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Abstract. With the popularization of big data technology, distributed
computing systems are constantly evolving and maturing, making sub-
stantial contributions to the query and analysis of massive data. However,
the insufficient utilization of system resources is an inherent problem of
distributed computing engines. Particularly, when more jobs lead to exe-
cution blocking, the system schedules multiple jobs on a first-come-first-
executed (FCFE) basis, even if there are still many remaining resources
in the cluster. Therefore, the optimization of resource utilization is key to
improving the efficiency of multi-job execution. We investigated the field
of multi-job execution optimization, designed a multi-job merging frame-
work and scheduling optimization algorithm, and implemented them in
the latest generation of a distributed computing system, Apache Flink.
In summary, the advantages of our work are highlighted as follows: (1)
the framework enables Flink to support multi-job collection, merging and
dynamic tuning of the execution sequence, and the selection of these func-
tions are customizable. (2) with the multi-job merging and optimization,
the total running time can be reduced by 31% compared with traditional
sequential execution. (3) the multi-job scheduling optimization algorithm
can bring 28% performance improvement, and in the average case can
reduce the cluster idle resources by 61%.

Keywords: Multi-job merging · Scheduling optimization · Distributed
computing · Flink

1 Introduction

The IT industry term “Big Data” has existed for more than a decade and is
a household term. To provide improved support for massive data computing,
researchers have developed various distributed computing systems and are con-
stantly releasing new versions of them to improve the system performance and
enrich system functions.

Apache Flink [2] is the latest generation of distributed computing systems
and exhibits high throughput and low latency when processing massive data.
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It can cache intermediate data and support incremental iteration using its own
optimizer. Many experimental studies, optimization technologies, and applica-
tion platforms based on Flink are emerging because of its numerous advantages.
For example, in the early days of Flink’s birth, most of the research focused
on the comparison between Flink and Spark [10,11,15], and pointed out that
Flink is more suitable for future data computing. With the popularity of Flink,
recent researches include testing tools based on Flink [9], multi-query optimiza-
tion technology [16], and recommender systems [5], etc.

However, almost the distributed computing systems exhibit insufficient uti-
lization of the hardware resources. Although Flink maximizes resource utilization
by introducing TaskSlot to isolate memory, idle resources also exist because of
the low parallelism of some Operators during traditional sequential execution.
Moreover, when a user submits multiple jobs, Flink only run them on a first-
come-first-executed (FCFE) basis, which cannot make jobs share the Slots. In a
worse-case scenario, if job A is executing and job B after it does not meet the
execution conditions because of insufficient remaining resources, job C cannot
be executed in advance even though job C after job B meets the execution con-
ditions, causing severe wastage of resources. These FCFE strategies of running
multiple jobs only ensure fairness at the job level, but are not desired by users.
In most cases, users only desire the minimum total execution time for all jobs.
The above problems can be solved by simultaneously executing multiple jobs
and dynamically adjusting the job execution sequence so that jobs that meet
the execution conditions can be executed in advance.

In this study, we review the problem of insufficient utilization of system
resources due to the fact that Flink does not support simultaneous execution
of multiple jobs and optimization of execution sequence, and then focus on the
multi-job efficiency improvement brought about by increasing Slot occupancy
rate. The basic idea is to make simultaneously executing through multi-job
merging and dynamically adjusting the execution sequence through multi-job
scheduling, and the contributions of this paper are summarized below.

(1) We propose a groundbreaking framework that can support multi-job merging
and scheduling in Flink. It can collect and parse multiple jobs to be executed,
and generate new job execution plans through two optimization methods of
multi-job merging and scheduling, and submit them to Flink for execution.

(2) To simultaneously execute multiple jobs, we propose multi-job merging algo-
rithms based on subgraph isomorphism and heuristic strategies to enable
multiple jobs to share the Slots. Both two algorithms can improve the effi-
ciency and adapt to different job scenarios during the experiment.

