tion test sets in zero-resource scenario.

Training strategy De-En En-De

3-way model 13.9 8.6

UMNMT 19.3 14.5

2-agent-PRE 18.7 14.4

2-agent-JOINT 19.2(+0.5) 14.6(+0.2)

TS-PRE 17.1 13.9

TS-JOINT 17.5(+0.4) 14.1(+0.2)

2-agent-PRE+RL-R1 20.1(+1.4) 15.6(+1.2)

2-agent-PRE+RL-R2 20.5(+1.8) 15.7(+1.3)

TS-PRE+RL-R1 18.9(+1.8) 15.0(+1.1)

TS-PRE+RL-R2 19.3(+2.2) 15.5(+1.6)

German descriptions in the test set, we adopt two methods to evaluate the trans-
lation models: (1) We follow the setting in [7], generating a target description
for each source sentences and picking the one with the highest probability. The
evaluation is performed against the corresponding 5 target descriptions. This
method is denoted as Test-1 ; (2) We generate a target description for each 5
source sentences and calculate the BLEU score for each generated description
against the corresponding 5 target descriptions. Then, we use the average of
the calculated BLEU scores as the final result. This method is denoted as Test-
2. During validation and testing, we set the beam search size to be 5 for the
translation model.

4.4 Main Results

We first evaluate our proposed different strategies in comparison with baselines
on Multi30K, IAPR-TC12, and IKEA datasets.

Zero-Resource Translation. We first show the results when the two mono-
lingual multimodal corpora don’t overlap. We first evaluate our method on the
Multi30K De-En translation task with the testing methods Test-1 and Test-2.
The results are shown in Table 1. In this scenario, TS-PRE and 2-agent-PRE
are adopted for pre-training translation models before the RL procedure. RL-R1
and RL-R2 represent our reinforcement learning method with rewards R1 and
R2 respectively. From Table 1, we can see that both the reinforcement learning
method with reward R1 and R2 outperform the 2-agent and teacher-student
methods across testing methods. Our best-performed methods are RL-R2 pre-
trained with 2-agent-PRE for Test-1, and RL-R2 pre-trained with TS-PRE for
Test-2. These two methods have an improvement of 1.4/0.8 BLEU points over
the best baselines.
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Table 3. BLEU scores on IKEA English-German and English-French translation test
sets in zero-resource scenario.

Training strategy En-De En-Fr

3-way model 22.1 23.3

UMNMT 33.5 34.7

2-agent-PRE 33.2 34.4

2-agent-JOINT 33.6(+0.4) 34.6(+0.2)

TS-PRE 32.8 34.3

TS-JOINT 33.1(+0.3) 34.4(+0.1)

2-agent-PRE+RL-R1 34.4(+1.2) 35.6(+1.2)

2-agent-PRE+RL-R2 34.7(+1.5) 36.0(+1.6)

TS-PRE+RL-R1 34.2(+1.4) 35.7(+1.4)

TS-PRE+RL-R2 34.6(+1.8) 35.9(+1.6)

We also evaluate our method on IAPR-TC12 En-De and De-En transla-
tion tasks. The results are shown in Table 2. We can see that our proposed
method also outperforms all the baseline approaches on both translation tasks.
Specifically, our best methods have an improvement of 1.3/1.1 BLEU points on
De-En/En-De translation over the best baselines.

Similarly, for the results on IKEA En-De and En-Fr translation tasks shown
in Table 3, our proposed method achieves superior performance compared with
baselines. Our method can obtain obvious improvement in both language pairs
of En-De and En-Fr.

From the results above, we can have the following findings. First, our app-
roach achieves the best results on all three data sets, substantially exceeding the
baselines. It demonstrates the effectiveness of our method. Then we can find that
our proposed R2 works better than R1 in all cases. It verifies the importance
of modeling the distance of attention weights of source and generated sentences
into translation models. Last, the state-of-the-art UMNMT method has achieved
only a small improvement. On the one hand, it introduces too many parameters
in the training process, which makes the model difficult to train. Moreover, it
shows the superiority of using reinforcement learning to reinforce the consistency
between images and sentences.

Translation with Comparable Sentences. We also evaluate our method
when the two monolingual multimodal corpora overlap with the same images on
the Multi30K dataset. The translation model is pre-trained with MLE on the
cross product of each source and target sentences, which is denoted as PRE. The
BLEU scores of different training strategies are shown in Table 4. We can see
that our method with both rewards achieves obvious improvement over MLE pre-
training, while the 2-agent and teacher-student methods can’t gain any improve-
ments in this scenario. The possible reason is that the generated sentences by
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Table 4. Comparison with previous work with comparable sentences over the Multi30K
test set with Test-1 and Test-2.

Training strategy Test-1 Test-2

PRE 30.4 27.5

PRE+2-agent-JOINT 30.2 27.1

PRE+TS-JOINT 30.1 26.9

PRE+RL-R1 32.1 29.1

PRE+RL-R2 32.8 29.5

Fig. 3. Examples of translations from the Multi30K test set. The first example is
translated using Test-1 as [7], while the second example is translated using Test-2. For
the first example, we pre-train the translation model with 2-agent-PRE, then continue
training with RL-R1 and RL-R2. For the second example, we only show the translation
results of the 2-agent-PRE and the better-performed RL-R2. We highlight the words
that distinguish the systems’ results in blue, red and green. Red words are marked for
correct translations in hypotheses compared with blue words in references, and green
words are marked for incorrect translations in hypotheses compared to blue words.
(Color figure online)

the image captioning model in the baseline methods are low-quality compared
two the cross product of each source and target sentences, thus can’t help the
translation model to get better performance.

4.5 Impact of Hyper-parameter

As shown in Eq. (9), the hyper-parameter α controls the trade-off between MLE
and RL objectives. To show the impact of this hyper-parameter, we evaluate
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Table 5. BLEU scores for different α on De-En translation Multi30K test set for
RL-R1.

α 0.1 0.3 0.5 0.7 0.9

Test1 30.9 31.7 32.1 31.2 30.7

Test2 27.8 28.5 29.1 28.1 27.9

Table 6. BLEU scores for different α on De-En translation Multi30K test set for
RL-R2.

α 0.1 0.3 0.5 0.7 0.9

Test1 30.4 30.7 32.1 32.8 30.9

Test2 27.7 27.8 28.7 29.5 28.0

the model performance on the De-En Multi30K test set with different α in the
scenario of corpora overlapping. Specifically, for RL-R1 and RL-R2, we set α
both to be [0.1, 0.3, 0.5, 0.7, 0.9] in our experiments. The results are presented
in Table 5 and Table 6. We find that when α is set to be 0.5 and 0.7 for RL-R1
and RL-R2 respectively, our method achieves the best performance.

4.6 Case Study

In Fig. 3, we provide some qualitative comparisons between the translations from
the pre-training method 2-agent-PRE and our RL method. In the first exam-
ple, our RL-R1 properly translates the words “in black” and RL-R2 properly
translates the words “in a blue shirt”, while PRE didn’t tell anything about the
wearing. In the second example, each translation of our RL-R2 correctly trans-
lates “white shirt” or “white hard hat”, while the translations of PRE tends
to include the wrong words “red shirt” or include nothing about the wearing.
From these examples, we can see that our RL method can guide the translation
model to focus more on the image, thus correctly translate the information in
the image and improve translation quality.

5 Related Work

The related research topics can be classified into the following three categories:
(1) multimodal neural machine translation, (2) pivot-based neural machine
translation, and (3) reinforcement learning for sequence prediction.

Multimodal Neural Machine Translation. This task aims to use images
as well as parallel corpora to improve the translation performance. It has been
shown that image modality can benefit NMT by relaxing ambiguity in alignment
that cannot be solved by texts only [4,16,35]. This task is much easier than ours
because, in its setting, multilingual descriptions for the same images are available
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in the training dataset, and an image is part of the query in both training
and testing phases [7]. The unsupervised multimodal NMT is proposed in [27].
However, they did not consider the consistency of the image and language at the
sentence level. Their introduction of too many parameters also hurts training.

Pivot-Based Neural Machine Translation. Another line of work has been
to train the NMT system from non-parallel data with the help of another modal-
ity, which is called the pivot-based machine translation. Specifically, researchers
have tried to build multilingual NMT systems trained by other language pairs
to enable translation [9,17] with non-parallel data for the intended transla-
tion pair. In addition to the multilingual methods, several authors proposed
to train the translation model in more direct ways. For example, [6] proposed
a teacher-student framework under the assumption that parallel sentences have
close probabilities of generating a sentence in a third language. [34] maximized
the expected likelihood to train the intended source-to-target model. Nonethe-
less, all these methods still require that source-pivot and pivot-target parallel
corpora are available. Besides languages, images are also used as the pivot to
build NMT systems. Zero-resource NMT by utilizing image as a pivot was first
achieved by training multimodal encoders to share common semantic representa-
tion [22]. To overcome the bottleneck of the fixed-length vector in this method,
[7] proposed a 2-agent approach that jointly trains the translation and image
captioning model.

Reinforcement Learning for Sequence Prediction. In the sequence predic-
tion task, reinforcement learning is always used to learn and refine model param-
eters according to task-specific reward signals [5,14,30]. In [24], the authors pro-
posed to train a neural translation model with the objective of optimizing the
sentence-level BLEU score. [26] proposed to adopt minimum risk training to min-
imize the task-specific loss on NMT training data. Instead of the REINFORCE
algorithm used in the above two works, [1] further optimizes the policy by the
actor-critic algorithm.

6 Conclusion and Future Work

In this work, to tackle the challenging task of training an NMT system from
just unpaired multimodal data, we successfully deploy a reinforcement learning
(RL) method to build the NMT system by introducing a sequence-level supervi-
sion signal as a reward. Experiments on German-English, English-German, and
English-French translation over the IAPR-TC12, Multi30K, and IKEA datasets
show that our proposed reinforcement learning mechanism can significantly out-
perform the existing methods.

In the future, we will continue trying to ground the visual context into the
translation model, such as using a shared encoder over the source, target sen-
tences, and image, and then constraining them to be similar in order to constrain
both the source and target representations to be faithful to the image. Moreover,
we also would like to better understand the proposed method on larger training
corpora and alternative language pairs.
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Abstract. Multimodal named entity extraction is an emerging task
which uses both textual and visual information to detect named enti-
ties and identify their entity types. The existing efforts are often flawed
in two aspects. Firstly, they may easily ignore the natural prejudice of
visual guidance brought by the image. Secondly, they do not further
explore the knowledge contained in the image. In this paper, we nov-
elly propose a novel neural network model which introduces both image
attributes and image knowledge to help improve named entity extrac-
tion. While the image attributes are high-level abstract information of
an image that could be labelled by a pre-trained model based on Ima-
geNet, the image knowledge could be obtained from a general encyclo-
pedia knowledge graph with multi-modal information such as DBPedia
and Yago. Our emperical study conducted on real-world data collection
demonstrates the effectiveness of our approach comparing with several
state-of-the-art approaches.

Keywords: Named entity recognition · Multimodal learning · Social
media · Knowledge graph

1 Introduction

Recent years have witnessed a dramatic growth of user-generated social media
posts on various social media platforms such as Twitter, Facebook and Weibo.
As an indispensable resource for many social media based tasks such as breaking
news aggregation [20], the identification of cyber-attacks [21] or acquisition of
user interests, there is a growing need to obtain structured information from
social media. As a basic task of information extraction, Named Entity Recogni-
tion (NER) aims at discovering named entities in free text and classify them into
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Tweet
posts

teachers take on top
of Mount Sherman.

Sony announced a Bad
Boys in the next few
years.

Jackson is really my
favorite.

Expected
NER
results

teachers take on top
of [Mount Sherman
LOC].

[Sony ORG] an-
nounced a [Bad Boys
OTHER] in the next
few years.

[Jackson PER] is re-
ally my favorite.

NER
with text
only

teachers take on top
of [Mount Sherman
OTHER].

[Sony ORG] an-
nounced a [Bad Boys
PER] in the next few
years.

[Jackson OTHER] is
really my favorite.

MNER
with
previous
methods

teachers take on top
of [Mount Sherman
PER].

[Sony PER] announced
a [Bad Boys PER] in
the next few years.

[Jackson OTHER] is
really my favorite.

Fig. 1. Three example social media posts with labelled named entities

per-defined types including person (PER), location (LOC), organization (ORG)
and other (OTHER).

Different from NER with plain text, NER with social media posts is defined
as multimodal named entity recognition (MNER) [29], which aims to detect
named entities and identify their entity types given a (post text, post image)
pair. As the three example posts with images given in Fig. 1, we expect to detect
“Mount Sherman” as LOC from the first post, “Sony” as an ORG and “Bad
Boys” as OTHER from the second post, and “Jackson” as PER from the third
post. However, the post texts are usually too short to provide enough context for
named entity recognition. As a result, if we perform named entity recognition
with the post text only, these mentions might be wrongly recognized as shown in
the figure. Fortunately, the post images may provide necessary complementary
information to help named entity recognition.

So far, plenty of efforts have been made on NER. Ealier NER systems mainly
rely on feature engineering and machine learning models [9], while the state-of-
the-art approaches are sequence models, which replace the handcrafted features
and machine learning models with various kinds of word embeddings [6] and
Deep neural network (DNN) [3]. As a variant of NER, MNER also receives
much attention in recent years [1,14,17,27,29]. Some work first learns the char-
acteristics of each modality separately, and then integrates the characteristics
of different modalities with attention mechanism [14,17,29]. Some other work
produces interactions between modalities with attention mechanism in the early
stage of extracting different modal features [1,27].

However, the existing MNER methods are often flawed in two aspects. Firstly,
they may easily ignore the natural prejudice of visual guidance brought by the
image. Let’s see the first tweet post with an image in Fig. 1, where the “Mount
Sherman” in the post might be taken as a person given that there are several
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persons in the image. To allieviate the natural prejudice of visual guidance here,
we need to treat the persons and the mountain in the image fairly, such that
“Mount Sherman” is more likely to be associated with a mountain. Secondly,
some important background knowledge about the image is yet to be obtained
and furtherly explored. Let’s see the second tweet post in Fig. 1, where the
“Bad Boys” might be wrongly recognized as a person if we just use the shallow
feature information in the image. But if we have the knowledge that the image
is actually a movie poster, then “Bad Boys” in the text could be recognized as a
movie instead of two persons. Similarly, we can see from the third post in Fig. 1,
the director of the movie “Jackson” might be wrongly recognized as an aminal
(i.e. OTHER), if we do not possess the knowledge that the image is a movie
poster of the movie “King Kong”.

To address the above drawbacks, we propose a novel MNER neural model
integrating both image attributes and image knowledge. The image attributes are
high-level abstract information of an image that are labelled by a pre-trained
model based on ImageNet [22]. For instance, the labels to the image of the first
post in Fig. 1 could be “person”, “mountain”, “sky”, “cloud” and “jeans”. By
introducing image attributes, we could not only overcome the expression hetero-
geneity between text and image. More importantly, we could greatly alleviate the
visual guidance bias brought by images. The knowledge about an image could be
obtained from a general encyclopedia knowledge graph with multi-modal infor-
mation (or MMKG for short) such as DBPedia [2] and Yago [24], which could be
leveraged to better understand its meaning. However, it is nontrivial to obtain
the image knowledge from MMKG, which requires us to find the entity that
corresponds to the image in the MMKG firstly. It would be extreamly expensive
if we search through the whole MMKG with millions of entities. Here we propose
an efficient way to accomplish this task by searching the candidate entities cor-
responding to the entity mentions in the text, as well as their nearest neighbor
entities within n-hop range.

To summarize, our main contributions are as follows:

– We introduce image attributes into MNER to alleviate the visual guidance
bias brought by images and overcome the expression heterogeneity between
text and image.

– We propose an efficient approach to obtain knowledge about a poster image
from a large MMKG by utilizing the identified mentions in the poster text.

– We propose a novel neural model with multiple attentions to integrate both
image attributes and image knowledge into our neural MNER model.

We conduct our empirical study on real-world data, which demonstrates the
effctiveness of our approach comparing with several state-of-the-art approaches.

Roadmap. The rest of the paper is organized as follows: We discuss the related
work in Sect. 2, and then present our approach in Sect. 3. After reporting our
empirical study in Sect. 4, we finally conclude the paper in Sect. 5.
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2 Related Work

In this section, we cover related work on traditional NER with text only, and
MNER using image and text in recent years. Then, we present some other multi-
modal tasks which inspire us deeply.

2.1 Traditional NER with Text only

The NER task has been studied for many years, and there are various mature
models. Traditional approaches typically focus on designing effective features
and then feed these features to different linear classifiers such as maximum
entropy [5], conditional random fileds (CRF) [8] and support vector machines
(SVM) [15]. Because traditional methods involve drab feature engineering,
many deep learning methods for NER have emerged rapidly, such as BiLSTM-
CRF [10], Bert-CRF [18], Lattice-LSTM [13]. It turns out that these neural
approaches can achieve the state-of-the-art performance on formal text.

However, when using the above methods on social media tweets, the results
are not satisfactory since the context of tweet texts is not rich enough. Hence,
some studies propose to exploit external resources (e.g., shallow parser, Freebase
dictionary and graphic characteristics) to help deal with NER task in social
media text [11,12,33,34]. Indeed, the performance of these models with external
resources is better than the previous work.

2.2 MNER with Image and Text

With the rapid increase of multi-modal data on social media platforms, some
work starts to study using multi-modal data such as the associate images to
improve the effectiveness of NER. Specifically, in order to fuse the textual and
visual information, [17] proposes a multimodal NER (i.e. MNER) network with
modality attention, while [29] and [14] propose an adaptive co-attention network
and a gated visual attention mechanism to model the inter-modal interactions
and filter out the noise in the visual context respectively. To fully capture intra-
modal and cross-modal interactions, [1] extends multi-dimensional self-attention
mechanism so that the proposed attention can guide visual attention module.
Also, [27] proposes to leverage purely text-based entity span detection as an
auxiliary module to alleviate the visual bias and designs a Unified Multimodal
Transformer to guide the final predictions.

2.3 Other Multimodal Tasks

In the field of multimodal fusion, other multimodal tasks can also inspire
us deeply. In VQA (Visual Question Answering) task, [25,31] introduces the
attribute prediction layer as a method to incorporate high-level concepts. [4]
proposes to introduce three modalities of image, text and image attributes for
multi-modal irony recognition task in social media tweets. In [4], image attributes
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Fig. 2. The architecture of our proposed model

are used to ease the heterogeneity of image and text expression. The role of
image attributes is a high-level abstract information bridging the gap between
texts and images. [16,32] introduces knowledge to do some common sense rea-
soning and visual relation reasoning in Visual Question Answer task. Also, [23]
proposes to combine external knowledge with question to solve problems where
the answer is not in the image. While [7] designs modality fusion structure in
order to discover the real importance of different modalities, several attention
mechanisms are used to fuse text and audio [26,28]. An approach is proposed in
[30] which constructs a domain-specific Multimodal Knowledge Graph (MMKG)
with visual and textual information from Wikimedia Commons.

3 Our Proposed Model

In this work, we propose a novel neural network structure which includes the
image attribute modality as well as image conceptual knowledge modality. This
neural network uses an attention mechanism to perform the interaction among
different modalities. The overall structure of our model is shown in Fig. 2. In
the following, we first formulate the problem of MNER and then describe the
proposed model in detail.

3.1 Problem Formulation

In this work, Multimodal Named Entity Recognition (MNER) task is formulated
as a sequence labeling task. Given a text sequence X = {x1, x2, ..., xn} and
associated image Image, MNER aims to identify entity boundaries from text
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first with the BIO style, and also categorize the identified entities into predefined
categories including Person, Organization, Location and Other. The output of
a MNER model is a sequence of tags Y = {y1, y2, ..., yn} with the input text,
where yi ∈ {O, B-PER, I–PER, B-ORG, I-ORG, B-LOC, I-LOC, B-OTHER,
I-OTHER} in this work.

3.2 Introducting Image Attributes and Knowledge

Figure 2 illustrates the framework of our model. The model introduces image
knowledge using Multimodal Knowledge Graph (MMKG) and image attributes
using InceptionV3.1 We describe each part of the model respectively next.

Mamba never out, but see 
you, !

(Kobe Bryant, isA, basketball player) NULL

Kobe  Bryant Kobe  (city) Lebrun Los 
Angeles

Japan
......

Lakers Davis Eric
......

...

...

...

...

...

...

...

... ......

Par�al illustra�on of Wikipedia as a MMKG

Candidate en�ty image set One-hop en�ty image set Two-hop en�ty image set

Yes

No No No

YesYes

isA, basketball player

isA, city

Tweet post

conceptual knowledge for related image :

Tweet text

Related image

Kobe 
Bryant

Lebrun
James

Los
Angeles

Lakers

Davis

Eric

USA

Kobe 
(city)

Japan

Akashi

Tokyo

Mount
FUJI

osman
thus

matched or not matched or not matched or not

Fig. 3. The process of acquiring knowledge for an image from MMKG

Image Attributes. We use the InceptionV3 network pre-trained on ImageNet
to predict the target objects in an image. Through the InceptionV3 network,
we obtain the probability of a specific image corresponding to each category of
1000 categories in the ImageNet, and take the 5 category items with the highest
probability value as the image attributes. Denote IA(img) as the attribute set
of the image img, we compute it as follows:

IA(img) = argsort{p|p = InceptionV 3(img)}[1 : 5], p ∈ [0, 1] (1)

1 Available at: https://keras.io/api/applications/#inceptionv3.

https://keras.io/api/applications/#inceptionv3
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where argsort sorts 1000 probability values for the output of InceptionV3, and
p is the probability score returned by InceptionV3.

Image Knowledge. As for obtaining the image knowledge, we use part of
WikiPedia as the MMKG, which includes entities, the triple knowledge corre-
sponding to the entity and the images corresponding to the entity. An example
MMKG is given in the upper right part of Fig. 3.

To get knowledge for an image, a straightforward but very time-consuming
way is to search through the entire MMKG to find the entity who owns the image
that has the highest similarity to the given image. According to our observations,
most of the time, the images are often closely related to the entities mentioned
in the text. Thus, in this paper we propose an efficient way to acquire image
knowledge by leveraging the (mention, candidate entity) pairs between the post
text and MMKG. As shown in Fig. 3, from the input text, we first recognize
entity mentions, i.e., “Kobe”, and its corresponding candidate entities Se =
{e1, e2..., en}, i.e., “Kobe Bryant” and “Kobe (city)”, from the MMKG according
to the fuzzywuzzy algorithm.2 Then we first calculate the similarity between the
given image in the post and all the images of these candidate entities. If some
highly similar image is found, the system would output the conceptual knowledge
about its corresponding entity such as (Kobe Bryant, isA, basketball player).
Otherwise, we get one-hop neighbourhood entities of the candidate entities, and
find if any of these entities own similar images to the input image. If yes, we
return relevant conceptual triplet as the image knowledge. Otherwise, we go to
the two-hop neighbourhood entities of these candidate entities. But if no matched
images are found even in the two-hop neighbourhood entities, we consider that
these is probably no relevant knowledge about the image in the MMKG.

3.3 Feature Extraction

In this section, we use Convolutional Neural Network to extract character fea-
tures and VGG network to extract image features.

Character Feature Extraction. Social media tweets are usually informal and
contain many out-of-vocabulary (OOV) words. Character-level features could
alleviate informal word and OOV problems because character features can cap-
ture valid word shape information such as prefixes, suffixes and capitalization.
We use 2D Convolutional Neural Network to extract character feature vectors.
First, a word w is projected to a sequence of characters c = [c1, c2, ..., cn] where
n is the word length. Next, a convolutional operation of filter size 1×k is applied
to the matrix W ∈ R

de×n. At the end, the character embedding of a word w is
computed by the column-wise maximum operation.

Image Feature Extraction. In order to acquire features from an image, we
use a pretrained VGG16 model. Specifically, we retain features of different image
regions from the last pooling layer which has a shape of 7 × 7 × 512 so that we
can get the spatial features of an image. Moreover, we resize it to 49 × 512 to
2 Available at: https://github.com/seatgeek/fuzzywuzzy.

https://github.com/seatgeek/fuzzywuzzy
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simplify the calculations, where 49 is the number of image regions and 512 is the
dimension of the feature vector for each image region.

3.4 Modality Fusion

In this section, we use attention and gated fusion module to combine text,
attributes, knowledge and image information.

Self-attention. Self-attention module is applied to compute an alignment score
between elements from the same source. In NLP (natural language processing),
given a sequence of word embeddings x = [x1, x2, ..., xn] and a query embedding
q, the alignment score h(xi, q) between xi and q can be calculated using Eq. 2.

h(xi, q) = wtσ(xiWx + qWq) (2)

where σ is an activation function, wt is a vector of weights and Wq, Wx are the
weight matrices. Such an alignment score h(xi, q) evaluates how important xi

is to a query q. In order to refine the impact of each feature, we compute the
feature-wise score vector h′(xi, q) in the following way.

h′(xi, q) = Wtσ(xiWx + qWq) (3)

The difference between Eq. 2 and Eq. 3 is that Wt ∈ R
de×de is a matrix and

h′(xi, q) ∈ R
de is a vector with the same length as xi so that the interaction

between each dimension of xi and each dimension of q can be studied.
The purpose of softmax applied to the output function h′ is to compute the

categorical distribution p(m|x, q) over all tokens. To reveal the importance of
each feature k in a word embedding xi, all the dimensions of h′(xi, q) need to be
normalized and the categorical distribution is calculated as:

p(mk = i|x, q) = softmax([h′(xi, q)]k) (4)

where [h′(xi, q)]k represents every dimension of [h′(xi, q)]. Therefore, text context
C for query q can be calculated as follows:

C =
[ n∑

i=1

Pkixki

]de

k=1

(5)

where Pki = p(mk = i|x, q).

Alignment Score. Image attributes and image conceptual knowledge can be
acquired by the approach described in Sect. 3.2. We concatenate image con-
ceptual knowledge and image attributes to the end of the tweet text. For the
tweet text and knowledge, the corresponding word vector representation can be
directly obtained with fasttext. We use a two-layer fully connected network to
obtain the vector representation of the image attribute embeddings based on the
top 5 image attributes.
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Denote as as the alignment score between a query embedding q ∈ X and a
word embedding wi, we compute it as follows:

as = h′(wi, q) (6)

where wi ∈ X ∪K∪A and h′(wi, q) can be calculated using Eq. 3 by substituting
xi with wi. For the three sets X,K and A, X = {x1, x2, ..., xn} represents a
set of word-char embedding of tweet text, K is the word-char embedding of
knowledge and A means the word-char embedding of the weighted average of
image attributes.

Attention Guided Visual Attention. To obtain the visual attention matrix,
we calculate av between as and image feature matrix I as follows:

av(as, Ij) = Wvσ(asWs + IjWi) (7)

where av(as, Ij) ∈ R
de represents a single row of the visual attention scores

matrix av ∈ R
de×N , as ∈ R

de , Wi ∈ R
di×de , Wv, Ws ∈ R

de×de are the weight
matrices and Ij ∈ R

di is a row vector of I ∈ R
di×N .

Gated Fusion. We normalize the score av by Eq. 8 to get the probability
distribution of av, denoted by P (av), over all regions of image.

P (av) = softmax(av) (8)

The output Cv containing visual context vector for as is an element-wise
product between p(av) and I which is computed as follows:

Cv =
n∑

i=1

Pi(av) � Ii (9)

In order to dynamically merge alignment score as and visual attention vectors
Cv, we choose a gate function G to integrate these information to get the fused
representation Fr which is calculated as:

G = σ(W1as + W2Cv + b) (10)

Fr = G � Cv + (1 − G) � as (11)

where W1 and W2 are the learnable parameters and b is the bias vector and �
represents element-wise product operation.

We use Eq. 4 to get a categorical distribution P for Fr over all tokens of
a sequence w, where w is a sequence of tweet text, knowledge and attributes.
Then, element-wise product is computed between each pair of Pi and wi for the
purpose of getting context vector C(q) for query q.

C(q) =
n∑

i=1

Pi � wi (12)
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where n is the length of w, C(q) is a context vector fused text, image, image
attributes and knowledge features, C(q) ∈ R

de .
To deal with textual attributes component of NER, we fuse word represen-

tation x with C(q) with the gated fusion in Eq. 13 which is similar to Eq. 10.
Later, we compute the final output O in the following way.

G = σ(W1C(q) + W2x + b) (13)

O = G � C(q) + (1 − G) � x (14)

3.5 Conditional Random Fields

Conditional Random Fields (CRF) is the last layer in our model. It has been
shown that CRF is useful to sequence labeling task in practice because CRF can
detect the correlation between labels and their neighborhood.

We take X = {x0, x1, ..., xn} as an input sequence and y = {y0, y1, ..., yn} as
a generic sequence of labels for X. Y represents all possible label sequences for
X. Given a sequence X, all the possible label sequences y can be calculated as
follows:

p(y|X) =

n∏
i=1

Ωi(yi−1, yi,X)

∑
y′∈Y

n∏
i=1

Ωi(y′
i−1, y

′
i,X)

(15)

where Ωi(yi−1, yi,X) and Ωi(y′
i−1, y

′
i,X) are potential functions. Maximum con-

ditional likelihood logarithm is used to learn parameters to maximize the log-
likelihood L(p(y|X)). The logarithm of likelihood is given by:

L(p(y|X)) =
∑
i

logp(y|X) (16)

At the time of decoding, we predict the output sequence yo as the one with
maximal score. The formula is shown as follows.

yo = argmaxy′∈Y P (y|X) (17)

4 Experiments

We conduct experiments on multimodal NER dataset and compare our model
with existing unimodal and multimodal approaches. Precision, Recall and F1
score are used as the evaluation metrics in this work.

4.1 Dataset

We use multimodal NER dataset Twitter2015 constructed by [29]. It contains 4
types of entities Person, Location, Organization and Other collected from 8257
tweets. Table 1 shows the number of entities for each type in the train, validate
and test sets.
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Table 1. Details of dataset

Train Validate Test

Person 2217 552 1816

Location 2091 522 1697

Organization 928 247 839

Other 940 225 726

4.2 Implementation Details

We use 300D fasttext3 crawl embeddings to get the word embeddings. And we
get 50D character embeddings trained from scratch using a single layer 2D CNN
with a kernel size of 1 × 3. A pre-trained 16-layer VGG network is employed
to initalize the vector representation of image. We set Adam optimizer with
different learning rate: 0.001, 0.01, 0.03 and 0.005. The experimental results show
that we achieve the best score when the learning rate is 0.001, the batch size is
20 and the dropout is 0.5. We adopt cosine similarity to compute the similarity
among images and set threshold θ = 0.9 to filter out dissimilar images.

4.3 Baselines

In this part, we describe four representative text-based models and multimodal
models in comparison with our method.

– BiLSTM-CRF : BiLSTM-CRF was proposed by [8], requiring no feature engi-
neering or data prepocessing. Therefore, it is suitable for many sequence
labeling tasks. It was reported to have achieved great result on text-based
dataset.

– T-NER: T-NER [19] is a specific NER system on tweet post. [29] applied
T-NER to train a model on Twitter2015 training set and then evaluated it
using Twitter2015 testing set.

– Adaptive Co-Attention Network : Adaptive Co-Attention Network was pro-
posed by [29], which defined MNER problem and constructed the dataset
Twitter2015.

– Self-attention Network : Self-attention Network was proposed by [1], which
inspired us to use self-attention to capture the relationship among tweet text,
image attributes and knowledge. This model achieved state-of-the-art effect
on some metrics. Thus, we take this model as an important baseline to show
the effectiveness of our model.

3 Available at: https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-
300d-1M.vec.zip.

https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
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Table 2. Comparison of our approach with previous state-of-the-art methods.

PER. F1 LOC. F1 ORG. F1 OTHER F1 Overall

Prec. Recall F1

BiLSTM+CRF [8] 76.77 72.56 41.33 26.80 68.14 61.09 64.42

T-NER [19] 83.64 76.18 50.26 34.56 69.54 68.65 69.09

Adaptive
co-attention
network [29]

81.98 78.95 53.07 34.02 72.75 68.74 70.69

Self-attention
network [1]

83.98 78.65 59.27 39.54 73.50 72.33 72.91

Our model 84.28 79.43 58.97 41.47 74.78 71.82 73.27

4.4 Results and Discussion

In Table 2, we report the precision(P), recall(R) and F1 score(F1) achieved by
each method on Twitter2015 dataset. In Table 3, we report the F1 score achieved
by our method in two different scenarios: (1) With image and (2) Without image.

First, as illustrated in Table 2, by comparing all text-based approaches with
multimodal approaches, it is obvious that multimodal models outperform the
other models if the dataset only contains text. This indicates that visual context
is indeed quite helpful for the NER task on social media tweet posts since image
can provide effective information to enrich text context.

Second, as shown in Table 2, our method outperforms the baseline by 0.78%
and 1.93% in LOC and OTHER types. Both overall precision and F1 of our
method are better than that of the baselines. We assume that the improvement
mainly comes from the following reason: the previous methods do not learn the
real meaning of some images, whereas our approach can learn deep information
of image and try to understand the really effective information that image can
provide to text.

Third, although we have introduced the image attributes and knowledge, we
still cannot remove the image from our model. From Table 3, we can see that if
we remove image but introduce image attributes and knowledge, the F1 score of
Without image is lower than that of With image scenario. This is because image
attributes are unable to fully represent the image features and the information
we need for some images is not deep conceptual knowledge but some target
objects in images.

4.5 Bad Case Analysis

In Fig. 4, we show some examples where our approach fails for sequence labeling
task. Some reasons are as follows:
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Table 3. Results of our method with image and without image on our dataset.

PER. F1 LOC. F1 ORG. F1 OTHER F1 Overall F1

With image 84.28 79.43 58.97 41.47 73.27

Without image 83.51 77.26 58.06 37.03 72.09

(a) [Reddit ORG] needs to stop pretending (b) [Ben Davis PER] vs [Carmel PER]

Fig. 4. Two example wrong cases: (a) shows an unrelated image and a wrong pre-
diction. (b) shows great ambiguity for text even if other information is introduced.

1) Unrelated image: Matched image do not relate with tweet text. As we can
see in Fig. 4(a), “Reddit” belongs to “Other” but unrelated image could not
provide valid information so that it results in wrong prediction “ORG”.

2) Great ambiguity: Text is too short and has great ambiguity. As we can see in
Fig. 4(b), “Ben Davis” and “Carnel” both belong to “ORG” but short tweet
text has great ambiguity so that it is hard to help understand tweet even with
some external information. Thus, it results in wrong prediction “PER”.

5 Conclusions

In this paper, we propose a novel nerual network for multimodal NER. In our
model, we use a new architecture to fuse image knowledge and image attributes.
We propose an effective way to introduce image knowledge with MMKG to
help us capture deep features of image to avoid error from shallow features.
We introduce image attributes to help us treat the target objects in the image
fairly alleviating the visual guidance bias of image naturally as well as expression
heterogeneity between text and image. Experimental results show the superiority
of our method compared to previous methods.

Future work includes two aspects. On the one hand, because our approach
still performs not well on social media posts where text and image do not relate,
we consider to identify the relevance of image and text and avoid introducing
irrelevant image information to the model. On the other hand, since there are
not many existing datasets and the size of the existing datasets is relatively
small, we intend to build a larger and higher-quality dataset for this field.
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Abstract. Multi-task techniques are effective for handling the problem
of small size of the datasets. They can leverage additional rich informa-
tion from other tasks for improving the performance of the target task.
One of the problems in the multi-task based methods is which resources
are proper to be utilized as the auxiliary tasks and how to select the
shared structures with an effective search mechanism. We propose a novel
neural-based multi-task Shared Structure Encoding (SSE) to define the
exploration space by which we can easily formulate the multi-task archi-
tecture search. For the search approaches, because these existing Net-
work Architecture Search (NAS) techniques are not specially designed
for the multi-task scenario, we propose two original search approaches,
i.e., m-Sparse Search approach by Shared Structure encoding for neural-
based Multi-Task models (m-S4MT) and Task-wise Greedy Generation
Search approach by Shared Structure encoding for neural-based Multi-
Task models (TGG-S3MT). The experiments based on the real text
datasets with multiple text mining tasks show that SSE is effective for
formulating the multi-task architecture search. Moreover, both m-S4MT
and TGG-S3MT have better performance on the target aspects than the
single-task method, multi-label method, näıve multi-task methods and
the variant of the NAS approach from the existing works. Especially,
1-S4MT with a sparse assumption on the auxiliary tasks has good per-
formance with very low computation cost.

Keywords: Multi-task · Shard structure search · Text mining

1 Introduction

Multi-task techniques are effective for handling the problem of small size of the
datasets. They can leverage additional rich information from other tasks for
improving the performance of the target task. They have been widely utilized
in many natural language processing tasks, such as classification [19], summa-
rization [7,10], parsing [8], sequence labeling [16], entity and relation [22] and
natural language understanding [20]. When building the multi-task model in
a main-auxiliary manner with one main task and multiple auxiliary tasks, for
improving the performance of the main task, there are two important issues,

c© Springer Nature Switzerland AG 2021
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i.e., which resources (tasks) are proper to be utilized as the auxiliary resources
(tasks) for sharing the useful information and how to share the information
among the tasks. In these existing studies, researchers always selected specific
auxiliary resources and designed hand-crafted shared structures in the models
for a specific topic. However, for different datasets and main tasks, the optimal
auxiliary resources and shared structures may be different.

We thus propose approaches for automatically selecting the shared structures
as well as the auxiliary resources which are more beneficial for the main task.
We study this topic by focusing on the models based on neural networks for
text mining. There are diverse parameter sharing manners in the multi-task
methods for deep neural networks [25]. How to define the exploration space of
the candidate multi-task models for automatic search is a problem. We propose
a Shared Structure Encoding (SSE) method in the manner of hard parameter
sharing to define the exploration space. Based on SSE, we can easily formulate
the automatic multi-task architecture search so that we can perform diverse
search approaches to it. It is also flexible to add more auxiliary tasks to the
existing multi-task models based on SSE.

For the approaches of searching multi-task architectures, on the one hand,
we propose a variant of the reinforcement learning based network architecture
search approaches [32] in the existing works by utilizing our SSE. On the other
hand, because such existing Network Architecture Search (NAS) techniques are
not specially designed for the multi-task scenario and searching models trained
by the small data with high overfitting risk, we propose two original search
approaches for automatically selecting well-shared network structures as well as
good auxiliary resources. One is the m-Sparse Search approach by SSE for neural-
based Multi-Task models (m-S4MT); the other is the Task-wise Greedy Gener-
ation Search approach (TGG-S3MT). Both of them can significantly reduce the
search space and thus contribute low computation costs.

We construct the experiments based on real text datasets. The multiple tasks
of text mining in the experiments are automatically predicting the review scores
for academic papers on multiple review aspects such as clarity and originality
based on the text content of the papers. The experimental results show that our
approaches can build a multi-task model with effective structures and auxiliaries
which achieve better performance compared to the single-task model, multi-
label model, näıve multi-task models, and the variant of the NAS approach from
existing works. Especially, 1-S4MT with the sparse assumption on the auxiliary
tasks has good performance with very low computation cost. The contributions
of this paper are as follows:

– We propose an approach which can search and build a neural-based multi-task
model with optimal auxiliary resources and shared structures in the scenario
of text mining.

– We propose a neural-based multi-task shared structure encoding method to
define the exploration space by which we can easily formulate the multi-task
architecture search.

– We propose two original search approaches, namely m-S4MT and TGG-
S3MT, which can effectively and efficiently select well-shared network struc-
tures and good auxiliary tasks.
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Fig. 1. Basic model CNN Fig. 2. Multi-task CNN with shared structure encoding

2 Our Approach

Without loss of generality, we use the basic CNN-based model for classification
and regression tasks in text mining [14] as an example to facilitate the description
of our multi-task approach. Figure 1 shows the architecture of the CNN model
for classifying the labels or predicting the scores. It includes embedding layer,
convolutional and pooling layer, and fully connected layers. The multi-task app-
roach we propose is not limited to only utilize this model. It can be integrated
with similar neural network models, e.g., XML-CNN [18] and DPCNN [11].

Let n be the number of single tasks (i.e., a label or a score) and these tasks
are assumed to have the same network structures consisting of k layers. For a
given task (i.e., the target label or score), we regard it as the main task and the
other tasks (i.e., the other labels or scores) as the candidate auxiliary tasks, and
aim to search the proper shared structures and auxiliary tasks for it.

2.1 Multi-task Shared Structure Encoding (SSE)

To automatically search the proper shared structures and auxiliary tasks, we
need to define the exploration space. Because it is difficult to explore the com-
binations of diverse parameter sharing manners proposed in various multi-task
methods [25], we utilize the typical manner of hard parameter sharing to imple-
ment our idea. Other manners of parameter sharing will be in future work.

Figure 2 illustrates an example of our Shared Structure Encoding (SSE)
consisting of three tasks (one main task and two auxiliary tasks). Given a main
task t0, for each auxiliary task ti, if the jth layer of ti is shared with t0, then we
encode this structure as lij = 1; if the jth layer is not shared, then lij = 0. The
SSE for auxiliary task ti is si = {lij}j . The SSE for the jth layer is sj = {lij}i.
The shared structure for a given combination of auxiliary tasks C = {ti}i is
defined as SC = {si|ti ∈ C}. The last output layers (e.g., the “Fully Connected 2”
layers in Fig. 1 and 2) are not shared, and thus not counted in k and not used in
SSE. We do not encode the shared structures among auxiliary tasks to decrease
the complexity of the multi-task model so that it is not difficult for formulating
the multi-task architecture search. It is flexible to add more auxiliary tasks to a
model. This advantage will be shown and utilized in the TGG-S3MT approach.
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There are two special cases of this SSE. One is lij = 1 for all auxiliary tasks
and layers. The corresponding model is equivalent to a single multi-label model
for all tasks. Another is lij = 0 for all auxiliary tasks and layers. It is equivalent
to a single-task model for the main task. In other words, in the search stage, these
special models are also included. Lu et al. [21] adaptively generated the feature
sharing structure by splitting the network into branches without merging. Its
exploration space is a subset of our approach.

Our multi-task approach utilizes a main-auxiliary manner, rather than a
manner which equally treats all tasks. The latter requires a trade-off performance
among the tasks [26], which has a balancing problem and may not be able to
reach optimal results for a specific task in the set of tasks. We thus use the target
task as the main task and the remains as the candidates for auxiliary tasks. It
decreases the size of the exploration space of possible shared structures and does
not cause the balancing problem.

2.2 Shared Structure and Auxiliary Task Search

In our multi-task SSE method, the size of the exploration space for all candidates
of the multi-task architectures is 2k(n−1). It is a huge value even if the task
number n and the layer number k are small. An approach that can efficiently
search a good multi-task architecture is required.

Based on our SSE, the multi-task architecture search can be easily formulated
as an optimization problem minS∈{0,1}k(n−1) f(S) for which the analytic form of
f is unknown. The input S of the objective function is the SSE. For the output
value of this function, it needs to be the loss on the test set. We use the loss
on both training set and validation set as the surrogate. To search a multi-task
model with good test loss which is the target loss, we use the sum of training
and validation loss as the indicator loss f(S). The reason that we do not only
use the loss on the validation set is the data in our scenario is too small.

2.3 Variant of Vanilla NAS Approach

Our SSE encoding approach for multi-task architecture is easy to integrate with
existing search approaches in the network architecture search (NAS) area, e.g.,
the reinforcement learning (RL) based methods such as [17,32,33]. After this
paragraph, in this paper, the term of NAS represents the vanilla reinforcement
learning based NAS methods [32,33].

In the vanilla NAS, a controller for sampling a convolutional neural network
is implemented by a recurrent neural network (RNN). For example, a fragment
of the RNN controller predicts the hyperparameters of [filter height, filter width,
stride height, stride width, number of filters] for one isolated layer of the con-
volutional neural network. The fragments of the RNN controller for each iso-
lated layer are sequentially connected to the entire controller. A policy gradient
method is used to update the parameters of the controller. To adapt the vanilla
NAS approach [32] to handle the multi-task architecture search by leveraging
our SSE, we can utilize a fragment of the RNN controller in the vanilla NAS
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Fig. 3. NAS-MTL: shared-Layer-wise NAS for neural-based Multi-Task model search
based on SSE. The RNN controller and the reinforcement learning framework.

approach to represent the SSE of each shared layer sj = {lij}i. Figure 3 shows
a visual explanation.

The NAS-based approach is not exactly satisfied in our scenario for multi-
task architecture search. Such a technique is not originally designed for exploring
multi-task models. The multi-task architecture search does not exactly fit the
underlying assumptions of these existing approaches. The SSEs in a shared layer
do not hold sequential relations which are represented by the RNN controller.

2.4 m-Sparse Search Approach for Neural-Based Multi-task Model
(m-S4MT)

Based on the above discussions, we propose an original approach that is spe-
cially designed for searching multi-task architectures based on the SSE. The
characteristics of this approach can be summarized into two-folds: (1). It has
two selection components to search the shared structures and auxiliary tasks,
respectively; (2). It is a heuristic method based on a sparse assumption on aux-
iliary tasks. In our search strategy, we denote the number of auxiliary tasks in a
model as m, m ≤ n−1. There are

(
n−1
m

)
combinations of the auxiliary tasks. We

named the proposed approach as m-Sparse Search approach by Shared Structure
encoding for neural-based Multi-Task model (m-S4MT).

In one selection component, we select a good shared structure for each com-
bination of the auxiliary tasks. For each combination C of auxiliary tasks, we
search the shared structures S and select the one with minimum of the indicator
loss, i.e., ŜC = arg minSC f(SC). In the other selection component, we select a
good combination of the auxiliary tasks. After selecting the shared structures
for all combinations of the auxiliary tasks, we select the combination of which
the average indicator loss f̄(SC) of all candidate shared structures is minimum,
i.e., Ĉ = arg minC f̄(SC). Then, we can use the ŜĈ with Ĉ as the final selection
of shared structure and the combination of auxiliary tasks. For a main task, the
number of candidate multi-task models is Nm =

(
n−1
m

) · 2km. When m = n − 1,
i.e., using all other tasks as the auxiliary tasks, this number is Nn−1 = 2k(n−1).
If m � n − 1, then Nm � Nn−1. Because training each candidate multi-task
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Algorithm 1: Task-wise Greedy Generation Search Approach (TGG-
S3MT)

Initialization: Ω0 = {t0}, Ψ0 = Ω \ {t0}, V0 = ∅, r=0;
while Ψr �= ∅ do

foreach ti ∈ Ψr do
foreach si do

Ω
′
r = Ωr ∪ {ti}, V ′

r = Vr ∪ {ti : si};

Train Multi-task model with V ′
r, obtain f(V ′

r);

end

end

t̂i = arg minti∈Ψr f̄(Vr ∪ {ti : si});

ŝi = arg minsi f(Vr ∪ {t̂i : si});

Ωr+1 = Ωr ∪ {t̂i}, Ψr+1 = Ψr \ {t̂i};

Vr+1 = Vr ∪ {t̂i : ŝi}, r = r + 1;

end

model is the key time-consuming factor, we use the number of candidate multi-
task models to measure the computation cost of the search approaches.

Another important issue is that we assume the sparsity of the auxiliary tasks,
i.e., only a few auxiliary tasks mostly contribute to the main task. This assump-
tion is rational and used in existing works for learning multiple task relations
[31] which did not focus on neural-based models. For example, Zhang et al.
[31] learned sparse task relation matrix for regression and classification models.
They claimed that a task cannot be effective for all other tasks. Following this
assumption, we set a m as a very small value, i.e., m ∈ {1, 2}. The corresponding
versions of the approach are named as 1-S4MT and 2-S4MT.

There are several advantages of using the sparse assumption for our search
approach. First, when m is small, the size of exploration space Nm is tractable.
Second, the sparse auxiliary tasks can decrease the risk of overfitting in con-
trast to the dense ones. Both of these advantages can increase the possibility of
selecting a good multi-task architecture with low indicator and target loss.

2.5 Task-Wise Greedy Generation Search Approach for
Neural-Based Multi-task Model (TGG-S3MT)

Although the search space and computation time are reduced a lot, m-S4MT
is still somewhat bruce-force. It reduces the search space by using the sparse
assumption but still searches all candidate multi-task models in the reduced
search space. When m ≥ 2, the size of the search space is still not small. For
example, for 2-S4MT, it needs to try N2 =

(
n−1
2

) ·22k models. We thus propose a
task-wise greedy generation method which reduces the search space from another
manner that is not based on the sparse assumption. It has a smaller search space
than that of m-S4MT with m ≥ 2. Note that the search space of 1-S4MT is still
smaller than TGG-S3MT.
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Fig. 4. A brief illustration of the generative process of TGG-S3MT. In each round, it
first selects one good auxiliary task and its optimal SSE; then it attaches the selected
auxiliary task to the current multi-task model.

The main idea is that we create a generation process for searching the multi-
task models. The initial multi-task model is the single-task model for the main
task. After that in each round of search, we first select one auxiliary task that
has the minimum of average indicator loss if we append this task to current
multi-task model; we then select its optimal shared structure; after that, we
append the module of this selected auxiliary task with the shared structure to
current multi-task model. After we have appended all candidate auxiliary tasks,
we generate the final multi-task model. If an auxiliary task is not proper for
the main task, its SSE will be all-zero. In such a way, we reach the purpose of
selecting auxiliary tasks from a large number of candidate tasks. TGG-S3MT
makes full use of the flexibility of SSE, i.e., it is easy to add more auxiliary tasks
to a multi-task model. Figure 4 briefly illustrates the greedy generation process
of this approach.

This approach can be formulated as follows. We denote Ωr = {ti}i as the
sets of tasks in the multi-task model at generation round r; the set of SSE
in the multi-task model with Ωr is Vr = {ti : si|ti ∈ Ωr}. In addition, Ψr is
the set of other tasks which are not yet used in the multi-task model; Ω =
Ψr ∪ Ωr is the set of all tasks including the main task. In the initial round
r = 0, we assign Ω0 = {t0}. In each round of auxiliary task selection, we select
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the auxiliary task t̂i = arg minti∈Ψr
f̄(Vr ∪ {ti : si}) and the shared structure

ŝi = arg minsi
f(Vr ∪ {t̂i : si}). Then we update Ωr, Ψr, and Vr with t̂i and ŝi.

Algorithm 1 lists the computations.
The number of candidate multi-task models we need to search in TGG-S3MT

is NG = (n(n−1)/2)·2k = n(n−1)·2k−1. It is much smaller than that of m-S4MT
when n > 2 (if n <= 2, we don’t need to search the auxiliary tasks) and m ≥ 2,
i.e., (n(n−1)/2)·2k ≤ (n−1)·2k � (

n−1
m

)
2k(m−1) ·2k =

(
n−1
m

)
2km, and extremely

smaller than the original number of all candidates Nn−1 = 2k(n−1) = 2k(n−2) ·2k.
Especially, the first round of TGG-S3MT which searches the first auxiliary task
is equivalent to 1-S4MT. Note that it is also possible to stop TGG-S3MT at a
early stage with a pre-defined number of appended auxiliary tasks which is small
than n to decrease the number of trained multi-task models.

3 Experiments

3.1 Datasets

We construct the experiments based on real text datasets and multiple tasks of
text mining. PeerRead is a public dataset of academic peer reviews for research
purposes [13]. It provides detailed peer-reviews including the aspect scores such
as clarity and originality, text contents, review contents and final decisions. It
raises two types of text mining tasks, i.e., paper acceptance classification and
review aspect score prediction. We utilize the later type in the experiments
in this paper. We use the ICLR and ACL datasets in the PeerRead because
they provide the scores of the peer-review aspects. The sizes of both datasets
are very small. We utilize the papers which have the review scores in some of
the six aspects (n = 6), i.e., Clarity (cla), Originality (ori), Correctness (cor),
Comparison (com), Substance (sub) and Impact (imp). The scale of these scores
is from 1 to 5. The dataset splits provided by PeerRead are very unbalanced, i.e.,
most of the papers are in the training set and there are only several papers in the
validation and test sets. We split the entire dataset with another partition, i.e.,
40% training, 30% validation and 30% test data. Table 1 shows the statistics of
the datasets. Because not all papers contain all six aspects in the ICLR dataset,
the number of papers for each aspect are diverse.

We only used the paper text to predict the aspect scores, which is different
from the works trying to predict review decisions based on the review text with
sentiment analysis [6,29]. Moreover, in the PeerRead [13] article, the authors
utilized the first 1,000 tokens because the paper text was extremely long; we used
entire paper text in the experiments. The results obtained by our experiments
and that in PeerRead are not exactly comparable.

The pre-processing is not kept exactly consistent with PeerRead. We remove
the stop words and use stemming on the words in the papers. Without loss of
generality, the initial word embeddings in the model are pre-trained by fastText
[1,12] from each dataset. For the ground truth, we use the mean score of multiple
reviews which is the general method of multiple score aggregation. Analyzing the
review bias among different reviewers is out of the scope of this paper.
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Table 1. Statistics of datasets

Dataset Aspects Train Valid Test

ICLR Total 42 32 32

Clarity 38 22 19

Originality 34 28 26

Correctness 30 26 18

Comparison 12 11 12

Substance 14 18 15

Impact 17 26 21

ACL Total 55 41 41

Table 2. Settings of basic models CNN and XML-CNN: Dropout rate 1 is for the
embedding layer, and Dropout rate 2 is for the fully connected layers.

Settings CNN XMN-CNN

Input word vectors fastText fastText

Embedding Dimension 200 200

Stride size 1 2

Filter region size 2 2

Feature maps (m) 64 64

Pooling Max pooling Dynamic max pooling

Activation function ReLU ReLU

Hidden layers 1024 512

Batch sizes 8 8

Dropout rate 1 0.25 0.25

Dropout rate 2 0.5 0.5

Optimizer Adam Adam

Loss function MSE MSE

Epoch 40 40

3.2 Experimental Settings

We used two basic models to verify our approaches, one is the CNN model [14];
the other is one of the recent text classification methods XML-CNN [18]. Table 2
shows the hyperparameter settings of both basic models of our proposed multi-
task approach. In the experiments, all cases (datasets, aspects) used the same
network hyperparameter settings. We ensure the hyperparameters of the basic
models are consistent for all approaches so that they can be fairly compared. Our
purpose is to verify that our multi-task search approach can find good auxiliaries
and share structures which attain better results compared with the baselines.
The evaluation metric is the Root Mean Square Error (RMSE).
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Table 3. Detailed results of shared structure selection for each combination of auxiliary
tasks. Main task: clarity; basic model: CNN; dataset: ICLR; performance of single task
model: 1.061. Bold: best performance (including single task model). Italic: better one
between m-S4MT and AMT.

(a). m = 1

Auxiliary m-S4MT (SSE) AMT Ain1

ori 1.000 (101) 1.086 1.079

cor 1.011 (101) 1.096 1.084

com 0.985 (111) 1.090 0.985

sub 1.031 (101) 1.056 1.051

imp 0.970 (001) 1.104 1.070

(b). m = 2

Auxiliaries m-S4MT (SSE) AMT Ain1

ori,cor 0.985 (101,001) 1.117 1.110

ori,com 1.002 (101,101) 1.118 1.263

ori,sub 1.025 (101,100) 1.099 1.198

ori,imp 1.007 (101,100) 1.120 1.204

cor,com 1.011 (101,000) 1.128 1.252

cor,sub 1.011 (101,000) 1.110 1.168

cor,imp 1.011 (101,000) 1.130 1.208

com,sub 0.996 (101,100) 1.091 1.108

com,imp 1.044 (101,100) 1.111 1.212

sub,imp 1.031 (101,101) 1.107 1.164

For the NAS-based approach, we revised a public implementation.1 We mod-
ify the rewards to fit our regression loss. The probability of random exploration
was set to 0.5 so that more samples (multi-task models) were generated by the
approaches, while the default value was 0.8 in the first 1,000 iterations which
result in that most of the samples were generated randomly.

The target aspects of scores that are used as the main tasks are “clarity” and
“comparison”. The reason we select “clarity” is that it is the one that is almost
only related to the plain text content. Therefore, its evaluation results have
higher credibility than that of other aspects. Other aspects such as “originality”
and “impact” are difficult to judge without additional knowledge. To verify our
approaches with more than one aspect, we also use the aspect of “comparison”
which cannot be exactly judged only from the plain text content, while plain
text content may be able to somewhat support its judgment, i.e., whether the
content of paper refers adequate existing work or not.

1 https://github.com/titu1994/neural-architecture-search.

https://github.com/titu1994/neural-architecture-search
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3.3 Q1: Are SSE and m-S4MT Effective?

First, we examine whether our SSE and m-S4MT method (m ∈ {1, 2}) can select
a good shared structure for a given combination of auxiliary tasks. The baselines
are as follows.

Single Task Model: It is equivalent to the case that SSEs of all auxiliary tasks
are “000”. It uses one network for one aspect score like the models in [3,4].

All-in-One (Ain1): It builds a single model that the main task and all auxiliary
tasks share the same network as the models in [13]. It is equivalent to treating
the prediction of all aspects as one task (a multi-label model) or as a multi-task
that SSEs of all auxiliary tasks are “111”.

Average Performance of All Explored Multi-task Models (AMT): It is
equivalent to the expectation of the performance if it randomly selects a multi-
task model from all candidates.

We used the detailed results in one case of settings to verify our approach. The
dataset is ICLR; the basic model is CNN; the main task is “clarity”. Table 3(a)
shows the results in the case of m = 1. We can see that our method successfully
builds a better model than the single task model and the model in which all tasks
completely share with each other. The comparison result with AMT shows that
our method can select a better shared structure from all candidate multi-task
structures. Table 3(b) shows the results in the case of m = 2. The observation
is consistent with that of m = 1.

Second, we examined whether our SSE and m-S4MT method can select a
good combination of auxiliary tasks. After using our search strategy to select the
combinations of auxiliaries, in the 1st and 2nd row of Table 4(a), m-S4MT can
select the auxiliaries and shared structures with better performance. In addition,
Table 4(a) also shows the performance of m-S4MT on the ACL dataset. The
observation is consistent with that on the ICLR dataset.

Third, in Table 4(a), 2-S4MT performs worse than 1-S4MT on ICLR dataset
and better on ACL dataset. It shows although m = 2 can search more models
and probably reach better results, m = 2 has higher risk than m = 1 to select
overfitting models. For m-S4MT, although it is still possible that there are mod-
els with m = 5 which is better than the best model with m = 1 or 2, the dense
search (i.e., with large m, in contrast to our sparse search) adds a huge number
of “worse” models into the exploration space. The dense search increases the risk
to select an overfitting model considerably and decreases both the performance
of the selected model and the speed of searching the models. Without a better
search method, using a small m rather than a large m is recommended. How to
adaptively decide the value of m will be in future work.

Furthermore, the performance of Ain1 model is not better than the single
task model. It shows that roughly using any auxiliary information without a
rational selection is not good.
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3.4 Q2: Is TGG-S3MT Effective?

We then examine whether TGG-S3MT is effective. We verify it by appending
all other tasks to the multi-task model, i.e., the number of iterations NG is 120.
Table 4(b) illustrates the results as well as the selected auxiliary tasks and shared
structures. TGG-S3MT can outperform the single and Ain1 models. It can effec-
tively select well-shared network structures and good auxiliary resources.

Table 4. Detailed results of selecting shared structures and auxiliary tasks. Main task:
Clarity; basic model: CNN; Bold: best performance.

(a). m-S4MT. Italic: better one between m-S4MT and AMT.

m-S4MT
AMT Single Ain1

m (Nm) Selected (SSE) RMSE

IC
L
R 1 (40) com (111) 0.985 1.087

1.061 1.072
2 (640) com,sub (101, 100) 0.996 1.113

A
C
L 1 (40) cor (001) 1.056 1.220

1.217 1.427
2 (640) cor,com (001, 101) 0.944 1.239

(b). TGG-S3MT. The order of the aspects for SSE is ori, cor, com, sub and imp.

TGG-S3MT
Single Ain1NG Selected (SSE) RMSE

ICLR 120 (000, 000, 111, 000, 000) 0.991 1.061 1.072

ACL 120 (101, 001, 101, 000, 000) 0.963 1.217 1.427

3.5 Q3: Which Search Approach Is More Efficient?

We investigate which approach is more efficient for searching the multi-task mod-
els in this experiment. We mainly focus on comparing the two original approaches
m-S4MT and TGG-S3MT to a NAS-based approach which is a variant of exist-
ing NAS techniques. We evaluate the performance in diverse cases, i.e., two
datasets, two target aspects, and two basic models.

For different approaches, the sizes of the search spaces (the numbers of candi-
date multi-task models) are different. We use this size to measure the computa-
tion cost of a search approach. Nm for m-S4MT is decided by m. In this paper,
because the number of layers of the basic models k = 3, therefore, N1 = 40
and N2 = 640. NG for TTG-S3MT is decided by n = 6, NG = 120. NL for the
NAS-based approach can be any value. This is an advantage of the NAS-based
approach that it is flexible to stop the search. It can stop at any number of itera-
tions, while m-S4MT and TGG-S3MT need a fixed number of iterations. We set
several values to NL which are same with N1, N2 or NG respectively so that we
can fairly compare the search approaches. Table 5 lists the comparison results.
The bold values show the better one of two approaches for each N . The best
performance in each row is underlined. We omit the SSE results of the selected
shared structures to make it easy to observe the results in the table.
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First, for columns with N = 40 or 640, it shows that our m-S4MT approach
(1-S4MT and 2-S4MT) can outperform the NAS-based approach in most of the
cases. The m-S4MT based on two selection components and sparse search can
effectively decrease the risk of selecting the overfitting architectures. Reinforce-
ment learning based NAS is much more difficult to be trained than our m-S4MT
approach. Because many hyperparameters of the search controller need to be
carefully set so that the controller can work. Our method is easy to train as
there is only one hyperparameter needs to be decided, i.e. m, and the controller
does not need to be trained. Besides, our m-S4MT is easier to be executed in
parallel.

Table 5. Comparison of search approaches. We mainly focus on comparing the two
original approaches m-S4MT and TGG-S3MT to the NAS-based approach which is a
variant of existing NAS techniques. We set several values of iterations to fairly compare
the approaches. Both m-S4MT and TGG-S3MT outperforms NAS. 1-S4MT has good
performance with low computation costs on search. The bold values show the better
one of two approaches for each N . The best performance in each row is underlined. We
omit the SSE values of the selected shared structures because of the space limitation.

Dataset Main Basic model N = 40 N = 120 N = 640 Single Ain1

1-S4MT NAS TGG-S3MT NAS 2-S4MT NAS

ICLR cla CNN 0.985 1.005 0.991 1.005 0.996 1.094 1.061 1.072

XML 1.020 1.103 1.060 1.103 1.020 1.176 1.162 1.057

com CNN 0.824 0.904 0.851 0.890 0.985 0.917 0.756 0.842

XML 0.967 0.954 1.060 0.954 0.858 0.954 1.378 1.263

ACL cla CNN 1.056 0.999 0.963 0.923 0.944 0.915 1.217 1.427

XML 1.229 1.462 1.230 1.462 1.229 1.276 1.229 1.690

com CNN 1.383 1.456 1.383 1.407 1.113 1.260 1.650 1.956

XML 1.872 2.006 1.872 1.890 1.872 1.679 1.872 2.000

Second, for columns with N = 120, TGG-S3MT outperforms the NAS-based
approach in most of the cases. The greedy generation process of TGG-S3MT
can efficiently select the auxiliary tasks one by one with the optimal shared
structures.

Third, it has shown that our original approaches m-S4MT and TGG-S3MT
specially designed for the scenario of multi-task architecture search outperform
the NAS-based approach which is a variant of vanilla NAS approach that is not
designed for the multi-task scenario. We compare the performance and compu-
tation cost among m-S4MT (m = 1, 2) and TGG-S3MT. 2-S4MT outperforms
TGG-S3MT in five of the eight cases, but it needs about five times of the com-
putation cost of TGG-S3MT. 1-S4MT is not worse than TGG-S3MT on seven of
the eight cases, and only use one-third of the computation cost of TGG-S3MT.
1-S4MT is not worse than 2-S4MT on five of the eight cases, and only use one-
sixteenth of the computation cost of 2-S4MT. It shows that 1-S4MT has good
performance with very low computation cost. The sparse assumption on the
auxiliary task is effective.
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In this paper, we propose approaches that can find a good multi-task model
with low computation cost. However, in the entire search space, it is certain that
there are better models than those found by our approaches. If there are a lot
of computational resources and it is capable to try a huge number of candidate
multi-task models (e.g., N > 640). People may hope that more computation
costs can pay off. The NAS-based approach which can search more candidate
models cannot guarantee it. For example, the NAS-based approach with N = 640
is worse than itself with N = 40 on three of the eight cases. Trying more multi-
task models is not exactly able to obtain better models. It is possible to increase
the risk of selecting overfitting models.

4 Related Work

4.1 Multi-task Methods in Text Mining

Multi-task learning aims to learn several related tasks simultaneously for obtain-
ing additional rich information from other tasks to reach better performance of
the main task or all of the tasks. It has been widely utilized in many natu-
ral language processing tasks, such as summarization [7,10], classification [19],
sequence labeling [16], question and answering [23], parsing [8], and entity and
relation [22]. Recently, the natural language understanding of multiple NLP tasks
for generating the pre-trained model became popular [20,28]. In these existing
work, researchers always selected specific auxiliary resources and (or) designed
hand-crafted shared structures in the multi-task models. However, it is not clear
whether the selected auxiliary resources and shared structures are also effective
for different datasets and tasks. In contrast, we propose an approach to auto-
matically select the shared structures as well as auxiliary resources which are
more beneficial for the main task.

4.2 Network Architecture Search for Multi-task Models

Recently, the research on this topic has been very popular, e.g., the Bayesian
optimization based methods such as [27] and the reinforcement learning based
methods such as [17,32,33]. Elsken et al. [5] surveyed on this topic. These NAS
methods are not specially designed for multi-task architecture search. In this
paper, we propose two original search approaches that are specially designed for
the multi-task scenario.

There are a few existing works related to the multi-task model search. Lu
et al. [21] adaptively generated the feature sharing structure by splitting the
network into branches without merging. Its exploration space is a subset of our
approach. Pasunuru et al. [24] focused on continual and life-long learning. They
learned a single cell that was good at all tasks and the cell evolved when trained
on new data. The objective of their work is different from that of ours.
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4.3 Peer Review Prediction

Some existing work focused on the quality of the review [2,15,30]. Some existing
work made an automatic prediction of the peer review outcome. For example, [9]
predicted whether a paper will be accepted or rejected based solely on a paper
with visual appearance.

Some recent work focused on how to make review decisions based on senti-
ment analysis on the review text. Wang et al. [29] proposed an abstract-based
memory mechanism with multiple instance learning. Ghosal et al. [6] investi-
gated the reviewer sentiments embedded within peer review texts to predict the
peer review outcome. In contrast, our work does not use review text and only
use the paper text.

5 Conclusion

In this paper, we propose approaches which can search and build a neural-
based multi-task model with optimal auxiliary resources and shared structures
in the scenario of text mining. We propose a multi-task shared structure encoding
(SSE) method to define the exploration space by which we can easily formulate
the multi-task architecture search. We propose an original m-sparse search app-
roach (m-S4MT) and an original task-wise greedy generation search approach
(TGG-S3MT) by shared structure encoding for neural-based multi-task models.
The experimental results show that our original approaches can effectively and
efficiently select well-shared network structures and good auxiliary resources.
The multi-task model obtained by our approaches can successfully utilize the
information of other aspects for improving the prediction of the target task.

There are several interesting directions for future work, e.g., how to treat the
extremely long text; how to handle the aspects which cannot be directly judged
by the plain text content information in the academic paper; how to improve
the approaches to make more computation costs being pay off.
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Abstract. Many collaboratively building resources, such as Wikipedia,
Weibo and Quora, exist in the form of semi-structured data and semi-
structured data classification plays an important role in many data analy-
sis applications. In addition to content information, semi-structured data
also contain structural information. Thus, combining the structure and
content features is a crucial issue in semi-structured data classification.
In this paper, we propose a supervised semi-structured data classifica-
tion approach that utilizes both the structural and content information.
In this approach, generalized tag sequences are extracted from the struc-
tural information, and nGrams are extracted from the content infor-
mation. Then the tag sequences and nGrams are combined into features
called TSGram according to their link relation, and each semi-structured
document is represented as a vector of TSGram features. Based on the
TSGram features, a classification model is devised to improve the perfor-
mance of semi-structured data classification. Because TSGram features
retain the association between the structural and content information,
they are helpful in improving the classification performance. Our exper-
imental results on two real datasets show that the proposed approach is
effective.

Keywords: Semi-structured data · Semi-structured data
classification · XML document classification · TSGram feature · Tag
sequence
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Over the past two decades, large amounts of information have been increas-
ingly made available in the form of semi-structured data. EXtensible Markup
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Language (XML) is a widespread, flexible standard for modeling and exchang-
ing semi-structured data as XML-formatted documents [1,2]. XML documents
have been widely used in Web information management and for complex data
representations. Additionally, collaboratively built semi-structured information
resources, such as Wikipedia, Weibo and Quora, have become prevalent on the
Web and can inherently be encoded in XML [3]. The widespread use of XML
has resulted in enormous amounts of semi-structured data being generated every
day. These data constitute a potentially important source of business and sci-
entific knowledge; however they require automated processing, due to their size.
Semi-structured data mining is an effective way to automatically extract knowl-
edge from these massive volumes of data and make better use of their structure
and content [4].

Classification of semi-structured data is an important and challenging task
in semi-structured data mining and management. Many applications can benefit
from the semi-structured data classification tasks, including online documen-
tation, electronic commerce, data repositories, digital libraries, data exchange
and information systems on the Web, and so on. In general, to implement semi-
structured data classification solutions, the semi-structured documents must first
be transformed into a specific representation model and then used as the input
to a classification algorithm [5]. The classification algorithm and its performance
largely depend on the representation model.

Feature extraction is an important step in semi-structured document repre-
sentation modeling. Features extracted from semi-structured data should cap-
ture both content and structural characteristics. This feature extraction pro-
cess involves several issues, such as aligning their (sub)structures, identifying
similarities between such (sub)structures and their nested textual data, discov-
ering possible mutual semantic relationships among the textual data and the
(sub)structure labels [6]. In this paper, we propose TSGram as feature for repre-
senting semi-structured documents. TSGram features model the structural infor-
mation as tag sequences, the content information as nGrams, and then fuse the
tag sequences and nGrams into integral features that reflect the inclusion relation
between structure and content. We improve the performance of semi-structured
document classification by considering the similarity between tag sequences when
calculating similarity between TSGram features.

Overall, the main contributions of this paper can be summarized as follows:

– We propose the concept of TSGram features to capture the relationships
among components in semi-structured documents. TSGram features inte-
grate the structural and content information extracted from semi-structured
documents, and consider the relationships between structure and content,
the relationships among elements in structural information, the relationships
among different keywords in content information. Moreover, we provide the
extraction and selection methods for TSGram features, imbuing each TSGram
features with strong classification ability.
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– Based on the TSGram features, we devise a distance-based semi-structured
document classification model that improves the semi-structured document
classification performance by using the characteristics of TSGram features.

– We illustrate the performance of our classification model against some
other established competitors on two real datasets. The experimental results
demonstrate the effectiveness of our proposed classification model.

The rest of this paper is organized as follows. We briefly discuss the previ-
ous related works in Sect. 2. Section 3 defines the TSGram features and pro-
vides related extraction and selection algorithms. Section 4 presents the classifier
model with TSGram features and the classification process. The experimental
results are analyzed in Sect. 5, and Sect. 6 concludes this paper.

2 Related Works

For semi-structured documents, document features should include both struc-
ture and content information. Therefore, the following three factors should be
considered when extracting features from semi-structured data:

(1) The inclusion relation between the structure and content—reflecting that
the content is organized in different structural hierarchies.

(2) The relationships among the internal elements within the structure, such
as sibling, parent-child, and ancestor-descendent relationships between ele-
ments.

(3) The relationships among keywords in the content.

Most existing semi-structured data classification methods are based on the
classical vector space model, which they extend it to include structural informa-
tion. For example, Tran et al. extracted structure and content information from
semi-structured data, represented them with a structure vector and a content
vector, respectively, and then used them to calculate similarity [7]. The methods
used in [8] and [9] are similar. The disadvantage of these methods is that the
structure similarity and content similarity are calculated independently; thus,
the relationship between the structure and the content is separated. That is,
they fail to consider the first of the factors listed above.

Some methods do consider the relationship between the structure and con-
tent, such as [10], which takes the location of the keywords in the document
structure into account, and [11], which considers keywords that appear in the
path. While these methods consider the containment relationship between the
structure and the content, the structure is modeled as a path that reflects the
element hierarchy (e.g., parent-child, ancestor-descendant, etc.), but ignores the
relationship between different paths, path similarity and so on. That is, these
methods do not address the second factor listed above.

To capture the relationship between structure and content, Yang et al. extend
vector space model to Structured Link VectorModel (SLVM) by incorporating
document structures, referencing links and element similarity, and an XML doc-
ument is represented as a matrix [12]. Then they used the kernel matrix to reflect
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the relationships between internal elements. In [13], they replace elements with
structural subtrees, further strengthening these relationships. Zhao et al. further
extend SLVM and apply it to the multiclass XML documents classification [14]
and uncertain XML documents classification [5]. This type of method addresses
the first two factors listed above, but do not clearly consider the third factor.
Costa and Ortale used structure-constrained phrases to capture the relation-
ship between structure and content [15]. Based on the structure-constrained
phrases, they devised three machine-learning approaches to cluster XML docu-
ments. However, they focused on unsupervised analysis of XML documents, but
not supervised analysis.

When modeling the content information of semi-structured data, most of
the existing methods decompose it into individual words (keywords) that act as
feature units. In the text classification field, studies have shown that in addition
to single words, multiple related words, such as nGrams, itemsets and so on, can
be used to improve the classification accuracy.

An nGram is a word sequence extracted from the text content, and it reflects
the sequences between the words. In addition to single words, Mladenic and
Grobelnik included nGrams as features of text documents and performed exper-
iments to test the effect of nGrams with lengths no greater 5. The results showed
that the text classification accuracy can be improved by using word sequences
of length 2 and 3 (known as bigram and trigram, respectively) and that the
accuracy is highest when using bigrams. An nGram whose length is greater than
3 provides only small effects on the classification results [16]. Furnkranz further
reported that the longer nGrams can even reduce classification performance [17].

Word itemsets have also been used to improve text classification performance.
A set of n words that frequently occur together in documents is called an n −
itemset. Zhang et al. used associated features (namely, frequent word itemsets)
to improve the performance of Naive Bayes text classifier [18]. The authors
of [19] obtained similar results using similar methods and reported that larger
numbers of word itemsets improve the classification accuracy for large categories
(categories that contain many documents) but reduce the classification accuracy
for small categories (categories that contain fewer documents).

Tesar et al. compared these two methods (bigrams and 2-itemsets) [20]. The
results showed that bigrams are more suitable for text classification than are
2-itemsets. When using these two methods, it is advantageous to choose an
appropriate feature selection approach in combination with the classification
model.

3 TSGram Feature

A semi-structured document can be represented as a labeled tree; then, the
structure and content information can be extracted from the labeled tree. We
can represent the structure information of semi-structured documents with tag
sequences (for the relevant definitions of tag sequences, see [21]). To acquire the
content information of the document, we can extract nGrams from it. Then, we
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can fuse the tag sequences and nGrams as new features, that is, TSGrams, and
represent the semi-structured document as a vector composed of new features.
In this section, we describe the basic definitions of the new TSGram feature and
the process of building the feature space.

3.1 Basic Definitions

Definition 1. (nGram) An nGram is an ordered sequence of keywords. The
length of an nGram is the number of keywords it contains; nGram with lengths
of 1, 2 and 3 are called unigram, bigram and trigram, respectively.

Definition 2. (Tag Sequence support nGram) Let s be a tag sequence and
g be an nGram. If a tag sequence t exists in semi-structured document d, such
that t ⊇ s, and the text content of t contains g, we say that the tag sequence
s supports the nGram g in d, denoted as s ⇒ g. The occurrences of g in tag
sequence t are termed the support frequency of g related to s in d, denoted
as TSFd(s, g). The definition of a tag sequence and the related operations are
available in [21].

Definition 3. (TSGram Feature) A TSGram feature is an ordered pair
〈s, g〉, where s is a tag sequence, and g is a nGram with length of n, and there
exists a semi-structured document d, such that s ∈ d and s ⇒ g. n is also called
the length of the TSGram feature. TSGram with lengths of 1, 2 and 3 are
called TSUnigram, TSBigram and TSTrigram, respectively.

For a given semi-structured document set D, we can extract all the TSGram
features to construct the feature space Ω; then any document doci in D can be
denoted as a vector di:

di = 〈wi,1, wi,2, · · · , wi,|Ω|〉

where wi,j is the weight of the TSGram feature 〈sj , gj〉 in document doci, defined
as:

wi,j = TSFdoci
(sj , gj)

3.2 Constructing a TSGram Feature Space

Constructing a TSGram feature space involves two phases. First, all the can-
didate TSGrams are extracted from the document set, and then the TSGrams
that have the strongest classification ability are selected as the features to form
the feature space. To extract the TSGrams, we first extract nGrams from the
content information.
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Extracting nGrams. In the natural language processing field, an nGram is
called a word sequence or word phrase. A word sequence is more concerned
with the arrangement of words in a statistical sense, while a word phrase is
more syntactically focused. Researchers have studied the compositions of these
two types of nGrams [22,23]. The results of experiments show that there is no
significant difference in text classification performance between the two types
of nGrams [23]. An experiment reported in [24] on the Reuters-21578 dataset
showed that using syntactic word phrases does not achieve better results than
does using word sequences in the statistical sense. Therefore, in this paper, we
adopt word sequences in the statistical sense as nGrams.

Several algorithms exist that can extract nGrams from text, such as the
suffix tree used in [25]. This approach constructs a suffix tree for a text and then
extracts nGrams by traversing the suffix tree. A paragraph of text may contain
more than one sentence: words before and after a punctuation of a sentence are
not considered a continuous sequence of words. Two data structures, parentList
and hashTable, are used to assist in building a suffix tree in [25]. In this paper,
we use an approach similar to that in [20] to eliminate the two data structures
by repeatedly traversing the words in sentences to reduce memory utilization.

Extracting TSGrams. We can extract the tag sequences from the structural
hierarchy and nGrams from the text content by traversing the semi-structured
document. Then, we can combine the tag sequences and nGrams to obtain the
candidate TSGram features as shown in Algorithm 1.

Algorithm 1: TSGrams Extraction Algorithm
Input: D: Semi-structured Dataset;

n: maximum length of nGrams.
Output: TSGramSet: the TSGram Features Set in Dataset D.

1 begin
2 TSGramSet ← ∅;
3 foreach Semi-structured document doci in D do
4 Traverse the document doci and represent it as a tree ti;
5 foreach text node tn in ti do
6 Extract the tag sequence s from root node to parent node of tn;
7 nGramSet ← extractNGrams (tn.text, n);
8 foreach nGram g in nGramSet do
9 Add TSGram 〈s, g〉 to TSGramSet;

10 end

11 end

12 end
13 return TSGramSet;

14 end

In Algorithm 1, the semi-structured document is first represented as a tree
(Line 4). Then, each text node in the tree (Line 5) is traversed to obtain the



Semi-structured Classification Model with Tag Sequence and nGrams 225

sequence of tags it contains (Line 6). Next, we extract the nGrams (Line 7) from
the text content using the extractNGrams function, which extracts nGrams
whose length is no more than n using a suffix tree similarly to [20]. Finally, each
nGram extracted from the text content is combined with the tag sequence as a
TSGram feature, and the TSGram features are added to the TSGramSet (Lines
8–10).

Selecting TSGram Features. The feature set TSGramSet obtained by the
method described in Sect. 3.2 may be quite large, and not every feature has a
positive effect on classification. Therefore, feature selection is necessary. There
are two objectives in feature selection:

(1) Reduce the dimension of the feature space to improve the classification
efficiency.

(2) Select the features that have the strongest classification ability by elimi-
nating the features with negative effects on the classification to improve
classification accuracy.

Many measurements exist for selecting features for classification, such as χ2

(CHI), Mutual Information (MI), Information Gain (IG), Odds Ratio (OR),
Document Frequency (DF) [26]. IG is a commonly used measurement, and the
experiment in [26] shows that IG has a good effect on text classification; there-
fore, we adopt IG as a feature selection method.

Let D be a document set, and d be a document in D. The documents in D
belong to k categories: C1, C2, · · · , Ck, where C is the full set of categories, that
is C = {Ci | i = 1, 2, · · · , k}. Without ambiguity, we also use Ci to represent a
document set consisting of documents whose category is Ci. Using an approach
similar to [26], we define the IG of a TSGram feature f as:

IG(f) = −
k∑

i=1

P (Ci) log P (Ci)

+ P (f)
k∑

i=1

P (Ci|f) log P (Ci|f)

+ P (f)
k∑

i=1

P (Ci|f) log P (Ci|f)

(1)

where

P (Ci) =
| { d | d ∈ Ci } |

|D| (2)

P (f) =
| { d | f ∈ d } |

|D| (3)

P (f) = 1 − P (f) (4)
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P (Ci|f) =
| { d | d ∈ Ci ∧ f ∈ d } |

| { d | f ∈ d } | (5)

P (Ci|f) =
| { d | d ∈ Ci ∧ f /∈ d } |

| { d | f /∈ d } | (6)

Let TSGramSet = TSUnigramSet ∪ TSBigramSet ∪ · · · ∪ TSNGramSet
be the candidate TSGram feature set. Then the process of feature selection is
as follows:

1) Calculate the IG values of all candidate TSGram features.
2) Sort the candidate TSGram features in TSUnigramSet by IG values; let

IGN be the IG value of the Nth TSGram feature in sorted TSUnigramSet.
3) Select all the candidate TSGram features in TSGramSet whose IG values

are greater than IGN .

In the above, N is a parameter that can be tuned by experiment. The
TSGram features selected by the above process constitute the TSGram feature
space Ω, which can be used for classification.

4 TSGram-Based Classifier

In this section, we introduce the class model based on the TSGram features and
then describe the classification process using the proposed class model.

4.1 TSGrams Class Model

In the TSGram feature space Ω, different features have different classification
abilities for different categories. The feature space Ω can be divided into k dis-
joint subsets, and all the features in each subset strongly indicate a category Ci.
This subset is called the class model of category Ci, denoted as ΦCi

.
The crucial issue is how to divide the feature space Ω into k subsets. MI

indicates the interrelationship between features and categories; therefore, the
feature space Ω can be divided by MI. Using a method similar to [26], the mutual
information MI(f, Ci) between the TSGram feature f : 〈s, g〉 and category Ci

is defined as

MI(f, Ci) =
P (f ∧ Ci)
P (f)P (Ci)

(7)

where

P (f ∧ Ci) =
| { d | d ∈ Ci ∧ f ∈ d } |

|D| (8)

and P (f) and P (Ci) are defined as Eq. (3) and Eq. (2), respectively. Thus,

MI(f, Ci) =
| { d | d ∈ Ci ∧ f ∈ d } | × |D|

| { d | f ∈ d } | × | { d | d ∈ Ci } | (9)



Semi-structured Classification Model with Tag Sequence and nGrams 227

The TSGram feature f in Ω is partitioned into the class model ΦC∗ of cate-
gory C∗ that has the highest mutual information between them, that is,

C∗ = ArgmaxCi∈CMI(f, Ci)

Then, the class model can be represented as a vector in the feature space Ω:

φCi
= 〈wi,1, wi,2, · · · , wi,|Ω|〉

where, wi,j is the weight of the TSGram feature fj in the class model ΦCi
. The

weight is defined as the value of the mutual information between fj and ΦCi
if fj

belongs to ΦCi
, otherwise it is 0. We can normalize the weight values as follows:

wi,j =

⎧
⎨

⎩

MI(fj ,Ci)√∑|ΦCi
|

k=1 (MI(fk,Ci))2
fj ∈ ΦCi

0 fj /∈ ΦCi

4.2 Classifying Documents Using the TSGrams Class Model

Any document d and class model ΦCi
of category Ci can be represented as vectors

in the same feature space Ω. Then we can calculate the similarity between d
and ΦCi

: sim(d, φCi
). For a document d with an unknown category label, we

can assign the category C∗ that has the highest similarity as the document’s
category label as follows:

C∗ = ArgmaxCi∈Csim(d, φCi
)

Several metrics can be used to calculate the similarity between d and φCi
, such

as cosine similarity. However, simply applying the cosine similarity measure does
not take the similarity of the tag sequences in the TSGram features into account.
For instance, if the TSGram feature 〈〈article, title〉, 〈xml, data〉〉 exists in docu-
ment d, and the TSGram feature 〈〈paper, title〉, 〈xml, data〉〉 exists in the class
model ΦCi

, then d and ΦCi
are highly similar, and d is very likely to belong

to the category Ci. However, if we simply apply the cosine metric, the similar-
ity between them is 0. Therefore, the same nGrams appearing in similar tag
sequences should be given special consideration. To this end, we extend cosine
similarity and define the similarity between document d and the class model ΦCi

of category Ci as genCosineSim:

genCosineSim(d, φCi
)

=

∑
〈sj ,gl〉∈d

∑
〈sk,gl〉∈φCi

wd(〈sj , gl〉) × wφCi
(〈sk, gl〉) × sim(sj , sk)

||d|| × ||φCi
||

(10)

where wd(〈sj , gl〉) is the weight of feature 〈sj , gl〉 in d, wφCi
(〈sk, gl〉) is the weight

of feature 〈sk, gl〉 in class model ΦCi
, sim(sj , sk) is the similarity between the

tag sequences sj and sk, and ||d|| and ||φCi
|| are the Euclidean norms of d and

φCi
, respectively.
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If the tag sequence similarity sim(sj , sk) is defined as follows:

sim(sj , sk) =

{
1 if sj = sk

0 if sj 	= sk

then Eq. (10) is a cosine metric; thus, the cosine metric is a special case of
Eq. (10). However, as mentioned earlier, the cosine metric ignores the similarity
between tag sequences. Consequently, we use edit distance to calculate the tag
sequence similarity sim(sj , sk).

5 Experimental Study

In this section, we compare the classification effectiveness of the TSGrams clas-
sifier with some established competitors. The effects of different parameters are
also evaluated.

5.1 Experimental Setting

There are two types of semi-structured data: homogeneous (also known as
document-centric) and heterogeneous (also known as data-centric) [27]. We ran
experiments with our classifier and other competitors on both types using real
datasets. Wikipedia is a homogeneous XML corpus proposed in the INEX con-
test [28] as a major benchmark for XML classification and clustering. We selected
10 categories (6,910 documents) from all 20 categories as our experimental data.
Texas is a heterogeneous dataset introduced in [29]. It is generated from the
XML/XSLT versions of Web pages from 20 different sites belonging to 4 dif-
ferent categories: automobile, movie, software and news&reference. The Texas
dataset includes a total of 101 documents.

Macro-averaged effectiveness results are obtained by performing a 10-fold
cross validation on each data set.

All the tests were performed on a machine running a Windows 7 operating
system and equipped with an Intel Core (TM) i5 CPU @ 2.27 Ghz and 2 GB of
RAM. All the algorithms were implemented in Java.

5.2 Effects of the Length and Numbers of TSGrams

The length of the TSGram features and the number of selected features affect the
classification performance. When using TSGram features with the same length
for classification, the feature selection parameter N is equal to the number of
features.

Figure 1 and Fig. 2 show the classification precision and recall of TSGram
features with lengths of 1 to 4 and different numbers of features on the Texas
and Wiki datasets, respectively.

As Fig. 1 shows, on the Texas dataset, the classification performances of
TSGram features with lengths of 1 (TSUniGram) and 2 (TSBigram) are better
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Fig. 1. Effects of different lengths and numbers of TSGrams on the Texas dataset

Fig. 2. Effects of different lengths and numbers of TSGrams on the Wiki dataset

than those with lengths of 3 (TSTrigram) and 4 (TS4gram), and as the number
of TSGram features increases, the classification performance improves. When
the number of TSGram features exceeds 1,500, the precision and recall reach
or approach 100%. The performance of TSBigram is slightly inferior that of
TSUnigram. In the figures, when the number of TSTrigram exceeds 8,000 and
the number of TS4gram exceeds 5,000, the recall and precision decrease to 0
because the number of features exceeds the maximum limit.

From Fig. 2, we can see that on the Wiki dataset, TSBigram outperforms
other TSGram features, and when the number of features reaches 8,000, TSBi-
gram achieves the best performance. TSUnigram and TSTrigram outperform
TS4gram.

In summary, the classification performance of TSBigram is better, and adopt-
ing longer TSGram features is not beneficial to the classification performance.
This conclusion is consistent with the nGram features in the text classification
field.

5.3 Effects of TSGram Feature Selection Parameter and Feature
Combination

In the experiments in Sect. 5.2, we used a fixed TSGram feature length for
classification, such as TSBigram, which uses only TSGram features with a length
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of 2. According to [20], mixing nGram features of different lengths is helpful in
improving text classification performance. Thus, we wondered whether TSGram
features achieve similar results for semi-structured document classification? We
conducted an experimental verification; the results are shown in Fig. 3 and 4.
In the figures, TS(Uni+Bi)grams represent the classification result when using
TSUnigram and TSBigram features, and so forth.

Fig. 3. Effects of the feature selection parameter N and feature combinations on the
Texas dataset

Fig. 4. Effects of the feature selection parameter N and feature combinations on the
Wiki dataset

As the figures show, the performances of the two different TSGram feature
combinations are almost identical on the Texas dataset. When the feature selec-
tion parameter N is less than 500, the feature combination performance is higher
than that of the single length TSGram features. When the feature selection
parameter N is within the 500–1,000 range, the feature combination perfor-
mance is lower than that of the single length feature, but when N is greater
than 1,500, the feature combination and TSUnigram performance are equal and
slightly higher than that of TSBigram.
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On the Wiki dataset, the feature combination is not helpful for improving the
classification performance. The TSBigram feature still performs the best, but the
feature combination performance is better than that of TSUnigram. The per-
formances of TSGram feature combinations with different lengths vary between
homogeneous and heterogeneous semi-structured documents, which contrasts
with the reported results using different nGram lengths on text classification
tasks.

5.4 Classification Results

We compared TSGrams with several other established competitors in terms of
classification effectiveness. For the comparisons we adopted three competitive
methods: VSM represents methods that use traditional vector space models
to extract content information from XML documents for classification, while
BottomUp and CBTS are the methods proposed in [30] and [31], respectively.
TSGrams is our method. The classification results are shown in Fig. 5.

Fig. 5. Classification results

As the figure shows, on the Texas dataset, the VSM method performs the
worst, while the CBTS and TSGrams methods perform the best, followed by the
BottomUp method. This result may have occurred because in the data-centric
Texas dataset, the document structures imply rich semantic information that
provide strong hints as to the document category, but the VSM method does
not take advantage of this information, resulting in the worst performance. The
other three methods consider the relationship between the structure and the
content and thus achieve better performances.

On the Wiki dataset, the VSM method does not behave as poorly as on the
Texas dataset because the structures of all the documents in document-centric
dataset Wiki are similar, and the document category is determined primarily by
the content. The BottomUp method assumes that the structures of document
in the same category are similar, and that the structures of different categories
of documents are not similar, while in the Wiki dataset, the structures of all
categories are similar; thus, the BottomUp method does not perform well on
this dataset. The CBTS method mainly considers the semantics of keywords in
the content information; it performs better than the VSM method. The TSGrams
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method considers the relationship between different keywords, so it performs the
best.

6 Conclusions

Although some existing semi-structured document classification methods use
both structural and content information, they either separate the relationship
between the structure and the content or do not consider the relationship
between the keywords in content. In this paper, we propose the TSGram concept
to solve these problems. TSGram features capture the inclusion relation between
the structure and content, the relationships among the internal elements within
the structure, and the relationships among the keywords in the content. We
present extraction and selection algorithms for TSGram features and devise a
semi-structured data classification model based on TSGrams. Benefiting from
the good characteristics of TSGram features, the model improves the perfor-
mance of semi-structured document classification. Experiments on real datasets
demonstrate the effectiveness of our approach.
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Abstract. Schema inference has been an essential task in database man-
agement, and can be reduced to learning regular expressions from posi-
tive finite-samples. In this paper, schemata are inferred from unordered
XML documents. We extend the single-occurrence regular expressions
(SOREs) to single-occurrence regular expressions with unorder and
counting (SOREUCs), and give an inference algorithm for SOREUCs.
First, we present a finite automaton with unorder and counting (FAUC).
Then, we construct an FAUC for recognizing a given finite sample. Next,
the FAUC runs on the given finite sample to obtain counting opera-
tors. Finally we transform the FAUC to a SOREUC by introducing
unordered concatenations and counting operators. Experimental results
demonstrate that, SOREUCs have stronger expressive powers for mod-
eling unordered schemata than existing works, and our algorithm can
efficiently infer a concise SOREUC with better generalization ability.

1 Introduction

Unordered XML which are XML that do not restrict the order among ele-
ments have been studied in case of data-centric XML applications [1,5,6,8,18].
Unordered XML facilitates query optimization and set-oriented parallel process-
ing [1], and the corresponding schema (unordered schema [8]) inference can be
not only applied in data integration [11,14], but also in query minimization
[2,10] and boosting the learning algorithms for twig queries [20]. However, in
practice, many XML documents are not accompanied by a schema, or a valid
schema [15,16], thus it is essential to devise algorithms for schema inference. In
this paper, we focus on inferring schema from unordered XML documents.

Schema inference can be reduced to learning regular expressions from positive
finite-sample. Single-occurrence regular expressions (SOREs) [3,4] are a popular
model for learning XML. However, SOREs do not support unorder and counting.
Regular expressions with unorder and counting, which are used in XML Schema
[9,17,21], are extended from standard regular expressions with unordered con-
catenation % [19,21] and counting (i.e., expressions of the form r[m,n]) [13]. % is
first used in Standard Generalized Markup Language (SGML) [19], and later in
a limited form in XML Schema [21]. In this paper, % is used to model unordered

c© Springer Nature Switzerland AG 2021
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schemata, we extend SOREs to single-occurrence regular expressions with unorder
and counting (SOREUCs) and study the inference algorithm for SOREUCs.

For modeling schemata for unordered XML, there are two classic subclasses:
disjunction multiplicity expressions (DMEs) [6,8] and disjunctive interval mul-
tiplicity expressions (DIMEs) [5]. A DME where every symbol occurs at most
once does not use concatenation (·), and forbids repetitions of symbols among
the disjunctions (|). Furthermore, the unorder of two words u1 and u2 is defined
as the multiset union u1� u2 [8], so does for the unorder defined by disjunctive
interval multiplicity expressions (DIMEs) [5]. For instance, let u1=aa and u2=b,
u1�u2={aab}, while u1%u2={aab, baa}. A DIME also supports counting (called
interval in [5]). For example, for a DME r, L(r[m,n])={w1� · · · �wi|w1, · · · , wi ∈
L(r),m ≤ i ≤ n} [5]. DIMEs are extended from DMEs with counting, a count-
ing operator is on a DME or a symbol a ∈ Σ. DMEs are a subclass of DIMEs.
However, both DMEs and DIMEs have more restrictions than SOREUCs (see
Definition 2). Although uSOREs which are extended from SOREs with unorder
[22] can model schemata for unordered XML, uSOREs do not support count-
ing. In addition, although algorithms learner+DME (L+

DME [8]) and InfuSORE [22]
are respectively proposed to learn DMEs and uSOREs [22], the learning algo-
rithms for DIMEs are lacking, and uSOREs are inferred by learning a kind of
automata with counter (uCFA [22]) from a given sample, the unorder of any two
elements only can be identified in uCFA by counting, and the number of coun-
ters in uCFA will grow exponentially if the number of unordered concatenations
increases. Thus, the learning algorithms for unordered XML are still insufficient,
and some new techniques are needed to learn unordered schemata.

In this paper, SOREUCs are proposed to model schemata for unordered
XML. We also propose the learning algorithm for SOREUCs. Our algorithm is
based on constructing an automaton and then transforming it into a SOREUC.
The main contributions of this paper are as follows.

– We define a new type of automaton: finite automaton with unorder and count-
ing (FAUC), which can recognize the language defined by a SOREUC. The
membership problem1 for FAUCs can be decidable in polynomial time.

– We devise the inference algorithm for SOREUCs. First, we construct FAUC
for recognizing a given finite sample. Then, the FAUC runs on the given finite
sample to obtain counting operators. Finally, we transform the FAUC to a
SOREUC by introducing unordered concatenations and counting operators.

– We conduct experiments on unordered XML data. Our experiments illus-
trate that, SOREUCs have stronger expressive powers for modeling unordered
schemata than existing works, and our algorithm can efficiently infer a concise
SOREUC with better generalization ability.

The paper is structured as follows. Section 2 gives the basic definitions.
Section 3 describes the FAUC and provides an example of such an automaton.
Section 4 presents the inference algorithm of the SOREUC. Section 5 presents
experiments. Section 6 concludes the paper.
1 In this paper, the mentioned membership problem is the uniform version that both

the string and a representation of the language are given as inputs.
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2 Preliminaries

2.1 Regular Expression with Unorder and Counting

Let Σ be a finite alphabet of symbols. A standard regular expression over
Σ is inductively defined as follows: ε and a ∈ Σ are regular expressions,
for any regular expressions r1 and r2, the disjunction (r1|r2), the concate-
nate (r1 · r2), and the Kleene-star r∗

1 are also regular expressions. Usually,
we omit concatenation operators in examples. The regular expressions with
unorder and counting are extended from standard regular expressions by
adding the unordered concatenation r1%r2 and counting r

[m,n]
1 , where m ∈ N,

n ∈ N/1, N = {1, 2, 3, · · · }, N/1 = {2, 3, · · · } ∪ {+∞}, and m ≤ n. Note
that r+, r?, and r∗ are used as abbreviations of r[1,+∞], r|ε, and r[1,+∞]|ε,
respectively. For regular expressions r1, r2, · · · , rk, L(r1%r2% · · · %rk) =⋃

{τ1,τ2,··· ,τk}∈Perm({1,2,··· ,k}) L(rτ1) · · · L(rτk
), where 1 ≤ i, τi ≤ k (k ≥ 2) and

Perm({1, 2, · · · , k})2 is the set of permutations of {1, 2, · · · , k}. For instance,
L(ab%cd%ef)={abcdef, abefcd, cdabef, cdefab, efabcd, efcdab}. % is not asso-
ciative, i.e., L((r1%r2)%r3) �= L(r1%(r2%r3)) �= L(r1%r2%r3). L(r[m,n]

1 ) =
{w1 · · · wi|w1, · · · , wi ∈ L(r1),m ≤ i ≤ n}. Let RE(%,#) denote the class of
regular expressions with unorder and counting.

For a regular expression r, |r| denotes the length of r, which is the number of
symbols and operators occurring in r plus the size of the binary representations
of the integers [13]. For a finite sample S, |S| denotes the number of strings in
S. For a set V , let ℘(V ) = 2V . A string s is an unordered string if s ∈ u%v for
u, v ∈ Σ+. For a directed graph (digraph) G(V,E), G. 	 (v) (v ∈ G.V ) denotes
the set of all direct successors of v in G. G. ≺ (v) denotes the set of all direct
predecessors of v in G. Let P (s, a, b) ∈ {0, 1} for s ∈ S and a, b ∈ Σ (a �= b).
P (s, a, b)=1 if and only if each symbol b occurs in s and there exists a symbol
a occurring before b. a can be interleaved with b for S if and only if there exists
s1, s2∈S such that P (s1, a, b)=P (s2, b, a)=1. Let O(s, a, b)∈{0, 1} for s∈S and
a, b∈Σ (a �= b). O(s, a, b)=0 if and only if P (s, a, b)=1, P (s, b, a)=0 and there
exists a symbol c occurring between a and b (a occurs before b) such that a or
b can be interleaved with c for S. We specify that ab or ba can be an unordered
word for S if a can be interleaved with b for S or there exists s ∈ S such that
O(s, a, b)=0. Let U% denote the set of all the tuples (a, b) where ab can be an
unordered word for S. For space consideration, all omitted proofs can be found
at https://github.com/GraceFun/InfSOREUC.

2.2 SORE, SOREUC, SOA and Unorder Unit

SORE is defined as follows.

2 For instance, Perm({1, 2, 3}) = {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3,
2, 1}}.

https://github.com/GraceFun/InfSOREUC
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Definition 1 (SORE [3,4]). Let Σ be a finite alphabet. A single-occurrence
regular expression (SORE) is a standard regular expression over Σ in which
every alphabet symbol occurs at most once.

Since L(r∗)=L((r+)?), in this paper, a SORE does not use the Kleene-star
operation. SOREUC which extends SORE with unorder and counting does not
use the Kleene-star operation, is defined as follows.

Definition 2 (SOREUC). Let Σ be a finite alphabet. A single-occurrence reg-
ular expression with unorder and counting (SOREUC) is a regular expression
with unorder and counting over Σ in which every alphabet symbol occurs at
most once.

According to the definition of deterministic regular expressions [7], SOREUCs
are deterministic by definition. In this paper, a SOREUC forbids immediately
nested counters, and expressions of the forms (r?)? and (r?)[m,n] for regular
expression r.

Example 1. a%b, (c[1,2]|d)[3,4], a?b(c[1,2]%d?)(e[1,+∞])?, and (a?b)%(c|d%e)[3,4]f
are SOREUCs, while a(b|c)+a is not a SORE, therefore not a SOREUC. How-
ever, the expressions ((a%b)[3,4])[1,2], ((a[3,4])?)[1,2], and ((a[3,4])?)? are forbidden.

Definition 3 (SOA [4,12]). Let Σ be a finite alphabet, and let q0, qf be distinct
symbols that do not occur in Σ. A single-occurrence automaton (SOA) over Σ is
a finite directed graph G=(V,E) such that (1) q0, qf ∈V , and V =Σ ∪ {q0, qf}.
(2) q0 has only outgoing edges, qf has only incoming edges, and every v ∈ V lies
on a path from q0 to qf .

A string a1 · · · an (n ≥ 0) is accepted by an SOA G, if and only if there is a
path q0 → a1 → · · · → an → qf in G.

Definition 4 (unorder unit). For a given finite sample S, an unorder unit
is a list [e1, e2, · · · , ek] (k ≥ 2), where ei ⊂ Σ and ei ∩ ej = ∅ (1 ≤ i, j ≤ k, i �= j).
If a symbol u ∈ ei, there is at least one symbol v ∈ ej such that uv can be an
unordered word for S, and there is at least one symbol u′ ∈ei (u′ �=u) such that
uu′ cannot be an unordered word for S.

Example 2. For sample S ={abcde, cdeab}, ac, ad and ae (resp. bc, bd and be) can
be unordered words. But for ab, cd, de and ce, all of them cannot be unordered
words. Then, [{a, b}, {c, d, e}] can be an unorder unit.

An unoder unit can be used to discover the substructure of an FAUC recogniz-
ing unordered strings. Such as [{a, b}, {c, d, e}], the corresponding substructure
is in the FAUC (in Fig. 1), which can recognize the unordered string cdeab.

3 Finite Automaton with Unorder and Counting (FAUC)

Although finite automata with counters (FACs) defined in [17] can recognize the
languages defined by RE(%,#), the membership problem for FACs is NP-hard
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[17], and an FAC recognizing unordered strings does not provide any informa-
tion about unorder. This implies that an FAC is hard to be learned and then
transformed to a SOREUC. Therefore, for recognizing the languages defined by
SOREUCs, we propose finite automata with unorder and counting (FAUCs), for
which the membership problem is decidable in polynomial time. An FAUC with
unorder markers running on a finite sample S not only recognizes the unordered
strings from S, but also counts the minimum and maximum number of the
strings or substrings (from S) that are consecutively matched by the FAUC.
The counting functions of an FAUC are different from that of an FAC.

3.1 Unorder Markers, Counters and Update Instructions

For recognizing the language defined by a SOREUC r, and for the ith subex-
pression of the form ri = ri1%ri2% · · · %rik

(i, k ∈ N, k ≥ 2) in r, there is an
unorder mark %+

i in an FAUC for recognizing the strings derived by ri. For
each subexpression rij

(1≤j ≤k), there is a concurrent marker ||ij in an FAUC
for recognizing the symbols or strings derived by rij

. Since % is not associative,
there are at most |Σ|−1 unorder markers and at most |Σ| concurrent markers
in an FAUC. Let DΣ ={1, 2, · · · , |Σ|−1} and PΣ ={1, 2, · · · , |Σ|}.

An FAUC runs on a given finite sample, first, there are counters which count
the numbers of the strings or substrings that are consecutively matched by the
FAUC each time. Then, update instructions are used to compute the minimum
and maximum of the values obtained by the counters.

Counter variables are presented as follows. Let H(V,E) denote the node
transition graph of an FAUC. A loop marker +k (k∈N) which is also a node in H
marks a strongly connected component (excluding singleton) in H. There are at
most 2|Σ|−1 loop markers. Let BΣ ={1, 2, · · · , 2|Σ|−1}. There are corresponding
counter variables for the nodes with self-loop, the markers %+

i (i∈DΣ) and the
markers +k (k∈BΣ). Let Vc ={v|v∈H.	(v), v∈H.V } ∪ {%+

i |i∈DΣ} ∪ {+k|k∈
BΣ}. Let C denote the set of counter variables, and let c(v)∈C (v ∈Vc) denote
a counter variable. The mapping θ: C �→ N is the function assigning a value to
each counter variable in C. θ1 denotes that c(v)=1 for each v∈Vc.

Update instructions are introduced as follows. Let partial mapping β:
C �→ {res, inc} (res for reset, inc for increment) represent an update instruc-
tion for each counter variable. β also defines mapping gβ between mappings
θ. For each v ∈ Vc, if β(c(v)) = res, then gβ(θ) = 1; if β(c(v)) = inc,
then gβ(θ) = θ(c(v)) + 1. Let [l(v), u(v)] denote a counting operator, where
l(v) and u(v) are lower bound and upper bound variables, respectively. Let
T = {(l(v), u(v))|v ∈ Vc}. We define mapping γ: T �→ N × N as a func-
tion assigning values to lower bound and upper bound variables: l(v) and
u(v). γ∞ denotes all upper bound variables that are initialized to −∞ and
all lower bound variables that are initialized to +∞. Let partial mapping α:
T �→ (min({T.l(v)|v∈Vc} × C),max({T.u(v)|v∈Vc} × C)) be an update instruc-
tion for (l(v), u(v)). α(l(v), u(v)) = (min(l(v), c(v)),max(u(v), c(v))). α also
defines the partial mapping fα: γ × θ �→ γ such that fα(γ, θ)((l(v), u(v)), c(v))=
(min(π2

1(γ(l(v), u(v))), θ(c(v))),max(π2
2(γ(l(v), u(v))), θ(c(v)))). Let α=∅ (resp.
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β = ∅) denote the empty instruction. g∅(θ) = θ and f∅(γ, θ) = γ. Let mapping
λ: H.V �→ ℘({%+

i }i∈DΣ
). λ(w) (w ∈ H.V ) is the set of the nodes %+

i (i ∈DΣ)
which can reach to the node w. λ(w)(k) (1≤k≤|λ(w)|) denotes the kth element
in λ(w). If V ′ ⊆ H.V , λV ′ = {%+

i } (resp. λV ′ = {∅}) denotes that λ(v′) = {%+
i }

(resp. λ(v′)={∅}) for each v′ ∈V ′.

3.2 Finite Automata with Unorder and Counting

Definition 5 (Finite Automaton with Unorder and Counting). A
finite automaton with unorder and counting (FAUC) is a tuple A = (V,Q,Σ,
q0, qf ,H, Φ). The members of the tuple are described as follows:

– Σ is a finite alphabet (non-empty).
– q0 and qf : q0 is the unique initial state, qf is the unique final state.

– V =Σ ∪ V1, where V1 ⊆ {+i,%
+
j , ||jk}i∈BΣ,j∈DΣ,k∈PΣ

.

– Q={q0, qf }∪V2, where V2⊆℘(V ). A state q∈Q\{q0, qf } is a set of nodes in V .
– H(V, E, R, C, T ) is a node transition graph.

• H.V = A.V ∪ {q0, qf }.
• H.R : {+i,%

+
j }i∈BΣ,j∈DΣ


→ ℘(Σ). H.R(+i) is a set of alphabet symbols, where an

alphabet symbol is the first letter of the string that can be consecutively matched by
FAUC A from the state including the node +i. H.R(%+

j ) is also a set of alphabet symbols,

where an alphabet symbol is the first letter of the unordered string that can be recognized
by FAUC A from the state including the node %+

j .

• H.C is a set of counter variables. Let C = {v|v ∈ {+i,%
+
j }i∈BΣ,j∈DΣ

∨ (v ∈ Σ ∧ v ∈
H. � (v))}, H.C = {c(v)|v ∈ C}. For recognizing a string by an FAUC, c(v) (v ∈ Σ) is
used to count the number of the symbol v consecutively matched by FAUC A each time.
c(+i) (resp. c(%+

j )) is used to count the number of the strings where the first letters

are in H.R(+i) (resp. the unordered strings where the first letters are in H.R(%+
j ))

consecutively matched by FAUC A each time.
• H.T = {(l(v), u(v))|v ∈ C}. [l(v), u(v)] is a counting operator. l(v) and u(v) are lower

bound and upper bound variables, respectively.
– Φ(H, X, z) where X ⊆C and z ∈H.V is a function returning the tuple consisting of the partial

mapping of α and the partial mapping of β (α and β are update instructions) for each node
in X transiting to the node z in H. Φ(H, X, z)=(A, B), where

• A = {∅} ∪ {H.T 
→ (min(H.T.l(x), H.C.c(x)),max(H.T.u(x), H.C.c(x)))|(x ∈ H. � (x) ∧ z �=
x) ∨ (∃x′ ∈H.�(x) : x′ ∈{+i,%

+
j }i∈BΣ,j∈DΣ

∧ z �∈H.R(x′)), x∈C ∧ x∈X},
• B={∅}∪{c(x) 
→res|(x∈H.�(x)∧ z �=x)∨ (∃x′ ∈H.�(x) : x′ ∈ {+i,%

+
j }i∈BΣ,j∈DΣ

∧ z �∈
H.R(x′)), x ∈ C ∧ x ∈ X} ∪ {c(x) 
→ inc|(x ∈ H. � (x) ∧ z = x) ∨ (∃x′ ∈ H. � (x) : x′ ∈
{+i,%

+
j }i∈BΣ,j∈DΣ

∧ z ∈H.R(x′)), x∈C ∧ x∈X}}.

The configuration of an FAUC is defined as follows.

Definition 6 (Configuration of an FAUC). A configuration of an FAUC
is a 4-tuple (q, γ, θ, λ), where q ∈ Q is the current state, γ: A.H.T �→ N ×
N, θ: A.H.C �→ N and λ: H.V �→ ℘({%+

i }i∈DΣ
). The initial configuration is

(q0, γ∞, θ1, λA.H.V ={∅}), and a configuration is final if and only if q = qf .

The transition function of an FAUC is defined as follows.

Definition 7 (Transition Function of an FAUC). The transition function δ
of an FAUC A=(V,Q,Σ, q0, qf ,H, Φ) is defined for any configuration (q, γ, θ, λ)
and the symbol y ∈ Σ ∪ {�}, where � denotes the end symbol of a string.

[(1)]
1. q = q0 or q is a set, where q={a} or {+i} (a∈Σ, i∈BΣ):

– y ∈ Σ: δ((q, γ, θ, λ), y) = {({z}, fα(γ, θ), gβ(θ), λ)|z ∈ H. � (x) ∧ (z = y ∨ y ∈ H.R(z)), x ∈
{q0, a,+i}, z ∈{y}∪{+j}j∈BΣ

, (α, β)=Φ(H, {x}, z), λ(z)=∅}.
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– y =�: δ((q, γ, θ, λ), y) = {(p, fα(γ, θ), gβ(θ), λ)|p ∈ H. � (x) ∧ p = qf , x ∈ {q0, a}, (α, β) =
Φ(H, {x}, p), λ(p)=∅}.

2. q is a set and q = {%+
i } (i ∈ DΣ): δ((q, γ, θ, λ), y) = {(p, fα(γ, θ), gβ(θ), λ)|p = H. � (%+

i ), y ∈
H.R(%+

i ), (α, β)=(∅, ∅), λp ={%+
i }}.

3. q is a set and |q| ≥ 2:
– y ∈Σ: δ((q, γ, θ, λ), y)=

⋃
1≤t≤3 δt((q, γ, θ, λ), y).

• δ1((q, γ, θ, λ), y) = {((q \{x}) ∪ {z}, fα(γ, θ), gβ(θ), λ)|z ∈ H. � (x) ∧ (z = y ∨ (z ∈
{%+

i ,+j}i∈DΣ,j∈BΣ
∧y ∈H.R(z))), x∈q∧(∀x′ ∈q\{x} : (x′ ∈{||ij}i∈DΣ,j∈PΣ

∨∃%+
k ∈

H.�(x′) : λ(x)(1) = %+
k ) ∧ y �∈H.�(x′)), (α, β)=Φ(H, {x}, z), λ(z)=λ(x), k∈DΣ}.

• δ2((q, γ, θ, λ), y) = {((q \ {%+
i }) ∪ H. � (%+

i ), fα(γ, θ), gβ(θ), λ)|%+
i ∈ q ∧ y ∈

H.R(%+
i ), (α, β)=(∅, ∅), ∀x∈H.�(%+

i ) : λ(x)=λ(x) ∪ {%+
i }, i∈DΣ}.

• δ3((q, γ, θ, λ), y)= {((q\W ) ∪ {z}, fα(γ, θ), gβ(θ), λ)|∃i ∈DΣ∀x ∈ W : {z,%+
i } ⊆ H. �

(x) ∧ %+
i ∈ λ(x) ∧ ((z = y ∧ y �∈ R(%+

i )) ∨ (z = %+
i ∧ y ∈ R(%+

i ))), W ⊆ q ∧ |W | =
|
⋃

x′∈W H. � (x′)|−|W|+1, W =
⋃

w∈W λ(w), (α, β) = Φ(H, W, y), ∀x ∈ W∀x′ ∈ H. �
(x) : λ(x′)=λ(x)\H.�(x)}.

– y =�: δ((q, γ, θ, λ), y) = {(qf , fα(γ, θ), gβ(θ), λ)|∃i ∈ DΣ∀x ∈ q : %+
i ∈ λ(x) ∧ %+

i ∈ H. �
(x) ∧ |q|= |

⋃
x′∈W H.�(x′)|−|W|+1, W =

⋃
w∈q λ(w), (α, β)=Φ(H, q, qf ), λ(qf )=∅}.

Definition 8 (Deterministic FAUC). An FAUC A=(V,Q,Σ, q0, qf ,H, Φ) is
deterministic if and only if |δ((q, γ, θ, λ), y)| ≤ 1 for any configuration (q, γ, θ, λ)
and the symbol y ∈ Σ ∪ {�}.

Fig. 1. The deterministic FAUC A for regular language L((((ab)+)?%(c%d)+e)+). The
label of the transition edge is (y; Ai; Bj) (i, j ∈ N), where y ∈ Σ ∪ {�} is the current
letter and Ai (resp. Bj) is the set of the update instructions from α (resp. β). αm ∈Ai

(m, n∈N) is an update instruction for the lower bound and upper bound variables of
the counting operator, and βn ∈Bj is an update instruction for the counter variable.

Example 3. Let Σ = {a, b, c, d, e}. V =Σ ∪ {%+
1 , ||11, ||12,%+

2 , ||21, ||22,+1}. Q=
{q0, qf , {%+

1 }, {||11, ||12}, {||11,%+
2 }, {||11, e}, {+1, ||12}, {a, ||12}, {b, ||12}, {b,%+

2 },
{b, e}, {+1, e}, {a, e}, {||11, ||21, ||22}, {||11, c, ||22}, {||11, ||21, d}, {||11, c, d}, {b, ||21,
||22}, {b, c, ||22}, {b, ||21, d}, {b, c, d}}. Figure 1 illustrates a deterministic FAUC
A = (V,Q,Σ, q0, qf ,H, Φ) recognizing the language L((((ab)+)?%(c%d)+e)+).
A.H.R(+1) = {a}, A.H.R(%+

1 ) = {a, c, d} and A.H.R(%+
2 ) = {c, d}. Note that,

the digraph H is the digraph shown in Fig. 1, and the update instructions spec-
ified by Φ are also presented in Fig. 1.



242 X. Wang

Theorem 1. For a string s, and an FAUC A, A recognizes the language defined
by a SOREUC, and it can be decided in O(|s||Σ|3) time whether s∈L(A).

Theorem 1 implies that the membership problem for SOREUCs is also decid-
able in polynomial time. For a given finite sample S, we can find an FAUC A
(resp. a SOREUC r) in polynomial time such that L(A) ⊇ S (resp. L(r) ⊇ S).
SOREUCs and FAUCs are learnable from positive finite-samples.

4 Inference of SOREUCs

For a given finite sample S, we infer a SOREUC by learning an FAUC from S.
First, we compute the set U% of all the tuples (u, v) (u �= v) from S where uv
can be an unordered word for S. Then, we obtain the set P% of unorder units by
extracting sets of the nodes (labelled by alphabet symbols) from the undirected
graph (undigraph) F (V,E), where F.E = U%. Next, we convert the SOA built
for S to an FAUC by traversing the unorder units in P%. The constructed FAUC
runs on the given finite sample S to obtain counting operators. Finally, we
transform the FAUC to a SOREUC by introducing unordered concatenations
and the counting operators. Our algorithm can ensure that the inferred SOREUC
can recognize the given finite sample S (see Theorem 4).

Algorithm 1. InfSoreuc
Input: A finite sample S;
Output: A SOREUC r : L(r)⊇S;
1: SOA G=2T-INF(S); P%=∅;
2: Computing the set U%;
3: Constructing undirected graph F (V, E): F.E=U%;
4: P%=UnorderUnits(F, P%);
5: FAUC A=ConsFauc(G, P%);
6: if Running(A, S) then r =GenSoreuc(A);
7: return r;

Algorithm 1 is the frame-
work of our inference algorithm.
Algorithm 2T-INF [4] constructs
the SOA for the finite sam-
ple S, algorithm UnorderUnits
is given in Sect. 4.1, algorithm
ConsFauc is shown in Sect. 4.2,
algorithm Running demonstrated
in Sect. 4.3 is used to run the
FAUC, algorithm GenSoreuc is
presented in Sect. 4.4.

4.1 Computing Unorder Units

According to the definition of an unorder unit, an unorder unit can be used
to discover the substructure of an FAUC recognizing unordered strings. Then,
to learn an FAUC which can recognize all the unordered strings from a given
finite sample S, for any two distinct alphabet symbols a and b that ab can be
an unordered word for S (i.e., (a, b)∈U%), there must exist an unorder unit ut
such that a and b are in different sets in ut.
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Algorithm 2. UnorderUnits
Input: An undigraph F (V, E), a set P% of unorder units;
Output: A set P% of unorder units;
1: if F.V �= ∅ then
2: for each connected component F1 in F :
3: Computing the set MF1 ;

4: Remove the nodes in MF1 and their associated
edges in F1; F2=F1;

5: if F2.V �=∅ and F2 is not a connected graph then
6: P%(i)=P%(i) ∪ [MF1 , F2.V ]; i= i+1;

7: Remove isolated nodes in F2;
8: else Put MF1 in P%(i);

9: P%=UnorderUnits(F2, P%); i= i+1;
10: return P%;

Let MF denote the set of
the non-adjacent nodes selected
from a given undigraph F
such that the sum of all node
degrees is maximum. The set
P% of unorder units is obtained
by recursively extracting sets
of nodes from the undigraph
F (V,E), where F.E =U%. Algo-
rithm 2 shows the recursion pro-
cess to extract unorder units
from F .

For each connected compo-
nent F1 in F , first, we compute the set MF1 (line 3). Then, we obtain an undi-
graph F2 by removing the nodes in MF1 and their associated edges in F1 (line
4). If F2 (F2.V �=∅) is not a connected graph, the sets MF1 and F2.V can form an
unorder unit (line 6), and the isolated nodes are removed from F2 (line 7). Oth-
erwise, the set MF1 is stored in an unorder unit (line 8). We recursively extract
an unorder unit or a set MF2 from F2 (line 9). For each connected component,
there is a corresponding unorder unit. Note that, in Algorithm 2, i is a global
variable (initially, i=1).

Fig. 2. The procedures computing the set
P% of unorder units. (a) is the undigraph
F . Algorithm 2 works on (b), (b) is a con-
nected graph, the set MF = {a, b}. (c) is
obtained by using line 4. (c) is not a con-
nected graph, then P%(1)=[{a, b}, {c, d, e}]
forms an unorder unit by using line 6.
(d) is obtained by using line 7. Algo-
rithm 2 recursively works on (d) (line 9),
P%(2) = [{c}, {d}]. The finally updated
P% ={P%(1), P%(2)}.

In Algorithm 2, for a given undi-
graph F (V,E), it takes O(|V |2) time
to obtain the set MF . Since there
is a corresponding unorder unit for
each connected component in F , it
requires |V | recursions at most to
obtain an unorder unit. The other
processes take O(|V |) time. Thus, it
takes O(|V |3) (|V | ≤ |Σ|) time to
obtain the set P%. The time com-
plexity of algorithm UnorderUnits is
O(|Σ|3).
Example 4. For sample S ={ababcde,
dce, cdeabcdeab}, the computed U%=
{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}.
The undigraph F (V,E) (F.E =U%) is
shown in Fig. 2(a). Figure 2 illustrates
the procedures computing the set P%

of unorder units. The finally obtained
P%={[{a, b}, {c, d, e}], [{c}, {d}]}.

Theorem 2. Let P% =UnorderUnits(F (V,E), ∅) where F.E =U%, then for any
tuple (a, b)∈U%, there exists an unorder unit ut∈P% such that a and b are in
different sets in ut.
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4.2 Constructing FAUC

For a given finite sample S, an FAUC can be constructed by building the node
transition graph of an FAUC. Since an SOA built for S is a precise representation
of S [12], and an unorder unit in P% can be used to discover the substructure of
an FAUC recognizing the unordered strings from S, first, the SOA G built for S
is converted to the node transition graph of an FAUC by traversing the unorder
units in P%. Then, we present the detailed descriptions of the constructed FAUC.

Algorithm 3 is presented to construct an FAUC. First, we remove the directed
edges in G, where tails and heads are in two disjoint sets of an unorder unit in
P%, respectively (line 1). Then, for the ith unorder unit in P% (P%(i), i∈DΣ),
we identify the corresponding set of nodes from G (by using extract) which is the
union of all the sets of nodes in P%(i) to add the marker %+

i in G (lines 3∼4).
We also add edges directing to the node %+

i to create a loop for recognizing
possibly repeated and unordered strings (line 5). Additionally, for the jth set
in P%(i) (P%(i)(j), j ∈PΣ), we identify the corresponding set of nodes from G
(by using extract) to add concurrent marker ||ij in G (line 8), and by using the
information provided by the obtained G1 (line 7), the loop makers +k (k∈BΣ)
are added into G (line 8). Note that, some edges are possibly added into G (line
10). The finally obtained G is the node transition graph of an FAUC, then the
FAUC A is obtained (line 11). Some subroutines are described as follows.

Algorithm 3. ConsFauc
Input: A digraph G(V, E), a set P% of unorder units;
Output: An FAUC A;
1: Delete edges {(v1, v2)|v1 ∈ e1, v2 ∈ e2, e1, e2 ∈

ut, ut∈P%, e1 �=e2} in G;
2: for i=1 to |P%| do
3: Let T =

⋃
h P%(i)(h); G1=G.extract(T );

4: G.addnode(%+
i , G1.�(q0)); R(%+

i )=G.�(%+
i );

5: Add edges {(v,%+
i )|v ∈G1.≺(qf )} in G;

6: for j=1 to |P%(i)| do
7: G1=G.extract(P%(i)(j));

8: G.addnode(||ij , G1.�(q0)); G.add+(G1);
9: if NO(S, P%(i)(j), P%(i)) then
10: Add edges {(||ij , v)|v ∈G.� (v′), v′ ∈G1.≺

(qf )} in G;
11: FAUC A=(V, Q, Σ, G.q0, G.qf , H, Φ);
12: return A;

extract on a digraph G takes
a set of nodes U (of G) as input,
it extracts a new digraph G1

(G1.V = {q0, qf} ∪ U) from G,
G1 reserves the directed edges (in
G) between any two nodes in U .
All nodes in U , which have not
incoming edges or have incoming
edges from outside of U in G, have
incoming edges from q0 in G1.
Moreover, all nodes in U , which
have not outgoing edges or have
outgoing edges to outside of U in
G, have outgoing edges to qf in
G1.

addnode and add+. addnode
on G takes a node v and a set of nodes U (of G) as inputs. It works as fol-
lows. Add a node v in G; add edges {(v1, v)|v1 ∈ G. ≺ (v2), v2 ∈ U}; remove
edges {(v1, v2)|v1 ∈ G. ≺ (v2), v2 ∈ U}; add edges {(v, v2)|v2 ∈ U}. add+ on G
takes a directed graph G1 (G1 is extracted from G) as input. It works as fol-
lows. For a strongly connected component U in G1, let G2 =G1.extract(U) and
G.addnode(+k, G2. 	 (q0)) (initially, k = 1); add edges {(v,+k)|v ∈ G2. ≺ (qf )};
let R(+k)=G2.	(q0) and k=k+1; break the loop formed by U in G1 by using
bend [12] to form a new digraph; add+ recursively works on the new digraph
until an acyclic graph is obtained.
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NO(S, P%(i)(j), P%(i)) is a bool function. Let T =
⋃

h P%(i)(h) (1 ≤ j, h ≤
|P%(i)|). NO returns true if there exists a substring t of s ∈ S (t consists of at
least one symbol from the set T .) such that t does not contain any symbols from
P%(i)(j) and neither lt nor tl (l∈T ) are substrings of s.

Then, we present the detailed descriptions of the FAUC A.
A = (V,Q,Σ,G.q0, G.qf ,H, Φ), where V = G.V \{q0, qf}, H.V = G.V and

H.E = G.E. Let V ′
c = {v|(v ∈ Σ ∧ v ∈ H. 	 (v)) ∨ (v ∈ {+i,%+

j }i∈BΣ ,j∈DΣ
∧ v ∈

G.V )}, then H.C = {c(v)|v ∈ V ′
c } and H.T = {(l(v), u(v))|v ∈ V ′

c }. Q = Q′ ∪
{G.q0, G.qf} and Q′ =

⋃
q

⋃
y δ((q, γ, θ, λ), y) (q ∈{G.q0} ∪ Q′ and y ∈Σ ∪ {�}).

The initial configure is (G.q0, γ∞, θ1, λA.H.V ={∅}). Φ and δ can be derived from
the node transition graph H, which is a parameter implied in them. Note that,
R: {+i,%+

j }i∈BΣ ,j∈DΣ
�→ ℘(Σ) (see line 4 and subroutine add+). Thus, H.R=R.

The SOA G(V,E) and P% are as inputs of Algorithm 3. It takes O(|V |2) time
to delete edges in G (line 1). For each unorder unit ut ∈ P%, the average time
complexity of extract in line 3 (resp. in line 7) is O( |V ||Σ|

|P%| ) (resp. O( |V ||Σ|
|P%||ut| )).

For addnode and add+, the time complexity of them are both O(|V |). NO (line
10) can be obtained in O(|Σ|N) time. The other processes takes O(|V |2) time
in total. For an unorder unit ut∈P%, |ut|≤|Σ| and |P%|≤|Σ|−1. Thus, the aver-
age time complexity of constructing an FAUC is O(|V |2+|V ||Σ|+|V ||Σ|

|P%| |Σ|+ |V ||Σ|
|P%||ut|

|Σ|2+|Σ|2 V |+|Σ|2N)=O(|Σ|2 V |+|Σ|2N)=O(|Σ|2N) (|V |= |Σ|+2, N > |Σ|).

Fig. 3. The procedures converting the SOA (in (a)) to the node transition graph (in
(e)) of the FAUC A by traversing unorder units in {[{a, b}, {c, d, e}], [{c}, {d}]}. For
S ={ababcde, dce, cdeabcdeab}, NO(S, {a, b}, [{a, b}, {c, d, e}])= true, for neither a nor
b occur in string dce. Then, in (d), the edge (||11, qf ) is added into G.

Example 5. For S ={ababcde, dce, cdeabcdeab}, the SOA recognizing S is shown
in Fig. 3(a), P%={[{a, b}, {c, d, e}], [{c}, {d}]}. Figure 3 illustrates the main steps
to convert the SOA to the node transition graph H (shown in Fig. 3(e)) of the
FAUC A by traversing the unorder units in P%. The labels on the edges of H
can be seen in Fig. 1, which illustrates the finally obtained FAUC A.
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Theorem 3. For a finite sample S, let SOA G=2T-INF(S) and P% denote the
result returned by UnorderUnits, let A=ConsFauc(G,P%), then L(A)⊇S.

4.3 Running FAUC

Given a finite sample S, the constructed FAUC A runs on S to count the mini-
mum and maximum number of the strings or substrings (from S) that are consec-
utively matched by A. Counting rules are given by the transition functions of the
FAUC A and the update instructions returned by A.Φ. Let Running(A, S) denote
the procedures of the constructed FAUC A running on S, if the running is ter-
minated, Running returns true, otherwise, false. Then, the counting results in
A.H.T (i.e., counting operators for a SOREUC) can be obtained when Running
returns true. Note that, the initial configuration is (q0, γ∞, θ1, λA.H.V = {∅}),
after a string in S was recognized by A, the configuration excluding γ is reset
(i.e., the configuration becomes (q0, γ, θ1, λA.H.V ={∅})).

For the given finite sample S, the number of strings is N and L is the average
length of the strings in sample. Then, the time complexity of Running is O(NL).

Table 1. The results in A.H.T after the FAUC A
recognizing each string in S.

string (l(+1), u(+1)) (l(%+
1 ), u(%+

1 )) (l(%+
2 ), u(%+

2 ))
ababcde (2, 2) (1, 1) (1, 1)

dce (1, 2) (1, 1) (1, 1)
cdeabcdeab (1, 2) (1, 2) (1, 1)

Example 6. For S ={ababcde,
dce, cdeabcdeab}, the FAUC
A is obtained in Sect. 4.2,
Running returns true. Table 1
lists the results in A.H.T =
{(l(v), u(v))|v∈{+1,%+

1 ,%+
2 }}.

For instance, l(+1) and u(+1)
(resp. l(%+

1 ) and u(%+
1 ) ) are

respectively the minimum and maximum number of the substring ab (resp. the
unordered strings derived from ab%cde or ab%dce) that can be consecutively
matched by A. Note that, neither a nor b occur in dce, but the substring ab
consecutively occurs at least once in S, we initialize l(v) (v ∈{+1,%+

1 ,%+
2 }) to

1, so finally l(+1)=1, instead of l(+1)=0.

4.4 Generating SOREUC

In this section, we transform the FAUC A which ran on a given finite sample S
and has been terminated (Running(A, S) returns true in Sect. 4.3) to a SOREUC
by introducing unordered concatenations and counting operators.
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Algorithm 4. GenSoreuc
Input: An FAUC A;
Output: A SOREUC r;
1: Let rs = Soa2Sore(A.H); let T = A.H.T ;
2: Search all subexpressions rb from rs:
3: if rb = a+ (a ∈ Σ) then

4: Replace rb by a[T .l(a),T .u(a)];
5: if ∃i∈BΣ : rb =(+ie)

+ (for expression e) then

6: Replace rb by (e)[T .l(+i),T .u(+i)];
7: if ∃j ∈DΣ∃k ∈PΣ :rb =(%+

j
(||j1r1| · · · | ||jkrk))+ (for

expressions r1, · · · , rk) then

8: Replace rb by (r1% · · · %rk)
[T .l(%+

j
),T .u(%+

j
)]
;

9: Let r=rs; return r;

Algorithm 4 presents the pro-
cedures to transform the FAUC
A to a SOREUC. Since an
FAUC can be denoted by the
corresponding node transition
graph (a digraph), and algorithm
Soa2Sore [12] can transform a
digraph to an expression (the
alphabet symbols are the labels
of nodes), first, the node transi-
tion graph A.H of the FAUC A
is transformed to an expression
rs by using algorithm Soa2Sore
(line 1). The expression rs contains symbols +i, %+

j and ||jk (i∈BΣ , j ∈DΣ , k∈
PΣ). Then, for all the subexpressions rb shown in lines 3, 5 and 7, rb is rewritten
such that counting operators (resp. unordered concatenations) are introduced
into rb in lines 4, 6 and 8 (resp. line 8). Note that, (e)[1,1]=e for regular expres-
sion e.

Let nh (resp. th) denote the number of nodes (resp. the number of transitions)
in A.H. Then, Soa2Sore takes O(nhth) time to infer an expression rs [12].
Since all the subexpressions rb shown in lines 3, 5 and 7 can be obtained by
traversing the syntax tree of rs, it takes O(|rs|) time to search and then rewrite
all the subexpressions rb. Finally, GenSoreuc takes O(nhth + |rs|) = O(nhth)
time to generate a SOREUC. U% can be obtained in O(|Σ|N) time, the time
complexity of UnorderUnits is O(|Σ|3), the average time complexity of ConsFauc
is O(|Σ|2N), and the time complexity of Running is O(NL). Thus, the time
complexity of InfSoreuc is O(|Σ|2N+NL) (|Σ|N >nhth).

Example 7. For S = {ababcde, dce, cdeabcdeab}, the node transition graph (H)
of the FAUC A is presented in Fig. 3(e). The counting results in A.H.T are
shown in Table 1. (l(+1), u(+1)) = (1, 2), (l(%+

1 ), u(%+
1 )) = (1, 2) and (l(%+

2 ),
u(%+

2 )) = (1, 1). rs = (%+
1 (||11((+1ab)+)?| ||12(%+

2 (||21c| ||22d))+e))+ is returned
by Soa2Sore(S). rs is first rewritten to (((+1ab)+)?%(%+

2 (||21c| ||22d))+e)[1,2],
which is then rewritten to rs =(((+1ab)+)?%(c%d)[1,1]e)[1,2]. Finally, rs is rewrit-
ten to (((ab)[1,2])?%(c%d)e)[1,2] which is the finally obtained SOREUC.

Theorem 4. For a finite sample S, let r =InfSoreuc(S), then r is a SOREUC
and L(r)⊇S.

5 Experiments

In this section, we first analyse the expressiveness of SOREUCs, then we assess
the conciseness of the inferred SOREUCs, and also evaluate our algorithm on
unordered XML data in terms of generalization ability and time performance.
All data including XML data (unordered) used in experiments are collected
from data-centric XML applications. Since the learning algorithms for DIMEs
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are lacking, our algorithm is mainly compared with the inference algorithms for
uSOREs, DMEs and SOREs. Note that, the inference algorithm for SOREs is
selected as Soa2Sore, which is the fast algorithm to infer a compact SORE [12].

5.1 Expressiveness of SOREUCs

The expressive power of a regular expression r is measured by the proportion
of the other regular expressions captured by the regular expression r [5]. For
regular expressions r and r′, r′ can be captured by r if L(r)=L(r′) [5].

For 60,578 regular expressions and 558,375 regular expressions, which are
respectively extracted from DTD files and XSD files that are collected from
Maven3 and GitHub4, Table 2 shows that the highest proportions of the regular
expressions from DTDs or XSDs are captured by SOREUCs. SOREUCs have
stronger expressive powers for modeling unordered schemata than existing works.
Note that, since DTDs do not support counting, the proportions of the regular
expressions from DTDs are captured by uSOREs and SOREUCs are the same.

Table 2. Proportions of regular expressions captured by each subclass.

Subclasses DTDs (60,578 regular expressions) XSDs (558,375 regular expressions)

DMEs 55.2% 33.6%

DIMEs 72.9% 41.3%

SOREs 83.1% 72.8%

uSOREs 97.5% 82.4%

SOREUCs 97.5% 93.7%

5.2 Conciseness, Generalization Ability and Time Performance

Since DTDs do not support counting, we select regular expressions from the
above 558,375 regular expressions, which are collected from XSD files. Let Q1

denote the set of 1000 selected regular expressions with alphabet size 20. We also
select 1000 regular expressions for each alphabet size ranging from 10 to 100,
then let Q2 denote the set of the 10000 selected regular expressions in total. All
selected regular expressions are accompanied by lots of XML data. The random
sample in experiments, which is a finite set of strings, is extracted from the
corresponding XML data. The size of sample is the number of the strings in
sample. We evaluate our algorithm by using the datasets Q1 and Q2.

Conciseness. For learned regular expressions, their lengths can intuitively
reflect their conciseness. We provide the statistics about lengths of the learned
regular expressions in different size of samples and different size of alphabets. To

3 https://mvnrepository.com/.
4 https://github.com/topics/.

https://mvnrepository.com/
https://github.com/topics/
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learn each expression in Q1, we randomly extracted the corresponding sample,
each sample size is that listed in Fig. 4(a). To learn each expression of alphabet
size from 10 to 100 in Q2, we randomly extracted the corresponding sample,
of which the size is 5000 such that the language denoted by the corresponding
expression can be learned. In Fig. 4(a) (resp. in Fig. 4(b)), the value for a given
sample size (resp. a given alphabet size) is the average of the lengths of the 1000
learned expressions or the 1000 original expressions (original REs).

Figure 4(a) and Fig. 4(b) illustrate that, the inferred SOREUCs are not only
more concise than original expressions, but also more concise than the learned
DMEs. Compared with SOREUCs, uSOREs (resp. SOREs) just only do not
support counting (resp. counting and unorder), therefore, the inferred SOREUCs
are less concise than the learned uSOREs and SOREs.

Generalization Ability. We measure the generalization ability of our algo-
rithm by F = 2pr

p+r , where p and r are the precision and recall of the language
defined by the learned regular expression, respectively. We specify that, the
learning algorithm with higher F -measure has better generalization ability. The
average F -measure, which is as functions of sample size, is averaged over the
1000 expressions in Q1.

To learn each expression in Q1, we randomly extracted the corresponding
sample, each sample size is that listed in Fig. 4(c). Let r0 denote the original
expression. Then, the positive sample (S+) is the set of all the strings accepted
by r0, and the negative sample (S−) is the set of all the strings not accepted
by r0. p and r are computed in a finite sample. For example, the true positive
sample is the set of the strings that are in S+ and in L(r1)≤n, where r1 is the
learned expression, n = 2|r1|+1 and L(r1)≤n = {s|s ∈ L(r1), |s| ≤ n} [4]. Note
that, since it is trivial for deciding a string whether can be accepted by a DME
[8], and we can build an equivalent receptor [17] for a SOREUC, p and r (i.e.,
F -measure) can be efficiently computed for learning algorithms InfSoreuc and
L+

DME .
The plots in Fig. 4(c) demonstrate that, the F -measures for InfSoreuc are

consistently higher than that for other algorithms. In general, InfSoreuc has
better generalization ability than other algorithms.

Time Performance. To illustrate the efficiency of algorithm InfSoreuc, we
provide the statistics about running time in different size of samples and different
size of alphabets. Figure 4(d) and Fig. 4(e) show the average running times in
seconds for each learning algorithm with different inputs of sample size and
with different inputs of alphabet size, respectively. To learn each expression in
Q1, we randomly extracted the corresponding sample, each sample size is that
listed in Fig. 4(d). The running times listed in Fig. 4(d) are averaged over 1000
expressions of that sample size. To learn each expression in Q2, we randomly
extracted the corresponding sample, the sample size for each alphabet size listed
in Fig. 4(e) is 2000. The running times listed in Fig. 4(e) are averaged over 1000
expressions of that alphabet size.
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Figure 4(d) and Fig. 4(e) illustrate that, for each given sample size and alpha-
bet size, the running times for InfSoreuc are less than that for InfuSORE and
L+

DME , respectively, and are closer to that for Soa2Sore. Thus, this implies that,
InfSoreuc can efficiently infer SOREUCs for modeling unordered schemata.

