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Abstract. Temporal knowledge graph completion, which aims to pre-
dict missing links in temporal knowledge graph (TKG), is an important
research task due to the incompleteness of TKG. Recently, TKG embed-
ding methods have proved to be effective for this task. However, most
of existing methods regard TKG as a set of independent facts and con-
sequently ignore the implicit relevance among facts. Actually, as a kind
of dynamic heterogeneous graph, the evolving graph structure of TKG
is able to reflect a wealth of information. To this end, in this paper we
regard temporal knowledge graph as heterogeneous and discrete spatial-
temporal resource, and propose a novel spatial-temporal attention net-
work to learn TKG embeddings by modeling spatial-temporal property
of TKG while considering its special characteristics. Specifically, our
model employs a Multi-Faceted Graph Attention Network (MFGAT)
to extract rich structural information from the egocentric network of
each entity. Additionally, an Adaptive Temporal Attention Mechanism
(ADTAT) is utilized to flexibly model the correlation of entity repre-
sentations in the time dimension. Finally, by combing our obtained rep-
resentations with existing static KG completion methods, they can be
extended to spatial-temporal versions to predict missing links in TKG
while considering its inherent graph structure and time-evolving prop-
erty. Experimental results on three real-world datasets demonstrate the
superiority of our model over the state-of-the-art methods.

Keywords: Temporal knowledge graph completion · Temporal
knowledge graph embedding learning · Spatial-temporal data mining

1 Introduction

Temporal knowledge graph (TKG) is a knowledge base system which contains
facts happened in real-world with the corresponding happened times. As shown
in Fig. 1, TKG can be represented as a dynamic heterogeneous graph in which
nodes denote entities in real-world and labeled edges represent relations among
entities. Moreover, nodes and edges in the graph will appear or disappear
with the development of time which leads to that the structure of the graph
evolves over time and the static graph in each timestamp is called a snapshot.
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Fig. 1. An example of temporal knowledge graph. In each snapshot we give an example
of the egocentric network of South Korea.

Compared with static knowledge graph (KG) which ignores the time annotations
of facts, TKG is more adequate for real-world scenarios and thus receives a surge
of interest in recent years. However, same as static knowledge graph, temporal
knowledge graph is also far from complete. Therefore, the task of predicting
missing links in TKG, which is known as temporal knowledge graph completion
(TKGC) becomes an increasingly important research task in this field.

KG embedding methods, which aim to map each element of KG to a hidden
vector representation, is a powerful technique for static knowledge graph com-
pletion. However, such methods fail to consider the time annotations of facts.
Therefore, some researchers turn to temporal knowledge graph embedding meth-
ods for the TKGC task in recent years, several methods have been proposed such
as TAE [10] and HyTE [3]. Although these methods outperform KG embedding
methods on the TKGC task, they mostly regard TKG as a set of independent
facts and thus ignore the graph structure of TKG, which fails to capture the
implicit relevance among facts. Furthermore, most of them treat facts in each
snapshot separately and thus ignore the time-evolving property of TKG, which
fails to obtain more accurate representations based on the information of his-
tory snapshots. Therefore, the performance of TKGC is still far from satisfactory
and it is necessary to develop a model that can consider graph structure and
time-evolving property of TKG simultaneously.

Actually, we notice that temporal knowledge graph can be viewed as a kind
of spatial-temporal resource where graph structure in each snapshot reflects its
spatial property and the correlation of different snapshots in the time dimension
reflects its temporal property. Recently, deep spatial-temporal models [24] have
achieved successes in many fields due to their effectiveness in modeling spatial-
temporal correlation of data, so we argue that learning TKG embeddings via
deep spatial-temporal models can effectively consider its graph structure and
time-evolving property. However, there are still no studies applying such models
to TKG because TKG has two characteristics: 1) heterogeneity, as shown in
Fig. 1, nodes in the graph correspond to entities in the real world, which leads
to that different nodes have different semantics and thus play different roles
in the graph; 2) discreteness, facts in TKG are discretely distributed in the
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time dimension, which leads to that data quantities of different snapshots are
inhomogeneous. For a particular entity, some snapshots contain more related
facts while others contain fewer or even no related facts.

