
Label Contrastive Coding Based Graph
Neural Network for Graph Classification

Yuxiang Ren1(B), Jiyang Bai2, and Jiawei Zhang1

1 IFM Lab, Department of Computer Science, Florida State University,
Tallahassee, FL, USA

{yuxiang,jiawei}@ifmlab.org
2 Department of Computer Science, Florida State University, Tallahassee, FL, USA

bai@cs.fsu.edu

Abstract. Graph classification is a critical research problem in many
applications from different domains. In order to learn a graph classifica-
tion model, the most widely used supervision component is an output
layer together with classification loss (e.g., cross-entropy loss together
with softmax or margin loss). In fact, the discriminative information
among instances are more fine-grained, which can benefit graph classifi-
cation tasks. In this paper, we propose the novel Label Contrastive Cod-
ing based Graph Neural Network (LCGNN) to utilize label information
more effectively and comprehensively. LCGNN still uses the classification
loss to ensure the discriminability of classes. Meanwhile, LCGNN lever-
ages the proposed Label Contrastive Loss derived from self-supervised
learning to encourage instance-level intra-class compactness and inter-
class separability. To power the contrastive learning, LCGNN introduces
a dynamic label memory bank and a momentum updated encoder. Our
extensive evaluations with eight benchmark graph datasets demonstrate
that LCGNN can outperform state-of-the-art graph classification mod-
els. Experimental results also verify that LCGNN can achieve competi-
tive performance with less training data because LCGNN exploits label
information comprehensively.

1 Introduction

Applications in many domains in the real world exhibit the favorable property
of graph data structure, such as social networks [15], financial platforms [20] and
bioinformatics [5]. Graph classification aims to identify the class labels of graphs
in the dataset, which is an important problem for numerous applications. For
instance, in biology, a protein can be represented with a graph where each amino
acid residue is a node, and the spatial relationships between residues (distances,
angles) are the edges of a graph. Classification of graphs representing proteins
can help predict protein interfaces [5].

Recently, graph neural networks (GNNs) have achieved outstanding perfor-
mance on graph classification tasks [29,33]. GNNs aims to transform nodes to

Y. Ren and J. Bai—Contributed equally to this work.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 123–140, 2021.
https://doi.org/10.1007/978-3-030-73194-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_10

124 Y. Ren et al.

low-dimensional dense embeddings that preserve graph structural information
and attributes [34]. When applying GNNs to graph classification, the standard
method is to generate embeddings for all nodes in the graph and then summa-
rize all these node embeddings to a representation of the entire graph, such as
using a simple summation or neural network running on the set of node embed-
dings [31]. For the representation of the entire graph, a supervision component is
usually utilized to achieve the purpose of graph classification. A final output layer
together with classification loss (e.g., cross-entropy loss together with softmax or
margin loss) is the most commonly used supervision component in many existing
GNNs [6,28,29,32]. This supervision component focuses on the discriminability
of class but ignores the instance-level discriminative representations. A recent
trend towards learning stronger representations to serve classification tasks is
to reinforce the model with discriminative information as more as possible [4].
To be explicit, graph representations, which consider both intra-class compact-
ness and inter-class separability [14], are more potent on the graph classification
tasks.

Inspired by the idea of recent self-supervised learning [3] and contrastive
learning [7,18], the contrastive loss [17] is able to extract extra discriminative
information to improve the model’s performance. The recent works [8,18,35]
using contrast loss for representation learning are mainly carried out under
the setting of unsupervised learning. These contrastive learning models treat
each instance as a distinct class of its own. Meanwhile, discriminating these
instances is their learning objective [7]. The series of contrastive learning have
been verified effective in learning more fine-grained instance-level features in the
computer vision [26] domain. Thus we plan to utilize contrastive learning on
graph classification tasks to make up for the shortcomings of supervision com-
ponents, that is, ignoring the discriminative information on the instance-level.
However, when applying contrastive learning, the inherent large intra-class vari-
ations may import noise to graph classification tasks [14]. Besides, existing con-
trastive learning-based GNNs (e.g., GCC [18]) detach the model pre-training and
fine-tuning steps. Compared with end-to-end GNNs, the learned graph represen-
tations via contrastive learning can hardly be used in the downstream application
tasks directly, like graph classification.