Fig. 4. (a) and (b) are average lengths of the learned/original regular expressions as
functions of the sample size and the alphabet size, respectively. (c) is average F -measure
as function of the sample size for each algorithm. (d) and (e) are respectively average
running times in seconds as the functions of sample size and alphabet size for each
algorithm.

6 Conclusion

This paper proposed a subclass SOREUCs for modeling unordered schemata
and the inference algorithm for SOREUCs. First, we construct an FAUC from a
given finite sample. Then, the FAUC runs on the given finite sample to obtain
counting operators. Finally we transform the FAUC to a SOREUC by introduc-
ing unordered concatenations and counting operators. Our experiments demon-
strate that, SOREUCs have stronger expressive powers for modeling unordered
schemata than existing works, and our algorithm can efficiently infer a concise
SOREUC with better generalization ability. For future works, we can study more
expressions with stronger expressive powers for modeling unordered schemata.
We also can apply our techniques to boost the learning algorithms for twig
queries.
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Abstract. Deep neural networks are deemed to be powerful but vulner-
able, because they will be easily fooled by carefully-crafted adversarial
examples. Therefore, it is of great importance to develop models with
certified robustness, which can provably guarantee that the prediction
will not be easily misled by any possible attack. Recently, although a
certified method based on randomized smoothing is proposed, it does
not take the maximized certified region into account, so we develop an
approach to train models with maximized certified regions via replacing
the base classifier with the soft smoothed classifier which is differentiable
during propagation.

Keywords: Randomized smoothing · Adversarial examples · Certified
region

1 Introduction

Deep neural networks (DNNs) have gained tremendous success in various Natural
Language Processing (NLP) tasks. However, previous works have shown that
even state-of-the-art DNNs are vulnerable against adversarial examples that are
well-crafted by adding imperceptible perturbations to inputs [5]. To enhance the
robustness of textual DNNs, recent studies have focused on the adversarial texts,
which are generated by methods like inserting character-level spelling errors or
substituting synonyms for original words [1,7].

In this paper, we focus on adversarial word substitution, which is a word-level
adversarial text and more difficult to defend than the other two level’s attack
[7]. In this setting, an attacker may replace any word in the input text with a
synonym, leading to an exponentially large perturbation space. Although the
perturbation space is known at training time, it is still very challenging and
costly to train a model that is robust to such a large perturbation space.

Researchers have proposed a variety of defense methods to improve the
robustness of neural networks. One kind of method named data augmentation
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 253–261, 2021.
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enhances the model’s robustness against noise by adding augmented noisy exam-
ples during training [2]. Most of the existing data augmentation methods are
based on adversarial training [9]. Nevertheless, adversarial training has two draw-
backs: First, it depends on particular attack methods [12]. Second, the relative
positions between word vectors of a word and its synonyms change dynamically
[15], which makes a model more vulnerable against attacks because two similar
words may be considered as totally different after training.

To address the problem of adversarial training, recent studies have presented
several certified defense methods. The first certified robust defense method [6]
propagates interval constraints layer-by-layer to compute final model output.
However, this method has two limitations. For one thing, they use Interval Bound
Propagation (IBP) to compute a loose outer bound and thus result in a signif-
icant performance drop on the clean data. For another, directly applying this
method to pre-trained models like BERT is difficult because it needs to adjust
model structures. To alleviate the dependency on model structures, [13] first
introduced randomized smoothing technique in the NLP field and proposed a
structure-free certified defense method. They leveraged the statistical proper-
ties of the randomized ensembles to compute a provable safe bound. We further
define this safe bound as certified region, abbreviated as CR. However, they
didn’t consider maximizing certified region to enhance model robustness.

In this paper, we propose an attack-free and model-agnostic method to train
robust textual DNNs by maximizing the certified region. By maximizing CR, we
enlarge the margin between the probability of ground truth label and “runner-
up” label and thus increase the percentage of samples whose CR > 0, which leads
to better model robustness. Inspired by [4,13,14], we replace the base classifier
f with a smoothed classifier g. [14] proposed a method to train a robust DNN by
maximizing the certified radius in the computer vision community, which inspires
us to further improve the robustness of textual DNNs by maximizing the certified
region. Specifically, to compute and maximize the certified region, we directly
train a smoothed classifier rather than a base classifier. [4] pointed out that to
make randomized smoothing work, one must make the base classifier classify
well under noise, which is another reason for us to train a smoothed classifier
g instead of a base one. Moreover, our model can achieve better robustness by
using higher-order neighbor information on the synonymous network [15].

We conclude our contributions as follows:

1. We propose an attack-free and theoretically-proved certified textual defense
method based on maximizing certified region. The trained model possesses
provable robustness that can defend arbitrary word substitution attacks
within the certified region.

2. We replace the base classifier with the soft smoothed classifier to solve the
problem of non-differentiability, such that our method can keep stable relative
positions between the word vectors of a word and its synonyms.

3. We conduct comprehensive experiments on various datasets and NLP models.
Experimental results show that our method not only maintains the equivalent
performance of original models on the clean data but also achieves better
model robustness than state-of-the-art defense methods.
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2 Methods

Problem Setup. We consider the text classification task for giving a text input
x, corresponding to a label y ∈ Y = {1, 2, .., n} from data distribution pdata,
where x = x1, x2, · · · , xL is a sentence consisting of L words. Let f ∈ F be the
classifier that maps any x ∈ X to Y. We call x̂ = x̂1, x̂2, · · · , x̂L a candidate
adversarial example by perturbing at most T ≤ L words xi in x to any of their
synonyms x̂i ∈ S(xi), i = 1, 2, · · · , L. The candidate adversarial example set is
denoted by S(x) = {x̂ : ‖x̂ − x‖0 ≤ T, x̂ ∈ S(xi)}. Here, 0-norm is the Hamming
distance. The goal of an attacker is to find an adversarial example in S(x) that
makes the model assign a different label. We often use deep neural networks
in text classification. Let u(x) : X → R

n be a neural network, whose output
at an input x is a vector (u1(x), · · · , un(x)). The resulting network is z(x) =
(z1(x), · · · , zn(x)), which is given by softmax layer zc(x) = euc(x)/

∑
c′∈Y euc′ (x).

2.1 Certified Region

Randomized Smoothing. In this work, we use randomized smoothing tech-
nique [4,13]. It is defined as follows:

g(x) = arg max
c∈Y

Px̂∼Π(x)(f(x̂) = c), g(x, c) = Px̂∼Π(x)(f(x̂) = c) (1)

where, Π(x) is a perturbation probability distribution around x, see Sect. 3.2 for
more details. In general, the smoothed classifier g returns the label most likely
to be returned by f when its input is sampled from a perturbation distribution.

Certified Region/Certified Robustness. [13] proposed a robustness certi-
fication method that seeks to derive a sufficiently tight bound for textual neu-
ral networks. We define this lower bound as Certified Region and denote it by
CR(g;x, y), abbreviated as CR. Note that:

R ≥ CR > 0 ⇒ f(x̂) = y,∀(x, y) ∼ pdata, x̂ ∈ S(x) (2)

Theorem 1. Assume the perturbation set P (xi) is constructed such that
|P (xi)| = |P (x̂i)| for each word xi and its synonym x̂i ∈ S(xi). Define
q(xi) = min

x̂i∈S(xi)
|P (xi) ∩ P (x̂i)|/|P (xi)| , represents the intersection size between

two perturbation set. For a given sentence x = x1, x2, · · · , , xL, we sort the words
according to q(xi), such that q(xi1) ≤ q(xi2) ≤ · · · ≤ q(xiL). Then

min
x̂∈S(x)

g(x̂, c) ≥ max(g(x, c) − q(x), 0)

max
x̂∈S(x)

g(x̂, c) ≤ min(g(x, c) + q(x), 1)

where, q(x) = 1 − ∏L
j=1 q(xij ).

P (xi) is the perturbation set extended from S(xi), i.e. a larger synonym set. We
will introduce its effect in Sect. 2.2.
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Proposition 1. For a sentence x and its label y, we define the runner-up label
yB = arg maxc∈Y,c �=y g(x, c). Under the condition of Theorem 1, we can certify
that g(x̂) = g(x) for ∀x̂ ∈ S(x), if

CR(g;x, y) = g(x, y) − g(x, yB) − 2q(x) > 0

As an illustration in Fig. 1(a), for an input sentence x, we sample k samples
x̂ through base classifier f(x̂), where x̂ is generated by sampling from Π(x)(the
circle area). If the label y appears most in the predictions of x̂, then g(x) returns
label y. Next we introduce each component of our algorithm.

Fig. 1. Consider a sentence x and its perturbation distribution Π(x) (projected to 2D
for illustration) represented by a circle area. (Color figure online)

2.2 Perturbation Distribution Based on Multi-Hop Neighbors

Multi-Hop Neighbors. For the smoothed classifier g to classify x correctly
and robustly, we firstly consider to use the candidate adversarial examples from
S(x) to train the smoothed classifier. In Fig. 1(b), we represent a sentence x and
its perturbation distribution of S(x) as the blue circle area. Assuming that the
sentence x is replaced with x̂. The sentence x and its perturbation distribution
of S(x̂) is represented by yellow circle area. If the intersection between blue and
yellow circle areas is small, we cannot expect g will classify x̂ robustly. Due to
the idea of greedy filling, the difference set between the yellow circle area and
the blue circle area is always predicted as a false green label. This worsens the
model’s robustness as their intersection set is small. To alleviate this problem, we
extend the synonym set S(xi) to a larger perturbation set P (xi) using Multi-Hop
neighbors. We further extend S(x) to a larger candidate adversarial example set
P (x) using P (xi). We respectively use a larger green circle area and a larger red
circle area to represent the perturbation distributions of P (x) and P (x̂), which
form a bigger intersection as x̂ is limited in the blue circle area. Specifically,
an attacker only use the synonym set S(xi) for attacking. But the smoothed
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classifier always uses the larger perturbation set P (xi) to get the robust outputs.
The construction of synonym set S(xi) and perturbation set P (xi) is as follows.

Similar to [1], we construct the synonym set S(xi) to be the set of words with
cosine similarity ≥ε in the post-processing GloVe by Counter-fitted method [10]
and all-but-the-top method [11]. We extend the synonym set S(xi) to perturba-
tion set P (xi).

Perturbation Distribution Π(x). In our work, we use the uniform distribution
on a set of random word substitutions:

P (Π(x) = x̃) =
L∏

i=1

1[x̃i ∈ P (xi)]
|P (xi)| (3)

where x̃ is the perturbation sample from P (x), 1[·] is the indicator function.

2.3 Robust Training by Maximizing Certified Region

Training the Soft Smoothed Classifier g̃. To minimize the classification
error of smoothed classifier g is to maximize the sum of log probability:

∑

(x,y)∼pdata

log P (g(x) = y) =
∑

(x,y)∼pdata

logEx̃1
[

arg max
c∈Y

uc(x̃) = y

]

(4)

Theoretically, the expectation is differentiable. However, the expectation
needs to be estimated by Monte Carlo sampling Ex̃1 [arg maxc∈Y uc(x̃) = y] ≈
1
k

∑k
j=1 1

[
arg maxc∈Y uc(x̃(j)) = y

]
, where k is the number of samples. As a

sum of indicator functions, this estimation is not differentiable with respect to
θ, which cannot calculate gradient during optimization.

g̃(x) = arg max
c∈Y

Px̃∼Π(x)(zc(x̃)), g̃(x, c) = Px̃∼Π(x)(zc(x̃)) (5)

The softmax function can be viewed as a continuous, differentiable approx-
imation of argmax: 1 [arg maxc∈Y uc(x̃) = y] ≈ zc(x̃). Therefore, the objective
function is approximately by:

∑
(x,y)∼pdata

log 1
k

∑k
j=1 zc(x̃(j)).

Following Theorem 1, we prove Theorem 2 which shows that the calculation
of the certified region for the soft smoothed classifier g̃ is still applicable in
Appendix A.

Theorem 2. Let the ground truth of input x be y, we can certify g̃(x̂) = g̃(x)
for any x̂ ∈ S(x) if

CR(g̃;x, y) = g̃(x, y) − max
c �=y,c∈Y

g̃(x, c) − 2q(x) > 0

According to the definition of smoothed classifier g and object function, per-
turbation examples are sampled from a combination consisting of all synonyms.
As a result, back-propagation will go through the embeddings of all synonyms,
thus allowing to update all embeddings together in a coordinated way.
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Maximization of Certified Region. As we can see from Proposition 1, the
value of the certified region can be calculated by sampling, more importantly,
it can be computed by any deep neural networks, such as BERT. It motivates
us to design a training method to maximize the certified region. Therefore, we
add robustness error to the classification error to form our final certified robust
error:

Lerror =
∑

(x,y)∼pdata

1 [g̃(x) �= y]
︸ ︷︷ ︸

classification error

+1[g̃(x) = y, CR(g̃;x, y) < γ]
︸ ︷︷ ︸

robustness error

(6)

We use the hinge loss as the surrogate loss of robustness error. Our loss is:

L(g̃) =
∑

(x,y)∼pdata

log
1
k

k∑

j=1

zy(x̃(j))+λ·max{γ−CR(g̃;x, y), 0}·1[g̃(x) �= y] (7)

where, γ is the parameter of hinge loss, λ is the regularization.

3 Experiment

3.1 Experimental Data and Baselines

We conduct our experiments on both IMDB [8] for sentiment analysis and SNLI
[3] for natural language inference. We firstly use clean accuracy (CLN) as a met-
ric which is the model’s accuracy on clean data. Then, we evaluate the model
robustness by certified accuracy (CER), which equals the percentage of samples
on which g̃ is certified robust, which, for our method, holds when CR > 0. For
those defense methods in which we cannot directly compute CER, we use the
model’s accuracy against the GA attack method [1] which can be considered as
an upper bound of robust accuracy [6]. We compare our proposed method MAC-
ROBERT with three defense methods: Data Augmentation (DA) [2], Interval
Bound Propagation (IBP) [6], and SAFER [13].

3.2 Results and Analysis

Table 1. Results on the IMDB and SNLI dataset.

IMDB SNLI

CNN LSTM BERT BOW DecomAtt BERT

CLN CER CLN CER CLN CER CLN CER CLN CER CLN CER

ORIG 85.3 18.0 84.4 18.0 91.7 78.0 79.4 53.0 82.4 40.0 90.6 75.0

DA 85.1 20.0 84.2 25.0 91.5 76.0 79.2 65.0 82.6 65.0 90.6 75.0

IBP 81.0 65.0 76.8 60.0 – – 75.0 58.0 77.1 58.0 – –

SAFER 85.3 83.6 84.4 81.6 91.7 88.0 79.4 75.0 82.4 75.0 90.6 84.0

Ours 85.4 86.0 85.9 84.4 92.1 90.0 79.7 77.0 82.2 86.0 90.6 89.0
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Main Experimental Results. As we can see from the experimental results
of the IMDB dataset in Table 1, MACROBERT and SAFER both outperform
DA and IBP due to the robustness guarantee from randomized smoothing. This
fully verifies the effectiveness of randomized smoothing. MACROBERT achieves
a better CER score than SAFER as we take the certified region as the optimiza-
tion object to improve model robustness, which strongly demonstrates the supe-
riority of maximizing certified region. On the CLN metric, MACROBERT con-
sistently outperforms ORIG on all model structures except a very slight decline
compared with DecomAtt. This demonstrates that our method doesn’t influence
the performance of the clean data as it directly combines original samples and
perturbation samples to train the model. Similar results also can be found on the
SNLI dataset. Based on the comprehensive experimental results of two datasets,
MACROBERT has two advantages: First, the performance of MACROBERT is
not easily influenced by text length, which makes MACROBERT more applica-
ble. Second, MACROBERT is a scalable method that can be applied to arbitrary
models to enhance model robustness.

Ablation Study. The results of the ablation experiment are summarized in
Table 2. To reveal the impact of Multi-Hop neighbors, we generate synonyms of
a given word xi from extended P (xi) at inference time, denoted as “w/o Multi-
Hop”. To show the effect of the coordinated update, we train a model with a
single-point update strategy in which we update the perturbation word xj by
itself during training, denoted as “w/o COORD-UPD”. To verify the importance
of maximization of the certified region, we train a model without considering
robustness error, i.e. λ = 0, denoted as “w/o MAX-BOUND”. Experimental
results show MACROBERT performs better with Multi-Hop neighbors, coordi-
nated update strategy, and maximization of the certified region.

Table 2. Clean accuracy and certified accuracy on the IMDB dataset.

Model CLN CER GA

MACROBERT 85.42 86.00 89.00

w/o Multi-Hop – – 87.00

w/o COORD-UPD 83.19 80.40 –

w/o MAX-BOUND 85.71 81.60 –

4 Conclusion

To improve the robustness, we propose MACROBERT, a robustness certifica-
tion method utilizing the maximization of the certified region of a soft smoothed
classifier to defense adversarial word substitution attacks in NLP models. MAC-
ROBERT provides provably guaranteed robustness of all perturbation examples
and can be extended to models with arbitrary structures including large-scale
pre-trained models like BERT.
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Appendix

A Proof of Theorem 2

Proof. Define H[0,1] to be the set of all functions mapping from X to [0, 1]. For
∀h ∈ H[0,1], define h̃(x) = Ex̃∼Π(x)[h(x̃)]. For ∀x and c ∈ Y, we have

min
x̂∈S(x)

g̃(x̂, c) ≥ min
h∈H[0,1]

min
x̂∈S(x)

{h̃(x̂) s.t. h̃(x) = g̃(x, c)} := g̃low(x, c)

max
x̂∈S(x)

g̃(x̂, c) ≤ max
h∈H[0,1]

max
x̂∈S(x)

{h̃(x̂) s.t. h̃(x) = g̃(x, c)} := g̃up(x, c)

We denote p = g̃(x, c) and Πx(z) = P (Π(x) = z). Applying the Lagrange multi-
plier to the constraint optimization problem, we have

g̃low(x, c) = min
x̂∈S(x)

min
h∈H[0,1]

max
α∈R

h̃(x̂) − αh̃(x) + αg̃(x, c)

≥ max
α∈R

min
x̂∈S(x)

min
h∈H[0,1]

h̃(x̂) − αh̃(x) + αp

= max
α∈R

min
x̂∈S(x)

min
h∈H[0,1]

∫

z

h(z)(dΠx̂(z) − αdΠx(z)) + αp

= −max
α≥0

max
x̂∈S(x)

∫

z

(αdΠx(z) − dΠx̂(z))+ + αp

According to the lemma 2 of [13], we have

∫

z

(αdΠx(z) − dΠx̂(z))+

= α

⎡

⎣1 −
∏

j∈[L],xj �=x′
j

nxj ,x′
j

nxj

⎤

⎦ +

⎡

⎣
∏

j∈[L],xj �=x′
j

nxj ,x′
j

nxj

⎤

⎦

⎡

⎣α −
∏

j∈[L],xj �=x′
j

nx′
j

nxj

⎤

⎦

+

where, nxj
= |P (xj)|, nxj ,x′

j
= |P (xj) ∩ P (x′

j)|.
According to the Lemma 3 of [13], we have x∗ is the optimal solution of

maxx̂∈S(x)

∫
z
(αdΠx̂(z) − dΠx(z))+ when the adversary attack T words at most,

where x̃∗
i = arg minx̃i∈P (xi) nxi,x̃i

/nxi
. Now, the lower bound becomes

g̃low(x, c) = −max
α≥0

∫

z

(αdΠx(z) − dΠx∗(z))+ + αp

= max
α≥0

(p − q(x))α − (1 − q(x))(α − 1)+

= max(p − q(x), 0)
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where q(x) is consistent with the definition in Theorem 1. According to [13]
Proposition 1, we can easily deduce that CR(g̃;x, y) > 0 can reduce to be robust
at x. �

References

1. Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.J., Srivastava, M., Chang, K.W.:
Generating natural language adversarial examples. In: Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing (2018)

2. Belinkov, Y., Bisk, Y.: Synthetic and natural noise both break neural machine
translation. In: International Conference on Learning Representations (2018)

3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus
for learning natural language inference. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 632–642, September 2015

4. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via random-
ized smoothing. In: PMLR, vol. 97, pp. 1310–1320. PMLR (2019)

5. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: International Conference on Learning Representations (ICLR) (2015)
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Abstract. Previous studies on Data Augmentation (DA) mostly use
a fine-tuned Language Model (LM) to strengthen the constraints but
ignore the fact that the potential of diversity could improve the effective-
ness of generated data. To address this dilemma, we propose a Diversity-
Enhanced and Constraints-Relaxed Augmentation (DECRA) that has
two essential components on top of a transformer-based backbone model,
including a k-β augmentation and a masked language model loss.
Extensive experiments demonstrate that our DECRA outperforms state-
of-the-art approaches by 3.8% in the overall score.

Keywords: Data augmentation · Regularization · Low-resource

1 Introduction

Fig. 1. The demonstration of how augmentation works in LRC.

Data Augmentation (DA) approaches [2,15] are often used to alleviate the thirst
for labeled data in Low-Resource Classification (LRC). DA in text data aims to
generate constrained and diversified data to improve classifier performance [5,
7,18]. Ideally, we assume data generated by DA is able to present the data
distribution in every category. Thus, the generated data is supposed to extend the
range of labeled data which would help the classifier make better decisions [16].
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 262–270, 2021.
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As shown in Fig. 1(a), constraints and diversity are two main concepts in DA.
The constraints mainly pull the generated data towards the original one. The
diversity in generating comes from partially changed labeled data. It pushes the
generated data away from the original one.

However, previous studies often suffer from poor generalization ability in low-
resource conditions due to strong constraints but weak diversity in augmentation.
As the Language Model (LM) tends to overfit on limited data in low-resource
conditions, strong constraints are formed after fine-tuning [7,17]. As a result,
the generated data is pulled towards the original data. At the same time, the
weakness of diversity in augmentation is often ignored. Current DA approaches
mostly use the method that is identical to the masked Language Model learning
in BERT [3]. In this method, diversity is influenced by the changing scope and
degree of complexity in the generated data. The changing scope is proportional to
the times of the DA applied. In each time of augmentation, one set of maskers
is generated [7,9]. And the masked positions are the ones to be augmented.
This process results in a fixed and narrow changing scope. On the other hand,
the degree of complexity is related to the amount of information used in the
augmenting data in masked positions. For each masked position, routinely, one
sampled tokens are applied [9,17]. Therefore, it results in the low complexity of
the generated data. Consequently, strong constraints but weak diversity causes
the poor generalization ability in LRC.

In this paper, we propose a Diversity-Enhanced and Constraints-Relaxed
Augmentation (DECRA). DECRA allows the generated data to be more scat-
tered within the extended boundary. Our DECRA is based on the modified
LDMAW [7], which is the state-of-the-art model in LRC. The backbone model
consists of a transformer-based encoder (TBE), a language model layer (LML)
and a classification layer (CL). DECRA has two essential components based on
the backbone model. 1) k-β augmentation, an essential component in DECRA,
will enhance the diversity in generating. It expands the changing scope by apply-
ing augmentation β times and enhances the degree of complexity by using top-k
tokens to augment the masked position. 2) The regularization, masked LM loss
on original data, generates more relaxed constraints compared to fine-tuning.
DECRA will be trained by the combination of masked LM loss and the classifi-
cation loss. Our model can learn the constraints dynamically and progressively
during the training process. It will process more scattered generated data, which
will reach or approach the boundary of categories, to achieve better generaliza-
tion ability.

2 Model Description

Figure 2 shows the structure of DECRA. It has two essential components based
on a backbone model. The k-β augmentation is applied to the original data to
generate diversity-enhanced data. The masked Language Model (LM) loss is
introduced as the regularization, which is the relaxed-constraint in generating.



264 G. Liu et al.

Fig. 2. The structure of diversity-enhanced and constraints-relaxed augmentation
(DECRA).

2.1 Transformer-Based Encoder

Transformer-Based Encoder (TBE) stacks multiple layers of transformers [14] to
encode the text data into embeddings. It is initialized by a pre-trained Language
Model (LM) which is trained on large-scale multi-domain datasets. The original
data xi is masked into xi. The original data xi is encoded as follows,

ei = Tansformerθt
(xi) . (1)

Here, ei ∈ R
T×H is the embeddings for classification, Transformerθt

repre-
sents the processing of transformers, T is the length of original data, H is the
hidden size of embeddings, θt is the parameters of TBE. Similarly, we can get
embeddings ei for the masked data xi.

2.2 Language Model Layer

Language Model Layer (LML) is composed of a fully-connected layer. The fully-
connected layer predicts the masked position based on its contextual embed-
ding [3] that is fundamental for k-β augmentation. It also essential to calculate
the masked Language Model loss [3] on original data as a regularization. The ei

is embeddings of masked data. The prediction is calculated as,

pi = gθa
(ei) . (2)

Here, pi ∈ R
T×V represents the probabilities of tokens in masked positions,

gθa
(·) maps the embedding size vector to vocabulary size.

2.3 Classification Layer

Classification Layer (CL) takes the first position of embeddings encoded by the
TBE as input, and outputs the class categories. For labeled data, we calculate
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the predictions as follow,
oi = fθc

(ei) , (3)

where fθc
(·) represents the function of CL, θc is the parameters of CL, oi ∈ R

C

represents the predictions.

2.4 K-β Augmentation

k-β algorithm is designed to enhance the diversity in generating. It aims to
augment the original data xi β times to get the generated data x̂i,j , j ∈ [1, β].

x̂i,j = φ(xi; k, β, θt, θa), j ∈ [1, β]. (4)

Here, φ is the k-β augmentation, β is the set of masks as well as the times of
augmentation applied, k is the number of tokens used for replacing the masked
position, θt and θa are the parameters in TBE and LML respectively. By this,
the changing scope of generated data is expanded. Also, the degree of complexity
of generated data is enhanced.

For each time of augmentation, the original data xi is randomly masked xi for
augmentation. Data augmentation consists of four steps: predict, top-k, softmax
and replace.

Predict. The embedding of the randomly masked position is feed into LML
to get the predictions pt

i,j ∈ R
V . The predictions represent the probabilities of

tokens to fit the t-th position.

Top-k. The top-k sampling, which is often used to improve the diversity in data
augmentation [4], is used. The top-k probabilities tokens in pt

i,j are selected as
pt

i,j ∈ R
k.

Softmax. The top-k probabilities are feed into a softmax function to normalize
the probabilities.

p̂t
i,j = softmax(pt

i,j) (5)

Here, p̂t
i,j ∈ R

k is the normalized top-k probabilities.

Replace . For the convenient of replacement [7], we fill the value of p̂t
i,j into a

zero vector to get pt
i,j ∈ R

V . Instead of only one sampled token, we use k tokens
to replace the masked token xt

i,j , and get the generated data x̂i,j . Note that the
number of masked tokens is not fixed. The progress is repeated β times to get
x̂i,j , j ∈ [1, β]. The labels x̂i,j all set to yi as the setting in [17]. The generated
data are encoded for classification êi,j , j ∈ [1, β] as in Eq. 1. Then, as in Eq. 3, we
can get the prediction of generated data after k-β augmentation ôi,j , j ∈ [1, β].

2.5 Regularization

Masked Language Model (LM) loss [3] generates relaxed contextual constraints
compared to fine-tuning. The labeled data is corrupted by randomly replacing
some positions into maskers. Then, the model learns to predict the original token
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with the contextual embedding in the masked position. It takes the embeddings
of the masked position ei as inputs, takes the original tokens xi as labels, and
calculates the loss as follow,

LLM =
1
M

T∑

t=1

mtxt
i log(fθa

(et
i)) , (6)

where LLM represents the masked LM loss, mt = 1 indicates the token on t
position is masked, xt

i ∈ R
V is the t-th token, θa is the parameters of LML, M

is the number of masked positions.

2.6 Training Process

The cross-entropy between the predictions and yi is calculated as

LCE = − 1
N

N∑

i=1

yi log(oi), (7)

where N is the total number of original data.
Similarly, we can get cross-entropy loss L̂CE for the data generated by k-β

augmentation,

L̂CE = − 1
N

1
β

N∑

i=1

β∑

j=1

yilog(ôi,j). (8)

Here, we average the loss calculated on β generated data which can get a more
stable improvement [1].

The final loss is weighted average as follow,

Lfinal = LCE + λaL̂CE + λlmLLM . (9)

Here, The λa and λlm are the weights for each loss term.

3 Experiments

3.1 Experimental Settings

Dataset and Baselines. To evaluate the text augmentation in low-resource
classification, we use the same settings in [7]. We evaluate the UABC model
based on three benchmark classification datasets, including TREC [10], SST-
5 [13], and IMDB [11]. For each dataset, we randomly sample 15 small datasets.
Each contains 40 samples per class for training and 5 (except SST-5 is 2) samples
per class for validation. The models are evaluated on the validation set at the end
of each epoch. We compare our model with six methods, including EDA [16],
BT1 [12], Mixup [8], CBERT [17], LDMAW [7].
1 We implement the back translation based on MarianMT in Transformers, https://

huggingface.co/transformers.

https://huggingface.co/transformers
https://huggingface.co/transformers
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Table 1. DA extrinsic evaluation in low-resource settings. Results are reported as
Mean (STD) accuracy on full test set. Experiments are repeated 15 times.† refers to
the results reported in [7]

Methods Datasets AVG

SST5(200) IMDB(80) TREC(240)

Baseline† [3] 33.3± 6.2 63.6± 4.4 88.3± 2.9 61.7

EDA [16] 36.8± 6.1 62.8± 6.0 86.6± 4.1 62.1

BT [12] 35.8± 4.3 66.4± 4.2 86.6± 4.3 62.8

Mixup [8] 36.0± 4.0 67.3± 5.1 88.3± 3.2 63.9

CBERT† [17] 34.8± 6.9 63.7± 4.8 88.3± 1.1 62.3

LDMAW† [7] 37.0± 3.0 65.6± 3.7 89.2± 2.1 63.9

DECRA (our work) 40.3± 3.4 69.0± 4.0 89.5± 1.6 66.3

Table 2. The ablation results (%) of DECRA model. Results are reported as Mean
(STD) accuracy on full test set. Experiments are repeated 15 times.

ID k-β Reg. Dataset AVG

SST5(200) IMDB(80) TREC(240)

1 × × 33.3± 6.2 63.6± 4.4 88.3± 2.9 61.7

2 × � 33.8± 2.9 64.6± 4.4 86.5± 3.4 61.6

3 � × 36.5± 3.2 65.6± 5.0 89.0± 1.8 63.7

4 × � 38.2± 3.3 68.8± 4.1 88.4± 3.0 65.1

5 � � 39.0± 5.1 68.7± 5.4 88.7± 1.9 65.5

6 � � 40.3± 3.4 69.0± 4.0 89.5± 1.6 66.3

× indicates the component is removed form DECRA, � indi-
cates the component is added in DECRA. k-β is the k-β
augmentation and Reg. is the masked LM loss. � indicates
the DECRA is pre-trained with masked LM loss and then
finetuned as [6].

3.2 Main Results

Table 1 exhibits the results of all models on three datasets. Our DECRA out-
performs all baselines on all three datasets. Firstly, our DECRA can improve
the classification performance in LRC from 63.9% to 66.3%. When compared
with LDMAW and Mixup, our model achieves a higher overall score. That ben-
efits from the effects of our k-β augmentation which effectively enhances the
diversity of generated data. Secondly, our DECRA achieves the highest mean
accuracy score on every dataset. The stable improvement may benefit from
the expanded changing scope in k-β augmentation. Thirdly, our DECRA has
a smaller parameters-scale than LM-based approaches. When compared with
CBERT and LDMAW, our model unifies the augmenter and classifier by reducing
nearly half of the parameters. Noticeable that the LDMAW uses reinforcement
learning to tune the augmenter(BERT) for the classifier(BERT). Our DECRA
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improves the overall score by a significant margin. It’s 3.8% improvements
against the LDMAW and 6.3% improvements against CBERT. The improve-
ment benefits from the improvement of generalization ability.

3.3 Ablation Study

To better understand the working mechanism of the DECRA, we conduct abla-
tion studies on all three datasets, as listed in Table 2. 1) Without augmentation,
the ID2, which has relaxed constraints compared to ID4, results in lower clas-
sification accuracy. The results indicate that strong constraints are more effec-
tive in LRC without augmentation. 2) With augmentation, the ID6, which has
relaxed-constraints compared to ID5, promotes the overall score from 65.5 to
66.3. The improvement of the overall score in LRC with augmentation mainly
from the relaxed-constraints. 3) Besides, the ID3 outperforms ID1 due to the
diversity-enhanced k-β augmentation. Also, the ID5 has a higher overall score
(65.5) than ID4 (65.1). The results show the effects of k-β augmentation in
LRC, which enhance the diversity of generated data.

3.4 Importance of Diversity and Constraints

Fig. 3. Different loss weights on SST5.

To analyze the importance of diversity and constraints (L̃CE and LLM ), we grid
search the optimal weights (λa and λlm ) on SST5. Experiments are repeated
15 times. Firstly, the λmlm is set to 1.0 in the searching of the λa. Then, the
λa is set to the optimal (1.0) in the search of λlm. Figure 3(a) describes the
effects of weight λa for k-β augmentation L̂CE . The average accuracy achieves
the peak when the λa is 1.0. The generated data has equal importance to the
original data. This setting is identical to [7]. Figure 3(b) shows the effects of
weight λa for masked LM loss LLM . The model reaches the optimal classification
performance when the λlm is 1.5. The LLM has larger weights than LCE . It shows
the importance of contextual constraints in LRC.
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4 Conclusion

In this paper, we propose a Diversity-Enhanced and Constraints-Relaxed Aug-
mentation (DECRA) that has two essential components on top of a transformer-
based backbone model. We propose a k-β augmentation to enhance the diver-
sity of generated data by expanding the changing scope and enhancing the
degree of complexity in generated data. We introduce the masked Language
Model loss instead of staged fine-tuning to generate relaxed-constraints. The
improved diversity and relaxed constraints help to generate data scattered near
or approach the category boundaries. Experimental results demonstrate that our
DECRA significantly outperforms state-of-the-art in low-resource classification.
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Abstract. Utilizing the demographic information of social media users
is very essential for personalized online services. However, it is diffi-
cult to collect such information in most realistic scenarios. Luckily, the
reviews posted by users can provide rich clues for inferring their demo-
graphics, since users with different demographics such as gender and
age usually have differences in their contents and expressing styles. In
this paper, we propose a neural approach for demographic prediction
based on user reviews. The core of our approach is a deep multi-view
multi-task learning model. Our model first learns context representa-
tions from reviews using a context encoder, which takes semantics and
syntactics into consideration. Meanwhile, we learn sentiment and topic
representations from selected sentiment and topic words using a word
encoder separately, which consists of a convolutional neural network to
capture the local contexts of reviews in word-level. Then, we learn a
unified user representation from context, sentiment and topic represen-
tations and apply multi-task learning for inferring user’s gender and age
simultaneously. Experimental results on three real-world datasets vali-
date the effectiveness of our approach. To facilitate future research, we
release the codes and datasets at https://github.com/icmpnorequest/
DASFAA2021 DMVMT.

Keywords: Demographic prediction · Context · Sentiment and topic
views · Multi-task learning

1 Introduction

User demographics have been useful for personalization and recommendation.
However, collecting such information in most realistic scenarios is difficult and
the collected data might not be real. Thus, how to infer effective user demo-
graphics from public available data has attracted both academia and industry.

Luckily, many researchers have studied ways to infer user demographics
from social media texts. A common approach relies on lexical features [1,5,15].
c© Springer Nature Switzerland AG 2021
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For instance, Sap et al. [15] derive gender and age predictive lexica over social
media for prediction. Baslie et al. [1] leverage unigrams and characters to iden-
tify author’s gender and language variety. Gjurković and Šnajder [5] use Linuis-
tic Inquiry and Word Count (LIWC) [14] (a psychological dictionary) to detect
user’s personality. These hand-crafted features provide good explainability and
are of high quality, but they require much manual labor and may ignore rich
semantics in text. Recently, deep learning and pre-trained word embeddings
have been widely used for demographic prediction. For example, Bayot et al. [2]
apply word2vec [12] and convolutional neural network (CNN) [9] to infer user’s
gender and age. More recently, Wu et al. [19] leverage hierarchical attention
mechanism and Tigunova et al. [16] combine attention mechanism with CNN
for demographic prediction. Despite these methods perform well, they do not
consider the useful sentiment and topic information in text, which have been
proved important in demographic prediction [20].

In this paper, we propose a neural approach for demographic prediction based
on user reviews. Instead of merging all reviews from the same user into a long
text, our approach learns user representations using a deep multi-view multi-
task learning model. Our model first learns context representations with a con-
text encoder, to represent rich semantics and syntactics in reviews. Meanwhile,
we learn sentiment and topic representations from selected sentiment and topic
words with a word encoder respectively. Each word encoder contains a CNN to
capture the local contexts in word-level. Then, we obtain a unified user repre-
sentation integrating from context, sentiment and topic representations. Since
gender and age are correlated, we apply multi-task learning for capturing latent
influence between them. In the end, we perform experiments on three real-world
datasets and the results validate the effectiveness of our model on demographic
prediction.

2 Related Work

User demographic prediction with social media text is often regarded as a classifi-
cation task in natural language processing (NLP) field. Traditional demographic
prediction methods mostly rely on hand-crafted linguistic features, such as lexi-
cons [15], unigrams [1] and LIWC [5]. Despite these hand-crafted features based
methods preform well, they generally require much manual labor to collect and
may ignore rich semantics in text. With the development of word embeddings
and deep learning, researchers [2,16] begin to infer demographics using implicit
context representations. For instance, Bayot et al. [2] leverage word2vec [12]
and CNN [9] to infer gender and age. Further, attention mechanism has been
proposed to capture informative contents in text [16,19].

Recently, multi-task learning has been utilized in demographic prediction
[17,18]. For example, [17] leverages multi-modal data from Twitter, i.e., users’
profiles, following network and tweets, to infer user demographics and location.
Additionally, Wang et al. [18] make use of images and user profiles for demo-
graphic prediction.
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Fig. 1. Our framework for demographic prediction

In this paper, the approach we propose is different from existing methods.
First, our model makes better use of context by considering both semantics
and syntactics in text. Second, we capture high-order interactions from context,
sentiment and topic views. Third, our approach utilizes the correlation between
demographics and applies multi-task learning for better performance.

3 Methodology

In this section, we will introduce our approach in details (Fig. 1). The input
of our model is a user review s = {w1, w2, ..., wn}. We define a task set U =
{u1, u2, ..., um} and use φui

to denote the parameters for the i-th task. The
outputs of our model are probability distributions for all tasks, i.e. for task ui is
Pr(yui

|s, φui
), where yui

represents the class in it.

3.1 Context View

As shown in Fig. 1, context view aims to capture semantics and syntactics infor-
mation from a user review s, and produces a contextualized latent representation
Hc. Thus, the learning process of Hc could be regarded as review-level embedding
and we apply a pre-trained language model BERT [4] for encoding. The encod-
ing procedure of BERT contains token embeddings, segment embeddings and
position embeddings. Unlike static pre-trained word embeddings (e.g., word2vec
[12]), token embeddings could solve polysemy and vary according to their con-
text. Segment embeddings aim to capture inter-sentence syntactics, while posi-
tion embeddings indicate the position of each words in the review s. The final
context embeddings vc of the review s are the sum of token embeddings, segment
embeddings and position embeddings. In addition, the special tokens and

are used for labeling classification tasks and separating segments respec-
tively. Finally, we output the final hidden state of the first special token
as the context representation Hc in context view.
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3.2 Sentiment View

As illustrated in Fig. 1, sentiment view is responsible to learn a hidden represen-
tation Hs for sentiment words, which are automatically extracted from a user
review s. It mainly contains three steps.

The first step is sentiment words extraction. Sentiment words are indicative
for demographic prediction, so we utilize a sentiment dictionary AFINN [13] to
automatically extract sentiment words from the review s. If no words appear in
the sentiment dictionary, we set “NA” in the sentiment words set S.

The second step is word embedding. Through this step, each sentiment word
is mapped to a d-dimensional dense vector vs ∈ IRh×d using a word embedding
lookup table E ∈ IRV ×d, where V is vocabulary size.

The third step is word encoding. We use a CNN as word encoder, to capture
semantics from the sentiment words embeddings vs. It learns the contextual
representation through convolutional filters which slide ω-grams per step. We
apply N filters to learn semantics from sentiment words embeddings vs and
obtain a feature map cs = [cs1, cs2, ..., csN ]. The i-th feature map is csi =
[csi1 , c

s
i2 , ..., c

s
ih−ω+1 ]. After generating feature map cs, max-over-time pooling

operation is performed to capture the most important feature on each dimension
of vector by taking the maximum value. For the i-th feature in cs, the feature
after max-over-time pooling is ĉsi = max{csi}.

Finally, we concatenate all the features after max-over-time pooling opera-
tions as Hs = [ĉs1, ĉ

s
2, ..., ĉ

s
N ]. Additionally, Hs is the output for sentiment view.

3.3 Topic View

Topic view learns a latent representation Ht for topics (Fig. 1). The learning
procedure mainly consists of three steps.

The first step is topics extraction. We make use of the traditional topic mod-
elling method, latent Dirichlet allocation (LDA) [3], to extract topics automat-
ically. Generally, a user review contains several topics and each topic would be
formed by a set of words. Thus, a user review s could be seen as a document
consisting of k topics. For each topic z in the document, a distribution ϕz on
Vt is sampled from a Dirichlet function, where Vt represents a vocabulary con-
sisting of a set of topic words. Then, LDA estimates the distribution p(z|w) for
z ∈ sP , w ∈ V P

t , where P denotes the set of word positions in the user review s.
Finally, we get the topics set T = {wt

1, w
t
2, ..., w

t
r} according to the distribution

p(z|w), where r is the length of the sequence. Topics embedding and encoding is
similar to that in sentiment view, which has been detailed described in Sect. 3.2.

Finally, we output topics latent representation Ht = [ĉt1, ĉ
t
2, ..., ĉ

t
N ] for topic

view, where ĉti represents the i-th feature after max-over-time pooling.

3.4 Training Procedure

The training procedure of our framework consists of two stages: obtaining a
unified user representation and multi-task learning.
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Table 1. Statistics of three datasets, including number of total reviews (#Total),
number of English reviews with gender and age information (#Extracted), female,
male and various age categories distributions of extracted reviews.

Datasets #Total #Extracted Female% Male% (0, 18]% (18, 30)% [30, 40)% [40, 99)%

Denmark 646084 826 25.67 74.33 0.3632 8.11 31.60 59.93

US 648784 37060 39.82 60.18 0.13 11.39 29.91 58.58

UK 1424395 129175 40.38 59.62 0.18 8.06 18.59 73.17

The first stage is to obtain a unified user representation for context represen-
tation Hc, sentiment representation Hs and topic representation Ht. We apply
averaging operation on context representation Hc, to get a good summary of the
semantics. Then, we concatenate representations from context, sentiment and
topic views as H = Hc ⊕Hs ⊕Ht, where ⊕ denotes the concatenation operation.

The second stage is to predict demographics simultaneously using multi-task
learning. We pass the concatenated feature H through a fully-connected layer
and output a compressed latent feature vector X. Then, the shared latent vector
X is given to a task-specific layer to calculate the probability distribution ˜yui

:

ỹui
= softmax(WT

ui
X + bui

) (1)

where Wui
and bui

represent the weights and bias for task ui respectively.
For each task ui, we minimize the cross-entropy of the predicted and true

distributions as following:

L(φui
) = −

K∑

k=1

C∑

c=1

yc
klog(ỹc

k) (2)

where L denotes the cross-entropy loss function. yc
k and ỹc

k are the true label and
prediction probabilities for task ui. K represents the total number of training
samples and C is the total number of classes.

Finally, the total loss L of our approach is optimized for global objective
function:

L = λGLG + λALA (3)

where λG and λA are the weights for gender and age task respectively, and LG

and LA are the losses of gender and age tasks.

4 Experiments

4.1 Experimental Setup

In this section, we conduct extensive experiments on three user reviews datasets
[7] from TrustPilot (a website for online user reviews) to verify the effectiveness
of our framework. The datasets collect users reviews and the reviewers’ profiles
(e.g., gender and birth year) from Denmark, United Kingdom and the United
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States of America. We only extract English reviews with reviewer’s gender and
birth year information from the three datasets, using a language identifier fast-
Text API1. Motivated by [18], we categorize user age into four categories: (0, 18]
(18, 30), [30, 40) and [40,99]. The statistics of the three datasets are summarized
in Table 1.

Table 2. Performance comparison of accuracy and macro-averaged F1 score on the
Denmark, US and UK datasets for gender and age inference tasks. Here, gender task
weight λG and age task weight λA are set to 1.

Denmark US UK

Methods Gender Age Gender Age Gender Age

Acc Fscore Acc Fscore Acc Fscore Acc Fscore Acc Fscore Acc Fscore

Majority 74.33 – 59.93 – 60.18 – 58.58 – 59.62 – 73.17 –

CNN 71.95 41.84 60.98 24.74 65.52 63.62 56.93 32.92 62.92 61.37 73.06 28.43

BiLSTM 73.17 42.25 64.63 26.17 66.08 64.65 57.93 34.70 63.61 61.59 72.10 26.71

FastText 70.73 41.43 59.76 23.62 66.86 66.11 55.34 27.48 65.36 64.20 76.70 21.70

BERT 73.17 42.25 56.10 19.97 67.59 65.74 58.61 23.11 64.92 61.81 77.04 22.57

RoBERTa 67.58 35.63 56.10 23.96 60.50 37.69 57.85 18.32 60.04 37.51 77.07- 21.76

HAMCNN−attn 68.07 45.27 52.77 24.49 63.68 60.15 57.03 24.76 52.12 49.65 67.89 24.85

HURA 70.84 44.70 51.57 25.61 66.42 57.56 54.11 22.42 58.41 41.18 75.69 22.32

Ours 78.05 46.31 69.51 27.34 72.02 70.77 59.61 36.13 67.22 65.91 77.39 30.84

We compared our proposed framework with the following methods: (1)
Majority, a majority class based approach; (2) CNN [2], a CNN based model
in demographics prediction; (3) BiLSTM [6], a bidirectional Long Short-Term
Memory network; (4) FastText [8], a method proposed for efficient text classifica-
tion; (5) BERT [4], the state-of-art method in various NLP tasks; (6) RoBERTa
[11], a state-of-art robust model modified from BERT; (7) HAMCNN−attn [16],
a state-of-art method using CNN and attention mechanism in demographic pre-
diction; (8) HURA [19], a hierarchical demographic prediction model based on
CNN and attention mechanism. As most works in user demographic prediction,
we use accuracy and macro-averaged F1 score as evaluation metrics and report
the average results. In all experiments, we preform 10-fold cross-validation, where
8 folds are used for training, 1 for validating and 1 for testing.

For all baselines, we adopt the optimal parameters configurations reported
in their works. In our model, we use a BERT-base encoder and set max input
length as 300. For sentiment and topic views, we embed sentiment words and
topics into a 200-dimension vector. The filter number of word encoder is 128
and the window sizes are 2, 3, 4 and 5. We leverage Adam [10] optimizer with a
dropout rate of 0.5 and set learning rate as 1e-3. Additionally, we apply an L2
weight decay 1e-3 to the loss and train our model in 20 epochs with a batch size
of 64. For multi-task learning, we use equal gender task weight λG and age task
weight λA as 1.

1 https://fasttext.cc/docs/en/language-identification.html.

https://fasttext.cc/docs/en/language-identification.html
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4.2 Experimental Results

Table 2 summarizes the comparison results between our model and baselines on
three datasets. We have the following observations: (1) Our framework outper-
forms the statistics based baseline Majority, because our framework leverages
rich information (e.g., semantics, sentiment words and topics) in text other than
major class distribution of dataset; (2) Our framework also achieves better per-
formance than neural network based methods, for we could capture context
information and local semantics in text; (3) Compared with the Transformers
based methods, our framework achieves better performance, especially on the
macro-averaged F1 score; (4) As for the state-of-art methods HAMCNN−attn [16]
and HURA [19], our model still gets better results by focusing on the effects of
high-order interactions among context, sentiment and topics in text.

Table 3. Ablation study of multiple views in our framework on gender and age
attributes

Denmark US UK

Gender Age Gender Age Gender Age

Acc Fscore Acc Fscore Acc Fscore Acc Fscore Acc Fscore Acc Fscore

w/o Context view 69.51 41.01 58.54 18.46 65.62 61.45 57.85 29.53 60.04 58.61 76.63 21.69

w/o Sentiment view 73.17 42.25 62.20 25.56 69.13 67.81 57.69 21.34 63.61 61.37 76.70 23.11

w/o Topic view 74.39 43.45 63.54 25.25 69.24 66.55 58.61 25.45 65.48 61.98 76.84 23.49

Ours 78.05 46.31 69.51 27.34 72.02 70.77 59.61 36.13 67.22 65.91 77.39 30.84

To investigate which part contributes more to the performance, we perform
ablation study. From Table 3, we could observe that: (1) Our approach performs
best when leveraging context, sentiment and topic views; (2) Without context
information, the performances on both gender and age tasks decrease sharply
for not taking rich semantics into consideration; (3) Incorporating topics with
context information performs better than using sentiment words and context.
This is because topics may vary from nouns (e.g., shop and price) to adjectives
(e.g., quick) and adverbs (e.g., smoothly), while sentiment words mainly consist
of adjectives (e.g., helpful). Thus, we can conclude that various types of words
contribute more to semantics.

5 Conclusion

In this paper, we study demographic prediction based on user reviews and pro-
pose a deep multi-view multi-task learning model. Our model first learns context
representations from reviews by considering semantics and syntactics in text. At
the same time, we learn sentiment and topic representations separately to cap-
ture the local contexts of reviews in word-level. Then our model integrates repre-
sentations from context, sentiment and topic views and leverages the correlation
between demographics to predict. Experimental results show that our model
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outperforms many baseline methods on gender and age predictions on three
real-world datasets. Further, we perform ablation study to investigate which
view contributes more to performance. In our future work, we plan to adapt our
study to multilingual user reviews and explore the transferability of our model
on more user attributes.
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Abstract. This paper studies a recently proposed task that maps con-
textual natural language questions to SQL queries in a multi-turn inter-
action. Instead of synthesizing an SQL query in an end-to-end way, we
propose a new model which first generates an SQL grammar tree, called
Tree-SQL, as the intermediate representation, and then infers an SQL
query from the Tree-SQL with domain knowledge. For semantic depen-
dency among context-dependent questions, we propose a reuse strategy
that assigns a probability for each sub-tree of historical Tree-SQLs. On
the challenging contextual Text-to-SQL benchmark SParC (https://yale-
lily.github.io/sparc) with the ‘value selection’ task which includes values
in queries, our approach achieves SOTA accuracy of 48.5% in question
execution accuracy and 21.6% in interaction execution accuracy. In addi-
tion, we experimentally demonstrate the significant improvements on the
reuse strategy.

Keywords: Context-dependent semantic parsing · Reuse strategy ·
Intermediate representation

1 Introduction

The task of mapping natural language (NL) questions into queries, such as SQLs,
that existing systems can process has become the hottest area. One representa-
tive Text-to-SQL task is the mapping to cross-domain, nested queries on multi-
tables, a task relevant to the well-known benchmark dataset named Spider [6].

However, the task for Spider is not realistic, as it assumes only context-
independent questions, namely mapping each question into an independently
executable SQL query in a single-turn interaction. In a real scenario of data
exploration, an analyst searches databases by asking a sequence of related ques-
tions in a multi-turn interaction. These questions are often semantically related
[1] so that a question may include references/reuse of portions of previous
questions.

To model semantic correlations among questions, a context-dependent task
is introduced in [7], which comes with a new benchmark named SParC (cross-
domain Semantic Parsing in Context). This task poses new challenges in han-
dling rich contextual information and thematic relations between questions.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 280–288, 2021.
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In addition, the task emphasizes on generalization, as each database appears
for only once in either the training dataset or the dev/test dataset. It is not
trivial to address context-dependent Text-to-SQL task, as most existing neural
models fail to deliver a satisfied result.

Inspired by mismatch problems when synthesizing SQL queries directly from
questions mentioned by [2] in context-independent task. Essentially, as NL is
aimed at facilitating human communication, while SQL is designed for declara-
tive database operations, there exists a huge gap between the implicit semantics
of NL questions and the strictly formalized SQL queries. In view of this gap, we
advocate a solution based on the notion of an intermediate representation called
Tree-SQL, a tree structure complying with SQL grammar. This representation
can then be used to support the value prediction, which is not considered in
most work and unable to generate complete SQL for database execution.

The intuition of our solution for context-dependent is to transform historical
queries as Tree-SQLs, and reuse sub-tree structures as context in the prediction
of the next SQL query. In particular, we assign to each sub-tree of Tree-SQL
a probability, which indicates the likelihood of its being reused during the pre-
diction of the new query. For value prediction, we generate a correct prediction
for specific numeric/string values in SQL queries by transforming open-domain
value selection problems into closed-domain value extraction for questions.

Experiment results show that our model delivers accuracy of 48.5% in ques-
tion execution and 21.6% in interaction execution. At the time of writing, we
achieve state-of-the-art on complex public datasets, SParC with ‘value selection‘
task. In addition, we experimentally demonstrate the significant improvements
on the tree reuse mechanism.

2 Related Work

For NL2SQL task, context-independent semantic parsing has been well studied
on WikiSQL [10] dataset and more complex Spider [6] dataset. Some researches
have achieved promising results on both datasets. Compared to the context-
independent parsing, the context-dependent semantic parsing becomes increas-
ingly popular only in recent years. Several benchmark datasets have been pro-
posed, such as ATIS [3], SequentialQA [4], and SParC [7]. Among those datasets,
SParC is the most challenging one with complex semantic questions and database
schema.

While [5] proposes a model on the ATIS single-domain dataset, which only
has weak semantic and few contextual types. It maintains an interaction-level
encoder and copies segments of previously predicted queries for the next pre-
diction. Its segment-level copying strategy suffers from error propagation. To
address the issue, [8] applies token-level editing strategy on the SParC, which
is robust to error propagation but incurs high prediction overheads on all pos-
sible target tokens. For the reuse of historical answers, the segment-level is too
coarse and the token-level is too fine. Our approach further extends a compro-
mise reuse strategy that focuses on action-level reuse of previous Tree-SQLs to
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Fig. 1. Grammar rules of Tree-SQL. Fig. 2. An interaction from SParC and
a Tree-SQL with respective SQL query
at third turn.

better explore the correlations among consecutive questions, and achieves a more
accurate mapping result.

3 Approach

In this section, we focus on learning a neural model for generating Tree-SQLs
from multi-turn questions. We also discuss our reuse strategy for better Tree-
SQL prediction.

3.1 Task Formulation

Let X and Y denote a natural language question and its corresponding SQL
query respectively. We use Ŝ = [ŝ1, ŝ2, . . . , ŝi, . . . , ŝm] to represent the database
schema. where ŝi is a raw column, formatting as table.column.

In a context-dependent semantic parsing task, we maintain an interaction
history It = [(X1, Y1), (X2, Y2), . . . , (Xt−1, Yt−1), consisting of t−1 question and
SQL query pairs. So given current question Xt and database schema Ŝ, our goal
is to learn an optimal mapping function f : (Xt, It, Ŝ) → Yt.

3.2 Tree-SQL

We propose the Tree-SQL as an intermediate representation. The grammar rules
of Tree-SQL are demonstrated in Fig. 1, and Fig. 2 shows an interaction from the
SParC dataset and a Tree-SQL evolves from SQL of third turn.

Currently, few work deals with “value prediction” on complex datasets, such
as Spider and SParC, mainly due to the greater difficulty of value prediction,
involving different sources and diversity, e.g., “North America” and “3000” in
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Fig. 3. Architecture of the neural model

Fig. 2. To reduce the search space, Tree-SQL transforms the open-domain value
prediction problem into closed-domain value extraction in NL questions. We
define three parameters to maintain the appearance of values. Suppose a value
shows up in the Vt-th turn of an interaction (namely, the Vt-th question in the
interaction), we use Vs and Vd to denote the starting offset and the length of the
value in the question, respectively.

To infer an SQL query, we just traverse the tree structure in pre-order and
map each tree node to the corresponding SQL query components based on our
grammar rules defined in Fig. 1.

3.3 Basic Model

We design an SQL grammar-aware model based on the encoder-decoder structure
to generate Tree-SQL. It takes questions, database schema and historical Tree-
SQLs as input and outputs a Tree-SQL. An overview of the model architecture
is illustrated in Fig. 3.

Contextual Encoder. We encode the question Xt and database schema Ŝ with
pre-trained BERT as the first layer, which are concatenated together delimited
by the [SEP] token:[CLS],Xt,[SEP],ŝ1,[SEP],ŝ2, [SEP],. . . ,ŝm,[SEP]. Then the
BERT embedding of question is fed into a Bi-LSTM layer to generate the final
question embeddings HU

t . For encodings of schema items, we employ an self-
attention layer to estimate the importance of different items, which can be also
used to identify the primary-foreign key relationships. The final schema embed-
dings are the weighted combination H Ŝ .
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History-Aware Encoder. To reveal the correlations between different ques-
tion/query pairs, we design a history-aware encoder based on LSTM to incorpo-
rate the contextual information as the interaction proceeds. The encoder updates
iteratively between the current question embedding hU

t and its hidden state hI
t .

Two-Stage Tree-SQL Decoder. Instead of applying an end-to-end approach,
our decoder first generates a Tree-SQL from the embedding. The Tree-SQL gen-
eration is conducted as a coarse-to-fine framework prediction process, consisting
of two stages. In the first stage, we apply a skeleton decoder to generate a
skeleton of Tree-SQL with internal nodes only. In the second stage, we adopt a
refinement decoder to fill in the missing leaf nodes. Figure 3 demonstrates the
process of our decoder. To decode the k-th action, we establish two learnable
embeddings, ak for semantics of action and bk for the type of action and learn
a context vector ck. The two decoders share the same learnable parameters, the
difference lies in the context vector.

hD
k+1 = LSTMD([ak; bk; ck],hD

k ) (1)

(a) Skeleton Decoder. The internal nodes of Tree-SQL do not involve specific
raw columns and values. Therefore, the context vector ck of skeleton decoder
(denoted as LSTMD1) only comes from question information ctokenk via an atten-
tion between the hidden state of D1 and all the weighted question embeddings
HU , namely, ck = [ctokenk ].

(b) Refinement Decoder. The refinement decoder (denoted as LSTMD2) tries
to fill in the missing leaf nodes for the skeleton. We also need the schema embed-
dings H Ŝ to learn cschema

k , namely, ck = [ctokenk ; cschema
k ].

Based on the above definitions, we can define the loss function of the two-
stage decoder as:

LD1 = −
T∑

k=1

N∑

j=1

yD1
t,k,j log p(ŷD1

t,k,j |Xt,It);LD2 = −
T∑

k=1

N∑

j=1

yD2
t,k,j log p(ŷD2

t,k,j |Xt, Ŝ, It)

LD = α × LD1 + LD2

(2)

we adopt the Cross Entropy as loss function of our decoders and a weight factor
α to adjust the importance of two decoder, where N is the number of actions
(yt,k,j = 1 indicates that the j-th action is consistent with the ground truth one,
while yt,k,j = 0 shows a false result).

3.4 Optimization with Reuse Mechanism

To exploit the correlations of Tree-SQLs from different turns, we propose an
optimization technique to improve the prediction of Tree-SQL by reusing a par-
tial of generated answers from historical turns. The process of reuse mechanism
is presented in Fig. 4.

We first generate the embedding of Tree-SQL by a encoder based on Bi-LSTM
structure. Then We measure the importance of previously predicted Tree-SQLs
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Fig. 4. Process of reuse mechanism

cqueryl,k from different turns via an attention between the hidden state of decoder
and the embedding of Tree-SQL. To this end, a new context vector ck with query
embedding is defined as ck = [ctokenk ; cschema

k ; cqueryk ].
We predict a probability βreuse

k of reusing previous Tree-SQLs’ actions via
sigmoid applied into context vector ck. We also generate a weight wl,i for each
sub-tree to indicate the possibility of reusing actions within the sub-tree. Then,
the output distribution becomes a trade-off between the current actions and the
historical Tree-SQLs of multiple turns and multiple sub-trees.

p(ŷt,k) = βreuse
k ×

t−1∑

l=1

θ
turn

l × pl(ŷl,k) + (1 − βreuse
k ) × pt(ŷt,k) (3)

The probability of action at current turn is denoted as pt, while the probability
of action reused from the previous Tree-SQLs is represented as pl, where 1 <=
l <= t − 1. Figure 4 shows an example of reuse strategy. Suppose we have two
historical Tree-SQLs, ŷ1 and ŷ2. We reuse most structures and some leaf nodes
from previous Tree-SQLs when generating ŷ3.

4 Experiment

4.1 Experiment Setup

Dataset. We conduct our experiments on the SParC [7], an expert-labeled
cross-domain context-dependent dataset which contains 4,298 coherent ques-
tion sequences (12k+ questions paired with SQL queries) querying 200 complex
databases in 138 different domains.
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Metrics. For SQL without value, to avoid the effect of orderings, we follow
the evaluation approach proposed by [6] that decomposes the predicted queries
into different components, and calculates the set matching accuracy between the
ground-truth and predicted queries. Similar as Zhang’s work [8], we also report
two metrics: the question match accuracy (QMA) and the interaction match
accuracy (IMA). For SQL with value, we directly use the generated SQL for
database execution and report question execution accuracy (QEA) and interac-
tion execution accuracy (IEA).

4.2 Overall Results

Table 1 presents the results without value prediction. It can be observed that
our model outperforms all baselines on the development and test sets. In partic-
ular, compared with state-of-the-art model EditSQL, our model outperforms it
with 5.4% QMA and 4.9% IMA absolute improvement on the development set,
achieving 52.6% QMA and 34.4% IMA. For test set, we achieve 48.1% QMA
accuracy and 25.0% IMA accuracy. For the more complex “value prediction”
tasks, our model achieves 48.5% QEA and 21.6% IEA on the test set of SParC,
presented in Table 2, which is the SOTA method of value prediction so far.

Table 1. Metrics of different models on
SParC without value

Approach QMA (%) IMA (%)

Dev Test Dev Test

SyntaxSQL [7] 18.5 20.2 4.3 5.2

CD-Seq2Seq [7] 21.7 20.3 9.5 8.1

GuideSQL – 34.4 – 13.1

ConcatSQL – 46.3 – 22.4

GAZP [9] – 45.9 – 23.5

SubTreeSQL – 47.4 – 25.5

EditSQL [8] 47.2 47.9 29.5 25.3

Ours (w/o value) 52.6 48.1 34.4 25.0

Table 2. Metrics of models on
SParC with value

Approach QEA (%) IEA (%)

Dev Test Dev Test

GAZP [9] – 44.6 – 19.7

Ours 50.4 48.5 29.4 21.6

4.3 Effectiveness of Reuse Strategy

To further understand the effectiveness of reuse strategy, we compare our app-
roach with EditSQL on no-value task, which also supports an editing strategy.
As presented in Fig. 5, applying reuse strategy benefits all turns and makes the
model more stable for later turns. It can effectively reduce the error propagation
by exploiting the correlations between questions.
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Fig. 5. The effectiveness of reuse strategy

5 Conclusions

In this paper, we propose a neural approach with encoder-decoder architecture
for context-dependent cross-domain Text-to-SQL generation. We design a new
tree structure, Tree-SQL, which is used as the intermediate representation for
the translation. To exploit the correlations between questions of different interac-
tions, we introduce a reuse mechanism to improve our prediction. Experimental
results on the challenging SParC benchmark demonstrate the effectiveness of
our model. In particular, our Tree-SQL extends the value prediction module to
adapt to more real application scenarios that SQL often contains values, and
our model achieves state-of-the-art on the value prediction task.

Acknowledgments. The work is supported by NSFC (grant number 61872315) and
Zhejiang Provincial Natural Science Foundation (grant number LZ21F020007).
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Abstract. Multi-view subspace clustering has emerged as a crucial tool
to solve the multi-view clustering problem. However, many of the exist-
ing methods merely focus on the consistency issue when learning the
multi-view representations, failing to capture the latent inconsistency
across different views (which can be caused by the view-specificity or
diversity). To tackle this issue, we therefore develop a Consistency- and
Inconsistency-aware Multi-view Subspace Clustering for robust cluster-
ing. In the proposed method, we decompose the multi-view representa-
tions into a view-consistent representation and a set of view-inconsistent
representations, through which the multi-view consistency as well as
multi-view inconsistency can be well explored. Meanwhile, our method
aims to suppress the redundancy and determine the importance of differ-
ent views by introducing a novel view weighting strategy. Then a unified
objective function is constructed, upon which an efficient optimization
algorithm based on ADMM is further performed. Additionally, we design
a new way to compute the affinity matrix from both consistent and incon-
sistent perspectives, which makes sure that the learned affinity matrix
comprehensively fit the inherent properties of multi-view data. Experi-
mental results on multiple multi-view data sets confirm the superiority
of our method.

Keywords: Multi-view subspace clustering · Multi-view
representation learning · Consistency · Inconsistency · Redundancy

1 Introduction

Data in the form of multiple sources, also referred to as multi-view data, arises
frequently in the fields of data mining and machine learning. Multi-view data
can be obtained from heterogenous sources (or views), where each view conveys
the specific physical meaning of the same object. For instance, a facial image can
be influenced by different lighting conditions or input modalities; the same scene
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image can be classified from multiple visual features, such as GIST, SIFT and
HOG; one news report may be reported by different broadcasters or translated
into multiple languages. Naturally, the increasing amount of multi-view data
has led to great interest in the research of multi-view clustering. Compared
with the single-view clustering methods, multi-view clustering methods have the
potential to achieve more robust clustering results by capturing the rich and
complementary knowledge from different views.

In the literature, researchers have proposed a variety of multi-view cluster-
ing methods [6–8,14,19,21], among which the subspace-based methods is one
of the most popular research topics. In this category of methods, the primary
goal relies on capturing the latent subspace structure across different views. To
achieve this goal, numerous subspace-based methods have been proposed over
the past few years. For example, Tang et al. [16] designed a subspace cluster-
ing method that discovers the shared multi-view subspace structure with joint
graph learning. Recently, Chen et al. [3] proposed the multi-view clustering in
latent space (MVCLS) method, which learns a latent embedded space in multi-
view data while discovering the global cluster structure simultaneously. However,
these methods mostly focus on learning the consistent subspace representation
across different views, where the complementary information of multiple views
hasn’t been well-exploited. Motivated by this, some efforts have been made to
explore the complementarity of multi-view representations. To name a few, Cao
et al. [2] presented a diversity-induced method for multi-view subspace clus-
tering, which explores the complementarity across multiple views by Hilbert-
Schmidt Independence Criterion (HSIC). Further, Zhang et al. [23,25] developed
a novel multi-view subspace clustering method via latent space learning. This
method performs the subspace clustering in the latent space with complemen-
tarity from multiple views considered. Although these subspace-based methods
have made significant progress, most of them only consider the complementarity
across different views, yet neglect the multi-view consistency in subspace repre-
sentation learning. More recently, Luo et al. [13] proposed a robust multi-view
clustering method from both consistent and specific perspectives. However, its
effectivness may be further enhanced by exploring other multi-view inconsistency
(i.e., diversity) and considering the different importance among views.

In this paper, we develop a novel subspace-based method, named
Consistency- and Inconsistency-aware Multi-view Subspace Clustering. In our
method, the multi-view subspace representations are intuitively decomposed into
a view-consistent representation and a set of view-inconsistent representations.
By this means, both the consistency and inconsistency of multi-view data can be
well explored. Furthermore, an adaptive view weighting strategy is incorporated
into the proposed method, which helps to suppress the redundancy and deter-
mine the contributions of different views. We formulate the above components
into a unified objective function, and simultaneously design an iterative algo-
rithm to solve the resultant optimization problem. For clarity, the contributions
of this paper are summarized as follows.
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– This paper develops a novel subspace-based method by jointly modeling the
multi-view consistency and multi-view inconsistency. The method ensures
that the acquired multi-view subspace representations comprehensively fits
the inherent properties of multi-view data.

– By considering the various contributions of multiple views, we design a novel
strategy to generate the final affinity matrix from multi-view consistent and
inconsistent perspectives.

– Extensive experiments on multiple multi-view data sets demonstrate the effec-
tiveness of our method.

The rest of this paper is organized as follows. In Sect. 2, we review some pre-
liminaries, and introduce the proposed objective function. In Sect. 3, we present
an optimization algorithm to solve the objective function of CIMSC, followed by
its complexity analysis. In Sect. 4, we evaluate the performance of our method.
In Sect. 5, we conclude the whole paper.

2 Methodology

2.1 Notations

In this paper, matrices and vectors are written as uppercase letters and lowercase
letters, respectively. For a matrix M, its i-th row, j-th column is denoted as mi

and mj, respectively. The (i, j)-th element of matrix M is denoted as mij . The
inverse and the transpose of matrix M are denoted as M−1 and MT , respectively.
The trace of matrix M is defined as Tr(M). Letter I represents the identity matrix
and 1 represents the column vector with all entries being one. 0 represents the
zero matrix.

2.2 Preliminary Knowledge

In this subsection, we briefly review some preliminary knowledge on multi-
view subspace clustering before further introduction. Suppose we are given a

multi-view data matrix X = [X(1)T , . . . ,X(V )T ]
T

with V views, and X(v) =
[x(v)

1 , · · · , x(v)
n ] ∈ R

dv×n denotes the v-th data matrix with dv dimensionality.
As a very popular research topic, multi-view subspace clustering assumes that
the observed data samples obey the self-expressive property, that is, the high-
dimensional data samples are usually drawn from low-dimensional subspaces.
Under this assumption, we can formulate the self-expression formulation for
multi-view data as follows:

X(v) = X(v)Z(v) + E(v),∀v, (1)

where Z(v) represents the v-th view subspace representation and E(v) represents
the v-th view error matrix. Based on the self-expression formulation in Eq. (1),
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the general objective function for multi-view subspace clustering can be summa-
rized as follows:

min
Z(v),E(v)

V∑

v=1

Ψ(E(v)) + λ1

V∑

v=1

Θ(Z(v)) (2)

s.t. X(v) = X(v)Z(v) + E(v),∀v,

where Ψ(·) denotes the loss function for the v-th view error matrix E(v) (i.e.,
||E(v)||2,1), and Θ(·) is the regularization that imposes specific property on the v-
th view subspace representation Z(v) (i.e., ||Z(v)||∗ or ||Z(v)||2F ). λ1 is a balanced
parameter. Many multi-view subspace clustering methods seek to uncover the
shared subspace structure of all views. Hence, if we only focus on the multi-view
consistency issue, the Low-Rank Representation (LRR) [12] can be naturally
extended to multi-view scenario as follows:

min
Z,E(v)

V∑

v=1

||E(v)||2,1 + λ1||Z||∗ (3)

s.t. X(v) = X(v)Z + E(v),∀v,

in which ||Z||∗ is the nuclear norm on the multi-view subspace representation Z.
This method is able to discover the common subspace structure across different
views, however, its performance can be further improved by exploring more
inherent properties of multi-view data.

2.3 The Objective Function

In this subsection, we introduce the objective function of our method CISMC
in detail. Different from the previous subspace-based methods, the proposed
method aims to explore more inherent properties of multi-view data (i.e., con-
sistency and inconsistency) in a unified framework. In light of this, we consider
a multi-view self-expression formulation by jointly modeling the multi-view con-
sistency and multi-view inconsistency, i.e.,

X(v) = X(v)(Z + C(v)) + E(v),∀v. (4)

Here Z represents the view-consistent representation across different views,
and C(v) represents the view-inconsistent representation in the v-th view. Fol-
lowing the model in Eq. (3), we impose the nuclear norm on the view-consistent
representation to model the structure consistence across multiple views. Based
on the multi-view self-expression in Eq. (4), we consider the difference among
multiple views and formulate the initial objective function by:

min
Z,E(v),C(v),ωv

V∑

v=1

ωv||E(v)||2,1 + λ1||Z||∗ +
V∑

v=1

Υ(C(v)) (5)

s.t. X(v) = X(v)(Z + C(v)) + E(v),∀v,

ωT1V = 1, ω � 0,
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where
∑V

v=1 ωv||E(v)||2,1 is the weighted loss function, and ω = [ω1, ω2, · · · , ωV ]T

is a view weighting vector which reflects the importance of different views. As
can be seen, the larger weights are assigned to the error terms with smaller
loss (i.e., the informative views). Here Υ(·) denotes the regularized term on
the view-inconsistent representations. In particular, this regularizer term should
model the complementarity as well as view-specificity of multi-view data, which
can be naturally decomposed into two parts.

The first part aims to model the complementary information across different
views. Therefore, we argue that the view-inconsistent representations should be
different from each other. To implement the diversity, we formulate the first part
of regularized term Υ(·) as follows:

λ2

V∑

u�=v

sum{(ωvC(v)) ◦ (ωuC(u))}

= λ2

V∑

u�=v

ωuωvTr(C(v)T C(u)), (6)

in which ◦ denotes the Hadamard product (element-wise multiplication) of two
matrices, and sum is the operator that sums all elements in a matrix. By min-
imizing this term, we can see that if two view-inconsistent representations C(v)

and C(u) are diverse to each other, then their view weights ωv and ωu would be
assigned with larger values. In this way, the correlation between C(v) and C(u)

can be well measured, which is beneficial to promote the diversity of different
views and reduce the redundancy among similar views.

Furthermore, the second part targets at modeling the view-specific property
within each view. Similar to the term in Eq. (6), we formulate the second part
of regularized term Υ(·) in the following form:

λ3

V∑

v=1

sum{(ωvC(v)) ◦ (ωvC(v))}

= λ3

V∑

v=1

ωvωvTr(C(v)T C(v)) (7)

As can be observed, the above term is equivalent to impose Frobenius norm
on each view-inconsistent representations (i.e., λ3

∑V
v=1 ωv

2||C(v)||2F ). To be spe-
cific, the Frobenius norm ensures the connectedness of subspace representations
[12]. Hence, by minimizing this term, the v-th view weight ωv will become larger
as long as the v-th view inconsistent representation C(v) has strong connectivity.
By this means, the above term can efficiently explore the view-specificity within
each view, as well as determining the different contributions of multiple views.



296 G.-Y. Zhang et al.

Consequently, integrating these two parts of regularized term Υ(·) into the
initial objective function, we have the final optimization problem:

min
Z,E(v),C(v),ωv

V∑

v=1

ωv||E(v)||2,1 + λ1||Z||∗ +
V∑

v,u=1

avuωvωuTr(C(v)T C(u))

s.t. X(v) = X(v)(Z + C(v)) + E(v),∀v,

ωT1V = 1, ω � 0, (8)

where A = (a)ij ∈ R
V ×V is a parameter matrix, whose diagonal elements and

nondiagonal elements being parameters λ3 and λ2, respectively. To represent the
multi-view data more naturally, the proposed objective function jointly models
the multi-view consistency and inconsistency in a unified optimization frame-
work. Therefore, by solving the Eq. (8), a view-consistent representation and a
set of view-inconsistent representations can be achieved. In Subsect. 3.1, we will
describe how to compute the final affinity matrix from multi-view consistent and
inconsistent perspectives.

3 Optimization

3.1 Optimization Algorithm

In this subsection, the optimization problem in Eq. (8) is solved by an ADMM-
based optimization algorithm [1]. First, we introduce an auxiliary variable S
(i.e., S = Z) to make the problem separable. Next, the augmented Lagrangian
function can be formulated as follows:

L(S,Z, {C(v)}V
v=1, {E(v)}V

v=1, ω){ωT 1V =1,ω�0} (9)

=
V∑

v=1

ωv||E(v)||2,1 + λ1||Z||∗ +
V∑

v,u=1

avuωvωuTr(C(v)T C(u))+

V∑

v=1

Φ(Y1
(v),X(v) − X(v)S − X(v)C(v) − E(v)) + Φ(Y2,S − Z),

where Φ(A,B) is deemed as 〈A,B〉+ μ
2 ‖B‖2F , and 〈·, ·〉 denotes the inner product

of two matrices. Besides, {Y(v)
1 }V

v=1 and Y2 represents the Lagrange multipliers
and μ > 0 is a penalty parameter. To solve the optimization problem for L in
Eq. (9), we can divide it into following subproblems.

S-Subproblem. When fixing the other variables, we can solve the optimization
problem w.r.t. variable S as follows:

min
S

V∑

v=1

Φ(Y1
(v),X(v) − X(v)S − X(v)C(v) − E(v)) + Φ(Y2,S − Z). (10)
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Taking the derivative of problem (10) w.r.t. variable S and setting it to be
zero, we obtain the following solution:

S = (

V∑

v=1

(X(v)TX(v)) + I)−1(

V∑

v=1

X(v)T (X(v) −X(v)C(v) − E(v) +
Y1

(v)

μ
) + Z− Y2

μ
). (11)

Z-Subproblem. When fixing the other variables, we can solve the optimization
problem w.r.t. variable Z as follows:

min
Z

λ1||Z||∗ +
μ

2
||Z − (S +

Y2

μ
)||2F , (12)

By using the Singular Value Thresholding (SVT), we have the following solu-
tion for variable Z:

Z = UZΓλ1
μ

(ΣZ)VT
Z . (13)

where UZΣZVT
Z is the Singular Value Decomposition (SVD) of S + Y2

μ . Besides,
Γτ (·) denotes the SVT operator, which can be defined by:

Γτ (Σ) = max(0,Σ − τ) + min(0,Σ + τ). (14)

C(v)-subproblem. When fixing the other variables, we can solve the optimiza-
tion problem w.r.t. variable C(v) as follows:

min
C(v)

V∑

u=1

avuωvωuTr(C(v)T C(u)) + Φ(Y1
(v),X(v) − X(v)S − X(v)C(v) − E(v)).

(15)

By setting the above problem w.r.t. variable C(v) to be zero, we can get the
solution as follows:

C(v) = (μX(v)TX(v) + 2λ3ωvωvI)
−1(μX(v)TQ(v) +X(v)TY1

(v) − λ2ωv

∑

u �=v

ωuC
(u)), (16)

in which Q(v) = X(v) − X(v)S − E(v).

E(v)-subproblem. When fixing the other variables, we can solve the optimiza-
tion problem w.r.t. variable E(v) as follows:

min
E(v)

||E(v)||2,1 +
μ

2
||E(v) − (X(v) − X(v)S − X(v)C(v) +

1
μ

Y1
(v))||2F . (17)

According to Lemma in [11], the above problem can be solved by:

e(v):j =

⎧
⎨

⎩

||f(v)
:j ||2− 1

μ

||f(v)
:j ||2

f(v):j if ||f(v):j ||2 > 1
μ ,

0 otherwise,
(18)

where F(v) = X(v) − X(v)S − X(v)c(v) + 1
μY1

(v).
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ω-Subproblem. When fixing the other variables, we can solve the optimization
problem w.r.t. variable ω as follows:

min
ω

V∑

v=1

ωv||E(v)||2,1 +
V∑

v,u=1

avuωvωuTr(C(v)T C(u))

s.t. ωT1V = 1, ω � 0. (19)

By introducing a matrix H ∈ R
V ×V with its element hvu = avuTr(C(v)T C(u)),

the problem in Eq. (19) is equivalent to the following problem:

ωT

⎡

⎢⎢⎣

∥∥E(1)
∥∥
2,1

...∥∥E(V )
∥∥
2,1

⎤

⎥⎥⎦ + ωT Hω, s.t. ωT1V = 1, ω � 0 (20)

Since the matrix H is positive semidefinite, thus the problem in Eq. (20) has
closed-form solution and can be solved by off-the-shelf tools.

Update the Multipliers. Finally, the multipliers {Y(v)
1 }V

v=1 and Y2 can be
updated by using the following equations:

{
Y(v)

1 = Y(v)
1 + μ(X(v) − X(v)S − X(v)C(v) − E(v))

Y2 = Y2 + μ(S − Z)
(21)

In this optimization algorithm, we update the variables and multipliers iter-
atively until the stopping criterion is met or the number of iteration reaches the
predefined threshold. For clarity, Algorithm 1 summarizes the overall algorithm
of the proposed CIMSC method.

Subsequently, we construct the final affinity matrix A from the learned rep-
resentation matrices and view weights as follows:

A =
|S| + |S|T

2
+

V∑

v=1

ωv
|C(v)| + |C(v)|T

2
(23)

As far as we know, this is the first attempt to compute the final affinity
matrix from both multi-view consistent and inconsistent perspectives. To further
suppress the redundancy, the inconsistent subspace representations are assigned
with suitable weights according to their importance.
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Algorithm 1. CIMSC
Input: Multi-view data set X = {X(1), · · · , X(V )} with V views, the maximum number
of iterations tmax (i.e., 30 here) and three balancing parameters λ1, λ2, λ3.
Parameter Setup: Set parameters μ = 1, ρ = 1.5 and μmax =
106.

1: Initialization: Set t = 1. Initialize Z = 0, C(v) = 0, ∀v, E(v) = 0, ∀v, Y1
(v) = 0, ∀v

and Y2 = 0.
2: repeat
3: Update S by using Eq. (11).
4: Update Z by using Eq. (13).
5: Update C(v) in the v-th view by using Eq. (16).
6: Update E(v) in the v-th view by solving problem (18).
7: Update ω by solving problem (20).

8: Update Y
(v)
1 in the t-th view and Y2 by using Eq. (21).

9: Update μ by using μ = min(ρμ, μmax).
10: t = t + 1.
11: until The following convergence conditions are meet or t > tmax.

V∑

v=1

||X(v) − X(v)S − X(v)C(v) − E(v)||∞ < ε and ||S − Z||∞ < ε (22)

12: Obtain the overall affinity matrix by using Eq. (23).
13: Perform spectral clustering on the overall affinity matrix A and generate the final

clustering label.
Output: The final clustering label.

3.2 Model Complexity

In this subsection, we analyze the time complexity of the proposed method. As
can be observed, Algorithm 1 consists of six subproblems. The time complexi-
ties of updating multipliers and the fifth subproblem (w.r.t. variable ω) can be
omitted in comparison with the other subproblems. Hence, we only focus on
the left four subproblems. For the first three subproblems, the time complex-
ities of updating variables S, Z and C(v) are the same, i.e., O(n3), where n is
the number of data samples. For the fourth subproblem, the time complexity of
updating variable E(v) is O(dvn), where dv is the dimensionality of the v-th view.
Therefore, the overall time complexity of Algorithm 1 is O(TV n3+T

∑V
v=1 dvn),

where T is the desired times of Algorithm 1 and V denotes the number of views.

4 Experiments

In this section, we extensively evaluate the performance of our method from
three aspects, i.e., comparison experiments, parameter analysis, and convergence
analysis. All the experiments are implemented with an Intel 3.4-GHz CPU and
64-GB RAM.
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4.1 Data Sets and Evaluation Measures

To validate the effectiveness of the proposed method, five benchmark data sets
are selected in our experiments. These data sets are collected from real-world
applications, which have been widely used for four tasks: object clustering (NUS-
WIDE [9]), face clustering (VIS/NIR [17] and Yale [24]), handwritten digit recog-
nition (UCI Digit [20]) and document clustering (Reuters [9]). For clarity, the
five multi-view data sets are listed in Table 1.

Table 1. The statistics of six data sets used in the experiments.

NUS-WIDE UCI Digit Reuters VIS/NIR Yale

View 1 CH(65) FOU(76) French(2000) View 1(10000) Intensity(2500))

View 2 CM(226) PIX(240) German(2000) View 2(10000) Gabor(6750)

View 3 CORR(145) MOR(6) German(2000) – LBP(3304)

View 4 EDH(74) – Spanish(2000) – –

View 5 WT(129) – Italian(2000) – –

# samples 2000 2000 1200 1056 165

# classes 31 10 6 40 10

Besides, the brief introduction is as follows:

– NUS-WIDE is a web image data set for object clustering task. Each sample
in the data set can be divided into five views: 64 color histogram, 144 color
correlogram, 73 edge direction histogram, 128 wavelet texture, and 225 block-
wise color moment.

– UCI Digit is a famous image data set which records the digital numbers from
0 to 9. Same to the paper in [20], three different features are extracted from
each image: 76 Fourier coefficients, 240 pixel averages and 6 morphological
features.

– Reuters is a popular multi-view text data set that associates with six topics.
This data set contains 1200 documents, where each document is reported in
five different languages (views), i.e., 2000 English, 2000 French, 2000 German,
2000 Spanish and 2000 Italian.

– VIS/NIR is a widely-used data set that contains 1056 face images over 22
classes. In this data set, each image is available in two heterogeneous feature
sets: 10000 Visible Light and 10000 Near-IR illumination.

– Yale is a face image data set containing 165 gray-scale images. It contains
15 classes, and each class has 11 images with different facial expressions and
configurations. Following the works in [2], we extract three types of features
from each image: Intensity, LBP and Gabor.

In the experiments, two well-known evaluation metrics are adopted to evalu-
ate the quality of clustering results, namely Accuracy (Acc) [4] and Normalized
Mutual Information (NMI) [4]. For these two metrics, the higher values indicate
the better clustering performance.
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4.2 Comparison Experiments

In order to demonstrate the superiority of our method, we empirically compare
it with several other popular clustering methods. Particularly, the compared
methods include two single-view clustering methods and six multi-view cluster-
ing methods. On the one hand, two classical single-view methods, i.e., Spectral
Clustering (SC) and Low-Rank Recovery (LRR) [11] are employed to evaluate
the performance of single-view clustering methods on multi-view data. On the
other hand, six state-of-art multi-view methods, namely Self-weighted Multiview
Clustering (SwMC) [15], Graph-based Multi-view Clustering (GMC) [18], Multi-
view Graph Learning [22], Latent Multi-view Subspace Clustering (LMSC) [25],
Consistent and Specific Multi-view Subspace Clustering (CSMSC) [13] and Dual
Shared-Specific Multi-view Subspace Clustering (DSS-MSC) [26] are selected to
validate the effectiveness of multi-view clustering methods. To guarantee the
fairness of comparison, we tune the parameters of all methods within the can-
didate set {10−4, · · · , 104} and report the scores with the best parameters. For
single-view methods, we apply them on each view of the multi-view data, while
reporting the best results as SCbest and LRRbest. The experiments are repeated
20 times for all clustering methods, and the average values with standard devi-
ations are reported as the results.

Table 2 and Table 3 report the results of all clustering methods on five multi-
view data sets, where the best results are highlighted in bold. Following [10],
the average ranks of performance by each clustering method is also reported.
According to these tables, three conclusions can be drawn as follows.

– It can be seen that multi-view clustering methods always obtain better results
over the single-view clustering methods. This is probably because that multi-
view clustering methods sufficiently consider the complementarity across mul-
tiple views, while single-view clustering methods only focus on the partial
information within specific view.

– When it comes to image data sets (i.e., NUS-WIDE, VIS/NIR and Yale),
we can observe that subspace-based methods achieve better performance
than graph-based methods. This observation demonstrates the effectiveness
of subspace-based methods when handing image clustering tasks.

Table 2. Comparison results in terms of Acc (%) on five benchmark data sets.

NUS-WIDE UCI Digit Reuters VIS/NIR Yale Avg. rank

SCbest 13.9±0.5 80.9±0.0 29.4±0.3 84.5±0.0 61.6±3.0 7.6

LRRbest 14.3±0.5 87.5±2.5 27.4±1.1 65.8±3.5 69.7±0.1 6.0

SwMC 15.6±0.4 82.7±0.0 24.1±0.0 91.6±0.9 64.3±0.1 6.0

GMC 14.9±0.0 82.2±0.0 22.9±0.0 95.5±0.0 65.5±0.0 5.8

MVGL 14.7±0.3 84.8±1.4 25.2±0.2 94.8±1.2 64.9±0.0 6.0

LMSC 13.9±0.7 86.5±6.2 34.0±1.2 97.0±0.6 74.2±2.4 4.0

CSMSC 14.8±0.5 81.1±0.0 27.6±0.6 88.6±0.5 75.5±1.0 5.6

DSS-MSC 15.5±0.3 91.2±0.2 33.4±0.7 95.0±1.2 78.2±1.3 2.8

CIMSC 16.9±0.4 93.6±0.0 47.5±0.0 98.2±0.1 88.4±0.1 1.0
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Table 3. Comparison results in terms of NMI (%) on five benchmark data sets.

NUS-WIDE UCI Digit Reuters VIS/NIR Yale Avg. rank

SCbest 17.3±0.3 82.8±0.0 14.2±0.2 93.2±0.0 65.4±1.2 7.0

LRRbest 15.9±0.3 78.7±1.2 20.5±0.9 85.9±2.7 70.9±1.1 6.6

SwMC 16.3±0.4 84.3±0.0 17.4±0.0 96.1±0.5 65.6±0.0 5.8

GMC 12.9±0.0 68.5±0.0 16.5±0.0 98.5±0.0 68.9±0.0 6.8

MVGL 17.3±0.2 85.4±1.3 17.2±1.1 97.8±0.4 65.9±0.0 5.0

LMSC 17.5±0.3 78.8±3.6 16.9±0.4 98.8±3.9 76.8±1.9 4.6

CSMSC 18.0±0.2 79.9±0.0 17.6±0.2 95.3±0.2 78.7±0.4 4.4

DSS-MSC 18.8±0.2 83.2±0.2 22.6±0.8 97.0±0.6 77.9±1.2 3.2

CIMSC 20.2±0.5 87.3±0.0 30.2±0.0 98.5±0.1 86.7±0.1 1.2

– In most of cases, the proposed method outperforms its competitors including
single-view methods and multi-view methods. To be specific, our method
obtains very competitive results on the Reuters and Yale data sets. Take
the Yale data set for an example, CIMSC makes the significant improvement
over the second-best method by 10.2% and 8.8% in terms of Acc and NMI,
respectively. As for the NUS-WIDE and UCI Digit data sets, although our
method can not reach the same improvement as the Reuters and Yale data
sets, it still ranks the best among all the testing methods. In summary, the
comparison results have validated the superior of the proposed method, which
also confirms the necessity of considering both multi-view consistency and
inconsistency for improving multi-view subspace clustering.

4.3 Parameter Analysis and Convergence Analysis

In this subsection, we first analyze the effect of parameters λ1, λ2 and λ3 on the
clustering performance. In our experiments, we test these three parameters in
the same range as {0.01, 0.1, 1, 10, 100}. Besides, we vary one parameter of three
parameters and simultaneously fix the other two parameters in each experiment.
Due to the limit of the paper length, we only report the NMI results of our
method on three data sets, namely NUS-WIDE, UCI Digit and Yale.

Fig. 1. Parameter analysis on λ2 and λ3 on benchmark data sets by fixing λ1.
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Fig. 2. Parameter analysis on λ1 and λ2 on benchmark data sets by fixing λ3.

The corresponding results are shown in Fig. 1, Fig. 2 and Fig. 3, respectively.
As can be seen from those figures, we have the following two findings. First, the
proposed method is less sensitive to parameter λ1, but relatively sensitive to
the parameters λ2 and λ3. Second, when we vary the parameters λ2 and λ3 in
the same range of (0.01,1), our method can obtain stable and relatively better

Fig. 3. Parameter analysis on λ1 and λ2 on benchmark data sets by fixing λ3.

Fig. 4. Convergence analysis on three benchmark data sets.



304 G.-Y. Zhang et al.

clustering results. Hence, we suggest to set parameter λ1 to a fixed value, and
carefully tune the parameters λ2 and λ3 for different real-world applications.

Next, we further investigate the convergence property of the proposed
method. To be specific, the convergence conditions in Algorithm 1 are deter-
mined by two error terms, namely the reconstruction error (RE) and the match
error (ME). In particular, they can be defined as follows:

RE =
V∑

v=1

||X(v) − X(v)S − X(v)C(v) − E(v)||∞ < ε (24)

and

ME = ||S − Z||∞ < ε (25)

Figure 4 displays the convergence curves on three benchmark data sets. From
this figure, we can see that our method converges relatively fast and almost
within 20 iterations. Therefore, the proposed method is efficient and has strong
convergence property in practice.

5 Conclusion

In this paper, we develop a new multi-view subspace clustering method termed
Consistency- and Inconsistency-aware Multi-view Subspace Clustering. Different
from the previous subspace-based methods, our method models the multi-view
consistency and multi-view inconsistency under a unified framework. Further-
more, an adaptive view weighting strategy is incorporated into the proposed
method, which aims to reduce the redundancy and determine the importance
of multiple views. In particular, we design a novel strategy to construct the
final affinity matrix from both multi-view consistent and inconsistent perspec-
tives. This design ensures that the final affinity matrix better fits the real-world
data sets. Finally, experimental results validate the effectiveness of the proposed
method. In the future work, we plan to follow [5] and extend our method to
handle a more challenging problem, namely multi-view data stream clustering
problem.
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Abstract. Group pattern mining based on spatio-temporal trajec-
tories have gained significant attentions due to the prevalence of
location-acquisition devices and tracking technologies. Representative
work includes convoy, swarm, travelling companion, gathering, and pla-
toon. However, these works based on Euclidean space cannot handle
group pattern discovery in non-planar space, such as urban road net-
works. In this paper, we propose a new group pattern, named converg-
ing, and its mining method in road networks. Unlike the aforementioned
group patterns, a converging indicates that a group of moving objects
converge from different directions for a certain time period. Motivated by
this, we formalize the concept of a converging based on cluster contain-
ment relationship. Since the process of discovering convergings over large
scale road network constrained trajectories is quite lengthy, we propose
a density clustering algorithm based on road networks (DCRN) and a
cluster containment join (CCJ) algorithm to improve the performance.
Specifically, DCRN adopts the well-known filter-refinement-verification
framework for efficiently identifying core points, which utilizes the upper
bound property for ε-neighbourhood of point set on an edge to dra-
matically reduce the candidate core points. To process the neighbour-
hood queries efficiently, we further develop a vertex-neighbourhood based
index, which precomputes the ε-neighbourhoods of all vertices, to facil-
itate neighbourhood queries of all points in road networks. In addition,
to process the CCJ efficiently, we develop a signature tree based on road
network partition index to organize the clusters in road networks hier-
archically, which enable us to prune enormous unqualified candidates in
an efficient way. Finally, extensive experiments with real and synthetic
datasets show that our proposed methods achieve superior performance
and good scalability.

Keywords: Converging pattern · Moving objects · Road networks

1 Introduction

Advances in location-acquisition devices and tracking technologies have made it
possible to accumulate a large amount of spatio-temporal trajectories. Such data
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provides opportunities for analysing the mobility patterns of moving objects.
This problem has been extensively studied in the literature. Representative works
include convoy [1], swarm [2], travelling companion [3], gathering [4], platoon
[5], and so on. In spite of the significant contributions made by those work,
they mainly focus on co-movement patterns [6,7]. However, we observe that
there exists another common mobility pattern in real life, namely converging. A
converging represents a group event that a group of moving objects gradually
come to a target area from different directions and eventually form one group.
Examples of convergings include traffic jams, celebrations, protests, and so on.
Additionally, the existing works on mobility patterns mainly focus on group
events in Euclidean space. Actually, most of them take place in urban areas,
especially in road networks. For example, pedestrians walk along the streets,
vehicles run on the roads, and trains run on the tracks. However, researches on
mobility patterns in road networks are seldom studied in the literature. In this
paper, we propose a new mobility pattern converging and its efficient mining
algorithms to discover converging events in road networks.

The key property of a converging is membership variation, which is the crucial
distinction compared to the existing patterns. Now we use Fig. 1 as an example
to illustrate the converging pattern. There are six moving objects joining a con-
verging event in a road network and forming one cluster in the end. Additionally,
there are six clusters (i.e., c10, c20, c30, c11, c21 & c12) from time t0 to t2, which are
denoted by ci

j (ith cluster at time tj). The clusters c10 and c20 move along the
roads 〈v1, v2〉 and 〈v3, v2〉 respectively, merge into c11 on the road 〈v2, v5〉 at time
t1, and finally join the cluster c12 with c21 at t2. Such set containment between
two clusters is called cluster containment match, denoted by ⊆c, e.g., c11 ⊆c c12
& c21 ⊆c c12. In Fig. 1(b), we present all cluster containment matches of moving
clusters in the form of a tree. The tree root c12 represents a converging event of
the participators 〈o1, o2, o3, o4, o5, o6〉 in the road network.

Fig. 1. Illustration of converging in road networks.

It is worth pointing out, the techniques of mobility patterns in Euclidean
space cannot be applied for the same study in the settings of road networks. This
is because, Euclidean space is a planar space while road network is essentially
a non-planar graph. As shown in Fig. 1(a), road 〈v2, v6〉 cross over road 〈v3, v5〉
in the road network. Therefore, existing pattern mining methods in Euclidean
space cannot distinguish the group events with different heights in urban space,
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e.g. pedestrian overpasses, elevated highways, and the subway network. Moti-
vated by this, we focus on converging patterns in road networks. To the best of
our knowledge, this is the first work which specifies on mobility pattern mining
in road networks.

However, mining the converging patterns of large-scale moving objects in
road networks is not an easy task, due to three challenges.

Modelling Method. How to define the concept of converging appropriately in
order to intuitively capture the properties of the converging events. We need
to deal with the increasing membership and widespread distribution in a group
event, while the existing works discover moving groups with fixed membership
and localized distribution. To deal with this challenge, we formalize the concept
of converging using set containment and propose the converging definition based
on cluster containment relationship (CCR), which is able to accurately model
the continuous increasing membership of converging events in urban areas.

Efficient Discovery Algorithms. How to efficiently discover convergings
from large-scale trajectories in road networks. Discovering converging patterns
involves two important tasks, namely cluster discovery and cluster containment
match, which both have a huge search space and incur a high computation cost.
As to cluster discovery , DBSCAN [8] is conventionally employed in existing
group pattern mining to discover groups of moving objects. But such a popular
solution involves high computational overhead since it incurs a great amount
of range nearest neighbour queries. To keep the computation cost tractable, we
develop a Density-based Clustering algorithm in Road Networks (DCRN) that
adopts a Filter-Refinement-Verification (FRV) framework to enhance the perfor-
mance of clustering objects in road networks. To improve the efficiency of DCRN ,
we further develop a vertex-neighbourhood based index, which pre-compute the
neighbourhoods of all vertexes to facilitate neighbourhoods queries. As to cluster
containment match, we propose a Cluster Containment Join (CCJ) algorithm
to evaluate CCRs. To improve the performance of CCJ, we develop a Signature
Tree based on Road Network Partition (STRNP) index to organize clusters in
a road network hierarchically, which are able to speed up cluster containment
queries. It is worth to note that, we only build the STRNP index once, and just
update some of index nodes after dynamical updates of moving objects.

Scalability. Real life applications like traffic planning usually require mining
algorithms to handle great variation of dataset size, since traffic flow varies
greatly over time. However, most of the existing works in Euclidean space rely
on an index structures based on spatial properties of moving objects for spatial
query processing. This may result in the worse performance on scalability as
the dataset size increases greatly. To tackle the scalability issue, we develop the
aforementioned FRV and the spatial index structures based on edges of a road
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network, which enable our proposed method to scale much better even if large-
scale trajectories come intensively. Extensive experiments based on both real
and synthetic datasets validate the efficiency and scalability of our algorithms.

2 Overview

2.1 Basic Conception

The road network consists of intersections and roads. Taking intersections as
vertices, and roads as edges, we model a road network as an undirected graph.

Definition 1 (Road Network). A road network is an undirected graph G =
(V,E), where V = {v1, v2, ..., v|V |} is a set of vertices and E = {e1, e2, ..., e|E|}
is a set of edges. A vertex in V is denoted by v = (lng, lat), where v.lng and
v.lat represent the longitude and latitude respectively. An edge e = (vs, ve) in E
has two endpoints e.vs ∈ V, e.ve ∈ V , and the weight e.len is the length of e.

Definition 2 (Location). The location of an object o in road network G is
defined as a point on an edge of G, denoted by o.p = (e, pos), where e is the edge
o located in and pos is the distance between o and e.vs.

Definition 3 (Road Segment). A road segment is a section between two
points on an edge, denoted by seg(p1, p2), where p1, p2 are two boundary points.
The length of seg(p1, p2) is denoted by |seg(p1, p2)| = |p1.pos − p2.pos|.

Location p on road segment seg(p1, p2) is denoted by p ∈ seg(p1, p2). The
set of all objects on seg(p1, p2) (edge e) is marked as O(seg(p1, p2)) (O(e)).

Definition 4 (Road Network Constrained Trajectory). Given a set of
moving objects ODB = {o1, ..., om}, a time domain T = {t1, ..., tn} and a road
network G, the trajectory of a moving object o ∈ ODB constrained by G is a
finite sequence of timestamped locations o.traj = 〈pt1 , ..., ptn〉, where pti is the
location of o sampled at ti ∈ T . We mark all the trajectories constrained by G
as TrjDB = {o1.traj, ..., om.traj}.
Definition 5 (Network Distance). Given a road network G and two locations
p = (e, pos), p′ = (e′, pos′), the network distance between p and p′ is denoted
by d(p, p′), which is defined as follows: (1) d(p, p′) ≥ 0. (2) If e = e′, then
d(p, p′) = |pos′ − pos|. Otherwise, d(p, p′) = min{d(p, v) + d(v, v′) + d(v′, p′)},
where v ∈ {e.vs, e.ve}, v′ ∈ {e′.vs, e

′.ve} and d(v, v′) is the shortest distance
between v and v′ in G.

To detect moving groups in road networks, we extend DBSCAN to discover
clusters. We apply the idea of density-based clustering to cluster objects in
road networks, and necessarily redefine some of the key notions as follows. The
ε-neighbourhood of a point p is defined by Nε(p) = {q|d(p, q) ≤ ε}, where ε is a
distance threshold and d(p, q) is the network distance between p and q. A point
p in road networks is a core point if Nε(p) contains at least minPts points,
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denoted by |Nε(p)| ≥ minPts. A point p is directly density-reachable from a
point q w.r.t. ε,minPts if p ∈ Nε(q) and q is a core point. p is a border point if
it is directly density-reachable from a core point but Nε(p) < minPts. A point
p is density-reachable from a point q w.r.t. ε,minPts if there is a chain of points
〈x1, ..., xk〉, x1 = q, xk = p such that xi+1 is directly density-reachable from xi.
Then a point p is said to density-connected to a point q w.r.t. ε,minPts if there
is a point x such that both p and q are density-reachable from x w.r.t. ε,minPts.

Definition 6 (Cluster). Given a database of points D, a cluster c w.r.t.
ε,minPts is a non-empty subset L of D satisfying the following conditions: (1)
Maximality. ∀p, q, if p ∈ L and q is density-reachable from p w.r.t. ε,minPts,
then q ∈ L. (2) Connectivity. ∀p, q ∈ L, p is density-connected to q w.r.t.
ε,minPts.

A cluster consisting of the locations of moving objects at timestamp t is
said to be a snapshot cluster ct. The set of snapshot clusters at ti is denoted
by Ct = {c1t , c

2
t , ...}, and the database of snapshot clusters is denoted by

CDB = {Ct1 , Ct2 , ..., Ctn}. The snapshot cluster will be abbreviated to cluster if
no ambiguity can be caused.

Definition 7 (Cluster Containment Relationship). Given two clusters c1
and c2, c2 has a cluster containment relationship r with c1 if each moving object
of c1 is also a moving object of c2, i.e., c2 contains c1, denoted by r = c1 ⊆c c2.

Definition 8 (Converging Tree). A converging tree tr is a tree that satisfies
the following properties: (1) Each node of tr represents a cluster. The parent
and children are clusters at consecutive timestamps, and the parent has cluster
containment relationships with its children. (2) The height of tr is the length of
the longest path from the root to a leaf. A tree of a single node has a height of 0.

As mentioned in Sect. 1, a converging pattern should be able to represent the
process of moving objects gradually gathering over a period of time. Therefore,
we define the converging pattern from two aspects. First, we use the converging
tree to represent the containment relationship of clusters at consecutive times-
tamps and the higher the height of the converging tree the longer the duration.
Second, a converging pattern also requires a certain scale, that is, it typically
involves a relatively large number of moving objects.

Definition 9 (Converging). A converging tree tr is called a converging that
satisfies the following requirements: (1) The height of tr is not less than the
lifetime threshold θt. (2) The number of objects in tr.root is not less than the
scale threshold θm. A converging tr is called a closed converging if there isn’t any
cluster at next timestamp containing the root node of tr.

2.2 Problem Definition

Given a road network G, a trajectory set of moving objects TrjDB constrained
by G, a time domain T , a distance threshold ε, a number threshold minPts, a
lifetime threshold θt and a scale threshold θm, our goal is to find all the closed
convergings.
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2.3 Framework

In this section, we present our framework for converging pattern mining in a set
of trajectories constrained by road networks. Our framework consists of three
phases: cluster discovery, converging tree generation, and converging detection.
Algorithm 1 outlines this process. In the first phase, we perform a density-based
clustering algorithm in road networks (DCRN) on the trajectories at each times-
tamp of T to find all the clusters CDB (Line 1–5). We will detail this process in
Sect. 3. The second phase aims to generate the converging trees based on clus-
ter containment relationships (CCRs). We perform a cluster containment join
(CCJ) algorithm on any two cluster sets at consecutive timestamps and return a
set of CCRs RDB (Line 6–11); then we organize the CCRs in chronological order
to construct all the closed converging trees TRDB (Line 12–17). We will detail
this process in Sect. 4. In the third phase, we verify all closed converging trees
in terms of the requirements in Definition 9 to get all the converging patterns P
(Line 18–22). The details of this phase are omitted due to space limitation.

Algorithm 1: Converging Pattern Mining (CPM)
Input : G, TrjDB , T , ε, minPts, θt, θm
Output: P

1 CDB ← ∅ ;
2 for i = 1 to |T | do
3 Si ← SnapshotPointSet(TrjDB , ti) ;
4 Ci ← DensityClustering(G, Si, ε, minPts);
5 CDB ← CDB ∪ {Ci};

6 RDB ← ∅ ;
7 for i = 2 to |T | do
8 foreach q ∈ Ci−1 do
9 r ← SearchContainmentMatch(q, Ci);

10 Ri ← Ri ∪ {r} ;

11 RDB ← RDB ∪ {Ri} ;

12 TRDB ← ∅;
13 for i = 1 to |T | − 1 do
14 foreach r ∈ Ri do
15 tr ← BuildConvergingTree(RDB , ti) ;
16 TRi ← TRi ∪ {tr} ;

17 TRDB ← TRDB ∪ {TRi} ;

18 P ← ∅;
19 for i = 1 to |T | − 1 do
20 foreach tr ∈ TRi do
21 if IsValidConvergingPattern(tr, θt, θm) then
22 P ← P ∪ {tr} ;

23 return P ;
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3 Density-Based Algorithm in Road Networks

In this section, we propose a density-based clustering algorithm in road network
(DCRN) to discovery clusters. The basic idea is to identify core points and
border points among the locations of objects, and then group them into clusters
based on the connectivity in Definition 6. It is detailed in Algorithm 2. The filter-
refinement-verification (FRV) framework is adopted to identify core points. In
the filter step, an upper bound for ε-neighbourhoods of objects on every edge is
calculated, which is used to excludes a large portion of invalid points (Lines 4–5).
In the refinement and verification steps, the candidate points are further refined
based on the properties of density-reachable and the core points are verified
by ε-neighbourhood computation (Lines 6–7). After that, the core points are
grouped into clusters in terms of the connectivity (Line 9), and every border
point is assigned to the cluster of its corresponding core point (Lines 10–12).

3.1 Core Points Identification

In this subsection, we discuss the method of core points identification. To identify
the core points, the ε-neighbourhoods of points need to be calculated, which
is supported by methods of range query. However, in the existing clustering
algorithms, the neighbourhoods are computed one by one, which is sensitive to
the scale of objects. To tackle this problem, we design a method of core points
identification based on the road network, which adopts the FRV framework to
batch process the neighbourhood computation of points in unit of edge.

Algorithm 2: DensityClustering Function
Input : G(V, E): road network, S: snapshot point set, ε, minPts
Output: C: resulting snapshot cluster set

1 C ← ∅ ;
2 Score ← ∅; // Score is a core point set

// core points identification

3 foreach e ∈ E do
4 L ← GetPointSetInEdge(e, S) ;
5 L′ ← Filter(L, S, ε, minPts) ;
6 L′′ ← Refinement(L′, S, ε, minPts);
7 Lcore ← Verification(L′′, S, ε, minPts);
8 Score ← Score ∪ Lcore ;

9 C ← GenerateCluster(Score, ε); // generate the clusters

10 Sborder ← FindBorderPoint(C, S − Score, ε, minPts); // find border points

11 UpdateCluster(C, Sborder); // assign border points to clusters of C
12 return C;

Filter Step. Given an edge e = (v1, v2), the upper bound of its ε-neighbourhood
is denoted by F (e) = |⋃p∈Le

Nε(p)|, where Le is a set of points on e. If F (e) <
minPts, there is no core points on e. F (e) is computed in two cases.
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Case 1: e.len≤ ε. As shown in Fig. 2(a), F (e) = |Nε(v1) ∪ Nε(v2)|, where v1
and v2 are two vertices of e.

Case 2: e.len > ε. We add some virtual vertices in the midpoints of road seg-
ments on e recursively until the length of each divided section doesn’t exceed ε.
After that, e can be handle as case 1. Note that all the added virtual vertices are
considered as usual vertices in the subsequent processing. As shown in Fig. 2(b),
v′ is a virtual vertex on e, and |e.seg(v1, v′)| < ε, |e.seg(v′, v2)| < ε.

Fig. 2. Two cases of the upper bound.

Refinement and Verification Steps. Undoubtedly, the candidate points have
been pruned effectively in the filter step, but for edges with upper bound more
than minPts, the ε-neighbourhood of each point still need checking. A naive
method is to compute the neighbourhoods one by one. For example, in Fig. 3
p1, p2, p3, p4, p5, p6 is verified in sequence. Obviously, this method is inefficiency.
Therefore, we propose a method of checking points based on the properties of
density-reachability.

Given a point sequence 〈p1, p2, ..., pn〉(n > 1, |seg(p1, pn)| ≤ ε), two boundary
points p1, pn are verified by computing their ε-neighbourhoods.

(1) If both p1 and pn are core points, other points on seg(p1, pn) belong to the
same cluster with p1 and pn (Property 1). The points between p1 and pn

are exempt from verification in clustering.
(2) If neither p1 nor pn is core point and |Nε(p1)∪Nε(pn)| < minPts, points on

seg(p1, pn) are not core points (Property 2) and exempt from verification.
(3) Otherwise, the point sequence is divided into two sub-sequences by its

median point, and they are checked respectively. This process is recursively
performed until there is no unverified point.

Fig. 3. Illustration of refinement and verification method of a point sequence.
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As shown in Fig. 3, for segment seg(p1, p6), point p1 is not a core point and
p6 is, so that the median point p3 is verified. p3 is a core point, thus p3, p4, p5, p6
belong to one cluster and p4, p5 are exempt from verification. For another sub-
sequence 〈p1, p2, p3〉, only p2 needs to be verified as a core point.

Property 1. Given a segment shorter than ε, if its two boundary points are core
points, then all points on this segment belong to the same cluster.

Proof. If two boundary points are core points and the segment is shorter than ε,
then two boundary points are density-reachable from each other. They belong to
the same cluster. Moreover, other points on this segment are all density-reachable
from the boundary points. According to the maximality in Definition 6, all the
points belong to the same cluster.

Property 2. Given a segment seg(p1, p2) shorter than ε,if p1, p2 aren’t core
points, and |Nε(p1) ∪ Nε(p2)| < minPts, no one point on seg(p1, p2) is a core
point.

Proof. ∀q ∈ seg(p1, p2), if |seg(p1, p2)| < ε, then Nε(q) ⊂ Nε(p1) ∪ Nε(p2). If
|Nε(p1) ∪ Nε(p2)| < minPts, then |Nε(q)| < minPts, thus q is not a core point.
Therefore, all points on seg(p1, p2) are not core points.

3.2 ε-Neighbourhood Computation Method

In core points identification, two types of ε-neighbourhoods (i.e., ε-
neighbourhoods of vertices and moving objects) need to be computed. However,
the objects move dynamically, which leads to a great challenge to compute the
ε-neighbourhoods of moving objects in the whole time domain. Observe that the
ε-neighbourhoods of vertices are unchanging. Moreover, the ε-neighbourhoods
of objects can be represented by that of vertices. With these observation,
we propose an ε-neighbourhood computation method that represents the
ε-neighbourhoods of points on an edge by that of its two vertices.

Next, we introduce our ε-neighbourhood computation method with Fig. 4.
Given a road network and seven moving objects shown in Fig. 4(a), whose
information is detailed in Fig. 4(d). Assume that ε = 5, p = (e1, 3), the ε-
neighbourhood of object o4 located in point p is illustrated in Fig. 4(b). It is com-
puted in three parts, including the object set on edge e1, the ε′-neighbourhood of
v1(ε′ = 2) and the ε′′-neighbourhood of v2(ε′′ = 4), i.e., Nε(p) = O(e1)∪Nε′(v1)∪
Nε′′(v2) = {o3, o4} ∪ {o2, o3} ∪ {o3, o4, o5, o6, o7} = {o2, o3, o4, o5, o6, o7}.
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Fig. 4. An example of the network-based ε-neighbourhood computation method.

3.3 The VNIndex for ε-Neighbourhood Computation

To process the neighbourhood queries efficiently, an index is required to retrieve
the neighbourhoods of points. G-Tree [9], G*-Tree [10] and V-Tree [11] are the
latest methods of range queries in road networks. However, they are not scal-
able in clustering. Therefore, we design a vertex-neighbourhood based index
(VNIndex), which records the pre-computed ε-neighbourhoods of all vertices to
facilitate neighbourhood queries of all points in road networks.

VNIndex Construction. VNIndex records the ε-neighbourhood of a vertex
with a structure, called Neighbourhood Substructure (NS). An NS consists of
two parts, i.e., a vertex ID and several index nodes built for the adjacent edges
of the vertex. Each index node contains the endpoints, length, object number and
object sequence of the edge. The index nodes in an NS are connected based on the
topology of the road network. Additionally, VNIndex organizes the IDs of vertices
by a classical B+-Tree or a Hashing index to rapidly find the corresponding NSs.

For example, the VNIndex (ε = 5) w.r.t. Fig. 4(a) is shown in Fig. 4(e).
Easy to see that, in Fig. 4(c), the ε-neighbourhood of v1 consists of four parts,
i.e., edges e(v1, v7), e(v1, v2) and segments seg(v2, b4), seg(v2, b5). As shown in
Fig. 4(e), the index nodes built for these edges and segments are q1, q2, q6, q7.
Vertex v1 connects with index nodes q1, q2, and q1 connects with q6, q7. Conse-
quently, v1, q1, q2, q6 and q7 constitute the NS of v1.

VNIndex -Based Neighbourhood Query. The ε-neighbourhood of a vertex
is directly obtained from its NS. The ε-neighbourhood of a moving object is
queried from the NSs of its two adjacent vertices.

In the example in Fig. 4(b), Nε(p) = O(e1) ∪ Nε′(v1) ∪ Nε′′(v2). For O(e1),
the NS of v1 is visited in VNIndex and a set of neighbours {o3, o4} is obtained
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from index node q1. Similarly, O(e1) can be queried from the NS of v2 with
the same result. For Nε′(v1), ε′ = 2, the NS of v1 is visited again and two
neighbour sets {o3}, {o2} are obtained from q1 and q2. As a result, Nε′(v1) =
{o2, o3}. In the same way, Nε′′(v2) = {o3, o4, o5, o6, o7} is obtained from the
NS of v2. Synthesizing the above results, Nε(p) = O(e1) ∪ Nε′(v1) ∪ Nε′′(v2) =
{o2, o3, o4, o5, o6, o7}.

VNIndex Update. VNIndex need to be updated when the locations change.
Instead of re-constructing or revising its structure, VNIndex only adjusts the
object sequences if new locations are reported at next timestamp.

4 Cluster Containment Join

To generate the converging trees, we present a cluster containment join (CCJ)
algorithm to find the cluster containment relationships (CCRs) in this section.

Definition 10 (Cluster Containment Join (CCJ)). Given two collections
of clusters C1 and C2, the cluster containment join C1 ��⊆ C2 returns all cluster
pairs (q, s) ∈ C1 × C2, q ∈ C1, s ∈ C2 such that q ⊆c s.

4.1 Cluster Containment Join Algorithm

The basic idea of CCJ is to take each cluster q ∈ C1 as a query cluster and
to find a cluster s ∈ C2 that q ⊆c s. Intuitively, rapidly confirming the con-
tainment result of q within C2 is the key of CCJ, namely the SearchContain-
mentMatch function in Algorithm 1. Two algorithms, i.e., nested-loop based
clustering containment join (NLCCJ) and breadth-first based cluster contain-
ment join (BFCCJ), can be used for CCJ. NLCCJ is designed based on the
nested-loop strategy and is very costly with a time complexity of O(|C1| ∗ |C2|).
While BFCCJ adopts the breadth-first search strategy to match clusters due to
the spatial proximity of objects moving in a short time. However, it is inefficient
to identify the mismatches. If C2 does not have any cluster containing q, the
whole network will be traversed and all the clusters in C2 will be compared with
q in a total of O(|C2|) times. To rapidly confirm the CCR of the clusters, we
propose an index for efficiently pruning candidate clusters.

4.2 Signature Tree Based on Road Network Partition

In this subsection, we propose a signature tree based on road network partition
(STRNP) index, which hierarchically organizes clusters based on the partition
to road networks. Meanwhile, STRNP index also use the signature technique to
rapidly confirm CCRs. We detail STRNP index in the following three aspects.

STRNP Index Construction. STRNP index is a balanced binary tree, which
organizes cluster sets into a hierarchical structure. Each leaf node of STRNP
index contains a cluster set and a corresponding signature. For internal node,
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it only contains a signature obtained by OR operation of signatures in its chil-
dren. STRNP index is constructed in a bottom-up way and used to reduce the
candidate clusters for efficient queries of CCRs.

The cluster sets in leaf nodes come from the partitions of road networks,
which are obtained by graph partitioning algorithms, e.g., multilevel k-way par-
titioning algorithm [12]. The signatures are generated by signature techniques.

Fig. 5. An example of STRNP index.

For example, in Fig. 5, given a cluster set C2 = {c1, c2, c3, c4, c5} with thirteen
moving objects, whose information is shown in Fig. 5(a). These clusters distribute
in four road network partitions (i.e., Region1, Region2, Region3, Region4).
Consequently, an STRNP index is constructed as shown in Fig. 5(b).

Cluster Search Based on STRNP Index. Based on the STRNP index, we
can prune the candidate clusters to rapidly confirm the CCRs. Specifically, we
adopt a depth-first way to operate their signatures in STRNP index. When a
query cluster q arriving, STRNP starts exploring from its root node with an
OR operation between signatures of q and each of its index node p, denoted by
q.sig and p.sig respectively. If q.sig ∨ p.sig = p.sig, then STRNP continues to
explore the child nodes of p; otherwise, it explores p’s sibling nodes. Moreover, if
no sibling nodes can be probed, it backtracks to the parent node of p to explore
other nodes. When q is exploring a leaf node, an OR operation of signatures
is still executed and all clusters in this leaf node are considered as candidates
if it meets the requirement of the signature operation. But the correctness of
CCRs needs further verifying because of the false positive problem in signature
techniques. Above process of cluster exploration and verification is recursively
performed until no index node needs probing.

Continuing with the example in Fig. 5, given a query cluster q1 = {o4, o6},
q1.sig = 00001010. To find a cluster in C2 containing q1, STRNP index is
explored from node v1. Since q1.sig ∨ v1.sig = v1.sig, v2 and v3 are explored.
After signature operations, the child nodes v4, v5 are probed and eventually
v5 is confirmed as a valid leaf node. Next, the clusters in v5 is further veri-
fied to get the correct CCR q1 ⊆c c2. On the contrary, given a query cluster
q2 = {o1, o7}, q2.sig = 01000001, it is confirmed that a mismatch happens to q2.
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STRNP Index Update. When clusters are discovered at a new timestamp, the
STRNP index needs updating. No matter how variable the moving objects are,
the structure of STRNP index does not need to be revised since it is constructed
based on the road network partitions. Only the signatures in index nodes need
revising with the moving of objects in a relatively large area. Once STRNP
index is constructed, its structure can be reused throughout the time domain.
Additionally, the storage space for STRNP index almost remains unchanged
regardless of the number of moving objects and clusters.

5 Experiment

We conduct experiments on computers with Linux OS, Intel Xeon E5-2620
v2(2.10 GHz) CPU and 32G RAM. All the algorithms are implemented in Java.

Datasets. We evaluate our proposals on both real and synthetic datasets.
The taxi dataset (Taxi) tracks real trajectories of 13,518 taxies sampled per
minute in Shanghai. And the road network with 262,764 nodes and 286,591
edges is extracted from OpenStreetMap. Meanwhile, we also generate a syn-
thetic dataset (Brinkhoff) with 100,000 trajectories via the Brinkhoff genera-
tor, which is widely used in the efficiency experiments of group pattern works
[1,2,5,7]. These trajectories are generated on the real road network of Oldenburg
with 55,994 nodes and 61,911 edges. Every location is sampled per minute when
the objects move along roads at random but reasonable speeds and directions.

Evaluation Methods. We evaluate the effectiveness, efficiency and scalability
of our proposals. (1) Effectiveness. To demonstrate the effectiveness of con-
vergings, we present an online demo system to visualize the mined converging
patterns. Additionally, we statistically analyse the spatio-temporal distribution
of the mining results for a further validation, since the converging events of taxis
exist in cities throughout one day with significant regularities. (2) Efficiency.
We evaluate the efficiency of converging mining algorithms in phases. For the
Cluster Discovery phase, we compare the running time of clustering algorithms
based on different range query methods (i.e., V-Tree [11], G*-Tree [10] and Pro-
posal) w.r.t. density-based clustering parameters (i.e., ε,minPts), where V-Tree
and G*-Tree are the state-of-the-art range query methods in road networks. For
the Cluster Containment Join phase, we compare the running time of differ-
ent CCJ algorithms (i.e., NLCCJ, BFCCJ and Proposal) with same clustering
results. As baselines, NLCCJ is a naive join algorithm based on nested-loop
strategy and BFCCJ is a classical join algorithm based on breath-first search
strategy. (3) Scalability. We conduct experiments on moving objects of differ-
ent sizes to evaluate the scalability of the clustering and CCJ algorithms.
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5.1 Effectiveness

As a proof-of-concept, we implement the converging mining algorithms inte-
grated in a demo system. As shown in Fig. 6(a), several convergings are discov-
ered from one-hour data in Taxi with parameters set as ε = 50,minPts = 5,
θt = 5, θm = 30. Two representative convergings are displayed. As shown in
Fig. 6(b), taxis were returning to a taxi storage yard after work. As shown in
Fig. 6(c), taxis were converging at a parking lot in Shanghai Pudong Interna-
tional Airport for waiting guests. Besides, more convergings can be discovered
using this demo system, which has been deployed on a virtual machine of Alibaba
Cloud and can be accessed at http://203.195.219.39:8080/CPM/index.html.

Fig. 6. Visualization of the mined convergings.

Additionally, we statistically analyse the spatio-temporal distribution of the
convergings in terms of four kinds of regions of interests (ROIs), i.e., transporta-
tion, leisure, office and residence. The statistical result of convergings in one day
is shown in Fig. 7. The parameters are set as ε = 200,minPts = 2, θt = 10, θm =
10. Obviously, there are more convergings late at night and early in the morning.
This is because, the activities range of people is relatively dense during these
periods. Especially, the convergings in the residence and leisure ROIs increase
significantly. The main reason is that, a large number of people go home or to
entertainment venues by taxi, since the public transportation is out of service
during these periods. In addition, we display the spatial distribution of the con-
vergings in two typical time periods, i.e., 2am to 4am and 11am to 1pm. It is
easy to see, the convergings mostly concentrate in the suburbs of Shanghai early
in the morning. This is because, most taxis change shifts or stay for a long time
in the suburbs during this period. On the contrary, the driving range of taxis
is relatively wide due to the dispersion of passengers in the city, resulting in a
scattered distribution in various regions of convergings.

http://203.195.219.39:8080/CPM/index.html
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Fig. 7. The statistical result of convergings in Taxi.

5.2 Efficiency

In this subsection, we study the efficiency of our proposals. Specifically, we eval-
uate the performance of clustering and CCJ algorithms with different parameter
settings (i.e., ε = 100, 150, 200, 250, 300 and minPts = 2, 3, 4, 5, 6, where the
default settings are in bold). All experiments are conducted on both real-life
Taxi dataset and synthetic Brinkhoff dataset with one-hour data respectively.

Performance of Clustering Algorithms. We evaluate the clustering algo-
rithms with different range query methods: a)Brinkhoff ; b)G*-Tree; c)Proposal .

Fig. 8. Running time of clustering algorithms.

Efficiency w.r.t. ε. Figure 8(a)(b) show the running time of clustering algorithms
w.r.t. ε. It is obvious that all algorithms incur higher cost as ε increases due to the
enlargement of query ranges. Our proposal is several orders of magnitude faster
than two baselines because invalid objects are filtered by the FRV framework
and the neighbourhoods are rapidly queried through our scalable VNIndex.

Efficiency w.r.t. minPts. Figure 8(c)(d) present the performances of algo-
rithms w.r.t. minPts. We can see that all algorithms are relatively insensitive
to minPts. This is because, the computational cost relates to the number of
neighbours within ε-neighbourhood rather than the number threshold.
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Performance of CCJ Algorithms. We also evaluate the performances of
CCJ algorithms: a) NLCCJ ; b) BFCCJ ; c) Proposal. The number of clusters
is the main factor affecting the performance, which depends on ε and minPts.
Therefore, we investigate the performances of CCJ algorithms w.r.t. ε,minPts.

Fig. 9. Running time of CCJ algorithms.

Efficiency w.r.t. ε. Figure 9(a)(b) show the performances w.r.t ε. We can see our
proposal is significantly more efficient than the baselines. This is because STRNP
index effectively reduces the candidate clusters and identifies the mismatches.

Efficiency w.r.t. minPts. Figure 9(c)(d) present the performances w.r.t. minPts.
As the previous experiment, our proposal has superior performance than two
baselines. With the increase of minPts, all algorithms incur less time cost since
fewer clusters are discovered.

5.3 Scalability

We evaluate the scalability of the algorithms. As shown in Fig. 10, our proposals
outperform the baselines in both clustering and CCJ. We can also see that the
performance gap between them is widened as more objects are involved. This is
because, our VNIndex and STRNP index are designed based on road networks
instead of objects, which can be reused over the entire time domains. Moreover,
vast invalid objects and clusters are pruned to achieve better scalability.

Fig. 10. Scalability of clustering and CCJ algorithms.
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6 Related Work

Density-Based Clustering in Spatial Networks. Density-based clustering
on moving objects is common in group pattern mining for discovering groups
of objects. DBSCAN [8] is widely used for group pattern mining in Euclidean
space. However, it is difficult to be directly applied in spatial networks. Yiu
et al. [13] first propose an ε−Link algorithm to find the ε−neighbourhoods
by expanding networks around the query points. They discover clusters cor-
rectly but inefficiently because queries are issued for all points and the graph
is traversed less systematically. Chen et al. [14] propose a cluster block (CB)
to cluster moving objects by the continuous maintenance of CBs and periodical
construction of clusters. Nevertheless, the sampled positions of moving objects
is highly variable so that it suffers from expensive overhead. Different from these
works, we focus on efficient queries of neighbourhoods and DCRN achieves better
scalability.

Query Processing in Spatial Networks. Spatial query is a basic technique
of pattern mining, which has been extensively studied. Papadias et al. [15] first
propose the Euclidean restriction and network expansion framework to process
queries in spatial networks. A most commonly-used paradigm is to partition spa-
tial networks into regions and to retrieve the pre-computation information in the
processing of queries. NPI [16] partitions the road network into equal-size grids
and maintains the distance data by a bound matrix. ROAD [17] organizes the
road network as a hierarchy of Rnets and prunes the search space to enhance net-
work traversal and object lookup. Recently, a height-balanced index G-Tree [9]
is proposed based on a recursive partition to road networks. G*-Tree [10] builds
shortcuts between some leaf nodes based on G-Tree. V-tree [11] works on efficient
neighbour queries of moving objects anywhere in road networks. All aforemen-
tioned works address the issue of single query processing, which is unscalable
to process a large number of queries. In contrast, our method processes range
queries in batches, which achieves better efficiency and scalability.

7 Conclusion

In this paper, we propose a novel group pattern Converging in road networks.
To efficiently discover convergings, we first propose a density-based clustering
algorithm to discover clusters, which adopts an FRV framework and a scalable
VNIndex to effectively identify core points. To generate converging trees, we
propose an STRNP index to improve the efficiency of CCJ. The experiment
results show the effectiveness, efficiency and scalability of our proposals.

Acknowledgement. This study was supported by NSFC41971343, NSFC61702271,
NSF of Jiangsu Province BK20200725 and the Postgraduate Research Innovation Pro-
gram of Jiangsu Province KYCX201258.
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Abstract. Sequential patterns play an important role when observing
behavior. For instance, the daily routines and practices of people can
be characterized by sequences of activities. These activity sequences, in
turn, can be used to find exceptional and changed behavior. Observing
students’ behavior changes is an effective approach to find indications of
mental health problems, and changes in an elderly person’s daily activi-
ties may indicate a weakening health condition. With the availability of
behaviour sequential events, outlierness analysis of behavior sequences
has been established as a meaningful research problem. This paper con-
siders the mining of outlying behavior patterns (OBP) from sequential
behaviors. After discussing the challenges of OBP mining, we present
OBP-Miner, a heuristic method that computes OBPs by incorporating
various pruning techniques. Empirical studies on two real-world datasets
demonstrate that OBP-Miner is effective and efficient.

Keywords: Contrast sequence data mining · Outlying behavior
pattern · Outlierness analysis

1 Introduction

Behavior can often be described as a sequence of activities. Examples include
elderly people’s daily activities and students’ weekly routines. In both cases
there are sequences from repeating time intervals, such as days or weeks. The
abnormal behavior may show as different from a person’s reference group and
different from past typical behavior.

Such sequence data mining for abnormal behavior has important practical
applications, for example, students’ mental health. According to the numbers
reported from NAMI1, 72% of students experienced a mental health crisis on
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campus. Moreover, among those students who experienced a mental health cri-
sis, 64% and 90% of students stopped attending college and committed suicides
respectively. However, 34% of students’ college didn’t know about their crisis,
which means that their condition went unnoticed. In addition, the mental illness,
such as depression and anxiety, can present different symptoms, depending on
the person. The illness would change how those students function day-to-day,
and typically for a period of time. Common symptoms include changes in sleep,
changes in appetite, loss of energy, lack of interest in activities, changes in move-
ment, etc. Based on this, observing those students’ behavior changes to recognize
if these students have mental issues is regarded as a breakthrough. Understand-
ing the students’ behavior changes can: (1) identify students who might have
mental issues; (2) explore potential factors that cause-related behavior changes
to provide some insights into solving issues.

This is a challenging task as we not only need to determine whether a stu-
dent has behavior changes but also find a specific time window when there is a
change in student behavior compared to that. For those students who experi-
enced a mental health crisis, the behavior sequence of these students should be
inconsistent with their groups (same dormitory or academy), and their historical
behavior sequence. For instance, such a student might get depressed when he/she
is unwilling to interact with others, but often sits alone or skips classes and stays
in the dormitory all day. Meanwhile, students with depression may suffer from
sleep disorders or loss of appetite. As a result, their sleeping and dietary habits
during this period are different from their previous behavior sequences.

The above analysis indicates that discovering such behavior sequence based
changes for college students is important for identifying potential students who
have behavior changes and the specific period of time. We note that existing
approaches are lacking in addressing the above important needs.

This leads us to a novel data mining problem. Comparing the current behav-
ior, historical behavior, and the current behavior of the reference group we
can detect outlying behavior. We say that an entity’s outlying behavior pat-
tern (OBP) is a behavior sequence that is different from the reference group (of
similar entities), and has a change compared to the entity’s historical behavior.
That is to say, outlying behavior pattern describes the entity’s behavior which
may indicate the abnormality. Mining OBPs can obtain more information details
to describe the outlying aspect of the entity’s behavior.

To tackle the problem of mining OBPs, several technical challenges need to
be addressed. First, a comprehensive and complete way is needed to represent
sequential behaviors. Naturally, behavior should not only reflect the characteris-
tics of real behavior but also conform to the actual situation of behavior change.
Second, OBP is a novel representation of outlying behavior, which requires a
metric of the outlierness degree for measuring the outlierness of a sequence with
respect to different candidate OBPs. Third, we also need an approach to effi-
ciently discover OBPs.

The main contributions of our work are as follows: (1) We introduce the
problem of OBPs mining from behavior events, which uses OBPs to evaluate
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and explain the outlierness of a behavior sequence. (2) We design a heuristic
method to discover OBPs of query behavior. (3) We evaluate our method by
conducting an empirical study on both two real behavior datasets of students,
which demonstrates that our OBPs mining algorithm is effective.

The rest of this paper is organized as follows. We review related work in
Sect. 2, and formulate the problem of mining OBPs in Sect. 3. In Sect. 4, we
present the framework of our OBP-Miner, and discuss the critical techniques in
OBP-Miner. We report a systematic empirical study in Sect. 5, and conclude the
paper in Sect. 6.

2 Related Work

Our work is related to three aspects of existing work on outlying aspect mining,
distinguishing sequential pattern mining, and education data mining.

2.1 Outlying Aspect Mining

Outlying aspect mining, a topic to discover subspaces that describe how a query
object stands out from the rest of objects, is the most related to this study.
Among the different taxonomies which have been proposed, methods of outlying
aspect mining can be categorized into three main groups, score-and-search based
approaches, feature-selection based approaches, and hybrid approaches.

In score-and-search based approaches, outlying aspect mining approaches
are based on measures of outlierness degree. HOS-Miner, proposed in [17], is
the first work to solve the problem of outlying aspect mining, which employs
a distance-based scoring measure to evaluate the outlierness degree of a given
query. Nguyen et al. [11] presented two scoring functions that were dimension-
ally unbiased to compare subspaces of different dimensionalities. Duan et al. [4]
proposed a model called OAMiner, using the rank of the probability density of
an object in a subspace to measure the outlierness of the object in the sub-
space. The above methods are all applied to relational objects, each of which is
composed of a fixed number of numerical or categorical attributes.

In feature-selection based approaches, the problem of outlying aspect mining
is tackled as the typical feature selection problem. Liu et al. [9] proposed COIN,
a method to explain the abnormality of outliers spotted by detectors based on
outlierness score, contextual description of its neighborhoods, and attributes that
contribute to the abnormality. Gupta et al. [5] provided explanations of outlying
behaviors in multi-dimensional real-valued datasets by discovering pairwise fea-
ture plots from chosen feature subspaces. Siddiqui et al. [14] mined a sequence of
features as an outlying subspace where the order indicates the importance with
respect to causing a high outlier score for a given outlier. One issue with these
approaches is that they mined sets of attributes to distinguish a given outlier
detected by an existing outlier detection algorithm from other data objects.

In hybrid approaches, the problem of outlying aspect mining is addressed
using a combination of score-and-search and feature-selection based approaches.
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Nguyen et al. [10] proposed a hybrid framework called OARank, utilizing the
strength of both score-and-search based approaches and feature-selection based
approaches, to mine outlying aspects in very large datasets. Wang et al. [15]
utilize the rank defined by the average probabilistic strength (aps) of a sequence
pattern in a sequence to measure the outlierness of the sequence.

2.2 Distinguishing Sequential Pattern Mining

Distinguishing sequential pattern (DSP) mining, a task to discover patterns that
best describe the significant differences between two classes of sequences, is useful
in many applications. Duan et al. [3] investigated the problem of mining distin-
guishing customer focus sets from customer reviews, which can be used for online
shopping decision support. Zheng et al. [19] developed a CSP-tree based struc-
ture to client sequential behavior analysis. Zhu et al. [20] introduced an approach
to characterize and detect personalized and abnormal behaviors of internet users
by mining user-related rare sequential topic patterns from document streams.

Our work is related to both outlying aspect mining and distinguishing sequen-
tial pattern mining, but there still exist differences between them. Most existing
works discover distinguishing temporal event patterns, where each event has an
associated timestamp. Our work aims to find such events with time intervals, and
thus can distinguish events in different time intervals. What’s more, events in
each time interval is a multi-dimensional value whereby existing outlying aspect
mining works cannot be applied to our work.

2.3 Education Data Mining

Education data mining has been approached from a large number of different
perspectives. Hang et al. [6] presented a method, named EDHG, analyzing stu-
dents’ check-in behavior for point-of-interest prediction. Li et al. [8] proposed
SPDN, a model with the aim of predicting students’ performance in the course
by analyzing students’ online learning activities and internet access activities.
Zhang et al. [18] and Cao et al. [2] indicated that students’ academic perfor-
mance is related to their behavior patterns with the analysis of smart cards.
Yang et al. [16] proposed an algorithm called EPARS, which is devised to pre-
dict students at risk by modeling online and offline learning behaviors. Jimenez
et al. [7] and Ameri et al. [1] found that the risk of dropping out is closely
related to students’ academic behavior. Peng et al. [12] discovered students’
internet addiction by predicting students’ daily time online. Resnik et al. [13]
aimed to predict neuroticism and depression in college students. Zhu et al. [21]
studied the procrastination of students based on the library borrowing records.
However, to the best of our knowledge, none of the existing methods focused
on the changes in students’ daily behaviors, which may cause various problems,
such as psychological problems. Thus, in this paper, we focus on mining out-
lying behavior patterns (OBPs) of behavior sequences, which is meaningful and
necessary in real-life scenarios.
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Table 1. Events of a student in a day

Student ID Time Event type Value

40067 10–22 08:15:27 Breakfast 4.5

10–22 08:30:35 Shopping 2.5

10–22 12:16:14 Lunch 12.6

10–22 12:26:20 Shopping 4.0

10–22 12:35:25 Library 1.0

10–22 20:39:27 Shopping 27.0

3 Problem Definition

Let E be the set of all possible event types. Examples of event types include
“eating” or “reading” etc. A behavior is a triple (t, e, v), where e ∈ E is an
event type, t is the timestamp when e occurred and v is a real number which
indicates the magnitude of the behavior. Note that the value of v depends on the
corresponding event type. For example, for “eating”, v indicates the consumption
value of “eating” at timestamp t, and for “reading”, we use 1 or 0 to represent
whether a student goes to the library or not.

A time interval w is an interval w = [w.ts, w.te), where w.ts is the start
timestamp and w.te is the end timestamp.

A student can have different event types in a time period, and the same event
type can occur multiple times. Assume that we have a time interval w and a set
of behaviors E which happen during w, we aggregate behaviors by creating an
n-dimensional (n = |E|) aggregation vector A(w) = [value1, value2, . . . , valuen],
where

valuei =
∑

v′∈{v′|∀(t′,e′,v′)∈E,t′∈w,e′=i}
v′.

Example 1. The following is an example about the aggregation vector A. Table 1
shows the four types of events < Breakfast, Shopping, Lunch, Library > that
occur in a student’s day. We set the time interval to 2 h, from 1:00 to 23:00,
thus we can get three aggregation vectors, i.e., A([7, 9)) = [4.5, 2.5, 0.0, 0.0],
A([11, 13)) = [0.0, 4.0, 12.6, 1.0], and A([19, 21)) = [0.0, 27.0, 0.0, 0.0].