Based on above considerations, in this paper, we propose a novel spatial-
temporal attention network to learn TKG embeddings by modeling its spatial-
temporal property. First, in order to model the spatial property and hetero-
geneity of TKG, we focus on the egocentric network [8], which is defined as
the induced graph of a node with its immediate neighbors. It is considered as
the basic structure that dominates the attributes and behaviors of nodes in the
field of social network analysis [1]. As shown in Fig. 1, we give an example of
egocentric networks of South Korea in different snapshots. Compared with the
star-like structure considered by previous graph neural network (GNN) models,
such as GAT [23] and R-GCN [20], which can only consider the binary relation-
ships between nodes, egocentric network can capture the multiple relationships
among a node and its neighbors, and thus is able to describe the role of a node in
the graph more accurately. In this way, we develop a novel Multi-Faceted Graph
Attention Network (MFGAT) based on the egocentric network. Specifically, for
each snapshot, it firstly constructs rich structural features from the egocentric
network of each entity, and then an attention mechanism is applied for each
feature independently. Finally, by fusing different kinds of features, our MFGAT
can effectively learn TKG embeddings of each snapshot while considering the
graph structure and heterogeneity of TKG.

Additionally, in order to model the time-evolving property of TKG while
addressing the inhomogeneity problem brought by discrete distribution, we pro-
pose a novel Adaptive Temporal Attention Mechanism (ADTAT). The core
component of ADTAT is a mask function which is able to dynamically select
attention position for each entity to focus on the information of active snap-
shots. Furthermore, it can adaptively model the time span information based
on the fact distribution of each entity in the time dimension. By employing an
attention mechanism with our mask function, ADTAT is able to flexibly model
the temporal correlation of entity representations in different snapshots.

Combining the above two parts, our spatial-temporal attention network can
learn TKG embeddings while considering the graph structure and time-evolving
property of TKG simultaneously. Furthermore, existing static knowledge graph
embedding methods can be extended to a spatial-temporal version for the TKGC
task by applying our obtained representations in the score function. Main con-
tributions of our work are summarized as follow:

– We propose a novel spatial-temporal attention network for TKG completion.
To the best of our knowledge, this is the first work that learns TKG embed-
dings from the perspective of spatial-temporal data modeling.

– We introduce egocentric network to the field of TKG, and propose a novel
multi-faceted graph attention network based on egocentric network of each
entity to capture the structural information of TKG more effectively.
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– Experimental results on three real-world datasets demonstrate the superiority
of our model. Our source code and datasets are publicly available at https://
github.com/zjs123/ST-ConvKB.

2 Related Work

In this section, we first provide an overview of the typical methods for static
knowledge graph embedding learning and temporal knowledge graph embedding
learning respectively, and then briefly review deep spatial-temporal model and
its recent advances in several fields.

2.1 Static Knowledge Graph Embedding Methods

Static knowledge graph embedding methods aim to represent each element
of knowledge graph as a low-dimensional vector while preserving its inherent
semantic. There exist two kinds of typical methods, namely translation meth-
ods and semantic matching methods. TransE [2] is a typical translation method,
which maps each entity to a vector and regards relation as the translation from
subject entity to object entity. Based on TransE, a number of improved methods
have been proposed, such as TransH [25], TransR [15], and TransD [9]. RESCAL
[19] is the first semantic matching method that utilizes restricted Tucker decom-
position for static knowledge graph embedding learning. Due to too many param-
eters of RESCAL, DistMult [27] simplifies RESCAL by using diagonal matrix.
Other semantic matching methods have been further proposed, such as HoIE [18]
and ComplEx [22]. Besides the above two kinds of methods, in recent years, some
researchers attempt to learn KG representations based on convolution, such as
ConvE [4] and ConvKB [17]. Furthermore, there are also some works attempt to
learn KG representations based on graph neural networks, such as R-GCN [20]
and KBAT [16].

2.2 Temporal Knowledge Graph Embedding Methods

Temporal knowledge graph embedding methods aim to learn representations for
each element of TKG while considering the happened times of facts. TAE [10] is
the first work that attempts to incorporate temporal order information between
relations into TKG embeddings. Based on this, TKGFrame [28] formally defines
the relation chain of TKG and incorporates it into TKG embeddings. Inspired by
the objective of TransH, HyTE [3] projects the embeddings of entity and relation
to a time-specific hyperplane and applies TransE score function for the embed-
dings in each hyperplane. TTransE [14] is an extension of TransE by considering
time embeddings in the score function. TA-DistMult [6] constructs temporal
relation embeddings for each fact by encoding corresponding time annotation
with an LSTM model. Recently, DE-DistMult [7] provides a diachronic entity
embedding function to distinguish entities in different time stamps. Inspired by
the canonical decomposition of tensors of order 4, TNTComplEX [13] proposes

