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Abstract. Knowledge graph completion is the task of predicting miss-
ing relationships between entities in knowledge graphs. State-of-the-art
knowledge graph completion methods are known to be primarily knowl-
edge embedding based models, which are broadly classified as transla-
tional models and neural network models. However, both kinds of mod-
els are single-task based models and hence fail to capture the underlying
inter-structural relationships that are inherently presented in different
knowledge graphs. To this end, in this paper we combine the trans-
lational and neural network methods and propose a novel multi-task
learning embedding framework (TransMTL) that can jointly learn multi-
ple knowledge graph embeddings simultaneously. Specifically, in order to
transfer structural knowledge between different KGs, we devise a global
relational graph attention network which is shared by all knowledge
graphs to obtain the global representation of each triple element. Such
global representations are then integrated into task-specific translational
embedding models of each knowledge graph to preserve its transition
property. We conduct an extensive empirical evaluation of multi-version
TransMTL based on different translational models on two benchmark
datasets WN18RR and FB15k-237. Experiments show that TransMTL
outperforms the corresponding single-task based models by an obvi-
ous margin and obtains the comparable performance to state-of-the-art
embedding models.

1 Introduction

Knowledge Graphs (KGs) such as WordNet [16] and Freebase [1] are graph-
structured knowledge bases whose facts are represented in the form of rela-
tions (edges) between entities (nodes). This can be represented as a collection
of triples (head entity, relation, tail entity) denoted as (h, 7, t), for example
(Beijing, CapitalO f, China) is represented as two entities: Beijing and China
along with a relation CapitalOf linking them. KGs are important sources in
many applications such as question answering [2], dialogue generation [10] and
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recommender systems [34]. Containing billions of triples though, KGs still suffer
from incompleteness, that is, missing a lot of valid triples [24,31]. Therefore,
many research efforts have concentrated on the Knowledge Graph Completion
(KGC) or link prediction task which entails predicting whether a given triple is
valid or not [4,24]. Recent state-of-the-art KGC methods are known to be pri-
marily knowledge embedding based models, which are broadly classified as trans-
lational models [3,21,32] and neural network models [8,20,23]. Translational
models aim to learn embeddings by representing relations as translations from
head to tail entities. For example, the pioneering work TransE [3] assumes that if
(h,r,t) is a valid fact, the embedding of head entity h plus the embedding of rela-
tion r should be close to the embedding of tail entity ¢, i.e. vy, +v,. = v; (here, v,
v, and v; are embeddings of h, r and ¢ respectively). In order to learn more deep
expressive features, recent embedding models have raised interests in applying
deep neural networks for KGC such as Convolutional Neural Network (CNN) [§]
and capsule network [20]. Recently, some studies explored a new research direc-
tion of adopting Graph Neural Network (GNN) [23] for knowledge graph comple-
tion, which demonstrates superior effectiveness and advantages than traditional
translational methods since it takes the relationship of different triples into con-
sideration. Among the GNN models, Graph Attention Network (GAT) [29] is
an effective and widely used model which utilizes attentive nodes aggregation
to learn neighborhood information. Although the effectiveness of these models,
they are all single-task based models and ignore the inter-structural relations
that are inherently presented in different knowledge graphs. To that end, such
methods need to train different models for each knowledge graph, which involves
substantial extra efforts and resources.
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oceania County >
instance hypernym. B currency time_zones )
has_part ce_hyperny archinelago nited States’ adioins astern Time
similar_to pelag dollar N s . Zone
hasPachypcmym currency ezones
‘WordNet Freebase

Fig. 1. An example of shared structure pattern

Nevertheless, we find that different knowledge graphs are structurally inter-
related and one knowledge graph can benefit from others. On the one hand, since
different knowledge graphs have different data characteristics, they can comple-
ment each other by simultaneously learning the representations. For example,
WordNet provides semantic knowledge of words. It contains few types of rela-
tions but each relation corresponds to a large number of triples. In comparsion,
Freebase provides more specific facts of the world and contains a lagre num-
ber of relations with fewer entities. Therefore, knowledge representation model
based on WordNet would be good at modeling and inferring the patterns of (or
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between) each relation such as symmetry/antisymmetry, inversion and compo-
sition [25] whereas the model based on Freebase enables to model more complex
relations. As such, simultaneously learning the representations of these knowl-
edge graphs can definitely promote and benefit each other. On the other hand,
we observe that one knowledge graph may contain some common structural pat-
terns that are beneficial for other knowledge graphs. An example is shown in
Fig. 1 where the dotted line is the link needs to be predicted. For the missing
link (Dauphin Country, 7, United Stated dollar) in Freebase, it is essential to
understand the structural pattern that two entities connected by a symmetric
relation usually exist in some triples linked by the same relations. However, it is
hard for Freebase based embedding model to capture this kind of pattern since
it is rare in this knowledge graph. As this kind of struture pattern is very com-
mon in WordNet which is shown in the left of the figure, the knowledge graph
completion task based on Freebase can definitely benefit from them.

