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Abstract. Ranking associative entities in Knowledge Graph (KG) is
critical for entity-oriented tasks like entity recommendation and asso-
ciative inference. Existing methods benefit from explicit linkages in KG
w.r.t. exactly two query entities via the closely appearing co-occurrences.
Given a query including one or more entities in KG, it is necessary to
obtain the implicit associative entities and uncover the strength of asso-
ciations from data. To this end, we leverage KG with Web resources
and propose an approach to ranking associative entities based on fre-
quent pattern mining and graph embedding. First, we construct an entity
dependency graph from the frequent patterns of entities generated from
both KG and Web resources. Thus, the existence and strength of asso-
ciations between entities could be depicted effectively in a holistic way.
Second, we embed the dependency graph into a lower-dimensional space
and consequently fulfill entity ranking on the embedding. Finally, we
conduct an extensive experimental study on real-life datasets, and ver-
ify the effectiveness of our proposed approach compared to competitive
baselines.

Keywords: Knowledge graph · Associative entity · Association
ranking · Frequent entity · Graph embedding

1 Introduction

Many entity-oriented applications, like entity alignment [4], entity recommen-
dation [20] and entity associations inference [16], benefit from the results of
top-ranked associative entities in knowledge graph (KG). The task of ranking
associative entities (a.k.a. association ranking) is to sort candidate entities w.r.t.
a query including one or more given entities in KG. For example, {1. Microsoft ;
2. COVID-19 ; 3. Windows} is a ranking list of candidate entities w.r.t. the query
entity Bill Gates sorted by their association strength.

It is straightforward to represent associative entities based on the triple-
structured data of KG. One feasible solution to ranking associative entities is
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Fig. 1. Overview of EDGM.

based on the semantic associations (a.k.a. relatedness) between words or enti-
ties [19] upon the prerequisite that frequently occurring entities are regarded
to be highly associated. However, only the frequencies of two closely appear-
ing entities are considered, while the highly associated entities do not necessar-
ily co-occur significantly in the neighboring context. The underlying local co-
occurrence principle leads to limited coverage and precision. Recently, multiple
association features between words, concepts, and entities are combined to con-
struct an association network [9,15] to improve the relatedness measurement.
However, these models could not be well learned in an unsupervised manner.
Meanwhile, these methods focus on measuring the semantic association between
exactly two entities within KG. It will be more scalable if any number of query
entities are allowed and multiple Web resources could be introduced.

By using linked Web resources, explicit associations could be found easily
to enhance Web applications like search engines [21]. However, implicit asso-
ciations between entities show usefulness in many domains including national
security and biomedical research [5]. For example, it is necessary to identify
the importance of implicit associations such as common preferences and simi-
lar behaviors in social networks. Potential connections between a group of users
may contribute to suspect search. Thus, additional Web resources outside KG
are incorporated to improve the ranking results [14,26]. Figure 1 illustrates an
example of ranking associative entities based on both KG and Web resources.
As shown in part 2, Bill Gates and Vaccine are associative with the strength
of 0.62, which corresponds to the news topic of “Bill gates pledges $1.6 billion
to vaccine research against COVID-19”. That is, even though Bill Gates and
Vaccine are not directly linked in KG, there is still a strong association between
them. By introducing retrieved results of Web pages w.r.t. Bill Gates in part 1,
it is available to uncover these kinds of implicit associations.

Thus, we consider refining the association features by incorporating KG and
Web resources to fulfill the task of ranking associative entities, in which we will
have to solve the following 2 questions:
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(1) How to find the associative entities w.r.t. one or more query entities in KG
using association features from both KG and Web resources?

(2) How to measure the strength of associations between entities by holistically
aggregating multiple co-occurrences?