(3) To dynamically adjusting the job execution sequence, we propose multi-
job scheduling algorithm based on maximum parallelism to make jobs that
satisfy the remaining resources execute in advance. Experimental results
demonstrate that the algorithm can enhance the efficiency and reduce free
resources.
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The remainder of this paper is organized into 5 sections. Section 2 introduces
the Flink DAGs, Flink Slots, and summarizes the current contributions toward
improving resource utilization in distributed computing. Section 3 introduces the
multi-job collection and execution agent, including the components, implemen-
tation method, and function. Section 4 describes multi-job execution optimiza-
tion algorithms, including merging optimization and scheduling optimization.
Section 5 presents the performance evaluation with respect to the running time
and the number of Slots idle. Section 6 presents a brief conclusion.

2 Background and Related Work

In this section, we first summarized some of the implementation principles in
Flink, including the composition and generation process of Flink DAGs, the
functions and advantages of Flink Slot, to verify the feasibility of our work.
Then, the related work of distributed job generation optimization and scheduling
optimization is explained, and the advantages and deficiencies of existing work
are pointed out.

2.1 Flink DAGs

Flink uses DAGs (Directed Acyclic Graphs) to abstract operations, which are
more able to express the data processing flow than the traditional MapRe-
duce [7]. According to the job submission and deployment process, Flink DAGs
mainly includes JobGraph and ExecutionGraph. Figure 1 depicts the process
of generating Flink DAGs. First, the system create JobVertexIDs based on the
Operators in the job, chains the Operators through the Optimizer, and then gen-
erates a JobGraph by adding JobEdges and setting attributes. JobGraph is com-
posed of three basic elements: JobVertex, JobEdge and IntermediateDataSet,
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and contains all the contents of a job by assigning various attributes to these
three elements. Finally, JobManager divides JobGraph into ExecutionVertex,
IntermediateResultPartition and ExecutionEdge equal to its number according
to the degree of parallelism to generate the final ExecutionGraph. Therefore, the
research on JobGraph generation process is the core of Flink optimization, and
it is also the focus of this work.

2.2 Flink Slot

In order to control the number of subtasks run by internal threads, Flink intro-
duced TaskSlot as the minimum resource unit. The advantage of Slot is that it
isolates memory resources, so jobs transmitted from JobMaster can be indepen-
dently executed in different Slot, which can improve the utilization of cluster
resources. As shown in Fig. 2, TaskManagers receive the task to be deployed
from JobManager. If a TaskManager has four Slots, it will allocate 25% of mem-
ory for each Slot. One or more threads can be in each Slot, and threads in the
same Slot share the same JVM. When subtasks belong to the same job, Flink
also allows sharing Slot, which can not only quickly execute some tasks that
consume less resources, but also logically remove redundant calculations that
consume resources. It is precisely because of the existence of shared Slot that
the multi-job merging and optimization techniques we will introduce in Sect. 4
are possible.
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2.3 Related Work

Current distributed computing systems, such as Spark [23] and Flink, are exe-
cuted by converting complex programming logic into simple DAGs. The com-
plex programming logic is mainly reflected in the user-defined function (UDF)
in the Operators, so most of the research is to analyze UDF and construct opti-
mization technology. Mainstream DAGs generation and optimization strategies
include nested query decomposition technologies involving UDF [13], Operator
reuse method [17,19], and Operator rearrangement algorithms [18], etc. In addi-
tion, part of the research is based on UDF code analysis to seek optimization
opportunities [1,8,12,17]. In terms of distributed job scheduling optimization
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and load balancing, each distributed computing system has its own scheduler
as its core component [3,21]. At the same time, due to the increasing com-
plexity of distributed operations and the continuous expansion of node scale, a
large number of optimization technologies have been born. For example, in the
research on Hadoop, researchers have proposed scheduling strategies based on
job size [22], resource quantity [14], and deadline awareness [4]. In Spark based
on memory computing, current research includes interference-aware job schedul-
ing algorithm [21], job scheduling algorithm based on I/O efficiency [20], etc.
Although the above works have improved the job efficiency, they are all oriented
to a single job, without considering the mutual influence between multiple jobs.

