
Christian S. Jensen · Ee-Peng Lim · 
De-Nian Yang · Wang-Chien Lee · 
Vincent S. Tseng · Vana Kalogeraki · 
Jen-Wei Huang · Chih-Ya Shen (Eds.)

LN
CS

 1
26

81

26th International Conference, DASFAA 2021
Taipei, Taiwan, April 11–14, 2021
Proceedings, Part I

Database Systems 
for Advanced Applications



Lecture Notes in Computer Science 12681

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Christian S. Jensen • Ee-Peng Lim •

De-Nian Yang • Wang-Chien Lee •

Vincent S. Tseng • Vana Kalogeraki •

Jen-Wei Huang • Chih-Ya Shen (Eds.)

Database Systems
for Advanced Applications
26th International Conference, DASFAA 2021
Taipei, Taiwan, April 11–14, 2021
Proceedings, Part I

123



Editors
Christian S. Jensen
Aalborg University
Aalborg, Denmark

Ee-Peng Lim
Singapore Management University
Singapore, Singapore

De-Nian Yang
Academia Sinica
Taipei, Taiwan

Wang-Chien Lee
The Pennsylvania State University
University Park, PA, USA

Vincent S. Tseng
National Chiao Tung University
Hsinchu, Taiwan

Vana Kalogeraki
Athens University of Economics
and Business
Athens, Greece

Jen-Wei Huang
National Cheng Kung University
Tainan City, Taiwan

Chih-Ya Shen
National Tsing Hua University
Hsinchu, Taiwan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-73193-9 ISBN 978-3-030-73194-6 (eBook)
https://doi.org/10.1007/978-3-030-73194-6

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9697-7670
https://orcid.org/0000-0003-0065-8665
https://orcid.org/0000-0001-5482-8311
https://doi.org/10.1007/978-3-030-73194-6


Preface

Welcome to DASFAA 2021, the 26th International Conference on Database Systems
for Advanced Applications, held from April 11 to April 14, 2021! The conference was
originally planned to be held in Taipei, Taiwan. Due to the outbreak of the COVID-19
pandemic and the consequent health concerns and restrictions on international travel all
over the world, this prestigious event eventually happens on-line as a virtual confer-
ence, thanks to the tremendous effort made by the authors, participants, technical
program committee, organization committee, and steering committee. While the tra-
ditional face-to-face research exchanges and social interactions in the DASFAA
community are temporarily paused this year, the long and successful history of the
events, which established DASFAA as a premier research conference in the database
area, continues!

On behalf of the program committee, it is our great pleasure to present the pro-
ceedings of DASFAA 2021, which includes 131 papers in the research track, 8 papers
in the industrial track, 8 demo papers, and 4 tutorials. In addition, the conference
program included three keynote presentations by Prof. Beng Chin Ooi from National
University of Singapore, Singapore, Prof. Jiawei Han from the University of Illinois at
Urbana-Champaign, USA, and Dr. Eunice Chiu, Vice President of NVIDIA, Taiwan.

The highly selective papers in the DASFAA 2021 proceedings report the latest and
most exciting research results from academia and industry in the general area of
database systems for advanced applications. The quality of the accepted research
papers at DASFAA 2021 is extremely high, owing to a robust and rigorous
double-blind review process (supported by the Microsoft CMT system). This year, we
received 490 excellent submissions, of which 98 full papers (acceptance ratio of 20%)
and 33 short papers (acceptance ratio of 26.7%) were accepted. The selection process
was competitive and thorough. Each paper received at least three reviews, with some
papers receiving as many as four to five reviews, followed by a discussion, and then
further evaluated by a senior program committee (SPC) member. We, the technical
program committee (TPC) co-chairs, considered the recommendations from the SPC
members and looked into each submission as well as the reviews and discussions to
make the final decisions, which took into account multiple factors such as depth and
novelty of technical content and relevance to the conference. The most popular topic
areas for the selected papers include information retrieval and search, search and
recommendation techniques; RDF, knowledge graphs, semantic web, and knowledge
management; and spatial, temporal, sequence, and streaming data management, while
the dominant keywords are network, recommendation, graph, learning, and model.
These topic areas and keywords shed light on the direction in which the research in
DASFAA is moving.

Five workshops are held in conjunction with DASFAA 2021: the 1st International
Workshop on Machine Learning and Deep Learning for Data Security Applications
(MLDLDSA 2021), the 6th International Workshop on Mobile Data Management,



Mining, and Computing on Social Networks (Mobisocial 2021), the 6th International
Workshop on Big Data Quality Management (BDQM 2021), the 3rd International
Workshop on Mobile Ubiquitous Systems and Technologies (MUST 2021), and the 5th
International Workshop on Graph Data Management and Analysis (GDMA 2021). The
workshop papers are included in a separate volume of the proceedings, also published
by Springer in its Lecture Notes in Computer Science series.

We would like to express our sincere gratitude to all of the 43 senior program
committee (SPC) members, the 278 program committee (PC) members, and the
numerous external reviewers for their hard work in providing us with comprehensive
and insightful reviews and recommendations. Many thanks to all the authors for
submitting their papers, which contributed significantly to the technical program and
the success of the conference. We are grateful to the general chairs, Christian S. Jensen,
Ee-Peng Lim, and De-Nian Yang for their help. We wish to thank everyone who
contributed to the proceedings, including Jianliang Xu, Chia-Hui Chang and Wen-Chih
Peng (workshop chairs), Xing Xie and Shou-De Lin (industrial program chairs),
Wenjie Zhang, Wook-Shin Han and Hung-Yu Kao (demonstration chairs), and Ying
Zhang and Mi-Yen Yeh (tutorial chairs), as well as the organizers of the workshops,
their respective PC members and reviewers.

We are also grateful to all the members of the Organizing Committee and the
numerous volunteers for their tireless work before and during the conference. Also, we
would like to express our sincere thanks to Chih-Ya Shen and Jen-Wei Huang
(proceedings chairs) for working with the Springer team to produce the proceedings.
Special thanks go to Xiaofang Zhou (DASFAA steering committee liaison) for his
guidance. Lastly, we acknowledge the generous financial support from various
industrial companies and academic institutes.

We hope that you will enjoy the DASFAA 2021 conference, its technical program
and the proceedings!

February 2021 Wang-Chien Lee
Vincent S. Tseng
Vana Kalogeraki

vi Preface



Organization

Organizing Committee

Honorary Chairs

Philip S. Yu University of Illinois at Chicago, USA
Ming-Syan Chen National Taiwan University, Taiwan
Masaru Kitsuregawa University of Tokyo, Japan

General Chairs

Christian S. Jensen Aalborg University, Denmark
Ee-Peng Lim Singapore Management University, Singapore
De-Nian Yang Academia Sinica, Taiwan

Program Committee Chairs

Wang-Chien Lee Pennsylvania State University, USA
Vincent S. Tseng National Chiao Tung University, Taiwan
Vana Kalogeraki Athens University of Economics and Business, Greece

Steering Committee

BongHee Hong Pusan National University, Korea
Xiaofang Zhou University of Queensland, Australia
Yasushi Sakurai Osaka University, Japan
Lei Chen Hong Kong University of Science and Technology,

Hong Kong
Xiaoyong Du Renmin University of China, China
Hong Gao Harbin Institute of Technology, China
Kyuseok Shim Seoul National University, Korea
Krishna Reddy IIIT, India
Yunmook Nah DKU, Korea
Wenjia Zhang University of New South Wales, Australia
Guoliang Li Tsinghua University, China
Sourav S. Bhowmick Nanyang Technological University, Singapore
Atsuyuki Morishima University of Tsukaba, Japan
Sang-Won Lee SKKU, Korea



Industrial Program Chairs

Xing Xie Microsoft Research Asia, China
Shou-De Lin Appier, Taiwan

Demo Chairs

Wenjie Zhang University of New South Wales, Australia
Wook-Shin Han Pohang University of Science and Technology, Korea
Hung-Yu Kao National Cheng Kung University, Taiwan

Tutorial Chairs

Ying Zhang University of Technology Sydney, Australia
Mi-Yen Yeh Academia Sinica, Taiwan

Workshop Chairs

Chia-Hui Chang National Central University, Taiwan
Jianliang Xu Hong Kong Baptist University, Hong Kong
Wen-Chih Peng National Chiao Tung University, Taiwan

Panel Chairs

Zi Huang The University of Queensland, Australia
Takahiro Hara Osaka University, Japan
Shan-Hung Wu National Tsing Hua University, Taiwan

Ph.D Consortium

Lydia Chen Delft University of Technology, Netherlands
Kun-Ta Chuang National Cheng Kung University, Taiwan

Publicity Chairs

Wen Hua The University of Queensland, Australia
Yongxin Tong Beihang University, China
Jiun-Long Huang National Chiao Tung University, Taiwan

Proceedings Chairs

Jen-Wei Huang National Cheng Kung University, Taiwan
Chih-Ya Shen National Tsing Hua University, Taiwan

viii Organization



Registration Chairs

Chuan-Ju Wang Academia Sinica, Taiwan
Hong-Han Shuai National Chiao Tung University, Taiwan

Sponsor Chair

Chih-Hua Tai National Taipei University, Taiwan

Web Chairs

Ya-Wen Teng Academia Sinica, Taiwan
Yi-Cheng Chen National Central University, Taiwan

Finance Chair

Yi-Ling Chen National Taiwan University of Science
and Technology, Taiwan

Local Arrangement Chairs

Chien-Chin Chen National Taiwan University, Taiwan
Chih-Chieh Hung National Chung Hsing University, Taiwan

DASFAA Steering Committee Liaison

Xiaofang Zhou The Hong Kong University of Science
and Technology, Hong Kong

Program Committee

Senior Program Committee Members

Zhifeng Bao RMIT University, Vietnam
Sourav S. Bhowmick Nanyang Technological University, Singapore
Nikos Bikakis ATHENA Research Center, Greece
Kevin Chang University of Illinois at Urbana-Champaign, USA
Lei Chen Hong Kong University of Science and Technology,

China
Bin Cui Peking University, China
Xiaoyong Du Renmin University of China, China
Hakan Ferhatosmanoglu University of Warwick, UK
Avigdor Gal Israel Institute of Technology, Israel
Hong Gao Harbin Institute of Technology, China
Dimitrios Gunopulos University of Athens, Greece
Bingsheng He National University of Singapore, Singapore
Yoshiharu Ishikawa Nagoya University, Japan

Organization ix



Nick Koudas University of Toronto, Canada
Wei-Shinn Ku Auburn University, USA
Dik-Lun Lee Hong Kong University of Science and Technology,

China
Dongwon Lee Pennsylvania State University, USA
Guoliang Li Tsinghua University, China
Ling Liu Georgia Institute of Technology, USA
Chang-Tien Lu Virginia Polytechnic Institute and State University,

USA
Mohamed Mokbel University of Minnesota Twin Cities, USA
Mario Nascimento University of Alberta, Canada
Krishna Reddy P. International Institute of Information Technology, India
Dimitris Papadias The Hong Kong University of Science

and Technology, China
Wen-Chih Peng National Chiao Tung University, Taiwan
Evaggelia Pitoura University of Ioannina, Greece
Cyrus Shahabi University of Southern California, USA
Kyuseok Shim Seoul National University, Korea
Kian-Lee Tan National University of Singapore, Singapore
Yufei Tao The Chinese University of Hong Kong, China
Vassilis Tsotras University of California, Riverside, USA
Jianyong Wang Tsinghua University, China
Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Xiaokui Xiao National University of Singapore, Singapore
Jianliang Xu Hong Kong Baptist University, China
Bin Yang Aalborg University, Denmark
Jeffrey Xu Yu The Chinese University of Hong Kong, China
Wenjie Zhang University of New South Wales, Australia
Baihua Zheng Singapore Management University, Singapore
Aoying Zhou East China Normal University, China
Xiaofang Zhou The University of Queensland, Australia
Roger Zimmermann National University of Singapore, Singapore

Program Committee Members

Alberto Abelló Universitat Politècnica de Catalunya, Spain
Marco Aldinucci University of Torino, Italy
Toshiyuki Amagasa University of Tsukuba, Japan
Ting Bai Beijing University of Posts and Telecommunications,

China
Spiridon Bakiras Hamad Bin Khalifa University, Qatar
Wolf-Tilo Balke Technische Universität Braunschweig, Germany
Ladjel Bellatreche ISAE-ENSMA, France
Boualem Benatallah University of New South Wales, Australia
Athman Bouguettaya University of Sydney, Australia
Panagiotis Bouros Johannes Gutenberg University Mainz, Germany

x Organization



Stéphane Bressan National University of Singapore, Singapore
Andrea Cali Birkbeck University of London, UK
K. Selçuk Candan Arizona State University, USA
Lei Cao Massachusetts Institute of Technology, USA
Xin Cao University of New South Wales, Australia
Yang Cao Kyoto University, Japan
Sharma Chakravarthy University of Texas at Arlington, USA
Tsz Nam Chan Hong Kong Baptist University, China
Varun Chandola University at Buffalo, USA
Lijun Chang University of Sydney, Australia
Cindy Chen University of Massachusetts Lowell, USA
Feng Chen University of Texas at Dallas, USA
Huiyuan Chen Case Western Reserve University, USA
Qun Chen Northwestern Polytechnical University, China
Rui Chen Samsung Research America, USA
Shimin Chen Chinese Academy of Sciences, China
Yang Chen Fudan University, China
Brian Chen Columbia University, USA
Tzu-Ling Cheng National Taiwan University, Taiwan
Meng-Fen Chiang Auckland University, New Zealand
Theodoros Chondrogiannis University of Konstanz, Germany
Chi-Yin Chow City University of Hong Kong, China
Panos Chrysanthis University of Pittsburgh, USA
Lingyang Chu Huawei Technologies Canada, Canada
Kun-Ta Chuang National Cheng Kung University, Taiwan
Jonghoon Chun Myongji University, Korea
Antonio Corral University of Almeria, Spain
Alfredo Cuzzocrea Universitá della Calabria, Italy
Jian Dai Alibaba Group, China
Maria Luisa Damiani University of Milan, Italy
Lars Dannecker SAP SE, Germany
Alex Delis National and Kapodistrian University of Athens,

Greece
Ting Deng Beihang University, China
Bolin Ding Alibaba Group, China
Carlotta Domeniconi George Mason University, USA
Christos Doulkeridis University of Piraeus, Greece
Eduard Dragut Temple University, USA
Amr Ebaid Purdue University, USA
Ahmed Eldawy University of California, Riverside, USA
Sameh Elnikety Microsoft Research, USA
Damiani Ernesto University of Milan, Italy
Ju Fan Renmin University of China, China
Yixiang Fang University of New South Wales, Australia
Yuan Fang Singapore Management University, Singapore
Tao-yang Fu Penn State University, USA

Organization xi



Yi-Fu Fu National Taiwan University, Taiwan
Jinyang Gao Alibaba Group, China
Shi Gao Google, USA
Wei Gao Singapore Management University, Singapore
Xiaofeng Gao Shanghai Jiaotong University, China
Xin Gao King Abdullah University of Science and Technology,

Saudi Arabia
Yunjun Gao Zhejiang University, China
Jingyue Gao Peking University, China
Neil Zhenqiang Gong Iowa State University, USA
Vikram Goyal Indraprastha Institute of Information Technology,

Delhi, India
Chenjuan Guo Aalborg University, Denmark
Rajeev Gupta Microsoft India, India
Ralf Hartmut Güting Fernuniversität in Hagen, Germany
Maria Halkidi University of Pireaus, Greece
Takahiro Hara Osaka University, Japan
Zhenying He Fudan University, China
Yuan Hong Illinois Institute of Technology, USA
Hsun-Ping Hsieh National Cheng Kung University, Taiwan
Bay-Yuan Hsu National Taipei University, Taiwan
Haibo Hu Hong Kong Polytechnic University, China
Juhua Hu University of Washington, USA
Wen Hua The University of Queensland, Australia
Jiun-Long Huang National Chiao Tung University, Taiwan
Xin Huang Hong Kong Baptist University, China
Eenjun Hwang Korea University, Korea
San-Yih Hwang National Sun Yat-sen University, Taiwan
Saiful Islam Griffith University, Australia
Mizuho Iwaihara Waseda University, Japan
Jiawei Jiang ETH Zurich, Switzerland
Bo Jin Dalian University of Technology, China
Cheqing Jin East China Normal University, China
Sungwon Jung Sogang University, Korea
Panos Kalnis King Abdullah University of Science and Technology,

Saudi Arabia
Verena Kantere National Technical University of Athens, Greece
Hung-Yu Kao National Cheng Kung University, Taiwan
Katayama Kaoru Tokyo Metropolitan University, Japan
Bojan Karlas ETH Zurich, Switzerland
Ioannis Katakis University of Nicosia, Cyprus
Norio Katayama National Institute of Informatics, Japan
Chulyun Kim Sookmyung Women’s University, Korea
Donghyun Kim Georgia State University, USA
Jinho Kim Kangwon National University, Korea
Kyoung-Sook Kim Artificial Intelligence Research Center, Japan

xii Organization



Seon Ho Kim University of Southern California, USA
Younghoon Kim HanYang University, Korea
Jia-Ling Koh National Taiwan Normal University, Taiwan
Ioannis Konstantinou National Technical University of Athens, Greece
Dimitrios Kotzinos University of Cergy-Pontoise, France
Manolis Koubarakis University of Athens, Greece
Peer Kröger Ludwig-Maximilians-Universität München, Germany
Jae-Gil Lee Korea Advanced Institute of Science and Technology,

Korea
Mong Li Lee National University of Singapore, Singapore
Wookey Lee Inha University, Korea
Wang-Chien Lee Pennsylvania State University, USA
Young-Koo Lee Kyung Hee University, Korea
Cheng-Te Li National Cheng Kung University, Taiwan
Cuiping Li Renmin University of China, China
Hui Li Xidian University, China
Jianxin Li Deakin University, Australia
Ruiyuan Li Xidian University, China
Xue Li The University of Queensland, Australia
Yingshu Li Georgia State University, USA
Zhixu Li Soochow University, Taiwan
Xiang Lian Kent State University, USA
Keng-Te Liao National Taiwan University, Taiwan
Yusan Lin Visa Research, USA
Sebastian Link University of Auckland, New Zealand
Iouliana Litou Athens University of Economics and Business, Greece
An Liu Soochow University, Taiwan
Jinfei Liu Emory University, USA
Qi Liu University of Science and Technology of China, China
Danyang Liu University of Science and Technology of China, China
Rafael Berlanga Llavori Universitat Jaume I, Spain
Hung-Yi Lo National Taiwan University, Taiwan
Woong-Kee Loh Gachon University, Korea
Cheng Long Nanyang Technological University, Singapore
Hsueh-Chan Lu National Cheng Kung University, Taiwan
Hua Lu Roskilde University, Denmark
Jiaheng Lu University of Helsinki, Finland
Ping Lu Beihang University, China
Qiong Luo Hong Kong University of Science and Technology,

China
Zhaojing Luo National University of Singapore, Singapore
Sanjay Madria Missouri University of Science & Technology, USA
Silviu Maniu Universite Paris-Sud, France
Yannis Manolopoulos Open University of Cyprus, Cyprus
Marco Mesiti University of Milan, Italy
Jun-Ki Min Korea University of Technology and Education, Korea

Organization xiii



Jun Miyazaki Tokyo Institute of Technology, Japan
Yang-Sae Moon Kangwon National University, Korea
Yasuhiko Morimoto Hiroshima University, Japan
Mirella Moro Universidade Federal de Minas Gerais, Brazil
Parth Nagarkar New Mexico State University, USA
Miyuki Nakano Tsuda University, Japan
Raymond Ng The University of British Columbia, Canada
Wilfred Ng The Hong Kong University of Science

and Technology, China
Quoc Viet Hung Nguyen Griffith University, Australia
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Nikos Ntarmos University of Glasgow, UK
Werner Nutt Free University of Bozen-Bolzano, Italy
Makoto Onizuka Osaka University, Japan
Xiao Pan Shijiazhuang Tiedao University, China
Panagiotis Papapetrou Stockholm University, Sweden
Noseong Park George Mason University, USA
Sanghyun Park Yonsei University, Korea
Chanyoung Park University of Illinois at Urbana-Champaign, USA
Dhaval Patel IBM TJ Watson Research Center, USA
Yun Peng Hong Kong Baptist University, China
Zhiyong Peng Wuhan University, China
Ruggero Pensa University of Torino, Italy
Dieter Pfoser George Mason University, USA
Jianzhong Qi The University of Melbourne, Australia
Zhengping Qian Alibaba Group, China
Xiao Qin IBM Research, USA
Karthik Ramachandra Microsoft Research India, India
Weixiong Rao Tongji University, China
Kui Ren Zhejiang University, China
Chiara Renso Institute of Information Science and Technologies, Italy
Oscar Romero Universitat Politècnica de Catalunya, Spain
Olivier Ruas Inria, France
Babak Salimi University of California, Riverside, USA
Maria Luisa Sapino University of Torino, Italy
Claudio Schifanella University of Turin, Italy
Markus Schneider University of Florida, USA
Xuequn Shang Northwestern Polytechnical University, China
Zechao Shang Univesity of Chicago, USA
Yingxia Shao Beijing University of Posts and Telecommunications,

China
Chih-Ya Shen National Tsing Hua University, Taiwan
Yanyan Shen Shanghai Jiao Tong University, China
Yan Shi Shanghai Jiao Tong University, China
Junho Shim Sookmyung Women’s University, Korea

xiv Organization



Hiroaki Shiokawa University of Tsukuba, Japan
Hong-Han Shuai National Chiao Tung University, Taiwan
Shaoxu Song Tsinghua University, China
Anna Squicciarini Pennsylvania State University, USA
Kostas Stefanidis Tampere University, Finland
Kento Sugiura Nagoya University, Japan
Aixin Sun Nanyang Technological University, Singapore
Weiwei Sun Fudan University, China
Nobutaka Suzuki University of Tsukuba, Japan
Yu Suzuki Nara Institute of Science and Technology, Japan
Atsuhiro Takasu National Institute of Informatics, Japan
Jing Tang National University of Singapore, Singapore
Lv-An Tang NEC Labs America, USA
Tony Tang National Taiwan University, Taiwan
Yong Tang South China Normal University, China
Chao Tian Alibaba Group, China
Yongxin Tong Beihang University, China
Kristian Torp Aalborg University, Denmark
Yun-Da Tsai National Taiwan University, Taiwan
Goce Trajcevski Iowa State University, USA
Efthymia Tsamoura Samsung AI Research, Korea
Leong Hou U. University of Macau, China
Athena Vakal Aristotle University, Greece
Michalis Vazirgiannis École Polytechnique, France
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Akrivi Vlachou University of the Aegean, Greece
Bin Wang Northeastern University, China
Changdong Wang Sun Yat-sen University, China
Chaokun Wang Tsinghua University, China
Chaoyue Wang University of Sydney, Australia
Guoren Wang Beijing Institute of Technology, China
Hongzhi Wang Harbin Institute of Technology, China
Jie Wang Indiana University, USA
Jin Wang Megagon Labs, Japan
Li Wang Taiyuan University of Technology, China
Peng Wang Fudan University, China
Pinghui Wang Xi’an Jiaotong University, China
Sen Wang The University of Queensland, Australia
Sibo Wang The Chinese University of Hong Kong, China
Wei Wang University of New South Wales, Australia
Wei Wang National University of Singapore, Singapore
Xiaoyang Wang Zhejiang Gongshang University, China
Xin Wang Tianjin University, China
Zeke Wang Zhejiang University, China
Yiqi Wang Michigan State University, USA

Organization xv



Raymond Chi-Wing Wong Hong Kong University of Science and Technology,
China

Kesheng Wu Lawrence Berkeley National Laboratory, USA
Weili Wu University of Texas at Dallas, USA
Chuhan Wu Tsinghua University, China
Wush Wu National Taiwan University, Taiwan
Chuan Xiao Osaka University, Japan
Keli Xiao Stony Brook University, USA
Yanghua Xiao Fudan University, China
Dong Xie Pennsylvania State University, USA
Xike Xie University of Science and Technology of China, China
Jianqiu Xu Nanjing University of Aeronautics and Astronautics,

China
Fengli Xu Tsinghua University, China
Tong Xu University of Science and Technology of China, China
De-Nian Yang Academia Sinica, Taiwan
Shiyu Yang East China Normal University, China
Xiaochun Yang Northeastern University, China
Yu Yang City University of Hong Kong, China
Zhi Yang Peking University, China
Chun-Pai Yang National Taiwan University, Taiwan
Junhan Yang University of Science and Technology of China, China
Bin Yao Shanghai Jiaotong University, China
Junjie Yao East China Normal University, China
Demetrios Zeinalipour Yazti University of Cyprus, Turkey
Qingqing Ye The Hong Kong Polytechnic University, China
Mi-Yen Yeh Academia Sinica, Taiwan
Hongzhi Yin The University of Queensland, Australia
Peifeng Yin Pinterest, USA
Qiang Yin Alibaba Group, China
Man Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Masatoshi Yoshikawa Kyoto University, Japan
Baosheng Yu University of Sydney, Australia
Ge Yu Northeast University, China
Yi Yu National Information Infrastructure Enterprise

Promotion Association, Taiwan
Long Yuan Nanjing University of Science and Technology, China
Kai Zeng Alibaba Group, China
Fan Zhang Guangzhou University, China
Jilian Zhang Jinan University, China
Meihui Zhang Beijing Institute of Technology, China
Xiaofei Zhang University of Memphis, USA
Xiaowang Zhang Tianjin University, China
Yan Zhang Peking University, China
Zhongnan Zhang Software School of Xiamen University, China

xvi Organization



Pengpeng Zhao Soochow University, Taiwan
Xiang Zhao National University of Defence Technology, China
Bolong Zheng Huazhong University of Science and Technology,

China
Yudian Zheng Twitter, USA
Jiaofei Zhong California State University, East, USA
Rui Zhou Swinburne University of Technology, Australia
Wenchao Zhou Georgetown University, USA
Xiangmin Zhou RMIT University, Vietnam
Yuanchun Zhou Computer Network Information Center,

Chinese Academy of Sciences, China
Lei Zhu Shandong Normal Unversity, China
Qiang Zhu University of Michigan-Dearborn, USA
Yuanyuan Zhu Wuhan University, China
Yuqing Zhu California State University, Los Angeles, USA
Andreas Züfle George Mason University, USA

External Reviewers

Amani Abusafia
Ahmed Al-Baghdadi
Balsam Alkouz
Haris B. C.
Mohammed Bahutair
Elena Battaglia
Kovan Bavi
Aparna Bhat
Umme Billah
Livio Bioglio
Panagiotis Bozanis
Hangjia Ceng
Dipankar Chaki
Harry Kai-Ho Chan
Yanchuan Chang
Xiaocong Chen
Tianwen Chen
Zhi Chen
Lu Chen
Yuxing Chen
Xi Chen
Chen Chen
Guo Chen
Meng-Fen Chiang
Soteris Constantinou
Jian Dai

Sujatha Das Gollapalli
Panos Drakatos
Venkatesh Emani
Abir Farouzi
Chuanwen Feng
Jorge Galicia Auyon
Qiao Gao
Francisco Garcia-Garcia
Tingjian Ge
Harris Georgiou
Jinhua Guo
Surabhi Gupta
Yaowei Han
Yongjing Hao
Xiaotian Hao
Huajun He
Hanbin Hong
Xinting Huang
Maximilian Hünemörder
Omid Jafari
Zijing Ji
Yuli Jiang
Sunhwa Jo
Seungwon Jung
Seungmin Jung
Evangelos Karatzas

Organization xvii



Enamul Karim
Humayun Kayesh
Jaeboum Kim
Min-Kyu Kim
Ranganath Kondapally
Deyu Kong
Andreas Konstantinidis
Gourav Kumar
Abdallah Lakhdari
Dihia Lanasri
Hieu Hanh Le
Suan Lee
Xiaofan Li
Xiao Li
Huan Li
Pengfei Li
Yan Li
Sizhuo Li
Yin-Hsiang Liao
Dandan Lin
Guanli Liu
Ruixuan Liu
Tiantian Liu
Kaijun Liu
Baozhu Liu
Xin Liu
Bingyu Liu
Andreas Lohrer
Yunkai Lou
Jin Lu
Rosni Lumbantoruan
Priya Mani
Shohei Matsugu
Yukai Miao
Paschalis Mpeis
Kiran Mukunda
Siwan No
Alex Ntoulas
Sungwoo Park
Daraksha Parveen
Raj Patel
Gang Qian
Jiangbo Qian
Gyeongjin Ra

Niranjan Rai
Weilong Ren
Matt Revelle
Qianxiong Ruan
Georgios Santipantakis
Abhishek Santra
Nadine Schüler
Bipasha Sen
Babar Shahzaad
Yuxin Shen
Gengyuan Shi
Toshiyuki Shimizu
Lorina Sinanaj
Longxu Sun
Panagiotis Tampakis
Eleftherios Tiakas
Valter Uotila
Michael Vassilakopoulos
Yaoshu Wang
Pei Wang
Kaixin Wang
Han Wang
Lan Wang
Lei Wang
Han Wang
Yuting Xie
Shangyu Xie
Zhewei Xu
Richeng Xuan
Kailun Yan
Shuyi Yang
Kai Yao
Fuqiang Yu
Feng (George) Yu
Changlong Yu
Zhuoxu Zhang
Liang Zhang
Shuxun Zhang
Liming Zhang
Jie Zhang
Shuyuan Zheng
Fan Zhou
Shaowen Zhou
Kai Zou

xviii Organization



Contents – Part I

Big Data

Learning the Implicit Semantic Representation on Graph-Structured Data . . . . 3
Likang Wu, Zhi Li, Hongke Zhao, Qi Liu, Jun Wang, Mengdi Zhang,
and Enhong Chen

Multi-job Merging Framework and Scheduling Optimization
for Apache Flink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Hangxu Ji, Gang Wu, Yuhai Zhao, Ye Yuan, and Guoren Wang

CIC-FL: Enabling Class Imbalance-Aware Clustered Federated Learning
over Shifted Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Yanan Fu, Xuefeng Liu, Shaojie Tang, Jianwei Niu,
and Zhangmin Huang

vRaft: Accelerating the Distributed Consensus Under
Virtualized Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Yangyang Wang and Yunpeng Chai

Secure and Efficient Certificateless Provable Data Possession
for Cloud-Based Data Management Systems. . . . . . . . . . . . . . . . . . . . . . . . 71

Jing Zhang, Jie Cui, Hong Zhong, Chengjie Gu, and Lu Liu

Dirty-Data Impacts on Regression Models: An Experimental Evaluation . . . . 88
Zhixin Qi and Hongzhi Wang

UniTest: A Universal Testing Framework for Database
Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Gengyuan Shi, Chaokun Wang, Bingyang Huang, Hao Feng,
and Binbin Wang

Towards Generating HiFi Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Anupam Sanghi, Rajkumar Santhanam, and Jayant R. Haritsa

Modelling Entity Integrity for Semi-structured Big Data. . . . . . . . . . . . . . . . 113
Ilya Litvinenko, Ziheng Wei, and Sebastian Link

Graph Data

Label Contrastive Coding Based Graph Neural Network
for Graph Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Yuxiang Ren, Jiyang Bai, and Jiawei Zhang



Which Node Pair and What Status? Asking Expert for Better
Network Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Longcan Wu, Daling Wang, Shi Feng, Kaisong Song, Yifei Zhang,
and Ge Yu

Keyword-Centric Community Search over Large Heterogeneous
Information Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Lianpeng Qiao, Zhiwei Zhang, Ye Yuan, Chen Chen, and Guoren Wang

KGSynNet: A Novel Entity Synonyms Discovery Framework
with Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Yiying Yang, Xi Yin, Haiqin Yang, Xingjian Fei, Hao Peng, Kaijie Zhou,
Kunfeng Lai, and Jianping Shen

Iterative Reasoning over Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . 191
Liang Xu and Junjie Yao

Spatial-Temporal Attention Network for Temporal Knowledge
Graph Completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Jiasheng Zhang, Shuang Liang, Zhiyi Deng, and Jie Shao

Ranking Associative Entities in Knowledge Graph by Graphical Modeling
of Frequent Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Jie Li, Kun Yue, Liang Duan, and Jianyu Li

A Novel Embedding Model for Knowledge Graph Completion Based
on Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Jiaheng Dou, Bing Tian, Yong Zhang, and Chunxiao Xing

Gaussian Metric Learning for Few-Shot Uncertain Knowledge
Graph Completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Jiatao Zhang, Tianxing Wu, and Guilin Qi

Towards Entity Alignment in the Open World:
An Unsupervised Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Weixin Zeng, Xiang Zhao, Jiuyang Tang, Xinyi Li, Minnan Luo,
and Qinghua Zheng

Sequence Embedding for Zero or Low Resource Knowledge
Graph Completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Zhijuan Du

HMNet: Hybrid Matching Network for Few-Shot Link Prediction . . . . . . . . . 307
Shan Xiao, Lei Duan, Guicai Xie, Renhao Li, Zihao Chen, Geng Deng,
and Jyrki Nummenmaa

xx Contents – Part I



OntoCSM: Ontology-Aware Characteristic Set Merging for RDF
Type Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Pengkai Liu, Shunting Cai, Baozhu Liu, and Xin Wang

EDKT: An Extensible Deep Knowledge Tracing Model for Multiple
Learning Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Liangliang He, Xiao Li, Jintao Tang, and Ting Wang

Fine-Grained Entity Typing via Label Noise Reduction
and Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Haoyang Li, Xueling Lin, and Lei Chen

DMSPool: Dual Multi-Scale Pooling for Graph Representation Learning . . . . 375
Hualei Yu, Chong Luo, Yuntao Du, Hao Cheng, Meng Cao,
and Chongjun Wang

A Parameter-Free Approach for Lossless Streaming Graph Summarization . . . 385
Ziyi Ma, Jianye Yang, Kenli Li, Yuling Liu, Xu Zhou, and Yikun Hu

Expanding Semantic Knowledge for Zero-Shot Graph Embedding. . . . . . . . . 394
Zheng Wang, Ruihang Shao, Changping Wang, Changjun Hu,
Chaokun Wang, and Zhiguo Gong

Spatial and Temporal Data

Online High-Cardinality Flow Detection over Big Network Data Stream . . . . 405
Yang Du, He Huang, Yu-E Sun, An Liu, Guoju Gao, and Boyu Zhang

SCSG Attention: A Self-centered Star Graph with Attention for Pedestrian
Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Xu Chen, Shuncheng Liu, Zhi Xu, Yupeng Diao, Shaozhi Wu, Kai Zheng,
and Han Su

Time Period-Based Top-k Semantic Trajectory Pattern Query . . . . . . . . . . . . 439
Munkh-Erdene Yadamjav, Farhana M. Choudhury, Zhifeng Bao,
and Baihua Zheng

Optimal Sequenced Route Query with POI Preferences . . . . . . . . . . . . . . . . 457
Wenbin Li, Huaijie Zhu, Wei Liu, Jian Yin, and Jianliang Xu

Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data
on an Untrusted Cloud Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Wei Song, Mengfei Tang, Qiben Yan, Yuan Shen, Yang Cao, Qian Wang,
and Zhiyong Peng

Contents – Part I xxi



Exploiting Multi-source Data for Adversarial Driving Style
Representation Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Zhidan Liu, Junhong Zheng, Zengyang Gong, Haodi Zhang,
and Kaishun Wu

MM-CPred: A Multi-task Predictive Model for Continuous-Time Event
Sequences with Mixture Learning Losses . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Li Lin, Zan Zong, Lijie Wen, Chen Qian, Shuang Li, and Jianmin Wang

Modeling Dynamic Social Behaviors with Time-Evolving Graphs for User
Behavior Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Tianzi Zang, Yanmin Zhu, Chen Gong, Haobing Liu, and Bo Li

Memory-Efficient Storing of Timestamps for Spatio-Temporal Data
Management in Columnar In-Memory Databases . . . . . . . . . . . . . . . . . . . . 542

Keven Richly

Personalized POI Recommendation: Spatio-Temporal Representation
Learning with Social Tie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Shaojie Dai, Yanwei Yu, Hao Fan, and Junyu Dong

Missing POI Check-in Identification Using Generative
Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Meihui Shi, Derong Shen, Yue Kou, Tiezheng Nie, and Ge Yu

Efficiently Discovering Regions of Interest with User-Defined Score
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Qiyu Liu, Libin Zheng, Xiang Lian, and Lei Chen

An Attention-Based Bi-GRU for Route Planning and Order Dispatch
of Bus-Booking Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

Yucen Gao, Yuanning Gao, Yuhao Li, Xiaofeng Gao, Xiang Li,
and Guihai Chen

Top-k Closest Pair Queries over Spatial Knowledge Graph . . . . . . . . . . . . . 625
Fangwei Wu, Xike Xie, and Jieming Shi

HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

Liwei Deng, Xuanhao Chen, Yan Zhao, and Kai Zheng

Incentive-aware Task Location in Spatial Crowdsourcing . . . . . . . . . . . . . . . 650
Fei Zhu, Shushu Liu, Junhua Fang, and An Liu

Efficient Trajectory Contact Query Processing . . . . . . . . . . . . . . . . . . . . . . 658
Pingfu Chao, Dan He, Lei Li, Mengxuan Zhang, and Xiaofang Zhou

xxii Contents – Part I



STMG: Spatial-Temporal Mobility Graph for Location Prediction . . . . . . . . . 667
Xuan Pan, Xiangrui Cai, Jiangwei Zhang, Yanlong Wen, Ying Zhang,
and Xiaojie Yuan

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

Contents – Part I xxiii



Contents – Part II

Text and Unstructured Data

Multi-label Classification of Long Text Based on Key-
Sentences Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Jiayin Chen, Xiaolong Gong, Ye Qiu, Xi Chen, and Zhiyi Ma

Automated Context-Aware Phrase Mining from Text Corpora. . . . . . . . . . . . 20
Xue Zhang, Qinghua Li, Cuiping Li, and Hong Chen

Keyword-Aware Encoder for Abstractive Text Summarization . . . . . . . . . . . 37
Tianxiang Hu, Jingxi Liang, Wei Ye, and Shikun Zhang

Neural Adversarial Review Summarization with Hierarchical
Personalized Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Hongyan Xu, Hongtao Liu, Wenjun Wang, and Pengfei Jiao

Generating Contextually Coherent Responses by Learning Structured
Vectorized Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Yan Wang, Yanan Zheng, Shimin Jiang, Yucheng Dong, Jessica Chen,
and Shaohua Wang

Latent Graph Recurrent Network for Document Ranking . . . . . . . . . . . . . . . 88
Qian Dong and Shuzi Niu

Discriminative Feature Adaptation via Conditional Mean Discrepancy
for Cross-Domain Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bo Zhang, Xiaoming Zhang, Yun Liu, and Lei Chen

Discovering Protagonist of Sentiment with Aspect Reconstructed
Capsule Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chi Xu, Hao Feng, Guoxin Yu, Min Yang, Xiting Wang, Yan Song,
and Xiang Ao

Discriminant Mutual Information for Text Feature Selection . . . . . . . . . . . . . 136
Jiaqi Wang and Li Zhang

CAT-BERT: A Context-Aware Transferable BERT Model for Multi-turn
Machine Reading Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Cen Chen, Xinjing Huang, Feng Ji, Chengyu Wang, Minghui Qiu,
Jun Huang, and Yin Zhang



Unpaired Multimodal Neural Machine Translation
via Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Yijun Wang, Tianxin Wei, Qi Liu, and Enhong Chen

Multimodal Named Entity Recognition with Image Attributes
and Image Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Dawei Chen, Zhixu Li, Binbin Gu, and Zhigang Chen

Multi-task Neural Shared Structure Search: A Study Based
on Text Mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Jiyi Li and Fumiyo Fukumoto

A Semi-structured Data Classification Model with Integrating Tag
Sequence and Ngram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Lijun Zhang, Ning Li, Wei Pan, and Zhanhuai Li

Inferring Deterministic Regular Expression with Unorder and Counting . . . . . 235
Xiaofan Wang

MACROBERT: Maximizing Certified Region of BERT to Adversarial
Word Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Fali Wang, Zheng Lin, Zhengxiao Liu, Mingyu Zheng, Lei Wang,
and Daren Zha

A Diversity-Enhanced and Constraints-Relaxed Augmentation
for Low-Resource Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Guang Liu, Hailong Huang, Yuzhao Mao, Weiguo Gao, Xuan Li,
and Jianping Shen

Neural Demographic Prediction in Social Media with Deep Multi-view
Multi-task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Yantong Lai, Yijun Su, Cong Xue, and Daren Zha

An Interactive NL2SQL Approach with Reuse Strategy . . . . . . . . . . . . . . . . 280
Xiaxia Wang, Sai Wu, Lidan Shou, and Ke Chen