In this paper, as shown in Fig. 1, we propose an Entity Dependency Graph
Model (EDGM) to rank associative entities by graph embedding. In our EDGM,
we use association features from both KG and Web resources based on asso-
ciative Wikipedia articles and contents of Web pages w.r.t. the query entities.
The associations especially for up-to-date situations could be determined by the
rapidly changing or generated Web resources or user behavioral records that we
regard as the transactions in frequent pattern mining [1]. By this way, we pro-
pose a method to bridge the gap between frequent pattern mining and graphical
model. Upon the graph structure of frequent entities, we aggregate frequencies
of both single entities and the co-occurrences of entities to evaluate the asso-
ciations quantitatively. To obtain highly represented embedding of associative
entities and fulfill effective ranking, we adopt a BFS-biased random walk sam-
pling mechanism based on node2vec [10]. This enables our EDGM to better
measure the strength of associations by capturing neighboring and co-occurring
features accurately. The contributions of this paper are as follows:

First, as illustrated in part 1 of Fig. 1, we generate an entity itemset con-
taining sequences of candidate entities to the query from both KG and Web
resources. By incorporating the extracted Web resources, it is practical to inte-
grate various statistics of entities. Then, we adopt the frequent pattern mining
algorithm on the entity itemset to build an undirected weighted graph, where
each node represents an entity, and each edge represents the associations between
entities. By an unsupervised manner, co-occurrence associations w.r.t. one or
more query entities could be discovered.

Second, to improve the effectiveness of ranking associative entities, we mea-
sure the weight of each edge on EDG, which could present the strength of asso-
ciations by refining both the informativeness and specificness of co-occurrences
simultaneously. To fulfill entity ranking for each associative candidate to the
given query, we use graph embedding to transform the nodes on the weighted
graph into a low-dimensional space and then rank the candidate entities based
on the similarity between node embeddings.

Finally, we conduct extensive experiments on two real-life datasets to evaluate
the effectiveness of our EDGM. Experimental results illustrate that our approach
outperforms some state-of-the-art competitors in ranking associative entities.

The rest of this paper is organized as follows: Sect. 2 introduces related work
and preliminaries. Section 3 presents our methods for learning EDG and rank-
ing associative entities. Section 4 shows experiments and performance studies.
Section 5 concludes and discusses future work.

2 Related Work and Preliminaries

In this section, we review related work, followed by giving necessary definitions
and formulating the problem.
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2.1 Related Work

Most research efforts for ranking associative entities could be divided into 3
categories: entity relatedness ranking, association ranking of KG, and entity
ranking by graph embedding.

Entity Relatedness Ranking. Entity relatedness ranking optimizes the par-
tial order of the associative entities into desired positions upon semantic relat-
edness [20]. For measuring relatedness between exactly two entities, text-based
methods [2,8] build high-dimensional weighted vectors to represent words and
Wikipedia concepts. Other graph-based approaches [27] adopt the link structure
of Wikipedia to obtain the distance of entities. These methods are insufficient
to uncover more profound co-occurrences with only text semantics or graphical
structural relatedness. Better results could be achieved by integrating existing
methods through designing comprehensive frameworks [25]. To further leverage
more types of co-occurrences in KG, network-based methods [9,15] specify asso-
ciations among words and concepts in a supervised manner upon well-generated
datasets from psychological studies.

Association Ranking of KG. Techniques for ranking associations between
two or more entities are developed with the emergence of graph-structured Web
resources, which could be divided into data-centric and user-centric. Data-centric
techniques mainly use various statistical information of entities, and user-centric
techniques focus on user preference. Typically, the associations are regarded as
paths connecting two or more entities in KG [7]. Simple associations could be
obtained directly by triple-linked data from KG, but implicit associations are
more preferred in some domains [5]. To search and rank implicit associations, the
frequent pattern mining algorithm has been proved to be efficient and effective
[6]. By counting the frequency of canonical codes uniquely representing entity
patterns, associations could be ranked upon the edit distance between graph
structures.

Entity Ranking by Graph Embedding. Graph embedding techniques like
DeepWalk [23] are effective for association analysis in graphical structures [3],
in which low-dimensional representations of the nodes with neighboring and co-
occurrence relations are learned. Zhang et al. [29] propose a graph embedding-
based neural ranking framework to overcome the query-entity sparsity problem
by integrating features in click-graph data. On heterogeneous information net-
works, recent studies for proximity search [18] learn graph embedding models to
rank associative nodes by given semantic relations. These techniques are based
on user intent with a certain amount of behavior preference labels. Differently,
we choose node2vec [10] to embed the associations between entities, since the co-
occurrences on EDG, together with their strength, could be expressed by using
the biased and dynamic random walk.