To cope with the task of graph classification, we propose the label contrastive
coding based graph neural network (LCGNN), which employs Label Contrastive
Loss to encourage instance-level intra-class compactness and inter-class sepa-
rability simultaneously. Unlike existing contrastive learning using a single posi-
tive instance, the label contrastive coding imports label information and treats
instances with the same label as multiple positive instances. In this way, the
instances with the same label can be pulled closer, while the instances with dif-
ferent labels will be pushed away from each other. Intra-class compactness and
inter-class separability are taken into consideration simultaneously. The label
contrastive coding can be regarded as training an encoder for a dictionary look-
up task [7]. In order to build an extensive and consistent dictionary, we propose a
dynamic label memory bank and a momentum-updated graph encoder inspired

Label Contrastive Coding Based Graph Neural Network 125

Fig. 1. The high-level structure of LCGNN. LCGNN trains the graph encoder fq and
the graph classifier using a mixed loss. Label Contrastive Loss and Classification Loss
constitute the mixed loss. Classification Loss used in LCGNN is cross-entropy loss.
Label Contrastive Loss is calculated by a dictionary look-up task. The query is each
graph of the input graph minibatch, and the dictionary is a memory bank that can
continuously update the label-known graph representations. The graph representation
in the memory bank is updated by the graph encoder fk, which is momentum-updated.
After training, the learned graph encoder fq, and the graph classifier can serve for graph
classification tasks.

by the mechanism [7]. At the same time, LCGNN also uses Classification Loss
to ensure the discriminability of classes. LCGNN can utilize label information
more effectively and comprehensively from instance-level and class-level, allowing
using fewer label data to achieve comparative performance, which can be con-
sidered as a kind of label augmentation in essence. We validate the performance
of LCGNN on graph classification tasks over eight benchmark graph datasets.
LCGNN achieves SOTA performance in seven of the graph datasets. What is
more, LCGNN outperforms the baseline methods when using less training data,
which verifies its ability to learn from label information more comprehensively.

The contributions of our work are summarized as follows:

– We propose a novel label contrastive coding based graph neural network
(LCGNN) to reinforce supervised GNNs with more discriminative informa-
tion.

– The Label Contrastive Loss extends the contrastive learning to the supervised
setting, where the label information can be imported to ensure intra-class
compactness and inter-class separability.

– The momentum-updated graph encoder and the dynamic label memory bank
are proposed to support our supervised contrastive learning.

– We conduct extensive experiments on eight benchmark graph datasets.
LCGNN not only achieves SOTA performance on multiple datasets but also
can offer comparable results with fewer labeled training data.

126 Y. Ren et al.

2 Related Works

Graph Classification. Several different techniques have been proposed to solve
the graph classification problem. One important category is the kernel-based
method, which learns a graph kernel to measure similarity among graphs to dif-
ferentiate graph labels [25]. The Weisfeiler-Lehman subtree kernel (WL) [21],
Multiscale Laplacian graph kernels (MLG) [13], and Graphlets kernel(GK) [22]
are all representative graph kernels. Another critical category is the deep-
learning-based method. Deep Graph Kernel (DGK) [30], Anonymous Walk
Embeddings (AWE), and Graph2vec [16] all employ the deep-learning frame-
work to extract the graph embeddings for graph classification tasks. With the
rise of graph neural networks (GNNs), many GNNs are also used for graph classi-
fication tasks by learning the representation of graphs, which will be introduced
below.

Graph Neural Network. The graph neural network learns the low-dimensional
graph representations through a recursive neighborhood aggregation scheme [29].
The derived graph representations can be used to serve various downstream
tasks, such as graph classification and top-k similarity search. According to the
learning method, the current GNN serving graph classification can be divided
into end-to-end models and pre-train models. The end-to-end models are usually
under supervised or semi-supervised settings, with the goal of optimizing classi-
fication loss or mutual information, mainly including GIN [29], CapsGNN [28],
DGCNN [32] and InfoGraph [23]. The pre-trained GNNs use certain pre-training
tasks [9] to learn the graph’s general representation under the unsupervised set-
ting. In order to perform graph classification tasks, a part of label data will be
used to fine-tuning the models [18].

Contrastive Learning. Contrastive learning has been widely used for unsu-
pervised learning by training an encoder that can capture similarity from data.
The contrastive loss is normally a scoring function that increases the score on
the single matched instance and decreases the score on multiple unmatched
instances [17,26]. In the graph domain, DGI [24] is the first GNN model utilizing
the idea of contrastive learning, where the mutual information between nodes and
the graph representation is defined as the contrastive metric. HDGI [19] extends
the mechanism to heterogeneous graphs. InfoGraph [23] performs contrastive
learning in semi-supervised graph-level representation learning. When faced with
the task of supervised learning, such as graph classification, we also need to use
the advantage of contrastive learning to capture similarity. GCC [18] utilizes con-
trastive learning to pre-train a model that can serve for the downstream graph
classification task by fine-tuning. Compared to them, our method is an end-
to-end model and performs label contrastive coding to encourage instance-level
intra-class compactness and inter-class separability.

Label Contrastive Coding Based Graph Neural Network 127

3 Proposed Method

In this section, we introduce the label contrastive coding based graph neural
network (LCGNN). Before introducing LCGNN, we provide the preliminaries
about graph classification first.

3.1 Preliminaries

The goal of graph classification is to predict class labels of graphs based on
the graph structural information and node contents. Formally, we denote it as
follows:

Graph Classification. Given a set of labeled graphs GL = {(G1, y1),
(G2, y2), . . . } and yi ∈ Y is the corresponding label of Gi. The task is to learn a
classification function f : G −→ Y to make predictions for unseen graphs GU .