Data Mining

Consistency- and Inconsistency-Aware Multi-view Subspace Clustering . . . . . 291
Guang-Yu Zhang, Xiao-Wei Chen, Yu-Ren Zhou, Chang-Dong Wang,
and Dong Huang

Discovering Collective Converging Groups of Large Scale Moving Objects
in Road Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Jinping Jia, Ying Hu, Bin Zhao, Genlin Ji, and Richen Liu

xxvi Contents – Part II



Efficient Mining of Outlying Sequential Behavior Patterns . . . . . . . . . . . . . . 325
Yifan Xu, Lei Duan, Guicai Xie, Min Fu, Longhai Li,
and Jyrki Nummenmaa

Clustering Mixed-Type Data with Correlation-Preserving Embedding . . . . . . 342
Luan Tran, Liyue Fan, and Cyrus Shahabi

Beyond Matching: Modeling Two-Sided Multi-Behavioral Sequences
for Dynamic Person-Job Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Bin Fu, Hongzhi Liu, Yao Zhu, Yang Song, Tao Zhang,
and Zhonghai Wu

A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Xiang Wang, Xiaoyong Li, Junxing Zhu, Zichen Xu, Kaijun Ren,
Weiming Zhang, Xinwang Liu, and Kui Yu

AE-UPCP: Seeking Potential Membership Users by Audience Expansion
Combining User Preference with Consumption Pattern. . . . . . . . . . . . . . . . . 392

Xiaokang Xu, Zhaohui Peng, Senzhang Wang, Shanshan Huang,
Philip S. Yu, Zhenyun Hao, Jian Wang, and Xue Wang

Self Separation and Misseparation Impact Minimization for Open-Set
Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Yuntao Du, Yikang Cao, Yumeng Zhou, Yinghao Chen, Ruiting Zhang,
and Chongjun Wang

Machine Learning

Partial Modal Conditioned GANs for Multi-modal Multi-label Learning
with Arbitrary Modal-Missing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Yi Zhang, Jundong Shen, Zhecheng Zhang, and Chongjun Wang

Cross-Domain Error Minimization for Unsupervised Domain Adaptation . . . . 429
Yuntao Du, Yinghao Chen, Fengli Cui, Xiaowen Zhang,
and Chongjun Wang

Unsupervised Domain Adaptation with Unified Joint
Distribution Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Yuntao Du, Zhiwen Tan, Xiaowen Zhang, Yirong Yao, Hualei Yu,
and Chongjun Wang

Relation-Aware Alignment Attention Network for Multi-view
Multi-label Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Yi Zhang, Jundong Shen, Cheng Yu, and Chongjun Wang

Contents – Part II xxvii



BIRL: Bidirectional-Interaction Reinforcement Learning Framework
for Joint Relation and Entity Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Yashen Wang and Huanhuan Zhang

DFILAN: Domain-Based Feature Interactions Learning via Attention
Networks for CTR Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Yongliang Han, Yingyuan Xiao, Hongya Wang, Wenguang Zheng,
and Ke Zhu

Double Ensemble Soft Transfer Network for Unsupervised Domain
Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Manliang Cao, Xiangdong Zhou, Lan Lin, and Bo Yao

Attention-Based Multimodal Entity Linking with High-Quality Images . . . . . 533
Li Zhang, Zhixu Li, and Qiang Yang

Learning to Label with Active Learning and Reinforcement Learning . . . . . . 549
Xiu Tang, Sai Wu, Gang Chen, Ke Chen, and Lidan Shou

Entity Resolution with Hybrid Attention-Based Networks. . . . . . . . . . . . . . . 558
Chenchen Sun and Derong Shen

Information Retrieval and Search

MLSH: Mixed Hash Function Family for Approximate Nearest Neighbor
Search in Multiple Fractional Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Kejing Lu and Mineichi Kudo

Quantum-Inspired Keyword Search on Multi-model Databases . . . . . . . . . . . 585
Gongsheng Yuan, Jiaheng Lu, and Peifeng Su

ZH-NER: Chinese Named Entity Recognition with Adversarial Multi-task
Learning and Self-Attentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Peng Zhu, Dawei Cheng, Fangzhou Yang, Yifeng Luo, Weining Qian,
and Aoying Zhou

Drug-Drug Interaction Extraction via Attentive Capsule Network
with an Improved Sliding-Margin Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

Dongsheng Wang, Hongjie Fan, and Junfei Liu

Span-Based Nested Named Entity Recognition with Pretrained Language
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Chenxu Liu, Hongjie Fan, and Junfei Liu

Poetic Expression Through Scenery: Sentimental Chinese Classical Poetry
Generation from Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Haotian Li, Jiatao Zhu, Sichen Cao, Xiangyu Li, Jiajun Zeng,
and Peng Wang

xxviii Contents – Part II



Social Network

SCHC: Incorporating Social Contagion and Hashtag Consistency
for Topic-Oriented Social Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . 641

Ruifang He, Huanyu Liu, and Liangliang Zhao

Image-Enhanced Multi-Modal Representation for Local Topic Detection
from Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

Junsha Chen, Neng Gao, Yifei Zhang, and Chenyang Tu

A Semi-supervised Framework with Efficient Feature Extraction
and Network Alignment for User Identity Linkage . . . . . . . . . . . . . . . . . . . 675

Zehua Hu, Jiahai Wang, Siyuan Chen, and Xin Du

Personality Traits Prediction Based on Sparse Digital Footprints via
Discriminative Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

Shipeng Wang, Daokun Zhang, Lizhen Cui, Xudong Lu, Lei Liu,
and Qingzhong Li

A Reinforcement Learning Model for Influence Maximization
in Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Chao Wang, Yiming Liu, Xiaofeng Gao, and Guihai Chen

A Multilevel Inference Mechanism for User Attributes
over Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

Hang Zhang, Yajun Yang, Xin Wang, Hong Gao, Qinghua Hu,
and Dan Yin

Query Processing

Accurate Cardinality Estimation of Co-occurring Words Using
Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Jens Willkomm, Martin Schäler, and Klemens Böhm

Shadow: Answering Why-Not Questions on Top-K Spatial Keyword
Queries over Moving Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

Wang Zhang, Yanhong Li, Lihchyun Shu, Changyin Luo, and Jianjun Li

DBL: Efficient Reachability Queries on Dynamic Graphs. . . . . . . . . . . . . . . 761
Qiuyi Lyu, Yuchen Li, Bingsheng He, and Bin Gong

Towards Expectation-Maximization by SQL in RDBMS . . . . . . . . . . . . . . . 778
Kangfei Zhao, Jeffrey Xu Yu, Yu Rong, Ming Liao, and Junzhou Huang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

Contents – Part II xxix



Contents – Part III

Recommendation

Gated Sequential Recommendation System with Social and Textual
Information Under Dynamic Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Haoyu Geng, Shuodian Yu, and Xiaofeng Gao

SRecGAN: Pairwise Adversarial Training
for Sequential Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Guangben Lu, Ziheng Zhao, Xiaofeng Gao, and Guihai Chen

SSRGAN: A Generative Adversarial Network for Streaming Sequential
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Yao Lv, Jiajie Xu, Rui Zhou, Junhua Fang, and Chengfei Liu

Topological Interpretable Multi-scale Sequential Recommendation . . . . . . . . 53
Tao Yuan, Shuzi Niu, and Huiyuan Li

SANS: Setwise Attentional Neural Similarity Method
for Few-Shot Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Zhenghao Zhang, Tun Lu, Dongsheng Li, Peng Zhang, Hansu Gu,
and Ning Gu

Semi-supervised Factorization Machines for Review-Aware
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Junheng Huang, Fangyuan Luo, and Jun Wu

DCAN: Deep Co-Attention Network by Modeling User Preference
and News Lifecycle for News Recommendation . . . . . . . . . . . . . . . . . . . . . 100

Lingkang Meng, Chongyang Shi, Shufeng Hao, and Xiangrui Su

Considering Interaction Sequence of Historical Items for Conversational
Recommender System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Xintao Tian, Yongjing Hao, Pengpeng Zhao, Deqing Wang, Yanchi Liu,
and Victor S. Sheng

Knowledge-Aware Hypergraph Neural Network
for Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Binghao Liu, Pengpeng Zhao, Fuzhen Zhuang, Xuefeng Xian,
Yanchi Liu, and Victor S. Sheng

Personalized Dynamic Knowledge-Aware Recommendation
with Hybrid Explanations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Hao Sun, Zijian Wu, Yue Cui, Liwei Deng, Yan Zhao, and Kai Zheng



Graph Attention Collaborative Similarity Embedding
for Recommender System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Jinbo Song, Chao Chang, Fei Sun, Zhenyang Chen, Guoyong Hu,
and Peng Jiang

Learning Disentangled User Representation Based on Controllable
VAE for Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Yunyi Li, Pengpeng Zhao, Deqing Wang, Xuefeng Xian, Yanchi Liu,
and Victor S. Sheng

DFCN: An Effective Feature Interactions Learning Model for
Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Wei Yang and Tianyu Hu

Tell Me Where to Go Next: Improving POI Recommendation
via Conversation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Changheng Li, Yongjing Hao, Pengpeng Zhao, Fuzhen Zhuang,
Yanchi Liu, and Victor S. Sheng

MISS: A Multi-user Identification Network for Shared-Account
Session-Aware Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Xinyu Wen, Zhaohui Peng, Shanshan Huang, Senzhang Wang,
and Philip S. Yu

VizGRank: A Context-Aware Visualization Recommendation Method
Based on Inherent Relations Between Visualizations . . . . . . . . . . . . . . . . . . 244

Qianfeng Gao, Zhenying He, Yinan Jing, Kai Zhang, and X. Sean Wang

Deep User Representation Construction Model for Collaborative Filtering . . . 262
Daomin Ji, Zhenglong Xiang, and Yuanxiang Li

DiCGAN: A Dilated Convolutional Generative Adversarial Network
for Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Zhiqiang Guo, Chaoyang Wang, Jianjun Li, Guohui Li, and Peng Pan

RE-KGR: Relation-Enhanced Knowledge Graph Reasoning for
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Ming He, Hanyu Zhang, and Han Wen

LGCCF: A Linear Graph Convolutional Collaborative Filtering with Social
Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Ming He, Han Wen, and Hanyu Zhang

Sirius: Sequential Recommendation with Feature Augmented Graph
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Xinzhou Dong, Beihong Jin, Wei Zhuo, Beibei Li, and Taofeng Xue

xxxii Contents – Part III



Combining Meta-path Instances into Layer-Wise Graphs
for Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Mingda Qian, Bo Li, Xiaoyan Gu, Zhuo Wang, Feifei Dai,
and Weiping Wang

GCAN: A Group-Wise Collaborative Adversarial Networks for Item
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Xuehan Sun, Tianyao Shi, Xiaofeng Gao, Xiang Li, and Guihai Chen

Emerging Applications

PEEP: A Parallel Execution Engine for Permissioned Blockchain Systems . . . 341
Zhihao Chen, Xiaodong Qi, Xiaofan Du, Zhao Zhang, and Cheqing Jin

URIM: Utility-Oriented Role-Centric Incentive Mechanism Design
for Blockchain-Based Crowdsensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Zheng Xu, Chaofan Liu, Peng Zhang, Tun Lu, and Ning Gu

PAS: Enable Partial Consensus in the Blockchain . . . . . . . . . . . . . . . . . . . . 375
Zihuan Xu, Siyuan Han, and Lei Chen

Redesigning the Sorting Engine for Persistent Memory . . . . . . . . . . . . . . . . 393
Yifan Hua, Kaixin Huang, Shengan Zheng, and Linpeng Huang

ImputeRNN: Imputing Missing Values in Electronic Medical Records . . . . . . 413
Jiawei Ouyang, Yuhao Zhang, Xiangrui Cai, Ying Zhang,
and Xiaojie Yuan

Susceptible Temporal Patterns Discovery for Electronic Health Records
via Adversarial Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Rui Zhang, Wei Zhang, Ning Liu, and Jianyong Wang

A Decision Support System for Heart Failure Risk Prediction Based
on Weighted Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Kehui Song, Shenglong Yu, Haiwei Zhang, Ying Zhang, Xiangrui Cai,
and Xiaojie Yuan

Inheritance-Guided Hierarchical Assignment for Clinical Automatic
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Yichao Du, Pengfei Luo, Xudong Hong, Tong Xu, Zhe Zhang, Chao Ren,
Yi Zheng, and Enhong Chen

BPTree: An Optimized Index with Batch Persistence on Optane DC PM . . . . 478
Chenchen Huang, Huiqi Hu, and Aoying Zhou

An Improved Dummy Generation Approach for Enhancing
User Location Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Shadaab Siddiqie, Anirban Mondal, and P. Krishna Reddy

Contents – Part III xxxiii



Industrial Papers

LinkLouvain: Link-Aware A/B Testing and Its Application on Online
Marketing Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Tianchi Cai, Daxi Cheng, Chen Liang, Ziqi Liu, Lihong Gu, Huizhi Xie,
Zhiqiang Zhang, Xiaodong Zeng, and Jinjie Gu

An Enhanced Convolutional Inference Model with Distillation for
Retrieval-Based QA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Shuangyong Song, Chao Wang, Xiao Pu, Zehui Wang, and Huan Chen

Familia: A Configurable Topic Modeling Framework for Industrial
Text Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Di Jiang, Yuanfeng Song, Rongzhong Lian, Siqi Bao, Jinhua Peng,
Huang He, Hua Wu, Chen Zhang, and Lei Chen

Generating Personalized Titles Incorporating Advertisement Profile . . . . . . . . 529
Jingbing Wang, Zhuolin Hao, Minping Zhou, Jiaze Chen, Hao Zhou,
Zhenqiao Song, Jinghao Wang, Jiandong Yang, and Shiguang Ni

Parasitic Network: Zero-Shot Relation Extraction for Knowledge
Graph Populating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Shengbin Jia, E. Shijia, Ling Ding, Xiaojun Chen, LingLing Yao,
and Yang Xiang

Graph Attention Networks for New Product Sales Forecasting
in E-Commerce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Chuanyu Xu, Xiuchong Wang, Binbin Hu, Da Zhou, Yu Dong,
Chengfu Huo, and Weijun Ren

Transportation Recommendation with Fairness Consideration . . . . . . . . . . . . 566
Ding Zhou, Hao Liu, Tong Xu, Le Zhang, Rui Zha, and Hui Xiong

Constraint-Adaptive Rule Mining in Large Databases . . . . . . . . . . . . . . . . . 579
Meng Li, Ya-Lin Zhang, Qitao Shi, Xinxing Yang, Qing Cui, Longfei Li,
and Jun Zhou

Demo Papers

FedTopK: Top-K Queries Optimization over Federated RDF Systems . . . . . . 595
Ningchao Ge, Zheng Qin, Peng Peng, and Lei Zou

Shopping Around: CoSurvey Helps You Make a Wise Choice . . . . . . . . . . . 600
Qinhui Chen, Liping Hua, Junjie Wei, Hui Zhao, and Gang Zhao

IntRoute: An Integer Programming Based Approach for Best Bus
Route Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Chang-Wei Sung, Xinghao Yang, Chung-Shou Liao, and Wei Liu

xxxiv Contents – Part III



NRCP-Miner: Towards the Discovery of Non-redundant Co-location
Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Xuguang Bao, Jinjie Lu, Tianlong Gu, Liang Chang, and Lizhen Wang

ARCA: A Tool for Area Calculation Based on GPS Data . . . . . . . . . . . . . . 612
Sujing Song, Jie Sun, and Jianqiu Xu

LSTM Based Sentiment Analysis for Cryptocurrency Prediction . . . . . . . . . . 617
Xin Huang, Wenbin Zhang, Xuejiao Tang, Mingli Zhang,
Jayachander Surbiryala, Vasileios Iosifidis, Zhen Liu, and Ji Zhang

SQL-Middleware: Enabling the Blockchain with SQL . . . . . . . . . . . . . . . . . 622
Xing Tong, Haibo Tang, Nan Jiang, Wei Fan, Yichen Gao, Sijia Deng,
Zhao Zhang, Cheqing Jin, Yingjie Yang, and Gang Qin

Loupe: A Visualization Tool for High-Level Execution Plans
in SystemDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Zhizhen Xu, Zihao Chen, and Chen Xu

Ph.D Consortium

Algorithm Fairness Through Data Inclusion, Participation,
and Reciprocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Olalekan J. Akintande

Performance Issues in Scheduling of Real-Time Transactions . . . . . . . . . . . . 638
Sarvesh Pandey and Udai Shanker

Semantic Integration of Heterogeneous and Complex Spreadsheet Tables . . . . 643
Sara Bonfitto

Abstract Model for Multi-model Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
Pavel Čontoš

User Preference Translation Model for Next Top-k Items Recommendation
with Social Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Hao-Shang Ma and Jen-Wei Huang

Tutorials

Multi-model Data, Query Languages and Processing Paradigms . . . . . . . . . . 659
Qingsong Guo, Jiaheng Lu, Chao Zhang, and Shuxun Zhang

Lightweight Deep Learning with Model Compression . . . . . . . . . . . . . . . . . 662
U. Kang

Contents – Part III xxxv



Discovering Communities over Large Graphs: Algorithms, Applications,
and Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Chaokun Wang, Junchao Zhu, Zhuo Wang, Yunkai Lou, Gaoyang Guo,
and Binbin Wang

AI Governance: Advanced Urban Computing on Informatics Forecasting
and Route Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Hsun-Ping Hsieh and Fandel Lin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

xxxvi Contents – Part III



Big Data



Learning the Implicit Semantic
Representation on Graph-Structured

Data

Likang Wu1, Zhi Li1, Hongke Zhao2, Qi Liu1, Jun Wang1, Mengdi Zhang3,
and Enhong Chen1(B)

1 Anhui Province Key Laboratory of Big Data Analysis and Application,
University of Science and Technology of China, Hefei, China

{wulk,zhili03}@mail.ustc.edu.cn, {qiliuql,cheneh}@ustc.edu.cn
2 Tianjin University, Tianjin, China

hongke@tju.edu.cn
3 Meituan-Dianping Group, Beijing, China

zhangmengdi02@meituan.com

Abstract. Existing representation learning methods in graph convolu-
tional networks are mainly designed by describing the neighborhood of
each node as a perceptual whole, while the implicit semantic associ-
ations behind highly complex interactions of graphs are largely unex-
ploited. In this paper, we propose a Semantic Graph Convolutional Net-
works (SGCN) that explores the implicit semantics by learning latent
semantic-paths in graphs. In previous work, there are explorations of
graph semantics via meta-paths. However, these methods mainly rely
on explicit heterogeneous information that is hard to be obtained in
a large amount of graph-structured data. SGCN first breaks through
this restriction via leveraging the semantic-paths dynamically and auto-
matically during the node aggregating process. To evaluate our idea,
we conduct sufficient experiments on several standard datasets, and the
empirical results show the superior performance of our model (Our code
is available online at https://github.com/WLiK/SGCN SemanticGCN).

Keywords: Graph neural networks · Semantic representation ·
Network analysis

1 Introduction

The representations of objects (nodes) in large graph-structured data, such as
social or biological networks, have been proved extremely effective as feature
inputs for graph analysis tasks. Recently, there have been many attempts in
the literature to extend neural networks to deal with representation learning of
graphs, such as Graph Convolutional Networks (GCN) [15], GraphSAGE [12]
and Graph Attention Networks (GAT) [34].

In spite of enormous success, previous graph neural networks mainly proposed
representation learning methods by describing the neighborhoods as a perceptual
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-73194-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_1&domain=pdf
https://github.com/WLiK/SGCN_SemanticGCN
https://doi.org/10.1007/978-3-030-73194-6_1


4 L. Wu et al.

A

B C

D

Fig. 1. Example of implicit semantic-paths in a scholar cooperation network. There are
not explicit node (relation) types. Behind the same kind of relation (black solid edge),
there are implicit factors (dotted line, A is the student of B, B is the advisor of C).
So, the path A-B-C expresses “Student-Advisor-Student”, A and C are “classmates”.
B-C-D expresses “Advisor-Student-Advisor”, B and D are “colleagues”.

whole, and they have not gone deep into the exploration of semantic information
in graphs. Taking the movie network as an example, the paths based on com-
posite relations of “Movie-Actor-Movie” and “Movie-Director-Movie” may reveal
two different semantic patterns, i.e., the two movies have the same actor (direc-
tor). Here the semantic pattern is defined as a specific knowledge expressed by
the corresponding path. Although several researchers [30,35] attempt to capture
these graph semantics of composite relations between two objects by meta-paths,
existing work relies on the given heterogeneous information such as different
types of objects and distinct object connections. However, in the real world,
quite a lot of graph-structured data do not have the explicit characteristics. As
shown in Fig. 1, in a scholar cooperation network, there are usually no explicit
node (relation) types and all nodes are connected through the same relation, i.e.,
“Co-author”. Fortunately, behind the same relation, there are various implicit
factors which may express different connecting reasons, such as “Classmate”
and “Colleague” for the same relation “Co-author”. These factors can further
compose diverse semantic-paths (e.g. “Student-Advisor-Student” and “Advisor-
Student-Advisor”), which reveal sophisticated semantic associations and help to
generate more informative representations. Then, how to automatically exploit
comprehensive semantic patterns based on the implicit factors behind a general
graph is a non-trivial problem.

In general, there are several challenges to solve this problem. Firstly, it is an
essential part to adaptively infer latent factors behind graphs. We notice that
several researches begin to explore desired latent factors behind a graph by dis-
entangled representations [18,20]. However, they mainly focus on inferring the
latent factors by the disentangled representation learning while failing to discrim-
inatively model the independent implicit factors behind the same connections.
Secondly, after discovering the latent factors, how to select the most meaningful
semantics and aggregate the diverse semantic information remain largely unex-
plored. Last but not the least, to further exploit the implicit semantic patterns
and to be capable of conducting inductive learning are quite difficult.

To address above challenges, in this paper, we propose a novel Semantic
Graph Convolutional Networks (SGCN), which sheds light on the exploration



Learning the Implicit Semantic Representation on Graph-Structured Data 5

of implicit semantics in the node aggregating process. Specifically, we first pro-
pose a latent factor routing method with the DisenConv layer [20] to adaptively
infer the probability of each latent factor that may have caused the link from
a given node to one of its neighborings. Then, for further exploring the diverse
semantic information, we transfer the probability between every two connected
nodes to the corresponding semantic adjacent matrix, which can present the
semantic-paths in a graph. Afterwards, most semantic strengthen methods like
the semantic level attention module can be easily integrated into our model and
aggregate the diverse semantic information from these semantic-paths. Finally,
to encourage the independence of the implicit semantic factors and conduct the
inductive learning, we design an effective joint loss function to maintain the
independent mapping channels of different factors. This loss function is able to
focus on different semantic characteristics during the training process.

Specifically, the contributions of this paper can be summarized as follows:

– We first break the heterogeneous restriction of semantic representations with
an end-to-end framework. It automatically infers the independent factor
behind the formation of each edge and explores the semantic associations
of latent factors behind a graph.

– We propose a novel Semantic Graph Convolutional Networks (SGCN), to
learn node representations by aggregating the implicit semantics from the
graph-structured data.

– We conduct extensive experiments on various real-world graphs datasets to
evaluate the performance of the proposed model. The results show the supe-
riority of our proposed model by comparing it with many powerful models.

2 Related Works

Graph neural networks (GNNs) [10,26], especially graph convolutional networks
[13], have been proven successful in modeling the structured graph data due to
its theoretical elegance [5]. They have made new breakthroughs in various tasks,
such as node classification [15] and graph classification [6]. In the early days,
the graph spectral theory [13] was used to derive a graph convolutional layer.
Then, the polynomial spectral filters [6] greatly reduced the computational cost
than before. And, Kipf and Welling [15] proposed the usage of a linear filter
to get further simplification. Along with spectral graph convolution, directly
performing graph convolution in the spatial domain was also investigated by
many researchers [8,12]. Among them, graph attention networks [34] has aroused
considerable research interest, since it adaptively specify weights to the neighbors
of a node by attention mechanism [1,37].

For semantic learning research, there have been studies explored a kind of
semantic-path called meta-path in heterogeneous graph embedding to preserve
structural information. ESim [28] learned node representations by searching the
user-defined embedding space. Based on random walk, meta-path2vec [7] utilized
skip-gram to perform a semantic-path. HERec [29] proposed a type constraint



6 L. Wu et al.

strategy to filter the node sequence and captured the complex semantics reflected
in heterogeneous graph. Then, Fan et al. [9] suggested a meta-graph2vec model
for malware detection, where both the structures and semantics are preserved.
Sun et al. [30] proposed meta-graph-based network embedding models, which
simultaneously considers the hidden relations of all meta information of a meta-
graph. Meanwhile, there were other influential semantic learning approaches in
some studies. For instance, many models [4,17,25] were utilized to various fields
because of their latent semantic analysis ability.

In heterogeneous graphs, two objects can be connected via different semantic-
paths, which are called meta-paths. It depends on the characteristic that this
graph structure has different types of nodes and relations. One meta-path Φ

is defined as a path in the form of A1
R1−→A2

R2−→ · · · Rl−→ Al+1 (abbreviated
as A1A2 · · · Al+1), it describes a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl,
where ◦ denotes the composition operator on relations. Actually, in homogeneous
graph, the relationships between nodes are also generated for different reasons
(latent factors), so we can implicitly construct various types of relationships to
extract various semantic-paths correspond to different semantic patterns, so as
to improve the performance of GCN model from the perspective of semantic
discovery.

3 Semantic Graph Convolutional Networks

In this section, we introduce the Semantic Graph Convolutional Networks
(SGCN). We first present the notations, then describe the overall network
progressively.

3.1 Preliminary

We focus primarily on undirected graphs, and it is straightforward to extend our
approach to directed graphs. We define G = (V,E) as a graph, comprised of the
nodes set V and edges set E, and |V | = N denotes the number of nodes. Each
node u ∈ V has a feature vector xu ∈ R

din . We use (u, v) ∈ E to indicate that
there is an edge between node u and node v. Most graph convolutional networks
can be regarded as an aggregation function f(·) that outputs the representations
of nodes when given features of each node and its neighbors:

y = f(xu,xv : (u, v) ∈ E | u ∈ V ),

where the output y ∈ R
N×dout denotes the representations of nodes. It means

that neighborhoods of a node contains rich information, which can be aggre-
gated to describe the node more comprehensively. Different from previous studies
[12,15,34], in our work, proposed f(·) would automatically learn the semantic-
path from graph data to explore corresponding semantic pattern.



Learning the Implicit Semantic Representation on Graph-Structured Data 7

3.2 Latent Factor Routing

Here we aim to introduce the disentangled algorithm that calculates the latent
factors between every two objects. We assume that each node is composed of K
independent components, hence there are K latent factors to be disentangled.
For the node u ∈ V , the hidden representation of u is hu = [eu,1, eu,2, ..., eu,K ] ∈
R

K× dout
K , where eu,k ∈ R

dout
K (k = 1, 2, ...,K) denotes corresponding aspect of

node u that is pertinent to the k-th disentangled factor.
In the initial stage, we project its feature vector xu into K different subspaces:

zu,k =
σ(Wkxu + bk)

‖σ(Wkxu + bk)‖2
, (1)

where Wk ∈ R
din× dout

K and bk ∈ R
dout
K are the mapping parameters and bias

of k-th subspace, the nonlinear activation function σ is ReLU [23]. To capture
aspect k of node u comprehensively, we construct eu,k from both zu,k and {zv,k :
(u, v) ∈ E}, which can be utilized to identify the latent factors. Here we learn the
probability of each factor by leveraging neighborhood routing mechanism [18,20],
it is a DisenConv layer:

etu,k =
zu,k +

∑
v:(u,v)∈E pk,t−1

u,v zv,k

‖zu,k +
∑

v:(u,v)∈E pk,t−1
u,v zv,k‖

2

, (2)

pk,t
u,v =

exp(z�
v,ke

t
u,k)

∑K
k=1 exp(z�

v,ke
t
u,k)

, (3)

where iteration t = 1, 2, ..., T , pk
u,v indicates the probability that factor k indicates

the reason why node u reaches neighbor v, and satisfies pk
u,v ≥ 0,

∑K
k=1 p

k
u,v = 1.

The neighborhood routing mechanism will iteratively infer pk
u,v and construct ek.

Note that, there are total L DisenConv layers, zu,k is assigned the value of eTu,k
finally in each layer l ≤ L − 1, more detail can refer to Algorithm 1.

3.3 Discriminative Semantic Aggregation

For the data that various relation types between nodes and their corresponding
neighbors are explicit and fixed, it is easily to construct multiple sub-semantic
graphs as the input data for multiple GCN model. As shown in Fig. 2(a), a
heterogeneous graph G contains two different types of meta-paths (meta-path
1, meta-path 2). Then G can be decomposed to multiple graphs G̃ consisting of
single semantic graph G1 and G2, where u and its neighbors are connected by
path-relation 1(2) for each node u in G1(G2).

However, we cannot simply transfer the pre-construct multiple graph method
to all network architectures. In detail, for a graph with no different types of edges,



8 L. Wu et al.

(a) Multi-graph method

0 0 0

0 0 1

0 0 0

0 0 0

1 0 0

0 0 0

1    2    3 1    2    3
1
2
3

1
2
3

1

2

3

(b) Discriminative semantic aggregation method

Fig. 2. A previous meta-paths representation on heterogeneous graph and our discrim-
inative semantic aggregation method.

we have to judge implicit connecting factors of these edges to find semantic-paths.
And the probability of each latent factor is calculated in the iteratively running
process as mentioned in last section. To solve this dilemma, we propose a novel
algorithm to automatically represent semantic-paths during the model running.

After the latent factor routing process, we get the soft probability matrix
of node latents p ∈ R

N×N×K , where 0 ≤ pk
i,j ≤ 1 means the possibility that

node i connects to j because of the factor k. In our model, the latent factor
should identify the certain connecting cause of each connected node pair. Here
we transfer the probability matrix p to an semantic adjacent matrix A, so the
element in A only has binary value (0 or 1). In detail, for every node pair i and
j, Ak

i,j = 1 if pk
i,j denotes the biggest value in pi,j . As shown in Fig. 2(b), each

node is represented by K components. In this graph, every node may connect
with others by one relationship from K types, e.g., the relationship between
node u and o is R2 (denotes A2

u,o = 1). For node u, we can find that it has two
semantic-path-based neighbors l and v. And, the semantic-paths of (u, l) and
(u, v) are two different types which composed by Φu,o,l = (A2

u,o,A
3
o,l) = R2 ◦ R3

and Φu,o,v = (A2
u,o,A

1
o,v) = R2 ◦ R1 respectively. We define the adjacent matrix

B for virtual semantic-path-based edges,

Bu,v =
∑

[(u,o),(o,v)]∈E

A�
u,oAo,v, {u, v} ⊂ V, (4)

where Au,o ∈ R
K , Ao,v ∈ R

K , and Bu,v ∈ R
K×K . For instance, in Fig. 2(b),

Au,o = [0, 1, 0], Ao,v = [1, 0, 0], and Ao,l = [0, 0, 1], in this way two semantic-
paths start from node u can be expressed as B2,3

u,l = 1 and B2,1
u,v = 1.

In the semantic information aggregation process, we aggregate the latent
vectors connected by corresponding semantic-path as:

hu = [eu,1, eu,2, ..., eu,K ] ∈ R
K× dout

K ,

h̃v = [zv,1, zv,2, ..., zv,K ] ∈ R
K× dout

K ,

yu = hu + MeanPooling
v∈V,v �=u

(Bu,vh̃v), u ∈ V,

(5)



Learning the Implicit Semantic Representation on Graph-Structured Data 9

where we just use MeanPooling to avoid large values instead of
∑

v∈V oper-

ator, and hu, h̃v ∈ R
K× dout

K are both returned from the last layer of Disen-
Conv operation, in this time that factor probabilities would be stable since the
representation of each node considers the influence from neighbors. According
to Eq. (5), the aggregation of two latent representations (end points) of one
certain semantic-path denotes the mining result of this semantic relation, e.g.,
Pooling(eu,2, zv,1) and Pooling(eu,2, zl,3) express two different kinds of semantic
pattern representations in Fig. 2(b), R2 ◦ R1 and R2 ◦ R3 respectively. And, for
all types of semantic-paths start from node u, the weight of each type depends
on its frequency. Note that, although the semantic adjacent matrix A neglects
some low probability factors, our semantic paths are integrated with the node
states of DisenGCN, which would not lose the crucial information captured by
basic GCN model. The advantage of this aggregation method is that our model
can distinguish different semantic relations without adding extra parameters,
instead of designing various graph convolution networks for different semantic-
paths. That is to say, the model does not increase the risk of over fitting after
the graph semantic-paths learning. Here we only consider 2-order-paths in our
model, however, it can be straightly extended to longer path mining.

3.4 Independence Learning for Mapping Subspaces

In fact, one type of edge in a meta-path tries to denote one unique meaning, so
the K latent factors in our work should not overlap. So, the assumption of using
latent factors to construct semantic-paths is that these different factors extracted
by latent factor routing module can focus on different connecting causes. In
other words, we should encourage the representations of different factors to be
of sufficient independence. Before the probability calculating, on our features,
the focused point views of K subspaces in Eq. (1) should keep different. Our
solution considers that the distance between independence factor representations
zi,k, k ≤ K should be sufficient long if they were projected to one subspace.

First, we project the input values z in Eq. (1) into an unified space to get
vectors Q and K as follow:

Q = zw,K = zw, (6)

where w ∈ R
dout
K × dout

K is the projection parameter matrix. Then, the indepen-
dence loss based on distances between unequal factor representations could be
calculated as follow:

Li =
1
M

∑
softmax(

QK�
√

dout

K

) 	 (1 − I), (7)

where I ∈ R
K×K denotes an identity matrix, 	 is element-wise product, M =

K2−K. Specifically, we learn a lesson from [33] that scaling the dot products by
1/

√
dout/K, to counteract the gradients disappear effect for large values. As long



10 L. Wu et al.

as Li is minimized in the training process, the distances between different factors
tend to be larger, that is, the K subspaces would capture sufficient different
information to encourage independence among learned latent factors.

Next, we would analyze the validity of this optimization. Latent Factor Rout-
ing aims to utilize the disentangled algorithm to calculate the latent factors
between every two objects. However, this approach is a variant of von Mises-
Fisher (vMF) [2] mixture model, such an EM algorithm cannot optimize the
independences of latent factors within the iterative process. And random initial-
ization of the mapping parameters is also not able to promise that subspaces
obtain different concerns. For this shortcoming, we give an assumption:

Assumption 31. The features in different subspaces keep sufficient independent
when the margins of their projections in the unified space are sufficiently distinct.

This assumption is inspired by the Latent Semantic Analysis algorithm
(LSA) [16] that projects multi-dimensional features of a vector space model
into a semantic space with less dimensions, which keeps the semantic features of
the original space in a statistical sense. So, our optimization approach is listed
below:

w = arg min
∑

softmax(QKT) 	 (1 − I),

= arg min
∑V

u
softmax((zuw)(zuw)T) 	 (1 − I),

= arg min
V∑

u

∑
k1 �=k2

exp(zu,k1w · zu,k2w)
∑

k1,k2
exp(zu,k1w · zu,k2w)

, (8)

= arg max
V∑

u

∑

k1 �=k2

distance(zu,k1w, zu,k2w).

S.t. : 1 ≤ k1 ≤ K, 1 ≤ k2 ≤ K.

In the above equation, w denotes the training parameter to be optimized.
We ignore the 1/M and 1/

√
dout/K in Eq. (7), because they do not affect the

optimization procedure. With the increase of Inter-distances of K subspaces, the
IntraVar of factors in each subspace would not larger than the original level (as
the random initialization). The InterVar/IntraVar ratio becomes larger, in other
word, we get more sufficient independence of mapping subspaces.

3.5 Algorithm Framework

In this section, we describe the overall algorithm of SGCN for performing node-
related tasks. For graph G, the ground-truth label of node u is †u ∈ {0, 1}C ,
where C is the number of classes. The details of our algorithm are shown in
Algorithm 1. First, we calculate the independence loss Li after factor channels
capture features. Then, L layers of DisenConv operations would return the stable



Learning the Implicit Semantic Representation on Graph-Structured Data 11

Algorithm 1. Semantic Graph Convolutional Networks
Input: the feature vector matrix x ∈ R

N×din , the graph G = (V, E), the number of
iterations T , and the number of disentangle layers L.
Output: the representation of node u by yu ∈ R

dout , ∀u ∈ V

1: for i ∈ V do
2: for k = 1, 2, ..., K do
3: zi,k ← σ(Wkxi + bk)/‖ σ(Wkxi + bk) ‖2

4: Q ← zwq,K ← zwk

5: Li = 1
M

∑
softmax(QK�/

√
dout
K

) � (1 − I)

6: for disentangle layer l = 1, 2, ..., L do
7: et=1

u,k ← zu,k, ∀k = 1, 2, ..., K, ∀u ∈ V
8: for routing iteration t = 1, 2, ..., T do
9: Get the soft probability matrix p, where calculating pk,t

u,v by Eq. (3)
10: Update the latent representation etu,k, ∀u ∈ V by Eq. (2)

11: eu ← dropout(ReLU(eu)), zu,k ← et=T
u,k , ∀k = 1, 2, ..., K, ∀u ∈ V � when

l ≤ L − 1

12: Transfer p to hard probability matrix A
13: Bu,v ← ∑

[(u,o),(o,v)]∈E A�
u,oAo,v, {u, v} ⊂ V

14: Get each aggregation yk
u of the latent vectors on semantic-paths by Eq. (5)

15: return {yu, ∀u ∈ V }, Li

probability matrix p. After that, the automatic graph semantic-path represen-
tation y is learned based on p. To apply y to different tasks, we design the final
layer by a fully-connected layer y′ = Wyy+by, where Wy ∈ R

dout×C , by ∈ R
C .

For instance, for the semi-supervised node classification task, we implement

Ls = −
∑

u∈V L

1
C

C∑

c=1

†u(c)ln(ŷu(c)) + λLi (9)

as the loss function, where ŷu = softmax(y′
u), V L is the set of labeled nodes, and

Li would be joint training by sum up with the task loss function. For the multi-
label classification task, since the label †u consists of more than one positive
bits, we define the multi-label loss function for node u as:

Lm = − 1

C
C∑

c=1

[†u(c) · sigmoid(y′
u(c)) + (1− †u(c)) · sigmoid(−y′

u(c))] + λLi. (10)

Moreover, for the node clustering task, y′ denotes the input feature of K-Means.

3.6 Time Complexity Analysis and Optimization

We should notice a problem in Sect. 3.3 that the time complexity of Eq. (4–5) by
matrix calculation is O(N(N −1)(N −2)K2 +N((N −1)K2 × dout

K +2K dout

K )) ≈
O(N3K2 + N2K2). Such a complex time complexity will bring a lot of computing



12 L. Wu et al.

load, so we optimize this algorithm in the actual implementation. For real-world
datasets, one node connects to neighbors that are far less than the total number
of nodes in the graph. Therefore, when we create the semantic-paths based adja-
cent matrix, the matrix Ã ∈ R

N×C×K is defined to denote 1-order neighbor rela-
tionships, C is the maximum number of neighbors that we define, and Ãk

u is the
id of a neighbor if they are connected by Rk, else Ãk

u = 0. Then the semantic-
path relations of type (Rk1 , Rk2) of u ∈ V are denoted by B̃k1,k2

u = Ã[Ã[u, :
, k1], :, k2] ∈ RC×C , and the pooling of this semantic pattern is the mean pool-
ing of z[B̃k1,k2

u , k2, :]. According to the analysis above, the time complexity can
be reduced to O(K2(NC2 + NC2 dout

K )) ≈ O(2NK2C2).

Table 1. The statistics of datasets.

Dataset Type Nodes Edges Classes Features Multi-label

Pubmed Citation network 19,717 44,338 3 500 False

Citeseer Citation network 3,327 4,732 6 3,703 False

Cora Citation network 2,708 5,429 7 1,433 False

Blogcatalog Social network 10,312 333,983 39 – True

POS Word co-occurrence 4,777 184,812 40 – True

4 Experiments

In this section, we empirically assess the efficacy of SGCN on several node-
related tasks, includes semi-supervised node classification, node clustering and
multi-label node classification. We then provide node visualization analysis and
semantic-paths sampling experiments to verify the validity of our idea.

4.1 Experimental Setup

Datasets. We conduct our experiments on 5 real-world datasets, Citeseer, Cora,
Pubmed, POS and BlogCatalog [11,27,32], whose statistics are listed in Table 1.
The first three citation networks are benchmark datasets for semi-supervised
node classification and node clustering. For graph content, the nodes, edges, and
labels in these three represent articles, citations, and research areas, respectively.
Their node features correspond a bag-of-words representation of a document.