Daily behavior of a student can be equally divided into m behavior sequences
at different time intervals. Then a student’s daily behaviors can be aggregated
into a daily behavior aggregation, which is a sequence of (time interval, aggre-
gation vector) pairs: S =< (w1, A(w1)), (w2, A(w2)), . . . , (wm, A(wm)) >. Each
pair S[i] = (wi, A(wi)) is the i-th element of S (1 ≤ i ≤ m). The length of S,
denoted by |S|, is the number of elements in S. For S[i], we use S[i].w to denote
the time interval and S[i].A to denote the aggregation vector.

A method is needed to estimate the similarity of aggregation vectors. Stan-
dardized Euclidean distance is used as a distance metric for aggregation vectors,
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interpreting the vectors as points in n-dimensional space. Note that we only
compare those aggregation vectors belonging to the identical time interval.

Given a set of aggregation vectors A, we can calculate the mean and standard
deviation of each dimension of aggregation vectors using all aggregation vectors
in A. For A(w), A′(w) ∈ A, the measurement of the similarity between A(w)
and A′(w) is denoted by

Sim(A(w), A′(w))

=
1
n

√√√√
n∑

k=1

(
(valuek − mk) − (value′

k − mk)
sk

)2

=
1
n

√√√√
n∑

k=1

(
valuek − value′

k

sk

)2

,

(1)

where mk and sk is the mean and the standard deviation of the k-th dimen-
sion of aggregation vectors in A, respectively. The smaller the value of
Sim(A(w), A′(w)), A(w) is more similar to A′(w).

A behavior pattern is a sequence of pairs P =< (w1, A(w1)), (w2, A(w2)),
. . . , (wn, A(wn)) >. Similarly, we denote the time interval as P [i].w, aggregation
vector as P [i].A, and the length of P as |P |.

Given a similarity threshold α, a daily behavior aggregation S and a behavior
pattern P, we say that the P matches S, denoted by P ⊂ S, if there exist integers
1 ≤ k1 ≤ k2 < . . . < k|P | ≤ |S|, such that

(1) P [i].w = S[ki].w, and
(2) Sim(P [i].A, S[ki].A) < α for 1 ≤ i ≤ |P |.

Let D = {S1, S2, . . . , ST } be the set of daily behavior aggregations in T days.
Given a support threshold γ, the support of P in D is the fraction of daily
behavior aggregations, denoted by

Sup(P,D) =
|{S ∈ D|P ⊂ S}|

|D| (2)

Then, a behavior pattern P is frequent in D if and only if Sup(P,D) > γ.

Example 2. Here is an example of the computation of the similarity and the
support. Table 2 shows a set of daily behavior aggregations of a student in 3 d D =
{S1, S2, S3}. There is a sequence of interest of time intervals of a day that begins
at 7:00 and ends at 21:00. Let similarity threshold α = 0.5, support threshold γ =
0.3. For pattern P =< ([11, 13), [9, 6, 10]), ([17, 19), [8, 5, 9]) >, P [1].w = S1[3].w,
Sim(P [1].A, S1[3].A) = 0.151 < 0.5, P [2].w = S1[6].w, Sim(P [2].A, S1[6].A) =
0.137 < 0.5, so P ⊂ S1. P [1].w = S2[3].w, Sim(P [1].A, S2[3].A) = 0.880 > 0.5,
so P �⊂ S2. P [1].w = S3[3].w, Sim(P [1].A, S3[3].A) = 0.473 < 0.5, P [2].w =
S3[6].w, Sim(P [2].A, S3[6].A) = 1.205 > 0.5, so P �⊂ S3. Then, Sup(P,D) =
1
3 > 0.3. Thus, P is frequent in D.
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Table 2. A set of daily behavior aggregations

Set ID Daily behaviors

Index 1 2 3 4 5 6 7

Time interval [7, 9) [9, 11) [11, 13) [13, 15) [15, 17) [17, 19) [19, 21)

D S1 Aggregation vector [5, 0, 0] [0, 5, 0] [10, 5, 11] [0, 0, 10] [0, 0, 0] [9, 6, 9] [0, 0, 0]

S2 Aggregation vector [6, 3, 0] [0, 5, 0] [9, 0, 12] [0,0, 14] [2, 0, 0] [7, 5, 0] [0, 3, 0]

S3 Aggregation vector [0, 0, 0] [0, 0, 0] [6, 6, 15] [5, 9, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Given a student dataset, we can divide it into two parts: a current dataset,
denoted by Dc, and a history dataset, denoted by Dh. Both Dc and Dh denote a
set of daily behavior aggregations. Dh consists of data of behaviors that took place
before behaviors in Dc, and for reasonable results, they should be comparable by
nature, e.g., if Dc contains weekdays data, then there should also be weekdays
data in Dh, and we suppose that data on weekdays and data on weekends are
not comparable. Note that Dc and Dh both have a fixed maximum length (e.g.,
one month).

We use Wh to represent the changeable time window of Dh. That is to say,
Wh is a period time of Dh. Formally, we denote Wh = [Wh.s,Wh.e], where Wh.s
is the start day and Wh.e is the end day (e.g., [0, 14] indicates the 0–14 days
of history dataset). Then Du

Wh
indicates the set of daily behavior aggregations

during the time window Wh.
For a student u and his groups U (e.g., students with the same dormitory or

academy), the set of daily behavior aggregations of u in Dc is denoted by Du
c ,

the set of daily behavior aggregations of u in Dh is denoted by Du
h, the set of

daily behavior aggregations of U in Dc is denoted by DU
c . We focus on the task

of outlying behavior pattern mining, and formalize some definitions as follows.

Definition 1. Given three sets of daily aggregation vectors, Du
c , Du

h and DU
c , a

history time window Wh, the outlying score of P targeting Du
c against Du

h and
DU

c , denoted by oScore(P,Wh), is

oScore(P,Wh) =
((Sup(P,Du

c ) − Sup(P,Du
Wh

)) + (Sup(P,Du
c ) − Sup(P,DU

c )))
2

(3)

Definition 2. (Problem Definition). Given three sets of daily aggregation vec-
tors, Du

c , Du
h and DU

c , a behavior pattern P, and a history time window Wh. A
tuple (P , Wh) is an outlying behavior pattern (OBP) of P if:

(1) (positive score) oScore(P, Wh) > 0;
(2) (score maximality) There does not exist another W ′

h satisfying Condition
(1), and

(i) oScore(P, W ′
h) ≥ oScore(P, Wh), or

(ii) oScore(P, W ′
h) = oScore(P, Wh) and |W ′

h| < |Wh|.
The problem of outlying behavior pattern mining is to find the OBPs

of candidate behavior patterns.
Table 3 lists the frequently used notations of this paper.
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Table 3. Summary of notations

Notation Description

E the set of all possible event types

w time interval of the behavior pattern

S a daily behavior aggregation

D a set of daily behavior aggregations

Sim(A(w), A′(w)) similarity between A(w) and A′(w)

Sup(P, D) support of pattern P in D
Du

c , Du
h student’s current, history datasets resp

Wh history time window

oScore(P, Wh) outlying score for pattern P against Wh

α, γ the similarity, support thresholds resp

4 Design of OBP-Miner

4.1 Framework

As defined in Definition 2, an OBP consists of a behavior pattern and its cor-
responding history time window. In brief, the OBP-Miner algorithm is divided
into the following two steps in an iterative manner: (1) generating a candidate
behavior pattern P , (2) for P , finding the history time window Wh that maxi-
mizes oScore(P,Wh). In each iteration, OBP-Miner keeps the collection of OBPs
discovered so far.

For the sake of efficiency, there are two critical points when designing
OBP-Miner. First, how to avoid generating useless candidate behavior patterns
(Sect. 4.2). Second, for each candidate behavior pattern, how to explore all pos-
sible history time windows efficiently (Sect. 4.3).

Fig. 1. An illustration of a set enumeration tree
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4.2 Candidate Behavior Pattern Generation

Considering behavior patterns with fewer occurrences do not reflect well the
behaviors of a student in current time, for each student u, we first find frequent
behavior patterns in Du

c .
By scanning Du

c , we can get a set of (time interval, aggregation vector) pairs P
= {(i,v)|∃(w,A(w)) ∈ S, S ∈ Du

c , w = i, A(w) = v,∀1 ≤ j ≤ |v|},v[j] �= null}.
To ensure that OBP-Miner can find patterns with the largest support in Du

c ,
we design a set enumeration tree to enumerate all possible behavior patterns in
a systematic way. We first sort time intervals of pairs in P in ascending order.
Figure 1 shows an example of a set enumeration tree that enumerates all patterns
over P = {(i1,v1), (i1,v2), (i2,v3), (i3,v4), (i3,v5)}, where each ij priors to ij+1

(1 ≤ j < 3).
OBP-Miner generates candidate behavior patterns by traversing the enumer-

ation tree in a depth-first manner. It is time-consuming to traverse all nodes in
the pattern enumeration tree. Fortunately, Theorem 1 demonstrates the mono-
tonicity of Sup(P,Du

c ) with respect to Du
c .

Theorem 1. Given a set of daily behavior aggregations D and a similarity
threshold α, we have Sup(P, D) ≥ Sup(P ′, D) for all patterns P and P ′, provided
that P is a subsequence of P ′.

Given a support threshold γ, Theorem 1 leads us to a useful pruning rule,
which allows us to terminate the depth-first traversal of an entire branch at the
current node.

Pruning Rule 1. For pattern P , if Sup(P, D) < γ, for each pattern P ′ such
that P ⊂ P ′, P ′ can be pruned.

It makes sense to find patterns whose support is large early, so that the
pruning methods give bigger impact. By this observation, we first compute the
support of all patterns each containing exactly one single pair in P, and sort all
pairs in the descending order of support. We apply the following rule to prune
pairs.

Pruning Rule 2. A pair (i,v) in P can be removed from P without loosing
any valid frequent patterns if Sup((i,v),D) < γ.

Given a similarity threshold α, for each (i,v) ∈ P, we construct a similarity
matrix MD

(i,v) for D. MD
(i,v)[j][k] = 1 if Sim(v, Sj [k].A) > α and i = Sj [k].w,

otherwise, MD
(i,v)[j][k] = 0.

Definition 3 (Coverage Pair). Given a threshold α, a set of pairs P, pairs
(i,v) ∈ P and (i′,v′) ∈ P, (i,v) is a coverage pair of (i′,v′) if MD

(i,v)[j][k] = 1
for ∀MD

(i′,v ′)[j][k
′] = 1 where i = Sj [k].w and i′ = Sj [k′].w.

Theorem 2. Given pairs (i,v) ∈ P and (i′,v′) ∈ P, for patterns P and P ′

satisfying:(1) |P | = |P ′|; (2) if P [j] = (i,v), then P ′[j] = (i,v) or P ′[j] =
(i′,v′); (3) if P [j] �= (i,v), then P [j] = P ′[j]. If (i,v) is a coverage pair of
(i′,v′), then Sup(P, D) ≥ Sup(P ′,D).
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Algorithm 1. OBP-Miner(Du
c , Du

h, DU
c , α, γ)

Input: Du
c , Du

h and DU
c , α: similarity threshold, γ: support threshold

Output: OBP: the set of OBPs
1: SP ← ∅;
2: generate candidate pairs P by scanning Du

c ;
3: for each pair p ∈ P do
4: if Sup(p, Du

c ) < γ then
5: remove p from P; //Pruning Rule 2
6: else if there exists p′ ∈ P such that p′ is a coverage pair of p then
7: remove p from P; //Pruning Rule 3
8: end if
9: end for

10: sort all pairs in descending order of support;
11: for each behavior pattern P searched by traversing the behavior pattern enumer-

ation tree in a depth-first way do
12: compute Sup(P, Du

c ) according to Du
c , Du

h and DU
c ;

13: if Sup(P, Du
c ) > γ then

14: generate all candidate history time windows Wh and initialize max ← 0;
15: for each history time window Wh in Wh do
16: if oScore(P, Wh) > max then
17: max ← oScore(P, Wh);
18: end if
19: update P regarding Wh and oScore; OBP ← OBP

⋃{P};
20: end for
21: else
22: perform Pruning Rule 1;
23: end if
24: end for

Proof. For given P and P ′ satisfying |P | = |P ′|, and (1) if P [j] = (i,v), then
P ′[j] = (i,v) or P ′[j] = (i′,v′); (2) if P [j] �= (i,v), then P [j] = P ′[j]. Suppose
(i,v) is a coverage pair of (i′,v′), we have {S ∈ D|P ′ ⊂ S} ⊆ {S ∈ D|P ⊂ S}.
Then, by Eq. 2: |{S∈D|P⊂S}|

|D| ≥ |{S∈D|P ′⊂S}|
|D| . Thus, Sup(P,D) ≥ Sup(P ′,D). 
�

Using Theorem 2, once (i′,v′) is removed from P, we can reduce the gen-
eration of numerous patterns with small support, and improve the efficiency of
candidate pattern generation. Thus we get the Pruning rule 3.

Pruning Rule 3. A pair (i′,v′) ∈ P can be removed if there exists another
(i,v) ∈ P that (i,v) is a coverage pair of (i′,v′).

4.3 Candidate History Time Window Generation

For each node in the behavior pattern enumeration tree traversed by OBP-Miner,
a behavior pattern P is generated. The next step is to generate all candidate
history time windows and find a Wh in Du

h that maximizes oScore(P,Wh) for
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a given fixed |Du
h|. A straight way is to enumerate all sub-windows of [0, |Du

h |].
Clearly, it’s not necessary for us to generate all candidate sub-windows.

Observation 1. There is natural periodicity in student’s behavior due to orga-
nization of courses.

Based on Observation 1, it’s more reasonable for us to generate candidate
history time windows based on the length of recent time window (e.g., the recent
time window is one week, then we may generate history time windows in one
week, two weeks, etc.).

Finally, we present the pseudo-code of OBP-Miner in Algorithm 1.

5 Empirical Evaluation

5.1 Experimental Setting

Datasets. Two real datasets were used in our experiments, and they were briefly
described in the following.

(1) Subsidies dataset. The dataset2 was publicly available, including the fol-
lowing aspects of data: book borrowing data, student performance data,
bursary award data, dormitory access control data, library access control
data, and consumption data. Note that consumption data comes from var-
ious places such as canteens, supermarkets, and school hospitals. We chose
data from the latter three aspects of 748 students for our experiment. In
addition, for group comparative analysis, we treated the students from the
same academy as a group according to the basic information of students
extracted from student performance data.

(2) Campus dataset. It was a real dataset from 856 students in a university,
collecting the consumption data from different places, including canteens,
school buses and boiling rooms. In particular, we regarded the students
in the same class as a group for comparative analysis. Table 4 lists the
abbreviations of the student behaviors in the experiment about two datasets.

Table 4. Behaviors and corresponding abbreviations on both two datasets

Academic Administration (AA) Activity Center (AC) Boiled Water (BW)

Canteen (CT) Dormitory (DM) Hospital (HP)

Library Access Record (LA) Library (LB) Laundry Room (LR)

School Bus (SB) Showering (SH) Supermarket (SP)

2 https://www.ctolib.com/datacastle subsidy.html.

https://www.ctolib.com/datacastle_subsidy.html
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Table 5. Students in Subsidies dataset with the largest oScore

Student ID Outlying Behavior Patterns (OBPs) with w Wh oScore

25803 (CT: 3.3, DM: 2.0) [7, 9), [0, 7] 0.964

(CT: 7.3, DM: 2.0) [11, 13),

(AC: 0.3, LB: 1.0, DM: 2.0) [13, 15),

(SP: 6.6, DM: 2.0) [17, 19)

(CT: 3.3, DM: 2.0) [7, 9), [0, 7] 0.964

(AC: 0.3, LB: 1.0, DM: 2.0) [13, 15),

(SP: 10.0, DM: 2.0) [17, 19)

(CT: 3.3, DM: 2.0) [7, 9), [0, 7] 0.679

(CT: 7.3, DM: 2.0) [11, 13),

(AC: 0.3, LB: 3.0, DM: 2.0) [13, 15),

(BW: 10.0, AC: 0.3, DM: 1.0) [17, 19)

15701 (SB: 5.6, DM: 2.0) [17, 19) [14, 21] 1.000

(CT: 3.4, DM: 1.0) [7, 9), [14, 21] 0.964

(SB: 5.6, DM: 2.0) [17, 19)

(AC: 0.2, CT: 1.0, DM: 2.0) [11, 13), [14, 21] 0.857

(SB: 5.6, DM: 2.0) [17, 19)

(AC: 0.2, CT: 1.0, DM: 2.0) [11, 13), [0, 7] 0.857

(SB: 2.0, DM: 2.0) [15, 17)

(AC: 0.2, CT: 1.0, DM: 2.0) [11, 13) [0, 7] 0.857

Table 6. Students in Campus dataset with the largest oScore

Student ID Outlying Behavior Patterns (OBPs) with w Wh oScore

11138 (AC: 5.6, BW: 1.0) [11, 13), [0, 7] 0.715

(CT: 8.6, DM: 1.0) [17, 19)

(AC: 6.4) [17, 19) [0, 7] 0.715

(AC: 5.6, BW: 1.0) [11, 13), [0, 7] 0.571

(AC: 6.4) [17, 19)

(AC: 8.6) [11, 13) [0, 7] 0.536

11291 (AC: 5.6, BW: 1.0) [11, 13), [0, 7] 0.571

(AC: 6.0) [17, 19)

(AC: 5.6, BW: 1.0) [11, 13), [0, 7] 0.571

(AC: 8.6) [17, 19)

(AC: 6.0, BW: 4.0) [11, 13), [0, 7] 0.571

(AC: 6.0) [17, 19)
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Parameter Setting. Recall that there are three running parameters in OBP-
Miner: similarity threshold α, support threshold γ and size of history time win-
dow |Wh| (The specific value means days). Moreover, there is one more parameter
for efficiency experiment: the number of students N .

Setup. All experiments were conducted on a PC with an AMD Ryzen Thread-
ripper 3990X 2.90 GHz CPU and 256 GB main memory, running the Windows
10 operating system. All algorithms were implemented in Java and compiled by
JDK 1.8.

5.2 Effectiveness

We first verify the usefulness and effectiveness of OBP-Miner by analyzing the
OBPs of students in Campus dataset and Subsidies dataset.

Tables 5 and 6 list two students who have OBPs with the largest oScore,
respectively. And the corresponding OBPs, time interval (w), history time win-
dow (Wh) and oScore are listed in two tables. Recall that w indicates a time
interval in a day (e.g., [11, 13) means time from 11:00 to 13:00), Wh indicates a
history time window before current time (e.g., [14, 21] means 14–21 days of the
history dataset).

From the results in Table 5, we see that OBPs can show some interesting
and personalized daily behavior patterns of students. For example, comparing
the current time interval with the same time interval in the past 7 d (the history
time window [0, 7] targeting student 25803 and student 15701, respectively),
student 25803 goes to activity center between 13:00 and 15:00, while he/she
never goes to activity center during this time within past 7 d. And for student
15701, this student takes the school bus twice between 15:00 and 17:00, and this
behavior has not occurred in the same time period of the past 7 d.

In Table 6, some interesting daily behavior patterns of each student can be
found. Take student 11291 as an example, he/she has a high frequency to have
dinner at the activity center in recent days, and never goes to this place in
history time window. Student 11138 prefers to have lunch in the activity center
and dinner in the canteen recently.

Figures 2 and 3 present statistics on the count of OBPs and oScore for each
student with respect to γ, α, Wh, |OBP| in Campus and Subsidies datasets,
respectively. We first increase the support threshold γ. Intuitively, fewer patterns
can be found when we use higher support thresholds. Then we increase the
similarity threshold α. In this case, more patterns can be found with a larger
similarity threshold. Considering the oScore, count of OBPs with respect to
different history time window Wh, we can see that students in both two datasets
have the most counts among the history time window in [0, 7]. We note that there
is no clear correlation between oScore and history time window. Besides, we see
that for different datasets, this count distribution varies according to different
|OBP|. For Campus dataset, length in {1, 2} has more OBPs while for Subsidies
dataset, this set is {3, 4}.
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Fig. 2. Effectiveness test w.r.t. γ, α, Wh and |OBP| in Campus dataset

Fig. 3. Effectiveness test w.r.t. γ, α, Wh and |OBP| in Subsidies dataset

5.3 Efficiency

To the best of our knowledge, there is no previous method addressing this prob-
lem. Thus we test the efficiency of OBP-Miner compared with two of its vari-
ations, that is, Baseline and Baseline∗. Baseline only adopts Pruning Rule 1
and Baseline∗ adopts Pruning Rules 1 and 2. In all efficiency tests, for Campus
dataset, we set γ = 0.30, α = 3.0 and |Wh| = 28 in default, and for Subsidies
dataset we set γ = 0.80, α = 2.0 and |Wh| = 28 in default. Logarithmic scale has
been used for the runtime to better demonstrate the difference in the behavior
between OBP-Miner and the baseline methods.

Figure 4 shows the runtime with respect to γ, α, |Wh| and N . With the
increase of γ and α, OBP-Miner always runs faster than Baseline and Baseline∗.
As γ and α increase, the runtime of both Baseline and Baseline∗ changes rapidly,
while the runtime of OBP-Miner changes in a slow and steady way, which indi-
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Fig. 4. Runtime w.r.t. α, γ, |Wh| and N

cates that OBP-Miner is insensitive to those two parameters. In addition, when
|Wh| and N getting larger, the runtime of almost all algorithms increases, but
OBP-Miner is slightly faster than Baseline and Baseline∗.

Clearly, OBP-Miner runs faster than both Baseline and Baseline∗, since
OBP-Miner employs a coverage pair select strategy to reduce the generation
of numerous patterns with small support. Besides, Baseline∗ is faster than Base-
line because it uses a pruning rule to avoid generating meaningless behavior
patterns. Moreover, the stability of runtime over different parameters verifies
the robustness of OBP-Miner.

6 Conclusion

In this paper, we studied the novel problem of mining OBPs from student behav-
ior sequences. We systematically developed a method with various pruning tech-
niques. Experiments on two real datasets demonstrated that our proposed OBP-
Miner is effective and efficient.

In the future, OBP-Miner can be applied to different sizes of current dataset
and history dataset. Considering the huge search space candidate OBP genera-
tion, we plan to investigate various selection strategies in OBP-Miner.
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Abstract. Mixed-type data that contains both categorical and numer-
ical features is prevalent in many real-world applications. Clustering
mixed-type data is challenging, especially because of the complex rela-
tionship between categorical and numerical features. Unfortunately,
widely adopted encoding methods and existing representation learning
algorithms fail to capture these complex relationships. In this paper, we
propose a new correlation-preserving embedding framework, COPE, to
learn the representation of categorical features in mixed-type data while
preserving the correlation between numerical and categorical features.
Our extensive experiments with real-world datasets show that COPE
generates high-quality representations and outperforms the state-of-the-
art clustering algorithms by a wide margin.

Keywords: Mixed-type data · Clustering · Correlation preserving

1 Introduction

Mixed-type data, which contains both categorical and numerical features, is
ubiquitous in the real world. It appears in many domains such as in network data
[34] with the size of packages (numerical) and protocol type (categorical), and in
personal data [26] with gender (categorical) and income information (numerical).
Clustering is an important data mining task that groups data objects into clus-
ters so that the objects in the same cluster are more similar to each other than
to those in other clusters. Mixed-type data clustering has many real-world appli-
cations such as customer segmentation for differentiated targeting in marketing
[17] and health data analysis [38,40]. However, most of the existing clustering
algorithms have been developed for only numerical [2,12,14,18,37] or categorical
data [1,4,10,22,31]. There are only a handful of algorithms [6,16,22,30] designed
for mixed-type data.

A common approach to cluster mixed-type data is to generate numerical
representations for categorical features, e.g., by using onehot encoding, then
apply clustering algorithms designed for numerical data. The challenge of this
approach is finding a good numerical representation that captures the complex
c© Springer Nature Switzerland AG 2021
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relationship between numerical and categorical features. Simple encoding meth-
ods, such as onehot, ordinal, and binary encoding, operate on individual features
separately, and do not consider the relationship between features. In recent years,
neural networks [27,35] have become a popular choice for representation learning
because of its capacity in approximating complex functions. Autoencoder [35] is
a natural choice for using a neural network to learn the data representation. It is
a typical neural model with full connections between features and hidden units.
However, a simple autoencoder that minimizes the reconstruction error loss may
not fully capture the correlation between features.

This paper proposes a COrrelation-Preserving Embedding framework
(COPE) to learn the representation for categorical features while preserving
the relationship between categorical and numerical features. The COPE frame-
work improves the representation learned by an autoencoder by incorporating
two sub-networks to capture the correlation between categorical, numerical, and
embedded data. By concurrently optimizing for representation learning and cor-
relation preservation, the embedded categorical data preserves its semantics and
the relationship with numerical features, thus providing more accurate clustering
results.

We evaluate our proposed approach using six real-world datasets in various
domains. Our extensive experimental results show that COPE outperforms other
methods in clustering metrics such as Adjusted Mutual Information (AMI) [36]
and Fowlkes-Mallows Index (FMI) [15]. The qualitative representation analysis
using t-SNE visualization [28] depicts the effectiveness of COPE in grouping
similar data into clusters. The convergence test shows that the COPE network
quickly converges after a few iterations.

The remainder of this paper is organized as follows. In Sect. 2, we formally
define the mixed-type data clustering problem and provide an overview of the
correlation between categorical and numerical features. In Sect. 3, we discuss
the current approaches for mixed-type data clustering. In Sect. 4, we introduce
our proposed approach COPE. In Sect. 5, we present our experimental results in
detail. We conclude the paper with discussion and future research directions in
Sect. 6.

2 Background

2.1 Problem Definition

Let us denote X = {x1, x2, ..., xN} ∈ X as a set of N objects in which each
object has dc categorical features and dn continuous features, i.e., F = Fc ∪ Fn

where Fc = {f1
c , ..., fdc

c } and Fn = {f1
n, ..., fdn

n }. Each categorical feature fi

has a discrete value domain Vi = {v1
i , v2

i , ...}. For each data object x, its value
in a continuous and categorical feature is denoted by xn ∈ Xn and xc ∈ Xc,
respectively. The problem can be defined as finding a good representation of
data points, which preserves the complex relationship between the features to
cluster data points accurately.
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Table 1. Example mixed-type data

Area Shape Color

10 Triangle Blue

12 Triangle Blue

30 Circle Red

50 Circle Red

45 Diamond Red

28 Diamond Red

8 Square Blue

7 Square Blue

The challenge is that there might not be an order or apparent distances
between categorical values; hence, it is impossible to compute a co-variance
matrix of numerical and categorical features. We need to infer the relation-
ship between categorical and numerical features from the data. Table 1 demon-
strates one example of mixed-type data. Each row presents three features of
one object. The features “Shape” and “Color” are categorical, and the feature
“Area” is numerical. We assume that the order between the values in the cat-
egorical features is not known a priori. From the data, we can infer that an
object with blue color and a triangle or square shape tends to have a small area
(less than 20). Therefore, a triangle can be inferred to be more “similar” to a
square than a circle. However, simple encoding methods, e.g., ordinal encoding:
{ triangle → 0, circle → 1,diamond → 2, and square → 3 }, do not capture
that relationship. To solve this problem, we need a mechanism to measure and
preserve the correlation between categorical and numerical features.

2.2 Correlation Between Numerical and Categorical Data

There are two main approaches to measure the correlation between a numerical
and a categorical feature, i.e., point biserial correlation [33], and regression [21].
The point biserial correlation coefficient is a special case of Pearson’s correla-
tion coefficient [7]. It assumes the numerical variables are normally distributed
and homoscedastic. The point biserial correlation is from −1 to 1. In the sec-
ond approach, the intuition is that if there is a relationship between categorical
and numerical features, we should be able to construct an accurate predictor of
numerical features from categorical features, and vice versa. This approach does
not make any assumption about the data distribution. To construct a predictor,
many different models such as Linear Regression [7], SVM Regression [11], and
Neural Network [32] can be used. Because of its robustness, we follow the second
approach in this study.
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3 Related Work

In literature, there are three main approaches for clustering mixed-type data.
The first approach is finding a numerical representation of data then applying
clustering algorithms designed for numerical data. Basic encoding techniques,
i.e., onehot, ordinal, and binary encoding, are typically used to transform cat-
egorical features into numerical features. The basic encoding approach is fast;
however, it operates on individual features, hence, does not correctly differentiate
between categorical values or capture the correlation between the features. Sev-
eral techniques have been introduced to address these problems. Autoencoder
[3] takes the onehot encoded data as input to learn the compact representa-
tion of data. However, autoencoder alone does not fully preserve the correla-
tions between features. DEC [41] is a variant of autoencoder, which simulta-
neously learns feature representations and cluster assignments. DEC first ini-
tializes its parameters with a deep autoencoder, then optimizes them by iter-
ating between computing an auxiliary target distribution and minimizing the
Kullback–Leibler (KL) divergence [19]. DEC focuses more on optimizing the
discrimination between data objects. Similarly, MAI [24] learns the pair-wise
relationship between features and focuses on learning the discrimination between
objects. It first estimates the density between each pair of categorical and numer-
ical feature. Then, each data object can be represented by a coupled encoding
matrix. In addition, MAI also has another representation of data in the onehot
encoding space. MAI takes these two representations as input and employs a neu-
ral network to learn the data representation. MAI triggers the learning process
by preserving the distance orders in every set of three data objects in the one-
hot encoding and couple encoding space. This approach captures the pair-wise
relationships between categorical and numerical features. However, it does not
capture the relationship between more than two features. Besides, it preserves
the order between data points in the onehot encoding space, which is generally
not accurate. Moreover, the process of estimating the density of couplings is very
time-consuming.

The second approach is converting numerical values into categorical values,
then applying clustering techniques designed for categorical data. The numeri-
cal features are discretized into equal-size bins. K-modes [22], which is based on
k-means, is a common clustering technique for categorical data. K-modes uses
the Hamming distance, which is the number of features where two data objects
differ. K-modes tries to minimize the sum of intra-cluster Hamming distances
from the mode of clusters to their members. The mode vector consists of cate-
gorical values, each being the mode of an attribute. Several categorical clustering
algorithms such as COOLCAT [4] and LIMBO [1] are based on minimizing the
entropy of the whole arrangement. However, the numerical discretization process
is information lossy, which can incur low clustering performance.

The third approach is applying algorithms designed for mixed-type data.
ClicoT [6] and Integrate [9] cluster mixed-type data by minimizing the Huff-
man coding cost for coding numerical, categorical values, and model parame-
ters. K-prototypes [22] combines k-means for numerical features and k-modes
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[22] for categorical features. It minimizes the intra-cluster distances, including
the Euclidean distances for numerical features and the Hamming distances for
categorical features. MDBSCAN in [5] introduced distance hierarchy as a dis-
tance measure suitable for categorical and numerical attributes and then applied
a modified DBSCAN [14] clustering.

4 Correlation Preserving Embedding for Categorical
Features - COPE

Instead of clustering data X in the original space X , we propose to first trans-
form the onehot encoded values Bc ∈ Bc of categorical features Xc ∈ Xc with a
non-linear mapping fθ : Bc → Zc where θ is a list of learnable parameters and
Zc is the latent embedding space, then concatenate the numerical embedding
with the normalized numerical features in Xn. In other words, the final repre-
sentation is [fθ(Bc),Norm(Xn)], where Norm(.) is a normalization function to
ensure numerical values to be in the same range with the categorical embedding.
Such a representation allows to cluster the mixed-type input data with existing
algorithms designed for clustering numerical data. The dimensions of Zc is typ-
ically much smaller than Xc in order to avoid “the curse of dimensionality” [23].
To parameterize fθ, Deep Neural Network (DNN) is a natural choice due to its
theoretical function approximation property [20] and its demonstrated feature
learning capability [8]. Following this approach, our proposed COPE network
consists of two main components, i.e., a Deep Autoencoder [29] and two Fully
Connected Neural Networks (FCNN). Figure 1 illustrates our COPE network
design.

The Deep Autoencoder is a deep neural network efficient in representation
learning and is used to extract latent compact features from the categorical input
data. It can capture the relationship between the categorical variables. It consists
of two parts, the encoder and the decoder, which can be defined as transitions
Eφ and Dμ such that Eφ : Xc → Zc and Dμ : Zc → Xc. The learnable parameters
φ, μ are optimized by minimizing the reconstruction loss:

Lae = ||Xc − (EoD)Xc||2 (1)

We parameterize φ and μ by deep fully connected networks with l layers, respec-
tively. In the encoder, after each layer, the number of units in a fully connected
layer is decreased by α. In contrast, in the decoder, after each layer, the num-
ber of units in a fully connected layer is increased by α. The embedding Zc is
computed as follows:

Zc = fl(fl−1(...(Xc))) (2)

where
fi(x) = σ(Wi.x) (3)

with σ is an activation function.
Our objective is to preserve the correlation between the two types of features

from the plain encoding and the embedding space. Let Cψ : Xc → Xn and
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Fig. 1. The Correlation-Preserving Representation Learning Network - COPE. It con-
tains a Deep Autoencoder and two Fully Connected Neural Networks to learn the
representation of categorical features.

C′
ω : Zc → Xn be the functions mapping the categorical features in the plain

encoding space and embedding space to the numerical features, respectively.
The parameters ψ, ω are optimized by minimizing the loss:

Lcr = L1 + L2 + L3 (4)

where

L1 = ||Xn − C(Xc)||2,L2 = ||Xn − C′(Zc)||2,L3 = ||C(Xc) − C′(Zc)||2 (5)

The losses L1 and L2 constrain C and C′ to learn the relationship between cate-
gorical features in the plain encoding and embedding space with the numerical
features, respectively. The loss L3 constrains Xc and Zc to have similar corre-
lations with Xn. The intuition is that if L3 is small, C and C′ will have similar
performance in predicting Xn. Similar to the encoder and decoder, we param-
eterize ψ and ω by one fully connected layer, respectively. To optimize all the
parameters θ = {φ, μ, ψ, ω} concurrently, we combine the two loss Lae and Lcr

into one target loss and use Adam optimizer [25]:

L = Lae + Lcr (6)

After the parameters are optimized, the encoder is used to compute the embed-
ding Zc from the categorical input data Xc. Then, the final data representation
[Zc,Norm(Xn)] is obtained. Consequently, clustering algorithms for numerical
data such as k-means [18] and DBSCAN [14] can be applied on the final data
representation.
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5 Experiment Results

5.1 Experimental Methodology

We first examined the correlation preserving and convergence capacity of COPE.
Then we compared the performance of COPE with the baseline algorithms using
the Adjusted Mutual Information [36] and Fowlkes-Mallows [15] scores. Finally,
we compared the quality of the representations produced by algorithms using
t-SNE visualization [28].

All the algorithms were implemented in Python. In COPE, the embedding
dimension was set to a half of the onehot encoding dimensions for categorical
features, and the parameter α was set to 1.2. In the Deep Autoencoder, in each
fully connected layer, we apply a sigmoid activation function. We used the Adam
optimizer with a learning rate of 0.001.

Baseline Algorithms. The baseline algorithms were selected carefully for each
mixed-type data clustering approach. For the first approach of converting cate-
gorical values into numerical values, we selected Onehot, Ordinal, Binary encod-
ing as the standard encoding methods, Autoencoder (AE) as a typical represen-
tation learning method, and MAI [24] as a state-of-the-art method. For Autoen-
coder, we used three variants, i.e., AE-cat, AE-all, and DEC [41]. AE-cat takes
only the one-hot encoded values of categorical values as input to learn the repre-
sentation for categorical features. AE-all takes both numerical features and the
one-hot encoded values of categorical values as input to learn the representation
for mixed-type data directly. DEC [41] is similar to AE-all but simultaneously
learns feature representations and cluster assignments. We set the number of
units in each layer of the encoder and decoder in these autoencoder variants
similarly to COPE. For the second approach of converting numerical values
into categorical values, we selected k-modes [22] because of its popularity. Each
numerical feature was discretized into ten equal-size bins. For the third app-
roach of using a clustering algorithm designed for mixed-type data, we selected
k-prototypes [22] as a popular algorithm and ClicoT [6] as the state-of-the-art
algorithm.

Clustering Metrics. In this study, we used the ground-truth classes to evaluate
the performance of clustering algorithms. The assumption is that the members
belong to the same classes are more similar than the members of different classes.
Hence, the goodness of a clustering assignment can be measured as its similarity
to the ground-truth classes. We used the two widely used clustering metrics, i.e.,
Adjusted Mutual Information (AMI) [36] and Fowlkes-Mallows Index (FMI) [15].

Adjusted Mutual Information. Let C,G denote the cluster and ground-
truth class assignments, respectively, of the same N data points. The entropy
of C and G is defined as follows: H(C) = −∑|C|

i=1 P (i) log(P (i)), where
P (i) = |Ci|/N , and H(G) = −∑|G|

i=1 P ′(i) log(P ′(i)) where P ′(i) = |Gi|/N .
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The mutual information between C and G is calculated by: MI(C,G) =
∑|C|

i=1

∑|G|
j=1 P (i, j) log P (i,j)

P (i)P ′(j) . The value of mutual information is adjusted for

chance as follows: AMI(C,G) = MI−E[MI]
mean(H(C),H(G))−E[MI] , where E[MI] is the

expected value of the mutual information. The AMI value is ranged from 0 to
1. An AMI of 1 indicates two label assignments are equal.

Fowlkes-Mallows Index. The Fowlkes-Mallows index is defined as the geo-
metric mean of pair wise precision and recall: FMI = TP√

(TP+FP )(TP+FN)
where

TP stands for True Positive, the number of pair of data points belonging to the
same classes and clusters; FP stands for False Positive, the number of pair of
data points belonging to the same classes but different clusters; FN stands for
False Negative, the number of pair of data points belonging to the same clusters
but different classes. The FMI value is ranged from 0 to 1. A FMI of 1 indicates
two label assignments are equal.

5.2 Datasets

We used six real-world UCI datasets [13] in various domains. The statistics of the
datasets are reported in Table 2, including the dataset name, dataset size, the
number of categorical features, numerical features, and classes. The KDD dataset
was extracted from the original KDD Cup 99 dataset to obtain more balancing
data. More specifically, we removed the classes with less than 1000 data points
and randomly selected at most 10000 data points for each remaining class. The
counts of classes are as follows: {‘back.’: 2203, ‘ipsweep.’: 1247, ‘neptune.’: 10000,
‘normal.’: 10000, ‘portsweep.’: 1040, ‘satan.’: 1589, ‘smurf.’: 10000, ‘warezclient.’:
1020} . For the Echo dataset, we removed the class with only one instance. For all
datasets, we imputed missing numerical values by mean values, and categorical
values by a value denoted by word “missing”.

Table 2. Statistics of UCI datasets

Datasets Description Size dc dn Class

KDD Network packages of different attacks 37099 7 34 8

Income Census income data 32561 9 6 2

ACA Australian credit approval data 690 8 6 2

CRX Credit card applications 690 9 6 2

Titanic Titanic’s passenger information 891 5 4 2

Echo Patients with heart attack 131 2 8 2

5.3 COPE - Correlation Preservation and Convergence Test

We first examined the correlation preserving capacity and the convergence of
our proposed method, COPE.
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Correlation Preservation. Table 3 reports the training losses of COPE for
all the datasets. As can be seen in this table, the losses L1 and L2 are small.
It shows that the mapping functions C and C′ well represents the relationship
between categorical and numerical attributes in both the plain and embedding
space. The loss L3 is very small for all the datasets, which proves the correlation
preserving capacity of COPE. The autoencoder loss Lae is small, which shows
that the original data can be well reconstructed from the embedded data.

Table 3. Training losses for all datasets.

Datasets L1 L2 L3 Lae

KDD 0.0058 0.0058 2.29E−07 3.35E−05

Titanic 0.0024 0.0017 1.17E−05 1.30E−04

CRX 0.012 0.0118 6.67E−06 6.50E−04

Income 0.0083 0.0083 2.42E−07 1.07E−04

ACA 0.009 0.008 3.02E−06 5.30E−05

Echo 0.0296 0.0294 1.54E−08 1.40E−04

Convergence Test. We applied k-means clustering [18] on the learned repre-
sentation and reported how the loss and AMI change across epochs. We used the
number of ground-truth classes to set the parameter k - the number of clusters.
Figure 2 reports the AMI and the training loss with the KDD dataset in 50
epochs. Similar results can be obtained with the other datasets. As can be seen
in this figure, the AMI and total training loss converged within 10 epochs.

(a) AMI (b) Training Loss

Fig. 2. Convergence test on dataset KDD.
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5.4 Clustering Results

We applied k-means clustering [18] on the data representation produced by
the methods producing numerical representation and compared their AMIs and
FMIs. We also compared them with ClicoT [6] and k-prototypes [22] designed for
mixed-type data, and k-modes [22] desgined for categorical data. The number
of clusters k in k-means, k-modes, and k-prototypes, was set to be the num-
ber of ground-truth classes. The results are reported in Tables 4 and 5 with
all the datasets. As reported in these tables, the AMI and FMI of COPE were
the highest for all the datasets. The top three performers were COPE, MAI,
and DEC, which produce numerical representation. On average, COPE demon-
strated approximately 37% and 30% improvement in AMI over DEC and MAI,
respectively. MAI and DEC optimized the discrimination between data points
and did not well preserve the relationship between categorical and numerical
features. In most cases, we observed AE-all outperforms AE-cat because AE-all
is able to integrate all features. However, for the KDD and Income datasets,
we observed AE-cat performs better than AE-all. This is because the correla-
tion between categorical and numerical features was not capture correctly in
AE-all. ClicoT automatically determines the number of clusters, which might
be different from the number of ground-truth classes. K-prototypes uses Ham-
ming distance for categorical features, which does not capture the relationship
between categorical and numerical features and offers the lowest performance.
The basic encoding methods, i.e., Onehot, Ordinal, and Binary, do not con-
sider any relationship between features, hence, they also offered low clustering
performances.

Table 4. Clustering performance - AMI. The results of COPE and numerical repre-
sentation methods are obtained using k-means.

Datasets Numerical

representa-

tion

Categorical

representa-

tion

Designed

for

mixed-type

data

COPE

Onehot Ordinal Binary MAI AE-all AE-cat DEC K-modes ClicoT K-prototypes

KDD 0.77 0.64 0.79 0.71 0.76 0.77 0.73 0.71 0.74 0.72 0.82

Income 0.11 0.02 0.10 0.13 0.11 0.13 0.13 0.09 0.03 0.00 0.17

ACA 0.43 0.02 0.01 0.43 0.36 0.22 0.16 0.23 0.18 0.28 0.44

CRX 0.02 0.02 0.02 0.43 0.16 0.01 0.43 0.20 0.18 0.03 0.44

Titanic 0.23 0.02 0.23 0.06 0.23 0.08 0.23 0.09 0.07 0.08 0.23

Echo 0.11 0.21 0.01 0.32 0.44 0.01 0.44 0.11 0.26 0.37 0.59

Average 0.28 0.16 0.19 0.37 0.34 0.20 0.35 0.24 0.24 0.15 0.48

5.5 Data Representation Analysis

There are several approaches for data visualization such as PCA [39], and t-SNE
[28]. They are both used for dimensionality reduction. While PCA is a linear
projection, t-SNE uses the local relationship between data points to create a
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Table 5. Clustering performance - FMI. The results of COPE and numerical repre-
sentation methods are obtained using k-means.

Datasets Numerical

representa-

tion

Categorical

representa-

tion

Designed

for

mixed-type

data

COPE

Onehot Ordinal Binary MAI AE-all AE-cat DEC K-modes ClicoT K-prototypes

KDD 0.78 0.68 0.82 0.72 0.77 0.78 0.75 0.73 0.77 0.77 0.83

Income 0.64 0.32 0.34 0.65 0.56 0.65 0.65 0.34 0.24 0.41 0.67

ACA 0.75 0.61 0.53 0.75 0.71 0.65 0.61 0.68 0.41 0.69 0.77

CRX 0.56 0.52 0.56 0.54 0.62 0.50 0.75 0.64 0.47 0.68 0.77

Titanic 0.69 0.52 0.69 0.54 0.69 0.63 0.69 0.61 0.38 0.08 0.69

Echo 0.56 0.52 0.53 0.79 0.80 0.53 0.80 0.64 0.71 0.37 0.88

Average 0.66 0.53 0.58 0.67 0.69 0.62 0.71 0.61 0.50 0.50 0.77

(a) COPE (b) AE-all (c) MAI

(d) Onehot (e) AE-cat (f) DEC

Fig. 3. The t-SNE visualization of data representations on the KDD dataset. (Color
figure online)

low-dimensional mapping. Similar data points in the original space tend to have
small distances in the t-SNE mapping. Because of the capacity to capture non-
linear dependencies, we adopted t-SNE to compare the quality of the mixed-type
data representations.

Here, we compared the top six methods that provide numerical representa-
tions, i.e., COPE, DEC, MAI, AE-all, Onehot, and AE-cat. In t-SNE, we set
the perplexity to be 100, and the number of iterations to be 5000. Figures 3 and
4 illustrate the representations of the methods for the KDD and Echo datasets,
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(a) COPE (b) AE-all (c) MAI

(d) Onehot (e) AE-cat (f) DEC

Fig. 4. The t-SNE visualization of data representations on the Echo dataset. (Color
figure online)

respectively, in a two dimensional t-SNE mapping. The representations of the
other datasets are in the Appendix section. Different colors represent different
ground-truth classes.

The KDD dataset with eight different classes is plotted in red, blue, green,
grey, yellow, pink, purple, and brown colors. As shown in Figure 3, in COPE,
most data points with the same classes are grouped into clusters, and the clusters
are separated quite clearly. The three largest groups are green, pink, and purple.
Meanwhile, in the other methods, we only observed at most five major classes
clearly with green, purple, yellow, brown, and red colors. Many data points
in other colors, e.g., pink data points, were hidden among green and purple
data points. Note that the group of pink data points is the largest group in
the KDD dataset. It shows the much better separability of COPE compared
to other methods. In MAI and DEC, we observed quite clearly groups of data
points. However, each group consists of data points in different classes. In Onehot
and AE-cat, more data points were scattered because they do not consider the
relationship between categorical and numerical features.

For the Echo dataset, which has two different classes, as shown in Figure 4,
there are two big groups of red data points in all methods. Similar to the KDD
dataset, COPE has the fewest number of grey data points, which were falsely
grouped with the red data points. The second best representation is AE-all. That
explains why COPE and AE-all are the top two performers for the Echo dataset
in clustering.
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6 Conclusions

In this paper, we proposed COPE, a framework to learn representation for mixed-
type data. It learns the embedding for categorical features using an autoencoder
and two sub-networks to preserve the correlation between categorical and numer-
ical features. We showed that COPE generates higher quality representation and
offers better clustering results than the competing methods by more than 30%
in widely used clustering metrics. As future work, COPE can be combined with
techniques that refine the representation to enhance the discrimination between
objects as in DEC for further improvement of the representation quality. We can
also learn the embedding for numerical features using COPE by switching the
roles of numerical and categorical features.
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Appendix

See Figs. 5, 6, 7 and 8

(a) COPE (b) AE-all (c) MAI

(d) Onehot (e) AE-cat (f) DEC

Fig. 5. The t-SNE visualization of data representations on the ACA dataset.
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(a) COPE (b) AE-all (c) MAI

(d) Onehot (e) AE-cat (f) DEC

Fig. 6. The t-SNE visualization of data representations on the CRX dataset.

(a) COPE (b) AE-all (c) MAI

(d) Onehot (e) AE-cat (f) DEC

Fig. 7. The t-SNE visualization of data representations on the Titanic dataset.
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(a) COPE (b) AE-all (c) MAI

(d) Onehot (e) AE-cat (f) DEC

Fig. 8. The t-SNE visualization of data representations on the Income dataset.
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Abstract. Online recruitment aims to match right talents with right
jobs (Person-Job Fit, PJF) online by satisfying the preferences of both
persons (job seekers) and jobs (recruiters). Recently, some research tried
to solve this problem by deep semantic matching of curriculum vitaes and
job postings. But those static profiles don’t (fully) reflect users’ personal-
ized preferences. In addition, most existing preference learning methods
are based on users’ matching behaviors. However, matching behaviors are
sparse due to the nature of PJF and not fine-grained enough to reflect
users’ dynamic preferences.

With going deep into the process of online PJF, we observed abundant
auxiliary behaviors generated by both sides before achieving a match-
ing, such as click, invite/apply and chat. To solve the above problems,
we propose to collect and utilize these behaviors along the timeline to
capture users’ dynamic preferences. We design a Dynamic Multi-Key
Value Memory Network to capture users’ dynamic preferences from their
multi-behavioral sequences. Furthermore, a Bilateral Cascade Multi-Task
Learning framework is designed to transfer two-sided preferences learned
from auxiliary behaviors to the matching task with consideration of their
cascade relations. Offline experimental results on two real-world datasets
show our method outperforms the state-of-the-art methods.
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1 Introduction

With the rapid development of the Internet, online recruitment has become
popular. It provides great convenience with low cost for both job seekers and
recruiters, e.g. without regard for their locations. The core of online recruit-
ment is Person-Job Fit (PJF), which tries to meet the preferences of both job
seekers and recruiters. With the huge numbers of job postings (JPs) and cur-
riculum vitaes (CVs) available on the Internet, the users (i.e. both job seekers
and recruiters) face the problem of information overloading. For example, there
are about millions of jobs and more than 675 million job seekers at LinkedIn in
2020 [1]. To solve this problem, it’s vital for online recruitment to develop more
effective and efficient person-job matching methods.

Due to the surge of deep learning in recent years, advanced matching
approaches based on neural networks have been proposed to automatically deal
with the raw data, e.g. textual profiles, in an end-to-end way. Some of them
considered PJF as a profile-matching problem [2–5], i.e. deep semantic matching
between curriculum vitaes and job postings based on CNN [2,4,5] or RNN [3].
Supervised by the matching feedbacks [2–4], they tried to learn good represen-
tations of profiles and the matching rules between CVs and JPs. However, these
static profiles do not always contain nor fully reflect users’ personalized prefer-
ences. For example, a person’s CV usually includes education background and
work experiences, but doesn’t contain any preference information.

To fill this gap, some methods were proposed to profile users’ preferences
from their matching behaviors [6]. However, in real online recruitment, most job
seekers and recruiters have only a few or even no historical matching records,
because they are likely to leave the recruitment platform if they had achieved a
matching. Therefore, methods only relied on the sparse matching feedbacks can
not capture users’ fine-grained and comprehensive personalized preferences.

In practice, users often generate multiple behaviors beyond matching on the
online recruitment platform. To solve the above problems, we go deep into the
interaction process of job seeker and recruiter on the largest online recruitment
platform named “Boss Zhipin”1 in China. When the job seeker/recruiter is the
first time to enter the platform, he/she needs to create an account on the plat-
form and upload his/her CV/JP. The interaction process starts with the job
seeker/recruiter searching or browsing through the site or APP according to
his/her expectation followed by:

(1) The job seeker/recruiter clicks and views a JP/CV posted by the job
recruiter/seeker in an impression list. (click)

(2) If the job seeker/recruiter finds the JP/CV is desirable, he/she will send an
application/invitation to the job recruiter/seeker. (invite/apply)

(3) The recipient can decide to respond positively or negatively. Only if the
recipient responds positively, a message exchange would begin. (chat)

(4) If they accept each other online, they achieve an online matching.
(matching)

1 https://www.zhipin.com.

https://www.zhipin.com
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(5) Finally, the job seeker/recruiter may leave the platform as having found
a job or employee, or initialize new interactions with other recruiters/job
seekers.

The interaction between the job seeker and recruiter may terminate in step
(1)–(3) if the job seeker/recruiter does not continue, or they finally achieve a
matching (step (4)). Figure 1 shows this interaction process in the online recruit-
ment platform except step (5). Note that the interaction can be initialized by
either a job seeker or a recruiter, and a job seeker/recruiter may have multiple
interactions with different job recruiters/seekers at the same time.

Fig. 1. The interaction process of job seekers and recruiters on the online recruitment
platform “Boss Zhipin”. The multi-behaviors with cascade relations are generated by
job seekers and recruiters.

Figure 1 shows multiple behaviors {click, invite/apply, chat, matching} gen-
erated by users and their cascade relations. Among them, {click, invite/apply}
are unilateral and {chat, matching} are bilateral. The auxiliary multi-behaviors
{click, invite/apply, chat} are relatively abundant and reflect users’ personalized
preferences to some extent, even though most of them finally fail to turn into
matching. With these auxiliary behaviors, we can capture more fine-grained and
comprehensive preferences of users. Furthermore, they can alleviate the spar-
sity problem of the matching behavior. Unfortunately, these auxiliary multi-
behaviors are often neglected by previous PJF methods.

Another problem is that the preferences of both job seekers and recruiters
are dynamic. The online recruitment platform is a two-sided market, and the
interactions between job seekers and recruiters may influence their expectations
and preferences. New users often have no idea about the recruitment market
at first, and try to explore and may cause matching failures. For example, if
their expectations are set too high, such as the requirements of excessive salary
from the job seeker side, they will fail to match any one until they change their
expectations. On the contrary, if their expectations are set too low, they will
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adjust their expectations in the subsequent interactions to maximize their own
benefits. With more knowledge of the recruitment market, their expectations
become more reasonable, and matchable to their abilities/benefits. Therefore,
it’s necessary to consider users’ dynamic preferences in PJF.

To solve these problems, we propose to learn the fine-grained and compre-
hensive dynamic preferences of both sides from their multi-behavioral sequences
including behaviors {click, invite/apply, chat, matching}, and transfer these pref-
erences to matching prediction task. A Dynamic Multi-Key Value Memory Net-
work is designed to capture users’ dynamic comprehensive preferences from their
multi-behavioral sequences, which transforms the heterogeneous behaviors into
a unified preference space and updates users’ unified preferences dynamically
according to the multi-behavioral sequences. We jointly model the prediction
tasks of multi-behaviors through a Bilateral Cascade Multi-Task Learning frame-
work with consideration of the cascade relations among behaviors.

The main contributions of this paper are summarized as follows:

– We propose to make use of the auxiliary behaviors {click, invite/apply, chat}
to learn users’ dynamic personalized preferences which can alleviate the spar-
sity problem of the matching behavior.

– We design a Dynamic Multi-Key Value Memory Network to transform the
heterogeneous behaviors into a unified preference space and update users’
unified preferences according to their multi-behavior sequences dynamically.

– We design a Bilateral Cascade Multi-Task Learning framework to transfer
the preferences from auxiliary behaviors {click, invite/apply, chat} to the
matching task with consideration of the cascade relations among behaviors.

– Experimental results on two real-world datasets show that the proposed
model outperforms the state-of-the-art (SOTA) methods.

2 Related Work

Person-Job Fit is the core of recruitment which aims to match right talents (i.e.
job seekers) with right jobs. The early work could date back to the1990s, and
PJF was seen as a bilateral matching problem [7], which considered that, for a
matched person-job pair, the skills/abilities of the person should commensurate
with the requirements of the job, and the desires of the person should also be
satisfied by the job’s supplies. Caldwell et al. [8] tried to model and compare the
competitiveness between the profiles of candidates to select the most competitive
ones. The early work was based on small-sized data or simple analysis methods.

Statistical machine learning methods, such as classification, regression [9,10]
and recommendation approaches [11–13], were utilized for PJF based on the
handcrafted features of curriculum vitaes and job postings. However, these meth-
ods needed to design handcrafted features which were expensive and inefficient.

With the rise of deep learning, several related work based on neural net-
works tried to realize Person-Job Fit in an end-to-end way. Some deep semantic
matching models were proposed to learn good representations of the textual
profiles. Zhu et al. [2] tried to learn the representations of both CVs and JPs
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using CNN, and predicted the matching degrees according to cosine similarity.
To capture both job seekers’ experiences from CVs and job requirements from
JPs, Qin et al. [3] proposed an ability-aware PJF model based on a hierarchical
Recurrent Neural Network. Le et al. [5] tried to capture the intentions of both
sides and learn the interdependence between CVs and JPs. However, the textual
profiles CVs and JPs might not contain or fully reflect the preferences of job
seekers and recruiters, respectively.

To solve this problem, Yan et al. [6] proposed to profile users’ preferences
from their historical matching behaviors. However, they only utilize the match-
ing behaviors, which are sparse and not fine-grained enough to capture users’
preferences. In online recruitment, users often have abundant auxiliary behaviors
before achieving a matching, such as {click, apply/invite, chat} in Fig. 1, which
also reflect their personalized preferences to some extent, but are ignored by
previous studies. In this paper, we propose to model two-sided multi-behavioral
sequences to profile the dynamic comprehensive preferences of users. To the
best of our knowledge, this is the first work to utilize two-sided multi-behaviors
beyond matching to capture the dynamic comprehensive preferences of users in
PJF.

3 Problem Formulation

Let P denote the person (job seeker) set and J denote the job (recruiter) set,
i.e. P = {pk|k ∈ [1,m]} and J = {jk|k ∈ [1, n]}, where m and n denote the
number of persons and jobs, respectively. Each person p ∈ P has a curriculum
vitae CV p, which contains the textual description of education background, work
experiences and skills. Each job j ∈ J has a job posting JP j , which includes the
textual description of company, job requirements and benefits. Each user (i.e.
person and job) has a multi-behavioral sequence, which records his/her multi-
behaviors in a sequence along the timeline. The multi-behavioral sequence of per-
son p ∈ P is denoted as Hp = {(jt, at)}, where the tuple (jt, at) denotes person p
took a behavior at on job jt at time t. Similarly, we have Hj = {(pt, at)} for each
job j ∈ J . a ∈ A and A = {click, invite, apply, chat,matching}. ya(p, j) ∈ {0, 1}
indicates whether there is a behavior a observed between person p and job j.
Note that, for unilateral behaviors {click, invite, apply}, (p, j) is different from
(j, p).

Given the multi-behavior sequences of all users H = {Hp|p ∈ P} ∪ {Hj |j ∈
J} and their textual profiles CV = {CV p | p ∈ P} and JP = {JP j | j ∈ J},
our goal is to predict the future person-job matching pairs for the target persons
(jobs).

4 The Proposed Approach

We consider person-job fit as a bilateral matching problem, and model two-
sided multi-behavioral sequences based on two assumptions: (1) the auxiliary
behaviors {click, invite, apply, chat} also reflect users’ personalized preferences,
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which are complementary to those of matching behaviors. Fusing the preferences
learned from these multi-behaviors in a proper way can improve the matching
prediction. (2) Users’ preferences are dynamic, and modeling the multi-behaviors
in a dynamic way is better than in a static way.

To capture users’ dynamic comprehensive preferences, we design a Dynamic
Multi-Key Value Memory Network (DMKVMN) to deal with the multi-behavior
sequences. It can transform heterogeneous behaviors into a unified preference
space and update users’ preferences according to their multi-behavior sequences.
A Bilateral Cascade Multi-Task Learning (BCMTL) framework is designed to
transfer preferences from auxiliary behaviors {click, invite, apply, chat} to the
matching task with consideration of the cascade relations between behaviors.

Fig. 2. Structure and operations of Dynamic Multi-Key Value Memory Network
(DMKVMN). It consists of multiple global key matrices {Kmatching, Kchat, Kapply,
K invite, Kclick} shared by all users, and provides a private value matrix M for each
user as his/her unified preference memory. It can transform the heterogeneous behav-
iors into the unified preference space of M based on an attention mechanism. Taking
person p (∀p ∈ P ) as an example, (a) DMKVMN updates the unified preference mem-
ory M p from M p

0 to M p
T according to the multi-behavior sequence Hp via the write

operation where T = |Hp|, (b) Write Operation denotes that, for time step t, how
DMKVMN updates M p from M p

t−1 to M p
t with a behavior (jt, at), (c) Read Oper-

ation denotes how DMKVMN reads out the current preferences {umatching
p , uchat

p ,
uapply

p , uclick
p } from M p w.r.t job j. Note that the operations on job side are similar

with those on person side.
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4.1 Dynamic Multi-key Value Memory Network

As shown in Fig. 1, in the online recruitment, each type of behaviors (∀a ∈ A)
has its own specific semantic meaning. For simplicity, we consider that the same
type of behaviors have the same meaning for different users, and different kinds
of behaviors of a user reflect his/her intrinsic preferences in different ways.

Based on these characteristics, we design a DMKVMN to transform the het-
erogeneous behaviors into the unified preference space and update users’ prefer-
ences according to their multi-behavior sequences in a dynamic way. It consists of
multiple global key matrices {Kclick, Kapply, Kinvite, Kchat, Kmatching} shared
by all users, and one private value matrix for each job seeker (e.g. Mp) and
recruiter (e.g. M j) as his/her unified preference memory, which is used to store
the comprehensive preferences according to his/her multi-behavior sequence (e.g.
Hp and Hj). Each global key matrix Ka (a∈A) can transform the correspond-
ing behavior (j, a) ((p, a)) of person p (job j) into the unified preference space
of Mp (M j) based on an attention mechanism (αa).

DMKVMN has two key operations: (1) the write operation is used to update
the preference memory Mp (M j) according to the multi-behavior sequence Hp

(Hj) of person p (job j), and (2) the read operation is used to read out the
current preferences {umatching

p , uchat
p , uapply

p , uclick
p } ({umatching

j , uchat
j , uinvite

j ,
uclick
j }) from the preference memory Mp (M j) w.r.t a given person-job pair

(p, j) for downstream tasks. Concretely, each global key matrix Ka (∀a ∈ A)
and each private value matrix M have the same number of slots, which is set
as I, i.e. Ka = {ka

1 ,k
a
2 , ...,k

a
I } and M = {m1,m2, ...,mI}. Each global key

slot ka
i ∈R

d is corresponding to the private value slot mi ∈R
d where d is the

dimension, which indicate the key and value on the i-th latent feature of the
preference space, respectively. Note that the global key matrices are behavior-
specific which are learnable parameters, and the value matrices are user-specific
which are updated by rules defined in the write operation.

To show how it works, we take the person p as an example as shown in
Fig. 2. DMKVMN iteratively updates his/her unified preference memory Mp

from Mp
0 to Mp

T according to the multi-behavior sequence Hp where T = |Hp|
and the value of each element in Mp

0 is initialized to 0. For each time t ∈ [1, T ], it
updates the unified preference memory from Mp

t−1 to Mp
t with the new behavior

(jt, at) via the write operation. In the write operation, for behavior (jt, at) in
Hp where the behavior type at ∈ A, the corresponding job posting JPjt is
firstly encoded as a vector vjt via a hierarchical LSTM encoder [14]. Then, vjt

is fed into the update function g(·) to generate the update vector zjt , i.e. zjt =
g(vjt), and vjt also multiplies with the corresponding global key matrix Kat of
at (i.e. Behavior Switch in Write Operation of Fig. 2) to generate the attention
αat

. Finally, DMKVMN updates the unified preference memory from Mp
t−1 to

Mp
t via an update gate. After updating Mp according to Hp via the write

operations, DMKVMN can read out the current preferences {umatching
p , uchat

p ,
uapply
p , uclick

p } from Mp via the dot product between the attentions {αmatching,
αchat, αapply, αclick} and Mp. The read and write operation are detailed as
follows.



366 B. Fu et al.

Write Operation. For each behavior (jt, at) in Hp where p∈P , jt ∈J and
at ∈ A, the unified preference memory Mp is updated by the update gate of
Fig. 2(b) as follows,

mp
i,t = (1 − αat,i) · mp

i,t−1 + αat,i · zjt

zjt = g(vjt) = tanh(Wvjt + b)
(1)

where t ∈ [1, |Hp|] and Mp
t ={mp

1,t,...,m
p
I,t}. g(·) is the update function, and

W ∈R
d×d and b∈R

d are its parameters. The attention αat
= {αat,1, ..., αat,I}

is a probability distribution over memory slots in Mp
t using softmax function,

which is calculated based on vjt and the corresponding global key matrix Kat

as follows,

αat,i =
exp

(
(vjt)

Tkat
i

)

∑I
s=1 exp

(
(vjt)Tkat

s

) where vjt = encode(JPjt) (2)

where i∈ [1, I] and Kat={kat
1 ,...,kat

I }. Each key slice kat
i is a learnable vector.

The job posting JPjt is encoded as a vector vjt ∈ R
d by a hierarchical LSTM

encoder [14].

Read Operation. To read out the current preferences {umatching
p , uchat

p ,
uapply
p , uclick

p } w.r.t the job posting JPj from the unified preference memory
Mp, we firstly use vj , i.e. the representation of JPj , to multiply with the cor-
responding global key matrices {Kmatching, Kchat, Kapply, Kclick} to gener-
ate the attentions {αmatching, αchat, αapply, αclick} according to Eq. 2. Then,
according to the attentions, we can read out the current preference ua

p under
behavior a ∈ A from the preference memory Mp w.r.t JPj in Fig. 2(c) as fol-
lows,

ua
p = αa � Mp =

I∑

i=1

αa,im
p
i (3)

where � is the dot product and Mp ={mp
1,...,m

p
I}.

With the shared global multi-key matrices {Kclick, Kapply, Kinvite, Kchat,
Kmatching} and a private value matrix for each user (e.g. Mp and M j),
DMKVMN can transform the heterogeneous behaviors into the unified prefer-
ence space of Mp (M j). It can not only update the unified preference memory
Mp (M j) according to the multi-behavior sequence Hp (Hj) via the write oper-
ation to capture the dynamic comprehensive preferences, but also can read out
the current preferences w.r.t the input job posting (curriculum vitae) via the
read operation. It relies on the learnable parameters: the parameters in the JP
and CV encoders, the global key matrices {Kmatching, Kchat, Kapply, Kinvite,
Kclick}, and {W , b} of the update function g(·). In the next section, we will
introduce how to learn them via a multi-task learning framework.
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4.2 Bilateral Cascade Multi-Task Learning

To transfer the preferences from auxiliary behaviors {click, invite, apply, chat} to
the matching task, we design a Bilateral Cascade Multi-Task Learning (BCMTL)
framework as shown in Fig. 3, which consists of the target matching task and
five auxiliary tasks. The total loss function is defined as follows,

L = Lmatching + λchatLchat + λapplyLapply
(P,J) + λclickLclick

(P,J)

+ λinviteLinvite
(J,P ) + λclickLclick

(J,P ) + λ||Θ||22
(4)

where (P,J) and (J,P ) indicate behaviors on the person and job side, respectively.
The coefficients λchat, λapply, λinvite and λclick control the weights of auxiliary
tasks chat, apply, invite and click, respectively. λ is the regularization coefficient.
Θ denotes the model parameters. We use cross-entropy loss for each task.

According to Eq. 3, we can get the current preferences of person p (job j)
w.r.t a given job j (person p), i.e. up = {umatching

p ,uchat
p ,uapply

p ,uclick
p } (uj =

{umatching
j , uchat

j , uinvite
j ,uclick

j }). The unilateral behaviors {click, apply, invite}
reflect the preferences of the initial side, e.g. person p clicks the job posting JPj

of job j since p is attracted by JPj . The prediction functions of {click, apply,
invite} on the person and job sides are defined as follows,

ŷclick(p, j) = φclick(uclick
p ⊗ vj); ŷapply(p, j) = φapply(uapply

p ⊗ vj)

ŷclick(j, p) = φclick(uclick
j ⊗ vp); ŷinvite(j, p) = φinvite(uinvite

j ⊗ vp)
(5)

where ⊗ is the Hadamard product. The bilateral behaviors {chat, matching}
denotes that both of the person and job are attracted by each other, and their
prediction functions are defined as follows,

ŷchat(p, j) = φchat

(
CAT([uchat

p ⊗ vj ;uchat
j ⊗ vp;vp;vj ])

)

ŷmatching(p, j) = φmatching

(
CAT([umatching

p ⊗ vj ;u
matching
j ⊗ vp;vp;vj ])

) (6)

where we concatenate (CAT) the profile representations (vp and vj) and the
interaction features into a vector, and feed it into the prediction functions. Multi-
layer Perceptron (MLP) is used as the prediction function (φ(·)) for each task.

Furthermore, the cascade relations among multi-behaviors in Fig. 1 may
benefit the multi-task learning. For example, whether person p will apply the
job j depends on whether p has clicked j before (i.e. click→apply). To utilize
the cascade relations click→invite/apply→chat→matching, we design a cascade
connection in the neural networks of prediction functions to transfer the infor-
mation. For example, for the cascade relation click→apply, we denote the last
hidden layer state of φclick(p, j) as oclick(p, j) ∈ R

do and let it be the additional
input of φapply(p, j). Then, the prediction functions are modified as follows,
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ŷcascade
apply (p, j) = φapply

(
CAT([uapply

p ⊗ vj ;oclick(p, j)])
)

ŷcascade
invite (j, p) = φinvite

(
CAT([uinvite

j ⊗ vp;oclick(j, p)])
)

ŷcascade
chat (p, j) = φchat

(
CAT([uchat

p ⊗ vj ;uchat
j ⊗ vp;vp;vj ;

oapply(p, j);oinvite(j, p)])
)

ŷcascade
matching(p, j) = φmatching

(
CAT([umatching

p ⊗ vj ;u
matching
j ⊗ vp;vp;vj ;

ochat(p, j)])
)

where oclick, oapply, oinvite and ochat denote the last hidden layer state of neural
networks φclick, φapply, φinvite and φchat, respectively.

As shown in Fig. 3, since the cascade relations are bilateral, we call this
multi-task learning as Bilateral Cascade Multi-Task Learning (BCMTL). For a
person-job pair (p, j), the inputs of the model are the profiles (CVp and JPj)
and historical multi-behavior sequences (Hp and Hj). CVp and JPj are firstly
encoded into vectors vp and vj by a hierarchical LSTM encoder [14]. DMKVMN
iteratively updates the unified preference memories Mp and M j according to
Hp and Hj , and then reads out the preferences up={umatching

p , uchat
p , uapply

p ,
uclick
p } and uj={umatching

j , uchat
j , uinvite

j , uclick
j } from Mp and M j , respec-

tively. Finally, the interaction features between the preferences and profiles,
and the profile features {vp, vj} are fed into the prediction functions with

Fig. 3. Bilateral Cascade Multi-Task Learning (BCMTL). Besides modeling the two-
sided multi-behaviors as multi-tasks, we also model their cascade relations by feeding
the predictions of prerequisite behaviors to the current behavior tasks.
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bilateral cascade connections to predict whether each type of behavior will hap-
pen between person p and job j in the very near future.

DMKVMN tries to capture the dynamic comprehensive preferences for both
persons and jobs from their multi-behavior sequences, and BCMTL tries to trans-
fer the preferences from auxiliary behaviors {click, apply, invite, chat} to the
target matching task. We call this proposed method as Dynamic P erson-Job
F it with Multi-Behavioral Sequences (DPJF-MBS). The objective function
in Eq. 4 is optimized by stochastic gradient descent(SGD) to learn the parame-
ters: the JP and CV encoders, the global key matrices {Kclick, Kinvite, Kapply,
Kchat, Kmatching}, the update function g(·), and the neural networks {φclick,
φinvite, φapply, φchat, φmatching}.

Table 1. Statistics of dataset Finance and Technology.

Dataset Finance Technology

#Multi-behaviors (A):

#matching 6625 37,996

#chat 9495 49,142

#apply on person side 18,091 66,811

#invite on job side 13,517 56,866

#click on person side 25,077 98,800

#click on job side 21,197 72,739

#Curriculum vitae (CV) 3974 22,020

#Job posting (JP) 11,483 25,481

#Ave. sentences per curriculum vitae 12 16

#Ave. sentences per job posting 10 10

#Ave. words per sentence 22 23

5 Experiment

5.1 Datasets

Two real-world datasets Finance and Technology provided by the largest online
recruitment platform “Boss Zhipin” in China are used as the experimental
datasets, which contain job seekers and recruiters, and their multi-behaviors
across five months in the industry of finance and technology, respectively. As
shown in Fig. 1, both job seekers and recruiters have four types of behaviors with
cascade relations and timestamps. Table 1 shows statistics of the two datasets.
Finance contains 3974 persons and 11,483 jobs, and Technology consists of 22,020
persons and 25,481 jobs. Besides the multi-behaviors of users, they also contain
users’ textual profiles: curriculum vitaes (CVs) and job postings (JPs).
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5.2 Experimental Settings

We split the multi-behavior data across five months into three folds: the first
three months for training, the fourth month for validation and the last month
for test. Each user’s multi-behaviors in the train set are sorted along the timeline
as a multi-behavioral sequence. For each user, we randomly select a ratio of
negative samples (e.g. five times as many as the observed samples) from the
non-observed samples which were not interacted by the user.

To analyze the empirical performance of the proposed model extensively, we
use four widely used evaluation metrics for ranking and recommendation, includ-
ing Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), Normalized
Discounted Cumulative Gain (nDCG) and AUC.

5.3 Comparative Methods

A neural recommender method NeuMF [15] and several SOTA PJF methods are
used as baselines, including PJFNN [2], APJFNN [3], JRMPM [6] and IPJF [5].

– Neural Collaborative Filtering(NeuMF) [15]. It’s a neural collaborative
filtering method which models the non-linear interactions of users and items.

– Person-Job Fit Neural Network(PJFNN) [2]. It’s a neural profile-
matching model which tries to learn the profile representations of persons
and jobs by CNN and predict the matching degrees with cosine similarity.

– Ability-aware Person-Job Fit Neural Network(APJFNN) [3]. It’s
another neural profile-matching method which models the job requirements
and job seekers’ experiences by a hierarchical LSTM.

– Job-Resume Matching with Profiling Memory(JRMPM) [6]. It’s a
PJF method which profiles the preferences of both persons and jobs from
their interview (i.e. matching) behaviors.

– Interpretable Person-Job Fit(IPJF) [5]. It’s a neural profile-matching
model which tries to learn the interdependence between job postings and
resumes with incorporating the intentions of persons and jobs.

– Dynamic Person-Job Fit with Multi-behavioral Sequences(DPJF-
MBS). It’s our proposed method which models two-sided multi-behavior
sequences to capture two-sided dynamic comprehensive preferences.

5.4 Implementation Details

For all the compared methods, we use mini-batch Adam [16] for optimization.
Curriculum vitaes and job postings are split into sentences, and each sentence
is segmented into words. The word embeddings are pre-trained by using the
Skip-gram word2vec [17] with dimension dw = 128. We keep the embedding
dimension d as 64 for all the representation methods. The mini-batch size is 20.
The maximum number of iterations is set to 50 ∗ (|P | + |J |). The learning rate
is set to 0.005.
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For our DPJF-MBS2. in each mini-batch, we randomly sample positive and
negative samples for each behavior task. We tune the value of {λ, λclick, λapply,
λinvite, λchat} in {1, 0.1, 0.01, 0.001, 1e−4, 1e−5} and I in {3, 5, 8, 10, 15}. The
depth of neural network φ is 2 and do = 32. The profile encoders of CV and JP
are hierarchical LSTM [14] including a word-level LSTM and a sentence-level
LSTM.

For NeuMF3 and JRMPM4, we use the source code provided in the original
papers. We implement PJFNN, APJFNN and IPJF according to their original
papers. The kernel sizes of two layers in PJFNN are set as the same as in [2]
(CV: 5-5 and JP:5-3). For IPJF, we regard the intentions as the invite/apply
behaviors in our scenario, Δ = 0.05, and tune the value of λ in {1, 0.1, 0.01,
0.001, 1e−4, 1e−5}.

5.5 Experimental Results

Overall Results. Table 2 shows the overall evaluation results of different meth-
ods according to MAP, MRR, nDCG and AUC. Our proposed method DPJF-
MBS consistently outperforms NeuMF and SOTA PJF baselines. By comparing
{JRMPM,IPJF,DPJF-MBS} with {PJFNN,APJFNN}, we can find that mod-
eling the implicit preferences/intentions from users’ behaviors is more effective
than only matching pairs of CVs and JPs. It confirms that the profiles may
not contain or fully reflect the personalized preferences. IPJF is a static profile-
matching method with incorporating users’ intentions, and JRMPM faces the
sparsity problem of matching behavior. DPJF-MBS outperforms JRMPM and
IPJF, which confirms that it helps to capture the dynamic comprehensive per-
sonalized preferences of users by modeling two-sided multi-behavior sequences.

Table 2. Evaluation results. * indicates p ≤ 0.01 based on Wilcoxon signed rank test.

Dataset Metric Method Improve

NeuMF PJFNN APJFNN JRMPM IPJF DPJF-MBS

Finance MAP 0.1421 0.1651 0.1662 0.1711 0.1733 0.1803* 4.0%

MRR 0.1889 0.2233 0.2258 0.2310 0.2344 0.2442* 4.2%

nDCG 0.2758 0.3094 0.3110 0.3166 0.3188 0.3278* 2.8%

AUC 0.5753 0.6243 0.6304 0.6410 0.6684 0.6867* 2.7%

Technology MAP 0.1478 0.1592 0.1532 0.1770 0.1755 0.1978* 11.8%

MRR 0.2086 0.2209 0.2114 0.2448 0.2428 0.2719* 11.1%

nDCG 0.2831 0.3049 0.2973 0.3264 0.3246 0.3515* 7.7%

AUC 0.5900 0.6228 0.6114 0.6603 0.6575 0.7092* 7.4%

2 https://github.com/BinFuPKU/DPJF-MBS.
3 https://github.com/hexiangnan/neural collaborative filtering.
4 https://github.com/leran95/JRMPM.

https://github.com/BinFuPKU/DPJF-MBS
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/leran95/JRMPM
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Do Auxiliary Behaviors and Cascade Relations Matter to PJF?
To analyze the impact of different auxiliary behaviors and the cascade rela-
tions, we design several variants of DPJF-MBS with different combinations of
{matching(A), chat(B), invite/apply(C), click(D), cascade relations} to verify
their effectiveness. Since it’s hard to explore all the combinations which contain
25 situations, we increase behavior types and cascade relations gradually in a
heuristic way.

Table 3 shows the evaluation results of different combinations. Firstly, we
observe that with more behavior types, all the evaluation metrics increase. It
confirms that, the auxiliary behaviors {click, invite/apply, chat} generated by
users also reflect users’ personalized preferences, which are complementary to
those of matching behaviors. Fusing the preferences learned from the multi-
behaviors can improve the matching prediction (Assumption 1). Furthermore,
utilizing the cascade relations (ALL in Table 3) among the multi-behaviors can
help transfer information in multi-task learning and also improve the matching
prediction.

Do Dynamic Preferences Exist and Matter in PJF? It’s not easy to
directly measure users’ dynamic preferences (i.e. changes) based on the textual
curriculum vitaes and job postings. Instead of showing several cases, we try to
verify that through reverse thinking: if there is no change of user preferences,
there should be no significant changes on the evaluation performance when we
shuffle the order in the input multi-behavioral sequences.

To ensure the reliability of the results, we tried ten runs and calculated their
average. The results ALL+shuffle in Table 3 show significant decreases especially
on Finance when we shuffle the order in each user’s multi-behavioral sequence.

Table 3. Effects of different combinations of behaviors and cascade relations.
A,B,C and D denote matching, chat, invite/apply and click, respectively. ALL =
A+B+C+D+cascade relations. shuffle means the time order in the multi-behavior
sequence is shuffled.

Dataset Combination MAP(↑%) MRR(↑%) nDCG(↑%) AUC(↑%)

Finance A 0.1670 0.2283 0.3132 0.6397

A+B 0.1720(3.0) 0.2333(2.2) 0.3175(1.4) 0.6582(2.9)

A+B+C 0.1744(4.4) 0.2371(3.9) 0.3207(2.4) 0.6736(5.3)

A+B+C+D 0.1773(6.2) 0.2405(5.3) 0.3236(3.3) 0.6805(6.4)

ALL 0.1803(8.0) 0.2442(7.0) 0.3278(4.7) 0.6867(7.3)

ALL+shuffle 0.1577 0.2137 0.2991 0.6561

Technology A 0.1754 0.2381 0.3184 0.6548

A+B 0.1886(7.5) 0.2575(8.1) 0.3350(5.2) 0.6704(2.4)

A+B+C 0.1936(10.4) 0.2629(10.4) 0.3432(7.8) 0.6897(5.3)

A+B+C+D 0.1962(11.9) 0.2680(12.5) 0.3481(9.3) 0.7073(8.0)

ALL 0.1978(12.8) 0.2719(14.2) 0.3515(10.4) 0.7092(8.3)

ALL+shuffle 0.1909 0.2630 0.3432 0.6957
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It confirms that, in online recruitment, users’ personalized preferences are
dynamic and capturing the dynamic preferences is beneficial for PJF. (Assump-
tion 2).

Parameter Sensitivity. We explore the impact of control coefficients {λchat,
λapply(λinvite), λclick, λ} in Eq. 4 and the number of memory slices I in
DMKVMN. For simplicity, we let λapply = λinvite. Figure 4 shows the impact of
these control coefficients. λchat and λapply/invite are preferred to be set to 0.1,
and the best value of λclick is 0.01. λ should be not too large, i.e. not more
than 0.01. The number of memory slices I control the storage capacity of the
memory network. Figure 5 shows that the number of memory slices impacts the
model performance. The value of I should not be too small or too large. With
consideration of performance and computational complexity, we suggest to set
the value of I to 5.

5.6 Visualization Analysis

To show how DMKVMN transforms the heterogeneous behaviors into the uni-
fied preference space based on an attention mechanism, we try to visualize the
attentions {αmatching, αchat, αapply, αinvite, αclick} of different behavior types
over the memory slices. Figure 6 shows the heatmaps of these attentions of the
person and job sides on Finance and Technology where I = 5.

From Fig. 6, we find different behavior types have their own attention pat-
terns. Auxiliary behaviors, such as click, apply/invite and chat, present relatively
more dispersed distribution than that of matching. One reason is that auxiliary
behaviors are relatively abundant and contain more diverse preferences. The
attention of matching focuses more on one memory slice since the matching
behaviors are sparse. Figure 6 shows that, after transformation, the preferences

Fig. 4. The sensitivity of control coefficients
λchat, λapply/invite, λclick and λ.

Fig. 5. Effect of I.
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Fig. 6. Attention distribution α of different behavior types over memory slices.

learned from heterogeneous behaviors can be fused harmoniously into the unified
preference memory.

6 Conclusion

In this paper, we propose a novel dynamic PJF model for online recruitment,
which tries to model two-sided multi-behavioral sequences. A Dynamic Multi-
Key Value Memory Network is designed to capture the dynamic comprehen-
sive preferences of both job seekers and recruiters from their multi-behavioral
sequences. In addition, a Bilateral Cascade Multi-Task Learning framework is
designed to transfer the preferences learned from multiple kinds of auxiliary
behaviors to the target matching task with consideration of the cascade rela-
tions among behaviors. Extensive experiments confirm that: (1) both auxiliary
behaviors and cascade relations are beneficial for PJF, (2) users’ preferences in
PJF are dynamic, (3) our proposed method is an effective dynamic PJF method.
For the future work, we will try to utilize the change patterns of users’ prefer-
ences.
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Abstract. Real-world data usually have high dimensionality and it is
important to mitigate the curse of dimensionality. High-dimensional data
are usually in a coherent structure and make the data in relatively small
true degrees of freedom. There are global and local dimensionality reduc-
tion methods to alleviate the problem. Most of existing methods for local
dimensionality reduction obtain an embedding with the eigenvalue or
singular value decomposition, where the computational complexities are
very high for a large amount of data. Here we propose a novel local
nonlinear approach named Vec2vec for general purpose dimensionality
reduction, which generalizes recent advancements in embedding repre-
sentation learning of words to dimensionality reduction of matrices. It
obtains the nonlinear embedding using a neural network with only one
hidden layer to reduce the computational complexity. To train the neu-
ral network, we build the neighborhood similarity graph of a matrix
and define the context of data points by exploiting the random walk
properties. Experiments demenstrate that Vec2vec is more efficient than
several state-of-the-art local dimensionality reduction methods in a large
number of high-dimensional data. Extensive experiments of data classi-
fication and clustering on eight real datasets show that Vec2vec is better
than several classical dimensionality reduction methods in the statistical
hypothesis test, and it is competitive with recently developed state-of-
the-art UMAP.
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Table 1. Computational complexities of Vec2vec and other four state-of-the-art local
dimensionality reduction (manifold learning) methods [4,12,20]. n is the number of
data and k is the number of selected neighbors. D is the input dimensionality and d is
the output dimensionality. |E| is the number of edges in the adjacency graph.

Method Computational Memory

LLE O(n logn ·D + n2 · d) O(|E| · d2)
LE O(n logn ·D + n2 · d)) O(|E| · d2)
LTSA O(n logn ·D + n2 · d) O(n2)

t-SNE O(n2 · d) O(n2)

Vec2vec O(n logn ·D + n · d) O(n2)

1 Introduction

Real-world data, such as natural languages, digital photographs, and speech
signals, usually have high dimensionality. Moreover, coherent structure in the
high-dimensional data leads to strong correlations, which makes the data in rel-
atively small true degrees of freedom. To handle such high-dimensional real-word
data effectively, it is important to reduce the dimensionality while preserving the
properties of the data for data analysis, communication, visualization, and effi-
cient storage.

Generally, there are two kinds of methods for dimensionality reduction: one is
to preserve the global structure and the other is to preserve the local geometry
structure [12,19]. First, for the dimensionality reduction methods of preserv-
ing the global structure of a data set, the most popular methods are Principal
Components Analysis (PCA), Linear Discriminant Analysis (LDA), Multidimen-
sional Scaling (MDS), Isometric Feature Mapping (Isomap), Autoencoders, and
Sammon Mappings [4,20] and so on. We note that these global methods are
either in a strong linearity assumption or can not capture local manifold intrin-
sic geometry structure [19]. Second, for the dimensionality reduction methods
of preserving the local geometry structure of a data set, there are some typical
methods like Locally Linear Embedding (LLE), Laplace Eigenmaps (LE), Local
tangent space alignment (LTSA), t-SNE, LargeVis, and UMAP [8,9,12]. These
methods can learn the manifold intrinsic geometry structure of a data set, which
is a very useful characteristic in pattern recognition [18]. Most of them share a
common construction paradigm: they first choose a neighborhood for each point
and then take an eigenvalue decomposition or a singular value decomposition
to find a nonlinear embedding [19]. However, the computational complex-
ities of obtaining an embedding with the eigenvalue decomposition or
singular value decomposition (O(n2)) are unbearably expensive1, espe-
cially when facing a large number of high-dimensional data. Table 1

1 Complexity analysis of manifold learning. https://scikit-learn.org/stable/modules/
manifold.html.

https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/modules/manifold.html
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shows the high computational complexities of four typical local dimensionality
reduction methods comparing to Vec2vec [4,12,20].

In recent years, with the success of Word2vec, the embedding representation
learning of words [14], documents, images, networks, knowledge graphs, biosig-
nals, and dynamic graph are developed and successfully applied [2,3,6]. This
kind of method transfers the raw data like texts and graphs to low-dimensional
numerical vectors or matrices for computing. They implement dimensionality
reduction of data, but they are specified in the raw data like texts or graphs [3],
since they utilize the context or structure of the data points for computing. In
this kind of methods, Word2vec employs neural networks with a single hidden
layer to learn the low-dimensional representation of words [13]. The computa-
tional and memory complexities of obtaining an embedding in the method are
linear to the number of data. Comparing to the eigenvalue or singular
value decomposition for obtaining an embedding in many manifold
learning methods, it can significantly reduce the computational and
memory costs. The skip-gram model in Word2vec has been successfully applied
in the embedding of graphs and networks [7,15]. Word2vec employs the contexts
(co-occurrences) of words in texts to learn embedding, but there are no explicit
contexts/co-occurrences for the data points in a matrix. Therefore, it cannot be
applied to general purpose dimensionality reduction of matrices.

To address these problems, we propose a general-purpose dimensionality
reduction approach named Vec2vec, which preserves the local geometry structure
of high-dimensional data. It combines the advantages of local manifold dimen-
sionality reduction methods and Word2vec. It is not specified in the raw data
like texts or graphs and can be applied in the dimensionality reduction of any
matrices, and it boosts the computational efficiency of obtaining an embedding
simultaneously. To achieve these purposes, we generalize the skip-gram model
in Word2vec to obtain the embedding and design an elaborate objective to pre-
serve the proximity of data points. We select the neighbors of the data points
to establish a neighborhood similarity graph, and define the contexts of data as
the sequences of random walks in the neighborhood similarity graph to solve the
objective. We conduct extensive experiments of data classification and clustering
on eight typical real-world image and text datasets to evaluate the performance
of our method. The experimental results demonstrate that Vec2vec is better than
several classical well-known dimensionality reduction methods in the statistical
hypothesis test. Our method is competitive with recently developed state-of-the-
art UMAP but more efficient than it in high-dimensional data. Our Vec2vec is
more efficient than LLE and LE in a dataset with both a large number of data
samples and high-dimensionality.

2 Related Work

Embedding Representation Learning. With the success of Word2Vec model
in word representation, embedding representation learning has been widely stud-
ied in words, documents, networks, knowledge graphs, biosignals, dynamic graph
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and so on [2,3,6]. Mikolov et al. [13] proposed CBOW and skip-gram models,
which were widely used in many embedding methods. Pennington et al. [14] pro-
posed the GloVe model and learned the embedding representation using matrix
decomposition. Bojanowski et al. [1] proposed the FastText model to enrich word
embedding representation with subword information. There are also Doc2Vec,
Skip-thoughts, PTE, and Paragram-phrase models to learn the embedding of
sentences and documents [11].

There are many embedding representation learning models like TADW,
TriNDR, TransE, TransConv, RDF2Vec, MrMine and LINE in different kinds
of networks or graphs [2,3,23]. Some methods like Node2vec, Metapath2Vec,
and DeepWalk first find the neighbors of a node using random walks, and then
employ the skip-gram model to learn the embedding [7,15].

However, existing methods are limited to the specified raw data like words,
documents, graphs, and so on. They are designed to utilize the context of texts
and the structures of graphs for representation learning of words, documents,
and graphs [1,3]. Therefore, they can not be directly applied to general-purpose
dimensionality reduction.

Dimensionality Reduction. Generally, there are two kinds of methods in
dimensionality reduction [12,19], which preserve the global structure and local
geometry structure. In recent years, there are also some methods that employ
deep learning to reduce the dimensionality of data [22,24].

There are a lot of classical dimensionality reduction methods that focus on the
global structure of a data set, such as PCA, LDA, MDS, Isomap, and Sammon
Mapping [4,20]. The linear unsupervised PCA optimizes an object that max-
imizes the variance of the data representation, and there are many successful
variants of PCA like Kernel PCA (KPCA) and incremental PCA algorithms [5].
The nonlinear Isomap optimizes geodesic distances between general pairs of data
points in the neighborhood graph. These global methods construct dense matri-
ces that encode global pairwise information [19].

There are also many local manifold learning methods that discover the intrin-
sic geometry structure of a data set like LLE, LE, LTSA, t-SNE, LargeVis, and
UMAP [8,12]. These methods choose neighbors for each data point and obtain
a nonlinear embedding from an eigenvalue decomposition or a singular value
decomposition [19]. The nonlinear LLE preserves solely local properties of the
data and considers the high-dimensional data points as a linear combination of
their nearest neighbors. UMAP is an effective state-of-the-art manifold learning
technology for dimension reduction based on Riemannian geometry and algebraic
topology [12]. The computational complexity of UMAP is O(n1.14·D+k·n). Local
manifold learning methods usually obtain an embedding from an eigenvalue or
a singular value decomposition [19] and the computational cost is expensive.

With the success of auto-encoder, there are some deep learning methods
for dimensionality reduction like Local Deep-Feature Alignment (LDFA) [24],
extreme learning machine auto-encoder (ELM-AE) [10], and Deep Adaptive
Exemplar AutoEncoder [16].
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3 Methodology

3.1 Overview

The problem of dimensionality reduction can be defined as follows. Consider
there is a dataset represented in a matrix M ∈ R

n×D, consisting of n data
points (vectors) xi(i ∈ 1, 2, 3, · · · , n) with dimensionality D. In practice, the
feature dimension D is often very high. Our purpose is to transfer the matrix
Mn×D to a low-dimensional matrix Zn×d ∈ R

n×d(d � D) with a function f
while preserving the most important information in the matrix M . Formally, we
can use Eq. (1) to represent the problem.

Zn×d = f(Mn×D) (1)

Fig. 1. The steps of Vec2vec: (1) Select nearest neighbors for each data point and
construct an adjacency graph. Compute the similarity sim(xi, xj) of xi and its neighbor
point xj as the weight of the edge (xi, xj) in the adjacency graph. (2) Find the contexts
of each data point by performing short random walks. The co-occurrences of the data
points in the random sequences reflect their similarity relationships in the neighborhood
graph. (3) Compute the low-dimensional embedding vector zi while preserving the
similarities of xi and its neighbors with neural networks.

Vec2vec preserves the pairwise similarities of vectors in a matrix, which are
fundamental to machine learning and data mining algorithms. It means that if
sim(xi, xj) is bigger than sim(xa, xb), then sim(zi, zj) is going to be bigger than
sim(za, zb) in the low-dimensional target space.

The skip-gram model is originally developed for learning the embedding rep-
resentation of words in natural languages. We generalize the representation learn-
ing model to obtain the embedding. In the skip-gram model, there is a hypothesis
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that words are likely to be similar if they have similar contexts in sentences. Like
words in sentences, our basic hypothesis is that the data points are likely to be
similar if they have similar contexts in the feature space. Given the linear nature
of texts, it is natural to define the context of words as a sliding window in sen-
tences. However, there are no contexts for data points in a matrix. To solve the
problem, we build the neighborhood similarity graph of a matrix and define the
context of data points in the matrix as the co-occurrences of data points in the
paths of random walks of the graph.

As shown in Fig. 1, there are mainly three steps in our Vec2vec method
for dimensionality reduction. The details of the three steps are described in the
following subsections.

3.2 Building Neighborhood Similarity Graph

To define the contexts of data points in a matrix and preserve the similarity
relationship between the data points, we build an adjacency graph based on their
pairwise similarities. We define the similarity graph of a matrix in Definition 1.

Definition 1 (Similarity Graph (SG). A similarity graph SG of a matrix M
is a weighted undirected graph, where the nodes in SG are one-to-one correspon-
dence to the data points in M . There are edges between data points and their
selected neighbors. The weights of edges are the similarities of the corresponding
data points.

In Definition 1, given a matrix M with n data points, each data point xi is
represented as a node vi in SG, thus there are n nodes in SG. Node vi and vj
are connected by an edge if xi (xj) is one of the most similar vectors of xj (xi).
There are two variations to select neighbors for a data point: (a) ε-neighborhoods
(ε ∈ R). Node vi and vj are connected by an edge if sim(xi, xj) > ε. This
variation is geometrically motivated and the pairwise relationship is naturally
symmetric, but it is difficult to choose ε. (b) Topk nearest neighbors (topk ∈ N).
Nodes vi and vj are connected by an edge if vi is one of the topk nearest neighbors
of vj or vj is one of the topk nearest neighbors of vi. This variation is easier to
implement and the relation is symmetric, but it is less geometrically intuitive
comparing to the ε-neighborhoods variation. In our experiments, we choose the
topk nearest neighbors variation for building the similar graph.

To compute the edge weight of two nodes, many commonly used similar-
ity/distance functions like Euclidean distance, Minkowski distance, cosine sim-
ilarity for vectors can be used. In all our experiments, we choose the similarity
function “cosine measure” shown in Eq. (2) to preserve the pairwise similarity
relationships of the vectors in M .

sim(vi, vj) = sim(xi, xj) = (xi · xj)/(‖xi‖ · ‖xj‖) (2)

The computational complexity of building the similarity graph is O(n2). We
employ the K-Nearest Neighbor method with a ball tree to build the similar-
ity graph and the computational complexity of this step can be reduced to
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O(nlog(n) · D). In a distributed system, this step can be further speed up using
a parallel method since we only need to compute the pairwise similarities or
distances of data vectors in M . In the case of n � D, we can further reduce the
computational complexity of building similarity graph to O(Dlog(D) · n), if we
build the neighborhood graph with the transpose of M (M ∈ R

n×D). In this
case, if Z (Z ∈ R

D×d) is the target low-dimensional matrix of MT , we can get
the target low-dimensional matrix Ź (Ź ∈ R

n×d) of M as Ź = M · Z.

3.3 Node Context in Similarity Graphs

It is natural to define the context of words as a sliding window in sentences.
However, the similarity graph is not linear and we need to define the notation
of the contexts of data points in the similarity graph. We use random walks in
the similarity graph to define the contexts of data points. Random walks have
been used as a similarity measure for a variety of problems in the content recom-
mendation, community detection, and graph representation learning [7,15]. The
detection of local communities motivates us to use random walks to detect clus-
ters of data points, and the random walk model is effortless to parallelize and
several random walkers can simultaneously explore different parts of a graph.
Therefore, we define the context of a data point in the similarity graph in Defi-
nition 2 based on random walks. With the definition, we define the data points
around a data point in the random walk sequences as its contexts. With the
linear nature of the sequences, we define the context of data points as a sliding
window in the sequences.

Definition 2 (Node Context in Similarity Graphs). The node context of
a data point in similarity graphs is the parts of a random walk that surround
the data point.

Formally, let (xw1, xw2, · · · , xwl) denote a random walk sequence with length
l. We use a small sliding window c to define the context of a data point. Then
given a data point xwj in the random walk sequence, we can define its node
context NC(xwj) in Eq. (3).

NC(xwj) = {xwm| − c ≤ m − j ≤ c,m ∈ (1, 2, · · · , l)} (3)

The random walk sequences in similarity graphs can be defined as follows.
A random walk is a Markov chain, and the t-th data point only depends on the
(t − 1)-th data point in a random walk. The t-th data point xwt is generated by
the probability distribution defined in Eq. (4).

P (xwt = va|xw(t−1) = vb) =
{

sim(va,vb)
Z

, if (va, vb) ∈ E,
0, otherwise

(4)

where E is the edge set of the similarity graph and sim(va, vb) is the edge
weight of va and vb defined in Eq. 2). Z is the normalizing constant and Z =∑

(vb,vi)∈E sim(vb, vi). For each data point in the similarity graph, we simulate a
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fixed number of random walks. For each random walk, we simulate it in a short
fixed-length l. Our method ensures that every data point in M is sampled to the
node contexts of data points.

In this paper, we assume that there are no rare vectors whose similarities with
other vectors are all too small to consider. It means that there are no isolated
nodes in the similarity graph. This assumption is acceptable if the dataset is not
too small or too sparse, such as the image and text datasets in our experiments.

3.4 The Low-Dimensional Embedding Representation

Based on the node contexts of the data points in the similarity graph, we extend
the skip-gram model to learn the embedding of the data in the matrix. The
skip-gram model aims to learn continuous feature representations of words by
optimizing a neighborhood preserving likelihood objective [13]. It is developed to
learn the similarity of words from texts by utilizing the co-occurrence of words.
The architecture of learning the low-dimensional embedding representation of
metrics based on the skip-gram model is shown in Fig. 2. It is a neural network
with only one hidden layer and the goal of this network is to learn the weight
matrix W of the hidden layer, which is actually the target embedding matrix Z
(Z = W ) of the original high-dimensional matrix M .

We use one-hot encoding to represent the data points in the input layer.
The data point xi is represented as a vector oi ∈ R

n in the one-hot encoding,
where all elements are zero except the i-th element being one. It means that we
can get the low-dimensional representation zi of xi using equation zi = oi · W ,
and the output of the hidden layer of the neural network is zi = f(xi). Given
W = [w1, w2, · · · , wn] ∈ R

n×d, then zi can be represented as Eq. (5).

zi = f(xi) = oi · W = wi (5)

The output layer is a softmax regression classifier. The input of this layer is
the target embedding vector zi of xi. The output of this layer is the probability
distribution of all data points with the input xi. The neural network is trained
by the data pairs in the node contexts of the similarity graph defined in Sect. 3.3.
We formulate the dimensionality reduction of matrix M as a maximum likeli-
hood optimization problem. The objective function we seek to optimize is shown
in Eq. (6), which maximizes the log-probability of observing the node context
NC(xi) of the data point xi (xi ∈ M) conditioned on its feature representation
zi = f(xi) with the mapping function f : Mn×D −→ R

n×d in Eq. (6). NC(xi)
is defined in Eq. (3). We introduce the neighborhood similarity graph and node
context to compute the NC(xi), which is different from the original skip-gram
model.

max
f

∑
xi∈M

logPr(NC(xi)|f(xi)) (6)

To optimize the Eq. (6), we assume that the likelihood of observing a neigh-
borhood data point is independent of observing any other neighborhood data
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Fig. 2. The architecture of learning the low-dimensional embedding representation of
metrics based on the skip-gram model. It is trained by the data point pairs in the node
contexts of the similarity graph.

points given the representation of the source. Hence, the objective function of
Eq. (6) can be changed to Eq. (7).

max
f

∑
xi∈M

log
∏

xj∈NC(xi)

Pr(xj |f(xi)) (7)

In Eq. 7, the data point pair (xi, xj) (xj ∈ NC(xi)) is used to train our
model. Let θ = [θT1 , θT2 , · · · , θTn ]T be the output weight matrix and θTj (θj ∈ R

d)
be the j-th columns of θ, then θTj is the corresponding weight vector of the
output data point xj . As shown in Fig. 2, we employ the softmax function to
compute Pr(xj |f(xi)) in Eq. 7. Then Pr(xj |f(xi)) can be calculated as Eq. (8).

Pr(xj |f(xi)) =
exp(θTj · f(xi))∑

xm∈M exp(θTm · f(xi))
(8)

We find that Pr(xj |f(xi)) is expensive to compute for a large dataset, since
the computational cost is proportional to the number of data. Therefore, we
approximate it with negative sampling for fast calculation. Let Pn(x) be the
noise distribution to select negative samples and k be the number of negative
samples for each data sample, then Pr(xj |f(xi)) can be calculated using Eq. (9).

Pr(xj |f(xi)) = σ(θTj · f(xi))
k∏

neg=1

Exneg∼Pn(x)[σ(−θTneg · f(xi))] (9)

where σ(w) = 1/(1 + exp(−w)). Empirically, Pn(x) can be the unigram distri-
bution raised to the 3/4rd power [13]. In our experiments, we use the toolkit
Gensim to implement the negative sampling and the sample threshold is set to
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Fig. 3. The computational times of the four local dimensionality reduction methods
with the change of the number and dimensionality of data. (a) The dimensionality is
fixed to 3, 072. (b) The number of data points is fixed to 2, 000.

be 0.001. As a result, given f(xi) = wi in Eq. (5), the objective function for
learning the embedding representation can be written as Eq. (10).

max
f

∑
xi∈M

∑
xj∈NC(xi)

[logσ(θTj · wi) +
k∑

neg=1

Exneg∼Pn(x)logσ(−θTneg · wi)] (10)

To alleviate the problem of over fitting, we add the L2 normalization to
the objective function. We finally minimize the objective function J(W, θ) in
Eq. (11).

J(W, θ) = − 1
n

{
∑

xi∈M

∑
xj∈NC(xi)

[logσ(θTj · wi)

+
k∑

neg=1

Exneg∼Pn(x)logσ(−θTneg · wi)]} +
λ

2
(||W ||2 + ||θ||2)

(11)

We finally solve Eq. (11) with stochastic gradient descent (SGD) to train the
neural network.

4 Experiments

4.1 Experimental Setup

For all the classification and clustering tasks, we compare the performance of
Vec2vec with the six unsupervised methods: (1) PCA, (2) CMDS, (3) Isomap,
(4) LLE, (5) LE, and (6) UMAP [12]. PCA, CMDS, and Isomap are typical
global methods, while LLE, LE, and UMAP are typical local methods. We use
the implementations of the first five methods in the “scikit-learn” toolkit for
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experiments, and the implementation of UMAP in Github2. To get the best per-
formance of these methods, we set the number of neighbors for each point of
Isomap, LLE, LE, and Umap be range from 2 to 30 with step 2 in the experi-
ments. According to [12], UMAP is significantly more efficient than t-SNE and
LargeVis when the output dimensions are larger than 3. Therefore we only com-
pare to UMAP in this paper. We do not compare our method with embedding
representation learning methods like Word2vec, Doc2vec, Node2vec, Deepwalk,
and LINE [7,15,17] since they are specific in words, documents, graphs or net-
works. They cannot be adaptive to the general purpose dimensionality reduction.

Table 2. The details of the eight text and image datasets used in our experiments

Dataset name Number of data Dimensionality

Image dataset MNIST 5,000 784

Coil-20 1,440 1,024

CIFAR-10 5,000 3,072

SVHN 5,000 3,072

Text dataset Movie Reviews 5,000 26,197

Google Snippets 5,000 9,561

20 Newsgroups 2,000 374,855

20 Newsgroups Short 2,000 13,155

In the experiments of classification and clustering, we select four typical
real-world image datasets from a variety of domains as shown in Table 2. For
computational reasons, we randomly select 5,000 digits of the SVHN dataset,
the CIFAR-10 dataset and the MNIST dataset for our experiments like [20]. We
represent each images in the datasets as a vector. To test the performance of
Vec2vec in high-dimensional data, we select four typical text datasets as shown
in Table 2. For the 20 Newsgroups short dataset, we only select the title of the
articles in the 20 Newsgroups dataset. In pre-process, we represent each image
or text to a vector. We perform some standard text preprocessing steps like
stemming, removing stop words, lemmatization, and lowercasing on the datasets.
We employ the “TFIDF” method to compute the weights of the words.

4.2 Computational Time

We compare the computational time of Vec2vec with the three local state-of-
the-art dimensionality reduction methods with the change of the number and
dimensionality of data. As shown in Fig. 3(a), the computational time of UMAP
grows slowest with the growth of the number of data points, and the computa-
tional time of Vec2vec is the second slowest. As we know, UMAP first constructed

2 UMAP in Github. https://github.com/lmcinnes/umap.

https://github.com/lmcinnes/umap
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a weighted k-neighbor graph and then learned a low dimensional layout of the
graph. The first step needs most of the computational time and UMAP opti-
mizes it with an approximate nearest neighbor descent algorithm [12], while the
implementation of our Vec2vec did not use a approximate algorithm (the quick
approximate algorithm can also be used in our method). So Vec2vec is under-
standable to be a little slower than UMAP. The computational times of LLE
and LE are smaller than UMAP when the input number of data is less than
2,000, but the running times of them increase sharply with the growth of the
number of data points. The results show the computational efficiency of Vec2vec
and UMAP in the local dimensionality reduction of large scale of data.

Fig. 4. The accuracy of the methods on image and text classification.

Figure 3(b) shows the computational time of the four dimensionality reduc-
tion methods with the change of the input dimensionality of data. We can find
that Vec2vec needs the least time when dimensionality reaches nearly 20000.
When the dimensionality reaches 100,000, Vec2vec needs less computational time
than LLE, and the times of the two methods are 146.91 and 140.89. When the
dimensionality reaches 150,000, Vec2vec needs nearly the same computational
time with LLE. The experimental results show that Vec2vec is more suitable for
dimensionality reduction of high-dimensional data than UMAP, LLE and LE.

In summary, UMAP is scalable to a large number of data, but
is sensitive to the growth of data dimensionality, while Vec2vec is
efficient in both a large number of data and high-dimensional data.
LLE and LE get better computing performance in a small amount of
data and low-dimensional data.

4.3 Data Classification

For all the classification experiments, we employ KNN (K-Nearest Neighbor) as
our classifier like [20] and use the implementation of KNN in “Scikit-learn”. For
the choice of parameter k(k = 1, 3, 5, 7, 9, 11) in KNN, we use “GridSearch” to
find the best parameter k in all datasets. We use 4-fold cross-validation to test



388 X. Wang et al.

the performances of different methods and use the accuracy as the performance
measure in all the classification experiments. We use the mean accuracy and the
95% confidence interval of the accuracy estimate (2 times the standard deviation)
to be the performance measures.

UMAP is competitive with Vec2vec as shown in Fig. 4. We assume that the
results are in Gaussian distribution and employ the Student’s t-test (alpha=0.1)
to test the significant difference between the two methods in the eight datasets.
The H-value and p-value are 0 and 0.1543. Therefore, UMAP is as good as
Vec2vec in statistics and the performances of the two methods have
no significant difference in the eight datasets. The skip-gram model used
in Vec2vec is originally developed to learn the embedding of words while pre-
serving the similarities. The results show that it can be generalized to obtain the
embedding while preserving the similarity of data points, which are important
for data classification. For the local LLE and LE methods, the H-values are both
1 and the p-values are 0.0195 and 0.0122. Therefore, Vec2vec is significant
better than LLE and LE in the eight datasets in statistics. For the global
PCA, CMDS, and Isomap method, the p-values are 0.0819, 0.0219, and 0.0372.
The H-values are all 1. Therefore, Vec2vec is significantly better than the
global PCA, CMDS, and Isomap in the eight datasets in statistics.

4.4 Data Clustering

For all the clustering experiments, we employ spectral clustering with kernel
RBF (Radial Basis Function) for clustering, since it is one of the best clustering
methods [21]. We use the implementation of spectral clustering in the “scikit-
learn” library. In our experiments, we set the number of clusters for spectral
clustering to be the number of classes in the datasets and set the range of
hyperparameter gamma to be from 10−6 to 101. We use the “Adjusted Rand
Index (ARI)” to be the evaluation metric.

Table 3. The performance of the methods on data clustering. The evaluation metric
is “Adjusted Rand Index (ARI)”. The larger the value, the better the method.

Properties

to preserve

Method MNIST COIL20 CIFAR-10 SVHN Snippets 20News-

Short

20News Movie

Global

structure

PCA 0.3682 0.6269 0.0598 0.0185 0.0070 0.0140 0.0421 0.0016

CMDS 0.3747 0.6472 0.0579 0.0002 0.1007 0.0010 0.0040 0.0006

ISOMAP 0.5136 0.567 0.0533 0.0063 0.0056 0.0178 0.0892 0.0216

Local

structure

LLE 0.3950 0.4522 0.0443 0.0049 0.0151 0.0066 0.0780 0.0136

LE 0.1104 0.4570 0.0113 0.0008 0.0082 0.0024 0.0065 0

UMAP 0.6819 0.7376 0.0044 0.0604 0.3145 0.0447 0.3065 0.0020

Vec2vec 0.5549 0.8093 0.0605 0.0200 0.5191 0.1085 0.3066 0.1080

To test the performance of Vec2vec, we compare the performances in the
eight datasets as shown in Table 3. We can find that Vec2vec gets the best
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Fig. 5. Testing the parameter sensitivity of Vec2vec with data classification.

performance in the “COIL20” and “CIFAR-10” datasets, while UMAP gets the
best performance in the other two image datasets. For the “CIFAR-10” and
“SVHN” dataset, the ARI results of all seven methods are very small. We can
find that Vec2vec gets the best ARI results in all the four text datasets.

We assume that the results are in Gaussian distribution and employ the Stu-
dent’s t-test to test the significant difference between the compared methods in
the eight datasets. For UMAP, the H-value and p-value are 0 and 0.3118. There-
fore, UMAP is as good as Vec2vec in statistics and the performances
of the two methods have no significant difference in the eight datasets.
For the local LLE and LE methods, the H-values are both 1 and the p-values are
0.0188 and 0.0097. Therefore, Vec2vec is significantly better than LLE
and LE in the eight datasets in statistics. For the global PCA, CMDS,
and Isomap method, the p-values are 0.0243, 0.0141, and 0.0411. The H-values
are all 1. Therefore, Vec2vec is significant better than the global PCA,
CMDS, and Isomap in the eight datasets in statistics. The experimen-
tal results show that skip-gram model is very effective to obtain the embedding
while preserving the similarity of data points, which are important for clustering.

4.5 Parameter Sensitivity

The Vec2vec algorithm involves several parameters. We examine how the differ-
ent choices of the target dimensionality d and the number of topk neighbors affect
the performance of Vec2vec on the four typical image datasets. We perform 4-
fold cross-validation and employ KNN as the classifier. We utilize the accuracy
score as the evaluation metric. In this experiments, except for the parameter
tested, all other parameters are set to be their default values.

Figure 5 shows the performance evaluation of Vec2vec with the change of
the two parameters. For the target dimensionality d, Vec2vec gets its best per-
formance when d is approximately equal to the number of classes in a dataset,
which is the true dimensionality of the dataset. For the parameter of the num-
ber of topk neighbors in building the similarity graph, Vec2vec gets its best
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performance when topk is less than 5 in all the four datasets. It shows that the
neighborhood similarity graph is sparse and Vec2vec is computationally efficient.
We can find that the performance of Vec2vec is stable when the two
parameters reach a certain value. It is important to find that since it
is easy to choose the parameters of Vec2vec in real applications.

5 Conclusion

In this paper, we study the local nonlinear dimensionality reduction to relieve
the curse of dimensionality problem. To reduce the computational complexity, we
generalize the skip-gram model for representation learning of words to matrices.
To preserve the similarities between data points in a matrix after dimensionality
reduction, we select the neighbors of the data points to establish a neighborhood
similarity graph. We raise a hypothesis that similar data points tend to be in sim-
ilar contexts in the feature space, and define the contexts as the co-occurrences
of data points in the sequences of random walks in the neighborhood graph.

We analyze the computational complexity of Vec2vec with the state-of-the-
art local dimensionality reduction method UMAP. We find that our Vec2vec
is efficient in datasets with both a large number of data samples and high-
dimensionality, while UMAP can be scalable to datasets with a large number
of data samples, but it is sensitive to high dimensionality of the data. We do
extensive experiments of data classification and clustering on eight typical real-
world datasets for dimensionality reduction to evaluate our method. Experi-
mental results show that Vec2vec is better than several classical dimensionality
reduction methods and is competitive with recently developed state-of-the-arts
UMAP in the statistical hypothesis test.
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Abstract. Many online video websites or platforms provide membership
service, such as YouTube, Netflix and iQIYI. Identifying potential mem-
bership users and giving timely marketing activities can promote mem-
bership conversion and improve website revenue. Audience expansion is
a viable way, where existing membership users are treated as seed users,
and users similar to seed users are expanded as potential memberships.
However, existing methods have limitations in measuring user similarity
only according to user preference, and do not take into account consump-
tion pattern which refers to aspects that users focus on when purchasing
membership service. So we propose an Audience Expansion method com-
bining User Preference and Consumption Pattern (AE-UPCP) for seek-
ing potential membership users. An autoencoder is designed to extract
user personalized preference and CNN is used to learn consumption pat-
tern. We utilize attention mechanism and propose a fusing unit to com-
bine user preference with consumption pattern to calculate user sim-
ilarity realizing audience expansion of membership users. We conduct
extensive study on real datasets demonstrating the advantages of our
proposed model.

Keywords: Audience expansion · Purchase prediction · User
preference · Deep learning

1 Introduction

With the development of Internet technology, online video websites are growing
in user scale and video resources, but not all contents are free, as some require
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users to pay for membership service before they can enjoy them. For example,
users who subscribe to membership service on Juhaokan of Hisense can watch
the latest movies and TV plays. Identifying potential membership users can help
websites to carry out more accurate marketing activities, improve the conversion
rate from non-membership to membership, and thus increase revenue.

Audience expansion [1] is commonly used in advertising to find similar audi-
ences. We take existing memberships as seed users and find potential member-
ships according to their similarity with seed users. However, most models [2] only
consider user preference in similarity calculation, which is not comprehensive
enough. We found that similar users tend to have similar consumption pattern
when purchasing membership service. To calculate similarity combining user
preference and consumption pattern, we mainly face the following challenges.
The first challenge is to extract the personalized preferences of users. The sec-
ond challenge is to model consumption pattern. We should capture aspects users
pay more attention to when consuming. The last challenge is to combine user
preference and consumption pattern to calculate user similarity. Which of the
two factors has stronger influence needs to be taken into account in similarity
calculation.

In order to effectively solve the above challenges, we propose an audience
expansion model named AE-UPCP. Here we use video streaming service as an
example. In AE-UPCP, we use BERT [3] to generate the text vector represen-
tation of videos and design an autoencoder to extract the user’s personalized
preferences from behavior sequence and user profile. We extract the consump-
tion pattern from purchase sequence. We apply the attention mechanism [4] to
learn relationship between preferences and combine user preferences and con-
sumption pattern in the similarity calculation to achieve audience expansion.
The contributions of this paper can be summarized as follows:

– We propose an audience expansion model which combines user preference and
consumption pattern to seek potential membership users.

– An autoencoder is proposed to extract personalized preferences of users by
combining their behavior sequences with user profiles and the extracted pref-
erences are rich in semantic features. Consumption pattern is mined through
CNN and a fusing unit is designed to combine user preference and consump-
tion pattern so that similarity is more accurate.

– We evaluate this model on real-world datasets. The experimental comparison
with several baseline methods proves that our model is more effective than
others.

2 Related Work

Audience expansion methods mainly include similarity method and regression
method. The similarity based methods [2,5] measure the similarity to find sim-
ilar users for seed users. Regression based methods [6,7] pay more attention to
prediction model, which treat seed users as positive samples and non-seed users
as negative samples. The similarity between candidate users and seed users is
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predicted, and users with high similarity are selected as expanded audiences. In
addition, LightGBM [8] models the combination of high-order features by inte-
grating decision trees to predict. However, the disadvantage of these models is
that only user portrait information is used for modeling, so the understanding
of user preference is insufficient.

Click-through rate (CTR) prediction is to predict the advertisement click
probability based on user preference and it can also be used for audience expan-
sion. Wide&Deep [9] combines the memory ability of the shallow model and the
generalization ability of the deep model. DeepFM [10] effectively utilizes the abil-
ity of FM [7] and DNN. [11–13] utilize the historical behavior sequence of users
mining user interest to calculate the probability of users clicking on target adver-
tisement. Although these methods can be used to calculate similarity between
users and seed users, consumption pattern is not considered, which results in the
deficient similarity.

3 Problem Statement

We denote user set as U = {u1, u2 . . . unu
}, video set as V = {v1, v2 . . . vnv

}. For
each user u ∈ U , we maintain a behavior sequence Su ⊂ V which denotes the
videos user has seen, a list Pu = {p1, p2, p3 . . .} which is the membership service
purchase sequence of user u. For each video v ∈ V , its information includes text
information such as ID, content introduction, classification, actor, etc.

Given membership users as seed users Useed ⊂ U and non-membership users
as non-seed users Unon−seed ⊂ U as well as their behavior sequences Su and
purchase sequences Pu. The task of audience expansion is to train a prediction
model, in which seed users are regarded as positive samples and non-seed users
as negative samples. The similarity between candidate users and seed users can
be predicted and users with high similarity are potential memberships we are
seeking.

4 AE-UPCP Model

The architecture of our proposed model AE-UPCP is shown in Fig. 1.

4.1 Feature Representation

User Profile Representation. User profile mainly includes the user’s ID, gen-
der, age, and demographic information, etc. Category features are encoded by
one-hot, and normalized numerical features are concatenated with category fea-
tures to get user profile vector xu.

User Behavior Representation. For each video v in behavior sequence Su,
its text information includes title, introduction, actor, etc. We utilize BERT
[3] to learn the text vector representation of video. According to Su, we get
the behavior sequence matrix Xb

u ∈ Rnb×kv of user u where nb is the behavior
sequence length and kv is the dimension of video text vector.
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Fig. 1. The architecture of AE-UPCP model

Purchase Sequence Representation. For each purchase record p ∈ Pu, the
information includes purchasing time, spending amount, consumption type and
so on. We apply one-hot encoding to get the vector xp of each record. According
to the purchase sequence Pu, we get the purchase matrix Xp

u ∈ Rnp×kp of user
u where np is the length of purchase sequence.

4.2 Personalized Preference Extraction

Inspired by [14,15] and the Stacked Denoising Autoencoder (SDAE) [16], we
propose modified SDAE (mSDAE) to extract user preference features from the
video representation vector xv in behavior matrix Xb

u of user u and user profile
representation vector xu. After adding noise on xv and xu, we get xv

noise, x
u
noise.

The hidden layer hl of the mSDAE is computed as in Eq. (1). We concate the
user profile vector xu

noise for each layer of the encoder and decoder to calculate
the next layer where h0 = xv

noise and g is the activation function which we use
ReLu function.

hl = g(Wl[hl−1, x
u
noise] + bl) (1)

The output of mSDAE is hL which is the reconstructed video representation
vector and L is the total number of layers. The objective function is the mean
squared error loss between the original input h0 and their reconstruction output
hL as shown in Eq. (2):

loss =
∑

|| hL − h0 ||2 (2)

After the autoencoder training is completed, we add the encoder to the AE-
UPCP model to process vectors of behavior sequence matrix, and then fine-tune
with other components as shown in Fig. 1. The user behavior sequence matrix Xb

u

is encoded by the mSDAE encoder to obtain the preference matrix Xr
u ∈ Rnb×kr



396 X. Xu et al.

of user u where xr
j ∈ Xr

u is the preference vector and kr is the dimension of
preference vector.

4.3 Consumption Pattern Extraction

Different users consider different factors when they pay for the membership
service. Convolution neural network (CNN) has the ability to extract features
by using convolution and pooling operations. Inspired by [17], we use CNN
to extract features of purchase matrix Xp

u and learn user’s consumption pat-
tern from it. Multiple convolution kernels of different sizes are convolved on the
matrix Xp

u and then a Maxpooling layer is added. Then we get the pooled vec-
tor [m1,m2 . . . mt] where t is the number of filters and we concatenate them to
obtain the consumption pattern vector xc as shown in Eq. (3):

xc = [m1,m2 . . . mt] (3)

4.4 Fusion Learning

There are internal relationships between user’s different preferences, which
should be considered when merging user’s multiple preferences. Different from
the methods of simply summing and averaging user preference vectors, we take
attention mechanism [4] to learn the interaction between preferences.

Attention. Multi-head attention is used to learn the interrelationships between
user preferences of Xr

u as in Eq. (4) and (5), and generate new preference repre-
sentation vectors.

headm = Attention(Qm,Km, Vm) = Softmax(
QmKm√

kr

)Vm (4)

MultiHead(Q,K, V ) = Concat(head1, head2 . . . headm)WO (5)

Qm = Km = Vm = WmXr
u where Wm is a mapping matrix, mapping Xr

u

to different subspaces to obtain features of different subspaces and WO is a
parameter matrix. Then the results after multi-head attention are fed into a
feed-forward network to capture their nonlinear relationship as in Eq. (6). After
multi-head attention and feed forward network, the updated preference matrix
Xr

u is obtained.

Xr
u = FFN(MultiHead(Q,K, V )) (6)

Fusing Unit. When calculating similarity, which is more important between
user preferences and consumption pattern should be considered. Inspired by the
update gate in GRU [18], we designed fusing unit (F-Unit as shown in Fig. 1)
to calculate the weight for each user’s preference and consumption pattern as
Eq. (7) and (8) where W r, W c and W θ are weighted matrices, θj represents the
importance of the user’s consumption pattern compared with the j th preference
vector.

θj = σ(W r · xr
j + W c · xc) (7)
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xf
j = (1 − θj) ∗ xr

j + θj ∗ W θ · xc (8)

The weights of user preferences that are not important to the similarity calcula-
tion can be reduced by θ. We get the fusion vector xf

j for j th preference vector
xr

j and consumption pattern vector xc.

xs =
nb∑

j

Ij∑nb

k Ik
xf

j (9)

As shown in Eq. (9), Ij represents the playing duration time of j th behavior.
All fusion vectors are weighted and summed to obtain the final similarity vector
xs which is merging user preferences and consumption pattern.

4.5 Similarity Calculation

After the above modules, we get user vector xu, user consumption pattern vector
xc and user similarity vector xs. After concatenating them to get x, as shown
in Fig. 1, we add a full connection layer to calculate similarity s(x), and the
activation function is sigmoid function as shown in Eq. (10):

s(x) = σ(Wx + b) (10)

L = − 1
N

∑

i

(yi log(s(xi)) + (1 − yi) log(1 − s(xi))) (11)

The loss function is a binary cross entropy function as Eq. (11). yi ∈ {0, 1} is
the label where 1 indicates that the user is a seed user and 0 is opposite, s(xi)
is the output of our model which represents the similarity between the user and
seed users, and users with high similarity exceeding the threshold are expanded
as potential membership users.

5 Experiments

5.1 Experiment Setup

The statistics of two datasets are shown in Table 1, one is from Juhaokan website
of Hisense and the other is from Alibaba1. We select the following baseline models
LR [6], LightGBM [8], Wide&Deep [9], DeepFM [10], DIN [11] for comparative
experiments. We use Recall and AUC to evaluate the effect of our model for
seeking potential membership users.

5.2 Results and Analysis

The mSDAE carries out self-supervised training in advance, then the trained
encoder is fused into AE-UPCP as shown in Fig. 1, and the parameters
get fine-tuned during training continually. The experimental results are the
1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=56.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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Table 1. Statistics of two datasets

Dataset Hisense Alibaba

Users 90253 395932

Items 68080 846811

Behaviors data 3.05 million 10.2 million

Purchase data 65681 0.6 million

Table 2. Recall and AUC of different models for seeking potential memberships on
two datasets

Models Hisense Alibaba

Recall AUC Recall AUC

LR 0.65 0.7496 0.11 0.6094

LightGBM 0.76 0.9012 0.24 0.6411

Wide& Deep 0.74 0.8873 0.20 0.6460

DeepFM 0.78 0.9007 0.27 0.6491

DIN 0.80 0.9225 0.29 0.6701

AE-UPCP (our model) 0.83 0.9486 0.35 0.6881

average values obtained by 5-fold cross-validation experiments and the similarity
threshold is set to 0.5. As shown in Table 2, our model achieves the best results
in terms of Recall and AUC. The LR method does not perform well on two
datasets because it only uses the user profile information for prediction and has
insufficient understanding of the user’s preference. LightGBM is better than LR.
DeepFM has achieved better effect compared with Wide&Deep due to modeling
user’s low-order and high-order features. We use DIN as an audience expansion
method to achieve the best results of all baseline methods, which demonstrates
that modeling user interest preference improves the performance of the model.
Our model is more effective when the user’s consumption pattern is added com-
pared with DIN. Our model calculates the similarity between users and seed
users, taking into account both user preference and consumption pattern, which
makes the similarity calculation more sufficient.

6 Conclusion

In this paper, we propose an audience expansion model to seek potential mem-
bership users for video websites. We design an autoencoder to extract user
personalized preferences combining video features with user profile features.
We mine user consumption pattern by CNN and fuse user preference and con-
sumption pattern to calculate similarity between users and seed users, which
makes similarity more accurate. A large number of experiments prove that our
model is more effective in seeking potential membership users compared with
other methods.
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Abstract. Most of the existing domain adaptation algorithms assume
the label space in the source domain and the target domain are exactly
the same. However, such a strict assumption is difficult to satisfy. In
this paper, we focus on Open Set Domain adaptation (OSDA), where
the target data contains unknown classes which do not exist in the
source domain. We concluded two main challenges in OSDA: (i) Sep-
aration: Accurately separating the target domain into a known domain
and an unknown domain. (ii) Distribution Matching: deploying appropri-
ate domain adaptation between the source domain and the target known
domain. However, existing separation methods highly rely on the simi-
larity of the source domain and the target domain and have ignored that
the distribution information of the target domain could help up with
better separation. In this paper, we propose a algorithm which explores
the distribution information of the target domain to improve separation
accuracy. Further, we also consider the possible misseparated samples in
the distribution matching step. By maximizing the discrepancy between
the target known domain and the target unknown domain, we could fur-
ther reduce the impact of misseparation in distribution matching. Exper-
iments on several benchmark datasets show our algorithm outperforms
state-of-the-art methods.

1 Introduction

Domain adaptation is able to leverage a rich-labeled related domain data to
facilitate learning in the unlabeled interested domain [17]. Conventional domain
adaptation assumes the same label space in the source domain and the target
domain. This setting is termed as Close-Set Domain Adaptation (CSDA). How-
ever, in the real-world data collection process, one can not guarantee the target
domain contains the exact same classes as the source domain. A more realistic
setting termed as Open Set Domain Adaptation (OSDA), which assumes the
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 400–409, 2021.
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Fig. 1. (a–b) The main idea of self separation and the illustration of misseparation
impact minimizing.

target domain contains extra classes that were not present in the source domain,
has been studied.

For OSDA problem, the data in the source domain and the target domain fol-
low different distributions, on the other hand, the unknown classes that only exist
in the target domain, and are largely different from the known classes shared by
the source domain and target domain. Previous works [8,10,18] deploy threshold
strategies to separate the data in the target domain into known-class samples
and unknown-class samples. They usually set a very loose threshold, so that
most samples can be separated into known-class to participate in distribution
matching. Meanwhile, those separation strategies are highly dependent on the
distributional similarity between domains. So as the similarity decreases, the
accuray of separation will drop significantly. On the other hand, previous works
did not take into account the misseparated samples (unknown-class samples that
are wrongly separated as known-class) in the distribution matching process.

To address the above problems, we propose Self Separation and Missepara-
tion Impact Minimization (SSMM), a novel approach to OSDA. As illustrated
in Fig. 1, the main idea of our method contains two steps: separation and dis-
tribution matching. The separation step aims to separate the target domain
data into a target-known domain (target domain with only known-class sam-
ples) and a target unknown domain (target domain with only unknown-class
samples), which could be regarded as a binary classification task in which we
regard known-class samples as positive samples and unknown-class samples as
negative samples. The target-known domain often reveals stronger similarity
with the source domain and differs largely from the target-unknown domain. It
can be adequately certain that part of the samples with sufficiently low or high
entropy can be regarded as known-class or unknown-class confidently. Since the
target domain follows the same distribution as the selected samples, we can
leverage the intrinsic distribution information of the target domain to gradually
separate the target domain into known and unknown parts. The distribution
matching part is to minimize the distributional and geometrical discrepancy of
source domain and target domain with only known-class samples and reduce the
impact of misseparation simultaneously. Specificially we map both domains into
a domain-invariant subspace, where the domain divergence of the source domain
and the target-known domain is minimized and the distributional discrepancy
of the target-known domain and the target-unknown domain is maximized.
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2 Related Work

Close Set Domain Adaptation. Domain adaptation aims at reducing the domain
discrepancy of the source domain and the target domain. A natural approach is to
learn a transformation matrix that minimizes the statistical divergence. Transfer
Component Analysis (TCA) [16] proposes to match the marginal distribution of
both domains. Joint Distribution Adaptation (JDA) [13] extends TCA by match-
ing the marginal and conditional distribution simultaneously. Deep Adaptation
Networks (DAN) [11] adds adaptation layers into deep network, minimizing the
marginal distribution of embedded feature representation. The researches above
are all about aligning the distributional discrepancy, while the underlying geo-
metric information cannot be revealed. The geometric information of domains,
which could help with better exploring the relationship between samples, has
been studied. ARTL [12] models joint distribution adaptation and manifold reg-
ularization into a unified structure risk minimization framework.

Open Set Domain Adaptation. Open Set Domain Adaptation was first proposed
by [18]. This paper also proposes an approach to OSDA: Assign-and-Transform-
Iteratively (ATI) separated the target domain samples in accordance with the
Euclidean distance between target domain samples and source domain class cen-
troid, then learned a linear transformation to reduce the sample-level domain
distance. Seperate to Adapte (STA) [10] proposes an entropy measurement to
train a binary classifier for separation, adopting the domain adversarial learn-
ing framework for domain alignment. KASE [9] realizes a Known-class Aware
Recognition model based on the cross-entropy minimization principle to com-
plete separation, then performing a continuous weights strategy in distribution
matching.

3 Proposed Method

We begin with notations, given a labeled source domain S = {Xs, Ys} and an
unlabeled target domain T = {Xt}, where Xs ∈ R

d×ns and Xt ∈ R
d×nt . d is

the feature dimensionality, ns and nt are the number of samples in the source
domain and the target domain, respectively. Due to domain shift, S and T
follow different distributions while their feature spaces are the same. In OSDA
settings, the label spaces of domains are different. In this paper, we follow the
settings in [18], which assumes the target domain contains the source domain,
i.e. Cs ⊂ Ct, where Cs and Ct are the label space of the source domain and the
target domain, respectively. We also use subscript k and u to denote known class
(classes shared by both domains) samples and unknown class (classes only exist
in target domain) samples, e.g. Xtk denotes known-class samples in the target
domain and Xtu denotes unknown-class samples in the target domain.
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3.1 Self Separation

As stated in Sect. 1, the separation step aims at exploring the intrinsic structure
information of the target domain to separate target domain into the known
domain and the unknown domain. It’s worth noting that known-class samples
are more related to the source domain than the unknown-class samples. Inspired
by this observation, we train a basic classifier f(e.g. SVM) using Xs and deploy
prediction on Xt, the result is denoted as Yt0. Then we select the samples whose
entropy is extremely high or low (determined by two bounds in the following),
meaning that they are more pure to be known-class or unknown-class data, as the
initial Xtk and Xtu. We take Xtk as positive samples, Xtu as negative samples
to train a binary classifier and deploy prediction on the rest of Xt, choosing the
samples with low entropy from the result and adding the chosen ones into Xtk

and Xtu. Then we use the updated Xtk and Xtu as the training set to start a
new epoch, repeating until all of the target domain samples are separated into
either Xtk or Xtu. Specificially, we use Eq. 1 to calculate two bounds to select
samples, where m is a relaxation coefficient. Samples with entropy higher than
bupper or lower than blower are added into training set in the initialization and
samples with entropy lower than blower are added into the training set in the
iterations.

bupper = max(entropy(Yt0)) − m, blower = min(entropy(Yt0)) + m (1)

This semi-supervised-learning-like algorithm can let the target domain grad-
ually learns the difference between known and unknown classes, and finally sep-
arate the target domain into Xtu and Xtk. Once the separation finishes, we get
the well separated Xtk and Xtu to deploy distribution matching.

3.2 Distribution Matching

In this step, we propose to minimize the domain divergence between the source
domain and the target-known domain by learning a feature transformation A
so that the domain divergence can be reduced distributionally and geometri-
cally. Meanwhile, we maximize the difference between the known-class and the
unknown-class in the target domain, so that the misseparated samples can be
as far away from the distribution of the known-class samples in the transformed
space, then we can reduce the impact of misseparation in distribution matching.
X̂tu and X̂tk denote part of the target known or unknown domain samples. We
only select some very certain samples as representatives since we do not know
which one is wrongly separated.

Joint Distribution Adaptation. We adpot MMD [2,4] to measure the dis-
tributional divergence between domains, which computes the mean of samples
between domains in k-dimensional feature representations,

arg min
A

|| 1
ns

∑

xi∈Xs

AT xi − 1
ntk

∑

xi∈Xtk

AT xj ||2F (2)
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ns and ntk denote the number of samples of the source domain and the target-
known domain, respectively. || · ||2F is the squared f -norm. However, MMD only
measures the marginal distribution of domains, the conditional distribution is
ignored. [13] proposes to leverage the psudo-label of the target domain, generated
by source domain classifiers, to emperically estimate the conditional distribution
divergence. We follow their main idea to minimize the conditional distribution
divergence of domains,

arg min
A

C∑

c=1

|| 1

n
(c)
s

∑

xi∈X
(c)
s

AT xi − 1

n
(c)
tk

∑

xi∈X
(c)
tk

AT xj ||2F (3)

where c ∈ {1, ..., C} represents each class of known classes, X
(c)
s denotes the

samples in the source domain belonging to class c. X
(c)
tk denotes the samples

in the target-known domain whose pseudo-label is c. By combining Eq. 2 and
Eq. 3 and applying the matrix trick, the joint distribution term Dis(·, ·) can be
formulated as follows,

argmin
A

C∑

c=0

|| 1

n
(c)
s

∑

xi∈X
(c)
s

A
T

xi − 1

n
(c)
tk

∑

xi∈X
(c)
tk

A
T

xj ||2F = argmin
A

tr(A
T

XMX
T

A) (4)

where X = [Xs,Xtk] is the samples and M = M0+
∑C

c=1 Mc is the MMD matrix
and can be found in previous work [13].

Manifold Regularization. We seek to exploit the geometric information of
domains to further facilitate distribution matching. It has been proved that
the intrinsic geometry of samples often reveals the underlying truth of their
relationships [1], so if two samples are close in their low-dimensional manifold
embeddings, they might have similar properties. The manifold regularization
term Geo(·, ·) can be computed as:

argmin
A

ns+ntk∑

i,j=0

Wij(A
T

xi − A
T

xj)
2
=argmin

A

ns+ntk∑

i,j=0

A
T

xiLijxjA
T

= argmin
A

tr(A
T

XLX
T

A)

where W is the affinix matrix and L is the normalized graph Laplacian
matrix, Wij = cos(xi, xj) if xi ∈ Np(xj) or xj ∈ Np(xi), otherwise, Wij = 0.
Np(xi) denotes the p-nearest neighbor of sample xi, L = D− 1

2 WD− 1
2 , where D

is a diagonal matrix with Dii =
∑n

j=1 Wij .

Impact of Misseparation Minimization. Though we can get a promising
separation performance in the separation step, there must be unknown-class
samples which are wrongly separated as known-class (termed misseparation).
As illustrated in Fig. 1(c), the misseparated samples show stronger correlations
with the unknown classes (their underground truth) even though they were
wrongly separated. We propose to minimize the impact of misseparated samples
in domain adaptation by enlarging the discrepancy of the target-known domain
and target-unknown domain, so that in the embedded feature representation
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those misseparated samples can move far away from the target known-domain
(as shown in Fig. 1(d)). The misseparation minimizing term Mis(·, ·) can be
formulated as,

arg max
A

|| 1

n̂s

∑

xi∈X̂tu

AT xi − 1

n̂tk

∑

xi∈X̂tk

AT xj ||2F = arg max
A

tr(AT X̂M̂X̂T A)

(5)
where X̂tk and X̂tu represent the samples close to their own domain centroid

and X̂ = [X̂tk, X̂tu]. Since enlarging the domain gap with all samples of target
domain will draw the misseparated samples closer to the target-known domain,
which goes against our goal, so we only choose the data that best represent the
known/unknown classes.

Optimization. By incorporating Eq. 4, Eq. 3.2 and Eq. 5, we get the following
objective formulation:

arg min
A

tr(AT XMXT A) + λtr(AT XLXT A) − θtr(AT X̂M̂X̂T A) + η||A||2F
s.t. AT XHXT A = I

(6)
We add the regularization term ||A||2F to control the complexity of A. λ, η

and θ are the trade-off parameters. The constraint term AT XHXT A = I is
defined to avoid trivial solutions, e.g. A = 0. H = I − 1

n1 is the centering
matrix, 1 ∈ R

n×n is the matrix with all 1s and n denotes the number of all
samples. This optimization can be transformed as,

(X(M + λL)XT + θX̂M̂X̂T + ηI)A = XHXT AΦ (7)

where Φ = [φ1, ..., φk] ∈ R
k×k is the lagrange multipier, The above function

could be solved through eigenvalues decomposition. Then the k eigenvectors
corresponding to the k smallest eigenvalues of 7 are the solution of A.

4 Experiments

4.1 Data Preparation

Office-31 [19] is a standard benchmark dataset in domain adaptation, widely-
used in previous works [14]. It consists of 3 real-world object domains: Webcam
(W), DSLR (D) and Amazon (A), each domain contains 31 classes and 4,652
images in total. We follow the previous work, taking 0–10 classes as shared
classes, 11–20 classes as unknown classes in the source domain and 21–31 classes
as unknown classes in the target domain, all classes are sorted by alphabetical
order. The features are extracted by Resnet-50 [7].