2.2 Definitions and Problem Formulation

Firstly, the symbols and notations are given in Table 1. Then, we define several
concepts as the basis of later discussions.
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Table 1. Notations.

Notation Description

D�q Associative datasets w.r.t. query �q

Ψ(�q) Entity itemset w.r.t. �q

Υ Set of all 1-frequent entities

Ax A maximal set of frequent entities

GE = (V, E, W ) Entity dependency graph with nodes V , edges E and weights W

vivj Edge between 1-frequent entities vi and vj

H|V |×d Representation space of EDG with the dimension of |V | × d

L(�q) Ranking list of associative entities w.r.t. �q

To obtain D�q from both the KG and the Web, associative data like Web
pages and Wikipedia articles w.r.t. the query entities �q could be retrieved and
collected by search engines.

Definition 1. A knowledge graph is denoted as G = (E ,R), where E represents a
finite set of nodes indicating entities, and R is a set of directed edges representing
relations between entities.

Sequences of associative entities could be generated based on items in D�q

and named entities of G. The definition of Ψ(�q) is as following:

Definition 2. Let ψ = {e1, e2, ..., eM} be a sequence of entities, where ei ∈ E
and ψ ∈ Ψ(�q). Each ψ is corresponding to an item in D�q.

Based on the idea of frequent pattern mining [1], Ψ(�q) could be regarded as
the transactions of D�q. Next, we define the set of frequent entities.

Definition 3. v(v ∈ E) is called a 1-frequent entity if p(v) ≥ σ, where p(v) is the
support of v (i.e., the proportion of sequences in Ψ(�q) containing v) and σ is the
threshold of minimal-support. The set of all 1-frequent entities is denoted as Υ .

Definition 4. A set of frequent entities Ax ⊂ Υ is called maximal, if there
are no other super-sets Ay in A satisfying Ax ⊂ Ay, where A = {A1, ..., Am}
includes all the sets of frequent entities.

Following, we define the entity dependency graph (EDG) to describe the
existence and strength of associations between entities.

Definition 5. An EDG is an undirected weighted graph, denoted as GE =
(V,E,W ). V is the set of nodes, and V ⊂ Υ . Each edge vivj ∈ E (vi, vj ∈ V, i �=
j) indicates the co-occurrence association between vi and vj. Each wij ∈ W
represents the weight of vivj.

Problem Formulation. Given the query �q, we first extract its itemset Ψ(�q)
from D�q as the input to construct EDG. For each node in EDG, the representa-
tion space H is learned as:

f : V −→ H |V |×d (1)
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Upon the matrix H |V |×d, we measure the strength of associations between
each candidate entity and �q from a global perspective, and output the ranking
list of candidate entities L(�q) w.r.t. �q.

3 Methodology

In this section, we introduce the approach to ranking associative entities by our
EDGM. First, the structure of EDG is learned by mining frequent patterns from
the transactions of both KG and Web resources, and then the weights of edges
on EDG are measured based on an extension principle of co-occurrences. Finally,
the ranking process is implemented by graph embedding.

For the given KG G and query �q, the sequences of entities recognized from
KG are transactions of D�q, for which the entity itemset Ψ(�q) is generated from
D�q (e.g., Wikipedia articles and Web pages retrieved w.r.t. �q) by entity linking.
Then, by learning the graphical structure and measuring the weights of edges,
the EDG GE = (V,E,W ) is constructed to depict the associations between
frequently co-occurring entities in a holistic way.

3.1 Structure Learning

Learning the structure of GE aims to determine the set of nodes V and the set
of edges E. The nodes in V are generated by mining frequent entities in Ψ(�q),
and the edges in E depend on the test of conditional independence [17] between
frequent entities.

To achieve a high recall in line with the inherence of co-occurrence between
entities, the node set V should contain the candidate entities related to the query
as many as possible. Given Υ = {v1, v2, ..., vn} as a set of 1-frequent entities in
D�q, we generate V from Υ by neglecting the entities whose support values are
less than the threshold σ according to the probability cut defined as follows:

pσ(I) =

{
0 p(I) < σ

p(I) p(I) ≥ σ
(2)

As is known that only frequent entities are concerned when computing p(I)
by the classic Apriori algorithm [11]. If I is a set of frequent entities, then all
the non-empty subsets of I must also be frequent. If there is no set of frequent
entities J in such Υ that I ⊂ J , we call I is the maximal. To include the
entities concerning all co-occurrences, we adopt the entities in the maximal set
of frequent entities as nodes in V .