POS and BlogCatalog are suitable for multi-label node classification task.
Their labels are part-of-speech tags and user interests, respectively. In detail,
BlogCatalog is a social relationships network of bloggers who post blogs in the
BlogCatalog website. These labels represent the blogger’s interests inferred from
the text information provided by the blogger. POS (Part-of-Speech) is a co-
occurrence network of words appearing in the first million bytes of the Wikipedia
dump. The labels in POS denote the Part-of-Speech tags inferred via the Stan-
ford POS-Tagger. Due to the two graphs do not provide node features, we use
the rows of their adjacency matrices in place of node features for them.



Learning the Implicit Semantic Representation on Graph-Structured Data 13

Baselines. To demonstrate the advantages of our model, we compare SGCN
with some representative graph neural networks, including the graph convolu-
tion network (GCN) [15] and the graph attention network (GAT) [34]. In detail,
GCN [15] is a simplified spectral method of node aggregating, while GAT weights
a node’s neighbors by the attention mechanism. GAT achieves state of the art
in many tasks, but it contains far more parameters than GCN and our model.
Besides, ChebNet [6] is a spectral graph convolutional network by means of a
Chebyshev expansion of the graph Laplacian, MoNet [22] extends CNN archi-
tectures by learning local, stationary, and compositional task-specific features.
And IPGDN [18] is the advanced version of DisenGCN. We also implement other
non-graph convolution network method, including random walk based network
embedding DeepWalk [24], link-based classification method ICA [19], inductive
embedding based approach Planetoid [38], label propagation approach LP [39],
semi-supervised embedding learning model SemiEmb [36] and so on.

In addition, we conduct the ablation experiments into nodes classification
and clustering to verify the effectiveness of the main components of SGCN:
SGCN-path is our complete model without independence loss, and SGCN-indep
denotes SGCN without the semantic-path representations.

In the multi-label classification experiment, the original implementations of
GCN and GAT do not support multi-label tasks. We therefore modify them
to use the same multi-label loss function as ours for fair comparison in multi-
label tasks. We additionally include three node embedding algorithms, including
DeepWalk [24], LINE [31], and node2vec [11], because they are demonstrated to
perform strongly on the multi-label classification. Besides, we remove IPGDN
since it is not designed for multi-label task.

Implementation Details. We train our models on one machine with 8
NVIDIA Tesla V100 GPUs. Some experimental results and the settings of com-
mon baselines that we follow [18,20], and we optimize the parameters of models
with Adam [14]. Besides, we tune the hyper-parameters of both our model and
baselines using hyperopt [3]. In detail, for semi-supervised classification and node
clustering, we set the number of iterations T = 6, the layers L ∈ {1, 2, ..., 8},
the number of components K ∈ {1, 2, .., 7} (denotes the number of mapping
channels. Therefore, for our model, the dimension of a component in the SGCN
model is [dout/K] ∈ {10, 12, ..., 8}), dropout rate ∈ {0.05, 0.10, ..., 0.95}, trade-off
λ ∈ {0.0, 0.5, ..., 10.0}, the learning rate ∼ loguniform [e−8, 1], the l2 regular-
ization term ∼ loguniform [e−10, 1]. Besides, it should be noted that, in the
multi-label node classification, the output dimension dout is set to 128 to achieve
better performance, while setting the dimension of the node embeddings to be
128 as well for other node embedding algorithms. And, when tuning the hyper-
parameters, we set the number of components K ∈ {4, 8, ...28} in the latent
factor routing process. Here K = 8 makes the best result in our experiments.



14 L. Wu et al.

Table 2. Semi-supervised
classification.

Models Cora Citeseer Pubmed

MLP 55.1 46.5 71.4

SemiEmb 59.0 59.6 71.1

LP 68.0 45.3 63.0

DeepWalk 67.2 43.2 65.3

ICA 75.1 69.1 73.9

Planetoid 75.7 64.7 77.2

ChebNet 81.2 69.8 74.4

GCN 81.5 70.3 79.0

MoNet 81.7 – 78.8

GAT 83.0 72.5 79.0

DisenGCN 83.7 73.4 80.5

IPGDN 84.1 74.0 81.2

SGCN-indep 84.2 73.7 82.0

SGCN-path 84.6 74.4 81.6

SGCN 85.4 74.2 82.1

Table 3. Node clustering with double metrics.

Models Cora Citeseer Pubmed

NMI ARI NMI ARI NMI ARI

SemiEmb 48.7 41.5 31.2 21.5 27.8 35.2

DeepWalk 50.3 40.8 30.5 20.6 29.6 36.6

Planetoid 52.0 40.5 41.2 22.1 32.5 33.9

ChebNet 49.8 42.4 42.6 41.5 35.6 38.6

GCN 51.7 48.9 42.8 42.8 35.0 40.9

GAT 57.0 54.1 43.1 43.6 35.0 41.4

DIsenGCN 58.4 60.4 43.7 42.5 36.1 41.6

IPGDN 59.2 61.0 44.3 43.0 37.0 42.0

SGCN-indep 60.2 59.2 44.7 42.8 37.2 42.3

SGCN-path 60.5 60.7 45.1 44.0 37.3 42.8

SGCN 60.7 61.6 44.9 44.2 37.9 42.5

4.2 Semi-Supervised Node Classification

For semi-supervised node classification, there are only 20 labeled instances for
each class. It means that the information of neighbors should be leveraged when
predicting the labels of target nodes. Here we follow the experimental settings
of previous works [15,34,38].

We report the classification accuracy (ACC) results in Table 2. The major-
ity of nodes only connect with those neighbors of the same class. According
to Table 2, it is obvious that SGCN achieves the best performance amongst
all baselines. Here SGCN outperforms the most powerful baseline IPGDN with
1.55%, 0.47% and 1.1% relative accuracy improvements on three datasets, com-
pared with the increasing degrees of previous models, our model express obvious
improvements in the node classification task. And our proposed model achieves
the best ACC of 85.4% on Cora dataset, it is a great improvement on this
dataset. On the other hand, in the ablation experiment (the last three rows of
Table 2), the complete SGCN model is superior to either algorithm in at least
two datasets. Moreover, we can find that SGCN-indep and SGCN-path are both
perform better than previous algorithms to some degree. It reveals the effective-
ness of our semantic-paths mining module and the independence learning for
subspaces.

4.3 Multi-label Node Classification

In the multi-label classification experiment, every node is assigned one or more
labels from a finite set L. We follow node2vec [11] and report the performance



Learning the Implicit Semantic Representation on Graph-Structured Data 15

of each method while varying the number of nodes labeled for training from
10% |V | to 90% |V |, where |V | is the total number of nodes. The rest of nodes
are split equally to form a validation set and a test set. Then with the best
hyper-parameters on the validation sets, we report the averaged performance of
30 runs on each multi-label test set. Here we summarize the results of multi-
label node classification by Macro-F1 and Micro-F1 scores in Fig. 3. Firstly,
there is an obvious point that proposed SGCN model achieves the best perfor-
mances in both two datasets. Compared with DisenGCN model, SGCN combines
with semantic-paths can achieve the biggest improvement of 20.0% when we set
10% of labeled nodes in POS dataset. The reason may be that the relation
type of POS dataset is Word Co-occurrence, there are lots of regular explicit or
implicit semantics amongst these relationships between different words. In the
other dataset, although SGCN does not show a full lead but achieves the highest
accuracy on both indicators. We find that the GCN-based algorithms are usually
superior to the traditional node embedding algorithms in overall effect. Although
for the Micro-F1 score on Blogcatalog, GCN produces the poor results. In addi-
tion, the SGCN algorithm can make both Macro-F1 and Micro-F2 achieve good
results at the same time, and there will be no bad phenomenon in one of them.
Because this approach would not ignore the information provided by the classes
with few samples but important semantic relationships.

Fig. 3. Results of multi-label node classification.

4.4 Node Clustering

To further evaluate the embeddings learned from the above algorithms, we also
conduct the clustering task. Following [18], for our model and each baseline, we



16 L. Wu et al.

obtain its node embedding via feed forward when the model is trained. Then
we input the node embedding to the K-Means algorithm to cluster nodes. The
ground-truth is the same as that of node classification task, and the number
of clusters K is set to the number of classes. In detail, we employ two metrics
of Normalized Mutual Information (NMI) and Average Rand Index (ARI) to
validate the clustering results. Since the performance of K-Means is affected
by initial centroids, we repeat the process for 20 times and report the average
results in Table 3. As can be seen in Table 3, SGCN consistently outperforms
all baselines, and GNN-based algorithms usually achieve better performance.
Besides, with the semantic-path representation, SGCN and SGCN-path performs
significantly better than DisenGCN and IPGDN, our proposed algorithm gets
the best results on both NMI and ARI. It shows that SGCN captures a more
meaningful node embedding via learning semantic patterns from graph.

Fig. 4. Node representation visualization of
Cora.

0 1 2 3 4 5 6 7
Number of cut

84

84.5

85

85.5

86

A
cc

ur
cy

(%
)

SGCN

Fig. 5. Semantic-paths sampling.

4.5 Visualization Analysis and Semantic-Paths Sampling

We try to demonstrate the intuitive changes of node representations after incor-
porating semantic patterns. Therefore, we utilize t-SNE [21] to transform feature
representations (node embedding) of SGCN and DisenGCN into a 2-dimensional
space to make a more intuitive visualization. Here we visualize the node embed-
ding of Cora (actually, the change of representation visualization is similar in
other datasets), where different colors denote different research areas. According
to Fig. 4, there is a phenomenon that the visualization of SGCN is more dis-
tinguishable than DisenGCN. It demonstrates that the embedding learned by
SGCN presents a high intra-class similarity and separates papers into different
research areas with distinct boundaries. On the contrary, DisenGCN dose not
perform well since the inter-margin of clusters are not distinguishable enough.
In several clusters, many nodes belong to different areas are mixed with others.

Then, to explore the influence of different scales of semantic-paths on our
model performance, we implement a semantic-paths sampling experiment on
Cora. As mentioned in the Sect. 3.6, for capturing different numbers of semantic
paths, we change the hyper-parameter of cut size C to restrict the sampling
size on each node’s neighbors. As shown in Fig. 5, the SGCN model with the



Learning the Implicit Semantic Representation on Graph-Structured Data 17

path representation achieves higher performances than the first point (C = 0).
From the perspective of global trend, with the increase of C, the classification
accuracy of SGCN model is also improved steady, although it get the highest
score when C = 5. It means that GCN model combines with more sufficient
scale semantic-paths can really learn better node representations.

5 Conclusion

In this paper, we proposed a novel framework named Semantic Graph Convo-
lutional Networks which incorporates the semantic-paths automatically during
the node aggregating process. Therefore, SGCN provided the semantic learning
ability to general graph algorithms. We conducted extensive experiments on var-
ious real-world datasets to evaluate the superior performance of our proposed
model. Moreover, our method has good expansibility, all kinds of path-based
algorithms in the graph embedding field can be directly applied in SGCN to
adapt to different tasks, we will take more explorations in future work.

Acknowledgements. This research was partially supported by grants from the
National Key Research and Development Program of China (No. 2018YFC0832101),
and the National Natural Science Foundation of China (Nos. U20A20229 and
61922073). This research was also supported by Meituan-Dianping Group.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere
using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

3. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing
the hyperparameters of machine learning algorithms. In: Proceedings of the 12th
Python in Science Conference, pp. 13–20. Citeseer (2013)

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003). http://jmlr.org/papers/v3/blei03a.html

5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond Euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42
(2017)

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

8. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A.: Convolutional networks on graphs for learning molecular fingerprints.
In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

9. Fan, Y., Hou, S., Zhang, Y., Ye, Y., Abdulhayoglu, M.: Gotcha-Sly Malware! Scor-
pion a metagraph2vec based malware detection system. In: Proceedings of the 24th
ACM SIGKDD, pp. 253–262 (2018)

http://arxiv.org/abs/1409.0473
http://jmlr.org/papers/v3/blei03a.html


18 L. Wu et al.

10. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings of the 2005 IEEE International Joint Conference on Neural Net-
works, vol. 2, pp. 729–734. IEEE (2005)

11. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD, pp. 855–864 (2016)

12. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1024–1034 (2017)

13. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163 (2015)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

16. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic anal-
ysis. Discourse Process. 25(2–3), 259–284 (1998)

17. Li, Z., Wu, B., Liu, Q., Wu, L., Zhao, H., Mei, T.: Learning the compositional
visual coherence for complementary recommendations. In: IJCAI-2020, pp. 3536–
3543 (2020)

18. Liu, Y., Wang, X., Wu, S., Xiao, Z.: Independence promoted graph disentangled
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

19. Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-2003), pp. 496–503 (2003)

20. Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional
networks. In: International Conference on Machine Learning, pp. 4212–4221 (2019)

21. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

22. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model CNNs. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)

23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-2010), pp. 807–814 (2010)

24. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD, pp. 701–710 (2014)

25. Qiao, L., Zhao, H., Huang, X., Li, K., Chen, E.: A structure-enriched neural net-
work for network embedding. Expert Syst. Appl. 117, 300–311 (2019)

26. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

27. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

28. Shang, J., Qu, M., Liu, J., Kaplan, L.M., Han, J., Peng, J.: Meta-path guided
embedding for similarity search in large-scale heterogeneous information networks.
arXiv preprint arXiv:1610.09769 (2016)

29. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network
embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370
(2018)

30. Sun, L., et al.: Joint embedding of meta-path and meta-graph for heterogeneous
information networks. In: 2018 IEEE International Conference on Big Knowledge,
pp. 131–138. IEEE (2018)

http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1610.09769


Learning the Implicit Semantic Representation on Graph-Structured Data 19

31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

32. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min.
Knowl. Disc. 23(3), 447–478 (2011). https://doi.org/10.1007/s10618-010-0210-x

33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

34. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

35. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web
Conference, pp. 2022–2032 (2019)

36. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised
embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks:
Tricks of the Trade. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35289-8 34

37. Wu, L., Li, Z., Zhao, H., Pan, Z., Liu, Q., Chen, E.: Estimating early fundraising
performance of innovations via graph-based market environment model. In: AAAI,
pp. 6396–6403 (2020)

38. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861 (2016)

39. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian
fields and harmonic functions. In: Proceedings of the 20th International Conference
on Machine Learning (ICML-2003), pp. 912–919 (2003)

https://doi.org/10.1007/s10618-010-0210-x
http://arxiv.org/abs/1710.10903
https://doi.org/10.1007/978-3-642-35289-8_34
http://arxiv.org/abs/1603.08861


Multi-job Merging Framework and
Scheduling Optimization for Apache Flink

Hangxu Ji1, Gang Wu1(B), Yuhai Zhao1, Ye Yuan2, and Guoren Wang2

1 School of Computer Science and Engineering, Northeastern University,
Shenyang, China

wugang@mail.neu.edu.cn
2 School of Computer Science and Technology, Beijing Institute of Technology,

Beijing, China

Abstract. With the popularization of big data technology, distributed
computing systems are constantly evolving and maturing, making sub-
stantial contributions to the query and analysis of massive data. However,
the insufficient utilization of system resources is an inherent problem of
distributed computing engines. Particularly, when more jobs lead to exe-
cution blocking, the system schedules multiple jobs on a first-come-first-
executed (FCFE) basis, even if there are still many remaining resources
in the cluster. Therefore, the optimization of resource utilization is key to
improving the efficiency of multi-job execution. We investigated the field
of multi-job execution optimization, designed a multi-job merging frame-
work and scheduling optimization algorithm, and implemented them in
the latest generation of a distributed computing system, Apache Flink.
In summary, the advantages of our work are highlighted as follows: (1)
the framework enables Flink to support multi-job collection, merging and
dynamic tuning of the execution sequence, and the selection of these func-
tions are customizable. (2) with the multi-job merging and optimization,
the total running time can be reduced by 31% compared with traditional
sequential execution. (3) the multi-job scheduling optimization algorithm
can bring 28% performance improvement, and in the average case can
reduce the cluster idle resources by 61%.

Keywords: Multi-job merging · Scheduling optimization · Distributed
computing · Flink

1 Introduction

The IT industry term “Big Data” has existed for more than a decade and is
a household term. To provide improved support for massive data computing,
researchers have developed various distributed computing systems and are con-
stantly releasing new versions of them to improve the system performance and
enrich system functions.

Apache Flink [2] is the latest generation of distributed computing systems
and exhibits high throughput and low latency when processing massive data.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 20–36, 2021.
https://doi.org/10.1007/978-3-030-73194-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_2


Multi-job Merging Framework and Scheduling Optimization 21

It can cache intermediate data and support incremental iteration using its own
optimizer. Many experimental studies, optimization technologies, and applica-
tion platforms based on Flink are emerging because of its numerous advantages.
For example, in the early days of Flink’s birth, most of the research focused
on the comparison between Flink and Spark [10,11,15], and pointed out that
Flink is more suitable for future data computing. With the popularity of Flink,
recent researches include testing tools based on Flink [9], multi-query optimiza-
tion technology [16], and recommender systems [5], etc.

However, almost the distributed computing systems exhibit insufficient uti-
lization of the hardware resources. Although Flink maximizes resource utilization
by introducing TaskSlot to isolate memory, idle resources also exist because of
the low parallelism of some Operators during traditional sequential execution.
Moreover, when a user submits multiple jobs, Flink only run them on a first-
come-first-executed (FCFE) basis, which cannot make jobs share the Slots. In a
worse-case scenario, if job A is executing and job B after it does not meet the
execution conditions because of insufficient remaining resources, job C cannot
be executed in advance even though job C after job B meets the execution con-
ditions, causing severe wastage of resources. These FCFE strategies of running
multiple jobs only ensure fairness at the job level, but are not desired by users.
In most cases, users only desire the minimum total execution time for all jobs.
The above problems can be solved by simultaneously executing multiple jobs
and dynamically adjusting the job execution sequence so that jobs that meet
the execution conditions can be executed in advance.

In this study, we review the problem of insufficient utilization of system
resources due to the fact that Flink does not support simultaneous execution
of multiple jobs and optimization of execution sequence, and then focus on the
multi-job efficiency improvement brought about by increasing Slot occupancy
rate. The basic idea is to make simultaneously executing through multi-job
merging and dynamically adjusting the execution sequence through multi-job
scheduling, and the contributions of this paper are summarized below.

(1) We propose a groundbreaking framework that can support multi-job merging
and scheduling in Flink. It can collect and parse multiple jobs to be executed,
and generate new job execution plans through two optimization methods of
multi-job merging and scheduling, and submit them to Flink for execution.

(2) To simultaneously execute multiple jobs, we propose multi-job merging algo-
rithms based on subgraph isomorphism and heuristic strategies to enable
multiple jobs to share the Slots. Both two algorithms can improve the effi-
ciency and adapt to different job scenarios during the experiment.

(3) To dynamically adjusting the job execution sequence, we propose multi-
job scheduling algorithm based on maximum parallelism to make jobs that
satisfy the remaining resources execute in advance. Experimental results
demonstrate that the algorithm can enhance the efficiency and reduce free
resources.



22 H. Ji et al.

The remainder of this paper is organized into 5 sections. Section 2 introduces
the Flink DAGs, Flink Slots, and summarizes the current contributions toward
improving resource utilization in distributed computing. Section 3 introduces the
multi-job collection and execution agent, including the components, implemen-
tation method, and function. Section 4 describes multi-job execution optimiza-
tion algorithms, including merging optimization and scheduling optimization.
Section 5 presents the performance evaluation with respect to the running time
and the number of Slots idle. Section 6 presents a brief conclusion.

2 Background and Related Work

In this section, we first summarized some of the implementation principles in
Flink, including the composition and generation process of Flink DAGs, the
functions and advantages of Flink Slot, to verify the feasibility of our work.
Then, the related work of distributed job generation optimization and scheduling
optimization is explained, and the advantages and deficiencies of existing work
are pointed out.

2.1 Flink DAGs

Flink uses DAGs (Directed Acyclic Graphs) to abstract operations, which are
more able to express the data processing flow than the traditional MapRe-
duce [7]. According to the job submission and deployment process, Flink DAGs
mainly includes JobGraph and ExecutionGraph. Figure 1 depicts the process
of generating Flink DAGs. First, the system create JobVertexIDs based on the
Operators in the job, chains the Operators through the Optimizer, and then gen-
erates a JobGraph by adding JobEdges and setting attributes. JobGraph is com-
posed of three basic elements: JobVertex, JobEdge and IntermediateDataSet,

Step 1 : Initialization Step 2 : Create JobVertex Step 3 : Set Properties

Stream
API

Batch 
API Create JobEdge

Set SlotSharingGroup

Set Job CheckPoint

Set CoLocationGroup

Source Flat Map
Keyed

Aggregation
 Sink

Intermediate
DataSet

Intermediate
DataSet

JobEdge JobEdge JobEdge JobEdge

JobVertex JobVertex JobVertex

Parallelism = 1 Parallelism = 2 Parallelism = 2

JobGraph

Stream
Graph
Hasher

Flink
Plan

Create JobVertexID

Operator Chain

Final JobVertex

ExecutionGraph

Source
1/1

Execution
Vertex

Parallelism 
= 1

Intermediate Result Partition

Flat Map
1/2

Flat Map
2/2

Keyed
Aggregation

 Sink
1/2

Keyed
Aggregation

 Sink
2/2

Execution
Vertex

Parallelism = 2

Intermediate 
Result 

Partition

Intermediate 
Result 

Partition

Execution
Vertex

Parallelism = 2

Fig. 1. The process of generating Flink DAGs (JobGraph and ExecutionGraph)



Multi-job Merging Framework and Scheduling Optimization 23

and contains all the contents of a job by assigning various attributes to these
three elements. Finally, JobManager divides JobGraph into ExecutionVertex,
IntermediateResultPartition and ExecutionEdge equal to its number according
to the degree of parallelism to generate the final ExecutionGraph. Therefore, the
research on JobGraph generation process is the core of Flink optimization, and
it is also the focus of this work.

2.2 Flink Slot

In order to control the number of subtasks run by internal threads, Flink intro-
duced TaskSlot as the minimum resource unit. The advantage of Slot is that it
isolates memory resources, so jobs transmitted from JobMaster can be indepen-
dently executed in different Slot, which can improve the utilization of cluster
resources. As shown in Fig. 2, TaskManagers receive the task to be deployed
from JobManager. If a TaskManager has four Slots, it will allocate 25% of mem-
ory for each Slot. One or more threads can be in each Slot, and threads in the
same Slot share the same JVM. When subtasks belong to the same job, Flink
also allows sharing Slot, which can not only quickly execute some tasks that
consume less resources, but also logically remove redundant calculations that
consume resources. It is precisely because of the existence of shared Slot that
the multi-job merging and optimization techniques we will introduce in Sect. 4
are possible.

Task 
Status

TaskManager

TaskSlot TaskSlot

TaskSlot TaskSlot

Source KeyBy

Apply Sink

Map

TaskManager

TaskSlot TaskSlot

TaskSlot TaskSlot

Source KeyBy

Apply

Map

JobManager
Source Flat Map

Keyed
Aggregation

Sink

Intermediate
DataSet

Intermediate
DataSet

JobEdge JobEdge JobEdge JobEdge

JobVertex JobVertex JobVertex

Parallelism = 1 Parallelism = 2 Parallelism = 2

Scheduler

Actor System

JobGraph

Task 
Status

Fig. 2. Flink task deployment

2.3 Related Work

Current distributed computing systems, such as Spark [23] and Flink, are exe-
cuted by converting complex programming logic into simple DAGs. The com-
plex programming logic is mainly reflected in the user-defined function (UDF)
in the Operators, so most of the research is to analyze UDF and construct opti-
mization technology. Mainstream DAGs generation and optimization strategies
include nested query decomposition technologies involving UDF [13], Operator
reuse method [17,19], and Operator rearrangement algorithms [18], etc. In addi-
tion, part of the research is based on UDF code analysis to seek optimization
opportunities [1,8,12,17]. In terms of distributed job scheduling optimization



24 H. Ji et al.

and load balancing, each distributed computing system has its own scheduler
as its core component [3,21]. At the same time, due to the increasing com-
plexity of distributed operations and the continuous expansion of node scale, a
large number of optimization technologies have been born. For example, in the
research on Hadoop, researchers have proposed scheduling strategies based on
job size [22], resource quantity [14], and deadline awareness [4]. In Spark based
on memory computing, current research includes interference-aware job schedul-
ing algorithm [21], job scheduling algorithm based on I/O efficiency [20], etc.
Although the above works have improved the job efficiency, they are all oriented
to a single job, without considering the mutual influence between multiple jobs.

3 Framework Structure

3.1 Model

We propose a framework, which is an Agent implemented between the Flink
Client and Flink JobManager, and capable of supporting multi-job merging and
scheduling optimization. The ultimate goal of the framework is to generate opti-
mized Flink DAGs. The composition of this framework is illustrated in Fig. 3.
In the following, we will introduce Collector, Parser and Generator respectively.
The Optimizer will be described in detail in Sect. 4.

Task
Manager

Task
Manager

Task
Manager

Task
Manager

Job
Manager

Actor
System

Agent

New
JobGraph

Optimizer

Flink Program

Graph Builder

Client

Flink Program

Graph Builder

Client

Flink Program

Graph Builder

Client

GeneratorCollector Parser

Scheduling 
Optimization

Merging 
Optimization

Plan
Parsing

Operator
Parsing

Job 
Information 
Collection

System 
Information 
Collection

Fig. 3. The structure of the framework

Collector. In order to improve the multi-job efficiency by improving the uti-
lization of system resources, the Optimizer must receive job information and
system information as the data to be analyzed. Therefore, the Agent first pro-
vides a Collector, which collects the following information:

• Jar Files: As mentioned above, Flink abstracts computational logic in the
form of DAGs. DAGs contain important information such as operators and
UDFs, which are encapsulated in the Jar files.



Multi-job Merging Framework and Scheduling Optimization 25

• Flink Plan: The Flink Plan contains the deployment and strategy for job
execution, mainly including the following information: GenricDataSinkBase
in a collective form, which contains data terminal attributes; Cache files in
the form of a HashMap, where the key is the name of the file and the value
is the path to the file; ExecutionConfig is the configuration information for
executing a job, which includes the adopted execution policy and the recovery
method for the failed restart.

• System Resources: These mainly include the number of CPU cores and
the memory size of each node in the cluster, as well as specific information in
the Flink configuration file, including parallelism, Slot quantity, etc.

Parser. Because there are nested composite attributes inside Flink Plan and
Operator, they cannot be directly converted to transferable byte streams, so a
Parser is built in the Agent to serialize them. Algorithm 1 shows the process of
serialization. First, gets the Sinks collection in Flink Plan (lines 1–3), and then
assign the Operator and the user code encapsulation properties in it to the new
object (lines 4–5). Finally, CatchFile, ExecutionConfig, JobID and the user code
encapsulation properties are serialized respectively (lines 6–9). The final result
is written on the Agent (line 10). At this point, the Agent has obtained all the
information the Optimizer needs.

Algorithm 1: Serialization
Input: Flink Plan
Output: Job information of byte stream type

1 get DataSinkBase and GenericDataSinkBase from Plan;
2 get Operator op from GenericDataSinkBase;
3 read input Operator from DataSinkBase;
4 if UserCodeWraper is not null then
5 Set UserCodeWraper to OperatorEx;

6 Serialize(CatchFile); Serialize(ExecutionConfig); Serialize(OperatorEx);
7 if length > Buffer Size then
8 add Buffer Size;

9 Serialize(JobID);
10 writeToAgent;

Generator. The Generator first receives the optimization strategy sent from
the Optimizer, including the jobs that can be merged and the optimal execu-
tion sequence of the jobs. The multi-job JobGraph is then generated by calling
the implemented multiJobGraphGenerator. Since the multi-job scheduling opti-
mization is an optimization in job execution order, when the jobs do not need
to be merged, JobGraphGenerator in Flink is directly called by the Generator



26 H. Ji et al.

to generate JobGraph. Finally, similar to the functionality of the Flink Client,
the Actor System is responsible for submitting jobs to the cluster for execution.

3.2 Advantages

In the traditional Flink, the Client submits a job to the JobManager, and
the JobManager schedules tasks to each TaskManager for execution. Then, the
TaskManager reports heartbeat and statistics to the JobManager. When a user
submits multiple jobs, Flink schedules each job on a FCFE basis. The proposed
framework establishes multi-job collection, merging and scheduling optimiza-
tion functions between Client and JobManager, without modifying and deleting
Flink’s own source code, which has two advantages. Firstly, since the framework
and Flink are completely independent of each other, no matter which version is
updated, they will not be affected by each other. In addition, the framework adds
a switch to Flink, which allows users to choose whether to turn on the multi-job
merging and scheduling optimization functions, because the traditional FCFE
process ensures fairness at job level, which is also what some users require.

4 Multi-job Merging and Scheduling

This section introduces the two modules in Optimizer in detail, including two
multi-job merging and optimization algorithms, and a multi-job scheduling opti-
mization algorithm.

4.1 Multi-job Merging

Multi-job merging is suitable for situations where the cluster nodes are not
large and the maximum parallelism of a single job reaches or approaches the
maximum parallelism of the cluster. When the user submits multiple jobs and
expects the shortest total execution time of the them, the multi-job merging and
optimization module will be turned on. For jobs that can be merged, Optimizer
merges the execution plans of these jobs into one execution plan, and the internal

GeneratorNew 
Flink Plan

Job 
information 

of byte 
stream

Graph 
Maching

Isomorphism 
judgment 

Parallelism 
Judgment New 

Flink Plan

SubGraph 
Generator

Vertex Generator

Edge Generator

Parallelism Setter

Data Collector

Maching

Feature 
Extraction

Threshold 
Setting

Not
Maching

Fig. 4. Multi-job merging module



Multi-job Merging Framework and Scheduling Optimization 27

structure of these execution plans still guarantees their connection sequence. In
addition, the user can choose whether to enable the function and the maximum
number of jobs to be merged. As shown in Fig. 4, the module first obtains the
job information, and uses the subgraph isomorphism algorithm to select jobs
with higher similarity to merge. For dissimilar jobs, a heuristic method is used
to set thresholds to determine the merged jobs.

Problem Description. Flink Slot uses a memory isolation method to allo-
cate and reclaim resources, which greatly facilitates the management of cluster
memory resources, but when users submit multiple jobs, memory resources can-
not be shared between jobs. A job in the execution process has all its allocated
resources, and the resources will not be recycled until the end of the job. Espe-
cially when the parallelism of some Operators is too low, the waste of resources
will be more obvious. Therefore, the proposed multi-job merging algorithm aims
at merging multiple jobs so that they can use Slot resources together, thereby
improving the resource utilization.

Subgraph-Based Merging. In order to find out which jobs are merged first,
we give a definition as follow:

• Definition 1: Job Isomorphism. A job can be represented by triples: job
= (G, P , D), where G is the JobGraph, P represents the maximum degree of
parallelism, and D is the amount of data input. Gsub is a subgraph generated
based on the key information in JobGraph. If job1.Gsub and job2.Gsub are
isomorphic, job1.P = job2.P , and job1.D ≈ job2.D, we determine that the
two jobs are isomorphic and can be merged first.

The algorithm first choose the isomorphic jobs with similar data size for merg-
ing as much as possible, because they have similar task deployment and data
deployment in TaskManager. It will make the merged jobs have fewer thread
switching during execution, with better utilization of system resources. Since
Flink uses JobGraphs to abstract jobs, the subgraph isomorphism algorithm can
be used to judge the similarity of jobs. We only need to find a classic exact sub-
graph isomorphism algorithm to solve it because the vertex scale of JobGraphs
is very small. We choose VF2 [6] among a large number of classic exact sub-
graph isomorphism algorithms, because it is more suitable for solving subgraph
isomorphism of directed graphs and has a smaller space consumption.

Algorithm 2 shows the process of subgraph-based merging. First, select a job
from the jobs to be executed (line 1), and use the reverse traversal method
to generate a subgraph by reading its job information (line 2). Then use VF2
to perform subgraph isomorphism calculation, find all mergeable jobs, and add
them to a collection (lines 3–7). If there are jobs that can be merged, the job
merge algorithm will be executed and the merged job information will be deleted
(lines 8–10). Finally, generate the new Flink Plan (line 11).



28 H. Ji et al.

Algorithm 2: Subgraph-based Merging
Input: Job information of byte stream type from Parser
Output: The merged Flink Plan

1 for job in jobs do
2 generate subgraph for job;
3 collection.add(job);
4 rjobs = jobs.remove(job);
5 for j in rjobs do
6 if isomorphism(j, job) then
7 collection.add(j);

8 if collection.size ≥ 2 then
9 mergeJob(j, job);

10 jobs = jobs.remove(job and collection);

11 write(new Plan);

Heuristic-Based Merging. For jobs with different structures and input data
sizes, we propose a heuristic-based merging strategy to find the jobs with the
highest “similarity” to merge. Through a large number of experimental results,
we selected the jobs with better results after merging, and performed feature
extraction on them. The following are some definitions:

• Definition 2: Job Similarity. The value obtained by weighting the ratio of
the feature parameters between the two jobs extracted, the specific parame-
ters will be introduced later.

• Definition 3: GlobalOperator. GlobalOperator refers to operators that
need to obtain data from other nodes for processing in a multi-node cluster,
such as Join and Reduce.

Table 1. Parameters of job feature

Definition Formula Description Threshold

Task size ratio F =
size(m)
size(n) (1) The ratio of the total data size

processed by two different jobs (m is

larger)

[1, 1.8]

DAG depth ratio D =
dept(m)
dept(n) (2) The ratio of the length of the longest

Operator chain in the JobGraph of

the two jobs (m is larger)

[1, 2]

GlobalOperator ratio G =
gol(m)
gol(n) (3) The ratio of the number of

GlobalOperator in the two jobs (m is

larger)

[1, 1.5]

Parallelism ratio P =
parallelism(m)
parallelism(n) (4) The ratio of the parallelism of the

two jobs (m is larger)

[1, 2]

DAG similarity S =
√∑n

i=1,j≤i
(Mij − Nij)2 (5) Euclidean distance of JobGraph of

the two jobs

/



Multi-job Merging Framework and Scheduling Optimization 29

• Definition 4: LocalOperator. LocalOperator refers to operators that do
not need to obtain data from other nodes for processing, but only process
local node data, such as Map and Filter.

Table 1 shows the job feature parameters that need to be extracted and have
a greater impact on the efficiency of the merged job execution, Through a large
number of experiments, the threshold range of the parameters that meet the com-
bined conditions is estimated. In the case of a small cluster node, the parallelism
setting of most jobs adopts the default value, which is equal to the maximum
parallelism of Flink. At the same time, we also found that if the parallelism
is the same and the thresholds of F , D , and G are all within the threshold
range, the merged jobs can bring satisfactory performance improvement. Since
subgraph-based merging has filtered out most similar jobs, the number of jobs
to be merged is not large and most of them have larger differences. Therefore,
in heuristic-based merging, two jobs are selected for merging.

Algorithm 3 shows the process of heuristic-based merging. First, select one
of the submitted jobs to compare with other jobs (lines 1–3). If the jobs’ paral-
lelism is the same, merge the two jobs by calculating the threshold (lines 4–5)
and selecting the job with the highest score (lines 6–9). Then, perform the same
threshold calculation and scoring operations as above in the remaining jobs with
different parallelism (lines 10–16). Finally merge the jobs that meet the condi-
tions (line 17) and generate the new Flink Plan (line 18).

4.2 Multi-job Scheduling

Multi-job scheduling is suitable for the large scale of cluster nodes so that the
parallelism setting of jobs is less than the maximum parallelism of Flink. Through
the scheduling optimization strategy, the system can not only improve operating
efficiency by making full use of resources, but also maintain a balanced state of
cluster load.

Problem Description. The upper limit of Flink’s parallelism is the total num-
ber of Slots, which means that the total parallelism of running jobs must be less
than or equal to the total number of Slots. When the parallelism of a job to
be submitted is greater than the number of remaining Slots, the job will be
returned. If the total number of Slots in Flink is n, the parallelism of a job being
executed is 0.5n, and the parallelism of the next job to be executed is 0.6n, then
half of the cluster resources will be idle because the job cannot be submitted. If
the parallelism of the job being executed and the job to be submitted are both
small, the resource usage of the cluster will be higher. The above situation will
make the resource usage of the cluster unstable, which neither guarantees the
cluster to run Flink jobs efficiently for long time, nor can it maintain a stable
load.



30 H. Ji et al.

Algorithm 3: Heuristic-based Merging
Input: Job information of byte stream type that does not satisfy the

subgraph isomorphism condition
Output: The merged Flink Plan

1 for job in jobs do
2 rjobs = jobs.remove(job);
3 {for j in rjobs do
4 if job.parallelism == j.parallelism then
5 calculate(F ); calculate(D); calculate(G);
6 if meet the threshold then
7 score = F × 0.8 + D × 0.5 + G × 0.3;

8 Find j with the largest score;
9 mergeJob(j, job); jobs = jobs.remove(job);

10 for job in jobs do
11 rjobs = jobs.remove(j and job);
12 for j in rjobs do
13 calculate(F ); calculate(D); calculate(G); calculate(P);
14 if meet the threshold then
15 calculate(S);

16 Find j with the smallest S ;
17 mergeJob(j, job); jobs = jobs.remove(j and job);

18 write(new Plan);

Scheduling Based on Maximum Parallelism. Our solution is to give prior-
ity to the execution of the job with the highest degree of parallelism that meets
the remaining resources of the system, so as to avoid system resource idleness
to the greatest extent. In addition, try to make long-running and short-running
jobs run at the same time to avoid excessive thread switching caused by intensive
short jobs at a certain time. Therefore, the algorithm first extracts the character-
istics of each job, and divides it into three groups of long, medium, and short jobs
through KMeans clustering algorithm, and finally uses a round-robin scheduling
method to submit to the cluster the job with the highest degree of parallelism
that meets the execution conditions in each group.

Algorithm 4 describes the process of scheduling optimization. First, extract
the features of each job (line 1), including the amount of data, the number
of GlobalOperators, the degree of parallelism of each Operator, and the DAG
depth. A monitor is placed to monitor whether the job to be executed is empty
(line 2). If there are jobs to be submitted, the number of Slot remaining in



Multi-job Merging Framework and Scheduling Optimization 31

Algorithm 4: Multi-job Scheduling Based on Maximum Parallelism
Input: Jobs information of byte stream type from Parser
Output: Flink Plan for the next job to be executed

1 Extract the features of each job;
2 while jobs.size �= null do
3 slot = the number of remaining Slots;
4 for i = 1 to 3 do
5 job[i] = k means(features);

6 i = (i++) % 3;
7 for job in job[i] do
8 if job.parallelism > slot then
9 continue;

10 Find the job with maximum parallelism;

11 if job.exsist then
12 job.execute();
13 jobs = jobs.remove(job);

14 continue;

the system will be obtained (line 3). According to the extracted job features,
the KMeans clustering algorithm is used to divide the job into three groups:
long-time running, medium-time running, and short-time running (lines 4–5).
Then find a job by group, the job that satisfy the remaining Slot number of the
system and have the greatest degree of parallelism is selected (lines 6–10). If
such a job exists, it is submitted to the cluster for execution and removed from
the queue of jobs to be executed (lines 11–13). Finally, regardless of whether
a job is submitted for execution, the search for jobs that can be submitted for
execution will continue according to the above criteria (line 14).

5 Evaluation Results

In this section, we describe the performance evaluation of the proposed multi-job
merging algorithms and the scheduling optimization algorithm in our framework.
The data sets is used to test the running time and the number of Slots occupied.

5.1 Experimental Setup

We run experiments on a 7-nodes OMNISKY cluster (1 JobManager & 6
TaskManagers), and all nodes are connected with 10-Gigabit Ethernet. Each
node has two Intel Xeon Silver 4210 CPUs @ 2.20 GHz (10 cores× 2 threads, 20



32 H. Ji et al.

TaskNumberSlots), 128 GB memory, and 1 TB SSD. Hadoop version 2.7.0 (for
storing data on HDFS) and Flink version 1.8.0 are chosen as the experimen-
tal environment, and their configuration files are configured according to the
hardware environment as mentioned above.

We select three distributed jobs to run the experiment, namely WordCount,
Table Join and KMeans, from the perspectives of the type of Operators included
in the job and whether the job includes iterative tasks. All running time measure-
ments include the generation time of new JobGraphs. We use a large number of
real-world data sets and generated data sets to evaluate the experimental results,
and all the experiments are tested more than 10 times. The specific information
are as follows:

• WordCount: The WordCount job contains almost only LocalOperators, and
there is not too much data exchange between TaskManagers. We select the
text from the literary work Hamlet as the data set and manually expand it
to 500 MB–5 GB.

• Table Join: As Join is a GlobalOperator in Flink, it needs to obtain inter-
mediate data from each TaskManager, so a large number of data exchanges
between nodes will occur in Table Join job, especially in multi-Table Join. We
choose multiple relational tables generated by the big data test benchmark
TPC-H, with the size range 500 MB–10 GB.