Motivated by such observations, in this paper we propose a novel embedding
model for knowledge graph completion based on multi-task learning (TransMTL)
where multiple knowledge graphs can be trained and represented simultaneously
and benefit from each other. Specifically, in order to preserve the transition prop-
erty of knowledge graphs, we first adopt the widely used translational models
such as TransE, TransH and TransR to represent the entities and relations of
each single knowledge graph. And then, we devise a global Translation preserved
Relational-Graph Attention Network (TR-GAT) which is shared by all knowl-
edge graphs to capture the inter-structural information between different knowl-
edge graphs and obtain the global representation of each triple element. Such
global representations are then integrated intotask-specific translational embed-
ding models of each knowledge graph to enhance its transition property. In this
way, each single knowledge graph can benefit from the common inter-structural
information from other knowledge graphs through the global shared layer. Recall
the example in Fig. 1, with the help of MTL, the information learned from Word-
Net can be transferred to Freebase representation task by means of the global
sharing mechanism. Specifically, in WordNet, there exists a triple (austronesia,
similar_to, oceania) containing the symmetry realtion similar_to. Then the head
entity austronesia and tail entity oceania would exist in some triples linked by
the same relation such as instance_hypernym and has_part. Once recognizing this
kind of pattern in WordNet, the multi-task learning model could take advantage
of such knowledge for link prediction in Freebase dataset. As there exists a triple
(Dauphin Country, adjoins, Cumberland Country) with the symmetric relation
adjoins and the head entity Dauphin Country and tail entity Cumberland Coun-
try exist in triples linked by the same relation time_zones, we can assume that
the entity Dauphin Country may also linked by the relation currency since the
Cumberland Country and United Stated dollar are linked by currency. We con-
duct an extensive empirical evaluation TransMTL based on different translational
models on two benchmark datasets WN18RR and FB15k-237. Experiments show
that our TransMTL outperforms the corresponding single-task based models by
an obvious margin and obtains the comparable performance to state-of-the-art
embedding models.
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Contributions of this paper are summarized as follows:

— We propose a novel embedding model for knowledge graph completion based
on multi-task learning (TransMTL) that can learn embeddings of multiple
knowledge graphs simultaneously. To the best of our knowledge, this is the
first attempt of multi-task learning in the field of knowledge representation
for knowledge graph completion.

— We devise a translation preserved relational-graph attention network (TR-
GAT) to utilize the shared information from multiple knowledge graphs, cap-
turing inter-structural information in different knowledge graphs.

— We conduct extensive experiments on WN18RR and FB15k-237. Experimen-
tal results show the effectiveness of our model TransMTL.

2 Related Work

2.1 Knowledge Graph Completion (KGC)

Representation learning has been widely adopted in a variety of applica-
tions [15,35,36]. Recently, several variants of KG embeddings have been pro-
posed following the paradigm of representation learning. These methods can be
broadly classified as: semantic matching, translational and neural network based
models. Firstly, semantic matching models such as DistMult [32], ComplEx [28§]
and Holographic Embeddings model (HolE) [22] use similarity-based functions to
infer relation facts. Differently, translational models aim to learn embeddings by
representing relations as translations from head entities to tail entities. For exam-
ple, Bordes et al. [3] proposed TransE by assuming that the added embedding
of h 4 r should be close to the embedding of ¢ with the scoring function defined
under L1 or L2 constraints. Starting with it, many variants and extensions of
TransE have been proposed to additionally use projection vectors or matrices to
translate embeddings into the vector space, such as TransH [30], TransR [13] and
TransD [11]. In recent studies, neural network models that exploit deep learning
techniques have yielded remarkable predictive performance for KG embeddings.
Dettmers et al. [8] introduced ConvE that used 2D convolution over embed-
dings and multiple layers of non-linear features to model knowledge graphs. To
preserve the transitional characteristics, Nguyen et al. [19] proposed ConvKB
that applied the convolutional neural network to explore the global relationships
among same dimensional entries of the entity and relation embeddings. To cap-
ture long-term relational dependency in knowledge graphs, recurrent networks
are utilized. Gardner et al. [9] and Neelakantan et al. [18] proposed Recurrent
Neural Network (RNN)-based models over relation path to learn vector represen-
tation without and with entity information, respectively. To cover the complex
and hidden information that is inherently implicit in the local neighborhood
surrounding a triple, some studies used Graph Neural Networks (GNNs) for
knowledge embeddings such as R-GCN [23] and KBGAT [17] etc.