https://github.com/zjs123/ST-ConvKB
https://github.com/zjs123/ST-ConvKB
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a new regularization scheme and presents a temporal extension of ComplEX.
Although these methods have achieved significant performance on the TKGC
task, all of them ignore graph structure of TKG and they mostly are unable to
capture the correlation of facts in the time dimension. RE-NET [11] is the only
work that considers both of them, but this model is designed for extrapolation
problem rather than learning embeddings for TKGC.

2.3 Deep Spatial-Temporal Models

Deep spatial-temporal models are a kind of spatial-temporal data mining model
based on deep learning techniques. These models mostly contain a spatial part
to model the spatial property of data, and the most used deep learning models
are convolutional neural network and graph convolutional network (GCN) [12].
A temporal part is used to capture the temporal correlation of data, in which
recurrent neural network (RNN) is widely used. Based on the above architecture,
several models have been proposed in different fields to model data with spatial-
temporal property. For example, GMAN [29] combines a spatial attention model
and a temporal attention model with a gated mechanism to predict future traf-
fic conditions, ConvLSTM [21] integrates the structure of CNN and LSTM to
predict the spatial-temporal sequences and ST-GCN [26] combines spatial and
temporal convolutions for action recognition. These successful attempts demon-
strate the universality of deep spatial-temporal models and inspire us to design a
spatial-temporal model for temporal knowledge graph embedding learning. More
detailed introduction of deep spatial-temporal models can be viewed in [24].

3 Preliminaries

Definition 1 (Temporal Knowledge Graph). Temporal knowledge graph
can be denoted as a sequence of static snapshots G = {G1, G2, ..., G|T |}, where
each snapshot contains facts happened in the same time. Gt = {(si, ri, oi, t)} in
which si ∈ E and oi ∈ E are subject entity and object entity respectively, ri ∈ R
is the relation and t ∈ T denotes the happened time of these facts.

Definition 2 (Temporal Knowledge Graph Completion). Temporal
knowledge graph completion (as known as link prediction) aims to predict fact
(s, r, o, t) when s or o is missing. It can be divided into two subtasks, one is sub-
ject entity prediction to predict s given r and o in time t, and the other is object
entity prediction to predict o given r and s in time t.

Definition 3 (Egocentric Network). Given a node u in network G, the
egocentric network of u is a subgraph which is composed of u, its neighbors
N (u), and edges between them, which can be denoted as Gu = (Vu, Eu), where
Vu = u ∪ N (u) and Eu are node set and edge set of Gu respectively. Particu-
larly, in this paper we use Gt

e to denote the egocentric network of entity e in the
snapshot Gt.
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4 Proposed Model

In this section, we give an introduction of our model in detail. As shown in Fig. 2,
our model takes a sequence of snapshots {G1, G2, ..., G|T |} as input (part (b)),
the multi-faceted graph attention network (part (a)) is first used to obtain entity
and relation representations in each snapshot, and then adaptive temporal atten-
tion mechanism is utilized to model the temporal correlation of entity represen-
tations in different snapshots. After obtaining final entity and relation represen-
tations, they can be used to predict missing links via a score function (part (c)).

Fig. 2. We give an overview of the architecture of our proposed model in part (b),
the detailed illustration of MFGAT is shown in part (a), and after obtaining the final
embeddings, they will be used to predict missing links as shown in part (c).

4.1 Multi-faceted Graph Attention Network

As shown in Fig. 2(a), first, due to the complex structure of egocentric network,
our MFGAT constructs three kinds of structural features called triple feature,
group feature, and path feature based on egocentric network of each entity to
adequately describe its structure. Then, the attention mechanism is applied for
each feature independently to screen out important information. Finally, the
representation of each entity is obtained via a fully connected layer. In this part,
we take entity e in snapshot Gt as an example to introduce the detailed process
of our MFGAT to obtain its representation and representations of other entities
can be obtained in the same way.