3 Framework Structure

3.1 Model

We propose a framework, which is an Agent implemented between the Flink
Client and Flink JobManager, and capable of supporting multi-job merging and
scheduling optimization. The ultimate goal of the framework is to generate opti-
mized Flink DAGs. The composition of this framework is illustrated in Fig. 3.
In the following, we will introduce Collector, Parser and Generator respectively.
The Optimizer will be described in detail in Sect. 4.
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Collector. In order to improve the multi-job efficiency by improving the uti-
lization of system resources, the Optimizer must receive job information and
system information as the data to be analyzed. Therefore, the Agent first pro-
vides a Collector, which collects the following information:

• Jar Files: As mentioned above, Flink abstracts computational logic in the
form of DAGs. DAGs contain important information such as operators and
UDFs, which are encapsulated in the Jar files.
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• Flink Plan: The Flink Plan contains the deployment and strategy for job
execution, mainly including the following information: GenricDataSinkBase
in a collective form, which contains data terminal attributes; Cache files in
the form of a HashMap, where the key is the name of the file and the value
is the path to the file; ExecutionConfig is the configuration information for
executing a job, which includes the adopted execution policy and the recovery
method for the failed restart.

• System Resources: These mainly include the number of CPU cores and
the memory size of each node in the cluster, as well as specific information in
the Flink configuration file, including parallelism, Slot quantity, etc.

Parser. Because there are nested composite attributes inside Flink Plan and
Operator, they cannot be directly converted to transferable byte streams, so a
Parser is built in the Agent to serialize them. Algorithm 1 shows the process of
serialization. First, gets the Sinks collection in Flink Plan (lines 1–3), and then
assign the Operator and the user code encapsulation properties in it to the new
object (lines 4–5). Finally, CatchFile, ExecutionConfig, JobID and the user code
encapsulation properties are serialized respectively (lines 6–9). The final result
is written on the Agent (line 10). At this point, the Agent has obtained all the
information the Optimizer needs.

Algorithm 1: Serialization
Input: Flink Plan
Output: Job information of byte stream type

1 get DataSinkBase and GenericDataSinkBase from Plan;
2 get Operator op from GenericDataSinkBase;
3 read input Operator from DataSinkBase;
4 if UserCodeWraper is not null then
5 Set UserCodeWraper to OperatorEx;

6 Serialize(CatchFile); Serialize(ExecutionConfig); Serialize(OperatorEx);
7 if length > Buffer Size then
8 add Buffer Size;

9 Serialize(JobID);
10 writeToAgent;

Generator. The Generator first receives the optimization strategy sent from
the Optimizer, including the jobs that can be merged and the optimal execu-
tion sequence of the jobs. The multi-job JobGraph is then generated by calling
the implemented multiJobGraphGenerator. Since the multi-job scheduling opti-
mization is an optimization in job execution order, when the jobs do not need
to be merged, JobGraphGenerator in Flink is directly called by the Generator
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to generate JobGraph. Finally, similar to the functionality of the Flink Client,
the Actor System is responsible for submitting jobs to the cluster for execution.

3.2 Advantages

In the traditional Flink, the Client submits a job to the JobManager, and
the JobManager schedules tasks to each TaskManager for execution. Then, the
TaskManager reports heartbeat and statistics to the JobManager. When a user
submits multiple jobs, Flink schedules each job on a FCFE basis. The proposed
framework establishes multi-job collection, merging and scheduling optimiza-
tion functions between Client and JobManager, without modifying and deleting
Flink’s own source code, which has two advantages. Firstly, since the framework
and Flink are completely independent of each other, no matter which version is
updated, they will not be affected by each other. In addition, the framework adds
a switch to Flink, which allows users to choose whether to turn on the multi-job
merging and scheduling optimization functions, because the traditional FCFE
process ensures fairness at job level, which is also what some users require.

4 Multi-job Merging and Scheduling

This section introduces the two modules in Optimizer in detail, including two
multi-job merging and optimization algorithms, and a multi-job scheduling opti-
mization algorithm.