Though the effectiveness of these models, they are all single-task based mod-
els and hence fail to capture the underlying inter-structural relationships that
are inherently present in different knowledge graphs.
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2.2 Multi-Task Learning

Multi-Task Learning (MTL) [5] is a learning paradigm in machine learning aim-
ing at leveraging potential correlations and common features contained in multi-
ple related tasks to help improve the generalization performance of all the tasks.
It has been widely adopted in many machine learning applications from var-
ious areas including web applications, computer vision, bioinformatics, health
informatics, natural language processing and so on. For example, Chapelle et
al. [6] introduced a multi-task learning algorithm based on gradient boosted
decision trees that is specifically designed with web search ranking in mind. Yim
et al. [33] proposed a multi-task deep model to rotate facial images to a target
pose and the auxiliary task aimed to use the generated image to reconstruct the
original image. Chowdhury et al. [7] provided an end-to-end multi-task encoder-
decoder framework for three adverse drug reactions detection and extraction
tasks by leveraging the interactions between different tasks. Tian et al. [26]
devised a multi-task hierarchical inter-attention network model to improve the
task-specific document representation in nature language processing for docu-
ment classification. In this paper, we utilize the idea of multi-task learning to
transfer structural knowledge between different KGs by jointly learning multiple
knowledge graph embeddings simultaneously.

3 Method

We begin this section by introducing the notations and definitions used in the
rest of the paper, followed by a brief background on GAT [29]. Immediately
afterwards, we introduce the details of our TransMTL framework as displayed
in Fig. 2. It consists of two components: the task-specific knowledge embedding
layer and the global shared layer. The task specific knowledge embedding layer
is a translational model in which each KG learns low-dimensional embeddings
of entities and relations. The global shared layer enables multi-task learning:
we devise a Translation preserved Relational-Graph Attention Network (TR-
GAT) to acquire the entity and relation embeddings simultaneously consisting
of common structural information from all the knowledge graphs. Then such
information is shared and integrated into the task-specific knowledge embedding
layer to further enhance the entity and relation representations.

3.1 Background and Definition

A knowledge graph G is donated by ¢ = (E, R,T) where E, R and T represent
the set of entities (nodes), relations (edges) and triplets, respectively. It contains
a collection of valid factual triples in the form of (head entity, relation, tail
entity) denoted as (h,r,t) such that h,t € F and r € R, representing the specific
relation r linking from the head entity h to tail entity ¢. Knowledge embedding
models aim to learn an effective representation of entities, relations, and a scoring
function f which gives an implausibility score for each triple (h,r,t) such that
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Fig. 2. The overall architecture of TransMTL
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valid triples receive lower scores than invalid triples. With the learned entity and
relation embeddings, the knowledge graph completion is to predict the missing
head entity h given query (?,r,t) or tail entity ¢ given query (h,r,7?).

3.2 Graph Attention Networks (GAT)

The concept of Graph Convolutional Networks (GCN) was first proposed in [12],
which extended existing neural networks for processing the graph structured
data. It gathers information from the entity’s neighborhood and all neighbors
contribute equally in the information passing. To resolve the shortcomings the
GCNs, Velickovic et al. [29] proposed Graph Attention Networks (GAT). The
advantage of GAT lies in the aspect that it leverages attention mechanism to
assign varying levels of importance to nodes in every node’s neighborhood, which
enables the model to filter out noises and concentrate on important adjacent
nodes. Specifically, the convolution layer attentionally aggregates features of
each node in the graph as well as its one-hop neighbors as new features. The
convolution process on the ¢! layer for node v is formalized as Eq. (1)-(2).