• KMeans: It is a clustering job with iterative tasks in which both LocalOp-
erators and GlobalOperators are iterated. We use the UCI standard data set
Wine, and manually expand the number of data samples to reach 500 MB–
1 GB.

Table 2. Effect of merging two identical jobs on data sets of different sizes

WordCount Table join KMeans

Size Running time Size Running time Size Running time

FCFE Merge FCFE Merge FCFE Merge

500MB & 500MB 12.8 s 10.2 s 1GB & 1GB 56.7 s 46.3 s 500MB & 500MB 76.5 s 65.0 s

1.5GB & 1.5GB 33.5 s 26.6 s 1.2GB & 1.2GB 79.2 s 65.0 s 700MB & 700MB 121.6 s 105.5 s

3GB & 3GB 62.6 s 48.2 s 1.5GB & 1.5GB 122.0 s 99.8 s 850MB & 850MB 155.7 s 131.1 s

5GB & 5GB 110.7 s 84.5 s 2GB & 2GB 213.5 s 170.8 s 1GB & 1GB 212.4 s 177.7 s

500MB & 5GB 68.6 s 61.2 s 1GB & 2GB 132.1 s 121.8 s 500MB & 1GB 142.7 s 128.1 s

3GB & 5GB 85.5 s 72.0 s 1.5GB & 2GB 160.9 s 136.4 s 700MB & 1GB 165.0 s 144.7 s

5.2 Testing of Multi-job Merging

We first test the merging effect of two identical jobs under different scale data
sets, and the specific results are shown in Table 2. The first 3 rows are the effects
of merging data sets of the same size (sorted by data set size), and the rest
are the effects of merging data sets of different sizes. It can be found that the



Multi-job Merging Framework and Scheduling Optimization 33

three types of jobs can bring about efficiency improvement after merging and
executing. Among them, WordCount job has better improvement effect than the
other two, with the improvement efficiency reaching 31% in the best case, because
both Table Join and KMeans have a large number of data exchanges between
nodes during execution. In addition, the efficiency of merged jobs with the same
size data set is better, because when the data set sizes are different, the smaller
job will complete the data processing in advance, and the efficiency improvement
brought by sharing resources between the two jobs cannot be maintained for a
long time.

(a) WordCount (b) Table Join (c) KMeans

(d) WordCount (e) Table Join (f) KMeans

0

10

20

30

40

50

60

70

R
un

ni
ng

 ti
m

e 
(s

)

Number of merged jobs
FCFE Merge

0

50

100

150

200

250

300

R
un

ni
ng

 ti
m

e 
(s

)

Number of merged jobs
FCFE Merge

0

50

100

150

200

250

300

350

400

R
un

ni
ng

 ti
m

e 
(s

)

Number of merged jobs
FCFE Merge

4

5

6

7

R
un

ni
ng

 ti
m

e 
of

 e
ac

h 
jo

b 
(s

)

Number of merged jobs

20

22

24

26

28

30

R
un

ni
ng

 ti
m

e 
of

 e
ac

h 
jo

b 
(s

)

Number of merged jobs

25

28

31

34

37

40
R

un
ni

ng
 ti

m
e 

of
 e

ac
h 

jo
b 

(s
)

Number of merged jobs

Fig. 5. Effect of the number of merged jobs on efficiency

Next we show the effect of the number of merged jobs on efficiency, which
is shown in Fig. 5. We use the same job to measure the experimental results,
and we can see that the more jobs are merged, the more obvious the efficiency
improvement, because when the number of jobs is large, the extraction of CPU
and memory resources will be more sufficient.

For merging different types of jobs, we use data sets of the same size to
evaluate efficiency. As shown in Fig. 6, merging different types of jobs can still
bring good performance improvement, ranging from 15% to 21%.

5.3 Testing of Scheduling Optimization

Finally, we show the effect of the multi-job scheduling optimization algorithm.
According to the hardware environment described in Sect. 5.1, the maximum
parallelism of Flink is set to 240, which is the same as the total number of CPU



34 H. Ji et al.

(a) WordCount & Table Join (b) WordCount & KMeans (c) Table Join & KMeans

0

20

40

60

80

100

120

140

R
un

ni
ng

 ti
m

e 
(s

)

Size of the datasets
FCFE Merge

0

20

40

60

80

100

R
un

ni
ng

 ti
m

e 
(s

)

Size of the datasets
FCFE Merge

0

20

40

60

80

100

120

140

R
un

ni
ng

 ti
m

e 
(s

)

Size of the datasets
FCFE Merge

Fig. 6. Effect of merging different jobs

cores in 6 TaskManagers. We generated 10 jobs in WordCount, Table Join and
KMeans respectively, and randomly set the degree of parallelism for these 30
jobs, ranging from 50 to 180. Then 30 submissions are randomly generated for
these 30 jobs, and the total execution time of these 30 submissions is measured
and compared with the scheduling optimization method proposed by us.

(a) Total running time (b) Minimum occupancy of Slot

To
ta

l r
un

ni
ng

 ti
m

e 
(m

in
)

Job ID
Baseline Optimization

M
in

im
um

 o
cc

up
an

cy
 o

f S
lo

t

Job ID
Baseline Optimization

Fig. 7. Effect of different Job execution sequences

Figure 7(a) shows the running time of each set of jobs by random submis-
sion. It can be seen that the total time of executing jobs in the sequence after
scheduling optimization is shorter than the total time of executing jobs in the 30
randomly generated sequences, and the performance improvement of 28% can
be achieved in the best case. Slot occupancy is shown in Fig. 7(b). Since the
Slot usage of the last executed job may be too low due to the job parallelism
being set too small, we only measure the Slot usage when the first 25 jobs are
executed. It can be found that when jobs are executed in an unoptimized order,
Slot usage will be too low for a certain period of time during each execution of
the jobs. On average, executing jobs in the optimized order will reduce cluster
idle resources by 61%.



Multi-job Merging Framework and Scheduling Optimization 35

6 Conclusion and Discussion

In this paper, we propose the groundbreaking framework that support multi-job
merging and scheduling. Based on these two functions, optimization strategies
are proposed to improve the efficiency of multi-job by making full use of the
cluster resources. In order to verify the effectiveness of the proposed algorithms,
we conduct many experiments to prove the superiority of our work. Since Flink
is a “unify batch & streaming” system, a particularly interesting direction for
future work is to extend our proposed framework and optimization algorithms
to the streaming jobs, which can improve the function of the framework.

Acknowledgments. This research was supported by the National Key R&D Program
of China under Grant No. 2018YFB1004402; and the NSFC under Grant No. 61872072,
61772124, 61932004, 61732003, and 61729201; and the Fundamental Research Funds
for the Central Universities under Grant No. N2016009 and N181605012.

References

1. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible
and extensible foundation for data-intensive computing. In: Proceedings of the
International Conference on Data Engineering, pp. 1151–1162 (2011)

2. Carbone, P., et al.: Apache flink: stream and batch processing in a single engine.
IEEE Data Eng. Bull. 38, 28–38 (2015)

3. Chakraborty, R., Majumdar, S.: A priority based resource scheduling technique for
multitenant storm clusters. In: International Symposium on Performance Evalua-
tion of Computer and Telecommunication Systems, pp. 1–6 (2016)

4. Cheng, D., Rao, J., Jiang, C., Zhou, X.: Resource and deadline-aware job schedul-
ing in dynamic Hadoop clusters. In: IEEE International Parallel and Distributed
Processing Symposium, pp. 956–965 (2015)

5. Ciobanu, A., Lommatzsch, A.: Development of a news recommender system based
on apache flink, vol. 1609, pp. 606–617 (2016)

6. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1367–1372 (2004)

7. Dean, J., Ghemawat, S.: MapReduce. Commun. ACM 51(1), 107–113 (2008)
8. Eaman, J., Cafarella, M.J., Christopher, R.: Automatic optimization for MapRe-

duce programs. Proc. VLDB Endow. (2011)
9. Espinosa, C.V., Martin-Martin, E., Riesco, A., Rodriguez-Hortala, J.: FlinkCheck:

property-based testing for apache flink. IEEE Access 99, 1–1 (2019)
10. Falkenthal, M., et al.: OpenTOSCA for the 4th industrial revolution: automating

the provisioning of analytics tools based on apache flink, pp. 179–180 (2016)
11. Garca-Gil, D., Ramrez-Gallego, S., Garca, S., Herrera, F.: A comparison on scal-

ability for batch big data processing on apache spark and apache flink. Big Data
Anal. 2 (2017)

12. Hueske, F., Krettek, A., Tzoumas, K.: Enabling operator reordering in data flow
programs through static code analysis. In: XLDI (2013)

13. Kougka, G., Gounaris, A.: Declarative expression and optimization of data-
intensive flows. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS,
vol. 8057, pp. 13–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40131-2 2

https://doi.org/10.1007/978-3-642-40131-2_2
https://doi.org/10.1007/978-3-642-40131-2_2


36 H. Ji et al.

14. Pandey, V., Saini, P.: An energy-efficient greedy MapReduce scheduler for hetero-
geneous Hadoop YARN cluster. In: Mondal, A., Gupta, H., Srivastava, J., Reddy,
P.K., Somayajulu, D.V.L.N. (eds.) BDA 2018. LNCS, vol. 11297, pp. 282–291.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04780-1 19

15. Perera, S., Perera, A., Hakimzadeh, K.: Reproducible experiments for comparing
apache flink and apache spark on public clouds. arXiv:1610.04493 (2016)

16. Radhya, S., Khafagy, M.H., Omara, F.A.: Big data multi-query optimisation with
apache flink. Int. J. Web Eng. Technol. 13(1), 78 (2018)

17. Rumi, G., Colella, C., Ardagna, D.: Optimization techniques within the Hadoop
eco-system: a survey. In: International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, pp. 437–444 (2015)

18. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data
flows for multiple execution engines. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 829–840 (2012)

19. Tian, H., Zhu, Y., Wu, Y., Bressan, S., Dobbie, G.: Anomaly detection and iden-
tification scheme for VM live migration in cloud infrastructure. Future Gener.
Comput. Syst. 56, 736–745 (2016)

20. Tinghui, H., Yuliang, W., Zhen, W., Gengshen, C.: Spark I/O performance opti-
mization based on memory and file sharing mechanism. Comput. Eng. (2017)

21. Wang, K., Khan, M.M.H., Nguyen, N., Gokhale, S.: Design and implementation
of an analytical framework for interference aware job scheduling on apache spark
platform. Cluster Comput. 22, 2223–2237 (2019). https://doi.org/10.1007/s10586-
017-1466-3

22. Yao, Y., Tai, J., Sheng, B., Mi, N.: LsPS: a job size-based scheduler for efficient
task assignments in Hadoop. IEEE Trans. Cloud Comput. 3, 411–424 (2015)

23. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59, 56–65 (2016)

https://doi.org/10.1007/978-3-030-04780-1_19
http://arxiv.org/abs/1610.04493
https://doi.org/10.1007/s10586-017-1466-3
https://doi.org/10.1007/s10586-017-1466-3


CIC-FL: Enabling Class Imbalance-Aware
Clustered Federated Learning over

Shifted Distributions

Yanan Fu1, Xuefeng Liu1(B), Shaojie Tang2, Jianwei Niu1,3,
and Zhangmin Huang3

1 State Key Laboratory of Virtual Reality Technology and Systems, School of
Computer Science and Engineering, Beihang University, Beijing 100191, China

{fuyanan,liu xuefeng,niujianwei}@buaa.edu.cn
2 Jindal School of Management, The University of Texas at Dallas,

Dallas, TX 75080-3021, USA
shaojie.tang@utdallas.edu

3 Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
zmhuang15@fudan.edu.cn

Abstract. Federated learning (FL) is a distributed training framework
where decentralized clients collaboratively train a model. One challenge
in FL is concept shift, i.e. that the conditional distributions of data in
different clients are disagreeing. A natural solution is to group clients
with similar conditional distributions into the same cluster. However,
methods following this approach leverage features extracted in federated
settings (e.g., model weights or gradients) which intrinsically reflect the
joint distributions of clients. Considering the difference between condi-
tional and joint distributions, they would fail in the presence of class
imbalance (i.e. that the marginal distributions of different classes vary in
a client’s data). Although adopting sampling techniques or cost-sensitive
algorithms can alleviate class imbalance, they either skew the original
conditional distributions or lead to privacy leakage. To address this chal-
lenge, we propose CIC-FL, a class imbalance-aware clustered federated
learning method. CIC-FL iteratively bipartitions clients by leveraging a
particular feature sensitive to concept shift but robust to class imbal-
ance. In addition, CIC-FL is privacy-preserving and communication effi-
cient. We test CIC-FL on benchmark datasets including Fashion-MNIST,
CIFAR-10 and IMDB. The results show that CIC-FL outperforms state-
of-the-art clustering methods in FL in the presence of class imbalance.

Keywords: Federated learning · Clustering · Concept shift · Class
imbalance

1 Introduction

Federated learning (FL) [10,13,19] is a distributed training framework in which
multiple clients (e.g., organizations, data centers or mobile devices) collaboratively
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 37–52, 2021.
https://doi.org/10.1007/978-3-030-73194-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_3


38 Y. Fu et al.

train a global model under the orchestration of a central server. Not surprisingly,
to obtain a high-quality global model that can fit data of all participating clients,
FL requires data of all clients to be independent and identically distributed (IID).

(a) (b)

Fig. 1. (a) An example of concept shift. FL would fail in the presence of concept shift.
(b) In the presence of class imbalance, two clients with the same conditional distribution
would be classified into two different clusters.

However in real conditions, it is very common that data of different clients
are heterogeneous. In this situation, many works have shown that conventional
FL would fail to produce a good global model [8,18,28].

One common type of statistical heterogeneity is called concept shift [13]. For
a supervised classification task with feature x and labels y, concept shift means
that conditional distributions ϕ(x|y) vary among different clients. Concept shift
is quite common in many applications such as recommender systems[23], image
recognition [27], and smart keyboards [10]. For example, when FL is utilized to
train the model of a recommender system involving data from different groups of
people, different groups generally have different preferences, generating concept
shift. A toy example of concept shift is shown in Fig. 1(a), in which two clients
(whose samples are respectively colored as blue and orange) collaboratively train
a model that categorizes a sample as either positive (denoted as ‘+’) or negative
(denoted as ‘−’). The conditional distributions of two clients vary significantly.
In this situation, FL generally would fail to give a single global model that can
fit data distributions of all clients [7,8,13,18,20,22].

To address this problem, an intuitive approach is to group clients into clus-
ters and train one personalized model in each cluster. Clients in the same cluster
should have similar conditional distributions ϕ(x|y) to generate an appropri-
ate model in FL. There are recently many methods that follow this approach
like [2,8,9,18,20,27]. In these clustered federated learning methods, the cluster-
ing is generally based on some features of clients. Note that as these features
need to be collected in federated settings without sharing local data, they are
restricted to model weights [9,27], gradients [2,20], local optima [8,18], etc., all of
them computed based on joint distributions ϕ(x, y). As we know, joint distribu-
tion ϕ(x, y) is determined by both conditional distribution ϕ(x|y) and marginal
distribution ϕ(y) (also called label distributions), i.e., ϕ(x, y) = ϕ(x|y)ϕ(y).



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 39

We can see that these clustering methods only work well when ϕ(y) for all
clients are uniform among different classes.

However, in real applications, the label distributions ϕ(y) can vary signifi-
cantly in a client’s data, which is called class imbalance. Moreover, concept shift
and class imbalance often appear simultaneously, posing challenges to clustering-
based methods in FL. An example is illustrated in Fig. 1(b), where two clients
have similar conditional distributions but they both have class imbalance. In this
example, class imbalance leads to different joint distributions and the existing
clustering methods would erroneously divide them into different clusters.

There are two straightforward approaches that can naturally handle this
problem. One approach is to first adopt some undersampling [15,17] or data
augmentation [3,11] techniques to alleviate class imbalance of each client, and
then apply clustering techniques to deal with concept shift. However, unless all
clients have significant amount of data samples, these methods would generally
skew the original conditional distributions, especially in the extreme class imbal-
ance. Another approach is to apply new loss functions [16,26] or cost-sensitive
learning techniques [14,24] to mitigate the effect of class imbalance during FL.
However, these methods require clients to upload their local label distributions
to the server, which can lead to privacy leakage [25].

To address the challenge, we propose CIC-FL, a Class Imbalance-aware Clus-
tered Federated Learning method to deal with concept shift in FL in the presence
of class imbalance. CIC-FL estimates a particular feature LEGLD that is sensi-
tive to concept shift but robust to class imbalance and iteratively utilizes the fea-
ture to bipartition clients into clusters. In addition, CIC-FL is privacy-preserving
as the process of acquiring LEGLD does not need clients to share additional
information about their raw data and data distributions. Moreover, CIC-FL has
a low communication cost as the feature for clustering can be obtained after a
few rounds of FL. This is in contrast with some existing approaches like [2,20]
in which features for clustering can only be obtained after the global model has
converged. We test CIC-FL on different benchmark datasets including Fashion-
MNIST, CIFAR-10, and IMDB. The results show that CIC-FL outperforms the
state-of-the-art clustered federated learning methods like ClusteredFL [20] and
IFCA [8] in the presence of class imbalance.

The contributions of this paper are as follows:

– We observe that the existing clustering methods in FL generally fail to deal
with concept shift in the presence of class imbalance.

– We propose a clustering approach for FL called CIC-FL. CIC-FL iteratively
conducts bi-partitioning using a particular feature sensitive to concept shift
but robust to class imbalance. CIC-FL is privacy-preserving and communica-
tion efficient.

– We test CIC-FL on benchmark datasets created based on Fashion-MNIST,
CIFAR-10, and IMDB. The results show that CIC-FL outperforms state-
of-the-art clustered federated learning methods in the presence of class
imbalance.



40 Y. Fu et al.

2 Related Work

In FL, one important research area is to address the heterogeneity of data in
participating clients. One common type of statistical heterogeneity is concept
shift, and existing solutions share the same idea: instead of learning a single
global model for all clients, FL trains personalized models for different clients
[13].

To address concept shift, one line of research [6,22] adopts a multi-task learn-
ing (MTL) framework: where the goal is to consider fitting separate but related
models simultaneously. Another approach is to adopt a meta-learning approach
[4,7]. In this setup, the objective is to first obtain a single global model, and
then each client fine-tunes the model using its local data. The third approach is
clustering: clients whose data have similar conditional distributions are grouped,
and one personalized model is trained for clients in each cluster [2,8,9,18,20,27].

The research work of clustering approach can be further classified into two
categories. The first category is based on the partition, in which clustering algo-
rithms iteratively update centers of clusters. In [9], model weights of all clients
are utilized to cluster different clients. In addition, Ghosh et al. [8], Xie et al.
[27] and Mansour et al. [18], utilize some proposed loss functions related to the
joint distribution to guide the clustering process. Another category of clustering
is based on hierarchy. The basic idea of this kind of clustering algorithms is to
construct the hierarchical relationship among clients in FL. In the clustering
process, either the most neighboring clients are merged into a new cluster, or a
reverse process is implemented in which distant clients are iteratively split into
two clusters. Typical algorithms of this kind of clustering include [2,20,21].

However, for the clustering methods above, as clustering also needs to be
implemented in federated settings without sharing local data, features extracted
for clustering are based on the joint distributions of clients. Considering joint dis-
tribution is determined by both conditional distribution and label distribution,
they would fail in the presence of class imbalance.

3 The CIC-FL

In this section, we first introduce an overview of CIC-FL, followed by an intro-
duction about the feature we designed for clustering. At last, we introduce how
to use the feature to cluster.

3.1 System Overview

CIC-FL is a top-down hierarchical clustering process in FL where initially all
the clients belong to a single cluster. Then CIC-FL keeps partitioning clusters
by leveraging a particular feature sensitive to concept shift but robust to class
imbalance. Figure 2 shows an iteration at the beginning of CIC-FL. In particular,
CIC-FL implements the following steps for clients in a cluster:



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 41

1. Federated Learning. The standard FL algorithm FedAvg [19] is imple-
mented in the cluster for t rounds, and each round generates a global model
W

(t)
Avg.

2. Calculation of label-wise gradients. For client i with data Zi, samples of
each label q are sorted (denoted as Zi,q) and respectively fed into the global
model W

(t−1)
Avg obtained at (t − 1)th round. For each label q, we can obtain

a label-wise gradient vector denoted as Gi,q. Label-wise gradients for all Q
labels q = 1, · · · , Q form a set denoted as Gi = {Gi,1, · · · , Gi,Q}.

3. Calculation of the feature for clustering. Based on the weight updates
of global model ΔW

(t)
Avg (i.e. that W

(t)
Avg − W

(t−1)
Avg ) obtained in step 1 and the

label-wise gradients Gi from step 2, every client calculates a feature, called
the locally estimated global label distribution (LEGLD) and sends it to the
server.

4. Bipartition. For the cluster, the server utilizes LEGLDs of the clients and
partitions them into two clusters.

Fig. 2. An overview of an iteration in CIC-FL.



42 Y. Fu et al.

The process is iterated until clients in all clusters have similar LEGLDs.
The overall procedures of CIC-FL are shown in Algorithm 1. In the following
sections, we will introduce LEGLD, the feature we proposed for clustering, in
detail.

Algorithm 1: CICFL

Input: a set of clients C = {1, · · · , m}, the initial global model W
(0)
Avg, the

round t.
Output: the cluster structure {C1, · · · , CK}.

1 W
(t−1)
Avg , W

(t)
Avg ← FedAvg(C, W

(0)
Avg, t)

2 ΔW
(t)
Avg ← W

(t)
Avg −W

(t−1)
Avg

3 for i in C do
4 for q in Q do

5 Gi,q ← CalculateLabelwiseGradients(W
(t−1)
Avg , Zi,1, · · · , Zi,Q)

6 end

7 LEGLDi ← CalculateLEGLD(ΔW
(t)
Avg, Gi)

8 end
9 C1, C2 ← Bipartition(C, LEGLD1, · · · , LEGLDm)

10 if LEGLD1, · · · , LEGLDm are similar then
11 return C
12 end
13 else

14 CICFL(C1, W
(0)
Avg, t)

15 CICFL(C2, W
(0)
Avg, t)

16 end

3.2 Requirements of the Feature for Clustering

We first introduce the requirements for the feature selected for clustering in the
presence of class imbalance. The feature should satisfy the following require-
ments.

1. The feature should be sensitive to concept shift but robust to class imbalance.
2. The feature should be able to be estimated in the framework of FL. This

means that communication between clients and the server is restricted to
model weights and gradients without sharing local data or other additional
information of clients.

3. It is preferable that the estimation of the feature has a low communication
cost.



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 43

3.3 Locally Estimated Global Label Distribution (LEGLD)

Before we introduce the feature we proposed, we first define a term called the
global label distribution (GLD). We consider a supervised Q-classification task
in FL involving m clients with features x and labels y, where x ∈ X, X is the
features space, and y ∈ Y , Y = {1, · · · , Q}.

The local data of client i, denoted as Zi, can be sorted according to the
labels and therefore can be represented as Zi = {Zi,1, · · · , Zi,Q}, where Zi,q (q =
1, · · · , Q) is the local data of label q. Then the GLD is a vector defined as

GLD = [
N1

∑Q
q=1 Nq

, · · · ,
NQ

∑Q
q=1 Nq

] (1)

where Nq =
∑m

i=1 Ni,q, Ni,q is the number of samples in Zi,q. We can see that
for each element in GLD, its numerator Nq is the total sample number in class
q across all clients, and the denominator is the number of overall training data.
The GLD thus represents label distribution of data across all clients.

In FL settings, the calculation of GLD using Eq. 1 needs clients to transmit
its label information and therefore is not privacy-preserving [25]. In the following
part of this section, we will show that GLD can be estimated purely based on
the weight updates in FL.

Let f(W ; z) : Θ → R be the loss function associated with a sample z = (x, y),
where W is the model weights, W ∈ Θ and Θ is the model weights space. For
client i, the gradient of its loss function Li(W ), is defined as:

∇Li(W ) = ∇Ez∼ϕi(x,y)[f(W ; z)]. (2)

∇Li(W ) is calculated using its local data Zi. Without loss of generality, we
divide Zi into class q and q̄, with q̄ including all the classes except q. Then based
on Eq. 2, ∇Li(W ) can be written as:

∇Li(W ) = ϕi(q)∇Li,q(W ) + ϕi(q̄)∇Li,q̄(W ), (3)

where ϕi(q) and ϕi(q̄) are the label distributions of label q and q̄. ∇Li,q(W ) and
∇Li,q̄(W ) are the gradients updated using data of label q and q̄, respectively.

In FL, the gradients from all m clients are aggregated in the server by FedAvg
[19]:

∇LAvg(W ) =
∑m

i=1 Ni∇Li(W )
∑m

i=1 Ni
(4)

where Ni is the number of samples in client i.
Substituting Eq. 3 into Eq. 4, we have

∇LAvg(W ) =
∑m

i=1 Ni(ϕi(q)∇Li,q(W ) + ϕi(q̄)∇Li,q̄(W ))
∑m

i=1 Ni
. (5)

Assuming that Ni,q

Ni
is the unbiased estimate of ϕi(q), then we have

∇LAvg(W ) =
∑m

i=1 Ni,q∇Li,q(W ) +
∑m

i=1 Ni,q̄∇Li,q̄(W )
∑m

i=1 Ni
. (6)



44 Y. Fu et al.

For simplicity, we define
⎧
⎪⎪⎨

⎪⎪⎩

∇L̃q(W ) =
∑m

i=1 Ni,q∇Li,q(W )
Nq

,

∇L̃q̄(W ) =
∑m

i=1 Ni,q̄∇Li,q̄(W )
Nq̄

.
(7)

Then Eq. 6 can be presented as:

∇LAvg(W ) =
∇L̃q(W )Nq + ∇L̃q̄(W )Nq̄∑m

i=1 Ni
. (8)

Based on Eq. 8, we can calculate Nq as:

Nq =
(∇LAvg(W ) − ∇L̃q̄(W ))

∑m
i=1 Ni

∇L̃q(W ) − ∇L̃q̄(W )
(9)

Using Eq. 9, GLD can be calculated according to Eq. 1.
However, according to Eq. 7, we can see that the calculation of both ∇L̃q(W )

and ∇L̃q̄(W ) require each client to upload its label distribution to the server,
which violates the second requirement of the feature for clustering described in
Sect. 3.2.

To address the problem, we directly replace ∇L̃q(W ) and ∇L̃q̄(W ) with
∇Li,q(W ) and ∇Li,q̄(W ), respectively. The latter two terms can be calculated
by client i in FL settings. Then a client i can estimate a Nq, which is denoted
N̂ (i)

q as:

N̂ (i)
q =

(∇LAvg(W ) − ∇Li,q̄(W ))
∑m

i=1 Ni

∇Li,q(W ) − ∇Li,q̄(W )
. (10)

Each client can estimate a Locally Estimated GLD (LEGLD), which is
defined as

LEGLDi = [
N̂ (i)

1
∑Q

q=1 N̂ (i)
q

, · · · ,
N̂ (i)

Q
∑Q

q=1 N̂ (i)
q

] (11)

The LEGLD will be utilized as the feature for clustering.
In essence, LEGLD calculated by a client is the estimation of GLD based on

the gradients with respect to each label in the client. We will show that LEGLD
meets the requirements described in Sect. 3.2. First, LEGLD can be estimated
by each client in FL settings without sharing any information about its raw data
or data distribution, which is privacy-preserving. We now analyze why LEGLD
is sensitive to concept shift but robust to class imbalance.

From Eq. 10, we can see that N̂ (i)
q is determined by ∇LAvg(W ),

∑m
i=1 Ni,

∇Li,q(W ), and ∇Li,q̄(W ). ∇LAvg(W ) reflects the overall gradient of clients par-
ticipating in FL and

∑m
i=1 Ni is the number of samples in all clients. Therefore,

∇LAvg(W ) and
∑m

i=1 Ni are neither affected by concept shift nor by class imbal-
ance.



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 45

While ∇Li,q(W ) and ∇Li,q̄(W ) are related to concept shift. To explain this
relatedness, we express ∇Li,q(W ) as

∇Li,q(W ) = ∇Ez∼ϕi(x|q)[f(W ; z)], (12)

which implies that the gradient for a particular label can reflect the information
of its conditional distribution ϕ(x|y).

If there is no concept shift between clients, the data of same class possessed
by different clients will result in same local gradients (i.e. that ∇Li,q(W ) =
∇Lj,q(W ), for i, j ∈ {1, · · · ,m}). In this situation, N̂ (i)

q of any client i is equal
to Nq. Therefore, all clients have the same LEGLD. On the contrary, consid-
ering the condition when concept shift exists between client i and client j (i.e.,
∇Li,q(W ) �= ∇Lj,q(W )), they will obtain different LEGLDs.

Based on the above analysis, LEGLD is sensitive to concept shift but robust
to class imbalance.

To calculate N̂ (i)
q in Eq. 10, we utilize the empirical loss associated with

Zi as an unbiased estimate of Li(W ) (i.e., Li(W ) = 1
|Zi|

∑
z∈Zi

f(W ; z)). In
addition, we utilize weight updates to replace gradients when computation and
communication budgets are limited.

Furthermore, although for any weight w ∈ W , we can obtain the same N̂ (i)
q in

Eq. 10, the results obtained by some weights are not reliable. Directly averaging
all N̂ (i)

q s can also suffer from outliers. Many researches [1,25] have discovered
that the weights between the hidden layer and the output layer are more sensitive
to the conditional distribution of the training data. Therefore, the average of the
updates of these weights will be utilized to calculate N̂ (i)

q s.
Another advantage of LEGLD is that the calculation of this feature is

communication-efficient. The feature can be obtained after a few rounds in FL
[25]. This is in contrast with some existing approaches [2,20] in which features
for clustering can only be obtained after the global model has converged.

3.4 Bipartition

After acquiring LEGLDs of clients in the current cluster, the server will partition
clients into two clusters.

The server first computes the cosine similarity matrix S based on LEGLDs
of all clients in cluster C, and its element Si,j is defined as:

Si,j =
<LEGLDi, LEGLDj>

‖LEGLDi‖‖LEGLDj‖ , i, j ∈ C. (13)

Based on S, two candidate clusters are generated according to the following
objective function:

C1, C2 = arg min
C1∪C2=C

( max
i∈C1,j∈C2

Si,j). (14)

The similarity between the two candidate clusters is defined as

SIM(C1, C2) = max
i∈C1,j∈C2

Si,j . (15)



46 Y. Fu et al.

If SIM(C1, C2) is lower than a threshold ε, then the cluster C will be parti-
tioned into two cluster C1, C2.

4 Experiments

4.1 Experimental Settings and Evaluation Metrics

We evaluate the proposed CIC-FL on different benchmark datasets (Fashion-
MNIST (FMNIST), CIFAR-10 and IMDB) and on three common types of deep
network architectures. Specifically, we test CIC-FL using a single-layer feed-
forward neural network for FMNIST, a convolutional neural network (consisting
4 convolutional layers followed by a fully connected layer) for CIFAR-10, and
a recursive neural network (including two Long Short Term Memory layers fol-
lowed by a fully connected layer) for IMDB.

In all experiments, we set the number of clients as m. Then we generate
K clusters, and each cluster has the same number of clients. The training and
testing data of each client are generated based on the following procedures. For
a given dataset, each client randomly samples about 10,000 samples according
to a pre-defined class imbalance. Then based on the sampled samples, concept
shift among multiple clients is generated by re-assigning labels according to
different permutations of a label sequence. For example, for a 5-classification
task with 2 clusters, two permutations of the label sequence, namely, [2, 1, 4, 5, 3]
and [3, 1, 5, 4, 2], are randomly generated. Then they are utilized respectively as
new labels for all the clients in each of the two clusters. The generated data in
each client is then evenly divided for training and testing.

We define a metric for class imbalance. First, the level of class imbalance for
a single clients i [12], denoted as αi, is defined as:

αi :=
maxq∈QNi,q

minq∈QNi,q
(16)

Then αs are averaged to represent the level of class imbalance across all clients.
Then, we define a metric βk,k′ to evaluate the level of concept shift between

cluster Ck and Ck′ . Let the label sequences generated by random permutation
be Pk and Pk′ respectively, then βk,k′ is defined as:

βk,k′ := (1 −
∑Q

q=1 I(Pk(q), Pk′(q))
Q

) × 100% (17)

where I(Pk(q), Pk′(q)) = 1 if Pk(q) = Pk′(q), and I(Pk(q), Pk′(q)) = 0 if other-
wise. Then βs of any two cluster pairs are averaged to represent the level of class
imbalance across all clients.

We use two metrics to evaluate CIC-FL’s performance. One is the RandIndex
[5], denoted as RI, which is defined as follows:

RI := (1 −

∑

i<j

|Hi,j − H′
i,j |

(m
2 )

) × 100% (18)



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 47

where H and H′ are matrix representation of clustering results of the ground
truth and of the estimated results. They are defined to be an m ∗ m matrix
where the entires for i, j ∈ {1, 2, · · · ,m} are given by

Hi,j ,H′
i,j =

{
1 if client i and j are in the same cluster,
0 if otherwise.

The other one is the classification accuracy (denoted as Acc) defined as

Acc =
∑m

i=1 Acci

m
(19)

where Acci is the classification accuracy of client i ’s model.
We compare CIC-FL with the following four methods:

– Local model scheme (Local). The model in each client performs gradient
descent only on local data available.

– Global model scheme (Global). The algorithm learns a single global
model to fit data of all clients [19].

– ClusteredFL. One of the most state-of-the-art clustered federated learning
algorithms that hierarchically separates clients into different groups based on
the cosine similarities between their gradients [20].

– IFCA. An efficient framework for clustered federated learning that estimates
the cluster identities of the clients and optimizes model parameters for the
clusters via gradient descent [8].

In all the training processes of FL, we set the size of the local training batch
is 32, and the learning rate is 0.001. The standard SGD optimizer is utilized
to optimize the loss function. For the bipartition process, we set the threshold
ε = 0.95.

4.2 Experimental Results of CIC-FL

In the experiments of this section we consider the following FL setup: All exper-
iments are performed on all datasets using m = 20 clients. Particularly, for the
FMNIST or CIFAR-10 dataset, we generate K = 4 clusters. For IMDB, we
generate K = 2 clusters. The experimental results on different levels of class
imbalance α and concept shift β for various datasets are shown in Table 1.

We can see neither using global model based on all clients nor using local
models for each client is a good choice. Correctly grouping clients into clusters
and train one personalized model in each cluster is better option. In addition,
CIC-FL outperforms the ClusteredFL and IFCA in our experimental scenarios
in the presence of both concept shift and class imbalance.

4.3 CIC-FL at Different Levels of Class Imbalance

In this section, under different levels of class imbalance, we compare RI of CIC-
FL with ClusteredFL and the following two-staged methods:



48 Y. Fu et al.

Table 1. The comparison with four baseline algorithms.

Datasets FMNIST CIFAR10 IMDB

(α,β) (11,50%) (8.5,50%) (4,100%)

Acc (%) Local 62.6 56.8 65.0

Global 68.6 59.7 53.7

ClusteredFL 75.9 62.3 75.7

IFCA 69.5 64.9 79.6

CIC-FL (ours) 78.6 67.4 83.2

RI (%) ClusteredFL 89.4 87.3 75.0

IFCA 82.3 91.1 89.5

CIC-FL (ours) 96.2 93.6 95.6

– Undersampling + ClusteredFL (USClusteredFL). Each client ran-
domly discards samples from the classes whose size is larger than the smallest
one until class imbalance is eliminated. Then ClusteredFL is applied to group
clients into clusters.

– Oversampling + ClusteredFL (OSClusteredFL). Each client randomly
generates samples (via data augmentation techniques) for the classes whose
size is smaller than the largest one until class imbalance is eliminated. Then
ClusteredFL is applied to group clients into clusters.

Fig. 3. The comparison of RI among CIC-FL, USClusteredFL, OSClusteredFL and
ClusteredFL on FMNIST (as shown in (a)) and CIFAR-10 (as shown in (b)) at different
levels of the class imbalance, with a fixed level of concept shift.

Specially, the experiments in this section are based on FMNIST and CIAFR-
10, where we set m = 40 and K = 5. The level of class imbalance on each client
is set to be changed from 1, 5, 10, 20 to 40. The level of concept shift is fixed as
60%, and other settings are described in Sect. 4.1.



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 49

RI of these clustering methods on two different datasets are shown in
Fig. 3(a) (for FMINST) and Fig. 3(b) (for CIFAR-10) respectively. In Fig. 3, we
can see that the performance of all 4 methods decreases with the increase in level
of class imbalance, which indicates that the presence of class imbalance gener-
ally has a negative effect on clustering methods for concept shift. In addition,
compared to ClusteredFL, the two-staged methods (namely, the USClusteredFL
and OSClusteredFL) have better performance, which shows that mitigating the
effect of class imbalance does help clustered methods generate better results.
The proposed CIC-FL has consistently higher RI than other methods, espe-
cially with high level of class imbalance. Therefore, CIC-FL is more robust to
class imbalance than others.

4.4 CIC-FL at Different Levels of Concept Shift

We conduct experiments to evaluate the effectiveness of CIC-FL at different
levels of concept shift. We choose FMNIST and CIFAR-10 datasets and use
similar experiment settings as Sect. 4.1 except that two clusters are simulated
(K = 2), each of which has 10 clients.

Then we test the RI of CIC-FL and OSClusteredFL at different levels of con-
cept shift, namely 20%, 40%, 60%, 80% and 100%, respectively. At the same time,
the level of class imbalance is fixed to be 15. The results are shown Fig. 4. We can
observe that on both datasets, the performance of CIC-FL and OSClusteredFL
increases with the increase in concept shift. Furthermore, with the decrease of
the level of concept shift, the gap between the performance of CIC-FL and of
OSClusteredFL increases.

Fig. 4. The comparison of RI between CIC-FL and OSClusteredFL on FMNIST (as
shown in (a)) and CIFAR-10 (as shown in (b)) at different levels of the concept shift,
with a fixed level of class imbalance.



50 Y. Fu et al.

To further illustrate that LEGLD is sensitive to concept shift, we display
the heatmaps of cosine similarity matrix S for the 20 clients on FMNIST and
CIFAR-10, respectively shown in Fig. 5. The 20 clients are denoted by 0 ∼ 19
and every ten clients have a same permutation of label sequences, generating a
cluster structure {{0, · · · , 9}, {10, · · · , 19}}.

(a) (b) (c)

(d) (e) (f)

Fig. 5. The cosine similarity matrices of LEGLD for 20 clients. Specially, figures in
the first row are on FMNIST at three different levels of concept shift (corresponding
to 20%, 60%, and 100% from left to right). Similar to those the first row, figures in the
second row are on CIFAR-10.

Figures in the first row in Fig. 5 show the heatmaps of cosine similarity matrix
on FMNIST at three different levels of concept shift (corresponding to 20%, 60%,
and 100% from left to right). We can see that initially when the concept shift
is light, the heatmap does not show the cluster structure obviously, and when
the concept shift rises up to 60%, and 100%, the cluster structure is shown more
obviously. The above phenomenon can also be discovered in figures of the second
row, which show the heatmaps of cosine similarity matrix on CIFAR-10 at three
different levels of concept shift (corresponding to 20%, 60%, and 100% from left
to right). The above results show that LEGLD is a good feature for clustering
in FL for concept shift.

5 Conclusion

In this paper, we address the problem of concept shift among clients in the
presence of class imbalance in FL. We propose a Class Imbalance-aware Clus-
tered Federated Learning method (CIC-FL). CIC-FL iteratively group clients
into two clusters by leveraging LEGLD, a feature sensitive to concept shift



Enabling Class Imbalance-Aware Clustered FL over Shifted Distributions 51

but robust to the class imbalance. In addition, CIC-FL is privacy-preserving
and communication efficient. We test CIC-FL on benchmark datasets including
Fashion-MNIST, CIFAR-10, and IMDB. The results show that CIC-FL outper-
forms the state-of-the-art clustered federated learning methods in the presence
of the class imbalance. Then, an immediate future work is to research how to
choose a better threshold ε for clustering.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China under Grant Nos. 61976012 and 61772060, and China Education and
Research Network Innovation Project under Grant No. NGII20170315.

