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Abstract. Entity synonyms discovery is crucial for entity-leveraging
applications. However, existing studies suffer from several critical issues:
(1) the input mentions may be out-of-vocabulary (OOV) and may come
from a different semantic space of the entities; (2) the connection between
mentions and entities may be hidden and cannot be established by sur-
face matching; and (3) some entities rarely appear due to the long-tail
effect. To tackle these challenges, we facilitate knowledge graphs and pro-
pose a novel entity synonyms discovery framework, named KGSynNet.
Specifically, we pre-train subword embeddings for mentions and entities
using a large-scale domain-specific corpus while learning the knowledge
embeddings of entities via a joint TransC-TransE model. More impor-
tantly, to obtain a comprehensive representation of entities, we employ
a specifically designed fusion gate to adaptively absorb the entities’
knowledge information into their semantic features. We conduct exten-
sive experiments to demonstrate the effectiveness of our KGSynNet in
leveraging the knowledge graph. The experimental results show that the
KGSynNet improves the state-of-the-art methods by 14.7% in terms of
hits@3 in the offline evaluation and outperforms the BERT model by
8.3% in the positive feedback rate of an online A/B test on the entity
linking module of a question answering system.

Keywords: Entity synonyms discovery · Knowledge graph

1 Introduction

Entity synonyms discovery is crucial for many entity-leveraging downstream
applications such as entity linking, information retrieval, and question answering
(QA) [19,28]. For example, in a QA system, a user may interact with a chatbot
as follows:
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Fig. 1. An illustration of linking the synonymous entity of the mention “skin relax-
ation” to “Ehlers-Danlos” with the help of an external knowledge graph.

User query: Am I qualified for the new insurance policy as I suffer from skin
relaxation recently?

System reply: Unfortunately, based on the policy, you may fall into the
terms of Ehlers-Danlos, which may exclude your protection. Please contact
our agents for more details.

In this case, we can correctly answer the user’s query only linking the men-
tion of “skin relaxation” to the entity, “Ehlers-Danlos”. This is equivent to the
entity synonyms discovery task, i.e., automatically identifying the synonymous
entities for a given mention or normalizing an informal mention of an entity to
its standard form [8,26].

In the literature, various methods, such as DNorm [15], JACCARD-based
methods [27], and embedding-based methods [6,11], have been proposed to solve
this task. They usually rely on matching of syntactic string [8,27] or lexical
embeddings [6,11,25] to build the connections. Existing methods suffer from the
following critical issues: (1) the input mentions and the entities are often out-
of-vocabulary (OOV) and lie in different semantic spaces since they may come
from different sources; (2) the connection between mentions and entities may
be hidden and cannot be established by surface matching because they scarcely
appear together; and (3) some entities rarely appear in the training data due to
the long-tail effect.

To tackle these challenges, we facilitate knowledge graphs and propose a
novel entity synonyms discovery framework, named KGSynNet. Our KGSynNet
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resolves the OOV issue by pre-training the subword embeddings of mentions and
entities using a domain-specific corpus. Moreover, we develop a novel TransC-
TransE model to jointly learn the knowledge embeddings of entities by exploit-
ing the advantages of both TransC [17] in distinguishing concepts from instances
and TransE [4] in robustly modeling various relations between entities. More-
over, a fusion gate is specifically-designed to adaptively absorb the knowledge
embeddings of entities into their semantic features. As illustrated in Fig. 1, our
KGSynNet can discover the symptom of “extremely elastic skin” in the entity
of “Ehler-Danlos” and link the mention of “skin relaxation” to it.

In summary, our work consists of the following contributions:

– We study the task of automatic entity synonyms discovery, a significant task
for entity-leveraging applications, and propose a novel neural network archi-
tecture, namely KGSynNet, to tackle it.

– Our proposed KGSynNet learns the pre-trained embeddings of mentions and
entities from a domain-specific corpus to resolve the OOV issue. Moreover, our
model harnesses the external knowledge graph by first encoding the knowl-
edge representations of entities via a newly proposed TransC-TransE model.
Further, we adaptively incorporate the knowledge embeddings of entities into
their semantic counterparts by a specifically-designed fusion gate.