Office-Home [21] is a more challenging dataset which consists of 15,550
images from 4 domains: Artistic (Ar), Clipart (Cl), Product (Pr) and Real-World
(Rw), with each domain containing 65 classes. Following the previous work, we
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Table 1. Classification Accuracy(%) of OSDA tasks on Office-31 (Resnet50)

Method A→W A→D W→A W→D D→A D→W Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

ResNet50 82.5 82.7 85.2 85.5 75.5 75.2 96.6 97.0 71.6 71.5 94.1 94.3 84.2 84.4

RTN 85.6 88.1 89.5 90.1 73.5 73.9 97.1 98.7 72.3 72.8 94.8 96.2 85.4 86.8

DANN 85.3 87.7 86.5 87.7 74.9 75.6 99.5 100.0 75.7 76.2 97.5 98.3 86.6 87.6

OpenMax 87.4 87.5 87.1 88.4 82.8 82.8 98.4 98.5 83.4 82.1 96.1 96.2 89.0 89.3

ATI-λ 87.4 88.9 84.3 86.6 80.4 81.4 96.5 98.7 78.0 79.6 93.6 95.3 86.7 88.4

OSBP 86.5 87.6 88.6 89.2 85.8 84.9 97.9 98.7 88.9 90.6 97.0 96.5 90.8 91.3

STA 89.5 92.1 93.7 96.1 87.9 87.4 99.5 99.6 89.1 93.5 97.5 96.5 92.9 94.1

TI 91.3 93.2 94.2 97.1 88.7 88.1 99.5 99.4 90.1 91.5 96.5 97.4 93.4 94.5

SSMM 94.2 94.7 96.0 96.6 87.0 87.7 98.6 100.0 87.7 88.1 98.5 100.0 93.7 94.5

Table 2. Classification Accuracy OS(%) of OSDA tasks on Office-Home (Resnet50)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet50 53.4 69.3 78.7 61.4 61.8 71.0 64.0 52.7 74.9 70.0 51.9 74.1 65.3

DANN 54.6 69.5 80.2 61.9 63.5 71.7 63.3 49.7 74.2 71.3 51.9 72.9 65.4

OpenMax 56.5 69.1 80.3 64.1 64.8 73.0 64.0 52.9 76.9 71.2 53.7 74.5 66.7

ATI-λ 55.2 69.1 79.2 61.7 63.5 72.9 64.5 52.6 75.8 70.7 53.5 74.1 66.1

OSBP 56.7 67.5 80.6 62.5 65.5 74.7 64.8 51.5 71.5 69.3 49.2 74.0 65.7

STA 58.1 71.6 85.0 63.4 69.3 75.8 65.2 53.1 80.8 74.9 54.4 81.9 69.5

TI 60.1 70.9 83.2 64.0 70.0 75.7 66.1 54.2 81.3 74.9 56.2 78.6 69.6

SSMM 64.8 82.3 84.3 58.3 73.2 75.1 64.8 57.5 81.9 73.4 64.2 85.1 72.1

take the first 25 classes as the shared classes, 26–65 classes as the unknown
classes in the target domain, all classes are sorted by alphabetical order. The
features are extracted by Resnet-50 [7].

4.2 Setup

Baselines: We compare our approach with several state-of-the-art OSDA meth-
ods. OpenMax [3], ATI-λ [18], OSBP [20], STA [10], TI [8], and MTS [5],
We also compare our approach with three close set domain adaptation methods:
DAN [11], RTN [15] and DANN [6]. For close set based methods, we follow
the previous work, regarding the unknown classes as one class for evaluation and
adopting confidence thresholding for outlier rejection.

Parameter Setting: We set the number of iterations T = 10 for both sep-
aration step and distribution matching step. To get all samples separated, we
gradually enlarge the relaxation coefficient m from 0 to the average of predicted
entropy, i.e. (max(Ent) + min(Ent))/2, each epoch we enlarge (max(Ent) +
min(Ent))/(2 ∗ T ). The threshold for selecting domain representatives in 5 is
set to 50%, i.e. the closest half to the domain centroid. The trade-off param-
eters λ, θ and η are set as λ = 0.1, θ = 0.1 and η = 0.1 in Office-31 dataset,
λ = 0.5, θ = 0.5 and η = 1.0 in Office-Home dataset. The manifold feature
dimension d is set to 10. The subspace bases k is set to 100.
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Evaluation Metric: In line with [18], we adpot two metrics: OS: normalized
accuracy for all classes including the accuracy on the unknown class(considering
the unknown classes on the target domain as one single class). OS*: normalized
accuracy only on the known classes.

Table 3. Separation accuracy of unknown samples on Office31 dataset (Resnet50)

Method A→W A→D W→A W→D D→A D→W Avg

ATI-λ 72.4 61.3 70.4 74.5 62 76.6 69.5

OSBP 75.5 82.6 94.8 89.9 71.9 100 86.1

STA 63.5 69.7 92.9 98.5 45.1 100 79.5

TI 72.3 73.2 94.7 100 76.1 87.5 84.1

MTS 48.4 59.7 67.7 87.9 65.6 81.9 67.8

SSMM-N 85.7 87.7 81.5 84.5 84.4 84.6 84.7

SSMM 89.2 90 80 84.6 83.7 97.5 87.5

4.3 Results

The experiment results on Office-31 dataset are shown in Table 1. Our method
shows comparable performance against state-of-the-art methods and achieves
the best performance on some tasks. Noting that close-set based methods per-
forms worse than open-set based methods generally, which further proved the
unknown-class samples will cause negative transfer. Previous works recognize
the unknown-class samples mainly depend on the similarity of domains, hence
the performance drop in some large domain gap tasks (e.g. A→W).

Table 2 shows the results on Office-Home dataset. Our method outperforms
existing methods on most tasks under large domain gap situation. Due to space
constraints we only report OS metric. Some of the algorithms done by separat-
ing and distribution matching iteratively perform worse (e.g. ATI-λ) on some
tasks, we explain this observation as the misseparated target samples will lead
the distribution matching to a wrong direction, which will aggravate the negative
transfer iteration after iteration. Our method optimize the two tasks indepen-
dently, avoiding such a problem.

4.4 Abation Analysis

Self Separation: To verify the superiority of our separation part, we com-
pare the separation accuracy of the unknown samples against existing meth-
ods on Office31 dataset. To further verify the effectiveness of gradually sep-
aration strategy, we propose a variant of separation stratgy. SSMM-N, sep-
arate all target samples in one iteration. The result is shown in Table 3, the
results of previous works are calculated by the relationship between OS and
OS* (OS × (|C| + 1) = OS∗ × |C| + Accunk, where |C| denotes the known
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class number and Accunk denotes the accuracy of unknown class). Table 3 shows
our self separation stratgy outperforms previous works. Accurate separation will
facilitate the distribution matching since less misseparated samples participant
in the distribution matching step. So some tasks which we improve the sepa-
ration accuracy a lot (e.g. A–>W and A–>D) also shows great improvement
on the classification tasks (corresponding results in Table 1). SSMM-N directly
separates the target domain in one iteration, which means it does not learn the
structure information from target domain, merely applying the knownledge from
the source domain. So SSMM-N performs worse than SSMM, which proves
the effectiveness of our gradually separation stratgy.

5 Conclusion

In this papar, we propose Self Separation in OSDA settings. By exploiting the
intrinsic structure information of the target domain, we reduce the dependence of
the source domain in the separation step. We also take into account the impact
of misseparated samples in distribution matching, which could further reduce
negative transfer caused by the unknown samples. Extensive experiments show
that our method performs well and shows strong robustness.
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Abstract. Multi-modal multi-label (MMML) learning serves an impor-
tant framework to learn from objects with multiple representations and
annotations. Previous MMML approaches assume that all instances are
with complete modalities, which usually does not hold for real-world
MMML data. Meanwhile, most existing works focus on data generation
using GAN, while few of them explore the downstream tasks, such as
multi-modal multi-label learning. The major challenge is how to jointly
model complex modal correlation and label correlation in a mutually
beneficial way, especially under the arbitrary modal-missing pattern.
Aim at addressing the aforementioned research challenges, we propose a
novel framework named Partial Modal Conditioned Generative Adver-
sarial Networks (PMC-GANs) for MMML learning with arbitrary modal-
missing. The proposed model contains a modal completion part and a
multi-modal multi-label learning part. Firstly, in order to strike a bal-
ance between consistency and complementary across different modalities,
PMC-GANs incorporates all available modalities during training and
generates high-quality missing modality in an efficient way. After that,
PMC-GANs exploits label correlation by leveraging shared information
from all modalities and specific information of each individual modal-
ity. Empirical studies on 3 MMML datasets clearly show the superior
performance of PMC-GANs against other state-of-the-art approaches.

Keywords: Multi-modal multi-label · GAN · Arbitrary
modal-missing · Label correlation

1 Introduction

As a learning framework that handles objects characterized with multiple modal
features and annotated with multiple labels simultaneously, Multi-Modal Multi-
Label (MMML) learning [28] has been widely applied in many real-world appli-
cations. For example, a piece of web news can be represented with different
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modalities which consist of text, image, and video, while annotated with multi-
ple labels including science, sports and economic at the same time.

In conventional MMML studies, it is commonly assumed that all modalities
have been collected completely for each instance. Nonetheless, there are usu-
ally incomplete modalities for MMML data in many practical scenarios [12,15].
Taking webpage news analysis as an example, some webpages may contain
text, image, and video, but others may only have one or two types, result in
MMML data with arbitrary missing modalities. Furthermore, we formalize the
corresponding learning task as the problem of Partial Multi-Modal Multi-Label
(PMMML) learning. Intuitively, the problem PMMML can be solved by man-
ually grouping samples according to the availability of data sources [24] and
subsequently learning multiple models on these groups for late fusion. However,
the grouping strategy is not flexible especially for the data with a large number
of modalities.

The key challenge of PMMML problem is how to integrate available modal-
ities in an efficient and mutually benefit way. In this paper, a novel Generative
Adversarial Networks (GAN) [5] based approach is proposed to capture the rela-
tionship between the available modalities and the missing one, which complete
missing modalities conditioned on available modalities. PMC-GANs combines
modal completion process and multi-modal multi-label learning to resolve the
arbitrary modal-missing pattern. As for each modality, the missing modality is
completed by mapping the available through a generator, and a discriminator
is used to distinguish the true modality and the generated one. In this way, the
relationship among modalities is captured by the generative network and the
missing modalities can be imputed. Afterward, we connect the imputation part
with multi-modal multi-label learning by exploiting modal correlation and label
correlation. Considering each modality has its own contribution to the multi-
label learning, we enforce orthogonal constraints w.r.t. the shared subspace to
exploit specific information of each individual modality. And then, we exploit
label correlation with the shared and specific modal information.

The main contributions of this paper are three-fold:

– A novel framework named Partial Modal Conditioned Generative Adversarial
Networks (PMC-GANs) for multi-modal multi-label (MMML) learning with
arbitrary missing modalities is proposed.

– In order to achieve consistency and complementary across different modal-
ities, PMC-GANs generates missing modalities with GAN conditioned on
other available modalities. In addition to the available modalities, multi-
ple labels are used for conditional variants of GAN. What’s more, for label
correlation exploitation, PMC-GANs extracts shared information among all
modalities and specific information of each individual modality.

– Comprehensive experiments on 3 benchmark multi-modal multi-label
datasets shows that PMC-GANs achieves highly competitive performance
against other state-of-the-art MMML approaches.

The rest of this paper is organized as follows. Section 2 discusses existing
works related to generative adversarial network and multi-modal multi-label
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learning. Section 3 presents the technical details of the proposed PMC-GANs.
Section 4 analyses comparative experimental results to show the superiority of
PMC-GANs. Finally, Sect. 5 presents the conclusion and future work.

2 Related Work

When it comes to integrating information from multiple sources with missing
data, [10] decomposes the multi-source block-wise missing data into the multiple
completed sub-matrix; SLIM [22] utilizes the intrinsic modal consistencies, which
can also learn the most discriminative classifiers for each modality separately.
To generate high quality modality, researches based on Generative Adversarial
Networks (GAN) [5] are developed to learn the mapping among modalities. The
basic GAN framework consists of a generator network and a discriminator net-
work and the generator and the discriminator play a minmax game. Recently,
[2,16] are proposed to impute missing data with the generative ability of GAN
models. Recently, there has been increasing interest in conditional variants of
GAN because they can improve the generation quality and stability. As a repre-
sentative of class-conditional GANs, AC-GAN [13] incorporates class labels by
introducing an auxiliary classifier in the original GAN framework. However, few
of them explore the downstream tasks, such as multi-modal multi-label learn-
ing. And then, we briefly review some state-of-the-art approaches with regard
to both multi-modal learning and multi-label learning.

For multi-label learning, the most straightforward way is to decompose the
problem into a set of independent binary classification tasks [1], while it neglects
label correlation. To compensate for this deficiency, the exploitation of label
correlation has been widely studied [4], for example, [29] exploits global and
local label correlation simultaneously, [7] learns both shared features and label-
specific features. These approaches take label correlation as prior knowledge,
which may not correctly characterize the real relationships among labels. And
then [3] first propose a novel method to learn the label correlation via sparse
reconstruction in the label space.

For multi-modal learning, the representative methods are Canonical Corre-
lation Analysis (CCA) based, i.e., deep neural networks based CCA [17]. For
partial multi-modal learning, a natural way is to complete missing modalities
and then the on-shelf multi-modal learning approaches could be adopted. The
imputation methods [15] complete the missing modalities by deep neural net-
works. In addition, the grouping strategy [24] divides all instances by availability
of data sources, then multiple classifiers are learned for late fusion.

For multi-modal multi-label learning, [29] exploits the consensus among dif-
ferent modalities, where multi-view latent spaces are correlated by Hilbert–
Schmidt Independence Criterion (HSIC). To further exploit communication
among various modalities, SMISFL [18] jointly learns multiple modal-individual
transformations and one sharable transformation. SIMM [20] leverages shared
subspace exploitation and modal-specific information extraction. Nevertheless,
previous approaches rarely consider the label correlation. CS3G approach [23]
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handles types of interactions between multiple labels, while no interaction
between features from different modalities. To make each modality interacts
and further reduce modal extraction cost, MCC [28] extends Classifier Chains
to exploit label correlation with partial modalities.

3 Methodology

3.1 Problem Formulation

In Multi-modal Multi-label (MMML) learning with missing modalities, an
instance can be characterized by partial multiple modal features and associated
with multiple labels. The task of this paper is to learn a function h : X → 2Y ,
given N data samples D = {(Xi,Yi)}Ni=1 with P modalities and L labels.
Xi = (X1

i , · · · ,Xm
i , · · · ,XP

i ) is the feature vector, where Xm
i ∈ Rdm denotes

the m-th modality of the i-th instance with dimension dm. It is notable that
each instance may have incomplete modalities, Xm

i = ∅ if the m-th modality of
the i-th instance is missing. Yi = [y1

i , y
2
i , · · · , yL

i ] ∈ {−1, 1}L denotes the label
vector of the i-th instance Xi.

Afterward, we introduce Partial Modal Conditioned Generative Adversarial
Networks (PMC-GANs) in detail. The whole framework of PMC-GANs is shown
in Fig. 1, and there are 3 major steps of PMC-GANs: modal completion, modal
information extraction and label correlation exploitation.

3.2 Modal Completion

PMC-GANs consists of P generators and P discriminators, which are all condi-
tioned on other available modalities. Each of the generator is associated with
one of the modalities. As illustrated in Fig. 2, for the m-th modality, we
maintain the following two adversarial models, which are both conditioned on
Am = (X1, · · · ,Xm−1,Xm+1, · · · ,XP ):

A Generative Model. Gm that captures the data distribution Pgm to infer
the m-th missing modality X̂m conditioned on corresponding available modal-
ities Am. When training Gm, a content loss function is employed to encourage
the generated X̂m = Gm(zm|Am) to be similar to the true modality Xm. To
minimize Euclidean distance between the generated and the true data, the mean
square error loss Lm

MSE is calculated as:

Lm
MSE = ‖X̂m − Xm‖22 (1)

Moreover, Gm tries to fool the discriminator Dm. Based on WGAN-GP [19],
the objective function for Gm is defined as:

Lm
G = − E

X̂ m
∼Pgm

[Dm(X̂m|Am)] (2)
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Fig. 1. Diagrammatic illustration of PMC-GANs. Firstly, PMC-GANs complete miss-
ing modality with GAN conditioned on available modalities. Secondly, PMC-GANs
enforces orthogonal constraint to extract shared and specific information. Finally,
shared and specific information are synergized in the LSTM network for label cor-
relation exploitation.
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Fig. 2. Structure of conditional GANs for the m-th modality. Both the generator Gm

and the discriminator Dm are conditioned on Am = (X1, · · · , Xm−1, Xm+1, · · · , XP ).
And X̂m = Gm(zm|Am).

A Discriminative Model. Dm that tries to identify whether the m-th modal-
ity is available from the training data or completed by the generator Gm. Each
discriminator Dm is treated as a binary classification network. The m-th true
modality Xm is set with label 1, and the generated modality X̂m is set with
label 0. Based on Wasserstein GANs with gradient penalty term (WGAN-GP),
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the objective function for Dm is defined as:

Lm
D = E

X m
∼Prm

[Dm(Xm|Am)] − E
X̂ m

∼Pgm

[Dm(X̂m|Am)]

+λ E
˜X m

∼Pym

[(‖∇Dm(˜Xm|Am)‖2 − 1)2]
(3)

where ∇ is the gradient operator and Pym is the distribution obtained by sam-
pling uniformly along straight lines between points from the real and fake data
distributions Prm and Pgm .

An Auxiliary Classifier. fm that prompts the generator Gm to generate the
m-th modality for given labels. For instances from different labels, the relation-
ship between the missing modalities and the available modalities can be different.
In order to improve generation quality and stability, it’s necessary to take mul-
tiple labels into consideration for the missing modal completion task. Inspired
by AC-GAN [13], we employ an auxiliary classification loss in the discrimina-
tor Dm to distinguish the different labels of inputs. The discriminator Dm not
only produces the probability distribution of real/generated, but also the prob-
ability distribution over multiple labels given multiple modalities Xm ⊕ Am or
X̂m ⊕ Am. Consequently, fm learns to assign proper labels to both the real
modality and the generated modality. The auxiliary classification loss is com-
posed of two parts: the cross entropy loss for the real modality and the cross
entropy loss for the generated modality, which can be defined as follows:

Lm
AC =

L
∑

l=1

Lce

(

Dm(Xm ⊕ Am, yl)
)

+ Lce

(

Dm(X̂m ⊕ Am, yl)
)

(4)

where ⊕ is the concatenation operator and yl is the l-th label of X. Meanwhile,
Lce(c, ĉ) = −(

clog(ĉ) + (1 − c)log(1 − ĉ)
)

.

Objective. Above all, the discriminator Dm is trained by maximizing Lm
D −

λACLm
AC , while the generator Gm is trained by minimizing Lm

G +λMSELm
MSE +

λACLm
AC . λMSE , λAC are the tradoff parameters for each loss. Parameters of

Dm and Gm are updated using Adam optimization algorithm [9].

3.3 Modal Information Extraction

After completing the missing modality through the generators {Gm}Pm=1 in
Sect. 3.2, we perform the multi-modal multi-label learning on the whole train-
ing dataset. The goal of multi-modal multi-label learning is to fully integrate
various representations of a complex object and assign a set of proper labels to
it. Intrinsically, multiple modalities share consistency with each other and can
provide complementary information together. Different modalities often contains
shared information and specific information. Therefore, two key steps of modal
information extraction are designed as follows:
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Shared Information Extraction: aiming at exploiting shared subspace repre-
sentation of all modalities, we concatenate all modalities in Xi to formalize a new
single modal X0

i = [X1
i ,X2

i , · · · ,XP
i ] ∈ R

dall , where dall = d1 + d2 + · · · + dP .
And then we add a dense layer to transform X0

i to Ci ∈ R
d according to

Ci = ReLU(X0
i U0 + b0), where U0 ∈ R

dall×d is the weight vector, b0 ∈ R
1×d is

the bias vector.
Furthermore, the corresponding prediction model between common represen-

tation and multiple labels can be represented by f(Ci) = σ(CiWC +bC), where
WC ∈ R

d×L is the weight vector, bC ∈ R
1×L is the bias vector. And then, we use

shared information multi-label loss Lsml to guarantee that Ci contains certain
semantics, Lsml can be formed as:

Lsml = −
Nb
∑

i=1

L
∑

k=1

(

yk
i logzki + (1 − yk

i )log(1 − zki )
)

(5)

where yk
i is the ground-truth of Xi on the k-th label. yk

i = 1 if k-th label is the
relevant label, 0 otherwise. zki = f(Ci) is the prediction with the shared modal
vector Ci, which is extracted from Xi. And Nb is the batch size.

Specific Information Extraction: each modality contains its own specific
contribution to the multi-label prediction. Firstly, we add a dense layer to
transform the m-th specific modality Xm

i ∈ R
dm to Sm

i ∈ R
d. And Sm

i =
ReLU(Xm

i Um + bm),m = 1, · · · , P , where Um ∈ R
dm×d is weight vector,

bm ∈ R
1×d is bias vector.

It is difficult to define which is the specific information of a particular modal-
ity, but we can extract it from original {Xm

i }Pm=1 by eliminating shared infor-
mation. We penalize the independence between shared information Ci and each
specific information Sm

i with orthogonal loss function:

Lorth =
Nb
∑

i=1

P
∑

m=1

‖CT
i Sm

i ‖22 (6)

where ‖ · ‖2 is the L2-norm. Lorth encourages Sm
i extracted from the original

m-th modal vector Xm
i to be as discriminative from Ci as possible.

After preparing share information Ci and specific information {Sm
i }Pm=1,

which are all fixed in the same d dimension, then we input Qi =
{Ci,S

1
i , · · · ,SP

i } to the LSTM network [6] in order. At t-th step, the hidden
features of Xi in LSTM structure can be represented as ht

i ∈ R
dh . In traditional

multi-modal learning, the shared subspace exploitation is often implemented in
an independent way, while the communication among all modalities is neglected.
To better exploit relationship among different modalities, we stack all the previ-
ous hidden outputs as Ht

i = [h0
i ,h

1
i , · · · ,ht

i] ∈ R
(t+1)dh , where dh is the dimen-

sion of the hidden layer. All the parameters in LSTM structure are denoted
as Ψ .
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3.4 Label Correlation Exploitation

It is well-known that exploiting label correlation is crucially important in multi-
label learning and each modality contains its own specific contribution to the
multi-label prediction. Meanwhile, complementary information among different
modalities is of great importance. Thus, PMC-GANs models label correlation
with extracted modal information stored in the memory of LSTM. At the t-
th step, we add a fully connected structure between hidden layer and label
prediction layer, which makes label prediction with stacked hidden outputs Ht

i .
The final label prediction is composed of the prediction of the current modality
and the prediction of modality used in the last step. And then we predict multiple
labels at the t-th step by a nonlinear softmax function:

F t(Ht
i ) =

⎧

⎨

⎩

σ(Ht
iW

t
L + bt

L) t = 0

σ(Ht
iW

t
L + F t−1(Ht−1

i )R + bt
L) t > 0

(7)

where W t
L ∈ R

((t+1)dh)×L denotes the fully connected weights between Ht
i and

label prediction layer, bt
L ∈ R

1×L is the bias vector. Ht
iW

t
L is similar to BR,

which predicts each label independently. F t−1(Ht−1
i )RT is the prediction of

other labels, in which F t−1(Ht−1
i ) ∈ R

1×L denotes label prediction at the (t−1)-
th step. Meanwhile, we learn label correlation matrix R ∈ R

L×L. The k-th row,
j-th column of R represents the contribution of the k-th label prediction in
(t − 1)-th step to j-th label, which is denoted as Rkj .

Furthermore, we design binary cross-entropy loss function for final label pre-
diction at t-th step by Eq. 8.

Li,t
ml = −

L
∑

k=1

(

yk
i logŷk,t

i + (1 − yk
i )log(1 − ŷk,t

i )
)

(8)

where ŷk,t
i the prediction of Xi on the k-th label at t-th step, predicted by F t

in Eq. 7.
Above all, we combine shared multi-label loss, orthogonal loss and final pre-

diction loss function together to compute the overall loss function L:

L = (
Nb
∑

i=1

P
∑

t=0

Li,t
ml) + αLorth + βLsml (9)

where α and β control the trade-off.
Θ = [U0, b0,Um, bm,WC , bC ,Ψ ,R,W t

L, bt
L] denotes all the parameters need

to be updated, where m = 1, · · · , P , t = 0, · · · , P . Then we adopt popular
optimization algorithm Adam [9] to update parameters in Θ. The pseudo code
of PMC-GANs in the training phase is presented in Algorithm 1.
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Algorithm 1. Training algorithm for PMC-GANs
Input:

D ={(X i, Yi)}N
i=1: Training dataset; Ncritic: number of iterations of the critic per

generator iteration; Mb: minibatch size; Nb: batch size
Output:

F P : classifier trained with extracted modal sequence
1: for m = 1 : P do
2: repeat
3: for k = 1 : Ncritic do
4: Sample minibatch of Mb samples from D
5: Update the discriminator Dm by maximizing Lm

D − λACLm
AC

6: end for
7: Sample minibatch of Mb samples from D
8: Update the generator Gm by minimizing Lm

G + λMSELm
MSE + λACLm

AC

9: until Converge
10: end for
11: Complete missing modalities with {Gm}P

m=1

12: repeat
13: Sample Nb instances from D without replacement
14: for i = 1 : Nb do
15: Extract shared Ci and specific {Sm

i }P
m=1

16: Qi = {Ci, S
1
i , · · · , SP

i }
17: for t = 0 : P do
18: Input Qt

i to LSTM cell
19: Stack hidden output H t

i = [h0
i , h

1
i , · · · , ht

i]
20: Compute label prediction F t(H t

i ) with Eq. 7
21: Compute label loss function Li,t

ml with Eq. 8
22: end for
23: end for
24: Compute Lsml, Lorth, L with Eq. 5, 6, 9 respectively
25: Update parameters in Θ
26: until converge
27: return F P

4 Experiment

4.1 Experimental Setup

Dataset Description. Table 1 summarizes the description of 3 multi-modal
multi-label datasets, collected or generated as follows. ML2000 : is an image
dataset with 2000 images from 5 categories [26]. And 3 types of features: BoW,
FV, and HOG are extracted for each image. FCVID : is a subset of Fudan-
Columbia Video Dataset [8], composed of 4388 videos with most frequent cate-
gory names. 5 modalities [23] are extracted for each video. MSRA: is a subset of
a salient object recognition database [11], which contains 15000 images from 50
categories. And 7 modalities are extracted for each image, including RGB color
histogram features, dimension block-wise color moments, HSV color histogram,
color correlogram, distribution histogram, wavelet features, and face features.
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Table 1. Characteristic of the real-world multi-modal multi-label datasets. N , L and
P denote the number of instances, labels and modalities in each dataset, respectively.
D shows the dimensionality of each modality.

Dataset N L P D

ML2000 2000 5 3 [500, 1040, 576]

FCVID 4388 28 5 [400, 400, 400, 400, 400]

MSRA 15000 50 7 [256, 225, 64, 144, 75, 128, 7]

Evaluation Metrics. To have a fair comparison, we employ 4 widely-used
multi-label evaluation metrics, including Hamming Loss, Micro F1, Example
F1, Subset Accuracy [27,28].

Compared Approaches. The performance of PMC-GANs is compared with
4 state-of-the-art approaches, including:

– DMP: is a serialized multi-modal algorithm [21], which can automatically
extract an instance-specifically discriminative modal sequence within a lim-
ited modal acquisition budget. For each instance, we set the extraction cost
of missing modality higher than that of available modality. Meanwhile, we
treat each label independently.

– CAMEL(C) & CAMEL(B): a multi-label algorithm CAMEL [3] with two
types of feature inputs. (C) denotes the concatenation of all modalities. (B)
stands for the best performance obtained from the best single modality.

– MCC: is a novel multi-modal multi-label approach [28], which can make con-
vince prediction with partial modalities. As for missing modality, the extrac-
tion cost is set higher.

4.2 Experimental Results

For all approaches, we tune the parameter with 10-fold cross validation and
report the mean values as well as standard deviations. We set trade-off parameter
λMSE = 0.5, λAC = 0.1 in the modal completion part, α = 0.1, β = 100,
minibatch size Mb = 32, batch size Nb = 64 in the multi-modal multi-label
learning part. Furthermore, we drop out 40% modal features at each step to
avoid over-fitting [14].

For all benchmark datasets, the missing modalities are randomly selected by
guaranteeing at least one modality is available for each instance. And missing
rate η =

∑

m Nm

P×N , where Nm denotes the number of samples without the m-th
modality [25]. As a result, partial multi-modal multi-label dataset are obtained
with diverse missing patterns. For all the compared approaches, the missing
modalities are filled with vector 0. What’s more, for DMP and MCC approaches,
we set the extraction cost higher with missing modalities.
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Table 2. Predictive performance of each compared approach (mean ± std. deviation)
on the multi-modal multi-label datasets (with missing rate η = 0.2). ↑ / ↓ indicates
that the larger/smaller the better. The best performance is bolded.

ML2000

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
DMP 0.132 ± 0.009 0.670 ± 0.021 0.580 ± 0.022 0.489 ± 0.025

CAMEL(C) 0.119 ± 0.010 0.737 ± 0.024 0.690 ± 0.026 0.563 ± 0.026

CAMEL(B) 0.119 ± 0.010 0.718 ± 0.021 0.629 ± 0.026 0.525 ± 0.037

MCC 0.146 ± 0.014 0.686 ± 0.032 0.685 ± 0.034 0.563 ± 0.033

PMC-GANs 0.113 ± 0.011 0.765 ± 0.022 0.766 ± 0.020 0.685 ± 0.035

FCVID

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
DMP 0.033 ± 0.002 0.583 ± 0.026 0.553 ± 0.033 0.424 ± 0.038

CAMEL(C) 0.024 ± 0.001 0.553 ± 0.015 0.389 ± 0.015 0.375 ± 0.017

CAMEL(B) 0.022 ± 0.001 0.595 ± 0.021 0.434 ± 0.022 0.421 ± 0.024

MCC 0.032 ± 0.002 0.593 ± 0.026 0.567 ± 0.021 0.444 ± 0.019

PMC-GANs 0.016 ± 0.001 0.780 ± 0.020 0.760 ± 0.021 0.741 ± 0.021

MSRA

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
DMP 0.047 ± 0.001 0.273 ± 0.010 0.191 ± 0.009 0.046 ± 0.003

CAMEL(C) 0.048 ± 0.002 0.297 ± 0.010 0.055 ± 0.003 0.049 ± 0.007

CAMEL(B) 0.048 ± 0.002 0.264 ± 0.015 0.051 ± 0.003 0.044 ± 0.008

MCC 0.049 ± 0.001 0.323 ± 0.009 0.238 ± 0.009 0.065 ± 0.005

PMC-GANs 0.048 ± 0.002 0.386 ± 0.019 0.295 ± 0.018 0.122 ± 0.013

Table 2 reports detailed experimental results with 0.2 missing modalities.
The experimental results across different datasets and different evaluation met-
rics demonstrate that PMC-GANs outperforms all the compared approaches. In
addition, we evaluate PMC-GANs by investigating the performance with respect
to varying missing rate. And the comparison results on the FCVID dataset are
shown in Fig. 3.

Based on the results in Table 2 and Fig. 3, we have the following observations:
1) Without missing modalities (η = 0), PMC-GANs achieves very competitive
performance compared with other approaches, which validates the effectiveness
of modal information extraction and label correlation exploitation. 2) With the
increase of missing rate, PMC-GANs achieves best and degrades more slowly,
which demonstrates excellent stability of PMC-GANs when dealing with large
missing rate. 3) When the missing rate substantially increases, PMC-GANs usu-
ally performs relatively promising, which shows the robustness.
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Fig. 3. Performance comparison on the FCVID dataset under different missing rate
η = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

Table 3. Predictive performance of PMConcat and PMC-GANs (mean ± std. devi-
ation) on the multi-modal multi-label datasets (with missing rate η = 0.2). ↑ / ↓
indicates that the larger/smaller the better. The best performance is bolded.

ML2000

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
PMConcat 0.119 ± 0.015 0.754 ± 0.030 0.764 ± 0.029 0.667 ± 0.051

PMC-GANs 0.113 ± 0.011 0.765 ± 0.022 0.766 ± 0.020 0.685 ± 0.035

FCVID

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
PMConcat 0.019 ± 0.002 0.730 ± 0.024 0.700 ± 0.022 0.688 ± 0.024

PMC-GANs 0.016 ± 0.001 0.780 ± 0.020 0.760 ± 0.021 0.741 ± 0.021

MSRA

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
PMConcat 0.049 ± 0.001 0.346 ± 0.013 0.254 ± 0.013 0.108 ± 0.010

PMC-GANs 0.048 ± 0.002 0.386 ± 0.019 0.295 ± 0.018 0.122 ± 0.013
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Fig. 4. Comparison of PMC-GANs against modal completion without conditional
GANs (PM) on the FCVID dataset.

4.3 Performance Analysis

In this section, we examine the performance of modal completion part and multi-
modal multi-label part respectively.

Performance of Modal Completion Part. In general, if the completion
modalities are in high quality, the downstream multi-modal multi-label task will
be better. By remaining the modal completion part of PMC-GANs, we add a
fully connected layer for multi-label prediction with all modalities concatenated,
which is denoted as PMConcat. In this case, we set the missing rate η as 0.2.
Combining Table 2 and Table 3, PMConcat performs better than other state-of-
the-art approaches. What’s more, PMC-GANs performs better than PMConcat,
which indicates it’s necessary to carry on multi-modal multi-label learning part.

In order to examine the effectiveness of modal completion based on con-
ditional GANs, we remain the basic structure of PMC-GANs while complete
missing modalities with vector 0, which is denoted as PM. It is clearly shown
in Fig. 4 that (1) both PMC-GANs and PM can converge fast within a small
number of epochs, (2) the model performs better with modal completion based
on conditional GANs.

Performance of Multi-modal Multi-label Part. PMC-GANs makes full
use of modal information to better characterize label correlation, which polishes
the performance of multi-modal multi-label learning. We keep the basic struc-
ture of PMC-GANs, and only input Xi instead of Qi to the LSTM network,
denoted as PMSeq. Here, we set the missing rate η as 0. As shown in Table 4,
PMC-GANs performs better than PMSeq, which validates PMC-GANs of great
effectiveness to extract shared and specific information for better label corre-
lation exploitation. In other words, it’s not enough to merely fuse cross-modal
interaction.
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Table 4. Predictive performance of each compared approach (mean ± std. deviation)
on the multi-modal multi-label datasets (with missing rate η = 0). ↑ / ↓ indicates that
the larger/smaller the better. The best performance is bolded.

ML2000

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
DMP 0.103 ± 0.010 0.783 ± 0.021 0.753 ± 0.026 0.617 ± 0.031

CAMEL(C) 0.098 ± 0.011 0.783 ± 0.024 0.739 ± 0.029 0.633 ± 0.036

CAMEL(B) 0.089 ± 0.011 0.806 ± 0.024 0.769 ± 0.031 0.655 ± 0.040

MCC 0.105 ± 0.012 0.784 ± 0.024 0.787 ± 0.022 0.662 ± 0.032

PMSeq 0.091 ± 0.012 0.813 ± 0.022 0.815 ± 0.024 0.731 ± 0.032

PMC-GANs 0.086 ± 0.011 0.826 ± 0.021 0.827 ± 0.022 0.745 ± 0.034

FCVID

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
DMP 0.027 ± 0.002 0.658 ± 0.023 0.642 ± 0.026 0.520 ± 0.033

CAMEL(C) 0.020 ± 0.001 0.658 ± 0.016 0.503 ± 0.017 0.485 ± 0.019

CAMEL(B) 0.018 ± 0.001 0.695 ± 0.024 0.551 ± 0.031 0.534 ± 0.030

MCC 0.027 ± 0.001 0.663 ± 0.014 0.647 ± 0.019 0.522 ± 0.024

PMSeq 0.015 ± 0.001 0.777 ± 0.015 0.718 ± 0.021 0.708 ± 0.024

PMC-GANs 0.012 ± 0.001 0.828 ± 0.021 0.796 ± 0.026 0.783 ± 0.026

MSRA

Compared Evaluation metrics

Approaches Hamming loss↓ Micro F1↑ Example F1↑ Subset accuracy↑
DMP 0.046 ± 0.001 0.311 ± 0.009 0.216 ± 0.007 0.053 ± 0.005

CAMEL(C) 0.045 ± 0.001 0.349 ± 0.010 0.248 ± 0.006 0.066 ± 0.010

CAMEL(B) 0.046 ± 0.001 0.329 ± 0.014 0.232 ± 0.010 0.057 ± 0.010

MCC 0.048 ± 0.001 0.359 ± 0.006 0.266 ± 0.005 0.076 ± 0.003

PMSeq 0.046 ± 0.001 0.353 ± 0.015 0.259 ± 0.016 0.115 ± 0.007

PMC-GANs 0.046 ± 0.001 0.430 ± 0.012 0.341 ± 0.013 0.148 ± 0.010

5 Conclusion

In this paper, a novel Partial Modal Conditioned Generative Adversarial Net-
works (PMC-GANs) is proposed to solve the multi-modal multi-label problem
with arbitrary missing modalities, which can jointly exploit modal correlation
and label correlation with available modalities. Specifically, PMC-GANs mainly
consists of two parts: one is conditional Generative Adversarial Networks for gen-
erating missing modalities, the other is a modal-oriented information extraction
network for exploiting label correlation. In addition, we verify the effectiveness
and robustness of PMC-GANs via comprehensive experiments on benchmark
multi-modal multi-label datasets with various missing rates. In the future, it is
interesting to place the missing modalities generation problem into the reinforce-
ment learning environment.
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Abstract. Unsupervised domain adaptation aims to transfer knowledge
from a labeled source domain to an unlabeled target domain. Previous
methods focus on learning domain-invariant features to decrease the dis-
crepancy between the feature distributions as well as minimizing the
source error and have made remarkable progress. However, a recently
proposed theory reveals that such a strategy is not sufficient for a suc-
cessful domain adaptation. It shows that besides a small source error,
both the discrepancy between the feature distributions and the discrep-
ancy between the labeling functions should be small across domains.
The discrepancy between the labeling functions is essentially the cross-
domain errors which are ignored by existing methods. To overcome
this issue, in this paper, a novel method is proposed to integrate all the
objectives into a unified optimization framework. Moreover, the incorrect
pseudo labels widely used in previous methods can lead to error accumu-
lation during learning. To alleviate this problem, the pseudo labels are
obtained by utilizing structural information of the target domain besides
source classifier and we propose a curriculum learning based strategy to
select the target samples with more accurate pseudo-labels during train-
ing. Comprehensive experiments are conducted, and the results validate
that our approach outperforms state-of-the-art methods.

Keywords: Transfer learning · Domain adaptation · Cross-domain
errors

1 Introduction

Traditional machine learning methods have achieved significant progress in var-
ious application scenarios [14,33]. Training a model usually requires a large
amount of labeled data. However, it is difficult to collect annotated data in
some scenarios, such as medical image recognition [30] and automatic driving
[42]. Such a case may lead to performance degradation for traditional machine
learning methods. Unsupervised domain adaptation aims to overcome such chal-
lenge by transferring knowledge from a different but related domain (source
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domain) with labeled samples to a target domain with unlabeled samples [28].
And unsupervised domain adaptation based methods have achieved remarkable
progress in many fields, such as image classification [45], automatic driving [42]
and medical image precessing [30].

According to a classical theory of domain adaptation [1], the error of a
hypothesis h in the target domain εt(h) is bounded by three terms: the empirical
error in the source domain ε̂s(h), the distribution discrepancy across domains
d(Ds,Dt) and the ideal joint error λ∗:

εt(h) ≤ ε̂s(h) + d(Ds,Dt) + λ∗ (1)

Note that Ds,Dt denotes the source domain and the target domain, respectively.
λ∗ = εs(h∗) + εt(h∗) is the ideal joint error and h∗ := arg minh∈H εs(h) + εt(h)
is the ideal joint hypothesis. It is usually assumed that there is an ideal joint
hypothesis h∗ which can achieve good performance in both domains, making λ∗

becoming a small and constant term. Therefore, besides minimizing the source
empirical error, many methods focus on learning domain-invariant representa-
tions, i.e., intermediate features whose distributions are similar in the source
and the target domain to achieve a small target error [6,20,29,34,36,39,44]. In
shallow domain adaptation, distribution alignment is a widely used strategy for
domain adaptation [21,22,27,35,38]. These methods assume that there exists a
common space where the distributions of two domains are similar and they con-
centrate on finding a feature transformation matrix that projects the features of
two domains into a common subspace with less distribution discrepancy.

Although having achieved remarkable progress, recent researches show that
transforming the feature representations to be domain-invariant may inevitably
distort the original feature distributions and enlarge the error of the ideal joint
hypothesis [5,18]. It reminds us that the error of the ideal joint error λ∗ can not
be ignored. However, it is usually intractable to compute the ideal joint error
λ∗, because there are no labeled data in the target domain. Recently, a general
and interpretable generalization upper bound without the pessimistic term λ∗

for domain adaptation has been proposed in [47]:

εt(h) ≤ ε̂s(h) + d(Ds,Dt) + min{EDs
[|fs − ft|], EDt

[|fs − ft|]} (2)

where fs and ft are the labeling functions (i.e., the classifiers to be learned)
in both domains. The first two terms in Eq. (2) are similar compared with
Eq. (1), while the third term is different. The third term measures the discrep-
ancy between the labeling functions from the source and the target domain.
Obviously, EDs

[|fs − ft|] = εs(ft) and EDt
[|fs − ft|] = εt(fs). As a result,

the discrepancy between the labeling functions is essentially the cross-domain
errors. Specifically, the cross-domain errors are the classification error of the
source classifier in the target domain and the classification error of the target
classifier in the source domain. Altogether, the newly proposed theory provides a
sufficient condition for the success of domain adaptation: besides a small source
error, not only the discrepancy between the feature distributions but also the
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cross-domain errors need to be small across domains, while the cross-domain
errors are ignored by existing methods.

Besides, estimating the classifier errors is important for domain adaptation.
Various classifiers such as k−NN, linear classifier and SVMs have been used
in shallow domain adaptation [3,21,22,27]. Recently, some methods adopt the
prototype classifier [12] for classification in domain adaptation. The prototype
classifier is a non-parametric classifier, where one class can be represented by one
or more prototypes. And a sample can be classified according to the distances
between the sample and the class prototypes.

In this paper, we propose a general framework named Cross-Domain Error
Minimization (CDEM) based on the prototype classifier. CDEM aims to simul-
taneously learn domain-invariant features and minimize the cross-domain errors,
besides minimizing the source classification error. To minimize the cross-domain
errors, we maintain a classifier for each domain separately, instead of assuming
that there is an ideal joint classifier that can perform well in both domains. More-
over, we conduct discriminative feature learning for better classification. To sum
up, as shown in Fig. 1, there are four objectives in the proposed method. (i) Min-
imizing the classification errors in both domains to optimize the empirical errors.
(ii) Performing distribution alignment to decrease the discrepancy between fea-
ture distributions. (iii) Minimizing the cross-domain errors to decrease the dis-
crepancy between the labeling functions across domains. (iv) Performing dis-
criminative learning to learn discriminative features. Note that the objectives
(i), (ii) and (iv) have been explored in previous methods [27,37,38], while the
objective (iii) is ignored by existing methods. We integrate the four objectives
into a unified optimization problem to learn a feature transformation matrix
via a closed-form solution. After transformation, the discrepancy between the
feature distributions and the cross-domain errors will be small, and the source
classifier can generalize well in the target domain.

Since the labels are unavailable in the target domain, we use pseudo labels
instead in the learning process. Inevitably, there are some incorrect pseudo labels,
which will cause error accumulation during learning [39]. To alleviate this prob-
lem, the pseudo labels of the target samples are obtained based on the structural
information in the target domain and the source classifier, in this way, the pseudo
labels are likely to be more accurate. Moreover, we propose to use curriculum
learning [2] based strategy to select target samples with high prediction confi-
dence during training. We regard the samples with high prediction confidence as
“easy” samples and the samples with low prediction confidence as “hard” sam-
ples. The strategy is to learn the transformation matrix with “easy” samples
at the early stage and with “hard” samples at the later stage. With the itera-
tions going on, we gradually add more and more target samples to the training
process.

Note that CDEM is composed of two processes: learning transformation
matrix and selecting target samples. We perform these two processes in an alter-
native manner for better adaptation. Comprehensive experiments are conducted
on three real-world object datasets. The results show that CDEM outperforms
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the state-of-the-art adaptation methods on most of the tasks (16 out of 24), which
validates the substantial effects of simultaneously learning domain-invariant fea-
tures and minimizing cross-domain errors for domain adaptation.

2 Related Work

Domain Adaptation Theory. The theory in [1] is one of the pioneering theo-
retical works in this field. A new statistics named HΔH-divergence is proposed
as a substitution of traditional distribution discrepancies (e.g. L1 distance, KL-
divergence) and a generalization error bound is presented. The theory shows that
the target error is bounded by the source error and the distribution discrepancy
across domains, so most domain adaptation methods aim to minimize the source
error and reduce the distribution discrepancy across domains. A general class of
loss functions satisfying symmetry and subadditivity are considered in [25] and
a new generalization theory with respect to the newly proposed discrepancy dis-
tance is developed. A margin-aware generalization bound based on asymmetric
margin loss is proposed in [25] and reveals the trade-off between generalization
error and the choice of margin. Recently, a theory considering labeling functions
is proposed in [46], which shows that the error of the target domain is bounded
by three terms: the source error, the discrepancy in feature distributions and
the discrepancy between the labeling functions across domains. The discrepancy
between the labeling functions are essentially the cross-domain errors which
are ignored by existing methods. CDEM is able to optimize all the objectives
simultaneously.

Domain Adaptation Algorithm. The mostly used shallow domain adapta-
tion approaches include instance reweighting [3,7,16] and distribution alignment
[22,27,34,37,38].

The instance reweighting methods assume that a certain portion of the data
in the source domain can be reused for learning in the target domain and the
samples in the source domain can be reweighted according to the relevance with
the target domain. Tradaboost [7] is the most representative method which is
inspired by Adaboost [41]. The source samples classified correctly by the tar-
get classifier have larger weight while the samples classified wrongly have less
weight. LDML [16] also evaluates each sample and makes full use of the piv-
otal samples to filter out outliers. DMM [3] learns a transfer support vector
machine via extracting domain-invariant feature representations and estimating
unbiased instance weights to jointly minimize the distribution discrepancy. In
fact, the strategy for selecting target samples based on curriculum learning can
be regarded as a special case of instance reweighting, where the weight of selected
samples is 1, while the weight of unselected samples is 0.

The distribution alignment methods assume that there exists a common space
where the distributions of two domains are similar and focus on finding a feature
transformation that projects features of two domains into another latent shared
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subspace with less distribution discrepancy. TCA [27] tries to align marginal dis-
tribution across domains, which learns a domain-invariant representation during
feature mapping. Based on TCA, JDA [22] tries to align marginal distribution
and conditional distribution simultaneously. Considering the balance between
the marginal distribution and conditional distribution discrepancy, both BDA
[37] and MEDA [38] adopt a balance factor to leverage the importance of differ-
ent distributions. However, these methods all focus on learning domain-invariant
features across domains and ignore the cross-domain errors. While our proposed
method takes the cross-domain errors into consideration.

3 Motivation

3.1 Problem Definition

In this paper, we focus on unsupervised domain adaptation. There are a source
domain Ds = {(xi

s, y
i
s)}ns

i=1 with ns labeled source examples and a target domain
Dt = {xj

t}nt
j=1 with nt unlabeled target examples. It is assumed that the feature

space and the label space are the same across domains, i.e., Xs = Xt ∈ R
d,

Ys = Yt = {1, 2, ..., C}, while the source examples and target examples are
drawn from different joint distributions P (Xs,Ys) and Q(Xt,Yt), respectively.
The goal of CDEM is to learn a feature transformation matrix P ∈ Rd×k, which
projects the features of both domains into a common space to reduce the shift
in the joint distribution across domains, such that the target error εt(h) =
E(x,y)∼Q[h(x) �= y] can be minimized, where h is the classifier to be learned.

3.2 Main Idea

As shown in Fig. 1(a), there is a large discrepancy across domains before adapta-
tion. Previous methods only focus on minimizing the source error and performing
distribution alignment to reduce the domain discrepancy (Fig. 1(b–c)). As the
new theory revealed [47], in addition to minimizing the source error and learn-
ing domain-invariant features, it is also important to minimize the cross-domain
errors. As shown in Fig. 1(d), although performing distribution alignment can
reduce the domain discrepancy, the samples near the decision boundary are easy
to be misclassified. Because performing distribution alignment only considers the
discrepancy between the feature distributions, while the cross-domain errors are
ignored. In the proposed method, minimizing the cross-domain errors can pull
the decision boundaries across domains close, so that we can obtain a further
reduced domain discrepancy. Moreover, we also perform discriminative learning
to learn discriminative features (Fig. 1(e)). Eventually, the domain discrepancy
can be reduced and the classifier in the source domain can generalize well in the
target domain (Fig. 1(f)).

To sum up, we propose a general framework named cross-domain error min-
imization (CDEM), which is composed of four objectives:

h = arg min
h∈H

ns+nt∑

i=1

l(h(xi), yi) + ld(Ds,Dt) + lf (Ds,Dt) + lm(Ds,Dt) (3)
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where l(h(xi), yi) is the classification errors in both domains. ld(Ds,Dt) and
lf (Ds,Dt) represent the discrepancy between the feature distributions and
the discrepancy between the labeling functions across domains, respectively.
lm(Ds,Dt) is the discriminative objective to learn discriminative features. Note
that CDEM is a shallow domain adaptation method and use the prototype clas-
sifier as the classifier, where no extra parameters are learned except the transfor-
mation matrix P . The framework is general and can generalize to other methods
such as deep models.

Fig. 1. An overview of the proposed method. In this paper, we use the prototype clas-
sifier as the basic classifier. There is one prototype in each class, and we choose the
class center as the prototype. We use the distances between samples and prototypes
to calculate the classification error. (a) Before adaptation, the classifier trained in the
source domain can not generalize well in the target domain. (b–e) We aim to minimize
empirical errors in both domains, perform distribution alignment to learn domain-
invariant features, minimize the cross-domain errors to pull the decision boundaries
across domains close, and perform discriminative learning to learn discriminative fea-
tures. (f) After adaptation, the discrepancy across domains is reduced, so that the
target samples can be classified correctly by the source classifier. Best viewed in color.
(Color figure online)

As the labels in the target domain are unavailable, the pseudo labels for the
target data are used for training instead. However, they are always some incorrect
pseudo labels and may lead to catastrophic error accumulation during learning.
To alleviate this problem, we use the curriculum learning based strategy to
select the target samples with more accurate pseudo labels which are obtained
by taking advantage of source classifier and structural information of the target
domain. With the iterations going on, we gradually add more and more target
samples to the training process.
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3.3 Classification Error

In this paper, we choose the prototype classifier [12] as the classifiers in both
domains since the prototype classifier is a non-parametric classifier and is widely
used in many tasks. As shown in Fig. 1, we maintain one prototype for each class
and adopt prototype matching for classification. The class centers {μc}C

c=1 are
used as the prototype of each class in this paper. And we denote the classifier
in the source domain as fs and the classifier in the target domain as ft. Given a
training set D = {xi, yi}|D|

i=1 with |D| samples, a sample x ∈ D, the class center
(prototype) for each class is defined as μc = 1

nc

∑
xi∈Dc

xi, where Dc = {xi :
xi ∈ D, y(xi) = c} and nc = |Dc|. We can derive the conditional probability of a
given sample x belonging to class y as:

p(y|x) =
exp(−||x − μy||)

∑C
c=1 exp(−||x − μc||)

(4)

Assume the sample x belongs to class c, it is expected that the conditional
probability p(y|x) is close to [0, 0, ..., 1, ..., 0], which is a C-dimensional one hot
vector with the c-th dimension to be 1. Our goal is to pull the sample close
to the center of c-th class while push the sample away from other C − 1 class
centers. Note that instead of pushing samples directly away from C − 1 centers,
we view the data of other C − 1 classes as a whole, and use the center of the
C − 1 classes μ̂c to calculate the distance. As a result, the algorithm complexity
can be reduced and the proposed algorithm can be accelerated. The objective of
minimizing classification error can be represented as,

min
∑

(x,c)∼D
||x − μc||22 − β||x − μ̂c||22 (5)

where μ̂c = 1
n�

c

∑
xi∈D/Dc

xi and μ̂c is the center of all classes except class c in
the training set, n�

c = |D/Dc|, β is the regularization parameter.

4 Method

In this section, we will describe all the objectives and the method to select target
samples separately.

4.1 Empirical Error Minimization

For classifying the samples correctly, the first objective of CDEM is to minimize
the empirical errors in both domains. Since there are no labeled data in the
target domain, we use the pseudo labels [22] instead. The empirical errors in
both domains are represented as,
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ns+nt∑

i=1

l(h(xi), yi) = εs(fs) + εt(ft)

=
C∑

c=1

∑

xi∈Ds,c

(
||PT (xi − μs,c)||22 − β||PT (xi − μ̂s,c)||22

)

+
C∑

c=1

∑

xj∈Dt,c

(
||PT (xj − μt,c)||22 − β||PT (xj − μ̂t,c)||22

)

(6)

where Ds,c = {xi : xi ∈ Ds, y(xi) = c} is the set of examples belonging to
class c in the source domain and y(xi) is the true label of xi. Correspondingly,
Dt,c = {xj : xj ∈ Dt, ŷ(xj) = c} is the set of examples belonging to class c in the
target domain, where ŷ(xj) is the pseudo label of xj . μs,c = 1

ns,c

∑
xi∈Ds,c

xi and
μt,c = 1

nt,c

∑
xj∈Dt,c

xj are the centers of c-th class in the source domain and
the target domain respectively, where ns,c = |Ds,c| and nt,c = |Dt,c|. Similarly,
μ̂s,c = 1

n�
s,c

∑
xi∈Ds/Ds,c

xi and μ̂t,c = 1
n�

t,c

∑
xj∈Dt/Dt,c

xj are the centers of all
classes except class c in the source domain and the target domain respectively,
where n�

s,c = |Ds/Ds,c|, n�
t,c = |Dt/Dt,c|.

We further rewrite the first term of the objective function in Eq. (6) as follows,

C∑

c=1

∑

xi∈Ds,c

(
||PT (xi − μs,c)||22 − β||PT (xi − μ̂s,c)||22

)

=
C∑

c=1

⎛

⎝(1 − β)
∑

xi∈Ds,c

||PT (xi − μs,c)||22 − βns,c||PT (μs,c − μ̂s,c)||22

⎞

⎠

= (1 − β)
C∑

c=1

∑

xi∈Ds,c

||PT (xi − μs,c)||22 − β

C∑

c=1

ns,c||PT (μs,c − μ̂s,c)||22

(7)

Inspired by Linear Discriminant Analysis (LDA) [26] and follow previous
method [17], we further transform the two terms, which can be considered as
intra-class variance in Eq. (7), into similar expressions as Eq. (8).

(1 − β)
C∑

c=1

∑

xi∈Ds,c

||PT (xi − μs,c)||22 − β

C∑

c=1

ns,c||PT (μs,c − μ̂s,c)||22

= tr(PT Xs(I − Ys(Y T
s Ys)−1Y T

s )XT
s P ) − β

C∑

c=1

ns,ctr(PT XsQ̂s,cX
T
s P )

(8)

Where Xs ∈ R
d×ns and Ys ∈ R

ns×C are the samples and labels in the source
domain. tr(·) is the trace of a matrix. By using target samples Xt ∈ R

d×ns and
pseudo labels Ŷt ∈ R

nt×C , the same strategy is also used to transform the second
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term in Eq. (6). Denote X = Xs ∪ Xt ∈ R
d×(ns+nt), the objective of minimizing

empirical errors can be written as,

εs(fs) + εt(ft) = (1 − β)(tr(PT XQY XT P ) − β

C∑

c=1

tr(PT XQ̂cXT P )) (9)

where

QY =
[
I − Ys(Y T

s Ys)−1Y T
s 0

0 I − Ŷt(Ŷ T
t Ŷt)−1Ŷ T

t

]
, Q̂c =

[
ns,cQ̂s,c 0

0 nt,cQ̂t,c

]

(10)

( ̂Qs,c)ij =
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1
n�
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ns,cn�

s,c
, otherwise
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1
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1
n�
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�
t,c

, xi, xj ∈ Dt/Dt,c

− 1
nt,cn

�
t,c

, otherwise

(11)

4.2 Distribution Alignment

As there are feature distribution discrepancy across domains, the second objec-
tive of CDEM is to learn domain-invariant features for decreasing the discrep-
ancy between feature distributions across domains. Distribution alignment is a
popular method in domain adaptation [22,27,38]. To reduce the shift between
feature distributions across domains, we follow [19] and adopt Maximum Mean
Discrepancy (MMD) as the distance measure to compute marginal distribution
discrepancy dm(Ds,Dt) across domains based on the distance between the sam-
ple means of two domains in the feature embeddings:

dm(Ds,Dt) = || 1
ns

∑

xi∈Ds

PT xi − 1
nt

∑

xj∈Dt

PT xj ||2 = tr(PT XM0X
T P ) (12)

Based on the pseudo labels of the target data, we minimize the conditional
distribution discrepancy dc(Ds,Dt) between domains:

dc(Ds,Dt) =

C
∑

c=1

|| 1

ns,c

∑

xi∈Ds,c

PT xi − 1

nt,c

∑

xj∈Dt,c

PT xj ||2 =

C
∑

c=1

tr(PTXMcX
TP ) (13)

where,

(M0)ij =

⎧
⎪⎨

⎪⎩

1
n2

s
, xi, xj ∈ Ds

1
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t
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, (M c)ij =
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, xi, xj ∈ Ds,c
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, xi, xj ∈ Dt,c

− 1
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,

{
xi ∈ Ds,c, xj ∈ Dt,c

xj ∈ Ds,c, xi ∈ Dt,c

0, otherwise

(14)
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Denote M = M0 +
∑C

c=1 Mc, then the objective of distribution alignment is
equal to:

ld(Ds,Dt) = dm(Ds,Dt) + dc(Ds,Dt) = tr(PT XMXT P ) (15)

4.3 Cross-domain Error Minimization

Although performing distribution alignment can pull the two domains close, it
is not enough for a good adaptation across domains. The discrepancy between
the labeling functions, which is essentially the cross-domain errors, is another
factor leading to the domain discrepancy [47] while is ignored by existing meth-
ods. Thus, the third objective of CDEM is to minimize cross-domain errors, by
which the decision boundaries across domains can be close and the samples near
the decision boundaries can be classified correctly, achieving a further reduced
domain discrepancy and better adaptation.

It is noticed that the cross-domain errors are the performance of the source
classifier in the target domain and the performance of the target classifier in the
source domain. As we use the prototype classifier, the cross-domain error in each
domain is represented by the distances between the source samples (target sam-
ples) and the corresponding class centers in the target domain (source domain).
For example, the cross-domain error in the source domain εs(ft) is the empirical
error of applying the target classifier ft to the source domain Ds. Technically,
the cross-domain errors in both domains are represented as,

lf (Ds,Dt) = εs(ft) + εt(fs)

=
C∑

c=1

∑

xi∈Ds,c

(
||PT (xi − μt,c)||22 − β||PT (xi − μ̂t,c)||2

)

+
C∑

c=1

∑

xj∈Dt,c

(
||PT (xj − μs,c)||22 − β||PT (xj − μ̂s,c)||2

)
(16)

Similar to the first objective, we transform the formula in Eq. (16) as the
following,

εs(ft) + εt(fs) = (1 − β)tr(PT XQY XT P ) +
C∑

c=1

nctr(PT XMcX
T P )

− β

C∑

c=1

tr(PT X(ns,cQ̂c
s,t + nt,cQ̂c

t,s)X
T P )

(17)
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4.4 Discriminative Feature Learning

Learning domain-invariant features to reduce the domain discrepancy may harm
the discriminability of the features [43]. So the fourth objective of CDEM is to
perform discriminative learning to enhance the discriminability of the features
[4]. To be specific, we resort to explore the structural information of all the
samples to make the samples belonging to the same class close, which is useful
for classification. Thus, the discriminative objective is,

lm(Ds,Dt) =
∑

xi,xj∈X

||PT xi − PT xj ||22Wij (19)

where W ∈ R
(ns+nt)×(ns+nt) is the similarity matrix, which is defined as follows,

Wij =

{
1, yi(ŷi) = yj(ŷj)
0, yi(ŷi) �= yj(ŷj)

(20)

This objective can be transformed as follows,
∑

xi,xj∈X

||PT xi − PT xj ||22Wij = tr(
∑

xi∈X

PT xiBiix
T
i P −

∑

xi,xj∈X

PT xiWijx
T
j P )

= tr(PTXBXTP − PTXWXTP ) = tr(PTXLXTP )

(21)

Where, L = B − W ∈ R
(ns+nt)×(ns+nt) is the laplacian matrix, and B ∈

R
(ns+nt)×(ns+nt) is a diagonal matrix with (B)ii =

∑
j (W )ij .

4.5 Optimization

Combining the four objectives together, we get the following optimization
problem,

L(p) = tr(PT XQY XT P ) − β
C∑

c=1

tr(PT XQ̂cXT P ) + λtr(PT XMXT P )

− γ
C∑

c=1

tr(PT X(Q̂c
s,t + Q̂c

t,s)X
T P )) + ηtr(PT XLXT P ) + δ||P ||2F

= tr(PT XΩXT P ) + δ||P ||2F
s.t. PT XHXT P = I

(22)

where Ω = QY + λM + ηL − ∑C
c=1(βQ̂c + γQ̂c

s,t + γQ̂c
t,s) and H = I − 1

ns+nt
1

is the centering matrix. According to the constrained theory, we denote Θ =
diag(θ1, ..., θk) ∈ Rk×k as the Langrange multiplier, and derive the Langrange
function for problem (22) as,

L = tr(PT XΩXT P ) + δ||P ||2F + tr((I − PT XHXT P )Θ) (23)
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Setting ∂L
∂P = 0, we get generalized eigendecomposition,

(XΩXT + δI)P = XHXT PΘ (24)

Finally, finding the optimal feature transformation matrix P is reduced to solving
Eq. (24) for the k smallest eigenvectors.

4.6 Selective Target Samples

To avoid the catastrophic error accumulation caused by the incorrect pseudo
labels, we predict the pseudo labels for the target samples via exploring the struc-
tural information of the target domain and source classifier. Moreover, based on
curriculum learning, we propose a strategy to select a part of target samples,
whose pseudo labels are more likely to be correct, to participate in the next iter-
ation for learning the transformation matrix. One simple way to predict pseudo
labels for target samples is to use the source class centers {μc}C

c=1 (the proto-
types for each class) to classify the target samples. Therefore the conditional
probability of a given target sample xt belonging to class y is defined as:

ps(y|xt) =
exp(−PT ||xt − μs,y||)

∑C
c=1 exp(−PT ||xt − μs,c||)

(25)

Because there exists distribution discrepancy across domains, only using
source prototypes is not enough for pseudo-labeling, which will lead to some
incorrect pseudo labels. We further consider the structural information in the
target domain, which can be exploited by unsupervised clustering. In this paper,
K-Means clustering is used in the target domain. The cluster center μt,c is ini-
tialized with corresponding class center μs,c in the source domain, which ensures
one-to-one mapping for each class. Thus, based on target clustering, the condi-
tional probability of a given target sample xt belonging to class y is defined by:

pt(y|xt) =
exp(−PT ||xt − μt,y||)

∑C
c=1 exp(−PT ||xt − μt,c||)

(26)

After getting ps(y|xt) and pt(y|xt), we can obtain two different kinds of
pseudo labels ŷt

s and ŷt
t for target samples xt:

ŷt
s = arg max

y∈Yt

ps(y|xt) ŷt
t = arg max

y∈Yt

pt(y|xt) (27)

Based on these two kinds of pseudo labels, a curriculum learning based strat-
egy is proposed to select a part of target samples for training. We firstly select
the target samples whose pseudo labels predicted by ps(y|xt) and pt(y|xt) are
the same (i.e., ŷt

s = ŷt
t). And these samples are considered to satisfy the label

consistency and are likely to be correct. Then, we progressively select a sub-
set containing top tnt/T samples with highest prediction probabilities from the
samples satisfying the label consistency, where T is the number of total itera-
tions and t is the number of current iteration. Finally, we combine ps(y|xt) and
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pt(y|xt) in an iterative weighting method. Formally, the final class conditional
probability and the pseudo label for xt are as follows:

p(y|xt) = (1−t/T ) × ps(y|xt) + t/T × pt(y|xt)
ŷt = arg max

y∈Yt

p(y|xt) (28)

To avoid the class imbalance problem when selecting samples, we take the
class-wise selection into consideration to ensure that each class will have a certain
proportion of samples to be selected, namely,

Nt,c = min(nt,c × t/T, ncon
t,c ) (29)

where Nt,c is the number of target samples being selected of class c, ncon
t,c denotes

the number of target samples satisfying the label consistency in the class c and
t is the current epoch.

Remark: CDEM is composed of two processes: learning transformation matrix
P and selecting target samples. We firstly learn the transformation matrix P
via solving the optimization problem (24). Then, we select the target samples in
the transformed feature space. We perform the two processes in an alternative
manner as previous method [39].

5 Experiment

In this section, we evaluate the performance of CDEM by extensive experiments
on three widely-used common datasets. The source code of CDEM is available
at https://github.com/yuntaodu/CDEM.

5.1 Data Preparation

The Office-Caltech dataset [11] consists of images from 10 overlapping object
classes between Office31 and Caltech-256 [13]. Specifically, we have four domains,
C (Caltech-256 ), A (Amazon), W (Webcam), and D (DSLR). By randomly
selecting two different domains as the source domain and target domain respec-
tively, we construct 3 × 4 = 12 cross-domain object tasks, e.g. C → A, C →
W,..., D → W.

The Office-31 dataset [31] is a popular benchmark for visual domain adapta-
tion. The dataset contains three real-world object domains, Amazon (A, images
downloaded from online merchants), Webcom (W, low-resolution images by a
web camera), and DSLR (D, high-resolution images by a digital camera). It has
4652 images of 31 classes. We evaluate all methods on six transfer tasks: A →
W, A → D, W → A, W → D, D → A, and D → W.

ImageCLEF-DA1 is a dataset organized by selecting 12 common classes
shared by three public datasets, each is considered as a domain: Caltech-256
1 http://imageclef.org/2014/adaptation.

https://github.com/yuntaodu/CDEM
http://imageclef.org/2014/adaptation
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(C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). We evaluate all
methods on six transfer tasks: I → P, P → I, I → C, C → I, C → P, and P
→ C.

5.2 Baseline Methods

We compare the performance of CDEM with several state-of-the-art traditional
and deep domain adaptation methods:

– Traditional domain adaptation methods: 1NN [8],SVM [10] and PCA [15],
Transfer Component Analysis (TCA) [27], Joint Distribution Alignment
(JDA) [22], CORrelation Alignment (CORAL) [34], Joint Geometrical and
Statistical Alignment (JGSA) [43], Manifold Embedded Distribution Align-
ment (MEDA) [38], Confidence-Aware Pseudo Label Selection (CAPLS)
[40] and Selective Pseudo-Labeling (SPL) [39].

– Deep domain adaptation methods: Deep Domain Confusion (DDC) [36],
Deep Adaptation Network (DAN) [19], Deep CORAL (DCORAL) [35],
Residual Transfer Network (RTN) [23], Multi Adversarial Domain Adapta-
tion(MADA) [29], Conditional Domain Adversarial Network (CDAN) [20],
Incremental CAN (iCAN) [44], Domain Symmetric Networks (SymNets)
[45], Generate To Adapt (GTA) [32] and Joint Domain alignment and Dis-
criminative feature learning (JDDA) [4].

Table 1. Classification accuracy (%) on Office-Caltech dataset using Decaf6 features.

Method C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Average

DDC [36] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 84.9 100.0 81.1 89.5 98.2 88.2

DAN [19] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100.0 80.3 90.0 98.5 90.1

DCORAL [35] 92.4 91.1 91.4 84.7 – – 79.3 – – 82.8 – – –

1NN [8] 87.3 72.5 79.6 71.7 68.1 74.5 55.3 62.6 98.1 42.1 50.0 91.5 71.1

SVM [10] 91.6 80.7 86.0 82.2 71.9 80.9 67.9 73.4 100.0 72.8 78.7 98.3 82.0

PCA [15] 88.1 83.4 84.1 79.3 70.9 82.2 70.3 73.5 99.4 71.7 79.2 98.0 81.7

TCA [27] 89.8 78.3 85.4 82.6 74.2 81.5 80.4 84.1 100.0 82.3 89.1 99.7 85.6

JDA [22] 89.6 85.1 89.8 83.6 78.3 80.3 84.8 90.3 100.0 85.5 91.7 99.7 88.2

CORAL[34] 92.0 80.0 84.7 83.2 74.6 84.1 75.5 81.2 100.0 76.8 85.5 99.3 84.7

JGSA[43] 91.4 86.8 93.6 84.9 81.0 88.5 85.0 90.7 100.0 86.2 92.0 99.7 90.0

MEDA[38] 93.4 95.6 91.1 87.4 88.1 88.1 93.2 99.4 99.4 87.5 93.2 97.6 92.8

CAPLS [40] 90.8 85.4 95.5 86.1 87.1 94.9 88.2 92.3 100.0 88.8 93.0 100.0 91.8

SPL[39] 92.7 93.2 98.7 87.4 95.3 89.2 87.0 92.0 100.0 88.6 92.9 98.6 93.0

CDEM (Ours) 93.5 97.0 96.2 88.7 98.0 95.5 89.1 93.5 100.0 90.1 93.4 99.7 94.6

5.3 Experimental Setup

To fairly compare our method with the state-of-the-art methods, we adopt the
deep features commonly used in existing unsupervised domain adaption meth-
ods. Specifically, DeCaf6 [9] features (activations of the 6th fully connected layer
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of a convolutional neural network trained on ImageNet, d = 4096) are used for
Office-Caltech dataset, ResNet50 [14] features (d = 2048) are used for Office-31
dataset and ImageCLEF-DA dataset. In this way, we can compare our proposed
method with these deep models.

In our experiments, we adopt the PCA algorithm to decrease the dimen-
sion of the data before learning to accelerate the proposed method. We set the
dimensionality of PCA space m = 128 for Office-Caltech dataset and m = 256
for Office-31 and ImageCLEF-DA datasets. For the dimensionality of the trans-
formation matrix P , we set k = 32, 128 and 64 for Office-Caltech, Office-31 and
ImageCLEF-DA respectively. The number of iterations for CDEM to converge
is T = 11 for all datasets. For regularization parameter δ, we set δ = 1 for
Office-Caltech and ImageCLEF-DA datasets and δ = 0.1 for Office-31 dataset.
As for the other hyper-parameters, we set β, λ, γ and η by searching through
the grid with a range of {0.0001, 0.001, 0.01, 0.1, 1, 10}. In addition, the coming
experiment on parameter sensitivity shows that our method can keep robustness
with a wide range of parameter values.

5.4 Results and Analysis

The results on the Office-Caltech dataset are reported in Table 1, where the
highest accuracy of each cross-domain task is boldfaced. The results of baselines
are directly reported from original papers if the protocol is the same. The CDEM
method significantly outperforms all the baseline methods on most transfer tasks
(7 out of 12) in this dataset. It is desirable that CDEM promotes the classification
accuracies significantly on hard transfer tasks, e.g., A→D and A →W, where
the source and target domains are substantially different [31]. Note that CDEM
performs better than SPL in most tasks, which only learns domain-invariant
features across domains.

The results on Office-31 dataset are reported in Table 2. The CDEM method
outperforms the comparison methods on most transfer tasks. Compared with the
best shallow baseline method (CAPLS), the accuracy is improved by 1.7%. Note
that the CDEM method outperforms some deep domain adaptation methods,
which implies the performance of CDEM in domain adaptation is better than
several deep methods.

The results on ImageCLEF-DA dataset are reported in Table 3. The CDEM
method substantially outperforms the comparison methods on most transfer
tasks, and with more rooms for improvement. An interpretation is that the
three domains in ImageCLEF-DA are visually dissimilar with each other, and
are difficult in each domain with much lower in-domain classification accuracy
[22]. MEDA and SPL are the representative shallow domain adaptation methods,
which both focus on learning domain-invariant features. Moreover, SPL also uses
selective target samples for adaptation. Consequently, the better performance
of CDEM implies that minimizing cross-domain errors can further reduce the
discrepancy across domains and achieve better adaptation.
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Table 2. Accuracy (%) on Office-31 dataset using either ResNet50 features or ResNet50
based deep models.

Method A→W D→W W→D A→D D→A W→A Avg

RTN [23] 84.5 96.8 99.4 77.5 66.2 64.8 81.6

MADA [29] 90.0 97.4 99.6 87.8 70.3 66.4 85.2

GTA [32] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

iCAN [44] 92.5 98.8 100.0 90.1 72.1 69.9 87.2

CDAN-E [20] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

JDDA [4] 82.6 95.2 99.7 79.8 57.4 66.7 80.2

SymNets [45] 90.8 98.8 100.0 93.9 74.6 72.5 88.4

TADA [18] 94.3 98.7 99.8 91.6 72.9 73.0 88.4

MEDA [38] 86.2 97.2 99.4 85.3 72.4 74.0 85.7

CAPLS [40] 90.6 98.6 99.6 88.6 75.4 76.3 88.2

CDEM (Ours) 91.1 98.4 99.2 94.0 77.1 79.4 89.9

Table 3. Accuracy (%) on ImageCLEF-DA dataset using either ResNet50 features or
ResNet50 based deep models.

Method I→P P→I I→C C→I C→P P→C Avg

RTN [23] 75.6 86.8 95.3 86.9 72.7 92.2 84.9

MADA [29] 75.0 87.9 96.0 88.8 75.2 92.2 85.8

iCAN [44] 79.5 89.7 94.7 89.9 78.5 92.0 87.4

CDAN-E [20] 77.7 90.7 97.7 91.3 74.2 94.3 87.7

SymNets [45] 80.2 93.6 97.0 93.4 78.7 96.4 89.9

MEDA [38] 79.7 92.5 95.7 92.2 78.5 95.5 89.0

SPL [39] 78.3 94.5 96.7 95.7 80.5 96.3 90.3

CDEM (ours) 80.5 96.0 97.2 96.3 82.1 96.8 91.5

5.5 Effectiveness Analysis

Ablation Study. We conduct an ablation study to analyse how different com-
ponents of our method contribute to the final performance. When learning the
final classifier, CDEM involves four components: the empirical error minimiza-
tion (ERM), the distribution alignment (DA), the cross-domain error minimiza-
tion (CDE) and discriminative feature learning (DFL). We empirically evaluate
the importance of each component. To this end, we investigate different combi-
nations of four components and report average classification accuracy on three
datasets in Table 4. Note that the result of the first setting (only ERM used)
is like the result of the source-only method, where no adaptation is performed
across domains. It can be observed that methods with distribution alignment or
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cross-domain error minimization outperform those without distribution align-
ment or cross-domain error minimization. Moreover, discriminative learning can
further improve performance and CDE achieves the biggest improvement com-
pared with other components. Summarily, using all the terms together achieves
the best performance in all tasks.

Table 4. Results of ablation study.

Method Office-Caltech Office31 ImageCLEF-DA

ERM DA CDE DFL

✓ ✗ ✗ ✗ 90.2 86.6 87.5

✓ ✓ ✗ ✗ 91.5 87.2 88.6

✓ ✓ ✓ ✗ 94.0 89.2 90.8

✓ ✓ ✓ ✓ 94.6 89.9 91.5

Evaluation of Selective Target Samples. We further perform experiments
to show the effectiveness of selective target samples. We compare several vari-
ants of the proposed method: a) No selection: We use all the target samples for
training without any samples removed. b) Only label consistency: We only select
the samples where the predicted label by ps(xt) is the same with pt(xt). c) Only
high probabilities: We only select the target samples with high prediction confi-
dence. d) The proposed method. As shown in Fig. 2(a), “No selection” leads to
a model with the worst performance due to the catastrophic error accumulation.
The “Only label consistency” and “Only high probabilities” achieve significantly
better results than “No selection”, but are still worse than the proposed method,
which verifies that our method of explicitly selecting easier samples can make
the model more adaptive and less likely to be affected by the incorrect pseudo
labels.

Feature Visualization. In Fig. 2(b–d), we visualize the feature representa-
tions of task A→D (10 classes) by t-SNE [24] as previous methods [39] using
JDA and CDEM. Before adaptation, we can see that there is a large discrep-
ancy across domains. After adaptation, JDA learns domain-invariant features
which can reduce distribution discrepancy, the source domain and the target
domain can become closer. While CDEM further considers the cross-domain
errors, achieving a better performance.
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Fig. 2. Ablation study of selective samples, t-SNE visualization and parameter
sensitivity

6 Conclusion

In this paper, we propose the Cross-Domain Error Minimization (CDEM),
which not only learns domain-invariant features across domains but also per-
forms cross-domain error minimization. These two goals complement each other
and contribute to better domain adaptation. Apart from these two goals, we
also integrate the empirical error minimization and discriminative learning into
a unified learning process. Moreover, we propose a method to select the tar-
get samples to alleviate error accumulation problem caused by incorrect pseudo
labels. Through a large number of experiments, it is proved that our method is
superior to other strong baseline methods.
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Abstract. Unsupervised domain adaptation aims at transferring knowledge from
a labeled source domain to an unlabeled target domain. Recently, domain-
adversarial learning has become an increasingly popular method to tackle this
task, which bridges the source domain and target domain by adversarially
learning domain-invariant representations. Despite the great success in domain-
adversarial learning, these methods fail to achieve the invariance of represen-
tations at a class level, which may lead to incorrect distribution alignment. To
address this problem, in this paper, we propose a method called domain adapta-
tion with Unified Joint Distribution Alignment (UJDA) to perform both domain-
level and class-level alignments simultaneously in a unified learning process.
Instead of adopting the classical domain discriminator, two novel components
named joint classifiers, which are provided with both domain information and
label information in both domains, are adopted in UJDA. Single joint classifier
plays the min-max game with the feature extractor by the joint adversarial loss
to align the class-level alignment. Besides, two joint classifiers as a whole also
play the min-max game with the feature extractor by the disagreement loss to
achieve the domain-level alignment. Comprehensive experiments on two real-
world datasets verify that our method outperforms several state-of-the-art domain
adaptation methods.

Keywords: Transfer learning · Domain adaptation · Distribution alignment

1 Introduction

Deep neural networks have achieved remarkable success in many applications [11,32].
However, it requires a large amount of labeled data to train the model for a good gener-
alization. Collecting and annotating sufficient data are very expensive and timeconsum-
ing. It is a natural idea to utilize annotated data from a similar domain to help improve
the performance in the target domain, which is the goal of transfer learning. Gener-
ally, transfer learning aims at leveraging knowledge from a labeled source domain to an
unlabeled target domain [19]. Unsupervised domain adaptation is a sub-filed of transfer
learning, in which the feature space and label space in the source domain and target
domain are the same, but the data distribution is different [19].
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 449–464, 2021.
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Fig. 1. An overview of the proposed method. Instead of using binary classifier as the discrimina-
tor, we use two joint classifiers with 2K-dimensional output as the discriminator, which can not
only distinguish the domain label but also can classify the training data into a certain class. The
discrepancy between classifiers refers to the disagreement between the prediction of two classi-
fiers. Top: Previous methods can achieve domain-level alignment. However, due to the ignored
class-level alignment, there exist some mismatchings between different classes. Bottom: Single
joint classifier plays a min-max game with the feature extractor by a joint adversarial loss to
perform the class-level alignment. Besides, two joint classifiers (J1, J2) also play a min-max
game with the feature extractor by the disagreement loss between the joint classifiers, achiev-
ing domain-level alignment. We design a unified adversarial learning process, thus making the
modules in this method can be trained alternately. Best viewed in color. (Color figure online)

It is crucial for domain adaptation to reduce the distribution discrepancy across
domains [1,35]. Early methods focus on shallow methods such as sample reweighting
which reweights the source samples according to the relation with the target samples
[2,5] or statistics matching, e.g., Maximum Mean Discrepancy (MMD) [10], Correla-
tion Alignment (CORAL) [27]. Some experiments have indicated that deep neural net-
works can learn transferable features [33]. Thus, many deep domain adaptation methods
have been proposed to learn domain-invariant features by embedding domain adapta-
tion modules in the pipeline of deep feature learning [13,16]. Recently, many adversar-
ial domain adaptation methods inspired by the generative adversarial networks [8] have
been proposed. Generally, there exists a min-max game between the domain discrim-
inator and the feature extractor [7]. The domain discriminator is trained to distinguish
the source domain from the target domain, while the feature extractor is trained to learn
domain-invariant representations to confuse the discriminator. Theoretically, domain
alignment is achieved when the min-max optimization reach an equilibrium.

Although achieving remarkable progress, most previous methods focus on domain-
invariant representation, in other words, they only focus on aligning the marginal dis-
tributions of two domains, which is referred as domain-level distribution alignment,
but the alignment of class conditional distributions across domains is ignored, which is
referred as class-level distribution alignment. A perfect domain-level distribution align-
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ment does not imply a fine-grained class-to-class overlap. As is shown in the top of
Fig. 1, although the learned domain-invariant features can reduce the distribution dis-
crepancy, there may exist some mismatchings between different classes in both domains
which will lead to incorrect distribution matching. The lack of class-level distribution
alignment is a major cause of performance reduction [14]. Thus, it is necessary to pur-
sue the class-level and domain-level distribution alignments simultaneously under the
absence of true target labels.

To tackle the aforementioned problems, in this paper, we propose a method called
domain adaptation with Unified Joint Distribution Alignment (UJDA). As is shown in
Fig. 1(c–f), UJDA aims to perform domain-level and class-level alignments in a unified
learning progress. Instead of using the classical binary classifier as the discriminator,
UJDA adopts the joint classifiers [4] with 2K-dimensional output as the discrimina-
tor, which is provided with domain and class information in both domains. The first
K-dimensional outputs of joint classifier represent the known source classes, and the
last K-dimensional outputs represent the target classes. The joint adversarial loss is
proposed to train the model (shown in Fig. 2). Each single joint classifier aims to min-
imize the joint adversarial loss to classify source and target samples correctly, while
the feature extractor aims to maximize the joint adversarial loss to classify the data in
one domain to another domain while keeping the label unchanged at the same time (e.g.,
classifying dogs in the source domain to dogs in the target domain and vice versa). Thus,
this learning process can achieve explicit class-level adaptation and implicit domain-
level adaptation. To further perform explicit domain-level adaptation, inspired by MCD
[24], two joint classifiers are adopted in this paper. As is shown in Fig. 1(c–f), two joint
classifiers as a whole also play a min-max game with the feature extractor by the dis-
agreement loss between these two joint classifiers. On the one hand, two joint classifiers
are trained to maximize the prediction discrepancy (Fig. 1(d)), so that the target samples
outside the support of the source domain can be detected. On the other hand, the feature
extractor is trained to confuse the joint classifiers, which encourages the target samples
to be generated inside the support of the source. By this min-max game, we can achieve
explicit domain-level adaptation. We design a unified adversarial learning progress and
the modules in UJDA can be trained alternately.

As the labels in the target domain are unavailable, in this work, we use pesudo
labels instead. The class predictor trained in the source domain is adopted to predict the
pseudo labels for the target data. Furthermore, we use semi-supervised learning (SSL)
regularization to extract more discriminative features. Comprehensive experiments on
two real-world image datasets are conducted and the results verify the effectiveness of
our proposed method. Briefly, our contributions lie in three folds:

– Domain-level alignment and class-level alignment are simultaneously explored in a
unified adversarial learning progress. Moreover, SSL regularization is used to make
the extracted features more discriminative.

– There exist two complementary mix-max games between the feature extractor and
two joint classifiers to achieve implicit domain-level and class-level adaptation,
respectively.

– We conduct extensive experiments on two real-world datasets and the results validate
the effectiveness of our proposed method.
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2 Related Work

Unsupervised domain adaptation is a sub-field of transfer learning, where there are
abundant labeled data in the source domain and some unlabeled data in the target
domain. Early studies focus on shallow (traditional) domain adaptation. Recently, more
and more works pay attention to deep domain adaptation and adversarial domain adap-
tation.

Shallow Domain Adaptation. The most common strategy in shallow learning is distri-
bution alignment. The distribution discrepancy across domains includes marginal distri-
bution discrepancy and conditional distribution discrepancy [6,15,20,30,31]. TCA [20]
tries to align marginal distribution across domains, which learns domain-invariant repre-
sentations during feature mapping. Based on TCA, JDA [15] tries to algin marginal dis-
tribution and conditional distribution simultaneously. Considering the balance between
marginal distribution and conditional distribution discrepancy, BDA [30] proposes a
balance factor to leverage the importance of different distributions. MEDA [31] is able
to dynamically evaluate the balance factor and has achieved promising performance.

Deep Domain Adaptation. Most deep domain adaptation methods are based on dis-
crepancy measure [13,27,29,34]. DDC [29] embeds a domain adaptation layer into
the network and minimizes Maximum Mean Discrepancy(MMD) between features of
this layer. DAN [13] minimizes the feature discrepancy between the last three layers
and the mutil-kernel MMD is used to better approximate the discrepancy. Other mea-
sures are also adopted such as Kullback-Leibler (KL) divergence, Correlation Align-
ment (CORAL) [27] and Central Moment Discrepancy (CMD) [34]. These methods
can utilize the deep neural network to extract more transferable features and also have
achieved promising performance.

Adversarial Domain Adaptation. Recently, adversarial learning is widely used in
domain adaptation [3,7,24,28,35]. DANN [7] uses a discriminator to distinguish the
source data from the target data, while the feature extractor learns domain-invariant
features to confuse the discriminator. Based on the theory in [1], when maximizing the
error of discriminator, it is actually approximating the H-distance, and minimizing the
error of discriminator is actually minimizing the discrepancy across domains. ADDA
[28] designs a symmetrical structure where two feature extractors are adopted. Differ-
ent from DANN, MCD [24] proposes a method to minimize the HΔH-distance across
domains in an adversarial way. A new theory using margin loss is proposed in [35]
for mutli-class doamin adaptation problem, based on this theory, MDD is designed to
minimize the disparity discrepancy across domains.

3 Method

3.1 Problem Setting

In unsupervised domain adaptation, we are given a source domain Ds = {(xi, yi)}ns
i=1

of ns labeled source examples and a target domain Dt = {(xi)}nt
i=1 of nt unlabeled

target examples. The source data are drawn from the distribution P (xs, ys) and the
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Fig. 2. The structure of UJDA algorithm. The output of class predictor isK-dimensional while the
output of joint classifier is 2K-dimensional. Each joint classifier distinguishes the domain as well
as the class of the training data and plays a min-max game with the features extractor G with the
joint adversarial loss to perform class-level alignments. Two joint classifiers (J1,J2) are trained to
maximize the disagreement of two joint classifiers, while the feature are trained to minimize the
disagreement to learn domain-invariant features and achieve domain-level adaptation. Domain-
level alignment and class-level alignment is performed simultaneously, which can avoid mode
collapse [4,21]. The class predictor is used to classify source examples as well as predict pseudo
labels for the target data.

target data are drawn from the distribution Q(xt, yt). Note that the i.i.d. assumption is
violated, where P (xs, ys) �= Q(xt, yt). Both distributions are defined on feature space
and label space X × Y , where Y = {1, 2, ...,K}. Our goal is to design a deep network
f : X �→ Y to reduce the distribution discrepancy across domains in order that the
generalization error εt(f) in the target domain can be bounded by source risk εs(f)
plus the distribution discrepancy across domains [1], where

εs(f) = E(xs,ys)∼P [f(xs) �= ys], εt(f) = E(xt,yt)∼Q[f(xt) �= yt] (1)

3.2 Overall

Previous adversarial-based methods adopt the binary classifier as the discriminator.
While recent experiments have shown that the informative discriminator which accesses
the domain information and label information in both domains is able to preserve the
complex multimodal information and high semantic information in both domains [4]. In
this paper, we adopt the joint classifiers [4] which are provided with both domain and
label information to adapt the features across domains. As is shown in Fig. 2, UJDA
consists of a feature extractor G, a class predictor F and two joint classifiers J1, J2.
Note that the output of the class predictor is K-dimensional while the outputs of the
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joint classifiers are 2K-dimensional. There are two complementary adversarial pro-
cess in UJDA. For the first one, each joint classifier pits against the feature extractor
with a 2K-way adversarial loss to learn a distribution over domains and classes vari-
ables, which can perform both implicit domain-level adaptation and explicit class-level
alignment simultaneously in a single joint classifier (Sect. 3.4). For the second one, two
joint classifiers J1, J2 as a whole play a min-max game with the feature extractor G to
learn the domain-invariant representations, so that we can perform explicit domain-level
adaptation across domains. In this adversarial process, two joint classifiers are trained
to increase the prediction disaggrement between the joint classifiers while the feature
extractor is trained to minimizie the prediction disagreement between the joint clas-
sifiers. During the adversarial process, ambiguous target samples can be detected and
pushed in the support of the source domain and the domain-level adaptation is achieved
(Sect. 3.5). Since the labels in the target doamin are unavailable, we use the pseudo
labels instead. We use the class predictor F trained in the source domain to predict the
pseudo labels for the target domain. To make the representations more discriminative
and the pseudo labels more accurate, we introduce semi-supervised learning regular-
ization, where the entropy minimization and Virtual Adversarial Training (VAT) are
adopted (Sect. 3.6).

3.3 Class Predictor Loss

The class predictor F is trained to classify the source samples correctly. During the
training process, it is also used to predict pseudo labels for the target domain. The
output of the class predictor can be written as,

f(x) = F (G(x)) ∈ RK (2)

We train the network to minimize the cross entropy loss. The source classification
loss of the class predictor is as follows:

�sc(F ) = E(xs,ys)∼P lCE(f(xs), ys) (3)

where, the cross-entropy loss is calculated with one-hot ground-truth labels ys and label
estimates f(x). For a target example xt, its predicted label according to the class pre-
dictor is 1

ŷ = arg max
k

f(xt)[k] (4)

3.4 Class-Level Alignment Loss

The conditional distribution mismatching means that the source classes are wrongly
matched to target classes and vice versa. For example, the source dog data samples
matched to the target cat samples, which may lead a poor performance in the target
domain. Previous methods adopt the domain discriminator for adopting the features

1 We use the notation x[k] for indexing the value at the kth index of the vector x.
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across domains, but they only can perform domain-level (global level) adaptation while
they can not promise the class-level adaptation.

Recent experiments have shown that the informative discriminator that accesses the
domain information and label information in both domains is able to preserve the com-
plex multimodal information and high semantic information in both domains [4,21].
In this paper, instead of adopting the binary classifier as the discriminator, we use the
joint classifier [4] with 2K-dimensional output for adaptation. The joint classifier is
trained by a 2K-way adversarial loss. The firstK-dimensional outputs are for the source
classes, and the last K-dimensional outputs are for the unknown classes. Such a com-
ponent can learn a distribution over domain and class variables and can perform both
explicit class-level alignment and implicit domain-level alignment in a single compo-
nent. The output of the joint classifier, taking J1 as an example, can be written as,

fJ1(x) = J1(G(x)) ∈ R2K (5)

For the labeled source examples, we train the joint classifiers with the same classifi-
cation loss to classify the source samples correctly. The source classification loss of the
joint classifier is defined as,

�jsc(J1) = E(xs,ys)∼P lCE(J1(G(xs)), [ys ,0]) (6)

where 0 is the zero vector of size K, chosen to make the last K joint probabilities zero
for the source samples. ys ∈ {0, 1}K is the one-hot label.

Similarly, to capture the label information in the target domain, we also train the
joint classifier using the target examples. Since the labels for the target data are not
known, we use pseudo labels ŷt instead. The target classification loss of the joint clas-
sifier is,

�dtc(J1) = Ext∼QlCE(J1(xt), [0, ŷt ]) (7)

Here, it is assumed that the source-only model can achieve reasonable performance in
the target domain. In experiments, where the source-only model has poor performance
initially, we use this loss after training the class predictor for a period of time.

The feature extractor G is designed to confuse the joint classifiers as in DANN
[7]. The basis idea is that the feature extractor can confuse the joint classifier with the
domain information, but keep label information unchanged. For example, given a source
example xs with label ys, the correct output of the joint classifier should be [ys ,0],
while the feature extractor is trained to fool the joint classifier, making the sample to be
classified from the target domain but with the same label ys, which is [0,ys ] formally.

The source alignment loss of the joint classifier is defined by changing the label
from [ys ,0] to [0,ys ],

�dsa1(G) = E(xs,ys)∼P lCE(J1(G(xs)), [0,ys ]) (8)

Similarly, the target alignment loss of joint classifier is defined by changing the
pseudo-label from [0, ŷt ] to [ŷt ,0],

�dta1(G) = Ext∼QlCE(J1(G(xt)), [ŷt ,0]) (9)

The above two losses are minimized only by the feature extractor G. The same adver-
sarial process is also applied in joint classifier J2.
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3.5 Domain-Level Alignment Loss

By the adversarial process in Sect. 3.4, we can achieve explicit class-level adaptation
and implicit domain-level adaptation. To further perform explicit domain-level adapta-
tion, the second adversarial process between the joint classifiers and the feature extrac-
tor is proposed. Moreover, as is shown in Fig. 1, the relationship between the samples
and the decision boundary is considered to detect the target samples outside the support
of the source domain. Maximizing the disagreement of two joint classifiers can help
better detect the target samples outside the support of the source domain while mini-
mizing the disagreement can push these target samples inside the support of the source
domain [7]. The above adversarial process consider all the samples as a whole and can
perform the domain-level (global level) alignment [7].

In order to detect the target samples outside the support of the source domain, we
propose to utilize the disagreement of two joint classifiers on the prediction for both
domains. The disagreement of the two joint classifiers is defined by utilizing the abso-
lute values of the difference between the probabilistic outputs as discrepancy loss:

d(fJ1(x), fJ2(x)) =
1
K

K∑

k=1

|fJ1(x)[k] − fJ2(x)[k]| (10)

We firstly train the joint classifiers to increase their discrepancy. It can not only
help different joint classifiers to capture different information, but also detect the target
samples excluded by the support of the source [24]. The objective is as follows,

max
J1,J2

�d (11)

�d =Exs∼P [d(fJ1(xs), fJ2(xs))] + Ext∼Q[d(fJ1(xt), fJ2(xt))] (12)

Moreover, the feature extractor is trained to minimize the discrepancy for fixed joint
classifiers. On the one hand, minimizing the discrepancy can make these two joint clas-
sifiers not too far away from each other, thus making them similar. On the other hand,
minimizing the discrepancy can avoid generating target features outside the support of
the source domain [24]. The objective is as follows,

min
G

�d (13)

Note that although the domain-level adversarial process is similar with MCD [7],
where two classifiers are also adopted, there are difference between MCD and the pro-
posed method. On the one hand, MCD aims only perform domain-level adaptation,
while the proposed method focus on domain-level adaptation and class-level adaptation
simultaneously. On the other hand, the classifier in MCD is trained with only source
samples, while the classifier in the proposed method is trained with both source samples
and target samples, thus proposed method can achieve better domain-level adaptation.

3.6 SSL Regularization Loss

After the distribution alignment, the discrepancy across domains can be smaller. In this
case, we can approximate the unsupervised domain adaptation as a semi-supervised
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learning problem. On this bisis, many previous works have explored semi-supervised
learning (SSL) regularization in domain adaptation [4,12] and made sufficient improve-
ments. Although lacking of labels, a large amount of unlabeled data can be used to bias
the classifier boundaries to pass through the regions containing low density data. Thus,
the learned representation can become more discriminative. Entropy minimization [9]
is a widely used regularization method to achieve this goal. In our method, the class
predictor is also trained to minimize the target entropy loss, which is defined as fol-
lows,

�te(F ) = E(xt,yt)∼QH(f(xt)) (14)

where H(f(xt)) = −∑
k f(xt)[k] · log f(xt)[k]. However, minimizing entropy is only

applicable to locally-Lipschitz classifiers [9]. So we propose to explicitly incorporate
the locally-Lipschitz condition via virtual adversarial training(VAT) [18] and add the
following losses to the objective,

�svat(F ) = Exs∼P [ max
||r||≤ε

�CE(f(xs)||f(xs + r))] (15)

�tvat(F ) = Ext∼Q[ max
||r||≤ε

�CE(f(xt)||f(xt + r))] (16)

3.7 Overall Objective

We combine the objective functions discussed in section3.4-3.6 and divide our training
procedure into three steps.

Step 1. We only use the source data to train the feature extractor G, the class predictor
F as well as the joint classifiers J1, J2. We minimize the source classification loss of the
class predictor and joint classifiers. After the predictor and joint classifiers are trained
to classify the source samples correctly, we will go on the next step. The objective of
this step is shown as follows,

min
G,F,J1,J2

�sc(F ) + λjsc1�jsc(J1) + λjsc2�jsc(J2) (17)

Step 2. We fix the feature extractor, and update the class predictor as well as the joint
classifiers. We use both the source and target data to train the model. This process cor-
responds to Step 2 in Fig. 3. We have three sub-objectives. The first one is to minimize
the source and target classification loss of the joint classifiers. The second one is to
minimize the source classification loss of the class predictor as well as the SSL regular-
ization loss. Without this loss, we experimentally found that the performance dropped.
The last one is to increase the discrepancy between the joint classifiers. The objective
of this step is shown as follows,

min
F,J1,J2

�F + �J1 + �J2 − λd�d (18)

�J1 = λjsc1�jsc(J1) + λjtc1�jtc(J1) (19)

�J2 = λjsc2�jsc(J2) + λjtc2�jtc(J2) (20)
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Fig. 3. Adversarial training steps of our method. There are three steps in total, step 2 and step
3 are shown in this figure. In step 2, the class predictor and two discriminators minimize the
classification loss. Besides, the two discriminators pit against each other to increase the discrep-
ancy between discriminators. In step 3, the feature extractor learns to minimize the discrepancy
between discriminators as well as to confuse the discriminator in both domain and class level.

�F = �sc(F ) + λsvat�svat(F ) + λte�te(F ) + λtvat�tvat(F ) (21)

Step 3. We fix the class predictor as well as the joint classifiers, and update the feature
extractor. We train the model by minimizing the joint adversarial loss of joint classifiers
as well as the discrepancy between joint classifiers. The objective of this step is shown
as follows,

min
G

λjsa1�jsa1(G) + λjta1�jta1(G) + λjsa2�jsa2(G) + λjta2�jta2(G) + λd�d (22)

Note that Step2 and Step3 are repeated alternately in our method. We are concerned
on that the feature extractor, class predictor and joint classifiers are trained in an adver-
sarial manner so that they can classify the source samples correctly as well as promote
the cross-domain discrepancy decreasing.

4 Experiments

We evaluate the proposed method with many state-of-the-art domain adaptation meth-
ods on two image datasets. Codes will be available at https://github.com/yaoyueduzhen/
UJDA.

4.1 Setup

Office-31 [23] is the most widely used dataset for domain adaptation, with 4,652 images
and 31 categories collected from three distinct domains: Amazon (A), Webcam (W) and
DSLR (D). From this dataset, we build six transfer tasks: A → W, D → W,W → D, A
→ D, D → A, and W → A.

ImageCLEF-DA [16] is a dataset organized by selecting the 12 common classes
shared by three public datasets (domains): Caltech-256 (C), ImageNet ILSVRC 2012
(I), and Pascal VOC 2012 (P). We evaluate all methods on six transfer tasks: I → P, P
→ I, I → C, C → I, C → P, and P → C.

https://github.com/yaoyueduzhen/UJDA
https://github.com/yaoyueduzhen/UJDA
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We compare Unified Joint Distribution Alignment (UJDA) with several state-of-
the-art domain adaptation methods:

– Deep Adaptation Network (DAN) [13]. DAN aims to learn domain-invariant
features by mininizing the Multi-Kernel Mean Maximum Mean distance across
domains.

– Domain Adversarial Neural Network (DANN) [7]. DANN is the first adversarial
based domain adaptation method, which only performs domain-level adaptation.

– Adversarial Discriminative Domain Adaptation (ADDA) [28]. ADDA adopts two
different feature extractors for different domains and only performs domain-level
adaptation.

– Multi-Adversarial Domain Adaptation (MADA) [21]. MADA adopts multiple
domain discriminators for adaptation, each for one class. This method only foucues
on class-level adaptation.

– Virtual Adversarial Domain Adaptation (VADA) [26]. VADA aims to optimize two
different classifiers for both domains and only focus on domain-level adaptation.

– Generate to Adapt (GTA) [25]. GTA aims to generate target-like samples with labels
by generative adversarial network.

– Maximum Classifier Discrepancy (MCD) [24]. MCD adopts two classfiers for min-
imizing the HδH distance across domains, which also performs domain-level adap-
tation.

– Conditional Domain Adversarial Network (CDAN) [14]. CDAN is an extension of
DANN, where the input of domain discriminator is both the feature and the predic-
tion, so it can perform class-level adaptation.

– Transferable Adversarial Training (TAT) [12]. TAT aims to generate transferable
adversarial samples for a safe training for adversarial based method.

– Regularized Conditional Alignment (RCA) [4]. RCA adopts single joint classifier
to perform class-level adaptation across domains.

4.2 Implementation Details

Following the standard protocols for unsupervised domain adaptation [7,16], all labeled
source samples and unlabeled target samples participate in the training stage. We com-
pare the average classification accuracy based on five random experiments. The results
of other methods are reported in the corresponding papers except RCA which is reim-
plemented by ourselves.

We use PyTorch to implement our method and use ResNet-50 [11] pretrained on
ImageNet [22] as the feature extractor. The class predictor and two joint classifiers are
both two-layer fully connected networks with a width of 1024. We train these new
layers and feature extractor using back-propagation, where the learning rates of these
new layers are 10 times that of the feature extractor. We adopt mini-batch SGD with the
momentum of 0.9 and use the same learning rate annealing strategy as [7]: the learning
rate is adjusted by ηp = η0(1 + αp)−β , where p is the training progress changing from
0 to 1, and η0 = 0.04, α = 10, β = 0.75.



460 Y. Du et al.

Table 1. Classification accuracy (%) on Office-31 for unsupervised domain adaptation with
ResNet-50.

Method A → W D → W W → D A → D D → A W → A Avg

ResNet-50 [11] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DAN [13] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4

DANN [7] 82.6±0.4 96.9±0.2 99.3±0.2 81.5±0.4 68.4±0.5 67.5±0.5 82.7

ADDA [28] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

MADA [21] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2

VADA [26] 86.5±0.5 98.2±0.4 99.7±0.2 86.7±0.4 70.1±0.4 70.5±0.4 85.4

GTA [25] 89.5±0.5 97.9±0.3 99.7±0.2 87.7±0.5 72.8±0.3 71.4±0.4 86.5

MCD [24] 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5

RCA [4] 93.8±0.2 98.4±0.1 100.0±.0 91.6±0.2 68.0±0.2 70.2±0.2 87.0

CDAN [14] 93.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.5

UJDA (one joint classifier) 93.2±0.2 97.9±0.2 100.0±.0 92.2±0.2 68.0±0.1 69.5±0.2 86.8

UJDA (without SSL) 94.0±0.2 98.4±0.2 100.0±.0 91.6±0.2 68.3±0.1 69.7±0.2 87.0

UJDA 95.0±0.2 98.7±0.2 100.0±.0 94.0±0.3 70.5±0.3 71.5±0.2 88.4

Table 2. Classification accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation
with ResNet-50.

Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50 [11] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7

DAN [13] 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5

DANN [7] 75.0±0.3 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0

MADA [21] 75.0±0.3 87.9±0.2 96.0±0.3 88.8±0.3 75.2±0.2 92.2±0.3 85.8

CDAN [14] 76.7±0.3 90.6±0.3 97.0±0.4 90.5±0.4 74.5±0.3 93.5±0.4 87.1

TAT [12] 78.8±0.2 92.0±0.2 97.5±0.3 92.0±0.3 78.2±0.4 94.7±0.4 88.9

RCA [4] 78.7±0.2 92.8±0.2 97.7±0.3 92.0±0.2 77.0±0.3 95.0±0.3 88.9

UJDA 79.8±0.3 94.6±0.2 98.6±0.2 92.8±0.2 77.8±0.3 95.0±0.3 89.9

We fix λd = 1.0 and search the rest hyperparameters over λjsc1, λjsc2 ∈
{0.1, 0.5, 1.0}, λjtc1, λjtc2 ∈ {0.1, 1.0, 10.0}, λsvat, λtvat ∈ {0.0, 0.1, 1.0}, λte ∈
{0.1, 1.0}, λjsa1, λjta1, λjsa2, λjta2 ∈ {0.1, 1.0}. We also search for the upper bound
of the adversarial perturbation in VAT, where ε ∈ {0.5, 1.0, 2.0}.

4.3 Results

The results on Office-31 dataset are shown in Table 1. As we can see, our method
outperforms baseline methods in most tasks and achieves the best result in average
accuracy. Compared with DANN and ADDA, which only perform domain-level align-
ment using a binary class discriminator, our method performs not only domain-level
but also class-level alignments and outperforms them. MADA considers domain-level
and class-level alignment, but it constrains each discriminator to be responsible for only
one class. Our method avoids this limitation by adopting 2K-dimensional discrimina-
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tors where the classes can share information. The 2K-dimensional joint classifier is also
used in RCA, but we train two discriminators in an adversarial manner so that they can
provide complementary information for each other. Moreover, we clearly observe that
our method can also perform well on A → D and W → A with relatively large domain
shift and imbalanced domain scales.

The results on ImageCLEF-DA are shown in Table 2. We have several findings
based on the results. Firstly, all methods are better than ResNet-50, which is a source-
only model trained without exploiting the target data in a standard supervised learning
setting. Our method increases the accuracy from 80.7% to 89.9%. Secondly, the above
comparisons with baseline methods on Office-31 are also the same on ImageCLEF-
DA, which verifies the effectiveness of our method. Thirdly, UJDA outperforms the
baseline methods on most transfer tasks, but with less room for improvement. This is
reasonable since the three domains in ImageCLEF-DA are of equal size and balanced
in each category, which make domain adaptation easy.

4.4 Analysis

Ablation Study. We study the effect of SSL regularization by removing entropy mini-
mization and VAT losses from our method (λte = λsvat = λtvat = 0), which is denoted
by UJDA (without SSL). Moreover, we study the effectiveness of using two joint classi-
fiers by using only one joint classifier, which is denoted by UJDA (one joint classifier).
The results on Office-31 dataset are reported in Table 1. Results show that without SSL
regularization, our method can perform better in two tasks (A→W, W→D) than base-
line methods, but the average accuracy of all tasks is decreased by 1.4% compared to the
proposed UJDA. The results validate the effectiveness of SSL regularization. Besides,
using one joint classifier can only perform class-level alignment while the domain-level
adaptation is ignored, the results show that the proposed UJDA achieve better perfor-
mance by further performing domain-level alignment.

Feature Visualization. In Fig. 4, we visualize the feature representations of task
A→W(31 classes) by t-SNE [17] using the source-only method and UJDA. The source-
only method is trained without exploiting the target training data in a standard super-
vised learning setting using the same learning procedure. As we can see, source and
target samples are better aligned for UJDA than the source-only method. This shows
the advance of our method in discriminative prediction.

Distribution Discrepancy. The A-distance is a measure of distribution discrepancy,
defined as distA = 2(1−2ε), where ε is the test error of a classifier trained to distinguish
the source from the target. We use A-distance as a measure of the transferability of
feature representations. Table 3 shows the cross-domain A-distance for tasks A→W,
W→D. We compute the A-distance of our method based on the output of the feature
extractor G, which turns out to be the smallest of all methods.
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Fig. 4. Visualization of features obtained from the feature extractor of task A→W using t-SNE
[17]. Red and blue points indicate the source and target samples respectively. We can see that
applying our method makes the target samples more discriminative. (Color figure online)

Table 3. Cross-domain A-distance of different approaches.

Method D→W W→A

ResNet-50 [11] 1.27 1.86

DANN [7] 1.23 1.44

MCD [24] 1.22 1.60

UJDA 1.14 1.18

5 Conclusion

In this paper, we propose a method called unsupervised domain adaptation with Unified
Joint Distribution Alignment (UJDA), which is able to perform both domain-level and
class-level alignments simultaneously in a unified adversarial learning process. Single
joint classifier provided with both domain and label information in both domains plays a
min-max game with the feature extractor by a joint adversarial loss, which can perform
the class-level alignment. Two joint classifiers as a whole also play a minimax game
with the feature extractor by the prediction disagreement between two joint classifiers,
which can perform the domain-level alignment. These modules are trained in the unified
adversarial learning process, and they can provide complementary information for each
other to avoid mode collapse. Moreover, SSL regularization is used to make the repre-
sentations more discriminative so that the predicted pseudo labels can be more accurate.
We conduct comprehensive experiments and the results verify the effectiveness of our
proposed method.
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Abstract. Multi-View Multi-Label (MVML) learning refers to complex
objects represented by multi-view features and associated with multi-
ple labels simultaneously. Modeling flexible view consistency is recently
demanded, yet existing approaches cannot fully exploit the complemen-
tary information across multiple views and meanwhile preserve view-
specific properties. Additionally, each label has heterogeneous features
from multiple views and probably correlates with other labels via com-
mon views. Traditional strategy tends to select features that are distin-
guishable for all labels. However, globally shared features cannot handle
the label heterogeneity. Furthermore, previous studies model view consis-
tency and label correlations independently, where interactions between
views and labels are not fully exploited. In this paper, we propose a novel
MVML learning approach named Relation-aware Alignment attentIon
Network (RAIN), where three types of relationships are considered.
Specifically, 1) view interactions: capture diverse and complementary
information for deep correlated subspace learning; 2) label correlations:
adopt multi-head attention to learn semantic label embedding; 3) label-
view dependence: dynamically extracts label-specific representation with
the guidance of learned label embedding. Experiments on various MVML
datasets demonstrate the effectiveness of RAIN compared with state-of-
the-arts. We also experiment on one real-world Herbs dataset, which
shows promising results for clinical decision support.

Keywords: Multi-view multi-label · View interactions · Label
correlations · Label-view dependence · Alignment attention

1 Introduction

Multi-label learning deals with the problem where an instance may be associated
with multiple semantic meanings. It has been widely applied in many real-world
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applications, such as image annotation [22], document categorization [12], infor-
mation retrieval [7], and bioinformatics [27]. The most straightforward approach
is to treat each label independently, then decompose the problem into a set
of independent binary classification tasks, one for each label. Although easy to
implement, it is limited by neglecting the relationships among labels. To com-
pensate for this deficiency, the exploitation of label correlations has been widely
accepted as a key component for effective multi-label learning [29].

Most existing multi-label learning approaches only consider single view data,
however, the information obtained from an individual view cannot comprehen-
sively describe all labels. Therefore, it has become popular to leverage the infor-
mation collected from various feature extractors or diverse domains, which has
resulted in Multi-view (or Multi-modal) Learning [2,20]. For example, a natu-
ral scene image can be characterized by heterogeneous visual descriptors, e.g.,
HSV color histogram, globe feature (GIST) and scale invariant feature trans-
form (SIFT). A straightforward way is to concatenate all the views and then
treat them as a single view task. It seems unreasonable since the concatenation
of different views either causes high dimensional feature vectors or neglect the
information derived from the connections and differences among multiple views.
Different views have shared and independent information, omitting such shared
and private nature of multi-view data would limit the performance of classifica-
tion. So far, many approaches have been developed to integrate multiple features
from diverse views and exploit the underlying interactions among views, which
is an important clue to make the view complement each other and improve the
discriminating power of multi-view representation.

To further take multi-label information into account, multi-view multi-label
learning provides a fundamental framework to solve the above problems, i.e.,
data are often represented by heterogeneous features from multiple views and
associated with multiple labels simultaneously. Recent researches have gradually
shifted their emphasis from the problems with single-heterogeneity to the ones
with dual-heterogeneity. Multi-view features comprehensively describe objects’
characteristics from distinct perspectives, as a result, combining the heteroge-
neous properties from different views can better characterize objects and improve
the overall learning performance. Each label might be determined by some spe-
cific features of its own and these features are the most pertinent and discrimina-
tive features to the corresponding label. For example, appearance characteristics
have strong discriminability in judging whether a person is a basketball player.
These features could be considered as label-specific features to the corresponding
label. To exploit information from both related views and related labels, a com-
mon strategy is to model label relatedness and view consistency independently,
which have not fully exploited the associated relationships during the learning
process.

To address the above issues, we propose a novel multi-view multi-label learn-
ing framework to jointly make use of the specific and complementary information
from multiple views, and extract label-specific representation guided by label
embedding. Specifically, we first learn the proper subspace representation that is
suitable for multi-label classification, which embeds various view-specific infor-
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mation and model deep interactive information among different views. Consider-
ing labels in multi-label datasets are not independent but inherently correlated,
e.g., an image is likely to be annotated as cloud if it has the label blue sky, while
it is not likely to be tagged with smog. Generally, the relationships among dif-
ferent labels could be positively related, negatively related, or unrelated. Thus,
it is necessary to capture label correlations to guide the label-view dependence
learning process. Inspired by multi-head attention prototype in Transformer [16],
we propose a novel multi-head attention module to learn label semantic embed-
dings, which reflects the high-order collaborative relationships among labels.
Multi-view multi-label datasets usually emerge in high-dimensionality, where
only a subset of features are useful, and the noisy features might reduce the pre-
diction performance. Furthermore, we design an alignment attention mechanism
to automatically extract customized representation for each label severally.

The main contributions of this paper can be summarized as follows:

– A novel Relation-aware Alignment attentIon Network (RAIN) is proposed.
RAIN exploits view interactions, label correlations, and label-view depen-
dence collaboratively, which can be quantized to improve the model inter-
pretability.

– RAIN learns the proper subspace representation by exploiting view-specific
information as well as capturing the interactions across multiple views. It can
strengthen the diversity of various views and further discover the complemen-
tary information.

– Label correlations are automatically exploited with multi-head attention,
which are further aligned with the enhanced multi-view subspace representa-
tions to capture label-specific representations.

– Experiments on one real-world and five public multi-view multi-label datasets
validate the superiority of the proposed model over the state-of-the-arts.

The rest of this paper is organized as follows: Sect. 2 briefly reviews some
related works of multi-view multi-label learning. Section 3 introduces the prob-
lem formulation and presents our proposed approach. Section 4 reports experi-
mental results and analysis on several multi-view multi-label datasets. Finally,
Sect. 5 concludes this paper.

2 Related Work

Our work is related to two branches: multi-label learning and multi-view learn-
ing. In this section, we briefly review some state-of-the-art approaches in the two
fields.

Multi-label classification [29] has received intensive attention in recent years.
Generally, based on the order of label correlations considered by the system,
multi-label learning algorithms can be categorized into following three strate-
gies. First-order strategy copes with multi-label learning problem in a label-by-
label manner. Binary Relevance (BR) [1] takes each label independently and
decomposes it into multiple binary classification tasks. However, BR neglects
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the relationship among labels. Second-order strategy introduces pairwise rela-
tions among multiple labels, such as the ranking between the relevant and
irrelevant labels [6]. Calibrated Label Ranking (CLR) [5] firstly transforms
the multi-label learning problem into label ranking problem by introducing the
pairwise comparison. High-order strategy builds more complex relations among
labels. Classifier Chain (CC) [13] transforms into a chain of binary classifica-
tion problems, where the quality is dependent on the label order in the chain.
Ensemble Classifier Chains (ECC) [13] constructs multiple CCs by using dif-
ferent random label orders. A boosting approach Multi-label Hypothesis Reuse
(MLHR) [10] is proposed to exploit label correlations with a hypothesis reuse
mechanism. Considering the potential association between paired labels, Dual-
Set Multi-Label Learning (DSML) [11] exploits pairwise inter-set label relation-
ships for assisting multi-label learning. And Collaboration based Multi-Label
Learning (CAMEL) [4] is proposed to learn the label correlations via sparse
reconstruction in the label space.

In real-word applications, data is usually represented with different views,
including multiple modalities or multiple types of features. Multi-view learning
can be embedded into multi-label learning naturally to further improve the clas-
sification performance by exploit a multi-view latent space [32]. MvNNcor [21] is
a novel multi-view learning framework, which seamlessly embeds various view-
specific information and deep interaction information, and introduces a new
multi-view loss fusion strategy to jointly make decisions and infer categories.
There have been some researches for multi-view multi-label learning. [3] proposes
a new classification framework using the multi-label correlation information to
address the problem of simultaneously combining multiple views and maximum
margin classification. LLSF [9] performs joint label specific feature selection and
take the label correlation matrix as prior knowledge for model training. Con-
sidering that label heterogeneity and feature heterogeneity often co-exist, [23]
proposes a novel graph-based model for Learning with both Label and Feature
heterogeneity (L2F), which imposes the view consistency by requiring that view-
based classifiers generate similar predictions on the same examples. Multi-Label
Co-Training (MLCT) [19] introduces a predictive reliability measure to select
samples, and applies label-wise filtering to confidently communicate labels of
selected samples among co-training classifiers. CS3G approach [24] handles types
of interactions between multiple labels, while no interaction between features
from different views in the model training phase. To make each view interacts
and further reduce the extraction cost, Multi-modal Classifier Chains (MCC) [31]
extends Classifier Chains to exploit label correlations with partial views. TMV-
LE [26] use multiple views to more comprehensively mine the topological struc-
ture in the feature space and migrate it to the label space to obtain the label
distribution. In addition, there are also some high-order approaches that exploit
label correlations on the hypothesis space, Latent Semantic Aware Multi-view
Multi-label Learning (LSA-MML) [25] implicitly encodes label correlations by
the common representation based on the uncovering latent semantic bases and
the relations among them. CoDiSP [30] learns low-dimensional common repre-
sentation with all modalities, and extracts discriminative information of each
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modality by enforcing orthogonal constraint. GLOCAL [33] aims to remain con-
sensus on multi-view latent spaces by Hilbert-Schmidt independence criterion
during the mapping procedure. However, there is no communication among var-
ious views. Hence, SIMM [18] is proposed to leverage shared subspace exploita-
tion and view-specific information extraction. CoDiSP [30] exploits relationship
among different views and label correlations with the help of extracted common
and specific view features.

3 Methodology

To begin, we present a formal definition of Multi-View Multi-Label (MVML)
problems. Let X = R

d1 ×· · ·×R
dv ×· · ·×R

dM be the feature space of M views,
where dv(1 ≤ v ≤ M) is the dimensionality of the v-th view. Let Y = {yk}Lk=1

(yk ∈ {−1, 1}) be the label space with L labels. Given the training dataset with
N data samples D = {(Xi,Yi)}Ni=1, where Xi = [X1

i , · · · ,Xv
i , · · · ,XM

i ] ∈ X
(Xv

i ∈ R
dv ) is the feature vector and Yi ∈ Y is the label vector of the i-th

Fig. 1. The overall architecture of our proposed RAIN, where view interactions, label
correlations, label-view dependence are exploited in a unified framework. For the i-
th instance, we firstly excavate diversity and complementarity from the original views
X1

i ,X
2
i , · · · ,XM

i , where view-specific information S1
i ,S

2
i , · · · ,SM

i and complementary
information C1

i ,C
2
i , · · · ,CM

i are explicitly captured. By concatenating Sv
i and Cv

i , we
obtain the integrated multi-view representation hi = [h1

i ,h
2
i , · · · ,hM

i ]. Apart from the
view interactions, label correlations, and label-view dependence could also be employed
to guide the learning process. Secondly, we adapt multi-head attention mechanism to
exploit label correlations and achieve new label embedding H = [H1; H2; · · · ; HL].
Eventually, the new label embedding are identified to dynamically extract label-specific
information for each label by applying alignment attention, which amalgamates the
relevant information filtered from the deep correlated multi-view representation hi.
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instance Xi. The goal of multi-view multi-label learning is to learn a mapping
function f : X → Y from D, which can assign a set of proper labels for the
unseen instance.

Next we will introduce our proposed Relation-aware Alignment attentIon
Network (RAIN) in details and Fig. 1 displays the overall architecture. It models
complex interactions among heterogeneous variables from the following three
aspects: deep correlated subspace learning, label correlations learning and label-
view dependence learning. Deep correlated subspace learning layer captures the
shared multi-view representation for all the labels. Meanwhile, the new label
embedding obtained by label correlations learning module can be used to guide
the label-view dependence learning.

3.1 Deep Correlated Subspace Learning with View Interactions

In order to obtain the proper multi-view data representation for multi-label
classification, it is necessary to consider the following two factors. On the one
hand, for each instance, various feature vectors from M views may show tremen-
dous diversity and complementarity in heterogeneous feature space. On the
other hand, view interactions contain abundant descriptions of relations among
multiple views, which can be used to enhance the effectiveness of multi-view
subspace learning. Furthermore, different views contribute distinct importance
to each label and multiple views provide supplementary information. Existing
approaches can be improved by sufficiently utilizing view-specific and comple-
mentary information. As a result, two types of information should be inter-
actively considered: view-specific information and complementary information.
The deep correlated subspace learning module enables multi-view information
to be shared across different labels, where multiple labels are correlated via com-
mon views. Within the latent space, RAIN employs specific and complementary
information to capture both the consensus and particular information of different
views.

View-Specific Information
Each view in the i-th original vector Xi can be used to extract discriminative
information. For the v-th (v = 1, · · · ,M) original view Xv

i with dv dimension,
we add a fully connected layer and transform Xv

i to ds dimension view-specific
representation Sv

i ,
Sv
i = ReLU(Xv

i Uv + bv) (1)

where Uv ∈ R
dv×ds is weight vector, bv ∈ R

ds is bias vector. As a result, we can
significantly improve the discriminating power of the subspace representation.

Complementary Information
Multi-view learning aims to integrate multiple features and discover consistent
information among different views, which makes full use of the shared infor-
mation from all views to enhance view consistency. Recently, it is demanded to
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promote flexible view consistency for that different views provide complementary
information rather than strictly consistent with each other. The key is to explore
the interactive information shared among different view-specific representations,
which can explicitly model the relationship among multiple views and explore
the potential consistent information. In this way, irrelevant features are removed
by relying on the complementary information from multiple views.

Interactive Map. Aiming at enhancing the interactions among different views, for
the v-th view, we first calculate the interactive matrix between Sv

i and Sc
i . As a

result, we obtain a two-dimensional interactive map CMv,c
i ∈ R

ds×ds by Eq. 2,

CMv,c
i = E[(Sv

i )TSc
i ] (2)

where c = 1, · · · ,M and c �= v.
After calculating interactive map on every view pairs, we further design an

interactive network to project each CMv,c
i into an embedded space R

dc . It learns
the deep interactive information and makes it incorporate with Sv

i :

Cv,c
i = σ

(
vec(CMv,c

i )TWv,c + bv,c

)
(3)

where Wv,c ∈ R
d2
s×dc , bv,c ∈ R

dc , and vec(·) denotes the vectorization of a
matrix.

Then, we concatenate Cv,c
i as the complementary representation for the v-th

view,
Cv

i = [Cv,1
i , · · · ,Cv,v−1

i ,Cv,v+1
i , · · · ,Cv,M

i ] (4)

where Cv
i ∈ R

(M−1)dc .
Above all, we combine both view-specific representation and complementary

representation together to formalize enhanced multi-view subspace representa-
tion,

hv
i = [Sv

i ,Cv
i ] (5)

where hv
i ∈ R

dh and dh = ds + (M − 1)dc.

3.2 Label Correlations Learning with Multi-head Attention

It is well-known that exploiting label correlations is crucially important for
multi-label learning and each label contains its own specific contribution to the
multi-label prediction. The key factor of multi-label learning is the sharing and
specific scheme among different labels, for that different labels lie in different dis-
tributions. Previous approaches take label correlations as prior knowledge and
exploit label correlations by manipulating the hypothesis space, which may not
correctly characterize the real relationships among labels. To address the above
limitation, we employ multi-head attention mechanism to learn new label embed-
ding, which characterizes label correlations efficiently and tailors label-specific
information. Compared with the standard additive attention mechanism which
is implemented by using a one-layer feed-forward neural network, multi-head
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attention [16] allows the model to jointly attend to information from different
representation subspaces at different positions.

Firstly, we conduct dimension reduction to transform the sparse label vector
Y ∈ R

N×L into a low-dimension vector Ŷ ∈ R
dl×L, where dl = Mdh.

And then h parallel heads are employed to focus on different parts of the label
vector, which can exploit label correlations. We linearly project Ŷ to queries (Q),
keys (K) and values (V ) h times, respectively, where Q = K = V = Ŷ T . On
each of these projected versions of queries, keys and values, we then perform the
attention function in parallel, yielding dv-dimensional output values. For the t-th
head (t = 1, 2, · · · , h), we capture label correlations via the similarity among L
labels:

R =
(QtW

Q
t )(KtW

K
t )T

√
dl/h

(6)

where Qt,Kt ∈ R
L×dl/h, WQ

t ,WK
t ∈ R

dl/h×dl/h, R ∈ R
L×L.

The new label representation is computed based on the following equation:

headt = softmax(R)(VtW
V
t ) (7)

where Vt ∈ R
L×dl/h, W V

t ∈ R
dl/h×dl/h, headt ∈ R

L×dl/h.
Then, we concatenate the resulting h heads and multiply with weight matrix

WO ∈ R
dl×dl to produce the new label embedding:

Head = Concat(head1, · · · ,headh)WO. (8)

where Head ∈ R
L×dl .

Finally, we employ residual connection [8] and layer normalization. The new
label representation is computed as:

H = LayerNorm(Ŷ T + Head). (9)

where H = [H1;H2; · · · ;HL] ∈ R
L×dl .

3.3 Label-View Dependence Learning with Alignment Attention

Multiple labels are correlated through multi-view representation and different
views are of various importance under specific circumstance. However, it is pos-
sible that a few views become useless for certain labels due to noise pollution.
After modeling view interactions and label correlations, we utilize alignment
attention to capture the dependence relationship between label embedding and
deep correlated multi-view representation. The new label embedding obtained
by label correlations learning module is utilized as queries that supervise the
model to assign appropriate attention weights to different view representations.
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Training Phase. Given the new label embedding H = [H1; · · · ;Hk; · · · ;HL] ∈
R

L×dl and multi-view representation hi = [h1
i ,h

2
i , · · · ,hM

i ] ∈ R
Mdh , where dl =

Mdh, the alignment attention weight vector for the k-th label (k = 1, 2, · · · , L) is:

αk
i = softmax(

Hk(hi)T√
dl

) (10)

which control the contribution of different views information.
And then, the new label-specific representation can be computed by adding

up the value over the corresponding dimension of the multi-view representation
vector:

Ĥk
i = LayerNorm(Hk + αk

i hi). (11)

RAIN extracts customized representation [Ĥ1
i ; · · · ; Ĥk

i ; · · · ; ĤL
i ] for different

labels, and eventually masters the complete or a subset of expertise from all
views.

Testing Phase. For the i-th instance in the testing phase, we firstly compute
multi-view representation hi by Eq. 5 and then directly capture label-specific
representation by the learned alignment weight vector for each label by Eq. 10.
After obtaining αk

i and hi, the k-th label representation is computed by Eq. 11.
By encoding the label correlations into the multi-view representation, each

attention mask automatically determines the importance of the shared multi-
view subspace representation for the respective label, allowing learning of both
label-shared and label-specific features in an end-to-end manner.

3.4 Label Prediction Layer

Based on the above three subsections, we predict the k-th label:

fk(Ĥk
i ) = softmax(Ĥk

i W k
L + bk

L) (12)

where W k
L ∈ R

dl×1 denotes the fully connected weight between label-specific
representation vector Ĥk

i and label prediction layer, bk
L ∈ R

1×1 is the bias
vector.

Furthermore, we design binary cross-entropy loss function for final label pre-
diction:

L = −
Nb∑

i=1

L∑

k=1

(
yk
i logŷk

i + (1 − yk
i )log(1 − ŷk

i )
)

(13)

where Nb is the batch size. ŷk
i is the prediction of Xi on the k-th label, predicted

by fk(·) in Eq. 12.

4 Experiments

In this section, the performance of our proposed RAIN is evaluated. We begin
by introducing details on datasets, evaluation metrics, and baselines.
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Table 1. Characteristic of multi-view multi-label datasets, where #N , #M and #L
denote the number of instances, views, and labels, respectively. #d shows the dimen-
sionality of each view.

Dataset #N #M #L #d

Yeast 2417 2 14 [24, 79]

Emotions 593 2 6 [32, 32, 8]

MSRC 591 3 24 [500,1040,576]

Taobao 2079 4 30 [500,48,81,24]

Scene 2407 6 6 [49, 49, 49, 49, 49, 49]

Herbs 11104 5 29 [13, 653, 433, 768, 36]

4.1 Experimental Setting

Dataset Description. We employ six multi-view multi-label datasets for per-
formance evaluation including five public datasets and one real-world Herbs
dataset. Table 1 summarizes the statistics of these datasets.

– Yeast [18,28] has two views including the genetic expression (79 attributes)
and the phylogenetic profile of gene attributes (24 attributes).

– Emotions [31] is a publicly available multi-label dataset with 8 rhythmic
attributes and 64 timbre attributes.

– MSRC [14] is used for object class recognition. As for each image, there are
3 types of views including: BoW, FV and HOG.

– Taobao [24] is used for shopping items classification. Description images of
items are crawled from a shopping website, and four types of features, i.e.,
BoW, Gabor, HOG, HSVHist, are extracted to construct 4 views of data.
Corresponding categories path of an item provides the label sets.

– Scene [1,31] is a public multi-label dataset with 6 views.
– Herbs is a real-world multi-view multi-label dataset. Each herb consists of

multiple view features, i.e., indications, function, dosage, channel tropism,
property and flavor. All of these features are appeared in Chinese and a
descriptive way. Meanwhile, each herb is linked with a number of efficacies
and we aim to predict efficacy categories of each herb.

Evaluation Metrics. For performance evaluation, we employ six widely-used
multi-label evaluation metrics, including Hamming Loss (HamLoss), Ranking
Loss (RankLoss), Subset Accuracy (SubsetAcc), Example-F1, Micro-F1 and
Macro-F1. All their values vary within the interval [0, 1]. In addition, for the
first two metrics, the smaller values indicate better performance. While for the
other four metrics, the larger values indicate better performance. More concrete
metric definitions can be found in [17,29].
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Table 2. Experimental results (mean ± std) of RAIN compared with other state-of-
the-art approaches on six multi-view multi-label datasets. The best performance for
each criterion is bolded. ↑ / ↓ indicates the larger/smaller the better of a criterion.

Dataset Approaches Evaluation metrics

HamLoss↓ RankLoss↓ SubsetAcc↑ Example-F1↑ Micro-F1↑ Macro-F1↑
MSRC CAMEL(B) 0.059±0.009 0.033±0.009 0.322±0.058 0.805±0.032 0.814±0.029 0.680±0.043

CAMEL(C) 0.106±0.020 0.153±0.074 0.070±0.073 0.618±0.074 0.629±0.071 0.208±0.041

LLSF 0.066±0.007 0.043±0.009 0.276±0.063 0.782±0.023 0.790±0.025 0.607±0.040

CS3G 0.077±0.008 0.043±0.010 0.205±0.043 0.729±0.024 0.744±0.026 0.506±0.040

MCC 0.068±0.008 0.054±0.011 0.345±0.088 0.798±0.024 0.799±0.023 0.652±0.024

SIMM 0.058±0.008 0.033±0.005 0.382±0.034 0.827±0.024 0.829±0.024 0.730±0.035

MvNNcor 0.062±0.007 0.042±0.007 0.355±0.046 0.815±0.024 0.816±0.023 0.710±0.032

RAIN 0.050±0.005 0.035±0.010 0.455±0.048 0.848±0.014 0.852±0.013 0.754±0.043

Yeast CAMEL(B) 0.193±0.007 0.162±0.011 0.173±0.022 0.618±0.014 0.642±0.012 0.392±0.025

CAMEL(C) 0.189±0.007 0.163±0.012 0.201±0.018 0.628±0.013 0.658±0.012 0.458±0.020

LLSF 0.295±0.006 0.354±0.015 0.003±0.004 0.049±0.006 0.056±0.005 0.046±0.003

CS3G 0.255±0.008 0.211±0.012 0.048±0.009 0.549±0.011 0.566±0.011 0.217±0.017

MCC 0.213±0.009 0.224±0.016 0.190±0.034 0.585±0.025 0.615±0.021 0.340±0.018

SIMM 0.191±0.009 0.160±0.008 0.213±0.026 0.634±0.015 0.660±0.015 0.446±0.025

MvNNcor 0.196±0.007 0.167±0.009 0.206±0.025 0.632±0.017 0.652±0.015 0.380±0.019

RAIN 0.185±0.008 0.157±0.011 0.225±0.028 0.640±0.021 0.666±0.019 0.456±0.035

Taobao CAMEL(B) 0.032±0.001 0.151±0.014 0.150±0.020 0.054±0.012 0.101±0.023 0.034±0.008

CAMEL(C) 0.033±0.002 0.159±0.012 0.238±0.046 0.266±0.044 0.373±0.053 0.182±0.028

LLSF 0.036±0.001 0.161±0.015 0.052±0.014 0.058±0.013 0.106±0.023 0.047±0.013

CS3G 0.064±0.003 0.171±0.009 0.104±0.017 0.323±0.025 0.332±0.026 0.125±0.015

MCC 0.054±0.002 0.235±0.016 0.213±0.023 0.333±0.026 0.354±0.021 0.222±0.026

SIMM 0.028±0.001 0.099±0.008 0.414±0.026 0.417±0.036 0.523±0.028 0.298±0.047

MvNNcor 0.029±0.001 0.120±0.019 0.382±0.059 0.372±0.070 0.477±0.062 0.228±0.053

RAIN 0.024±0.002 0.095±0.012 0.520±0.027 0.529±0.027 0.616±0.027 0.400±0.040

Emotions CAMEL(B) 0.218±0.014 0.176±0.023 0.248±0.034 0.534±0.039 0.607±0.038 0.590±0.039

CAMEL(C) 0.207±0.025 0.179±0.038 0.272±0.048 0.581±0.049 0.637±0.048 0.615±0.058

LLSF 0.207±0.014 0.174±0.021 0.254±0.049 0.594±0.039 0.641±0.033 0.616±0.033

CS3G 0.290±0.013 0.225±0.018 0.165±0.041 0.538±0.028 0.574±0.031 0.461±0.023

MCC 0.214±0.023 0.178±0.029 0.299±0.037 0.624±0.043 0.653±0.041 0.621±0.039

SIMM 0.180±0.006 0.128±0.015 0.356±0.025 0.658±0.016 0.701±0.018 0.692±0.020

MvNNcor 0.187±0.022 0.141±0.024 0.349±0.080 0.636±0.067 0.684±0.048 0.656±0.079

RAIN 0.165±0.012 0.136±0.023 0.415±0.040 0.687±0.029 0.725±0.027 0.718±0.027

Scene CAMEL(B) 0.144±0.007 0.158±0.018 0.300±0.033 0.341±0.035 0.457±0.037 0.458±0.033

CAMEL(C) 0.076±0.006 0.057±0.011 0.646±0.024 0.695±0.027 0.763±0.019 0.772±0.021

LLSF 0.106±0.006 0.095±0.010 0.487±0.028 0.536±0.034 0.643±0.027 0.644±0.027

CS3G 0.217±0.013 0.289±0.030 0.327±0.037 0.366±0.036 0.372±0.036 0.282±0.034

MCC 0.102±0.010 0.101±0.011 0.662±0.038 0.713±0.029 0.709±0.027 0.718±0.026

SIMM 0.071±0.005 0.054±0.008 0.727±0.014 0.769±0.022 0.795±0.017 0.805±0.021

MvNNcor 0.074±0.003 0.061±0.006 0.733±0.013 0.762±0.013 0.784±0.010 0.792±0.008

RAIN 0.063±0.009 0.051±0.009 0.767±0.027 0.805±0.025 0.820±0.023 0.828±0.019

Herbs CAMEL(B) 0.015±0.002 0.019±0.008 0.250±0.056 0.334±0.096 0.464±0.077 0.159±0.029

CAMEL(C) 0.013±0.003 0.017±0.006 0.306±0.109 0.330±0.102 0.503±0.050 0.129±0.017

LLSF 0.012±0.000 0.018±0.002 0.358±0.020 0.355±0.012 0.540±0.014 0.138±0.006

CS3G 0.013±0.000 0.019±0.001 0.340±0.012 0.342±0.011 0.526±0.013 0.133±0.007

MCC 0.013±0.000 0.059±0.004 0.400±0.018 0.378±0.012 0.579±0.010 0.147±0.017

SIMM 0.012±0.000 0.023±0.004 0.411±0.018 0.375±0.017 0.576±0.014 0.142±0.011

MvNNcor 0.011±0.000 0.031±0.004 0.417±0.020 0.371±0.028 0.578±0.021 0.141±0.033

RAIN 0.011±0.000 0.020±0.001 0.423±0.015 0.382±0.010 0.582±0.011 0.166±0.018
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Compared Approaches. Considering RAIN is related to multi-view multi-
label learning, the performance of RAIN is compared against 7 approaches,
including a state-of-the-art multi-label learning approach with two types of fea-
ture inputs, one label-specific multi-label approach, and 5 multi-view multi-label
approaches.

– CAMEL(B) & CAMEL(C): CAMEL [4] is a novel multi-label learning app-
roach that exploits label correlations via sparse reconstruction in the label
space and integrates the learned label correlations into model training.
CAMEL(B) stands for the best performance obtained from the best single
view, while CAMEL(C) simply concatenating the multi-view inputs as a new
single-view input.

– LLSF [9]: A second-order multi-label algorithm which performs joint label-
specific feature selection and take the label correlation matrix as prior knowl-
edge.

– MvNNcor [21]: A novel multi-view learning framework that utilize differ-
ent deep neural networks to learn multiple view-specific representation, and
model deep interactive information through a shared interactive network.
Finally, we adapt the fusion strategy to make a joint decision for multi-label
classification.

– CS3G [24]: A multi-view multi-label approach utilizes multi-view information
in a privacy-preserving style, which treats each view unequally and has the
ability to extract the most useful modal features for the final prediction.

– MCC [31]: A novel multi-view multi-label approach that makes great use of
views, and can make a convince prediction with many instead of all views.

– SIMM [18]: A novel multi-view multi-label learning approach, which leverages
shared subspace exploitation and view-specific information extraction. For
shared subspace exploitation, SIMM jointly minimizes confusion adversarial
loss and multi-label loss to utilize shared information from all views.

4.2 Experimental Results

For all these approaches, we report the best results of the optimal parameters
in terms of classification performance. 10-fold cross-validation is conducted on
these datasets, where the mean metric (with standard deviations) are recorded
for all approaches. We set the batch size Nb = 64. For the label embedding
module, the head number of Emotions and MSRC are set to 4, while the other
datasets are set to 6. Furthermore, we drop out at a rate of 40% at each step to
avoid over-fitting [15].
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Table 2 presents the comparative results of all approaches within the same
environmental settings, where the best results have been highlighted. Based on
the experimental results, we obtain the following observations: 1) From the
results of CAMLE(C) approach, it is obviously shown that roughly concate-
nating all views as a single view may not always be a wise choice. Because the
concatenation of all the views may confuse the view-specific information and
miss the interactive information. 2) RAIN achieves the best performance com-
pared with several state-of-the-art approaches on all datasets, which reveals the
priority of RAIN in dealing with MVML learning problem.