3.2 LCGNN Architecture Overview

A learning process illustration of the proposed LCGNN is shown in Fig. 1. Usu-
ally, for the input graph, we need to extract the latent features that can serve
the graph classification through a high-performance graph encoder. In order to
cooperate with the proposed mixed loss (Label Contrastive Loss & Classification
Loss), LCGNN contains two graph encoder fk and fq, which serve for encoding
input key graphs and query graphs respectively. Label Contrastive Loss encour-
ages instance-level intra-class compactness and inter-class separability simulta-
neously by keeping intermediate discriminative representations, while Classifi-
cation Loss ensures the class-level discriminability. A dynamic memory bank
containing key graph representations and corresponding labels works for label
contrastive loss calculation. A graph classifier takes the representations from the
graph encoder fq as its input to predict the graph labels. In the following parts,
we will elaborate on each component and the learning process of LCGNN in
detail.

3.3 Label Contrastive Coding

Existing contrastive learning has been proved a success in training an encoder
that can capture the universal structural information behind graph data [18]. In
the graph classification task, we focus on classification-related structural patterns
compared with the universal structural patterns. Therefore, our proposed label
contrastive coding learns to discriminate between instances with different class
labels instead of treating each instance as a distinct class of itself and contrasting
to other distinct classes.

Contrastive learning can be considered as learning an encoder for a dictionary
look-up task [7]. We can describe the contrastive learning as follows. Given an

128 Y. Ren et al.

encoded query q and a dictionary containing m encoded keys {k1,k2, . . . ,km},
there is only a single positive key k+ (normally encoded from the same instance
as q). The loss of this contrastive learning is low when q is similar to the positive
key k+ while dissimilar to negative keys for q (all other keys in the dictionary).
A widely used contrastive loss is InfoNCE [17] like:

L = − log
exp(q · k+/τ)

∑m
i=1 exp(q · ki/τ)

(1)

Here, τ is the temperature hyper-parameter [26]. Essentially, the loss of
InfoNCE is a classification loss aiming to classify q from m = 1 classes to the
same class as k+.

However, when facing graph classification tasks, the class labels have been
determined. We hope to import known label information in the training data to
assist contrastive learning in serving the graph classification task. In this way,
we design the label contrastive coding.

Fig. 2. Label Contrastive Loss. The query graph Gq and key graphs Gk are encoded by
fq and fk to low-dimensional representations q and k respectively. k1 and k2 having
the same label as q are denoted as positive keys. k3 and k4 are negative keys due
to different labels. The label contrastive loss encourage the model to distinguish the
similar pair (Gq, Gk1) and (Gq, Gk2) from dissimilar instance pairs, e.g., (Gq, Gk3).

Define Similar and Dissimilar. In the graph classification task, we seek that
instances with the same label can be pulled closer, while instances with different
labels will be pushed away from each other. Therefore, in the label contrastive
coding, we consider two instances with the same label as a similar pair while
treating the pair consisting of different label instances as dissimilar.

Label Contrastive Coding Based Graph Neural Network 129

Label Contrastive Loss. Still from a dictionary look-up perspective, given
an labeled encoded query (q, y), and a dictionary of m encoded labeled keys
{(k1, y1), (k2, y2), . . . , (km, ym)}, the positive keys k+ in label contrastive coding
are the keys ki where yi = y. The label contrastive coding looks up the positive
keys ki that the query q matches in the dictionary. For the encoded query (q, y),
its label contrastive loss LLC is calculated by

LLC(q, y) = − log
∑m

i=1 1yi=y · exp(q · ki/τ)
∑m

i=1 exp(q · ki/τ)
(2)

Here, 1statement ∈ {0, 1} is a binary indicator that returns 1 if the statement is
true. We illustrate the label contrastive loss in Fig. 2 for reference. In LCGNN,
key graph representations are stored in a dynamic memory bank. For the sake of
brevity, we have not shown in Fig. 2. We introduce the dynamic memory bank
and the updating process next.

The Dynamic Memory Bank. In label contrastive coding, the m-size dic-
tionary is necessary. We use a dynamic memory bank to work as a dictionary.
In order to fully utilize label information, the size of the memory bank is equal
to the size of the set of labeled graphs GL, i.e., m = |GL|. The memory bank
contains both the encoded low-dimensional key graph representations along with
the corresponding labels, i.e., {(k1, y1), (k2, y2), . . . , (k|GL|, y|GL|)}. Based on the
conclusions in MoCo [7], the key graph representations should be kept as con-
sistent as possible when the graph encoder fk encoder evolves during training.
Therefore, in each training epoch, newly encoded key graphs will dynamically
replace the old version in the memory bank.