W =o( > an WD) (1)
weN (v)Uv

apy = softmaz(f(af [WORED|[WORED)))

_eap(faf VOBV WORE)) (2)
> eap(flaf WORSV W ORITV))
FEN (v)Uv

where W®) is the weight matrix, au, is the attention coefficient of node u
to v, N'(v) presents the neighborhoods of node v in the graph, f donates the
LeakyReLU function and a; is the weight vector.
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3.3 Task-Specific Knowledge Embedding Layer

In order to integrate the strength of translational property in knowledge graphs,
we adopt the widely-used translation-based methods for each involved KG in task
specific knowledge embedding layer, which benefit the multi-task learning tasks
by representing embeddings uniformly in different contexts of relations. Here,
we take the basic translational model TransE as an example to describe the
embedding model. TransE [3] projects both relations and entities into the same
continuous low-dimension vector space, in which the relations are considered
as translating vectors from head entities to tail entities. Following the energy-
based framework in TransE, the energy of a triplet is equal to d(h+r,t) for some
dissimilarity measure d. Specifically, the energy function is defined as:

E(h,r,t) = ||h+7r—t| (3)

To learn such embeddings, we minimize the margin-based objective function over
the training set, defined as:

K = E(h,'r',t)GTL(har7 t), (4)

where L(h, r, t) is a margin-based loss function with respect to the triple
(h, 1, t):

L(h7 T, t) = E(h/,r’,t/)GT’ [’7 + E(h> T, t) - E(h/7 7,/7 t/)]+7 (5)

where [z]+ = max(0, z) represents the maximum between 0 and x. 7" stands for
the negative sample set of T', donated as follows:

T ={(0,rt)|W € EYU{(h,r,t')|t' € E}
u{(h,r",t)|r" € R}, (h,r,t) €T. (6)

The set of corrupted triplets, constructed according to Eq. (6), is composed
of training triplets with either the head or tail replaced by a random entity (but
not both at the same time). The objective function is optimized by stochastic
gradient descent (SGD) with mini-batch strategy.

Note that in this paper, we aim at providing a general multi-task leaning
solution to take advantage of the inter-structural knowledge between different
KGs and not limited to any knowledge representation learning method. In other
words, this task specific knowledge embedding layer can also be implemented
through any other knowledge representation learning methods, including trans-
lational models and neural network models. In order to illustrate the effective-
ness of multi-task learning in knowledge graph representation and KGC task, we
implemented our TransMTL model based on TransE, TransH [30] and TransR [13]
in this paper. The energy functions of TransH and TransR are defined as in
Eq. (7) and Eq. (8) respectively.
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E(hy,rty)=|h+d, —t]
= ||(h_erhw7")+dr_(t_erth)Hvar”z:1 (7)
E(hp,rty) = ||hp + 17 —t.|| = [|AM, + 7 — tM, || (8)

3.4 Global Shared Layer for Multi-task Learning

On the basis of task-specific model, we then utilize MTL techniques to improve
the entity and relation representations. The intuition is that different knowledge
graphs share some common structural knowledge, which can help improve the
entity and relation representations of each knowledge graph and contribute to
a better knowledge graph completion performance. The key factor of multi-task
learning is the sharing scheme among different tasks. Considering the observa-
tions that existing KG embedding models treat triples independently and thus
fail to cover the complex and hidden information that is inherently implicit in
the local neighborhood surrounding a triple, we propose TR-GAT in Fig. 3 to
acquire the entity and relation embeddings simultaneously by capturing both
entity and relation features in any given entity’s neighborhood.

e €

| @ o

' 1 I

; €o —
e e

[ ] o head entity

o
— e ”’ self-loop

€o

€4

Fig. 3. Embedding processing in TR-GAT. Orange represents the center entity, brown
represents relations connected with it, and green and blue represent its neighboring
entities. If the entity has the head role, accumulating its neighboring tail nodes and
relations with ¢ — r. If it has the tail role, accumulating its neighboring head nodes
and relations with A4 7. Then the role discrimination representations passed through a
GAT network during which the embeddings of entities and relations are updated.(Color
figure online)

TR-GAT integrates the strength of GAT and the translational property in
knowledge graphs (h+r = t) to design the new propagation model. As such, we
modify the update rule in GAT for the entity and relation embeddings and the
convolution process on the t** layer for node v is formalized as Eq. 9:
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hy=o(WH(D] D awe(h™ i)+ D0 Y awné(hy ' b +auhih)

rEN, teNT reN, heN]
)

where N, denotes the set of relations connecting the entity ¢, N/ represents the
set of tail entities connected with the entity i by the relation r, NNV} is the set of
head entities connected with the entity i by the relation r. h, € RV pl € RID
and h! € R denote the I*" layer embedding of the head entity, relation and tail
entity respectively in the neural network and d(l) is the dimension of this layer.
o is the activation function. c(-,-) is the function to describe the relationship
between h} and k!, and &(-,-) describes the relationship between h} and hl. W'
is the weight matrix of the I*" layer.