– We conduct extensive experiments to demonstrate the effectiveness of our
proposed KGSynNet framework while providing detailed case studies and
errors analysis. Our model significantly improves the state-of-the-art methods
by 14.7% in terms of the offline hits@3 and outperforms the BERT model by
8.3% in the online positive feedback rate.

2 Related Work

Based on how the information is employed, existing methods can be divided into
the following three lines:

– The first line of research focuses on capturing the surface morphological fea-
tures of sub-words in mentions and entities [8,9,27]. They usually utilize
lexical similarity patterns and the synonym rules to find the synonymous
entities of mentions. Although these methods are able to achieve high perfor-
mance when the given mentions and entities come from the same semantic
space, they fail to handle terms with semantic similarity but morphological
difference.

– The second line of research tries to learn semantic embeddings of words or sub-
words to discover the synonymous entities of mentions [6,10,11,16,19]. For
example, the term-term synonymous relation has been included to train the
word embeddings [11]. More heuristic rule-based string features are expanded
to learn word embeddings to extract medical synonyms [26]. These meth-
ods employ semantic embeddings pretrained from massive text corpora and
improve the discovery task in a large margin compared to the direct string
matching methods. However, they perform poorly when the terms rarely
appear in the corpora but reside in external knowledge bases.
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– The third line of research aims to incorporate external knowledge from either
the unstructured term-term co-occurrence graph or the structured knowledge
graph. For example, Wang et al. [29] utilizes both semantic word embed-
dings and a term-term co-occurrence graph extracted from unstructured text
corpora to discover synonyms on privacy-aware clinical data. More powerful
methods, such as SynSetMine [23] and SA-ESF [13], have been proposed to
leverages the synonym of entities in knowledge graphs or the knowledge rep-
resentations. They ignore other relations among entities, e.g., the hypernym-
hyponym relations, and lack a unified way to absorb the information. This
motivates our further exploration in this work.

3 Methodology

Here, we present the task and the main modules of our KGSynNet accordingly.

3.1 Task Definition

The task of entity synonyms discovery is to train a model to map the mention
to synonymous entities as accurate as possible given a set of annotated mention-
entity pairs Q, a knowledge graph KG, and a domain-specific corpus, D. The
mention-entity pairs, Q = {(qi, ti)}Ni=1, record the mentions from queries and
their corresponding synonymous entities, where N is the number of annotated
pairs, qi = qi1 . . . qi|qi| denotes the i-th mention with |qi| subwords and ti =
ti1 . . . ti|ti| ∈ E denotes the i-th entity in KG with |ti| subwords. The knowledge
graph is formalized as KG = {C, I,R,S}, where C and I denote the sets of
concepts and instances, respectively, R is the relation set and S is the triple
set. Based on the above definition, we have E = C ∪ I. After we train the
model, for a given mention, we can recommend a list of synonymous entities
from the knowledge graph. The domain-specific corpus, D, is used for learning
the embeddings of mentions and entities.

As illustrated in Fig. 2, our proposed KGSynNet consists of four main mod-
ules: (1) a semantic encoder module to represent mentions and entities; (2) a
knowledge encoder module to represent the knowledge of entities by a jointly-
learned TransC-TransE model; (3) a feature fusion module to adaptively incorpo-
rate knowledge information via a specifically designed fusion gate; (4) a classifier
with a similarity matching metric to train the entire model.

3.2 Semantic Encoder

Given a mention-entity pair, (q, t), we may directly apply existing embeddings,
e.g., Word2Vec [18], or BERT [7], on q and t to represent the semantic informa-
tion of mentions and entities. However, it is not effective because many subwords
are out-of-vocabulary (OOV), since the pre-trained embeddings are trained from
corpora in general domains.
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Fig. 2. The architecture of our KGSynNet.