3.4 Graph Encoder Design

For given graphs Gq and Gk, LCGNN empolys two graph encoders fq and fk to
encode them to low-dimensional representations.

q = fq(Gq)

k = fk(Gk)
(3)

In LCGNN, fq and fk have the same structure. Graph neural network has proven
its powerful ability to encode graph structure data [27]. Many potential graph
neural networks can work as the graph encoder in LCGNN.

Two kinds of encoders are considered in LCGNN. The first is Graph Isomor-
phism Network (GIN) [29]. GIN uses multi-layer perceptrons (MLPs) to conceive
aggregation scheme and updates node representations as:

hk
v = MLP(k)

(
(1 + ε(k)) +

∑
u∈N (v)

h(k−1)
u

)
(4)

where ε is a learnable parameter or a fixed scalar, and k represents k-th layer.
Given embeddings of individual nodes, the readout function is proposed by GIN

130 Y. Ren et al.

to produce the representation g of the entire graph G for graph classification
tasks:

g =
K

‖
k=1

(
SUM({hk

v |v ∈ G})

)
(5)

Here, ‖ is the concatenation operator.
The second encoder we consider is Hierarchical Graph Pooling with Struc-

ture Learning (HGP-SL) [33]. HGP-SL incorporates graph pooling and structure
learning into a unified module to generate hierarchical representations of graphs.
HGP-SL proposes a graph pooling operation to identify a subset of informa-
tive nodes to form a new but smaller graph. The details about the Manhattan
distance-based pooling operation can be referenced to [33]. For graph G, HGP-
SL repeats the graph convolution and pooling operations for several times and
achieves multiple subgraphs in different layers: H1,H2, . . . ,HK . HGP-SL uses
the concatenation of mean-pooling and max-pooling to aggregate all the node
representations in the subgraph as follows:

rk = R(Hk) = σ

(
1

nk

nk∑
p=1

Hk(p, :) ‖ d
max
q=1

Hk(:, 1)

)
(6)

where σ is a nonlinear activation function. nk is the node number in the k-th
layer subgraph. In order to achieve the final representation g of the entire graph
G, another readout function is utilized to combine subgraphs in different layers.

g = SUM(rk|k = 1, 2, . . . , K) (7)

In the experiment section, we will show the performance along with the
analysis of using GIN and HGP-SL as graph encoders in LCGNN.

3.5 LCGNN Learning

The training process illustration is provided in Fig. 1. During the training process,
the input of LCGNN is a batch of labeled graphs Gb ⊂ GL. For each mini-batch
iteration, the set of key graphs and the set of query graphs are the same as Gb. The
graph encoder fq and fk will be initialized with the same parameters (θq = θk).
The memory bank’s size is equal to the size of the set of labeled graphs GL. The
labeled graph Gi with the label yi is assigned with a random representation to
initialize the memory bank. The set of key graphs will be encoded by fk to low-
dimensional key graph representations K, which will replace the corresponding
representations in the memory bank. The set of query graphs are encoded by fq to
query graph representations Q, whereas Q is also the input of the graph classifier.
In LCGNN, a logistic regression layer serves as the graph classifier. Based on the
output of the graph classifier, Classification Loss can be calculated by:

LCla = − 1
|Q|

∑

qi∈Q

∑

j∈Y

1qi,j log(pqi,j) (8)

Label Contrastive Coding Based Graph Neural Network 131

where 1 is a binary indicator (0 or 1) that indicates whether label j is the correct
classification for the encoded query graph qi. Besides, pqi,j is the predicted
probability.

Q and the memory bank work together to implement the label contrastive
coding described in previous parts. Based on the Eq. 2, Label Contrastive Loss
of the mini-batch Gb is:

LLC = − 1
|Q|

∑

qi∈Q

LLC(qi, yqi
) (9)

In order to train the model by utilizing label information more effectively and
comprehensively, we try to minimize the following mixed loss combining both
the Label Contrastive Loss and the Classification Loss:

Ltotal = LCla + β LLC (10)

Here, the hyper-parameter β controls the relative weight between the label con-
trastive loss and the classification loss. The motivation behind Ltotal is that
LLC encourages instance-level intra-class compactness and inter-class separabil-
ity while LCla ensures the discriminability of classes. The graph encoder fq, and
the graph classifier can be updated end-to-end by back-propagation according
to the loss Ltotal. The parameters θk of fk follows a momentum-based update
mechanism as MoCo [7] instead of the back-propagation way. Specifically, the
momentum updating process is:

θk ←− αθk + (1 − α)θq (11)

where α ∈ [0, 1) is the momentum weight to control the speed of fk evolving. We
use this momentum-based update mechanism not only to reduce the overhead of
backpropagation but also to keep the key graph representations in the memory
bank as consistent as possible despite the encoder’s evolution.

After completing the model training, the learned graph encoder fq along
with the graph classifier can be used to perform graph classification tasks for
the unlabeled graphs GU .

