l‘)

Check for
updates

UniTest: A Universal Testing Framework
for Database Management Systems

Gengyuan Shi, Chaokun Wang®), Bingyang Huang, Hao Feng,
and Binbin Wang

School of Software, Tsinghua University, Beijing 100084, China
{shigy19,hby17,£h20,wbb18}Cmails.thu.edu.cn, chaokun@tsinghua.edu.cn

Abstract. With the continuous development of data collection, network
transmission, and data storage, Big Data are now rapidly expanding in
all science and engineering domains. Considering the characteristics of
Big Data including quick generation, large size, and diverse data mod-
els, higher requirements are placed on the functionality and performance
of database management systems. Therefore, it is essential for users to
choose a stable and reliable database management system. However, find-
ing the best way to evaluate the reliability and stability of database man-
agement systems is still a huge challenge, and it is difficult for users to
design their own test cases for evaluating these systems.

In order to address this problem, we carefully design a universal test-
ing framework, called UniTest, which can perform effective functional
testing and performance testing for different types of database man-
agement systems. Extensive testing experiments on multiple types of
database management systems show the universality and efficiency of
our framework.

Keywords: Database management system - Functional testing -
Performance testing - UniTest

1 Introduction

In recent years, the fast development of Big Data technologies including cloud
computing, the Internet of Things, and social network analysis [3], has greatly
changed the way people live. However, massive data not only bring exceptional
opportunities to the development of the technologies but also bring huge chal-
lenges to data management. Considering the variety of Big Data, efficient multi-
model data management has become a fundamental requirement in real-world
scenarios with the perspective that “no one size fits all” [16]. How to manage
such heterogeneous data effectively and efliciently is still a big challenge for many
industries. In order to utilize the existing DBMSs for providing more efficient
multi-model data management, there is an urgent need for techniques to evalu-
ate different types of Database Management Systems (DBMSs) [7,8]. Based on

© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 96-104, 2021.
https://doi.org/10.1007/978-3-030-73194-6_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_7

UniTest: A Universal Testing Framework for Database Management Systems 97

these database evaluation techniques, users can accurately and effectively eval-
uate the overall abilities of the DBMSs to ensure that, in real-world scenarios,
these systems can provide efficient and stable services.

There are many studies on the DBMSs comparison [1,10,13]. However, there
is little work available for universally evaluating multiple types of DBMSs. For
most non-relational databases, as well as for different types of data, there is
currently no widely used testing platform [7]. Another problem with most of
the existing database testing platforms and benchmarks is that the test cases
are designed in advance. As a result, the testers cannot create test cases easily
according to their concerns, and hence face great difficulties when testing DBMSs
that support different data models.

The challenge behind the problems above is the difficulty in conducting the
test for different types of DBMSs universally, both the data models and data
management technologies of these systems differ. In order to address this prob-
lem, this paper designs UniTest, a universal framework for evaluating a variety
of DBMSs in terms of both functionality and performance. UniTest allows users
to easily design and execute new test cases for different types of DBMSs.

The main contributions of this paper are summarized as follows:

1. We carefully design UniTest, a universal framework for testing multiple types
of DBMSs. Besides the universal pre-defined cases for both functional and
performance testing, UniTest allows users to design new statements of dif-
ferent types of query languages as test cases. To the best of our knowledge,
UniTest is the first testing framework that can be used to test more than five
types of DBMSs universally.

2. We implement the UniTest system with effectiveness and high extensibility.
We provide an easy-to-use interface for testers to configure the system envi-
ronment, select test cases, and check the test results in detail. UniTest can
also be easily extended by integrating new DBMSs and designing new test
cases. The experimental results show that UniTest can effectively test DBMSs
that support different data models.

The rest of this paper is organized as follows. We discuss the related work
in Sect.2. In Sect.3, we present the architecture of UniTest. We report the
experimental results in Sect. 4 and finally give our conclusions in Sect. 5.

2 Related Work

The overall performance of one DBMS is related to many factors such as the
system architecture, the scale of data, the hardware environment, and so on.
To compare different DBMSs, it is necessary to conduct test cases under the
same conditions. Typical performance testing methods include benchmark test-
ing, load testing, and so on. Different test methods perform evaluations of the
DBMSs from different perspectives as required [2,4,5,9,11,12,19].



98 G. Shi et al.

2.1 Benchmark Testing

Benchmark testing refers to the test method used to quantify some particular
performance metrics of the systems under test. The benchmark testing process
mainly consists of three key steps: test data generation, load type selection,
and test indicator selection [15]. Various aspects of the systems under test need
to be evaluated, such as reliability, time efficiency, resource consumption, cost
performance, and so on.