To leverage the contextualized information of each mention and entity from
D, we train a set of subword-level Word2Vec embeddings from scratch on D,
and apply them to initialize the semantic representations of the subwords of
the mentions and the entities in Q. Then, similar to the fastText approach [2],
we obtain the initialized semantic representations of mentions and entities by
averaging their subword representations:

e(q) =
1
|q|

|q|∑

k=1

e(qk), e(t) =
1
|t|

|t|∑

k=1

e(tk). (1)

After that, the semantic embeddings of the mentions and the entities are fur-
ther fed into a two-layer fully-connected (FC) network to extract deeper seman-
tic features. Here, we adopt shared weights as in [5] to transform the learned
embedding e(v) into a semantic space of k-dimension:

es(v) = tanh(W2 tanh(W1e(v) + b1) + b2) ∈ R
k, (2)

where v can be a mention or an entity. The parameters, W1 ∈ R
k×d and W2 ∈

R
k×k, are the weights on the corresponding layers of the FC network. b1 ∈ R

k

and b2 ∈ R
k are the biases at the corresponding layers.

3.3 Knowledge Encoder

Though entities can be encoded in the semantic space as detailed above, their
representations are not precise enough due to lack of the complementary infor-
mation included in the knowledge graph.
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In the knowledge graph KG, the relation set R is defined by R = {re, rc} ∪
Rl∪RIC ∪RCC, where re is an instanceOf relation, rc is a subClassOf relation, Rl

is the instance-instance relation set, RIC is the Non-Hyponym-Hypernym (NHH)
instance-concept relation set, and RCC is the NHH concept-concept relation set.
It is noted that different from the three kinds of relations defined in TransC [17],
we specifically categorize the relations into five types to differentiate the NHH
relations of the instance-concept pairs from the concept-concept pairs. Therefore,
the triple set S can be divided into the following five disjoint subsets:

1. The instanceOf triple set: Se =
{(

i, re, c
)
k

}|Se|
k=1

, where i ∈ I is an instance,
c ∈ C is a concept, and re is the instanceOf relation.

2. The subClassOf triple set: Sc =
{(

ci, rc, cj
)
k

}|Sc|
k=1

, where ci, cj ∈ C are con-
cepts, ci is a sub-concept of cj , and rc is the subClassOf relation.

3. The instance-instance triple set: Sl =
{(

i, rij , j
)
k

}|Sl|
k=1

, where rij ∈ Rl defines
the instance-instance relation from the head instance i to the tail instance j.

4. The NHH instance-concept triple set: SIC =
{(

i, ric, c
)
k

}|SIC|
k=1

, where i and c
are defined similarly as Se. ric ∈ RIC is an NHH instance-concept relation.

5. The NHH concept-concept triple set: SCC =
{(

ci, rcicj , cj
)
k

}|SCC|
k=1

, where
ci, cj ∈ C denote two concepts, rcicj ∈ RCC is an NHH concept-concept rela-
tion.

We now learn the knowledge embeddings of entities. Since TransE [4] is good
at modeling general relations between entities while TransC [17] excelling in
exploiting the hierarchical relations in the knowledge graph, we propose a unified
model, the TransC-TransE model, to facilitate the advantage of both models.

Specifically, TransE represents an entity by v ∈ R
n, where n is the size of the

knowledge embedding, and defines the loss for the instance-instance triples [4]:

fl(i, rij , j) = ‖vi + vrij − vj‖22, (3)

where (i, rij , j) ∈ Sl denotes a triple in the instance-instance relation set, vi,
vrij , and vj denote the corresponding TransE representations.

In TransC, an instance i is represented by a vector, vi ∈ R
n, same as that of

an entity in TransE. A concept c is represented by a sphere, denoted by (pc,mc),
where pc ∈ R

n and mc ∈ R+ define the corresponding center and radius for the
concept, respectively. The corresponding losses can then be defined as follows:

– The loss for the instanceOf triples [17]:

fe(i, c) = ‖vi − pc‖2 − mc, ∀i ∈ c. (4)

– The loss for the subClassOf triples [17]:

fc(ci, cj) =
{
mci − mcj , cj is a subclass of ci, or cj ⊆ ci
‖pci − pcj‖2 + mci − mcj , otherwise . (5)

However, the spherical representation is not precise enough to model the NHH
relations. We therefore denote the concept of c by an additional node embedding,
vc ∈ R

n, and define the following additional loss functions:
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– The loss for the NHH instance-concept triples [4]:

fIC(i, ric, c) = ‖vi + vric − vc‖22, (6)

where the triplet (i, ric, c) ∈ SIC denotes the NHH instance-concept relation
ric connecting the instance i to the concept c.