4 Experiments

4.1 Experiment Settings

Datasets. We test our algorithms on 8 widely used datasets. Three of them are
social networks benchmark datasets: IMDB-B, IMDB-M, and COLLAB; the rest
five datasets: MUTAG, PROTEINS, PTC, NCI1, and D&D, belong to biological
graphs datasets [28–30]. Each dataset contains multiple graphs, and each graph is
assigned with a label. The statistics of these datasets are summarized in Table 1.
What should be mentioned is that the biological graphs have categorical node
attributes, while social graphs do not come with node attributes. In this paper,
for the encoders requiring node attributes as input, we follow [29] to use one-
hot encodings of node degrees as the node attributes on datasets without node
features.

132 Y. Ren et al.

Table 1. Datasets in the experiments

Datasets # graphs Avg # nodes Avg # edges # classes

IMDB-B 1000 19.77 96.53 2

IMDB-M 1500 13.00 65.94 3

COLLAB 5000 74.49 2457.78 3

MUTAG 188 17.93 19.79 2

PROTEINS 1113 39.06 72.82 2

PTC 344 25.56 25.56 2

NCI1 4110 29.87 32.30 2

D&D 1178 284.32 715.66 2

Methods Compared. We select 3 categories of models as comparison
methods:

– Kernel-based method: Weisfeiler-Lehman subtree kernel (WL) [21], AWE
[10], and Deep Graph Kernel (DGK) [30]: They first decompose graphs into
sub-components based on the kernel definition, then learn graph embeddings
in a feature-based manner. For graph classification tasks, a machine learning
model (i.e., SVM) will be used to perform the classification with learned graph
embeddings.

– Graph embedding-based methods: Sub2vec [1], Graph2vec [16]: They
extend document embedding neural networks to learn representations of
entire graphs. A machine learning model (i.e., SVM) work on the classifi-
cation tasks with learned graph representations.

– Graph neural network methods: GraphSAGE [6], GCN [12], DCNN [2]:
They are designed to learn meaningful node level representations. A readout
function is empolyed to summarize the node representations to the graph
representation for graph-level classification tasks; DGCNN [32], Caps-
GNN [28], HGP-SL [33], GIN [29], InfoGraph [23]: They are GNN-based
algorithms with the pooling operator for graph representation learning. Then
a classification layer will work as the last layer to implement graph classifi-
cation; GCC [18]: It follows pre-training and fine-tuning paradigm for graph
representation learning. A linear classifier is used to support the fine-tuning
targeing graph classification; LCGNNGIN, LCGNNHGP-SL: They are two
variants of the proposed LCGNN. LCGNNGIN uses GIN [29] as the graph
encoders, and LCGNNHGP−SL sets the graph encoders as HGP-SL [33].

Experiment Configurations. We adopt two graph model structures: GIN [29]
and HGP-SL [33] as the graph encoders. For LCGNN with different encoders,
we follow the model configurations from the initial papers as the default set-
tings. For the LCGNN structure, we choose the hidden representation dimen-
sion as 64 and 128 for two respective encoders; the contrastive loss weight

Label Contrastive Coding Based Graph Neural Network 133

β ∈ {0.1, 0.6, . . . , 1.0}; the momentum term α ∈ [0.0, 1.0); the temperature
τ = 0.07. For the graph classification tasks, to evaluate the proposed LCGNN we
adopt the procedure in [28,29] to perform 10-fold cross-validation on the afore-
mentioned datasets. For the training process of LCGNN, we select the Adam [11]
as the optimizer, and tune the hyperparameters for each dataset as: (1) the batch
size ∈ {32, 128, 512}; (2) the learning rate ∈ {0.01, 0.001}; (3) the dropout rate
∈ {0.0, 0.5}; (4) number of training epochs 1000 and select the epoch as the same
with [29]. We run the experiments on the Server with 3 GTX-1080 ti GPUs, and
all codes are implemented in Python3. Code and supplementary materials are
available at: LCGNN 1.

4.2 Experimental Results and Analysis

Overall Evaluation. We present the main experimental results in Table 2.
For the graph datasets that comparison methods do not have the results in
the original papers, we denote it as “−”. From the table, we can observe that
LCGNN outperforms all comparison methods on 7 out of the total 8 datasets.
The improvement is especially evident on datasets such as IMBD-B and D&D,
which can be up to about 1.0%. At the same time, we can find that LCGNN using
different graph encoders have achieved SOTA performance on different datasets
(LCGNNGIN in 3 datasets; LCGNNHGP−SL in 4 datasets). The results also
show that for different datasets, the selection of graph encoders has a critical
impact on performance. Nonetheless, LCGNN generally outperforms all other
baselines methods.