4.1 Multi-job Merging

Multi-job merging is suitable for situations where the cluster nodes are not
large and the maximum parallelism of a single job reaches or approaches the
maximum parallelism of the cluster. When the user submits multiple jobs and
expects the shortest total execution time of the them, the multi-job merging and
optimization module will be turned on. For jobs that can be merged, Optimizer
merges the execution plans of these jobs into one execution plan, and the internal
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structure of these execution plans still guarantees their connection sequence. In
addition, the user can choose whether to enable the function and the maximum
number of jobs to be merged. As shown in Fig. 4, the module first obtains the
job information, and uses the subgraph isomorphism algorithm to select jobs
with higher similarity to merge. For dissimilar jobs, a heuristic method is used
to set thresholds to determine the merged jobs.

Problem Description. Flink Slot uses a memory isolation method to allo-
cate and reclaim resources, which greatly facilitates the management of cluster
memory resources, but when users submit multiple jobs, memory resources can-
not be shared between jobs. A job in the execution process has all its allocated
resources, and the resources will not be recycled until the end of the job. Espe-
cially when the parallelism of some Operators is too low, the waste of resources
will be more obvious. Therefore, the proposed multi-job merging algorithm aims
at merging multiple jobs so that they can use Slot resources together, thereby
improving the resource utilization.

Subgraph-Based Merging. In order to find out which jobs are merged first,
we give a definition as follow:

• Definition 1: Job Isomorphism. A job can be represented by triples: job
= (G, P , D), where G is the JobGraph, P represents the maximum degree of
parallelism, and D is the amount of data input. Gsub is a subgraph generated
based on the key information in JobGraph. If job1.Gsub and job2.Gsub are
isomorphic, job1.P = job2.P , and job1.D ≈ job2.D, we determine that the
two jobs are isomorphic and can be merged first.

The algorithm first choose the isomorphic jobs with similar data size for merg-
ing as much as possible, because they have similar task deployment and data
deployment in TaskManager. It will make the merged jobs have fewer thread
switching during execution, with better utilization of system resources. Since
Flink uses JobGraphs to abstract jobs, the subgraph isomorphism algorithm can
be used to judge the similarity of jobs. We only need to find a classic exact sub-
graph isomorphism algorithm to solve it because the vertex scale of JobGraphs
is very small. We choose VF2 [6] among a large number of classic exact sub-
graph isomorphism algorithms, because it is more suitable for solving subgraph
isomorphism of directed graphs and has a smaller space consumption.

Algorithm 2 shows the process of subgraph-based merging. First, select a job
from the jobs to be executed (line 1), and use the reverse traversal method
to generate a subgraph by reading its job information (line 2). Then use VF2
to perform subgraph isomorphism calculation, find all mergeable jobs, and add
them to a collection (lines 3–7). If there are jobs that can be merged, the job
merge algorithm will be executed and the merged job information will be deleted
(lines 8–10). Finally, generate the new Flink Plan (line 11).
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Algorithm 2: Subgraph-based Merging
Input: Job information of byte stream type from Parser
Output: The merged Flink Plan

1 for job in jobs do
2 generate subgraph for job;
3 collection.add(job);
4 rjobs = jobs.remove(job);
5 for j in rjobs do
6 if isomorphism(j, job) then
7 collection.add(j);

8 if collection.size ≥ 2 then
9 mergeJob(j, job);

10 jobs = jobs.remove(job and collection);

11 write(new Plan);

Heuristic-Based Merging. For jobs with different structures and input data
sizes, we propose a heuristic-based merging strategy to find the jobs with the
highest “similarity” to merge. Through a large number of experimental results,
we selected the jobs with better results after merging, and performed feature
extraction on them. The following are some definitions:

• Definition 2: Job Similarity. The value obtained by weighting the ratio of
the feature parameters between the two jobs extracted, the specific parame-
ters will be introduced later.

• Definition 3: GlobalOperator. GlobalOperator refers to operators that
need to obtain data from other nodes for processing in a multi-node cluster,
such as Join and Reduce.