– The loss for the NHH concept-concept triples [4]:

fCC(ci, rcicj , cj) = ‖vci + vrcicj
− vcj‖22, (7)

where the triplet (ci, rcicj , cj) ∈ SCC denotes the NHH concept-concept rela-
tion rcicj connecting the concept ci to the concept cj .

Therefore, the knowledge embeddings of entities are learned by minimizing
the following objective function:

Lk =
∑

(i,re,c)∈Se

fe(i, c) +
∑

(ci,rc,cj)∈Sc

fc(ci, cj) +
∑

(i,rij ,j)∈Sl

fl(i, rij , j)

+
∑

(i,ric,c)∈SIC

fIC(i, ric, c) +
∑

(ci,rcicj ,cj)∈SCC

fCC(ci, rcicj , cj). (8)

It is noted that our objective differs from TransC by explicitly including both
the NHH instance-concept relations and the NHH concept-concept relations.
Similarly, we apply the negative sampling strategy and the margin-based ranking
loss to train the model as in [17].

After training the unified TransC-TrainsE model in Eq. (8), we obtain the
knowledge embeddings for both instances and concepts, e.g., vi for an instance
i, and the representation of (pc,mc) and vc for a concept c. For simplicity and
effectiveness, we average the center and the node embedding of a concept to
yield its final knowledge embedding et:

et =
{
vt ∀t ∈ I
(pt + vt)/2 ∀t ∈ C . (9)

Similar to the semantic embeddings, the learned knowledge embeddings of
entities obtained in Eq. (9) are transformed into the same k-dimensional semantic
space by a two-layer fully connected network to yield elt:

elt = tanh(W4(tanh(W3et + b3)) + b4) ∈ R
k, (10)

where W3 ∈ R
k×q and W4 ∈ R

k×k are the weights on the corresponding layers
of the FC network. b3 ∈ R

k and b4 ∈ R
k are the biases at the layers.

3.4 Fusion Gate

A critical issue in the task is that the semantic features and the knowledge
embeddings are learned separately. To effectively integrate these two types of
information, we design a fusion network, named Fusion Gate, to adaptively
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absorb the transformed knowledge information elt into the semantic informa-
tion es(t) for an entity t. As illustrated in the upper right grid box of Fig. 2, the
final representation of an entity t is computed by

eft = es(t) + elt ⊗ g(es(t), elt). (11)

Here, the implementation is motivated by the highway network [24], but is differ-
ent on the specific information carrying. Here, we directly feed all the semantic
information of the entities to the next level without filtering to guarantee the
consistency of the semantic representations between mentions and entities. The
interaction of the semantic embeddings and knowledge embeddings of the enti-
ties is then fulfilled by the transform gate to determine the amount of knowledge
incorporated into the semantic feature, defined by g(a,b):

g(a,b) = Softmax(Wg[a;b;a − b;a ⊗ b]), (12)

where Wg ∈ R
k×4k is the weight of a fully-connected network to reduce the

dimension of the concatenated features. The first two features maintain the orig-
inal form while the latter two measuring the “similarity” or “closeness” of the
two features. This allows to compute the high-order interactions between two
input vectors [5,20]. Finally, the Softmax operator is applied to determine the
proportion of the flow-in knowledge.

3.5 Similarity Matching and Classification

As the training data only consist of the positive pairs, for each pair (qi, ti), we
additionally sample some negative pairs {(qi, tij )}Ni

j=1, where tij is sampled from
other mention-to-entity pairs and Ni is the number of sampled negative pairs.
Hence, we derive the objective function for the final matching:

Lm=
N∑

i=1

− log

⎛

⎝
exp

(
es(qi)Te

f
ti

)

exp
(
es(qi)Te

f
ti

)
+

∑Ni

j=1 exp
(
es(qi)Te

f
tij

)

⎞

⎠ . (13)

It is noted that each term in Eq. (13) defines the Noise-Contrastive Estimation
(NCE) [12], which is the cross-entropy of classifying the positive pair (qi, ti).
After training, given a new mention q, we can determine the list of the candidate
entities by the rank of es(qi)Te

f
ti .