We also note that, compared to the baseline methods GIN and HGP-SL,
LCGNNGIN and LCGNNHGP−SL can acquire better results when adopting
them as corresponding encoders. For the COLLAB dataset results, LCGNN
actually achieves much higher performance compared with the result we get
when running GIN source code (71.7 ± 3.5). However, the result reported by
the original paper [29] is 80.1 ± 1.9, which we also report in Table 2. To further
evaluate the advantages of LCGNN and highlight the effectiveness of Label Con-
trastive Loss, we compare the classification loss during the training processes and
show the curves of GIN and LCGNN in Fig. 3. From the figure, we can see that
not only LCGNN has a faster convergence rate, but also can finally converge
to lower classification loss. The classification loss comparison results on other
datasets are also consistent, but we did not show them all due to space limita-
tion. Thus we can conclude that with the support of label contrastive coding,
LCGNN has better potential on graph classification tasks.

Besides, through the comparison between GCC and LCGNN, we can find
that for the task of graph classification, The proposed label contrastive coding
shows more advantages than the contrastive coding in GCC. We believe that
the contrastive coding in GCC mainly focuses on learning universal represen-
tations. The label contrastive coding in LCGNN has a stronger orientation for

1 https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-
Network-for-Graph-Classification-.

https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-Network-for-Graph-Classification-
https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-Network-for-Graph-Classification-

134 Y. Ren et al.

T
a
b
le

2
.
T
es

t
se

ts
cl

a
ss

ifi
ca

ti
o
n

a
cc

u
ra

cy
o
n

a
ll

d
a
ta

se
ts

.
W

e
u
se

b
o
ld

to
d
en

o
te

th
e

b
es

t
re

su
lt

o
n

ea
ch

d
a
ta

se
t.