4.3 Experimental Analysis

Ablation Study. To reveal the contribution of each component, we test the
performance of RAIN by removing different parts. As for the effectiveness of
complementary information exploration in deep correlated subspace learning, we
keep the basic structure of RAIN and remove the complementary representation
Cv, denoted as RAIN-NC. As for the efficacy of label correlations, we remove
label embedding, denoted as RAIN-NL. Furthermore, we remove the alignment
attention structure in label-view dependence learning, which is denoted as RAIN-
NA.

As shown in Table 3, RAIN performs better than RAIN-NC, RAIN-NL, and
RAIN-NA, which shows that: 1) the enhanced complementary information by
exploiting view interactions is helpful to multi-view subspace learning; 2) with
the guidance of label semantic embeddings, the discovered label-specific repre-
sentation can better match the annotated semantic labels; 3) the benefits of
customizing label-specific representation compared to the globally shared ones.

Attention Visualization. As shown in Table 4, different views encode different
properties of data. To understand the role of the proposed attention modules, we
visualize the learned label correlations, and label-view dependence matrices to
illustrate the ability of capturing semantic dependence. As illustrated in Fig. 2,
we can see a clear difference in label-view attention between two labels, which
can provide richer semantic from different perspectives. In Fig. 2(b), all labels
puts less emphasis on View 2, which accords with the worst performance of View
2 in Table 4.

Convergence Analysis. We conduct convergence experiments to validate the
convergence of RAIN approach. Due to the page limit, we only give the conver-
gence results on the Emotions, Scene, and Herbs datasets. As shown in Fig. 3,
it is clear that RAIN can converge fast within a small number of epochs.
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Table 3. Comparison results (mean ± std) of RAIN from three aspects: view interac-
tions, label correlations, label-view dependence. The best performance for each criterion
is bolded.

Dataset Approaches Evaluation metrics

HamLoss↓ RankLoss↓ SubsetAcc↑ Example-F1↑ Micro-F1↑ Macro-F1↑
MSRC RAIN-NC 0.056±0.008 0.046±0.009 0.372±0.056 0.825±0.029 0.831±0.026 0.722±0.032

RAIN-NL 0.054±0.007 0.042±0.011 0.404±0.051 0.837±0.024 0.840±0.022 0.737±0.057

RAIN-NA 0.055±0.008 0.036±0.007 0.415±0.055 0.837±0.031 0.838±0.027 0.729±0.050

RAIN 0.050±0.005 0.035±0.010 0.455±0.048 0.848±0.014 0.852±0.013 0.754±0.043

Yeast RAIN-NC 0.191±0.008 0.164±0.013 0.197±0.022 0.639±0.019 0.661±0.016 0.412±0.044

RAIN-NL 0.190±0.007 0.165±0.013 0.208±0.021 0.635±0.014 0.662±0.015 0.425±0.048

RAIN-NA 0.192±0.010 0.165±0.013 0.198±0.029 0.635±0.019 0.658±0.019 0.401±0.030

RAIN 0.185±0.008 0.157±0.011 0.225±0.028 0.640±0.021 0.666±0.019 0.456±0.035

Taobao RAIN-NC 0.025±0.002 0.107±0.014 0.485±0.030 0.486±0.025 0.587±0.028 0.361±0.046

RAIN-NL 0.025±0.001 0.114±0.010 0.507±0.018 0.509±0.021 0.594±0.021 0.371±0.038

RAIN-NA 0.027±0.001 0.102±0.010 0.478±0.036 0.487±0.041 0.567±0.029 0.361±0.043

RAIN 0.024±0.002 0.095±0.012 0.520±0.027 0.529±0.027 0.616±0.027 0.400±0.040

Emotions RAIN-NC 0.182±0.017 0.161±0.023 0.371±0.048 0.648±0.041 0.690±0.030 0.675±0.045

RAIN-NL 0.168±0.013 0.146±0.029 0.390±0.053 0.681±0.030 0.720±0.029 0.708±0.034

RAIN-NA 0.170±0.020 0.143±0.033 0.390±0.065 0.676±0.047 0.718±0.030 0.703±0.042

RAIN 0.165±0.012 0.136±0.023 0.415±0.040 0.687±0.029 0.725±0.027 0.718±0.027

Scene RAIN-NC 0.073±0.007 0.067±0.009 0.717±0.035 0.758±0.018 0.789±0.018 0.798±0.013

RAIN-NL 0.065±0.008 0.058±0.013 0.753±0.035 0.790±0.028 0.813±0.024 0.822±0.021

RAIN-NA 0.066±0.008 0.054±0.008 0.748±0.033 0.785±0.033 0.807±0.025 0.816±0.027

RAIN 0.063±0.009 0.051±0.009 0.767±0.027 0.805±0.025 0.820±0.023 0.828±0.019

Herbs RAIN-NC 0.012±0.000 0.023±0.002 0.398±0.017 0.367±0.017 0.568±0.017 0.141±0.018

RAIN-NL 0.012±0.000 0.038±0.007 0.401±0.017 0.361±0.033 0.571±0.024 0.138±0.034

RAIN-NA 0.012±0.000 0.032±0.002 0.389±0.016 0.367±0.025 0.565±0.023 0.146±0.020

RAIN 0.011±0.000 0.020±0.001 0.423±0.015 0.382±0.010 0.582±0.011 0.166±0.018

Table 4. Experimental results (mean ± std) of CAMEL with each individual view
severally on the Emotions and Scene datasets. The best performance for each criterion
is bolded.

Dataset Approaches Evaluation metrics

HamLoss↓ RankLoss↓ SubsetAcc↑ Example-F1↑ Micro-F1↑ Macro-F1↑
Emotions View 0 0.218±0.014 0.176±0.023 0.248±0.034 0.534±0.039 0.607±0.038 0.590±0.039

View 1 0.225±0.021 0.202±0.032 0.238±0.035 0.533±0.051 0.588±0.043 0.566±0.048

View 2 0.298±0.029 0.366±0.048 0.061±0.042 0.188±0.054 0.237±0.064 0.183±0.060

Scene View 0 0.159±0.004 0.220±0.015 0.217±0.013 0.236±0.014 0.342±0.020 0.344±0.019

View 1 0.171±0.005 0.250±0.016 0.148±0.028 0.157±0.027 0.240±0.033 0.241±0.038

View 2 0.154±0.007 0.177±0.020 0.238±0.023 0.263±0.023 0.374±0.028 0.392±0.027

View 3 0.173±0.006 0.290±0.017 0.089±0.022 0.093±0.023 0.154±0.037 0.148±0.036

View 4 0.144±0.007 0.158±0.018 0.300±0.033 0.341±0.035 0.457±0.037 0.458±0.033

View 5 0.167±0.007 0.275±0.019 0.128±0.021 0.138±0.023 0.222±0.036 0.218±0.032
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Fig. 2. Attention visualization. A higher blue intensity value indicates a stronger cor-
relation. (Color figure online)

Fig. 3. Convergence analysis of RAIN on the Emotions, Scene, and Herbs datasets.
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5 Conclusion

In this paper, we propose a novel mutual relational attention-based multi-
view multi-label learning framework named RAIN, which jointly leverages three
relationships, i.e., view interactions, label correlations, and label-view depen-
dence. Specifically, we first enhance communication among different views by
embedding various view-specific information and interactive information. Then,
we adaptively learn label embedding with multi-head attention mechanism,
which encodes the label correlations. Last, in order to extract discriminative view
information for different labels, we seamlessly integrate the learned label embed-
ding into multi-view representation by label-view alignment attention mecha-
nism. The learning procedure of multi-view representation and label embed-
ding can mutually benefit each other for maximum performance gain. Exten-
sive experiments on one real-world and five widely-used multi-view multi-label
datasets verify the effectiveness of our proposed RAIN approach. Three types
of relationships positively contribute to the final multi-view multi-label learn-
ing. The experimental analysis indicates performance improvement not only
by sufficiently utilizing complementary view-specific information, but also label
embedding with multi-head attention mechanism. Furthermore, it also reveals
the effectiveness of label-view alignment attention, due to introducing more guid-
ing information.
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Abstract. Joint relation and entity extraction is a crucial technology
to construct a knowledge graph. However, most existing methods (i) can
not fully capture the beneficial connections between relation extraction
and entity extraction tasks, and (ii) can not combat the noisy data in
the training dataset. To overcome these problems, this paper proposes a
novel Bidirectional-Interaction Reinforcement Learning (BIRL) frame-
work, to extract entities and relations from plain text. Especially, we
apply a relation calibration RL policy to (i) measure relation consis-
tency and enhance the bidirectional interaction between entity mentions
and relation types; and (ii) guide a dynamic selection strategy to remove
noise from training dataset. Moreover, we also introduce a data augmen-
tation module for bridging the gap of data-efficiency and generalization.
Empirical studies on two real-world datasets confirm the superiority of
the proposed model.

Keywords: Joint relation and entity extraction · Reinforcement
learning · Bidirectional-interaction · Representation learning

1 Introduction

Relation extraction (RE) and Entity Extraction (EE) are two fundamental tasks
in natural language processing (NLP) applications. In practice, these two tasks
are often to be solved simultaneously. Recently, relation and entity joint extrac-
tion has become a fundamental task in NLP, which can facilitate many other
tasks, including knowledge graph construction, question answering, and auto-
matic text summarization. The goal of this task is to extract triples (eh, r, et)
from the unstructured texts, wherein eh indicates the head entity, et represents
the tail entity, and r is the semantic relation between eh and et.

Recently, with the advancement of reinforcement learning (RL) in the field of
NLP, RL has been adopted by many previous studies for relation extraction and
entity extraction. [4] used a RL agent to remove noisy data from the training
dataset, and they used the likelihood of the sentence as a reward to guide the
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 483–499, 2021.
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Fig. 1. The overall architecture of the proposed bidirectional interaction reinforcement
learning framework.

agent’s training. Similarly, [21] used RL strategy to generate the false-positive
indicator. The reward in these studies was derived from the performance change
of the joint network for different epochs. Unlike their research aiming to gen-
erate a false-positive indicator, this paper focuses on enhancing the anti-noise
robustness of the model by leveraging a dynamic selection strategy to remove
noise from training dataset. [5] modeled the joint extraction as a two-step deci-
sion process and employed the Q-Learning algorithm to get the control policy
network in the two-step decision process. Also, [28] modeled relation and entity
extraction as two levels of the RL process and use a hierarchical RL framework to
extract relations and entities. However, this work replied heavily on the relation
indicator, whose identifying procedure is unexplainable. Besides, the interaction
between relation extraction and entity extraction in this work is unidirectional,
as well as [37], hence the beneficial connections between them is not unfortu-
nately fully modeled. Different from the two studies mentioned above, this study
investigates the bidirectional interaction between relation extraction and entity
extraction processes to fully capture the beneficial connections between them,
and also models the removal of noisy data as a reinforcement learning process.

In this paper, we propose a novel joint extraction framework based on bidi-
rectional interaction RL paradigm, wherein we first detect a relation, extract
the corresponding entities as the arguments of this relation, then a relation is
inversely generated based on these entities, and finally relation consistency is
calibrated for refining the training data. Hence, the proposed framework is com-
posed of five parts:

(I) Relation Extraction (RE) RL: identifies relation from the given text;
(II) Entity Extraction (EE) RL: identifies the participating entities for this

relation;
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(III) Distant Supervision (DS): inversely identifies a relation respect to these
entities;

(IV) Relation Calibration (RC) RL: refines the training dataset based on the
consistency between the relations obtained in aforementioned procedures
(I) and (III).

As shown in Fig. 1, the relation extraction procedure makes sequential scans
from the beginning of a sentence, and detect relation (I). If a certain relation is
identified, an entity extraction process is triggered to identify the corresponding
entities for that relation (II). Then, a distant supervision model is leveraged
here for generating relation for these entities (III). Finally, a relation calibration
process measures the consistency between the relation from relation extraction
process and the relation from distant supervision process (IV), to finally guide
the refine of the training dataset for filtering noise. Then the relation extraction
RL process continues its scan to search for the next relation in the sentence.
Note that, relations are generated twice and then calibrated for consistency
in aforementioned procedure, hence the proposed framework could fully model
and capture the bidirectional interaction between relation extraction and entity
extraction processes.

In conclusion, our work has strengths in dealing with two issues existing in
prior studies:

(i) Most traditional models [8,9,19] determine a relation only after all the
entities have been recognized, whereas the interaction between the two tasks is
not fully captured. In some sense, these methods are aligning a relation to entity
pairs, and therefore, they may introduce additional noise since a sentence con-
taining an entity pair may not truly mention the relation [34], or may describe
multiple relations [27]. In our work, the dependency between entity mentions
and relation types is formulated through designing the state representations and
rewards in the different RL processes (as sketched in Fig. 1). The bidirectional
interaction is well captured since the relation extraction RL’s reward is passed
to the entity extraction RL (in (II)), then distant supervision model is launched
to generate relation (in (III)), and finally the consistency of these relations acts as
the reward for relation calibration RL (in (IV)). In this manner, the interaction
between relation types and entity mentions can be better modeled bidirection-
ally.

(ii) Many existing studies on information extraction adopted both super-
vised [2,36] and distant supervised [18] methods. Although distant supervision
method is effective and cheap, it inevitably introduces a large amount of noisy
data (false-positive). That is because its assumption is too strict, and the same
entity pair may not express the desired relation-types. Therefore, we argue that
a model’s performance will be affected severely if it is trained on a noisy dataset.
This paper focuses on combatting the noisy data in the training dataset, and
exploring the possibility of using dynamic selection strategies to remove them.
Especially, the performance-driven relation calibration RL (in (IV)) is designed to
recognize the noisy sentences and take appropriate actions to remove them. Dur-
ing the training, the relation calibration RL agent interacts with the other RLs
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continuously and divides the training dataset into two parts: clean dataset and
noisy dataset. In each interaction, the relation calibration RL agent updates its
policy based on the relation consistency performance received from the relation
extraction policy (in (I)) and distant supervision model (in (III)). The interaction
process will come to an end when the other RLs trained on the clean dataset
achieves the best performance.

Moreover, bridging the gap of data-efficiency and generalization has been
demonstrated pivotal to the real-world applicability of RL [14]. Hence, this paper
investigates the utility of data augmentations in model-free RL by processing text
observations with stochastic augmentations before passing them to the RL agent
(in (I) (II) (IV)) for training. Therefore, we propose a simple plug-and-play module
that can enhance RL algorithm with augmented data, without any changes to the
underlying RL algorithm. We show that data augmentations such as Synonym,
Edit-Distance, Insertion and Deletion, can enable RL algorithms, in terms of
data-efficiency and generalization.

2 Methodology

2.1 Relation Extraction with RL

The Relation Extraction (RE) RL policy πRE aims to detect the relations in the
given sentence s = {w1, w2, · · · , w|s|}, which can be regarded as a conventional
RL policy over actions. A following entity extraction RL process (Sect. 2.2) will
be launched once an action is executed by the this RL agent.

Action: The action at is selected from ARE = R
⋃
None, wherein notation None

indicates no relation, and R is the relation-type set. When a relation calibration
RL process (Sect. 2.3) enters a terminal state, the control of the agent will be
taken over to the relation extraction RL process to execute the next actions.

State: The state sREt ∈ SRE of the relation extraction RL process at time step t,
is represented by: (i) the current hidden state ht, (ii) the relation-type vector aREt

(the embedding of the latest action aRE
t∗ that aRE

t∗ �= NONE, a learnable parameter),
and (iii) the state from the last time step sREt−1, formally represented as follows:

sREt = fRE(WSRE
[ht;aREt ; sREt−1]) (1)

where fRE(·) is a non-linear function implemented by MLP. To obtain the
hidden state ht, this paper introduces a sequence Bi-LSTM over the current
input word embedding wt, character embedding ct, and position embedding pt:

−→
ht =

−−→
LSTM(

−−→
ht−1,wt, ct,pt)

←−
ht =

←−−
LSTM(

←−−
ht+1,wt, ct,pt)

ht = [
−→
ht;

←−
ht]

(2)



BIRL: Bidirectional-Interaction Reinforcement Learning Framework 487

Policy: The stochastic policy for relation detection πRE : SRE → ARE, which
specifies a probability distribution over actions:

aRE
t ∼ πRE(aRE

t |sREt ) = SoftMax(WπRE
sREt ) (3)

Reward: The environment provides intermediate reward rREt to estimate the
future return when executing action aRE

t . The reward is computed as follows:

rREt =

⎧
⎪⎨

⎪⎩

1, aRE
t in s,

0, aRE
t = None,

-1, aRE
t not in s.

(4)

If aRE
t equals to None at certain time step t, the agent transfers to a new rela-

tion extraction state at the next time step t+1. Otherwise, the entity extraction
policy (Sect. 2.2) will execute the entity extraction process, and then distant
supervision model and relation calibration RL will be triggered continuously
(Sect. 2.3). The state will not transfer until the relation calibration task over
current option aRE

t is done. Such a semi-Markov process continues until the last
action about the last word w|s| of current sentence s is sampled. Finally, a final
reward rRE∗ is obtained to measure the sentence-level relation extraction perfor-
mance that the relation extraction RL policy πRE detects, which is obtained by
the weighted harmonic mean of precision and recall in terms of the relations in
given sentence s. The final reward rRE∗ is defined as weighted harmonic mean, as
follows:

rRE∗ =
(1 + β2) · Precs · Recs

β2 · Precs + Recs
(5)

Wherein, notation Precs and Recs indicate the precision value and recall
value respectively, computed over the current sentence s.

2.2 Entity Extraction (EE) with RL

Once the relation extraction policy has predicted a non-NONE relation-type
(Sect. 2.1), the Entity Extraction (EE) RL policy πEE will extract the partic-
ipating entities for the corresponding relation. Note that, to make the predicted
relation-type accessible in the entity extraction process, the latest action aRE

t∗
from the relation extraction RL is taken as additional input throughout the
entity extraction process in this section.

Action: The action at each time step t is to assign an entity-label to the current
word. The action space, i.e., entity-label space AEE = ({H, T, O})× ({B, I})

⋃{N},
where in label H represents the participating head entity, label T for the tail
one, label O for the entities that are not associated with the predicted relation-
type aRE

t∗ from the aforementioned relation extraction RL (details in Sect. 2.1),
and N for the words which are not the entity-mentions. Note that, the same
entity mention may be assigned with different H/T/O labels according to different
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relation-types concerned at the moment. In this way, the proposed model could
deal with the problem of the overlapping relation-types. Moreover, label B and
label I are used to indicate the beginning word and the inside word(s) of an
entity, respectively.

State: The entity extraction RL state sEEt ∈ SEE is represented by four parts
as follows: (i) the hidden state ht of current word embedding wt, (ii) the entity
label vector aEEt which is a learnable embedding of aEE

t , (iii) the previous state
sEEt−1from previous time step t − 1, and finally (iv) the relational state represen-
tation assigned to the latest state sREt∗ in Eq. (1), as follows:

sEEt = fEE(WSEE
[ht;aEEt ; sEEt−1; s

RE
t∗ ]) (6)

Wherein ht is the hidden state obtained from the Bi-LSTM module similar to
Eq. (2), and fEE(·) is the non-linear function implemented by MLP.

Policy: The stochastic policy for entity extraction RL πEE : SEE → AEE outputs
an action distribution given state sEEt and the previous relation extraction RL
action aRE

t∗ that launches the current entity extraction process, as follows:

aEE
t ∼ πRE(aEE

t |sEEt ; aRE
t∗ ) = SoftMax(WπEE

[aRE
t∗ ; ·]sEEt ) (7)

Obviously, the aforementioned equation reveals the interactive between rela-
tion extraction process (Sect. 2.1) and entity extraction process (described in
this section). Wherein, WπEE

represents an array of |R| matrices.

Reward: Given the relation-type aRE
t∗ , the entity label for each word can be

easily obtained by sampling actions from the policy. Therefore, an immediate
reward rEEt is provided when the action aEE

t is sampled by simply measuring the
prediction error over gold-standard annotation, as follows:

rEEt = ψ(lt(aRE
t∗ )) · sgn(aEE

t = lt(aRE
t∗ )) (8)

Where in sgn(·) indicates the sign function, and lt(aRE
t∗ ) is the ground-truth entity

label conditioned on the predicted relation-type aRE
t∗ from the relation extraction

process described in Sect. 2.1. Besides, ψ(·) is a bias weight for down-weighing
non-entity label (respect to label N), defined as follows:

lt(aRE
t∗ ) =

{
1, aRE

t∗ �= N,

η, aRE
t∗ = N.

(9)

Intuitively, the smaller threshold η leads to less reward on words that are not
entities. In this manner, the model avoids to learn a trivial policy that predicts all
words as N (non-entity words). When all the actions are sampled, an additional
final reward rEE∗ is computed. If all the entity labels are predicted correctly, then
the agent receives +1 reward, otherwise -1.
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2.3 Relation Calibration (RC) with Distant Supervision

With efforts above, entities corresponding to the relation-type aRE
t∗ are obtained

by entity extraction RL policy in last Sect. 2.2. To release the bidirectionally
interaction between relation extraction process and entity extraction process,
this section aims at inversely re-detecting the relation based on these entities,
via Distant Supervision (DS) mechanisms, and finally calibrating the relation
by comparing it with the relation generated in former relation extraction RL
(described in Sect. 2.1).

Note that, any distantly-supervised models for relation extraction [18,21,27],
could be adopted here, on the condition that the head entity and tail entity
in the current sentence s have been provided in last Sect. 2.2. For simplicity,
[18] is utilized here, with input of {aEE

1 , aEE
2 , · · · , aEE

|s|}, and it generate a relation
aDS

t∗ ∈ {R
⋃
None}. Intuitively, we would like to compare the aRE

t∗ released in
relation extraction RL (Sect. 2.1) and the aDS

t∗ provided by distant supervision
model in this section, to verify the relation’s consistency. Because, this paper
have decoded the relation aRE

t∗ into the corresponding entities in Sect. 2.2, and
this section transfers these entities back to a relation aDS

t∗ again. If the proposed
model is robust enough, aDS

t∗ should be equal to its ancestry aRE
t∗ . Hence, we could

add another constraint or reward along this mentality. Therefore, we define a
score function, as follows:

rRCt =

{
+1, aDS

t∗ = aRE
t∗ ,

-1, aDS
t∗ �= aRE

t∗ .
(10)

If inconsistency occurs, we argue that it is necessary to take right actions to
remove false-positive samples according to the value of rRCt .

Following [21], this study casts the noisy data removing as a RL problem and
aims at obtaining an agent that can take right actions to remove false positive
sentences. The agent obtained will interact with the external environment and
updates its parameters based on the reward rRCt mentioned above. The definitions
of this Relation Calibration (RC) RL model are elaborated as follows.

Action: There are two actions in relation calibration RL: retaining and remov-
ing, i.e., ARC = {Retain, Remove}. For each sentence of the training dataset, the
agent takes an action aRC

t to determine whether it should be removed or not.
The value of the action aRC

t is obtained from the policy network πRC.

State: The relation calibration RL state sRCt ∈ SRC includes the information of
the current sentence and the sentences that have been removed in early states.
To represent the state sRC as a continuous vector, this paper utilizes: (i) word
embedding, (ii) character embedding, and (iii) position embedding, to convert
the sentences into vectors. With the sentence vectors, the current state sRCt is
concatenated by the vector of the current input sentence and the averaged vector
of the removed sentences.

Policy: For the relation calibration RL agent, it is formulated as a policy network
πRC : SRC → ARC. The policy network is used to indicate whether a sentence
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should be removed or not according to the state. Thus, it is a binary classifier,
and this study adopts a simple CNN model as the policy network which was
used as a text classifier in previous researches [12]: After the feature map was
obtained, a max-overtime pooling operation [37] is applied to capture the most
import feature; Finally, these features are passed to a fully connected layer to
generate the probability distribution over labels.

Reward: The goal of the relation calibration RL model is to filter out the
noisy data from the training dataset, resulting in better performance consistency
between aDS

t∗ and aRC
t∗ trained on the clean dataset. Therefore, the reward is cal-

culated through the performance consistency measurement, and we intuitively
select the rRCt (E.g. (10)) as the evaluation criterion to reflect the comprehen-
sive performance consistency of relation extraction RL (details in Sect. 2.1) and
distantly-supervised model (in this section). In this paper, we use a simple set
{+1, -1} as a reward because the reward is used to label the removing dataset.
If the reward is +1, then the removed dataset is labeled as removing; otherwise,
the removed dataset is labeled as retraining.

2.4 RL Policy Learning

To optimize the relation extraction (RE) RL policy (Sect. 2.1), we aim to maxi-
mize the expected cumulative rewards at each time step t as the agent samples
trajectories following the relation extraction RL πRE, which can be computed
discount factor γ ∈ [0, 1), as follows:

J(πRE, t) = EsRE,aRE,rRE∼πRE(aRE|sRE)[
|s|∑

i=t

γi−t · rREi ] (11)

Where in the whole sampling process πRE takes T time steps before it terminates.
Similarly, we learn the entity extraction (EE) RL policy (Sect. 2.2) by maximiz-
ing the expected cumulative rewards from the entity extraction task over action
aRE

t∗ when the agent samples along entity extraction policy πEE(·; aRE
t∗ ) at time

step t:
J(πEE, t; aEE

t∗ ) =EsEE,aEE,rEE∼πEE(aEE|sEE;aRE
t∗)

[
|s|∑

i=t

γi−t · rEEi ]
(12)

The optimization procedure of relation calibration RL (Sect. 2.3) is a con-
tinuous interaction with relation extraction RL and distantly-supervised model,
which receives reward from their performance consistency to guide the all agents’
training. Practically, the detail of the training process is depicted as follows. The
experience rollout dataset Ω is composed of two parts: positive (clean) samples
and negative (noisy) samples, i.e., Ω = Ωpos ∪ Ωneg. Before the training proce-
dure, we assume that all the samples in the original training dataset are positive.
Therefore, the positive dataset Ωpos is equal to the original dataset Ω, and the
negative dataset Ωneg is initialized as zero, i.e., ∅.
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The relation calibration RL agent’s job is to filter out the negative samples
in the original dataset Ω. During the training procedure, in each epoch, the
agent removes a noisy set Ω′ from the original training dataset according to the
policy πRC. Because the set Ω′ is regarded as a negative dataset, then we obtain
a new positive set and a negative sample dataset, according to Ωpos = Ωpos −Ω′

and Ωneg = Ωneg + Ω′, respectively. Then we utilize positive data Ωpos to train:
(i) the relation extraction RL policy πRE (in Sect. 2.1); (ii) entity extraction RL
policy πEE (in Sect. 2.2), and (iii) the distantly-supervised model (in Sect. 2.3).
When these models are trained to converge, we use the validation set to measure
their performance. The relation consistency between aRE

t∗ and aDS
t∗ (Eq. 10) is

calculated and used to calculate the reward for relation calibration RL, which
will be used to train a more robust agent (details in Sect. 2.3).

As discussed above, during training policy πRC, a fixed number of sentences
with the lowest scores will be filtered out from the training dataset Ωpos in every
epoch based on the scores predicted by the RL agent. The remained clean parts
Ωpos in different epochs are the determinant of relation consistency: (i) If the
consistency occurs (i.e., aDS

t∗ = aRE
t∗ ) in epoch i, it means that the agent takes

reasonable actions in epoch i to remove the negative samples. In other words, the
removed dataset should be labeled as removing which means to be removed. (ii)
Conversely, if the inconsistency occurs (i.e., aDS

t∗ �= aRE
t∗ ) in epoch i, it reflects the

agent takes unreasonable actions to removed data and the removed data should
be labeled as retraining. Therefore, we use the removed dataset Ω′ to retrain
the policy in epoch i where the label of the dataset Ω′ comes from the reward
rRCt received by the agent: If the agent receives a reward with a value of +1, the
dataset is labeled as removing, and if the agent received a reward with a value
of –1, the dataset is labeled as retaining. The optimization objective for training
relation calibration RL policy, can be formulated as follows:

J(πRC) = EsRC,aRC,rRC∼πRC(aRC|sRC;aRE
t∗,aDS

t∗)

[
Ω′
∑

γ · rRC]
(13)

2.5 Data Augmentation for RL

While recent achievements are truly impressive, RL is notoriously plagued with
poor data-efficiency and generalization capabilities. [14] proposed a plug-and-
play module that enhanced RL algorithm with augmented data for image-based
task.

Inspired by the impact of data augmentation in computer vision field, we
present a technique to incorporate data augmentations on input observations
for RL pipelines in aforementioned sections. We investigate the utility of data
augmentations in model-free RL by processing text observations with stochastic
augmentations before passing them to the agent for training. Through this mod-
ule, we ensure that the agent is learning on multiple views (or augmentations)
of the same input. This allows the agent to improve on two key capabilities
mentioned above: (i) data-efficiency: learning to quickly master the task at hand
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with drastically fewer experience rollouts; (ii) generalization: improving trans-
fer to unseen tasks or levels simply by training on more diversely augmented
samples. More importantly, through this mechanism, we present the extensive
study of the use of data augmentation techniques for RL with no changes to the
underlying RL algorithm and no additional assumptions about the domain other
than the knowledge that the RL agent operates from text-based observations.

When applying data augmentation module to aforementioned RLs (i.e., rela-
tion extraction RL in Sect. 2.1, entity extraction RL in Sect. 2.2 and relation
calibration RL in Sect. 2.3), our data augmentations are applied to the observa-
tion passed to the corresponding policies, i.e., πRE, πEE and πRC.

During training, we sample observations from either a replay buffer or a
recent trajectory, and augment the texts within the mini-batch. Crucially, aug-
mentations are applied randomly across the batch but consistently across time.
This enables the augmentation to retain temporal information present across
time. Across our experiments, we investigate and ablate the following types of
data augmentations:

(i) Synonym: replaces a random word from the input with its synonym [1,11,
13,22].

(ii) Edit-Distance: extracts a random word and deliberately misspelling this
word [3,6,15].

(iii) Insertion: determines the most important words in the input and then
used heuristics to generate perturbed inputs by adding important words
[10].

(iv) Deletion: Another variant of “Insertion” where instead of adding impor-
tant words, the determined important words deleted [20,25].

Note that, these types of data augmentations chosen in this paper, are also
inspired by the research about adversarial examples and evaluations towards
NLP model’s robustness [11,20]. Obviously, other kinds of data augmentations,
could be utilized here according to the flexibility of the proposed model.

3 Experiments

3.1 Datasets and Metrics

In this section, we conduct experiments to evaluate our model on two public
datasets NYT [24] and WebNLG [7]. NYT dataset was originally produced by
a distant supervision method. It consists of 1.18M sentences with 24 predefined
relation-types. WebNLG dataset was created by Natural Language Generation
(NLG) tasks and adapted by [33] for relational triple extraction task. It contains
246 predefined relation classes. For a fair comparison, we directly use the pre-
processed datasets provided by [33]. For both datasets, we follow the evaluation
setting used in previous works. A triple (eh, r, et) is regarded as correct if the
relation type and the two corresponding entities are all correct. We report Pre-
cision, Recall and F1-score for all the compared models. The statistics of the
datasets are summarized in Table 1. For each dataset, we randomly chose 0.5%
data from the training set for validation.
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Table 1. Distribution of splits on dataset NYT and dataset WebNLG.

Dataset #Train #Dev #Test

NYT 56,195 5,000 5,000

WebNLG 5,019 500 703

3.2 Baselines

The baselines in this research included four categories: pipeline models, joint
learning models, tagging scheme models, and RL-based models.

(i) The chosen pipeline models are FCM [12] and LINE [8]. FCM is a
compositional embedding model by combining hand-crafted features with
learned word embedding for relation extraction. LINE is a network embed-
ding method which can embed very large information networks into low-
dimensional vectors. Both of them obtain the NER results by CoType [23],
and then the results are fed into the two models to predict the relation-type.

(ii) The joint learning models used in this research include feature-based meth-
ods (DS-Joint [31], MultiR [9] and CoType [23]), and neural-based meth-
ods (SPTree [16] and CopyR [33]). DS-Joint is an incremental joint
framework which extracts entities and relations based on structured per-
ceptron and beam-search. MultiR is a joint extracting approach for multi-
instance learning with overlapping relations. CoType extracts entities and
relations by jointly embedding entity mentions, relation mentions, text fea-
tures, and type labels into two meaningful representations. SPTree is a
joint learning model that represents both word sequence and dependency
tree structures using bidirectional sequential and tree-structured LSTM-
RNNs. CopyR is a Seq2Seq learning framework with a copy mechanism
for joint extraction.

(iii) When comparing with the tagging mechanism, we choose Tagging-
BiLSTM [35] and Tagging-Graph [29] as baselines. Tagging-BiLSTM
gets the context representation of the input sentences through a BiLSTM
network and uses an LSTM network to decode the tag sequences. The
Tagging-Graph converts the joint task into a directed graph by designing
a novel graph scheme.

(iv) When comparing with the RL based models, we choose HRL [28], JRL
[37] and Seq2SeqRL [32]. HRL is a hierarchical reinforcement learning
framework which decomposes the whole extraction process into a hierar-
chy of two-level RL policies for relation extraction and entity extraction,
respectively. JRL consists of two components: a joint network (extracts
entities and relations simultaneously) and a reinforcement learning agent
(refines the training dataset for anti-noise). Seq2SeqRL applies RL into a
sequence-to-sequence model to take the extraction order into consideration.
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3.3 Experimental Settings

All hyper-parameters are tuned on the validation set. The dimension of all vec-
tors in Eq. (1), Eq. (2) and Eq. (6) is 300. The word vectors are initialized using
Word2Vec vectors [17] and are updated during training. Both relation-type vec-
tors and entity label vectors (in Eq. (1) and Eq. (6)) are initialized randomly.
The learning rate is 2e−4 for both datasets, the mini-batch size is 16, η = 0.1 in
Eq. (9), β = 0.9 in Eq. (5), and the discount factor γ in Sect. 2.4 is set as 0.95.
Policy gradient methods [26] with REINFORCE algorithm [30] are used here to
optimize both all the policies (discussed in Sect. 2.4).

Table 2. Performance comparison of different models on the benchmark datasets. Aver-
age results over 5 runs are reported. The best performance is bold-typed.

Model NYT WebNLG

Prec Recall F1 Prec Recall F1

FCM [12] – – – 0.472 0.072 0.124

LINE [8] – – – 0.286 0.153 0.193

MultiR [9] - - - 0.289 0.152 0.193

DS-Joint [31] – – – 0.490 0.119 0.189

CoType [23] – – – 0.423 0.175 0.241

SPTree [16] 0.492 0.557 0.496 0.414 0.339 0.357

CopyR [33] 0.569 0.452 0.483 0.479 0.275 0.338

Tagging-BiLSTM [35] 0.624 0.317 0.408 0.525 0.193 0.276

Tagging-Graph [29] – – – 0.528 0.194 0.277

HRL [28] 0.714 0.586 0.616 0.601 0.357 0.432

JRL [37] 0.691 0.549 0.612 0.581 0.334 0.410

Seq2SeqRL [32] 0.779 0.672 0.690 0.633 0.599 0.587

BIRL (Ours) 0.756 0.706 0.697 0.660 0.636 0.617

3.4 Performance Comparison

We now show the results on NYT and WebNLG datasets in Table 2. It can be
seen that the proposed model consistently outperforms all previous models in
most cases. Especially even the strong baseline models HRL and JRL signif-
icantly surpass Tagging-BiLSTM and CopyR, revealing the superiority of
RL-based methods over encoder-decoder based methods. Compared with HRL
and JRL, the proposed BIRL improves the F1 score by 13.04% and 13.85% on
NYT dataset, respectively. Compared with Seq2SeqRL, our BIRL improves
the F1 score by 5.12% on WebNLG dataset. To notice that, SPTree shows a
low F1 performance of 0.496 and 0.357 on the two datasets. As discussed above,
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previous models cannot address the cases where more than one relations exist
between two entities. It may be the main reason for the low performance. We
also find that BIRL has significantly outperformed Tagging-BiLSTM and
Tagging-Graph on the two datasets. This improvement proves the effective-
ness of the beneficial interaction between relation extraction process and entity
extraction process used in BIRL, which is also adopted in HRL. However,
BIRL leverages bidirectional interaction rather than one-way interaction used
in HRL, which capture more connections between relation extraction process
and entity extraction process.

3.5 Ablation Study

Table 3. F1 performance on different ablation models.

Models NYT WebNLG

BIRL 0.697 0.617

-RC 0.647 0.454

-DA 0.659 0.462

-Synonym 0.665 0.467

-Edit-Distance 0.664 0.466

-Insertion 0.681 0.598

-Deletion 0.695 0.610

-ALL 0.617 0.430

In this section, we perform the ablation study on the proposed BIRL. The
ablated models are formed by (i) removing different types of data augmenta-
tions (described in Sect. 2.5); and (ii) removing relation calibration RL mecha-
nism (described in Sect. 2.3). The results are shown in Table 3. Wherein, “-DA”
indicates the ablated model which removes data augmentation module holisti-
cally, and “-RC” indicates the ablated model which removes relation calibration
mechanism, and “-ALL” denotes the condition that removes both of them.

We find that the performance of BIRL deteriorates as we remove different
kinds of data augmentations. By considering data augmentation and relation
calibration (respect to bidirectional interaction), BIRL achieves the best F1 per-
formance in WebNLG and NYT datasets. The F1 performances have been signif-
icantly improved compared to strong baselines such as HRL and Seq2SeqRL.
However, the ablated models are defeated by these baselines, and especially
“-ALL” release the most significant performance drops. The performance
improvement achieved by leveraging data augmentation, proves the effective-
ness of the multiple modeling views in the proposed model. Specifically, “-RC”
underperforms relative to BIRL on both datasets, which making the proposed
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Table 4. Case study for the proposed model and the comparative models.

Case Model Result

#1: A cult of victimology arose and was
happily exploited by clever radicals
among Europes Muslims, especially
certain religious leaders like Imam
Ahmad Abu Laban in Denmark and
Mullah Krekar in Norway.

Golden (Europe, contains, Den-
mark)
(Europe, contains,

Norway)

HRL (Europe, contains,

Denmark)
√

(Europe, contains,
Norway)

√

Seq2SeqRL (Europe, contains,
Denmark)

√
(Europe, contains,
Norway)

√

BIRL (Ours) (Europe, contains,
Denmark)

√
(Europe, contains,
Norway)

√

#2: Scott (No rating, 75min) Engulfed
by nightmares, blackouts and the
anxieties of the age, a Texas woman flees
homeland insecurity for a New York
vision quest in this acute, resourceful and
bracingly ambitious debut film.

Golden (York, contains, Scott)

HRL (York, contains, Scott)
√

Seq2SeqRL (York, contains, Texas)×
BIRL (Ours) (York, contains, Scott)

√

#3: For as long as Stephen Harper, is
prime minister of Canada, I vow to send
him every two weeks, mailed on a
Monday, a book that has been known to
expand stillness.

Golden (Stephen Harper,
nationality, Canada)

HRL (Stephen Harper,
place lived, Canada) ×

Seq2SeqRL (Stephen Harper,
nationality, Canada)

√

BIRL (Ours) (Stephen Harper,
nationality, Canada)

√

model deteriorates to HRL [28], suggesting the importance of modeling the rela-
tion consistency for performance improvement and robust, as well as interaction
of relation extraction procedure and entity extraction procedure.

We observe that, the performance of “-ALL” underperforms relative to both
“-RC” and “-DA”, indicating the fact that both relation calibration (Sect. 2.3)
and data augmentation (Sect. 2.5) contribute to refining the performances, which
demonstrates the motivation and hypotheses held in this research. Besides, the
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performance deterioration is larger by removing relation calibration, comparing
to removing data augmentation. This observation sufficiently proves that it is
the modeling with relation calibration that plays more important role in refining
the performances. We also find that “-Insertion” and “-Deletion” outperform
relative to “-Synonym” and “-Edit-Distance”, indicating the fact that synonym
and edit-distance play a more important role in data augmentation.

3.6 Case Study

In this subsection, some representative examples are given to illustrate the
effectiveness of the RL model. The cases are shown in Table 4. Each case con-
tains four rows, the gold results, the results produced by the proposed model
BIRL, and the results generated from the comparative baselines (i.e., HRL and
Seq2SeqRL).

From the case #2, we observe that both ours and HRL correctly
extract the relational triple “(York, /location/location/contains, Scott)”. How-
ever, Seq2SeqRL identifies “Texas” as an entity by error while our BIRL
correctly extracts the entity “Scott” that involves in the relation “/loca-
tion/location/contains”. This fact suggests that the proposed BIRL is capable
of leveraging the prediction state of relation extraction to refine its entity extrac-
tion, and vice versa, and hence is prone to extract the word which involves the
relational triple as an entity. In the case #3, the correct relationship between
the two entities is “/people/person/nationality”. The HRL model, which doesn’t
refine the training data, trains on the original dataset can identify the two enti-
ties correctly, but the relationship between them is mispredicted while the our
model with the assistance of relation calibration RL generate the triple correctly.

4 Conclusion

In this paper, we aimed at handing (i) relation consistency, (ii) noisy training
data, and (iii) data-efficiency of RL-based model for jointly extracting entities
and relations, and propose a novel bidirectional interaction RL model. Espe-
cially, the proposed model is capable of leveraging the prediction state of relation
extraction to refine its entity extraction, and vice versa, by fully modeling and
capturing their interaction.
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Abstract. Click-Through Rate (CTR) prediction has become an impor-
tant part of many enterprise applications, such as recommendation sys-
tems and online advertising. In recent years, some models based on deep
learning have been applied to the CTR prediction systems. Although the
accuracy is improving, the complexity of the model is constantly increas-
ing. In this paper, we propose a novel model called Domain-based Fea-
ture Interactions Learning via Attention Networks (DFILAN), which can
effectively reduce model complexity and automatically learn the impor-
tance of feature interactions. On the one hand, the DFILAN divides the
input features into several domains to reduce the time complexity of
the model in the interaction process. On the other hand, the DFILAN
interacts at the embedding vector dimension level to improve the feature
interactions effect and leverages the attention network to automatically
learn the importance of feature interactions. Extensive experiments con-
ducted on the two public datasets show that DFILAN is effective and
outperforms the state-of-the-art models.

Keywords: Click-through rate · Domain · Feature interactions ·
Attention networks

1 Introduction

Advertising revenue is the main source of income for Internet companies. The
core technique of advertising business is the CTR prediction. CTR prediction
leverages the interactive information between users and ads to predict whether
the user clicks on the advertisement. Due to the CTR prediction can increase
advertising revenue, the research of CTR prediction has the great significance.
Many models have been applied to the CTR prediction such as Matrix factor-
ization (MF) [1], Factorization Machine (FM) [2], Gradient Boosting Decision
Tree (GBDT) [3], and FM-based models [4,5,17]. Due to the high fitting ability
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of neural networks, many DNN-based models [6–18] are proposed to improve the
prediction accuracy, and some models [19–23] use attention networks to auto-
matically learn the importance of feature interactions. The combination of neu-
ral networks and attention networks has been a research trend in the CTR field.
Although the current work has achieved some results, the CTR prediction model
based on deep learning still has the following challenges: 1) The time complexity
of models become larger and larger, and the number of parameters generated
during the model training process increase sharply. 2) The feature interactions
method is too simple to fully learn the relationship between features. Therefore,
this article mainly studies how to improve the CTR prediction model based on
deep learning.

In this paper, we propose a domain-based feature interactions model, which
is called DFILAN. The correlation between features and label is different, and
the interaction of features with a large correlation gap will reduce the impact of
the strong correlation feature on the label. For example, the interaction between
the feature “occupation” and the feature “hobby” will reduce the influence of the
“occupation” on the label “income” and increase the influence of the “hobby” on
the label “income”. Taking this into consideration, we use the concept of domain
and divide the input features into several domains according to the correlation
between features and the label. In the interaction process, the independent inter-
action of inter-domain and intra-domain can effectively reduce the complexity
of the model. Besides, feature interaction is a core part of the field of CTR
prediction and the commonly used interaction method is the inner product or
Hadamard product. We propose a new interaction method, called vector-dims
product, which performs feature interactions at the embedding vector dimensions
level, and the interaction process is more subtle. At the same time, to improve
the effectiveness of feature interactions, the attention network [21] is added to
the interaction layer and the importance of feature interactions is automatically
learned through the attention network.

Our main contributions are listed as follows:

– We leverage the concept of domain and divide the input features into several
domains according to the correlation between features and the label, which
can greatly reduce the time complexity of the model.

– We propose a new interactive method called vector-dims product at the fea-
ture interactions layer, which can get better interactive effects compared to
the commonly used interactive method Hadamard product.

– We apply the attention network to automatically learn the importance of
feature interactions, which can greatly improve the effectiveness of feature
interactions, and combine vector-dims product to achieve better interaction
results.

– We conduct extensive experiments on the two public datasets Avazu and
MovieLens, and the results show our model DFILAN outperforms the state-
of-the-art models.

The rest of this paper is organized as follows. In Sect. 2, we review related
works that are relevant to our proposed model. Section 3 describes the details
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of our DFILAN. The experimental evaluation is discussed in Sect. 4. Section 5
concludes this paper.

2 Related Work

In recent years, many research efforts have been devoted to the CTR prediction
problem. In this section, we briefly divide related research work in the CTR
prediction into two categories: FM-based CTR models and deep learning-based
CTR models.

2.1 FM-based CTR Models

FM [2] is the most commonly used model for CTR prediction tasks. It has lower
time complexity and is suitable for large sparse data, but the prediction accuracy
is lower. Field-aware Factorization Machine (FFM) [4] introduces the concept
of field to improve the degree of feature interactions. Operation-aware Neural
Networks (ONN) [17] combines FFM [4] and Product-based Neural Network
(PNN) [8] to improve the accuracy of the model prediction. It considers that
each feature should learn different embedding vectors for different operations to
improve the expression effect of the feature. However, ONN requires very large
memory requirements in the process of implementation and will generate a huge
number of interactions during the feature interactions process. The complexity
of this model is too high to be easily used in Internet companies.

2.2 Deep Learning-Based CTR Models

With the successful application of deep learning in other fields, such as CV [24],
NLP [25], many models based on deep learning are applied in CTR prediction
systems. Neural Factorization Machines (NFM) [7] uses the second-order interac-
tion of the original embedding as the input of the DNN and applies the Hadamard
product as the feature interaction method. Wide & Deep model (WDL) [11] has
both the advantages of memory and generalization. The linear structure provides
the model with the ability to remember, and at the same time uses the gener-
alization ability of Multilayer Perceptron (MLP) to learn the high-order feature
interactions. While preserving the advantages of WDL, DeepFM [12] designs the
feature interactions module and applies the vector inner product to obtain the
second-order interaction results of the features. Deep & Cross Network (DCN)
[13] designs a cross-network to carry out the explicit interaction process between
features and the cross-network is simple and effective. xDeepFM [14] combines
explicit and implicit feature interactions and proposes Compressed Interaction
Network (CIN) to get a better interaction result, but the time complexity is so
heavy that it is difficult to apply the model to the actual industry. FLEN [18]
uses Field-Wise Bi-Interaction (FwBI) to reduce the time complexity of feature
interactions. But it ignores that the input features do not have specific mean-
ings, and the interaction method is too simple to get good results. Deep Interest
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Network (DIN) [20] designs the activation unit to learn the interaction weight
between a target item and user behavior. Attentional Factorization Machines
(AFM) [21] uses the attention network to learn the weight of feature interactions.
Relying on neural networks and attention networks have become an important
development trend of CTR prediction models. However, the high complexity
and multi-parameter problems of deep learning itself have not been effectively
solved. How to reduce the complexity of the model while obtaining effective
feature interactions to ensure that the accuracy of predictions is improved has
become the primary issue for enterprises.

3 Our Proposed Model

In this section, we describe the architecture of the DFILAN as depicted in Fig. 1.
The DFILAN model consists of the following parts: input layer, embedding layer,
linear unit, interaction layer, MLP component, and prediction layer. The input
features are divided into several domains in the input layer, and the embed-
ding layer adopts a sparse representation for input features and embeds the raw
feature input into a dense vector. The linear unit, interaction layer and MLP
component are designed to obtain feature linear interaction, second-order inter-
action and advanced interaction respectively. The prediction layer combines all
the interactive results to output the prediction score.

Fig. 1. The architecture of our proposed DFILAN.
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3.1 Input Layer

We introduce the concept of domain and divide input features into several
domains to reduce the time spent on feature interactions. Domain is the grouping
of input features, each domain contains several different features. Assume that
the number of input features is n. If the domain is not divided, the number of
interactions is A = n(n − 1)/2. If the domain is divided, the number of domains
is m, each domain contains p features, m ∗ p = n, and the number of interac-
tions is B = (np2(p − 1) + n(np))/2p2. Only when p = 1 and p = n, A = B,
otherwise A > B. Therefore, dividing the input features into several domains,
and the independent interactions between inter-domain and intra-domain can
reduce the interaction time.

We regard that the interaction between features with large differences in
correlation will weaken the influence of the features on the predicted value of
the label. Therefore, according to the correlation, the input features are divided
into several domains. In the CTR field, the input features are mainly discrete
data of different types. For discrete data, the information gain rate is applied
to measure the correlation between each feature and label. The formula for
information gain rate is defined as:

Gain − ratio(label, C) =
Gain(label, C)

IV (C)
(1)

where Gain(label, C) represents the information gain of feature “C” relative to
the label, and IV (C) denotes the number of different values of feature “C”. The
greater the value of Gain− ratio(label, C), the stronger the correlation between
feature “C” and the label.

Table 1. The correlation of features and the label on the MovieLens dataset.

Feature Correlation

title 0.009386822

movie id 0.009386822

user id 0.006265287

genres 0.005102952

age 0.001148495

occupation 0.000480635

gender 0.000213156

For example, the MovieLens dataset is divided into several domains. Accord-
ing to Formula 1, the correlation between each feature and label in the MovieLens
dataset is obtained, and the features are sorted in descending order according to
the correlation. The results are shown in Table 1. The division result of Movie-
Lens dataset is “normal-domain: title, movie id, user id; weak-domain: genres,
age, occupation, gender”.
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3.2 Embedding Layer

One-hot encoding is used for the expression of input features. For example, one
input instance “[user id = 3, gender = male, hobby = comedy&rock]” is trans-
formed into a high-dimensional sparse vector via one-hot encoding: “[[0,0,1,...,0],
[1,0], [0,1,0,1,...,0]]”. After using one-hot encoding to express the input data,
x = [x1, x2, ..., xn], n is the number of input features, it will become very sparse.
We apply embedding technology to convert high-dimensional sparse input data
into low-dimensional dense embedding vectors. The embedding layer is shown in
Fig. 2. The result of the embedding layer is a wide concatenated vector:

e = [e1, e2, . . . . . . , en] (2)

where ei represents the embedding vector of i-th feature, and each feature
embedding vector is D-dimensional. Although the length of the input features
may be different, they share an embedding matrix with a size of n ∗D, where D
is the embedding dimension.

Fig. 2. Illustration of embedding layer with D = 4.

After the embedding vector of the input feature is obtained, the expression
result of m domains is defined as:

E = [E1, E2, . . . . . . , Em] (3)

Ej =
p∑

i=1

F (ei|j) (4)

where j ∈ [1,m], p represents the number of features contained in each
domain, F (ei|j) which means that the i-th feature embedding vector belongs to
the j-th domain.

3.3 Interaction Layer

We can clearly find that dividing the input features into different domains can
improve the efficiency of feature interactions. After dividing the domains, the
feature interactions are divided into two parts: inter-domain interactions and
intra-domain interactions.
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Inter-domain Interactions Module. The Hadamard product is applied for
the inter-domain interactions, and the interactions process is shown in Formula 5,
where Ointer−domain represents the result of the inter-domain interactions and
� represents the Hadamard product. The interaction process of the Hadamard
product is shown in Formula 6, where · represents the product of two numbers.

Ointer−damain =
m∑

i=1

m∑

j=1

Ei � Ej (5)

Ei � Ej =
D∑

d=1

Ei,d · Ej,d (6)

In order to get a better interaction effect, the value of m is often set rela-
tively small, generally 3 or 4. As shown in Fig. 1, we divide the n features into 3
domains, namely normal-domain, soft-domain, and weak-domain. Dividing fea-
tures into several domains can not only reduce the complexity of the model, but
also make the model framework more extensible, and other factors such as time
or position can be well added. The value of the domain is generally small, so in
the interaction layer, we mainly consider the intra-domain interaction process.

Intra-domain Interactions Module. After the division of domains, the num-
ber of features in each domain will be much less than that in the input features,
which can greatly reduce the complexity of the model. To get a better interac-
tion result within the domain, we design a product operator module to use two
different interaction rules to get the interaction result. One is the Hadamard
product, another is the vector-dims product.

Fig. 3. The different methods to calculate the feature interactions.

a. Hadamard product. The interactions process is shown in Formula 7, where
i ∈ [1, p], j ∈ [1, p], ei and ej represents the embedding vector of the i-th and
j-th feature respectively.

Iij = ei � ej (7)

As shown in Formula 6, the Hadamard product is the multiplication of the
corresponding dimensions of the embedding vector, which takes into account the
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feature embedding vector as a result of partial interaction, the interaction process
is subtle. But it is only interaction in the same dimension of the embedding vector
and does not consider the interaction process between the dimensions of the
embedding vector. In response to this problem, we combine vector inner product
operations to perform feature interactions from the perspective of embedding
vector dimensions, called vector-dims product.

b. Vector-dims product. As shown in Fig. 3, there are P features, each feature
is D dimensions. We get a P ∗D two-dimensional matrix and use the vector inner
product operation to get a new D ∗ D matrix. In the new matrix, the i-th row
and j-th column represents an interactive result of the i-th dimension and the
j-th dimension of the embedding vector of P features. Formally, the vector-dims
product is defined as:

Iij =
P∑

k=1

eikekj (8)

Where i ∈ [1,D], j ∈ [1,D], ejk represents the i-th dimension of the k-th feature
emebedding vector.

Even after the division of domains, there may still be useless feature inter-
actions in a domain. For example, there is such a domain in which there is
occupation feature, gender feature, and age feature. As far as we know, the
impact of occupation and age is much greater than that of gender. The impor-
tance of feature interactions is learned by an attention network [21]. Formally,
the attention network is defined as:

α′
ij = qTReLU(W (Iij) + b) (9)

αij = softmax(α′
ij) =

exp(α′
ij)∑

exp(α′
ij)

(10)

where W ∈ R
t×D, b ∈ R

t, q ∈ R
t are model parameters, and t denotes the

hidden layer size of the attention network, which we call “attention unit”. The
attention scores are normalized through the softmax function. ReLU as the acti-
vation function.

The attention network learns different weights for different interaction meth-
ods. Ointra−domain represents the result of intra-domain interactions. The weight
of the interaction vetcor is learned for Hadamard product, Ointra−domain =∑P

i=1

∑P
j=1 Iijαij and the weight of each dimension in the interaction vector

is learned for vector-dims product, Ointra−domain =
∑D

i=1

∑D
j=1 Iijαij . Starting

from the embedding dimension, the feature interaction process is more subtle.
We combine the interaction results of inter-domain and intra-domain as the
result of the interaction layer:

OIn = Ointer−domain + Ointra−domain (11)
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Complexity Analysis. It is worth pointing out that our DFILAN is much more
memory-efficient. The number of feature interactions is m(m−1)/2+mp(p−1)/2,
where m∗p = n, m << n, and the number of parameters is Dt+t in the attention
networks. Therefore, the DFILAN model complexity of feature interactions can
be efficiently computed in O(m2 + p2 + Dt). Because the values of D and t
are often relatively small, the model complexity is approximately considered as
O(m2 + p2), which is much smaller than O(n2).

3.4 Linear Unit and MLP Component

We design a separate linear unit to obtain the first-order interactive results of
the input features, OLinear = w0 +

∑N
i=1 wixi. An MLP is employed to capture

non-linear, high-order feature interactions. The input is simply a concatenation
of input features embedding vector. h0 = concat(e1, e2, ..., en). A stack of fully
connected layers is constructed on the input h0. Formally, the definition of fully
connected layers are as follows:

hl+1 = σ(Wlhl + bl) (12)

Where l denotes the number of hidden layers, Wl, bl and σ denotes the weight
matrix, bias vector and activation function for the l-th layer, respectively. ReLU
is applied as the activation function for each layer.

3.5 Prediction Layer

The output vector of the last hidden MLP layer hl is concatenated with OIn and
OLinear to form Q, Q = concat(hl, OIn, OLinear). Sigmoid activation function is
used to make predictions, and the prediction layer is defined as follow:

ŷ =
1

1+e−(WTQ)
(13)

Our loss function is cross entropy, which is defined as follows:

loss = − 1
S

S∑

i=1

(yilog(ŷi) + (1 − yi) ∗ log(1 − ŷi)) (14)

Where ŷi is the predicted value, ŷi ∈ (0, 1) via the sigmoid funcation, yi is
the ground truth of i-th instance, and S is the total size of samples.

4 Experiments

We call the model using the Hadamard product DFILAN I, and the model using
the vector-dims product DFILAN II. In this section, extensive experiments are
conducted to answer the following questions:

– (RQ1) How does our model DFILAN I perform as compared to the state-of-
the-art methods for CTR prediction?

– (RQ2) Is the DFILAN II model better than DFILAN I?
– (RQ3) How do some model hyperparameters affect DFILAN II?
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4.1 Experimental Setup

Dataset. 1) Avazu. The Avazu dataset was originally used for Kaggle compe-
titions. It has 24 fields, and the label of each sample is 0 or 1. We randomly
select 1 million pieces of data for the experiment. 2) MovieLens. The MovieLens
dataset was originally designed for user rating prediction. It has 7 fields, and the
label of each sample is 1 to 5. The label is 3–5 points is set to 1, and the label
is 1–2 points is set to 0. We select MovieLens-1M dataset for the experiment.

Evaluation Metric. 1) AUC: Area under ROC evaluation indicators are widely
used in classification problems. Its actual meaning is the probability that the
positive example score is ranked before the negative example when the model is
scored. The upper limit of AUC is 1, the larger the better. 2) Logloss: Logloss is
a widely used metric in binary classification to measure the distance between two
distributions. The lower limit of Logloss is 0, the smaller the value, the better.

Baseline Methods. We compare DFILAN with DeepFM [12], DCN [13], ONN
[17], xDeepFM [14], FLEN [18]. As introduced and discussed in Sect. 2, these
models are highly related to our DFILAN. Note that an improvement of 1‰ in
AUC is usually regarded as significant for the CTR prediction because it will
bring a large increase in a company’s revenue if the company has a very large
user base.

Implementation Details. We implement all the models with Tensorflow in
our experiments. For the division of domains, the number of domains is set to 3
for the Avazu dataset and 2 for the MovieLens dataset. For the embedding layer,
the dimension of the embedding vector is set to 8 for the Avazu dataset and 4 for
the MovieLens dataset. For all models, Adam [26] is applied as the optimization
method with a mini-batch size of 256 for Avazu and MovieLens datasets, and
the learning rate is set to 0.0001. For all models, in the MLP module, the depth
of the network layer is set to 2, the number of neurons in each layer is 128, and
the activation function is ReLU. For the attention network part, the number of
attention unit is set to 16 for Avazu and MovieLens datasets.

4.2 Performance Comparison (RQ1)

In this subsection, we compare the proposed DFILAN I model with the model in
baseline methods, and the results are shown in Table 2, Table 3. For simplicity,
we assume that the number of network layers and the number of units in each
layer of all models are equal.

Where N represents the size of the input features, M represents the number
of divided domain, P represents the number of feature in each domain, M ∗
P = N and M << N , D represents the size of the embedding dimension, L
represents the number of layers in the MLP component, T represents the number
of attention units, and H represents the number of neurons in each layer. By
observing the experimental results, some conclusions are as follows.
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Table 2. The overall performance of models on Avazu and MovieLens datasets.

Model Avazu MovieLens

Logloss AUC Logloss AUC

DeepFM 0.3989 0.7519 0.3389 0.8381

DCN 0.3966 0.7526 0.3381 0.8386

XDeepFM 0.3953 0.7545 0.3379 0.8388

ONN 0.4129 0.7449 0.353 0.8512

FLEN 0.3945 0.756 0.3341 0.8394

DFILAN I 0.3913 0.7574 0.3332 0.8481

Table 3. The complexity of all models on Avazu and MovieLens datasets.

Model Model complexity Parameter size

DeepFM O(ND + N2 + NLH) 6,918,072

DCN O(ND + LN2 + NLH) 6,952,408

XDeepFM O(ND + L2N2 + NLH) 7,824,584

FLEN O(ND + M2 + P 2 + NLH) 6,909,888

ONN O(N2D + N3 + NLH) 48,878,688

DFILAN I O(ND + M2 + P 2 + DT + NLH) 6,910,208

– Table 2 shows the AUC and Logloss of all models on the Avazu and MovieLens
datasets. Obviously, the DFILAN I model we proposed has achieved the best
performance on both AUC and Logloss. Table 3 shows the model complexity
of all models and the number of parameters generated during their training in
the Avazu datasets. Obviously, the DFILAN I model we proposed is dominant
in model complexity.

– From Table 2, we can find that compared with the latest FLEN [18] model,
the DFILAN I model we proposed on the Avazu dataset has a 0.32% increase
in Logloss and a 0.14% increase in AUC. On the MovieLens dataset, Logloss
increased by 0.09% and AUC increased by 0.16%.

– From Table 3 we can find that the DFILAN I model we proposed has advan-
tages in reducing model complexity. Compared with the xDeepFM [14], the
DFILAN I model can effectively reduce the size of model parameters, thereby
reducing the cost of enterprises. Although our DFILAN I model has larger
model parameters than the FLEN [18] model, combined with the perfor-
mance of the model in Table 2 on AUC, we believe that the slightly larger
model parameters are negligible.
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4.3 Different Product Operator Comparision (RQ2)

In this subsection, we will compare the DFILAN I model with the Hadamard
product as the interaction rule and the DFILAN II model with the vector-dims
product as the interaction rule. The comparison results are shown in Table 4.

Table 4. The performance of DFILAN I and DFILAN II on the Avazu and MovieLens
datasets.

Model Avazu MovieLens Parameter size

Logloss AUC Logloss AUC

DFILAN I 0.3913 0.7574 0.3332 0.841 6,910,208

DFILAN II 0.3889 0.7591 0.3316 0.8426 6,926,336

From Table 4, we can find that the DFILAN II model with vector-dims as the
interaction rule has better performance on the Avazu and MovieLens datasets.
Comparing DFILAN I, on the Avazu dataset, Logloss increased by 0.24% and
AUC increased by 0.17%, while on the MovieLens dataset, Logloss increased
by 0.16% and AUC increased by 0.16%. Comparing the parameter sizes of the
models on the Avazu dataset, it can be found that the DFILAN II does not
increase too many model parameters, which are within the acceptable range. So
we can get the result that the vector-dims product interaction rule we proposed
is better than the Hadamard product interaction rule.

4.4 Hyper-parameter Tuning (RQ3)

In this subsection, some hyper-parameter investigations will be conducted in
our model. Because the number of attention units is very small, the impact of
attention units is not considered. We change the following hyper-parameters: 1)
the number of domains; 2) the dimension of embeddings; 3) the number of units
per layer in DNN, and the depth of DNN. Unless specially mentioned in our
paper, the default parameter of our network is set as Sect. 4.1.

Table 5. The performance of different number of domains on MovieLens dataset.

Number of domains Logloss AUC

1 0.3322 0.8425

2 0.3281 0.8447

3 0.3322 0.8425
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Part of the Domains. On the Avazu dataset, we change the domain size from
2 to 7 and on the MovieLens dataset, the domain size increase from 1 to 3. From
Table 6, it can be obviouly found that in the process of increasing the domain
size, the performance of the DFILAN II model on the Avazu dataset is always
better than the latest model. When the number of domains is 3, the DFILAN II
model has the best performance. From Table 5, it can be clearly found that in the
process of increasing the domain, the performance of the DFILAN II model on
the MovieLens dataset is always better than the latest model, when the number
of domains is 2, the DFILAN II model has the best performance. We consider
that the MovieLens dataset has too few features, which does not reflect the
performance improvement brought by the division of the domain.

Table 6. The performance of different number of domains on Avazu dataset.

Number of domains Logloss AUC

2 0.3794 0.7574

3 0.3784 0.7588

4 0.3806 0.7578

5 0.3787 0.7578

6 0.379 0.7582

7 0.3807 0.7577

Embedding Part. The dimension of the embedding vector is not fixed, and
we change the embedding dimension from 4 to 64 on the Avazu and MovieLens
datasets. From Table 7, some observations are as follows:

– As the dimension is expanded from 4 to 64, our DFILAN II obtains a substan-
tial improvement on the MovieLens dataset. When the embedding dimension
is 4, the model performance reaches the best.

– When we increase the embedding dimension on the Avazu dataset, the per-
formance will fluctuate, and when the embedding size is 16, the performance
reaches the best. We hold that the embedding size will affect whether the
information of the feature itself is adequately represented.

Table 7. The performance of different embedding dimensions on Avazu and MovieLens
datasets.

Embedding dimensions Avazu MovieLens

Logloss AUC Logloss AUC

4 0.3814 0.7531 0.3316 0.8427

8 0.3811 0.7533 0.3379 0.8382

16 0.3831 0.7527 0.3529 0.8343

32 0.3838 0.7496 0.3588 0.831

64 0.3845 0.7477 0.344 0.8362
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MLP Part. We study the impact of different neural units per layer and different
depths in the MLP part. We can observe from Fig. 4 that an increasing number of
layers improves model performance at the beginning. However, the performance
is degraded if the number of layers keeps increasing. This is because an over-
complicated model is easy to overfit. It’s a good choice that the number of
hidden layers is set to 2 for the Avazu dataset and MovieLens dataset. Likewise,
increasing the number of neurons per layer introduces complexity. In Fig. 5, we
find that it is better to set 128 neurons per layer for the Avazu dataset and
MovieLens dataset.

(a) Logloss (b) AUC

Fig. 4. The performance of different numbers of layer in DNN.

(a) Logloss (b) AUC

Fig. 5. The performance of different unit numbers of each layer in DNN.

5 Conclusion

Motivated by the drawbacks of the state-of-the-art models, we propose a new
model named DFILAN and aim to reduce model time complexity and improve
feature interaction effects. The input features are divided into several domains
according to the correlation between features and the label. During the inter-
action, the independent interaction of inter-domain and intra-domain can effec-
tively reduce feature interactions time. In the feature interactions layer, we pro-
pose a new interaction method, named vector-dims. Performing inner product
operation at the level of embedding vector dimensions can obtain the interaction
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relationship between dimensions, making the interaction process more subtle and
obtaining better interaction results. Besides, we apply the attention network to
learn the importance of feature interactions automatically. Experiments on two
public datasets, we can clearly find that our proposed DFILAN model has the
best performance. In the future, we will consider combining the relevant content
of the knowledge graph to further improve the accuracy of the model prediction.
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Abstract. Domain adaptation aims to transfer the enriched label
knowledge from large amounts of source data to unlabeled target data.
Recent methods start to solve the class-wise domain adaptation prob-
lem by incorporating the soft labels to each target data. Although the
soft label strategy could alleviate the negative influence caused by the
hard label strategy to some extent, the improper propagation sequence
ignoring the labeling difficulties of different target examples will lead
to confusing probabilities problem. Moreover, the instability of a sin-
gle propagation model in dealing with various data may also hinder the
performance of target label inference. To address these limitations, we
propose a Double Ensemble Soft Transfer Network (DESTN) to jointly
optimize the class-wise adaptation and learn the discriminative domain-
invariant features with clear soft target labels. Our motivation is to con-
struct a Label Propagation Ensemble (LPE) model by various feature
subspaces so as to get robust and clear soft target labels for class-wise
domain adaptation. Meanwhile, the other Classifiers Ensemble Frame-
work (CEF) is trained on the labeled source samples and the reliable
pseudo-labeled target samples for learning the discriminative features
during the iteration. Extensive experiments show that DESTN signifi-
cantly outperforms several state-of-the-art methods.

Keywords: Unsupervised domain adaptation · Deep ensemble
network · Soft labels · Discriminative feature learning

1 Introduction

Deep neural networks can be trained very well with sufficient labeled data, which
have shown great success in multimedia applications [24,25,29]. However, col-
lecting the well-annotated datasets is exceedingly expensive and time-consuming.
Domain adaptation (DA) models [33,35] can leverage the off-the-shelf data from
a different but related source domain. This will boost the task in the new target
domain and reduce the labeling consumption as well. Depending on the avail-
ability of labeled data in the target domain, domain adaptation can be divided
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 516–532, 2021.
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Fig. 1. It is difficult to decide which class the target samples with confusion probabil-
ities near the hyperplane belong to.

into semi-supervised and unsupervised domain adaptation (UDA). In this paper,
we focus on UDA problem. Most domain adaptation techniques [18,38] focus on
the class-wise adaptation problem, which iteratively matches the marginal and
conditional distributions to extract the domain invariant features and obtains
the pseudo target labels via constructing a classifier on source data. For the hard
pseudo label guided methods (assigning only one category to each target sam-
ple) [4,6,23,36], the class-wise methods try to tackle this issue by incorporating
the hard pseudo target labels to better reduce the cross-domain distribution
shifts. Since the accuracy of hard assignment of each unlabeled target sample to
only one category cannot be guaranteed explicitly, these approaches are vulnera-
ble to the error accumulation and hence unable to preserve cross-domain category
consistency. As a result, the following adaptation performance could be degraded.
Recent graph-based or label propagation (LP) guided methods [8,20,39] start
to solve this problem by introducing the soft labels (a probability distribution
over all the categories) [37] to each target data.

Although the soft label strategy can alleviate the negative influence caused
by hard label strategy to some extent, it still faces two limitations. (1) the
propagation sequence adopted by existing methods is completely governed by
the connectivity among examples in the graph, namely the label information
will be transferred from one labeled example to another as long as there is
an edge between them. This propagation sequence is sometimes problematic
because it does not explicitly consider the propagation difficulty or reliability of
different unlabeled examples, especially the ones that are near the hyperplane.
If the label information is compulsory transferred to the unlabeled samples, as
shown in Fig. 1, it will lead to confusing probabilities (unclear soft target labels)
problem. (2) There is not a propagation model that can perfectly handle all the
practical situations for the strength of one propagation approach is very limited.
For example, some tough outliers can misled the propagation process, so utilizing
a single method is not enough reliable for achieving accurate propagation, which
is inevitable to hinder the performance of target label inference.

Motivated by these issues, as shown in Fig. 2, we propose a Double Ensem-
ble Soft Transfer Network (DESTN) to align the discriminative features across
domains progressively and effectively via exploring the clear soft target labels.
Specifically, to satisfy the class-wise domain adaptation, we need labels from both
domains, while target labels are unknown in UDA situation. For label propaga-
tion guided methods, a natural way is to estimate the target labels by network
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outputs during training. However, the instability of a single propagation method
in dealing with various data may include some misclassified ones with high con-
fidence. Therefore, we propose to construct a label propagation ensemble (LPE)
framework to get reliable labels. In LPE, random subspace method is introduced
to partition the feature space into multiple subspaces, then several label prop-
agation models are constructed on corresponding subspaces. Finally, the results
of different label propagation models are fused at decision level, and only the
unlabeled target samples whose label propagation results are the same will then
be assigned with pseudo labels for the following class-wise domain adaptation.

The LPE structure is expected to get more clear soft target labels as much
as possible so as to obtain reliable pseudo target labels for the next iteration
training, which is determined by the propagation easiness of different unlabeled
target examples. The easier the propagation of target samples, the more clear
the soft target labels can be. However, the target samples distributed near the
hyperplane are likely to be difficult for label propagation, which will lead to con-
fusing probabilities problem. Therefore, the learned domain-invariant features
need to be discriminative enough such that these tough target samples can be
pushed away from the hyperplane and the propagation difficulty of these unla-
beled examples can be reduced. To this end, we introduce the other Classifiers
Ensemble Framework (CEF) to be trained on the labeled source samples and the
reliable pseudo-labeled target samples during the iteration. It can keep better
intra-class compactness and inter-class separability.

LPE and CEF can complement each other iteratively and alternatively. LPE
will facilitate the final prediction which boosts the robustness of CEF by provid-
ing reliable pseudo target labels, and the discriminative domain-invariant fea-
tures learned by CEF can effectively regularize LPE to alleviate the propagation
difficulty of those unlabeled target samples. As training goes on, an increasing
number of reliable labeled target samples will be chosen to learn the model in
turn. Such progressive learning can promote DESTN to capture more accurate
statistics of data distributions. We summarize our contributions as follows.

• We propose a model DESTN, where Label Propagation Ensemble (LPE)
structure is to introduce reliable pseudo target labels for robust class-wise
adaptation and Classifiers Ensemble Framework (CEF) is applied to alleviate
these negative influence caused by confusing probabilities so as to boost the
end-to-end training with LPE.

• DESTN aims to learn both reliable domain invariant and class discriminative
features by simultaneously exploring the class-wise adaptation and exploiting
the class-level relations in the same domain with robust soft label strategy.

• The experimental results show that compared with the state-of-the-art meth-
ods, our method achieves the best performance on the Office-31 dataset and
competitive performance on Digital dataset and the challenging Office-Home
dataset.
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2 Related Work

A common practice for unsupervised domain adaptation is to reduce the domain
shifts between the source and target domain distributions [2,27,28,31] so as to
obtain domain-invariant features. In this section, we briefly review on domain
adaptation methods, which are closely related to our method.

Encouraged by the deep frameworks developed in recent years, an increas-
ing interest in ConvNets [15] methods comes up to alleviate the discrepancy
between domains. These approaches are trained to simultaneously minimize a
classification loss and maximize domain confusion. The model JAN [19] employs
the Maximum Mean Discrepancy (MMD) [10] as the measure of domain discrep-
ancy to achieve domain confusion. In [5], the authors apply the center loss [34] to
guarantee the class relations in the source domain with better intra-class com-
pactness and inter-class separability for domain adaptation. Inspired generative
adversarial nets (GANs) [9], the method ADDA [32] converts a domain confusion
task into a min-max optimization, with the aim of classifying the source sam-
ples and getting domain-invariant features through adversarial training. All of
these approaches only consider the global domain distribution alignment, with-
out exploring the class-level relations between source and target samples as the
target samples are unlabeled.

Recently, several works [6,13,21,36] start to utilize the hard pseudo labels
to compensate the lack of categorical information in the target domain. Since
no label information in target domain for class-wise adaptation, these meth-
ods iteratively select pseudo labeled target samples based on the source-domain
classifier from the previous training epoch and update the model by using the
enlarged training set. Nevertheless, the direct use of such hard pseudo labels
might not be preferable due to possible domain mismatch. To solve this issue,
some works [8,37] resort to soft label strategy. In GAKT [8], the authors uti-
lize a label propagation (LP) structure to assign each class with probability
for the target sample when matching the domain distributions. Similarly, Yuan
et al. propose STN [37] for heterogeneous domain adaptation, which exploits the
training classifier to learn soft target labels for class-wise adaptation. A2LP [39]
improves LP via generation of unlabeled virtual instances, which uses weights
computed by the entropy of the propagated soft cluster assignments to get high-
confidence label predictions.

3 The Proposed Method

We focus on the problem of Unsupervised Domain Adaptation (UDA). A domain
D is composed of a feature space χ and a marginal probability distribution
P (x), i.e., x ∈ χ. For a specific domain, a task T consists of a C-cardinality
label set Y and a classifier f(x), i.e., T = {Y, f(x)}, where y ∈ Y, and
f(x) = Q(y|x) is the conditional probability distribution. Given a labeled source
domain Ds = {xs

i , y
s
i }

ns

i=1 = {Xs, Ys} with ns labeled samples, where xs
i ∈ R

ds

is the feature vector. Define an unlabeled target domain Dt =
{
xt

j

}nt

j=1
= XT
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Fig. 2. Architectures of DESTN. The ensemble structure LPE is constructed by various
feature subspaces and its goal is to get reliable target labels for class-wise domain adap-
tation; to boost the robustness of LPE, CEF will alleviate the propagation difficulty of
those unlabeled target samples near the hyperplane so as to reduce the negative influ-
ence of confusion probabilities. A bottleneck layer fcb generated by different feature
subspaces is added behind the last fully-connected layer for safer transfer representation
learning.

with nt unlabeled target samples, where xt
i ∈ R

dt . Note that Ys = Yt, χS �= χT ,
P(χs) �= P(χt), Q(Ys|χs) �= Q(Yt|χt). The goal of DESTN is to learn an ensem-
ble model C that can maximize the classification accuracy on Xt with the follow-
ing properties: 1) preserving the data manifolds and learning the reliable target
labels by label propagation ensemble structure; 2) making the domain classes
more discriminative with classifiers ensemble framework; 3) matching feature
distributions.

3.1 Label Propagation Ensemble

To preserve the cross-domain data manifold structure and alleviate the bias
caused by those underlying false pseudo labels when exploring the class-wise
adaptation, we propose a graph-based label propagation optimization strategy
for refining the target labels with soft ones. Formally,

L(Z) =
ν

2

ns+nt∑

i,j=1

Wij

∥
∥
∥
∥
∥

1√
Dii

zi − 1
√

Djj

zj

∥
∥
∥
∥
∥

2

+ (1 − ν)
C∑

j=1

ns+nt∑

i=1

‖Zij − Yij‖2 ,

(1)

where Y ∈ R
(ns+nt)×C is the initial label matrix, the first ns rows of Y are corre-

sponding to one-hot encoded source labels and the rest rows for the target data
are zero. Z ∈ R

(ns+nt)×C is the learning soft label matrix, zi ∈ R
c is the i-th
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row of matrix Z, in which every element zi,c(zi,c � 0 and
∑C

c=1 zi,c = 1) means
the probability for the i-th data point belonging to the c-th category. ‖•‖F rep-
resents the Frobenius norm and ν ∈ [0, 1) is a parameter. W ∈ R

(ns+nt)×(ns+nt)

is the symmetric nonnegative affinity matrix constructed by source and tar-
get transformed samples, which are extracted by the feature extraction net-
work Φθ : Xs/t → Rd mapping the input into a feature vector or descriptor.
This matrix can preserve the geometric structure information among domain
samples. D denotes a diagonal matrix with Dii =

∑ns+nt

j=1 Wij . Note that in
Eq. (1), the first term encourages smoothness such that nearby examples get the
same predictions, while the second term attempts to maintain predictions for
the labeled examples. We choose the Gaussian similarity function to calculate
Wij ,

Wij =

{
exp(−(‖hi−hj‖2)

2σ2 ), if i �= j ∧ hi ∈ NNk(hj)
0, otherwise

(2)

where hi or hj is the transformed sample, NNk denotes the set of k nearest
neighbors of hj , σ is the length scale parameter and is set as 1 in this paper.

A single label propagation (LP) model is not always reliable, so we propose
to construct a Label Propagation Ensemble (LPE) structure. It is easy to find
the feature space vector of the transformed sample directly affects the result of
Eq. (2). Hence, we apply different feature subspaces to measure similarities so
as to perform different LP models. Formally,

LLPE(Xs,Xt, Φ) =
M∑

m=1

Lm(Z), (3)

where Lm(Z) denotes the m-th label propagation model. Then, the training unla-
beled target samples with consistent label propagation results will be assigned
with pseudo labels.

3.2 Classifiers Ensemble Framework

Classifiers Learning. To further regularize LPE and learn more robust and
clear soft target labels, we introduce the other Classifiers Ensemble Framework
(CEF) to be trained on the labeled and the reliable pseudo-labeled target samples
during the iteration. Given labeled training instances Xtrain =

{(
xi, yi

)}N

i=1
, the

deep ensemble neural network with M classification functions, {Cm ◦ Φ(x)}M
m=1,

can be trained by minimizing the following negative log-likelihood loss function:

LCL(ω1, ω2, · · · , ωM ) =
1
N

N∑

i=1

M∑

m=1

lm
(
ui

m, yi
)
, (4)

where (ω1, ω2, · · · , ωM ) are the model parameters, ui
m = Cm ◦ Φ(x) is the m-th

classifiers prediction vector of instance xi in its feature subspace, and lm(., .)
denotes a negative log-likelihood loss function. Although initially the labeled
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training data only contain the labeled source instances, such that Xtrain = Xs

and N = ns, the classifiers will improve its transfer capability and more reliable
pseudo target samples can be selected by LPE as training goes on.

Class Discriminative Constraint. We propose Class Discriminative Con-
straint (CDC) to further regularize the CEF so as to promote those tough target
samples to be away from the hyperplane. The MMD [10] has been proven to be a
powerful tool for exploring the statistics of samples. Inspired by this, we propose
the following formula to describe the constraint of target samples:

Lk1k2(Zt, Φ) = f1 + f2 − 2f3, (5)

where

f1 =
nt∑

i=1,j=1

Vk1k1(zt
i,c1, z

t
j,c2)K(Φ(xi

t), Φ(xj
t ))∑nt

i=1,j=1 Vk1k1(zt
i,c1, z

t
j,c2)

f2 =
nt∑

i=1,j=1

Vk2k2(zt
i,c1, z

t
j,c2)K(Φ(xi

t), Φ(xj
t ))∑nt

i=1,j=1 Vk2k2(zt
i,c1, z

t
j,c2)

f3 =
nt∑

i=1,j=1

Vk1k2(zt
i,c1, z

t
j,c2)K(Φ(xi

t), Φ(xj
t ))∑nt

i=1,j=1 Vk1k2(zt
i,c1, z

t
j,c2)

(6)

Note that Vab(y1, y2) = y1 × y2, Zt ∈ R
nt×C denotes the soft target label matrix

constructed by the target nt rows of the learning soft label matrix Z, and the
element like zt

i,c1 is the corresponding class probability of i-th target sample.
Gaussian kernel K is adopted here. Equation (6) defines two kinds of class-level
relation in target domain. When k1 = k2, it compacts the intra-class variations;
When k1 �= k2, it enlarges inter-class difference. Based on this analysis, using
CDC to measure the relations of all the soft target labels can be formulated as:

Lc
t(Xt, Zt) =

M∑

m=1

C∑

k1=1

Lk1k1
m (Zt, Φ)

C
−

C∑

k1=1,k2=1,
k1 �=k2

Lk1k2
m (Zt, Φ)
C(C − 1)

, (7)

where Lk1k1
m is the m-th CDC. With Eq. (7), the intr-class and the inter-class

relations will be optimized in the opposite direction. We can get the similar
formula Lc

s to show the relations for source samples.
Finally we can get the classifiers ensemble loss: LCEF = Lc

s + Lc
t + LCL.

Final Target Labels Learning. With the multiple classification functions
learned in CEF, we can integrate the M classification functions to perform class
prediction on each unlabeled target instance xt with majority voting strategy,

yi
t = argmax

M∑

m=1

Cm(xi
t). (8)
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3.3 Class-Wise Adaptation

As aforementioned, the primary goal is to learn a domain-invariant feature space
by matching domain distributions. MMD is also a widely used approach to allevi-
ating marginal distribution disparity [19], which computes the distance between
expectations of source and target data in the projected feature space. Formally,

LMar(Xs,Xt, Φ) =

∥
∥
∥
∥
∥
∥

1
ns

ns∑

i=1

Φ(xs
i ) − 1

nt

nt∑

j=1

Φ(xt
j)

∥
∥
∥
∥
∥
∥

2

. (9)

The MMD strategy in Eq. (9) can reduce the difference of the marginal distri-
butions, but it fails to guarantee that the divergency of conditional distributions
is minimized. Since no label information in target domain for matching condi-
tional distributions, instead of using hard target labels, we propose to predict
clear soft labels for unlabeled target data. This will develop a probabilistic class-
wise adaptation formula to effectively guide the intrinsic knowledge transfer.
Formally,

LCon(Xs,Xt, Φ) =
C∑

c=1

∥
∥
∥
∥
∥
∥

1
nc

s

∑

xi∈Xc
s

Φ(xi) − 1
nc

t

∑

xj∈Xt

zt
j,cΦ(xj)

∥
∥
∥
∥
∥
∥

2

, (10)

where Xc
s = {xi : xi ∈ Xs ∧ argmax(y(xi)) = c} denotes the set of source

domain samples belonging to the c-th class , y(xi) represents the true one-hot
label of xi in the learning soft label matrix Z, and nc

s = |Xc
s |. zt

j,c is the proba-
bility for the j-th unlabeled target sample belonging to the c-th class in Z. Thus,
the target sample size nc

t can be approximately computed by nc
t =

∑nt

j=1 zt
j,c.

Finally, the class-wise adaptation term for all the feature subspace can be for-
mulated as:

LCA(Xs,Xt, Φ) =
M∑

m=1

Lm
Mar(Xs,Xt, Φ) + Lm

Con(Xs,Xt, Φ), (11)

where Lm
Mar and Lm

Con are the marginal and conditional distributions of the
corresponding feature subspace, respectively.

3.4 Overall Object Function

Considering all the above discussions, we have the overall objective function:

L(Xs, Ys,Xt, Zt, Φ, ω1, ω2, · · · , ωM ) = LCA (Xs,Xt, Φ)
+ βLLPE(Xs,Xt, Φ) + γLCEF (Xs,Xt, Φ, ω1, ω2, · · · , ωM ),

(12)

where (β, γ) are weights that control the interaction of losses to achieve a better
trade-off between LPE and CEF.
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3.5 Theoretical Analysis

We provide a theoretical analysis to show the relations between our method and
the existing theory of domain adaptation [1]. The theory presents the target
expected error RT (h) which is bounded by three terms as follows,

∀ h ∈ H,RT (h) ≤ RS(h) +
1
2
dHΔH(S, T ) + E, (13)

where RS(h) is the expected error on the labeled source samples, dHΔH(S, T )
denotes the domain divergence measured by a discrepancy distance between two
domain distributions S and T w.r.t. a hypothesis set H. E is the shared error of
the ideal joint hypothesis and is often overlooked by previous approaches [17,32]
because it is regarded as to be negligible small. However, when the cross-domain
category alignment dose not explicitly enforce, E will become large. This leads
to a problem that a small RS(h) and a small dHΔH(S, T ) cannot guarantee
small RT (h). Hence, E needs to be explored as well. We resort to soft labels to
realize this:

E = RS(h∗, fS) + RT (h∗, fT ), (14)

where h∗ = argmin
h∈H

RS(h, fS)+RT (h, fT ), fS and fT are the labeling functions

for source and target domains, respectively. With the triangle inequality for
classification, then

E ≤ min
h∈H

RS(h, fS) + RT (h, fS) + RT (fS , fT )

≤ min
h∈H

RS(h, fS) + RT (h, fS) + RT (fS , fT̃ ) + RT (fT , fT̃ ).
(15)

Since we have source labels, we can easily get a proper h to approximate the
labeling function fS , which satisfies the first and second term. The last term
is the confusion probabilities of soft labels rate, obviously, the proposed LPE
aims to get more reliable soft labels in target domain so that RT (fT , fT̃ ) can
be minimized. Now we focus on the third term. Formally,

RT (fS , fT̃ ) = Em∈[1,M ]Ex∼Xt

[
ψ(CS

m(Φ(x)) − C T̃
m(Φ(x)))

]

= Em∈[1,M ]Ex∼Xt

[∣∣
∣ψ(CS

m(Φ(x), z1) − ψ(C T̃
m(Φ(x), z2)

∣
∣
∣
]
,

(16)

where ∣
∣
∣ψ(CS

m(Φ(x), z1) − ψ(C T̃
m(Φ(x), z2)

∣
∣
∣ =

{
1, if z1 �= z2.
0, otherwise.

(17)

When z1 = z2, it means the categories between the source ones and the soft
target ones are aligned. Thus, the RT (fS , fT̃ ) can be minimized.

4 Experiments

4.1 Experimental Settings

Datasets. We use three popular DA datasets: 1) Office31 [26] contains 4652
images and 31 categories collected from 3 domains: Amazon(A), Webcam(W)
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Table 1. Accuracy (%) on Office-31 for UDA (ResNet).

Method A → W D → W W → D A → D D → A W → A Avg

ResNet-50 68.4 93.2 97.3 68.9 62.5 60.7 75.1

JDDA [5] 82.6 95.2 99.7 79.8 57.4 66.7 80.2

MADA [23] 90.0 97.4 99.6 87.8 70.3 66.4 85.2

TAT [16] 92.5 99.3 100.0 93.2 73.1 72.1 88.4

DSR [3] 93.1 98.7 99.8 92.4 73.5 73.9 88.6

CAN [13] 94.5 99.1 99.8 95.0 78.0 77.0 90.6

STN [37] 94.3 98.8 99.5 95.2 77.8 77.4 90.6

ALDA [7] 95.6 97.7 100.0 94.0 72.2 72.5 88.7

A2LP [39] 93.4 98.8 100.0 96.1 78.1 77.6 90.7

DESTN 95.5 99.8 100.0 96.3 78.8 77.9 91.4

Table 2. Accuracy (%) for cross-domain experiments on Office-Home (ResNet).

Method Ar ↓ Cl Ar ↓ Pr Ar ↓ Rw Cl ↓ Ar Cl ↓ Pr Cl ↓ Rw Pr ↓ Ar Pr ↓ Cl Pr ↓ Rw Rw ↓ Ar Rw ↓ Cl Rw ↓ Pr Avg

GAKT [8] 34.5 43.6 55.3 36.1 52.7 53.2 31.6 40.6 61.4 45.6 44.6 64.9 47.0

TAT [16] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

DSR [3] 53.4 71.6 77.4 57.1 66.8 69.3 56.7 49.2 75.7 68.0 54.0 79.5 64.9

STN [37] 53.8 71.9 77.8 58.4 67.8 70.2 57.8 50.1 75.5 68.4 54.9 80.2 65.5

ALDA [7] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6

DESTN 54.6 73.9 78.5 59.3 72.8 72.3 59.9 52.5 78.6 72.5 57.1 84.3 68.0

and DSLR(D). The low resolution images in Webcam are captured with a web
camera. The medium resolution images in Amazon are downloaded from ama-
zon.com. DSLR consists of high resolution images collected by a SLR camera. 2)
Office-Home1 is a more challenge dataset for domain adaptation, which con-
sists of 15,500 images in total from 65 categories of common objects in office
and home settings. These images come from 4 significantly different domains:
Artistic images (Ar), Clip Art (Cl), Product images (Pr) and Real-World images
(Rw). 3) We apply MNIST [15], SVHN [22] and USPS [12] as Digital recognition
dataset. These datasets include 10 classes.

Baseline Methods. We compare DESTN with the state-of-the-art transfer
learning methods. The global distribution matching guided methods: ADDA [32],
JDDA [5], TAT [16] and DSR [3] match the marginal distributions for domain
adaptation. Hard pseudo-target label guided methods: MSTN [36], MADA [23],
PFAN [6], CAN [13], and ALDA [7] resort to pseudo target labels to capture
multimode structures to enable fine-grained alignment. We further compare with
several soft target label guided approaches: A2LP [39], GAKT [8] and STN [37]
use a single label propagation strategy to perform the class-wise adaptation.
We implement STN using the released code and cite the performance of other
methods in their corresponding papers.

1 https://hemanthdv.github.io/officehome-dataset/.

https://hemanthdv.github.io/officehome-dataset/
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4.2 Implementation Details

We follow standard evaluation protocols for UDA [14,30]. For all the baseline
methods, we follow their original model selection procedures. We adopt transfer
cross-validation to select parameters for the DESTN models. We examine the
influence of deep representations for domain adaptation by exploring ResNet-
50 [11] which has been pre-trained on ImageNet for Office-31 and Office-Home,
and employ the modified LeNet by [32] for the digital datasets. We fine-tune all
convolutional and pooling layers and a bottleneck layer fcb is added behind the
last fully-connected layer. The classifiers can be constructed with any kind of
deep layers followed by a softmax output.

Table 3. Accuracy (%) on digital dataset for UDA (LeNet).

Method SVHN → MNIST USPS → MNIST

ADDA [32] 76.0 ± 1.8 89.4± 0.2

MSTN [36] 91.7 ± 1.5 –

PFAN [6] 93.9 ± 0.8 –

STN [37] 94.8 ± 0.3 95.6± 0.1

ALDA [7] 98.7 ± 0.4 98.6± 0.1

DESTN 98.5± 0.3 98.8± 0.2

The model is implemented with TensorFlow. For the fcb layer we set different
neuron numbers to make sure we have different feature subspaces, starting at
128 and incrementing by 128. We resize all images to 224×224 for Office-31 and
Office-home (32×32 for digits). The batch size is set to 128 for each domain. We
adopt the stochastic gradient descent (SGD) with momentum of 0.95. We employ
the similar learning rate strategy implemented in MSTN [36], which computes
the learning rate by formula: ηp = η0

(1+νp)ω , where η0 = 0.01, ν = 10, ω = 0.75
and p is the training progress linearly changing from 0 to 1. The weight balance
parameters are set as β =0.5, γ =0.8 and the feature subspace number M is 30.

4.3 Results and Discussion

The classification results on Office-31 are shown in Table 1. The DESTN out-
performs all comparison methods on all transfer tasks. It is noteworthy that
DESTN promotes accuracies substantially on four hard transfer tasks: A→W,
A→D, D→A, and W→A, where the source domain is remarkably different from
the target.

The classification accuracies on the Office-Home dataset are reported in
Table 2. Obviously, our DESTN model outperforms the shallow comparison
method GAKT on all the transfer tasks and boosts the accuracy by an abso-
lute (21.0%) on average. It improves the state-of-the-art result from 66.6% to
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68.0% on average. Compared with those recent deep methods, i.e., TAT, DSR
and ALDA, our model gets quite competitive results and performs best in 11
out of 12 tasks.

The performance of Digital dataset is shown in Table 3. Compared with
other methods, DESTN achieves competitive results on all tasks, especially on
the challenging one SVHN→MNIST.

All of the above results reveal several observations. (1) Taking class infor-
mation of the target samples into account is beneficial to the adaptation. It
can be seen that the hard and soft guided methods achieve better performance
than those class-agnostic approaches, i.e., ADDA and JDDA. (2) The hard label
guided methods like MADA, PFAN and CAN assign a hard label for every
target sample, which may deteriorate the following training when the target
samples are assigned with wrong labels. On the contrary, ADAL introduces con-
fusion matrix to alleviate this issue and the soft label guided approaches i.e., our
model DESTN, A2LP and STN apply the soft target labels to explore the intrin-
sic structure to benefit the final performance. (3) DESTN achieves competitive
results to some recent best performance deep models like TAT and STN. The
reason is that only DSETN adopts the strategy of learning robust soft target
labels with ensemble strategy and conducting discriminative feature learning to
benefit each other for effective knowledge transfer.

(a) ResNet(target feature) (b) MADA(target feature) (c) DESTN(target feature)

(d) ResNet(DA feature) (e) MADA(DA feature) (f) DESTN(DA feature)

Fig. 3. The t-SNE visualization of features extracted by different models for D → W
task. (a)-(c) represent the distribution from category perspective and each color denotes
a category. (d)-(f) represent the distribution from domain alignment(DA) perspective,
where red and blue points represent samples of source and target domains, respectively.
(Best Viewed in Color). (Color figure online)
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4.4 Empirical Analysis

Ablation Study. Table 4 examines two key components of DESTN, i.e.,
label propagation ensemble (LPE) structure and classifiers ensemble framework
(CEF). We conduct ablation study on several tasks with different components
ablation. The method “DESTN-LPE” means the model learns the discriminative
domain-invariant features with hard pseudo target labels using CEF. “DESTN-
CEF” learns the features with soft target labels but without adopting the regu-
larizer CEF. Interestingly, “DESTN-CEF” achieves better than “DESTN-LPE”,
which verifies target samples assigned with robust soft labels can alleviate some
wrong information caused by false hard pseudo-target labels. The results of
DESTN confirm all the components can complement each other.

Table 4. The effect of alternative optimization (LPE) and (CEF).

Method A → W D → W Ar → Pr Ar → Rw

DESTN-LPE 92.5 97.0 72.1 75.9

DESTN-CEF 94.4 98.7 73.0 77.3

DESTN 95.5 99.8 73.9 78.5

Feature Visualization. We apply t-SNE to visualize the features on task D
→ W learned by Source Only model (ResNet), MADA and DESTN, respec-
tively. In Fig. 3(a)–(c), we plot the feature distribution from category perspective
and each color denotes a category. Figure 3(d)–(f) show the domain alignment
information, where red and blue points represent samples of source and target
domain, respectively. The visualization results reveal the following observations.
(1) Compared with Fig. 3(b), the distributions of Fig. 3(a) have more scattered
points distributed in the inter-class gap, which verifies that features learned
by the hard target label guided model MADA are discriminated much better
than that learned by the no domain adaptation metric model (ResNet). Besides,

Calculator Mobile Phone Laptop Computer CalculatorMobile PhoneSTN 
Laptop Computer Mobile Phone Mobile Phone Mobile PhoneMADA 

Calculator

Calculator
Calculator

Calculator Calculator Calculator CalculatorCalculatorDESTN Calculator Calculator

Laptop ComputerCalculator
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Mobile Phone

STN 
MADA 

DESTN
Projector
Printer

Projector

Printer
Printer

Projector

Printer
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Projector
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Projector
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Printer

Projector

Projector
Printer

Projector

Projector
Printer
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PrinterProjector
Printer

Projector

Mobile Phone

Fig. 4. Misclassified samples analysis of MADA and STN for task A→W of Office-31
with respect to classes “Calculator” and “Projector”. Red and black are the misclassi-
fied and correct samples, respectively. (Color figure online)
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Fig. 3(c) shows the representations learned by our method that features in the
same class are much more compact and features with different classes are well
separated. (2) From domain alignment perspective, in Fig. 3(d) and 3(e), the
source and target domain distributions are made indistinguishable, but differ-
ent categories are not aligned very well across domains. However, with features
learned by DESTN, the categories are aligned much better.

Misclassified Samples Analysis. Figure 4 shows randomly selected misclas-
sified samples of MADA and STN for the task A → W with respect to the
classes “Calculator” and “Projector”. MADA will misclassify most target sam-
ples that are much similar to other classes in source domain, i.e., “Printor” and
“Mobile Phone”, which means learning hard pseudo target labels can enhance
the error accumulation. Instead, STN with soft label strategy can alleviate this
issue to some extend. But without considering the discriminative structures and
alleviating the negative information caused by those confusion probabilities of
soft labels, STN will still mix up some source and target samples. By contrast,
DESTN can distinguish those similar samples.

Confusion Matrices. We draw the confusion matrices in Fig. 5(a)–(c) to intu-
itively illustrate the efficacy of our approach. For the method MSTN, there
are many wrong digit predictions. For instance, most samples of class “6” are
mistakenly predicted into “0” which reveals the tremendously large difference
among domains. STN performs better, but in some cases it is quite possible to

(a) MSTN (b) STN (c) DESTN

Fig. 5. Confusion matrices for visualization of the performance of MSTN, STN and
DESTN for task SVHN → MNIST. (Best Viewed in Color). (Color figure online)

(a) Convergence (b) Influence of γ (c) Influence of β (d) Influence of M

Fig. 6. Empirical analysis: (a) Convergence performance, (b)∼(d) The influence of
parameter settings on the classification accuracy.
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be misclassified, particularly when testing similar digits like “2” and “7”, “4”
and “9”. By contrast, much more right predictions appear in the diagonal using
DESTN, which proves the domain discrepancies could be effectively mitigated
by the model.

Parameter Sensitivity. Figure 6(a) shows the convergence curves of the test
error of different methods on USPS→MNIST, which reveals that the DESTN
converges fastest and reaches to the lowest error. We further run DESTN with
different values of γ and β on several random tasks. From Fig. 6(b)–(c), we find
that the accuracy increases first and then decreases as the parameters increase.
This confirms the validity of jointly learning the domain-invariant features and
exploring the soft class information, since a good trade-off between them can
enhance feature transferability. Figure 6(d) investigates the sensitivity of the
number M of classifiers derived from different feature subspaces and the best
number is 30.

5 Conclusion

We propose a simple, yet effective model for domain adaptation. The key idea
is to jointly optimize the soft target labels and learn the discriminative domain-
invariant features. The effective results on several cross-domain datasets benefit
from the interest of applying label propagation ensemble strategy and classi-
fiers ensemble structure together to guarantee the geometric structure of the
underlying data manifold and keep the discriminative properties of the learned
features.
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Development Program of China, No.2018YFB1402600.
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Abstract. Multimodal entity linking (MEL) is an emerging research
field which uses both textual and visual information to map an ambigu-
ous mention to an entity in a knowledge base (KB). However, images do
not always help, which may also backfire if they are irrelevant to the tex-
tual content at all. Besides, the existing efforts mainly focus on learning a
representation of both mentions and entities from their textual and visual
contexts, without considering the negative impact brought by noisy irrel-
evant images, which happens frequently with social media posts. In this
paper, we propose a novel MEL model, which not only removes the nega-
tive impact of noisy images, but also uses multiple attention mechanism
to better capture the connection between mention representation and its
corresponding entity representation. Our empirical study on a large real
data collection demonstrates the effectiveness of our approach.

1 Introduction

Entity linking is a crucial task in information extraction, mapping a disambiguat-
ing named mention into a target knowledge base [19]. The problem has been
studied extensively on using either “local” information (contextual information
of the mention in the text) [4] or “global” information (relations among candidate
entities) [17] for entity linking.

In recent years, with the rapid development of social medias such as Face-
book, Twitter, and Sina Weibo, a large volume of user-generated posts are
emerged, which present new challenges as well as big opportunities to entity
linking. On the one hand, most social media posts have relatively short text.
On the other hand, many posts have images attached. For deep semantic pars-
ing to these posts, an emerging task called multimodal entity linking (MEL) is
proposed, which uses both textual and visual information to map an ambiguous
mention to an entity in a knowledge base (KB) [1,15]. The usage of image infor-
mation could better capture the relationship among mentions, context and can-
didate entities [15]. There has been work leveraging both semantic textual and
visual information extracted from mention and entity contexts [1], which greatly
improves the accuracy of entity linking work on social media datasets [1,15].
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Fig. 1. Example irrelevant images attached with social network posts

However, there are at least two drawbacks with the existing efforts. Firstly,
images are not always helpful, which may also backfire if they are irrelevant
to the textual content at all. Case One: Sometimes the attached image has
nothing to do with the textual content of the posts. As the examples given in
Fig. 1, these images are not quite relevant to the content of the post texts, but
are some popularly-used images which may only express the user’s mood. Case
Two: Although the attached image is relevant to the text, it may also bring more
confusion to entity disambiguation. Let’s see the example post (a) in Fig. 2, the
“Michael” here actually refers to “Michael Jackson”. But since the person in the
image “Kobe” is usually more relevant to “Michael Jordan” in the knowledge
graph, the MEL results may more likely take the “Michael” here as “Michael
Jordon”. Secondly, the existing MEL methods never consider to use the attention
mechanism to capture the interaction between mention representation and its
corresponding entity representation. Thus, there is a great space left for the
improvement in the accuracy of MEL results based on social media data.

Given the above, we propose a novel MEL model, which not only removes the
negative impact of noisy images, but also uses multiple attention mechanisms
to get richer information from the text and images with mentions and their cor-
responding candidate entities. Specifically, to reduce the the negative impact of
noisy images, we design a two-stage image and text correlation mechanism to
filter out the irrelevant images based on the predefined threshold. Also, we use
multiple attention mechanisms to capture important information in the mention
representation and entity representation by quering multi-hop entities around the
mention’s candidate entities. Let’s see the example post (b) in Fig. 2, we first look
for entities around the candidate entity “Michael Jordan” which contain the men-
tion text’s information. Then we could find the entity “Fruitville Station”, such
that the multi-modal representation of the entity could be used to strengthen
both the mention and the entity’s representation. The main contribut-ions of
this paper are listed as follows:

– We first propose to remove the bad effect brought by noisy images to MEL
task, by identifying noisy images with a two-stage image and text correlation
mechanism.

– We design multiple attention mechanism to better capture the connection
between mention representation and its corresponding entity through multi-
hop query.
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Fig. 2. MEL examples: post (a) is a negative example, while post (b) is a positive one

– We construct the first Chinese data set for MEL task based on Weibo data,
which would be published later for public use.

We conduct our empirical study on a large real data collection from WeiBo,
which demonstrates that our approach could outperform several state-of-art
MEL models.

Roadmap. We first introduce the related work in Sect. 2. The proposed model is
introduced in Sect. 3, followed by the experiment section in Sect. 4. We conclude
our work in Sect. 5.

2 Related Work

2.1 Muiltimodal Representation Learning

Since BERT [6] was proposed, it has greatly improved the benchmark performan-
ce of various NLP tasks by virtue of the powerful feature learning capabilities of
Transformer and the two-way encoding realized through the masking language
model. Recently, many researchers have turned their attention to Bert-based
multimodal representation learning. Lu proposes ViLBERT [28], which ext-ends
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the popular BERT architecture to a multi-modal model that supports two stream
inputs. It preprocesses visual and textual inputs in the two streams separately,
and makes them interacted in the joint attention transformer layer. Tan pro-
poses the LXMERT framework to learn the connection between language and
vision, through masking cross-modal language modeling, masking target pre-
diction, cross-modal matching, etc. to learn the connection between multiple
modaliti-es [29]. Li proposes VisualBERT, which includes a set of stacked Trans-
former layers and implicitly aligns the elements in a piece of input text with the
regions in a related input image with the help of self-attention [27]. Su proposes
VL-BERT which takes the simple and effective Transformer model as the back-
bone and expands it by using visual and language embedded features at the
same time [24].

2.2 Entity Linking on Social Data

Recently, several research efforts propose to solve the challenges posed by the
EL task on social data. Collective approaches are preferred where the informa-
tion about social data in relation with the target mention is leveraged. [5,14]
extract discriminative features of a mention from its context and an entity from
its description, then links a mention to the entity which is most similar. Shen
determines the user’s topics of interest from all its posted tweets to collectively
link all its named entity mentions [20]. Huang adopts a cascade approach to iden-
tity links between mentions in microblog and entities in the knowledge base [10].
Liu resolves a set of mentions by aggregating all their related posts to com-
pute mention-mention and mention-entity similarities [11]. Ma adds effective
topic semantics on Siamese network to learn representations of context, men-
tion and entity, and ranks the mention-entity similarity [13]. Additionally, with
the help of Bert model, Yin improves the entity linking task with the pow-
erful pre-trained general language model by deliberately tackling its potential
shortcoming of learning literally [26]. Hua considers social (user’s interest + pop-
ularity) and temporal contexts [9]. Other collective approaches include the EL
model with the non-textual features. For example, Fang and Chong use global
information of posts that are close in space and time to the post of the target
mention [3,8]. Dreze proposes a joint cross-document co-reference resolution and
disambiguation approach including temporal information associated with their
corpus to improve EL performance [7]. While these works yield the interesting
results using non-textual features, they often depend on the availability of social
data and do not exploit visual information. Recently, some work has considered
the use of visual information, Omar leverages both semantic textual and visual
information extracted from mention and entity contexts [1]. Seungwhan pro-
poses a zero-shot multimodal entity linking solution [15]. Their work has greatly
impro-ved the accuracy of entity linking work on social media datasets.
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Fig. 3. The architecture of our model

3 Proposed Approach

In this section, we first define our MLE problem, and then introduce how to
learn the mention representation followed by the MMKG embedding. Next, we
propose to use a two-stage image and text correlation mechanism to filter out the
irrelevant images. Then, we novelly propose an improved attention mechanism to
capture important information shared by the mention through querying multi-
hop entities around candidate entities. Finally, we rank the candidate entities
based on a score function. The architecture of our model is illustrated in Fig. 3.
We first make respective representations of the mention (mention embedding +
word embedding) and the entity (description embedding), based on the plain
text entity linking method. Then we use a two-stage image and text correla-
tion mechanism to determine whether to introduce images attached to the text
and images attached to the entity. If images are introduced, we will add image
embeddings to the representation of mention and entity. The details on how
to get these embeddings will be introduced in Sect. 3.2 and Sect. 3.3. Finally,
we obtain the important information (multi-hop entity representation) between
mention and entities through the multi-hop query, then use the attention mecha-
nism to strengthen the interaction of the common information between the text’s
mention and the candidate entity.

3.1 Problem Definition

Given the input text-image pair (t, v) where the ambiguous name mi are extract-
ed from t by searching for names with common English surnames, our goal is
to find the most similar entity e∗(mi) for mi using the constructed multimodal
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knowledge graph MMKG which consists of the entity-relation-entity tuples,
{(eh, r, et)|eh, et ∈ E , r ∈ R} where E and R are the set of entities and relations
respectively. Formally, we select the entity e(mi) which maximizes the similarity
between the disambiguated name mi and the candidate entities Cand(mi) to
get the unambiguous mention as follows:

e∗(mi) = arg max
ej∈Cand(mi)

score(mi, ej) (1)

where Cand(mi) is constructed by finding the entities in E which have the same
surname with mi and sim(,̇)̇ is the function to calculate the score function, which
will be introduced in Sect. 3.6.

3.2 Mention Representation

In this section, we introduce how to learn the mention representation. For the
text-image pair (t, v), we use textual features and visual features from t and v
respectively to represent the extracted disambiguated name mi.

For the textual representation of the mention, we decompose the mention mi

and its context t as a whole into the pre-training Bert model [2] due to its power
to understand the semantics of the textual data. Particularly, we obtain the tex-
tual representation of the mention, which is denoted as Cm(t), by concatenating
the mention embedding and word embedding as follows:

Cm(t) = concat(Bert(mi);Bert(t)) (2)

where Bert(·) is used to get the sentence or phrase embedding from the pre-
trained embedding, and concat(·) is used to concatenate two emebddings. Simila-
rly, we get the visual representation of the mention, denoted as Cm(v), with the
pre-trained model, i.e., VGG16 [21] which is trained with huge amount of image
data, to extract the visual features as follows:

Cm(v) = V GG(v) (3)

where V GG(·) is the function to extract image features and v is the relevant
image to the mention.

To capture the semantics of mention completely, we design two strategies to
get the mention representation. If the relevant image is not filtered out by our
designed two-stage of the calculation of image and text correlation, we will use
the concatenation of Cm(v) and Cm(t) as the final representation of the mention
Cm. Otherwise, we only use the textual representation of the mention as the
final representation of the mention Cm. Specially, the representation of mention
is calculated as follows:

Cm =

{
Concat(Cm(v);Cm(t)), v! = NULL

Cm(t), otherwise
(4)

The details of the two-stage of the calculation of image and text correlation will
be introduced later.
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3.3 MMKG and Candidate Entity Representation

MMKG is mainly used to combine different entities and images in different
knowledge graphs to perform relational reasoning [16,18,23,25,30], which con-
tains multi-relational link prediction and entity matching. Existing work [1] has
shown the improvement of linking effects which combines textual representation
and visual representation of the entity by using MMKG. while in this paper
we use the multi-hop relationship between entities in MMKG to enhance the
performance of entity linking task.

Similar to previous work [12], we construct our MMKG on the basis of the
knowledge graph containing all entity attributes, triple knowledge and (linked to)
images, as well as knowledge graphs alignment between entities. However, there
exist the entities in the MMKG which share the same surnames, i.e., ambiguous
entities. We denote the ambiguous entities as the candidate entities Cand(mi)
by matching the entity in E .

For the representation of candidate entities, we adopt a method similar to
that of the mention. Specifically, for the textual representation of candidate enti-
ties, since each entity in the MMKG has more than one corresponding attributes-
attribute values and a long text description, we put their embedding together
to form the entity context (similar to the context of mention), and then input
the candidate entity and its “context” into the pre-trained Bert model, which
is denoted as Ce(t). For the visual information representation of candidate enti-
ties, we also use the VGG16 to extract features of the entity image. We unify the
entity representation as Ce(v). We adopt the similar way to compute the repre-
sentation of candidate entities to the mention representation, which is denoted
as Ce.

3.4 A Two-Stage Image and Text Correlation Mechanism

In this section, we introduce how to calculate the similarity between the topical
information of the mention’s text and the category information of the mention’s
image, the similarity between the category information of the mention’s image
and the category information of the entity’s image. Considering that the topic
of the mention’s text represents the semantic information of the mention’s text
while the image category information (image topic) can also represent what the
image focus on, therefore, we try to get the topics of mention’s text and the
category of images to calculate their similarity. Specifically, we use LDA model
to get the topic information of the mention text, which is denoted as Tm, and
the pre-trained Inception-v3 model [22] to get the category information of the
mention image and the entity image, denoted as Im and Ie respectively, with
the help of image classification task. Note that there are 1000 categories in the
ImageNet, but we only take the 5 category items with the highest probability
value as the image topics.

After that, to determine whether the text’s image is highly related to the
mention, we adopt a two-stage image and text correlation mechanism. In the
first stage, if the correlation is larger than the predefined similarity threshold τ1,
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the text’s image will be retained. Otherwise, it will be eliminated. The similarity
between the topical information of mention’s text and the category information
of the mention’s image is computed as follows:

sim(Tm, Im) =
Bert(Tm) · V GG(Im)√
Bert(Tm)2 + V GG(Im)2

(5)

Otherwise, we go to the second stage. Based on our observation on the data, we
find that given the randomness of the content posted by social media users, some
of the data is like this: the text content (containing topical information) has a
low degree of relevance to the mention, but the text’s image has a high degree
of relevance to the mention. The images in this type of data were eliminated
in the previous stage of the matching calculation process, but it is clear that
these images should be retained. As shown in the example post (b) in Fig. 2, the
similarity between the text’s topical information and the category information
of the text’s image is not up to the threshold, but it is obvious that the image
containing the “correct” Michael Jordan (Michael·B·Jordan) is helpful for us to
link the mention to the correct entity. So if this situation is satisfied, we calculate
the similarity between the category information of the mention’s image and the
category information of entity’s image as follow:

sim(Im, Ie) =
V GG(Im) · V GG(Ie)√
V GG(Im)2 + V GG(Ie)2

(6)

If the relevance is larger than the threshold τ2, the mention’s image and entity’s
image will be retained.

3.5 Attention Mechanism Based on Finding Useful Multi-hop
Entities

Although we have learned the mention representation and the entity representa-
tion through the combination of Bert and VGG networks, we input the mention
representation into the LSTM network based on this consideration: given that
the text often contains a lot of irrelevant information, we only need to pay
attention to the surrounding text information of the mention that we need to
disambiguate. Using LSTM network can help us better capture the key informa-
tion of the mention context. Specifically, we divide the Cm into the left and right
parts according to the position of the mention in the text: Cmleft

and Cmright
.

We take Cmleft
as an example, Cmleft

= C1
mleft

,C2
mleft

,...,Cn
mleft

, where Ct
mleft

is
a concatenation of the mention embedding ,word embedding and image embed-
ding to be passed as input at time t, we take Ct

mleft
as xt, the LSTM unit will

output ht for each time step t. The hidden vector ht is computed as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (7)

ft = σ(Wfixt + Whfht−1 + Wcfct−1 + bf ) (8)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (9)
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ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (10)

ht = ot tanh(ct) (11)

where it,ft,ot,ct are the input gate, forget gate, output gate, and cell memory at
position t respectively. σ denotes the sigmoid function. Wc,Wh,Wx are weighted
matrices, and bi,bf ,bc,bo represent the biases of the LSTM network. All the above
parameters need to be learned during training.

Though we have got the representation of the mention through LSTM net-
work, given the randomness of the content of the Weibo data (even if noisy
images have been eliminated), we may still be unable to capture important infor-
mation to help our linking work. To solve this problem, we propose to design
an attention mechanism that can capture the connection between the mention’s
representation and its corresponding entity. In additon, we also use the multi-
hop query during using the attention mechanism. Before we go to the details,
we first define one-hop entity and two-hop entity in MMKG.

Definition 1. One-hop entities. The candidate entities in the MMKG contain
a large number of triples where these associated entities, i.e., the head entity or
tail entity corresponding to candidate entities, are denoted as the one-hop. In
these one-hop entities, we look for the name of entities that have appeared in the
mention’s text.

Definition 2. Multi-hop entities. In the process of searching for one-hop enti-
ties, if no one-hop entities that have appeared in the mention’s text are found,
we will look for the related entities of these one-hop entities, that is, the two-hop
entities of candidate entities. By that analogy, we denote these kinds of entities
which are connected with candidate entities with multiple hops as the multi-hop
entities.

Specifically, we inject the representation of these one-hop or multi-hop entities as
attention vectors into the mention representation and the entity representation.
It is worth noting that in the process of searching for a multi-hop entities, we find
more than one-hop entities or two-hop entities have appeared in the mention’s
text. In this paper, we take these multi-hop entities as Q1, Q2, ..., QN , which
are used as different queries to pay attention to mention’s representation and
candidate entity’s representation, equalling to repeating multiple single-layer
attention. The way that one-hop entity is used to contract important information
in the mention’s representation is shown in Fig. 4. In detail, we calculate the
attention scores as follows:

Attention(Q,K,V ) = softmax(
QKT

√
d

)V

Qi = QWQ
i ,Ki = KWK

i , Vi = V WV
i , i = 1, 2, ..., N

(12)

MultiHead(Q,K,V ) = Concat(head1, ..., headN )W o

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

(13)



542 L. Zhang et al.

Fig. 4. Modified attention layer

In the example post (b) shown in Fig. 2, through multi-hop quering around
Michael·B·Jordan, we find that the entity Fruitville Station appeared in the
mention’s text (only Fruitville Station appeared in the surrounding one-hop
entities), so we use the multi-modal representation of the entity Fruitville Station
(the representation method is the same as that of the candidate entity) as an
attention vector to extract important information in the mention representation
and the entity representation.

3.6 Candidate Entities Ranking

The mention and entity representations are concatenated and then forwarded to
a fully connected layer. The output of the fully connected layer is a single node,
denoting the similarity score after processed by a sigmoid function. Suppose s is
the final similarity score and g represents whether the entity is the true entity
(ground truth). The training objective is to minimize the following loss value:

L(s, g) = g log(s) + (1 − g) log(1 − s) (14)

where g is the ground truth label with the value 1 or 0.
The candidate entities are not ranked solely based on multi-modal representa-

tion’s similarity. Instead, the final score of each candidate entity is the combi-
nation of similarity score and prior probability p(e|mi) of an entity e, which
denotes the possibility that the entity e is the true one given a specific men-
tion mi. The specific values of prior probabilities are derived from a frequency
dictionary which we will introduce in the experiment, while entities not in the
frequency dictionary are assigned with frequency value of 0. Formally, the rank-
ing score of mention-entity pair (m, e) is:

Score(m, e) = θsim(m, e) + ηp(e,m) (15)

where θ and η are coefficients balancing the weights of similarity and prior prob-
ability.
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Table 1. Neural network parameter settings

Parameters Values

Window size of mention context 10

Window size of entity description 150

LSTM hidden state size for mention context 288

LSTM hidden state size for entity description 96

Output size for hidden layer 200

Activation function for hidden layer tanh

Number of epochs 50

Batch size 128

Optimizer Adam

4 Experiments

4.1 Experimantal Settings

MMKG: The MMKG is derived from Baidu Encyclopedia. Specifically, we uti-
lize Mongodb to store the knowledge due to its popularity and simplicity, as well
as limited demand for relation information in our work. We conduct basic SQL
operations to keep the useful information needed for MEL task, which consists
of entity ID, entity name, entity description and entity image. In all, there are
about 1,500,000 entities in our MMKG.

Frequency Dictionary: We construct a name dictionary for formalizing
irregul-ar forms of mentions. Specifically, the elements in the dictionary are
obtained from Baidu Encyclopedia pages. Aside from normal words, Baidu Ency-
clopedia pages also contain anchor texts, which are attached with links directing
at other pages. Since each Baidu Encyclopedia page represents a unique entity,
the anchor text accordingly could be regarded as surface form of the entity it
points to. As thus, we can attain a dictionary consisting of surface forms and
their possible referent entities.

Settings for the Neural Network: The specific hyperparameters in the deep
neural network are shown in Table 1. For each mention, we extract the context
with a window size of 10, and the entity description text include 150 words in its
Baidu Encyclopedia page. The word embeddings in the neural network are stable
during the model training until using the attention mechanism, and only the
parameters in the neural network are learned. Due to limitation of computational
resources, we use negative samples to accelerate the training process. Specifically,
for each true entity, 5 negative entities are created by replacing the correct entity
from the mention’s candidate entities.
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4.2 Dataset and Baselines

We first construct a dictionary of common English surnames (in the form of
Chinese), which containes about 200 common English surnames. We index these
200 common English surnames and crawl 50,000 text-image data on Weibo. For
the crawled data, we only keep the data containing the last name instead of the
full name, whose size is about 20,000, and use manual annotations to link the
names in these data to the corresponding names in the MMKG. We split the
dataset randomly into train (70%), validation (15%), and test sets (15%).

Since our approach is not directly comparable with previous works, we
compa-re the results with different configurations and baselines. We first con-
duct a few baseline experiments, which are based on popularity-based candi-
date entity ranking, text-based similarity-based candidate entity ranking, and
image similar-ity-based entity ranking. For popularity-based candidate entity
ranking, we use the frequency dictionary we have set up, the input is the text
context, mention, some attributes of a certain entity, and the output is the con-
fidence that the mention points to the entity, and use the rank to select the
most credible entity. For text-based similarity-based candidate entity ranking,
we input the mention texutual representation and the entity textual representa-
tion to the nerual network we have designed (without the two-stage image and
text correlat-ion mechanism and attention mechanism) to calculate their simi-
larity. For image-based similarity-based candidate entity ranking, we calculate
the similarity of the visual representations of the mention and the entity which
are obtained by VGG16 through the method similar to the second stage which
is introduced in Sect. 3.4. In order to test the effect of the model designed in
this article, we carry multi-modal entity linking, and in the multi-modal entity
linking work, we test whether to introduce the calculation of image and text
correlation, whether to introduce the attention mechanism. Which features and
models we have adopted are summarized in Table 2.

4.3 Results

Table 3 reports the accuracy on the validation and test sets for the candidate
entity ranking task. We find that our proposed model achieves the best perform-
ance compared with all the baselines. Specifically, the conventional multi-modal
entity linking model performs better than the single modal data models, i.e.,
text-based and image-based. And our model outperforms the conventional multi-
modal entity linking model with 11% improvement. This illustrates our two-stage
image and text correlation mechanism and the attention mechanism contribute
a lot. In details, we find that attention mechanism improves the accuracy by
4%, which proves that multi-hop entities can capture important information in
the mention representation and the entity representation. Two-stage correla-
tion strategy improves the accuracy by 6% compared with the only first-stage
strategy, which proves that some images that can be helpful to MEL task are
eliminated in the first stage.
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Table 2. Features and models used in our experiments.

Features Description

Popularity Baseline feature where the most popular
entity is selected

Text Similarity measured between the mention
text’s embedding and the entity
description’s embedding

Image Similarity measured between the mention
image’s embedding and the entity image’s
embedding

Text+image Combine the text embedding and the image
embedding

One-stage (text-image similarity) Calculate the similarity between the topical
information of the mention’s text and the
category information of the mention’s image

Two-stage (text-image
similarity+image-text similarity)

Calculate the similarity between the topical
information of the mention’s text, the
category information of the mention’s image
and the category information of the entity’s
image

One-stage (text-image
similarity)+Att

Add the attention mechanism based on the
one-stage

Two-stage (text-image
similarity+image-text
similarity)+Att

Add the attention mechanism based on the
two-stage

Table 3. Multimedia entity linking results (accuracy)

Features and models Valid Test

Popularity 0.352 0.470

Text 0.463 0.535

Image 0.182 0.196

Text+image 0.635 0.664

One-stage (text-image similarity) 0.632 0.668

Two-stage (text-image similarity+image-image similarity) 0.693 0.737

One-stage (text-image similarity)+Att 0.676 0.702

Two-stage (text-image similarity+image-image similarity)+Att 0.743 0.796
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Fig. 5. An example of failed entity linking

4.4 Error Analysis

By observing the examples of linking errors, we find that linking errors are only
in the following two cases. The first case is that the text of the mention is very
short and does not contain important semantic information, and the text’s image
is not related to the mention. In this case, whether or not leaving the image has
no effect on the representation of the mention. As shown in Fig. 5, we can’t
obtain useful information from the text or the image to link Michael Jordan to
the correct entity. The second case is that we do not know what the mention
refers to based on the text and the image, that is, when we manually label the
mention, we cannot determine which entity it belongs to in MMKG.

5 Conclusions and Future Work

Based on the conventional multi-modal entity linking method, this paper designs
a two-stage image and text correlation mechanism to eliminate images that are
not helpful for the linking task, and introduces an attention mechanism to cap-
ture important information in the mention representation and entity represen-
tation. Our experiments on the Weibo dataset prove that this method of only
retaining high-quality images and using the attention mechanism can signifi-
cantly improve the accuracy of entity linking.

In future work, we will improve the model design. For the text of the removed
image, we will generate an image for the text that conforms to the text theme,
so as to complete higher-quality multi-modal entity linking.
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Abstract. Training data labelling is financially expensive in domain-
specific learning applications, which heavily relies on the intelligence from
domain experts. Thus, with budget constraint, it is important to judi-
ciously select high-quality training data for labelling in order to prevent
over-fitting. In this paper, we propose a learning-to-label (L2L) frame-
work leveraging active learning and reinforcement learning to iteratively
select data to label for Name Entity Recognition (NER) task. Exper-
imental results show that our approach is more effective than strong
previous methods using heuristics and reinforcement learning. With the
same number of labeled data, our approach improves the accuracy of
NER by 11.91%. Our approach is superior to state-of-the-art learning-
to-label method, with an improvement of accuracy by 6.49%.

Keywords: Active learning · Reinforcement learning · Name Entity
Recognition

1 Introduction

Most neural models are built on top of a few open datasets with well-defined
labels, such as ImageNet [1], Coco [7] and Wikipedia dataset. Those models
cannot be directly applied to a new domain and hence, we need to train the
neural model using domain-specific labels. However, it is very expensive or even
impossible to create a large training dataset for domain-specific applications.

To address the problem of lacking labeled training data, two different
approaches have been proposed, the co-training technique [11] and the trans-
fer learning technique [3]. However, the performance of co-training relies on the
assumption that different models will generate correct labels for different por-
tions of data. This may not be true in the real case. On the other hand, transfer
learning establishes a model on the source domain and transfers the knowledge
to a target domain. If the target domain and source domain do not share many
common features, the results are not very promising.

In this paper, we extend the idea of transfer learning by exploiting the active
learning and reinforcement learning techniques. We propose learning to label
approach, L2L, to rank the data for labeling for the Name Entity Recognition
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 549–557, 2021.
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(NER) application. L2L consists of two models, a transfer learning model and
an active learning model designed by a reinforcement learning process, named
as T-model and A-model, respectively. The contributions of the paper are as
follows:

– We propose a new L2L architecture to reduce the number of required labels
for training a domain-specific neural model.

– We design T-model by using an adversarial neural network to domain adap-
tion for the NER task. A multi-granularity attention model is proposed, which
can catch both the local features and global features.

– We propose a NAS-powered learning to rank model to estimate the impor-
tance of sentences to the T-model, so that we can improve the T-model effec-
tively with fewer labeled data.

Experimental results show that our approach is more effective than previous
methods using heuristics and reinforcement learning. We obtain an improvement
over the previous state-of-the-art active learning approach [3] by 6.49%.

2 Related Work

Our work is related to two lines of research: transfer learning and active learning.

Transfer Learning. For the lack of labeled data, domain adaptation of transfer
learning is a solution [4]. Adversarial learning is a widely used model to solve
the problem of image generation [2] and domain adaptation [5]. However, due
to the poor commonality of features between different domains, the results of
these methods are not satisfactory. Therefore, we propose to extend the idea of
transfer learning by using active learning technology.

Active Learning. Active learning is a technique that chooses fewer datasets
for annotation to obtain a better classification effect [8]. An active learning
algorithm based on a deep Q-network is designed, where actions correspond to
binary annotation decisions applied to the data stream [3]. However, due to the
complex data distribution, these methods cannot guarantee the validity of the
selected data. Therefore, we propose to use reinforcement learning to design the
best active learning model.

3 L2L Approach

The architecture of the L2L is illustrated in Fig. 1. The system consists of three
main components: NER model, multi-granularity attention, and learning to rank.
In this section, we will explicitly explain the three parts of the proposed approach
and training approaches.
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NER Model

feature

Learning to Rank

CNN layer

Multi-Granularity Attention
Target domain
unlabeled pool

test

Label TOP Nl sentencestrainNER Model
Target domain
unlabeled data

Source domain
labeled data

train T-Model
A-Model

The Agent

Fig. 1. The basic flow of the L2L model

3.1 Domain Adaptation with Multi-granularity Attention

We design T-model by using an adversarial neural network to domain adaption
for the NER task. Our T-model has four modules: feature extractor, entity classi-
fier, domain discriminator and target domain autoencoder. The T-model is based
on the target preserved adversarial neural network (TPANN) [6], improves the
TPANN for the NER task by using the character encoding layer and the CRF
layer for classification. The character encoding layer is used to handle out-of-
vocabulary words. The CRF layer allows us to capture the contextual connection
for sequential data and the Viterbi algorithm is used to represent the probability
of path planning.

The feature extractor F module uses CNN (Convolutional Neural Network)
to extract the features of character embedding, which effectively solves the prob-
lem of out-of-vocabulary words. Then, we connect the character embedding and
the word embedding as the input of the subsequent biLSTM layer, which is used
to model sentences. And the hidden states h of the biLSTM become the feature
that will be transferred to the next three models, which are Entity Classifier P ,
Domain Discriminator Q and Target Domain Autoencoder R.

The entity classifier P and domain discriminator Q are both feed-forward
neural networks. P is enhanced with a CRF layer to predict labels for enti-
ties. Q is trained to discriminate domain labels to make the prediction domain-
invariant. The parameter θf is optimized to make the domain discriminator Q
can not discriminate the label of the domain. Namely, the feature extractor F
constructs the common feature between the source domain and target domain.
The establishment of an autoencoder module to maintain domain-specific func-
tions is important for entity classification. According to the above process, our
model learns the common features between the source domain and the target
domain, while preserving specific feature of target domain.

The sentence feature representation extracted by T-model is enhanced with
multi-granularity attentions. We propose the manufactured hierarchies based on
batch length, the larger batch length extracts global features for entity recog-
nition, whereas the smaller batch length maintains local features. The overall
architecture of the multi-granularity attention network is shown in Fig. 2.

We can simultaneously train Nm NER models. Suppose each batch has Ks

sentences. The ith model is trained to represent data characteristics, prediction
label and prediction probability based on Ks

2i sentences. In other words, Ks
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sentences will be split into 2i mini-batches and the model is trained to represent
a mini-batch. In our current settings, Ks = 20 and Nm = 3, i.e., in Fig. 2, the
big batch, middle batch and small batch models are trained for representing 20
sentences, 10 sentences and 5 sentences respectively.

Fig. 2. The general architecture of the multi-granularity attention model

To make the local and global features more significant, we propose an atten-
tion module, which is shared among all active learning models, to obtain the
features that should be paid more attention to in the local and global fea-
tures respectively. After the informative feature is acquired through the attention
mechanism, the local feature and the global feature are integrated through CNN
to obtain the final sentence feature representation.

3.2 Learning to Ranking

In this section, we describe our active learning model in our A-model. A NAS-
powered learning to rank model is proposed to estimate the importance of sen-
tences to the T-model.

Model Description. In our task, we are given an unlabeled set of N sentences
{si}Ni=1, each represented by a D-dimensional feature vector si ∈ R

D. The goal of
the learning to rank model is to learn nonlinear function Lr : (si, sj) �→ z ∈ {0, 1}
from input space R

D to label space {0, 1} using deep neural networks, which
encodes sentences s into compact feature z = Lr(si, sj) such that the information
of pairwise importance between the given pairs can be preserved in the compact
features. The neural model is defined as a label classifier: Lr(si, sj) = [zij , pi]+,
si and sj is the vector of the sentence pair. zij indicates the representation of
the importance rank and pi is the probability that the importance rank belongs
to the class.
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To construct feature vectors, the learning to rank model is composed of sev-
eral CNN networks. The learning to rank model aims to judge pairwise relative
importance following loss function:

Lrank =−
N∑

i=1

N∑

j=1

{zij log ẑij+(1−zij) log(1−ẑij)}, (1)

where zij is the ground truth of the pairwise importance label for sample pair
(si, sj) and ẑij is the predicted label probability. N sample pairs are retrieved
from the target domain.

The architecture accepts pairwise input sentences {(si, sj , zij)} and processes
them by an end-to-end deep learning model: (i) a convolution network (CNN) is
used to learn deep representation of each sentence si, (ii) an activation function
is used to map feature representation to relative importance zij ∈ {0, 1}.

Designing Convolutional Cells. We propose a selection model based on
reinforcement learning to automatically generate the CNN architecture with
high performance for our learning to rank model. The model is an agent which
can sequentially select CNN layers. The agent is trained by using Q-learning
model, while using experience replay and ε-greedy exploration strategy. The
agent explores possible architectures based on experience, which constitute a
large but finite space, and iteratively discovers architectures with better perfor-
mance.

Fig. 3. The training procedure of the learning to rank model

The basic flow of the learning to rank model with the controller is shown in
Fig. 3. G represents a termination state (softmax). For each layer of the network
cell, the controller selects the layer type and the corresponding parameters. In
Fig. 3, feasible states (each layer) and action spaces (lines) and a possible selec-
tion trajectory of the agent and the corresponding CNN architecture of the
trajectory are shown. The figure shows a trajectory which highlighted in green
to indicate the path that the agent may select and the CNN architecture defined
by the path.
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Training Procedure: In the model training process, the intermediate reward
at each step is defined as the change in validation accuracy, and the reward is
R(ei−1, a) = Acc(φi) − Acc(φi−1), where Acc is the F1 score representing the
accuracy of the prediction, and φi is the NER model trained according to the
learning to rank model after performing action a.

We use experience replay memory M to maintain every transition (e, a, r, e′)
during the training process. Then, a mini-batch of transitions is sampled from
the memory to optimize the parameters of the model. And the loss function is
as follows:

Lagent=Ee,a,r,e′ [(yi (r, e′) − Q (e, a; θq))
2], (2)

where yi (r, e′) = r+γmaxa′ Q(e′, a′; θqi−1) is the expected Q-value of the current
neural parameters θqi−1 , and the target is over the minibatch.

4 Experiments

The experiments are conducted in two steps. First, we use the T-model trained
from the source domain and transfer it into the target domain as our NER model.
Then, we train an A-model to rank data for labeling. For comparison, we use
other baseline methods to select the same number of samples for labeling and
compare the F1 score with our method.

4.1 Evaluation Plan

The datasets required for the training of the proposed model include resource-
rich labeled data from out-of-domain, a large amount of unlabeled data and a
small amount of labeled data from in-domain. Therefore, three kinds of datasets
are used in our work:

Labeled out-of-domain data: As source corpora, we use CoNLL2003 shared
tasks1 for the English dataset. For the Chinese dataset, we use a standard bench-
mark dataset for adversarial NER, the tagged corpus of People’s Daily2.

Unlabeled in-domain data: As target corpora, we use NER corpora from
OntoNotes-5.03 for the English dataset. For the Chinese dataset, we use NER
corpora from the MSRA corpus4 and the Financial News (Real dataset that we
build).

Labeled in-domain data: We adopt labeled in-domain data for training and
evaluating the active learning model. 1,000 sentences from the datasets are used
to train the model, and another 2,000 sentences are for testing.

We compare with the following active learning approaches: Random sam-
pling, Diversity sampling [10], Uncertainty-based sampling [9], Policy based
Active Learning (PAL) [3].
1 http://www.cnts.ua.ac.be/conll2003/ner/.
2 https://www.lancaster.ac.uk/fass/projects/corpus/pdcorpus/pdcorpus.htm.
3 https://catalog.ldc.upenn.edu/LDC2013T19.
4 http://sighan.cs.uchicago.edu/bakeoff2006/download.html.

http://www.cnts.ua.ac.be/conll2003/ner/
https://www.lancaster.ac.uk/fass/projects/corpus/pdcorpus/pdcorpus.htm
https://catalog.ldc.upenn.edu/LDC2013T19
http://sighan.cs.uchicago.edu/bakeoff2006/download.html
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4.2 Results

In this section, we report the results of the experiment and give detailed analyses
of the results.

Figure 4 shows the F1 score of the NER model using labeled data selected by
different active learning approaches on the corpus of the OntoNotes-5.0, Finan-
cial news and MSRA. “L2R” refers to the learning to rank model. “L2L” refers
to the learning to rank model with the multi-granularity attention method.

Fig. 4. The F1 score on the test dataset

Using the same number of labeled data, the L2L model leads to a much better
prediction result, indicating that it is capable of selecting the most important
sentences for the NER model. And if we want to achieve intermediate accuracy,
our model can highly reduce the number of labeled data. For the OntoNotes-
5.0 corpus, we obtain an improvement over the closest competitor by 6.49%. As
Fig. 4(a), our L2L model labels 48% less data than other active learning models
for achieving 80% accuracy. For the Financial corpus, we obtain an improvement
over the closest competitor by 4.62%. As Fig. 4(b), our L2L model labels 54%
less data than other active learning models for achieving 80% accuracy. For the
MSAR corpus, we obtain an improvement over the closest competitor by 2.9%.
As Fig. 4(c), our L2L model labels 36% less data than other active learning
models for achieving 75% accuracy.

Table 1. Results from transfer learning using the different methods

Methods OntoNotes-5.0 Financial MSRA

TPANN 62.35 62.21 66.85

T-Model 66.12 65.82 70.72

We report the detailed results for all approaches on the four corpora in Table 1
and Table 2. Table 1 shows the results with the cold-starting setting. Namely, we
directly transfer the NER models trained using source domain to the target
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Table 2. Results from active learning using the different methods

Methods OntoNotes-5.0 Financial MSRA

F1 C/R F1 C/R F1 C/R

Random 76.83 100 77.53 100 75.04 100

Diversity [10] 78.82 36 78.82 46 75.39 78

Uncertainty [9] 79.61 30 79.21 36 75.68 66

PAL [3] 82.25 36 80.60 36 75.99 44

L2R 85.19 14 82.53 18 77.33 30

L2L model 88.74 8 85.22 10 78.89 18

domain. The F1 score of the T-Model in our task is better than the one of
the TPANN. In Table 2, the datasets of four target domains are displayed as
columns, reporting the F1 score (%) of validation accuracy and the relative cost
reduction (%) compared to the performance of Random method.

In all datasets, L2L outperforms the heuristic methods, including Uncertainty
Sampling. We speculate this may be due to these two heuristics not being able
to capture the polarity information during the data selection process. And L2L
also outperforms PAL. We attribute this to the ineffectiveness of the RL-based
approach for learning a reasonable AL query strategy. Compared with the pre-
vious state-of-the-art approach, our method achieves an improvement of 6.49%.
By applying a better representation approach, we extract more semantic fea-
tures and hence, our approach can provide better performance than the baseline
one with the same number of labeled data. Table 2 also reports the cost reduc-
tion versus random sampling, showing that the PAL methods can reduce the
annotation burden to as low as 8%.

5 Conclusion

In this work, we propose a novel approach combining active learning and rein-
forcement learning techniques for selective data labeling. The idea is to first
transfer a learning model from a source domain to a target domain, and then
apply the active learning to gradually improve the performance of the model
using as few labeled data in the target domain as possible. Experimental results
show that our approach is more effective than strong previous methods using
heuristics and reinforcement learning.

Acknowledgments. The work is supported by NSFC (grant number 61872315) and
Zhejiang Provincial Natural Science Foundation (grant number LZ21F020007).
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Abstract. Entity resolution (ER) is an important step of data preprocessing. Deep
learning based entity resolution is a growing topic in research communities. Con-
sidering that record structure is hierarchical: token, attribute, record, we propose
a hybrid attention-based network framework for entity resolution. It synthesizes
information from different abstract levels of record hierarchy. Systematic atten-
tion mechanisms are exploited in several aspects of ER: self-attention for internal
dependency capture, inter-attention for alignments, and multi-dimensional weight
attention for importance discrimination. Also attribute order is taken into account
in ER learning for better similarity representations. Moreover, we tackle ER over
low-quality data by hybrid soft token alignments. Extensive experiments on 4
datasets are conducted, and the resultsshow that our approach surpasses existing
ER approaches.