To determine the edges among the nodes in V , we first generate completely
connected subgraphs over each maximal set of frequent entities. According to the
conclusion in [17], the associations between frequent entities imply probabilistic
conditional independences. Thus, two entities in the set of frequent entities are
not connected in GE by an edge if they are conditionally independent. By testing
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conditional independence, the graphical topology of frequent entities could be
obtained.

The conditional independence between entities is closely related to the fre-
quent set, to which the entities belong. Let I, J and K be three disjoint subsets
of Υ . We use < I|K|J > to denote that “I is independent of J given K”, namely
p(I ∩ J |K) = p(I|K)p(J |K). By focusing on the conditional independence rela-
tions between frequent entities, we analyze possible associations between them.

Specifically, let I and J (I, J ⊆ Υ ) be two different sets of maximal frequent
entities and I ∩J = K. We consider the following three cases. For two entities in
different sets with intersections, an edge is added between these two entities to
reflect their mutual dependency. Two entities in different sets without overlap
are unconnected. Two entities are also unconnected if they are already in one
set and do not co-occur in any other sets.

Case 1. If there exist 1-frequent entities va ∈ I and vb ∈ J such that
the entity set {va, vb} is non-frequent, then < va|K|vb > is false, denoted as
< va|K|vb >. That is, va and vb are associative and there is an edge vavb.

Case 2. If {va, vb} is non-frequent for all va ∈ I and vb ∈ J when K = ∅,
then < va|Υ − va − vb|vb > is true. In other words, if there is no any frequent
entity vc such that {va, vc} and {vb, vc} are frequent when {va, vb} is non-
frequent, va and vb are independent and there is no edge between them.

Case 3. Suppose < va|I − va − vc|vc > is true, where va, vc ∈ I. If there
is no such J that va, vc ∈ J , then < va|Υ − va − vc|vc > is true. That is, two
conditionally independent entities va and vc do not share an edge if they co-occur
only in one maximal set of frequent entities.

Algorithm 1. Structure learning of EDG
Input: Υ ; A = {A1, ..., Am}, where each Ax ∈ A, Ax = {vxy|vxy ∈ Υ, 1 ≤ y ≤ n}(x ∈ [1, m])
Output: V , the set of nodes in GE ; E, the set of edges in GE

1: V ← Υ , E ← {}, GA ← {}
2: for each Ax ∈ A do
3: Generate GAx (VAx , EAx ) // Join each pair of distinct entities in Ax

4: GA ← GA ∪ GAx // GAx is the complete graph of Ax and GA is the set of GAx
5: end for
6: for each pair (Ax, Ay) ∈ A × A do // Case 1
7: if Ax ∩ Ay �= ∅ then
8: for each edge vxsvyt do // vxs ∈ Ax − Ay and vyt ∈ Ay − Ax

9: E ← E ∪ vxsvyt // Add vxsvyt to the set of edges
10: end for
11: end if
12: end for
13: for each GAx ∈ GA do
14: for each edge vxsvxt ∈ GAx do
15: if < vxs|Ax − vxs − vxt|vxt > then // Case 2
16: E ← E − vxsvxt

17: end if
18: for each Ay ∈ A − Ax do // Case 3
19: if < vxs|Ay − vxs − vxt|vxt > or vxs /∈ Ay or vxt /∈ Ay then
20: E ← E − vxsvxt

21: end if
22: end for
23: end for
24: end for
25: return V , E
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Fig. 2. A running example of Algorithm 1.

Next, we illustrate the execution of Algorithm 1 by the following example.
Given Υ = {A,B,C,D,E, F} as the set of 1-frequent entities. {A,B,C}, {C,D},
and {D,E, F} are three maximal sets of frequent entities over Υ .