C
a
te

g
o
ri

es
M

et
h
o
d
s

IM
D

B
-B

IM
D

B
-M

C
O

L
L
A

B
M

U
T
A

G
P

R
O

T
E

IN
S

P
T

C
N

C
I1

D
&

D

K
er

n
el

s
W

L
7
3
.4

±
4
.6

4
9
.3

±
4
.8

7
9
.0

±
1
.8

8
2
.1

±
0
.4

7
6
.2

±
4
.0

−
7
6
.7

±
2
.0

7
6
.4

±
2
.4

A
W

E
7
4
.5

±
5
.9

5
1
.5

±
3
.6

7
3
.9

±
1
.9

8
7
.9

±
9
.8

−
−

−
7
1
.5

±
4
.0

D
G

K
6
7
.0

±
0
.6

4
4
.6

±
0
.5

7
3
.1

±
0
.3

8
7
.4

±
2
.7

7
5
.7

±
0
.5

6
0
.1

±
2
.5

8
0
.3

±
0
.5

7
3
.5

±
1
.0

G
ra

p
h

G
ra

p
h
2
v
ec

7
1
.1

±
0
.5

5
0
.4

±
0
.9

−
8
3
.2

±
9
.3

7
3
.3

±
1
.8

6
0
.2

±
6
.9

7
3
.2

±
1
.8

−
E

m
b
ed

d
in

g
S
u
b
2
v
ec

5
5
.2

±
1
.5

3
6
.7

±
0
.8

−
6
1
.0

±
1
5
.8

−
6
0
.0

±
6
.4

−
−

G
N

N
s

D
C

N
N

7
2
.4

±
3
.6

4
9
.9

±
5
.0

7
9
.7

±
1
.7

7
9
.8

±
1
3
.9

6
5
.9

±
2
.7

−
7
4
.7

±
1
.3

−
G

C
N

7
3
.3

±
5
.3

5
1
.2

±
5
.1

8
0
.1

±
1
.9

8
7
.2

±
5
.1

7
5
.2

±
3
.6

−
7
6
.3

±
1
.8

7
3
.3

±
4
.5

G
ra

p
h
S
A

G
E

7
2
.4

±
3
.6

4
9
.9

±
5
.0

7
9
.7

±
1
.7

7
9
.8

±
1
3
.9

6
5
.9

±
2
.7

7
4
.7

±
1
.3

−
D

G
C

N
N

7
0
.0

±
0
.9

4
7
.8

±
0
.9

7
3
.8

±
0
.5

8
5
.8

±
1
.7

7
5
.5

±
0
.9

5
8
.6

±
2
.5

7
4
.4

±
0
.5

7
9
.4

±
0
.9

C
a
p
sG

N
N

7
3
.1

±
4
.8

5
0
.3

±
2
.7

7
9
.6

±
0
.9

8
6
.7

±
6
.9

7
6
.3

±
3
.6

−
7
8
.4

±
1
.6

7
5
.4

±
4
.2

H
G

P
-S

L
−

−
−

8
2
.2

±
0
.6

8
4
.9

±
1
.6

−
7
8
.5

±
0
.8

8
1
.0

±
1
.3

G
IN

7
5
.1

±
5
.1

5
2
.3

±
2
.8

8
0
.2

±
1
.9

8
9
.4

±
5
.6

7
6
.2

±
2
.8

6
4
.6

±
7
.0

8
2
.7

±
1
.7

−
In

fo
G

ra
p
h

7
3
.0

±
0
.9

4
9
.7

±
0
.5

−
8
9
.0

±
1
.1

−
6
1
.7

±
1
.4

−
−

G
C

C
7
3
.8

5
0
.3

8
1
.1

−
−

−
−

−
P

ro
p
o
se

d
L
C

G
N

N
G
I
N

7
6
.1

±
6
.9

5
2
.4

±
6
.7

7
2
.3

±
6
.3

8
9
.9

±
4
.8

7
6
.9

±
6
.8

6
4
.7

±
2
.0

8
2
.9

±
3
.6

7
7
.4

±
1
.2

L
C

G
N

N
H

G
P

−
S
L

7
5
.4

±
1
.5

4
6
.5

±
1
.3

7
7
.5

±
1
.2

9
0
.5

±
2
.3

8
5
.2

±
2
.4

6
5
.9

±
2
.8

7
8
.8

±
4
.4

8
1
.8

±
3
.6

Label Contrastive Coding Based Graph Neural Network 135

representation learning, that is, extracting features that significantly affect the
intra-class compactness and inter-class separability.

Table 3. Experiments with less labeled training data

Datasets Methods Training ratio

60% 70% 80% 90% 100%

IMDB-B GIN 61.8 65.4 69.2 70.5 75.1

LCGNNGIN 66.3 70.8 71.3 72.2 76.1

IMDB-M GIN 40.5 41.4 41.8 46.0 52.3

LCGNNGIN 43.4 42.8 43.6 48.1 52.4

(a) IMDB-B (b) IMDB-M

(c) MUTAG (d) PROTEINS

Fig. 3. Training Classification Loss versus training epoch

Performance with Less Labeled Data. To validate our claim that LCGNN
can utilize label information more comprehensively and use fewer label data
to achieve comparative performance, we conduct experiments with less train-
ing data. For each fold of cross-validation, we extract only part of the training
set (e.g., 60% of the data in the training set) as the training data and main-
tain the test set as the same. We present the results in Table 3. In Table 3, the
training ratio denotes how much data in the training set is extracted as the

136 Y. Ren et al.

training data. When the training ratio is 100%, it means using the full training
set in each fold. From the results, it is obvious that LCGNNGIN can always
outperform the baseline GIN when using less training data. What’s more, in
many cases when LCGNNGIN with less training data (e.g., 70% training data
for LCGNNGIN while 80% for GIN; 60% for LCGNNGIN while 70% for GIN),
LCGNNGIN still obtains more competitive results than GIN. The experimen-
tal results demonstrate that LCGNN can utilize the same amount of training
data more comprehensively and efficiently. The capability also makes LCGNN
possible to learn with less training data to obtain a better performance than
comparison methods when they need more training data.

Fig. 4. The effectiveness of Label Contrastive Loss

The Effectiveness of the Label Contrastive Coding. In order to further
verify the effectiveness of the proposed label contrastive coding on the task of
graph classification, we conduct comparison experiments between LCGNNGIN

and LCGNN+InfoNCE. Here, LCGNN+InfoNCE replaces the label contrastive
loss in LCGNNGIN with InfoNCE loss [17] but keeps other parts the same. We
present the results in Fig. 4. The experimental results show that the performance
of LCGNNGIN on all data sets exceeds LCGNN+InfoNCE, which also demon-
strates that the label contrastive coding can effectively utilize label information
to improve model performance. In addition, we observe that the performance of
LCGNN+InfoNCE is even worse than GIN. It verifies that the inherent large
intra-class variations may import noise to graph classification tasks if we treat
the intra-class instances as distinct classes like the existing comparative learning.

Hyper-parameter β Analysis. We consider the influence of label contrastive
loss weight term β and conduct experiments with different values. The results is
exhibited in Table 4. We select β from {0.1, 0.2, . . . , 1.0}, and find the trend of
using a relatively larger β inducing better results. Thus in the experiment, we

Label Contrastive Coding Based Graph Neural Network 137

Table 4. LCGNNGIN with different contrastive loss weight β

Datasets Contrastive loss weight β

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IMDB-B 73.8 75.1 76.1 75.5 76.0 75.4 75.7 75.7

IMDB-M 50.5 51.2 52.4 51.9 51.7 51.5 51.5 51.6

empirically select from β ∈ {0.5, 0.6, . . . , 1.0} to achieve the best performance.
Nevertheless, we also observed that when β gradually increases, the performance
does not continue to increase. Our analysis is that when the label contrastive
loss weight is too high, the learning of the model places too much emphasis on
instance-level contrast. More fine-grained discriminative features on the instance-
level will reduce the generalization performance of the model on the test set.