Triple Feature. Triple is the basic structure in temporal knowledge graph which
can describe the binary relation among entities. In the egocentric network Gt

e,
triples that involve e are able to illustrate the direct relevance between e and its
neighbors, therefore it is important to integrate the information of such basic
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structure. We construct triple feature for each fact (e, ri, ei, t) in the egocentric
network Gt

e as follows:
ut
i = ri � ei, (1)

in which ri ∈ R
d is the initial embedding of relation ri and ei ∈ R

d is the
initial embedding of entity ei. We obtain the triple feature ut

i ∈ R
d via circular-

correlation operation � which is employed in HoIE [18] due to its high expres-
sivity. Finally, by constructing triple feature for each fact that involves e, we can
obtain a set of triple features {ut

1,u
t
2, ...,u

t
|N t(e)|} where |N t(e)| is the number

of neighbors of entity e in snapshot Gt.

Group Feature. Neighbors in egocentric network can be divided into several
independent groups based on their connectivity and the connected neighbors in
each group are generally a set of entities that have similar characteristics to the
central entity. Specifically, we regard each group in the egocentric network as a
set of nodes that can be connected through paths that do not go through the
central entity. As shown in Fig. 1, there are two groups in the egocentric network
of South Korea in 2014/07/10, one contains Obama and Shinzo Abe which are the
presidents of partner countries of South Korea while the other contains Colombia
and Morocco which are cooperation countries. Groups in the egocentric network
can reflect the multiple relations among neighbor entities and provide an abstract
perspective for the relevance between an entity and its neighbors. Therefore, in
order to consider the information of such structure, we define the graph feature
of each graph in the egocentric network Gt

e as follows:

vt
i = MAXPOOL{e1, e2, ..., en}, (2)

where ek ∈ R
d is the initial embedding of each entity in the group and n is the

total number of entities in the group. The group feature vt
i ∈ R

d is obtained
by applying max-pooling operation for entities in the group to screen out the
most prominent features of them. Finally, we can obtain a set of group features
{vt

1,v
t
2, ...,v

t
|Gt(e)|} where |Gt(e)| is the number of groups in Ge

t .

Path Feature. Relational path is widely used to model complex graph structure
of knowledge graph because it can reflect multi-hop relations between entities. In
the egocentric network Gt

e, relational path between e and each of its neighbors is
able to illustrate indirect relevance between them. In this part, for each neighbor
entity ei in Gt

e, we randomly find a relational path of length 2 from e to ei in the
egocentric network, which can be denoted as (e, ri1, ri2, ei). The corresponding
path feature is obtained as follows:

ot
i = Wo[ri1 : ri2 : ei], (3)

in which ri1 ∈ R
d and ri2 ∈ R

d are initial embeddings of relations involved
in the path and ei ∈ R

d is the initial embedding of neighbor entity ei, Wo ∈
R

d×3d denotes the linear transform matrix and [:] is concatenation operation.
By constructing path feature for each neighbor, we can obtain a set of path
features {ot

1,o
t
2, ...,o

t
|N t(e)|} where |N t(e)| is the number of neighbors of entity

e in snapshot Gt.
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Feature Fusion. After obtaining the above three kinds features {ut
i}, {vt

i} and
{ot

i}, we then apply the attention mechanism to each of them independently, and
for each kind of feature we can obtain a set of attention weights {αt

1, α
t
2, ..., α

t
Nc

}
which quantify the importance of feature {ct1, ct2, ..., ctNc

} for entity e. c can be
u, v and o, and Nc is the length of each feature sequence.

αt
i =

exp(e�Ucti)
∑Nc

j=1 exp(e�Uctj)
, (4)

c̃t =
Nc∑

i=1

αt
ic

t
i, (5)

in which U ∈ R
d×d is the transfer matrix to be learned and e is the initial

embedding of entity e. As shown in Eq. 5, we obtain the corresponding output
vector c̃t ∈ R

d of each kind of feature as the weighted average. Finally, we con-
catenate the obtained three kinds of feature vectors with the initial embedding
of e and employ a fully connected layer to obtain the output representation of
entity e in snapshot Gt as follows:

ẽt = σ(W[e : ũt : ṽt : õt] + b). (6)

Unseen Entity Transform. If there are no related facts of entity e in snap-
shot Gt, our MFGAT obtains the corresponding representation via another fully
connected layer as follows:

ẽt = σ(Wente + bent). (7)

Finally, by applying MFGAT for entity e in different snapshots, we can obtain
a sequence of output representation vectors for different snapshots, which can
be denoted as {ẽ1, ẽ2, ..., ẽ|T |}, where |T | is the total number of snapshots.