Equation 9 features the role discrimination criterion to identify if entity v
in the knowledge graph takes the role of head or tail entity regarding a specific
relation r. It performs different convolution operations for them: if v has the head

entity role, its embedding is calculated by combining the related tail entity hglil)

and relation hg_l). Otherwise, its embedding is calculated with the related head
entity hgil) and relation hg 71). Thereafter, all occurrences of head roles and
tail roles of v are added, together with a single self-connection representation
hl=1, to infer the | representation of the entity v.

The design of function ¢ and ¢ features the translation adoption criterion
which is h+r & t for a triplet (h, r, t) in the graph. Alternatively, the translational
property can be transformed into h ~t — r and ¢ = h + r. Therefore,

c(hi, hy) = hy — I, (10)

&(hi,, hy) = i, + Iy, (11)

Based on the TR-GAT, the overall embedding process of our TransMTL is

as follows: for each entity and relation in a knowledge graph k (GI*]), we first

compute the global output based on the global shared TR-GAT with Eq. (12) to
utilize the global shared inter-structural information of all KGs.

(B, 7() ¢5)) = TR-GAT((E, R, T),0) (12)

Here, we use a TR-GAT (-, -) as a shorthand for convolution process (Eq. (9)—(11))
in the global shared layer and © represents the parameters of global shared layer
which are shared by all KGs. Then such global information is integrated into each
task to enhance the embeddings of each KG. Formally, for a specific task k, the
energy function in Eq. (3) is modified as follows:

(A 4 MRS 4+ (r® 4 M) = (¢ 4 M) (13)
E(h,r, )M = H(h(k) + Mph®)) + (r® 4 M) — (¢ F) 4 Mtt(8>)H (14)

where hF) () (k) are the task specific embeddings of knowledge graph k,
h() h(*) h() are global embeddings obtained through the shared TR-GAT layer,
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and Mp, M,., M; are transform matrix to guarantee the consistency of the vector
spaces between the embeddings of task-specific and global shared layers. In this
way, every entity and relation of each single knowledge graph can benefit from
common knowledge and extra information from all other knowledge graphs.

3.5 Training

Following the translational models, to learn such embeddings, we adopt a margin-
based loss function respect to the triples for all tasks:

L=> > S ly+dh+rt) —dh 4t (15)

keK (h,rit)eS (b ,r't’')eS

h=h® 4 MRS = ®) L M) =8 g (16)

where K is the number of knowledge graphs.

4 Experiments

In this section, we evaluate the performance of our framework. We conduct
an extensive empirical evaluation of multi-version TransMTL based on TransE,
TransH and TransR respectively to verify the effectiveness of the proposed model.
We further vary the training set size to illustrate that our proposed multi-task
learning framework can still perform well on low resource settings.

4.1 Experiment Setup

Data Sets. Our model is evaluated on two widely used knowledge graphs:
WordNet [16] and Freebase [1]. WordNet provides semantic knowledge of words.
Entities in WordNet are synonyms which express distinct concepts. Relations in
WordNet are conceptual-semantic and lexical relations. In this paper, we employ
the dataset WN18RR [8] from WordNet. Freebase provides general facts of the
world. In this paper, we employ data set FB15k-237 [27] from Freebase.

Notably, WN18RR and FB15k-237 are correspondingly subsets of two com-
mon data sets WN18 and FB15k. It is firstly discussed by [27] that WN18 and
FB15k suffer from test leakage through inverse relations, i.e. many test triplets
can be obtained simply by inverting triplets in the training set. To address this
issue, Toutanova and Chen et al. [27] generated FB15k-237 by removing redun-
dant relations in FB15k and greatly reducing the number of relations. Likewise,
Dettmers et al. [8] removed reversing relations in WN18. As a consequence,
the difficulty of reasoning on these two data sets is increased dramatically. The
statistics of the two datasets are described in Table 1.
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Table 1. Statistics of the datasets