Some benchmark testing tools are designed for specific typical applications.
Facebook’s LinkBench is mainly used to test the DBMSs in the social network
scenarios [2]. Yahoo’s YCSB is proposed for testing NoSQL cloud databases [4].
BigDataBench runs tests using different business models [14,18].

However, there are still some drawbacks to these tools. Firstly, the test meth-
ods mainly focus on one or a small number of data models and are difficult to
test database management systems of multiple types just using one testing tool.
Secondly, the lack of a graphical interface is a big problem for many of them,
since testers cannot easily set test configurations and get the test results. For
example, LinkBench mainly provides test cases including adding, deleting, and
changing for graph data but does not support modification of data of other mod-
els. YCSB and BigDataBench do not provide direct supports for testing many
types (e.g., graph and message queue) of DBMSs.

2.2 Load Testing

The load testing technologies evaluate the processing limit of the DBMSs by
simulating the business scenarios. Specifically, these technologies continuously
increase the pressure on the system under test until a certain performance mea-
sure (such as the response time) of the system exceeds the expected value or
a certain resource is exhausted. By means of the load testing, we can under-
stand the performance capacity of the system, discover possible problems in the
system, or provide a reference for system performance tuning.

The data loading model performs load testing on the DBMS under test by
generating a large amount of data. It is necessary to consider the representative-
ness, extensiveness, and data distribution of the test dataset when generating the
test data, since these characteristics have a great influence on the performance
of the application.

Using the load testing tools, the tester can simulate a series of virtual opera-
tions in a real business scenario, thereby testing and evaluating various aspects
of the system under test. Currently, many load testing tools help testers conduct
performance tests through automated testing. JMeter [6] is one of the typical
load testing tools.

JMeter is an open-source software application designed to test the server or
client architecture and simulate a massive load to test the stability and perfor-
mance of the DBMSs. Testers can get test results by creating, configuring, and
executing test plans.



UniTest: A Universal Testing Framework for Database Management Systems 99

3 The UniTest

This section proposes UniTest, a universal framework for testing multiple types
of DBMSs. The framework architecture can be divided into three parts: the
User Interface, the Test Management module, and the Test Ezecution module.
Firstly, we briefly introduce the architecture of UniTest. Then, the three major
components are presented in detail in Sect. 3.1, 3.2 and 3.3, respectively.

User Test Server Test Plan Test Result
{ Login } {Configuration} {Configura!ion} { Presentation } User Interface

Session
Manager

Manager Manager Management

[ User Manager J { Functional Testing } [ Performance Testing } I Test

Test Data Manager Test Report Test
Generator i

v
| Relational DBMS Graph DBMS Document DBMS Time-Series DBMS
[ Test Server Test Server Test Server Test Server
h

'
Test Servers:

Underlying
DBMSs

Time-Series
DBMS

Document
DBMS

Relational Graph
DBMS DBMS

Fig. 1. The architecture of UniTest.

The architecture of UniTest is shown in Fig. 1. The user interface interacts
with the tester for test case customization, system configuration, results presen-
tation, and so forth. The test execution module processes the test request sent
by the tester, and then forwards it to the corresponding test server and finally
obtains the test result from the test server for displaying in the user interface.
There is one test server for each of the data models, which is responsible for
receiving and executing the specific test cases on the DBMS under test. The test
management module receives the test results from the test execution module
and returns them to the user interface to display.

With the support of this framework, we also have an evaluation method for
testing different types of DBMSs. The tester can log in through the user inter-
face, generate a test plan by selecting the target DBMS and the test cases, and
pass the test plan to the test management module. The test server in the test
execution module connects to the server where the DBMS under test, namely the
target DBMS, is located according to the test plan, and performs corresponding
tests. During testing, the test execution module prepares test data by loading
the corresponding test dataset or generating test data. The test results are auto-
matically collected and returned to the user interface along with the generated
test report.



100 G. Shi et al.

3.1 User Interface

The user interface includes a user login pane, a test server configuration pane, a
test plan configuration pane, and a test result presentation pane. Through the
user interface, the tester can complete operations such as logging in, configuring
and conducting tests, and viewing test results.

In the test server configuration pane, the tester can configure the address,
the user name, and the password for each DBMS test server.

In the test plan configuration pane, the tester can select test cases for each
DBMS from the list of test cases given by UniTest, combine them into a test
plan, and execute the test. UniTest automatically generates the test plan and
passes the plan to the test management module.