4 Experiments

In the following, we present the curated dataset along with the associated knowl-
edge graph, as well as the experimental details.
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Table 1. Data statistics.

Knowledge All Insurance Occupation Medicine Cross

Graph Domain

# Entities 75,153 1,409 2,587 71,157 0

# Entity type 17 2 2 13 0

# Relations 1,120,792 2,827 2,580 1,098,280 17,105

# Relation type 20 2 2 13 4

# Mention-entity pairs in Train/Dev/Test 45,500/5,896/5,743

# Regular cases/# Difficult cases 5,303/440

4.1 Datasets

Knowledge Graph. The existing open-source knowledge graphs [1,3] cannot
be used for this task, because they do not provide sufficient disease entities and
relations required by the task. Therefore, we construct a specific knowledge graph
(KG) to verify this task. Table 1 records the statistics of the constructed KG, a
heterogeneous KG with entities collected from three categories: Insurance Prod-
ucts, Occupation, and Medicine. In Insurance Products, there are 1,393 insurance
products and 16 concepts; while in Occupation, there are 1,863 instances and 724
concepts obtained from the nation’s professional standards1. Both Insurance
Products and Occupation contain only two types of relations, i.e., the instanceOf
relation and the subClassOf relation. In Medicine, 45K disease entities and 9,124
medical concepts are extracted from three different resources: (1) raw text of
insurance products’ clauses; (2) users’ query logs in the app; (3) the diagnos-
tic codes of International Classification of Diseases (ICD-10). Furthermore, 18K
other types of medical entities, such as symptom, body part, therapy, and treat-
ment material, are extracted from some open-source medical knowledge graphs2.
The relation types include not only instanceOf and subClassOf, but also the
instance-instance relations, the NHH concept-instance relations, and the NHH
concept-concept relations, 13 types in total.

Data. We collect a large-scale Chinese medical corpus from 14 medical text-
books3, 3 frequently used online medical QA forums, and some QA forums4.
We also deploy a self-developed BERT-based NER tool to extract 100K disease
mentions from users’ query logs in the professional app. From the extracted
disease mentions and KG entities, we generate 300K candidate synonymous
mention-entity pairs based on the similarity score computed by BERT. The
extracted mention-entity candidates are double-blindly labeled to obtain 57,139
high-quality disease mention-entity synonym pairs. After that, the dataset is
1 http://www.jiangmen.gov.cn/attachment/0/131/131007/2015732.pdf.
2 http://openkg.cn/dataset/symptom-in-chinese; http://openkg.cn/dataset/omaha-

data.
3 https://github.com/scienceasdf/medical-books.
4 https://github.com/lrs1353281004/Chinese medical NLP.

http://www.jiangmen.gov.cn/attachment/0/131/131007/2015732.pdf
http://openkg.cn/dataset/symptom-in-chinese
http://openkg.cn/dataset/omaha-data
http://openkg.cn/dataset/omaha-data
https://github.com/scienceasdf/medical-books
https://github.com/lrs1353281004/Chinese_medical_NLP
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randomly split into the sets of training, development, and test, respectively,
approximately at a ratio of 8:1:1. We further divide the test set (the All case
group) into two groups based on the surface form similarity. That is, a Regular
case means that there is at least one identical subword between the mention and
the entity, while the rest pairs belong to the Difficult case group.

4.2 Compared Methods

We compare KGSynNet with the following strong baselines:

(1) JACCARD [21]: a frequently used similarity method based on the surface
matching of mentions and entities;

(2) Word2Vec [6]: a new subword embedding is trained on the medical corpus
to learn representations. Cosine similarity is then applied to the average of
subword embeddings of each mention-entity pair to rank their closeness;

(3) CNN [19]: a CNN-based Siamese network is trained using the triplet loss
with the newly trained word2vec embeddings for the mentions and entities.