Keywords: Entity resolution · Attention mechanism · Deep learning · Hybrid
neural network

1 Introduction

Entity resolution (ER) is a fundamental problem of data preprocessing and data integra-
tion, and is also known as entity match, record linkage, and duplicate detection [1]. ER
distinguishes records referring to the same real-world entity in datasets, and is widely
applied in healthcare, e-commerce, criminal investigation et al. There are two kinds of
classical ER approaches: rule based ER and machine learning based ER [1]. Recently
deep learning (DL) introduces a new chance to ER, and DL based ER (deep ER for
short) shows remarkable competitive advantages over classical ER [2, 3]. DL is able to
provide an end-to-end solution to ER [4], substantially reducing manual involvements.
DL also is able to deeply capture semantic similarity for textual data.

Although DL based approaches substantially accelerated ER research recently [2,
3, 5–7], there still exists much improvement space for deep ER. A record is typically
hierarchical in structure: token to attribute to record, as shown in example 1. Schema,
consisted of attributes, is a key factor in organization of record hierarchy. We have
following observations. First, a basic problem is what DL architecture can properly

© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 558–565, 2021.
https://doi.org/10.1007/978-3-030-73197-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73197-7_37&domain=pdf
https://doi.org/10.1007/978-3-030-73197-7_37


Entity Resolution with Hybrid Attention-Based Networks 559

handle data with attributes in ER setting. Different levels (i.e. token and attribute) contain
different abstractions of knowledge in records. Existing works usually focus on one level
for similarity computation: [3, 5–7] at token level or [2] at record level. The complex
structural information of record is not fully taken into account. Second, there are hidden
relations between attributes in schema, which matter in representations and comparisons
of deep ER, but such relations are ignored in previous works. Taking r6 in example 1–
(3) as an example, Title and Type are closely related and should be put together when
comparison. Third, how to sufficiently improve representations and comparisons with
attentionmechanisms. Previousworks utilize attentions in theway of textmatching [3, 5,
7], but neglect ER adaptation and systematicness. Fourth, how towell resolve low-quality
data: 1) data with misplaced values and injected noise, as illustrated in example 1–(2);
2) data with not well-matched heterogeneous schema, as illustrated in example 1–(3).
Previous works [5, 7] solve such problems by regarding a record as a long sequence and
diluting or even abandoning schema information, which harms usability and accuracy.

Example 1. There are three examples of data as follows.

(1) r1 = {Name = William Joe, City = LA, Age = 21}, r2 = {Name = Will Joe, City
= Los Angeles, Age = 21}. Pair < r1, r2 > is of standard structured data.

(2) r3 = {Name = Apple IPhone 12, Brand =, Price = 999}, r4 = {Name = IPhon
12, Brand = Apple Inc, Price = 999.00}. Pair < r3, r4 > is of low-quality data
with misplaced values.

(3) r5 = {Name = Surface Pro 7, QWU-00001, Category = Microsoft Computers,
Price = 869.00, Size = 12.3}, r6 = {Title = Micrsoft Surface Pro 7, 12.3′′, Price
= 869.00, Type = Computers QWU-00001, Location = Redmond, WA}. Pair
< r5, r6 > is of low-quality data with not well-matched schemas: Name-Title,
Category-Type, Price-Price, Size-, -Location. In fact, Name is related to Title &
Type, Category is related to Title & Type, and Size is related to Title. So there are
N-N relations, which is very difficult for perfect schema matching.

In this work, we create an end-to-end solution for ER: hybrid attention-based
networks (HAN). HAN exploits different levels of record hierarchy for similarity com-
putation by setting up two sub-networks. In this way, two level similarity representa-
tions are generated: one is for concrete low-level (token) knowledge and the other is
for abstract high-level (attribute) knowledge. We sort attributes according to relations
between them for better deep similarities. A family of attention mechanisms is intro-
duced to systematically enhance hierarchical representations and comparisons in HAN.
Self-attention captures internal dependencies in a sequence of tokens (or attributes),
inter-attention aligns two sequences of tokens, and multi-dimensional weight attention
discriminates importance of tokens (or attributes) in a multi-perspective way. To effec-
tively resolve low-quality data, we design hybrid soft alignments between tokens, i.e.,
aligning tokens both intra and inter aligned attributes. In this setting, tokens can be com-
pared across attributes if necessary. Experimental evaluations on 4 datasets show that
HAN apparently outperforms existing works.
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Organization of the rest work is as follows. Section 2 reviews related work.
Section 3 elaborates the hybrid attention-based network framework. Section 4 introduces
experimental evaluations. Section 5 concludes the whole work.

2 Related Work

Entity resolution is a long-stand topic in data mining, database, and artificial intelligence
[1]. Classical ER belong to one of two categories: rule based approaches and machine
learning (ML) based approaches. Inspired by the revolutionary DL based success in
NLP [4], there comes a growing trend of DL based ER recently. As a pioneer work,
DeepER learns a distributed representation for each record, and then compute record
similarities with record representation vectors [2]. DeepMatcher summarizes and com-
pares attributes with bidirectional RNN and inter-attention, and then aggregate attribute
similarities to make ER decisions [3]. Seq2SeqMatcher is a deep sequence-to-sequence
ER method, which regards a record as a long sequence [6]. HierMatcher builds a hier-
archical matching network for ER, and is an improvement to Seq2SeqMatcher by limit-
edly considering attribute information [7]. MCA is an integrated multi-context attention
framework for ER [5]. MCA tries to fully exploit the semantic context and capture the
highly discriminative terms for a pair of attribute values with 3 types of attentions.

3 Hybrid Attention-Based Networks

Token Self-attention

Token Alignment 
across Atrributes

Token Alignment with 
Atrribute Alignment

Multi-perspective Token Similarity Aggregation

Token Embedding

Token BiGRU

Token Weight Attention
Attribute BiGRU

Attribute Self-attention

Attribute Sorting

Multi-perspective Attribute Comparison

Attribute Similarity by Attribute
Comparison

Attribute Similarity by Token
Comparison

r1 r2

Prediction Layer

Token Comparison

Multi-dimensional Token Weight AttentionMulti-dimensional Attribute Weight Attention

Hybrid Soft Token Alignments
r1 r2

Fig. 1. Overview of our hybrid attention-based network framework for ER
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Given two records r1 = {a11, …, a1m} from data source R1 and r2 = {a21, …, a2n}
from data source R2, entity resolution (ER) decides whether r1 and r2 refer to the same
real-world entity. An attribute value a1i is a token sequence.

The hierarchical structure of a record is token to attribute to record. Inspired by hier-
archical DL solutions to document classification [8] and text matching [9], we design a
hybrid attention-based network (HAN) framework for ER over data with various qual-
ities. HAN synthesizes information from different record structure levels: token and
attribute. Three kinds of attention mechanisms are utilized in different steps of deep ER.
The overview of our bottom-up solution is illustrated in Fig. 1. The neural computation
between r1 and r2 is bi-directional. We just present r1 → r2, and it is easy to get r1 ←
r2.

Attribute Similarity by Token Comparison. The sketch workflow is token represen-
tation to token similarity to attribute similarity, as illustrated in Fig. 1. Attributes are
converted into sequential token representations, and are contextualized with token self-
attention. To address low-quality data problem, hybrid soft token alignment is intro-
duced. With multi-dimensional weight attention, token level similarities are aggregated
into token based attribute similarities.

Token Representation and Contextualization. Given an attribute value a1i of record r1,
we embed it with fastText [10], and then utilize bi-directional GRU (BiGRU) to incor-
porate the sequential contextual information from both directions of tokens [11], arriv-
ing at h1i. In a sequence, self-attention establishes the connection between any two
tokens regardless of their distance [12], which is important contextual information. Self-
attended representation hs1i is generated by putting the self-attention matrix α1i

T upon
h1i. α1i is computed by softmax over dot product of h1i and its transpose.

Hybrid Soft Token Alignment. Inter-attention softly aligns tokens between two
sequences, and builds inter-sequence token connections [12]. To tackle low-quality
data, we conduct two kinds of token alignments, and combine them with a flexible
gating mechanism (GM). Token alignment with attribute alignment (TAw) focuses on
standard structured data, while token alignment across attributes (TAac) focuses on cor-
rupted data. (1) TAw. Given a pair of well-matched attribute values a1i and a2j, their
self-attended representations hs1i and hs2j are used to compute inter-attention between

them. h
∧

1i is the inter-attended representation of a1i, and is the dot product of hs2j and
β1i→2j. β1i→2j is the alignment matrix between token pairs from a1i and a2j, and each
entry β1i→2j(k, l) is a connection weight between tokens a1ik and a2jl. (2) TAac. For cor-
rupted data, attributes are not well matched or values are misplaced, so token alignment
should break attribute boundaries. a1i is aligned against the whole record r2 (i.e., [a21,
…, a2n]). (3) GM. GM is invented to flexibly control information flow from different
representations [13]. We use GM to combine the two different soft alignments h

∧

1i and

ĥ
′
1i, arriving at ĥ

′′
1i.

Token Comparison. Given a token a1ik of a1i, we put hs1i(k), ĥ
′′
1i(k), their element-wise

absolute difference

∣
∣
∣
∣h

s
1i(k) − ĥ

′′
1i(k)

∣
∣
∣
∣, and their element-wise multiplication hs1i(k) �
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ĥ
′′
1i(k) together into a highway network, and get the unidirectional token similarity from

a1ik to r2, c1i(k).

Multi-perspective Token Similarity Aggregation. For an attribute a1i, we aggregate
token similarities into token based attribute similarities from different perspectives. We
introduce multi-dimensional weight attention �1i to represent token importance in a
sequence [12].�1i is of q1i dimensions.With q1i weight attentions, we arrive at q1i token
based attribute similarities by weighted aggregations, where each c1i · (�1i(l))T, l ∈[
1, q1i

]
captures a unique semantic aspect of attribute sequence a1i. All token based

attribute similarities are concatenated into a multi-perspective token based attribute
similarity vector ε

mp
1i .

Attribute Similarity by Attribute Comparison. The sketch workflow is token repre-
sentation to attribute representation to attribute similarity, as shown in Fig. 1.We propose
an attribute sorting algorithm, which puts related attributes close to each other. Attribute
representation is generated by aggregating token representations with BiGRU, and is
contextualized with attribute self-attention. With multi-dimensional attribute weight
attention, attribute based attribute similarities are aggregated into record similarities.

Attribute Sorting. A record consists of several attributeswith no intrinsic order, and each
attribute value is a token sequence. We observe that good attribute orders help create
good contexts for attributes.We propose an attribute self-attention based attribute sorting
method. In ER, the key of attribute sorting is to put related attributes close to each other.
Thus, we utilize attribute self-attention to measure relatednesses between attributes, and
then sort attributes with relatednesses. The most related attributes are iteratively merged
until all attributes are sorted. Note that attributes should be sorted separately in each of
the two data sources.

Attribute Representation and Contextualization. After the attribute order is fixed, we
use an attribute level BiGRU to capture sequential contextual information. For an
attribute a1i, its bidirectional sequential contextual state is u1(i). Then self-attended
attribute representation us1(i) is dot production of u1(i) and (α1(i))T, where (α1(i))T is
self-attention matrix over u1(i).

Multi-perspective Attribute Comparison. Given a pair of matched attribute values a1i
and a2j, their attribute representations are u1(i) and u2(j) respectively. The concate-
nation of u1(i), u2(j), their element-wise absolute difference |u1(i) − u2(j)|, and their
element-wisemultiplicationu1(i)�u2(j) is put into a highway network for attribute level
comparison (a1i → a2j), arriving at c1(i), the attribute based attribute similarity of a1i
→ a2j. We introduce multi-dimensional weight attention �1 for attributes, where each
dimension is targeted at a specific semantic aspect of a record. Then we apply multiple
different weights (in �1) to c1, which contains all original attribute based attribute sim-
ilarities of a1 → a2, and arrive at a multi-perspective attribute based attribute similarity
vector ε

mp
1 .

Prediction Layer and Model Learning. We regard ER as a binary classification prob-
lem. Overall record similarities are generated from token based attribute similarities &
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attribute based attribute similarities, and are put into a deep classifier for ER decisions.
Finally our deep ER model is trained by minimizing cross entropy.

Token based similarity of r1 → r2 is derived from ε
mp
1i , i ∈ [1,m], denoted as stk1→2.

Each token based attribute similarity ε
mp
1i is weighted, and ( 1

q1

∑q1
i=1�1(i))

T
is an average

attribute weight vector. Similarly, token based similarity of r1 ← r2 is stk1←2. Attribute
based similarity of r1 → r2 is satt1→2 = ε

mp
1 . Similarly, attribute based similarity of r1 ←

r2 is satt1←2. Overall record similarity of r1 ↔ r2 is concatenation of above 4 similarities,
denoted as s1↔2. To get the ER decision, the overall record similarity s1↔2 is fed into a
two-layer fully-connected highway network succeeded by a softmax layer. The highway
network aggregates s1↔2 into a compact representation s

′
1↔2. Finally a softmax layer

takes s
′
1↔2 as input, and generates the matching distribution P(z|r1, r2).

4 Experimental Evaluation

Datasets. We conduct experiments over 4 datasets from various domains. There are
2 standard structured datasets and 2 low-quality datasets, as illustrated in Table 1. The
table columns contain the type of a dataset, dataset, application domain, the number of
records (Size), the number of matches (# Pos.), and the number of attributes (# Att.). All
datasets are from open datasets published by the DeepMatcher research group [3], but
some datasets are edited for special features.

The two datasets AG and BR are the same as in [3]. In low-quality data, either
values are misplaced, or schemas are not well matched. Based on Walmart-Amazon1
in [3], WA1 is generated by moving a value from one attribute to another attribute
in the same record with 50% probability. Based on Walmart-Amazon1 in [3], WA2 is
generated by merging attributes brand and model from Walmart to get a new attribute
brand-model, and merging attributes category and brand from Amazon to get a new
attribute category-brand. For both datasets, a selected value is injected into a spelling
error with 20% probability, and the spelling error is changing a token into another token
with edit distance 2.

Table 1. Datasets for experimental evaluation

Type Dataset Domain Size # Pos. # Att.

Structured Amazon-Google (AG) Software 11,460 1,167 3

BeerAdvo-RateBeer (BR) Beer 450 68 4

Low-quality data Walmart-Amazon1 (WA1) Electronics 10,242 962 5

Walmart-Amazon2 (WA2) electronics 10,242 962 4:4

Settings, Parameters and Metric. The approaches are implemented with PyTorch.
The experiments are run on a server with 8 CPU cores (Intel(R) E5–2667, 3.2 GHz),
64G memory, and NVIDIA GeForce GTX 980 Ti.
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The dimension of fastText is 300. Adam is used as optimization algorithms for all
deep learning models. The number of hidden units in BiGRU is 150. The number of
epochs, mini-batch size, and dropout rate are 15, 16, and 0.1, respectively. Given a
dataset, it is partitioned into 3: 1: 1 for training, validation, and testing, respectively.

F1 is used to measure ER accuracy, and is defined as 2PR/(P + R) [3], where P is
precision and R is recall.

Comparison with Existing Works. We compare our approach with 4 existing works:
DeepMatcher [3], DeepER [2], hierarchical matching network (HierMatcher) base
approach [7], and multi-context attention (MCA) based approach [5].

Test with Standard Structured Data. Figure 2 presents the accuracy of 5 ER approaches
over 2 standard structured datasets. Generally, our HAN outperforms the other 4 ER
approaches. On AG, the F1 gap (�F1) between HAN and DeepMatcher, DeepER, Hier-
Matcher, & MCA are 10.5%, 17.7%, 5.2%, and 8.4%; on BR, �F1 between HAN
and DeepMatcher, DeepER, HierMatcher, & MCA are 13.6%, 14.2%, 8.1%, and 6.3%.
Compared to existing works, we think HAN benefits from 3 aspects: (1) HAN captures
information from different levels of record hierarchy, and appropriately combines them
together; (2) HAN properly weights attributes and tokens with multi-dimensional atten-
tions; (3)HANprovides ameaningful attribute order for representations and comparisons
in deep ER.

Test with Low-Quality Data. Figure 3 illustrates the accuracy of 5 ER approaches over
2 low-quality datasets. Obviously, HAN has more superiority over the 4 existing works
on low-quality data than on standard structured data. On WA1, �F1 between HAN and
DeepMatcher, DeepER, HierMatcher, &MCA are 24.3%, 49.8%, 10.7%, and 14.5%; on
WA2,�F1 betweenHANandDeepMatcher, DeepER,HierMatcher, &MCAare 28.3%,
41.9%, 12.3%, and 18.1%. WA1 is low-quality data with misplaced values and error
injections; WA2 is low-quality data with not well matched schemas and error injections.
Compared to existing works, we deem, HAN well handles low-quality data, because
HAN synthesizes token comparisons with aligned attributes and across attributes, in
addition to the 3 aspectsmentioned in the precedingparagraph. In thisway,HANcaptures
different kinds of complementary semantic similarities.
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5 Conclusion

This work creates a hybrid attention-based network framework for deep ER. HAN
exploits a deep understanding of record hierarchy, and captures sematic similarities
from both concrete low-level information (token) and abstract high-level information
(attribute). Extensive experimental evaluations on 4 datasets show that HAN has obvious
advantages over previous ER approaches.
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Abstract. In recent years, the approximate nearest neighbor search in
multiple �p metrics (MMS) has gained much attention owing to its wide
applications. Currently, LazyLSH, the state-of-the-art method only sup-
ports limited values of p and cannot always achieve high accuracy. In
this paper, we design a mixed hash function family consisting of two
types of functions generated in different metric spaces to solve MMS
problem in the external memory. In order to make the mixed hash func-
tion family work properly, we also design a novel searching strategy to
ensure the theoretical guarantee on the query accuracy. Based on the
given scenario, MLSH constructs the corresponding mixed hash function
family automatically by determining the proportion of two types of hash
functions. Experimental results show that MLSH can meet the different
user-specified recall rates and outperforms other state-of-the-art methods
on various datasets.

Keywords: Locality sensitive hashing · Fractional metrics

1 Introduction

The nearest neighbor search (NNS) in Euclidean spaces is of great importance
in areas such as database, information retrieval, data mining, pattern recogni-
tion and machine learning [2,8,13]. In high-dimensional spaces, this problem is
quite challenging due to the curse of dimensionality [12]. In order to circumvent
this difficulty, many researchers turned to solve the approximate nearest neigh-
bor search (ANNS) problem in high-dimensional spaces and proposed various
ANNS methods. Among these methods, the locality sensitive hashing technique
(LSH) [5] has gained particular attention since, compared with other ANNS
methods, LSH owns attractive query performance and success probability guar-
antee in theory, and finds broad applications in practice [3,7,11,16,17]. It is
notable that, for most LSH variants, ANNS in �2 metric is of great interest due
to the practical importance. In contrast, the research on ANNS in fractional
distances, i.e., �p metrics with 0 < p ≤ 1, is limited, although it also plays
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an important role in many applications. As pointed out in [1,4,9], �p metrics
(0 < p ≤ 1) can provide more insightful results from both theoretical and empir-
ical perspectives for data mining and content-based image retrievals than �2
metric. In general, the optimal value of p (of �p metric) is application-dependent
and requires to be tuned or adjusted [1,4,6,9]. Motivated by these practical
requirements, the following multi-metric search (MMS) problem in factional dis-
tances has been raised in [18]: given query q and a group of metrics {�pj

}b
j=1,

where 0 < pj ≤ 1, retrieve efficiently the approximate nearest neighbors of q’s
in all �pj

metrics at one time. Note that this problem is non-trivial even for
a single �p metric. Although, LSH technique can support ANNS in arbitrary
fractional distance in theory due to the existence of p-stable distributions for
0 < p ≤ 1 [12], it is hard to be implemented in practice. Besides, due to the
lack of the closed form of the probability density function (PDF) of the general
p-table distribution, the collision probability (in the same hash bucket) of two
arbitrary objects cannot be computed analytically.

To the best of authors’ knowledge, LazyLSH [18] is the first method which
could solve MMS problems with the probability guarantee. An important fact
on which LazyLSH depends is that, for arbitrary two close objects o1 and o2 in
�p metric, it is highly possible that they are also close in �p′ metric for 0 < p �=
p′ ≤ 1. Based on this fact, LazyLSH only generates hash functions under the
1-stable distribution, i.e. the Cauchy distribution, in the indexing phase. This
corresponds to the case of p0 = 1. In the query phase, LazyLSH searches for the
nearest neighbors of queries in �pj

(1 ≤ j ≤ b) metrics simultaneously by means
of �p0 metric (p0 = 1) based hash functions. By carefully setting the filtering
criteria and the termination condition, the probability that LazyLSH returns
the true results in all �pj

metrics (1 ≤ j ≤ b) is given in theory.
Although LazyLSH offers a practicable solution to MMS problems, it has

following two limitations. (1) The range of p’s in which LazyLSH works is limited.
Specifically, when p0 = 1, that is, �1 is chosen as the base metric, LazyLSH can do
ANNS only in �p metric of 0.44 < p ≤ 1. For the other values of p, LazyLSH loses
the effectiveness due to the lack of the locality sensitive property. In reality, this
limitation is independent of the choice of p0, and only related to the searching
scheme of LazyLSH. (2) LazyLSH lacks of flexibility. In practice, the range of
p of interest may be different in various applications. Obviously, hash functions
generated in �1 metric are not appropriate if small values of pj ’s are required by
the applications.

In order to overcome the limitations mentioned above, in this paper, we
propose a novel method called Multi-metric LSH (MLSH) to solve the MMS
problem. Different from existing LSH-based methods, MLSH works on a mixed
hash function family consisting of two types of hash functions which are gen-
erated in �0.5 metric and �1.0 metric, respectively. Such a mixed hash function
family is designed exclusively for solving MMS problems since it can support
different user-specified ranges of {pj}b

j=1 efficiently by adjusting the proportion
of two types of hash functions. In order to make the mixed hash function family
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work properly, we also design a corresponding searching strategy to have the
probability guarantee on query results.

Although the idea of mixed hash function family is straightforward, its real-
ization is challenging due to the following two difficulties. (1) Since the PDFs
of 0.5 and 1.0 stable distributions are different, MLSH should utilize these two
types of hash functions coordinately to ensure the probability guarantee. (2)
Given the user-specified range of pj ’s, the proportion of two types of hash func-
tions should be determined suitably to make the searching efficient. In order
to clarify how to overcome these two difficulties, we will introduce the work-
ing mechanism of MLSH in two steps. First, we propose a novel search method
called Single-metric LSH (SLSH), which works on a single type of hash func-
tions, to solve MMS problem. Then, we discuss the construction way of mixed
hash function family and propose MLSH based on SLSH.

Our contributions are summarized as follows.

(1) Compared with LazyLSH, SLSH can support ANNS in arbitrary �p metric
(0 < p ≤ 1), which significantly expands the application scope.

(2) Based on the framework of SLSH, we propose its improved version called
MLSH which works on a mixed hash function family consisting of hash func-
tions generated both in �0.5 metric and �1.0 metric. In addition to inheriting
the merits of SLSH, MLSH could automatically determine the proportion of
two types of hash functions, and construct the efficient mixed hash function
family for the user-specified fractional distances.

(3) Extensive experiments on real datasets show that MLSH owns stable per-
formance and outperforms the other state-of-the-art methods in both I/O
cost and search time on real datasets.

2 Related Work

In this paper, we focus on the solution of ANNS in multiple fractional distances
with probability guarantee. Thus, we only review those methods highly related
to this topic. A summary of ANNS methods in �2 metric can be found in [14].

LSH is the most widely used technique for solving ANNS problems owing
to its remarkable theoretical guarantees and empirical performance. E2LSH [5],
the classical LSH implementations, cannot solve the c-ANNS problem efficiently
because it requires a prohibitively large space in the indexing. To cope with this
problem, the authors in [7] proposed C2LSH to reduce the storage cost. Different
from E2LSH, C2LSH uses virtual rehashing and dynamic counting techniques
to update the count frequency of each object by extending hash buckets step
by step. The correctness of C2LSH is based on the following fact: the higher
count frequency is, the more likely to be NN the corresponding object is. Later,
QALSH [11] was proposed to further improve the search accuracy of C2LSH.
Unlike C2LSH, QALSH uses query-centric hash buckets such that the near neigh-
bors of queries on each vector can be tested more accurately. It is notable that,
although QALSH and C2LSH were proposed originally for the search in �2 space,
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they can be easily modified to support the search in other �p metrics, as pointed
out in [10].

Independently of QALSH, LazyLSH [18] was proposed to solve MMS problem
with the probability guarantee. Similar to QALSH, LazyLSH also uses query-
centric hash buckets and thus achieves better performance than C2LSH in �1
space. The core idea of LazyLSH is to build a single index structure and con-
duct the search in multiple metric spaces simultaneously. On such an index,
by carefully setting the number of hash functions and the count threshold, the
results in other fractional distances can also be returned with the probability
guarantee. In addition, similar to other LSH variants, LazyLSH can achieve dif-
ferent accuracy-efficiency tradeoffs by adjusting the approximation ratio c.

3 Working Mechanism of SLSH

For ease of presentation, in this section, we mainly focus on the case of a single
base metric and only one nearest neighbor to be found, and postpone the general
case to Sect. 3.3: given p0, p1 (0 < p0, p1 ≤ 1), query q, dataset D, error rate δ,
and the hash function family {hp0

i }m
i=1 in �p0 metric, find the nearest neighbor

o∗ of q in �p1 metric with probability guarantee. Although this problem has
been solved by LazyLSH under some constraints, here, we present a different
algorithm called SLSH which does not require the constraint that p > 0.44 as
LazyLSH has.

3.1 Preparations

A Special Case: p0 = p1 First, we give the following fundamental result of
LSH technique [5].

Lemma 1. For two objects o and q with �p distance ‖o − q‖p = s (o, q ∈ R
d),

Pra∼Xp
{|ha(o) − ha(q)| ≤ w} =

∫ w/s

−w/s
f(x)dx, where w is a positive number, h is

a hash function generated randomly and f(x) is the PDF of p-stable distribution
Xp.

We assume p0 = p1 = p and try to find a candidate set S such that o∗ is
included in S with probability at least 1−δ, where o∗ is the true nearest neighbor
of q in �p metric. Given m hash functions generated in �p metric, we first define
width w∗:

w∗ = ‖o∗‖ · f−1
p (

τ

m
+

√
1

2m
ln

1
δ
), (1)

where fp is the probability density function of the p-stable distribution. Then,
by the Hoeffding’s inequality, we have the following lemma, which is derived in
a similar way in Theorem 1 in [15].

Lemma 2. For any δ > 0 and positive integers m, τ (m > τ), two points o1
and o2 in R

d of distance s = ‖o1 − o2‖p collide in the same hash bucket τ times
or more in the m query centric hash buckets, with probability at least 1− δ if the
half-bucket size w is set to w∗.
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Fig. 1. A running example of SLSH for finding approximate nearest neighbors of q in
�p1 metric using �p0 hashing (p1 < p0).

Clearly, τ ∈ (0,m) is the count threshold. S = {o ∈ D|#Col(o;w∗) ≥ τ} is
the candidate set that we desire.

Some Definitions and Notations. Next, we introduce some notations for the
later use. For two different metrics �p0 and �p1 , we define a norm ‖x‖p1→p0

as
follows:

‖x‖p1→p0
= max

y∈Rd
{‖y‖p0

| ‖y‖p1
= ‖x‖p1

}. (2)

Then, we can derive following two lemmas by elementary computation.

Lemma 3. For 0 < p0, p1 ≤ 1, ‖x‖p1→p0
can be expressed as follows:

‖x‖p1→p0
=

{‖x‖p1
0 < p1 < p0 ≤ 1

d1/p0−1/p1 ‖x‖p1
0 < p0 < p1 ≤ 1

Lemma 4. For 0 < p0, p1 ≤ 1, ‖y‖p0
≤ ‖x‖p0

→ ‖y‖p1
≤ ‖x‖p0→p1

.

3.2 The Algorithm

After preparations above, we are ready to show the details of SLSH (Algorithm
1). The basic idea behind Algorithm 1 is illustrated in Fig. 1. Here, for simplicity,
we only show the case p1 < p0 = 1. From Fig. 1, we can see that the width of
search windows is gradually increased in the searching process. If some object o
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satisfies the candidate condition, that is, #Col(o;w) ≥ τ , we view it as a can-
didate and compute its exact distance with q in �p1 metric. During this process,
we maintain the nearest one we have checked, denoted by omin. By Lemma 3
and Lemma 4, it is easy to see that the set V = {o ∈ D| ‖o‖p0

≤ ‖omin‖p1→p0
}

contains omin and o∗ as well. Thus, it suffices to find a candidate condition such
that the probability that an arbitrary object in V satisfies this count condition
is at least 1− δ. To this end, we introduce wmin, which is analogous to w∗ in (1),
as follows.

wmin = ‖omin‖p1→p0
· f−1

p0
(

τ

m
+

√
1

2m
ln

1
δ
). (3)

Let U(wmin, τ) = {o ∈ D|#Col(o;wmin) ≥ τ}. According to Eq. (1) and the
discussion in Sect. 3.1, we have

Pr{o∗ ∈ U(wmin, τ)} ≥ 1 − δ. (4)

Thus, U(wmin, τ) is viewed as the candidate set, where wmin is always known
during the searching process due to the existence of omin. Clearly, for any w ≥
wmin, U(w, τ) ≥ U(wmin, τ). Therefore, we can write the candidate condition
and the termination condition as follows, where w is the current half-width of
search windows.

Candidate condition: #Col(o;w) ≥ τ , where o ∈ D.
Termination condition: w ≥ wmin.

According to the discussion above, the candidate condition and the termina-
tion condition work together to ensure that all objects in the candidate set can be
checked. When wmin is updated during the extension of search windows, we also
need to check whether the termination condition is satisfied or not. Note that,
the termination condition becomes tighter as the searching proceeds because the
value of wmin is non-decreasing. Figure 1 illustrates this situation.

Up to now, all results are obtained only in the case c = 1. For the general
case c ≥ 1, it suffices to rewrite wmin as follows:

wmin = (‖omin‖p1→p0
/c) · f−1

p0
(

τ

m
+

√
1

2m
ln

1
δ
) (5)

The validity of this setting of wmin is shown in the following theorem.

Theorem 1. For any query q ∈ �d, the probability that algorithm 1 returns a
c-approximate nearest neighbor of q in lp1 metric with success probability at least
1 − δ.

Proof. Case 1: (c = 1). According to the discussion, the probability that o∗ is
checked is at least 1 − δ. Thus, we conclude.

Case 2: (c > 1). According to the expression of wmin, if the algorithm
terminates before w reaches w∗, at least one c-approximate nearest neighbor has
been found. On the other hand, if w ≥ w∗, the probability that o∗ is found is at
least 1 − δ (Case 1). Combining these two situations, we conclude (Note that o∗
is of course a c-approximate nearest neighbor).
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Algorithm 1: SLSH
Input: D is the dataset; d is the dimension of D; q is the query; c is the

approximation ratio; δ is the error rate; �p0 is the base metric; m is the
number of hash functions in �p0 metric; λ is the parameter controlling
count threshold τ ;

Output: omin: the approximate nearest neighbor of q in �p1 metric
1 generate m hash functions {hi}m

i=1 in �p0 ;
2 w ← 0, omin ← NULL;

3 τ ←
⌊
mλ − √

m ln(1/δ)/2
⌋
;

4 wmin = (‖omin‖p1→p0
/c) · f−1

p0 (λ);

5 while w ≤ wmin do
6 w ← w + Δw (Δw > 0);
7 ∀o ∈ D update #Col(o; w) if necessary;
8 if o is not visited and #Col(o; w) ≥ τ then
9 if ‖q − o‖p1

< ‖omin‖p1
then

10 Update omin ;
11 wmin = (‖omin‖p1→p0

/c) · f−1
p0 (λ);

12 Return omin

3.3 More Analysis

In the discussion above, we only consider a single objective metric lp1 . Here, we
consider the case of multiple objective metrics, that is �p1 , �p2 , . . . , �pb

. Suppose
that we have generated m hash functions {hi}m

i=1 in the base metric �p0 . During
the searching process, we need to keep and update the current nearest neighbors
in different metrics, denoted by op1

min, · · · , opb

min, and compute wp1
min, · · · , wpb

min,
respectively in a similar way of wmin in (5). Let wmin = max

1≤j≤b
{w

pj

min}. Then, we

only need to replace the termination condition in Algorithm 1 by w ≥ wmin.

4 Working Mechanism of MLSH

From now on, we consider the following generalized MMS problem: given dataset
D, query q and error rate δ, find c-approximate nearest neighbors of q in b
different metrics {�pj

}b
j=1 at once with probability at least 1−δ, where 0 < p1 <

p2 < · · · < pb ≤ 1.
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Fig. 2. A running example of MLSH.

4.1 The Mixed Hash Function Family

We present the details of the construction of the mixed hash function family
from the following four aspects.

(1) Selection of hash functions. We choose two sets of hash functions; one
in �0.5 metric and another in �1.0 metric, because (1) probability density
functions of 0.5-stable and 1-stable distributions have their closed-forms,
and (2) random variables following these two distributions can be easily
generated. Thus, we generate m0.5 hash functions randomly under the 0.5-
stable (Levy) distribution and generate m1.0 hash functions randomly under
the 1-stable (Cauchy) distribution, where m = m0.5 + m1.0 is the total
number of hash functions.

(2) The upper bound of window size. Since MLSH generates two sets of
hash functions, wmin cannot be directly used. Thus, we need the following
modifications. Let oj

∗ and oj
min be the true nearest neighbor and the nearest

neighbor among probed objects in �pj
metric, respectively. Given �pj

metric
(1 ≤ j ≤ b), we introduce notation wi,j

min analogous to wmin in (5) (i =
0.5, 1.0), which is defined as follows:

wi,j
min = ‖omin‖pj→pi

· f−1
pi

(
τ

m
+

√
1

2m
ln

1
δ
) (6)

Let w0.5 and w1.0 be the half-widths of search windows on {h0.5
j }m0.5

j=1 and
{h1.0

j }m1.0
j=1 , respectively. According to the analysis in the preceding section, if

w1.0 ≥ w1.0,j
min holds for functions {h1.0

j }m
j=1, the probability that the count fre-

quency of oj
∗ is not less than τ is at least λ. Since the value of j varies from 1 to

b, we need to keep the value w1.0
min which is defined as follows:

w1.0
min = max

j
{w1.0,j

min } (7)

When w1.0 ≥ w1.0
min, we terminate the extension of search windows

[−w1.0, w1.0]. Similarly, we can define w0.5
min and treat w0.5 ≥ w0.5

min as the termina-
tion condition on search windows [−w0.5, w0.5]. By such settings of termination
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condition, we can easily derive the probability guarantee on the mixed hash
function family, as will be shown in Theorem 2 later.

(3) The increment of window size. For SLSH, we use a single uniform incre-
ment Δw in the extension of the windows. For MLSH, since there are two
types of hash functions, we use Δw0.5 and Δw1.0 for w0.5 and w1.0, respec-
tively. It is easy to see that, for an arbitrary object o, the ideal value of
Δw0.5/Δw1.0 is (f−1

0.5 (λ) ‖o‖0.5)/(f−1
1.0 (λ) ‖o‖1.0) since such setting ensures

that the probabilities that o lies in the search windows of two types of func-
tions are always the same (=λ) during the extension of search windows.
In other words, under such a setting, we can avoid too large or too small
collision probabilities between o and q. Although the value of ‖o‖0.5 / ‖o‖1.0

varies for different objects o, it can be bounded by 1 ≤ ‖o‖0.5 / ‖o‖1.0 ≤ d.
Thus we set it to a moderate value

√
d and accordingly set Δw0.5/Δw1.0 to√

df−1
0.5 (λ)/f−1

1.0 (λ). Note that under such setting, w0.5 may reach w0.5
min after

w1.0 reaches w1.0
min. If this happens, we only increase w0.5 by Δw0.5 stepwise

afterwards (the operation in the other case is similar).
(4) The setting of m0.5 and m1.0. Given m, p1 and pb, we discuss how to

determine m0.5 and m1.0 in the following two steps.

Step 1: First, according to the values of p1 and pb, we need to choose either
SLSH or MLSH. For example, if pb (the largest) is less than 0.5, it is clear that
only hash functions generated in �0.5 are enough. Thus, we directly choose SLSH
with base metric �0.5. Otherwise, we examine the following criteria.

Let tj = w0.5,j
min /w1.0,j

min . If tj < Δw0.5/Δw1.0, we say that hash functions in
�0.5 metric are more efficient than hash functions in �1.0 metric for the ANN
search in �pj

metric. Otherwise, we say that hash functions in �1.0 metric are
more efficient. This is because if tj < Δw0.5/Δw1.0, w0.5 can reach w0.5,j

min before
w1.0 reaches w1.0,j

min . In other words, the following extension of [−w1.0, w1.0] is
redundant in practice. Thus, it is better to choose hash functions in �0.5 metric
in this case. The analysis under tj > Δw0.5/Δw1.0 is similar.

For multiple metrics �p1 , �p2 , · · · , �pb
, we only need to consider metrics �p1 and

�pb
because tj is increasing as j increases from 1 to b. According to this fact and

the discussion above, we use SLSH with base metric �0.5 if tb ≤ Δw0.5/Δw1.0, and
use SLSH with base metric �1.0 if t1 ≥ Δw0.5/Δw1.0. If t1 < Δw0.5/Δw1.0 < tb,
we use MLSH.

Step 2: Once we determine to use MLSH, the next step is to determine the
values of m0.5 and m1.0. Similar to the discussion in step 1, we only consider �p1

metric and �pb
metric. By means of some elementary computation, it is easy to

see that, when w1.0 reaches w1.0,j
min , and w0.5 reaches w0.5,j

min , the probability P1

that o1.0
min lies in the search window of a randomly selected hash function (from

m hash functions) can be expressed as follows:

P1 = (λm1.0 + f1.0(
Δw0.5

Δw1.0t1
f−1
1.0 (λ)m0.5))/(m0.5 + m1.0). (8)
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Algorithm 2: MLSH

Input: D is the dataset; d is the dimension of D; q is the query; c is the
approximation ratio; δ is the error rate; m is the number of hash
functions; λ is the parameter related to the counting threshold; {�pj}b

j=1

is the fractional metrics of interest;
Output: {ojmin}b

j=1: return nearest neighbors of q in {�pj}b
j=1 metrics

1 Compute m0.5 and m1.0 based on (10);
2 w0.5 ← 0, w1.0 ← 0, smin ← ∞, omin ← NULL, w0.5

min ← ∞, w1.0
min ← ∞;

3 τ ←
⌊
mλ − √

m ln(1/δ)/2
⌋
;

4 while w0.5 ≤ w0.5
min or w1.0 ≤ w1.0

min do
5 if wi ≤ wi

min then
6 wi ← wi + Δwi (Δwi > 0, i = 0.5, 1);

7 ∀o ∈ D update #Col(o) if necessary;
8 if o is not visited and #Col(o) ≥ τ then

9 if ‖q − o‖pj
< sjmin then

10 Update ojmin and sjmin ;
11 Compute w0.5

min and w1.0
min by (7);

12 Return {ojmin}b
j=1

Similarly, we can define Pb as follows:

Pb = (λm0.5 + f0.5(
Δw1.0tb
Δw0.5

f−1
0.5 (λ)m1.0))/(m0.5 + m1.0). (9)

In order to make the collision probability between q and o1min or ob
min as large

as possible, we maximize the lower bound of these two probabilities, that is,

(m0.5,m1.0)∗ = arg max
m0.5,m1.0

{min{P1, Pb}}, (10)

where m0.5,m1.0 > 0 and m0.5 + m1.0 = m. In practice, the equation above
can be solved fast by brute force because m0.5 and m1.0 are positive integers.

According to the discussion above, an example of MLSH is shown in Fig. 2
and its work flow is shown in Algorithm 2. In addition, we have the following
theorem on MLSH, which is a straightforward consequence of Theorem 1.

Theorem 2. Given q ∈ �d, the probability that algorithm 2 returns a
c-approximate nearest neighbor of q in lpj

metric is at least 1 − δ for every
j (1 ≤ j ≤ b).

5 Parameter Setting and Complexity Analysis

As for the setting of λ, we solve the following function:

λ = arg min
λ

{λ − (m0.5 × f0.5(f−1
0.5 (λ)/c) + m1.0 × f1.0(f−1

1.0 (λ)/c))/m. (11)
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Here, λ can be interpreted as the expected collision probability between q
and the true nearest neighbor in an arbitrary search window and the subtracted
term denotes the expected collision probability between q and a c-approximate
nearest neighbor in an arbitrary search window. Thus, we make the difference
as large as possible in order to distinguish true and false objects better.

For the choice of m, if we choose a larger value of m, we can reduce the number
of probed objects at the expense of more sequential I/O in index search. Thus,
the optimal value of m depends on the specification of PC on which SLSH/MLSH
works. In this paper, we fix m to 400 in all experiments for SLSH/MLSH, which
is found suitable on our PC.

Next, let us analyze the complexity of MLSH. In the indexing phase, since
the time complexities of building B+ trees with regard to hash functions in
different metrics are the same, the time complexity in the index construction is
O(mn log n). In the searching phase, MLSH needs to scan those objects close
to the query on each projection vector and calculate the exact distances of a
small number of candidates to the query. Thus, the time complexity of MLSH
is O(mn + αnd), where αn denotes the number of candidates. Although we do
not limit the value of α for ensuring the probability guarantee, the value of α is
expected to be very small on real datasets. In experiments described later, the
value of αn was less than 1K in general. In addition, since α is decreasing as c
goes higher, users are free to control the number of candidates by adjusting the
value of c.

6 Experiments

SLSH/MLSH was implemented in C++. All the experiments were performed
on a PC with Xeon E5-165, 3.60 GHz six-core processor with 128 GB RAM, in
Ubuntu 16.04. The page size was fixed to 4 KB.

6.1 Experimental Setup

Benchmark Methods Selection

– LazyLSH. We used the original implementation of LazyLSH offered by its
authors. In the experiments, all internal parameters of LazyLSH were set
properly according to the suggestions of its author. In addition, we adopted
the multi-query optimization to achieve its best performance.

– MLSH. The error rate δ and the number of hash functions m were fixed to
0.1 and 400, respectively. Parameter λ was computed by (11).

– SLSH(0.5) denotes SLSH with base metric �0.5. Here, where m was fixed to
400 and λ was adjusted to be experimentally optimal.

It is notable that (1) SLSH(1.0) was excluded due to its difficultly in tuning c.
In fact, for SLSH(1.0), the width of search windows on hash functions generated
in �1 space should be very large for the searching in those �p spaces with small
p, which makes SLSH(1.0) spends 100X-400X running time of MLSH to achieve
the same practical target recall on each dataset. (2) QALSH was excluded in the
experiments because it could not solve MMS problems directly.
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Table 1. Real datasets

Dataset Dimension Size Type

Msong 420 992,272 Text

Deep 256 1,000,000 Image

ImageNet 150 2,340,373 Image

Sift10M 128 11,164,666 Image

Deep1B 96 1,000,000,000 Image

Table 2. Comparison on index sizes (GB)

Method Msong Deep ImageNet Sift10M Deep1B

MLSH 1.6 1.6 3.2 17.7 1653

SLSH 1.6 1.6 3.2 17.7 1653

LazyLSH 11.3 9.9 19.1 63.1 \

Real Datasets. We chose five real datasets (Table 1). For each dataset except
for Deep1B, we randomly sampled 50 data objects to form the query set. In
the following experiments, we take the average value over all queries for each
performance metric. Since LazyLSH could not work on billion-scale datasets due
to overlarge memory consumption, we postpone the comparison on the results
of SLSH/MLSH on Deep1B to Sect. 6.4.

In the following experiments, we set two objective ranges of p. The first range
is [0.2, 0.7] (b = 6) with interval 0.1 and the second range is [0.5, 1] (b = 6) with
interval 0.1. Here, [0.5, 1] is also the range of p adopted in the paper of LazyLSH.
In addition, the default value of K (top-K) was set to 100.

6.2 Experimental Results on MLSH

The Verification of Stability. Figure 3 (1st row) shows the recalls of MLSH
under different approximation ratios given p ∈ [0.5, 1.0]. According to the results,
we have following observations. (1) For the same approximation ratio, the perfor-
mance of MLSH is stable against the change of p. (2) MLSH can achieve different
accuracies by adjusting the value of approximation ratio c. To be specific, as c
decreases, the recall of MLSH increases.

We also show the recalls of MLSH for another range p ∈ [0.2, 0.7] in Fig. 3
(2nd row). Except for Sift10M, the performance of MLSH is again stable against
p. With regard to Sift10M, the recall in �0.2 metric is 25% less than that in �0.5

metric. This demonstrates that the stability of MLSH is affected by the actual
data distribution to some extent. Thus, we recommend users to adopt a smaller
c for hard datasets.
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Fig. 3. Recalls of MLSH for different �p metrics

6.3 The Comparison Study

In this section, we compare MLSH with the other methods on various perfor-
mance metrics. LazyLSH was excluded in the comparison when p ∈ [0.2, 0.7]
since the value of p in LazyLSH could not be less than 0.44.

Comparison on Index Sizes. In Table 2, we compared the index sizes of
three methods. Because the index size of LazyLSH depends on the value of c,
we only show its results under the recommended value of c, that is, c = 3.
From the results, we can see that the index sizes of MLSH and SLSH are equal
because both of them generate 400 hash functions. On the other hand, LazyLSH
requires more space to store the index than the other two methods because
LazyLSH generates around or over 1000 hash functions on each dataset to ensure
its probability guarantee.

Comparison on Probed Objects. In Fig. 4 (1st row), we compared the num-
ber of probed objects of SLSH(0.5) and MLSH given p ∈ [0.5, 1]. LazyLSH
was excluded in this experiment because different from the other two methods,
LazyLSH fixes the number of probe objects beforehand and varies the number
of hash functions to achieve different accuracies. From the results, we have fol-
lowing observations. (1) On three real datasets, MLSH probed less objects than
SLSH to achieve the same precision level, which shows a less sensitivity of the
mixed hash function family. (2) The advantage of MLSH over SLSH becomes
more obvious as the target recall increases, which shows the superiority of the
mixed hash function family for high-accuracy oriented applications.
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Fig. 4. Comparison on probed objects between SLSH(0.5) and MLSH

Fig. 5. Comparison on time/I/O cost - recall curves (p ∈ [0.5, 1])

We also show the results under p ∈ [0.2, 0.7] in Fig. 4 (2nd row). From the
results, we can see that the number of probed objects of SLSH(0.5) and MLSH
are very close for each target recall. This is because MLSH automatically gener-
ates more hash functions in �0.5 metric and avoids the poor performance of hash
functions in �1 metric for those objective �p metrics with small p’s.

Comparison on I/O Cost. The results on I/O-recall tradeoff are shown in
Fig. 5 (1st row). Since c of LazyLSH should be chosen as an integer greater
than 1, we only plot two points for each curve of LazyLSH: one is for c = 3
(recommended setting) and the other one is for c = 2 (the highest accuracy).
According to the results, we have following observations. (1) Overall, the curve
of MLSH is lowest on each dataset, which shows the high efficiency of MLSH in
saving I/O cost. (2) Although LazyLSH achieves the comparable performance
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Table 3. SLSH (0.5) vs. MLSH on Deep1B

Recall Probed objects (‰) I/O cost (×105)

60% MLSH 0.10 MLSH 23

SLSH(0.5) 0.12 SLSH(0.5) 26

80% MLSH 0.33 MLSH 26

SLSH(0.5) 0.52 SLSH(0.5) 28

of MLSH under c = 3, its performance under c = 2 is much worse than the
other two methods. This is because, for LazyLSH, the required number of hash
functions under c = 2 is around 7 times more than that under c = 3, but its
search accuracy is not improved significantly as c varies from 3 to 2. (3) The
advantage of MLSH over SLSH(0.5) becomes more obvious as the target recall
increases, which shows again the superiority of MLSH in achieving the high
accuracy.

Comparison on Search Time. In Fig. 5 (2nd row), we compared the search
times of MLSH and SLSH. With regard to the search time of LazyLSH, we report
its results under c = 3 as follows. LazyLSH incurs 2.8X, 9.4X,14.4X and 16.6X
search time of MLSH(target recall 90%) on Msong, Deep, ImageNet and Sift10M,
respectively. According to the results, we have following observations: (1) SLSH
and MLSH run much faster than LazyLSH, which shows our searching strategy
is efficient in time consumption. (2) Compared with SLSH, MLSH spends less
search time on each dataset, which is consistent with the results in I/O cost and
probed objects.

6.4 Results on Deep1B

In Table 3, we show the results on Deep1B, where the range of p is [0.2, 0.7]
and the target recall is fixed to 60% or 80%. Since the searching on billion-scale
datasets is quite time-consuming, we sampled 10 queries from Deep1B to ensure
that the search can finish within the controllable time. From the results, we can
see that while the total I/O costs of two methods are very close, MLSH requires
less probed objects to achieve the target recall, which confirms the advantage of
MLSH over SLSH on billion-scale datasets.

7 Conclusion

In this paper, we proposed a mixed hash function family called MLSH for solving
multi-metric search (MMS) problem. Compared with traditional algorithms, the
new hash function family can be used for the search in multiple metrics (frac-
tional distances) more efficiently by choosing a suitable proportion of two types
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hash functions with the user-specified probability guarantee. Experiments show
that MLSH performs well in various situations of different objective fractional
metrics.
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Abstract. With the rising applications implemented in different
domains, it is inevitable to require databases to adopt corresponding
appropriate data models to store and exchange data derived from various
sources. To handle these data models in a single platform, the commu-
nity of databases introduces a multi-model database. And many vendors
are improving their products from supporting a single data model to
being multi-model databases. Although this brings benefits, spending
lots of enthusiasm to master one of the multi-model query languages
for exploring a database is unfriendly to most users. Therefore, we study
using keyword searches as an alternative way to explore and query multi-
model databases. In this paper, we attempt to utilize quantum physics’s
probabilistic formalism to bring the problem into vector spaces and repre-
sent events (e.g., words) as subspaces. Then we employ a density matrix
to encapsulate all the information over these subspaces and use den-
sity matrices to measure the divergence between query and candidate
answers for finding top-k the most relevant results. In this process, we
propose using pattern mining to identify compounds for improving accu-
racy and using dimensionality reduction for reducing complexity. Finally,
empirical experiments demonstrate the performance superiority of our
approaches over the state-of-the-art approaches.

1 Introduction

In the past decades, due to an explosion of applications with the goal of help-
ing users address various transactions in different domains, there are increasing
needs to store and query data produced by these applications efficiently. As a
result, researchers have proposed diverse data models for handling these data,
including structured, semi-structured, and graph models. Recently, to manage
these data models better, the community of databases introduces an emerging
concept, multi-model databases [16], which not only embraces a single and uni-
fied platform to manage both well-structured and NoSQL data, but also satisfies
the system demands for performance, scalability, and fault tolerance.
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Fig. 1. An Example of multi-model data.

Although multi-model database systems provide a way to handle various data
models in a unified platform, users have to learn corresponding specific multi-
model query languages to access different databases (e.g., using AQL to access
ArangoDB [2], SQL++ for AsterixDB [1], and OrientDB SQL for OrientDB
[19]). Moreover, users also need to understand complex and possibly evolving
multi-model data schemas as background knowledge for using these query lan-
guage. This is unfriendly to most users because it usually with a steeper learning
curve. For example, Fig. 1 depicts multi-model data in social commerce. Suppose
we want to find Rubeus Hagrid’s friends who have bought Blizzard and given a
perfect rating. It won’t be an easy job to write a multi-model query involving
social network (Graph), order (JSON), and feedback (Relation) for novices to
achieve this goal. Therefore, in this paper, we study using keyword searches as
an alternative way to explore and query multi-model databases, which does not
require users to have strong background knowledge.

After reviewing the literature, we find that most existing works [27] only
restrict keyword searches over a specific database supporting a single data model
(e.g., relational, XML, and graph databases). Unfortunately, there is a lack of
relevant research literature for the issue of performing keyword searches on multi-
model databases. However, we think it is a promising research topic that remains
a big challenge. This is because a trivial solution, which firstly performs a key-
word search on individual data models by conventional methods and then com-
bines results by assembling the previous results, cannot work well. The reason
is that it may miss results that consist of multiple models simultaneously.

Facing this challenge, previous researchers used graph methods [14] to solve
it. However, there are several matters needing attention in this method. Firstly,
when we use a graph to represent these heterogeneous data, this graph may be
vast and complex. So we need to divide this graph into many subgraphs, which is
a graph partition problem. And if we perform keyword searches on these graphs
to find answers, this means we need to find some subgraphs relating to partial
keywords or all as the answer. Therefore, this involves subgraph matching and
subgraph relevance ranking problems. And lastly, we need to consider how to take
the dependencies among keywords and schema information into consideration
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when doing keyword searches. We could see all these problems have a significant
influence on the final returned results. This means we should be careful to choose
the corresponding solutions for these graph problems.

To avoid these graph issues, we start by introducing the “quantum-inspired”
framework into the database community [28], in which we utilize the probabilistic
formalism of quantum physics to do keyword searches. In quantum probability,
the probabilistic space is naturally encapsulated in a vector space. Based on the
notion of information need vector space, we could regard the data in multi-model
databases as the information (statements) collection, define events (e.g., words)
as subspaces, use a density matrix (probability distribution) to encapsulate all
the information over these subspaces for measuring the relevance of the candidate
answers to the user’s information need.

For this framework, the idea behind the quantum-inspired approach to dis-
ciplines other than physics is that, although macroscopic objects cannot exhibit
the quantum properties manifested by particles such as photons, some phenom-
ena can be described by the language or have some features of the phenom-
ena (e.g., superposition) represented by the quantum mechanical framework in
physics [24]. Therefore, except for the above theoretical method introduction,
there are two other reasons underlying this attempt. One is that the similar-
ity between the quantum mechanical framework to predict the values which can
only be observed in conditions of uncertainty [24] and the decision about the rel-
evance of the content of a text to an information need is subject to uncertainty
[18]. Another one is that increasing works support the notion that quantum-like
phenomena exist in human natural language and text, cognition and decision
making [22], all related to the critical features of keyword searches.

Besides, the pioneering work [24] formalized quantum theory as a formal lan-
guage to describe the objects and processes in information retrieval. Based on
this idea, we use this mathematical language to describe relational, JSON, and
graph data in the database community as information collection. Next, we trans-
form keyword searches from a querying-matching work into a calculating-ranking
task over this information collection and return the most relevant top-k results.
And we take the possible relevance among input query keywords and database
schema information into consideration, which helps the framework understand
the user’s goal better. Now, we summarize our contributions as follows:

1. Based on quantum theory, we attempt to use a quantum-inspired frame-
work to do keyword searches on multi-model databases, utilizing quantum
physics’ probabilistic formalism to bring the problem into information need
vector space. We want to take advantage of the ability of quantum-inspired
framework in capturing potential semantics of candidate answers and query
keywords for improving query accuracy.

2. In this process, we introduce the co-location concept to identify compounds
for enhancing the topic of statements. We want to use it to improve query
performance (precision, recall, and F-measure).

3. By analyzing the existing quantum-inspired method, we propose constructing
a query density vector instead of a density matrix to reduce the framework’s
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complexity. And we present an algorithm to perform keyword searches on
multi-model databases.

4. Finally, we perform extensive empirical experiments that demonstrate
our approaches’ overall performance is better than the state-of-the-art
approaches. The F-measure is at least nearly doubled.

2 Preliminaries

For the sake of simplicity, we assume the vector space is R
n in this paper. A

unit vector �u ∈ R
n is defined as |u〉 and termed as ket on the basis of Dirac

notation. Its conjugate transpose �uH = �uT is written as 〈u| and called bra. The
inner product between two vectors is denoted as 〈u|v〉 =

∑n
i=1 uivi. The outer

product between two vectors is denoted as |u〉 〈v| and called dyad. When the
vector has a unitary length (i.e., ‖�u‖2 = 1), a special operator can be defined
as the outer product between two vectors. We call this operator projector. To
explain this, suppose |u〉 is a vector; the projector corresponding to this vector
is a dyad written as |u〉 〈u|. For example, if there is |u1〉 = (1, 0)T , the projector

corresponding to this ket is transforming it into |u1〉 〈u1| =
(

1 0
0 0

)

. Due to

the projector, |u〉 could be mapped to the generalized probability space. In this
space, each rank-one dyad |u〉 〈u| can represent a quantum elementary event and
each dyad |κ〉 〈κ| represent a superposition event, where |κ〉 =

∑p
i=1 σi |ui〉, the

coefficients σi ∈ R satisfy
∑

i σ2
i = 1. And density matrices ρ are interpreted as

generalized probability distributions over the set of dyads when its dimension
greater than 2 according to Gleason’s Theorem [7]. A real density matrix ρ is
a positive semidefinite (ρ ≥ 0) Hermitian matrix (ρ = ρH = ρT ) and has trace
1 (Tr(ρ) = 1). It assigns a generalized probability to each dyad |u〉 〈u|, whose
formula is:

μρ(|u〉 〈u|) = Tr(ρ |u〉 〈u|). (1)

For example, ρ1 =
(

0.75 0
0 0.25

)

, ρ2 =
(

0.5 0.5
0.5 0.5

)

, density matrix ρ2 assigns a

probability value Tr(ρ2 |u1〉 〈u1|) = 0.5 to the event |u1〉 〈u1|. If ρ is unknown,

Fig. 2. The framework of quantum-inspired keyword search
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we could utilize the Maximum Likelihood (MaxLik) estimation to get it. Finally,
through the value of negative Von-Neumann Divergence (VND) between ρq

(query) and ρc (candidate answer), we could get their difference. Its formal-
ization is:

− ΔV N (ρq||ρc)
rank=

∑

i

λqi

∑

j

(log λcj 〈qi|cj〉2). (2)

3 The Framework of the Quantum-Inspired Keyword
Search

An overview of this entire framework is shown in Fig. 2, which has two functional
modules. One is offline transformation. We will use quantum language to rep-
resent heterogeneous data in a uniform format. Another one is online keyword
searches with generalized probabilities for finding the most relevant results to
answer keyword searches.

3.1 Transformation

Here we consider three kinds of data. They are relational, JSON, and graph data.
For the relational data model, it is natural to think of a tuple with schema in
tables as a statement (a piece of information). To avoid information explosion
(caused by information fragmentation), we observe the JSON file in a coarse
granularity and treat each object in JSON as an integral statement. For each
node in the graph data, we put information about all of its neighbor nodes in
the same statement, including itself information. In this way, it can keep complete
neighbor relationships and node information.

Only considering these discrete data is not enough. We need to take join into
consideration to get complete information in our framework. For this problem,
there are many methods. For example, we could mine the relationship among
different data models with [5], then join them. Or we could choose meaningfully
related domains to do equi-join operations based on expert knowledge, which is
a quite straightforward and easy way for finding meaningful joins and cutting
down the search space by avoiding generating a lot of useless intermediate results.
Since this part is not the focus of this paper, we will use the later one to continue
our work.

Now we have gotten a statement collection. Next, we use the mathematical
language of quantum theory to represent these statements. To achieve this goal,
we first use an elementary event to represent a single word and use a superposi-
tion event to represent a compound. In this process, to construct proper super-
position events to enhance the topic of statement for improving query accuracy
(i.e., choose appropriate compounds κ from a given statement and determine
the value of each coefficient σi in κ), we introduce a special spatial pattern con-
cept called co-location pattern [12]. After this process, we could get an event
set Pst for each statement. Then, we learn a density matrix from each event
set Pst with MaxLik estimation and use this density matrix to represent the
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corresponding statement. Here, we use a RρR algorithm, which is an iterative
schema of MaxLik outlined in the [17]. And this iterative schema has been used
in the [23] for getting density matrices. Finally, we could use VND to measure
the difference between different statements by their density matrices and use
VND’ values to rank them.

To get an event set Pst for each statement, we introduce a special spatial
pattern concept called co-location pattern [12] to help construct compounds κ.
Next, we will start by redefining some concepts in the field of co-location to adapt
our problem for identifying compounds. When a word set c = {w1, ..., wp}, ‖c‖ =
p, appears in any order in a fixed-window of given length L, we say there is a
relationship R among these words. For any word set c, if c satisfies R in a
statement, we call c co-location compound.

Definition 1. Participation ratio (PR) PR(c, wi) represents the participa-
tion ratio of word wi in a co-location compound c = {w1, ..., wp}, i.e.

PR(c, wi) =
T (c)
T (wi)

wi ∈ c, (3)

where T (c) is how many times the c is observed together in the statement , T (wi)
is the number of word wi in the whole statement.

Table 1. Example about identifying compound κ

Wst = {This computer game help study computer architecture

this computer game is funny and this focuses on learning. }
c1 = { computer, game } PR( c1, computer )

PR( c1, game )

2
3
2
2

PI( c1 ) 2
3

c2 = { game, architecture } PR( c2, game )
PR( c2, architecture )

1
2
1
1

PI( c2 ) 1
2

c3 = { computer, architecture } PR( c3, computer )
PR( c3, architecture )

1
3
1
1

PI( c3 ) 1
3

c4 = { computer, game, architecture } PR( c4, computer )
PR( c4, game )
PR( c4, architecture )

1
3
1
2
1
1

PI( c4 ) 1
3

PI( c1 ) ≥ min threshold = 0.6, c1 is a compound κ

Definition 2. Participation index (PI) PI(c) of a co-location compound c
is defined as:

PI(c) =
p

min
i=1

{PR(c, wi)}. (4)

Given a minimum threshold min threshold, a co-location compound c is
a compound κ if and only if PI(c) ≥ min threshold. It is obvious that when
min threshold = 0, all the co-location compounds are compounds. Based on the
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method of estimating whether c is a compound κ, with each appearance of word
wi ∈ c in the statement, there has been a great effect on calculating value of PR
which determines whether PI(c) is greater than or equal to min threshold. This
is to say each appearance of word wi plays an important role in the statement
for expressing information. Therefore, when we set a value for the coefficient
σi of |wi〉 in κ , we need to take the above situation into consideration. A
natural way is to set σ2

i = T (wi)/
∑p

j=1 T (wj) for each wi in a compound κ =
{w1, ..., wp}, 1 ≤i≤ p, where T (wi) is the number of times that word wi occurs
in this statement. We call it co-location weight.

For example, we assume “This computer game help study ...” is a statement
Wst, which is in the table FeedBack of Fig. 1. Given c1, c2, c3, and c4 (see Table 1),
if min threshold = 0.6, thus c1 is a compound. This helps our framework to have
a better understanding of this statement whose theme is about the computer
game, not computer architecture. Meanwhile, with co-location weight we could
set σ2

computer = 3/5, σ2
game = 2/5 for the κ = {computer, game}. According

to the related state-of-the-art work [4], the fixed-window of Length L could be
set to l||c||. And it provides a robust pool for l. Here, we select l = 1 from the
robust pool. Because if one decides to increase l, more inaccurate relations will
be detected, and performance will deteriorate.

Next, we could use an iterative schema of MaxLikmatrix [23] to learn a
density matrix from each event set Pst. However, unfortunately, both dyads
and density matrices are n × n matrices, i.e., their dimensions depend on n,
the size of word space V . When n is bigger, the cost of calculating is higher,
especially in the field of databases. Therefore, we need to find a way to reduce
complexity.

According to the Eq. (1), the probability of quantum event Π is Tr(ρΠ).
Through Tr(ρΠ), we could get the dot product of two vectors, i.e.,

Tr(ρΠ) = �ρ. �Π2, (5)

where �ρ = (β1, β2, . . ., βn), we call it density vector. If we assume �Π =
((

∑n
i=1 ui1vi1), (

∑n
i=1 ui1vi2), . . ., (

∑n
i=1 ui1vin)), then �Π2 = ((

∑n
i=1 ui1vi1)2,

(
∑n

i=1 ui1vi2)2, . . ., (
∑n

i=1 ui1vin)2).

Definition 3. Density vector A density vector is a real vector �ρ =(
β1, β2, . . . , βn

)
, noted by 〈ρ|, where βi ≥ 0, and β1 + β2 + . . . + βn = 1.

For example, density vector 〈ρ3| = (0.2, 0.1, 0.7). Next, we will use a density
vector instead of a density matrix in the rest of this paper. This is because it
has three advantages.

– Firstly, density vectors have a more concise way of calculating quantum prob-
abilities than density matrices’ (comparing Eq. 1 with Eq. 6);

– Secondly, when one calculates VND between two density vectors, it is faster
to get the value of VND than density matrices do (comparing Eq. 2 with
Eq. 7);
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– Thirdly, comparing with density matrices, learning a query density vector
from the input keywords is easier.

Based on the generated density matrices, we could get val (the list of all
eigenvalues) and vec (the list of eigenvectors, each eigenvector corresponding to
its own eigenvalue) through eigendecomposition of density matrices. To simplify
our framework further, we use the Principal Component Analysis (PCA) method
to take the first h largest eigenvalues and require that the sum of these values is
greater than or equal to a threshold. Based on the research concerning PCA [10],
we could set threshold = 85%, which is enough for our work. This is because
if one increases threshold, a higher threshold may have a higher chance to
cause the increase of the number of vali instead of precision of framework and
deteriorate the performance of the framework. Then, we store h eigenvalues and
corresponding eigenvectors veci (termed as {val, vec}) into the set of density
systems, SdenSys (the component, “Eigensystem Collector” in Fig. 2).

We have now transformed all kinds of data into eigenvalues (density vectors)
and eigenvectors (mapping directions) and converted querying-matching prob-
lem into calculating-ranking. In this way, we eliminate heterogeneous data and
convert the querying-matching problem into calculating-ranking. Next, we will
consider how to do keyword searches on these density vectors online.

3.2 Online Keyword Search Query

In this module, when users submit their queries, there are two data flows about
queries.

– The first one is from users to “Transformation”, which will construct query
density vectors from input keywords. This step will consider the relationship
between input keywords instead of treating keywords as mutually independent
entities.

– Another one is from users to index structure for getting candidate answers,
which will reduce the query scope through our index structure (inverted list).

In the above data flows, it involves constructing query density vectors. Before
doing it, we propose the new representation for single words and compounds
in query keywords. Through analyzing Eq. (5), we could represent each word
wi ∈ V by |ei〉, where |ei〉, the standard basis vector, is an one-hot vector.
Based on this new representation, we present compound by |κ〉 =

∑p
i=1 σi |ewi

〉,
where κ = {w1, ..., wp}, the coefficients σi ∈ R satisfy

∑p
i=1 σ2

i = 1 to guarantee
the proper normalization of |κ〉.

For example, Considering n = 3 and V = {computer, science, department},
if κcs = {computer, science} and |κcs〉 =

√
2/3 |ec〉 +

√
1/3 |es〉, then we could

get:
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|ecomputer〉 =

⎛
⎝

1
0
0

⎞
⎠ , |escience〉 =

⎛
⎝

0
1
0

⎞
⎠ , |κcs〉 =

√
2

3

⎛
⎝

1
0
0

⎞
⎠ +

√
1

3

⎛
⎝

0
1
0

⎞
⎠ =

⎛
⎜⎜⎝

√
2
3√
1
3

0

⎞
⎟⎟⎠ .

Next, we still use the iterative schema of Maximum Likelihood (MaxLik)
estimation for getting the query density vector. We would also use the following
formula to get the quantum probability of event |Π〉 at MaxLik estimation.

ProbabilityΠ =
〈
ρ
∣
∣Π2

〉
. (6)

Finally, we propose Algorithm 1 to do online keyword searches, in which we
use line 1–9 to get candidate density system set CdenSys through the index. Then
we use them to help get corresponding query density vectors and regard them
as the score function (VND) inputs to answer queries (line 10–26).

Firstly, we could classify the input keywords into two groups according to
whether or not wi is relevant to the database schema. For the group Kschema,
we use the union to get a candidate density system set Cschema in line 4, where
Cwi

can be gotten by the inverted list, which is relevant to the input word wi.
For the Knon schema, we use intersection to get Cnon schema. Then we could get
the candidate density system set CdenSys through difference (line 9). We use
these operations to take advantage of the schema for helping users explore more
potential possibilities about answers.

Line 10–26 are going to get top-k results. Firstly, we use every mapping
direction vecst of {val, vec}st in the candidate density systems CdenSys to trans-
form original events into new representations so that the algorithm could learn
a query density vector from these new events. The above transforming could
guarantee that each constructed query density vector and corresponding density
vector valst in one coordinate system. Then we could calculate the divergence
between 〈ρ|q and 〈ρ|st (valst) by Eq. 7 in line 23.

−ΔV N (〈ρ|q || 〈ρ|st)
rank=

∑

i

βqi log βsti , where βqi ∈ 〈ρ|q , βsti ∈ 〈ρ|st . (7)

Considering the previous problem “Suppose we want to find Rubeus Hagrid’s
friends who have bought Blizzard and given a perfect rating.”, we take {Rubeus
Hagrid friends Blizzard perfect} as Algorithm 1 inputs and perform keyword
searches on the Fig. 1. And we could get the result in which a person named Harry
Potter bought Blizzard and gave a perfect rating, and he is Rubeus Hagrid’s
friend. The original result is “social network person id p1 name harry potter
friend person id p4 name rubeus hagrid order id o1 custom id p1 total price 135
item product id pro1 brand blizzard feedback rate perfect comment this computer
game help study computer architecture this computer game is funny and this
focuses on learning”. And its score is –2.665.
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Algorithm 1. Answer Keyword Searches with Density Vectors
Input: Input keywords K = {w1, . . . , wt}
Output: the top-k most relevant statements about queries
1: {Kschema, Knon schema} = Classification(K)
2: Cschema ← Φ
3: for each wi ∈ Kschema do
4: Cschema ← Cschema ∪ (Cwi ⊂ SdenSys)
5: end for
6: for all wj ∈ Knon schema do
7: Cnon schema ← Cw1 ∩ , . . . , ∩ Cwj

8: end for
9: CdenSys ← Cnon schema - Cschema

10: SResult ← Φ
11: for each {val, vec}st ∈ CdenSys do
12: Pq ← Φ
13: for each wi ∈ K do
14: Get event �Πwi through rotating the |ei〉 (wi) into a new coordinate by vecst
15: Pq ← Pq ∪ �Πwi

16: end for
17: for each c in K do
18: if PI(c) ≥ min threshold then
19: Pq ← Pq ∪ |κc〉
20: end if
21: end for
22: Learn a query density vector 〈ρ|q from Pq by MaxLik
23: scorest = ScoreFunction(〈ρ|q, valst)
24: SResult ← SResult ∪ scorest
25: end for
26: Sort SResult and return top-k results

4 Experiment

4.1 Data Sets

We use synthetic data (UniBench) and real data (IMDB and DBLP) to evaluate
our approaches. The statistics about them are listed in Table 2.

UniBench [29] is a multi-model benchmark, including data of relational,
JSON, and graph models. It simulates a social commerce scenario that com-
bines the social network with the E-commerce context. The relational model

Table 2. The number of records/objects in different data models

Relational JSON Graph-entity Graph-relation

UniBench 150 000 142 257 9 949 375 620

IMDB 494 295 84 309 113 858 833 178

DBLP 1 182 391 435 469 512 768 3 492 502
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Table 3. Queries employed in the experiments

ID Queries

(a) Queries on DBLP

Q1 Soni Darmawan friends

Q2 Gerd Hoff friends’ rank 1 paper

Q3 Slawomir Zadrozny rank 1 paper

Q4 Phebe Vayanos phdthesis paper

Q5 Neural sequence model

Q6 Brian Peach 2019 papers

Q7 Performance of D2D underlay and overlay for multi-class elastic traffic.
authors

Q8 Carmen Heine rank Modell zur Produktion von Online-Hilfen

Q9 Exploring DSCP modification pathologies in the Internet

Q10 The papers of Frank Niessink

(b) Queries on UniBench

Q11 Abdul Rahman Budjana friends BURRDA feedback perfect

Q12 Shmaryahu Alhouthi order Li-Ning Powertec Fitness Roman Chair

Q13 Kamel Abderrahmane Topeak Dual Touch Bike Storage Stand

Q14 Alexandru Bittman whether has friend Ivan Popov

Q15 Mohammad Ali Forouhar Oakley Radar Path Sunglasses

Q16 Soft Air Thompson 1928 AEG Airsoft Gun and Genuine Italian Officer’s
Wool Blanket

Q17 Roberto Castillo Total Gym XLS Trainer and Reebok

Q18 Who Kettler, Volkl and Zero Tolerance Combat Folding Knife

Q19 Francois Nath Nemo Cosmo Air with Pillowtop Sleeping Pad

Q20 Hernaldo Zuniga Advanced Elements AdvancedFrame Expedition Kayak and
TRYMAX

(c) Queries on IMDB

Q21 Lock, Stock and Two Smoking Barrels actors

Q22 Forrest Gump

Q23 The title and imdbVote of films of Bruce Willis

Q24 The films of director Robert Zemeckis

Q25 Films in 1997 Genre Action, Adventure, Family

Q26 The Legend of 1900 awards

Q27 Scent of a Woman imdbRating

Q28 The film of Dustin Hoffman with Tom Cruise

Q29 Morgan Freeman friends

Q30 Aamir Khan films

includes the structured feedback information; The JSON model contains the
semi-structured orders; The social network is modeled as a graph, which con-
tains one entity and one relation, i.e., customer, and person knows person. These
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also have correlations across the data models. For instance, the customer makes
transactions (Graph correlates with JSON).

The IMDB dataset is crawled from website1 by OMDB API. Through
extracting inner relationships and potential information, we generate several
data models to represent the original data. The relational data includes per-
forming information and rating information, which are stored in different tables;
The JSON model is made up of film information (e.g., imdbID, title, and year);
The graph is about cooperative information, where two actors would be linked
together if they have ever worked for the same movie.

The DBLP2 data consists of bibliography records in computer science. Each
record in DBLP is associated with several attributes such as authors, year, and
title. The raw data is in XML format. Here we describe it in three data mod-
els. The publication records are presented in relational data, including author
id, paper id, and the author’s rank in the author list. A subset of the papers’
attributes (e.g., paper id, key, and title) are represented in JSON. We also con-
struct a co-authorship (friend) graph where two authors are connected if they
publish at least one paper together.

Table 4. Presion, Recall, F-measure on DBLP

AKSDV EASE

min threshold 0 0.2 0.4 0.6 0.8 1.0 Non

Precision 0.830 0.847 0.847 0.847 0.847 0.847 0.797 0.090

Recall 0.867 0.917 0.917 0.917 0.917 0.917 0.817 0.500

F-measure 0.834 0.861 0.861 0.861 0.861 0.861 0.794 0.141

4.2 Queries and Answers

In the experiments, three groups of keyword queries, as shown in Table 3, are
proposed by a few people randomly to evaluate our methods on the DBLP,
UniBench, and IMDB datasets, respectively. Each keyword query involves one
or more than one data model to test the ability of our methods in capturing
potential semantics of keywords and search accuracy. Besides, the corresponding
AQL query for each Qi is issued in ArangoDB, and the output answers are used
to evaluate the results produced by the algorithm, Answer Keyword Searches
with Density Vectors (AKSDV), and EASE [14]. EASE models heterogeneous
data as graphs and aims at finding r-radius Steiner graphs as query results. In
this method, each returned Steiner graph includes at least two keywords.

The experiments are implemented in Java except for eigendecomposition by
Matlab (offline work). The experiments are run on a desktop PC with an Intel(R)
Core(TM) i5-6500 CPU of 3.19 GHz and 16 GB RAM. Note that all operations

1 https://www.omdbapi.com/.
2 https://dblp.uni-trier.de/xml/.

https://www.omdbapi.com/
https://dblp.uni-trier.de/xml/
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Table 5. Presion, Recall, F-measure on UniBench

AKSDV EASE

min threshold 0 0.2 0.4 0.6 0.8 1.0 Non

Precision 0.902 0.902 0.917 0.922 0.922 0.922 0.897 0.220

Recall 0.883 0.883 0.885 0.886 0.886 0.886 0.882 0.136

F-measure 0.844 0.844 0.848 0.850 0.850 0.850 0.842 0.061

Table 6. Presion, Recall, F-measure on IMDB

AKSDV EASE

min threshold 0 0.2 0.4 0.6 0.8 1.0 Non

Precision 0.753 0.753 0.753 0.758 0.758 0.758 0.758 0.548

Recall 0.782 0.782 0.782 0.784 0.784 0.784 0.784 0.466

F-measure 0.657 0.657 0.657 0.661 0.661 0.661 0.661 0.269

are done in memory, and the standard NLP pre-processing such as dropping
the stop words and stemming are conducted in advance. In the experiments, we
measure the precision, recall, and F-measure for the top-20 returned results.

4.3 Results Analysis

Table 4 shows the comparison of the average precision, recall, and F-measure of
AKSDV with EASE’s. This comparison result demonstrates that our proposed
methods outperform EASE on the DBLP dataset. Table 5 and Table 6 show
that the performance of AKSDV also outperforms EASE’s on the UniBench and
IDMB dataset. And the F-measure of AKSDV is at least nearly twice EASE’s
on these datasets. These high accuracy values show that our framework could
understand the potential semantics underlying the statements and get the most
relevant statements about queries.

For example, Q9 wants to find all information about the paper “Exploring
DSCP modification pathologies in the Internet”. EASE returns a Steiner graph
consisting of a single node that includes the paper name itself. AKSDV could find
all of the information about this paper; Q11 wants to look for Abdul Rahman’s
friends who have bought BURRDA and given a perfect rating. For EASE, it
returns answers mainly about “Abdul Rahman”. But AKSDV could return the
relevant information which users want to find.

In these three tables, the “min threshold” decides which co-location com-
pounds will be regarded as compounds κ = {w1, ..., wp}. Each column cor-
responds to the performance of keyword searches when assigned a value to
min threshold. For example, in Table 4, the second column illustrates that when
we set min threshold = 0, the values of average precision, recall, and F-measure
of AKSDV on the DBLP data set are 0.830, 0.867, and 0.834, respectively.
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Fig. 3. Execution time of Qi

Fig. 4. Scalability

Fig. 5. The change in value of h on different datasets

In general, our method of identifying compounds works well on these datasets
for improving query performance.

Column “non” means that we assign an average weight (σ2
i = 1/p, ||κ|| = p)

to each wi in the compound κ instead of considering which word will have more
contributions to the compound (without using co-location weight). Column “0”
and “non” regard all the co-location compounds as compounds. The difference
between them is whether using co-location weight when constructing compounds.
Table 4 and Table 5 demonstrate our co-location weight is better than the average
weight method on the DBLP and UniBench dataset. In Table 6, the performance
of column “0” is little less than the column “non”s.
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4.4 Time and Scalability Analysis

In this part of the experiments, firstly, we analyze the time cost of AKSDV
and EASE. The reported time cost values are collected by executing each query
several times to take the median value. Figure 3 gives executing time of AKSDV
(min threshold = 0.6) and EASE. In Fig. 3, there is a different fluctuation in the
scales of time about different queries, which is caused by the queries of complexity
involving different data models. But in general, comparing with EASE, AKSDV
has a good time performance.

Now, we focus on the scalability of AKSDV. To test the scalability, we load
different proportions of metadata into our framework, respectively. And we let
the correct results increase as loading more data for each query. Then, we perform
all queries in Table 3 on these datasets having different sizes to get a median
time after executing several times. Finally, we calculate the average time on these
datasets, respectively. Figure 4 (1)–(2) show the results of experiments on the
DBLP, Unibench, and IMDB dataset. In general, AKSDV has a good scalability
performance on these datasets. The UniBench dataset, due to existing mass joins
as the loading percentage increases, shows the query time increases faster than
others. But generally, it is within an acceptable range.

4.5 The Dimension of Density Vectors Analysis

Unlike the word embedding in the machine learning community, which needs
a toolkit using lots of time and samples to train vector space models, we only
need to extend the events’ dimension. And elementary events still keep disjoint
feature. Although the dimensions of events have increased, the query’s cost still
depends on the h (the number of eigenvalues of density matrices). The Fig. 5
shows the change in values of h on the candidate statement set C ′

eigen, where
C ′

eigen ⊂ Ceigen and Ceigen is made of candidate statements about all the queries
on different datasets in Table 3, and C ′

eigen is made of selected 25 candidate
answers from the corresponding Ceigen randomly. In Fig. 5, we can see the values
of h are much less than the word space n, even less than 200 in most situations.
It guarantees the complexity of our framework at the appropriate level.

5 Related Works

Keyword search has been well known as a user-friendly way of satisfying users’
information needs with few keywords in diverse fields such as Information
Retrieval (IR) and database. Unfortunately, finding a fundamental axiomatic
formulation of the IR field has proven tricky, maybe because of the intrinsic
role humans play in the process [3]. However, due to information having proven
considerably easier to capture mathematically than “meaning”, researchers are
investigating how to apply quantum theory to attack the various IR challenges,
which can be traced back to [21]. Piwowarski et al. [20] used the probabilis-
tic formalism of quantum theory to build a principled interactive IR framework.
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Frommholz et al. [6] utilized poly representation and quantum measurement [25]
to do keyword searches in a quantum-inspired interactive framework.

Considering the power of quantum-inspired framework and the similarity of
keyword searches between databases and IR, we attempt to use the quantum-
inspired method to support keyword searches on multi-model databases. Hence
our research work also conforms to the current trend of seamlessly integrating
database and information retrieval [26]. The keyword search on the database
is particularly appealing. From relation, XML to graph databases, there are
already many exciting proposals in the scientific literature [8,9,11,13]. However,
most of the existing keyword search works are designed for specific data models.
Through review literature, the only complete relevant current work is EASE [14].
They returned r-radius Steiner graphs as results to users for answering keyword
searches on heterogeneous data. In addition, there is another work [15], which
presented an architecture to support keyword searches over diverse data sources.
Due to lacking complete performance analysis, we temporarily do not compare
it in this paper.

6 Conclusion

This paper has proposed using the quantum probability mechanism to solve
the keyword search problem on multi-model databases. To reduce complexity
and improve performance, we introduced new representations of events and the
density vector concept. We also used the spatial pattern to help improve query
accuracy and used PCA to support the framework to work well further. Finally,
extensive experiments have demonstrated the superiority of our methods over
state-of-the-art works.

Acknowledgements. The work is partially supported by the China Scholarship
Council and the Academy of Finland project (No. 310321). We would also like to
thank all the reviewers for their valuable comments and helpful suggestions.
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Abstract. NER is challenging because of the semantic ambiguities in
academic literature, especially for non-Latin languages. Besides, recog-
nizing Chinese named entities needs to consider word boundary informa-
tion, as words contained in Chinese texts are not separated with spaces.
Leveraging word boundary information could help to determine entity
boundaries and thus improve entity recognition performance. In this
paper, we propose to combine word boundary information and semantic
information for named entity recognition based on multi-task adversarial
learning. We learn common shared boundary information of entities from
multiple kinds of tasks, including Chinese word segmentation (CWS),
part-of-speech (POS) tagging and entity recognition, with adversarial
learning. We learn task-specific semantic information of words from these
tasks, and combine the learned boundary information with the semantic
information to improve entity recognition, with multi-task learning. We
conduct extensive experiments to demonstrate that our model achieves
considerable performance improvements.

Keywords: Named entity recognition · Chinese word segmentation ·
Part-of-speech tagging · Adversarial learning · Multi-task learning

1 Introduction

Named entity recognition (NER) is a preliminary task in natural language pro-
cessing [1,2,4], aiming to identify multiple types of entities from unstructured
texts, such as person names, places, organizations and dates etc. NER is usually
deemed as a sequence-to-sequence tagging task, and many downstream appli-
cation tasks rely on NER to implement their task objectives [3,5,8]. It is well-
known that it is challenging to identify Chinese named entities, because there
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 603–611, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73197-7_40&domain=pdf
https://doi.org/10.1007/978-3-030-73197-7_40


604 P. Zhu et al.

exist no explicit word boundaries in Chinese. People usually should perform
Chinese word segmentation (CWS) to determine word boundaries before exe-
cuting other Chinese text processing tasks. What’s more, a Chinese entity may
consist of multiple segmented words, while determining the segmented words
belonging to an entity is non-trivial, as it is hard to determine the relationships
between segmented words. Employing CWS information could help to identify
word boundaries, and employing information concerned with segmented words’
relationships could help to properly pin closely related words together for entity
identification. The part-of-speech (POS) tagging information is easy to obtain
and could be employed to infer the semantic relationships of contiguous words.
So we combine CWS and POS tagging information to improve NER performance
in this paper.

In this paper, we propose an NER model, namely ZH-NER, to combine word
boundary information and semantic information for named entity recognition.
Specifically, we learn common shared boundary information of entities from mul-
tiple kinds of tasks, including Chinese word segmentation (CWS), part-of-speech
(POS) tagging and entity recognition, with adversarial learning. We learn task-
specific semantic information of words from these tasks, and combine the learned
boundary information with the semantic information to improve entity recogni-
tion, with multi-task learning. The contributions of this paper are summarized as
follows: 1) To the best of our knowledge, ZH-NER is the first to improve Chinese
NER with CWS and POS tagging information, based on adversarial multi-task
learning. 2) Multiple self-attentions are employed to learn and integrate the key
features concerned about entity boundaries and semantic information, learned
from different kinds of tasks with various kinds of labels. 3) We conducormance
of ZH-NER on four public and the results demonstrate the effectiveness of the
proposed model.

2 Related Work

The extensive studies on NER mainly include rule-based methods, statistical
machine learning-based methods, deep learning-based methods, and methods
based on attention mechanisms, transfer learning, semi-supervised learning etc.
The rule-based methods often use linguistic expertise to manually create rule
templates, considering various kinds of features, and match the created rules for
NER predictions. These systems rely on the creation of knowledge bases and
dictionaries. The methods based on statistical machine learning mainly include:
hidden Markov model (HMM), maxmium entropy model (MEM), support vec-
tor machine (SVM) and conditional random fields (CRF). Deep neural networks
have recently been applied to improve NER performance by learning representa-
tive word embeddings [9] and sequential semantic information [7]. These methods
are based on the classic LSTM-CRF architecture, where LSTM is used to learn
hidden representations of characters, and CRF is used for joint label decoding.
Researchers recently endeavor to improve Chinese NER by learning intrinsic
semantic meanings, with semi-supervised learning and transfer learning etc. [10]
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proposes a hybrid semi-Markov conditional random field (SCRF) architecture for
neural sequence labeling, where word-level labels are utilized to derive segment
scores in SCRFs. [11] investigates a lattice-structured LSTM model for Chinese
NER, which encodes a sequence of input characters and all potential words that
match a lexicon.

3 ZH-NER Model

The architecture of our proposed model is illustrated in Fig. 1, and we will
describe each part of the model in detail in the rest of this section.

Fig. 1. The architecture of the ZH-NER model.

3.1 Character and Label Encoding

The model training corpora consist of two kinds of datasets, datasets used for
adversarial learning, and datasets used for multi-task learning. The datasets
used for adversarial learning include multiple NER datasets, a CWS dataset
and a POS tagging dataset, and datasets used for multi-task learning include
multiple NER datasets. The NER datasets used for adversarial learning are the
same datasets used for multi-task learning. We denote t = (c1, c2, · · · , cN ) as a
sentence contained within a dataset, and denote a dataset C with q sentences
as C = (t1, t2, · · · , tq). We map a character ci to its distributed representation
xi ∈ R

de , via looking up the pre-trained embedding matrix, where de is the
dimensionality of the pre-trained character embeddings, and word embeddings
are mapped likewise.
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3.2 Adversarial Multi-task Learning

We first align sentences contained in a dataset for adversarial learning with those
for multi-task learning. Each aligned sentence pair is fed into our model for task
training, where sentences from adversarial learning datasets are fed for adversar-
ial learning, and sentences from multi-task learning dataset are fed for multi-task
learning. In adversarial learning, a sentence is first fed to the Shared-information
Extractor for hidden state encoding, via a shared BiLSTM neural network and the
SA-3 self-attention neural network. The sentence’s encoded hidden state is then
fed to the Task Discriminator, which endeavors to discriminate which dataset the
sentence comes from. In multi-task learning, sentences are first fed to the task’s
private BiLSTM neural network for hidden state encoding, and the encoded hid-
den states are fed to the SA-1 self-attention neural network, to extract the con-
tained key features. Each training task also contains a second self-attention neural
network, called SA-2, to integrate the information learned from the hidden states
encoded from the one-hot representations of the CWS and POS tagging labels.
Then the outputs of SA-1, SA-2 and SA-3 are fed to the fourth self-attention neu-
ral network, SA-4, for information integration. With the multiple self-attention
components, we can get an overall hidden state for an input sentence, and we then
use the hidden state for task-specific label prediction.

3.3 Different Layers of the ZH-NER Model

BiLSTM Layer. We use the Shared BiLSTM to learn task-shared informa-
tion about entity boundaries, and use three private BiLSTMs to train the NER,
CWS, and POS tagging tasks, for learning task-specific word boundary infor-
mation. Besides, two BiLSTMs are used to encode each sentence’s CWS and
POS tagging labels, represented as one-hot vectors. All these BiLSTM neu-
ral networks have similar structures. We define k ∈ {NER,CWS,POS },
k

′ ∈ {onehot CWS, onehot POS }, and then we can compute hidden states
for a sentence as:

−→
hi =

−−−−→
LSTM (

−−→
hi−1 , xi),

←−
hi =

←−−−−
LSTM (

←−−
hi+1 , xi), hi =

−→
hi ⊕ ←−

hi ,
ski = BiLSTM(xk

i , ski−1 ; θs), pk
i = BiLSTM(xk

i ,pk
i−1 ; θk ) and ok

′

i = BiLSTM

(xk
′

i , ok
′

i−1; θk ′ ), where
−→
hi ∈ R

dh and
←−
hi ∈ R

dh are the contextualized states of
the forward and backward LSTM at position i, ⊕ denotes the concatenation
operation, dh is the dimensionality of the hidden units, θs, θk and θk′ respec-
tively denote the parameters of the Shared, private and one-hot BiLSTMs.

Multiple Self-attentions. SA-1, SA-2, SA-3 and SA-4 are employed for infor-
mation extraction and integration. All these self-attentions have similar struc-
tures, and we take SA-1 as an example to illustrate how these self-attentions
work, without loss of generality. We denote the output of the Shared BiLSTM as
S = (s1, s2, · · · , sN ), the output of a private BiLSTM as P = (p1, p2, · · · , pN ), and
the output of a one-hot BiLSTM as O = (o1, o2, · · · , oN ). The scaled dot-product
attention can be described as follows: Attention(Q,K,V) = softmax(QKT

√
d

)V,
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where Q ∈ R
N×2dh , K ∈ R

N×2dh and V ∈ R
N×2dh are the query matrix,

key matrix and value matrix respectively. In our setting, Q = K = V = P, and
the dimensionality of the hidden units contained in a BiLSTM neural network
is equal to 2dh. Formally, a multi-head attention can be expressed as follows:
headi = Attention(QWQ

i ,KWK
i ,VWV

i ) and P
′
(SA−1) = (headi ⊕· · ·⊕headh)Wo ,

where WQ
i ∈ R

2dh×dk , WK
i ∈ R

2dh×dk , WV
i ∈ R

2dh×dk and Wo ∈ R
2dh×2dh

are trainable projection parameters and dk = 2dh/h. For a sentence in task
k’s training dataset, we compute its final representation via SA-4 as: headi =
Attention(QWQ

i ,KWK
i ,VWV

i ) and P
′
(SA−4) = (headi ⊕ · · · ⊕ headh)Wo , where

WQ
i ∈ R

6dh×dk , WK
i ∈ R

6dh×dk , WV
i ∈ R

6dh×dk and Wo ∈ R
6dh×6dh are trainable

projection parameters and dk = 6dh/h.

CRF Layer. Considering that NER, CWS and POS tagging are sequence label-
ing problems, we leverage CRF (conditional random field) to generate the label
sequence for the input sentence. Given a sentence t = (c1, c2, · · · , cN ) with a pre-
dicted label sequence y = (y1, y2, · · · , yN ), the CRF labeling process can be for-
malized as: scorei = Wpp′

i(SA−4) + bp , result(x, y) =
∑N

i=1(scorei,yi
+ Tyi−1,yi

)
and ȳ = arg max

y∈Yx
result(x, y), where Wp ∈ R

dl×6dh and bp ∈ R
dl are train-

able parameters, dl denotes the number of output labels, and scorei,yi
repre-

sents the score of the yi−th label of character ci. Here T is a transition matrix
which defines the scores of three successive labels, and Yx represents all can-
didate label sequences for a given sentence. We use the Viterbi algorithm to
generate the predicted label sequence ȳ. For training, we exploit negative log-
likelihood objective as the loss function. The probability of the ground-truth
label sequence is computed by: p(ŷ|x) = eresult(x,ŷ)

∑
ỹ∈Yx

eresult(x,ỹ) , where ŷ denotes the

ground-truth label sequence. Given X training samples (x(i); (ŷ(i)), we use gradi-
ent back-propagation to minimize the loss function, and the loss function LTask

can be defined as follows: LTask = −∑X
i=1 log p(ŷ(i)|x(i)).

Task Discriminator. In order to guarantee that task-specific information is
not extracted as common information, we endeavor to have Task Discrimina-
tor not be able to clearly discriminate which task dateset a sentence comes
from, and the Task Discriminator can be defined as: s′k = Maxpooling(S′k)
and D(s′k; θd) = Softmax(Wds′k + bd), where θd denotes the parameters of the
task discriminator, S′k is the shared self-attention of task k, Wd ∈ R

K×3dh and
bd ∈ R

K are trainable parameters, and K is the number of trainable tasks.
Besides the task loss LTask, we introduce the adversarial loss LAdv to prevent
task-specific information of the CWS and the POS tagging tasks from being
extracted as task-shared information, and the adversarial loss can be computed
as: LAdv = min

θs

(max
θd

∑K
k=1

∑Xk

i=1 logD(Es(x
(i)
k ))), where θs denotes the trainable

parameters of the Shared BiLSTM, Es denotes the Shared-information Extrac-
tor, Xk denotes the number of training samples of task k, x

(i)
k denotes the i-th
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sample of task k. The minimax optimization objective could mislead the task
discriminator. We add a gradient reversal layer [6] before the softmax layer to
address the minimax optimization problem. Gradients throughout the gradient
reversal layer will become opposed signs of encouraging the Shared-information
Extractor to learn task-shared information.

3.4 Model Training

The final objective function of ZH-NER can be formulated as: L = LNER · I(x) ·
I ′(x) + LCWS · (1 − I(x)) · I ′(x) + LPOS · (1 − I(x)) · (1 − I ′(x)) + λLAdv, where
λ is the loss weight coefficient, LNER, LCWS and LPOS can be computed via
Eq. 7. Here I(x) and I ′(x) are switching functions for identifying which task an
input sentence comes from, and they are defined as follows:

I(x) =

⎧
⎨

⎩

1, if ∈ CNER

0, if ∈ CCWS

0, if ∈ CPOS

, I ′(x) =

⎧
⎨

⎩

1, if ∈ CNER

1, if ∈ CCWS

0, if ∈ CPOS

(1)

where CNER, CCWS and CPOS respectively denote the training corpora of Chi-
nese NER, CWS and POS tagging tasks. We use the Adam algorithm to opti-
mize the final objective function. Since NER, CWS and POS tagging tasks have
different convergence rates, we repeat the model training iterations until early
stopping.

Table 1. Results achieved on the Weibo NER dataset.

Models Named entity Named mention Overall

P(%) R(%) F1(%) P(%) R(%) F1(%) F1(%)

Peng and Dredze (2015) 74.78 39.81 51.96 71.92 53.03 61.05 56.05

Peng and Dredze (2016) 66.67 47.22 55.28 74.48 54.55 62.97 58.99

He and Sun (2017a) 66.93 40.67 50.60 66.46 53.57 59.32 54.82

He and Sun (2017b) 61.68 48.82 54.50 74.13 53.54 62.17 58.23

Cao et al. (2018) 59.51 50.00 54.34 71.43 47.90 57.35 58.70

Lattice – – 53.04 – – 62.25 58.79

CAN-NER – – 55.38 – – 62.98 59.31

WC-LSTM – – 52.55 – – 67.41 59.84

LGN – – 55.34 – – 64.98 60.21

Lexicon 67.31 48.61 56.45 75.15 62.63 68.32 63.09

Ding et al. (2019) – – 63.10 – – 56.30 59.50

TENER – – – – – – 58.17

LR-CNN – – 57.14 – – 66.67 59.92

PLTE – – 62.21 – – 49.54 55.15

FLAT – – – – – – 60.32

Peng et al. (2020) – – 56.99 – – 61.41 61.24

ZH-NER 69.81 56.63 62.54 75.78 56.07 64.45 63.41
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Table 2. Model performance on the MSRA dataset.

MSRA dataset

Models P(%) R(%) F1(%) Models P(%) R(%) F1(%)

Chen et al. (2006) 91.22 81.71 86.20 Zhang et al. (2006) 92.20 90.18 91.18

Zhou et al. (2013) 91.86 88.75 90.28 Lu et al. (2016) – – 87.94

Dong et al. (2016) 91.28 90.62 90.95 Cao et al. (2018) 91.30 89.58 90.64

Yang et al. (2018) 92.04 91.31 91.67 Lattice 93.57 92.79 93.18

CAN-NER 93.53 92.42 92.97 WC-LSTM 94.58 92.91 93.74

LGN 94.19 92.73 93.46 Lexicon 94.01 92.93 93.47

Ding et al. (2019) 94.60 94.20 94.40 TENER – – 92.74

LR-CNN 94.50 92.93 93.71 PLTE 94.25 92.30 93.26

FLAT – – 94.12 Peng et al. (2020) 95.36 93.44 93.50

ZH-NER 94.50 93.05 93.77

4 Experimental Evaluations

4.1 Evaluation Datasets and Experimental Settings

We evaluate our model on the Weibo NER, MSRA, OntoNotes4, Chinese Resume
datasets. We use the MSRA dataset to obtain CWS information and UD1 dataset
to obtain POS tagging information. We adjust hyper parameters according to
NER performance achieved on the development set of the Chinese NER task. The
initial learning rate is set to 0.001, and we use Adam to optimize all trainable
parameters. The dimensionality of BiLSTM hidden states dh, the number of
self-attention units and self-attention heads are set to 120, 240 and 10. To avoid
overfitting, we set the dropout rate to 0.3, and the training batch size to 80. The
loss weight coefficient λ is set to 0.06. We use the Jieba toolkit to generate CWS
and POS tagging labels. The character embeddings used in our experiments
are pre-trained. We use precision(P), recall(R) and F1 score as the performance
evaluation metrics.

4.2 Baseline Models and Experimental Results

We compare our model with 24 NER models on different datasets, depending on
the availability of source codes and publicity of datasets. These models include
two traditional models Che et al. and Wang et al. (2013); three multi-task learn-
ing models Peng and Dredze (2015), Peng and Dredze (2016), and Cao et al.; two
semi-supervised learning models He and Sun (2017a) and He and Sun (2017b); a
model based on neural feature combination Yang et al. (2016); two CNN-based
models CAN-NER and LR-CNN, two models based on word-character informa-
tion Lattice and WC-LSTM; seven models based on lexicon and graph network
LGN, Lexicon, Ding et al. (2019), TENER, PLTE, FLAT and Peng et al. (2020);
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Table 3. Model performance on the OntoNotes dataset and Chinese resume dataset.

OntoNotes dataset

Models P(%) R(%) F1(%) Models P(%) R(%) F1(%)

Che et al. (2013) 77.71 72.51 75.02 Wang et al. (2013) 76.43 72.32 74.32

Yang et al. (2016) 72.98 80.15 76.40 Lattice 76.35 71.56 73.88

CAN-NER 75.05 72.29 73.64 WC-LSTM 76.09 72.85 74.43

LGN 76.13 73.68 74.89 Lexicon 75.06 74.52 74.79

Ding et al. (2019) 75.40 76.60 76.00 TENER – – 72.43

LR-CNN 76.40 72.60 74.45 PLTE 76.78 72.54 74.60

FLAT – – 76.45 Peng et al. (2020) 77.31 73.85 75.54

ZH-NER 77.01 76.39 76.70

Chinese resume dataset

Models P(%) R(%) F1(%) Models P(%) R(%) F1(%)

Lattice 94.81 94.1 94.46 CAN-NER 95.05 94.82 94.94

WC-LSTM 95.27 95.15 95.21 LGN 95.28 95.46 95.37

TENER – – 95.00 LR-CNN 95.37 94.84 95.11

PLTE 95.34 95.46 95.40 FLAT – – 95.45

Peng et al. (2020) 95.53 95.64 95.59 ZH-NER 95.18 96.23 95.70

other five models Chen et al. (2006), Zhang et al. (2006), Zhou et al. (2013), Lu
et al. (2016) and Dong et al. (2016).

The NER performance evaluation results on the Weibo NER dataset are
presented in Table 1, where “NE”, “NM” and “Overall” respectively indicate F1-
scores for identifying named entities, nominal entities (excluding named entities)
and both. We can see that the Lexicon model and the Peng et al. model achieve
the highest and second highest F1-scores in all baseline models, which are 63.09%
and 61.24% respectively, while ZH-NER improves the overall F1-score to 63.41%.
The NER performance evaluation results on the MSRA dataset are presented
in Table 2. We can see that the two most recent models, Ding et al. model
and the FLAT model, achieve the highest and second highest F1-scores in all
baseline models, which are 94.40% and 94.12% respectively. ZH-NER achieves
the third F1-score of 93.77%. The NER performance evaluation results on the
OntoNotes4 dataset are presented in Table 3. Che et al. (2013) and Wang et al.
(2013) achieve F1-scores of 74.32% and 75.02%, and FLAT achieves an F1-score
of 76.45%, which is the highest F1-score in the baseline models, and ZH-NER
achieves the highest F1-score of 76.70%, outperforming the three recent models
by substantial margins. The NER performance evaluation results on the Chinese
Resume dataset are presented in Table 3. [11] achieves an F1-score of 94.46%.
The F1-scores of FLAT and Peng et al. (2020) are 95.45% and 95.59%, and
ZH-NER achieves the highest F1-score.
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5 Conclusion

In this paper, we propose to extract shared information concerned with entity
boundaries across NER, CWS and POS tagging tasks, with adversarial multi-
task learning. Each of the NER, CWS and POS tagging tasks is trained with
multiple self-attentions, to extract task-specific information, and properly com-
bine it with the learned boundary information. Experimental results demonstrate
that ZH-NER achieves better performance than other state-of-the-art methods.
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of China (2018YFC0831904), the National Natural Science Foundation of China
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Abstract. Relation extraction (RE) is an important task in informa-
tion extraction. Drug-drug interaction (DDI) extraction is a subtask of
RE in the biomedical field. Existing DDI extraction methods are usually
based on recurrent neural network (RNN) or convolution neural net-
work (CNN) which have finite feature extraction capability. Therefore,
we propose a new approach for addressing the task of DDI extraction
with consideration of sequence features and dependency characteristics.
A sequence feature extractor is used to collect features between words,
and a dependency feature extractor is designed to mine knowledge from
the dependency graph of sentence. Moreover, we use an attention-based
capsule network for DDI relation classification, and an improved sliding-
margin loss is proposed to well learn relations. Experiments demonstrate
that incorporating capsule network and improved sliding-margin loss can
effectively improve the performance of DDI extraction.

Keywords: RE · DDI · Capsule network

1 Introduction

A drug-drug interaction (DDI) arises when two or more drugs are taken at
the same time that leads to the disturbance of their function. Adverse drug
reactions (ADRs) may bring some serious unexpected consequences such as iron-
deficiency anemia and toxic reaction. The more DDIs doctors know, the fewer
ADRs occur. Therefore, increasing our knowledge of DDIs is conducive to reduce
medical accidents. At present, several drug knowledge databases like DrugBank
[12] have been constructed to summarize DDIs and guide doctors for avoiding
ADRs. In parallel with the development of drug-related databases, the automatic
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DDI extraction from unstructured biomedical literature has become a trend in
biomedical text mining and health informatics.

DDI extraction is a classic RE task in biomedical domain. After the success
of DDIExtraction 2013 task1, more and more machine learning-based meth-
ods have been proposed on the public corpora. These methods can be divided
into non-deep-learning [4,9,16] and deep learning-based methods [1,15,17]. How-
ever, despite the success of these methods, some challenges remain: (A) Existing
methods heavily rely on the representation of sentence. Only using one aspect of
information such as word embedding is limited as language is complex and diver-
siform. (B) Both CNN and RNN fail to transmit spatial relationship to high-level
parts. Just handling sentence with fixed structures or directions makes it difficult
to cluster relation features of different positions.

In this paper, we propose a novel method to utilize both textual and depen-
dency information for DDI extraction from texts. On one hand, we employ an
RNN module to learn the textual features. On the other hand, we utilize a
graph convolutional network (GCN) to obtain the representations of dependency
graphs of sentences. Then, the textual features and dependency representations
are merged together and sent to a capsule network. To the best of our knowledge,
it is the first research to use capsule network with integrated features in DDI
extraction. The contributions of this paper can be summarized as follows:

– We propose a novel neural method to extract DDIs with the textual features
and the dependency representations at the same time.

– We apply capsule network to precisely represent and deliver semantic mean-
ings of DDIs. We show that the improved sliding-margin loss is better than
the original margin loss in model training.

– Experimental results demonstrate that our proposed method achieves a new
state-of-the-art result for DDI extraction on the DDIExtraction 2013 dataset.

2 Background

Graph Neural Network. Lots of applications employ graph structure for rep-
resenting various types of data. In order to mining these data, graph neural
network (GNN) is proposed to capture the dependences of graph through mes-
sage passing between graph nodes, and numerous GNN models are developed
based on various theories [3,6]. GCN is a typical model in GNN which generalizes
convolutions to the graph domain.

Capsule Network. Capsule network (CapsNet) proposed by Sabour [10] is a
novel structure for deep neural network. CapsNet abandons pooling operations
and applies capsules to represent various properties. The most popular version of
CapsNet uses an algorithm called “routing by agreement” which replaces pooling
in CNN and a vector output replacing scalar outputs in CNN. Since CapsNet has
recently proposed to use dynamic routing and achieved better performance than
CNN, CapsNet and its improvement are widely used in tasks such as knowledge
graph completion [7] and relation extraction[14].
1 https://www.cs.york.ac.uk/semeval-2013/task9/.

https://www.cs.york.ac.uk/semeval-2013/task9/
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3 Proposed Method

Our model architecture is shown in Fig. 1. The BiLSTM layer learns the textual
feature representations from a combined embedding. The GCN part obtains the
representations of dependency relationships between words by using the adjacent
matrix and the output of BiLSTM layer. These two types of representations are
merged and sent to the capsule network for DDI extraction.

Embedding
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Fig. 1. The overall architecture of our method.

3.1 Extract Textual Features

The input features of our model include word embeddings, part of speech (POS)
embeddings and position embeddings. Word embeddings are initialized with pre-
trained word embeddings2. The POS tags of each sentence and the relative
distances from tokens to entities are initialized by xavier initialization [2]. These
three input features are concatenated into one feature vector as the input. Then,
we employ a BiLSTM layer to exploit sentence features. The final output of each
token wi is the sum of the forward hidden state

−→
hi and the backward hidden

state
←−
hi .

3.2 Obtain Dependency Representations

For each sentence si = (w1, w2, · · · , wn), it has a dependency graph. A tree is
constructed based on this dependency graph, then the tree is converted to an
2 http://bio.nlplab.org/.

http://bio.nlplab.org/
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adjacent matrix M . The element Mij is set to be one if node i and node j
have a connection in the dependency graph. After that, we utilize a GCN layer
to iteratively transfer dependency information between node and its neighbors.
The symbol gli represents the output vector of node i in the l-th layer. The first
layer of GCN initialized with BiLSTM output is denoted as g0

1 , g0
2 , · · · , g0

n, and
the last layer of GCN is denoted as gT1 , gT2 , · · · , gTn . The output of all vectors in
the l-th layer is demonstrated with the following equation.

gl = σ(
n∑

j=1

M ijW
lgl−1/di + bl) (1)

di =
n∑

j=1

M ij (2)

where σ is a nonlinear function (e.g., Leaky ReLu), W l and bl are the learn-
ing parameters of linear transformation. M is calculated by adding M and I,
where I is an identity matrix and di is the degree of node i. Each node absorbs
information from its neighbors and updates its node representation l times.

3.3 Attentive Capsule Network

Primary Capsule Layer. We combine all the low-level sequence features
extracted by the BiLSTM layer and the dependency information generated by
the GCN layer. The integrated low-level features mt is the sum of the t-th hidden
vector ht in the output of BiLSTM and the t-th dependency representation gt
in the output of GCN. We split the integrated features into numerous low-level
capsules denoted as u. Hence, each word is represented by s low-level capsules.

mt = (ût1; · · · ; ûts) (3)

In order to make the length of the output vector of a capsule represent the
probability that the feature is present in current input, we apply each low-level
capsule with a non-linear “squashing” function f to shrunk its length between
zero and one. All capsules in mt are computed with the following equation:

uts = f(ûts) =
‖ûts‖2

1 + ‖ûts‖2

ûts

‖ûts‖ (4)

Several low-level capsules are combined together to create a high-level cap-
sule. The input to a high-level capsule vj is a weighted sum of all output vectors
from the previous level capsules that each is calculated by multiplying the output
ui of a capsule in the layer below by a weight matrix Wij .

vj = f(
∑

i

cijWijui) (5)

where cij are coupling coefficients that are determined by an iterative dynamic
routing process.
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Attention-Based Routing Algorithm. However, the original routing algo-
rithm proposed by Sabour [10] does not pay attention to the head and tail
entities. Hence, we adopt an attention mechanism firstly used in [14] to focus on
entity tokens. The coupling coefficients c between the i-th capsule and all the
previous level capsules are calculated as follows:

cij =
exp(bij)∑
ĵ exp(biĵ)

(6)

where the initial logits bij are log prior probabilities that capsule ui should be
coupled to capsule vj . The attention weights β are utilized to maximize the
weights of low-level capsules with important words and minimize that of trivial
capsules. The weight of capsule ui is calculated by the integrated entity features
he and hidden states hi

t from which ui comes from.

βi = σ(hT
e hi

t) (7)

where he is the sum of hidden states of head entity and tail entity, σ is the
sigmoid function. The whole routing iteration is shown in Algorithm 1.

Algorithm 1. Attention-based Routing Algorithm
Input: low-level capsule u, iterative number r, entity states he and hidden states ht

Output: high-level capsule v
1: for all capsules ui and capsules vi do
2: init the logits of coupling coefficients bij = 0;
3: for r iterations do
4: for all capsule i in layer l and capsule j in layer l + 1 do
5: cij = softmax(bij)
6: for all capsule j in layer l + 1 do
7: βi = σ(hT

e hi
t) ; vj = f(

∑
i cijβiWjui)

8: for all capsule i in layer l and capsule j in layer l + 1 do
9: bij = bij + Wjuivj

10: return v

3.4 Weighted Exponential Sliding-Margin Loss

Sabour et al. [10] and Zhang et al. [14] equally treat all predictions that are
beyond the upper boundary and lower boundary, which stop optimizing the
entire model. Therefore, we propose a non-zero loss. The loss function of the
k-th relation can be calculated by:

Lk = αYk(em
+−‖vk‖ − e−m−

)2 + λ(1 − Yk)(e‖vk‖−m− − e−m−
)2 (8)

where Yk = 1 if a relation of class k is present, and Yk = 0 if not. m+ is the
upper boundary which is the sum of the threshold of the margin and the width
of the margin, denoted as B and δ. B is a learnable variable and is initialized by
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0.5, and δ is a hyperparameter set by 0.4. m− is the lower boundary which is the
difference between B and δ. λ is used to down-weight the loss for absent relation
classes and it is set by 0.5. We apply α to deal with the problem of imbalance
of the training data and manually set it to be [3, 5, 2, 10, 1], which corresponds
to five relations (mechanism, advice, effect, int, false) respectively.

4 Experiments

4.1 Dataset and Experimental Settings

We evaluate our method on the DDIExtraction 2013 corpus3. In order to relieve
the problem of class imbalance, we filter out some invalid negative instances
under several rules proposed by previous works [5,11]. The statistics of the corpus
after processing are shown in Table 1. We use Adam optimizer with learning rate
0.004, batch size 64, BiLSTM hidden size 128, word embedding size 200, POS
embedding size 30, position embedding size 30. In GCN, we use 2 layers with
output size 128 and dropout 0.5. The dimension of capsule is 16, the routing
iteration is 3. We use micro-averaged F1 score to evaluate our model.

Table 1. Statistics of the DDI 2013 extraction corpus

Corpus Training set Test set

Original Processed Original Processed

Effect 1687 1676 360 358

Mechanism 1319 1309 302 301

Advice 826 824 221 221

Int 188 187 96 96

Negative DDIs 23772 19342 4737 3896

4.2 Overall Performance

Table 2 shows the comparative results on the DDIExtraction 2013 dataset. We
use † to represent non-deep-learning methods and ‡ to represent deep-learning
methods. Neural networks can learn useful features automatically, so most deep-
learning methods have better performance.

As indicated by the table, we also conduct the F-score of each DDI type to
assess the difficulty of detecting different interactions. Our model performs the
best on Advice type and worst on Int type. These types have obvious different
quantity in training data, thus making an apparent difference in F-score. By
comparing with other models, our model achieves better performance. On one
hand, we use both sequence features and dependency characteristics, which have
great significance to DDI extraction. On the other hand, we utilize low-level
capsules to merge basic features and cluster these capsules to form high-level
capsules, which are helpful to the classification of DDI types.
3 https://www.cs.york.ac.uk/semeval-2013/task9/.

https://www.cs.york.ac.uk/semeval-2013/task9/
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Table 2. Comparative results of our model and baseline methods

Method F-score of four DDI types Overall performance

Advice Effect Mechanism Int Precision Recall F-score

† Kim [4] 72.50 66.20 69.30 48.30 – – 67.00

Zheng [16] 71.40 71.30 66.90 51.60 – – 68.40

Raihani [9] 77.40 69.60 73.60 52.40 73.70 68.70 71.10

‡ Liu [5] 77.72 69.32 70.23 46.37 75.70 64.66 69.75

Asada [1] 81.62 71.03 73.83 45.83 73.31 71.81 72.55

Zhang [15] 80.30 71.80 74.00 54.30 74.10 71.80 72.90

PM-BLSTM [17] 81.60 71.28 74.42 48.57 75.80 70.38 72.99

RHCNN [11] 80.54 73.49 78.25 58.90 77.30 73.75 75.48

AGCN [8] 86.22 74.18 78.74 52.55 78.17 75.59 76.86

Xiong [13] 83.50 75.80 79.40 51.40 80.10 74.00 77.00

Our method 83.37 79.23 79.65 55.94 82.62 74.77 78.50

4.3 Effect of Various Modules

The ablation studies are shown in Table 3. First, without dependency character-
istics, the performance of our model sharply drops by 2.77%. This drop shows
that the dependency characteristics extracted by GCN plays a vital role in find-
ing DDI interactions. Next, we replace the improved sliding-margin loss with
the original margin loss [10]. Our improved loss’s removal results in poor perfor-
mance across all metrics. Moreover, the results of taking away filter rules prove
that the problem of data imbalance does exist in the original dataset.

Table 3. Ablation study of GCN, improved sliding-margin loss and filter rules

Methods Precision Recall F-score

Our method 82.62 74.77 78.50

- GCN 82.53 69.97 75.73

- Improved sliding-margin loss 82.16 71.50 76.46

- Filter rules 79.31 74.77 76.97

5 Conclusion

In this paper, we introduce a new method using capsule network for the task of
DDI extraction. We combine textual features and dependency representations in
our model. These representations form a complete semantic representation. The
low-level capsules in the capsule network are able to extract low-level semantic
meanings, and the high-level capsules clustered by a routing algorithm represent
relation features. Moreover, we propose weighted exponential sliding-margin loss
to enhance the model performance. Experimental results show our method out-
perform previous methods on the overall performance. The study of various
modules also confirms the effectiveness of those modules in our model.
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Abstract. Named Entity Recognition (NER) is generally regarded as a
sequence labeling task, which faces a serious problem when the named
entities are nested. In this paper, we propose a span-based model for
nested NER, which enumerates all possible spans as potential entity
mentions in a sentence and classifies them with pretrained BERT model.
In view of the phenomenon that there are too many negative samples in
all spans, we propose a multi-task learning method, which divides NER
task into entity identification and entity classification task. In addition,
we propose the entity IoU loss function to focus our model on the hard
negative samples. We evaluate our model on three standard nested NER
datasets: GENIA, ACE2004 and ACE2005, and the results show that
our model outperforms other state-of-the-art models with the same pre-
trained language model, achieving 79.46%, 87.30% and 85.24% respec-
tively in terms of F1 score.

Keywords: Nested NER · Span-based model · Multi-task learning

1 Introduction

Named entity recognition (NER) is the task of identifying named entities like
person, organization, biological protein, drug, etc. NER is generally treated as
a sequence labeling problem [7], where each token is tagged with a label that is
composed of entity boundary label and categorical label. However, when named
entities contain nested entities, as illustrated in Fig. 1, traditional sequence label-
ing models are hard to handle it.

Various approaches to extract nested entities have been proposed in recent
years. There is a straightforward model which enumerates all possible regions or
spans as potential entity mentions and classifies them into the correct category,
and we call it span-based model. Span-based model is not limited by the number
of nested layers and different nested entity categories. However, the span-based
model faces many challenges, which affect the performance of this model. In this

c© Springer Nature Switzerland AG 2021
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Fig. 1. An example of nested entities from GENIA corpus.

paper, we aim to solve these challenges and build an effective span-based model
for nested NER.

Original span-based models [11,15] encode sentences via LSTM or CNN,
which cannot learn good semantic information to represent spans. Pretrained
language models such as BERT [1] have recently attracted strong attention in
NLP research area, and many methods [13,17] use the pretrained BERT model
to improve span representation for nested NER. Instead of fine-tuning BERT,
these approaches just adopt BERT to enrich token embeddings, which limits the
performance of the models. To get a better span representation, we employ the
pretrained BERT model [1] to encode the context information and add extra
features to enhance the representation.

Besides, the span-based model comes with an extremely imbalanced dataset
where the number of non-entity spans far exceeds the entity spans. For example,
there are 88 non-entity spans and only 3 entity spans in the sentence in Fig. 1, so
the positive/negative sample ratio is about 1:30. None of the previous span-based
models have considered the negative effect of having too many negative samples,
which may affect the performance of the model. To mitigate the class imbalance
problem, we propose a multi-task learning approach, which first divides the entity
recognition task into a binary classification task for entity identification and a
multiple classification task for entity classification, and then trains a model to
do these two tasks simultaneously.

Another challenge for the span-based method is the hard negative samples
problem. For example, both the span “we have” and “the B2 subunit” are neg-
ative samples, but the first does not overlap with any entities while the second
overlap with the entity “B2 subunit”. Within our knowledge, it’s hard to classify
the second span as a negative sample while the first is easy for the model. We
call the negative spans which overlap with entity as hard negative samples.

We introduce Intersection over Union (IoU), which is a common concept in
computer version, to quantitatively analyze hard negative samples. We define
the entity IoU for a span as the intersection length of this span and the entity
in a sentence divided by the length of the union. Intuitively, the harder negative
samples have higher entity IoU. To focus on the hard negative samples, we pro-
pose the entity IoU loss, which could assign higher weights to the hard negative
samples according to the IoU between the negative samples with entities. This
loss function is a dynamically scaled cross entropy loss, where the scaling factor
increases as the IoU between negative samples with entities increases.
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In summary, we make the following contributions:

• We propose a span-based nested NER model, which utilizes the pretrained
BERT to encode the context information and represent spans.

• We propose a multi-task learning approach to mitigate the data imbalance
problem, and we design the entity IoU loss to focus the model on hard negative
samples in the training step.

• Empirically, experiments show our model outperforms previous state-of-the-
art models with the same pretrained language model on three datasets.

2 Releated Work

Span-based approaches detect entities by identifying over subsequences of a
sentence respectively, and nested mentions can be detected because they corre-
spond to different subsequences. For this, Xu et al. [15] utilize a local detection
approach to classify every possible span. Sohrab and Miwa [11] propose a simple
deep neural model for nested NER, which enumerates all possible spans and
then classifies them with LSTM. Besides, Wang et al. [14] propose a transition-
based method to construct nested mentions via a sequence of specially designed
actions. Tan et al. [13] incorporate an additional boundary detection task to pre-
dict entity boundary in addition to classify the span. Generally, these approaches
do not consider the problem of class imbalance, which may affect the model’s
performance.

Pretrained language models are applied for nested NER to improve per-
formance in the last two years. Straková et al. [12] encode the nested labels
using a linearized scheme, so the nested NER task can be treated as a sequence
labeling task. Fisher and Vlachos [3] introduce a novel architecture that merges

Fig. 2. The overall framework of our proposed model. (Color figure online)
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tokens and/or entities into entities forming nested structures and then labels
them. Shibuya and Hovy [10] treat the tag sequence for nested entities as the
second-best path within the span of their parent entity based on BERT. Yu et al.
[17] use a biaffine model to assign scores to all possible spans in a sentence based
on document-level BERT feature.

Our work is inspired by SpERT [2], a span-based joint entity and relation
extraction model and Ye et al. [16], who divide the relation extraction task into
relation identification task and relation classification task.

3 Proposed Method

The overall framework of our proposed model is shown in Fig. 2. The model
consists of three layers: Encoder layer, Span representation layer and Multi-task
layer. Given an input sentence, a pretrained BERT encoder is first adopted to
encode the context information and represent the tokens. Then the span rep-
resentation layer enumerates all possible spans and represents these spans with
the output of the encoder layer. Finally, the multi-task layer trains the model
to do entity identification task with the entity IoU loss and entity classification
task with the pairwise ranking loss simultaneously.

3.1 Encoder Layer

Given an input sentence consisting of n tokens (t1, t2, . . . , tn), the encoder layer
extracts context information from the sentence, which will represent spans. We
employ a pretrained BERT model to encode the context information.

For limiting the vocabulary and mapping OOV words and rare words, BERT
uses a byte-pair encoder (BPE) tokenizer [9]. We get a sequence of m BPE
tokens after the input sentence is tokenized, where m ≥ n. Then the BPE
tokens sequence is passed through BERT, we obtain an embedding sequence
e = (cls, e1, e2, . . . , em) of length m + 1, where cls represents a special classifier
token encoding the overall sentence context.

3.2 Span Representation Layer

The span representation layer represents spans with BERT’s output e. We gen-
erate all possible spans with sizes less than or equal to the maximum span size L,
which is a pre-defined parameter for limiting the model’s complexity. We use the
span(i, j) to represent the span from i to j, where 1 ≤ i ≤ j ≤ m and j − i < L.

The span representation consists of three parts:

• Span’ s Context Encoding (Fig. 2, blue): For a span(i, j) and its BPE
token context encoding (ei, ei+1, . . . , ej), we utilize a fusion operation to con-
vert the token context encoding to a fix-sized vector vi,j . We find max-over-
time pooling to get the best performance.
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• Sentence Context Encoding (Fig. 2, purple): The categories of entities
in a sentence are likely to be related to the overall context information of a
sentence. For this reason, we add cls encoding.

• Width Embedding (Fig. 2, yellow): Within our knowledge, spans that are
too long are unlikely to represent entities. We adopt width embedding to put
this prior knowledge into our model. Given a span with width k, we look-
up a width embedding from an embedding matrix. The embedding matrix is
initialized randomly and learned in the training step.

In summary, we obtain the representation s(i, j) of the span(i, j) as follows:

s(i, j) = [cls; vi,j ;wj−i+1] (1)

where wj−i+1 denotes the width embedding and [; ] denotes concatenation.

3.3 Multi-task Layer

Entity Identification with Entity IoU Loss. For the binary classification
task of entity identification, we propose an entity IoU loss function. In a sentence,
Intersection over Union (IoU) between two spans means the length of intersection
divided by the length of union. As illustrated in Fig. 1, The union of the span
“of the B2 subunit promoter” and the entity span “B2 subunit promoter region”
is 6 and the intersection is 3, so we can calculate that the IoU is 0.5. Formally,
we can compute the IoU as follows:

IoU(span(i1, j1), span(i2, j2)) =

{
min (j1,j2)−max (i1,i2)+1
max (j1,j2)−min (i1,i2)+1

, min (j1, j2) ≥ max (i1, i2)

0, otherwise
(2)

We define ESS as the set consisting of all entity spans in a sentence and
ENIoU(s) as the max IoU between the span s and all entity spans in the sentence.

ENIoU(s) = max(IoU (s, en) , en ∈ ESS) (3)

Then we can define the entity IoU loss as follows:

EI(p, y) =
{ −(1 − α) log(p), if y = 1

−α(1 + ENIoU) log(1 − p), otherwise
(4)

In the above y ∈ 0, 1 specifies the span’s ground-truth class (0 for non-entity
and 1 for entity), α ∈ [0, 1] is a balance factor for addressing class imbalance,
p ∈ [0, 1] is the model’s estimated probability for the class with label y = 1 and
ENIoU is the span’s entity IoU.

This loss function is a dynamically scaled cross entropy loss, where α and
ENIoU determine the scaling factor. We set α < 0.5 to pay more attention to
the positive samples which are less in all samples. For the negative samples, the
loss is bigger when the ENIoU is bigger, which could focus the model on the
hard negative samples in the training step.

Then we can compute the entity identification loss as follows:

Loss1 =
∑

EI(p, y) (5)
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Entity Classification with Ranking Loss. To increase the loss diversity in
multi-task learning, we adopt the pairwise ranking loss proposed by dos et al.
[8] for the entity classification task. We define Loss2 as the entity classification
ranking loss.

Finally, the loss function of our multi-task framework is formulated as:

Loss = βLoss1 + Loss2 (6)

We learn the parameters of entity identification and entity classification as well
as the width embeddings and fine-tune BERT in the training step by minimizing
Loss in Eq. 6.

3.4 Prediction

In the prediction stage, to avoid error propagation, we only use the class score
in the multiple entity classification task, while the binary entity identification
task is only used for optimizing the network parameters.

4 Experiment

4.1 Experimental Setup

We mainly evaluate our model on three standard nested NER datasets: GENIA
[6], ACE2004 and ACE2005. The dataset split is following previous work [5] and
we report micro precision, recall and F1 score to evaluate the performance.

We compare our model with several previous state-of-the-art models:

Seq2seq [12]: Straková et al. encode the nested labels using a linearized scheme
to treat the nested NER as a sequence to sequence problem.

Second-path [10]: Shibuya and Hovy treat the tag sequence for nested entities
as the second-best path within the span of their parent entity based on BERT.

Boundary1 [13]: A model that incorporates an additional boundary detection
task to predict entity boundary in addition to classify the span.

Biaffine-NER2 [17]: A biaffine span-based model.

Pyramid [5]: A pyramid architecture to stack flat NER layers for nested NER.

1 This model is based on BERT-base and they use different dataset splits. Except for
this model, other models are based on BERT-large.

2 This model also uses the fasttext embedding, for the sake of fairness, we re-train this
model without the fasttext embedding.
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4.2 Overall Evaluation and Ablation Study

Table 1 shows the comparison of our model with several previous state-of-the-art
nested NER models on the test datasets. Our model outperforms the state-of-
the-art models with 79.46%, 87.30% and 85.24% in terms of F1 score, achieving
the new state-of-the-art performance in the nested NER tasks. Our model gains
the highest improvement of F1 score with 1.02% on ACE2004 while 0.58% and
0.27% on GENIA and ACE2005. A possible reason accounts for it, it is that
ACE2004 has more nested entities (46%) compared with ACE2005 (38%) and
GENIA (18%) and our span-based model is good at handling nested entities.

We also conduct the ablation study to verify the effectiveness of our multi-
task learning method and entity IoU loss. We first replace the entity IoU loss
with cross-entropy loss. Then, we remove the entity IoU loss and multi-task
learning method and just use ranking loss for entity classification.

From the results shown in Table 1, we can see: our multi-task learning
method improves performance by 0.65%, 0.58% and 0.25% and the entity IoU
improves the performance by −0.12%, 0.80% and 0.83% in GENIA, ACE2004
and ACE2005. We notice entity IoU loss does not affect GENIA. One possible
reason is that the words in biomedical entities are usually terminologies, the
model could distinguish the hard negative samples easily without entity IoU
loss.

Table 1. Performance comparison of the state-of-the-art nested NER models on the
test dataset and results when ablating away the entity IoU loss (EIL) and multi-task
learning method (MTL).

GENIA ACE2004 ACE2005

Model P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Seq2seq – – 78.31 – – 84.40 – – 84.33

Second-path 78.70 75.74 77.19 85.23 84.72 84.97 83.30 84.69 83.99

Boundary 79.2 77.4 78.3 85.8 84.8 85.3 83.8 83.9 83.9

Biaffine-NER 79.30 78.99 79.14 86.00 84.92 85.46 83.93 84.79 84.36

Pyramid 79.45 78.94 79.19 86.08 86.48 86.28 83.95 85.39 84.66

Our model 79.53 79.37 79.46 87.51 87.08 87.30 84.75 85.73 85.24

w/o EIL 78.71 80.47 79.58 87.33 85.69 86.50 85.91 82.96 84.41

w/o EIL& MTL 79.17 78.70 78.93 87.44 84.44 85.92 83.51 84.81 84.16

4.3 Running Time

Although our model needs to classify all possible spans with a max length in a
sentence, the spans can be processed in a batch with GPU to reduce the train-
ing and inference time and classifying spans is a lightweight operation compared
with encoding. Figure 3 shows the inference speed of our model, BERT-Tagger,
Boundary-aware [18], Neural-layered [4] and Biaffine-NER [17]. These experi-
ments are performed on the same machine (one NVIDIA 1080ti GPU with Intel
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i7-6700K CPU). BERT-Tagger’s speed is the BERT-based models’ upper bound
speed. Our model is about 1/4 slower than BERT-Tagger because our model
needs to classify spans while BERT-Tagger just needs to classify tokens. Our
model is about 3 times faster than Boundary-aware, 9 times faster than Neural-
layered and about 700 times faster than Biaffine-NER.

Fig. 3. The inference speed of our model and compared models.

5 Conclusion

In this paper, we build an effective span-based nested NER model based on
pretrained BERT. We propose a multi-task learning approach to deal with the
class imbalance problem and entity IoU loss to focus on hard negative samples.
Experiments show that our model outperforms previous state-of-the-art models
on three standard datasets with a competitive running speed.
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Abstract. Most Chinese poetry generation methods only accept texts
or user-specified words as input, which contradicts with the fact that
ancient Chinese wrote poems inspired by visions, hearings and feelings.
This paper proposes a method to generate sentimental Chinese classical
poetry automatically from images based on convolutional neural net-
works and the language model. First, our method extracts visual infor-
mation from the image and maps it to initial keywords by two parallel
image classification models, then filters and extends these keywords to
form a keywords set which is finally input into the poetry generation
model to generate poems of different genres. A bi-directional generation
algorithm and two fluency checkers are proposed to ensure the diversity
and quality of generated poems, respectively. Besides, we constrain the
range of optional keywords and define three sentiment-related keywords
dictionary to avoid modern words that lead to incoherent content as well
as ensure the emotional consistency with given images. Both human and
automatic evaluation results demonstrate that our method can reach a
better performance on quality and diversity of generated poems.

Keywords: Information extraction and summarization · Poetry
generation · Vision-driven modelling · Natural language processing

1 Introduction

Traditional Chinese classical poetry is fascinating and important in Chinese lit-
erature. Automatic poetry generation is an interesting challenge and has caught
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increasing attention in recent years because of its significant research value in
automatic language analysis and computer creativity. Various attempts have
been made on this task. Early work is based on rules and templates [4]. Then
statistical machine learning methods are applied to poetry generation [8]. With
the development of neural network, poetry generation models based on recurrent
neural network [14] and its variants [13] have been widely used. In recent years,
models based on language models like Generative Pre-training (GPT) have real-
ized generating complete poetry under given keywords without any additional
modifications [5]. However, works on generating sentimental Chinese classical
poetry from images are deficient. Only few works address the problem of image-
related poetry generation [6,15], and in some cases these methods may generate
poems with bad tone patterns, vague emotional tendencies, as well as incoherent
contents when modern words are involved.

Poetry can be generated from diverse inspirations, where vision (images) is of
great significance. Poetic feelings may occur when one contemplates an image or
a painting which represents natural scenery. In our work we mimic this process
of poetry writing from images. Besides, Chinese classical poetry has different
genres. All genres have strict regulations on tonal patterns and rhyme schemes.
In our work we mainly focus on two types among them: Jueju (poems of four
lines, five or seven characters per line, i.e., Wujue and Qijue) and Lvshi (poems
of eight lines, five or seven characters per line, i.e., Wulv and Qilv).

Using images as inspirations for poetry generation has many advantages. On
the one hand, an image contains richer information than words which enables
varieties of generated poetry. On the other hand, different people may have dif-
ferent interpretations and feelings towards the same images, thus using images
as inspiration may bring surprising and impressive results. In this paper, we pro-
pose a method for sentimental Chinese classical poetry generation from images,
including information extraction, keyword extension and poetry generation.

In conclusion, our contributions are as follows:

– We design an innovative pipeline for poetry generation from images and pro-
pose a bi-directional generation algorithm and two fluency checkers which are
effective in generating diverse poems consistent with the given image.

– We map visual information to keywords and build three sentiment-related
keyword dictionaries to extend keywords with specific emotional tendencies,
which ensures the generated poems are emotionally related to given images.

– From human and automatic evaluation results, our method can reach a better
performance on quality and diversity of generated poems.

2 Methodology

2.1 Problem Formulation and Overview

Let P be a poem with l lines x1, x2, ..., xl, and each line has n characters xi =
(xi,1, xi,2, ..., xi,n). For image input I , We first extract visual information and
map it into a keywords set K = (E1, E2, ..., El), where E1 to El−1 represent l−1
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Fig. 1. Overview of the proposed method for poetry generation from images.

entities and El is the emotion. Then these keywords are utilized as the initial
seed for every sentence to generate a poem P = (x1, x2, ..., xl). Overview of our
method is shown in Fig. 1. In our work, we utilize extracted information from
the given image to generate a four-line poem (l = 4, the most common length
in Chinese classical poetry). Firstly the CNNs extract initial keywords (entities
and the emotion, e.g., dog, leaves, sad) from a given image. Then in keyword
extension module, we get word vectors of these extracted keywords and extend
them to form the final keywords set (e.g., dog, leaves, autumn, sad). Finally, each
keyword in the set works as an initial seed to generate each sentence in the final
poem by the GPT-2 based generation model. In the following discussion, the role
of the emotion is both an sentiment label (guide the generation of sentiment-
related keywords and verses) and an emotional keyword (occur in generated
poems and express feelings explicitly).

2.2 Information Extraction

We define the extraction of visual information as an image classification problem
and design two parallel CNN models with different parameters to extract entities
and the emotion, respectively. Different from modern poetry generation [2], mod-
ern words (i.e., words those do not exist in ancient times like neural network) in
classical poetry generation bring serious problems. If a modern word is input to
generate classical poetry, the generated results are possible to have incoherent
content and confusing logic. For poetry generation from images, this problem
can be solved if we ensure that the range of extracted keywords exclude modern
concepts. So we choose all candidate keywords from common imageries in Chi-
nese classical poetry (e.g., cloud, pavilion and the setting sun) based on their
frequencies. Though excluding modern words may cause the omission of some
information, we retrieve the loss to some extent in keyword extension module.
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The emotional words in our method have three types: joyful, sad and neutral,
which are basic keynotes for most Chinese classical poems.

2.3 Keyword Extension

The goal of keyword extension is to regularize the number of extracted initial
keywords and output the final keywords set. Concretely, for a four-line poem,
if the number of initial keywords is more than 4, the emotion is retained and
other 3 entities are randomly selected to increase the diversity. Otherwise extra
keywords are added according to word similarity [9] based on word vectors [11].
We build three sentiment-related keyword dictionaries by respective statistics of
word frequency in sentimental poetry corpus. Extra keywords are selected from
corresponding sentimental dictionary to ensure the consistency with the emotion.
Notice that if the extracted emotion is neutral, it will be removed from keywords
set and replaced with another extended entity but still work as sentiment label
in generation model.

2.4 Poetry Generation

Generation Model. We choose Generative Pre-Training 2 (GPT-2) as the
basic forward generation model. For input K = (E1, E2, E3, E4), firstly E1 is
input to generate the first line, then the second line is generated based on E2

and previously generated contents, as well as the third and last line. With this
forward generation method, however, all keywords will occur only at the begin-
ning of each line. To solve this problem, we train an extra backward GPT-2
model with inverse corpus and propose a bi-directional generation algorithm.
Concretely, for generation of i-th line, we first put Ei in random position xi,j

and use backward GPT-2 to generate (xi,j−1, xi,j−2, ..., xi,1), then we input all
generated characters (x1, x2, ..., xi,1, ..., xi,j) into forward GPT-2 to generate the
rest contents (xi,j+1, xi,j+2, ..., xi,n). Besides, we adopt truncated top-k sampling
strategy to select candidate characters to increase the diversity. We also simplify
the rhyming rules by controlling the tone of the last character of every sentence.

Sentiment Control. The generation model is pretrained with a huge number
of poetry corpus and fine-tuned with a small sentiment-labelled poetry corpus.
The format of poetry in fine-tuning process is sentiment-label#poetry-contents.
The extracted emotional words will work as the sentiment label during generat-
ing process and the format of input when generating the i-th character will be
emotion#generated-contents. With the guidance of sentiment label, the model
tends to generate poetry with contents emotionally related to given images.

Fluency Checkers. Using truncated top-k sampling strategy to select ran-
domly from candidate characters may break the rules of grammar and destroy
the fluency of poems. To avoid this problem, we design a sentence-level gram-
mar checker and a poem-level content checker to evaluate grammar and fluency
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scores of generated sentences and poems, respectively. We utilize a 5-gram model
with POS tagged corpus and 3-gram model with masterpieces corpus to calcu-
late these scores and reject contents with low scores. These checkers help exclude
poor sentences and enable our model to generate poems of high quality.

3 Experiment

3.1 Dataset

In visual information extraction module, we collect images of 44 candidate enti-
ties to train the entity CNN. The dataset we choose to train the emotion CNN
is GAPED, which is a new database of 730 images with negative, neural or pos-
itive contents [3]. In keyword extension and poetry generation modules, we use
CCPC (Chinese Classical Poetry Corpus) [15] to pre-train models and FSPC
(Fine-grained Sentimental Poetry Corpus) [1] to build sentiment-related key-
words dictionary and fine-tune the poetry generation model. Details of datasets
are shown in Table 1. Notice that all these models are trained separately.

Table 1. Statistics of datasets.

Dataset Types Average Total

Entity images 44 entities 404 17800

GAPED 3 emotion 243 730

CCPC Mostly Jueju – 170787

FSPC 3 emotion 1700 5000

3.2 Evaluation Metrics

In this experiment, we evaluate the generated results from five aspects: Poet-
icness (If generated poems follow the rhyme and tone regulations and meet
requirements of different genres), Diversity (If extracted keywords and gener-
ated poems are different from the same image), Relevance (If generated poems
are relevant to the given image), Meaning (If contents are coherent and logical)
and Emotional expression (If generated poems express some emotions).