References

1. Anand, R., Mehrotra, K.G., Mohan, C.K., Ranka, S.: An improved algorithm for
neural network classification of imbalanced training sets. IEEE Trans. Neural Net-
works 4(6), 962–969 (1993)

2. Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of
local updates to improve training on non-IID data. arXiv preprint arXiv:2004.11791
(2020)

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

4. Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast
convergence and efficient communication. arXiv preprint arXiv:1802.07876 (2018)

5. Collins, L.M., Dent, C.W.: Omega: a general formulation of the rand index of
cluster recovery suitable for non-disjoint solutions. Multivar. Behav. Res. 23(2),
231–242 (1988)

6. Corinzia, L., Buhmann, J.M.: Variational federated multi-task learning. arXiv
preprint arXiv:1906.06268 (2019)

7. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-
learning approach. arXiv preprint arXiv:2002.07948 (2020)

8. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clus-
tered federated learning. arXiv preprint arXiv:2006.04088 (2020)

9. Ghosh, A., Hong, J., Yin, D., Ramchandran, K.: Robust federated learning in a
heterogeneous environment. arXiv preprint arXiv:1906.06629 (2019)

10. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018)

11. Hensman, P., Masko, D.: The impact of imbalanced training data for convolutional
neural networks. Degree Project in Computer Science, KTH Royal Institute of
Technology (2015)

12. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance.
J. Big Data 6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5

13. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977 (2019)

14. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive
learning of deep feature representations from imbalanced data. IEEE Trans. Neural
Netw. Learn. Syst. 29(8), 3573–3587 (2017)

15. Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale
database via convolutional neural networks with transfer learning. In: 2016 IEEE
International Conference on Image Processing (ICIP), pp. 3713–3717. IEEE (2016)

http://arxiv.org/abs/2004.11791
http://arxiv.org/abs/1802.07876
http://arxiv.org/abs/1906.06268
http://arxiv.org/abs/2002.07948
http://arxiv.org/abs/2006.04088
http://arxiv.org/abs/1906.06629
http://arxiv.org/abs/1811.03604
https://doi.org/10.1186/s40537-019-0192-5
http://arxiv.org/abs/1912.04977


52 Y. Fu et al.

16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

17. Mani, I., Zhang, I.: KNN approach to unbalanced data distributions: a case study
involving information extraction. In: Proceedings of Workshop on Learning from
Imbalanced Datasets, vol. 126 (2003)

18. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization
with applications to federated learning. arXiv preprint arXiv:2002.10619 (2020)

19. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelligence
and Statistics, pp. 1273–1282. PMLR (2017)

20. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. IEEE Trans. Neural
Netw. Learn. Syst. (2020)

21. Sattler, F., Müller, K.R., Wiegand, T., Samek, W.: On the byzantine robustness of
clustered federated learning. In: ICASSP 2020–2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8861–8865. IEEE (2020)

22. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learn-
ing. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)

23. Tan, B., Liu, B., Zheng, V., Yang, Q.: A federated recommender system for online
services. In: Fourteenth ACM Conference on Recommender Systems, pp. 579–581
(2020)

24. Wang, H., Cui, Z., Chen, Y., Avidan, M., Abdallah, A.B., Kronzer, A.: Predicting
hospital readmission via cost-sensitive deep learning. IEEE/ACM Trans. Comput.
Biol. Bioinform. 15(6), 1968–1978 (2018)

25. Wang, L., Xu, S., Wang, X., Zhu, Q.: Eavesdrop the composition proportion of
training labels in federated learning. arXiv preprint arXiv:1910.06044 (2019)

26. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neu-
ral networks on imbalanced data sets. In: 2016 International Joint Conference on
Neural Networks (IJCNN), pp. 4368–4374. IEEE (2016)

27. Xie, M., Long, G., Shen, T., Zhou, T., Wang, X., Jiang, J.: Multi-center federated
learning. arXiv preprint arXiv:2005.01026 (2020)

28. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

http://arxiv.org/abs/2002.10619
http://arxiv.org/abs/1910.06044
http://arxiv.org/abs/2005.01026
http://arxiv.org/abs/1806.00582


vRaft: Accelerating the Distributed
Consensus Under Virtualized

Environments

Yangyang Wang1,2 and Yunpeng Chai1,2(B)

1 Key Laboratory of Data Engineering and Knowledge Engineering,
MOE, Beijing, China
ypchai@ruc.edu.cn

2 School of Information, Renmin University of China, Beijing, China

Abstract. In recent years, Raft has been gradually widely used in many
distributed systems (e.g., Etcd, TiKV, PolarFS, etc.) to ensure the dis-
tributed consensus because it is effective and easy to implement. How-
ever, because the performance of the virtual nodes in cloud environments
is usually heterogeneous and fluctuant due to the “noisy neighbor” prob-
lem and the cost efficiency, the strong leader mechanism makes the Raft
protocol encounter a serious performance challenge. Specifically, when
the performance of the leader node is low, the whole system performance
will descend accordingly since both the write and the read requests serv-
ing will be blocked by the slow leader processing. Aiming to solve this
problem, we proposed a modified version of Raft specially optimized
for virtualized environments, i.e., vRaft. It breaks Raft’s strong leader
restriction and can fully utilize the temporarily fast followers to acceler-
ate both the write and the read requests processing in a virtualized cloud
environment, without affecting the linearizability guarantee of Raft. The
experiments based on the virtual nodes in Tencent Cloud indicate that
vRaft improves the throughput by up to 64.2%, reduces average latency
by 38.1%, and shortens the tail latency by 88.5% in a typical read/write-
balanced workload compared with Raft.

1 Introduction

For distributed systems, the consensus algorithm is a key component to guaran-
tee data consistency and system reliability, especially in the presence of system
faulty processes. Traditionally, the Paxos [1] protocol is employed by many dis-
tributed systems to achieve the distributed consensus. However, Paxos is par-
ticularly difficult to understand and implement in practical distributed systems.
In this case, the Raft protocol [2,3], which was proposed in 2014, is easy to be
comprehended and realized, and thus soon has been widely adopted by many
practical distributed systems like Etcd [4], TiKV [5], and PolarFS [6]. Although
the sequential execution limitation weakens the performance of Raft compared

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 53–70, 2021.
https://doi.org/10.1007/978-3-030-73194-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_4


54 Y. Wang and Y. Chai

with Paxos, the multiple Raft groups (see Sect. 2.1) or the ParallelRaft [6] mech-
anism can improve the parallelism of operation processing and promote the per-
formance. According to statistics from Raft’s official website, as of November
2020, Raft has been used in 117 projects [7].

Motivation. In recent years, more and more distributed systems are deployed
in cloud environments, i.e., in virtual machines (e.g., KVM [8], Xen [9], etc.) or
containers (e.g., Docker [10]). And the CPU, memory, I/O, and network resources
are isolated by tools like cgroup [11]. However, the nowadays technique cannot
guarantee accurate performance isolation, the performance of a virtual node is
highly affected by the other virtual nodes located on the same physical machine;
this is called the noisy neighbor problem [12]. In addition, the emerging storage
devices (e.g., SSDs or non-volatile memory (NVM)) have obvious performance
advantages over the traditional ones. However, these new devices are usually
much more expensive, so we may deploy them in only a subset of the clusters for
cost efficiency. Therefore, the virtual nodes, even with the same configurations,
often have different performance, and the performance of any node may fluctuate
frequently. For example, when the same program runs 300 times in a virtualized
environment, the performance difference is up to 60× or more [13]. Moreover, we
rent two virtual nodes with exactly the same configuration from Tencent Cloud
[14], but the I/O performance of these two nodes has 3 to 10 times difference,
as Fig. 1 shows.

Fig. 1. The I/O performance gap between two virtual nodes with completely the same
configuration. The tests were performed by using fio [15] with the block size setting
ranging from 4KB to 16MB.

Considering the heterogeneous and unstable performance of virtual nodes,
the distributed systems based on Raft have an important performance challenge:
Raft adopts a strong leader mechanism to ensure the data consistency, i.e., the
leader undertakes much more jobs compared with the followers and is the most
critical part for performance. Once the leader locates on a slow node in a time
period, the performance of the whole system will be slowed down (see Sect. 2.1 for
more about Raft). For example, we have made some comparative experiments by
forcing the leader to locate on the fastest node or the slowest node. The system
throughput gap between the two configurations reaches 62.8% (see Sect. 2.2 for
details).



vRaft 55

Basic Idea. For the above problem appeared in virtualized environments, there
are no existing solutions; for example, a common-sense method of migrating the
leader to fast nodes introduces other additional problems (see Sect. 2.2 for more).
Therefore, in this paper, we propose an improved version of the Raft protocol
under the virtualized environment, i.e., vRaft, to solve the above problem and
improve the performance. vRaft breaks the strong leader limitation on the basis
of maintaining the same level data consistency, allowing fast followers to boost
both the write and the read request processing. Two new mechanisms called
Fastest Return (Sect. 3.1) and Optimal Read (Sect. 3.1) are proposed in vRaft,
in order to fully take the advantage that some followers located on temporarily
fast virtual nodes has fast progress and strong processing ability.

The comparison experiments between vRaft and Raft in the Tencent Cloud
environment indicate that vRaft improves the throughput by 64.2% in a
read/write-balanced workload, reduces the average latency by 38.1%, and short-
ens the tail latency by 88.5% at the same time. Furthermore, more experiments
under different configurations (e.g., the numbers of replicas, system loads, and
system scales) exhibit that vRaft is effective in various environments.

Our contributions in this paper are summarized as follows:

(1) We identify the important new performance problem of Raft introduced by
the virtualized environment. Due to the heterogeneous and unstable perfor-
mance of virtual nodes, if the performance of the node where the Raft leader
locates is temporarily poor, the system performance will be deteriorated.

(2) We solve the above problem of Raft by proposing a modified version of Raft,
called vRaft. vRaft breaks Raft’s strong leader mechanism and thus can
fully utilize the fast follower(s) to accelerate the request processing in a
virtualized environment. And we prove that vRaft does not break the linear
consistency guaranteed by Raft.

(3) We improve the performance of an industrial-grade distributed key-value
storage systems (i.e., TiKV) by incorporating vRaft to demonstrate its effec-
tiveness. Compared with Raft, vRaft promotes the throughput by 64.2%,
shrinks the average latency by 38.1%, and reduces 88.5% tail latency for
typical workloads.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of our research and the motivation of this paper. In Sect. 3, we present
the design of our proposed vRaft. The implementation details and the evalua-
tions of vRaft are described in Sect. 4, followed by the related work presented in
Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Background and Motivation

2.1 The Raft Protocol for Distributed Consensus

Traditionally, the Paxos [1] protocol is classical to ensure data consistency in
distributed systems. However, Paxos is particularly difficult to understand and



56 Y. Wang and Y. Chai

implement. In this case, the Raft protocol [2], which is easy to be comprehended
and realized, has been widely adopted by many practical distributed systems
like Etcd [4], TiKV [5], and PolarFS [6] since it was proposed in 2014.

Write Process of Raft. Among the N copies of any data segment, one of
them is elected as the leader replica according to Raft, while the other N − 1
ones become followers. Raft’s processing of write requests includes three key
operations, i.e., append, commit, and apply, as shown in Fig. 2.

Fig. 2. Raft’s procedure of processing write requests.

First, when a client sends a write request to the leader, the leader appends
the content of the write request into the persistent log, and meanwhile the leader
sends the content of the write request to all the other followers in parallel. When
a follower receives the write request from the leader, it will also append the
content into the log and then notify the leader after its appending procedure
succeeds.

Subsequently, when the leader finds out that more than half of the replicas
(maybe not including the leader itself) have successfully finished the append
operations, the log is in the committed status and the commit index (i.e., the
version id) of the replica is increased (e.g., from C to C + 1). Note that the
version of the latest log (a.k.a., log index ) on a node is often newer than the
commit index ; this means that the latest content is not safe enough because
only minority nodes have this content. For instance, as the example in Fig. 2
illustrates, the log index of the leader has already reached 70, while the commit
index is only 50.

Then, after a written data is committed, the leader and all the followers start
applying the log into the state machine. And after the leader’s apply operation
succeeds, the leader can return success to the client, and the apply index is
increased. According to Raft, the log appending should be performed sequentially
according to requests’ arrival order. So do the log committing and the data
applying. Therefore, the leader has to apply the previous updates (e.g., index
41–49 in Fig. 2) first before processing the target data (e.g., index 50).



vRaft 57

Read Process of Raft.1 In Raft, all the read requests are processed by the
leader to ensure that the client would not get the out-of-date data. When the
leader receives a read request from a client, it records the current commit index
as the read index of the read request [3].

When the leader’s apply index is no less than the read index of the read
request, the leader can execute the read request immediately and return the
result to the client. However, when its apply index is lower than the read index,
some additional time-consuming operations should be performed first before
processing the read request. As Fig. 3 plots, the read index is 50 while the apply
index of the leader is only 40. So the leader has to apply the contents of 41–50
first and then process the read request, in order to ensure linear consistency.

Fig. 3. Raft’s procedure of processing read requests.

The four kinds of indexes used in Raft are summarized in Table 1.

Table 1. The four kinds of indexes used in Raft.

Index name Descriptions

log index Index of log that has been appended on a node

commit index Index of log that has been appended by majority nodes

apply index Index of log that has been written into status machine

read index The commit index at the time a read request arrives

Multiple Raft Groups. If all the data are put into one Raft group, the sys-
tem scalability is poor, because only N nodes can be used for N copies. In
addition, all the Raft’s operations will be executed sequentially, without paral-
lelism. Therefore, practical systems usually adopt the solution of multiple Raft
groups. i.e., the data are divided into many segments and the replicas of each
data segment compose one independent Raft group. Figure 4 is an example of
1 Raft’s read process is not detailed described in the original paper [2], but in the

doctoral thesis [3] of the author.



58 Y. Wang and Y. Chai

multiple Raft groups with the 3-copies setting, 6 nodes, and 4 Raft groups, where
the operations of different Raft groups can be processed in parallel for higher
performance.

Coupled with the multiple Raft groups, we can solve the performance problem
of Raft caused by sequential processing of requests, making Raft comparable with
Paxos in performance. Thus most Raft-based practical distributed systems adopt
the multiple Raft groups such as TiKV and PolarFS. Note that all experiments
in this paper are based on multiple Raft groups, and the size of each Raft group
is usually about 100 MB.

Fig. 4. An example of multiple Raft group.

2.2 Motivation

Raft Is Not Performing Well in a Virtualized Environment. The rea-
son lies in that the leader processing affects the performance the most in Raft
and the node performance is often heterogeneous and unstable in a virtualized
environment. When a leader is locating on a temporarily weak node, it will slow
down the whole Raft group significantly.

Specifically, for write operations, when the progress of the leader is slow,
even if most nodes have already finished writing, we have to wait for the leader’s
accomplishment before replying to the client. For read requests, if the leader’s
apply index falls behind the commit index due to the poor performance of the
leader node, the read request will not be executed until the apply index of the
leader reaches the read index of the read request, even though other follower
nodes can serve the read request already.

To illustrate the impacts of the leader node’s performance. We wrote 10GB
of data into a three-node cluster, forcing the leader to locate on the fastest node
or the slowest node, respectively. The results exhibit the former leads to a 62.8%
higher throughput and a 42.9% lower latency compared with the latter, indi-
cating that the slow progress of the leader can result in significant performance
declining (Fig. 5).



vRaft 59

(a) Write Throughput (b) Write Latency

Fig. 5. The performance when the leader locates on the fastest or the slowest node.

The Leader Migration Solution Does Not Work. A common-sense idea
of solving the slow leader problem is to migrate the leader replica to a fast
node. However, there are some problems for this solution: First, it is different
to measure the node performance accurately in real-time, because the software
(e.g., a key-value engine) performance on a node is usually affected by multiple
factors.

Second, the leader migration causes significant additional overhead, such as
the latency brought by the leader election or the new leader fetching its missing
logs from others. Especially in virtualized environments, the virtual node perfor-
mance often fluctuates, leading to frequent leader switches and much overhead.

Finally, another problem of leader migration lies in the possible excessive
leader concentration, which will weaken the parallelism of the read request pro-
cessing and make the fast node become overloaded, resulting in performance
degradation. For example, as Fig. 6 shows, we read 10GB of data in a real physi-
cal cluster, comparing the performance of the evenly distributed leaders and the
concentrated leaders on the fastest node. The results illustrate that the evenly
distributed leader solution has a 101% higher throughput and a 50.4% lower
latency than the other one.

(a) Throughput (b) Latency

Fig. 6. The performance gap between the even and concentrated leader distributions.

Summary. According to the above discussions, we cannot solve the slow leader
problem through the leader migration. Therefore, we should change the direction,
i.e., fully utilizing the fast follower to accelerate the request processing in a



60 Y. Wang and Y. Chai

virtualized environment. We should make the follower replace part of the leader’s
work, breaking Raft’s strong leader mechanism, thereby improving performance,
but at the same time not destroying the linear consistency of Raft.

3 Design of vRaft

In this section, we will present the design of our improved Raft protocol, i.e.,
vRaft, which aims to boost both the write and the read request processing
under the virtualized environments. We first present the basic idea of vRaft in
Sect. 3.1. Then the algorithm design of vRaft will be given in Sect. 3.2 and the
linearizability of vRaft will be discussed in Sect. 3.3.

3.1 Overview

In order to solve the slow leader problem under virtualized environments, vRaft
boosts both the write and read processing by breaking the roadblock of the
leader and creating new paths for request processing, without influence the lin-
ear consistency. Specifically, vRaft introduces two key components, i.e., Fastest
Return and Optimal Read, to boost writing and reading, respectively.

Fastest Return. For the write request processing of the original Raft, if the
progress of the leader is slow, even if most other nodes have finished writing, the
client has to wait until the slow leader completes writing. Recall the example
shown in Fig. 2, i.e., for a write operation with the index 50, since the apply
index of the leader is only 40, older than the write index, we have to apply logs
41–50 to the state machine in order to finish this write operation. The massive
applying operations slow down the write operation processing significantly.

However, a Raft group contains multiple nodes. Some of the follower nodes
may be faster than the leader at the current time period in virtualized cloud
environments. In this case, the follower should send its accomplished apply index
to the leader when its apply index changes. Therefore, when the leader knows
one of the followers has finished the applying phase, it can return success to the
client ahead of time compared with the original Raft, even if the leader itself has
not finished applying.

Example 3.1. An write operation processing example of vRaft. As Fig. 7 illus-
trates, the follower 1 notifies the leader that its apply index is 50, so the leader
can return the response of the write request with index 50 to the client, even if
the leader’s own apply index is less than 50.

Optimal Read. Because we need to read the target data from the state
machine, only the nodes with newer apply indexes compared with the read index
can serve the read request. For reading, the performance problem of the original
Raft lies in that when the leader node is temporarily slow in the virtualized
environment and has a low apply index, we have to increase the leader’s apply



vRaft 61

Fig. 7. vRaft’s procedure of processing write requests.

index first before the request serving. Recall the example shown in Fig. 3, the
read index is 50, and the temporarily slow leader which has an apply index of
40. So the read request will not be executed until the leader has applied the logs
41–50 to the state machine.

However, if there is a follower whose apply index is greater than or equal
to the read index, it may be faster to redirect the read request to the follower
for processing. Therefore, when the leader cannot serve the request immediately
due to the low apply index, the leader checks whether there is a follower with a
high enough apply index who can immediately process the read request. And the
leader also needs to judge whether the time it waits for the apply index increment
is greater than the time to redirect the read request to such a follower. If there
are multiple followers that meet the condition, the leader will redirect the read
request to the follower with the lowest pressure for processing.

Furthermore, the redirected read request must include the read index, and
the follower who receives the read request must make sure the apply index not
lower than the read index before executing the read request. In this way, even
if an error occurs in the redirection, linear consistency can be guaranteed (See
Sect. 3.3 for details).

Example 3.2 An read operation processing example of vRaft. As Fig. 8 plots,
the leader finds that the time waiting for the apply index increment of itself is
larger than the time to redirect the read request to the follower 1, so the follower
1 will process this request.

Fig. 8. vRaft’s procedure of processing read requests.



62 Y. Wang and Y. Chai

3.2 Algorithm Design

Fastest Return. Algorithm 1 exhibits the key functions of FR, i.e., the newly
added sendNotify for the followers and handleNotify for the leader. When the
apply index of any follower has changed, this follower will send a Notify RPC
(including its apply index) to the leader, shown as Lines 1–3 in Algorithm 1.

When the leader receives a Notify RPC, it updates the record of the corre-
sponding follower’ apply index, and calculates the maximum apply index of all
the nodes in the Raft group, as shown in Lines 4–6. Through the variable status
in Line 5, the leader records the status of all the nodes including their apply
indexes, log indexes, etc.

Finally, the leader will check all the write requests that have not finished (i.e.,
the list unresponsiveWrites in Line 7). If the updated maxApplyIndex is newer
than the index of a waiting write request, the write request is considered as an
accomplished one and the leader can directly return success to the client, as
shown in Lines 7–12. Note that the list unresponsiveWrites is a FIFO queue, so
when the first request’s write index is newer than the current max apply index,
the other request will also have to wait.

Algorithm 1. Fastest Return
1: function Follower :: sendNotify() :
2: message.set(leaderID, this.applyIndex);
3: send(message);

4: function Leader :: handleNotify(message) :
5: status.update(message);
6: maxApplyIndex ← status.getMaxApplyIndex();
7: while unresponsiveWrites.len() > 0 do
8: writeIndex ← unresonsiveWrites[0].index;
9: if maxApplyIndex >= writeIndex then

10: write ← unresonsiveWrites.remove();
11: respond(write);
12: else break;

OptimalRead. The key functions of Optimal Read are described in Algorithm 2.
All the incoming read requests are put into a list of the leader called pendingReads.
The leader checks all the pending read requestswhen anew request enters the pend-
ing request queue, or when the leader’s apply index changes, or when it receives the
follower’s Notify RPC. If the apply index of the leader is no less than the read index
of the request, the leader can immediately execute the read operation, as shown in
Lines 1–5.

Otherwise, if the apply indexes of some followers are newer or equal to
the read index, we need to compare the cost of redirecting the request to
one follower and the overhead of waiting for the leader finishing the apply



vRaft 63

operations. Assume that the average time for a leader to apply a log is a,
and the additional time of network transmission caused by request redirect-
ing is b. If (read index − leader′s apply index) ∗ a > b, the redirecting plan
is faster. Let c = b/a; when the leader′s apply index + c < read index and
all followers′ maxApplyIndex >= read index are satisfied, we should redi-
rect the read request to a follower to process, as shown in Lines 6–7.

Then, if there are multiple followers that satisfy the apply index condition,
the leader will choose the follower with the minimal read load, as shown in Lines
8–9, where F is the set of the followers that satisfy the apply index condition.
In this case, the leader will send a redirect response to the client (including the
read index and the follower id) and update the follower’s read load record, as
shown in Lines 10–11. Note that each node records its own read load and the
followers report their records to the leader periodically.

After that, the follower receives the redirected read request. If its apply index
is greater than or equal to the read index of the request, the follower can directly
execute the read request, as shown in Lines 12–15.

For the client, it first sends the read request to the leader and gets a response.
If the response is a redirect message, the client sends the read request to the
corresponding follower to get the target data, as shown in Lines 16–22.

Algorithm 2. Optimal Read
1: function Leader :: checkReads() :
2: for each readReq ∈ pengdingReads do
3: readIndex ← readReq.readIndex;
4: if applyIndex >= readIndex then
5: execute(readReq);
6: else if applyIndex + c < readIndex then
7: if maxApplyIndex >= readIndex then
8: F ← getFollowers(readIndex);
9: followerId ← F.minReadLoadNode();

10: redirect(readReq, readIndex, followerId);
11: status.update(followerId);

12: function Follower :: handleRedirectRead(readReq) :
13: readIndex ← readReq.readIndex;
14: if applyIndex >= readIndex then
15: execute(readReq);

16: function Client :: Read(readReq) :
17: response ← sendNrecv(readReq, leaderID);
18: if response.type = Redirect then
19: readIndex, followerId ← reponse.get();
20: readReq.readIndex ← readIndex;
21: readReq.type ← Redirect;
22: response ← sendNrecv(readReq, followerId);



64 Y. Wang and Y. Chai

3.3 Linearizability of vRaft

Although vRaft changes both the write and the read procedures compared with
Raft, it does not break the linearizability [16] guaranteed by Raft.

Theorem 1. vRaft does not break the linearizability, which means once a new
value has been written or read, all the subsequent reads see the new value, until
it is overwritten again.

Proof (sketch): Once writing a new value is finished, it triggers that the apply
index is updated to a1 and we assume the current commit index is c1. Thus the
commit index must be larger than or equal to the apply index (i.e., c1 ≥ a1). The
read index r of any subsequent read request will be equal to or larger than the
current commit index c1 (i.e., r ≥ c1 ≥ a1). Because vRaft also guarantees that
only when the apply index is greater than or equal to the read index, the read
request can be executed, the apply index (i.e., a2) when serving a subsequent
read request, which has the same or larger read index than r, needs to be equal
to or greater than r, i.e., a2 ≥ r ≥ c1 ≥ a1. Therefore, the state machine of the
version a2 definitely contains the written value in the version a1, which will make
sure the newly written value can be read by all the subsequent read requests.

When a new value has been read, assuming the current apply index is a1.
A subsequent read request’s read index r2 is equal to the current commit index
c2, which is larger than a1, i.e., r2 = c2 ≥ a1. And the new read request with
the read index r2 will also be served by a node with the apply index a2 which
is larger or equal to r2. So we can get a2 ≥ r2 = c2 ≥ a1. Similar to the above
case, because of a2 ≥ a1, we can make sure the subsequent read requests can get
the new value.

4 Implementation and Evaluation

Raft has been widely implemented in the industrial community, such as famous
open-source systems like Etcd [4] and TiKV [5]. Etcd is based on a memory-
based state machine, adopting a single Raft group; it is designed to store a small
amount of data such as metadata. Different from Etcd, TiKV adopts multiple
Raft groups and the disk-based state machine for massive data. Therefore, we
implemented our proposed vRaft and integrated it into TiKV for evaluations.

As a distributed key-value storage system based on Raft, TiKV utilizes
RocksDB [17] as the key-value engine for the state machine on each node, and
employs another system called Placement Driver (PD) [18] to manage the data
distribution of TiKV. In fact, TiKV contains more than 100K LOC of Rust,
which is already one of the largest open-source projects in the Rust community.

4.1 Experimental Setup

The experiments were performed in a cluster consisted of eight virtual nodes
in Tencent Cloud; each virtual node is coupled with Linux Centos 7.4.1708, 8



vRaft 65

GB DRAM, and a 200 GB Solid State Drive (SSD). Six of the virtual nodes
serve as TiKV nodes, one as PD, and the last one runs the benchmark tool, i.e.,
go-YCSB [19].

Go-YCSB is a Go language version of the widely used YCSB benchmark [20]
for evaluating key-value systems. In the experiments, the used workloads are
listed in Table 2, including Load (insert-only), Workload A (50:50 read/update),
Workload B (95:5 read/update), and Workload C (read-only). Each key-value
pair contains a 16-B key and a 1-KB value, and each data block has 3 repli-
cas in TiKV. The default thread number of the go-YCSB client is 200. Other
configurations all adopt the default ones in the go-YCSB specification [21].

Table 2. The YCSB workloads used in evaluations.

Name Description

Load Insert only

Workload A 50:50 Read/Update

Workload B 95:5 Read/Update

Workload C Read only

In the following experiments, we adopt the system throughput (i.e., opera-
tions per second or ops/sec), the average latency, and the 99th percentile latency
as the performance metrics.

4.2 Overall Results

In the overall experiments, we first load 100-GB data into the TiKV cluster, and
then perform the workloads A, B, and C of YCSB, respectively, accessing 100
GB of data respectively.

As Fig. 9 plots, vRaft achieves higher throughput than Raft in most cases,
i.e., 80% higher for Load, 64.2% higher for Workload A, and 2.7% higher for
Workload B. This is because more writes make the differences in the apply
indexes of different nodes be greater, thereby vRaft gains more performance
improvement compared with Raft. For the read-only workload (i.e., C), there is
no difference for the apply indexes of the nodes, so vRaft achieves almost the
same throughput as Raft in Workload C.

Figure 10 exhibits the results of the average latency and the 99th percentile
latency. vRaft achieves lower average latency than Raft in most cases, i.e., 44.2%
lower for Load, 38.1% lower for Workload A, and 1.7% lower for Workload B.
And the reduction on the 99th percentile latency of vRaft is more significant
compared with Raft, e.g., 86.3% lower for Load, 88.5% lower for Workload A,
and 13.9% lower for Workload B. Because when the leader writes slowly, Raft has
to wait for the requests to be written one by one on the leader node, while vRaft
can return the read and write results to clients through the faster progress of



66 Y. Wang and Y. Chai

followers. In Workload C, vRaft’s average latency and the 99th percentile latency
are close to Raft’s, since the apply indexes of all the nodes do not change at all
due to no new writes coming.

Fig. 9. Overall throughput results. Fig. 10. Overall latency results.

4.3 Impacts of the Number of Replica

In this part, we measure the performance of vRaft and Raft under different
numbers of replica configurations, including 3, 5, and 7 replicas. We adopt the
read/write-balanced workload, i.e., Workload A, to perform the experiments.
Specifically, we first load 10 GB of data into the cluster, and then perform
Workload A of 10-GB data. The throughput and the latencies of performing
Workload A are exhibited in Fig. 11 and Fig. 12.

As Fig. 11 plots, vRaft can achieve 46.2%–63.5% higher throughput compared
with Raft under all different numbers of replica. In addition, Fig. 12 exhibits the
results of the average latency and the 99th percentile latency. vRaft shortens
the average latency by 30.4% to 38.9% and reduces the tail latency by 5.6% on
average compared to Raft under all these cases. Because the loaded data is 10
GB, less than the amount of 100 GB in the overall results, the tail latency is not
reduced as significantly as the above experiments.

Fig. 11. Throughput for different replica
counts.

Fig. 12. Average and tail latencies for
different number of replica.



vRaft 67

4.4 Impacts of System Load

In this part, we measure vRaft and Raft under different system loads. The low,
medium, and high system loads are configured by setting different numbers of
client threads of go-YCSB. The thread number of low system load is only 10,
the thread number of medium load is 50, and the number of high load is up to
200. In the experiments, we perform 10-GB Workload A based on an existing
data set of 10 GB.

As Fig. 13 exhibits, no matter how much the system load is, vRaft can
increase the system throughput significantly (i.e., 41.7% to 67.8% higher).
Figure 14 indicates that vRaft can reduce the average latency by 30.4% to 46.1%
and at the same lower the 99th percentile latency by 3.6% on average under all
kinds of system loads. Of course, under the medium or the high system load, the
advantage of vRaft can be fully exploited.

4.5 Scalability Evaluation

In order to evaluate the scalability of vRaft, we performed experiments on clus-
ters with different counts of TiKV nodes (i.e., 3, 6, 12, 18, 24, or 30 TiKV
nodes). All nodes here indicate virtual nodes. In the evaluation, we perform
10-GB Workload A based on an existing data set of 10 GB.

Figure 15 exhibits the results of the relative throughput, the relative aver-
age latency and the relative 99th percentile latency between vRaft and Raft
under different system scales. As Fig. 15 shows, vRaft increases the throughput
by 37.4% to 54.4% compared with Raft. vRaft reduces the average latency by
25.5% to 35.5% and reduces the tail latency by 9.6% on average compared with
Raft. The results indicate that vRaft has good scalability and can improve the
performance compared with Raft stably under different system scales.

Fig. 13. Throughput under different sys-
tem loads.

Fig. 14. Average and tail latencies
under different system loads.



68 Y. Wang and Y. Chai

Fig. 15. Performance comparison under different system scales.

5 Related Work

Raft Optimization. Due to the importance of the Raft protocol for dis-
tributed systems, there are many existing works for optimizing Raft from differ-
ent aspects. Some work optimizes the leader election mechanism of Raft, tuning
the parameters about the election to make the election procedure faster [22,23];
some other work speeds up the leader election when some failures happen [24].
In addition, some researchers combine Raft with Software Defined Networking
(SDN) [25–27].

As the number of nodes in the cluster increases, the throughput may decline
because the only leader becomes the bottleneck of communication. In conse-
quence, Sorensen et al. [28] proposed Obiden, a variation of the Raft protocol
for distributed consensus with a president and a vice president to provide higher
performance in large clusters. Besides, PolarFS [6] implements a parallel Raft
to allow Raft’s logs to be processed out of order, breaking Raft’s strict limita-
tion that logs have to be submitted in sequence, with the benefit of increasing
concurrency.

Hanmer et al. [29] found that Raft may not work properly under overloaded
network conditions. A request such as a heartbeat cannot be returned within a
specified time, thereby being considered as a failure. The heartbeat failure may
cause the leader to be converted to a follower, restarting the slow leader election
procedure. Furthermore, the leader election may be repeated again and again
under the poor network condition, delaying the request processing seriously.
Therefore, they proposed DynRaft [29], a dynamic extension of Raft to optimize
the performance when the network is overloaded.

Copeland et al. [30] proposed BFTRaft, a Byzantine fault tolerant variant of
the Raft consensus protocol. BFTRaft maintains the safety, the fault tolerance,
and the liveness properties of Raft in the presence of Byzantine faults, and keeps
the modified protocol simple and readily comprehensible, just as Raft does.

Paxos Optimization. In order to reduce the high latency of the Paxos protocol,
Wang et al. proposed APUS [31], the first RDMA-based Paxos protocol that aims
to be fast and scalable to client connections and hosts. Ho et al. [32] proposed a
Fast Paxos-based Consensus (FPC) algorithm which provides strong consistency.



vRaft 69

FPC adopts a controller priority mechanism to guarantee that a proposal must
be elected in each round and no additional round is needed, even more than two
proposers get the same votes.

In summary, the existing optimization work about the Raft-based distributed
consensus does not consider the performance heterogeneity and fluctuation prob-
lem of virtual nodes in the cloud environment. Our proposed vRaft solution is
the first method to solve this new problem under virtualized environments.

6 Conclusion

In a virtualized cloud environment, the performance of each virtual nodes may be
heterogeneous, and they often affected seriously by the behavior of other virtual
nodes located on the same physical node, thus keeps fluctuating. Therefore,
the Raft protocol, which has been widely used in many distributed systems to
achieve consensus, will encounter new performance problems when the leader
node is temporarily slow, because both the read and the write requests have
to wait for the leader’s processing to be finished in Raft, even if some follower
nodes are obviously faster.

In order to break the too strict leader limitation in Raft and to fully utilize
the fast follower to accelerating the request processing, we propose a new version
of Raft for performance optimization in virtualized environments, called vRaft.
vRaft contains two new mechanisms, i.e., Fastest Return and Optimal Read, to
accomplish the processing of both the write and the read requests ahead of time
compared with Raft, respectively, through involving fast followers in the pro-
cessing. Besides, we have implemented our proposed vRaft in an industrial level
distributed key-value systems (i.e., TiKV). And the experiments based on the
Tencent Cloud platform indicate that vRaft can effectively and stably improve
all the key performance metrics at the same time, including the throughput, the
average latency, and the tail latency.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (No. 2019YFE0198600), National Natural Science Founda-
tion of China (No. 61972402, 61972275, and 61732014).

References

1. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
2. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.

In: 2014 USENIX Annual Technical Conference (USENIXATC 2014), pp. 305–319
(2014)

3. Ongaro, D.: Consensus: bridging theory and practice. Stanford University (2014)
4. Etcd. https://github.com/etcd-io/etcd
5. TiKV. https://github.com/pingcap/tikv
6. Cao, W., Liu, Z., Wang, P., et al.: PolarFS: an ultra-low latency and failure resilient

distributed file system for shared storage cloud database. Proc. VLDB Endow.
11(12), 1849–1862 (2018)

https://github.com/etcd-io/etcd
https://github.com/pingcap/tikv


70 Y. Wang and Y. Chai

7. Where can I get Raft? https://raft.github.io/#implementations
8. Kernel-based Virtual Machine. https://en.wikipedia.org/wiki/Kernel-based

Virtual Machine
9. Xen. https://en.wikipedia.org/wiki/Xen

10. docker. https://www.docker.com/
11. cgroups. https://en.wikipedia.org/wiki/Cgroups
12. Performance interference and noisy neighbors. https://en.wikipedia.org/wiki/

Cloud computing issues#Performance interference and noisy neighbors
13. Misra, P.A., Borge, M.F., Goiri, Í., et al.: Managing tail latency in datacenter-

scale file systems under production constraints. In: Proceedings of the Fourteenth
EuroSys Conference, p. 17. ACM (2019)

14. Tencent Cloud. https://intl.cloud.tencent.com/
15. Flexible I/O Tester. https://github.com/axboe/fio
16. Kleppmann, M.: Designing Data-intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems. O’Reilly Media Inc., Sebastopol
(2017)

17. RocksDB. http://rocksdb.org/
18. PD. https://github.com/pingcap/pd
19. go-ycsb. https://github.com/pingcap/go-ycsb
20. Cooper, B.F., Silberstein, A., Tam, E., et al.: Benchmarking cloud serving systems

with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing,
pp. 143–154. ACM (2010)

21. go-ycsb workloads. https://github.com/pingcap/go-ycsb/tree/master/workloads
22. Howard, H., Schwarzkopf, M., Madhavapeddy, A., et al.: Raft refloated: do we have

consensus? ACM SIGOPS Oper. Syst. Rev. 49, 12–21 (2015)
23. Howard, H.: ARC: analysis of Raft consensus. Computer Laboratory, University of

Cambridge (2014)
24. Fluri, C., Melnyk, D., Wattenhofer, R.: Improving raft when there are failures. In:

2018 Eighth Latin-American Symposium on Dependable Computing (LADC), pp.
167–170. IEEE (2018)

25. Sakic, E., Kellerer, W.: Response time and availability study of RAFT consensus in
distributed SDN control plane. IEEE Trans. Netw. Serv. Manage. 15(1), 304–318
(2017)

26. Zhang, Y., Ramadan, E., Mekky, H., et al.: When raft meets SDN: how to elect
a leader and reach consensus in an unruly network. In: Proceedings of the First
Asia-Pacific Workshop on Networking, pp. 1–7. ACM (2017)

27. Kim, T., Choi, S.G., Myung, J., et al.: Load balancing on distributed datastore
in opendaylight SDN controller cluster. In: 2017 IEEE Conference on Network
Softwarization (NetSoft), pp. 1–3. IEEE (2017)

28. Sorensen, J., Xiao, A., Allender, D.: Dual-leader master election for distributed
systems (Obiden) (2018)

29. Hanmer, R., Jagadeesan, L., Mendiratta, V., et al.: Friend or foe: strong consistency
vs. overload in high-availability distributed systems and SDN. In: 2018 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW),
pp. 59–64. IEEE (2018)

30. Copeland, C., Zhong, H.: Tangaroa: a byzantine fault tolerant raft (2016)
31. Wang, C., Jiang, J., Chen, X., et al.: APUS: fast and scalable paxos on RDMA.

In: Proceedings of the 2017 Symposium on Cloud Computing, pp. 94–107. ACM
(2017)

32. Ho, C.C., Wang, K., Hsu, Y.H.: A fast consensus algorithm for multiple controllers
in software-defined networks. In: 2016 18th International Conference on Advanced
Communication Technology (ICACT), pp. 112–116. IEEE (2016)

https://raft.github.io/#implementations
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/Xen
https://www.docker.com/
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cloud_computing_issues#Performance_interference_and_noisy_neighbors
https://en.wikipedia.org/wiki/Cloud_computing_issues#Performance_interference_and_noisy_neighbors
https://intl.cloud.tencent.com/
https://github.com/axboe/fio
http://rocksdb.org/
https://github.com/pingcap/pd
https://github.com/pingcap/go-ycsb
https://github.com/pingcap/go-ycsb/tree/master/workloads


Secure and Efficient Certificateless
Provable Data Possession

for Cloud-Based Data Management
Systems

Jing Zhang1, Jie Cui1(B), Hong Zhong1, Chengjie Gu2, and Lu Liu3

1 School of Computer Science and Technology, Anhui University, Hefei, China
cuijie@mail.ustc.edu.cn, zhongh@ahu.edu.cn

2 Security Research Institute, New H3C Group, Hefei, China
gu.chengjie@h3c.com

3 School of Informatics, University of Leicester, Leicester, UK
l.liu@leicester.ac.uk

Abstract. Cloud computing provides important data storage, process-
ing and management functions for data owners who share their data with
data users through cloud servers. Although cloud computing brings sig-
nificant advantages to data owners, the data stored in the cloud also
faces many internal/external security attacks. Existing certificateless
data provider schemes have the following two common shortcomings,
i.e., most of which use plaintext to store data and use the complex
bilinear pairing operation. To address such shortcomings, this scheme
proposes secure and efficient certificateless provable data possession for
cloud-based data management systems. In our solution, the data owners
and cloud servers need to register with the key generation center only
once. To ensure the integrity of encrypted data, we use the public key
of the cloud server to participate in signature calculation. Moreover, the
third-party verifier can audit the integrity of ciphertext without down-
loading the whole encrypted data. Security analysis shows that our pro-
posed scheme is provably secure under the random oracle model. An
evaluation of performance shows that our proposed scheme is efficient in
terms of computation and communication overheads.