In the test result display pane, the log information and the test results
returned from the test server are displayed. The tester can download the auto-
matically generated test report.

3.2 Test Management Module

The test management module, consisting of a user manager, a functional testing
manager, and a performance testing manager, is responsible for performing all
test plans in the framework.

In the user manager, the user permissions of the testers of UniTest can be
managed to ensure the security of the DBMSs under test. Roles of the users
are divided into two categories: administrator users and ordinary users. The
administrator user can add users or delete existing users, and can modify the
passwords of other users; ordinary users only have the right to log in and modify
their passwords.

The test management module refines the received test plan. There may be
precondition or inclusion relationships between a series of given test cases, i.e.,
test case A must be executed at first, or test case A should contain test case B.
UniTest automatically checks these relationships and forms an integrated test
plan.

In the functional testing manager, different test cases for different data types
are preset for the tester to select. One or more test cases can be selected to be
freely combined to form a test plan.

The performance testing manager includes performance test cases for dif-
ferent DBMSs, including data migration efficiency (import/export) and query
execution efficiency.

3.3 Test Execution Module

The test execution module receives the test plan from the test management
module, dispatches the test cases to the corresponding test servers, and returns
the test results and the test report. The test execution module includes a test

data manager, a test report generator, and a test server for each type of the
DBMSs.



UniTest: A Universal Testing Framework for Database Management Systems 101

The test data manager prepares test datasets for the target DBMS when the
test is performed. For example, this component generates a testing dataset auto-
matically before executing the data migration test which needs a large amount
of data to be imported.

The test report generator monitors the test process and collects the test
results. It automatically generates a test report document of the current test
according to information on the process and results of the test.

For each type of DBMSs, the test server controls the corresponding DBMS
server and executes the user-specified test cases. After the test plan is forwarded
by the test management module to the specific test server, the test server con-
ducts test cases according to the test plan.

For performance testing, the test execution module conducts the user-
specified test plan. The test server controls the target DBMSs to test the perfor-
mance of data migration and query execution, and returns the results including
the response time and data migration speed.

4 Experiments

In this section, we test some typical DBMSs under Ubuntu 16.04 with a 10-core
Intel Xeon E5-2630 (2.20 GHz) and 320 GB main memory. This process consists
of two parts: functional testing and performance testing, which are the core of
our framework.

We choose representative DBMSs of different types in the performance testing
experiment to check the performance of the data migration and query execution
for different models of data. Specifically, we test the performance of MySQL
for relational data management, Neo4j for graph data management, InfluxDB
for time series data management, CouchDB for document data management,
Redis for key-value data management, MySQL Blob for binary big object data
management, and Kafka for message queue data management.

4.1 Functional Testing

We have implemented the testing system according to the UniTest architecture.
The pre-defined test cases in UniTest cover seven categories of functionalities,
such as the separation of service instances, the authentication of database users,
and the ability to trace data sources.

Test cases for functionality testing are conducted for representative DBMSs
of different types. For the space limitation, the results of functional testing of
all the DBMSs are not presented.

4.2 Performance Testing

We also conduct performance testing for many types of DBMSs. Here, two typical
categories of test cases are considered. In the data migration efficiency test, we



102 G. Shi et al.

test the speed of data importing and data exporting. In the query execution
efficiency test, we test the speed of query execution under different conditions.
The results of performance testing on Neo4j is shown in Table 1. The graph
datasets are generated by FastSGG [17]. The data migration efficiency is tested
varying the sizes of nodes and edges, while the query execution efficiency test
cases are executed varying the sizes of the graph. For the limit of space, test
results of other types of representative DBMSs are not displayed in this paper.

Table 1. Results of performance testing for Neo4j.

Description Average time of 9 cases
Data migration |Importing node data (56 KB with | 9333 KB/s, 6 ms
1893 nodes)

Importing edge data (162KB with |123KB/s, 1.32s
4641 edges)

Backuping 1893 nodes with 519 nodes/s
attributes
Restoring 1893 nodes with 2146 nodes/s
attributes

Query execution | |V| = 100, | E| = 1000 35.2ms
|[V| = 1000, |E| = 10000 472.5 ms
|V| = 10000, |E| = 100000 12802.6 ms

In summary, UniTest can test different types of database management sys-
tems universally, and effectively supports testing all of these systems in a specific
evaluation method, including functional and performance testing.