3.3 Model Variants and Baselines

In addition to the proposed method of GPT-2 based poetry generation from
images (GPGI), we also evaluate three variants of the model to study the effects
of bi-directional generation algorithm and two fluency checkers, including GPGI
(origin) (original GPT-2 without any additional components), GPGI (w/o
backward) (the proposed method without bi-directional generation), GPGI
(w/o checkers) (the proposed method without two fluency checkers).
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To further investigate the effectiveness of the proposed methods, we choose
two state-of-the-art methods which are accessible on the Internet as baselines for
comparisons. Jiuge is a human-machine collaborative Chinese classical poetry
generation system [15]. It uses the Aliyun image recognition tool and knowledge
graph to extract keywords from images and generate poems by a GRU based
encoder-decoder model. Yuefu is a simple yet effective system for generating
high quality classical Chinese poetry from images with image recognition meth-
ods and generative pre-trained language model (GPT) [5].

Table 2. Results of human and automatic evaluation on different methods. Scores of
poeticness, diversity, relevance, meaning and expression are recalculated by mapping
original scores to the range [0, 1] in order to figure out the average performance.

Method Poeticness Diversity Relevance Meaning Emotion BLEU Average Recall

GPGI (full) 0.94 0.85 0.83 0.75 0.76 0.68 0.80 46.3%

Jiuge 0.94 0.80 0.81 0.83 0.72 0.75 0.81 33.2%

Yuefu 0.92 0.85 0.77 0.73 0.70 0.63 0.77 23.3%

GPGI (origin) 0.82 0.80 – 0.68 0.68 0.55 0.71 –

GPGI (w/o checkers) 0.82 0.81 – 0.71 0.72 0.57 0.73 –

GPGI (w/o backward) 0.92 0.82 – 0.72 0.72 0.65 0.76 –

3.4 Human and Automatic Evaluation

Human and automatic evaluation metrics are combined to conduct the experi-
ment. An human assessment tool is designed for human evaluation. To obtain
rich feedback without user bias, we randomly choose 20 assessors from various
career fields with a bachelor degree and requisite knowledge of poetry to assess
generated poems. 30 images are randomly sampled as testing set, each of which
will be utilized to generate several poems by different models. Assessors can
rate these poems on a scale of one to five. Besides, We select some masterpieces
from dataset as references and calculate BLEU scores [7,10] of generated poems.
Table 2 summarizes the results.

Overall Performance. The average scores in Table 2 indicate that the pro-
posed model GPGI outperforms Yuefu and has similar performance to Jiuge.
Concretely, Jiuge succeeds in coherence and automatic evaluation because of its
complex contents control mechanism, whereas our method works better than
two state-of-art baselines in terms of poeticness, diversity, relevance and emo-
tional expression. Yuefu get the lowest score of poeticness and meaning due to
lack of relevant control components. Though Jiuge can generate poems of the
best meaning, the diversity decrease accordingly as diverse contents mean the
risk of incoherence because of random sampling strategy, whereas our methods
maintain a good balance between these aspects. Besides, our method achieve the
highest emotional expression score, which may attribute to emotion extraction
CNN, sentiment-related keywords dictionary and GPT-2 model fine-tuned on
sentimental poetry corpus.
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Automatic Evaluation on Relevance. Unlike texts and words based poetry
generation methods, relevance of the generated poem to the given image is an
important metric for image inspired poetry generation. Therefore, in addition
to subjective evaluation, we also conduct an automatic evaluation in terms of
relevance referring to [12] by computing the recall rate of the key concepts in an
image that are described in the generated poem. The results are also shown in
the last column of Table 2. Both the subjective and quantitative evaluation on
relevance indicate that manually collected dataset of common imageries as well as
keyword extension are efficient and effective methods to extract key information
from an image.

Fig. 2. Cases and automatic evaluation of the generated poems. We take 4 cases for
example to show that the generated poems meet requirements of content and diversity.

Analysis of Model Variants. Results in the bottom rows of Table 2 corre-
spond to the variants including GPGI (origin), GPGI (w/o checkers) and GPGI
(w/o backward). Notice that relevance is not evaluated as all variants share
the same visual information extraction module. From studies on the effect of
proposed generation algorithm and two fluency checkers, we find that both two
parts help improve the performance, which means appropriate human crafted
rules or features and additional neural components are essential for high quality
of generated poems. Moreover, the fluency checkers seem to have bigger impact
than the bi-directional generation algorithm. The main reason is that contents
generated by backward GPT-2 only take a small proportion of whole poem.

3.5 Case Study

To further illustrate the quality and diversity of generated poems, we study
several cases of the poems generated with corresponding images. From cases in
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Fig. 2, we find that these poems have relatively high relation to the given images
because their contents include the main visual information in given images like
desert, cloud, flowers as well as semantic concepts such as joyful, happiness. As
shown in case 4, the keywords set and the generated poems are different for a
certain image, which demonstrates that the generated poems are diverse and
flexible. Evaluation results of these poems are also provided.

4 Conclusion and Future Work

This paper proposes an innovative hierarchical model to generate fluent and
high image-related poems with CNN based information extraction, vector based
keyword extension and GPT-2 based poetry generation, as well as a bi-directional
generation algorithm and two fluency checkers. However, there are still some
aspects we can improve. To avoid constraining the emotion of a given image
based on low-level visual feature, which would ignore the fact that different
people may have different feelings towards the same image, new methods will be
adopted to get more meaningful and coherent content in the future work.
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Abstract. The boom of social media platforms like Twitter brings the
large scale short, noisy and redundant messages, making it difficult
for people to obtain essential information. We study extractive topic-
oriented social summarization to help people grasp the core informa-
tion on social media quickly. Previous methods mainly extract salient
content based on textual information and shallow social signals. They
ignore that user generated messages propagate along the social network
and affect users on their dissemination path, leading to user-level redun-
dancy. Besides, hashtags on social media are a special kind of social
signals, which can be regarded as keywords of a post and contain abun-
dant semantics. In this paper, we propose to leverage social theories and
social signals (i.e. multi-order social relations and hashtags) to address
the redundancy problem and extract diverse summaries. Specifically, we
propose a novel unsupervised social summarization framework which
considers Social Contagion and Hashtag Consistency (SCHC) theories.
To model relations among tweets, two relation graphs are constructed
based on user-level and hashtag-level interaction among tweets. These
social relations are further integrated into a sparse reconstruction frame-
work to alleviate the user-level and hashtag-level redundancy respec-
tively. Experimental results on the CTS dataset prove that our approach
is effective.

Keywords: Social summarization · Social network analysis · Natural
language processing

1 Introduction

Social media platforms like Twitter have become a popular way for users to
freely produce content (called tweets) on their interested topics. However, the
rapid growth of tweets makes it difficult for people to quickly grasp useful infor-
mation. Social summarization is an non-trivial and challenging task, which aims
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to generate a concise summary to reveal the essential content of a tremendous
amount of tweets in a given topic. Different from traditional document (like news
articles), it is more challenging to deal with tweets on social media due to their
short and informal nature. Besides, since tweets are generated by independent
users, a large number of tweets may contain similar or even the same information,
leading to extremely serious information redundancy on social media. Therefore,
it becomes particularly important to eliminate redundancy and produce more
diverse summaries in social summarization.

The serious redundant information on social media is mostly caused by the
frequent interaction and information propagation of active users. These infor-
mation redundancy on social media can be explained from the following three
aspects: (1) Intra-user redundancy: People are more likely to keep the same
sentiment and opinions on a specific topic in a short period, leading to self-
redundant tweets; (2) Inter-user redundancy: Information spreads along
connected users on social networks, which could bring about mutual influence
and make their opinions more and more similar. Therefore, users with relations
are more likely to generate redundant information. (3) Hashtag-level redun-
dancy: Tweets sharing the same hashtags tend to contain more similar content.
Essentially, these phenomena are consistent with the social theories proposed by
[12], which reveal the reciprocal influence of networked information.

There have been many researches trying to generate good summaries for
social media text, which can be roughly divided into three categories: (a)
Content-based methods [13] regard each post as a sentence and directly
adopt the traditional summarization methods on tweets. However, the special
characteristics of tweets make these traditional methods unsuitable and perform
poorly when migrated to social media data. (b) Static social signals [17,18]
are further considered such as number of replies, number of retweets, author
popularity and so on. Nonetheless, these methods treat each post as an indepen-
dent sentence and extract sentence one by one from the original corpus, while
ignoring the relationship among tweets, thus failing to filter redundant content.
(c) Social relations based approaches [2,3] are proposed to incorporate net-
work information from user-level, assuming that high authority users are more
likely to post salient tweets. Others [7] model the tweet-level relationship through
pairwise friends (i.e., one-hop neighbors) to alleviate the redundancy caused by
directly connected users, yet ignoring the deeper user relationships.

Actually, salient tweets have a deeper spread on social networks and thus
affecting more nodes in the network. Only considering one-hop neighbors is obvi-
ously insufficient since redundant information not only exists between adjacent
users, but may also exist between users who are not directly connected. Hence
the user interactions with the deeper neighborhood scope also bring the valuable
clues for summarization.

In this paper, we try to explore the redundancy problem by introducing
social contagion and hashtag consistency theories. Specifically, we model
the relationship between tweets from two different perspectives: social interaction
and hashtag co-occurrence. We construct two social relation graphs according to
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these two kinds of relations, based on which we verify the existence of these two
social theories. We further propose an unsupervised social summarization model
which leverages Social Contagion and Hashtag Consistency (SCHC) to address
user-level and hashtag-level redundancy simultaneously. In summary, the main
contributions include:

– Propose to model tweet relationships from two different perspectives (i.e.
social interaction and hashtag co-occurrence) respectively, and construct two
tweet relation graphs accordingly.

– Verify the existence of social contagion and hashtag consistency phenomenon
in real world social media data based on the constructed social relation graphs;

– Based on social contagion and hashtag consistency, we incorporate the two
kinds of tweet relationships into a group sparse reconstruction framework to
address the user-level and hashtag-level redundancy problem of social sum-
maries simultaneously.

– Our model outperforms the SOTA model on CTS dataset in both automatic
and human evaluation, which proves the effectiveness of the proposed SCHC
model.

2 Related Work

2.1 Social Summarization

Most content-based social summarization approaches are based on traditional
document summarization techniques [13] or extended versions. [20] proposes a
PageRank based model to extract event summaries using status updates in the
sports domain. [32] extends the TextRank algorithm through extracting bigrams
from the relevant tweets. [9] and [16] propose to conduct multi-document sum-
marization from the data reconstruction perspective. However, these methods
only consider text information. Some static social features such as user influence
[18], the retweet count [3], temporal signal [8] and user behaviors in conveying
relevant content [19] have been proved to be useful for social summarization.
Nonetheless, they ignore that social data is networked through social users’ con-
nections. Recently, [7] regards social summarization as an unsupervised sparse
reconstruction optimization problem through integrating pair-wise social rela-
tions (i.e., one-hop neighbors). Our method tries to explore the deeper user
behaviors which may contain more valuable summarization clues.

2.2 Social Network Influence

Social network influence also known as social propagation or network influence
has been researched in several domains, such as topic detection [1], topic identi-
fication [30], and network inference. Existing studies are based on social users or
tweets. [10] studies the social user influence based on two-way reciprocal relation-
ship prediction. Socialized languages models are developed to search problems
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Table 1. The CTS dataset statistics.

Topics Osama Mavs Casey Obama Oslo SDCC

# Of Tweets 4780 3859 6241 4888 4571 5817

# Of Users 1309 1780 1318 2009 1026 442

# Of Hashtags 7634 8393 10791 8264 6469 19664

Max degree of users 69 76 74 142 77 81

Min degree of users 1 1 1 1 1 2

P-value (Second-order contagion) 2.83E-160 2.54E-92 3.98E-165 8.33E-05 3.38E-08 1.23E-07

P-value (Hashtag consistency) 9.36E-28 4.14E-30 8.20E-22 2.65E-65 3.82E-37 6.33E-36

[23,28]. [33] proposes to deal with phenomena of social language use and demon-
strates that social media language understanding requires the help of social net-
works. In this article, we will explore how the spread of social media content in
social networks influences social summarization.

2.3 Hashtags in Social Media

Hashtags are keyword-based tags provided by social media services, through
which users can insert topic information into posts conveniently. They describe
the semantic of tweets and assist in understanding short social texts from the
topic perspective [31]. Hashtag mining researches include hashtag popularity
prediction [27], sentiment analysis [29], hashtag diffusion [22] and so on. [26]
proposes a learning-to-rank approach for modeling hashtag relevance to address
the real-time recommendation of hashtags to streaming news articles. [24] cre-
ates a dataset named HSpam14 for hashtag-oriented spam filtering in tweets. In
this paper, we model the tweet-hashtag relations to capture the hashtag-level
redundant information by introducing hashtag consistency into social summa-
rization.

3 Task Description and Observations

3.1 Task and Dataset

Given a collection of n tweets about a topic denoted as S = [s1, s2, ..., sn] where si

represents the i-th tweet, it is represented as a weighted term frequency inverse
tweet frequency matrix, denoted as X = [x1, x2, . . . , xn] ∈ Rm×n, where m
is the size of vocabulary, n is the total number of tweets. Each column xi ∈
R

m×1 stands for a tweet vector. The goal of social summarization is to extract
l summary tweets where l � n.

We use the CTS corpus provided in [7] as our dataset to validate the proposed
method. It contains 12 popular topics happened in May, June and July 2012,
including various topics such as politics, science and technology, sports, natural
disasters, terrorist attacks and entertainment gossips, whose raw data comes
from the public Twitter data collected by University of Illinois. Each topic has 25
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tweets individually selected by four volunteers as a golden summary respectively,
altogether 48 expert summaries. Due to the limited space, we show the statistics
of 6 topics in Table 1.

3.2 Verification of Sociological Theories

Social theories indicate users often exhibit correlated behavior due to network
diffusion, which have been proved to be beneficial for social media mining. Con-
tagion means that friends can influence each other [12,25]. Consistency demon-
strates that social behaviors conducted by the same person tend to keep con-
sistent in a short period of time [21]. Expression consistency and contagion are
observed in the CTS corpus [7]. However, they only verify the contagion theory
between pair-wise users. In our work, we further investigate higher-order con-
tagion phenomenon and hashtag consistency theory in CTS corpus, which are
defined as follows:

– Higher-order contagion: Whether the tweets posted by users with the
common first-order neighbors are more similar than two randomly selected
tweets?

– Hashtag consistency: Whether the semantics of two tweets sharing the
same hashtags are more consistent than two randomly selected tweets?

To verify the above two assumptions, we use cosine similarity to measure the
distance between two tweets: Dij = cos(xi, xj), where xi and xj denote the
vector representation of the i-th and the j-th tweet respectively. The more sim-
ilar the two tweets are, the more Dij tends to be 1. For the first observation,
we define the vector contc as the distance of two tweets posted by users with
the common first-order neighbor, and the vector contr as the distance of two
randomly selected tweets. Then we conduct the two sample t-test on the two
vectors contc and contr. The null hypothesis H0 : contc = contr, shows that
there is no difference between two tweets posted by users with the common first-
order neighbor and those randomly selected tweets. The alternative hypothesis
H1 : contc < contr, shows that the distance between two tweets posted by users
with the common first-order neighbor is shorter than those randomly selected
tweets.

Similarly, to ask the second observation, we conduct two sample t-test where
null hypothesis H0 : conhc = conhr means there is no difference between tweets
with the same hashtags and those randomly selected tweets. The alternative
hypothesis H1 : conhc < conhr means the distance between tweets with the
same hashtags is shorter than that of randomly selected ones. For all the topics,
the second-order contagion null hypothesis and the hashtag consistency null
hypothesis are rejected at significance level α = 0.01. Due to the space constraint,
we only display the p-values of 6 topics in the last two rows of Table 1.
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4 Our Method

4.1 Coverage and Sparsity

Essentially, reconstruction and summarization have the similar objective. We
regard social summarization as an issue of sparse reconstruction problem, whose
intuition is that the selected summary tweets should be able to reconstruct
the original corpus. Meanwhile, since not all tweets have an contribution on
reconstructing one certain tweet, given the original corpus X, we regard each
tweet as a group and formulate this task as a reconstruction process with group
sparse constraint:

min
W

1
2
‖X − XW‖2F + λ‖W‖2,1

s.t. W ≥ 0, diag(W ) = 0 (1)

‖W‖2,1 =
n∑

i=1

‖W (i, :)‖2 (2)

where W = [W∗1,W∗2, . . . , W∗n] ∈ Rn×n is the reconstruction coefficient matrix.
The element wij in W denotes the importance of the i-th tweet to the j-th tweet.
The second term is l2,1 -norm regularization on weight matrix W , which causes
some of coefficients to be exactly zero. The λ denotes the weight of sparse regu-
larization term. Here an additional inequality constraint is introduced to avoid
the numerically trivial solution (W ≈ I) in practice, by forcing the diagonal
elements to be zeros. Hence, our goal is to learn an optimal reconstruction coef-
ficient matrix W and use it to produce a summary accordingly.

4.2 Social Contagion

The frequent interaction and information propagation of active users on social
media bring strong redundant information. To alleviate user-level redundancy,
we propose to model multi-order social relationship from the perspective of user
interactions by transforming the user-tweet relations and user-user relations into
tweet-tweet correlation graph. Formally, let U ∈ R

n×d denotes the adjacency
matrix of tweet-user graph, where Ui,j = 1 denotes that the i-th tweet is posted
by the j-th user and d is the number of users. F ∈ R

d×d represents the adjacency
matrix of user-user graph, where Fi,j = 1 indicates that user ui is connected
with user uj . Then, the self-contagion, first-order and higher-order contagion
are defined as follows respectively:

Self-contagion means that social behaviors conducted by the same user
keep consistent in a short period, and can be defined as Eq. (3):

T self = U × UT (3)

where ·T indicates the transpose operation. T self ∈ R
n×n represents tweet-tweet

matrix for self-contagion and T self
i,j > 0 indicates that tweet i and tweet j are
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generated by the same user. This relation graph is used to alleviate intra-user
redundancy.

First-order contagion discloses that tweets posted by friends have a higher
probability to be similar than those randomly selected [25], and can be defined
as Eq. (4):

T first = U × F × UT (4)

T first ∈ R
n×n represents tweet-tweet matrix for first-order contagion, where

T first
i,j > 0 denotes that tweet i and tweet j are published by directly connected

friends. This is used to avoid inter-user redundancy.
Higher-order Contagion demonstrates that users who are not directly

connected in network but share common friends have a higher probability to
share similar content, which can also cause inter-user level redundancy. Hence, we
further model the deeper user behaviors to alleviate inter-user level redundancy.
The higher-order social relation graph is constructed as Eq. (5) and Eq. (6):

S = F × FT (5)

T second = U × S × UT (6)

where S ∈ R
d×d represents the indirect relationship between users, where Sij =

k represents that there are k paths from ui to uj whose length equals to 2.
T second

i,j ∈ R
n×n represents tweet-tweet matrix for second-order contagion, where

T second
i,j > 0 denotes that tweet i and tweet j are generated by those potentially

connected users.
Finally, we integrate the above different levels of social contagion into a

unified relation graph as Eq. (7):

T = T self + d1T
first + d2T

second (7)

where d1 and d2 are parameters of T first and T second respectively. Hence, the
social regularization can be mathematically formulated as Eq. (8):

Rsocial =
1
2

n∑

i=1

n∑

j=1

Tij

∥∥∥X̂∗i − X̂∗j

∥∥∥
F

=
m∑

i=1

X̂i∗‖Dsocial − T‖F X̂T
i∗

= tr
(
XWLsocialW

T XT
)

(8)

where X̂ denotes the reconstruction matrix of X (X̂ = XW ), tr(·) denotes the
trace of matrix, Lsocial = Dsocial−T is the laplacian matrix. The Dsocial ∈ R

n×n

is the degree matrix of T with Dii =
∑n

j=1 Tij indicating the degree of the i-th
tweet in the combined relation graph.

4.3 Hashtag Consistency

To address the hashtag-level redundancy, we capture relations between tweets
from the view of hashtags. Intuitively, tweets sharing more same hashtags tend
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to share more similar content. Therefore, we construct a tweet relation graph
according to hashtag co-occurrence relationship. Formally, given a tweet-hashtag
relation matrix denoted as P ∈ R

n×t, where Pij = 1 indicates that i-th tweet
contains the j-th hashtag, and t is the total number of hashtags. We transform
the tweet-hashtag relations into a tweet-tweet hashtag co-occurrence relation
graph as follows:

M = P × PT (9)

where M ∈ R
n×n represents the adjacency matrix of hashtag co-occurrence

relation graph among tweets. Each element Mij denotes the number of common
hashtags shared by tweet xi and xj . The hashtag consistency regularization
denoted as Rhashtag is further modeled as Eq. (10):

Rhashtag =
1
2

n∑

i=1

n∑

j=1

Mij

∥∥∥X̂∗i − X̂∗j

∥∥∥
F

=
m∑

i=1

X̂i∗‖Dhashtag − M‖F X̂T
i∗ (10)

= tr
(
XWLhashtagW

T XT
)

where Dhashtag and Lhashtag are degree matrix and laplacian matrix of M respec-
tively. Intuitively, the more hashtags two tweets share, the more similar their
content tend to be. Hashtag consistency could make the model select tweets
with more various hashtags and further help to avoid redundancy.

To further avoid redundancy, we utilize a diversity regularization with a
relatively simple but effective cosine similarity matrix ∇ to prevent tweets from
being reconstructed by those tweets pretty similar to them. ∇ij ∈ [0, 1] denotes
the cosine similarity between tweet xi and tweet xj .

∇ij =
{

1 if ∇ij ≥ θ
0 otherwise (11)

tr(∇T W ) =
n∑

i=1

n∑

j=1

∇ijWij (12)

where θ is the similarity threshold. Through integrating social, hashtag and
diversity regularizations, the tweet reconstruction objective function Eq. (1) can
be transformed as:

min
W

f(W ) =
1
2

‖X − XW‖2F + λ‖W‖2,1

+ αRsocial + βRhashtag + γtr(∇T W )
s.t. W ≥ 0, diag(W ) = 0

(13)

where α, β and γ are the corresponding parameters to control the contributions
of three regularization terms. Finally, we select tweets according to the ranking
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score of the tweet xi that is calculated as Eq. (14) by solving Eq. (13) to form
the social summary.

score(xi) = ‖W (i, :)‖2 (14)

4.4 Sparse Optimization for Social Summarization

Inspired by [6], we present an efficient algorithm to solve this optimization prob-
lem. The objective function can be reformulated as:

min
W

f(W ) =
1
2

‖X − XW‖2F + γtr(∇T W )

+ αRsocial + βRhashtag

s.t. W ≥ 0,diag(W ) = 0, ‖W‖2,1 ≤ z

(15)

where Z = {‖W‖2,1 ≤ z}, z ≥ 0 is the radius of the �2,1−ball, and there is a
one-to-one correspondence between λ and z.

Due to the limited space, we omit the details of our mathematical derivations.
Interested readers may reference [11] and SLEP package1 (Sparse Learning with
Efficient Projects). The entire algorithm is described in Algorithm 1, where

Sε/lrt
(Ut[j, ∗]) = max(1 − ε

lr‖Ut[j, ∗]‖2 , 0)Ut[j, ∗] (16)

Glrt,Vt
(W ) = f (Vt) + 〈∇f (Wt) ,W − Vt〉 +

lrt

2
‖W − Vt‖2F (17)

and Ut[j, ∗] is the j-th row of Ut.
The convergence rate of Algorithm 1 is elaborated in the following theorem.
Theorem 1. Assuming that Wt is the reconstruction coefficient matrix gen-

erated by Algorithm 1. Then for any t ≥ 1 we have:

f (Wt) − f (W ∗) ≤ 2L̂f ‖W � − W1‖2F
(t + 1)2

(18)

where W ∗ = arg minW f(W ), L̂f = max (2Lf , L0), L0 is an initial guess of
the lipschitz continuous gradient Lf of f(W ) and W ∗ is the solution of f(W ).

This theorem shows that the convergence rate of Algorithm 1 is O
(

1√
ε

)
, where

ε is the desired accuracy. Finally, we discuss time complexity of the proposed
method SCHC. First, for the reconstruction with group sparse Eq. (1) , it costs
O(n2m + n2) floating point operations for calculating the function value and
gradient of the objective function. Second, for the regularization Rsocial and
Rhashtag, the time complexity is O(2n2m). Third, for the diversity regularization
part, the time complexity is O(n2) based on the Euclidean projection algorithm.
Therefore, we can solve the objective function in Eq. (13) with a time complexity
of O

(
1√
ε

(
n2m + 2n2m + 2n2

)) ≈ O
(

1√
ε

(
n2m

))
.

1 http://www.yelab.net/software/SLEP/.

http://www.yelab.net/software/SLEP/
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Algorithm 1. A Sparse Optimization Algorithm for SCHC
Input: {X, T, M, U, ∇, W0, α, β, γ, ε, lr1}
Output: W

1: Initialize μ0 = 0, μ1 = 1, W1 = W0, t = 1
2: Construct Laplacian matrix L from T and M
3: while Not convergent do
4: Set Vt = Wt +

μt−1−1

μt
(Wt − Wt−1)

5: ∂f(Wt)
∂Wt

= XT XWt − XT X + γ∇ + αXT XWtLsocial + βXT XWtLhashtag

6: loop
7: Set Ut = Vt − 1

lrt

∂f(Wt)
∂Wt

8: for each row Ut[j, ∗] in Ut

9: Set Wt+1[j, ∗] = Sε/lrt(Ut[j, ∗])
10: end for
11: if f(Wt+1) ≤ Glrt,Vt(Wt+1) then
12: lrt+1 = lrt, break
13: end if
14: lrt = 2 × lrt

15: end loop
16: W = Wt+1

17: if stopping criteria satisfied then
18: break
19: end if
20: Set μt+1 = 1+

√
1+4μt
2

21: Set t = t + 1
22: end while
23: W = Wt+1

5 Experiments

5.1 Research Questions

To verify the effectiveness of the proposed SCHC model, we list the following
research questions to guide our experiments: RQ1: What is the overall perfor-
mance of SCHC? Does it outperform other baselines? RQ2: Is our model effective
in human evaluation experiments? RQ3: What is the generalization ability of
our method on different topics? RQ4: What’s the influence of each core com-
ponent and how does it affect the performance? RQ5: How to determine the
optimal parameters setting?

5.2 Evaluation Metrics

As shown in Sect. 3, we use the CTS dataset [7] and set the number of system
summary tweets for each topic as 25, which is consistent with that of expert sum-
mary. We adopt (1) automatic metrics [15] and (2) human evaluations to validate
the proposed method. For the automatic evaluation, we use ROUGE-N to eval-
uate the generated summaries. In our experiments, we report the F-measure of
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ROUGE-1, ROUGE-2, ROUGE-L, which respectively measures word-overlap,
bigram-overlap, and the longest common subsequence between system output
and reference summaries. We also report the ROUGE-SU* which measures the
overlapping of skip-bigrams. For the human evaluation, we ask three highly-
educated volunteers to score system summary based on coverage, informative-
ness and diversity in range [1,5] individually under the condition of reading
expert summary. The averaged scores are reported in our experiments. In order
to obtain the consistency of human evaluations, we also calculate the Fleiss’
kappa [14] among volunteers.

5.3 Compared Methods

Considering the SCHC is an unsupervised extractive summarization model, we
only compare with the relevant systems, including the following traditional text
and sparse reconstruction based methods: (1) Expert averages mutual assess-
ment of expert summaries. This is the upper bound of the human summary. (2)
Random selects tweets randomly to construct summaries. (3) LexRank ranks
tweets by the PageRank like algorithm [4]. (4) LSA exploits SVD to decom-
pose the TF-IDF matrix and then selects the highest-ranked tweets from each
singular vector [5]. (5) MDS-Sparse presents a two-level sparse reconstruction
model for multi-document summarization [16]. (6) DSDR represents each sen-
tence as a non-negative linear combination of the summary sentences under a
sparse reconstruction framework [9]. (7) SNSR proposes an approach for social
summarization by integrating social network and sparse reconstruction [7].

6 Experimental Results

6.1 The Overall Performance

Automatic Evaluation. To start, we address the research question RQ1. The
performance of the model on each topic is shown in Fig. 1, where x axis is the
keyword of each topic. The average performance on the dataset is shown in
Table 2, from which we have the following observations:

1) Our method SCHC consistently outperforms the other baseline methods
and is below the upper bound. The performance gaps between the SCHC and the
expert summary are 2.07%, 1.93%, 1.97%, 1.39% in terms of ROUGE-1, ROUGE-
2, ROUGE-L and ROUGE-SU*. And we also notice the reconstruction-based
methods are better than traditional approaches. One of the reasons may be that
reconstruction-based methods can better integrate the deeper user behaviors and
network structure information, and hence achieve the higher content coverage.

2) The SCHC achieves 1.00%, 1.07%, 0.80% and 0.86% increment over the
state-of-the-art method SNSR in terms of ROUGE-1, ROUGE-2, ROUGE-L and
ROUGE-SU*. The reasons mainly come from two aspects: (i) Social contagion
captures both direct and latent influence among users to address the intra-user
and inter-user level redundancy caused by information propagation. (ii) Hashtag
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Table 2. ROUGE scores comparison between baselines

Methods ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU*

Expert 0.47388 0.15973 0.45114 0.21555

Random 0.41574 0.09440 0.39227 0.16596

LexRank 0.42132 0.13302 0.39965 0.18192

LSA 0.43524 0.13077 0.41347 0.18197

MDS-Sparse 0.42119 0.10059 0.40101 0.16686

DSDR 0.43335 0.13106 0.41055 0.17264

SNSR 0.44886 0.13891 0.42800 0.19990

SCHC 0.45318 0.14040 0.43143 0.20162
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Fig. 1. The ROUGE performance of SCHS on twelve topics.

consistency can capture hashtag level redundancy among tweets. Actually, it acts
like a cluster, which forces tweets that share the same hashtags to be closer so
as to more accurately reconstruct the original content.

3) It is necessary to point out that all baselines achieve a good performance,
especially for ROUGE-1. One of the reasons is that the corpus is topic-oriented,
and most of the tweets is about a specific topic, which leads to a relatively large
overlap of words. It also may be due to that we conduct an effective preprocessing.

Human Evaluation. To address the research question RQ2, we choose LSA
and SNSR as baselines since their performance is relatively higher than other
methods. The result is shown in Table 3. We make the following observations:

1) The SCHC and SNSR methods perform better than LSA, especially in
terms of coverage. This maybe because the goal of reconstruction is to select
essential features from the data to reduce reconstruction error and thus the
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Table 3. Human evaluation comparison with baselines.

Coverage Informativeness Diversity Kappa

LSA 2.33 2.41 2.25 0.48

SNSR 3.29 2.86 2.56 0.56

SCHC 3.86 3.32 3.01 0.58

selected features could cover the original data as much as possible from multiple
aspects.

2) The SCHC achieves the higher informativeness and diversity scores than
baselines. This maybe because social contagion is able to address both intra-user
and inter-user level redundancy, while hashtag consistency can force the model
to filter redundant hashtags and select more diverse tweets.

3) To prove the consistency of human evaluation, we also conduct the Fleiss’
kappa statistics, which demonstrates that the volunteers have a moderate agree-
ment [14].

Next, we turn to the research question RQ3. Figure 2 displays the ROUGE
scores of our SCHC method under twelve different topics. The horizontal axis
indicates the abbreviation of the topic name. It is worth noting that the ROUGE
indicators under these twelve topics are comparable. Based on the above statis-
tics and analysis, our SCHC method has strong robustness and generalization
ability for different topics.

6.2 Ablation Study

Then, we turn to RQ4. The results of ablation experiments are shown in Fig. 2,
through which we have the following observations:

(1) Removing any component will degrade system performance, which
demonstrates the necessity of each component in SCHC. The total decrease
caused by removing hashtag consistency (-T) or social contagion (-S) respec-
tively, is less than the decrease caused by removing these two components at the
same time(-T-S). This shows that hashtag consistency and social contagion are
not independent, and can promote each other.

(2) The performance drops sharply when removing the entire social conta-
gion item. This indicates that different level of social relations can influence the
content reconstruction and help to address both intra-user and inter-user redun-
dancy. This makes sense since information travels along the social network and
affects the users it passes through. Meanwhile, the drop in scores from SCHC to
SCHC-T shows that hashtag consistency can alleviate hashtag level redundancy
to promote the performance.

(3) When removing second-order contagion from SCHC-T, the scores of
ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-SU* drop by 0.904%, 1.590%,
0.985%, 0.972% respectively, which demonstrates the importance of second-order
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Fig. 2. Performance of ROUGE for different ablation models. -T, -H and -S denote
deleting hashtag consistency, second-order social contagion and social contagion
respectively.

Fig. 3. The regularization impacts of the social contagion α, hashtag consistency β
and second-order social contagion d2.

contagion. Besides, the difference between SCHC-H and SCHC-S demonstrates
the emphasis of self-contagion and first-order relation among users.
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6.3 Parameters Settings and Analysis

Finally, we turn to the research question RQ5. In our experiment, we mainly
focus on second-order contagion and hashtag consistency to explore how these
signals influence the content of tweets. Therefore, we empirically fix γ = 1, λ = 1
in Eq. 13, θ = 0.1 in Eq. 11 and d1 = 1 in Eq. 7, and search for the optimal
values of α, β in Eq. 13 and d2 in Eq. 7 using grid search. To investigate the
sensitivity of the model to the important parameters α, β, d2, we further visualize
the relationships between performance and these factors on one topic (weiner),
as shown in Fig. 3. It can be seen that the model performs best when d2 is around
0.003. With the increase of d2, the performance drops sharply. Finally, we set
α = 0.01, β = 0.2 and d2 = 0.003.

7 Conclusion

The propagation of tweets and interaction between users cause serious redun-
dant information on social media, making it challenging to generate succinct
summaries for social text. In this paper, we propose to leverage social theo-
ries including multi-order social contagion and hashtag consistency to alleviate
the serious redundancy problem on social media data. The two social assump-
tions are verified on real world corpus, based on which we construct two kinds
of social relation graphs to capture the relationship between tweets from the
perspective of user interaction and hashtag co-occurrence. These relations are
further integrated into the sparse reconstruction framework to address the intra-
user, inter-user and hashtag-level redundancy at the same time. Experiments are
conducted on CTS dataset and the results demonstrate the effectiveness of our
model.
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Abstract. Detecting local topics from social media is an important task
for many applications, ranging from event tracking to emergency warn-
ing. Recent years have witnessed growing interest in leveraging multi-
modal social media information for local topic detection. However, exist-
ing methods suffer great limitation in capturing comprehensive semantics
from social media and fall short in bridging semantic gaps among multi-
modal contents, i.e., some of them overlook visual information which con-
tains rich semantics, others neglect indirect semantic correlation among
multi-modal information. To deal with above problems, we propose an
effective local topic detection method with two major modules, called
IEMM-LTD. The first module is an image-enhanced multi-modal embed-
ding learner to generate embeddings for words and images, which can
capture comprehensive semantics and preserve both direct and indirect
semantic correlations. The second module is an embedding based topic
model to detect local topics represented by both words and images, which
adopts different prior distributions to model multi-modal information
separately and can find the number of topics automatically. We eval-
uate the effectiveness of IEMM-LTD on two real-world tweet datasets,
the experimental results show that IEMM-LTD has achieved the best
performance compared to the existing state-of-the-art methods.

1 Introduction

With the rapid development of social media (e.g., Twitter), more and more peo-
ple tend to generate and share rich multi-modal contents online. As shown in
Fig. 1, both tweets contain multi-modal information, which can reflect semantics
from different aspects. In real-world scenarios, most of these multi-modal con-
tents uploaded by users are related to some specific topics, therefore, detecting
topics from social media has attracted extensive research interests. Compared
to global topics, local topics happen in a local area and during a certain period

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 658–674, 2021.
https://doi.org/10.1007/978-3-030-73197-7_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73197-7_45&domain=pdf
https://doi.org/10.1007/978-3-030-73197-7_45


Image-Enhanced Multi-Modal Representation for Local Topic Detection 659

Fig. 1. Two examples of tweets, both containing multi-modal information.

of time. Detecting local topics is important for many applications [9,23], such as
local event discovery, activity recommendation and emergency warning.

Many efforts have already been done for topic detection from social media,
however, there exist some challenges that largely limit the performance of exist-
ing methods: 1) Capturing comprehensive multi-modal semantics from
social media. Social media contains various modal contents, different modal
contents convey information in different aspects. Only by combining as much
multi-modal information as possible, can we obtain the comprehensive seman-
tics. Existing methods, however, fall short in capturing comprehensive semantics.
They either overlook spatio-temporal information [19,26], resulting in local topic
detection impossible, or neglect visual information [5,25], which also contains
rich semantics. 2) Bridging semantic gaps among multi-modal informa-
tion. Multi-modal contents talking about the same topic are semantically corre-
lated, but there exist semantic gaps among them due to discrepant expressions.
In order to achieve the semantic complement effect among multi-modal informa-
tion, it’s essential to maintain both direct semantic correlation (within single-
modal content) and indirect semantic correlation (among multi-modal contents).
Nevertheless, most existing methods are able to maintain direct semantic corre-
lation, but lack the ability to well preserve indirect semantic correlation [11,15].
3) Determining the number of topics automatically. The number of top-
ics happening in social media is uncertain, in order to ensure high quality of
detected topics, it’s vital to generate the number of topics automatically. How-
ever, due to the lack of prior knowledge, many existing methods need to manually
specify the number of topics in advance [24,26], which causes the detected topics
to be less accurate and pragmatic.

To address above issues, we propose Image-Enhanced Multi-Modal Repre-
sentation for Local Topic Detection, namely IEMM-LTD. Our method has
two major modules: the first module is an image-enhanced multi-modal embed-
ding learner to generate highly semantically related embeddings for both words
and images. This module can jointly model multi-modal information to capture
comprehensive semantics, and map texts and images into the latent space with
both direct and indirect semantic correlations preserved. The motivation is that,
text and image in the same tweet reflect similar semantics by different expres-
sions, thus, we use the semantic similarity among textual and visual information
as bridge, and present a unified structure using both self- and cross- attention
to capture semantic correlations. Meanwhile, spatio-temporal information is also
injected into textual andvisual information tomaintain spatio-temporal similarity,
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which is important for local topic detection. Based on the word and image embed-
dings generated by the first module, the second module is topic generation, which
aims at determining the number of topics automatically and finding high-quality
local topics. To achieve this goal, we develop a novel topic model (probabilistic
graph model) that models word embeddings by von Mises-Fisher (vMF) distri-
bution and models image embeddings by multivariate Gaussian distribution. By
modeling textual and visual information jointly in the same topic model, both
direct and indirect semantic correlations can be further maintained. Moreover, the
generated local topics are represented by both words and images, which can pro-
vide high coherence and interpretability for understanding.

Our main contributions are summarized as follows:

(1) We design an embedding module which takes texts, images, time and loca-
tion into consideration, to capture comprehensive semantics and preserve
both direct and indirect semantic correlations from multi-modal informa-
tion. The generated embeddings of words and images are highly semantically
related, and can be directly used in subsequent topic model.

(2) We propose a topic model which can determine the number of topics auto-
matically and model both word and image embeddings concurrently, to pre-
serve both direct and indirect semantic correlations. These generated local
topics represented by both words and images have high quality.

(3) We collect two real-world tweet datasets, including millions of tweets with
spatio-temporal information and images. Experiments show that IEMM-
LTD outperforms the existing state-of-the-art methods by a large margin.

2 Related Work

Semantic Extraction. Semantic extraction refers to the processing techniques
that extract abstract semantic representation from unstructured contents, such
as texts and images. Extracting abstract semantics from texts is an important
task in NLP. Most prior studies [2,12] try to extract textual representation
based on the framework of the combination of RNN and LSTM, which has
achieved certain effects but lack of parallelism. Thus, Ashish Vaswani et al. [22]
propose an effective framework, called Transformer, which can generate highly
abstract semantic representations in parallel and achieve SOTA results in most
NLP tasks. Based on Transformer, Jacob Devlin et al. [8] present Bert, an effi-
cient pre-training language model, which can be fine-tuned for amounts of down-
stream applications. Except texts, Images also contain rich semantics, more and
more researchers focus on visual semantic extraction area, trying to analyze and
extract the semantics from images. Some work [4,7] concentrates on extracting
visual semantics from the whole images. Among them, VggNet [20] has been
proved to be an effective way to extract semantic features from images, and
many studies [18,21] are proposed to process images using VggNet and prepare
for downstream applications. Other work [13,16] pays attention to extracting
visual semantics from image segmentations. Guang Li et al. [14] select the salient
regions as the region proposals by following the settings in Up-Down [1], and
encode the whole image to a sequence of visual representation.
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Topic Detection. As the rapid development of social media, lots of researches
have been done to utilize social media information for topic detection. Among
them, probabilistic graph model based topic detection methods are proved to per-
form very well. Twitter-LDA [27] and BTM [24] are specially designed for topic
detection from short texts, like tweets, however, these early methods only take
texts into account. Recently, lots of studies have emerged to utilize multi-modal
information for topic detection. mmETM [19] is a multi-modal topic model,
which takes both texts and images into consideration. Huan Liu et al. [15] present
a probabilistic topic model LTM to extract local topics by using tweets within
the corresponding location. IncrAdapTL [11] is a spatio-temporal topic model
proposed by Giannakopoulos et al., which also use probability graph model for
local topic detection. HTDF [26] is a novel topic detection framework with inte-
gration of image and short text information from twitter. However, above tradi-
tional probabilistic topic models regard information as independent item without
considering semantic correlations among contents. Therefore, some studies intro-
duce representation learning into probabilistic graph model in order to capture
the correlation among information. Chen et al. [5] propose multi-layer network
embedding to map location, time, and words into a latent space, then present
a probabilistic topic model based on embeddings to detect local topics. Above
multi-modal topic detection methods can detect relatively good topics, never-
theless, they lack the ability to maintain comprehensive semantics and preserve
both direct and indirect semantic correlations.

3 Preliminaries

3.1 Problem Description

Defination 1 (Local topic). A local topic is defined as a set of words and
related images {w1, w2, w3, ..., wn}∪ {v1, v2, ..., vm}, which can reflect a hot local
event happening in a local area and during a certain period of time.

A local topic is something unusual that occurs at specific place and time,
which often results in relevant tweets posted around its happening time and
occurring location. Given a tweet corpus TW = {d1, d2, d3, ..., dn}, each tweet d
is represented by a quadruple (xd, td, ld, vd), where xd denotes the text of tweet
message, td is its post time, ld is its geo-location, and vd is the attached image.
Consider a query window Q = [ts, te], where ts and te are the start and end
timestamps satisfying td1 ≤ ts < te ≤ tdn

. Our local topic detection task aims
at finding high-quality local topics that occur during query time window Q.

3.2 The Framework of IEMM-LTD

As mentioned above, a local topic often leading to posting relevant tweets around
its occurring place within a certain period of time, and attached with relevant
images. For instance, suppose a baseball game is held at Yankee Stadium in New
York City, many participants will post tweets on the spot during the game time
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to share information (like the examples shown in Fig. 1), using words such as
‘yankee’, ‘team’ and enclosing with related images. These words and images can
form a word-image cluster as a local topic describing this baseball game.

Fig. 2. The framework of IEMM-LTD.

In this paper, we propose an unsupervised method called IEMM-LTD to
detect local topics from Twitter. As shown in Fig. 2, IEMM-LTD consists of
two major modules: 1) Image-Enhanced Multi-Modal Embedding, and 2) Topic
Generation. The first module can jointly model multi-modal information to cap-
ture comprehensive semantics, and generate semantically related embeddings
for words and images. By introducing self-attention from Bert encoder [8], the
direct semantic correlation can be maintained in single-modal information; and
by performing cross-attention and maximizing multi-modal semantic similarity,
the indirect semantic correlation can also be well captured. Based on the gener-
ated embeddings, the second module is a topic model, which can jointly model
word and image embeddings to produce semantically coherent word-image clus-
ters as local topics. The vMF distribution and multivariate Guassian distribution
are adopted to model textual and visual information separately.

4 Image-Enhanced Multi-modal Embedding

The image-enhanced multi-modal embedding module (shown in Fig. 3) jointly
models text, image, time and location, which can well preserve both direct and
indirect semantic correlations by the utilization of self- and cross- attention.
The objective of this module is to generate highly semantically related word
embeddings and image embeddings, that can be directly used in the following
topic generation module to produce high-quality local topics. Specifically, for a
given tweet containing text, image, time and location, our embedding module
processes these multi-modal information in two parts: textual and visual encoding
and multi-modal embedding.

4.1 Textual and Visual Encoding

We present textual and visual encoder to map the original textual and visual
inputs into highly abstract semantic representations separately. For textual
encoding, we adopt Bert encoder, which is originally designed for sequence mod-
eling and has been proved to be effective in sequence semantic extraction. For
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Fig. 3. The structure of image-enhanced multi-modal embedding.

visual encoding, we also use Bert encoder. In most cases, CNN-related models
are considered for encoding visual information, however, the Bert encoder with
sophisticated design has been shown to achieve better results in exploring both
inter- and intra- relationships between the visual entities [14]. Both textual and
visual encoder can preserve direct semantic correlation in single-modal informa-
tion. Each encoder is self-attentive and stacked of N identical blocks.

Take the outputs of l-th (0 ≤ l < N) block Ol as an example, they are first
fed into the multi-head self-attention layer in the (l + 1)-th block:

M l+1 = MultiHead(Ol, Ol, Ol), (1)

where M l+1 is the hidden state calculated by multi-head attention. The query,
key and value matrices have the same shape. Notice that the O0 is the output
of the initial embedding layer.

The subsequent sub-layer is feed-forward network(FFN) which consists of
two linear transformations with a ReLU activation in between, FFN(x)=A2 ·
ReLU(A1 · x + b1) + b2.

Ol+1 = [FFN(M l+1
·,1 ); ...;FFN(M l+1

·,n )], (2)

where Ol+1 is the outputs of the (l+1)-th block, and M l+1
·,i represents the column

i of matrix M , i.e., the i-th feature vector. We omit residual connection and layer
normalization for a concise explanation.

The structure described above can be used for encoding both textual and
visual information. Textual information is composed of a sequence of words,
that can be directly used as inputs of textual encoder. Specifically, nw one-hot
word representations are projected into W0 by an embedding layer. As for visual
information, whose original representation can not be used as the inputs of visual
encoder. Therefore, we adopt [1] to extract a sequence of visual regions from the
original image, and map these visual regions into V0 by pre-trained VggNet [20].
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4.2 Multi-modal Embedding

Based on textual and visual encoding, the abstract semantic representations
(WN and VN ) of text and image can be obtained. We devise a spatio-temporal
injection module to fuse spatio-temporal information with textual and visual
representation separately. By injecting spatio-temporal information, the seman-
tic gap between textual and visual information can be shrunk, because semantics
conveyed by text and image in the same tweet have spatio-temporal similarity.

However, time and location are continuous variables, which can not be used
directly. Therefore, we adopt the hotspot detection algorithm [6] to transfer time
and location to temporal and spatial representations (T and L). By combining
T and L together, we can get spatio-temporal representation Gtl.

Gtl = concat([αT, βL]) (3)

Where α and β are trade-off parameters, i.e., if we focus on temporal locality
of local topics, α should be big and β should be small; if we focus on spatial
locality, a small α and a big β are suitable.

Then, the spatio-temporal information is injected into textual and visual
information separately by attention mechanism.

Gw = Attention(Gtl,WN ,WN ), Gv = Attention(Gtl, VN , VN ) (4)

where Attention(Q,K, V ) = Softmax(QKT

√
d

)V , and d is the width of the input
feature vectors.

Most previous studies only perform attention within single modality, which
fail to leverage the semantic complementary nature among multi-modal informa-
tion. Therefore, we perform cross-attention to further preserve indirect semantic
correlation.

Zw = CrossAttention(Gv, Gw, Gw), Zv = CrossAttention(Gw, Gv, Gv),

CrossAttention(Q,K, V ) = concat([H1,H2, ...,Hh])AO ,
(5)

here Hi = Attention(QAQ
i ,KAK

i , V AV
i ), AO denotes the linear transforma-

tion, and AQ
i , AK

i , AV
i are the independent head projection matrices.

Then, the obtained WN , Gw and Zw are combined to get final textual rep-
resentation, the final visual representation is obtained in the same way, where
σ(·) denotes the sigmoid function.

Sw = σ(Aw · [WN , Gw, Zw]), Sv = σ(Av · [VN , Gv, Zv]), (6)

After obtaining final textual and visual representations (Sw and Sv), we fine-
tune the parameters in two encoders and train other parameters in this module
by maximizing the semantic similarity between Sw and Sv. The reason why max-
imizing semantic similarity is that, 1) the multi-modal information in the same
tweet expresses similar semantics in different expressions; 2) the textual informa-
tion, talking about the same topic but expressing using different words, usually
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share identical or similar images, time and location; 3) the visual information,
discussing the same topic but presenting with diverse images, usually attached
with identical or similar texts, time and location. Thus, by maximizing seman-
tic similarity, this module can fuse multi-modal information to capture both
direct and indirect semantic correlations. Specifically, we adopt exp(·) function
to measure the similarity between textual and visual representation. Because
the experiments show that, exp(·) is more suitable for measuring sentence-level
semantic similarity, while cosine(·) is more suitable for measuring lexical-level
semantic similarity.

At the end of training process, the trained parameters from the embedding
layer in textual encoder are taken as the word embeddings; and the image embed-
ding is obtained by averaging the outputs of the last block in visual encoder.

5 Topic Generation

Compared to other clustering methods, which mainly focus on textual domain
and detect topics by simply measuring vector similarity, topic model based meth-
ods can process multi-modal contents by using different prior distributions to
capture different latent patterns, which are more flexible. Thus, we develop a
novel embedding-based topic model, which can preserve both direct and indirect
semantic correlations between texts and images, and can group semantically rel-
evant words and images in the query window Q into a number of word-image
clusters as the final local topics. Consider each tweet d as a tuple (Wd, vd). Here,
Wd = {w1, w2, w3, . . .} is set of p-dimensional embeddings of words in tweet d,
and vd is the q-dimensional embedding of the corresponding image.

Fig. 4. The structure of multi-modal topic model.

5.1 Embedding-Based Topic Model

The generative process for all the words and images of tweets in the query
window Q is shown in Fig. 4. We assume that there are at most K clusters,
note that assuming the maximum number of clusters is a weak assumption that
can be readily met in practice. At the end of clustering process, some of these
K clusters may become empty, and the appropriate number of topics can be
automatically discovered. Besides, due to the limited contents in each tweet,
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we assume that each tweet is represented by only one topic rather than a mix-
ture of topics. As shown, we first draw a multinomial distribution θ from a
Dirichlet prior Dirichlet(.|α). Meanwhile, for modeling image embeddings, we
draw K multivariate Gaussian distributions; and for modeling word embedding,
we draw K von Mises-Fisher (vMF) distributions. For each tweet d ∈ Q, we
first draw its cluster membership zd from θ. Once the cluster membership is
determined, we draw its image embedding vd from the respective multivariate
Gaussian distribution, and draw its word embeddings {wm} from the respective
vMF distribution. Above generative process is summarized as follows, where
Λ = {α, Ψ, ν, μ0,m0, R0, c} are the hyper-parameters.

θ ∝ Dirichlet(.|α)
{μk Σk} ∝ N(.|μ0, ν, Ψ), {γk, κk} ∝ Φ(.|m0, R0, c), k = 1, 2, ...,K
zd ∝ Categorical(.|θ), d ∈ Q
vd ∝ Gaussian(.|μzd

, Σzd
), wm ∝ vMF (.|γzd

, κzd
), d ∈ Q, wm ∈ d

The superiority of vMF distribution over other distributions for modeling
textual embeddings has been demonstrated in recent study [3]. As for modeling
visual embeddings, we adopt multivariate Gaussian distribution and some other
distributions for experiments, the results show that the multivariate Gaussian
distribution can achieve the best effects.

5.2 Parameter Estimation

We introduce Gibbs sampling to estimate the parameters. The notations used in
this subsection are summarized in Fig. 5. Since we have chosen conjugate priors
for all the hyper-parameters Λ, these parameters can be integrated out during
Gibbs sampling, resulting in a collapsed Gibbs sampling procedure. The key
of Gibbs sampling is to obtain the posterior distribution for zd. Due to space
limitation, we directly give the conditional probabilities for zd:

p(zd = k|X,Γ,Z¬d,Λ) ∝p(zd = k|Z¬d, α) · p(vd|Γ¬d, Z¬d, zd = k, Λ)·
∏

wm∈d

p(wm|X¬m, Z¬d, zd = k, Λ) (7)

Fig. 5. The structure of multi-modal topic model.
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The three quantities in Eq. 7 are given by:

p(zd = k|.) ∝ (nk,¬d + α) (10.1), p(vd|.) ∝ Tr(vd|μk,
τk + 1

τ
Σk) (10.2),

p(wm|.) ∝ CD(κk)CD(‖κk(R0m0 + wk,¬m)‖2)
CD(‖κk(R0m0 + wk,¬m + wm)‖2) (10.3)

(8)

where Tr(·) is the multivariate Student’s t-distribution for Gaussian sampling,
and CD(κ) = κD/2−1

ID/2−1(κ)
, where ID/2−1(κ) is the modified Bessel function.

From Eq. 8, we observe that the proposed topic model enjoys several nice
properties: 1) With Eq. 10.1, tweet d tends to join a cluster membership that
has more members, resulting in a rich-get-richer effect; 2) With Eq. 10.2, tweet
d tends to join a cluster that is more visually close to its image embedding vd,
leading to visually compact clusters; 3) With Eq. 10.3, tweet d tends to join a
cluster that is more semantically similar to its word embeddings {wm}, resulting
in textual coherent clusters.

6 Experiments

6.1 Experimental Setups

Datasets. Since there is a lack of publicly available multi-modal social media
dataset for local topic detection, we collect two real-world tweet datasets using
Twitter API1 from 2018.03.21 to 2018.04.27. We will publish the datasets in
the near future. The two datasets we collected are called NY and LA: the first
data set (NY), consists of 1.7 million spatio-temporal tweets with corresponding
images in New York; the second data set (LA), consists of 1.9 million spatio-
temporal tweets with corresponding images in Los Angeles.

Evaluation Metrics. We use two typical metrics (topic coherence and topic
interpretability) to evaluate the performance of IEMM-LTD, which are often
considered in topic detection task [10,17] to assess the quality of detected topics.

Topic coherence is an effective way used to evaluate topic models by mea-
suring the coherence degree of topics. A good topic model will generate coher-
ent topics, which means high-quality topics have high topic coherence values.
We average topic coherence of all the topics detected from each method as the
coherence value of this method, where PMI = log P (wi,wj)+ε

P (wi)·P (wj)
.

coherence = (
Ntopics∑

t=1

ct)/Ntopics, ct =
Ntopict−1∑

i=1

Ntopict∑

j=i+1

PMI(wi, wj) (9)

Topic interpretability is another important indicator to evaluate topic quality,
however, there is no suitable metric to measure quantitatively. Therefore, we use
manual scoring to quantitatively measure the topic interpretability. Specifically,
1 http://docs.tweepy.org/en/latest/.

http://docs.tweepy.org/en/latest/
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we invite five subjects who are graduates and familiar with topic detection.
We select the top 100 topics from each method by sorting coherence values in
descending order, and manually score each topic with value between 0 and 5. The
larger the value, the higher the interpretability of the topic. Then average the
scores of all topics by all subjects under a certain method, and use the average
value as the interpretable value of this method, where scoreij = s, s ∈ [0, 5].

interpretability = (
Nsubjects∑

j=1

Ntopics∑

i=1

scoreij)/Nsubjects ∗ Ntopics (10)

Comparison Methods. To demonstrate the performance of our proposed
method IEMM-LTD, we compare it with some existing state-of-the-art topic
detection methods. We detail the comparison methods as follows.

• Twitter-LDA [27] is a topic model proposed specifically for Twitter. It
addresses the noisy nature of tweets by capturing background words in tweets.

• BTM [24] is a topic model, specifically for modeling short texts. It learns
topics by directly modeling the generation of word co-occurrence patterns.

• mmETM [19] is multi-modal topic model, which can effectively model social
media documents, including texts with related images.

• IncrAdapTL [11] is a spatio-temporal topic model, which captures both spa-
tial and temporal information in the same probabilistic graph model.

• LTM [15] is a spatio-temporal topic model proposed for local topic detection,
which captures both spatial and temporal aspects.

• HNE-BMC [5] is a topic model, which maps words, location and time into a
latent space, and develop a Bayesian mixture model to find local topics.

• HTDF [26] is a four-stage framework, proposed to improve the performance
of topic detection with integration of both image and short text information.

Fig. 6. The input-modal details of comparison methods.

Besides, we also conduct some ablation experiments to further show how each
part of our method affects the final results.
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• IEMM(-TL)-LTD removes time and location inputs, and deletes spatio-
temporal injection from the first module.

• IEMM(-T)-LTD removes time input, and simplifies spatio-temporal injection
to spatial injection in the first module.

• IEMM(-L)-LTD removes location input, and simplifies spatio-temporal injec-
tion to temporal injection in the first module.

• IEMM-LTD(-V) removes visual information modeling from the second mod-
ule, and the first module remains the same.

Figure 6 shows the input-modal details of all baselines that we use to compare
with our proposed method IEMM-LTD.

6.2 Experimental Results

During experiments, we set the query window size to 1, 3, 5 and 7 days separately,
and slide the query window on both datasets to detect local topics. Experimental
results show that, compared to baselines, IEMM-LTD achieves the best results
in different window size on both datasets. Due to the space limitation, we only
present the results in detail when the query window is set to 3 days.

Illustrative Cases. Fig. 7 shows two exemplifying local topics detected by
IEMM-LTD on LA and NY, respectively. Due to space limitation, for each
detected local topic, we show top four images and list top seven words.
Figure 7(a) refers to a baseball game between Angels and Dodgers; and Fig. 7(b)
corresponds to the pillow fight held in Washington Park. As we can see, the
detected local topics are of high quality - the images and words in each cluster
are highly meaningful and semantically related, which have better interpretabil-
ity than the topics represented by only words.

Fig. 7. Two detect local topics by IEMM-LTD on both real-world tweet data sets.

Fig. 8. Given the query word/image, list the most similar words and images by com-
puting the cosine similarity.
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To further understand why IEMM-LTD is capable of grouping relevant words
and images into the same cluster, we perform similarity queries based on the
generated word and image embeddings, shown in Fig. 8. As we can see, the
retrieved words and images are meaningful. For instance, given the query word
‘protest’, the retrieved words are all highly related to the protest, such as ‘vio-
lence’, ‘against’, etc.; and the retrieved images are also highly connected to the
protest, which are all about ‘people march on the street holding a sign’. Given the
query image about a concert, the retrieved words all reflect the information of a
concert, such as ‘concert’, ‘stage’, etc.; and the retrieved images are all visually
similar to the query image, which are all reflect ‘concert-related activities’.

Quantitative Evaluation. We measure the performance of topic detection
task with comparison of both topic coherence and topic interpretability. Figure 9
reports the comparative results of all the methods on both datasets (LA and NY)
when the query window size is set to 3 days.

As we can see, BTM and Twitter-LDA show inferior performance. This is
due to both of them are text-only topic detection methods without consider-
ing other multi-modal information. And mmETM improves the topic coher-
ence and interpretability of detected topics significantly, because mmETM takes
visual information into account, which can enhance semantics for short texts like
tweets. However, mmETM ignores spatio-temporal information, which falls short
in local topic detection. Furthermore, LTM, IncrAdapTL and HNE-BMC take
spatio-temporal information into consideration, and make local topic detection
possible. And these three methods can obtain more coherent topics by cap-
turing semantic correlation between textual and spatio-temporal information.
Nevertheless, LTM and IncrAdapTL have lower interpretability than mmETM
because they overlook the visual information. And the interpretability of HNE-
BMC is a little higher than mmETM but much lower than HTDF, because
HTDF adopts visual semantic translation to better enrich the semantics than
mmETM. Although HTDF takes visual information into account, it neglects
spatio-temporal information, so its topic coherence is lower than HNE-BMC,
and it can only detect global topics rather than local topics.

Compared to above methods, IEMM-LTD achieves the best performance,
because it takes all texts, images, time and location into modeling to capture
comprehensive semantics and well preserve both direct and indirect semantic
correlations. Specifically, in LA, compared with the strongest baselines, IEMM-
LTD yields around 11% improvement in topic coherence (compared to HNE-
BMC), and 18% improvement in topic interpretability (compared to HTDF).

After performing above six multi-modal methods to detect topics in NY from
2018.04.16 to 2018.04.18, Fig. 10 lists the results of the top topic with highest
coherence value detected by each method. Among all baselines, only mmETM
and HTDF consider both texts and images. Between them, mmETM can produce
topics with both words and images, while HTDF can only produce topics with
words. However, these two methods neglect spatio-temporal information and
are tend to find global topics. Moreover, LTM, IncrAdapTL and HNE-BMC
take spatio-temporal information into account, and aim at detecting local topics.
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Fig. 9. Set the query window size to 3, performance of comparison methods on both
tweet data sets.

Fig. 10. Comparison of the top topic detected by different multi-modal methods in
NY from April 16 to April 18.

As shown, the detected topics are relatively good to understand, nevertheless,
they fall short in well preserving the indirect semantic correlation, leading to
the generated topics less coherent. Besides, they overlook visual information,
which also contains rich semantics. Among all methods, the topic detected by
IEMM-LTD has highest coherence and interpretability values, because IEMM-
LTD considers all texts, images, time and location to capture comprehensive
semantics, and can well preserve both direct and indirect semantic correlations.

Ablation Experiments. We use four simplified versions to compare with orig-
inal IEMM-LTD, shown in Fig. 9. We can get some valuable conclusions:

(1) The more multi-modal information the method incorporates, the better the
local topic detection perform, which agrees with the intuition. As shown, the
coherence and interpretability values of IEMM(-T)-LTD, IEMM(-L)-LTD
are higher than IEMM(-TL)-LTD, while lower than original IEMM-LTD.
Because different modal information contains different aspect of semantics,
thus, incorporating more modal information can better enrich semantics.

(2) The spatial locality is more coherent than temporal locality for local topic
detection. As shown, the performance of IEMM(-T)-LTD is better than
IEMM(-L)-LTD. Because when a local topic emerges, its occurring location
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is often confined to a limited area while its happening time sometimes lasts
for a long periods. Thus, spatial similarity contributes more than temporal
similarity.

(3) Incorporating visual information in topic model can detect local topics with
higher quality. As shown, the performance of IEMM-LTD(-V) is much lower
than original IEMM-LTD. Because by considering both textual and visual
information, the topic model can preserve both direct and indirect semantic
correlations and generate local topics represented by both words and images.

Since omitting parts of multi-modal information causes the performance loss,
thus, taking more multi-modal information as inputs is essential for local topic
detection task. Therefore, IEMM-LTD can achieve satisfactory results by cap-
turing comprehensive semantics from multi-modal information and preserving
both direct and indirect semantic correlations in both modules.

Efficiency Comparison. We show log-likelihood changing as the number of
Gibbs sampling iterations increases in Fig. 11(a), the log-likelihood quickly con-
verges after a few iterations, so it’s sufficient to set the number of iterations to a
relatively small value for better efficiency. Then, we perform efficiency compari-
son. Figure 11(b) shows the average running time variation as the query window
size increases. We observe that IEMM-LTD is slower than mmETM, HTDF and
HNE-BMC, because mmETM and HTDF only consider texts and images but
overlook spatio-temporal information, while HNE-BMC takes textual and spatio-
temporal information into account but neglects images. As for IEMM-LTD, it
incorporates texts, images, time and location into modeling, which takes more
time to process extra modal information. Compared to LTM and IncrAdapTL,
IEMM-LTD is more efficient. Although IEMM-LTD detects topics by two mod-
ules, the first module can generate embeddings efficiently by fine-tuning, and the
second module is a topic model with two-plate structure, which can perform sam-
pling very quickly. On the contrary, the topic models in LTM and IncrAdapTL
are very complicated, which are all multi-plate (more than four plates) structure,
so it’s very time-consuming when performing sampling.

Fig. 11. (a) Gibbs sampling convergence. (b) Comparison of running time.
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7 Conclusion

In this paper, we propose IEMM-LTD to detect local topics represented by
both words and images from Twitter. With the image-enhanced multi-modal
embedding learner, our method can capture comprehensive semantics from all
multi-model information and preserve both direct and indirect semantic correla-
tions, which can ensure that the generated embeddings are semantically related.
Then, the embeddings of words and images can be directly used in our proposed
multi-modal topic model, which can further preserve direct and indirect seman-
tic correlations and produce high-quality local topics. The extensive experiments
show that IEMM-LTD improves the performance of local topic detection task
significantly.
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Abstract. Nowadays, people tend to join multiple social networks to
enjoy different kinds of services. User identity linkage across social net-
works is of great importance to cross-domain recommendation, network
fusion, criminal behaviour detection, etc. Because of the high cost of
manually labeled identity linkages, the semi-supervised methods attract
more attention from researchers. Different from previous methods link-
ing identities at the pair-wise sample level, some semi-supervised meth-
ods view all identities in a social network as a whole, and align differ-
ent networks at the distribution level. Sufficient experiments show that
these distribution-level methods significantly outperform the sample-
level methods. However, they still face challenges in extracting features
and processing sample-level information. This paper proposes a novel
semi-supervised framework with efficient feature extraction and network
alignment for user identity linkage. The feature extraction model learns
node embeddings from the topology space and feature space simultane-
ously with the help of dynamic hypergraph neural network. Then, these
node embeddings are fed to the network alignment model, a Wasserstein
generative adversarial network with a new sampling strategy, to produce
candidate identity pairs. The proposed framework is evaluated on real
social network data, and the results demonstrate its superiority over the
state-of-the-art methods.

Keywords: User identity linkage · Semi-supervised framework ·
Feature extraction · Network alignment

1 Introduction

Online social networks are becoming increasingly important. Most people partic-
ipate in different social networks for different purposes. For example, a user gets
news on Twitter, shares photos on Instagram, and seeks job opportunities on
LinkedIn. Different platforms have diverse functionalities, and a platform usually
can only reflect one aspect of users. Combining the information from multiple
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social networks provides a more comprehensive view, and helps to improve many
downstream applications (e.g., cross-domain recommendation, network fusion,
criminal behaviour detection, etc.). The fundamental task of cross-network data
mining is to link the identities belonging to the same individual across multiple
social networks, which is called user identity linkage (UIL) [17,20,32], across
social networks user identification [25] or social anchor link prediction [4,16,28].

For UIL, most existing methods are supervised and need a large number of
annotations to guide the learning process, but the cost of manually labeling data
is extremely high. Therefore, semi-supervised methods attract more attention
from researchers. Early semi-supervised studies [13,27] usually take advantage
of the discriminative features in user profiles (e.g., username, location, affilia-
tion, etc.). However, some important profiles are often missing due to privacy
considerations, and thus these methods inevitably suffer from data insufficiency
in practice. Researchers [9,29,30] further suggest that the information of neigh-
bors is helpful to UIL. But in semi-supervised learning, most of the neighbor
pairs are unlabeled, which prevents us from directly calculating the metrics like
Jaccard’s coefficient based on the shared neighbors.

With the advances in the network embedding, some embedding-based meth-
ods [17,33,34] handle semi-supervised UIL at the pair-wise sample level. They
first utilize a feature extraction model to encapsulate network structures and
user features into low-dimensional node embeddings, and then learn the map-
ping among different networks through these embeddings. However, researchers
[11,12] point out that performing UIL at the sample level cannot maintain the
isomorphism among networks, and thus they introduce generative adversarial
networks (GAN) for semi-supervised UIL. Specifically, after learning the node
embeddings, they consider all the identities in a social network as a whole, and
align different networks through Wasserstein GAN (WGAN), a variant of GAN.
These WGAN-based frameworks still face two challenges. Firstly, there is a
lack of the semi-supervised feature extraction model suitable for UIL. Previ-
ous WGAN-based methods [10,11] use unsupervised feature extraction models
to learn node embeddings. Secondly, WGAN is performed at the distribution
level to align networks, but UIL is essentially a sample-level task, and annota-
tions also preserve the guidance information in the sample level [10]. Considering
the different granularity, it is necessary to place more focus on the sample-level
information when aligning networks through WGAN.

Therefore, a new semi-supervised framework, named SSF, is proposed for
UIL in this paper, and it can solve the two problems mentioned above. SSF
contains two models, a feature extraction model, and a network alignment model.
To design the feature extraction model, we first analyze the requirements for
well-trained node embeddings. According to these requirements, SSF propagates
node features over both the topology space and feature space of networks [24].
Technically, the network structure is taken as the structural graph of topology
space, and the k-nearest neighbor (kNN) graph generated by node features is
used as the structural graph of feature space. Moreover, SSF utilizes dynamic
hypergraph neural network (DHGNN) [3,5,7] to capture the global dependency
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in graphs. In the network alignment model, a new sampling strategy is proposed
for WGAN. This sampling strategy is based on uniform sampling, and further
uses the output of the discriminator to dynamically adjust the sampling weight
of nodes. Our sampling strategy enables WGAN to pay more attention to the
sample-level information during training.

The main contributions of this work are summarized as follows:

– We design a new semi-supervised framework for UIL, named SSF. The pro-
posed SSF consists of the feature extraction model and network alignment
model. Extensive experiments are conducted on the real-world dataset to val-
idate the effectiveness of SSF, and the results demonstrate its superiority over
the state-of-the-art methods.

– The feature extraction model extracts features from both the topology space
and feature space to obtain the underlying structure information about these
two spaces. Moreover, SSF integrates the hypergraph information to capture
the global dependency in graphs.

– The network alignment model utilizes WGAN to perform network alignment
at the distribution level. SSF proposes a new sampling strategy for WGAN,
which enables WGAN to focus more on the sample-level information during
the training process.

2 Related Work

Most existing methods for UIL consist of two major phases: feature extrac-
tion and network alignment [20]. According to what information is used in
feature extraction, existing methods are classified into profile-based [13,27],
content-based [15,18] and network-based [9,30] methods. According to the use
of labeled and unlabeled data, existing methods are divided into supervised
[16,17], semi-supervised [11,22] and unsupervised methods [12,13]. For a com-
prehensive review, please see [20,25]. In this paper, we focus on semi-supervised
methods and divide them into propagation methods and embedding methods as
follows [20].

Propagation Methods. Propagation methods iteratively generate candidate
identity pairs from seed identity linkages. This kind of methods [15,19,31,35]
compute the matching degree of user identities by the neighbor information
or discriminative profiles. Zhou et al. [35] propose a friend relationship-based
user identification algorithm, which can capture friend relationships and network
structures. Shen et al. [19] develop an information control mechanism against
UIL, and they combine distance-based profile features and neighborhood-based
network structures to identify unknown identity pairs iteratively. Liu et al. [15]
propose a multi-objective framework, which models the structure consistency
and heterogeneous behaviors simultaneously. Essentially, propagation methods
are based on inference, and they need to infer the labels of neighbor pairs during
the iterative process, and thus these methods usually face error propagation.
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Embedding Methods. Inspired by the advances in network embedding,
researchers [14,22,32–34] pay more attention to the application of network
embedding in UIL. Tan et al. [22] map the nodes from different networks into a
common latent space with the help of the hypergraph, and then they measure
the similarity of node embeddings to generate candidate identity pairs. Zhou
et al. [33] use the skip-gram model to obtain the social representation of nodes,
and employ a dual-learning mechanism to boost the training of UIL. Liu et al.
[14] incorporate UIL into the probabilistic model based on the follower-followee
relationships among identities. Different from previous studies that train the
mapping among networks at the sample level, some studies [10–12] propose to
align networks at the distribution level through WGAN. Li et al. [12] propose an
unsupervised framework, which first learns node embeddings by an unsupervised
network embedding model [26], and then aligns the node embeddings from dif-
ferent networks by WGAN. Li et al. [11] further incorporate a few annotations
to improve the alignment performance of WGAN.

The proposed SSF follows the semi-supervised embedding methods based
on WGAN, and it designs a new feature extraction model suitable for semi-
supervised UIL, and improves the original network alignment model from the
perspective of sampling strategy.

3 The Proposed Framework

Let N = {V,A,X} denotes a social network, where V is the set of user identities,
A is the adjacency matrix that records social connections, and X is the user
feature matrix extracted from user profiles through data preprocessing.

Given a pair of networks N1 = {V1, A1,X1} and N2 = {V2, A2,X2}, UIL
aims to predict the identity linkages between these two networks with the help
of annotated identity linkages S. S is formally defined as S = {(u, v) ⊆ V1 ×
V2|u and v belong to the same individual}. Practically, for each node in N1, SSF
will output several nodes of N2 to form candidate identity pairs.

annotations

feature extraction 
model

network alignment 
model

Fig. 1. The overall framework of the proposed SSF. It contains two main models:
feature extraction model (FEM) and network alignment model (NAM). For networks
N1 and N2, the purpose of FEM is to generate desired node embeddings Z1 and Z2,
respectively, which can be represented in the latent space as shown in the figure. Then,
NAM aligns the two networks by learning the projection of node embeddings.
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The overall framework is shown in Fig. 1. In the first step, from the per-
spective of structure and feature proximity, the feature extraction model (FEM)
utilizes user feature matrices and adjacency matrices to learn the desired node
embeddings Z1 and Z2. In the second step, the network alignment model (NAM)
considers all the identities in a social network as a whole, and align the networks
N1 and N2 at the distribution level. The identity pairs with high similarity are
taken as our prediction. These two models will be introduced in the following
subsections.

3.1 Feature Extraction Model

FEM aims to learn the well-trained node embeddings for UIL, and thus we first
figure out three requirements (R1, R2, R3) that these embeddings should meet:

R1. They can reflect the structural proximity. If a pair of nodes are adjacent
to each other in the network structure, and then their embeddings in the
latent space should be close.

R2. They can reflect the proximity of user features. Similar to R1, if a pair of
nodes have similar features, and then their embeddings in the latent space
should also be close.

R3. They can be used to effectively distinguish whether two identities from
different networks belong to the same individual.

To satisfy requirements R1 and R2, it is necessary to extract information from
the topology space and feature space simultaneously. In this way, the underlying
structure information about the topology space and feature space can be cap-
tured at the same time. Inspired by graph auto-encoders [8], FEM reconstructs
the proximity of network structures and user features by the inner product of
node embeddings. As shown in Fig. 2, FEM adopts an encoder-decoder archi-
tecture. Since FEM treats networks N1 and N2 in the same way, it suffices to
describe the feature extraction procedure on network N1.

In the encoders, the kNN graph constructed from user features is used to
capture the underlying structure information of feature space. Specifically, FEM
first calculates the cosine similarity between any two nodes. Then for each node,
the top k similar nodes are taken as its neighbors, and the adjacency matrix of
the induced feature graph is denoted as A′

1. FEM takes the user feature matrix
X1 and the adjacency matrix A′

1 as the feature graph. Similarly, FEM takes the
user feature matrix X1 and the adjacency matrix A1 as the topology graph.

FEM adopts graph attention networks (GAT) as the main building block to
aggregate user features. For topology space, with the input embeddings T l−1,
the corresponding embedding of node i in the l-th GAT layer’s output can be
represented as follows:

T l
i = σ(

∑

j∈NT
i

αijW
l
T T l−1

j ), (1)



680 Z. Hu et al.

attention

encoder

encoder

GAT GAThypergraph
inner product

inner product

inner product

inner product

decoder

decoder

classifier Classification loss
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annotations
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Fig. 2. Feature extraction model. A′
1 and A′

2 are the adjacency matrices of feature
graphs constructed from X1 and X2, respectively. For each network, FEM first utilizes
both topology graph and feature graph to extract features. F1 and F2 are the output
embeddings of the feature graphs, and T1 and T2 are the output embeddings of the
topology graphs. Then, FEM integrates the output embeddings of the topology graph
and feature graph to obtain the desired node embeddings Z1 and Z2.

where σ is the sigmoid function; W l
T represents the weight matrix of the l-th

layer; T l−1
j is the corresponding embedding of node j in the input embeddings

T l−1; αij is the attention coefficient between the node i and its neighbor j ∈ NT
i ,

and it is defined as follows:

αij =
exp(LeakyReLU(aT [W l

T T l
i ||W l

T T l
j ]))∑

k∈NT
i

exp(LeakyReLU(aT [W l
T T l

i ||W l
T T l

k]))
, (2)

where || is the concatenation operation, and a is the weight vector of edges. For
feature space, FEM calculates the output embeddings F l of the GAT layer in
the same way.

To capture the global dependency in graphs, FEM utilizes dynamic hyper-
graph neural network (DHGNN) between GAT layers. Different from the tradi-
tional graphs based on pair-wise relations, hypergraph allows multiple nodes on
an edge, and this kind of edge is named hyperedge. Technically, for node i, its
k nearest neighbors, along with this node, are selected to form the hyperedge
e = {i, i1, i2, . . . , ik}, and the node features corresponding to this hyperedge is
E = [T l

i ;T
l
ii
;T l

i2
; . . . ;T l

ik
]. For topology space, the hypergraph convolution on

this hyperedge is defined as follows:

w = g(E), (3)
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T l+1
i =

k+1∑

j=1

wjEj , (4)

where g(·) is a multi-layer perceptron (MLP). FEM first obtains the node weight
w ∈ R

k+1 for the node embeddings on the hyperedge e, and then it applies a
one-dimensional convolution to incorporate these weighted node embeddings into
the output embedding T l+1

i . For feature space, the output embeddings F l+1

of the DHGNN layer can be calculated in the same way. Moreover, DHGNN
can dynamically adjust hyperedges according to the output embeddings of the
previous GAT layer.

After extracting features through the combination of GAT and DHGNN,
FEM integrates the output embeddings of the topology space and feature space
through an attention mechanism to obtain the desired node embeddings Z1 and
Z2 for networks N1 and N2, respectively. Taking Z1 as an example, the attention
mechanism is formulated as follows:

Z1 =
h(T1)

h(T1) + h(F1)
T1 +

h(F1)
h(T1) + h(F1)

F1, (5)

where h(·) is a scoring function for the attention mechanism.
In the decoders, the requirements R1 and R2 are implemented by reducing

the difference between the original graph and the graph reconstructed from node
embeddings. The adjacency matrices of two networks’ reconstructed graphs Â1

and Â2 can be obtained as follows:

Â1 = σ(Z1 · ZT
1 ), (6)

Â2 = σ(Z2 · ZT
2 ). (7)

For each network, FEM utilizes the graph-based loss function [6] to make the
reconstructed graph as similar as possible to the original topology graph and fea-
ture graph simultaneously. Practically, the graph-based loss function encourages
that the representations of nearby nodes are similar, and requires that the rep-
resentations of disparate nodes are distinct. Taking the network N1 for example,
the corresponding objective function is defined as follows:

LR1 =
λR1

NA1

∑

A1(u,v)=1

− log(Â1(u, v)) − Q · Evn∼Pn(v) log(1 − Â1(u, vn))

+
λ′

R1

NA′
1

∑

A′
1(u,v)=1

− log(Â1(u, v)) − Q · Evn∼Pn(v) log(1 − Â1(u, vn)),
(8)

where λR1 and λ′
R1 are the hyperparameters weighting the reconstruction loss

of the topology graph and feature graph, respectively; NA1 and NA′
1

are the
number of non-zero elements in matrices A1 and A′

1, respectively; Q defines
the number of negative sample, and Pn is the negative sampling distribution.
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Similarly, for network N2, the objective function of the reconstruction loss is
defined as follows:

LR2 =
λR2

NA2

∑

A2(u,v)=1

− log(Â2(u, v)) − Q · Evn∼Pn(v) log(1 − Â2(u, vn))

+
λ′

R2

NA′
2

∑

A′
2(u,v)=1

− log(Â2(u, v)) − Q · Evn∼Pn(v) log(1 − Â2(u, vn)).
(9)

As described in requirement R3, the node embeddings Z1 and Z2 should have
superior classification performance. This requirement is considered as a binary
classification task, and FEM processes annotated identity linkages as follows:

LC =
1

|S|
∑

(i,j)∈S

− log(σ(p(zi
1||zj

2))) − Q · Ek∼Pn(j) log(1 − σ(p(zi
1||zk

2 ))), (10)

where zi
1 ∈ Z1 and zj

2 ∈ Z2; zk
2 ∈ Z2 is the node sampled from the negative

sampling distribution; p(·) is the scoring function measuring the likelihood of
two identities belonging to the same individual. Combining the classification
loss and reconstruction losses, the overall objective function of FEM is given as
follows:

L = LR1 + LR2 + LC. (11)

To sum up, we first figure out three requirements for well-trained node
embeddings. Based on the requirements R1 and R2, SSF adopts an encoder-
decoder architecture for FEM. The encoders extract information from the fea-
ture space and topology space simultaneously with the help of the hypergraph.
The decoders guide the learning process by making the reconstruction graph of
node embeddings close to the feature graph and topology graph simultaneously.
Moreover, FEM utilizes a classifier to meet the task-specific requirement R3 for
UIL.

3.2 Network Alignment Model

Since it is difficult for sample-level network alignment methods to maintain the
isomorphism among networks, WGAN-based methods are proposed to perform
network alignment at the distribution level. WGAN-based methods can take
advantage of the isomorphic information in networks to effectively align unla-
beled nodes, and thus the need for annotations is further reduced.

Figure 3 shows the framework of WGAN-based network alignment model.
The generator G acts as a projection function Φ. Given a source node i with
its node embedding zi

1 ∈ Z1, its projected point is defined as: Φ(zi
1) = Gzi

1.
Following previous works [16,17], the linear transformation is chosen as the pro-
jection function. The discriminator D aims to measure the distance between
the projected source distribution P

G(N1) and the target distribution P
N2 . Here,

Wasserstein Distance (WD) is taken as the distance metric. Compared with other



A Semi-supervised Framework for User Identity Linkage 683

annotations

 sampling generator annotations
processor

 sampling
discriminator

Fig. 3. WGAN-based network alignment model. The users of network N1 are viewed
as the source distribution P

N1 =
∑

i PSi
1
δSi

1
, in which Si

1 is a sample in the source dis-
tribution, and PSi

1
is its corresponding probability and δSi

1
is the Dirac delta function.

Similarly, the users of network N2 are defined as the target distribution P
N2 . S1 ⊆ V1

and S2 ⊆ V2 are the batches sampled from these two distributions during the train-
ing process. The generator G projects the source distribution P

N1 into the projected
source distribution P

G(N1), and the discriminator D estimates the Wasserstein distance
between P

G(N1) and the target distribution P
N2 .

metrics such as Kullback-Leibler divergence or Jensen–Shannon divergence, WD
is able to measure the distance between two distributions even if they do not
overlap. The objective function of WGAN can be formally defined as follows:

min
G

WD(PG(N1),PN2)) = inf
γ∈Γ(PG(N1),PN2 )

E(Gzi
1,zj

2)∼γ [d(Gzi
1, z

j
2)], (12)

where i and j are the nodes sampled from the source distribution P
N1 and

the target distribution P
N2 , respectively; infγ∈Γ(PG(N1),PN2 ) is the expectation

infimum of the joint probability distribution Γ(PG(N1),PN2). As traversing all the
possible joint distributions is difficult, a simple version of the WD minimization
[23] is proposed when d(·, ·) is the Euclidean distance, which is defined as follows:

WD =
1
K

sup
‖f‖≤K

Ezj
2∼PN2 f(zj

2) − EGzi
1∼PG(N1)f(Gzi

1), (13)

where f is the K-Lipschitz continuous function. This objective function aims
to find the supremum over all the possible K-Lipschitz functions. MLP owns
powerful approximation capabilities, and NAM employs it as the discriminator
to approximate the function f . The objective function of the discriminator is
given as follows:

max
θ:‖fθ‖≤K

LD = Ezj
2∼PN2 fθ(z

j
2) − EGzi

1∼PG(N1)fθ(Gzi
1), (14)

where θ is the parameter set of the discriminator.
The generator achieves network alignment by minimizing the estimated dis-

tance between the projected source distribution P
G(N1) and the target distribu-

tion P
N2 . As shown in Eq. (14), it only exists in the second term of the right-hand

side. Therefore, the objective function of the generator is minimized as follows:
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min
G

LG = −EGzi
1∼PG(N1)fθ(Gzi

1). (15)

Meanwhile, the annotations S are used to guide the learning of the generator.
For any (i, j) ∈ S, NAM minimizes the distance between the projected source
point G(zi

1) and the target point zj
2 as follows:

min
G

LS =
1

|S|
∑

(i,j)∈S

(1 − c(Gzi
1, z

j
2)), (16)

where c(·, ·) means the cosine similarity.
Imposing orthogonal constraint to the generator contributes to network align-

ment [17]. Specifically, FEM reconstructs original source distribution P
N1 from

the projected distribution P
G(N1) with the transpose matrix GT , and the dif-

ference between the original source distribution and the reconstructed one is
minimized as follows:

min
G

LO = Ezi
1∼PN1 [d(zi

1, G
T Gzi

1)]. (17)

In the training process of WGAN, the entire objective of the generator is the
weighted sum of LG, LS and LO as follows:

min
G

λOLO + λSLS + LG, (18)

where λO and λS are hyperparameters that control the weights of LO and LS ,
respectively.

UIL is essentially a sample-level task, and the annotations also preserve
the guidance information in the sample level. Therefore, more attention should
be paid to sample-level matching than distribution-level alignment when using
WGAN for network alignment. SSF proposes a new sampling strategy, which
enables WGAN to focus more on the sample-level information during training.

Previous studies [10–12] sample batches according to the influence of nodes
in the network, and this sampling method is called degree sampling. In degree
sampling, the nodes with higher degrees are more likely to be sampled, and
thus degree sampling is more beneficial to distribution-level tasks. Our sampling
strategy is based on uniform sampling. In uniform sampling, all nodes are given
the same weight, and thus they are equally important in the training process.
Moreover, SSF combines the reweighting strategy [1] to guide the learning of
WGAN. The reweighting strategy can dynamically adjust the sampling weights
of nodes according to the output of the discriminator. For a misclassified node,
the discriminator’s output for it is larger than those of correctly classified nodes,
and thus it should be assigned a higher weight in the subsequent training process.
Taking network N2 for example, let fθ(zi

2) be the discriminator output of node
i, its corresponding weight is defined as follows:

exp(β × fθ(zi
2))∑|V1|

j=0 exp(β × fθ(z
j
2))

, (19)
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where β is the hyperparameter controls the weight for nodes with low prediction
scores. The reweighting strategy assigns higher weights to misclassified nodes
than correctly classified ones with β > 1.

To sum up, We first introduce how NAM aligns networks through WGAN,
and then propose a new sampling strategy that enables WGAN to focus more
on the sample-level information.

4 Experimental Results

4.1 Dataset and Experimental Settings

Dataset. This paper uses a dataset collected from two social networks, Douban
(https://www.douban.com) and Weibo (https://www.weibo.com). Douban is a
popular Chinese social website that allows users to comment on movies or share
ideas, and Weibo is the most influential microblogging platform of China on
which users post or forward blogs. In these networks, the follower-followee rela-
tionships are regarded as directed edges. Besides, some Douban users address
their Weibo links on home pages, and thus the annotated identity linkages can
be obtained according to them. The statistics are listed in Table 1.

Table 1. Statistics of Douban-Weibo Dataset.

Network Users Edges Annotations

Douban 4399 204591
2309

Weibo 4414 202048

Parameter Settings. In data preprocessing, the word segmentation toolkit
LTP [2] is used to process Chinese contents. All the posts of a user are com-
bined into a document, and then processed by the bag-of-words model. In FEM,
as feature and structure are considered equally important, all hyperparameters
(λR1, λ′

R1, λR2, λ′
R2) in Eq. (8) and Eq. (9) are set to 0.5. For all methods, the

dimension of node embeddings is set to 100 for fair comparison. In NAM, the
projection matrix G is initialized as an orthogonal matrix. As in previous work
[10,11], the frequency of the alternating training of generator and discriminator
is 1 : 5. The annotation component’s weight λS is set to 0.5, and the orthogonal
component’s weight λO is set to 0.5. For each source identity, the top k candidate
target identities are selected to evaluate the effectiveness of SSF, where k ranges
from 10 to 50. The ratio of the training set δ is set to 5%.

https://www.douban.com
https://www.weibo.com
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Metric. Following previous works [11,12,17], the hit-precision is selected as the
evaluation metric for SSF. For each source identity x, its hit-precision is defined
as follows:

h(x) =
k − (hit(x) − 1)

k
, (20)

where hit(x) is the position of correct target identity in the returned top-k can-
didate identity pairs. After that, the hit-precision is calculated by 1

N

∑N
i=1 h(xi),

where N is the number of source identities.

4.2 Baselines

To evaluate the performance of the proposed SSF, we compare our framework
with the following state-of-the-art methods:

1. SNNA [11]: SNNA is a WGAN-based method. It learns node embeddings via
a text-associated network embedding method [26], and then performs network
alignment with the help of the WGAN.

2. CoLink [32]: CoLink is a weakly-supervised method. It proposes an attribute-
based model with sequence-to-sequence [21], and employs the co-training of
the attribute model and relationship model to generate high-quality linkages.

3. DeepLink [33]: Deeplink is an embedding based method. It takes advantage
of deep neural networks to learn the latent semantics of user features and
network structures, and then uses a dual-learning process to improve the
identity linkage performance.

4. ULink [17]: ULink is a supervised method. It maps the identities from dif-
ferent networks into a latent space, and generates matching identity pairs by
minimizing the distance between the user identities of the same individual.

The codes of ULink1 and DeepLink2 are public and thus directly used in
our experiments. Other baselines are implemented by ourselves according to the
original papers. Code and data of the proposed framework SSF will be made
publicly available online.

4.3 Comparisons with Baselines

We compare the proposed framework SFF with the baselines in terms of the
hit-precision, and the results are summarized in Table 2. SSF achieves the best
performance among all methods, and outperforms the best baseline CoLink by
8.15% on average. CoLink performs the best among all baselines, maybe because
it carefully designs an objective function to incorporate the attributes. But CoL-
ink still suffers from error propagation in the later training stage. SNNA achieves
undesirable performance, maybe because it does not take full advantage of the
sample-level information when using WGAN to align networks at the distribu-
tion level. DeepLink attempts to learn a bijective mapping between two networks,
1 http://www.lamda.nju.edu.cn/code ULink.ashx.
2 https://github.com/KDD-HIEPT/DeepLink.

http://www.lamda.nju.edu.cn/code_ULink.ashx
https://github.com/KDD-HIEPT/DeepLink
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Table 2. Comparisons with baselines (hit-precision).

Number of candidates k 10 20 30 40 50

SNNA 26.16% 32.30% 36.42% 39.70% 42.28%

CoLink 28.81% 33.71% 37.08% 39.64% 41.81%

DeepLink 16.94% 21.88% 25.22% 27.83% 30.01%

Ulink 14.27% 18.65% 21.8% 24.33% 26.45%

Ours (SSF) 33.13% 41.10% 44.66% 50.01% 52.93%

which is limited by the overlapping degree of different networks. ULink performs
the worst maybe because it needs a large portion of annotations to achieve satis-
factory performance. Interestingly, the hit-precisions of all methods improve by
5.84% on average when k changes from 10 to 20, while the improvement reduces
to 2.39% when k changes from 40 to 50. This indicates a moderate increase of k
will greatly improve the hit-precision, while the improvement is less significant
for sufficiently large k.

4.4 Effect of Feature Extraction

To verify the effectiveness of the components in FEM, some variants of SSF are
introduced as follows:

1. SSF-FEMd: it trains FEM without the reconstruction losses. This variant is
used to verify the effectiveness of requirements R1 and R2.

2. SSF-FEMc: it trains FEM without the classification loss. This variant is used
to study the effectiveness of the requirement R3.

3. SSF-FEMf : it only extracts features from the topology space in the encoders.
This variant is introduced to explore the benefits of feature space.

4. SSF-FEMh: it removes the DHGNN layers from encoders. This variant is used
to verify the effectiveness of DHGNN layers.

Figure 4 shows the hit-precisions of SSF and its variants mentioned above.
Compared with SSF, the hit-precisions of SSF-FEMd, SSF-FEMc, SSF-FEMf

and SSF-FEMh decrease by 15.80%, 11.88%, 2.99% and 3.77% on average,
respectively, which indicates that each component of SSF is indispensable.
Among all variants, the hit-precision decreases the most by ignoring the recon-
struction losses during the training procedure, demonstrating the effectiveness of
requirements R1 and R2. Compared with SSF-FEMc, SSF achieves higher per-
formance with the help of requirement R3, which indicates that SSF can effec-
tively utilize annotations in feature extraction. The performance of SSF-FEMf is
also unsatisfactory, which suggests that the information from the feature space
dominates the performance of feature extraction.
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Fig. 4. Hit-precision on different k. Fig. 5. Hit-precision on different δ.

To understand how annotations affect the feature extraction, we fix k = 10
and evaluate the performance of SSF and its variants with the ratio of anno-
tations ranging from 5% to 20%. As shown in Fig. 5, SSF achieves higher hit-
precisions than SSF-FEMd, SSF-FEMc, SSF-FEMf and SSF-FEMh, which fur-
ther validates the effectiveness of different components of FEM. Note that for
SSF, SSF-FEMc, SSF-FEMf and SSF-FEMh, the marginal gains are diminish-
ing with the increase of δ. However, for SSF-FEMd, the marginal gains become
more significant. That means the requirements R1 and R2 are more effective
with fewer annotations.

4.5 Effect of Network Alignment

To verify the effectiveness of the proposed sampling strategy for WGAN-based
UIL, variants with two different sampling strategies are introduced as follows:

1. SSF-NAMd: it adopts the degree sampling strategy, which is used by previ-
ous sampling methods. It is used to verify the effectiveness of the proposed
sampling strategy compared with previous methods.

2. SSF-NAMu: it adopts a uniform sampling strategy without reweighting. It is
used to study the influence of the reweighting strategy.

Table 3. Comparisons with variants (hit-precision).

Number of candidates k 10 20 30 40 50

SSF-NAMd 32.04% 39.80% 44.84% 48.55% 51.41%

SSF-NAMu 32.16% 40.37% 45.53% 49.51% 52.58%

Ours (SSF) 33.13% 41.09% 46.26% 50.00% 52.92%
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We compare the hit-precisions of SSF-NAMd, SSF-NAMu and SSF that
adopt different sampling strategies, and the results are shown in Table 3. SSF
outperforms SSF-NAMd by 1.35% on average in terms of the hit-precision, which
indicates that our sampling strategy is better than previous sampling strate-
gies. Besides, SSF-NAMu outperforms SSF-NAMd by 0.70% on average, veri-
fying that the uniform sampling is more effective than the degree sampling for
WGAN-based UIL. Without reweighting, the hit-precision decreases by 0.65%
on average, indicating that the uniform sampling combined with the reweighting
strategy can better guide the learning of WGAN.

5 Conclusion

This paper proposes a new semi-supervised framework for user identity link-
age with the feature extraction model and network alignment model. The fea-
ture extraction model learns node embeddings from topology space and feature
space with the help of dynamic hypergraph neural network. The network align-
ment model uses a new sampling strategy in the training process of WGAN,
which focuses more on the sample-level information. The results of extensive
experiments on the real-world dataset validate the effectiveness of the proposed
framework.

There are several directions to be investigated in the future. First, we only
consider the users’ textual content in SSF. Other heterogeneous contents (e.g.,
images, videos, etc.) can also be incorporated into our framework to extract infor-
mation from multiple content spaces. Second, the performance of semi-supervised
UIL is mainly limited by the lack of annotations. Therefore, it is also in our inter-
est to explore the self-supervised learning for UIL, which can extract information
from the large-scale unsupervised data by using pretext tasks.
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of China (2018AAA0101203), and the National Natural Science Foundation of China
(62072483).
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Abstract. Identifying individuals’ personality traits from their digi-
tal footprints has been proved able to improve the service of online
platforms. However, due to the privacy concerns and legal restrictions,
only some sparse, incomplete and anonymous digital footprints can be
accessed, which seriously challenges the existing personality traits iden-
tification methods. To make the best of the available sparse digital foot-
prints, we propose a novel personality traits prediction algorithm through
jointly learning discriminative latent features for individuals and a per-
sonality traits predictor performed on the learned features. By formu-
lating a discriminative matrix factorization problem, we seamlessly inte-
grate the discriminative individual feature learning and personality traits
predictor learning together. To solve the discriminative matrix factor-
ization problem, we develop an alternative optimization based solution,
which is efficient and easy to be parallelized for large-scale data. Exper-
iments are conducted on the real-world Facebook like digital footprints.
The results show that the proposed algorithm outperforms the state-of-
the-art personality traits prediction methods significantly.

Keywords: Personality traits prediction · Digital footprints ·
Discriminative matrix factorization · Alternative optimization

1 Introduction

Human personality is a lasting feature that can reflect the nature of human
behavior and influence peoples behavioral decisions. Just like sentiment
analysis[2,3], analyzing people’s personalities is quite indispensable to identifying
mental disorders, developing the e-commerce platforms and search engines, and
improving the collaboration efficiency of the network of crowd intelligence [8].
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Personality identification and measurement in traditional psychology mainly
relies on questionnaire method and interview method according to psycholog-
ical measures such as Five Factor Model (FFM) [7]. Nevertheless, these two
methods require a lot of manpower, material resources and financial costs and
inevitably involve some subjective bias. Fortunately, the widely existing people’s
digital footprints on the Internet provide the possibility to analyze people’s per-
sonality traits in a much more efficient way, which have been proved able to
help estimate personality traits accurately [12]. However, most of the existing
digital footprints based methods [4,6,12] rely heavily on the availability of rich
digital footprints. In reality, due to the privacy protection consideration and
legal restrictions, it is hard to access rich, complete and high-quality human
digital footprint records. Comparatively, only some incomplete digital footprints
are available, which seriously challenges the digital footprints based personality
traits prediction methods, with properties of high dimensionality, sparsity and
anonymousness.

To make the best of the available incomplete digital footprints, we propose a
novel Discriminative Matrix Factorization based Personality Traits Prediction
(DMF-PTP) algorithm. The proposed DMF-PTP algorithm jointly learns dis-
criminative latent features from people’s high-dimensional, sparse and anony-
mous digital footprints with matrix factorization, and a personality traits pre-
dictor performed on the learned latent digital footprint features simultaneously.
To solve the discriminative matrix factorization problem, we develop an alter-
native optimization based solution, which is efficient and easy to be parallelized
for large-scale training data. The contributions of this paper can be summarized
as follows:

– We propose a novel personality traits prediction algorithm from incomplete
digital footprints by formulating it as a discrimiative matrix factorization
problem and develop an efficient alternate optimization based solution.

– We conduct personality traits prediction experiments on the anonymized
Facebook like digital footprints dataset. Compared with the state-of-the-art
baseline methods, our proposed DMF-PTP algorithm achieves significantly
better personality trait prediction performance.

2 Related Work

Existing research work on personality traits prediction can be categorized into
two main groups: 1) feature engineering based methods [4,10] that first
extract digital footprint features indicative to personality traits and then pre-
dict personality traits with the traditional machine learning algorithms, and 2)
personality traits modeling based methods [1,11] that predict personality
traits by directly modeling the relation between raw digital footprint features
and personality traits. However, all of those methods rely heavily on the avail-
ability of rich digital footprints and fail to perform well for predicting person-
ality traits based on sparse digital footprints. To make the best of the available
sparse digital footprints for personality trait prediction, we leverage the power
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of matrix factorization, which provides an elegant way for learning informative
representations from sparse raw features [9,13].

3 Problem Definition

Suppose we are given a set of anonymized sparse digital footprint records formed
by some social platform users, which are denoted by M ∈ R

m×n, with m being
the number of social platform users and n being the number of recorded digital
footprints. The element at the i-th row and j-th column of M , Mij ∈ {0, 1},
indicates whether user i has the j-th digital footprint, with 1 for true and 0 for
false. In addition, users are attached with personality trait scores Y ∈ R

m, with
Yi being the personality trait score of the i-th user. According to the task, the
personality trait score can be measured on five dimensions [4].

Given a set of labeled personality trait scores YL, with L being the set of
indices of labeled users, and the sparse user digital footprint records M , we aim
to learn discriminative low-dimensional latent user digital footprint representa-
tions ui ∈ R

k for each user i, and simultaneously a mapping function f(·) from
the learned latent users’ representations to their personality trait scores. With
the learned latent representations and the mapping function, for each unlabeled
user i, his/her personality trait score can be predicted by f(ui), i.e., applying
the learned mapping function f(·) to the learned latent digital footprint repre-
sentation ui of unlabeled user i.

4 Personality Traits Prediction with Discriminative
Matrix Factorization

4.1 Objective Formulation

Our formulation combines the learning of latent user digital footprint represen-
tations with matrix factorization, and the learning of personality traits predictor
into a unified objective. Mathematically, our learning objective is

min
U ,V ,w

J (U ,V ,w) , (1)

where
J (U ,V ,w) =

1
2

∥
∥M −UV �∥

∥
2

F
+

γ

2

∑

i∈L
(Yi − u�

i w)2

+
λ

2

(

‖U‖2F + ‖V ‖2F + ‖w‖22
)

.

(2)

In Eq. (2), the sparse user digital footprints matrix M is factorized into two
low-rank matrices—U ∈ R

m×k and V ∈ R
n×k—that carry the latent represen-

tations of users and digital footprints, with ui ∈ R
k, the transpose of the i-th row

of U , being the latent representation of the i-th user, and vj ∈ R
k, the transpose

of the j-th row of V , being the latent representation of the j-th digital footprint.
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Together with the matrix factorization, the personality traits of labeled users,
YL, are predicted via the linear regression model performed on the learned user
representations, ui, by minimizing the squared loss

∑

i∈L(Yi − u�
i w)2, with w

being the regression coefficients. To ensure the low rank property of U and V ,
and avoid overfitting the regression parameter w, we add the regularizer term
‖U‖2F + ‖V ‖2F + ‖w‖22 in Eq. (2), with γ and λ used to weight different compo-
nents.

4.2 Solving the Optimization Problem

Our objective is to minimize J (U ,V ,w) with regards to U , V and w. As
J (U ,V ,w) is not convex with regards to U , V and w, it is hard to find its
global optima analytically. However, it can be easily proved that, with any two
of U , V and w fixed, J (U ,V ,w) is convex with the remainder variable. Thus,
after randomly initializing U ,V and w as U (0),V (0), and w(0) respectively, we
can update U ,V ,w alternately towards a local minimum of J (U ,V ,w):

U (t) ← arg min
U

J (U ,V (t−1),w(t−1)); (3)

V (t) ← arg min
V

J (U (t),V ,w(t−1)); (4)

w(t) ← arg min
w

J (U (t),V (t),w). (5)

Here, U (t), V (t) and w(t) respectively denote the values of U , V and w after
the t-th update. U , V and w are updated with Eq. (3), (4) and (5) respectively.

Updating U . With V and w fixed, updating U can be performed by separately
updating each ui:

ui ← arg min
u

fi(u), (6)

where

fi(u) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2

n∑

j=1

(Mij − u�vj)2 +
γ

2
(Yi − u�w)2 +

λ

2
u�u, if i ∈ L;

1
2

n∑

j=1

(Mij − u�vj)2 +
λ

2
u�u, if i /∈ L.

(7)

As is shown in Eq. (7), fi(u) is s a convex function of u. We can solve the
optimization problem in Eq. (6) with the Conjugate Gradient method, after
calculating its gradient and Hessian Matrix as follows:
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∇fi(u) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
n∑

j=1

(Mij − u�vj)vj − γ(Yi − u�w)w + λu, if i ∈ L;

−
n∑

j=1

(Mij − u�vj)vj + λu, if i /∈ L.

(8)

∇2fi(u) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

j=1

vjv
�
j + γww� + λI, if i ∈ L;

n∑

j=1

vjv
�
j + λI, if i /∈ L.

(9)

In Eq. (9), I is the k × k-dimensional identity matrix.

Updating V . When U and w are fixed, we can update V by separately updat-
ing each vj :

vj ← arg min
v

gj(v), (10)

where

gj(v) =
1
2

m∑

i=1

(Mij − u�
i v)2 +

λ

2
v�v. (11)

Similarly, with the convex function gj(v), we use the Conjugate Gradient method
to solve the optimization problem in Eq. (10), after calculating gj(v)’s gradient
and Hessian Matrix as:

∇gj(v) = −
m∑

i=1

(Mij − u�
i v)ui + λv, ∇2gj(v) =

m∑

i=1

uiu
�
i + λI. (12)

Updating w. We can update the regression coefficients w with U and V fixed
as following:

w ← arg min
w

h(w), (13)

where
h(w) =

γ

2

∑

i∈L
(Yi − u�

i w)2 +
λ

2
w�w. (14)

Similarly, we use the Conjugate Gradient method to solve the optimization prob-
lem in Eq. (13), after calculating the gradient and Hessian matrix of the convex
function h(w) as

∇h(w) = −γ
∑

i∈L
(Yi − u�

i w)w + λw, ∇2 h(w) = γ
∑

i∈L
uiu

�
i + λI. (15)
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Algorithm 1: Solving the optimization problem in Eq. (1)
Input:

Sparse digital footprints matrix M and labeled personality traits scores yL;
Output:

Matrix U , V and vector w;
1: (U ,V ,w) ← Random initialization;
2: repeat
3: U ← Updating by solving Eq. (6);
4: V ← Updating by solving Eq. (10);
5: w ← Updating by solving Eq. (13);
6: until convergence or a fixed number of iterations expire;
7: return U , V and w;

Algorithm 1 gives the procedure for solving the optimization problem in Eq.
(1) with alternative optimization. In Algorithm 1, the time complexity of updat-
ing U is O(k2mn), by taking the number of iterations of Conjugate gradient
descent as a constant. Similarly, the time complexity of updating V is O(k2mn),
and updating w requires O(k2|L|) time. By taking the number of iterations of
alternative parameter update as a constant, the overall time complexity of our
algorithm is O(k2mn).

4.3 Inferring Personality Traits for Unlabeled Users

With the learned latent user representations ui and the linear regression coeffi-
cients w, for each unlabeled user i /∈ L, his or her personality trait score can be
predicted by

Ŷi = u�
i w, i /∈ L. (16)

5 Experiments

5.1 Dataset and Experimental Setting

To verify the effectiveness of our method, we conduct personality traits predic-
tion experiments on Facebook likes digital footprints data1, formed by 110,728
Facebook users with 1,580,284 likes and their personality trait scores measured
by five dimensions: extraversion, agreeableness, conscientiousness, neuroticism
and openness. Following [5], we preprocess the dataset by selecting users with
at least 100 likes and selecting likes visited by more than 200 users.

1 http://mypersonality.org.

http://mypersonality.org
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We compare DMF-PTP with two competitive baseline methods: Raw+LR
and SVD+LR [4], which respectively predict personality traits using linear
regression with raw user digital footprint features M and the latent user features
extracted from M by SVD. We used two criteria to evaluate personality traits
prediction performance: Pearson Correlation Coefficient (PCC) and Root Mean
Square Error (RMSE).

We randomly select 80% of users as training set and the rest users as test set.
We repeat the random training/test set split for 10 times and report the averaged
PCC and RMSE. We set the number of iterations for alternate optimization to
10. The parameters k, λ, and γ are respectively set to 10, 10, and 1000.

5.2 Experimental Results

Table 1. Personality traits prediction results of three methods

Measure Openness Conscientiousness Extraversion Agreeableness Neuroticism

PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓
Raw+LR 0.279 0.941 0.117 1.191 0.148 1.106 0.075 1.401 0.182 1.114

SVD+LR 0.317 0.925 0.120 1.278 0.160 1.126 0.156 0.952 0.197 1.124

DMF-PTP 0.450 0.970 0.192 0.981 0.247 0.955 0.225 0.962 0.266 0.978

(a) k (b) λ (c) γ

Fig. 1. Parameter sensitivity on predicting openness

Table 1 compares the personality traits prediction performance of three com-
pared methods on five measures. For each measure, the best PCC and RMSE
scores are highlighted by bold. From Table 1, we can see that DMF-PTP out-
performs Raw+LR and SVD+LR model in most cases, except for the RMSE
scores on openness and agreeableness, where DMF-PTP is slightly worse than
the best performer. This attributes to DMF-PTP’s special capacity of learning
personality traits indicative user latent digital footprint representations, through
coupling it with personality traits predictor learning task.
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5.3 Parameter Sensitivity

We also study the sensitivity of our method with regards to the three parameters:
k, γ and λ, by evaluating the openness prediction PCC. Figure 1 plots the PCC
scores with the changes of the three parameters. DMF-PTP achieves the best
PCC scores when k takes values from 5 to 15. With the increase of λ, the PCC
score of DMF-PTP first gradually rises to the peak at λ = 10 and then starts to
decrease. In comparison, the performance of DMF-PTP is stable when γ changes
in a proper range (larger than 100).

6 Conclusion

In this paper, we propose a novel algorithm DMF-PTP to predict personality
traits from users’ sparse digital footprints, which jointly learns discriminative
latent features for individuals and a personality traits predictor on the learned
features. By formulating a discrimative matrix factorization problem, we seam-
lessly integrated the discriminative individual feature learning and the person-
ality traits predictor learning together. We developed an alternate optimiza-
tion based algorithm to solve the formulated discriminative matrix factorization
problem, which is efficient and easy to be parallelized for large-scale data. Exper-
iments on real-world Facebook likes digital footprints data were conducted. The
results confirm the effectiveness of DMF-PTP.
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Abstract. Social influence maximization problem has been widely stud-
ied by the industrial and theoretical researchers over the years. How-
ever, with the skyrocketing scale of networks and growing complexity of
application scenarios, traditional approximation approaches suffer from
weak approximation guarantees and bad empirical performances. What’s
more, they can’t be applied to new users in dynamic network. To tackle
those problems, we introduce a social influence maximization algorithm
via graph embedding and reinforcement learning. Nodes are represented
in the graph with their embedding, and then we formulate a reinforce-
ment learning model where both the states and the actions can be rep-
resented with vectors in low dimensional space. Now we can deal with
graphs under various scenarios and sizes, just by learning parameters
for the deep neural network. Hence, our model can be applied to both
large-scale and dynamic social networks. Extensive real-world experi-
ments show that our model significantly outperforms baselines across
various data sets, and the algorithm learned on small-scale graphs can
be generalized to large-scale ones.

Keywords: Social influence maximization · Reinforcement learning ·
Graph neural network

1 Introduction

Nowadays, online social network is everywhere around us. We have never commu-
nicated with each other so frequently before. Today, social network is not only a
platform for chatting, it also has great economic values, e.g., viral marketing [4].
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Fig. 1. Illustration of our proposed framework.

Motivated by various applications, social influence maximization problem has
been widely studied by a lot of researchers over the last decade.

Influence Maximization problem was first proposed by Kempe et al. [2]. They
worked out the greedy algorithm framework with the theoretic guarantee of
approximation ratio of 1 − 1/e. Generally, with the gigantic scale of network,
traditional approaches based on enumeration or branch-and-bound are ineffec-
tive. On the contrary, heuristics are fast and effective algorithms, but they may
require substantial problem-specific researches and trial-and-error for algorithm
designers. Although approximation algorithms are mostly used for solving those
problems, they may suffer from weak approximation ratio and bad empirical
performance.

In addition, previous methods in IM problems didn’t pay attention to how
edge weights are generated. Generally, the probability influence between users
is randomly generated in approximation algorithms. Although some studies pay
attention to influence estimation rather than influence maximization, few exist-
ing works jointly captures the diffusion traces and user features. In particu-
lar, existing models cannot effectively learn probabilities for the edges without
observed influence propagation. Similar to our work, [6] solve the combinatorial
optimization with Graph Convolutional Network (GCN) and guided tree search,
but they lack strategies to maximize user influence.

To tackle the above problems, we purpose a social influence maximization
algorithm via graph embedding and reinforcement learning, illustrated in Fig. 1.
Unlike much previous work that analyzes node attributes and graph structures
according to specific problems, we use a method based on graph embedding
network to capture the local network structure information for each node. By
this method, the model is applicable to networks of different structures and
sizes. If a new user is added to the social network or a novel friend relationship
is formed, our model can easily handle it by ignoring the differences of neighbor
nodes compared with GAT. Therefore, our model can be applied to dynamic
social networks. Based on user representation and social influence prediction, we
can use reinforcement learning to learn a greedy policy and select the seed set
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to maximize social influence. With those methods, the policy is generalized so
that it can be used to solve problems in different social networks. We test our
model by using it to select seeds on different real-world data sets: Facebook,
Twitter, YouTube, Weibo, and Flickr. By analyzing the results, we find that our
model outperforms baselines across various graph types. Extensive experiments
show that the learned algorithm using small-scale graphs can generalize to test
large-scale ones.

2 Problem Formulation

In this section, we will show the formulation of influence maximization and the
influence function. We also give a clearly description of our framework.

2.1 Influence Maximization in Social Networks

Assume there is a kind of selection in social networks with a seed budget k. We
construct a weighted digraph G = (V,E), where V represents the set of users in
the network, E represents the set of relationships in the network. Denote φ(S)
as the overall influence spread. Our goal is to find a seed set S which contains
no more than k users to maximize the influence spread. Now we formulate the
IM problem.

Definition 1 (Influence Maximization (IM)). Given a social graph G =
(V,E) and seed budget k, the goal is to find a small seed set of nodes S∗ such
that

S∗ = arg max
S

{φ(S)}

where S ⊆ V , k ≤ |V |, |S| ≤ k.

The IM problem can be proved to be NP-hard by taking it as a special case of
the hitting set problem, and it is proved that φ(·) is submodular function [4].

2.2 Graph Embedding for Representing Users

We wish to quantify to what extent an user u influences the probability that
user v favorites (or buys) a item after user u disseminates the information of
this item. Rather than the weight matrix W of the network G, we prefer node-
based information representation to edge-based information representation for
the reason that the number of edges in social networks is much larger than that
of nodes. Hence, we need to represent users as useful and predictive embeddings.

Considering both the feature of the user and the local structure of a node
v can be very complex and may depend on complicated statistics such as
global/local degree distribution, distance to tagged nodes in these problems,
we will use a deep neural network architecture to represent users. Graph Atten-
tion Network (GAT) [11] is a recent proposed technique that introduces the
attention mechanism into Graph Convolutional Networks. As opposed to GCNs,
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GAT allows us to assign different importance to nodes connecting to a same
neighbor.

In order to transform the input features into higher-level features, we perform
self-attention atte : R

F ′ × R
F ′ → R on every node to compute the attention

coefficients to measure the importance of j’s features to node i on graph G.

eij = atte (Whi,Whj) = LeakyReLU
(
aT [Whi‖Whj ]

)
(1)

where atte(·, ·) is the attention mechanism function, which can be implemented
by a neural network with weight vector a and a LeakyReLU nonlinearity like
Velickovic et al. · ‖ · is the concatenation operation.

Then, we normalize the coefficients using the softmax function to make them
comparable across different nodes

αij = softmaxj(eij) =
exp

(
LeakyReLU

(
aT [Whi‖Whj ]

))
∑

l∈Ni
exp ( LeakyReLU (aT [Whi‖Whl]))

(2)

where Ni is the neighbors of node i.
After the coefficients are obtained, we can compute a linear combination of

the features corresponding to them, and get the output embedding zj . In prac-
tice, to stabilize the learning process of self-attention, [10] has found extending
the mechanism to employ multi-head attention to be beneficial. Specifically, K
independent attention mechanisms execute the transformation, and then their
features are concatenated.

3 Reinforcement Learning Model for Selecting Seed
Nodes

In this section we present the training part of our model. We use deep Q learning
to train the model and select seeds.

3.1 Reinforcement Learning Model Formulation

In detail, we define the states, actions, rewards, and policy in the reinforcement
learning framework as follows:

1. A state s is represented by the embeddings of seed nodes in S =
(v1, v2, · · · , vi).

2. An action a is to add a node v to current state. We will represent actions as
their corresponding p-dimensional node embedding zv.

3. A reward function r(s, a) is to evaluate the transition reward of an action.
In social influence maximization, we regard the nodes influenced by current
state φ(S) as c(S,G), and the difference caused by an action a as r(s, a).
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4. Training deep Q-network and selecting seeds. A greedy algorithm selects a
node v to add next such that v maximizes an evaluation function Q(s, a).
Then, the solution S will be extended as

S = (S, v∗),where v∗ = arg max
v∈V −S

Q(s, v) (3)

Thus, we can define node selection function according to ε−greedy policy.
Then, we use DDQN to learn parameters of Q(s, a) and further select nodes
to solve the real-world problem.

3.2 Parameters Learning

For parameters learning, we refer to a neural network function approximator
with weights θ as a Q-network, as illustrated in Algorithm 1. The Q-network
can be trained by minimizing a sequence of loss functions

(
n−1∑

i=0

r (St+i, at+i) + γ max
a′

Q′ (St+n, a′, θ−) − Q(S, at, θ))2 (4)

where γ is reward discount factor, Q(S, a, θ) represent the action-value function
of MainNet and Q′(S, a, θ−) represent the action-value function of TargetNet.

Algorithm 1. n-step DQN for node selection
1: Initialize experience replay memory D to capacity N
2: Initialize main action-value function Q with random weights θ
3: Initialize target action-value function Q′ with weights θ− = θ
4: repeat
5: t ← 1
6: Initialize the state to empty St = ( )
7: repeat
8: Select node by node selection function over Eq.(??)
9: Add vt to current solution St+1 ← (St, vt)

10: t ← t + 1
11: if t ≥ n then
12: Store transition (St−n, vt−n, rt−n,t, St) in D
13: Sample random minibatch from D
14: Update θ by SGD over Eq.(4)
15: Every C steps reset Q′ = Q
16: end if
17: until terminal St or t = tmax

18: until the number of episodes reach emax

19: return θ



706 C. Wang et al.

4 Experiments

In the following section, we will describe our datasets and discuss empirical
results in two aspects: social spread prediction and seed set selection.

4.1 Datasets

We use five social media datasets to carry out experiments—SNAP Social (Face-
book, Twitter, and YouTube) dataset [7], Weibo [12], and Flickr [1]. In these
datasets, retweet, like and other similar social behaviors can be defined as being
influenced. A user who was influenced at some time, we generate a positive
instance. Next, for each neighbor of the influenced user, if it was never observed
to be active in our observation window, we create a negative instance. Our target
is to distinguish positive instances from negative ones. Thus, the social influence
prediction problem can be considered as a classification problem.

The exact size of our datasets is shown in Table 1.

Table 1. Summary of datasets

Name # of nodes # of edges Type

Facebook 4k 88k Undirected, dense

Twitter 10k 203k Directed, dense

YouTube 10k 29k Undirected, sparse

Weibo 1.8M 308M Directed, dense

Flickr 2.5M 33M Directed, dense

4.2 Social Spread Prediction

We compare the prediction performance of our model and three methods on
the four datasets and the results is shown in Fig. 2. Our model—Influence
Maximization via Graph Embedding and Reinforcement learning (IMGER)
achieves the best performance over baselines in terms of AUC, Recall, and F1-
score, which indicates the effectiveness of our model.we compare our embed-
ding model with several baselines in social influence prediction. Logistic Regres-
sion (LR) is a simple machine learning classification model with the initial fea-
tures. PATCHY-SAN (PSCN) [9] is a state-of-the-art graph classification model.
Inf2vec [3] is a state-of-the-art latent representation model for social influence
embedding.

Inf2vec performs equally well in terms of Precision or even slightly better on
Facebook dataset, and almost outperforms both LR and PSCN in all respects,
which demonstrates that graph embedding methods are better than previous
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model mining features in social network analysis. Understandably, the embed-
ding approaches that consider the history propagation track can help to effec-
tively identify the hidden influence relationships among users. For instance, given
that user ua can influence user ub, and user ub can affect both user uc and user
ud, then user ua probably is also able to influence ud. However, such relationships
cannot be explicitly captured by previous prediction models, such as LR. Com-
pared with Inf2vec and PSCN, our model can jointly capture the diffusion traces
and user features, and dig out the implicit relationship between propagation and
attributes.

(a) Precision (b) Recall (c) F1-score (d) AUC

Fig. 2. Prediction performance of different methods

In conclusion, our model get significantly gain over both traditional model
and the-state-of-the-art model.

4.3 Seed Set Selection

To evaluate the solution quality, we define the efficiency ratio as the ratio of the
number of influenced nodes to the size of seeds set. Because almost all approx-
imation algorithms are close to the optimal solution when the number of seeds
is close to the number of nodes, we just pay more attention to the situation
where the number of seeds is not very large. We compare our reinforcement
learning model with other models to select seed nodes that can maximize social
influence. Naive Greedy (NG) is a simple model that sort our nodes by their
influences, and select the largest k nodes as seed nodes. Stop-and-Stare Algo-
rithm (SSA) [8] is one of the best current influence maximization approximation
algorithms, provides a (1 − 1/e − ε)-approximation guarantee. Structure2Vec
Deep Q-learning (SVDN) [5] is a state-of-the-art learning method, which can
learn combinatorial optimization algorithms over graphs. As shown in Fig. 3,
our results successfully demonstrate state-of-the-art performance being achieved
across all three datasets. The results also directly give us a viewpoint on the
basic network property that a small fraction of nodes can influence a very large
portion of the networks.

The results of a simple greedy algorithm is the worst on all datasets. When
the number of seeds is very small, the efficiency ratios of SSA, SVDN, and
IMGER are almost equal. The experimental results of SSA and SVDN are
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(a) Weibo (b) Twitter (c) Flickr

Fig. 3. Influence efficiency ratio on three datasets

similar and the performance of SVDN is a little better than the approxima-
tion algorithm, which means that heuristic algorithm is not worse than that of
approximation algorithm, although it has no theoretical guarantee.

In conclusion, the results show that our reinforcement learning method is
better than the previous algorithm in practice.

5 Conclusion

In this paper, we propose IMGER, an influence maximization model via graph
embedding and reinforcement learning, to select nodes and maximize social influ-
ence. Since we represent nodes in the graph with their embeddings, both the
state and the action are vectors in low dimensional space. Thus, our model is
applicable to solve IM problem in large-scale social networks. Together with the
deep Q-learning algorithm, algorithm learned on small graphs can be applied to
graphs of larger sizes. We conduct numerical experiments to test how our model
works in different real-life networks.
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Abstract. In a real social network, each user has attributes for self-
description called user attributes which are semantically hierarchical.
With these attributes, we can implement personalized services such
as user classification and targeted recommendations. Most traditional
approaches mainly focus on the flat inference problem without consid-
ering the semantic hierarchy of user attributes which will cause seri-
ous inconsistency in multilevel tasks. To address these issues, in this
paper, we propose a cross-level model called IWM. It is based on the
theory of maximum entropy which collects attribute information by
mining the global graph structure. Meanwhile, we propose a correction
method based on the predefined hierarchy to realize the mutual correc-
tion between different layers of attributes. Finally, we conduct extensive
verification experiments on the DBLP data set and it has been proved
that compared with other algorithms, our method has a superior effect.

Keywords: Attribute inference · Multilevel inference · Social network

1 Introduction

In a social network, each user has a series of labels used to describe their charac-
teristics called user attributes. However, for a certain type of attributes, they are
not flat but hierarchical. The most existing methods [4,5] mainly focus on the
single-level attribute inference and it will bring some problems for hierarchical
structures as shown in Fig. 1. Even though utilizing the same method for every
single-level, the attributes of different level may be conflicted for the same user,
attributes at the same level may be indeterminate, and the results of a certain
layer may be missing.

In this paper, we propose a multi-level inference model named IWM to solve
the problems mentioned above. This model can infer hierarchical attributes
for unknown users by collecting attributes from nearby users under maximum
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(a) conflict (b) indeterminacy (c) missing

Fig. 1. Problems of labeling in real social networks

entropy random walk. Meanwhile, we propose a correction method based on the
predefined hierarchy of attributes to revise the results. Finally, we conduct the
experiments on real datasets to validate the effectiveness of our method.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 proposes the multilevel inference model. Algorithm is given in Sect. 4.
The experimental results and analysis are presented in Sect. 5. The related works
are introduced in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Problem Definition

2.1 Semantic Tree

The semantic tree T is a predefined structure which is semantically exists used
to describe the hierarchical relationship between different user attributes. We
use Tg to represent the user attributes at T ’s gth layer.

2.2 Labeled Graph

Labeled graph is a simple undirected graph, denoted as G = (V,E, T, L), where V
is the set of vertices and E is the set of edges. T is the semantic tree of attributes in
G. L is a function mapping V to a cartesian product of the attributes in T defined
as L : V → T1 × T2 × · · · × Tm, where m is the depth of T .

Problem Statement: Given a labeled graph G(V,E, T, L) and labeled vertices
set Vs ⊂ V , where Vs is the set of vertices with complete attributes. So for every
vertex vs ∈ Vs, L(vs) = {l1, l2, · · · , lm}, where l1 ∈ T1, l2 ∈ T2, · · · , lm ∈ Tm.
The input of the problem is L(vs) for every vertex vs ∈ Vs and the output is
L(vu) for every vertex vu ∈ Vu, where Vu = V − Vs.

3 Attribute Inference Model

Our attribute inference model can be divided into two parts. The first part
is called the information propagation model. Based on the maximum entropy
theory and one step random walk, vertices in Vs spread their own attributes to
other vertices layer by layer. The second part is a correction model based on the
semantic tree. This model realizes the mutual correction between different layers
of attributes. These two models are described in detail below.
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3.1 Information Propagation Model

The information propagation model is an extension of the model proposed in [7].
The main idea is that the higher the entropy value of the vertex, the stronger the
uncertainty of its own user attributes, so more information should be collected.
The attributes of vj ’s each layer can be represented by Lg(vj) = {lx, wx(vj), lx ∈
Tg}. Then the entropy value of vj ’s gth layer Hg(vj) can be calculated as blow.

Hg(vj) = −
∑

lx∈Tg

wx(vj) × ln wx(vj) (1)

If vi is a neighbor of vj , then the transition probability Pg(vi, vj) from vi to vj
at gth layer is computed as follows.

Pg(vi, vj) =
Hg(vj)∑

vj∈N(vi)
Hg(vj)

(2)

Where N(vi) is the set of neighbors of vj .
Next, we use the following equation to normalize the attribute probability

obtained by different vertices.

wx(vj) =

∑
vi∈N(vj)

Pg(vi, vj) × wx(vi)∑
ly∈Tg

∑
vi∈N(vj)

Pg(vi, vj) × wy(vi)
(3)

Lg(vj) will be updated through wx(vj). In this way, the attribute information is
spread hierarchically in the graph.

3.2 Attribute Correction Model

The formal definitions of the concepts involved in this section are given below.

Definition 1. Define the following relationships in the semantic tree:

(1) If x2 is a child node of x1, then x1, x2 have a relationship called
Child(x1, x2).

(2) Say that x1, x2 have a descendant relationship called Descendant(x1, x2),if
Child(x1, x2) ∪ ∃x3(Child(x1, x3) ∩ Descendant(x3, x2)).

(3) If x2 is a brother node of x1, then x1, x2 have a relationship called
Brother(x1, x2).

Definition 2 (Descendant vertex set). For a node x1, its descendant node
set is defined as DesSet(x1) = {x|Descendant(x1, x)}.
Definition 3 (Brother vertex set). For a node x1, its brother node set is
defined as BroSet(x1) = {x|Brother(x1, x)}.
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For the attribute lx in the middle layer of the semantic tree, its existence
depends on both Parent(x) and DesSet(x), so wx(vj) can be corrected by
Eq. (4).

wx(vj) = wParent(x)(vj) × (1 − α) × wx(vj) + α × ∑
y∈DesSet(x) wy(vj)∑

z(1 − α) × wz(vj) + α × ∑
y∈DesSet(z) wy(vj)

(4)

where z ∈ BroSet(x) and α represents a correction strength. When the value of
α is large, the result is inclined to the hierarchy of the semantic tree, otherwise,
it is more inclined to the information collected by propagation.

There is another case that the highest layer attributes don’t have any child
node, so they can be corrected as follows.

wx(vj) = wParent(x)(vj) × wx(vj)∑
z∈BroSet(x) wz(vj)

(5)

4 Attribute Inference Algorithm

4.1 Algorithm Description

The detailed steps of the algorithm are shown in Algorithm 1. Firstly, we use
Eq. (1) to calculate entropy Hg(vu) for all vu ∈ Vu layer by layer (line 1 to 3).
Line 4 to 9 start inferring hierarchically. After all layers’ information are col-
lected, correction can be performed by Eq. (4) or Eq. (5) (line 10 to 11).

Algorithm 1. Cross-level Attribute Inference(G,Vs)
Input: G(V, E, T, L) and Vs.
Output:L(vu) for every vertex vu ∈ Vu.

1: for every layer g in T do
2: for every vertex vu ∈ Vu do
3: compute Hg(vu)
4: for every vertex vu ∈ Vu do
5: for every layer g in T do
6: for every vertex vi ∈ N(vu) do
7: compute Pg(vi, vu)
8: for every attribute lx ∈ Tg do
9: compute wx(vu)

10: for every attribute lx ∈ T do
11: correct wx(vu)
12: if

∑

vu∈Vu

∑

lx∈T

|diffwx(vj)| ≤ |Vu| × |T | × σ then

13: return L(vu) for every vertex vu ∈ Vu

14: else
15: return step 1



714 H. Zhang et al.

The algorithm terminates when the convergence is satisfied. The condition
of convergence is given by the following equation.

∑

vu∈Vu

∑

lx∈T

|diffwx(vu)| ≤ |Vu| × |T | × σ (6)

where diff(wx(vu)) is the difference on wx(vu) after the inference algorithm is
executed, and σ is a threshold to control the number of iterations.

4.2 Time Complexity

We assume that the labeled graph G has n vertices and p attributes, the seman-
tic tree has m layers. So the time complexity of information propagation is
O(m|Vu| + mnd + pnd) = O(mnd + pnd), where d is the average degree of all
the vertices in G. After that, we need to modify every attribute for each user by
the complexity of O(pn). To sum up, the total time complexity of our algorithm
for one iteration is O(mnd + pn).

5 Experiment

The experiments are performed on a Windows 10 PC with Intel Core i5 CPU
and 8 GB memory. Our algorithms are implemented in Python 3.7. The default
parameter values in the experiment are α = 0.5, σ = 0.0001.

5.1 Experimental Settings

Dataset. We will study the performance on DBLP dataset. DBLP is a computer
literature database system. Each author is a vertex and their research field is
used as the attributes to be inferred. We extract 63 representative attributes
and define a 4-layer semantic tree in advance.

Baselines and Evaluation Metrics. We compare our method IWM with three
classic attribute inference baselines which are SVM, Community Detection (CD)
[6] and Traditional Random Walk (TRW) [7].

We use five commonly metrics to make a comprehensive evaluation of the
inference results. The calculation method of these metrics are shown below.

Precison =
∑

l∈T |{vu|vu ∈ Vu ∧ l ∈ Predict(vu) ∩ Real(vu)}|∑
l∈T |{vu|vu ∈ Vu ∧ l ∈ Predict(vu)}| (7)

Recall =
∑

l∈T |{vu|vu ∈ Vu ∧ l ∈ Predict(vu) ∩ Real(vu)}|∑
l∈T |{vu|vu ∈ Vu ∧ l ∈ Real(vu)}| (8)
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F1 =
2 × Precision × Recall

Precision + Recall
(9)

Accuracy =
1

|Vu| × |{vu|vu ∈ Vu ∧ Predict(vu) = Real(vu)}| (10)

Jaccard =
1

|Vu| ×
∑

vu∈Vu

|Predict(vu) ∩ Real(vu)|
|Predict(vu) ∪ Real(vu)| (11)

where Predict(vu) and Real(vu) respectively represent the inference result set
and real original attribute set of vu. For all metrics, the larger value means the
better performance.

5.2 Results and Analysis

Exp1-Impact of Vertex Size. We conduct the first experiment in coauthor
relationship networks with 5, 000, 10, 000, 20, 000, and 40, 000 vertices. The pro-
portion of unknown vertices is 30% (Table 1).

Table 1. Inference performance on different vertex size.

Vertex size Method Precision Recall F1 Mean-Acc Jaccard

Layer2 Layer3 Layer4 Mean-Pre Layer2 Layer3 Layer4 Mean-Rec Layer2 Layer3 Layer4 Mean-F1

5000 SVM 0.6410 0.5460 0.4700 0.5640 0.5630 0.5070 0.4450 0.5260 0.5810 0.5100 0.4300 0.5200 0.5021 0.6611

CD 0.8428 0.6347 0.2117 0.4384 0.8307 0.6839 0.5718 0.6949 0.8364 0.6581 0.3078 0.5368 0.5180 0.5888

TRW 0.8721 0.6423 0.6423 0.4099 0.8754 0.7554 0.7317 0.7867 0.8735 0.6931 0.3153 0.5377 0.6171 0.6446

IWM 0.9552 0.8310 0.8310 0.7773 0.8629 0.7518 0.6867 0.7666 0.9067 0.7892 0.6364 0.7718 0.7604 0.7187

10000 SVM 0.8070 0.5800 0.4870 0.5180 0.6090 0.4860 0.4400 0.4480 0.6640 0.4990 0.4340 0.4490 0.4650 0.6314

CD 0.7852 0.6427 0.2074 0.4488 0.7591 0.6106 0.4596 0.6103 0.7720 0.6259 0.2848 0.5164 0.3871 0.5109

TRW 0.8309 0.6388 0.6388 0.3505 0.8632 0.7269 0.7099 0.7653 0.8466 0.6798 0.2583 0.4803 0.5815 0.6181

IWM 0.9492 0.8373 0.8373 0.7655 0.8465 0.7354 0.6769 0.7526 0.8949 0.7830 0.6170 0.7591 0.7288 0.7003

20000 SVM 0.7400 0.5440 0.4460 0.5220 0.5320 0.4620 0.3920 0.4290 0.5820 0.4730 0.3980 0.4440 0.4260 0.6058

CD 0.7602 0.6099 0.1888 0.4176 0.7332 0.6020 0.4423 0.5935 0.7463 0.6053 0.2634 0.4895 0.3579 0.4848

TRW 0.8294 0.6063 0.6063 0.3143 0.8392 0.7418 0.6817 0.7446 0.8342 0.6561 0.2243 0.4418 0.5296 0.5810

IWM 0.9396 0.8170 0.8170 0.7436 0.8372 0.7218 0.6526 0.7372 0.8854 0.7664 0.5895 0.7403 0.6924 0.6688

40000 SVM 0.7489 0.6167 0.4311 0.4850 0.4811 0.4522 0.3589 0.3950 0.5444 0.4911 0.3622 0.4050 0.3378 0.5473

CD 0.7458 0.5333 0.1928 0.4547 0.6855 0.4669 0.2568 0.4710 0.7143 0.4979 0.2200 0.4626 0.1579 0.3797

TRW 0.8093 0.5888 0.5888 0.2870 0.8347 0.7059 0.6629 0.7340 0.8214 0.6419 0.2006 0.4125 0.4652 0.5572

IWM 0.9360 0.8061 0.8061 0.7270 0.8344 0.7169 0.6349 0.7284 0.8817 0.7587 0.5667 0.7276 0.6561 0.6642

It is obvious that our method shows the best performance on different eval-
uation indicators. For examplewhen it comes to a 20,000 vertices network, our
model improves over the strongest baseline 22.2%, 35.1%, 16.3% and 6.3% on
Precision, F1, Accuracy, and Jaccard index, separately. In terms of recall, our
method does not have obvious advantages over TRW.

Exp2-Impact of the Proportion of Unknown Vertices. In Exp2 the vertex
scale of the network is 20, 000 and we set the unlabeled scale 10%, 20%, 30%,
and 50% respectively.
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(a) Precision (b) Recall (c) F1 (d) Accuracy (e) Jaccard

Fig. 2. Inference performance on different proportion of unknown vertices

We can analyze the results to get that as the proportion of unknown vertices
increases, the decline tendency of our method is much slower than other methods.
It is interesting to see that the five evaluate indicators of our method are 71.77%,
72.17%, 71.96%, 64.21% and 65.43% at the condition of 50% vertices lack of
attributes which can show that it has a great value in practical applications.

Exp3-Real Case Study. In Table 2 we present partial results of the experiment
which gives a clear comparison between our method and TRW. We use these
examples to demonstrate the effectiveness of our method.

Table 2. Comparison of inference results by TRW and IWM.

Author True label TRW result IWM result

Layer2 Layer3 Layer4 Layer2 Layer3 Layer4 Layer2 Layer3 Layer4

Chris Stolte Data Database Query Unknown Database Query Data Database Query

Marcel Kyas Network Wireless Localization Network Databse Localization Network Wireless Localization

William Deitrick Data Mining Clusters Network, Data Unknown Clusters Data Mining Clusters

V. Dhanalakshmi Learning Language Extraction Unknown Classification Speech Learning Language Speech

For Chris Stolte, IWM can complement the missing information which can’t
be inferred by TRW. For Marcel Kyas, our method modify the error information
on Layer 3 and obtain the correct result. TRW causes indeterminacy problem
on Layer2 of William Deitrick, while IWM can select more relevant attributes.
However, for V. Dhanalakshmi, due to its special structure, when most of the
collected information is interference, IWM can’t make correct inference either.

6 Related Work

There has been an increasing interest in the inference of single-layer user
attributes over the last several years.

Firstly, based on resource content there are [1,11] which utilize the user’s
text content for inference. [3] constructs a social-behavior-attribute network and
design a vote distribution algorithm to perform inference. There are also meth-
ods based on the analysis of graph structure such as Local Community Detection
[6] and Label Propagation [12]. [10] discovers the correlation between item rec-
ommendation and attribute reasoning, so they use an Adaptive Graph Convo-
lutional Network to joint these two tasks. However, these methods don’t explore
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the relationship existing in the attribute hierarchy, which will greatly reduce the
effectiveness in our multilevel problem.

Another method is to build a classifier to treat the inference problem as a
multilevel classification problem. [2] trains a binary classifier for each attribute.
[8] trains a multi-classifier for each parent node in the hierarchy. [9] trains a
classifier for each layer in the hierarchical structure, and use it in combination
with [8] to solve the inconsistency. However, classifier-based approaches have a
high requirement for data quality. It will make the construction of the classifier
complicated and the amount of calculation for training is huge.

7 Conclusion

In this paper, we study the multilevel user attribute inference problem. We first
define the problem and propose the concept of semantic tree and labeled graph.
We present a new method to solve this problem. The information propagation
model is proposed to collect attributes for preliminary inference. The attribute
correction model is proposed to conduct a cross-level correction. Experimental
results on real-world data sets have demonstrated the superior performance of
our new method. In future work, we will improve our method for multi-category
attributes and do more works on optimizing the algorithm to save more time.
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Abstract. Estimating the cost of a query plan is one of the hardest
problems in query optimization. This includes cardinality estimates of
string search patterns, of multi-word strings like phrases or text snippets
in particular. At first sight, suffix trees address this problem. To curb
the memory usage of a suffix tree, one often prunes the tree to a certain
depth. But this pruning method “takes away” more information from
long strings than from short ones. This problem is particularly severe
with sets of long strings, the setting studied here. In this article, we pro-
pose respective pruning techniques. Our approaches remove characters
with low information value. The various variants determine a character’s
information value in different ways, e.g., by using conditional entropy
with respect to previous characters in the string. Our experiments show
that, in contrast to the well-known pruned suffix tree, our technique
provides significantly better estimations when the tree size is reduced by
60% or less. Due to the redundancy of natural language, our pruning
techniques yield hardly any error for tree-size reductions of up to 50%.