Firstly, we add edges for entities within one maximal set of frequent entities
respectively in Fig. 2(a) to generate three undirected complete subgraphs accord-
ing to Case 1. Secondly, we add undirected edges AD, CE, BD and CF shown
by dotted lines in Fig. 2(b) to represent the possible associations. According to
Case 2, following edges should not exist: AE,AF ,BE,BF . Finally, suppose that
the conditional independence tests show < E|D|F > and < E|C|F > are true.
Then, according to Case 3, EF will be deleted. The actual structure of EDG is
shown in Fig. 3(c).

Step 2 in Algorithm 1 could be done in O(|A1|2 + ... + |Am|2) time, and
does not exceed O(m × n2), where |Ax| is the number of entities in Ax and
|Ax| ≤ n(1 ≤ x ≤ m). Step 6 could be done in O(m × n2) time at most. Step 13
could be achieved in O(|A1|2 + ... + |Am|2) time and no larger than O(m × n2).
The overall time complexity of Algorithm 1 is O(m × n2). Besides, the Apriori
algorithm directly provides all probability values for the construction of EDG.

3.2 Calculation of Weights

Given the structure of graph GE , it is necessary to accurately quantify the
weights of edges by further exploring the co-occurrences statistics from data.
Thus, we introduce coefficient of association coa(vi, vj) as the weight wij ∈ W of
each edge vivj . According to the intuition of coa(vi, vj), the following properties
should be satisfied:

• Symmetry : coa(vi, vj) = coa(vj , vi).
• Non-negativity : coa(vi, vj) > 0.
• Identical boundedness: coa(vi, vj) ≤ 1, coa(vi, vj) = 1 only if vi = vj .
• Informativeness of co-occurrence: The fewer occurrences of ψ in Ψ(�q) contain-

ing an entity pair (vi, vj), the more informative the (vi, vj) is, corresponding
to a higher coa(vi, vj).
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• Specificness of entity frequency : Entity frequency (EF) denotes the proportion
of an entity to the total number of entities in Ψ(�q). The greater the difference
in frequency between vi and vj , the smaller the coa(vi, vj).

To compute coa(vi, vj), we first consider the informativeness of co-occurrence
by describing the ratio of the number of co-occurrence entries for entity pairs in
Ψ(�q):

ln
SN (Ψ(�q))
TN (vi, vj)

(3)

where SN (Ψ(�q)) denotes the total number of transactions in Ψ(�q), and
TN (vi, vj) represents the number of entity sequences containing both vi and
vj .

Actually, we aim to distinguish the importance of different entity pairs by
informativeness of co-occurrence. If (vi, vj) appears frequently and dispersedly
in multiple entity sequences, we consider the co-occurrence of (vi, vj) is trivial
and less informative. In contrast, if vi and vj co-occur in a smaller number of
entity sequences, the associations between them are more representative and
informative, which leads to a larger strength. Next, we consider the difference of
frequency at the single entity level:

exp |EF (vi) − EF (vj)| (4)

where EF (vi) and EF (vj) means entity frequency of vi and vj respectively.
Equation (4) takes the specificness of entity frequency into account. The

smaller the difference between EF (vi) and EF (vj) the closer of vi and vj . We
choose exponential function to ensure that the overall value of Eq. (4) is a number
greater than or equal to 1. At the same time, the trend of Eq. (4) is positively
correlated with the frequency difference between vi and vj .

To combine Eq. (3) and Eq. (4) to jointly measure the weights of edges, we
form Eq. (5) to reasonably reflect both trends. The unnormalized weight of vivj

is defined as follows:

ξ(vi, vj) =
ln SN(Ψ(�q))

TN(vi,vj)

exp |EF (vi) − EF (vj)| (5)

Here, the upper bound of ξ(vi, vj) is not constrained, which does not facilitate
our specific comparison between the weights of any two edges. The sum of all
ξ(vi, vj) in GE is specified as follows:

Sum(GE) =
∑

vi,vj∈V,i�=j

ξ(vi, vj) (6)

Then, ξ(vi, vj) could be normalized by combining Eq. (5) and Eq. (6).

coa(vi, vj) =
ξ(vi, vj)

Sum(GE)
(7)

We measure the coa(vi, vj) individually to get the actual weights wij of each
edge vivj ∈ E. Finally, the set of weights W of EDG could be obtained.
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3.3 Ranking Associative Entities

To measure the association strength of any two entities in the EDG, we transform
the nodes of GE into low-dimensional vector space by graph embedding.