5 Conclusion

This paper proposes a universal testing framework called UniTest with a specific
evaluation method for conducting evaluation on various types of database man-
agement systems. UniTest provides a rich set of test cases with an easy-to-use
interface for different types of DBMSs. We carry out extensive experiments of
functional and performance testing on some typical DBMSs. The experimental
results show that UniTest provides a universal evaluation environment for differ-
ent types of DBMSs and plays an important role in the application of database
products in real-world scenarios.

Acknowledgments. This work is supported in part by the Intelligent Manufacturing
Comprehensive Standardization and New Pattern Application Project of MIIT (Exper-
imental validation of key technical standards for trusted services in industrial Internet),
and the National Natural Science Foundation of China (No. 61872207).



UniTest: A Universal Testing Framework for Database Management Systems 103

References

10.

11.

12.

13.

14.

15.

16.

Abramova, V., Bernardino, J.: NoSQL databases: MongoDB vs cassandra. In: Pro-
ceedings of the International C* Conference on Computer Science and Software
Engineering, pp. 14-22. ACM (2013)

Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench: a
database benchmark based on the Facebook social graph. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, pp. 1185—
1196. ACM (2013)

Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data Sci. J. 14, 2 (2015)

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143-154. ACM (2010)

Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: OLTP-bench: an exten-
sible testbed for benchmarking relational databases. Proc. VLDB Endow. 7(4),
277-288 (2013)

Halili, E.H.: Apache JMeter: A Practical Beginner’s Guide to Automated Testing
and Performance Measurement for Your Websites. Packt Publishing Ltd., Olton
(2008)

Han, R., John, L.K., Zhan, J.: Benchmarking big data systems: a review. IEEE
Trans. Serv. Comput. 11(3), 580-597 (2017)

Han, R., Lu, X., Xu, J.: On big data benchmarking. In: Zhan, J., Han, R., Weng,
C. (eds.) BPOE 2014. LNCS, vol. 8807, pp. 3-18. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13021-7_1

Tosup, A., et al.: LDBC Graphalytics: a benchmark for large-scale graph analysis on
parallel and distributed platforms. Proc. VLDB Endow. 9(13), 1317-1328 (2016)
Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:
2013 International Conference on Social Computing, pp. 708-715. IEEE (2013)
Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evaluation method-
ology for latency-critical applications. In: 2016 IEEE International Symposium on
Workload Characterization (IISWC), pp. 1-10. IEEE (2016)

Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: SparkBench: a comprehensive
benchmarking suite for in memory data analytic platform spark. In: Proceedings
of the 12th ACM International Conference on Computing Frontiers, p. 53. ACM
(2015)

Li, Y., Manoharan, S.: A performance comparison of SQL and NoSQL databases.
In: 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pp. 15-19. IEEE (2013)

Liang, F., Feng, C., Lu, X., Xu, Z.: Performance benefits of DataMPI: a case study
with BigDataBench. In: Zhan, J., Han, R., Weng, C. (eds.) BPOE 2014. LNCS,
vol. 8807, pp. 111-123. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13021-7_9

Ming, Z., et al.: BDGS: a scalable big data generator suite in big data bench-
marking. In: Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess, M., Bhandarkar,
M., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585, pp. 138-154. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10596-3_11

Stonebraker, M., Cetintemel, U.: “one size fits all” an idea whose time has come and
gone. In: Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker,
pp. 441-462 (2018)


https://doi.org/10.1007/978-3-319-13021-7_1
https://doi.org/10.1007/978-3-319-13021-7_1
https://doi.org/10.1007/978-3-319-13021-7_9
https://doi.org/10.1007/978-3-319-13021-7_9
https://doi.org/10.1007/978-3-319-10596-3_11

104 G. Shi et al.

17. Wang, C., Wang, B., Huang, B., Song, S., Li, Z.: FastSGG: efficient social graph
generation using a degree distribution generation model. In: Proceedings of the
IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece
(2021)

18. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
In: 2014 TEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 488-499. IEEE (2014)

19. Wang, M., Wang, C., Yu, J.X., Zhang, J.: Community detection in social net-
works: an in-depth benchmarking study with a procedure-oriented framework.
Proc. VLDB Endow. 8(10), 998-1009 (2015)



	UniTest: A Universal Testing Framework for Database Management Systems
	1 Introduction
	2 Related Work
	2.1 Benchmark Testing
	2.2 Load Testing

	3 The UniTest
	3.1 User Interface
	3.2 Test Management Module
	3.3 Test Execution Module

	4 Experiments
	4.1 Functional Testing
	4.2 Performance Testing

	5 Conclusion
	References