Fig. 5. LCGNN with different momentum weight

Momentum Ablation. The momentum term plays an important role in con-
trastive learning problems. In our experiments, we also try different momentum
weight α when running LCGNNGIN on D&D and show the results in Fig. 5.
Unlike [7], LCGNNGIN also achieves good performance when α = 0. The main
reason should be that the D&D is not extremely large, which makes it easy
for representations to ensure consistency during encoder evolving. Furthermore,
in this set of experiments, the momentum term did not show much impact on
Accuracy, that is, the model performance is relatively stable, which should be
caused by the moderate-sized dataset as well.

138 Y. Ren et al.

5 Conclusion

In this paper, we have introduced a novel label contrastive coding based graph
neural network, LCGNN, which works on graph classification tasks. We extend
the existing contrastive learning to the supervised setting and define the label
contrastive coding. The label contrastive coding treats instances with the same
label as multiple positive instances, which is different from the single posi-
tive instance in unsupervised contrastive learning. The label contrastive coding
can pull the same label instances closer and push the instances with different
labels away from each other. We demonstrate the effectiveness of LCGNN on
graph classification tasks over eight benchmark graph datasets. The experimen-
tal results show that LCGNN achieves SOTA performance in 7 datasets. Besides,
LCGNN can take advantage of label information more comprehensively. LCGNN
outperforms the baseline method when using less training data, which verifies
this advantage.

Acknowledgement. This work is also partially supported by NSF through grant
IIS-1763365.

References

1. Adhikari, B., Zhang, Y., Ramakrishnan, N., Prakash, B.A.: Sub2Vec: feature learn-
ing for subgraphs. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M.,
Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 170–182. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93037-4 14

2. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in
Neural Information Processing Systems, pp. 1993–2001 (2016)

3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

4. Elsayed, G., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep
networks for classification. In: Advances in Neural Information Processing Systems,
pp. 842–852 (2018)

5. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using
graph convolutional networks. In: Advances in Neural Information Processing Sys-
tems, pp. 6530–6539 (2017)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. arXiv-1911 (2019)

8. Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. arXiv preprint arXiv:1808.06670 (2018)

9. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265 (2019)

10. Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: International Conference
on Machine Learning, pp. 2186–2195 (2018)

11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representaion (2015)

https://doi.org/10.1007/978-3-319-93037-4_14
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/1808.06670
http://arxiv.org/abs/1905.12265

Label Contrastive Coding Based Graph Neural Network 139

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representaion (2017)

13. Kondor, R., Pan, H.: The multiscale Laplacian graph kernel. In: Advances in Neural
Information Processing Systems, pp. 2990–2998 (2016)

14. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin Softmax loss for convolutional
neural networks. In: ICML, vol. 2, p. 7 (2016)

15. Meng, L., Ren, Y., Zhang, J., Ye, F., Philip, S.Y.: Deep heterogeneous social
network alignment. In: 2019 IEEE First International Conference on Cognitive
Machine Intelligence (CogMI), pp. 43–52. IEEE (2019)

16. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

17. van den Oord, A, Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748 (2018)

18. Qiu, J., et al..: Gcc: Graph contrastive coding for graph neural network pre-
training. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

19. Ren, Y., Liu, B., Huang, C., Dai, P., Bo, L., Zhang, J.: Heterogeneous deep graph
infomax. arXiv preprint arXiv:1911.08538 (2019)

20. Ren, Y., Zhu, H., Zhang, J., Dai, P., Bo, L.: Ensemfdet: An ensemble approach to
fraud detection based on bipartite graph. arXiv preprint arXiv:1912.11113 (2019)

21. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539–2561
(2011)

22. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495 (2009)

23. Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-
supervised graph-level representation learning via mutual information maximiza-
tion. arXiv preprint arXiv:1908.01000 (2019)

24. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. arXiv preprint arXiv:1809.10341 (2018)

25. Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph ker-
nels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

26. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-
parametric instance-level discrimination. arXiv preprint arXiv:1805.01978 (2018)

27. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

28. Xinyi, Z., Chen, L.: Capsule graph neural network. In: International Conference
on Learning Representations (2018)

29. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

30. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374 (2015)

31. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems, pp. 4800–4810 (2018)

http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1911.08538
http://arxiv.org/abs/1912.11113
http://arxiv.org/abs/1908.01000
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1805.01978
http://arxiv.org/abs/1810.00826

140 Y. Ren et al.

32. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

33. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint
arXiv:1911.05954 (2019)

34. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

35. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning
of visual embeddings. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 6002–6012 (2019)

http://arxiv.org/abs/1911.05954
http://arxiv.org/abs/2006.04131

	Label Contrastive Coding Based Graph Neural Network for Graph Classification
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Preliminaries
	3.2 LCGNN Architecture Overview
	3.3 Label Contrastive Coding
	3.4 Graph Encoder Design
	3.5 LCGNN Learning

	4 Experiments
	4.1 Experiment Settings
	4.2 Experimental Results and Analysis

	5 Conclusion
	References