(4) BERT [7]: the [CLS] representations of mentions and entities are extracted
from the fine-tuned BERT to compute their cosine similarity;

(5) DNorm [15]: one of the most popular methods that utilizes the TF-IDF
embedding and a matching matrix, trained by the margin ranking loss, to
determine the similarity score between mentions and entities.

(6) SurfCon [29]: one of the most popular methods that constructs a term-term
co-occurrence graph from the raw corpus to capture both the surface infor-
mation and the global context information for entity synonym discovery.

4.3 Experimental Setup and Evaluation Metrics

The number of sampled negative mention-entity pairs is tuned from {10, 50, 100,
200, 300} and set to 200 as it attains the best performance in the development
set. ADAM is adopted as the optimizer with an initial learning rate of 0.001. The
training batch size is 32, and the dimension of the knowledge graph embedding
is 200. Besides, the dimension of the semantic embeddings of both mentions and
entities are set to 500, and the dimensions of the first and the second FC networks
are set to 300. These parameters are set by a general value and tuned in a
reasonable range. Dropout is applied in the FC networks and selected as 0.5 from
{0.3, 0.5, 0.7}. The knowledge embedding is trained by an open-source package5.
Early stopping is implemented when the performance in the development set
does not improve in the last 10 epochs.

To provide fair comparisons, we set the same batch size, embedding sizes, and
dropout ratio to all baseline models. For SurfCon, we construct a co-occurrence
graph of 24,315 nodes from our collected Chinese medical corpus, and obtain
the graph embedding according to [29]6.

5 https://github.com/davidlvxin/TransC.
6 https://github.com/yzabc007/SurfCon.

https://github.com/davidlvxin/TransC
https://github.com/yzabc007/SurfCon
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Filtered hits@k, the proportion of correct entities ranked in the top k predic-
tions by filtering out the synonymous entities to the given mention in our con-
structed KG, because it is an effective metric to determine the accuracy of entity
synonyms discovery [17]. We follow the standard evaluation procedure [4,17] and
set k = 3, 5, 10 to report the model performance.

4.4 Experimental Results

Rows three to nine of Table 2 report the experimental results of the baselines
and our KGSynNet. It clearly shows that

– JACCARD yields no hit on the difficult case because it cannot build connec-
tions on mentions and entities when they do not contain a common sub-word.

– Word2Vec yields the worst performance on the All case and the Regular case
since the representations of mentions and entities are simply obtained by their
mean subword embeddings, which blur the effect of each subword.

– CNN improves Word2Vec significantly because of the Siamese network, but
cannot even beat JACCARD due to the poor semantic representation learned
from Word2Vec.

– BERT gains further improvement over JACCARD, Word2Vec, and CNN
by utilizing the pre-trained embeddings. The improvement is not significant
enough especially in the Difficult case because the representation of the token
[CLS] does not fully capture the relations between mentions and entities.

– DNorm further improves the performance by directly modeling the interaction
between mentions and entities. SurfCon yields the best performance among
all baselines because it utilizes external knowledge bases via the term-term
co-occurrence graph.

– Our KGSynNet beats all baselines in all three cases. Especially, we beat the
best baseline, SurfCon, by 14.7%, 10.3%, and 5.6% for the All case, 14.2%,
10.0%, and 5.4% for the Regular case, and 45.7%, 24.4%, and 10.2% for

Table 2. Experimental results: − means that KGSynNet removes the component while
→ means that KGSynNet replaces the fusion method.