Specifically, given an EDG GE = (V,E,W ), we learn the co-occurrence fea-
tures and the neighboring relations among nodes in two steps: random walk
sampling and skip-gram.

We use a tunable bias random walk mechanism [10] in the procedure of
neighborhood sequences sampling. Let vs ∈ V be a source node, and cl be the
lth node in the walk, c0 = vs. The unnormalized transition probability π(cl, cl+1)
is:

π(cl, cl+1) = ηmn(cl−1, cl+1) × coa(cl, cl+1) (8)

where ηmn(cl−1, cl+1) is a hyper parameter determined by the shortest path
distance between cl−1 and cl+1. m and n are user-defined parameters to control
the bias of random walk. Then, the actual transition probability from vi to vj is
κt, defined as follows:

κt = (cl = vj |cl−1 = vi) =

{
π(vi,vj)

Z vivj ∈ E

0 otherwise
(9)

where Z is the normalizing constant.
Upon the sample sequences, we aim to map each vi ∈ V into the same space:

f : vi −→ R
d (equivalent to Eq. (1)) by maximizing the log-probability function:

max
f

∑
vi∈V

log[p(Nb(vi)|f(vi))] (10)

where Nb(vi) ⊂ V is the network neighboring [10] of vi generated by the random
walk sampling strategy controlling by Eq. (8).

A matrix H |V |×d could be obtained by Eq. (10). Each entry of H |V |×d repre-
sents the vector of a specific entity in EDG. The association strength ad(vi, �q) of
vi to �q in EDG could be measured by the cosine similarity of vectors in H |V |×d:

ad(vi, �q) =

∑d
j=1 Hij × H�q√∑d

j=1 H2
ij × ∑d

j=1 H2
�q

(11)

where H�q denotes the vector representation of query �q. Note that if there are
more than one entities in �q, the final ad(vi, �q) is the average of similarities
between the vector of vi to the vectors of different entities in �q.

Finally, we could obtain a top-k ranked list L(�q) = {ad(v1, �q), ..., ad(vk, �q)},
where ad(vi, �q)(1 ≤ i ≤ n) is the ith maximal value in L(�q).

4 Experiments

In this section, we present experimental results on two real-life datasets to evalu-
ate our proposed method. We first introduce the experimental settings, and then
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conduct three sets of experiments: (1) ranking associative entities, (2) entity
relatedness ranking, and (3) impacts of parameters to evaluate our method com-
pared with existing methods.

4.1 Experiment Settings

Datasets. We perform experiments on two widely used datasets for evaluating
entity relatedness, KORE [13] and ERT [12], and extract the datasets containing
associative Wikipedia articles and Web pages from search engines.

Table 2. Statistics of datasets.

Dataset Query entities Candidate entities Wikipedia articles Google & Bing URLs

KORE 21 420 4,200 12,600

ERT 40 937 8,000 24,000

• KORE, extracts entities from YAGO2 covering four popular domains: IT
companies, Hollywood celebrities, video games, and television series. For each
query entity, 20 candidate entities linked to the query’s Wikipedia article are
ranked in descending order of human rating association scores and regarded
as the ground-truth of the most relevant entities to the query.

• ERT, consists of query entity pairs within two topics: the first 20 groups
are from the music Website last.fm, and the last 20 groups originate in the
movie dataset IMDb. Several to dozens of candidate entities with association
scores are given for each entity pair. The scores are computed by considering
multiple properties of entities from DBpedia

To generate D�q of each query, we extract the associative texts of all query
entities in the two datasets from search engines and Wikipedia. Specifically, we
first crawl the Web pages of the top 300 URLs from Google and Bing by using the
query entities as queries. We then collect the top-ranked 200 Wikipedia articles
by inputting the query entities into the Wikipedia dump. We finally combine
these text contents as D�q. Note that we also pre-process these texts by removing
redundancy and building indices. The important statistics about these datasets
are summarized in Table 2.