Dataset #Relation | #Entity | #Train | #Valid | #Test
WNI18RR | 11 40,943 86,835 | 3,034 | 3,134
FB15k-237 | 237 14,541 | 272,115 | 17,535 | 20,466

Baselines. We first compared our TransMTL with the corresponding single-task
models, namely TransE [3], TransH [30] and TransR [13] respectively. To fur-
ther illustrate the effectiveness of multi-task learning, we then compared our
model with recent knowledge embedding models, including both non-neural
models and neural models. Specifically, we compared our TransMTL with Dist-
Mult [32], ConvE [8], ComplEx [28], KBGAT [17], ConvKB [19], RotatE [25]
and DensE [14] for comparison.

Evaluation Protocol. Link prediction aims to predict the missing h or ¢ for a
triplet (h,r,t). In this task, the model is asked to rank a set of candidate entities
from the KG, instead of giving one best result. For each test triplet (h,r,t),
we replace the head/tail entity by all possible candidates in the KG, and rank
these entities in ascending order of scores calculated by score function showed
in Eq. 14. We follow the evaluation protocol in [3] to report filtered results.
Because a corrupted triplet, generated in the aforementioned process of removal
and replacement, may also exist in KG, and should be considered as correct. In
other words, while evaluating on test triples, we filter out all the valid triples
from the candidate set, which is generated by either corrupting the head or tail
entity of a triple. We report three common measures as our evaluation metrics:
the average rank of all correct entities (Mean Rank), the mean reciprocal rank of
all correct entities (MRR), and the proportion of correct entities ranked in top
10 (Hits@10). We report average results across 5 runs. We note that the variance
is substantially low on all the metrics and hence omit it. A good link predictor
should achieve lower Mean Rank, higher MRR,

Training Protocol. We use the common Bernoulli strategy [13,30] when sam-
pling invalid triples. We select 500 as the batch size, which is not too big or
too small for both the two datasets. There are two learning rates in our multi-
task model: one for the global shared layer and the other for the task specific
knowledge embedding layer. We use grid search method to find the appropriate
learning rate for the two parts. And finally in our experiments, we use learn-
ing rate 0.5 for task-specific knowledge embedding layer and 0.01 for the global
shared TR-GAT model. We use the Stochastic Gradient Descent (SGD) optimizer
for training. In our model, the embedding size of entities and relations from the
two knowledge graphs should be equal and we set it to 200. We use a two-layer
GAT for the global shared TransMTL model that allows message passing among
nodes that are two hops away from each other. As a result, although for some
entity pairs, there are no direct edges in the knowledge graph, the two-layer
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GAT is still capable to learn the inter-entity relations and enables the informa-
tion exchange between pairs of entities. In our preliminary experiment, we found
that a two-layer GAT performs better than a one-layer GAT, while more layers
do not improve the performances. We set the dropout rate as 0.1 in order to
release overfitting.

For multi-task learning, the training data come from completely different
datasets, so our training process is conducted by looping over the tasks as follow:

1. Select a random task.

2. Select a mini-batch of examples from this task.

3. Backward the model and update the parameters of both task-specific layer
and global shared layer with respect to this mini-batch.

4. Go to 1.

4.2 Results and Analysis

Table 2. Link prediction results of WN18RR and FB15k-237 compared with transla-
tional models. [*]: Results are taken from [19]. Best scores are highlighted in bold.

Models WNI18RR FB15k-237
MR |MRR |Hit@10 (%) | MR | MRR |Hit@10 (%)
TransE[*] 3384  0.226 | 50.1 347 10.294 | 46.5
TransH 3048 | 0.286 | 50.3 348 |0.284 | 48.8
TransR 3348 0.303 | 51.3 310 | 0.310 | 50.6
TransMTL-E | 3065 | 0.363 | 54.1 116 |0.336 | 52.6
TransMTL-H | 2521 | 0.498 57.0 111 0.349 | 53.7
TransMTL-R | 3154 | 0.465 | 54.6 133 |0.333 | 52.2