Relation Transform. Further, after obtaining entity representations via multi-
faceted graph attention network, the relation representations are also trans-
formed as follows:

r̃ = r · Wrel, (8)

where r ∈ R
d is the initial relation embedding and r̃ ∈ R

d is the transformed
relation embedding. Wrel ∈ R

d×d is the learnable transform matrix used to
project relation embeddings to the same vector space as entity embeddings.

4.2 Adaptive Temporal Attention Mechanism

In temporal knowledge graph, the temporal correlation of entity representations
in different snapshots mainly relies on two parts. First, it is affected by the
inherent semantic correlation of entity representations. As shown in Fig. 1, rep-
resentations of South Korea in 2014/07/02 and 2014/07/03 tend to have high
correlation because South Korea interact with Japan, China, and North Korea
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in both two snapshots. Second, it is also affected by the time span between
snapshots, and entity representations with long time span tend to have low cor-
relation because the effects of facts will attenuate over time. Our MFGAT can
effectively learn entity representations in each snapshot, but it fails to model the
correlation of entity representations in different snapshots. Furthermore, as we
mentioned, data quantities of different snapshots are inhomogeneous in temporal
knowledge graph which leads to the complexity of modeling temporal correla-
tion of entity representations. To this end, we develop a novel adaptive temporal
attention mechanism (ADTAT) to flexibly capture the correlation of entity rep-
resentations in different snapshots. For each entity e, our ADTAT takes the
output representation sequence {ẽ1, ẽ2, ..., ẽ|T |} of our MFGAT as input and
the correlation of its representations in time t and tj (tj ≤ t) is measured as
follows:

βt,tj =
me(t, tj)exp(σ(a� · [W1ẽt : W2ẽtj ]))

∑
tk≤t me(t, tk)exp(σ(a� · [W1ẽt : W2ẽtk ]))

, (9)

where ẽt ∈ R
d and ẽtj ∈ R

d are representations of entity e in time t and tj
respectively, W1 ∈ R

d×d and W2 ∈ R
d×d are two learned transform matrices,

and a ∈ R
2d is the attention vector. m() is a mask function, in which firstly, in

order to avoid attention smooth problem brought by inhomogeneous data dis-
tribution, for each entity e, if there are no facts that involve e in the snapshot
Gtj , me(t, tj) will be set as 0, which forces our attention mechanism to focus
on the active snapshots of entity e. In addition, in order to capture time span
information of TKG, we employ a temporal attenuation function with a dynamic
attenuation coefficient γt

e, since facts of each entity are distributed inhomoge-
neously in the time dimension, too large attenuation coefficient will lead to local
sparse entities fails to capture sufficient history information, but too small atten-
uation coefficient will make our model unable to adequately consider the effect
of time span. Therefore, we define the dynamic attenuation coefficient as follows:

γt
e =

∑

|ti−t|≤
√

|T |
2

|N ti(e)|
√

|T | − 1
· λ, (10)

in which |N ti(e)| is the number of neighbors of entity e in the snapshot Gti , and
λ is the basic attenuation coefficient. For each entity e, the size of γt

e is related
to the distribution of facts around snapshot Gt, and the sparser distribution will
lead to the smaller attenuation coefficient. Combining above two parts, the mask
function of our ADTAT can be defined as follows:

me(t, tj) =
{

exp(−γt
e(|t − tj |)), e ∈ Gtj

0, otherwise
. (11)

Based on the mask function, our ADTAT is able to model the temporal
correlation of entity representations while effectively tackle the inhomogeneity
problem of TKG. The output representation of each entity e in time t is obtained
as follows:

ht
e =

∑

tj≤t

βt,tj ẽtj . (12)
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Finally, our ADTAT can obtain the final representations {h1
e,h

2
e, ...,h

|T |
e } of

each entity e in different snapshots while considering the graph structure and
temporal correlation of TKG.