Evaluation Metrics. Three groups of metrics are chosen in our experiments: (1)
Normalized discounted cumulative gain (NDCG) [20] to evaluate the accuracy of
each entity ranking method, (2) Pearson, Spearman correlation coefficients and
their harmonic mean [25] to evaluate the consistency between ranking results and
ground truth, and (3) precision, recall and F1-score to evaluate the effectiveness
of EDG with varying the user-defined threshold of minimal-support σ.

Comparison Methods. We choose six methods for comparison with our
EDGM.
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• Milne-Witten (MW) [27] is a typical graph-based approach to measure asso-
ciations between entities using hyperlink structures of Wikipedia.

• ESA [8] is a representative text-based method by using entity co-occurrence
information and TF-IDF weights.

• Entity2vec (E2V) [28] jointly learns vector representations of words and enti-
ties from Wikipedia by the skip-gram model.

• TSF [25] is a two-stage entity relevance computing framework for Wikipedia
by first generating a weighted subgraph for co-occurrence information and
then computing the relatedness on the subgraph.

• E-PR is the EDG with PageRank [22] to rank the associative entities.
• E-DW is the EDG with the DeepWalk for graph embedding.

Implementation. To generate transactions in our EDGM, we use the tool
WAT [24] to link entities in D�q to their corresponding entity-IDs in Wikipedia,
and filter the Top-300 matching candidates with the highest similarity to the
given query based on KG embedding by OpenKE.1 For ESA and MW, we take
the current query and candidate entities in the corresponding EDG as input,
and generate the ranking list based on the relatedness between the candidate
entities and the query. For E2V, we obtain the representations of words and
entities based on the same version of Wikipedia chosen for EDGM. For TSF, we
adopt the recommended configurations [25] to achieve the optimal results. We
transform the undirected edges of EDG to bidirectional directed edges for E-PR
and perform E-DW on the unweighted graph structure of EDG2.

To balance the effectiveness and efficiency of EDG construction, we fix the
threshold σ to 11 on KORE and 6 on ERT. For EDGs constructed by each query,
they contain an average of 37 entity nodes on KORE and 49 entity nodes on ERT.
We also set the node2vec parameters dimensions, walklength, numberofwalks
to 128, 30 and 200 on KORE and 128, 30 and 100 on ERT for better graph
embedding. Besides, we find that the BFS random walk strategy (m = 1, n = 2)
is more conducive to achieving the best results for our model.

4.2 Experimental Results

Exp-1: Ranking Associative Entities. To test the accuracy of associative
entities ranking by our EDGM, we record NDCG of the top-k ranked lists found
by all methods when k is fixed to 5, 10, 15 and 20 on KORE and 3, 5 and 10 on
ERT. The results are shown in Fig. 3(a) and Fig. 3(b) respectively. All methods
rank the entities that exist in the current EDG, and missing entities are ignored
and skipped.

The results tell us that (1) our method EDGM achieves the highest NDCG
scores and outperforms other methods on all datasets by taking the advantages
of weighted associations between entity nodes in EDG, (2) our EDGM per-
forms consistently better than other methods on all datasets by presenting the
frequency characteristics including informativeness of co-occurrence and speci-
ficness of entity frequency, while some methods perform unstably on different
1 http://139.129.163.161/index/toolkits.
2 https://github.com/opp8888/ConstructionofEDG.

http://139.129.163.161/index/toolkits
https://github.com/opp8888/ConstructionofEDG
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(a) NDCG on KORE (b) NDCG on ERT

Fig. 3. Results of associative entities ranking.

datasets. For example, ESA performs better than MW in KORE but works worse
than MW in ERT, and (3) E-DW is better than E-PR, which indicates that graph
embedding is effective for our entity ranking model, and EDGM outperforms E-
DW, which also suggests that node2vec is more suitable for embedding the EDG
than DeepWalk. In fact, our EDGM improves NDCG by 6.7% and 7.5% over
the second-highest method TSF on KORE and ERT, respectively. This verifies
the effectiveness of our proposed method.

Table 3. Comparison of entity relatedness ranking on KORE.