Methods hits@3 hits@5 hits@10

All Regular Difficult All Regular Difficult All Regular Difficult

JACCARD [21] 52.28% 56.61% 0.00% 58.03% 62.83% 0.00% 63.76% 69.04% 0.00%

Word2Vec [6] 47.00% 50.88% 0.00% 52.28% 56.59% 2.30% 58.31% 63.10% 4.60%

CNN [19] 51.76% 55.69% 4.33% 57.75% 61.98% 6.38% 65.13% 69.72% 9.34%

BERT [7] 54.60% 58.87% 2.96% 60.41% 65.02% 4.78% 66.50% 71.39% 7.52%

DNorm [15] 56.23% 59.78% 12.76% 63.79% 67.58% 17.77% 71.89% 75.64% 26.42%

SurfCon [29] 58.29% 62.02% 12.98% 66.27% 70.11% 19.59% 75.20% 79.03% 28.93%

KGSynNet 66.84% 70.81% 18.91% 73.09% 77.13% 24.37% 79.41% 83.35% 31.89%

−KE 64.91% 69.07% 14.58% 71.56% 75.77% 20.73% 79.12% 83.14% 30.52%

−TransC 65.80% 69.92% 15.95% 71.44% 75.79% 18.91% 78.94% 83.18% 27.80%

→DA 63.51% 67.19% 19.13% 70.85% 74.47% 27.10% 78.13% 81.77% 34.17%

→EF 61.98% 65.85% 15.26% 68.63% 72.54% 21.41% 76.28% 80.29% 27.79%
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the Difficult case with respect to Hits@3, Hits@5, and Hits@10, respectively.
We have also conducted the statistical significance tests, and observe that
for the All case group, p<< 0.01 under the paired t-tests. The significant
improvement clearly shows that our KGSynNet is effective in integrating the
knowledge information with the semantic features.

4.5 Ablation Study

To better understand why our KGSynNet works well, we compare it with four
variants: (1) −KE: removing the knowledge embedding and the Fusion Gate; (2)
−TransC: removing losses of Eq. (4) and Eq. (5) from Eq. (8) of TransC, to learn
the knowledge embedding by utilizing only TransE; (3) →DA: directly adding
the learned semantic features and knowledge features of entities together; and
(4) →EF: fusing the learned semantic features and knowledge information via a
FC network [30].

Table 2 reports the results of the variants in the last four rows and clearly
shows three main findings:

– By excluding the knowledge embedding (see the last fourth row in Table 2),
our KGSynNet drops significantly for the All case, i.e., 1.93 for hits@3, 1.53
for hits@3, and 0.29 for hits@10, respectively. Similar trends appear for the
Regular case and the Difficult case. The performance decay is more serious
than those in other variants, −TransC and →DA. This implies the effective-
ness of our KGSynNet in utilizing the knowledge information.

– By removing TransC, we can see that the performance decays accordingly in
all cases. The results make sense because learning the knowledge represen-
tation by TransE alone does not specifically model the InstanceOf relation
and the SubclassOf relation. This again demonstrates the effectiveness of our
proposed TransC-TransE framework.

– In terms of the fusion mechanism, the performance exhibits similarly under
the three metrics. Here, we only detail the results of hits@3. It shows that the
performance by Fusion Gate beats “DA” and “EF” 3.3 to 5.0 in both the All
and Regular cases. However, “DA” improves the performance significantly
on the Difficult case, i.e., no common sub-word appearing in the mention-
entity pairs. The results make sense because in the Difficult case, the model
depends heavily on the external knowledge. Setting the weight to 1, i.e., the
largest weight, on the learned knowledge features can gain more knowledge
information. On the contrary, “EF” yields the worst performance on the All
and Regular cases, but gains slightly better performance than −KE on the
Difficult case. We conjecture one reason is that the available data is not
sufficient to trained a more complicated network in “EF”.

4.6 Online Evaluation

Our KGSynNet has been deployed in the entity linking module, a key module
of the KBQA system of a professional insurance service app, served more than
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Fig. 3. The architecture of online system.

one million insurance agents. The architecture of the online system is shown in
Fig. 3. On average, the requests of the KBQA service of the app are 700K per
day with more than 50 requests per second at the peak.

We conducted an A/B test to compare the original BERT model and our
KGSynNet on the entity linking module of the KBQA system for two weeks.
The traffic was evenly split into two groups. Approximately 10% of users’ queries
involve disease mentions, within which the proportion of queries with user expe-
rience feedback is around 5%. Eventually, BERT and KGSynNet received about
25K and 26K user feedbacks, respectively. The positive rate of the feedback for
BERT is about 34.9%, while the positive rate of KGSynNet is about 37.8%,
significantly better with p < 0.05 under the paired t-test.