4.3 Training

After obtaining the final representations of entity and relation, they can be used
in the score function of existing static knowledge graph embedding methods such
as TransE [2] and DistMult [27] to obtain the spatial-temporal version of these
methods for TKGC. Here, we give the illustration of using ConvKB [17] score
function because it achieves the best performance in our experiment and the
performances of different score functions will be presented in Sect. 5. The score
function of each fact (s, r, o, t) can be defined as follows:

f(s, r, o, t) = contact(g([ht
s : r̃ : ht

o] ∗ Ω)) · w, (13)

where ht
s ∈ R

d and ht
o ∈ R

d are obtained representations of s and o in time
t respectively, and r̃ ∈ R

d is the obtained relation representation for r. After
obtaining the score of each fact, the model is then trained using soft-margin loss
as follows:

L =
∑

x∈{S∪S′}

log(1 + exp(lx · f(x))) +
λ

2
||w||22, (14)

where S is the set of positive facts, and S′ is a set of negative facts obtained
by randomly replacing subject or object entity of each positive fact. lx is the
indicator variable which is set as 1 when x ∈ S and −1 when x ∈ S′.

5 Experiments

In this section, we first provide an overview of the detailed settings in our exper-
iment, and then we report extensive experimental evaluations and provide the
analysis of the experimental results.

5.1 Experimental Settings

Datasets. We evaluate our model and baselines on three public datasets released
by TA-DistMult [6], which are derived from two popular temporal knowledge
graph resources, namely ICEWS and Wikidata [5]. Simple statistics of three
datasets are summarized in Table 1, and we detail each dataset as follows:

– ICEWS14: This is a short-range version subset of ICEWS recourse by col-
lecting all facts from 2014/1/1 to 2014/12/31 with the granularity of daily,
and there are 7,128 distinct entities and 230 types of relations in this dataset.

– ICEWS05-15: This is a long-range version subset of ICEWS recourse which
is almost 5 times larger than ICEWS14. It contains facts from 2005/1/1 to
2015/12/31 with the granularity of daily and there are 10,488 distinct entities
and 251 types of relations in this dataset.
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– WIKIDATA11k: This is a subset of Wikidata which contains 11,134 distinct
entities, 95 types of time-sensitive relations, and in total of 28.5k facts with
the granularity of year.

Table 1. Statistics of datasets.

Datasets Entity Relation Fact Time

Train Valid Test

ICEWS14 6,869 230 72.8k 8.9k 8.9k 365

ICEWS05-15 10,094 251 368k 46.2k 46k 4017

WIKIDATA11k 11,134 95 121k 14.3k 14.2k 306

Since our model is designed for the TKGC task rather than extrapolation,
we utilize random-split and sample roughly 80% of instances as training, 10% as
validation, and 10% for testing on each dataset.

Baselines. We compare our model with a suite of state-of-the-art baselines
which have been introduced in Sect. 2, such as TAE [10], HyTE [3], and DE-
DistMult [7]. Note that, we did not compare our model with RE-NET [11]
because RE-Net is designed for extrapolation task rather than TKGC. Further-
more, in order to compare the performance of our model using different score
functions, we refer to the resulting models as ST-X, such as ST-TransE and
ST-DistMult, where ST is short for Spatial-Temporal.

Metrics. For each test fact (s, r, o, t), we corrupt it by replacing the subject or
object entity by all possible entities in turn and obtain a list of candidate facts,
and then these candidate facts and original fact are ranked in descending order
of their plausibility score. The rank of original fact denoted as rank(s, r, o, t) is
the basic metric of the TKGC task, and then we use two kinds of refined metrics
based on this to evaluate the performance of each model. One is mean reciprocal
rank (MRR) defined as MRR = 1

|Test|
∑

(s,r,o,t)∈Test
1

rank(s,r,o,t) , which is the
average of the reciprocal of the rank of each test fact, and the higher MRR
denotes the better model performance. The other is Hits@N which is defined as
Hits@N = 1

|Test|
∑

(s,r,o,t)∈Test ind(rank(s, r, o, t) ≤ N), where ind() is 1 if the
inequality holds and 0 otherwise.

Implementation. We implement our model in PyTorch, and all the experi-
ments are performed on an Intel Xeon CPU E5-2640(v4) with 128 GB main
memory, and Nvidia TITAN RTX. We initialize all the baselines with the param-
eter settings in the corresponding papers and then turn them on our datasets
for the best performance for a fair comparison. For our model, we create 100
mini-batches for each epoch during training. The dimension of embedding rep-
resentations d ∈ {50, 100, 200}, learning rate l ∈ {10−2, 10−3, 10−4}, negative
sampling ratio n ∈ {1, 3, 5, 10}, basic attenuation coefficient λ ∈ {1, 3, 5}. The
best configuration is chosen based on MRR on the validation dataset. The final
parameters are d = 100, l = 10−2, n = 5, λ = 1 for the ICEWS14 dataset.
For the WIKIDATA11k and and ICEWS05-15 datasets, the best configuration
is d = 100, l = 10−2, n = 3, λ = 3.
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Table 2. Comparison of different methods on three datasets for link prediction. The
best and second best results in each column are boldfaced and underlined respectively
(the higher is better for each metric).