Keywords: Cloud data management · Provable data possession
(PDP) · Certificateless cryptography · Security · Efficient

1 Introduction

With the rapid development of cloud computing, more and more people out-
source their data to cloud servers [1,13], which brings three main advantages.
Firstly, resource-constrained users no longer need to process and store a large
amount of data, so that a lot of computing and storage costs can be saved.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 71–87, 2021.
https://doi.org/10.1007/978-3-030-73194-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_5


72 J. Zhang et al.

Secondly, users can access data anytime and anywhere without requiring high-
performance hardware. Thirdly, users can share data conveniently.

Although cloud services bring many benefits to people’s lives, many chal-
lenges [3,5] need to be solved properly. Firstly, user loses the direct control
of their outsourced data, i.e., whether the data has been modified or deleted
is unknown. Secondly, the leakage of data may damage the privacies of users,
such as the time when users are not at home and the routes that users fre-
quently travel. In the worst cases, the property safety of users may be threaten.
Therefore, how to ensure the confidentiality and integrity of outsourced data has
become a great concern to users.

At present, some researchers have proposed provable data possession (PDP)
schemes for the integrity of outsourced data [2,4–6,9,11,12,14,15,17–22].
Although the existing schemes ensure the integrity of cloud storage data, they
do not consider the confidentiality of data. Moreover, due to the usage of com-
plex bilinear pairing operation, these schemes also bring heavy computation and
communication costs to the third-party verifier (TPV). Therefore, it is urgent
to design a secure and efficient provable data possession scheme for cloud data
management systems.

1.1 Related Work

To ensure the integrity of outsourced data, Ateniese et al. [2] first introduced the
concept of PDP in 2007, and further considered public validation. Many PDP
schemes [8,9,12,17,22] that follow Ateniese et al.’s work have been introduced
to protect the integrity of outsourced data. Unfortunately, these schemes have a
common drawback, i.e., most of which rely on trusted third parties to generate
certificates for users, so that users have serious certificate management problems
and heavy computing costs.

To solve the certificate management issues, Wang et al. [15] proposed an
identity-based PDP scheme and provided a corresponding security model. To
improve performance and security, some identity-based PDP schemes have also
been proposed [14,18,20]. However, these schemes have a common disadvantage,
that is, they need the secret key generation center to generate a series of private
keys for users, which brings the key escrow problem.

To overcome the key escrow problem, a series of certificateless provable
data possession (CL-PDP) schemes have been proposed [4–6,11,19,21]. Unfor-
tunately, there are still many security issues in these schemes. Zhang et al. [19]
pointed out that schemes [6,11] cannot guarantee the privacy of data. He et
al. [5] discovered that scheme [19] had a malicious server attack and proposed
an improved scheme. Recently, Zhou et al. [21] discovered that scheme [5] is vul-
nerable to tag forging and data loss hiding attacks. In addition, these schemes
use complex bilinear pairing operations, which bring deficiencies in terms of
computation and communication.



Secure and Efficient Certificateless Provable Data Possession 73

1.2 Contribution

To achieve the security of outsourced data and further reduce the waste of
resources, this paper proposes a secure and efficient certificateless provable data
possession scheme for cloud-based data management systems. There are three
main contributions of the proposed scheme.

1. We propose to use a symmetric and asymmetric encryption algorithms simul-
taneously, which cannot only realize the security of data sharing, but also
further ensure the confidentiality of outsourced data.

2. The proposed scheme can resist the attack of Type I and Type II adversaries,
and can resist the tag forgery attack. The security analysis reveals that our
scheme is provably secure under the random oracle model.

3. The detailed comparisons with the existing related schemes in terms of com-
putational and communication overhead on the Tag Generation, Generate-
Proof and Verify-Proof Algorithms, demonstrates that our scheme provides
better performance.

The outline of the rest study is as follows: In Sect. 2, we introduce the back-
ground of this study. In Sect. 3, we put forward the proposed scheme. The
security analysis is proved in Sect. 4. The performance evaluation is outlined
in Sect. 5. Lastly, we present the conclusion of this study in Sect. 6.

2 Background

In this section, we introduce the preliminary knowledge and network model.

2.1 Elliptic Curve Cryptosystem (ECC)

Let Ep: y2 = x3 + ax + b(modp) be a non-singular elliptic curve over the finite
field Fp, where p > 3 is a large prime, a, b ∈ Fp, and 4a3 + 27b2(modp) �= 0. Let
G be a cyclic group on Ep of prime order q.

Discrete Logarithm (DL) Problem: Given two random points P,Q ∈ G,
where Q = xP , x ∈ Z∗

q , and Z∗
q = {1, 2, ..., q − 1}, it is difficult to calculate x

from Q in a probabilistic polynomial time (PPT).

2.2 Network Model

The system architecture comprises a key generation center KGC, a cloud server
CS, a data owner DO and a third-party verifier TPV. As shown in Fig. 1, the
details of each component are described as follows:

– KGC: It is a trusted third party, which is in charge of generating and pub-
lishing system parameters. It also generates a partial key for each DO and
delivers these sensitive information to them via secure channels.



74 J. Zhang et al.

Fig. 1. A network model of the CL-PDP protocol

– CS: It is an honest but curious entity that is assumed to have sufficient
computing and storage capabilities.

– DO: It is a resource constrained data owner, who outsources their data to
CS and entrusts TPV to verify the integrity of cloud storage data.

– TPV: It verifies the integrity of cloud storage data when users need it, and
is responsible for the verification results.

3 Proposed Scheme

In this section, we describe the proposed CL-PDP scheme based on ECC to solve
the security problem and reduce the time cost.

3.1 Setup Algorithm

Given a security parameter λ, KGC generates a cyclic group G with prime
order q and generator P . Then, KGC randomly chooses s ∈ Z∗

q and computes
the system public key Ppub = s · P . KGC selects six one-way hash function
H0 : {0, 1}∗ → {0, 1}q, Hk : {0, 1}∗ → Z∗

q , k = 1, 2, 3, 4, 5. Finally, KGC pub-
lishes system parameters params = {q, Z∗

q , Ppub,H} and saves the master key s
secretly.

3.2 Key Generation Algorithm

Given the real identities IDi, CIDk ∈ Z∗
q of DOi and CSk, KGC performs as

follows:

– KGC randomly selects αk ∈ Z∗
q as CSk’s secret key skk = αk, and computes

PKk = αkP as CSk’s public key. Then, KGC sends the key {skk, PKk} to
CSk via a secure channel.



Secure and Efficient Certificateless Provable Data Possession 75

– KGC randomly picks αi ∈ Z∗
q and computes Ai = αiP , hi,1 = H1(IDi‖Ai)

and sk1 = αi + hi,1s(modq). Then, KGC sends the partial key {sk1, Ai} to
DOi via a secure channel.

– DO randomly chooses β ∈ Z∗
q as their secret value sk2 = β and computes

PKi = βP as their public key.

3.3 Store Algorithm

Encrypt Data. DO first divides their data M into n blocks: M = {Ml}nl=1.
DO then generates a corresponding signature for each block of data.

– DO randomly picks xM ∈ Z∗
q , δ ∈ {0, 1}q, computes XM = xMP , and saves

{xM ,XM} as a one-time-use signing key and verification key, respectively.
– DO computes hi,2 = H2(EK(M1)‖...‖EK(Mn)‖S1‖...‖Sn‖δ‖XM ), Z =

hi,2PKk, Y = δ + H0(hi,2P ), hi,3 = H3(IDi‖Ai‖PKi), and SM = hi,2xM +
hi,3sk2 + sk1. Note that authorized users can utilize the secret key K to
decrypt data Ml = DK(EK(Ml)).

Tag Generation. Through the execution of this algorithm, DO produces a Tag
for each block of data and stores the encrypted data into the cloud.

– DO randomly picks xl ∈ Z∗
q , computes Xl = xlP , hl

i,4 = H4(IDi

‖namel‖Xl‖PKi), hl
i,5 = H5(namel‖Xl‖Ai), and Sl = EK(Ml)xl +hl

i,4sk2 +
hl
i,5sk1. Note that namel denotes the unique name of data Ml.

– DO outputs Tl = {Xl, Sl, EK(Ml)} as Ml’s tag.
– Finally, DO sends {XM , SM , Z, Y, {Tl}nl=1} to CS.

Store. After receiving the request from the DO, CS computes δ = Y + H0(Z
′
)

by decrypting Z
′
= hi,2P = Zsk−1

k .

– CS computes hi,1 = H1(IDi‖Ai), hi,3 = H3(IDi‖Ai‖PKi) and hi,2 =
H2(EK(M1)‖...‖EK(Mn)‖S1‖...‖Sn‖δ‖XM ). CS then checks whether the fol-
lowing condition is true.

SMP = hi,2XM + hi,3PKi + Ai + hi,1Ppub (1)

– If it is not true, CS immediately stops the session. Otherwise, CS computes
hl
i,4 = H4(IDi‖namel‖Xl‖PKi), hl

i,5 = H5(namel‖Xl‖Ai) and verifies the
condition.

n∑

l=1

SlP =
n∑

l=1

[EK(Ml)Xl] +
n∑

l=1

hl
i,4PKi +

n∑

l=1

hl
i,5(Ai + hi,1Ppub) (2)

If the verification holds, CS stores the encrypted data; otherwise, CS rejects
the request.



76 J. Zhang et al.

3.4 Challenge Algorithm

Through the execution of this algorithm, a TPV produces a challenging message
to verify the data integrity of data.

1. TPV chooses a random subset I ∈ {1, 2, ..., n} and a small number vj for each
j ∈ I.

2. TPV outputs {j, vj}j∈I as a challenging message and returns it to CS.

3.5 Generate-Proof Algorithm

When CS receives the TPV’s auditing challenge {j, vj}j∈I , CS produces the
following steps to complete the proof.

1. CS calculates Scs =
∑

j∈I vjSjP and Ccs =
∑

j∈I [vjEK(Mj)Xj ].
2. CS outputs the proof {Scs, Ccs} and returns it to TPV.

3.6 Verify-Proof Algorithm

Upon receiving the proof {Scs, Ccs}, TPV executes the following steps to check
the correctness.

1. TPV calculates hi,1 = H1(IDi‖Ai), hj
i,4 = H4(IDi‖namej‖Xl‖PKi) and

hj
i,5 = H5(namej‖Xl‖Ai).

2. TPV checks whether the following equation holds.

Scs = Ccs +
∑

j∈I

(vjh
j
i,4)PKi +

∑

j∈I

(vjh
j
i,5)(Ai + hi,1Ppub) (3)

If the equation holds, the TPV outputs “Accept”; otherwise, TPV outputs
“Reject”.

4 Security Analysis

In this section, we firstly present a security model for the proposed scheme. Ane
then, we analyze and prove the security of the proposed CL-PDP scheme.

4.1 Security Model

There are two types of unbounded adversaries namely A1 and A2. Type I adver-
sary A1 can replace the public key of the user but doesn’t access the master key.
Type II adversary A2 cannot access replace the public key of the user but has
ability to access the master key. The adversary A1 and A2 and the challenger C
could make the following queries in the game.

Setup. In this query, C inputs the master key and public parameters. C keeps
the master key secretly and sends the public parameters A. C also sends the
master key to A if A is a Type II adversary.



Secure and Efficient Certificateless Provable Data Possession 77

Query. In this query, A can make some queries and C answers back:

1. Create Data Owner : C executes the key generation algorithm to generate the
DO’s partial private key and secret value, and returns the DO’s public key
to A.

2. Extract Partial Private Key : C returns a partial private key of DO to A as
an answer.

3. Public Key Replacement : A can replace the public key of DO with a new
value chosen by A.

4. Extract Secret Value: C returns a secret value of ID to A as an answer.
5. Generate Tag : C generates a Tag of a block and returns it to A.

Forge. A outputs a one-time-use verification key S∗ and a Tag X∗ corresponding
the challenging identity ID∗.

A wins the game if the following requirements are satisfied:

1. T ∗ is the corresponding valid tag of the challenging identity ID∗.
2. T ∗ is not generated by querying Generate Tag.
3. ID∗ is independent of algorithm of Extract Partial Private Key/Extract Secret

Value if A is Type I/Type II adversary.

Definition 1. The proposed certificateless provable data possession (CL-PDP)
scheme is secure against forging Tag attack, if there is no any adversary A ∈
{A1,A2} which wins the above-mentioned game with a non-negligible probability.

4.2 Security Theorem

Theorem 1. According to the assumption of the difficulty of the DL problem,
the proposed CL-PDP scheme is secure against Type I adversary.

Proof. Assuming given P,Q = aP , where P,Q are two points on elliptic curve
Eq, A1 can forge a one-time-use verification key S∗ and a Tag X∗ corresponding
the challenging identity ID∗. We have built a game between A1 and a challenger
C1, and C1 has the ability to run A1 with a non-negligible probability as a
subroutine to solve DL problem.

Setup: The master key s is randomly selected by challenger C1. And C1 then
calculates the corresponding public key Ppub = sP . Next, C1 sends the system
parameters params = {q, Z∗

q , Ppub,H} to A1. C1 chooses a challenging identity
ID∗ and answers the following queries from A1.

Hi Queries: When A1 uses the elements mi for Hi query, C1 checks whether
the elements (mi, τhi

) already exists in the hash list Lhi
(i = 0, 1, ..., 5). If it is,

C1 sends τhi
= H1(mi) to A1. Otherwise, C1 picks τhi

∈ Z∗
q randomly and adds

the elements (mi, τhi
) to the hash list Lhi

, then C1 sends τhi
= H1(mi) to A1.

Create Data Owner Query: When A1 performs a create data owner
query on the challenging identity ID∗, C1 checks whether the form
(IDi, sk2, sk1, αi, PKi, Ai) exists in L6. If exists, C1 replies (PKi, Ai) to A1.
Otherwise, C1 works as following:



78 J. Zhang et al.

– If IDi = ID∗, C1 picks three elements sk1, sk2, τh1 ∈ Z∗
q randomly and

computes PKi = sk2P and Ai = sk1P − τh1Ppub. C1 inserts the tuple
(IDi, Ai, τh1) and (IDi, sk2, sk1,⊥, PKi, Ai) into Lh1 and L6, respectively.
Note that ⊥ denotes null.

– Otherwise, IDi �= ID∗, C1 picks three elements αi, sk2, τh1 ∈ Z∗
q randomly

and computes PKi = sk2P and Ai = αiP . C1 inserts the tuple (IDi, Ai, τh1)
and (IDi, sk2,⊥, αi, PKi, Ai) into Lh1 and L6, respectively.

Extract Partial Private Key Query: Upon receiving A1’s query, C1 checks
whether IDi already exists in hash list Lh2 . If C1 cannot find the corresponding
tuple, C1 makes H1 query on IDi itself to produce τh1 . Then, C1 works as
following:

– If IDi �= ID∗, C1 first checks whether IDi exists in L6. If exists, C1 searches
the tuple (IDi, sk2, sk1, αi, PKi, Ai) and returns (Ai, sk1) to A1. Otherwise,
C1 picks two element sk1, τh1 ∈ Z∗

q and computes Ai = sk1P −τh1Ppub. Then,
C1 returns (Ai, sk1) to A1 and stores (IDi, sk2, sk1, αi, PKi, Ai) to L6.

– Otherwise, IDi = ID∗, C1 stops the game.

Public Key Replacement Query: When A1 performs a public key replace-
ment query on (IDi, A

∗
i , PK∗

i ), C1 first checks whether IDi exists in L6. C1

answers as following:

– If list L6 contains IDi, C1 replaces the tuple (IDi, sk2, sk1, αi, PKi, Ai) with
(IDi, sk2, sk1, αi, PK∗

i , A∗
i ).

– Otherwise, C1 inserts the tuple (IDi,⊥,⊥,⊥, PK∗
i , A∗

i ) to L6.

Extract Secret Value Query: Upon receiving A1’s extract secret value query
on IDi, C1 answers as following:

– If list L6 involves (IDi, sk2, sk1, αi, PKi, Ai), C1 checks whether sk2 = ⊥ is
true. If sk2 = ⊥, C1 sends sk2 to A1. Otherwise, C1 performs a create data
owner query to generate PKi = sk2P . After that, C1 sends sk2 to A1 and
updates (ski, PKi) to list L6.

– If list L6 does not involve (IDi, sk2, sk1, αi, PKi, Ai), C1 performs a create
data owner query and sends sk2 to A1. After that, C1 sends sk2 to A1 and
updates (IDi, ski, PKi) to list L6.

Generate Tag Query: A1 performs a generate tag query on (namel,Ml) under
(IDi, PKi, Ai). C1 first checks whether IDi exists in L6, Lh1 , Lh4 and Lh5 . C1

answers as following:

– If IDi = ID∗, C1 stops the game.
– Otherwise, C1 picks three elements Sl, τh1 , τh4 , τh5 ∈ Z∗

q randomly and com-
putes Xl = EK(Ml)−1(SlP − τh4PKi − τh5(Ai + τh1Ppub)). Then, C1 returns
(Sl,Xl) to A1. Note that if τh4 or τh5 already exists in hash list Lh4 or Lh5 ,
C1 picks an element Sl and works again.



Secure and Efficient Certificateless Provable Data Possession 79

Forgery: At last, A1 outputs a Ml’s Tag {XM , S∗
M , Z, Y,Xl, S

∗
l , EK(Ml)} under

(IDi, PKi, Ai). If IDi �= ID∗, C1 aborts the game. Otherwise, on the basis of the
forking lemma [10], C1 has the ability to get two different valid Tags Tl = (Xl, Sl)
and T ∗

l = (Xl, S
∗
l ) in polynomial time through A1, if C1 repeat the process with

a different choice of H1. We have the following equation:

SlP = EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub) (4)

S∗
l P = EK(Ml)Xl + hl

i,4PKi + hl
i,5(Ai + h∗

i,1Ppub) (5)

Hence, we can get that

(Sl − S∗
l )P = SlP − S∗

l P

= EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub)

− EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + h∗
i,1Ppub)

= (hi,1 − h∗
i,1)h

l
i,5Ppub

= a(hi,1 − h∗
i,1)h

l
i,5P

(6)

and

a =
Sl − S∗

l

(hi,1 − h∗
i,1)h

l
i,5

(7)

Thus, C1 could solve the DL problem. However, this is in contradiction with
the difficulty of DL problem.

Similarly, if A1 could correctly guess the output of H2, C1 also has the ability
to get two different valid signatures {XM , SM , Z, Y } and {XM , S∗

M , Z, Y } based
on the forking lemma [10]. C1 also repeat the process with a different choice of
H1 and we have the following equation:

SMP = hi,2XM + hi,3PKi + Ai + hi,1Ppub (8)
S∗
MP = h∗

i,2XM + hi,3PKi + Ai + h∗
i,1Ppub (9)

In the same way, if hi,2 = h∗
i,2, we can get a = SM−S∗

M

hi,1−h∗
i,1

.
Unfortunately, the premise of this equation is not only that A1 can correctly

guess the output of H2, but also that C1 can solve the DL problem.

Analysis: The probability that A1 can correctly guess the output of H2 is 1
2q .

Assume C1 can solve the DL problem with negligible advantage ε. The following
three events are used to analyze the probability that C1 can solve the DL problem.

– Event E1: A1 can forge a valid Tag {X∗
M , S∗

M , Z∗, Y ∗,X∗
l , S∗

l , EK(Ml)∗}
under (IDi, PKi, Ai).

– Event E2: C1 does not abort when A1 performs extract partial private key
query and generate tag query.

– Event E3: IDi = ID∗.



80 J. Zhang et al.

Under the random oracle model, a probabilistic polynomial-time adversary
A1 forges a Tag in an attack modeled by the forking lemma after making qHi

(i =
1, 2, 3, 4, 5) times queries, qppk times extract partial private key queries, and qtag
times generate tag queries. We can achieve that Pr(E1) = η, Pr(E2|E1) =
(1− 1

qH1
)qppk+qTag and Pr(E3|E1 ∧E2) = 1

qH1
. The probability that C1 can solve

the DL problem is

ε = Pr(E1 ∧ E2 ∧ E3)
= Pr(E3|E1 ∧ E2)Pr(E2|E1)Pr(E1)

=
1

qH1

(1 − 1
qH1

)qppk+qTag · η

(10)

Thus, the probability that A1 forges a Tag is ε
′
= 1

2q · ε.
Due to η is non-negligible, ε is also non-negligible. Thus, C1 can solve the

DL problem with a non-negligible probability. However, it is difficult to solve
the DL problem, namely, the proposed CL-PDP scheme is secure against Type
I adversary.

Theorem 2. According to the assumption of the difficulty of the DL problem,
the proposed CL-PDP scheme is secure against Type II adversary.

Proof. Assuming given P,Q = aP , where P,Q are two points on elliptic curve
Eq, A2 can forge a one-time-use verification key S∗ and a Tag X∗ corresponding
the challenging identity ID∗. We have built a game between A2 and a challenger
C2, and C2 has the ability to run A2 with a non-negligible probability as a
subroutine to solve DL problem.

Setup: The master key s is randomly selected by challenger C2. And C2 then
calculates the corresponding public key Ppub = sP . Next, C1 sends the master
key s and system parameters params = {q, Z∗

q , Ppub,H} to A2. C2 chooses a
challenging identity ID∗ and answers the following queries from A2.

Hi Queries: Similar to Hi queries in the Proof of Theorem1.

Create Data Owner Query: When A2 performs a create data owner query on
the challenging identity ID∗, C2 checks whether the form (IDi, sk2, sk1, PKi, Ai)
exists in L6. If exists, C2 replies (PKi, Ai) to A2. Otherwise, C2 works as follow-
ing:

– If IDi = ID∗, C2 picks three elements αi, τh1 ∈ Z∗
q randomly and computes

Ai = αiP and sk1 = αi +hi,1s(modq). C2 inserts the tuple (IDi, Ai, τh1) and
(IDi,⊥, sk1, PKi, Ai) into Lh1 and L6, respectively.

– Otherwise, IDi �= ID∗, C2 picks three elements αi, sk2 ∈ Z∗
q randomly and

computes PKi = sk2P , Ai = αiP , τh1 = H1(IDi‖Ai) and sk1 = αi +
τh1s(modq). C2 inserts the tuple (IDi, Ai, τh1) and (IDi, sk2,⊥, PKi, Ai) into
Lh1 and L6, respectively.



Secure and Efficient Certificateless Provable Data Possession 81

Extract Partial Private Key Query: Upon receiving A2’s query, C2 checks
whether IDi already exists in hash list Lh2 . If C2 cannot find the corresponding
tuple, C2 makes H1 query on IDi itself to produce τh1 . Then, C2 works as
following:

– If IDi �= ID∗, C2 first checks whether IDi exists in L6. If exists, C2 searches
the tuple (IDi, sk2, sk1, PKi, Ai) and returns (Ai, sk1) to A2. Otherwise, C2

picks two element sk1, τh1 ∈ Z∗
q and computes Ai = sk1P − τh1Ppub. Then,

C2 returns (Ai, sk1) to A2 and stores (IDi, sk2, sk1, PKi, Ai) to L6.
– Otherwise, IDi = ID∗, C2 searches the tuple (IDi, sk2, sk1, PKi, Ai) and

returns (Ai, sk1) to A2.

Extract Secret Value Query: Upon receiving A2’s extract secret value query
on IDi, C2 answers as following:

– If IDi �= ID∗, C2 first checks whether IDi exists in L6. If exists, C2 searches
the tuple (IDi, sk2, sk1, PKi, Ai) and returns sk2 to A2. Otherwise, C1 picks
two element sk2 ∈ Z∗

q and computes pki = sk2P . Then, C2 returns sk2 to A2

and stores (IDi, sk2, sk1, PKi, Ai) to L6.
– Otherwise, IDi = ID∗, C2 stops the game.

Generate Tag Query: A2 performs a generate tag query on (namel,Ml) under
(IDi, PKi, Ai). C2 first checks whether IDi exists in L6, Lh1 , Lh4 and Lh5 . C2

answers as following:

– If IDi = ID∗, C2 stops the game.
– Otherwise, C2 picks three elements Sl, τh1 , τh4 , τh5 ∈ Z∗

q randomly and com-
putes Xl = EK(Ml)−1(SlP − τh4PKi − τh5(Ai + τh1Ppub)). Then, C2 returns
(Sl,Xl) to A2. Note that if τh4 or τh5 already exists in hash list Lh4 or Lh5 ,
C2 picks an element Sl and works again.

Forgery: At last, A2 outputs a Ml’s Tag {XM , S∗
M , Z, Y,Xl, S

∗
l , EK(Ml)} under

(IDi, PKi, Ai). If IDi �= ID∗, C2 aborts the game. Otherwise, on the basis of the
forking lemma [10], C2 has the ability to get two different valid Tags Tl = (Xl, Sl)
and T ∗

l = (Xl, S
∗
l ) in polynomial time through A2, if C2 repeat the process with

a different choice of H4. We have the following equation:

SlP = EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub) (11)

S∗
l P = EK(Ml)Xl + hl∗

i,4PKi + hl
i,5(Ai + hi,1Ppub) (12)

Hence, we can get that

(Sl − S∗
l )P = SlP − S∗

l P

= EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub)

− EK(Ml)Xl + hl∗
i,4PKi + hl

i,5(Ai + hi,1Ppub)

= (hl
i,4 − hl∗

i,4)PKi

= sk2(hl
i,4 − hl∗

i,4)P

(13)



82 J. Zhang et al.

and

sk2 =
Sl − S∗

l

(hl
i,4 − hl∗

i,4)
(14)

Thus, C2 could solve the DL problem. However, this is in contradiction with
the difficulty of DL problem.

Similarly, if A2 could correctly guess the output of H2, C2 also has the ability
to get two different valid signatures {XM , SM , Z, Y } and {XM , S∗

M , Z, Y } based
on the forking lemma [10]. C2 also repeat the process with a different choice of
H1 and we can get sk2 = Sl−S∗

l

(hl
i,4−hl∗

i,4)
.

Analysis: The probability that A2 can correctly guess the output of H2 is 1
2q .

Assume C2 can solve the DL problem with negligible advantage ε. The following
three events are used to analyze the probability that C2 can solve the DL problem.

– Event E1: A2 can forge a valid Tag {X∗
M , S∗

M , Z∗, Y ∗,X∗
l , S∗

l , EK(Ml)∗}
under (IDi, PKi, Ai).

– Event E2: C2 does not abort when A2 performs extract secret value query
and generate tag query.

– Event E3: IDi = ID∗.

Under the random oracle model, a probabilistic polynomial-time adversary
A2 forges a Tag in an attack modeled by the forking lemma after making qHi

(i =
1, 2, 3, 4, 5) times queries, qsev times extract secret value queries, and qtag times
generate tag queries. We can achieve that Pr(E1) = η, Pr(E2|E1) = (1 −
1

qH1
)qsev+qTag and Pr(E3|E1 ∧ E2) = 1

qH1
. The probability that C2 can solve the

DL problem is
ε = Pr(E1 ∧ E2 ∧ E3)

= Pr(E3|E1 ∧ E2)Pr(E2|E1)Pr(E1)

=
1

qH1

(1 − 1
qH1

)qsev+qTag · η

(15)

Thus, the probability that A2 forges a Tag is ε
′
= 1

2q · ε.
Due to η is non-negligible, ε is also non-negligible. Thus, C2 can solve the

DL problem with a non-negligible probability. However, it is difficult to solve
the DL problem, namely, the proposed CL-PDP scheme is secure against Type
II adversary.

4.3 Discussion

Table 1 compares the security and functionality feature analyse of the related
schemes [4,5,7,19] and our scheme. The symbol

√
indicates that the scheme

is secure or provides that feature. In contrast, the symbol × indicates that the
scheme is insecure or does not provide that feature. This table indicates that only
our proposed scheme can provide better security features than those of existing
schemes [4,5,7,19].



Secure and Efficient Certificateless Provable Data Possession 83

Table 1. Comparison of security and functionality features.

Security features Zhang et al. [19] Kang et al. [7] He et al. [5] Gao et al. [4] The proposed

Public verifiability
√ √ √ √ √

Storage correctness
√ √ × × √

Data privacy preserving × × × × √

Tag cannot be forged
√ √ × √ √

Batch verification
√ √ √ √ √

5 Performance Evaluation

In this section, we discuss comparisons of computation and communication costs
of the proposed CL-PDP scheme and other existing related schemes [4,5,7,19].
Because the analyses of the other existing schemes are similar to the analysis
of our proposed scheme, we discuss only our proposed scheme in the following
subsection.

To compare fairness, bilinear pairing is constructed as follows: bilinear pairing
ē: G1×G1 → G2 are built on the security level of 80-bit. G1 is an additive group
whose order is q̄ and the generator is p̄, which is a point on the super singular
elliptic curve Ē : y2 = x3+x mod p̄ with an embedding degree of 2, where p̄ is a
512-bit prime number and q̄ is a 160-bit prime number. For elliptic curve-based
scheme, we construct an additive group G generated by a point P with order p
on a non-singular elliptic curve E: y2 = x3 + ax+ b(modq) to achieve a security
level of 80 bits, where p, q are two 160 bit prime numbers.

5.1 Computation Cost

In our experiments, we used a computer that is HP with an Intel(R) Core(TM)
i7-6700@ 3.4 GHz processor, 8 GB main memory, and the Ubuntu 14.04 operation
system to derive the average execution time of the running 5000 times based on
the MiRACL library [16]. To facilitate the analysis of computational cost, we
list some notations about execution time, as shown in Table 2.

Table 2. Execution time of different cryptographic operations.

Notations Definitions Execution time

Tbp Bilinear pairing operation 5.086ms

Tbp.m The scale multiplication operation based on bilinear pairing 0.694ms

Tbp.a The point addition operation based on bilinear pairing 0.0018ms

TH The hash-to-point operation based on bilinear pairing 0.0992ms

Te.m The scale multiplication operation based on ECC 0.3218ms

Te.a Calculating the point addition operation related to ECC 0.0024ms

Th Hash operation 0.001ms



84 J. Zhang et al.

Table 3 shows the computational overhead of Tag Generation, Generate-Proof
and Verify-Proof Algorithms. Note that I represents the size of the subset I ∈
{1, 2, ..., n}.

Table 3. Comparison of computation cost.

Schemes Tag generation Generate-Proof Verify-Proof

Zhang et al. [19] (3n + 3)Tbp.m + 4Tbp.a

+3TH + nTh

≈ 2.083n + 2.3868ms

(2I)Tbp.m + (2I − 2)Tbp.a

≈ 1.3916I − 0.0036ms

4Tbp + 5Tbp.m + 2Tbp.a

+5TH + ITh

≈ 0.001I + 24.3136ms

Kang et al. [7] (4n)Tbp.m + (2n)Tbp.a

+(n + 1)TH + nTh

≈ 2.8798n + 0.0992ms

(I + 1)Tbp.m + (I − 1)Tbp.a

+Th ≈ 0.6958I + 0.6932ms

4Tp + (2I + 3)Tbp.m + ITH

+(2I)Tbp.a + (I + 1)Th

≈ 1.3926I + 22.5262ms

He et al. [5] (2n + 2)Tbp.m + (n)Tbp.a

+(n + 1)TH + 2Th

≈ 1.488n + 1.4892ms

(I + 1)Tbp.m + (I − 1)Tbp.a

+Th ≈ 0.6958I + 0.6932ms

2Tp + (I + 5)Tbp.m + 4Th

+(I + 4)Tbp.a + (I + 1)TH

≈ 0.794I + 13.7524ms

Gao et al. [4] (2n)Tbp.m + (n)Tbp.a

+TH + (2n + 1)Th

≈ 1.3918n + 0.1002ms

(2I + 2)Tbp.m + TH+

(2I − 1)Tbp.a + (I + 1)Th

≈ 1.3926I + 1.4864ms

3Tp + (I + 3)Tbp.m+

ITbp.a + TH + 4Th

≈ 0.6958I + 17.4464ms

The proposed nTe.m + 2nTh

≈ 0.3266 nms

(I + 1)Te.m + (I − 1)Te.a

≈ 0.3242I + 0.3194ms

3Te.m + 3Te.a + (2I + 1)Th

≈ 0.002I + 0.9736ms

For the Tag Generation Algorithm of the proposed scheme, the DO needs to
execute one scalar multiplication operation and two hash function operations for
each block Ml. Thus, the execution time of n blocks is nTe.m+2nTh ≈ 0.3266 nms.
The computation of Generate-Proof Algorithm requires (I + 1) scalar multiplica-
tion operations and (I − 1) point addition operations related to the ECC, thus,
the computation time of the phase is (I + 1)Te.m + (I − 1)Te.a ≈ 0.3242I +
0.3194 ms. For the Verify-Proof Algorithm of the proposed scheme, verifier exe-
cutes three scalar multiplication operations, three point addition operations and
(2I + 1) hash function operations, Therefore, the execution time of the phase is
3Te.m + 3Te.a + (2I + 1)Th ≈ 0.002I + 0.9736 ms.

To make a more significant comparison, Fig. 2 and Fig. 3 are used to show that
the computation cost of Generate-Proof Algorithm and Verify-Proof Algorithm
increases with an increasing number of blocks, respectively. Based on an analysis
and comparison of Table 3, Fig. 2 and Fig. 3, we conclude that the computation
cost of the proposed scheme is lower than those of the related schemes [4,5,7,19].

5.2 Communication Cost

As p and p are 64 and 20 bytes, the sizes of the elements in G1 and G are 64
× 2 = 128 bytes and 20 × 2 = 40 bytes, respectively. Set the size of block l be
4 bytes and the length of Z∗

q be 20 bytes. The communication cost of the five
scheme are shown in Table 4.

In the proposed scheme, the TPV sends the challenging message {j, vj}j∈I

to CS, and the CS generates the response proof {Scs, Ccs} and returns it to
TPV, where j ∈ l, vj ∈ Z∗

q and Scs, Ccs ∈ G. Therefore, the communication



Secure and Efficient Certificateless Provable Data Possession 85

200 300 400 500 600 700 800 900 1000
number of blocks

0

200

400

600

800

1000

1200

1400
C

om
pu

ta
tio

n 
co

st
 o

f G
en

er
at

e-
Pr

oo
f(m

s)
Zhang et al.
Kang et al.
He et al.
Gao et al.
The proposed scheme

Fig. 2. Cost of Generate-Proof

200 300 400 500 600 700 800 900 1000
number of blocks

0

500

1000

1500

C
om

pu
ta

tio
n 

co
st

 o
f G

en
er

at
e-

Pr
oo

f(m
s)

Zhang et al.
Kang et al.
He et al.
Gao et al.
The proposed scheme

Fig. 3. Cost of Verify-Proof

Table 4. Comparison of communication cost.

Schemes Communication costs

Zhang et al. [19] (|l| + |Z∗
q |)I + 2|G1| + 2|Z∗

q | = 24I + 196 bytes

Kang et al. [7] (|l| + |Z∗
q |)I + 2|G1| + 1|Z∗

q | = 24I + 176 bytes

He et al. [5] (|l| + |Z∗
q |)I + 4|G1| + 1|Z∗

q | = 24I + 532 bytes

Gao et al. [4] (|l| + |Z∗
q |)I + 2|G1| + 1|Z∗

q | = 24I + 176 bytes

The proposed (|l| + |Z∗
q |)I + 2|G| = 24I + 80 bytes

cost of the proposed scheme is (|l| + |Z∗
q |)I + 2|G| = 24I + 80 bytes. According

to Table 4, our proposed scheme expends less communication cost than those of
other existing schemes [4,5,7,19].

6 Conclusion

The proposed scheme can realize the confidentiality of outsourcing data and
solve the problem of data privacy leakage in the cloud data management system.
In order to ensure the integrity of encrypted data, we used not only a third-
party verifier to randomly check and verify, but also the public key of cloud
services to encrypt random strings, so that the reliability of the stored data can
be further ensured. Moreover, the detailed analysis showed that the proposed
scheme is secure against the Type-I and Type-II adversaries under the random
oracle model. Additionally, we compared and analyzed existing schemes from the
perspective of Tag Generation and Generate-Proof and Verify-Proof Algorithms.
The results verified that our scheme can effectively reduce delays and improve
authentication efficiency.

Acknowledgment. The work was supported by the NSFC grant (No. U1936220, No.
61872001, No. 62011530046), and the Special Fund for Key Program of Science and
Technology of Anhui Province, China (Grant No. 202003A05020043).



86 J. Zhang et al.

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

2. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security, pp.
598–609 (2007)

3. Fernandes, D.A.B., Soares, L.F.B., Gomes, J.V., Freire, M.M., Inácio, P.R.M.:
Security issues in cloud environments: a survey. Int. J. Inf. Secur. 13(2), 113–170
(2013). https://doi.org/10.1007/s10207-013-0208-7

4. Gao, G., Fei, H., Qin, Z.: An efficient certificateless public auditing scheme in cloud
storage. Concurr. Comput. Pract. Exp. 32(24), e5924 (2020)

5. He, D., Kumar, N., Zeadally, S., Wang, H.: Certificateless provable data possession
scheme for cloud-based smart grid data management systems. IEEE Trans. Ind.
Inf. 14(3), 1232–1241 (2018)

6. He, D., Zeadally, S., Wu, L.: Certificateless public auditing scheme for cloud-
assisted wireless body area networks. IEEE Syst. J. 12(1), 64–73 (2015)

7. Kang, B., Wang, J., Shao, D.: Certificateless public auditing with privacy pre-
serving for cloud-assisted wireless body area networks. Mob. Inf. Syst. 2017
(2017)

8. Ming, Y., Shi, W.: Efficient privacy-preserving certificateless provable data posses-
sion scheme for cloud storage. IEEE Access 7, 122091–122105 (2019)

9. Nayak, S.K., Tripathy, S.: SEPDP: secure and efficient privacy preserving provable
data possession in cloud storage. IEEE Trans. Serv. Comput. (2018)

10. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

11. Wang, B., Li, B., Li, H., Li, F.: Certificateless public auditing for data integrity
in the cloud. In: 2013 IEEE Conference on Communications and Network Security
(CNS), pp. 136–144. IEEE (2013)

12. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data
storage security in cloud computing. In: 2010 proceedings IEEE INFOCOM, pp.
1–9. IEEE (2010)

13. Wang, F., Xu, L., Gao, W.: Comments on SCLPV: secure certificateless public ver-
ification for cloud-based cyber-physical-social systems against malicious auditors.
IEEE Trans. Comput. Soc. Syst. 5(3), 854–857 (2018)

14. Wang, H., He, D., Tang, S.: Identity-based proxy-oriented data uploading and
remote data integrity checking in public cloud. IEEE Trans. Inf. Forensics Secur.
11(6), 1165–1176 (2016)

15. Wang, H., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-based remote data pos-
session checking in public clouds. IET Inf. Secur. 8(2), 114–121 (2013)

16. Wenger, E., Werner, M.: Evaluating 16-bit processors for elliptic curve cryptogra-
phy. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 166–181. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8 11

17. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2012)

18. Yu, Y., et al.: Identity-based remote data integrity checking with perfect data
privacy preserving for cloud storage. IEEE Trans. Inf. Forensics Secur. 12(4), 767–
778 (2016)

19. Zhang, Y., Xu, C., Yu, S., Li, H., Zhang, X.: SCLPV: secure certificateless public
verification for cloud-based cyber-physical-social systems against malicious audi-
tors. IEEE Trans. Comput. Soc. Syst. 2(4), 159–170 (2015)

https://doi.org/10.1007/s10207-013-0208-7
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-642-27257-8_11


Secure and Efficient Certificateless Provable Data Possession 87

20. Zhang, Y., Yu, J., Hao, R., Wang, C., Ren, K.: Enabling efficient user revocation in
identity-based cloud storage auditing for shared big data. IEEE Trans. Dependable
Secure Comput. 17(3), 608–619 (2020)

21. Zhou, C.: Security analysis of a certificateless public provable data possession
scheme with privacy preserving for cloud-based smart grid data management sys-
tem. Int. J. Netw. Secur. 22(4), 584–588 (2020)

22. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for
integrity verification in multicloud storage. IEEE Trans. Parallel Distrib. Syst.
23(12), 2231–2244 (2012)



Dirty-Data Impacts on Regression
Models: An Experimental Evaluation

Zhixin Qi1 and Hongzhi Wang1,2(B)

1 School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

{qizhx,wangzh}@hit.edu.cn
2 PengCheng Laboratory, Shenzhen, China

Abstract. Data quality issues have attracted widespread attentions due
to the negative impacts of dirty data on regression model results. The
relationship between data quality and the accuracy of results could be
applied on the selection of appropriate regression model with the con-
sideration of data quality and the determination of data share to clean.
However, rare research has focused on exploring such relationship. Moti-
vated by this, we design a generalized framework to evaluate dirty-data
impacts on models. Using the framework, we conduct an experimental
evaluation for the effects of missing, inconsistent, and conflicting data
on regression models. Based on the experimental findings, we provide
guidelines for regression model selection and data cleaning.