Table 2 compares the experimental results of our TransMTL with different task
specific knowledge embedding models to the corresponding single-task based
models, using the same evaluation protocol. Here, TransMTL-E, TransMTL-H
and TransMTL-R are models with TransE, TransH and TransR as their task
specific knowledge embedding models respectively. From the table, we can see
that our multi-task learning models outperform the corresponding single-task
based models by an obvious margin. Specifically, TransMTL-E shows an improve-
ment of Hit@10 4%, 6.1% to TransE on WN18RR and FB15k-237 respectively.
TransMTL-H shows an improvement of Hit@10 6.7%, 4.9% to TransH and such
numbers are 3.3% and 1.6% for the pair of TransMTL-R and TransR on dataset
WNI18RR and FB15k-237. Moreover, our TransMTL also obtains better MR
and MRR scores than single-task models on both datasets. We argue that it
is because with the global shared TR-GAT layer, the entities and relations of
each single task can benefit from extra information from other tasks for better
representations.
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To further illustrate the effectiveness of multi-task learning, we then com-
pared our model with recent knowledge embedding models, including both non-
neural models and neural models. The experimental results are shown in Table 3.
Since the datasets are same, we directly copy the experiment results of sev-
eral baselines from [14,17]. From the table, we can see that even with the basic
translational models, our TransMTL can obtain comparable performance to these
recent models that integrate much additional information and new technologies
into their models. Moreover, our TransMTL performs better on FB15k-237 than
on WNI18RR. The reason may be that there are rich conceptual-semantic and
lexical relations in WN18RR and the entities and relations in FB15k-237 can
benefit from these information through multi-task learning.

Table 3. Link prediction results for WN18RR and FB15k-237. Best scores are high-
lighted in bold.

Models WNI18RR FB15k-237
MR |MRR |Hit@10 (%) | MR | MRR |Hit@10 (%)
DistMult 5110 |0.430 | 49.0 512 1 0.281 | 44.6
ConvE 4187 10.43 | 52.0 244 10.325 | 50.1
ComplEx | 7882 |0.449 |53.0 546 | 0.278 | 45.0
KBGAT 1921 | 0.412 |55.4 270 | 0.157 | 33.1
ConvKB 1295 0.265 | 55.8 216 1 0.289 | 47.1
RotatE 3340 | 0.476 | 57.1 177 | 0.338 | 53.3
DensE 3052 |0.491 | 57.9 169 |0.349 |53.5
TransMTL-E | 3065 | 0.363 | 54.1 116 |0.336 | 52.6
TransMTL-H | 2521 | 0.498 | 57.0 111 0.349 | 53.7
TransMTL-R | 3154 | 0.465 | 54.6 133 0.333 | 52.2

Varying the Data Size. In order to illustrate the robustness of our proposed
multi-task learning framework, we vary the data sizes by randomly sampling
different ratios of the training data for training and test them on the whole
test sets of two datasets. Figure 4 shows the experimental results of Hit@10
scores of our TransMTL and the corresponding single task translational models:
TransE, TransH, and TransR on two datasets respectively. Here, for the per-
formance of single task translational models in different training data sizes, we
use the same settings to the task-specific models of our TransMTL. From the
figure, we can readily see that TransMTL consistently outperforms all single-task
models across all datasets. Besides, we can see that with the decrease of training
triples, the Hit@10 metrics decrease with different degrees. More specifically, the
performance gap between our TransMTL models and the baselines are larger in
small dataset settings than in big dataset settings. For example, with only the
60% of the training data, the performance of our TransMTL is still competitive,
which shows an improvement of Hit@10 8.5% and 8% to TransE on WN18RR
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and FB15k-237 respectively. We argue that this is because our multi-task learn-
ing framework can exploit the underlying inter-structural relationships that are
inherently presented in different knowledge graphs, thus it can alleviate the data
insufficiency problem and achieve good results with less data.

WNI8RR FB15k-237

- TransE A TransE
A~ TransMTLE - TransMTLE

Hit@10(%)
Hit@10(%)

2

0 70 80 20 10 70 80 90 100
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a
s
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Fig. 4. The Hit@Q10 with different percentage of training data

5 Conclusions

In this paper, we propose a novel embedding model based on multi-task learning
that can jointly learn multiple knowledge graph embeddings simultaneously for
knowledge graph completion. We devise a global translation preserved relational
graph attention network which is shared by all knowledge graphs to capture
and transfer structural knowledge between different KGs. To preserve the tran-
sition property of each KG, we then integrate the global information learned
by the global shared layer into the translational models for each KG. Experi-
mental results on two benchmark datasets WN18RR and FB15k-237 show that
our proposed model outperforms the corresponding single-task based models by
an obvious margin and obtains the comparable performance to state-of-the-art
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embedding models, indicating the effectiveness of multi-task learning on knowl-
edge graph representations.
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