Dataset ICEWS14 ICEWS05-15 WIKIDATA11k

Models MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.280 9.4 – 63.7 0.294 9.0 – 66.3 0.316 18.1 – 65.9

DistMult 0.439 32.3 – 67.2 0.456 33.7 – 69.1 0.316 18.1 – 66.1

ConvKB 0.335 22.4 38.7 56.6 – – – – 0.267 12.2 29.6 63.1

TAE 0.263 10.1 49.7 66.2 0.295 10.4 49.0 71.4 0.319 18.3 39.2 65.7

TA-DistMult 0.435 31.5 49.1 68.3 0.468 35.2 51.8 72.8 0.557 40.6 58.6 78.4

TTransE 0.227 7.2 30.1 58.2 0.243 7.6 26.5 57.8 0.294 18.3 35.2 60.9

HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 0.371 21.5 45.9 75.1

DE-DistMult 0.501 39.2 56.9 70.8 0.484 36.6 54.6 71.8 0.396 24.1 45.7 74.5

TNTComplEX 0.616 51.8 65.7 75.8 0.665 59.0 70.5 80.7 0.408 23.9 47.8 75.6

ST-TransE 0.396 9.1 66.8 86.4 0.457 12.4 76.2 93.2 0.647 56.3 70.4 78.8

ST-DistMult 0.603 48.3 67.2 83.0 0.673 55.1 75.0 91.6 0.625 54.9 67.0 75.8

ST-ConvKB 0.629 51.0 71.5 85.1 0.704 59.3 79.6 91.9 0.649 57.3 73.4 77.9

5.2 Performance Comparison

Table 2 illustrates the results of baselines and our proposed models using differ-
ent score functions in the link prediction task. According to the results, firstly,
our proposed model outperforms all the baselines by a significant improvement,
which demonstrates the superiority of our model to obtain more accurate rep-
resentation for temporal knowledge graph. The improvement of Hits@10 on the
ICEWS05-15 dataset is the highest, which may be because that ICEWS05-
15 is relatively larger and hence the subgraph in each snapshot is denser, so
that our MFGAT can capture richer structural information. TNTComplEX [13]
fails to achieve good performance on the WIKIDATA11k dataset because its
model is sensitive to data sparsity. Furthermore, the spatial-temporal version
of each static method outperforms original counterpart on all metrics, which
gives evidence of the merit of considering graph structure and temporal correla-
tion of TKG. DE-DistMult [7] outperforms static KG method DistMult [27] on
all datasets, which demonstrates the importance of integrating temporal infor-
mation for the TKGC task. However, DE-DistMult fails to consider structural
information of TKG, therefore, our ST-DistMult consistently outperforms DE-
DistMult, which shows the necessity of considering graph structure in the TKGC
task. DistMult-based models consistently outperform TransE-based models [2]
due to the higher expressivity of DistMult score function. ConvKB [17] has
the highest expressivity and thus achieves the best performance. What is more,
ST-TransE gets low Hit@1 on ICEWS14 and ICEWS05-15 but high on WIKI-
DATA11k because the number of relations in ICEWS14 and ICEWS05-15 is
much larger than that of WIKIDATA11k which leads to higher complexity.
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5.3 Model Variants and Ablation Study

We run experiments on the ICEWS14 dataset with several variants of our pro-
posed model to provide a better understanding of the effectiveness of each part
in our model. The results are shown in Table 3, which includes ST-ConvKB and
its variants.

Table 3. Performance of different variants of our model for link prediction.