Keywords: Query optimization · Cardinality estimation · Suffix tree

1 Introduction

Query optimization and accurate cost estimation in particular continue to be
fundamentally important features of modern database technology [27,43]. While
cardinality estimation for numerical attributes is relatively well understood [34],
estimating the cardinality of textual attributes remains challenging [9,23,40].
This is particularly true when the query (1) contains regular expressions, e.g.,
aims to find the singular of a word and the plural, (2) searches for word chains,
e.g., high noon, or (3) a combination of both, i.e., a regular expression involving
several words. One application where this is necessary is text mining. Various
text mining tasks query co-occurring words (co-occurrences), i.e., words along-
side each other in a certain order [29,30]. Such queries are dubbed co-occurrence
queries. Co-occurrence queries are important because, in linguistic contexts, co-
occurrences indicate semantic proximity or idiomatic expressions [24]. Optimiz-
ing such queries requires estimates of the cardinality of co-occurrences.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 721–737, 2021.
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Problem Statement. To query co-occurrences, one uses search patterns like
the emancipation of * or emancipation * Catholics. A particularity of co-
occurrences is that they only exist in chains of several words (word chain), like
phrases or text snippets. This calls for cardinality estimates on a set of word
chains. Compared to individual words, word chains form significantly longer
strings, with a higher variance in their lengths. Our focus in this article is on the
accuracy of such estimates with little memory consumption at the same time.

State-of-the-Art. One approach to index string attributes is to split the strings
into trigrams, i.e., break them up into sequences of three characters [1,9,23]. This
seems to work well to index individual words. However, the trigram approach will
not reflect the connection between words that are part of a word chain. Another
method to index string attributes is the suffix tree [23,28]. Since suffix trees
tend to be large, respective pruning techniques have been proposed. A common
technique is to prune the tree to a maximal depth [23]. Since the size of a suffix
tree depends on the length of the strings [37], other pruning methods work
similarly. We refer to approaches that limit the depth of the tree as horizontal
pruning. With horizontal pruning however, all branches are shortened to the
same length. So horizontal pruning “takes away” more information from long
strings than from short ones. This leads to poor estimation accuracy for long
strings and more uncertainty compared to short ones.

Challenges. Designing a pruning approach for long strings faces the following
challenges: First, the reduction of the tree size should be independent of the
length of the strings. Second, one needs to prune, i.e., remove information, from
both short and long strings to the same extent rather than only trimming long
strings. Third, the pruning approach should provide a way to quantify the infor-
mation loss or, even better, provide a method to correct estimation errors.

Contribution. In this work, we propose what we call vertical pruning. In contrast
to horizontal pruning that reduces any tree branch to the same maximal height,
vertical pruning aims at reducing the number of branches, rather than their
length. The idea is to map several strings to the same branch of the tree, to reduce
the number of branches and nodes. This reduction of tree branches makes the tree
thinner. So we dub the result of pruning with our approach thin suffix tree (TST).
A TST removes characters from words based on the information content of the
characters. We propose different ways to determine the information content of
a character based on empirical entropy and conditional entropy. Our evaluation
shows that our pruning approach reduces the size of the suffix tree depending
on the character distribution in natural language (rather than depending on the
length of the strings). TST prunes both short and long strings to the same extent.
Our evaluation also shows that TST provides significantly better cardinality
estimations than a pruned suffix tree when the tree size is reduced by 60% or
less. Due to the redundancy of natural language, TST yields hardly any error
for tree-size reductions of up to 50%.
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Paper Outline. Section 2 features related work. We introduce the thin suffix tree
in Sect. 3. We say how to correct estimation errors in Sect. 4. Our evaluation is
in Sect. 5.1

2 Related Work

This section is split into three parts. First, we summarize lossless methods to
compress strings and suffix trees. These methods reduce the memory consump-
tion without loss of quality. Such methods allow for a perfect reconstruction of
the data and provide exact results. Second, we turn to pruning methods for suf-
fix trees. Pruning is a lossy compression method that approximates the original
data. Finally, we review empirical entropy in string applications.

String Compression Methods. There exist various methods to compress strings.
One is statistical compression, like Huffman coding [20] and Hu-Tucker cod-
ing [19]. Second, there are compressed text self-indexes, like FM-index [13].
Third, there is dictionary-based compression, like the Lempel and Ziv (LZ) com-
pression family [3,42,44]. Fourth, there are grammar-based compression meth-
ods, like Re-Pair [26]. However, these compression methods are either incompat-
ible with pattern matching or orthogonal to our work.

Suffix Tree Compression Methods. A suffix tree (or trie) is a data structure
to index text. It efficiently implements many important string operations, e.g.,
matching regular expressions. To reduce the memory requirements of the suffix
tree, there exist approaches to compress the tree based on its structure [35].
Earlier approaches are path compression [21,22] and level compression [2].
More recent compression methods and trie transformations are path decom-
positions [17], top trees [4], and hash tables [36]. Our approach in turn works on
the input strings rather than on the tree structure.

In addition to structure-based compression, there exist alphabet-based com-
pression techniques. Examples are the compressed suffix tree [18], the sparse
suffix tree [25] and the idea of alphabet sampling [10,16]. These methods reduce
the tree size at the expense of the query time. All these methods provide exact
results, i.e., are lossless compression methods. Lossless tree compression is appli-
cable in addition to tree pruning, i.e., such methods work orthogonal to our
approach.

Suffix Tree Pruning. Suffix trees allow to estimate the cardinality of string pred-
icates, i.e., the number of occurrences of strings of arbitrary length [41]. With
large string databases in particular, a drawback of suffix trees is their mem-
ory requirement [12,41]. To reduce the memory requirements of the suffix tree,
variants of it save space by removing some information from the tree [23].

1 For further information, like the procedures insert and query, see the extended ver-
sion of this article; available at https://doi.org/10.5445/IR/1000128678.

https://doi.org/10.5445/IR/1000128678
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We are aware of three approaches to select the information to be removed:
A first category is data-insensitive, application-independent approaches. This
includes shortening suffixes to a maximum length [23]. Second, there are data-
sensitive, application-independent pruning approaches that exploit statistics and
features of the data, like removing infrequent suffixes [15]. Third, there are data-
sensitive, application-dependent approaches. They make assumptions on the suf-
fixes which are important or of interest for a specific application. Based on the
application, less useful suffixes are removed [38]. For example, suffixes with typos
or optical character recognition errors are less useful for most linguistic applica-
tions. It is also possible to combine different pruning approaches. In this work,
we focus on data-sensitive and application-independent pruning.

Horizontal Pruning Approaches. Existing pruning techniques usually reduce the
height of the tree, by pruning nodes that are deeper than a threshold depth [23].
Another perspective is that all nodes deeper than the threshold are merged into
one node. We in turn propose a pruning technique that reduces the width of the
tree rather than the depth.

Empirical Entropy in String Applications. The usage frequency of characters
in natural language is unevenly distributed [39]. For this reason, the empirical
entropy is an essential tool in text and string compression. It is used in optimal
statistical coding [20] and many data compression methods [3,14].

3 The Thin Suffix Tree

To store word chains as long strings in a suffix tree efficiently, we propose the
thin suffix tree (TST). In contrast to horizontal pruning approaches, it aims at
reducing the number of branches in the tree, rather than their length. We refer
to this as vertical pruning. The idea is to conflate branches of the tree to reduce
its memory consumption. This means that one branch stands for more than one
suffix. As usual, the degree of conflation is a trade-off between memory usage
and accuracy. In this section, we (1) present the specifics of TST and (2) define
interesting map functions that specify which branches to conflate.

3.1 Our Vertical Pruning Approach

To realize the tree pruning, we propose a map function that discerns the input
words from the strings inserted into the tree. For every input word (preimage)
that one adds to the tree, the map function returns the string (image) that is
actually inserted. TST stores the image of every suffix. This map function is
the same for the entire tree, i.e., we apply the same function to any suffix to be
inserted (or to queries). Thinning occurs when the function maps several words
to the same string. The map function is surjective.

Fixing a map function affects the search conditions of the suffix tree. A suffix
tree and suffix tree approximation techniques usually search for exactly the given
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(a) A full suffix tree for the words kitten, sitten, and
sittin.

(b) The tree when using
a map function that re-
moves i and e.

Fig. 1. The impact of character-removing map functions on a suffix tree.

suffix, i.e., all characters in the given order. Our approximation approach relaxes
this condition to words that contain the given characters in the given order, but
may additionally contain characters that the map function has removed. For
example, instead of querying for the number of words that contain the exact
suffix mnt, one queries the number of words that contain the characters m, n, and t
in this order, i.e., a more general pattern. We implement this by using a map
function that removes characters from the input strings. We see the following
two advantages of such a map functions: (1) Branches of similar suffixes conflate.
This reduces the number of nodes. (2) The suffix string gets shorter. This reduces
the number of characters. Both features save memory usage.

3.2 Character-Removing Map Functions

A character-removing map function removes characters from a given string.

Definition 1. A character-removing map function is a function that maps a
preimage string to an image string by removing a selection of specific characters.

To remove characters systematically, we consider the information value of
the characters. According to Shannon’s information theory, common charac-
ters carry less information than rare ones [8,33]. This is known as Shannon
entropy of the alphabet. The occurrence probability P (c) of a character c is its
occurrence frequency relative to the one of all characters of the alphabet Σ:
P (c) = frequency(c)∑

σ∈Σ frequency(σ) . The information content of a character c is inversely

proportional to its occurrence probability P (c): I(c) = 1
P (c) . According to Zipf’s

law, the occurrence probability of each c is inversely proportional to its rank
in the frequency table [39]: P (c) ∼ 1

rank(c) . Thus, the information content of
character c is proportional to its rank: I(c) ∼ rank(c). To create an tree of
approximation level n, a map function removes the n most frequent characters
in descending order of their frequency.

Example 1. The characters e, t, and a (in this order) are the three most frequent
characters in English text. At approximation degree 3, a map function maps the
input word requirements to the string rquirmns.
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Example 2. Figure 1a shows the full suffix tree for the words kitten, sitten,
and sittin. Its size is 288 bytes. The exact result of the regular expression
*itten is 2 counts. For illustrative purposes, we keep character t and show the
impact of a map function that removes characters e and i. Figure 1b shows the
corresponding tree. It has a size of 192 bytes and, thus, saves 33% of memory
usage. When we query the regular expression *itten, the result is 3 counts. So
it now overestimates the cardinality.

3.3 More Complex Map Functions

When removing characters of the input words, one can also think of more com-
plex map functions. We see two directions to develop such more complex func-
tions: (1) Consider character chains instead of single characters or (2) respect
previous characters. We will discuss both directions in the following.

Removing Character Chains. The map function considers the information con-
tent of combinations of several consecutive characters, i.e., character chains. Take
a string s = c1c2c3 that consists of characters c1, c2, and c3. We consider char-
acter chains of length o and create a frequency table of character chains of this
length. The information content of a character chain c1 . . . co is proportional to
its rank: I(c1 . . . co) ∼ rank(c1 . . . co). Our character-chain-removing map func-
tion is a character-removing map function that removes every occurrence of the
n most frequent character chains of the English language of length o.

Example 3. A character-chain-removing map function removing the chain re
maps the input requirements to quiments.

Using Conditional Entropy. We define a character-removing map function that
respects one or more previous characters to determine the information content
of a character c1. Given a string s = c0c1c2, instead of using the character’s
occurrence probability P (c1), a conditional-character removing map function
considers the conditional probability P (c1|c0). Using Bayes’ theorem, we can
express the conditional probability as P (c1|c0) = frequency(c0c1)

frequency(c0)
. Since the fre-

quencies for single characters and character chains are roughly known (for the
English language for instance), we compute all possible conditional probabilities
beforehand. So we can identify the n most probable characters with respect to
previous characters to arrive at a tree approximation level n.

Example 4. A map function removes e if it follows r. Thus, the function maps
the input word requirements to rquirments.

3.4 A General Character-Removing Map Function

In this section, we develop a general representation of the map functions proposed
so far, in Sects. 3.2 and 3.3. All map functions have in common that they remove
characters from a string based on a condition. Our generalized map function has
two parameters:
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Observe. The length of the character chain to observe, i.e., the characters we
use to determine the entropy. We refer to this as o. Each map function requires
a character chain of at least one character, i.e., o > 0.

Remove. The length of the character chain to remove. We refer to this as r
with 0 < r ≤ o. For r < o, we always remove the characters from the right
of the chain observed. In more detail, when observing a character chain c0c1,
we determine the conditional occurrence probability of character c1 using
P (c1|c0). Therefore, we remove character c1, i.e., the rightmost character in
the chain observed.

We refer to a map function that observes and removes single characters as o1r1,
to ones that additionally observe one previous character and remove one char-
acter as o2r1, and so on.

3.5 Cases of Approximation Errors

Character-removing map functions may lead to two sources of approximation
error, by (1) conflating tree branches and (2) by the character reduction itself.

Case 1: Branch Conflation. In most cases, when removing characters, words still
map to different strings and, thus, are represented differently in the tree. But in
some cases, different words map to the same string and these words correspond
to the same node. For example, when removing the characters e and t, the map
function maps water and war to the same string war. The occurrences of the
two words are counted in the same node, the one of war. Thus, the tree node
of war stores the sum of the numbers of occurrences of war and water. So TST
estimates the same cardinality for both words.

Case 2: Character Reduction. A character-removing map function shortens most
words. But since it removes the most frequent characters/character chains first,
it tends to keep characters with high information value. However, with a very
high approximation degree, a word may be mapped to the empty string. Our
estimation in this case is the count of the root node, i.e., the total number of
strings in the tree.

4 Our Approach for Error Correction

Since we investigate the causes of estimation errors, we now develop an approach
to correct them. Our approach is to count the number of different input strings
that conflate to a tree node. Put differently, we count the number of different
preimages of a node. To estimate the string cardinality, we use the multiplica-
tive inverse of the number of different input strings as a correction factor. For
example, think of a map function that maps two words to one node., i.e., the
node counts the cardinality of both strings. TST estimates half of the node’s
count for both words.
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4.1 Counting the Branch Conflations

To compute the correction factor, we need the number of different input words
that map to a node. To prevent the tree from double counting input words,
each node has to record words already counted. A first idea to do this may
be to use a hash table. However, this would store the full strings in the tree
nodes and increase the memory usage by much. The directed acyclic word graph
(DAWG) [6] seems to be an alternative. It is a deterministic acyclic finite state
automaton that represents a set of strings. However, even a DAWG becomes
unreasonably large, to be stored in every node [7]. There also are approximate
methods to store a set of strings. In the end, we choose the Bloom filter [5]
for the following reasons: Firstly, it needs significantly less memory than exact
alternatives. Its memory usage is independent of the number as well as of the
length of the strings. Secondly, the only errors are false positives. In our case,
this means that we may miss to count a preimage. This can lead to a slightly
higher correcting factor, e.g., 1

3 instead of 1
4 or 1

38 instead of 1
40 . As a result, the

approximate correction factor is always larger than or equal to the true factor.
This means that our correction factor only affects the estimation in one direction,
i.e., it only corrects an overestimated count.

To sum up, our approach to bring down estimation errors has the following
features: For ambiguous suffixes, i.e., ones that collide, it yields a correction fac-
tor in the range (0, 1). This improves the estimation compared to no correction.
For unambiguous suffixes, i.e., no collision, the correction factor is exactly 1.
This means that error correction does not falsify the estimate.

4.2 Counting Fewer Input Strings

TST stores image strings, while our error correction relies on preimage strings.
Since the preimage and the image often have different numbers of suffixes (they
differ by the number of removed characters), our error correction may count
too many different suffixes mapped to a node. For example, take the preimage
water. A map function that removes characters a and t returns the image war.
The preimage water consists of 5 suffixes, while the image war consists of 3. This
renders the correction factor too small and may result in an underestimation.

We count too many preimages iff a preimage suffix maps to the same image as
its next shorter suffix. This is the case for every preimage suffix that starts with
a character that is removed by the map function. We call the set of characters a
map function removes trim characters. This lets us discern between two cases:
First, the map function removes the first character of the suffix (and maybe
others). Second, the map function keeps the first character of the suffix and
removes none, exactly one or several characters within it. To distinguish between
the two cases, we check whether the first character of the preimage suffix is a
trim character. This differentiation also applies to complex map functions that
reduce multiple characters from the beginning of the suffix. To solve the issue of
counting too many different preimages, our error correction only counts preimage
strings which do not start with a trim character.
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5 Experimental Evaluation

In this section, we evaluate our thin suffix tree approach. We (1) define the
objectives of our evaluation, (2) describe the experimental setup, and (3) present
and discuss the results.

5.1 Objectives

The important points of our experiments are as follows.

Memory Usage. We examine the impact of our map functions on the size of
the suffix tree.

Map Function. We study the effects of our map functions on the estimation
accuracy and analyze the source of estimation errors.

Accuracy. We investigate the estimation accuracy as function of the tree size.
Query Run Time. We evaluate the query run times, i.e., the average and the

distribution.

We rely on two performance indicators: memory usage, i.e., the total tree size,
and the accuracy of the estimations. To quantify the accuracy, we use the
q-error, a maximum multiplicative error commonly used to properly measure the
cardinality estimation accuracy [11,31]. The q-error is the preferred error metric
for cardinality estimation, since it is directly connected to costs and optimality
of query plans [32]. Given the true cardinality f̂ and the estimated cardinality f ,
the q-error is defined as: max

(
f

f̂
, f̂

f

)
.

5.2 Setup

Our intent is to benchmark the approaches in a real-world scenario. In addition,
we inspect and evaluate the impact of different character-removing map func-
tions on the tree. We now describe the database and the queries used in the
experiments.

Database. For pattern search on word chains, we use the 5-grams from the
English part of the Google Books Ngram corpus.2 We filter all words that contain
a special character, like a digit.3 At the end, we randomly sample the data set
to contain 1 million 5-grams.

2 The Google Books Ngram corpus is available at http://storage.googleapis.com/
books/ngrams/books/datasetsv2.html.

3 We use Java’s definition of special characters. See function isLetter() of class
Java.lang.Character for the full definition.

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Fig. 2. TST’s memory usage for various map functions and approximation levels.

Queries. Users may be interested in querying the number of 5-grams that start
with a specific word or a specific word chain. Others may want to query for
the number of different words that are used together with a specific word or
word chain. The answer to both types of question is the cardinality of a search
pattern. For our evaluation, we create 1000 queries requesting the cardinality of
the 1000 most common nouns in the English language. For example, we query
the number of 5-grams containing words like way, people, or information.

Parametrization. Each TST uses a single character-removing map function. The
indicators o and r specify the character-removing map function, i.e., how a
map function works. Each function has a character frequency list that stores
all characters in descending order of their frequency. Hence, we use the list pro-
vided by Peter Norvig in English Letter Frequency Counts: Mayzner Revisited
or ETAOIN SRHLDCU 4. To specify the approximation level of the suffix tree,
we parametrize the chosen character-removing map function with the number of
characters x that are removed by it. This means that the function takes the first
x characters from the character frequency list to specify the set of characters
removed by the map function. The competitor has the level of approximation as
parameter. The parameter specifies the maximal length of the suffixes to store in
the tree. Depending on the string lengths of the database, reasonable parameter
values lie between 50 and 1 [39].

Technical Details. Our implementation makes use of SeqAn5, a fast and robust
C++ library. It includes an efficient implementation of the suffix tree and of the
suffix array together with state-of-the-art optimizations. We run our experiments
on a AMD EPYC 7551 32-Core Processor with 125 GB of RAM. The machine’s
operating system is an Ubuntu 18.04.4 LTS on a Linux 4.15.0-99-generic kernel.
We use the C++ compiler and linker from the GNU Compiler Collection in
version 5.4.0.

4 The article and the list are available at https://norvig.com/mayzner.html.
5 The SeqAn library is available at https://www.seqan.de.

https://norvig.com/mayzner.html
https://www.seqan.de
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5.3 Experiments

We now present and discuss the results of our experiments.

Experiment 1: Memory Usage. In Experiment 1, we investigate how a
character-removing map functions affects the memory consumption of a TST.
We also look at the memory needs of a pruned suffix tree (PST) and compare
the two. In our evaluation, we inspect chains of lengths up to 3 (o = {1, 2, 3})
and in each case remove 1 to o characters. Figure 2 shows the memory usage of
the TST for various map functions and approximation levels. The figure con-
tains four plots. The first three (from the left) show the memory usage for map
functions that observe character chains of length 1, 2, or 3. The right plot shows
the memory usage of the pruned suffix tree contingent on the maximal length of
the suffixes. Note that there are different scales on the x-axis. The database we
use in this evaluation includes 179 different characters, 3,889 different character
chains of length two, and 44,198 different chains of length three.

The Effect of Character-Removing Map Functions. For a deeper insight into our
pruning approach, we now study the effect of character-removing map functions
on the memory consumption of a suffix tree in more detail. As discussed in
Sect. 3.5, there are two effects that reduce memory consumption: branch confla-
tion and character reduction. See Fig. 2. All map functions yield a similar curve:
They decrease exponentially. Hence, removing the five most frequent characters
halves the memory usage of a TST with map function o1r1.

The frequency of characters and character chains in natural language follows
Zipf’s law, i.e., the Zeta distribution [39]. Zipf’s law describes a relation between
the frequency of a character and its rank. According to the distribution, the first
most frequent character nearly occurs twice as often as the second one and so
on. All character-removing map functions in Fig. 2 show a similar behavior: Each
approximation level saves nearly half of the memory as the approximation level
before. For example, map function o1r1 saves nearly 65 MB from approximation
level 0 to 1 and nearly 40 MB from approximation level 1 to 2. This shows the
expected behavior, i.e., character reduction has more impact on the memory
usage of a TST than branch conflation.

The Effect of Horizontal Pruning. The right plot of Fig. 2 shows the memory
usage of a pruned suffix tree. The lengths of words in natural language are
Poisson distributed [39]. In our database, the strings have an average length
of 25.9 characters with a standard deviation of 4.7 characters. Since the prun-
ing only affects strings longer than the maximal length, the memory usage of
the pruned suffix tree follows the cumulative distribution function of a Poisson
distribution.

Summary. Experiment 1 reveals two points. First, the tree size of TST and of
the pruned suffix are markedly different for the various approximation levels.
Second, the memory reduction of a TST is independent of the length of the
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Fig. 3. TST’s q-error for various map functions and approximation levels.

strings in the database. Its memory reduction depends on the usage frequency
of characters in natural language. Third, the tree sizes for the different character-
removing map functions tend to be similar, except for one detail: The shorter
the chain of observed characters, i.e., the smaller o, the more linear the reduction
of the tree size over the approximation levels.

Experiment 2: Map Functions. In Experiment 2, we investigate the impact
of map functions on estimation accuracy. We take the map functions from Exper-
iment 1 and measure the q-error at several approximation levels. See Fig. 3. The
right plot is the q-error with the pruned suffix tree. The points are the median
q-error of 1000 queries. The error bars show the 95% confidence interval of the
estimation. Note that Fig. 3 shows the estimation performance as a function of
the approximation level of the respective map function. So one cannot compare
the absolute performance of different map functions, but study their behavior.
The plots show the following. First, the map functions behave differently. At
low approximation levels, the map function o1r1 has a very low q-error. The
q-error for this function begins to increase slower than for map functions consid-
ering three-digit character chains. At high approximation levels, the q-error of
map function o1r1 is significantly higher than for all the other map functions.
The other map functions, the ones that consider three-digit character chains in
particular, only show a small increase of the q-error for higher approximation
levels. Second, the sizes of the confidence interval differ. With map functions
that remove characters independently from previous characters, i.e., o1r1, o2r2,
and o3r3, the confidence interval becomes larger with a larger approximation
level. For map functions that remove characters depending of previous charac-
ters, i.e., o2r1, o3r1, or o3r2, the confidence interval is smaller. This means
that, for lower approximation levels and map functions that remove characters
depending on previous characters in particular, our experiments yield reliable
results. We expect results to be the same on other data. Third, the accuracy of
the pruned suffix tree increases nearly linear with increasing approximation lev-
els until it sharply increases for very short maximal strings lengths. This means
that every character that is removed from the back of the suffix contributes a
similar extent of error to an estimation.
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Fig. 4. The estimation accuracy as func-
tion of the tree size.

Fig. 5. The query run time of the TST.

Summary. None of our map functions dominates all the other ones. It seems to
work best to remove single characters dependent on either 0, 1, or 2 previous
characters, i.e., map functions o1r1, o2r1, or o3r1. For low approximation levels,
say up to a reduction of 50% of the tree size, map function o1r1 performs
well. For high approximation levels, say starting from a reduction of 50% of the
tree size, one should use a map function that removes characters dependent on
previous ones, i.e., map function o2r1 or o3r1.

The first five approximation levels of map function o1r1 are of particular
interest, as they show good performance in Experiments 1 and 2. In the first
approximation levels, this map function yields a very low q-error, see Fig. 3,
while the tree size goes down very rapidly, see Fig. 2. In Experiments 1 and 2,
we inspect (1) the tree size depending on the approximation and (2) the q-error
depending on the approximation level. In many applications, one is interested in
the q-error depending on the tree size rather than on the approximation level.
In our next experiment, we compare the q-error of our map functions for the
same tree sizes.

Experiment 3: Accuracy. In Experiment 3, we compare the map functions
from Experiment 1 against each other and against existing horizontal pruning.
Figure 4 shows the q-error as function of the tree size. For the sake of clarity,
there are two plots for this experiment: The plot on the left side shows the map
functions that remove characters independently from previous characters. The
plot on the right side is for the remaining map functions.

Vertical Pruning vs. Horizontal Pruning. Figure 4 shows the following: TST
produces a significantly lower q-error than the pruned suffix tree for all map
functions used and for tree sizes larger than 60% of the one of the full tree. For
smaller sizes, the accuracy of most map functions does not become much worse
than the one of the pruned suffix tree. The only exception is o1r1. At a tree size
of 50%, the q-error of o1r1 starts to increase exponentially with decreasing tree
size.
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Summary. As Experiments 1 and 2 already indicate, map function o1r1 achieves
a very low q-error to tree size ratio, for tree size reductions of up to 60%. For this
map function, TST yields a significantly lower q-error than the pruned suffix tree
for comparable tree sizes. The intuition behind this result is that our vertical
pruning respects the redundancy of natural language. Due to this redundancy,
map function o1r1 keeps most input words unique. This results in almost no
errors for reductions of the tree size that are less than 50%. TST also shows
a higher degree of confidence, i.e., a smaller 95% confidence interval, than the
pruned suffix tree for reductions that are less than 40%.

Experiment 4: Query Run Time. In Experiment 4, we compare the query
run time of the TST using different map functions with the one of a pruned
suffix tree. We consider sample tree sizes of 300 and 200 MB. Figure 5 shows the
average and distribution of the run time for all queries. There is no significant
difference in the run time. TST potentially needs a slightly higher run time than
a pruned suffix tree. This is because TST is potentially deeper than a pruned
suffix tree and additionally executes a map function. To conclude, the additional
work of TST is of little importance for the query run time compared to a pruned
suffix tree.

6 Conclusions

Cardinality estimation for string attributes is challenging, for long strings in
particular. Suffix trees allow fast implementations of many important string
operations, including this estimation. But since they tend to use much memory,
they usually are pruned down to a certain size. In this work, we propose a novel
pruning technique for suffix trees for long strings. Existing pruning methods
mostly are horizontal, i.e., prune the tree to a maximum depth. Here we propose
what we call vertical pruning. It reduces the number of branches by merging
them. We define map functions that remove characters from the strings based
on the entropy or conditional entropy of characters in natural language. Our
experiments show that our thin suffix tree approach does result in almost no
error for tree size reductions of up to 50% and a lower error than horizontal
pruning for reductions of up to 60%.
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1 Introduction

With the widespread use of mobile devices and the popularity of location based
services (LBS), a large number of spatio-textual objects have been generated
[15]. The top-k spatial keyword (SK) query, as one of the most important query
forms in LBS, has been widely studied in academia and industry [17,19]. A top-k
SK query takes a spatial coordinate, a set of keywords as the query requirements,
and returns k objects that best match the query requirements.

In some cases, after a user initiates a top-k SK query, some of user-desired
objects (missing objects) may not appear in the query result set. The user may
then wonder why these objects disappeared, whether any other unknown relevant
objects disappeared, or even question the whole query result. Therefore, it is
necessary to explain the reasons for the loss of these expected objects and to
provide a refined query that returns all the missing objects and the original
query result objects.

Example 1. John is thirsty in the office and wants a cup of milk tea. Then he
launches a query to find the top-3 milk tea shops nearby. However, he unexpect-
edly finds that both a nice mobile milk tea stall and the milk tea shop he used to
visit are not in the query result. John wants to know why his desired objects are
missing and how to obtain a refined query so that all missing shops and other
possible better options appear in the refined query result set.

John’s questions in the above example are called why-not questions. Query
Refinement can retrieve all missing objects for the user by adjusting the original
query requirements, compared to other methods on answering why-not ques-
tions, such as Manipulation Identification, Ontology and Database Modification.
Chen et al. [4] answered why-not questions on spatial keyword top-k queries
by adjusting the weight between spatial relevance and textual similarity. Later,
Zhao et al. [25], Wang et al. [18] and Zheng et al. [26] dealt with why-not ques-
tions on geo-social spatial keyword queries, SPARQL queries and group queries,
respectively.

However, existing researches mainly focus on why-not questions in top-k SK
queries over static objects [4,25], and as far as we know, there is no research on
the why-not questions in SK queries over moving objects. Four factors make it
more challenging to answer why-not questions on top-k spatial keyword queries
over moving objects (Top-k WSKM queries). First of all, different moving objects
have different motion patterns, such as moving direction and moving speed. How
to reasonably define the motion pattern of moving objects is a challenge. Sec-
ondly, the probability of a moving object appearing in a region at a certain time
is a continuous variable. How to set up the probability density function to calcu-
late the probability that a moving objects will appear in a region over a period of
time is also a problem worth considering. Thirdly, during refined query process-
ing, some of original query result objects and missing objects may move away
from the query point. How to prune the search space as much as possible while
ensuring that these moving objects are not pruned is also worth consideration.
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Finally, a large number of objects move around the system, which means that
object inserts and deletes frequently occur in the index before the refined queries
are executed. Frequent inserts and deletes can be a waste of time, but users need
to obtain query results as quickly as possible, which is a contradiction.

To address these challenges, we first define the movement patterns of moving
objects. Assuming that a moving object has a probability density of appearing
at a point in an area at a given time, we can then calculate the probabilities
of moving objects appearing in that area at a time point and over a period of
time, respectively. We formulate the why-not questions on spatial keyword top-k
queries over moving objects (Top-k WSKM queries), and propose a cost model to
measure the modification degree of refined queries compared with the original
query, so as to obtain the refined query with the minimum modification cost.
To deal with Top-k WSKM queries efficiently, a two-level index called Shadow
and a three-phase query processing method based on Shadow are proposed. The
first phase is to generate some promising refined queries with different query
requirements and filter those unpromising refined queries before executing any
promising refined queries. The second phase is to reduce the search space as
much as possible by analyzing the spatial relationship among OA (Original Query
Result Area), AA (Actual Refined Query Result Area) and IA (Irrelevant Area),
and by using the principle of 3σ in normal distribution. The third phase is to
determine which promising refined query will be returned to the user.

The key contributions are summarized as follows:

– We formulate why-not questions on top-k spatial keyword queries over moving
objects (Top-k WSKM queries). To our knowledge, this is the first work on
this issue.

– A novel index Shadow is proposed to organize the textual, spatial and motion
pattern information of the objects. Shadow calculates the probability of mov-
ing objects appearing in a certain area within a certain period of time by
analyzing the motion pattern of moving objects, helping users to capture the
refined queries with the minimum cost as fast as possible.

– Extensive experiments are conducted on three real datasets to show the fea-
sibility of Shadow.

2 Related Work

2.1 Spatial Keyword Query

To deal with top-k SKQ queries, Li et al. [12] proposed a hybrid index named
IR-tree, which introduces inverted files into each leaf node of R-tree. Zhang
et al. [24] proposed a novel index called I3 to capture k best objects for the
user. In addition, Zhang et al. [23] also proposed an index called IL-Quadtree
to organize objects and handle top-k SKQ queries effectively. In recent years,
Yang et al. [21] proposed HGR-tree to process spatial keyword search with fuzzy
token matching, which considers approximate keyword matching rather than
exact keyword matching. Cui et al. [7] focused on processing Boolean-Boolean
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spatial keyword queries while preserving the confidential information of users. In
addition, Chen et al. [6] studied the Cluster-based continuous spatial keyword
queries based on the publish/subscribe problem and proposed a novel solution to
efficiently cluster, feed, and summarize a stream of geo-textual messages. Yao et
al. [22] studied the computation of trajectory similarity, and proposed a method
called NeuTraj to further improve the efficiency of neural-network based trajec-
tory similarity computation.

2.2 Moving Objects Query

Dittrich et al. [8] proposed a mobile object indexing technique called MOVIES,
which has no complex index structure, but constructs short-term discarded
indexes with simple concepts to achieve high query processing speed and high
index update rate. Heendaliya et al. [11] summarized the early work of mobile
object processing in Euclidean space and road network, and provided solutions
for the management and processing of mobile objects in road network environ-
ment. Shen et al. [16] proposed a balanced search tree named V-tree for dealing
with k nearest neighbor (kNN) queries of moving objects with road-network con-
straints. Cao et al. [1] proposed a scalable and in-memory kNN query processing
technique, which uses an R-tree to store the topology of the road network and
a hierarchical grid model to process the moving objects in non-uniform distri-
bution. In addition, Dong et al. [9] answered direction-aware KNN queries for
moving objects in the road network. Xu et al. [20] summarized the research on
moving objects with transportation modes in the last decade.

2.3 Why-Not Question

The why-not question was first proposed by Chapman et al. [2]. To deal with why-
not questions, Manipulation Identification Ontology Database Modification [27]
and Query Refinement [10] are presented. Query Refinement is widely used to
answer why-not questions, since the missing objects cannot become the query
result objects returned to the user by adopting Manipulation Identification or
Ontology and the user usually does not have the right to modify the data in the
database when using Database Modification [13]. Query Refinement was adopted
by Chen et al. [4] to first answer why-not questions on top-k spatial keyword
queries. In [5], they tried to find more accurate query keywords to fit all the
missing objects into the refined query result set, while keeping other original
query requirements unchanged. In addition, they answered why-not questions on
direction-aware spatial keyword top-k queries by modifying the original query
direction [3]. In recent years, Zhao et al., Zheng et al. and Miao et al. answered
why-not questions on top-k geo-social keyword queries in road networks [25],
group spatial keyword queries [26] and range-based skyline queries in road net-
works [14], respectively.
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3 Preliminaries and Problem Formulation

3.1 Top-k Spatial Keyword Query over Moving Objects

In existing related work, a spatio-textual object (object for short) o ∈ O is
usually defined as o = (o.loc, o.doc), where o.loc is a two-dimensional spatial
point and o.doc is a set of keywords. In reality, however, objects do not always
stand still; they may keep moving. The moving object om usually has certain
motion characteristics, such as the maximum speed vmax(om), the minimum
speed vmin(om), and the actual speed vt(om) at time t. These characteristics
are called the moving ability of object om at time t, MAt(om), which is defined
as (vmax(om), vmin(om), vt(om)). Note that in the real world, moving objects
usually have their destinations, so we assume that each moving object moves
towards its destination without changing direction or returning.

Thus given a spatial point o.loc, a set of keywords o.doc and the moving
ability MAt(o)), an object o ∈ O can be expressed as o = (o.loc, o.doc,MAt(o)).
Note that when MAt(oi) is empty, the object oi is static.

Given a query point q.loc, a keyword set q.doc, and two values α and k, then
a Top-k spatial keyword query over moving objects (Top-k SKM query) q =
〈q.loc, q.doc, α, k〉 retrieves k best objects from O, based on a ranking function
that considers both the spatial proximity and textual similarity between the
query q and objects, where α is the smooth parameter that satisfies 0 ≤ α ≤ 1.

Fig. 1. An example of the top-k spatial keyword query over moving objects

We use a widely used ranking function to measure the similarity between
query q and object o as follows:

Rank(q, o) = α · (1 − SD(o, q)) + (1 − α) ST (o, q) (1)
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where SD(o, q) and ST (o, q) are normalized spatial distance and textual sim-
ilarity, respectively. ST (o, q) = |q.doc

⋂
o.doc|

|q.doc
⋃

o.doc| , and SD(o, q) = DE(q,o)
MaxDE

, where
DE(q, o) is the Euclidean distance between q and o, and MaxDE represents the
maximal distance between any two objects in O.

Example 2. As shown in Fig. 1(a), a query q and 18 objects are distributed in
the search space, and the normalized spatial distances and textual similarity
information between the query and objects are shown in Fig. 1(b). When the
user initiates a top-3 SKM query with α = 0.5 as the input, objects o2, o5 and
o13 are returned as the query results, since these objects have higher ranking
scores than other objects.

3.2 Why-Not Questions on Top-k Spatial Keyword Query over
Moving Objects

When the user initiates a top-k spatial keyword query over moving objects (Top-k
WSK query) q = (loc, doc, k, α), k objects are returned to form the original query
result set oR. If some query parameters are improperly set, one or more user-
desired objects may unexpectedly disappear, which are called missing objects.
We denote the missing object set as mO. In existing research on why-not ques-
tions, all objects in O are treated as static objects. Our model can deal directly
with this simple case by leaving the moving ability MAt(o) empty, and the cor-
responding refined query result set is called the static refined query result set
sR.

Example 3. Continuing with Example 2, the user obtains an original result set
oR = {o2, o5, o13}, and we assume mO = {o4, o9}. If all objects in Fig. 1 are
static, then existing methods (such as [4]) can be used to return the user a
refined query q = (loc, doc, 7, 0.6) to get the static refined query result set sR =
{o2, o5, o13, o4, o3, o8, o9}.

However, some objects are often constantly moving, and existing methods
cannot directly handle the why-not questions on Top-k SKM queries. To this
end, we focus on why-not questions on top-k spatial keyword query over moving
objects (Top-k WSKM query for short). Since query users often do not know
how to choose an initial value to balance the relative importance between spatial
proximity and textual similarity, the initial α value often does not accurately
express users’ preference. Hence, we adjust α to capture a refined query result
set rR containing oR and mO, some of which are moving objects. Since the refined
query result set must include all original query results and missing objects, its
size k′ is greater than k. Note that we can adjust other query parameters to
achieve our goal, but this paper only explores how to adjust α to achieve that
goal. For ease of expression, we first give the following definitions.

Definition 1. (Original Query Result Area, OA for short). Given a Top-k SKM
query q = (loc, doc, k, α) with a query result set oR, there is an object oi ∈ oR,
∀o ∈ oR − {oi}, d(q, o) ≤ d(q, oi). Then the original query result area can be
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defined as a circular area with the query point q.loc as the center and d(q, oi) as
the radius.

Definition 2. (Actual Refined Query Result Area, AA for short). Given a Top-
k SKM query q with a query result set oR and a missing object set mO, there are
a moving object om

k ∈ oR∪mO and a static object oj ∈ oR∪mO, ∀ moving objects
om ∈ oR∪ mO−{om

k }, we have MAX{vmin(om
k ) · (tt − ts)+d(q, om

k ), d(q, oj)} ≥
vmax(om) · (tt − ts) + d(q, om), where ts is the starting time of q and tt is the
starting time of the refined query of q. MAX{a, b} returns the maximum value
between a and b. Then the actual refined query result area can be defined as a
circular area with the query point q.loc as the center and MAX{vmin(om

k ) · (tt −
ts) + d(q, om

k ), d(q, oj)} as the radius.

Definition 3. (Irrelevant Area, IA for short). Given AA, the irrelevant area is
defined as the region outside of AA.

To measure the modification degree of a refined query q′ = (loc, doc, k′, α′)
relative to the original query q = (loc, doc, k0, α), a modification cost model is
defined as follows.

cost(q, q′) = β · |α′ − α|
Δαmax

+ (1 − β) · |k′ − k0|
Δk

(2)

where β ∈ [0, 1] is a weight to represent the user’s preference for adjusting α
or k, and Δαmax and Δk are the maximum possible modifications of α and k,
respectively. We then formulate the why-not questions on top-k spatial keyword
query over moving objects as follows.

Definition 4. (Why-Not questions on Top-k Spatial Keyword Query over Mov-
ing Objects, Top-k WSKM query for short). Given an original Top-k SKM query
q = (loc, doc, k0, α), an original query result set oR and a missing object set mO,
the Top-k WSKM query returns a refined query q′ = (loc, doc, k′, α′) with the
minimum modified cost according to Eq. (2) and its result set rO ⊇o R ∪m O.

4 Moving Objects and Probability Distribution Function

4.1 Moving Ability

As discussed in the previous section, each moving object has a destination and its
moving ability. Since a moving object om

i has the maximum speed vmax(om
i ) and

the minimum speed vmin(om
i ), the moving distance of om

i in the time interval Δt
is within the range of [vmin(om

i ) · Δt, vmax(om
i ) · Δt]. For the sake of discussion,

we further assume that a moving object, no matter how fast it moves, moves
towards its destination and arrives at its destination at a specified time point.

As shown in Fig. 2(a), a moving object om
i moves from point A to point

B. If it keeps moving at its maximum speed, vmax(om
i ), and it needs to reach

point B at time tt, then its trajectory is arc AB, denoted as ˜AB. Similarly, the
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trajectory of this object moving at the minimum speed vmin(om
i ) is the line AB.

When moving at speed vt(om
i ), the movement of object om

i at time t will be
limited to the region bounded by the two ˜AB arcs, which is called the moving
region of om

i . Note that t ∈ [ts, tt] and vt(om
i ) ∈ [vmin(om

i ), vmax(om
i )]. Therefore,

the length of line AB is vmin(om
i )·(tt−ts) and the length of ˜AB is approximately

equal to vmax(om
i ) · (tt − ts).

Now, we discuss how to calculate the area of the moving region mentioned
above. As shown in Fig. 2(b), γ represents half of the circumference angle cor-
responding to ˜AB. Then we have 2π · vmin(om

i )·(tt−ts)
2sinγ · 2γ

2π = vmax(om
i ) · (tt − ts).

By simplifying it, we have sinγ
γ = vmin(om

i )
vmax(om

i ) . Since γ ∈ (0, π
2 ), then we can

find a value γ1 ∈ (0, π
2 ) to make sure that sinγ1

γ1
= vmin(om

i )
vmax(om

i ) as shown in
Fig. 2(c). Then the whole area of om

i ’s moving region can be calculated as fol-
lows: 2 · π · (vmin(om

i )·(tt−ts)
2sinγ1

)2 · 2γ1
2π - 2 · 1

2 · vmin(om
i ) · (tt − ts) · vmin(om

i )·(tt−ts)
2tanγ1

=
(vmin(om

i )·(tt−ts))
2

2sinγ1
· (vmax(o

m
i )

vmin(om
i ) − cosγ1).

Fig. 2. The moving ability of a moving object

By the way, we can also calculate the function expressions of the two arcs
˜AB. Due to space limitation, we do not give the detailed calculation process, but
denote them as f t

1(o
m
i ) and f t

2(o
m
i ). Then the whole area of om

i ’s moving region
can be calculated in another way as follows:

∫ tt

ts
|f t

1(o
m
i ) − f t

2(o
m
i )| dt.

4.2 Probability Density and Probability

Since the speed of a moving object om
i is not fixed, the position that om

i moves
to at time t should be on a curve l. As we all known, spatial indexing is based
on dividing the whole search space into basic units, which we call basic cells.
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Therefore, for any given spatial index, the curve l may appear in one or more
basic cells.

Suppose the curve l appears in n basic cells at time t, called C1, C2, ..., Cn,
and the parts of the curve that appear in these basic cells are called l1, l2, ..., ln,
respectively. Then

∑n
i=1 li = 1 and li > 0. If the probability density of om

i

appearing at a point on curve l at time t is pt
l(o

m
i ), then the probability of

om
i appearing on part li is P t

li
(om

i ) =
∫

li
pt

l(o
m
i )dl. Note that

∑n
i=1 P t

li
(om

i ) =
∑n

i=1

∫
li

pt
l(o

m
i )dl = 1.

Since the possible positions of the moving object om
i at different time points

consist of different curves, the intersecting parts of different curves with a basic
cell can be obtained. Hence, we can calculate the probability of om

i appearing in

a basic cell during time t1 to t2 as follows: P t2−t1
li

=
∫ t2

t1
P t

li
(om

i )dt
∫ t2

t1
lidt

.

Figure 3 shows the movement of the moving object om
i from ts to tt. It appears

in the basic cell C2 and C1 at time t1 and t2, respectively. At time t3, the part
of the position curve of om

i appearing in C1 and C2 is l1 and l2, respectively.
Then if the probability density of l1 and l2 is pt

l(o
m
i ), the probability of om

i

appearing on l1 and l2 is P t
l1

(om
i ) =

∫
l1

pt
l(o

m
i )dl and P t

l2
(om

i ) =
∫

l2
pt

l(o
m
i )dl,

respectively. Since the probability of om
i appearing in C1 is different at different

time point t ∈ [t2, t3], the probability of om
i appearing in C1 from t2 to t3 is

P t3−t2
l1

=
∫ t3

t2
P t

l1
(om

i )dt
∫ t3

t2
l1dt

.

Fig. 3. An example of a moving object and two basic cells
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4.3 Probability Distribution Function and Normal Distribution

After discussing how to calculate the probability of a moving object appearing
in a basic cell over a period of time, we give a probability distribution function
as follows.

P t−ts

li
=

∫ t

ts

∫
li

pt
l(o

m
i )dldt

∫ t

ts
lidt

(3)

This probability distribution function can be used in two aspects: 1) Given
two time points ti and tj , where ts ≤ ti < tj ≤ tt, the probability of a moving
object appearing in a basic cell during ti to tj can be calculated; 2) Given a
starting time ts, if we want the probability of a moving object om

i appearing in a
basic cell ci to be greater than a certain value, a critical time tk can be calculated
so that the probability of om

i appearing in ci is greater than that value during
ts to t, where t ∈ (tk, tt).

As mentioned in Sect. 4.2, at time t, the curve l is divided into n parts:
l1, l2, ..., ln, each of which has a certain probability that object om

i appears
on it. In the same way, we can calculate the probabilities of om

i appearing in
C1, C2, ..., Cn during ti to tj using Eq. (3), where ts ≤ ti < tj ≤ tt. It means
that during the period ti to tj , each moving object has different probabilities of
appearing in different basic cells. Then if a missing object is a moving object,
a refined query must return it along with its probabilities in different locations.
Note that the probability of a moving object appearing at a certain point during
a period of time is a probability density and has no practical meaning. In the
experiment, we calculate the probability of a moving object appearing in a basic
cell and use it as the probability of the object appearing at any point in the cell.

However, a contradiction arises when the probability of a moving object
appearing in a basic cell is very small and the basic cell is very far from the query
point over a period of time. On the one hand, if we want to ensure that each
refined query captures the user-desired moving object with a 100% probability,
the basic cells far away from the query point and other unnecessary search space
need to be accessed, which takes time. On the other hand, if a refine query
cannot access all the basic cells that the moving object appears with a certain
probability, there is a probability that the refined query cannot retrieve the user-
expected object. To make sure that the probability is as small as possible and
to solve this contradiction, we use the principle of 3σ in normal distribution.

For a normal distribution 1√
2πσ

e−[
(x−μ)2

2σ2 ], where μ is the mean value and σ

is the standard deviation value, the principle of 3σ means the probability of a
variable x /∈ (μ−3σ, μ+3σ] is a small probability event that can’t happen under
certain circumstances. Hence, if the sum of the probabilities that a moving object
om

i appears in some basic cells is greater than P (μ − 3σ < x ≤ μ + 3σ), there is
no need to access other basic cells where om

i appears with a certain probability.
This can be used to filter out unnecessary search space to help us improve query
processing efficiency, which is described further in the next section.
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5 Shadow-Based Method on Answering Top-k WSKM
Queries

When we know how to calculate the probability of a moving object appearing
in a basic cell over a period of time, and learn the fact that a refined query
does not need to find user-desired moving objects with a 100% probability, it is
important to design a novel index to help us store and process objects efficiently.
If the existing methods are used to keep the objects, static or moving, to answer
Top-k WSKM queries, we need to first delete or insert moving objects from the
index, then update the index accordingly, and finally execute a refined query on
the modified index. There are two disadvantages: 1) time consuming, especially
when a large number of moving objects are far from the query point; 2) If we
delete, insert moving objects along with their information and update the index
structure, some moving objects will move to other locations during the execution
of the refined query, which will affect the accuracy of refined query results. To
overcome these shortcomings, we propose an index named Shadow, which will
be discussed in more detail.

5.1 The Index Structure of Shadow

The Shadow has two levels. In the first level, the whole search space is divided
into several basic cells as described earlier, and all static objects in the search
space are indexed using a quadtree. A leaf node in level 1 of Shadow stores the
static objects in a basic cell corresponding to the leaf node. Therefore, no matter
how the moving object moves, it does not affect the level 1 of Shadow.

Fig. 4. The space partition result of Fig. 1 using Shadow

In the second level, all moving objects are organized. To insert the first mov-
ing object into the Shadow, we first need to find the leaf node to be inserted
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in the level 1, assuming that the object is static. Then we create a new node
in the level 2 with a different node id and the same node location information
as the corresponding leaf node in layer 1. Finally, the moving object is inserted
into the new node. When there are other moving objects to be inserted into the
shadow, we need to determine if the node in level 2 to be inserted exists. If so,
we simply insert the object into this node. Otherwise, a new node needs to be
built in level 2, as mentioned earlier. Note that if the number of objects in a
node of level 2 exceeds the node maximum capacity, the node needs to be split
into four children, the same as in a quadtree.

Each node in level 2 stores the information about the moving objects it
contains, including the object identify om.id, the object location om.loc, object
keywords om.doc and the probability P

tj−ti

lk
(om) of object om appearing in the

basic cell corresponding to that node during a time period [ti, tj ]. After inserting
all moving objects into the level 2 of Shadow, all the nodes in level 2 are assigned
to multiple groups according to the distances between the nodes and the groups.
For each group, we store the following information: the group identify Ga.id,
the group location Ga.loc and the group pointer to its adjacent group Ga.p.
The length of the group can be calculated according to the location information
Ga.loc, and the distance of any two objects in the group will not exceed the
length. Note that each group has the same upper limit of group length. When a
group reaches the length limit, no matter how close a node in level 2 is to the
group, it will not be assigned to the group. If and only if the level 1 of Shadow
has no nodes, the moving object cannot found the corresponding leaf node. This
means that all objects are moving objects. If so, a node, pointing to all the
groups at level 2 of Shadow, is built at level 1.

Fig. 5. The Shadow index structure
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Algorithm 1: Creating Shadow Algorithm
1 Input: an object set O, a queue Q storing the moving objects, the upper limit

Glmax of group length;
2 Output: Shadow;
3 begin
4 Build a quadtree for static objects in O to form the level 1 of Shadow;
5 while Q is not empty do
6 omi =Out Queue(Q);
7 Find the left node Ri whose corresponding basic cell includes omi

assuming that omi is a static object;

8 if Ri has a pointer linked to the node R
′
i in level 2 then

9 Insert omi into R
′
i;

10 else

11 Create a node R
′
i linked by Ri in level 2, and insert omi into R

′
i;

12 Group all nodes in level 2 to ensure that the length of each group does not
exceed Glmax;

13 Return Shadow;

Figure 4 shows the partition results of all objects in Fig. 1, where o2, o3, o9,
o10 and o18 are moving objects, and others are static objects. As shown in Fig. 4,
each static object is allocated to its basic cell and each moving object also can
find its corresponding basic cell. Note that in this example, we assume that each
basic cell can hold information about up to four objects.

Figure 5 shows the Shadow index structure for all objects in Fig. 1, with level
1 and level 2 storing information for static and moving objects, respectively. Each
leaf node in level 1 and level 2 corresponds to a basic cell in Fig. 4. Since o9 and
o10 are in the same basic cell as o8, o11 and o12, we need to first find the leaf
node that stores o8, o11 and o12 in level 1, and then create a node in level 2
to store o9 and o10. A pointer needs to be built from the node storing o8, o11
and o12 to the node storing o9 and o10 as one of the entrances to the level 2 of
Shadow. Since the storage node (A) for o9 and o10 is closer to o18’s storage node
(B) than the one (C) for o2 and o3, then A and C are assigned to group 2 and
B to group 1.

The detailed steps for creating the Shadow index are shown in Algorithm 1.
It takes as inputs an object set O containing static objects and moving objects, a
queue Q storing all moving objects, and the group length upper limit Glmax used
to limit the space size of a group, and outputs the Shadow index structure. The
level 1 and level 2 of the Shadow are built on Line 4 and Lines 5–12, respectively.

5.2 Pruning Techniques

We then introduce several lemmas to efficiently prune the unnecessary search
space for each refined query q′ to be examined. Firstly, we use AA (Actual
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Refined Query Result Area) defined in Sect. 3.2 to prune unpromising nodes in
level 1 of Shadow.

Lemma 1. Given a node Ri in level 1 of Shadow and an AA of a refined query
q′, if Ri and AA do not intersect with each other, then Ri and its child nodes
will be pruned.

Proof. Assume that Ri contains the result object oi, then d(q′, oi) is not greater
than the radius of AA. Since Ri does not intersect with AA, all objects in Ri are
outside the scope of AA, and so is oi. Thus, d(q′, oi) is greater than the radius
of AA, which contradicts the hypothesis. As a result, Ri and its children can be
pruned safely.

Note that this pruning technique can also be used in level 2 of Shadow to
filter unpromising nodes and groups. Secondly, we can use the principle of 3σ in
normal distribution to filter unnecessary nodes and groups in level 2 of Shadow.

Lemma 2. Given a node set {R1, R2, ..., Ri} in level 2 of Shadow, where a user-
desired moving object om

i appears with different probabilities in the basic cells
corresponding to these nodes during a time period, if the sum of the probability
values of some nodes in the node set is greater than P (μ − 3σ < x ≤ μ + 3σ)
of a normal distribution, no other nodes and groups need to be accessed for the
processing of om

i .

Proof. The proof can be obtained directly from the 3σ principle of normal dis-
tribution and hence is omitted.

5.3 Answering Top-k WSKM Queries

As mentioned earlier, some user-desired objects may disappear from the query
result set after executing an original query. Our main goal is to obtain a refined
query with the minimum modification cost, whose result set contains all original
query result objects and all missing objects required by the user.

Algorithm 2 gives the processing steps of using Shadow to answer Top-k
WSKM queries. Since some existing methods (e.g. [4]) have studied how to adjust
α and k to answer why-not questions on spatial keyword top-k queries when all
objects are static, we mainly discuss the different part of our algorithm from the
existing static methods.

It takes as inputs a Shadow index, an original query q = (loc, doc, k, α), a
promising refined query set, an actual refined query result area AA, an original
query result set oR, a missing object set mO, a time t of executing the current
refined query, a starting time ts, an ending time tt, and outputs a refined query
q′ and its query results. Note that by using an existing method [4], a promising
refined query set can be generated by setting different query requirements.

Firstly, the refined query result set rR and a node set RS are set to be
empty to keep the objects which satisfy the refined query requirements and the
leaf node of level 1 of Shadow as the entrance to level 2 of Shadow, respectively
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Algorithm 2: Shadow Based Algorithm
1 Input: Shadow, q, a promising refined query set, AA, oR, mO, t, ts, tt;
2 Output: Best refined query q′ = (loc, doc, k′, α′), rR;
3 begin
4 set rR=�;RS = �;
5 Execute a refined query in the promising refined query set, whose cost is

less than any other refined queries previously executed;
6 Prune the irrelevant nodes in level 1 of Shadow corresponding to the search

space that has no intersection with AA;
7 Find promising static objects and the node set RS of the leaf nodes

containing these objects;
8 while RS is not empty do
9 Take out a leaf node Ri from RS and access the level 2 of Shadow;

10 Find promising moving objects that are not in rR and satisfy the
refined query requirements, and insert them into RS according to the
requirement of 3σ principle ;

11 Computer the ranking scores of all objects in rR and retain top-k′ objects;
12 Return q′ = (loc, doc, k′, α′), rR;

(line 4). Next, a refined query is taken out from the promising refined query
set and the cost of this refined query will be calculated. The refined query will
be executed if its cost is less than any other refined queries which have been
executed before. Otherwise, the execution of this refined query is terminated
and the next promising query is selected to execute (line 5).

Using lemma 1, we can filter the irrelevant branches and nodes in level 1
of Shadow corresponding to the search space that has no intersection with AA
(line 6). And then the promising static objects and the node set RS of the leaf
nodes containing these objects can be found (line 7). Now all the promising static
objects are captured, and desired moving objects will be obtained according to
the remaining steps of Algorithm 2.

If RS is not empty, a leaf node Ri in RS is taken out as an entrance (using the
pointer stored at this leaf node) to access nodes and groups in level 2 of Shadow.
Then the moving objects that satisfy the refined query requirements are found
in the node linked by Ri. If the probabilities of these objects appearing in the
search space corresponding to the node are greater than P (μ−3σ < x ≤ μ+3σ)
of a normal distribution, these moving objects are added to rR. If one of the
objects is not satisfied, the other nodes in the same group that the node is in
will be accessed first. Then, the nodes in other groups close to that group will
be accessed until the probability requirement of the object is met. (lines 8–10).

When RS is empty, the ranking scores of all objects in rR are calculated, and
k best objects are retained. Finally, the refined query and its rR are returned.
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6 Experiments

6.1 Experimental Setup

System Setup and Metrics. The experiments are conducted on a PC with
Inter Core i7 1.80 GHz CPU and 8 GB RAM, running Windows 10 OS. All the
algorithms are implemented in C++. For each group of experiments, 1000 queries
were randomly selected and the average processing time was reported. Since the
probability of a moving object appearing in a basic cell at time t is a probability
density, which approaches 0 and does not have practical significance, we calculate
the probability of a moving object appearing in a basic cell over a period of time.
When building the level 2 of shadow, we store the probability calculated along
with object’s keywords and the object’s location which is randomly generated in
the basic cell. Hence, in our experiments, a moving object retrieved by a refined
query has a spatial location, a series of keywords and a probability.

Datasets. We use three datasets1, US, CN and AF, which contain the geo-
graphical object ids, names as keywords, latitudes and longitudes as the location
information of objects, respectively. We keep objects’ ids, location information
and keywords, and clean up the other tuples, such as “feature class” and “feature
code”. The detailed statistics for the datasets are shown in Table 1.

For each dataset, we select 1% of the objects as moving objects, which are
evenly distributed among all objects. The speed range of 90%, 9% and 1% of
moving objects is 1–5 km/h, 5–15 km/h and 15–50 km/h, respectively. We also
generate a destination for each moving object. For each moving object with a
speed range of 1–5 km/h, we draw a virtual circle with the object’s location as
the center and 1 km as the radius. The destination of a moving object is then
randomly generated at any point in the circle. Similarly, the virtual circle radius
of the moving object with a speed range of 5–15 km/h and 15–50 km/h is 5 km
and 15 km, respectively.

Table 1. Dataset information

Dataset US CN AF

# of objects 2,237,870 777,759 75,649
# of moving objects (1–5 km/h) 20,141 7,000 681
# of moving objects (3–15 km/h) 2,014 700 68
# of moving objects (15–50 km/h) 224 78 8
# of distinct words 266,327 46,280 6,752
avg.# of keywords per object 4 2 3

1 http://www.geonames.org/.

http://www.geonames.org/
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Parameters Setting. We evaluate the performance of our method by varying
k0, the number of keywords in the original query, the original rank of the missing
object, the number of missing objects, the α value and the dataset size. The
parameters and their values are summarized in Table 2.

Table 2. Parameter setting

Parameter Setting Default

k0 5,10,15,20 10
# of keywords 3,6,9,12 6
Original rank of the missing object 51, 101, 201, 301 51
α 0.1,0.3,0.5,0.7,0.9 0.5
# of missing objects 1,2,3,4 1
Data Size(M) 0.2,0.6,1.0,1.4,1.8 0.6

6.2 Experimental Result

For one original query among 1,000 randomly selected queries, several promis-
ing refined queries are generated by using different query requirements. In these
promising refined queries, if some queries succeed in retrieving all the original
query results and missing objects, and the others do not, the lowest-cost query
that successfully retrieves all the required objects is returned to the user. Con-
versely, if all of these promising refined queries fail to retrieve all of the original
query results and missing objects, the user fails to receive the desired refined
query and expected objects, which is called Failed Retrieval. Theoretically, this
is a very small probability event, and we can simply calculate it as follows.
Assume that n promising refined queries are generated for each original query,
and the P (μ−3σ < x ≤ μ+3σ) of a normal distribution is approximately equal
to 99.7%, then the probability of Failed Retrieval for an original query is 0.003n.
The larger the value of n, the smaller the probability.

However, some promising refined queries can obtain all of the original query
result objects and missing objects, but they take a lot of time to retrieve these
objects. Therefore, in the experiment, we give an upper limit of query time. If the
promising refined query takes longer than the upper limit to retrieve the desired
objects, the query will be terminated, also known as Failed Retrieval. Therefore,
we also examine the relationship between the number of Failed Retrievals and
different query requirements. The first, second and last two-sets of experiments
are conducted on CN , AF and US dataset, respectively. For these three datasets,
we set the upper limit of query time to 10 s, 2 s and 1 min, respectively.

In addition, if previous related works are used to deal with our proposed prob-
lems, their approaches will spend a lot of time on adjusting the index structures.
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This is because moving objects may appear in different places at different times,
causing their index structures to be updated frequently. However, in our method,
the Shadow does not need to be updated. Therefore, in the following experiments,
we only measure the performance of Shadow under different parameters and do
not compare the performance with other methods.

(a) Varying k0 (b) Varying k0

(c) Varying # of original query keywords (d) Varying # of original query keywords

Fig. 6. The experiment results on the CN dataset

Varying. k0 We first evaluate the performance of our scheme by varying the
value of k0. Figure 6(a) shows the query time of the algorithm under different
cost options, where PW represents “prefer modifying the weight between spatial
distance and textual similarity (β = 0.9)”; PK stands for “prefer modifying k
(β = 0.1)”; and NM represents “never mind (β = 0.5)”. The query time of
these three cases increases with the enlargement of k0. On the one hand, the
size of the refined query result set usually increases as k0 rises, resulting in a
longer processing time. On the other hand, an increase in k0 means that the
missing objects rank worse in the original query. Note that in the experiments,
the missing objects we chose ranked 5 ·k0+1 in the original query. The lower the
ranking score of the missing object in the original query, the more difficult it is to
find a refined query to capture it into the refined query result set. Compared with
PW and NM, PK performs worst because it takes more time when the algorithm
relies more on increasing k to obtain the missing objects. For example, if k0 is 10,
the missing object ranks 51 among all the objects evaluated by the original query,
and 40 unknown objects need to be processed, which takes time. PW performs
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best, and when k0 = 10, its performance is 1.10 and 1.2 times that of NM and
PK, respectively. This is because PW can prune unpromising refined queries and
reduces unnecessary calculations by adjusting α. In addition, Fig. 6(b) shows the
relationship between Failed Retrieval and different k0. A large k0 value means
that the refined queries relies more on adjusting k, thus : 1) a large number of
objects will be accessed, which will affect the pruning effect in level 1 of Shadow;
2) the missing objects may be far away from the query point, so more groups and
nodes need to be accessed. Both of these scenarios are time consuming, and may
cause the refined query time to exceed the query time limit, leading to Failed
Retrieval.

Varying the Number of Original Query Keywords. Next, we study the
impact of varying the number of original query keywords on algorithm perfor-
mance in the three cases. As shown in Fig. 6(c), the increase in the number of
original keywords do not have a obvious effect on the query time of PW, NM and
PK. The reason lies in two aspects. First, as the number of original query key-
words increases, the time to calculate the textual similarity between the refined
query keywords and object keywords may increase. Secondly, the textual simi-
larity calculation of the method is relatively simple and it relies more on spatial
filtering and probability filtering. Figure 6(d) shows that using PK will result in
1 Failed Retrieval when the number of original query keywords ia 12. It could be
accidental, or it could be that the large amount of textual similarity calculations
between the refine query keywords and the object keywords waste some time,
causing the refining query time to exceed the given time limit.

Varying the Original Rank of the Missing Object. We investigate the
performance of our method in answering why-not questions for missing objects
with different ranks in the original query. In other sets of experiments, the missing
object selected ranks 51st by default among the objects evaluated by the original
query. In this set of experiments, we expand the rank range of the missing objects
in the original query to 101, 201 and 301, respectively. Figure 7(a) shows that
the Top-k WSKM queries take more time to obtain the moving object that
ranks poorly in the original query. Moreover, poor ranking can mean that the
object is far away from the query point. Especially if the missing object is a
moving object, it can be stored in a group on level 2 of Shadow away from the
query point, which will take more time to retrieve it. Figure 7(b) shows that the
number of Failed Retrievals increases with the enlargement of the original rank of
the missing object. The reasons why NM and PK have 1 and 2 Failed Retrievals,
respectively, are similar to those discussed in the experiment of Varying k0, which
are omitted here.

Varying the Number of Missing Objects. We then study the effect of the
number of missing objects on algorithm performance, and Fig. 7(c) shows that
as the number of missing objects increases, the processing cost of our method



Shadow: Answering Why-Not Questions 757

(a) Varying the original rank of missing
objects

(b) Varying the original rank of missing
objects

(c) Varying # of missing objects (d) Varying # of missing objects

Fig. 7. The experiment results on the AF dataset

increases, which is basically in line with our expectations. Since our default
original query is a top-10 query, all missing objects are randomly selected from
the 6th to 51st objects of the original query. On the one hand, the more the
missing objects, the more search space needs to be accessed. On the other hand,
as the number of missing objects increases, the probability of moving objects in
the missing object set increases. Retrieving moving objects takes more time than
searching static objects, because more groups and nodes will be accessed and
some probability calculations will be performed. In addition, in Fig. 7(d), the
more the number of moving objects, the higher the probability that a moving
object has a high speed (15–50 km/h). If one of the missing objects is moving at
a high speed, such as 50 km/h, the object may move away from the query point
in a short time. It would take a lot of time to capture it, exceeding the upper
limit of query time.

Varying the Value α of the Original Query. We then study the performance
of the method on the US dataset by varying the value of α in the original Top-k
SKM query. As shown in Fig. 8(a), the query time of the three cases keeps basi-
cally unchanged. Since different α means spatial proximity or textual similarity
has different filtering capability for unnecessary search space and unpromising
objects, our method generates refined queries with different α to answer Top-k
WSKM queries. However, the experimental results show that no matter what
the value of α in the original query is, it will have no significant impact on the
refined query performance. The Failed Retrieval data are shown in Fig. 8(b) as
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the increase of α. It can be seen from this figure, only when α = 0.3, PK has
1 Failed Retrieval. For all other α values, the Failed Retrieval of PM, NM and
PK is 0. Therefore, we consider this Failed Retrieval to be an accident.

(a) Varying α of the original query (b) Varying α of the original query

(c) Varying the dataset size (d) Varying the dataset size

Fig. 8. The experiment results on the US dataset

Varying the Dataset Size. Finally, we select different numbers of spatial
objects from the US dataset, ranging from 0.2M to 1.8M, to study the stability
of the method. As shown in Fig. 8(c), PW and NM are superior to PK in query
time. As the size of the dataset increases, there is no sharp increase in query
time, which means that all methods scale well. As can be seen from Fig. 8(d),
the number of Failed Retrievals increases obviously with the increase in data
size. Since the number of Failed Retrievals divided by 1000 is less than or close
to P (x ≤ μ − 3σ or x > μ + 3σ), we can treat it as a small probability event.
On the whole, our method is still effective.

7 Conclusion and Future Work

This paper explores how to answer the why-not questions on top-k spatial key-
word queries over moving objects (Top-k WSKM queries). A novel index called
Shadow is proposed to efficiently organize the textual, spatial and motion pat-
tern information of objects. By analyzing the spatial location and velocity of
original query result objects and missing objects, the maximum query search
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range is determined. By using this search range, the unnecessary branches and
nodes in level 1 of Shadow are pruned, and static objects that satisfy the refined
query requirements are obtained. In addition, the probability filtering technique
is used to capture the user-desired moving objects with a certain probability.
Finally, extensive experiments on three datasets demonstrate the feasibility of
our method. There are several interesting directions to be studied in the future.
First, the spatial environment can be extended to the road network. Second,
the private protection issue should be concerned when answering the why-not
questions.
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Abstract. Reachability query is a fundamental problem on graphs,
which has been extensively studied in academia and industry. Since
graphs are subject to frequent updates in many applications, it is essen-
tial to support efficient graph updates while offering good performance
in reachability queries. Existing solutions compress the original graph
with the Directed Acyclic Graph (DAG) and propose efficient query
processing and index update techniques. However, they focus on opti-
mizing the scenarios where the Strong Connected Components (SCCs)
remain unchanged and have overlooked the prohibitively high cost of
the DAG maintenance when SCCs are updated. In this paper, we pro-
pose DBL, an efficient DAG-free index to support the reachability query on
dynamic graphs with insertion-only updates. DBL builds on two comple-
mentary indexes: Dynamic Landmark (DL) label and Bidirectional Leaf
(BL) label. The former leverages landmark nodes to quickly determine
reachable pairs whereas the latter prunes unreachable pairs by indexing
the leaf nodes in the graph. We evaluate DBL against the state-of-the-art
approaches on dynamic reachability index with extensive experiments
on real-world datasets. The results have demonstrated that DBL achieves
orders of magnitude speedup in terms of index update, while still pro-
ducing competitive query efficiency.

1 Introduction

Given a graph G and a pair of vertices u and v, reachability query (denoted
as q(u, v)) is a fundamental graph operation that answers whether there exists
a path from u to v on G. This operation is a core component in supporting
numerous applications in practice, such as those in social networks, biologi-
cal complexes, knowledge graphs, and transportation networks. A plethora of
index-based approaches have been developed over a decade [5,16,17,19–21,23–25]
and demonstrated great success in handling reachability query on static graphs
with millions of vertices and edges. However, in many cases, graphs are highly
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dynamic [22]: New friendships continuously form on social networks like Face-
book and Twitter; knowledge graphs are constantly updated with new entities
and relations; and transportation networks are subject to changes when road
constructions and temporary traffic controls occur. In those applications, it is
essential to support efficient graph updates while offering good performance in
reachability queries.

There have been some efforts in developing reachability index to support
graph updates [4,7,8,14–16]. However, there is a major assumption made in
those works: the Strongly Connected Components (SCCs) in the underlying graph
remain unchanged after the graph gets updated. The Directed Acyclic Graph
(DAG) collapses the SCCs into vertices and the reachability query is then processed
on a significantly smaller graph than the original. The state-of-the-art solutions
[23,26] thus rely on the DAG to design an index for efficient query processing, yet
their index maintenance mechanisms only support the update which does not
trigger SCC merge/split in the DAG. However, such an assumption can be invalid
in practice, as edge insertions could lead to updates of the SCCs in the DAG. In
other words, the overhead of the DAG maintenance has been mostly overlooked
in the previous studies.

One potential solution is to adopt existing DAG maintenance algorithms such
as [25]. Unfortunately, this DAG maintenance is a prohibitively time-consuming
process, as also demonstrated in the experiments. For instance, in our experi-
ments, the time taken to update the DAG on one edge insertion in the LiveJournal
dataset is two-fold more than the time taken to process 1 million queries for the
state-of-the-art methods. Therefore, we need a new index scheme with a low
maintenance cost while efficiently answering reachability queries.

In this paper, we propose a DAG-free dynamic reachability index framework
(DBL) that enables efficient index update and supports fast query processing at
the same time on large scale graphs. We focus on insert-only dynamic graphs
with new edges and vertices continuously added. This is because the number
of deletions are often significantly smaller than the number of insertions, and
deletions are handled with lazy updates in many graph applications [2,3]. Instead
of maintaining the DAG, we index the reachability information around two sets of
vertices: the “landmark” nodes with high centrality and the “leaf” nodes with
low centrality (e.g., nodes with zero in-degree or out-degree). As the reachability
information of the landmark nodes and the leaf nodes remain relatively stable
against graph updates, it enables efficient index update opportunities compared
with approaches using the DAG. Hence, DBL is built on the top of two simple
and effective index components: (1) a Dynamic Landmark (DL) label, and (2) a
Bidirectional Leaf (BL) label. Combining DL and BL in the DBL ensures efficient
index maintenance while achieves competitive query processing performance.

Efficient Query Processing: DL is inspired by the landmark index approach [5].
The proposed DL label maintains a small set of the landmark nodes as the label
for each vertex in the graph. Given a query q(u, v), if both the DL labels of u
and v contain a common landmark node, we can immediately determine that u
reaches v. Otherwise, we need to invoke Breadth-First Search(BFS) to process
q(u, v). We devise BL label to quickly prune vertex pairs that are not reachable
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to limit the number of costly BFS. BL complements DL and it focuses on building
labels around the leaf nodes in the graph. The leaf nodes form an exclusive set
apart from the landmark node set. BL label of a vertex u is defined to be the leaf
nodes which can either reach u or u can reach them. Hence, u does not reach
v if there exists one leaf node in u’s BL label which does not appear in the BL
label of v. In summary, DL can quickly determine reachable pairs while BL, which
complements DL, prunes disconnected pairs to remedy the ones that cannot be
immediately determined by DL.

Efficient Index Maintenance: Both DL and BL labels are lightweight indexes
where each vertex only stores a constant size label. When new edges are inserted,
efficient pruned BFS is employed and only the vertices where their labels need
update will be visited. In particular, once the label of a vertex is unaffected by
the edge updates, we safely prune the vertex as well as its descendants from the
BFS, which enables efficient index update.

To better utilize the computation power of modern architectures, we imple-
ment DL and BL with simple and compact bitwise operations. Our implementa-
tions are based on OpenMP and CUDA in order to exploit parallel architectures
multi-core CPUs and GPUs (Graphics Processing Units), respectively.

Hereby, we summarize the contributions as the following:

– We introduce the DBL framework which combines two complementary DL and
BL labels to enable efficient reachability query processing on large graphs.

– We propose novel index update algorithms for DL and BL. To the best of our
knowledge, this is the first solution for dynamic reachability index without
maintaining the DAG. In addition, the algorithms can be easily implemented
with parallel interfaces.

– We conduct extensive experiments to validate the performance of DBL in
comparison with the state-of-the-art dynamic methods [23,26]. DBL achieves
competitive query performance and orders of magnitude speedup for index
update. We also implement DBL on multi-cores and GPU-enabled system
and demonstrate significant performance boost compared with our sequential
implementation.

The remaining part of this paper is organized as follows. Section 2 presents
the preliminaries and background. Section 3 presents the related work. Section 4
presents the index definition as well as query processing. Sections 5 demonstrate
the update mechanism of DL and BL labels. Section 6 reports the experimental
results. Finally, we conclude the paper in Sect. 7.

2 Preliminaries

A directed graph is defined as G = (V,E), where V is the vertex set and E is the
edge set with n = |V | and m = |E|. We denote an edge from vertex u to vertex v
as (u, v). A path from u to v in G is denoted as Path(u, v) = (u,w1, w2, w3, . . . , v)
where wi ∈ V and the adjacent vertices on the path are connected by an edge
in G. We say that v is reachable by u when there exists a Path(u, v) in G.
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Table 1. Common notations in this paper

Notation Description

G(V,E) The vertex set V and the edge set E of a directed graph G

G′ The reverse graph of G

n The number of vertex in G

m The number of edges in G

Suc(u) The set of u’s out-neighbors

Pre(u) The set of u’s in-neighbors

Des(u) The set of u’s descendants including u

Anc(u) The set of u’s ancestors including u

Path(u, v) A path from vertex u to vertex v

q(u, v) The reachability query from u to v

k The size of DL label for one vertex

k′ The size of BL label for one vertex

DLin(u) The label that keeps all the landmark nodes that could reach u

DLout(u) The label that keeps all the landmark nodes that could be reached by u

BLin(u) The label that keeps the hash value of the leaf nodes that could reach u

BLout(u) The label that keeps the hash value of the leaf nodes that could be reached by u

h(u) The hash function that hash node u to a value

In addition, we use Suc(u) to denote the direct successors of u and the direct
predecessors of u are denoted as Pre(u). Similarly, we denote all the ancestors of
u (including u) as Anc(u) and all the descendants of u (including u) as Des(u).
We denote the reversed graph of G as G′ = (V,E′) where all the edges of G
are in the opposite direction of G′. In this paper, the forward direction refers
to traversing on the edges in G. Symmetrically, the backward direction refers to
traversing on the edges in G′. We denote q(u, v) as a reachability query from u
to v. In this paper, we study the dynamic scenario where edges can be inserted
into the graph. Common notations are summarized in Table 1.

3 Related Work

There have been some studies on dynamic graph [4,7,8,14–16]. Yildirim et al.
propose DAGGER [25] which maintains the graph as a DAG after insertions and
deletions. The index is constructed on the DAG to facilitate reachability query
processing. The main operation for the DAG maintenance is the merge and split
of the Strongly Connected Component (SCC). Unfortunately, it has been shown
that DAGGER exhibits unsatisfactory query processing performance on handling
large graphs (even with just millions of vertices [26]).

The state-of-the-art approaches: TOL [26] and IP [23] follow the maintenance
method for the DAG from DAGGER and propose novel dynamic index on the DAG
to improve the query processing performance. We note that TOL and IP are
only applicable to the scenarios where the SCC/s in the DAG remains unchanged
against updates. In the case of SCC merges/collapses, DAGGER is still required to
recover the SCC/s. For instance, TOL and IP can handle edge insertions (v1, v5) in
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v 6

v2

v5

v11 v 7

v 9 v3

v 4

v 1

v10

v8

(a) Graph G

v DLin DLout

v1 ∅ {v8}
v2 ∅ {v5, v8}
v3 ∅ ∅
v4 ∅ {v8}
v5 {v5} {v5, v8}
v6 {v5} {v5, v8}
v7 ∅ ∅
v8 {v5, v8} {v8}
v9 {v5} {v5, v8}
v10 {v5, v8} ∅
v11 {v5} ∅
(b) DL label for G

v BLin h(BLin) BLout h(BLout)
v1 {v1} {0} {v10} {0}
v2 {v2} {1} {v10, v11} {0,1}
v3 {v3} {1} {v11} {1}
v4 {v1} {0} {v10} {0}
v5 {v2} {1} {v10, v11} {0,1}
v6 {v2} {1} {v10, v11} {0,1}
v7 {v3} {1} {v11} {1}
v8 {v1, v2} {0,1} {v10} {0}
v9 {v2} {1} {v10, v11} {0,1}
v10 {v1, v2} {0,1} {v10} {0}
v11 {v2, v3} {1} {v11} {1}

(c) BL label for G

Fig. 1. A running example of graph G

Fig. 1(a), without invoking DAGGER. However, when inserting (v9, v2), two SCC/s
{v2} and {v5, v6, v9} will be merged into one larger SCC {v2, v5, v6, v9}. For such
cases, TOL and IP rely on DAGGER for maintaining the DAG first and then perform
their respective methods for index maintenance and query processing. However,
the overheads of the SCC maintenance are excluded in their experiments [23,26]
and such overheads is in fact non-negligible [13,25].

In this paper, we propose the DBL framework which only maintains the labels
for all vertices in the graph without constructing the DAG. That means, DBL can
effectively avoid the costly DAG maintenance upon graph updates. DBL achieves
competitive query processing performance with the state-of-the-art solutions
(i.e., TOL and IP) while offering orders of magnitude speedup in terms of index
updates.

4 DBL Framework

The DBL framework is consist of DL and BL label which have their independent
query and update components. In this section, we introduce the DL and BL label.
Then, we devise the query processing algorithm that builds upon DBL index.

4.1 Definitions and Construction

We propose the DBL framework that consists of two index components: DL and
BL.

Definition 1. (DL label). Given a landmark vertex set L ⊂ V and |L| = k, we
define two labels for each vertex v ∈ V : DLin(v) and DLout(v). DLin(v) is a subset
of nodes in L that could reach v and DLout(v) is a subset of nodes in L that v
could reach.

It is noted that DL label is a subset of the 2-hop label [5]. In fact, 2-Hop label
is a special case for DL label when the landmark set L = V . Nevertheless, we
find that maintaining 2-Hop label in the dynamic graph scenario leads to index
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explosion. Thus, we propose to only choose a subset of vertices as the landmark
set L to index DL label. In this way, DL label has up to O(n|L|) space complexity
and the index size can be easily controlled by tunning the selection of L. The
following lemma shows an important property of DL label for reachability query
processing.

Lemma 1. Given two vertices u,v and their corresponding DL label, DLout(u) ∩
DLin(v) �= ∅ deduces u reaches v but not vice versa.

Example 1. We show an running example in Fig. 1(a). Assuming the landmark
set is chosen as {v5, v8}, the corresponding DL label is shown in Fig. 1(b).
q(v1, v10) returns true since DLout(v1) ∩ DLin(v10) = {v8}. However, the labels
cannot give negative answer to q(v3, v11) despite DLout(v3) ∩ DLin(v11) = ∅. This
is because the intermediate vertex v7 on the path from v3 to v11 is not included
in the landmark set.

To achieve good query processing performance, we need to select a set of
vertices as the landmarks such that they cover most of the reachable vertex pairs
in the graph, i.e., DLout(u)∩DLin(v) contains at least one landmark node for any
reachable vertex pair u and v. The optimal landmark selection has been proved
to be NP-hard [12]. In this paper, we adopt a heuristic method for selecting
DL label nodes following existing works [1,12]. In particular, we rank vertices
with M(u) = |Pre(u)| · |Suc(u)| to approximate their centrality and select top-k
vertices. Other landmark selection methods are also evaluated in our extended
version [11]. We also discuss how to choose the number of landmarks (k) in the
experimental evaluation.

Definition 2. (BL label). BL introduces two labels for each vertex v ∈ V :
BLin(v) and BLout(v). BLin(v) contains all the zero in-degrees vertices that can
reach v, and BLout(v) contains all the zero out-degrees vertices that could be
reached by v. For convenience, we refer to vertices with either zero in-degree or
out-degree as the leaf nodes.

Lemma 2. Given two vertices u,v and their corresponding BL label, u does not
reach v in G if BLout(v) �⊆ BLout(u) or BLin(u) �⊆ BLin(v).

BL label can give negative answer to q(u, v). This is because if u could reach
v, then u could reach all the leaf nodes that v could reach, and all the leaf nodes
that reach u should also reach v. DL label is efficient for giving positive answer
to a reachability query whereas BL label plays a complementary role by pruning
unreachable pairs. In this paper, we take vertices with zero in-degree/out-degree
as the leaf nodes. Other leaf nodes selection methods are also evaluated in our
extended version [11].

Example 2. Figure 1(c) shows BL label for the running example. BL label gives
negative answer to q(v4, v6) since BLin(v4) is not contained by BLin(v6). Intu-
itively, vertex v1 reaches vertex v4 but cannot reach v6 which indicates v4 should
not reach v6. BL label cannot give positive answer. Take q(v5, v2) for an example,
the labels satisfy the containment condition but positive answer cannot be given.
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Algorithm 1. DL label Batch Construction
Input: Graph G(V,E), Landmark Set D
Output: DL label for G
1: for i = 0; i < k; i++ do
2: //Forward BFS

3: S ← D[i]
4: enqueue S to an empty queue Q
5: while Q not empty do
6: p ← pop Q
7: for x ∈ Suc(p) do
8: DLin(x) ← DLin(x) ∪ {S};
9: enqueue x to Q

10: //Symmetrical Backward BFS is performed.

The number of BL label nodes could be huge. To develop efficient index
operations, we build a hash set of size k′ for BL as follows. Both BLin and BLout are
a subset of {1, 2, . . . , k′} where k′ is a user-defined label size, and they are stored
in bit vectors. A hash function is used to map the leaf nodes to a corresponding
bit. For our example, the leaves are {v1, v2, v3, v10, v11}. When k′ = 2, all leaves
are hashed to two unique values. Assume h(v1) = h(v10) = 0, h(v2) = h(v3) =
h(v11) = 1. We show the hashed BL label set in Fig. 1(c) which are denoted as
h(BLin) and h(BLout). In the rest of the paper, we directly use BLin and BLout to
denote the hash sets of the corresponding labels. It is noted that one can still
use Lemma 2 to prune unreachable pairs with the hashed BL label.

We briefly discuss the batch index construction of DBL as the focus of this
work is on the dynamic scenario. The construction of DL label is presented in
Algorithm 1, which follows existing works on 2-hop label [5]. For each landmark
node D[i], we start a BFS from S (Line 4) and include S in DLin label of every
vertices that S can reach (Lines 5–9). For constructing DLout, we execute a BFS
on the reversed graph G′ symmetrically (Line 10). To construct BL label, we
simply replace the landmark set D as the leaf set D′ and replace S with all leaf
nodes that are hashed to bucket i (Line 3) in Algorithm 1. The complexity of
building DBL is that O((k + k′)(m + n)).

Note that although we use [5] for offline index construction, the contribution
of our work is that we construct DL and BL as complementary indices for efficient
query processing. Furthermore, we are the first work to support efficient dynamic
reachability index maintenance without assuming SCC/s remain unchanged.

Space Complexity. The space complexities of DL and BL labels are O(kn) and
O(k′n), respectively.

4.2 Query Processing

With the two indexes, Algorithm 2 illustrates the query processing framework of
DBL. Given a reachability query q(u, v), we return the answer immediately if the
labels are sufficient to determine the reachability (Lines 6–9). By the definitions
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Algorithm 2. Query Processing Framework for DBL

Input: Graph G(V,E), DL label, BL label, q(u, v)
Output: Answer of the query.
1: function DL Intersec(x,y)
2: return (DLout(x) ∩ DLin(y));

3: function BL Contain(x,y)
4: return (BLin(x) ⊆ BLin(y) and BLout(y) ⊆ BLout(x));

5: procedure Query(u,v)
6: if DL Intersec(u,v) then
7: return true;

8: if not BL Contain(u,v) then
9: return false;

10: if DL Intersec(v,u) then
11: return false;

12: if DL Intersec(u,u) or DL Intersec(v,v) then
13: return false;

14: Enqueue u for BFS;
15: while queue not empty do
16: w ← pop queue;
17: for vertex x ∈ Suc(w) do
18: if x = v then
19: return true;

20: if DL Intersec(u,x) then
21: continue;

22: if not BL Contain(x,v) then
23: continue;

24: Enqueue x;

25: return false;

of DL and BL labels, u reaches v if their DL label overlaps (Line 6) where u
does not reach v if their BL label does not overlap (Line 9). Furthermore, there
are two early termination rules implemented in Lines 10 and 12, respectively.
Line 10 makes use of the properties that all vertices in a SCC contain at least one
common landmark node. Line 12 takes advantage of the scenario when either u
or v share the same SCC with a landmark node l then u reaches v if and only if
l appeared in the DL label of u and v. We prove their correctness in Theorem
1 and Theorem 2 respectively. Otherwise, we turn to BFS search with efficient
pruning. The pruning within BFS is performed as follows. Upon visiting a vertex
q, the procedure will determine whether the vertex q should be enqueued in
Lines 20 and 22. BL and DL labels will judge whether the destination vertex v
will be in the Des(w). If not, q will be pruned from BFS to quickly answer the
query before traversing the graph with BFS.

Theorem 1. In Algorithm 2, when DL Intersec(x,y) returns false and
DL Intersec(y,x) returns true, then x cannot reach y.
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Algorithm 3. DLin label update for edge insertion
Input: Graph G(V,E), DL label, Inserted edge (u, v)
Output: Updated DL label
1: if DLout(u) ∩ DLin(v) == ∅ then
2: Initialize an empty queue and enqueue v
3: while queue is not empty do
4: p ← pop queue
5: for vertex x ∈ Suc(p) do
6: if DLin(u) �⊆ DLin(x) then
7: DLin(x) ← DLin(x) ∪ DLin(u)
8: enqueue x

Proof. DL Intersec(y, x) returns true indicates that vertex y reaches x. If vertex
x reaches vertex y, then y and x must be in the same SCC (according to the
definition of the SCC). As all the vertices in the SCC are reachable to each other,
the landmark nodes in DLout(y) ∩ DLin(x) should also be included in DLout and
DLin label for all vertices in the same SCC. This means DL Intersec(x, y) should
return true. Therefore x cannot reach y otherwise it contradicts with the fact
that DL Intersec(x, y) returns false.

Theorem 2. In Algorithm 2, if DL Intersec(x, y) returns false and
DL Intersec(x,x) or DL Intersec(y,y) returns true then vertex x cannot reach y.

Proof. If DL Intersec(x,x) returns true, it means that vertex x is a landmark or
x is in the same SCC with a landmark. If x is in the same SCC with landmark l,
vertex x and vertex l should have the same reachability information. As landmark
l will push its label element l to DLout label for all the vertices in Anc(l) and
to DLin label for all the vertices in Des(l). The reachability information for
landmark l will be fully covered. It means that x’s reachability information is
also fully covered. Thus DL label is enough to answer the query without BFS.
Hence y is not reachable by x if DL Intersec(x, y) returns false. The proving
process is similar for the case when DL Intersec(y, y) returns true.

Query Complexity. Given a query q(u, v), the time complexity is O(k + k′)
when the query can be directly answered by DL and BL labels. Otherwise, we
turn to the pruned BFS search, which has a worst case time complexity of O((k+
k′)(m + n)). Let ρ denote the ratio of vertex pairs whose reachability could be
directly answered by the label. The amortized time complexity is O(ρ(k + k′) +
(1− ρ)(k + k′)(m+n)). Empirically, ρ is over 95% according to our experiments
(Table 3 in Sect. 6), which implies efficient query processing.

5 DL and BL Update for Edge Insertions

When inserting a new edge (u, v), all vertices in Anc(u) can reach all vertices in
Des(v). On a high level, all landmark nodes that could reach u should also reach
vertices in Des(v). In other words, all the landmark nodes that could be reached
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v2

v5

v 9 v3

v 6

v 1

v 4

v8

v10 v11 v 7

(a) Insert edge (v9, v2)

v DLin
v1 ∅ → ∅
v2 ∅ → {v5}
v3 ∅ → ∅
v4 ∅ → ∅
v5 {v5} → {v5}
v6 {v5} → {v5}
v7 ∅ → ∅
v8 {v5, v8} → {v5, v8}
v9 {v5} → {v5}
v10 {v5, v8} → {v5, v8}
v11 {v5} → {v5}
(b) DLin label update

v h(BLin)
v1 {0} → {0}
v2 {1} → {1}
v3 {1} → {1}
v4 {0} → {0}
v5 {1} → {1}
v6 {1} → {1}
v7 {1} → {1}
v8 {0, 1} → {0, 1}
v9 {1} → {1}
v10 {0, 1} → {0, 1}
v11 {1} → {1}

(c) BLin label update

Fig. 2. Label update for inserting edge (v9, v2)

Table 2. Dataset statistics

Dataset |V | |E| davg Diameter Connectivity (%) DAG-|V | DAG-|E| DAGCONSTRUCT (ms)

LJ 4,847,571 68,993,773 14.23 16 78.9 971,232 1,024,140 2368

Web 875,713 5,105,039 5.83 21 44.0 371,764 517,805 191

Email 265,214 420,045 1.58 14 13.8 231,000 223,004 17

Wiki 2,394,385 5,021,410 2.09 9 26.9 2,281,879 2,311,570 360

BerkStan 685,231 7,600,595 11.09 514 48.8 109,406 583,771 1134

Pokec 1,632,803 30,622,564 18.75 11 80.0 325,892 379,628 86

Twitter 2,881,151 6,439,178 2.23 24 1.9 2,357,437 3,472,200 481

Reddit 2,628,904 57,493,332 21.86 15 69.2 800,001 857,716 1844

by v should also be reached by vertices in Anc(u). Thus, we update the label by
1) adding DLin(u) into DLin(x) for all x ∈ Des(v); and 2) adding DLout(v) into
DLout(x) for all x ∈ Anc(u).

Algorithm 3 depicts the edge insertion scenario for DLin. We omit the update
for DLout, which is symmetrical to DLin. If DL label can determine that vertex
v is reachable by vertex u in the original graph before the edge insertion, the
insertion will not trigger any label update (Line 1). Lines 2–8 describe a BFS
process with pruning. For a visited vertex x, we prune x without traversing
Des(x) iff DLin(u) ⊆ DLin(x), because all the vertices in Des(x) are deemed to
be unaffected as their DLin labels are supersets of DLin(x).

Example 3. Figure 2(a) shows an example of edge insertion. Figure 2(b) shows
the corresponding DLin label update process. DLin label is presented with brack-
ets. Give an edge (v9, v2) inserted, DLin(v9) is copied to DLin(v2). Then an inspec-
tion will be processed on DLin(v5) and DLin(v6). Since DLin(v9) is a subset of
DLin(v5) and DLin(v6), vertex v5 and vertex v6 are pruned from the BFS. The
update progress is then terminated.

DL label only gives positive answer to a reachability query. In poorly con-
nected graphs, DL will degrade to expensive BFS search. Thus, we employ the
Bidirectional Leaf (BL) label to complement DL and quickly identify vertex pairs
which are not reachable. We omit the update algorithm of BL, as they are very
similar to those of DL, except the updates are applied to BLin and BLout labels.
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Figure 2(c) shows the update of BLin label. Similar to the DL label, the update
process will be early terminated as the BLin(v2) is totally unaffected after edge
insertion. Thus, no BLin label will be updated in this case.

Update Complexity of DBL. In the worst case, all the vertices that reach or
are reachable to the updating edges will be visited. Thus, the time complexity of
DL and BL is O((k+k′)(m+n)) where (m+n) is the cost on the BFS. Empirically,
as the BFS procedure will prune a large number of vertices, the actual update
process is much more efficient than a plain BFS.

6 Experimental Evaluation

In this section, we conduct experiments by comparing the proposed DBL framework
with the state-of-the-art approaches on reachability query for dynamic graphs.

6.1 Experimental Setup

Environment: Our experiments are conducted on a server with an Intel Xeon
CPU E5-2640 v4 2.4 GHz, 256 GB RAM and a Tesla P100 PCIe version GPU.

Datasets: We conduct experiments on 8 real-world datasets (see Table 2). We
have collected the following datasets from SNAP [9]. LJ and Pokec are two
social networks, which are power-law graphs in nature. BerkStan and Web are
web graphs in which nodes represent web pages and directed edges represent
hyperlinks between them. Wiki and Email are communication networks. Reddit
and Twitter are two social network datasets obtained from [22].

6.2 Effectiveness of DL+BL

Table 3 shows the percentages of queries answered by DL label, BL label (when the
other label is disabled) and DBL label. All the queries are randomly generated.
The results show that DL is effective for dense and highly connected graphs
(LJ, Pokec and Reddit) whereas BL is effective for sparse and poorly connected
graphs (Email, Wiki and Twitter). However, we still incur the expensive BFS
if the label is disabled. By combining the merits of both indexes, our proposal
leads to a significantly better performance. DBL could answer much more queries
than DL and BL label. The results have validated our claim that DL and BL are
complementary to each other. We note that the query processing for DBL is able
to handle one million queries with sub-second latency for most datasets, which
shows outstanding performance.

Impact of Label Size: On the query processing of DBL. There are two labels in
DBL: both DL and BL store labels in bit vectors. The size of DL label depends on
the number of selected landmark nodes whereas the size of BL label is determined
by how many hash values are chosen to index the leaf nodes. We evaluate all
the datasets to show the performance trend of varying DL and BL label sizes per
vertex (by processing 1 million queries) in Table 4.



772 Q. Lyu et al.

When varying DL label size k, the performance of most datasets remain stable
before a certain size (e.g., 64) and deteriorates thereafter. This means that extra
landmark nodes will cover little extra reachability information. Thus, selecting
more landmark nodes does not necessarily lead to better overall performance
since the cost of processing the additional bits incur additional cache misses.
BerkStan gets benefit from increasing the DL label size to 128 since 64 landmarks
are not enough to cover enough reachable pairs.

Table 3. Percentages of queries answered by DL label, BL label (when the other label
is disabled) and DBL label respectively. We also include the time for DBL to process 1
million queries

Dataset DL Label BL Label DBL Label DBL time

LJ 97.5% 20.8% 99.8% 108 ms

Web 79.5% 54.3% 98.3% 139 ms

Email 31.9% 85.4% 99.2% 36 ms

Wiki 10.6% 94.3% 99.6% 157 ms

Pokec 97.6% 19.9% 99.9% 35 ms

BerkStan 87.5% 43.3% 95.0% 1590 ms

Twitter 6.6% 94.8% 96.7% 709 ms

Reddit 93.7% 30.6% 99.9% 61 ms

Compared with DL label, some of the datasets get a sweet spot when varying
the size of BL label. This is because there are two conflicting factors which affect
the overall performance. With increasing BL label size and more hash values
incorporated, we can quickly prune more unreachable vertex pairs by examining
BL label without traversing the graph with BFS. Besides, larger BL size also
provides better pruning power of the BFS even if it fails to directly answer the
query (Algorithm 2). Nevertheless, the cost of label processing increases with
increased BL label size. According to our parameter study, we set Wiki’s DL and
BL label size as 64 and 256, BerkStan’s DL and BL label size as 128 and 64. For
the remaining datasets, both DL and BL label sizes are set as 64.

6.3 General Graph Updates

In this section, we evaluate DBL’s performance on general graph update. As
DAGGER is the only method that could handle general update, we compare DBL
against DAGGER in Fig. 3. Ten thousand edge insertion and 1 million queries are
randomly generated and performed, respectively. Different from DAGGER, DBL
don’t need to maintain the DAG, thus, in all the datasets, DBL could achieve great
performance lift compared with DAGGER. For both edge insertion and query, DBL
is orders of magnitude faster than DAGGER. The minimum performance gap lies
in BerkStan. This is because BerkStan has a large diameter. As DBL rely on
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Table 4. Query performance (ms) with varying DL and BL label sizes

(a) Varying BL label sizes

Dataset 16 32 64 128 256

LJ 136.1 131.9 108.1 107.4 110.3

Web 177.2 128.5 152.9 156.6 174.3

Email 77.4 53.9 38.3 41.1 44.4

Wiki 911.6 481.4 273.7 181.3 157.4

Pokec 54.8 43.7 38.6 40.6 53.6

BerkStan 4876.1 4958.9 4862.9 5099.1 5544.3

Twitter 1085.3 845.7 708.2 652.7 673.2

Reddit 117.1 80.4 67.3 63.5 67.9

(b) Varying DL label sizes

Dataset 16 32 64 128 256

LJ 108.2 110.3 106.9 120.2 125.5

Web 154.0 152.5 151.1 158.8 167.8

Email 37.9 39.5 35.8 39.8 43.7

Wiki 274.5 282.6 272.4 274.8 281.1

Pokec 38.1 40.6 36.3 49.7 55.6

BerkStan 6369.8 5853.1 4756.3 1628.3 1735.2

Twitter 716.1 724.4 695.3 707.1 716.9

Reddit 64.6 65.9 62.9 75.4 81.4

Fig. 3. The execution time for insert 10000 edges as well as 1 million queries

BFS traversal to update the index. The traversal overheads is crucial for it’s
performance. BerkStan’s diameter is large, it means, during index update, DBL
need to traversal extra hops to update the index which will greatly degrade the
performance.

6.4 Synthetic Graph Updates

In this section, we compare our method with IP and TOL. Different from DBL,
which could handle real world update, IP and TOL could only handle synthetic
edge update that will not trigger DAG maintaining. Thus, for IP and TOL, we
follow their experimental setups depict in their paper [23,26]. Specifically, we
randomly select 10,000 edges from the DAG and delete them. Then, we will insert
the same edges back. In this way, we could get the edge insertion performance
without trigger DAG maintenance. For DBL, we stick to general graph updates. The
edge insertion will be randomly generated and performed. One million queries
will be executed after that. It needs to be noted that, although both IP and TOL
claim they can handle dynamic graph, due to their special pre-condition, their
methods are in fact of limited use in real world scenario.

The results are shown in Fig. 4. DBL outperforms other baselines in most cases
except on three data sets (Wiki, BerkStan and Twitter) where IP could achieve
a better performance. Nevertheless, DBL outperforms IP and TOL by 4.4x and
21.2x, respectively with respect to geometric mean performance. We analyze
the reason that DBL can be slower than IP on Wiki, BerkStan and Twitter.
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Fig. 4. The execution time for insert 10000 edges as well as 1 million queries, for TOL

and IP, the updates are synthetic that will not trigger SCC update

As we aforementioned, DBL relies on the pruned BFS to update the index, the
BFS traversal speed will determine the worst-case update performance. Berkstan
has the largest diameter as 514 and Twitter has the second largest diameter
as 24, which dramatically degrade the update procedure in DBL. For Wiki, DBL
could still achieve a better update performance than IP. However, IP is much
more efficiency in query processing which lead to better overall performance.

Although this experimental scenario has been used in previous studies, the
comparison is unfair for DBL. As both IP and TOL rely on the DAG to process
queries and updates, their synthetic update exclude the DAG maintaining
procedure/overheads from the experiments. However, DAG maintenance is
essential for their method to handle real world edge updates, as we have shown
in Fig. 3, the overheads is nonnegligible.

6.5 Parallel Performance

We implement DBL with OpenMP and CUDA (DBL-P and DBL-G respectively)
to demonstrate the deployment on multi-core CPUs and GPUs achieves encour-
aging speedup for query processing. We follow existing GPU-based graph pro-
cessing pipeline by batching the queries and updates [6,10,18]. Note that the
transfer time can be overlapped with GPU processing to minimize data commu-
nication costs. Both CPU and GPU implementations are based on the vertex
centric framework.

To validate the scalability of the parallel approach, we vary the number of
threads used in DBL-P and show its performance trend in Fig. 5. DBL-P achieves
almost linear scalability against increasing number of threads. The linear trend
of scalability tends to disappear when the number of threads is beyond 14. We
attribute this observation as the memory bandwidth bound nature of the pro-
cessing tasks. DBL invokes the BFS traversal once the labels are unable to answer
the query and the efficiency of the BFS is largely bounded by CPU memory
bandwidth. This memory bandwidth bound issue of CPUs can be resolved by
using GPUs which provide memory bandwidth boost.

The compared query processing performance is shown in Fig. 6. Bidirectional
BFS (B-BFS) query is listed as a baseline. We also compare our parallel solutions
with a home-grown OpenMP implementation of IP (denoted as IP-P). Twenty
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Fig. 5. Scalability of DBL on CPU

Dataset TOL IP IP-P DBL DBL-P DBL-G B-BFS

LJ 46.6 50.7 24.9 108.1 16.4 6.1 555561
Web 40.6 39.7 22.6 139.2 12.4 14.2 236892
Email 26.8 21.6 9.4 36.4 4.1 2.8 10168
Wiki 74.9 12.7 4.1 157.2 28.4 14.8 61113
Pokec 27.2 37.6 23.2 34.8 9.0 3.1 253936

BerkStan 37.2 31.6 16.4 1590.0 131.0 835.1 598127
Twitter 64.6 30.2 7.1 709.1 79.4 202.1 78496
Reddit 56.7 44.7 19.56 61.2 14.6 3.1 273935

Fig. 6. The query performance (ms)
on CPU and GPU architectures. B-BFS

means the bidirectional BFS

threads are used in the OpenMp implementation. We note that IP has to invoke
a pruned DFS if its labels fail to determine the query result. DFS is a sequential
process in nature and cannot be efficiently parallelized. For our parallel imple-
mentation IP-P, we assign a thread to handle one query. We have the following
observations.

First, DBL is built on the pruned BFS which can be efficiently parallelized with
the vertex-centric paradigm. We have observed significant performance improve-
ment by parallelized executions. DBL-P (CPUs) gets 4x to 10x speedup across all
datasets. DBL-G (GPUs) shows an even better performance. In contrast, as DFS
incurs frequent random accesses in IP-P, the performance is bounded by mem-
ory bandwidth. Thus, parallelization does not bring much performance gain to
IP-P compared with its sequential counterpart.

Second, DBL provides competitive efficiency against IP-P but DBL can be
slower than TOL and IP when comparing the single thread performance. However,
this is achieved by assuming the DAG structure but the DAG-based approaches
incur prohibitively high cost of index update. In contrast, DBL achieves sub-
second query processing performance for handling 1 million queries while still
support efficient updates without using the DAG (Fig. 6).

Third, there are cases where DBL-P outperforms DBL-G, i.e., Web, Berkstan
and Twitter. This is because these datasets have a higher diameter than the rest
of the datasets and the pruned BFS needs to traverse extra hops to determine
the reachability. Thus, we incur more random accesses, which do not suit the
GPU architecture.

7 Conclusion

In this work, we propose DBL, an indexing framework to support dynamic reach-
ability query processing on incremental graphs. To our best knowledge, DBL
is the first solution which avoids maintaining DAG structure to construct and
build reachability index. DBL leverages two complementary index components to
answer the reachability query. The experimental evaluation has demonstrated
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that the sequential version of DBL outperforms the state-of-the-art solutions with
orders of magnitude speedups in terms of index update while exhibits competi-
tive query processing performance. The parallel implementation of DBL on multi-
cores and GPUs further boost the performance over our sequential implementa-
tion. As future work, we are interested in extending DBL to support deletions,
which will be lazily supported in many applications.
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Abstract. Integrating machine learning techniques into RDBMSs is an
important task since many real applications require modeling (e.g., busi-
ness intelligence, strategic analysis) as well as querying data in RDBMSs.
Without integration, it needs to export the data from RDBMSs to build
a model using specialized ML toolkits and frameworks, and import the
model trained back to RDBMSs for further querying. Such a process
is not desirable since it is time-consuming and needs to repeat when
data is changed. In this paper, we provide an SQL solution that has the
potential to support different ML models in RDBMSs. We study how
to support unsupervised probabilistic modeling, that has a wide range
of applications in clustering, density estimation, and data summariza-
tion, and focus on Expectation-Maximization (EM) algorithms, which is
a general technique for finding maximum likelihood estimators. To train
a model by EM, it needs to update the model parameters by an E-step
and an M-step in a while-loop iteratively until it converges to a level con-
trolled by some thresholds or repeats a certain number of iterations. To
support EM in RDBMSs, we show our solutions to the matrix/vectors
representations in RDBMSs, the relational algebra operations to support
the linear algebra operations required by EM, parameters update by rela-
tional algebra, and the support of a while-loop by SQL recursion. It is
important to note that the SQL’99 recursion cannot be used to handle
such a while-loop since the M-step is non-monotonic. In addition, with
a model trained by an EM algorithm, we further design an automatic
in-database model maintenance mechanism to maintain the model when
the underlying training data changes. We have conducted experimental
studies and will report our findings in this paper.

1 Introduction

Machine learning (ML) plays a leading role in predictive and estimation tasks. It
needs to fully explore how to build, utilize and manage ML models in RDBMSs
for the following reasons. First, data are stored in a database system. It is time-
consuming of exporting the data from the database system and then feeding it
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12682, pp. 778–794, 2021.
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into models, as well as importing the prediction and estimation results back to
the database system. Second, users need to build a model as to query data in
RDBMSs, and query their data by exploiting the analysis result of the models
trained as a part of a query seamlessly in RDBMSs. A flexible way is needed
to train/query an ML model together with data querying by a high-level query
language (e.g., SQL). Third, the data maintained in RDBMSs are supposed to
change dynamically. The analysis result of the ML models trained may be out-
dated, which requires repeating the process of exporting data from RDBMSs
followed by importing the model trained into RDBMSs. It needs to support ML
model update automatically in RDBMSs.

There are efforts to support ML in RDBMSs [12,20]. Model-based views [8,
13] are proposed to support classification and regression analysis in database
systems. In brief, [8,13] use an ad-hoc create view statement to declare a clas-
sification view. In this create view statement, [8] specifies the model by an
as...fit...bases clause, and the training data is fed by an SQL query, while [13]
specifies a model explicitly with using svm clause, where the features and labels
are fed by feature function and labels, respectively. Here, feature function takes
database attributes as the input features, and labels are database attributes.
Although these approaches provide an optimized implementation for classifica-
tion models, their create view statement is lack of generality and deviates from
the regular SQL syntax. In addition, the models supported are limited and imple-
mented in a low-level form in a database system, which makes it difficult for
ordinary database end-users to develop new models swiftly. In this work, we
demonstrate that our SQL recursive query can define a model-based view in an
explicit fashion to support many ML models. Different from [8,13], we focus on
unsupervised models in the application of in-database clustering, density esti-
mation, and data summarization.

The main contributions of this work are summarized below. First, we study
how to support Expectation-Maximization (EM) algorithms [15] in RDBMSs,
which is a general technique for finding maximum likelihood estimators. We dis-
cuss how to represent data in RDBMSs, how to compute E-step and M-step
of EM using relational algebra operations, how to update parameters using
relational algebra operations, and how to support its while-loop using SQL
recursive queries. Note that mutual recursion is needed for both E/M-step in
EM, where the E-step is to compute the conditional posterior probability by
Bayesian inference, which is a monotonic operation, whereas the M-step is to
compute and update the parameters of the model given a closed-form updating
formula, which can be non-monotonic. This fact suggests that SQL’99 recursion
cannot be used to support EM, since SQL’99 recursion (e.g., recursive with)
only supports stratified negation, and therefore cannot support non-monotonic
operations. We adopt the enhanced SQL recursion (e.g., with+) given in [27]
based on XY-stratified [4,25,26], to handle non-monotonic operations. We have
implemented our approach on top of PostgreSQL. We show how to train a
batch of classical statistical models [5], including Gaussian Mixture model,
Bernoulli Mixture model, the mixture of linear regression, Hidden Markov model,



780 K. Zhao et al.

Algorithm 1: EM Algorithm for Mixture Gaussian Model
1: Initialize the means μ, covariances σ and mixing coefficients π;
2: Compute the initial log-likelihood L; i ← 0;
3: while ΔL > ε or i < maxrecursion do
4: E-step: compute the responsibilities p(zik) based on current μ, σ and π by

Eq. (3);
5: M-step: re-estimate μ, σ and π by Eq. (4)-(6);
6: re-compute the log-likelihood L; i ← i + 1;
7: end while
8: return μ, σ, π;

Mixtures of Experts. Third, given a model trained by EM, we further design an
automatic in-database model maintenance mechanism to maintain the model
when the underlying training data changes. Inspired by the online and incre-
mental EM algorithms [14,17], we show how to obtain the sufficient statistics of
the models to achieve the incremental even decremental model updating, rather
than re-training the model by all data. Our setting is different from the incre-
mental EM algorithms which are designed to accelerate the convergence of EM.
We maintain the model dynamically by the sufficient statistics of partial origi-
nal data in addition to the delta part. Fourth, we have conducted experimental
studies and will report our findings in this paper.

Organization. In Sect. 2, we introduce the preliminaries including the EM
algorithm and the requirements to support it in database systems. We sketch
our solution in Sect. 3 and discuss EM training in Sect. 4. In Sect. 5, we design a
view update mechanism, which is facilitated by triggers. We conduct extensive
experimental studies in Sect. 6 and conclude the paper in Sect. 7.

2 Preliminaries

In this paper, we focus on unsupervised probabilistic modeling, which has
broad applications in clustering, density estimation and data summarization
in database and data mining area. Specifically, the unsupervised models aim to
reveal the relationship between the observed data and some latent variables by
maximizing the data likelihood. The expectation-maximization (EM) algorithm,
first introduced in [7], is a general technique for finding maximum likelihood esti-
mators. It has a solid statistical basis, robust to noisy data and its complexity is
linear in data size. Here, we use the Gaussian mixture model [5], a widely used
model in data mining, pattern recognition, and machine learning, as an example
to illustrate the EM algorithm and our approach throughout this paper.

Suppose we have an observed dataset X = {x1, x2, · · · , xn} of n data points
where xi ∈ R

d. Given N(x|μ,σ) is the probability density function of a Gaus-
sian distribution with mean μ ∈ R

d and covariance σ ∈ R
d×d, the density of
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Table 1. The relation representations

K π μ σ

1 π1 μ1 σ1

2 π2 μ2 σ2

(a) relation GMM

ID x

1 x1

2 x2

(b) relation X

ID K p

1 1 p(z11)

1 2 p(z12)

2 1 p(z21)

2 2 p(z22)

(c) relation R

ID x

1 [1.0, 2.0]

2 [3.0, 4.0]

(d) row-major
representation Xc

Gaussian mixture model is a simple linear super-position of K different Gaussian
components in the form of Eq. (1).

p(xi) =
K∑

k=1

πkN(xi|μk,σk) (1)

Here, πk ∈ R is the mixing coefficient, i.e., the prior of a data point belonging
to component k and satisfies

∑K
i=1 πk = 1. To model this dataset X using a

mixture of Gaussians, the objective is to maximize the log-likelihood function in
Eq. (2).

lnp(X|π,μ,σ) =
n∑

i=1

ln[
K∑

k=1

πkN(xi|μk,σk)] (2)

Algorithm 1 sketches the EM algorithm for training the Gaussian Mixture
Model. First, in line 1–2, the means μk, covariances σk and the mixing coef-
ficients πk of K Gaussian distributions are initialized, and the initial value
of the log-likelihood (Eq. (2)) is computed. In the while loop of line 3–7, the
Expectation-step (E-step) and Maximization-step (M-step) are executed alter-
natively. In the E-step, we compute the responsibilities, i.e., the conditional
probability that xi belongs to component k, denoted as p(zik) by fixing the
parameters based on the Bayes rule in Eq. (3).

p(zik) =
πkN(xi|μk,σk)

∑K
j=1 πjN(xi|μj ,σj)

(3)

In the M-step, we re-estimate a new set of parameters using the current respon-
sibilities by maximizing the log-likelihood (Eq. (2)) as follows.

μnew
k =

1
nk

n∑

i=1

p(zik)xi (4)

σnew
k =

1
nk

n∑

i=1

p(zik)(xi − μnew
k )(xi − μnew

k )T (5)

πnew
k =

nk

n
(6)
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where nk =
∑n

i=1 p(zik). At the end of each iteration, the new value of
log-likelihood is evaluated and used for checking convergence. The algorithm
ends when the log-likelihood converges or a given iteration time is reached. In
RDBMS, the learned model, namely the parameters of K components, can be
persisted in a relation of K rows as shown in Table 1(a). Suppose 1-dimensional
dataset X as Table 1(b) is given, the posterior probability of xi belongs to com-
ponent k can be computed as Table 1(c) and clustering can be conducted by
assigning xi to component with the maximum p(zik).

To fulfill the EM algorithm in database systems, there are several important
issues that need to be concerned, including (1) the representation and storage of
high dimensional data in the database, (2) the relation algebra operation used to
perform linear algebra computation in EM, (3) the approach for iterative param-
eter updating, (4) the way to express and control the iteration of EM algorithm,
and (5) the mechanism to maintain the existing model when underlying data
evolves.

3 Our Solution

In this section, we give a complete solution to deal with above issues in applying
the EM algorithm and building model-based views inside RDBMS.

High Dimensional Representation. Regarding the issue of high dimensional
data, different from [19], we adopt the row-major representation, as shown in
Table 1(d), which is endorsed by allowing array/vector data type in the database.
With it, we can use the vector/matrix operations to support complicated linear
algebra computation in a concise SQL query.

Consider computing the means μ in the M-step (Eq. (4)) with the represen-
tation Xc, in Table 1(d). Suppose the responsibilities are in relation R(ID,K, p),
where ID, K and p are the identifier of data point, component, and the value of
p(zik). The relational algebra expression to compute Eq. (4) is shown in Eq. (7).

Mc ← ρ(K,mean)(KGsum(p·x)(R ��
R.ID=Xc.ID

Xc)) (7)

It joins X and R on the ID attribute to compute p(zik) · xi using the operator ·
which denotes a scalar-vector multiplication. With the row-major representation
which nesting separate dimension attributes into one vector-type attribute, the
· operator for vector computation, Eq. (4) is expressed efficiently (Eq. (7)).

Relational Algebra to Linear Algebra. On the basis of array/vector data
type and the derived statistical function and linear algebra operations, the com-
plicated linear algebra computation can be expressed by basic relational algebra
operations (selection (σ), projection (Π), union (∪), Cartesian product (×), and
rename (ρ)), together with group-by & aggregation. Let V and E (E′) be the
relation representation of vector and matrix, such that V (ID, v) and E(F, T, e).
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Here ID is the tuple identifier in V . F and T , standing for the two indices
of a matrix. [27] introduces two new operations to support the multiplication
between a matrix and a vector (Eq. (8)) and between two matrices (Eq. (9)) in
their relation representation.

E
⊕(�)
��

T=ID
V = FG⊕(�)(E ��

T=ID
V ) (8)

E
⊕(�)
��

E.T=E′.F
E′ = E.F,E′.TG⊕(�)(E ��

E.T=E′.F
E′) (9)

The matrix-vector multiplication (Eq. (8)) consists of two steps. The first step is
computing v � e between a tuple in E and a tuple in V under the join condition
E.T = V.ID. The second step is aggregating all the � results by the operation
of ⊕ for every group by grouping-by the attribute E.F . Similarly, the matrix-
matrix multiplication (Eq. (9)) is done in two steps. The first step computes �
between a tuple in E and a tuple in E′ under the join condition E.T = E′.F . The
second step aggregates all the � results by the operation of ⊕ for every group-
by grouping by the attributes E.F and E′.T . The formula of re-estimating the
means μ (Eq. (4)) is a matrix-vector multiplication if data is 1-dimensional or a
matrix-matrix multiplication otherwise. When high dimensional data is nested
as the row-major representation (Table 1(d)), the matrix-matrix multiplication
is reduced to matrix-vector multiplication, as shown in Eq. (7).

Re-estimating the covariance/standard deviation σ (Eq. (5)) involves the
element-wise matrix multiplication if data is 1-dimensional or a tensor-
matrix multiplication otherwise. The element-wise matrix multiplication can be
expressed by joining two matrices on their two indices to compute E.e � E′.e.
An extra aggregation is required to aggregate on each component k as shown in
Eq. (10).

E
⊕(�)
��

E.F=E′.F
E.T=E′.T

E′ = E.FG⊕(�)(E ��
E.F=E′.F
E.T=E′.T

E′) (10)

Similarly, when � and ⊕ are vector operation and vector aggregation, Eq. (10)
is reduced to high dimensional tensor-matrix multiplication.

Value Updating. We need to deal with parameter update when training the
model in multiple iterations. We use union by update, denoted as �, defined
in [27] (Eq. (11)) to address value update.

R �A S = (R − (R �
R.A=S.A

S)) ∪ S (11)

Suppose tr is a tuple in R and ts is a tuple in S. The union by update updates
tr by ts if tr and ts are identical by some attributes A. If ts does not match any
tr, ts is merged into the resulting relation. We use � to update the relation of
parameters in Table 1(a).
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Iterative Evaluation. RDBMSs have provided the functionality to support
recursive queries, based on SQL’99 [11,16], using the with clause in SQL.
This with clause restricts the recursion to be a stratified program, where non-
monotonic operation (e.g., �) is not allowed. To support iterative model update,
we follow [27], which proves � (union by update) leads to a fixpoint in the
enhanced recursive SQL queries by XY-stratification. We prove that the vector/-
matrix data type, introduced in this paper, can be used in XY-stratification. We
omit the details due to the limited space.

with R as
select · · · from R1,j , · · · computed by · · · (Q1)
union by update
select · · · from R2,j , · · · computed by · · · (Q2)

Fig. 1. The general form of the enhanced recursive with

The general syntax of the enhanced recursive with is sketched in Fig. 1. It
allows union by update to union the result of initial query Q1 and recursive
query Q2. Here, the computed by statement in the enhanced with allows users
to specify how a relation Ri,j is computed by a sequence of queries. The queries
wrapped in computed by must be non-recursive.

4 The EM Training

We show the details of supporting the model-based view using SQL. First, we
present the relational algebra expressions needed followed by the enhanced recur-
sive query. Second, we introduce the queries for model inference.

Parameter Estimation: For simplicity, here we consider the training data
point xi is 1-dimensional scalar. It is natural to extend the query to high
dimensional input data when matrix/vector data type and functions are sup-
ported by the database system. We represent the input data by a relation
X(ID, x), where ID is the tuple identifier for data point xi and x is a numeric
value. The model-based view, which is persisted in the relation GMM(K, pie,
mean, cov), where K is the identifier of the k-th component, and ‘pie’, ‘mean’,
and ‘cov’ denote the corresponding parameters, i.e., mixing coefficients, means
and covariances (standard deviations), respectively. The relation representations
are shown in Table 1. The following relational algebra expressions describe the
E-step (Eq. (12)), M-step (Eq. (13)–(16)), and parameter updating (Eq. (17)) in
one iteration.
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R ← ρ(ID,K,p)Π(ID,K,f)(GMM × X) (12)

N ← ρ(K,pie)(R
sum(p)

��
R.ID=X.ID

X) (13)

M ← ρ(K,mean)(R
sum(p∗x)/sum(p)

��
R.ID=X.ID

X) (14)

T ← ΠID,K,pow(x−mean)(X × N) (15)
C ← ρ(K,cov)KGsum(p∗t)(T ��

R.ID=T.ID
R.K=T.K

R) (16)

GMM ← ρ(K,pie,mean,cov)(N ��
N.K=M.K

M ��
M.K=C.K

C) (17)

In Eq. (12), by performing a Cartesian product of GMM and X, each data point
is associated with the parameters of each component. The responsibilities are
evaluated by applying an analytical function f to compute the normalized prob-
ability density (Eq. (3)) for each tuple, which is the E-step. The resulting rela-
tion R(ID,K, p) is shown in Fig. 1(c). For the M-step, the mixing coefficients
‘pie’ (Eq. (13)), the means ‘mean’ (Eq. (14)) and the covariances ‘cov’ (Eq. (15)–
(16)) are re-estimated based on their update formulas in Eq. (4)–(6), respec-
tively. In the end, in Eq. (17), the temporary relations N , M and C are joined
on attribute K to merge the parameters. The result is assigned to the recursive
relation GMM.

1. with
2. GMM(K, pie, mean, cov) as (
3. (select K, pie, mean, cov from INIT PARA)
4. union by update K
5. (select N.K, pie/n, mean, sqrt (cov/pie)
6. from N , C where N.K = C.K
7. computed by
8. R(ID, K, p) as select ID, k, norm(x, mean, cov) * pie /
9. (sum(norm(x, mean, cov) * pie) over (partition by ID))
10. from GMM, X
11. N(K, pie, mean) as select K, sum(p), sum(p * x) / sum(p)
12. from R, X where R.ID = X.ID
13. group by K
14. C(K, cov) as select R.K, sum(p * T .val) from
15. (select ID, K, pow(x-mean) as val from X, N) as T , R
16. where T.ID = R.ID and T.K = R.K
17. group by R.K)
18. maxrecursion 10)
19. select * from GMM

Fig. 2. The enhanced recursive SQL for Gaussian Mixtures

Figure 2 shows the enhanced with query to support Gaussian Mixture Model
by EM algorithm. The recursive relation GMM specifies the parameters of k
Gaussian distributions. In line 3, the initial query loads the initial parameters
from relation INI PARA. The new parameters are selected by the recursive query
(line 5–6) evaluated by the computed by statement and update the recursive
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relation by union by update w.r.t. the component index K. It wraps the queries
to compute E-step and M-step of one iteration EM.

We elaborate on the queries in the computed by statement (line 8–17). Specif-
ically, the query in line 8–10 performs the E-step, as the relational algebra in
Eq. (12). Here, norm is the Gaussian (Normal) probability density function of
data point x given the mean and covariance as input. We can use the window
function, introduced in SQL’03 to compute the responsibility by Bayes rule in
Eq. (3). In line 9, sum() over (partition by()) is the window function performing
calculation across a set of rows that are related to the current row. As it does not
group rows, where each row retains its separate identity, many RDBMSs allow to
use it in the recursive query, e.g., PostgreSQL and Oracle. The window function
partitions rows of the Cartesian product results in partitions of the same ID
and computes the denominator of Eq. (3). In line 11–13, the query computes the
means (Eq. (4)) and the mixing coefficients together by a matrix-matrix multi-
plication due to their common join of R and X. Then, line 14–17 computes the
covariances of Eq. (5). First, we compute the square of xi − μk for each xi and
k, which requires a Cartesian product of N and R (Eq. (15)). Second, the value
is weighted by the responsibility and aggregated as specified in Eq. (16). The
new parameters in the temporary relation N and C will be merged by joining on
the component index K in line 6. The depth of the recursion can be controlled
by maxrecursion clause, adapted from SQL Server [2]. The maxrecursion clause
can effectively prevent infinite recursion caused by infinite fix point, e.g., ‘with
R(n) as ((select values(0)) union all (select n+1 from R))’ , a legal SQL’99
recursion.

Model Inference: Once the model is trained by the recursive query in Fig. 2,
it can be materialized in a view for online inference. In the phase of inference,
users can query the view by SQL to perform clustering, classification and density
estimation. Given a batch of data in relation X and a view GMM computed by
Fig. 2, the query below computes the posterior probability that the component
K generated the data with index ID. The query is similar to computing the
E-step (Eq. (3)) in line 5–7 of Fig. 2.

create table R as select ID, K,
norm(x, mean, cov) * pie / (sum(norm(x, mean, cov) * pie)
over (partition by ID)) as p from GMM, X

Based on relation R(ID,K, p) above, we can further assign the data into K
clusters, where xi is assigned to cluster k if the posterior probability p(zik) is
the maximum among the {p(zi1), · · · , p(ziK)}. The query below creates a relation
CLU(ID, K) to persist the clustering result where ID and K are the index of
the data point and its assigned cluster, respectively. It first finds the maximum
p(zik) for each data point by a subquery on relation R. The result is renamed
as T and is joined with R on the condition of R.ID = T.ID and R.p = T.p to
find the corresponding k.
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create table CLU as select ID, K from R,
(select ID, max (p) as p from R group by ID) as T ,
where R.ID = T.ID and R.p = T.p

It is worth noting that both of the queries above only access the data exactly
once. Thereby, it is possible to perform the inference on-the-fly and only for
interested data. Besides density estimation and clustering, result evaluation, e.g.,
computing the purity, normalized mutual information (NMI) and Rand Index
can be conducted in the database by SQL queries.

5 Model Maintenance

In this section, we investigate the automatic model/view updating. When the
underlying data X changes, a straightforward way is to re-estimate the model
over the updated data. However, when only a small portion of the training data
are updated, the changes of the corresponding model are slight, it is inefficient
to re-estimate the model on-the-fly. Hence, a natural idea arises that whether we
can update the existing model by exploring the “incremental variant” of the EM
algorithm. And this variant can be maintained by the newly arriving data and
a small portion of data extracted from the original dataset. As the statistical
model trained by an SQL query can be represented by its sufficient statistics,
the model is updated by maintaining the model and sufficient statistics.

Maintaining Sufficient Statistics: The sufficient statistic is a function of data
X that contains all of the information relevant to estimate the model parameters.
As the model is updated, the statistics of data is also updated followed by
the changing of the posterior probability p(zik). This process repeats until the
statistics converge. We elaborate on the sufficient statistics updating rules below.

Suppose the training dataset of model θ is {x1, x2, · · · , xn}. Let s be the
sufficient statistics of θ, based on the Factorization Theorem [10], we can obtain

s =
n∑

i=1

∑

z

p(z|xi,θ)φ(xi,z) (18)

where z is the unobserved variable, φ denotes the mapping function from an
instance (xi,z) to the sufficient statistics contributed by xi. The inserted data is
{xn+1, xn+2, · · · , xm}. Let the model for overall data {x1, · · · , xn, xn+1, · · · , xm}
be θ̃ and the corresponding sufficient statistics be s̃. The difference of s̃ − s,
denoted as Δs is

Δs =
n+m∑

i=1

∑

z

p(z|xi, θ̃)φ(xi,z) −
n∑

i=1

∑

z

p(z|xi,θ)φ(xi,z)

=
n+m∑

i=1

∑

z

[p(z|xi, θ̃) − p(z|xi,θ)]φ(xi,z) (19)

+
m∑

i=n+1

∑

z

p(z|xi,θ)φ(xi,z) (20)
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According to above equations, we observe that the delta part of the sufficient
statistics Δs consists of two parts: (1) changes of the sufficient statistics for the
overall data points {x1, x2 · · · xm} in Eq. (19), and (2) the additional sufficient
statistics for the newly inserted data points {xn+1, · · · xm} in Eq. (20). Consider
to retrain a new model θ̃ over {x1, x2, · · · , xm} in T iterations by taking θ as
the initial parameter, i.e., θ(0) = θ and θ(T ) = θ̃. We have

Δs =
n+m∑

i=1

∑

z

[p(z|xi,θ
(T )) − p(z|xi,θ

(0))]φ(xi,z) (21)

+
m∑

i=n+1

∑

z

p(z|xi,θ
(0))φ(xi,z) (22)

=
T∑

t=1

n+m∑

i=1

∑

z

[p(z|xi,θ
(t)) − p(z|xi,θ

(t−1))]φ(xi,z) (23)

+
m∑

i=n+1

∑

z

p(z|xi,θ
(0))φ(xi,z) (24)

Above equations indict how to compute Δs. For the inserted data {xn+1, · · · xm},
the delta can be directly computed by evaluating the original model θ(0) as
Eq. (24), while for original data, the delta can be computed by updating the
model θ(t) iteratively using all the data {x1, x2 · · · xm} as Eq. (23). Since most
of the computational cost is on the iteration of Eq. (23), we approximate the
computation. First, we use the stochastic approximation algorithm, where the
parameters are updated after the sufficient statistics of each new data point xi is
computed, instead of the full batch dataset [14,17,21]. The second is discarding
the data points which are not likely to change their cluster in the future, as the
scaling clustering algorithms adopt for speedup [6]. We discuss our strategy of
selecting partial original data in {x1, x2, · · · , xn} for model update. There is a
tradeoff between the accuracy of the model and the updating cost. We have two
strategies: a distance-based and a density-based strategy. For the distance-based
strategy, we use Mahalanobis distance [9] to measure the distance between a
data point and a distribution. For each data xi, we compute the Mahalanobis
distance, Dk(xi), to the k-th component with mean μk and covariance σk.

Dk(xi) =
√

(xi − μk)T σ−1
k (xi − μk) (25)

We can filter the data within a given thresholding radius with any component.
Another density-based measurement is the entropy of the posterior probability
for data xi as in Eq. (26), where p(zik) is evaluated by parameter θ(0). The
larger the entropy, the lower the possibility of assigning xi to any one of the
components.

E(xi) = −
K∑

k=1

p(zik)ln p(zik) (26)



Towards Expectation-Maximization by SQL in RDBMS 789

Similarly, considering deleting m data points {xn−m+1, · · · xn} from
{x1, x2 · · · xn}, the difference of the sufficient statistics, Δs is

Δs =
T∑

t=1

n−m∑

i=1

∑

z

[p(z|xi,θ
(t)) − p(z|xi,θ

(t−1))]φ(xi,z) (27)

−
n∑

i=n−m+1

∑

z

p(z|xi,θ
(0))φ(xi,z)

1. create trigger T1 before insert on X
2. for each statement
3. execute procedure DATA SELECTION

4. create trigger T2 before insert on X
5. for each row
6. execute procedure DATA INSERTION

7. create trigger T3 after insert on X
8. for each statement
9. execute procedure MODEL UPDATE

Fig. 3. The triggers for incremental update

A Trigger-based Implementation: In RDBMSs, the automatic model updat-
ing mechanism is enabled by triggers built on the relation of the input data.
There are three triggers built on the relation of training data X, whose defini-
tions are shown in Fig. 3. Before executing the insertion operation, two triggers
T1 (line 1–3 in Fig. 3) and T2 (line 4–6 in Fig. 3) prepare the data for model
updating in a temporary relation X ′. Here, T1 performs on each row to select
a subset from original data in {x1, x2, · · · , xn} based on a selection criterion.
Additionally, T2 inserts all the newly arrived data {x1+n, x2, · · · , xm} to rela-
tion X ′. After the data preparation finished, another trigger T3 (line 7–9 in
Fig. 3) will call a PSM to compute the Δs by X ′. In the PSM, first, the delta
of the newly inserted data (Eq. (23)) is computed to reinitialize the parameters
of the model. Then, T iterations of scanning relation X ′ is performed. Where in
each iteration. X ′ is randomly shuffled and each data point is used to update
the sufficient statistics it contributes as well as the model instantly. It is worth
mentioning that the data selection in trigger T1 can be performed offline, i.e.,
persisting a subset of training data with a fixed budget size for model updat-
ing in the future. In addition, the sufficient statistics for original model θ0 can
be precomputed. Those will improve the efficiency of online model maintenance
significantly. The actions of these triggers are transparent to the database users.
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6 Experimental Studies

In this section, we present our experimental studies of supporting model-based
view training, inference, and maintenance in RDBMS. We conduct extensive
experiments to investigate the following: (a) to compare the performance of our
enhanced with and looping control by a host language, (b) to test the scalability
of the recursive queries for different models, and (c) to validate the efficiency of
our model maintenance mechanism.

Experimental Setup: We report our performance studies on a PC with
Intel(R) Xeon(R) CPU E5-2697 v3 (2.60 GHz) with 96 GB RAM running Linux
CentOS 7.5 64 bit. We tested the enhanced recursive query on PostgreSQL
10.10 [3]. The statistical function and matrix/vector computation function are
supported by Apache MADlib 1.16 [12]. All the queries we tested are evaluated
in a single thread PostgreSQL instance.

with+ vs. Psycopg2: We compare the enhanced with, which translates the recur-
sive SQL query to SQL/PSM with the implementation of using a host language
to control the looping, which is adopted in previous EM implementation [19].
We implement the latter by Psycopg2 [1], a popular PostgreSQL adapter for
the python language. Regarding the EM algorithm, the E-step, M-step, and
parameter updating are wrapped in a python for-loop, and executed by a cursor
alternatively. We compare the running time of these two implementations, i.e.,
enhanced with and Psycopg2 for training Gaussian Mixture Model by varying the
dimension d of data point (Fig. 4(b)), the scale of the training data n (Fig. 4(c)),
the number of components k (Fig. 4(a)) and the number of iterations (Fig. 4(d)).
The training data is evenly generated from 10 Gaussian distributions.

The evaluated time is the pure query execution time where the costs of
database connection, data loading and parameter initialization are excluded.
The experiments show that enhanced with outperforms Psycopg2 significantly,
not only for multiple iterators in Fig. 4(d) but also for per iteration in Fig. 4(b)–
4(a). For one thing, the implementation of Psycopg2 calls the database multiple
times per iteration, incurring much client-server communication and context
switch costs. For the other, the issued queries from client to server will be parsed,
optimized and planned on-the-fly. These are the general problems of calling SQL
queries by any host language. Meanwhile, we implement the hybrid strategy of
SQLEM [18] in PostgreSQL. For Gaussian Mixture model, one iteration for
10,000 data points with 10 dimensions fails to terminate within 1 h. In their
implementation, 2k separate SQL queries evaluate the means and variances of k
components respectively, which is a performance bottleneck.

Experiments on Synthetic Data: We train Gaussian Mixture model
(GMM) [5], mixture of linear regression (MLR) [22] and a neural network model,
mixture of experts (MOE) [24] by evaluating SQL recursive queries in Post-
greSQL. Given the observed dataset as {(x1, y1), (x2, y2), · · · , (xn, yn)}, where
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Fig. 5. Scalability test

xi ∈ R
d and yi ∈ R, the MLR models the density of y given x as

p(yi|xi) =
K∑

k=1

πkN(yi|xT
i βk,σk) (28)

And the MOE models the density of y given x as

p(yi|xi) =
K∑

k=1

gk(xi)N(yi|xT
i βk,σk) (29)

where βk ∈ R
d is the parameters of a linear transformer, N is the probability

density function of a Gaussian given mean xT
i βk ∈ R and standard deviation

σk ∈ R. In Eq. (29), gk(x) is called the gating function, given by computing the
softmax in Eq. (30) where θ ∈ R

d is a set of linear weights on xi.

gk(xi) =
exiθk

∑K
j=1 exiθj

(30)

The intuition behind the gating functions is a set of ‘soft’ learnable weights which
determine the mixture of K local models. We adopt the single loop EM algo-
rithm [23] to estimate the parameters of MOE, which uses least-square regression
to compute the gating network directly. For GMM, the training data is evenly
drawn from 10 Gaussian distributions. For MLR and MOE, the training data
is generated from 10 linear functions with Gaussian noise. The parameters of
the Gaussians and the linear functions are drawn from the uniform distribution
[0, 10]. And the initial parameters are also randomly drawn from [0, 10].
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Figure 5 displays the training time per iteration of the 3 models by varying
the data dimension d (Fig. 5(a)), the scale of the training data n (Fig. 5(b)) and
the number of clusters k (Fig. 5(c)). In general, for the 3 models, the training
time grows linearly as n and k increase, while the increment of data dimension d
has a more remarkable impact on the training time. When increasing n and k, the
size of intermediate relations, e.g., relation R for computing the responsibilities
in Eq. (12) grow linearly. Therefore the training cost grows linearly with regards
to n and k. However, in the 3 models, we need to deal with d × d dimensional
matrices in the M-step. For GMM, it needs to compute the probability density
of the multivariable Gaussians and reestimate the covariance matrices. For MLR
and MOE, they need to compute the matrix inversion and least square regression.
The training cost grows regarding the size of the matrix. The comparison shows
it is still hard to scale high-dimensional analysis in a traditional database system.
However, efficiency can be improved on a parallel/distributed platform and new
hardware.
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Fig. 6. Insert maintenance

Incremental Maintenance: Finally, we test the performance of our trigger-
based model updating mechanism. First, we train GMM for 1-dimensional data
generated from 2 Gaussian distributions. The original models are trained over
100k, 1M and 10M data points, respectively with 15 iterations. The overall train-
ing time is recorded as the ‘batch’ mode training time, which is 54 s, 501 s and
4,841 s respectively. After the model is trained and persisted. We insert 10, 20,
30, 40, 50 data points to the underlying data by varying the budget size of
selected data from 0 to 1,000.

Figure 6 shows the insertion time w.r.t. the budget size of the selected data for
the 3 models. The insertion time is the collapsed time from the insert command
issuing to the transaction commit, including the cost of data selection with the
density-based strategy and computing initial sufficient statistics. As the number
of processed tuples increases, the insertion time grows linearly. Compare to the
retraining cost, i.e., the batch training time, it is not always efficient to update
the existing model. The choice depends on two factors, the size of overall data
points, and the budget size plus insertion size, i.e., the numbers of data points
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to be processed in the updating. The updating mechanism may not be efficient
and effective when the overall data size is small or there is a large volume of
insertion. That is because, for the batch training mode, computation of param-
eter evaluation dominates the cost. While for the model updating, since the
sufficient statistics and the model are updated when processing each data point,
the updating overhead becomes a main overhead. Meanwhile, we notice that the
collapsed time of data selection and computing initial sufficient statistics take
about 10 s, 100 s and 1,000 s for data size of 100k, 1M and 10M, respectively.
Precomputing and persisting these results will benefit for a larger dataset.

7 Conclusion

Integrating machine learning techniques into database systems facilitates a wide
range of applications in industrial and academic fields. In this paper, we focus on
supporting EM algorithm in RDBMS. Different from the previous approach, our
approach wraps the E-step and M-step in an enhanced SQL recursive query to
reach an iterative fix point. We materialize the learned model as a database view
to query. Furthermore, to handle model updates, we propose an automatic view
updating mechanism by exploiting the incremental variant of the EM algorithm.
The extensive experiments we conducted show that our approach outperforms
the previous approach significantly, and can support multiple mixture models
by EM algorithm, as well as the efficiency of the incremental model update. The
SQL implementation can be migrated to parallel and distributed platforms, e.g.,
Hadoop and Spark, to deploy large scale machine learning applications. These
directions deserve future explorations.
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