Table 1. Parameters of job feature

Definition Formula Description Threshold

Task size ratio F =
size(m)
size(n) (1) The ratio of the total data size

processed by two different jobs (m is

larger)

[1, 1.8]

DAG depth ratio D =
dept(m)
dept(n) (2) The ratio of the length of the longest

Operator chain in the JobGraph of

the two jobs (m is larger)

[1, 2]

GlobalOperator ratio G =
gol(m)
gol(n) (3) The ratio of the number of

GlobalOperator in the two jobs (m is

larger)

[1, 1.5]

Parallelism ratio P =
parallelism(m)
parallelism(n) (4) The ratio of the parallelism of the

two jobs (m is larger)

[1, 2]

DAG similarity S =
√∑n

i=1,j≤i
(Mij − Nij)2 (5) Euclidean distance of JobGraph of

the two jobs

/
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• Definition 4: LocalOperator. LocalOperator refers to operators that do
not need to obtain data from other nodes for processing, but only process
local node data, such as Map and Filter.

Table 1 shows the job feature parameters that need to be extracted and have
a greater impact on the efficiency of the merged job execution, Through a large
number of experiments, the threshold range of the parameters that meet the com-
bined conditions is estimated. In the case of a small cluster node, the parallelism
setting of most jobs adopts the default value, which is equal to the maximum
parallelism of Flink. At the same time, we also found that if the parallelism
is the same and the thresholds of F , D , and G are all within the threshold
range, the merged jobs can bring satisfactory performance improvement. Since
subgraph-based merging has filtered out most similar jobs, the number of jobs
to be merged is not large and most of them have larger differences. Therefore,
in heuristic-based merging, two jobs are selected for merging.

Algorithm 3 shows the process of heuristic-based merging. First, select one
of the submitted jobs to compare with other jobs (lines 1–3). If the jobs’ paral-
lelism is the same, merge the two jobs by calculating the threshold (lines 4–5)
and selecting the job with the highest score (lines 6–9). Then, perform the same
threshold calculation and scoring operations as above in the remaining jobs with
different parallelism (lines 10–16). Finally merge the jobs that meet the condi-
tions (line 17) and generate the new Flink Plan (line 18).

4.2 Multi-job Scheduling

Multi-job scheduling is suitable for the large scale of cluster nodes so that the
parallelism setting of jobs is less than the maximum parallelism of Flink. Through
the scheduling optimization strategy, the system can not only improve operating
efficiency by making full use of resources, but also maintain a balanced state of
cluster load.

Problem Description. The upper limit of Flink’s parallelism is the total num-
ber of Slots, which means that the total parallelism of running jobs must be less
than or equal to the total number of Slots. When the parallelism of a job to
be submitted is greater than the number of remaining Slots, the job will be
returned. If the total number of Slots in Flink is n, the parallelism of a job being
executed is 0.5n, and the parallelism of the next job to be executed is 0.6n, then
half of the cluster resources will be idle because the job cannot be submitted. If
the parallelism of the job being executed and the job to be submitted are both
small, the resource usage of the cluster will be higher. The above situation will
make the resource usage of the cluster unstable, which neither guarantees the
cluster to run Flink jobs efficiently for long time, nor can it maintain a stable
load.
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Algorithm 3: Heuristic-based Merging
Input: Job information of byte stream type that does not satisfy the

subgraph isomorphism condition
Output: The merged Flink Plan

1 for job in jobs do
2 rjobs = jobs.remove(job);
3 {for j in rjobs do
4 if job.parallelism == j.parallelism then
5 calculate(F ); calculate(D); calculate(G);
6 if meet the threshold then
7 score = F × 0.8 + D × 0.5 + G × 0.3;

8 Find j with the largest score;
9 mergeJob(j, job); jobs = jobs.remove(job);

10 for job in jobs do
11 rjobs = jobs.remove(j and job);
12 for j in rjobs do
13 calculate(F ); calculate(D); calculate(G); calculate(P);
14 if meet the threshold then
15 calculate(S);

16 Find j with the smallest S ;
17 mergeJob(j, job); jobs = jobs.remove(j and job);

18 write(new Plan);

Scheduling Based on Maximum Parallelism. Our solution is to give prior-
ity to the execution of the job with the highest degree of parallelism that meets
the remaining resources of the system, so as to avoid system resource idleness
to the greatest extent. In addition, try to make long-running and short-running
jobs run at the same time to avoid excessive thread switching caused by intensive
short jobs at a certain time. Therefore, the algorithm first extracts the character-
istics of each job, and divides it into three groups of long, medium, and short jobs
through KMeans clustering algorithm, and finally uses a round-robin scheduling
method to submit to the cluster the job with the highest degree of parallelism
that meets the execution conditions in each group.