Variants MRR Hit@1 Hit@10

Replacing MFGAT with GAT [23] 0.480 29.7 81.7

Replacing MFGAT with KBAT [16] 0.582 45.8 82.4

Replacing MFGAT with R-GCN [20] 0.531 34.2 83.1

MFGAT without triple feature 0.568 42.6 83.6

MFGAT without group feature 0.583 46.3 81.5

MFGAT without path feature 0.581 46.0 81.1

ADTAT without temporal attenuation 0.598 47.4 85.4

ADTAT with static temporal attenuation coefficient (λ = 0.1) 0.605 48.9 84.8

ADTAT with static temporal attenuation coefficient (λ = 1) 0.610 49.6 84.3

ST-ConvKB 0.629 51.0 85.1

Effect of Different Spatial Models. First, as shown in Table 3, the perfor-
mance of variants with different graph neural network models outperform most
of baselines, which indicates the importance of integrating structure information
of temporal knowledge graph. Hit@1 of the variant with GAT is lower than other
variants because GAT only considers neighbor entities but ignores the informa-
tion of relations. Hit@10 of all variants are at the same level because all of them
are able to capture the co-occurrence relationship among entities. Furthermore,
ST-ConvKB outperforms all these variants, which illustrates the superiority of
egocentric network considered in our model.

Effect of Each Feature in MFGAT. As shown in Table 3, we compare our
model with three variants without triple feature, group feature, and path feature
respectively. First, all of these variants are unable to outperform our original
model which illustrates that all three kinds of features are effective and con-
tribute to the final performance of our model. Furthermore, the performance of
the variant without triple feature drops most because triple feature provides the
most intuitive relevance of an entity with its neighbors.

Effect of Adaptive Temporal Attenuation Function. We first compare
our model with a simple attention version without temporal attenuation. The
Hit@10 result of this variant is at the same level as ST-ConvKB, which indicates
that both our original model and this variant are able to capture adequate
history information for each snapshot. However, the MRR and Hit@1 results
of this variant are lower because it is unable to consider time span and thus
the information of long-range snapshots will confuse the model to obtain more
accurate predictions. Furthermore, we compare our model with variants using
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different static temporal attenuation coefficients (λ = 0.1 and λ = 1). They are
unable to outperform our original model because large attenuation coefficient
will let the model fail to capture sufficient history information for locally sparse
entities, and small attenuation coefficient will let the model fail to consider the
effect of time span adequately.
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Fig. 3. Influence of the embedding dimension and negative sampling number.

5.4 Parameter Analysis

We study the impact of the training parameters of our model in this part, includ-
ing the dimension of embedding representations d and the number of negative
samples n.

Dimension of Embedding Representation. Here, we analyze the perfor-
mance of ST-DistMult which considers both the graph structure and time-
evolving property of TKG, DE-DistMult which only considers the time-evolving
property and static KG method DistMult on changing the dimension of embed-
ding representations. As shown in Fig. 3(a), with the increase of dimension d, the
performance of each model increases firstly and then decreases. This is because
when d is too small, representations have insufficient capacity to capture rich
information from temporal knowledge graph, and when d is too large, the model
will be trapped in overfitting problem. Furthermore, we notice that with the rep-
resentation dimension d changes, the performance of our ST-DistMult changes
less compared with the other two models, which is because ST-DistMult can
extract more effective information from TKG and thus it is more stable.

Number of Negative Sampling. As shown in Fig. 3(b), by comparing the
performance of ST-DistMult, DE-DistMult and DistMult with different nega-
tive sampling numbers, we observe that with the increase of negative sampling
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number n, the performance of each model increases consistently. This is because
a larger negative sampling number can provide more positive-negative pairs for
each model to learn, and thus provide more information. However, we notice that
when n is large, keep on increasing n leads to small performance improvement
of ST-DistMult, which is because obtaining negative facts by random sampling
can only provide coarse-grained information. Furthermore, compared with the
other two models, ST-DistMult can still achieve significant performance when n
is small, which demonstrates our ST-DistMult is able to obtain richer represen-
tations and thus each positive-negative pair can provide more information for
model to learn.

6 Conclusion

In this work, we study the temporal knowledge graph completion task. We take
temporal knowledge graph as a kind of spatial-temporal resource, and develop
a spatial-temporal attention network which is able to obtain representation for
each element of TKG while considering the graph structure and time-evolving
property of TKG simultaneously. Our model contains a multi-faceted graph
attention network used to capture structural information of each snapshot, and
an adaptive temporal attention mechanism to model the temporal correlation
of different snapshots. The representations obtained by our model can be used
in the score function of existing static knowledge graph methods and result in
the spatial-temporal version of these methods for the TKGC task. We test our
proposed model on the link prediction task on three benchmark datasets. The
experimental results show the superiority of our model and the effectiveness of
each component in our model. In the future work, we aim to model the temporal
correlation of TKG based on the structure evolution of egocentric network of
each entity.
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