Keywords: Experimental evaluation · Data quality · Regression
model · Model selection · Data cleaning

1 Introduction

Data quality attracts widespread attentions in both database and machine learn-
ing communities. The data with data quality problems are called dirty data. For
a regression task, dirty data in both training and testing data sets affect the
accuracy. Thus, we have to know the relationship between the quality of input
data sets and the accuracy of regression model results. Based on such relation-
ship, we could select an appropriate regression model with the consideration of
data quality issues and determine the share of data to clean.

Before a regression task, it is usually difficult for users to decide which model
should be adopted due to the diversity of regression models. The effects of data
quality on regression models are helpful for model selection. Therefore, exploring
dirty-data impacts on regression models is in demand.

In addition, data cleaning is necessary to guarantee the data quality of a
regression task. Although existing data cleaning methods improve data quality
dramatically, the cleaning costs are still expensive [6]. If we know how dirty
data affect the accuracy of regression models, we could clean data selectively
according to the accuracy requirements instead of cleaning the entire dirty data
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 88–95, 2021.
https://doi.org/10.1007/978-3-030-73194-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_6


Dirty-Data Impacts on Regression Models: An Experimental Evaluation 89

with large costs. As a result, the data cleaning costs are reduced. Therefore,
the study of relationship between data quality and the accuracy of regression
model results is urgently needed. Unfortunately, there is no existing research to
explore the impacts of dirty data on regression models in terms of data quality
dimensions. Motivated by this, we attempt to fill this gap. Our contributions of
this paper are listed as follows.

1. In order to evaluate dirty-data impacts on regression models, we design a
multi-functional generalized evaluation framework with the consideration of
various data quality dimensions. To the best of our knowledge, this is the first
paper that studies this issue.

2. We propose three novel metrics, SENS(M), KP (M), and CP (M), to eval-
uate the effects of dirty data on regression models. SENS(M), KP (M), and
CP (M) are used to measure the sensibility, tolerability, and expected accu-
racy of a regression model, respectively.

3. Based on the experimental results, we provide guidelines of regression model
selection and data cleaning for users.

2 Generalized Evaluation Framework

Existing metrics of regression models, such as RMSD (Root-Mean-Square Devi-
ation), NRMSD (Normalized Root-Mean-Square Deviation), and CV(RMSD)
(Coefficient of Variation of the RMSD), are only able to show us the variations of
accuracy, but not able to measure the fluctuation degrees quantitatively. There-
fore, we propose three novel metrics to evaluate dirty-data impacts on regression
models. We first define the sensibility of a regression model as follows.

Definition 1. Given the values of a metric y of a regression model M with a%,
(a+x)%, (a+2x)%, ..., (a+bx)% (a ≥ 0, x > 0, b > 0) error rate, the sensibility
of M , denoted by SENS(M), is computed as

∑
0≤i<b |ya+ix − ya+(i+1)x|.

SENS(M) aims to measure the fluctuation degree of a regression model to
dirty data. When the value of SENS(M) is larger, the fluctuation degree is
larger. Accordingly, the regression model is more sensitive to dirty data. There-
fore, SENS(M) is able to evaluate the dirty-data sensibility of a regression
model. Here, we explain the computation of SENS(M) with Fig. 1(a).

Example 1. In Fig. 1(a), the values of RMSD of the least square regression
model (LSRM for brief) with 0%, 10%, ..., 50% missing rate are given. On Iris,
SENS(LSRM) = |RMSD0% − RMSD10%| + |RMSD10% − RMSD20%| + ...
+ |RMSD40% − RMSD50%| = |0.59 − 0.62| + |0.62 − 0.64| + |0.64 − 0.68|
+ |0.68 − 0.68| + |0.68 − 0.72| = 0.13. On Servo, SENS(LSRM) = |1.55 −
1.63| + |1.63 − 1.66| + |1.66 − 1.7| + |1.7 − 1.72| + |1.72 − 2.02| = 0.47. On
Housing, SENS(LSRM) = |10.53 − 10.59| + |10.59 − 9.92| + |9.92 − 10.04|
+ |10.04 − 9.96| + |9.96 − 9.79| = 1.1. On Concrete, SENS(LSRM) = |16.21
− 16.57| + |16.57 − 16.49| + |16.49 − 16.67| + |16.67 − 17.46| + |17.46 −
17.35| = 1.52. And on Solar Flare, SENS(LSRM) = |0.3 − 0.32| + |0.32 −
0.31| + |0.31 − 0.31| + |0.31 − 0.33| + |0.33 − 0.29| = 0.09. Thus, the average
of SENS(LSRM) is 0.662.



90 Z. Qi and H. Wang

Though SENS(M) measures the sensibility of a regression model, we could
not determine the error rate at which a regression model is unacceptable. Moti-
vated by this, we define the keeping point of a regression model as follows.

Definition 2. Given the values of a metric y of a regression model with a%,
(a+x)%, (a+2x)%, ..., (a+bx)% (a ≥ 0, x > 0, b > 0) error rate, and a number
k (k > 0). If the larger value of y causes the better accuracy, and ya% −y(a+ix)%

> k (0 < i ≤ b), the keeping point of a regression model M , denoted by KP (M),
is min{(a+(i − 1)x)%}. If ya% − y(a+bx)% ≤ k, KP (M) is min{(a+bx)%}. If
the smaller value of y causes the better accuracy, and y(a+ix)% − ya% > k (0
< i ≤ b), KP (M) is min{(a+(i-1)x)%}. If y(a+bx)% − ya% ≤ k, KP (M) is
min{(a+bx)%}.

KP (M) is defined to measure the error rate at which a regression model
is acceptable. When the value of KP (M) is larger, the error rate at which a
regression model is acceptable is larger. Accordingly, the error-tolerability of a
regression model is higher. Therefore, KP (M) is useful to evaluate the error-
tolerability of a regression model. Here, we take Fig. 1(a) as an example to explain
the computation of KP (M).

Example 2. From Fig. 1(a), we know the values of RMSD of LSRM with 0%,
10%, ..., 50% missing rate, and set 0.1 as the value of k. On Iris, when the
missing rate is 50%, RMSD50%-RMSD0% = 0.72− 0.59 = 0.13 > 0.1, we take
40% as the KP (LSRM). On Servo, when the missing rate is 20%, RMSD20% −
RMSD0% = 1.66 − 1.55 = 0.11 > 0.1, we take 10% as the KP (LSRM). On
Housing, when the missing rate is 50%, RMSD50% −RMSD0% = 9.79 − 10.53
= −0.74 ≤ 0.1, we take 50% as the KP (LSRM). On Concrete, when the missing
rate is 10%, RMSD10% −RMSD0% = 16.57 − 16.21 = 0.36 > 0.1, we take 0%
as the KP (LSRM). On Solar Flare, when the missing rate is 50%, RMSD50%−
RMSD0% = 0.29 − 0.3 = −0.01 ≤ 0.1, we take 50% as the KP (LSRM). Thus,
the average of KP (LSRM) is 30%.

Since the value of k in KP (M) reflects the acceptable fluctuation degree of
SENS(M), we could determine the candidate regression models using k and the
accuracy requirements of a regression task. To achieve this, we define the critical
point of a regression model as follows.

Definition 3. Given the data set D, accuracy metric accMetric, the number k
in KP (M), the critical point of a regression model M on accMetric, denoted by
CP (M) is computed as the accuracy of accMetric on D plus k.

Since CP (M) is defined to measure the expected accuracy of a regression
model, its role is to filter the unacceptable regression models whose values of
CP (M) are below the required lower bound of accMetric. Here, we explain the
function of CP (M) with Fig. 1(a), 1(b), 1(c), 1(d), and 1(e) as an example.



Dirty-Data Impacts on Regression Models: An Experimental Evaluation 91

(a) LSRM (b) MLRM (c) LRM (d) PRM (e) SRM

Fig. 1. RMSD results on regression models varying missing rate

Example 3. Given the data set Housing with 30% missing rate, the accuracy
metric RMSD, and its required lower bound 9.20, we attempt to determine the
candidate regression models. From Fig. 1(a), 1(b), 1(c), 1(d), and 1(e), we know
the RMSD value of each regression model on Housing. If the value of k in KP (M)
is set as 0.1, CP (LSRM, RMSD) = 10.04 + 0.1 = 10.14 > 9.20, CP (MLRM,
RMSD) = 9.08 + 0.1 = 9.18 < 9.20, CP (LRM, RMSD) = 10.25 + 0.1 = 10.35
> 9.20, CP (PRM, RMSD) = 10.57 + 0.1 = 10.67 > 9.20, and CP (SRM,
RMSD) = 6.32 + 0.1 =6.42 < 9.20. Thus, the candidate regression models are
LSRM, LRM, and PRM.

Based on these three metrics, we develop a generalized framework to evalu-
ate dirty-data impacts on models with the consideration of data quality dimen-
sions. The framework is sketched in Fig. 2. It contains five components, (a) dirty
data generation, (b) performance testing, (c) metric computation, (d) candidate
model selection, and (e) model and cleaning strategy determination.

Dirty Data 
Sets  

Accuracy & 
Efficiency

SENS(M)
Order & KP(M)

Order
CP(M) Candidate 

Models

Selected Model 
& Cleaning 

Strategy

Data Sets k in KP(M)Models

(a) Dirty Data 
Generation

Required 
Accuracy

(b) Performance 
Testing

(d) Candidate Model Selection

(e) Model & Cleaning Strategy Determination 
(c) Metric Computation

Quality 
Dimension

Fig. 2. Generalized evaluation framework

There are three functions in this framework: (i) evaluating dirty-data impacts
on models, (ii) selecting models on dirty data, and (iii) generating data cleaning
strategies. As Fig. 2 shows, we first generate dirty data sets with different dirty-
data types or rates from the given data sets. Dirty-data types correspond to the
given data quality dimensions. Then, we test accuracy and efficiency of the given
models on the generated dirty data. Based on the model performance results
and the given value of k in KP (M), we compute SENS(M) order, KP (M)



92 Z. Qi and H. Wang

order, and CP (M) of each model. Using the value of CP (M) and the required
accuracy, we are able to select candidate models. Finally, using SENS(M) order
and KP (M) order, we determine the selected model and data cleaning strategy.

The multi-functional framework is not only applicable to regression models,
but also generalized to use in other kinds of models, such as classification and
clustering models.

3 Evaluation Results and Analyses

Based on the evaluation framework, we conduct extensive experiments. In this
section, we discuss the evaluation results and analyses.

3.1 Data Sets, Models, and Setup

For the input in generalized framework, we select five typical data sets, that are
Iris, Servo, Housing, Concrete, and Solar Flare, from UCI public data sets [1]
with various types and sizes. Due to the completeness and correctness of these
original data sets, we inject errors of different rates from different data quality
dimensions into them, and generate different kinds of dirty data sets. Then, we
test the performances of various regression models on them. In experimental
evaluation, the original data sets are used as the baselines, and the accuracy of
regression models is measured based on the results on original data sets.

We also select five classical regression models, Least Square Regression, Max-
imum Likelihood Regression, Logistic Regression, Polynomial Regression, and
Stepwise Regression, as the input in generalized framework. We choose these
models since they are always used as competitive regression models [2–5].

Since there are class labels in the selected original data sets for regression,
we use standard RMSD, NRMSD, and CV(RMSD) to evaluate the accuracy of
regression models. We vary each error rate from 10% to 50%, and use 10-fold
cross validation to generate the training data and the testing data.

All experiments are conducted on a machine powered by two Intel(R)
Xeon(R) E5-2609 v3@1.90 GHz CPUs and 32 GB memory, under CentOS7. All
the algorithms are implemented in C++ and compiled with g++ 4.8.5.

3.2 Varying Missing Rate

As shown in Table 1, for RMSD, the SENS(M) order is “PRM > MLRM >
SRM > LRM > LSRM”. For NRMSD, the SENS(M) order is “PRM > SRM
> LRM > LSRM > MLRM”. For CV(RMSD), the SENS(M) order is “MLRM
> SRM > LRM > PRM > LSRM”. Thus, for RMSD and CV(RMSD), the least
sensitive algorithm is LSRM. And for NRMSD, the least sensitive algorithm
is MLRM. These are due to the fact that the number of parameters in LSRM
is small. Hence, there is little chance for the model training to be affected by
missing values. For RMSD and NRMSD, the most sensitive algorithm is PRM.
And for CV(RMSD), the most sensitive algorithm is MLRM. These are because
that these algorithms perform badly on some original data sets (error rate is 0%).



Dirty-Data Impacts on Regression Models: An Experimental Evaluation 93

Table 1. SENS(M) results of regression models (R: RMSD, NR: NRMSD, CV:
CV(RMSD))

Model Missing Inconsistent Conflicting

R NR CV R NR CV R NR CV

Least Square (LSRM) 0.662 0.066 0.192 1.204 0.090 0.278 1.056 0.054 0.284

Maximum Likelihood (MLRM) 1.356 0.034 4.466 2.384 0.046 1.546 1.534 0.060 3.914

Logistic Regression (LRM) 1.268 0.096 0.288 1.296 0.164 1.096 1.030 0.092 0.308

Polynomial Regression (PRM) 1.568 0.106 0.200 2.010 0.174 0.464 1.794 0.116 0.426

Stepwise Regression (SRM) 1.338 0.104 3.466 1.616 0.102 5.996 0.890 0.074 2.748

Table 2. KP (M) Results of Regression Models (k=0.1, Unit: %, R: RMSD, NR:
NRMSD, CV: CV(RMSD))

Model Missing Inconsistent Conflicting

R NR CV R NR CV R NR CV

Least Square (LSRM) 30 50 50 16 50 50 32 50 42

Maximum Likelihood (MLRM) 22 50 40 16 50 34 20 50 40

Logistic Regression (LRM) 18 42 30 12 44 24 14 46 40

Polynomial Regression (PRM) 14 40 20 12 50 22 12 40 26

Stepwise Regression (SRM) 16 40 24 10 42 22 40 50 30

When missing data are injected, the uncertainty of data becomes more, which
leads to increasing uncertainty to algorithms. Accordingly, the performances of
algorithms become worse.

As shown in Table 2, for RMSD, the KP (M) order is “LSRM > MLRM >
LRM > SRM > PRM”. For NRMSD, the KP (M) order is “LSRM = MLRM >
LRM> SRM = PRM”. For CV(RMSD), theKP (M) order is “LSRM>MLRM>
LRM > SRM > PRM”. Therefore, the most incompleteness-tolerant algorithm is
LSRM. This is because that the amount of parameters in LSRM is small. Hence,
there is little chance to be affected. The least incompleteness-tolerant algorithm
is PRM. This is due to the fact that there are many parameters in PRM, which
makes it susceptible to missing data.

3.3 Varying Inconsistent Rate

As shown in Table 1, for RMSD, the SENS(M) order is “MLRM > PRM >
SRM > LRM > LSRM”. For NRMSD, the SENS(M) order is “PRM > LRM
> SRM > LSRM > MLRM”. For CV(RMSD), the SENS(M) order is “SRM >
MLRM > LRM > PRM > LSRM”. Thus, for RMSD and CV(RMSD), the least
sensitive algorithm is LSRM. And for NRMSD, the least sensitive algorithm
is MLRM. The reason is similar as that of the LSRM varying missing rate.
For RMSD, the most sensitive algorithm is MLRM. For NRMSD, the most
sensitive algorithm is PRM. And for CV(RMSD), the most sensitive algorithm
is SRM. These are due to their poor performances on some original data sets



94 Z. Qi and H. Wang

(error rate is 0%). When inconsistent data are injected, the uncertainty of data
becomes more, which leads to increasing uncertainty to algorithms. Accordingly,
algorithms perform worse.

As shown in Table 2, for RMSD, the KP (M) order is “LSRM = MLRM >
LRM = PRM > SRM”. For NRMSD, the KP (M) order is “LSRM = MLRM =
PRM > LRM > SRM”. For CV(RMSD), the KP (M) order is “LSRM > MLRM
> LRM > PRM = SRM”. Therefore, the most inconsistency-tolerant algorithm
is LSRM. The reason is similar as that of the most incompleteness-tolerant
algorithm varying missing rate. The least inconsistency-tolerant algorithm is
SRM. This is due to the fact that there are many independent variables to be
tested in SRM, which makes it easily affected by inconsistent values.

3.4 Varying Conflicting Rate

As shown in Table 1, for RMSD, the SENS(M) order is “PRM > MLRM >
LSRM > LRM > SRM”. For NRMSD, the SENS(M) order is “PRM > LRM
> SRM > MLRM > LSRM”. For CV(RMSD), the SENS(M) order is “MLRM
> SRM > PRM > LRM > LSRM”. Thus, for RMSD, the least sensitive algo-
rithm is SRM. This is because that there is a validation step in SRM, which
guarantees the regression accuracy. For NRMSD and CV(RMSD), the least sen-
sitive algorithm is LSRM. The reason is similar as that of the least sensitive
algorithm varying missing rate. For RMSD and NRMSD, the most sensitive algo-
rithm is PRM. And for CV(RMSD), the most sensitive algorithm is MLRM.
The reason is similar as that of the most sensitive algorithms varying missing
rate.

As shown in Table 2, for RMSD, the KP (M) order is “SRM > LSRM >
MLRM > LRM > PRM”. For NRMSD, the KP (M) order is “LSRM = MLRM
= SRM > LRM > PRM”. For CV(RMSD), the KP (M) order is “LSRM >
MLRM = LRM > SRM > PRM”. Therefore, the most conflict-tolerant algo-
rithms are LSRM, MLRM, and SRM. This is due to the fact that there are a
small amount of parameters in LSRM and MLRM. In SRM, the validation step
helps guarantee the regression accuracy. The least conflict-tolerant algorithm is
PRM. The reason is similar as that of the least incompleteness-tolerant algo-
rithm varying missing rate.

3.5 Lessons Learned

According to the evaluation results, we have the following findings.

• Dirty-data impacts are related to dirty-data type and dirty-data rate. Thus,
it is necessary to detect the rate of each dirty-data type in the given data.

• For the regression models whose RMSD is larger than 1, NRMSD is larger
than 0.2, or CV(RMSD) is larger than 1 on original data sets, as the data
size rises, RMSD, NRMSD, or CV(RMSD) of the models becomes stable.

• When dirty data exist, the regression model with the least SENS(M) is the
most stable. For instance, if the SENS(M) order is “PRM > MLRM > SRM
> LRM > LSRM”, the most stable regression model is LSRM.



Dirty-Data Impacts on Regression Models: An Experimental Evaluation 95

• Since the accuracy of the selected regression model becomes unacceptable
beyond KP (M), the error rate of each dirty data type needs to be controlled
within its KP (M).

Based on the lessons learned from experimental evaluation, we suggest users
select regression model and clean dirty data according to the following steps.

• Users are suggested to detect the dirty-data rates (e.g., missing rate, incon-
sistent rate, conflicting rate) of the given data.

• According to the given task requirements (e.g., lower bound on RMSD,
NRMSD, or CV(RMSD)), we suggest users determine the candidate regres-
sion models whose CP (M) is better than the required lower bound.

• According to the requirements of a regression task and dirty-data type of the
given data, we suggest users find the corresponding SENS(M) order and
choose the least sensitive regression model.

• According to the selected model, task requirements, and error rate of the
given data, we suggest users find the corresponding KP (M) order and clean
each type of dirty data to its KP (M).

4 Conclusion

In this paper, we propose three metrics to measure the sensibility, tolerabil-
ity, and expected accuracy of a data analysis model. With these metrics, we
develop a generalized evaluation framework to evaluate dirty-data impacts on
models. Using the framework, we conduct an experimental evaluation to explore
the relationship of dirty data and accuracy of regression models. Based on the
experimental findings, we provide guidelines for model selection and data clean-
ing.

Acknowledgment. This paper was partially supported by NSFC grant U1866602,
CCF-Huawei Database System Innovation Research Plan CCF-HuaweiDBIR2020007B.

References

1. Data sets: https://archive.ics.uci.edu/ml/index.php
2. Abraham, S., Raisee, M., Ghorbaniasl, G., Contino, F., Lacor, C.: A robust and

efficient stepwise regression method for building sparse polynomial chaos expansions.
J. Comput. Phys. 332, 461–474 (2017)

3. Avdis, E., Wachter, J.A.: Maximum likelihood estimation of the equity premium.
J. Financ. Econ. 125(3), 589–609 (2017)

4. Li, L., Zhang, X.: Parsimonious tensor response regression. J. Am. Stat. Assoc.
112(519), 1131–1146 (2017)

5. Silhavy, R., Silhavy, P., Prokopova, Z.: Analysis and selection of a regression model
for the use case points method using a stepwise approach. J. Syst. Softw. 125, 1–14
(2017)

6. Wang, H., Qi, Z., Shi, R., Li, J., Gao, H.: COSSET+: crowdsourced missing value
imputation optimized by knowledge base. JCST 32(5), 845–857 (2017)

https://archive.ics.uci.edu/ml/index.php


UniTest: A Universal Testing Framework
for Database Management Systems

Gengyuan Shi, Chaokun Wang(B), Bingyang Huang, Hao Feng,
and Binbin Wang

School of Software, Tsinghua University, Beijing 100084, China
{shigy19,hby17,fh20,wbb18}@mails.thu.edu.cn, chaokun@tsinghua.edu.cn

Abstract. With the continuous development of data collection, network
transmission, and data storage, Big Data are now rapidly expanding in
all science and engineering domains. Considering the characteristics of
Big Data including quick generation, large size, and diverse data mod-
els, higher requirements are placed on the functionality and performance
of database management systems. Therefore, it is essential for users to
choose a stable and reliable database management system. However, find-
ing the best way to evaluate the reliability and stability of database man-
agement systems is still a huge challenge, and it is difficult for users to
design their own test cases for evaluating these systems.

In order to address this problem, we carefully design a universal test-
ing framework, called UniTest, which can perform effective functional
testing and performance testing for different types of database man-
agement systems. Extensive testing experiments on multiple types of
database management systems show the universality and efficiency of
our framework.

Keywords: Database management system · Functional testing ·
Performance testing · UniTest

1 Introduction

In recent years, the fast development of Big Data technologies including cloud
computing, the Internet of Things, and social network analysis [3], has greatly
changed the way people live. However, massive data not only bring exceptional
opportunities to the development of the technologies but also bring huge chal-
lenges to data management. Considering the variety of Big Data, efficient multi-
model data management has become a fundamental requirement in real-world
scenarios with the perspective that “no one size fits all” [16]. How to manage
such heterogeneous data effectively and efficiently is still a big challenge for many
industries. In order to utilize the existing DBMSs for providing more efficient
multi-model data management, there is an urgent need for techniques to evalu-
ate different types of Database Management Systems (DBMSs) [7,8]. Based on

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 96–104, 2021.
https://doi.org/10.1007/978-3-030-73194-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_7


UniTest: A Universal Testing Framework for Database Management Systems 97

these database evaluation techniques, users can accurately and effectively eval-
uate the overall abilities of the DBMSs to ensure that, in real-world scenarios,
these systems can provide efficient and stable services.

There are many studies on the DBMSs comparison [1,10,13]. However, there
is little work available for universally evaluating multiple types of DBMSs. For
most non-relational databases, as well as for different types of data, there is
currently no widely used testing platform [7]. Another problem with most of
the existing database testing platforms and benchmarks is that the test cases
are designed in advance. As a result, the testers cannot create test cases easily
according to their concerns, and hence face great difficulties when testing DBMSs
that support different data models.

The challenge behind the problems above is the difficulty in conducting the
test for different types of DBMSs universally, both the data models and data
management technologies of these systems differ. In order to address this prob-
lem, this paper designs UniTest, a universal framework for evaluating a variety
of DBMSs in terms of both functionality and performance. UniTest allows users
to easily design and execute new test cases for different types of DBMSs.

The main contributions of this paper are summarized as follows:

1. We carefully design UniTest, a universal framework for testing multiple types
of DBMSs. Besides the universal pre-defined cases for both functional and
performance testing, UniTest allows users to design new statements of dif-
ferent types of query languages as test cases. To the best of our knowledge,
UniTest is the first testing framework that can be used to test more than five
types of DBMSs universally.

2. We implement the UniTest system with effectiveness and high extensibility.
We provide an easy-to-use interface for testers to configure the system envi-
ronment, select test cases, and check the test results in detail. UniTest can
also be easily extended by integrating new DBMSs and designing new test
cases. The experimental results show that UniTest can effectively test DBMSs
that support different data models.

The rest of this paper is organized as follows. We discuss the related work
in Sect. 2. In Sect. 3, we present the architecture of UniTest. We report the
experimental results in Sect. 4 and finally give our conclusions in Sect. 5.

2 Related Work

The overall performance of one DBMS is related to many factors such as the
system architecture, the scale of data, the hardware environment, and so on.
To compare different DBMSs, it is necessary to conduct test cases under the
same conditions. Typical performance testing methods include benchmark test-
ing, load testing, and so on. Different test methods perform evaluations of the
DBMSs from different perspectives as required [2,4,5,9,11,12,19].



98 G. Shi et al.

2.1 Benchmark Testing

Benchmark testing refers to the test method used to quantify some particular
performance metrics of the systems under test. The benchmark testing process
mainly consists of three key steps: test data generation, load type selection,
and test indicator selection [15]. Various aspects of the systems under test need
to be evaluated, such as reliability, time efficiency, resource consumption, cost
performance, and so on.

Some benchmark testing tools are designed for specific typical applications.
Facebook’s LinkBench is mainly used to test the DBMSs in the social network
scenarios [2]. Yahoo’s YCSB is proposed for testing NoSQL cloud databases [4].
BigDataBench runs tests using different business models [14,18].

However, there are still some drawbacks to these tools. Firstly, the test meth-
ods mainly focus on one or a small number of data models and are difficult to
test database management systems of multiple types just using one testing tool.
Secondly, the lack of a graphical interface is a big problem for many of them,
since testers cannot easily set test configurations and get the test results. For
example, LinkBench mainly provides test cases including adding, deleting, and
changing for graph data but does not support modification of data of other mod-
els. YCSB and BigDataBench do not provide direct supports for testing many
types (e.g., graph and message queue) of DBMSs.

2.2 Load Testing

The load testing technologies evaluate the processing limit of the DBMSs by
simulating the business scenarios. Specifically, these technologies continuously
increase the pressure on the system under test until a certain performance mea-
sure (such as the response time) of the system exceeds the expected value or
a certain resource is exhausted. By means of the load testing, we can under-
stand the performance capacity of the system, discover possible problems in the
system, or provide a reference for system performance tuning.

The data loading model performs load testing on the DBMS under test by
generating a large amount of data. It is necessary to consider the representative-
ness, extensiveness, and data distribution of the test dataset when generating the
test data, since these characteristics have a great influence on the performance
of the application.

Using the load testing tools, the tester can simulate a series of virtual opera-
tions in a real business scenario, thereby testing and evaluating various aspects
of the system under test. Currently, many load testing tools help testers conduct
performance tests through automated testing. JMeter [6] is one of the typical
load testing tools.

JMeter is an open-source software application designed to test the server or
client architecture and simulate a massive load to test the stability and perfor-
mance of the DBMSs. Testers can get test results by creating, configuring, and
executing test plans.



UniTest: A Universal Testing Framework for Database Management Systems 99

3 The UniTest

This section proposes UniTest, a universal framework for testing multiple types
of DBMSs. The framework architecture can be divided into three parts: the
User Interface, the Test Management module, and the Test Execution module.
Firstly, we briefly introduce the architecture of UniTest. Then, the three major
components are presented in detail in Sect. 3.1, 3.2 and 3.3, respectively.

Fig. 1. The architecture of UniTest.

The architecture of UniTest is shown in Fig. 1. The user interface interacts
with the tester for test case customization, system configuration, results presen-
tation, and so forth. The test execution module processes the test request sent
by the tester, and then forwards it to the corresponding test server and finally
obtains the test result from the test server for displaying in the user interface.
There is one test server for each of the data models, which is responsible for
receiving and executing the specific test cases on the DBMS under test. The test
management module receives the test results from the test execution module
and returns them to the user interface to display.

With the support of this framework, we also have an evaluation method for
testing different types of DBMSs. The tester can log in through the user inter-
face, generate a test plan by selecting the target DBMS and the test cases, and
pass the test plan to the test management module. The test server in the test
execution module connects to the server where the DBMS under test, namely the
target DBMS, is located according to the test plan, and performs corresponding
tests. During testing, the test execution module prepares test data by loading
the corresponding test dataset or generating test data. The test results are auto-
matically collected and returned to the user interface along with the generated
test report.



100 G. Shi et al.

3.1 User Interface

The user interface includes a user login pane, a test server configuration pane, a
test plan configuration pane, and a test result presentation pane. Through the
user interface, the tester can complete operations such as logging in, configuring
and conducting tests, and viewing test results.

In the test server configuration pane, the tester can configure the address,
the user name, and the password for each DBMS test server.

In the test plan configuration pane, the tester can select test cases for each
DBMS from the list of test cases given by UniTest, combine them into a test
plan, and execute the test. UniTest automatically generates the test plan and
passes the plan to the test management module.

In the test result display pane, the log information and the test results
returned from the test server are displayed. The tester can download the auto-
matically generated test report.

3.2 Test Management Module

The test management module, consisting of a user manager, a functional testing
manager, and a performance testing manager, is responsible for performing all
test plans in the framework.

In the user manager, the user permissions of the testers of UniTest can be
managed to ensure the security of the DBMSs under test. Roles of the users
are divided into two categories: administrator users and ordinary users. The
administrator user can add users or delete existing users, and can modify the
passwords of other users; ordinary users only have the right to log in and modify
their passwords.

The test management module refines the received test plan. There may be
precondition or inclusion relationships between a series of given test cases, i.e.,
test case A must be executed at first, or test case A should contain test case B.
UniTest automatically checks these relationships and forms an integrated test
plan.

In the functional testing manager, different test cases for different data types
are preset for the tester to select. One or more test cases can be selected to be
freely combined to form a test plan.

The performance testing manager includes performance test cases for dif-
ferent DBMSs, including data migration efficiency (import/export) and query
execution efficiency.

3.3 Test Execution Module

The test execution module receives the test plan from the test management
module, dispatches the test cases to the corresponding test servers, and returns
the test results and the test report. The test execution module includes a test
data manager, a test report generator, and a test server for each type of the
DBMSs.



UniTest: A Universal Testing Framework for Database Management Systems 101

The test data manager prepares test datasets for the target DBMS when the
test is performed. For example, this component generates a testing dataset auto-
matically before executing the data migration test which needs a large amount
of data to be imported.

The test report generator monitors the test process and collects the test
results. It automatically generates a test report document of the current test
according to information on the process and results of the test.

For each type of DBMSs, the test server controls the corresponding DBMS
server and executes the user-specified test cases. After the test plan is forwarded
by the test management module to the specific test server, the test server con-
ducts test cases according to the test plan.

For performance testing, the test execution module conducts the user-
specified test plan. The test server controls the target DBMSs to test the perfor-
mance of data migration and query execution, and returns the results including
the response time and data migration speed.

4 Experiments

In this section, we test some typical DBMSs under Ubuntu 16.04 with a 10-core
Intel Xeon E5-2630 (2.20 GHz) and 320 GB main memory. This process consists
of two parts: functional testing and performance testing, which are the core of
our framework.

We choose representative DBMSs of different types in the performance testing
experiment to check the performance of the data migration and query execution
for different models of data. Specifically, we test the performance of MySQL
for relational data management, Neo4j for graph data management, InfluxDB
for time series data management, CouchDB for document data management,
Redis for key-value data management, MySQL Blob for binary big object data
management, and Kafka for message queue data management.

4.1 Functional Testing

We have implemented the testing system according to the UniTest architecture.
The pre-defined test cases in UniTest cover seven categories of functionalities,
such as the separation of service instances, the authentication of database users,
and the ability to trace data sources.

Test cases for functionality testing are conducted for representative DBMSs
of different types. For the space limitation, the results of functional testing of
all the DBMSs are not presented.

4.2 Performance Testing

We also conduct performance testing for many types of DBMSs. Here, two typical
categories of test cases are considered. In the data migration efficiency test, we



102 G. Shi et al.

test the speed of data importing and data exporting. In the query execution
efficiency test, we test the speed of query execution under different conditions.

The results of performance testing on Neo4j is shown in Table 1. The graph
datasets are generated by FastSGG [17]. The data migration efficiency is tested
varying the sizes of nodes and edges, while the query execution efficiency test
cases are executed varying the sizes of the graph. For the limit of space, test
results of other types of representative DBMSs are not displayed in this paper.

Table 1. Results of performance testing for Neo4j.

Description Average time of 9 cases

Data migration Importing node data (56 KB with
1893 nodes)

9333 KB/s, 6 ms

Importing edge data (162 KB with
4641 edges)

123 KB/s, 1.32 s

Backuping 1893 nodes with
attributes

519 nodes/s

Restoring 1893 nodes with
attributes

2146 nodes/s

Query execution |V | = 100, |E| = 1000 35.2 ms

|V | = 1000, |E| = 10000 472.5 ms

|V | = 10000, |E| = 100000 12802.6 ms

In summary, UniTest can test different types of database management sys-
tems universally, and effectively supports testing all of these systems in a specific
evaluation method, including functional and performance testing.

5 Conclusion

This paper proposes a universal testing framework called UniTest with a specific
evaluation method for conducting evaluation on various types of database man-
agement systems. UniTest provides a rich set of test cases with an easy-to-use
interface for different types of DBMSs. We carry out extensive experiments of
functional and performance testing on some typical DBMSs. The experimental
results show that UniTest provides a universal evaluation environment for differ-
ent types of DBMSs and plays an important role in the application of database
products in real-world scenarios.

Acknowledgments. This work is supported in part by the Intelligent Manufacturing
Comprehensive Standardization and New Pattern Application Project of MIIT (Exper-
imental validation of key technical standards for trusted services in industrial Internet),
and the National Natural Science Foundation of China (No. 61872207).



UniTest: A Universal Testing Framework for Database Management Systems 103

References

1. Abramova, V., Bernardino, J.: NoSQL databases: MongoDB vs cassandra. In: Pro-
ceedings of the International C* Conference on Computer Science and Software
Engineering, pp. 14–22. ACM (2013)

2. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench: a
database benchmark based on the Facebook social graph. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, pp. 1185–
1196. ACM (2013)

3. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data Sci. J. 14, 2 (2015)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

5. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: OLTP-bench: an exten-
sible testbed for benchmarking relational databases. Proc. VLDB Endow. 7(4),
277–288 (2013)

6. Halili, E.H.: Apache JMeter: A Practical Beginner’s Guide to Automated Testing
and Performance Measurement for Your Websites. Packt Publishing Ltd., Olton
(2008)

7. Han, R., John, L.K., Zhan, J.: Benchmarking big data systems: a review. IEEE
Trans. Serv. Comput. 11(3), 580–597 (2017)

8. Han, R., Lu, X., Xu, J.: On big data benchmarking. In: Zhan, J., Han, R., Weng,
C. (eds.) BPOE 2014. LNCS, vol. 8807, pp. 3–18. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13021-7 1

9. Iosup, A., et al.: LDBC Graphalytics: a benchmark for large-scale graph analysis on
parallel and distributed platforms. Proc. VLDB Endow. 9(13), 1317–1328 (2016)

10. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:
2013 International Conference on Social Computing, pp. 708–715. IEEE (2013)

11. Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evaluation method-
ology for latency-critical applications. In: 2016 IEEE International Symposium on
Workload Characterization (IISWC), pp. 1–10. IEEE (2016)

12. Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: SparkBench: a comprehensive
benchmarking suite for in memory data analytic platform spark. In: Proceedings
of the 12th ACM International Conference on Computing Frontiers, p. 53. ACM
(2015)

13. Li, Y., Manoharan, S.: A performance comparison of SQL and NoSQL databases.
In: 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pp. 15–19. IEEE (2013)

14. Liang, F., Feng, C., Lu, X., Xu, Z.: Performance benefits of DataMPI: a case study
with BigDataBench. In: Zhan, J., Han, R., Weng, C. (eds.) BPOE 2014. LNCS,
vol. 8807, pp. 111–123. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13021-7 9

15. Ming, Z., et al.: BDGS: a scalable big data generator suite in big data bench-
marking. In: Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess, M., Bhandarkar,
M., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585, pp. 138–154. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10596-3 11

16. Stonebraker, M., Çetintemel, U.: “one size fits all” an idea whose time has come and
gone. In: Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker,
pp. 441–462 (2018)

https://doi.org/10.1007/978-3-319-13021-7_1
https://doi.org/10.1007/978-3-319-13021-7_1
https://doi.org/10.1007/978-3-319-13021-7_9
https://doi.org/10.1007/978-3-319-13021-7_9
https://doi.org/10.1007/978-3-319-10596-3_11


104 G. Shi et al.

17. Wang, C., Wang, B., Huang, B., Song, S., Li, Z.: FastSGG: efficient social graph
generation using a degree distribution generation model. In: Proceedings of the
IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece
(2021)

18. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
In: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 488–499. IEEE (2014)

19. Wang, M., Wang, C., Yu, J.X., Zhang, J.: Community detection in social net-
works: an in-depth benchmarking study with a procedure-oriented framework.
Proc. VLDB Endow. 8(10), 998–1009 (2015)



Towards Generating HiFi Databases

Anupam Sanghi(B), Rajkumar Santhanam, and Jayant R. Haritsa

Indian Institute of Science, Bengaluru, India
{anupamsanghi,srajkumar,haritsa}@iisc.ac.in

Abstract. Generating synthetic databases that capture essential data
characteristics of client databases is a common requirement for database
vendors. We recently proposed Hydra, a workload-aware and scale-free
data regenerator that provides statistical fidelity on the volumetric sim-
ilarity metric. A limitation, however, is that it suffers poor accuracy on
unseen queries. In this paper, we present HF-Hydra (HiFi-Hydra), which
extends Hydra to provide better support to unseen queries through (a)
careful choices among the candidate synthetic databases and (b) incor-
poration of metadata constraints. Our experimental study validates the
improved fidelity and efficiency of HF-Hydra.

Keywords: Big data management · Data summarization · Data
warehouse · OLAP workload · DBMS testing

1 Introduction

Database vendors often need to generate synthetic databases for a variety of
use-cases, including: (a) testing engine components, (b) testing of database
applications with embedded SQL, and (c) performance benchmarking. Several
approaches to synthetic data generation have been proposed in the literature
(reviewed in [7]) – in particular, a declarative approach of workload-aware data
regeneration has been advocated over the last decade [1,2,4,5].

Workload-Aware Data Regeneration. Consider the database schema with three
relations shown in Fig. 1(a), and a sample SQL query (Fig. 1(b)) on it. In the
corresponding query execution plan (Fig. 1(c)), each edge is annotated with the
associated cardinality of tuples flowing from one operator to the other. This
is called an annotated query plan (AQP). From an AQP, a set of cardinality
constraints (CCs) are derived, as enumerated in Fig. 1(d). The goal here is to
achieve volumetric similarity – that is, on a given query workload, when these
queries are executed on the synthetic database, the result should produce similar
AQPs. In other words, the database should satisfy all the CCs.

The work of Anupam Sanghi was supported by an IBM PhD Fellowship Award.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 105–112, 2021.
https://doi.org/10.1007/978-3-030-73194-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_8


106 A. Sanghi et al.

Fig. 1. Example Annotated Query Plan (AQP) and Cardinality Constraints (CC)
(Color figure online)

1.1 Hydra

Hydra [5,6] is a workload-aware generator recently developed by our group. For
each relation in the database, Hydra first constructs a corresponding denormal-
ized relation (without key columns), called a view. To generate a view R, the
domain space of R is partitioned into a set of disjoint regions determined by the
filter predicates in the CCs. Further, a variable is created for each region, repre-
senting its row cardinality in the synthetic database. Next, an SMT Problem is
constructed, where each CC is expressed as a linear equation in these variables.
After solving the problem, the data generator picks a unique tuple within the
region-boundaries and replicates it as per the region-cardinality obtained from
the solution.

To make the above concrete, consider the constraint for relation S (from
Fig. 1) shown by the red box (A in [20, 40) and B in [15000, 50000)) in Fig. 2,
and having an associated row-count 150 (say). Likewise, a green constraint is also
shown – say with row-count 250. Accordingly, the SMT problem constructed is:

x1 + x2 = 250, x2 + x3 = 150, x1, x2, x3, x4 ≥ 0

The process of extracting relations from the views, while ensuring referential
integrity (RI), forces the addition of some (spurious) tuples in the dimension
tables. At the end, the output consists of concise constructors, together called
as the database summary. An example summary is shown in Fig. 3 – the entries
of the type a - b in the PK column (e.g. 101–250 for S pk), represent rows with

Fig. 2. Domain partition-
ing (Color figure online)

Fig. 3. Hydra example database summary



Towards Generating HiFi Databases 107

values (a, a + 1, ..., b) for that column, keeping others unchanged. The summary
makes Hydra amenable to handle Big Data volumes because the data can now
be generated dynamically, i.e., “on-demand” during query execution, thereby
obviating the need for materialization. Also, the summary construction time is
data-scale-free, i.e., independent of the database size.