Algorithm 4 describes the process of scheduling optimization. First, extract
the features of each job (line 1), including the amount of data, the number
of GlobalOperators, the degree of parallelism of each Operator, and the DAG
depth. A monitor is placed to monitor whether the job to be executed is empty
(line 2). If there are jobs to be submitted, the number of Slot remaining in
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Algorithm 4: Multi-job Scheduling Based on Maximum Parallelism
Input: Jobs information of byte stream type from Parser
Output: Flink Plan for the next job to be executed

1 Extract the features of each job;
2 while jobs.size �= null do
3 slot = the number of remaining Slots;
4 for i = 1 to 3 do
5 job[i] = k means(features);

6 i = (i++) % 3;
7 for job in job[i] do
8 if job.parallelism > slot then
9 continue;

10 Find the job with maximum parallelism;

11 if job.exsist then
12 job.execute();
13 jobs = jobs.remove(job);

14 continue;

the system will be obtained (line 3). According to the extracted job features,
the KMeans clustering algorithm is used to divide the job into three groups:
long-time running, medium-time running, and short-time running (lines 4–5).
Then find a job by group, the job that satisfy the remaining Slot number of the
system and have the greatest degree of parallelism is selected (lines 6–10). If
such a job exists, it is submitted to the cluster for execution and removed from
the queue of jobs to be executed (lines 11–13). Finally, regardless of whether
a job is submitted for execution, the search for jobs that can be submitted for
execution will continue according to the above criteria (line 14).

5 Evaluation Results

In this section, we describe the performance evaluation of the proposed multi-job
merging algorithms and the scheduling optimization algorithm in our framework.
The data sets is used to test the running time and the number of Slots occupied.

5.1 Experimental Setup

We run experiments on a 7-nodes OMNISKY cluster (1 JobManager & 6
TaskManagers), and all nodes are connected with 10-Gigabit Ethernet. Each
node has two Intel Xeon Silver 4210 CPUs @ 2.20 GHz (10 cores× 2 threads, 20
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TaskNumberSlots), 128 GB memory, and 1 TB SSD. Hadoop version 2.7.0 (for
storing data on HDFS) and Flink version 1.8.0 are chosen as the experimen-
tal environment, and their configuration files are configured according to the
hardware environment as mentioned above.

We select three distributed jobs to run the experiment, namely WordCount,
Table Join and KMeans, from the perspectives of the type of Operators included
in the job and whether the job includes iterative tasks. All running time measure-
ments include the generation time of new JobGraphs. We use a large number of
real-world data sets and generated data sets to evaluate the experimental results,
and all the experiments are tested more than 10 times. The specific information
are as follows:

• WordCount: The WordCount job contains almost only LocalOperators, and
there is not too much data exchange between TaskManagers. We select the
text from the literary work Hamlet as the data set and manually expand it
to 500 MB–5 GB.

• Table Join: As Join is a GlobalOperator in Flink, it needs to obtain inter-
mediate data from each TaskManager, so a large number of data exchanges
between nodes will occur in Table Join job, especially in multi-Table Join. We
choose multiple relational tables generated by the big data test benchmark
TPC-H, with the size range 500 MB–10 GB.

• KMeans: It is a clustering job with iterative tasks in which both LocalOp-
erators and GlobalOperators are iterated. We use the UCI standard data set
Wine, and manually expand the number of data samples to reach 500 MB–
1 GB.