Domain Metrics MW ESA E2V TSF E-PR E-DW EDGM

IT companies Pearson 0.496 0.489 0.579 0.753 0.192 0.652 0.749

Spearman 0.537 0.664 0.613 0.741 0.425 0.688 0.767

Harmonic 0.516 0.563 0.596 0.747 0.265 0.670 0.758

Hollywood celebrities Pearson 0.515 0.577 0.675 0.727 0.216 0.613 0.811

Spearman 0.634 0.692 0.589 0.792 0.372 0.582 0.805

Harmonic 0.568 0.629 0.629 0.758 0.273 0.597 0.808

Video games Pearson 0.607 0.552 0.616 0.781 0.18 0.587 0.793

Spearman 0.592 0.621 0.542 0.810 0.489 0.675 0.791

Harmonic 0.599 0.584 0.577 0.795 0.263 0.628 0.792

Television series Pearson 0.671 0.521 0.637 0.833 0.261 0.712 0.691

Spearman 0.735 0.585 0.671 0.732 0.491 0.716 0.754

Harmonic 0.702 0.551 0.654 0.779 0.341 0.714 0.721

Exp-2: Entity Relatedness Ranking. Exp-2 aims to test whether our EDGM
could generate the ranking lists having a high degree of consistency compared
with the ground truth. The results on KORE and ERT are shown in Table 3
and Table 4, respectively. Since the number of entities of EDG are not fixed, the
top-5 candidate entities in the current EDG are selected for discussion.

The results tell us that (1) EDGM performs better than the traditional text-
based, graph-based methods (MW and ESA) and the pure entity representation
approach (E2V) in all domains of the two datasets, (2) EDGM outperforms TSF
in most domains of ERT and performs as well as TSF on KORE, and (3) EDGM
achieves the highest harmonic mean in most domains of the two datasets. Our
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Table 4. Comparison of entity relatedness ranking on ERT.

Domain Metrics MW ESA E2V TSF E-PR E-DW EDGM

Music Pearson 0.677 0.531 0.652 0.795 0.257 0.694 0.781

Spearman 0.589 0.663 0.598 0.732 0.386 0.660 0.787

Harmonic 0.630 0.590 0.624 0.762 0.309 0.677 0.784

Movie Pearson 0.615 0.466 0.681 0.828 0.190 0.785 0.825

Spearman 0.463 0.569 0.626 0.764 0.429 0.682 0.771

Harmonic 0.528 0.512 0.652 0.795 0.263 0.730 0.797

EDGM gives better results in total rank, which verifies the effectiveness of EDG
that generates a powerful presentation of the associations upon neighboring and
co-occurrence features of entities.

Exp-3: Impacts of Parameters. To evaluate the impacts of the threshold σ,
we vary σ from 9 to 12 on KORE and from 3 to 7 on ERT. The results are
reported in Fig. 4(a)–Fig. 4(f), respectively.

(a) Precision on KORE (b) Recall on KORE (c) F1-score on KORE

(d) Precision on ERT (e) Recall on ERT (f) F1-score on ERT

Fig. 4. Results of impacts of parameters.

The results tell us that (1) the precision increases (recall decreases) with
the increase of σ, which is consistent with the theoretical expectation that the
number of entity nodes in EDG decrease when σ increases, and (2) the F1-score
remains relatively stable when varying σ, which demonstrates that our method
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could efficiently recall candidate entities in the ground truth. Note that our
model achieves better recall than precision, which is suitable for the application
scenarios of ranking problems requiring a higher recall. Hence, we fix σ to 11 on
KORE and 6 on ERT to balance the size of EDG and guarantee high recall.

5 Conclusions and Future Work

In this paper, we propose the entity dependency graph model (EDGM) to rank
associative entities in KG by graph embedding upon frequent entities. By incor-
porating multiple features of the association from both KG and Web resources
effectively, one or more entities are allowed as a query to achieve better scal-
ability. EDGM facilitates the discovery of associative entities with high recall,
since the co-occurrence of entities in KG and the behavioral associations could
be represented by a global model in an unsupervised manner.

However, the path and label information in KG, as well as the impacts of
neighbors in a random walk on EDGM have not been well considered, which
needs further exploration. Moreover, open world KG completion is worthwhile
to study further by incorporating with semantic/implicit associations between
entities achieved by our method.
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