Moreover, we randomly selected and labeled 1000 disease related queries from
each of the two groups. The proportion of queries involving difficult cases was
around 3% in both groups. Results in Table 3 show that KGSynNet consistently
outperforms BERT in terms of hits@3, hits@5, and hits@10, respectively.

Table 3. Online evaluation results

Metric BERT KGSynNet

All Regular Difficult All Regular Difficult

hits@3 58.2% 59.9% 3.3% 68.4% 70.0% 18.8%

hits@5 63.2% 64.9% 6.7% 75.4% 77.1% 25.0%

hits@10 70.0% 71.9% 10.0% 81.7% 83.4% 31.3%

4.7 Case Studies

We provide several typical examples to show the effectiveness of our KGSynNet.
In Table 4, four query mentions are selected with the top-5 discovered synony-
mous entities. The results show that:

– Our KGSynNet can successfully detect at least one annotated synonym for
each mention. For example, for the mention, “hyperelastic skin”, our found
top-5 synonymous entities are all correct.
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– For the mention of “facial paralysis”, other than its synonym “facioplegia”,
our KGSynNet can discover “prosopoplegia” through the semantic equiva-
lence. Other top predicted terms, e.g., “neonatal facial paralysis”, “peripheral
facial paralysis”, and “idiopathic facial paralysis”, are all hyponyms of the
mention with specific clinical manifestations.

Table 4. Query mentions and the corresponding top 5 synonymous entities: the correct
synonyms are underlined.

Mention Top 5 Found Entities

hyperelastic skin Ehlers-Danlos syndrome, Ehlers-Danlos syndrome, dermatolysis, Ehlers-Danlos, cutis laxa

stomachache collywobbles, pain, hypogastralgia, generalized pain, lipomatosis dolorosa

prosopoplegia, facioplegia, neonatal facial paralysis, peripheral facial paralysis,
facial paralysis

idiopathic facial paralysis

exhaustion debility, asthenia, dystonia, insomnia, asthenozoospermia

4.8 Error Analysis

We provide a concrete error analysis by sampling 10% of the incorrectly predicted
mention-entity pairs in our KGSynNet. Table 5 lists the main error types:

– More than half of the errors (54%) occur due to the lack of knowledge in the
knowledge graph. For example, since the entity “bow legs” is not in the KG,
the mention “knee varus” mistakenly found “knee valgus” and “congenital
knee valgus” through surface matching.

– The second largest error comes from hypernyms distraction, which accounts
for 29% of the total errors. For example, the mention “pituitary gland cancer”
is distracted to its hypernym “brain cancer” and “cerebral cancer”, and failed
to identify the true entity “pituitary gland malignant tumor”.

– Another 12% of the errors are due to the keyword extraction error. For exam-
ple, the golden entity for the mention, “lung calcification”, is “lung mineral-
ization”. Our KGSynNet makes a wrong extraction on the keyword “calcifica-
tion” and discovers a wrong entity, “bronchial calcification”, for this mention.
It seems that this problem may be alleviated by adding an fine-grained feature
interaction between mentions and entities in our KGSynNet.
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Table 5. Error analysis. The “Golden Entity” is the correct entity for the corresponding
mention.

5 Conclusion

In this paper, we tackle the task of entity synonyms discovery and propose
KGSynNet to exploit external knowledge graph and domain-specific corpus. We
resolve the OOV issue and semantic discrepancy in mention-entity pairs. More-
over, a jointly learned TransC-TransE model is proposed to effectively represent
knowledge information while the knowledge information is adaptively absorbed
into the semantic features through fusion gate mechanism. Extensive experi-
ments and detailed analysis conducted on the dataset show that our model sig-
nificantly improves the state-of-the-art methods by 14.7% in terms of the offline
hits@3 and outperforms the BERT model by 8.3% in the online positive feedback
rate. Regarding future work, we can extend our KGSynNet to other domains,
e.g., education or justice, to verify its generalization ability.
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