Table 2. Effect of merging two identical jobs on data sets of different sizes

WordCount Table join KMeans

Size Running time Size Running time Size Running time

FCFE Merge FCFE Merge FCFE Merge

500MB & 500MB 12.8 s 10.2 s 1GB & 1GB 56.7 s 46.3 s 500MB & 500MB 76.5 s 65.0 s

1.5GB & 1.5GB 33.5 s 26.6 s 1.2GB & 1.2GB 79.2 s 65.0 s 700MB & 700MB 121.6 s 105.5 s

3GB & 3GB 62.6 s 48.2 s 1.5GB & 1.5GB 122.0 s 99.8 s 850MB & 850MB 155.7 s 131.1 s

5GB & 5GB 110.7 s 84.5 s 2GB & 2GB 213.5 s 170.8 s 1GB & 1GB 212.4 s 177.7 s

500MB & 5GB 68.6 s 61.2 s 1GB & 2GB 132.1 s 121.8 s 500MB & 1GB 142.7 s 128.1 s

3GB & 5GB 85.5 s 72.0 s 1.5GB & 2GB 160.9 s 136.4 s 700MB & 1GB 165.0 s 144.7 s

5.2 Testing of Multi-job Merging

We first test the merging effect of two identical jobs under different scale data
sets, and the specific results are shown in Table 2. The first 3 rows are the effects
of merging data sets of the same size (sorted by data set size), and the rest
are the effects of merging data sets of different sizes. It can be found that the
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three types of jobs can bring about efficiency improvement after merging and
executing. Among them, WordCount job has better improvement effect than the
other two, with the improvement efficiency reaching 31% in the best case, because
both Table Join and KMeans have a large number of data exchanges between
nodes during execution. In addition, the efficiency of merged jobs with the same
size data set is better, because when the data set sizes are different, the smaller
job will complete the data processing in advance, and the efficiency improvement
brought by sharing resources between the two jobs cannot be maintained for a
long time.

(a) WordCount (b) Table Join (c) KMeans

(d) WordCount (e) Table Join (f) KMeans
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Fig. 5. Effect of the number of merged jobs on efficiency

Next we show the effect of the number of merged jobs on efficiency, which
is shown in Fig. 5. We use the same job to measure the experimental results,
and we can see that the more jobs are merged, the more obvious the efficiency
improvement, because when the number of jobs is large, the extraction of CPU
and memory resources will be more sufficient.

For merging different types of jobs, we use data sets of the same size to
evaluate efficiency. As shown in Fig. 6, merging different types of jobs can still
bring good performance improvement, ranging from 15% to 21%.

5.3 Testing of Scheduling Optimization

Finally, we show the effect of the multi-job scheduling optimization algorithm.
According to the hardware environment described in Sect. 5.1, the maximum
parallelism of Flink is set to 240, which is the same as the total number of CPU
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(a) WordCount & Table Join (b) WordCount & KMeans (c) Table Join & KMeans
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Fig. 6. Effect of merging different jobs

cores in 6 TaskManagers. We generated 10 jobs in WordCount, Table Join and
KMeans respectively, and randomly set the degree of parallelism for these 30
jobs, ranging from 50 to 180. Then 30 submissions are randomly generated for
these 30 jobs, and the total execution time of these 30 submissions is measured
and compared with the scheduling optimization method proposed by us.
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Fig. 7. Effect of different Job execution sequences

Figure 7(a) shows the running time of each set of jobs by random submis-
sion. It can be seen that the total time of executing jobs in the sequence after
scheduling optimization is shorter than the total time of executing jobs in the 30
randomly generated sequences, and the performance improvement of 28% can
be achieved in the best case. Slot occupancy is shown in Fig. 7(b). Since the
Slot usage of the last executed job may be too low due to the job parallelism
being set too small, we only measure the Slot usage when the first 25 jobs are
executed. It can be found that when jobs are executed in an unoptimized order,
Slot usage will be too low for a certain period of time during each execution of
the jobs. On average, executing jobs in the optimized order will reduce cluster
idle resources by 61%.
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6 Conclusion and Discussion

In this paper, we propose the groundbreaking framework that support multi-job
merging and scheduling. Based on these two functions, optimization strategies
are proposed to improve the efficiency of multi-job by making full use of the
cluster resources. In order to verify the effectiveness of the proposed algorithms,
we conduct many experiments to prove the superiority of our work. Since Flink
is a “unify batch & streaming” system, a particularly interesting direction for
future work is to extend our proposed framework and optimization algorithms
to the streaming jobs, which can improve the function of the framework.
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