Limitations. As discussed above, Hydra is capable of efficiently delivering vol-
umetric similarity on seen queries. However, the ability to generalize to new
queries can be a useful feature for the vendor as part of the ongoing evaluation
exercise. This is rendered difficult for Hydra due to the following design choices:

No Preference among Feasible Solutions: There can be several feasible
solutions to the SMT problem. However, Hydra does not prefer any particu-
lar solution over the others. Moreover, due to the usage of Simplex algorithm
internally, the SMT solver returns a sparse solution, i.e., it assigns non-zero
cardinality to very few regions. This leads to very different inter-region dis-
tribution of tuples in the original and synthetic databases.

Artificial Skewed Data: Within a region that gets a non-zero cardinality
assignment, Hydra generates a single unique tuple. As a result, a highly
skewed data distribution is generated, which leads to an inconsistent intra-
region distribution of tuples. Furthermore, the artificial skew can cause hin-
drance in efficient testing of queries, and gives an unrealistic look to the
data.

Non-compliance with the Metadata: The metadata statistics present at the
client site are transferred to the vendor and used to ensure matching plans
at both sites. However, these statistics are not used in the data generation
process, leading to data that is out of sync with the client meta-data.

1.2 HF-Hydra

In this work, we present HF-Hydra (High-Fidelity Hydra), which materially
extends Hydra to address the above robustness-related limitations while retain-
ing its desirable data-scale-free and dynamic generation properties.

The end-to-end pipeline of HF-Hydra’s data generation is shown in Fig. 4.
The client AQPs and metadata stats are given as input to LP Formulator. Using
the inputs, the module constructs a refined partition, i.e. it gives finer regions.
Further, a linear program (LP) is constructed by adding an objective function to
pick a desirable feasible solution. From the LP solution, which is computed using
the popular Z3 solver [8], the Summary Generator produces a richer database
summary.

A sample summary produced by HF-Hydra on our running example is shown
in Fig. 5. We see that the number of regions, characterized by the number of
rows in the summary tables, are more in comparison to Hydra. Also, intervals
are stored instead of points which support generation of a spread of tuples within
each region. Tuples are generated uniformly within the intervals using the Tuple
Generator module. These stages are discussed in detail in Sects. 2 and 3.



108 A. Sanghi et al.

Fig. 4. HF-Hydra pipeline (Color
figure online)

Fig. 5. HF-Hydra database summary

In a nutshell, the addition of an objective function in the LP improves the
inter-region tuple distribution. Further, having refined regions, plus uniform
tuple distribution within these finer regions, improves the intra-region tuple dis-
tribution. Finally, addition of constraints from the metadata statistics ensures
metadata-compliance.

We evaluate the efficacy of HF-Hydra by comparing its volumetric similar-
ity with Hydra on unseen queries. Our results, elaborated in Sect. 4, indicate a
substantive improvement – specifically, the volumetric similarity on filter con-
straints of unseen queries was better by more than 30%, as measured by the
UMBRAE model-comparison metric [3]. Further, we also show that HF-Hydra
ensures metadata compliance. A sample table illustrating HF-Hydra delivers
more realistic databases in comparison to Hydra is shown in [7].

2 LP Formulation

We now show how the LP is constructed from the AQPs and metadata. The
summary steps are the following (complete details in [7]):

1. Creating Metadata CCs. Constraints are derived from the metadata
statistics. Typically, the statistics include histograms and most common val-
ues (MCVs) with the corresponding frequencies. These are encoded as meta-
data CCs:
i. |σA=a(R)| = ca, for a value a stored in MCVs with frequency ca (for

column A).
ii. |σA∈[l,h)(R)| = B, for a histogram bucket (for column A) with boundary

[l, h), having total row-count equal to B.
Let there be a total of m such metadata CCs.

2. Region Partitioning. Refined regions are constructed using region-based
domain partitioning, leveraging the CCs derived from both AQPs and meta-
data. Let the total number of resultant regions be n, where the row-cardinality
of region i is captured in variable xi.



Towards Generating HiFi Databases 109

minimize
∑m

j=1 εj , subject to:
1. −εj ≤ (

∑
i:Iij=1 xi)−kj ≤ εj , ∀j ∈ [m],

2. C1, C2, ..., Cq,
3. xi ≥ 0 ∀i ∈ [n], εj ≥ 0 ∀j ∈ [m]

Fig. 6. MDC LP formulation

minimize
∑n

i=1 εi, subject to:
1. −εi ≤ xi − x̃i ≤ εi, ∀i ∈ [n],
2. C1, C2, ..., Cq,
3. xi, εi ≥ 0, ∀i ∈ [n]

Fig. 7. OE LP formulation

3. Formulating LP Constraints. The CCs from AQPs are added as explicit
LP constraints, as in the original Hydra. Let there be q such CCs denoted by
C1, C2, ..., Cq.

4. Constructing Objective. An optimization function is added to find a fea-
sible solution that is close to the estimated solution. We use two notions of
estimated solution:
i. Metadata Constraints Satisfaction (MDC): Here the distance

between the output cardinalities from metadata CCs and the sum of
variables that represent the CCs is minimized. The LP thus obtained is
shown in Fig. 6, with Iij being an indicator variable, which takes value 1 if
region i satisfies the filter predicate in the jth metadata CC, 0 otherwise.

ii. Optimizer Estimates Satisfaction (OE): Here, instead of directly
enforcing metadata CCs, the estimated cardinality for each region is
obtained from the database engine using the optimizer’s selectivity esti-
mation logic. The objective function minimizes the distance between the
solution and these estimates. The estimated cardinality x̃i for a region i
is computed by constructing an SQL query equivalent for the region and
using the query’s estimated selectivity obtained from its compile-time
plan. The LP produced using OE strategy is shown in Fig. 7.

Our choice of minimizing L1 distance is because query execution performance
is linearly dependent on the row count, especially when all joins are PK-FK
joins. In picking between the MDC and OE strategies, the following consider-
ations apply: MDC has better metadata compliance due to explicit enforce-
ment of the associated constraints. Further, its solution has higher sparsity
because no explicit constraint is applied at a per-region level. However, while
sparsity does make summary production more efficient, it adversely affects
volumetric accuracy for higher levels of joins, as compared to OE.

3 Data Generation

Post LP-solving, the data generation pipeline proceeds in the following stages
(complete details in [7]):

1. Ensuring Referential Integrity. Since each view is processed indepen-
dently, these solutions may have inconsistencies. Specifically, when F , the
fact table view, has a tuple whose value combination for the attributes that



110 A. Sanghi et al.

it borrows from D, the dimension table view, does not have a matching tuple
in D, then it causes a reference violation. To avoid it, for each region f of
F , we maintain the populated regions in D that have an interval intersection
with f for the borrowed columns. If no such region in D is found, then a new
region with the intersection portion is added and assigned a cardinality of 1.
This fixes the reference violation but leads to an additive error of 1 in the
relation cardinality for the dimension table.

2. Generating Relation Summary. Here the borrowed attribute-set in a view
is replaced with appropriate FK attributes. In contrast to Hydra’s strategy
of picking a single value in the FK column for a region, here we indicate a
range to achieve a good span. To compute the FK column values for a region
f , the corresponding matching regions from dimension table are fetched and
the union of PK column ranges of these regions is returned.

3. Tuple Generation. The aim here is generate tuples uniformly within each
region. Based on interval lengths that are contained for an attribute in the
region, the ratio of tuples to be generated from each interval is computed.
Now, if n values have to be generated within an interval I, then I is split into
n equal sub-intervals and the center point within each interval is picked. If
the range does not allow splitting into n sub-intervals, then it is split into the
maximum possible sub-intervals, followed by a round-robin instantiation. The
PK column values are generated consecutively, similar to row-numbers. This
deterministic approach is well-suited for dynamic generation. If a materialized
output is desired, then random values can be picked within intervals.

4 Experimental Evaluation

We now move on to empirically evaluating the performance of HF-Hydra against
Hydra. For our experiments, we used a 1 GB version of the TPC-DS benchmark,
hosted on a PostgreSQL v9.6 engine operating on a vanilla workstation. The
SMT/LP problems were solved using Z3 [8].

We constructed a workload of 110 representative queries, which was then
split randomly into training and testing sets of 90 and 20 queries. The associated
AQPs led to formulation of 225 and 51 CCs, respectively. These CCs were a mix
of pure filters on base relations, and CCs that involve filters along with 1 to
3 joins. Further, 2622 metadata CCs were derived from histograms and MCVs
data.

4.1 Volumetric Similarity

For evaluating volumetric accuracy, we used the UMBRAE (Unscaled Mean
Bounded Relative Absolute Error) model-comparison metric [3], with Hydra
serving as the reference model. An UMBRAE value U ranges over positive num-
bers, where U < 1 implies (1 − U) ∗ 100% better performance wrt baseline
model, U > 1 implies (U − 1) ∗ 100% worse performance and U = 1 shows no
improvement.



Towards Generating HiFi Databases 111

Fig. 8. Accuracy (Color figure online)

The UMBRAE values obtained by the two flavors of HF-Hydra over the 20
test queries are shown in Fig. 8(a)–(b). For clear understanding, the results for
base filters and join nodes are shown separately. We see that HF-Hydra delivers
more than 30% better performance on filters, and an improvement of over 20%
with regard to joins. The higher improvement on filters is expected because the
accuracy of metadata statistics, being on a per-column basis, is best at the lower
levels of the plan tree.

Metadata compliance is evaluated in Fig. 8(c). A substantial improvement
over Hydra is seen here – 98% and 70% for MDC and OE, respectively.

Interestingly, HF-Hydra outperforms Hydra even on the volumetric accuracy
for seen queries, as captured in Fig. 8(d). Specifically, an improvement of 48%
and 26% for MDC and OE, respectively, with regard to the base filter nodes
on dimension tables. This benefit is an outcome of better distribution of tuples
over regions, reducing the likelihood of mismatch between populated regions in
the fact-table and empty regions in the dimension-table.

On the metrics considered thus far, MDC outperformed OE. However, for
higher level joins, OE did better than MDC. Specifically, 33% better for two-join
cases and 13% better for three-join cases. This is primarily because OE adheres
to constraints at a per region level while MDC generates a sparse solution.

4.2 Database Summary Overheads

The database summaries generated by HF-Hydra and Hydra differ significantly
in their structures. The former has many more regions, and stores intervals
instead of points within a region. Due to these changes, a legitimate concern
could be the impact on the size of the summary and the time taken to generate
data from it at run-time. To quantitatively evaluate this concern, the space and
time overheads are enumerated in Table 1. We see here that there is certainly
a large increase in summary size, going from kilobytes to megabytes – however,
in absolute terms, the summary size is still small enough to be easily viable on
contemporary computing platforms. When we consider the time aspect, again
there is an expected increase in the generation time from a few seconds to several



112 A. Sanghi et al.

Table 1. Space and time analysis

Hydra MDC OE

Summary size 40 KB 6 MB 985MB

Tuple instantiation time 6 s 37 s 51 s

tens of seconds, but here too the absolute values are small enough (sub-minute)
to make HF-Hydra usable in practice. Further, it is important to recall that
these summary sizes and their construction time are independent of the client
database size (experiments validating this claim are described in [7]).

5 Conclusions

Testing database engines efficiently is a critical issue in the industry, and the
ability to accurately mimic client databases forms a key challenge in this effort.
In contrast to the prior literature which focused solely on capturing database
fidelity with respect to a known query workload, in this paper we have looked
into the problem of generating databases that are robust to unseen queries. In
particular, we presented HF-Hydra, which materially extends the state-of-the-
art Hydra generator by bringing the potent power of metadata statistics and
optimizer estimates to bear on the generation exercise. The resulting fidelity
improvement was quantified through experimentation on benchmark databases,
and the UMBRAE outcomes indicate that HF-Hydra successfully delivers high-
fidelity databases.

Acknowledgements. We thank Tarun Kumar Patel and Shadab Ahmed for their
valuable inputs in the implementation of this work.

References

1. Arasu, A., Kaushik, R., Li, J.: Data generation using declarative constraints. In:
ACM SIGMOD Conference, pp. 685–696 (2011)

2. Binnig, C., Kossmann, D., Lo, E., Özsu, M.T.: QAGen: generating query-aware test
databases. In: ACM SIGMOD Conference, pp. 341–352 (2007)

3. Chen, C., Twycross, J., Garibaldi, J.M.: A new accuracy measure based on bounded
relative error for time series forecasting. PLoS ONE 12(3), e0174202 (2017)

4. Li, Y., Zhang, R., Yang, X., Zhang, Z., Zhou, A.: Touchstone: generating enormous
query-aware test databases. In: USENIX ATC, pp. 575–586 (2018)

5. Sanghi, A., Sood, R., Haritsa, J.R., Tirthapura, S.: Scalable and dynamic regener-
ation of big data volumes. In: 21st EDBT Conference, pp. 301–312 (2018)

6. Sanghi, A., Sood, R., Singh, D., Haritsa, J.R., Tirthapura, S.: HYDRA: a dynamic
big data regenerator. PVLDB 11(12), 1974–1977 (2018)

7. Sanghi, A., Rajkumar, S., Haritsa, J.R.: High fidelity database generators. Tech-
nical report TR-2021-01, DSL/CDS, IISc (2021). dsl.cds.iisc.ac.in/publications/
report/TR/TR-2021-01.pdf

8. Z3. https://github.com/Z3Prover/z3

https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-01.pdf
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2021-01.pdf
https://github.com/Z3Prover/z3


Modelling Entity Integrity
for Semi-structured Big Data

Ilya Litvinenko, Ziheng Wei, and Sebastian Link(B)

The University of Auckland, Auckland, New Zealand
{ilit874,z.wei,s.link}@auckland.ac.nz

Abstract. We propose a data model for investigating constraints that
enforce the entity integrity of semi-structured big data. Particular sup-
port is given for the volume, variety, and veracity dimensions of big data.

Keywords: Big data · Functional dependency · JSON · Key · SQL

1 Introduction

Database management systems model some domain of the real-world within a
database system. For that purpose, SQL governs data by the rigid structure
of relations [5]. Big data must handle potentially large volumes of data that
may originate from heterogeneous sources (variety) with different degrees of
uncertainty (veracity) [1]. Given the mature and popular technology that SQL
provides many organizations use SQL to manage big data, at least when it is
semi-structured such as in JSON format. While unstructured data, such as text
or images, is not our focus, there is a rich landscape of techniques and tools for
converting unstructured into semi-structured or even structured data [1].

We introduce the class of keys and functional dependencies (FDs) over pos-
sibilistic SQL data, with the aim to efficiently reason about the entity integrity
of semi-structured big data that accommodates the volume, variety and veracity
dimensions. Codd stipulated entity integrity as one of the three major integrity
principles in databases [5]. Entity integrity refers to the principle of representing
each entity of the application domain uniquely within the database. Violations
of this principle are common in database practice, resulting in their own fields
of research including entity resolution [4] and data cleaning [9].

While keys and FDs have standard definitions in the relational model, sim-
ple extensions introduce opportunities to define these concepts differently [18].
SQL, for example, permits occurrences of a so-called null marker, denoted by
⊥, to say that there is no information about the value of this row on this col-
umn [10,21]. Moreover, columns can be defined as NOT NULL to prevent null
marker occurrences. The interpretation of ⊥ is deliberately kept simple to uni-
formly accommodate many types of missing information, including values that
do not exist or values that exist but are currently unknown [21]. While such dis-
tinction is possible, it would lead to an application logic that is too complex for
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 113–120, 2021.
https://doi.org/10.1007/978-3-030-73194-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_9&domain=pdf
http://orcid.org/0000-0002-1816-2863
https://doi.org/10.1007/978-3-030-73194-6_9


114 I. Litvinenko et al.

Fig. 1. JSON data from different information sources

database practice [6]. In modern applications, for example data integration, null
markers are used frequently by SQL to fit data of heterogeneous structure within
a uniform table. This is SQL’s answer to the variety dimension of big data. SQL
also permits the duplication of rows in support of a multiset semantics, where
FDs can no longer express keys [12]. Hence, for SQL we need to study the com-
bined class of keys and FDs. The veracity dimension abandons the view that all
data are equal to improve the outcomes of data-driven decision making. Proba-
bilistic and possibilistic databases offer complementary approaches to uncertain
data. Essentially, there is a trade-off as probabilistic databases offer continuous
degrees of uncertainty and real probability distributions are hard to come by
and maintain, while possibilistic databases offer discrete degrees of uncertainty
and are simpler to come by and maintain [8,17].

Contributions and Organization. We introduce our running example in
Sect. 2. We propose a framework of data structures capable of handling all com-
binations of the volume, variety, and veracity dimension of semi-structured big
data within possibilistic SQL. Section 3 reviews isolated previous work under
this framework. We define our possibilistic SQL model in Sect. 4, and possibilis-
tic SQL constraints in Sect. 5. We conclude in Sect. 6.

2 The Running Example

Table 1. A university employment table

Row emp dpt mng p-degree Interpretation Origin

1 ⊥ Math Simon α1 Fully possible Payroll

2 ⊥ Stats Simon α1 Fully possible Payroll

3 Mike CS Shaun α1 Fully possible Payroll

4 Tom CS Shaun α1 Fully possible Payroll

5 Derek Physics ⊥ α1 Fully possible Payroll

6 John Music Scott α1 Fully possible Payroll

7 John Music Scott α2 Quite possible Website

8 Andy ⊥ Sofia α2 Quite possible Website

9 Andy ⊥ Sam α2 Quite possible Website

10 Bob Biology Susan α3 Somewhat possible Blog

11 Bob Arts Susan α3 Somewhat possible Blog

As a simple running exam-
ple consider Fig. 1 that
shows some JSON data.
JSON is the de-facto stan-
dard for managing and
exchanging semi-structured
data, due to its capability
to accommodate different
information structures [16].

In our example, the
information origins from
three sources: payroll data,
web data, and blog data. As
the data stewards associate different levels of trust with these sources, they would
like to attribute these levels of trust to the data from the sources. We are using
an SQL-based DBMS, and the data stewards have transformed the JSON data
into SQL-compliant format as shown in Table 1.



Modelling Entity Integrity for Semi-structured Big Data 115

The null marker ⊥ indicates that no information is available for a data ele-
ment of a given attribute, such as information on employees working in Maths.
The column p-degree represents the levels of trust for the data elements. The
highest p-degree α1 is assigned to payroll data, α2 to web data, and α3 to blog
data. This application scenario will be used to illustrate concepts.

3 Related Work

As a first main contribution, we introduce a systematic framework for handling
the volume, variety, and veracity dimension of big data. We apply the framework
to manage and reason about entity integrity in those dimensions. Figure 2 shows
all combinations of the three dimensions, ordered as a lattice.

Fig. 2. Framework for semi-structured big data,
related work, and new contributions (Color figure
online)

A directed edge means
that the target node cov-
ers additional dimensions over
the source node. For each
combination of dimensions,
we indicate a data structure
for the combination. At the
bottom are relations (sets of
rows). Arguably, these may
already accommodate the vol-
ume dimension. The nodes on
top of relations are bags, par-
tial relations, and p-relations.
Bags accommodate the volume dimension by permitting duplicate rows, partial
relations accommodate the variety dimension by permitting null markers (as
explained earlier), and p-relations accommodate the veracity dimension. Above
these single dimensions we then have any combinations of two dimensions, and
the top node combines all three dimensions.

We now use this framework to discuss previous work on entity integrity rules,
based on the three dimensions of semi-structured big data. These are marked
in cyan in Fig. 2. Well-known are Armstrong’s axioms for FDs in the relational
model [2] and the corresponding algorithms for deciding implication [7]. For bags,
the interaction of keys and FDs was characterized in [12], using the technique of
FD-reducts. Over partial relations, the implication problem for keys and FDs in
the presence of NOT NULL constraints was solved in [10], using so-called attribute
guards. The implication problem over SQL tables, which combine bags and par-
tial relations, was solved by [10]. Finally, the implication problem of FDs over
p-relations was solved in [14], using so-called β-cuts.

We can view these isolated results under our big data framework. This view
motivates us to extend the previous techniques to new combinations of these
dimensions. These include the combination of i) volume and veracity, ii) variety
and veracity, and iii) volume, variety, and veracity (marked green in Fig. 2).



116 I. Litvinenko et al.

4 Possibilistic SQL Tables

An SQL table schema, denoted by T , is a finite non-empty set of attributes.
The domain of each attribute contains the null marker, ⊥, as a distinguished
element. As running example, we use the table schema Work = {emp,dpt,mng}
with information about employees that work in departments under managers.

A row (or tuple) over table schema T is a function r : T → ∪A∈T dom(A)
assigning to every attribute a value from the attribute’s domain. The image r(A)
of a row r on attribute A is the value of r on A. For X ⊆ T , a row r over T is
X-total, if r(A) �=⊥ for all A ∈ X. A row r is total, if it is T -total.

We adopt Zaniolo’s interpretation of ⊥ as “no information” [21]. That is,
r(A) =⊥ means no information about the value of row r on attribute A is
available. It may mean there is no value at all, or that there is a value which is
currently unknown. SQL uses this interpretation [10,21].

Table 2. Table over
Work

emp dpt mng

John Music Scott

John Music Scott

Derek Physics ⊥
Derek Physics ⊥

Our data model handles duplicates as tables are mul-
tisets of rows. An SQL table over table schema T is a
finite multiset t of rows over T . For X ⊆ T , the table t is
X-total, if every row r ∈ t is X-total. Table t is total, if
t is T -total. A total table is called a bag. Table 2 shows
an example of a table over Work. The third row has
value Derek on emp, value Physics on dpt, and marker
⊥ on mng. The first and second row are total, and the
third and fourth row, as well as the table itself are {emp, dpt}-total. The first
and second row, as well as the third and fourth row, respectively, are duplicate
tuples, since they have matching values on all attributes.

Table 3. Possible worlds of p-SQL table from Table 1

t1
emp dpt mng
⊥ Math Simon
⊥ Stats Simon

Mike CS Shaun
Tom CS Shaun
Derek Physics ⊥
John Music Scott

t2
emp dpt mng
⊥ Math Simon
⊥ Stats Simon

Mike CS Shaun
Tom CS Shaun
Derek Physics ⊥
John Music Scott
John Music Scott
Andy ⊥ Sofia
Andy ⊥ Sam

t3
emp dpt mng
⊥ Math Simon
⊥ Stats Simon

Mike CS Shaun
Tom CS Shaun
Derek Physics ⊥
John Music Scott
John Music Scott
Andy ⊥ Sofia
Andy ⊥ Sam
Bob Biology Susan
Bob Arts Susan

SQL does not acco-
mmodate uncertainty.
For example, one can-
not say tuple (Derek,
Physics, ⊥) is less
likely to occur than
tuple (John, Music,
Scott). We extend our
data model by assign-
ing degrees of possi-
bilities (p-degrees) to
tuples, thereby also extending the model of [14,15] where no duplicate nor par-
tial information was used. In our example, p-degrees result from the source the
tuples originate from. The tuples in Table 1 originate from payroll, website or
blog data, respectively. Payroll data is ‘fully possible’, website data ‘quite pos-
sible’, and blog data ‘somewhat possible’, while other tuples are ‘impossible’ to
occur in the current table. Since p-degrees can have different meanings, we denote
them by abstract symbols α1, . . . , αk, αk+1. Table 1 shows an instance with p-
degrees assigned to tuples. The table has meta-data columns: ‘row’ assigns an
identifier to each tuple, while ‘interpretation’ and ‘origin’ show the interpretation
of p-degrees and the source of tuples, respectively.



Modelling Entity Integrity for Semi-structured Big Data 117

A possibility scale is a strict finite linear order Sp = (Sp, >p), denoted by
α1 >p · · · > αk >p αk+1, where k is at least one. The elements αi are possibility
degrees (p-degrees). In Table 1 we have k = 3 for the possibility scale. Fully
possible rows have p-degree α1, while the least possible rows have p-degree α3.
The bottom p-degree αk+1 = α4 captures rows ‘impossible’ for the current table.
Non-possibilistic tables are a special case of possibilistic ones where k = 1.

A possibilistic SQL table schema (or p-SQL table schema) is a pair (T,Sp),
where T is a table schema and Sp is a possibility scale. A possibilistic SQL table
(or p-SQL table) over (T,Sp) consists of a table t over T , and a function Posst
that maps each row r ∈ t to a p-degree Posst(r) �= αk+1 in the p-scale Sp. The
p-SQL table of our example is shown in Table 1. It consists of an SQL table
over Work in which every row is assigned a p-degree from α1, α2 or α3. P-SQL
tables enjoy a well-founded possible world semantics. The possible worlds form a
linear chain of k SQL tables in which the i-th possible world contains tuples with
p-degree αi or higher. Given a p-SQL table t over (T,Sp), the possible world ti
associated with t is defined by ti = {r ∈ t | Posst(r) ≥ αi}, that is, ti is an
SQL table of those rows in t that have p-degree αi or higher. Since tk+1 would
contain impossible tuples it is not considered a possible world. Table 3 shows the
possible worlds of the p-SQL table from Table 1. The possible worlds of t form
a linear chain t1 ⊆ t2 ⊆ t3.

The linear order of the p-degrees α1 > · · · > αk results in a reversed linear
order of possible worlds associated with a p-SQL table t: t1 ⊆ · · · ⊆ tk. We point
out the distinguished role of the top p-degree α1. Every row that is fully possible
belongs to every possible world. Therefore, every fully possible row is also fully
certain. This explains why p-SQL tables subsume SQL tables as a special case.

5 Possibilistic SQL Constraints

We recall the definitions of SQL FDs and NOT NULL constraints [10]. Keys are
essential to entity integrity and cannot be expressed by FDs in this context.

Intuitively, a key is an attribute collection that can separate different rows
by their values on the key attributes. We adopt the semantics for the SQL
constraint UNIQUE by separating different rows whenever they are total on the
key attributes. A key over an SQL table schema T is an expression u(X) where
X ⊆ T . An SQL table t over T satisfies u(X) over T , denoted by |=t u(X), if
for all r1, r2 ∈ t we have: if r1(X) = r2(X) and r1, r2 are X-total, then r1 = r2.
The possible world t1 of Table 3 satisfies u(emp), while t2 and t3 violate this key.

The following semantics of FDs goes back to Lien [13]. A functional depen-
dency (FD) over an SQL table schema T is an expression X → Y where XY ⊆ T .
An SQL table t over T satisfies X → Y over T , denoted by |=t X → Y , if for all
r1, r2 ∈ t we have: if r1(X) = r2(X) and r1, r2 are X-total, then r1(Y ) = r2(Y ).
The possible world t2 of Table 3 satisfies emp → dpt and dpt → mng, while t3
satisfies dpt → mng, but not emp → dpt.

SQL NOT NULL constraints control occurrences of the null marker. They
have been studied in combination with FDs and multivalued dependencies [10].



118 I. Litvinenko et al.

A NOT NULL constraint over an SQL table schema T is an expression n(X) where
X ⊆ T . An SQL table t over T satisfies the NOT NULL constraint n(X) over T ,
denoted by |=t n(X), if t is X-total. For a given set Σ of constraints over T we
call Ts = {A ∈ T | ∃n(X) ∈ Σ ∧ A ∈ X} the null-free subschema (NFS) over T .
If Ts = T , we call T a bag schema, as instances over T are bags. For example,
n(dpt) is satisfied by the possible world t1 in Table 3, but not by t2 or t3.

Possibilistic SQL Constraints. We extend our semantics of SQL constraints
to possibilistic SQL tables. Following [14], we use the p-degrees of rows to specify
with which certainty an SQL constraint holds. Similar to how αi denotes p-
degrees of rows, βi denotes c-degrees by which constraints hold. Let us inspect
some SQL constraints on the possible worlds t1, t2, t3 in Table 3. The constraint
dpt → mng is satisfied by t3, and therefore by t2 and t1. Since the constraint is
satisfied by every possible world, it is ‘fully certain’ to hold, denoted by β1. The
constraint emp → dpt is satisfied by t2 and therefore by t1, but it is not satisfied
by t3. Since the constraint is only violated by the ‘somewhat possible’ world t3,
it is ‘quite certain’ to hold, denoted by β2. The constraint u(emp) is satisfied by
t1, but it is not satisfied by t2 and therefore not by t3. Since the smallest possible
world that violates the constraint is ‘quite possible’, it is ‘somewhat certain’ to
hold, denoted by β3. The constraint n(emp) is not even satisfied in the ‘fully
possible’ world t1. It is ‘not certain at all’ to hold, denoted by β4.

The examples illustrate how the p-degrees of rows motivate degrees of cer-
tainty (c-degrees) with which constraints hold on p-SQL tables. If the smallest
world that violates a constraint has p-degree αi (this world is impossible only
when all possible worlds satisfy the constraint), then the constraint holds with
c-degree βk+2−i. For example, the p-key u(emp) holds with c-degree β3 in the p-
SQL table t of Table 1, meaning the smallest possible world that violates u(emp)
is t2, which is ‘quite possible’, that is u(emp) is ‘somewhat certain’ to hold in t.
We introduce the certainty scale derived from a given possibility scale.

Let (T,Sp) denote a p-SQL table schema where the bottom p-degree of Sp

is k + 1. The certainty scale ST
p for (T,Sp) is the strict finite linear order β1 >p

· · · >p βk >p βk+1. The top c-degree β1 is for constraints that are ‘fully certain’,
while the bottom c-degree βk+1 is for constraints that are ‘not certain at all’.

We define by which c-degree an SQL constraint holds on a p-SQL table.
Similar to marginal probabilities in probability theory, we call this c-degree the
marginal certainty. In SQL tables an SQL constraint either holds or does not
hold. In a p-SQL table, an SQL constraint always holds with some c-degree.

Definition 1 (Marginal certainty). Let σ denote an SQL key, FD or NOT

NULL constraint over table schema T . The marginal certainty ct(σ) by which σ
holds in the p-SQL table t over (T,Sp) is the c-degree βk+2−i that corresponds
to the p-degree αi of the smallest possible world ti of t in which σ is violated,
that is, ct(σ) = β1 if |=tk σ, and ct(σ) = min{βk+2−i| �|=ti σ} otherwise.

For example, when t denotes the p-SQL table of Table 1, then ct(dpt →
mng) = β1, ct(emp → dpt) = β2, ct(u(emp)) = β3, and ct(n(emp)) = β4.



Modelling Entity Integrity for Semi-structured Big Data 119

Constraints specify the semantics of an application domain. They govern
which databases are regarded as meaningful for the application. We classify
a p-SQL table as meaningful whenever it satisfies a given set of possibilistic
constraints (σ, β) (key, FD, NOT NULL constraint), which allow us to stipulate
the minimum marginal c-degree β by which the constraint σ must hold in every
p-SQL table that is considered to be meaningful in the application domain.

Definition 2 (Possibilistic constraints). Let (T,SP ) denote a p-SQL table
schema. A possibilistic SQL key, possibilistic SQL FD, or possibilistic NOT NULL
constraint is a pair (σ, β) where σ denotes an SQL key, FD or NOT NULL con-
straint over T , respectively, and β denotes a c-degree from ST

P . The p-constraint
(σ, βi) is satisfied by a p-SQL table t over (T,SP ) iff ct(σ) ≥ βi.

For example, when t denotes the p-SQL table of Table 1, then the fol-
lowing examples of p-constraints are satisfied by t: (dpt → mng, β3) since
ct(dpt → mng) = β1 ≥ β3, (emp → dpt, β2) since ct(emp → dpt) = β2 ≥ β2, and
(u(emp), β4) since ct(u(emp)) = β3 ≥ β4. In other words, t satisfies these three
constraints. On the other hand, t violates (i.e. does not satisfy) any of the follow-
ing p-constraints: (emp → dpt, β1) since ct(emp → dpt) = β2 < β1, (u(emp), β2)
since ct(u(emp)) = β3 < β2, and (n(emp), β3) since ct(n(emp)) = β4 < β3.

6 Conclusion and Future Work

We aim at a comprehensive toolbox for reasoning about the integrity of real-
world entities in semi-structured big data. As underlying data model we chose
a possibilistic extension of SQL. We showed how previous work captures some
of the big data dimensions as special cases. Our definition of possibilistic keys,
FDs, and NOT NULL constraints lays the foundation for investigating fundamental
reasoning tasks for them in the future.

Fig. 3. Summary

Indeed, different approaches should be
applied to the big data dimensions, such as
probabilistic approaches to the veracity dimen-
sion [3], different approaches of handling miss-
ing information to the variety dimension such
as embedded keys and FDs [20], and differ-
ent approaches to entity integrity such as key
sets [19]. In a different direction, we may want
to add further big data dimensions. For exam-
ple, temporal extensions [11] may support the
velocity dimension (Fig. 3).



120 I. Litvinenko et al.

References

1. Amalina, F., et al.: Blending big data analytics: review on challenges and a recent
study. IEEE Access 8, 3629–3645 (2020)

2. Armstrong, W.W.: Dependency structures of data base relationships. In: Proceed-
ings of IFIP World Computer Congress, pp. 580–583 (1974)

3. Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3),
670–682 (2017)

4. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of
Data, Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers
(2015)

5. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

6. Date, C.J.: A critique of the SQL database language. SIGMOD Rec. 14(3), 8–54
(1984)

7. Diederich, J., Milton, J.: New methods and fast algorithms for database normal-
ization. ACM Trans. Database Syst. 13(3), 339–365 (1988)

8. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations
and applications to qualitative reasoning about uncertainty. Artif. Intell. 252, 139–
174 (2017)

9. Ganti, V., Sarma, A.D.: Data Cleaning: A Practical Perspective, Synthesis Lectures
on Data Management. Morgan & Claypool Publishers (2013)

10. Hartmann, S., Link, S.: The implication problem of data dependencies over SQL
table definitions: axiomatic, algorithmic and logical characterizations. ACM Trans.
Database Syst. 37(2), 13:1–13:40 (2012)

11. Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Extending existing dependency theory
to temporal databases. IEEE Trans. Knowl. Data Eng. 8(4), 563–582 (1996)

12. Köhler, H., Link, S.: Armstrong axioms and Boyce-Codd-Heath normal form under
bag semantics. Inf. Process. Lett. 110(16), 717–724 (2010)

13. Lien, Y.E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
14. Link, S., Prade, H.: Possibilistic functional dependencies and their relationship to

possibility theory. IEEE Trans. Fuzzy Syst. 24(3), 757–763 (2016)
15. Link, S., Prade, H.: Relational database schema design for uncertain data. Inf.

Syst. 84, 88–110 (2019)
16. Liu, Z.H., Hammerschmidt, B.C., McMahon, D.: JSON data management: support-

ing schema-less development in RDBMS. In: International Conference on Manage-
ment of Data, SIGMOD 2014, Snowbird, UT, USA, 22–27 June 2014, pp. 1247–
1258 (2014)

17. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases, Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers (2011)

18. Thalheim, B.: Dependencies in relational databases. Teubner (1991)
19. Thalheim, B.: On semantic issues connected with keys in relational databases

permitting null values. Elektronische Informationsverarbeitung und Kybernetik
25(1/2), 11–20 (1989)

20. Wei, Z., Link, S.: Embedded functional dependencies and data-completeness tai-
lored database design. PVLDB 12(11), 1458–1470 (2019)

21. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)



Graph Data



Label Contrastive Coding Based Graph
Neural Network for Graph Classification

Yuxiang Ren1(B), Jiyang Bai2, and Jiawei Zhang1

1 IFM Lab, Department of Computer Science, Florida State University,
Tallahassee, FL, USA

{yuxiang,jiawei}@ifmlab.org
2 Department of Computer Science, Florida State University, Tallahassee, FL, USA

bai@cs.fsu.edu

Abstract. Graph classification is a critical research problem in many
applications from different domains. In order to learn a graph classifica-
tion model, the most widely used supervision component is an output
layer together with classification loss (e.g., cross-entropy loss together
with softmax or margin loss). In fact, the discriminative information
among instances are more fine-grained, which can benefit graph classifi-
cation tasks. In this paper, we propose the novel Label Contrastive Cod-
ing based Graph Neural Network (LCGNN) to utilize label information
more effectively and comprehensively. LCGNN still uses the classification
loss to ensure the discriminability of classes. Meanwhile, LCGNN lever-
ages the proposed Label Contrastive Loss derived from self-supervised
learning to encourage instance-level intra-class compactness and inter-
class separability. To power the contrastive learning, LCGNN introduces
a dynamic label memory bank and a momentum updated encoder. Our
extensive evaluations with eight benchmark graph datasets demonstrate
that LCGNN can outperform state-of-the-art graph classification mod-
els. Experimental results also verify that LCGNN can achieve competi-
tive performance with less training data because LCGNN exploits label
information comprehensively.

1 Introduction

Applications in many domains in the real world exhibit the favorable property
of graph data structure, such as social networks [15], financial platforms [20] and
bioinformatics [5]. Graph classification aims to identify the class labels of graphs
in the dataset, which is an important problem for numerous applications. For
instance, in biology, a protein can be represented with a graph where each amino
acid residue is a node, and the spatial relationships between residues (distances,
angles) are the edges of a graph. Classification of graphs representing proteins
can help predict protein interfaces [5].

Recently, graph neural networks (GNNs) have achieved outstanding perfor-
mance on graph classification tasks [29,33]. GNNs aims to transform nodes to

Y. Ren and J. Bai—Contributed equally to this work.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 123–140, 2021.
https://doi.org/10.1007/978-3-030-73194-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_10


124 Y. Ren et al.

low-dimensional dense embeddings that preserve graph structural information
and attributes [34]. When applying GNNs to graph classification, the standard
method is to generate embeddings for all nodes in the graph and then summa-
rize all these node embeddings to a representation of the entire graph, such as
using a simple summation or neural network running on the set of node embed-
dings [31]. For the representation of the entire graph, a supervision component is
usually utilized to achieve the purpose of graph classification. A final output layer
together with classification loss (e.g., cross-entropy loss together with softmax or
margin loss) is the most commonly used supervision component in many existing
GNNs [6,28,29,32]. This supervision component focuses on the discriminability
of class but ignores the instance-level discriminative representations. A recent
trend towards learning stronger representations to serve classification tasks is
to reinforce the model with discriminative information as more as possible [4].
To be explicit, graph representations, which consider both intra-class compact-
ness and inter-class separability [14], are more potent on the graph classification
tasks.

Inspired by the idea of recent self-supervised learning [3] and contrastive
learning [7,18], the contrastive loss [17] is able to extract extra discriminative
information to improve the model’s performance. The recent works [8,18,35]
using contrast loss for representation learning are mainly carried out under
the setting of unsupervised learning. These contrastive learning models treat
each instance as a distinct class of its own. Meanwhile, discriminating these
instances is their learning objective [7]. The series of contrastive learning have
been verified effective in learning more fine-grained instance-level features in the
computer vision [26] domain. Thus we plan to utilize contrastive learning on
graph classification tasks to make up for the shortcomings of supervision com-
ponents, that is, ignoring the discriminative information on the instance-level.
However, when applying contrastive learning, the inherent large intra-class vari-
ations may import noise to graph classification tasks [14]. Besides, existing con-
trastive learning-based GNNs (e.g., GCC [18]) detach the model pre-training and
fine-tuning steps. Compared with end-to-end GNNs, the learned graph represen-
tations via contrastive learning can hardly be used in the downstream application
tasks directly, like graph classification.

To cope with the task of graph classification, we propose the label contrastive
coding based graph neural network (LCGNN), which employs Label Contrastive
Loss to encourage instance-level intra-class compactness and inter-class sepa-
rability simultaneously. Unlike existing contrastive learning using a single posi-
tive instance, the label contrastive coding imports label information and treats
instances with the same label as multiple positive instances. In this way, the
instances with the same label can be pulled closer, while the instances with dif-
ferent labels will be pushed away from each other. Intra-class compactness and
inter-class separability are taken into consideration simultaneously. The label
contrastive coding can be regarded as training an encoder for a dictionary look-
up task [7]. In order to build an extensive and consistent dictionary, we propose a
dynamic label memory bank and a momentum-updated graph encoder inspired



Label Contrastive Coding Based Graph Neural Network 125

Fig. 1. The high-level structure of LCGNN. LCGNN trains the graph encoder fq and
the graph classifier using a mixed loss. Label Contrastive Loss and Classification Loss
constitute the mixed loss. Classification Loss used in LCGNN is cross-entropy loss.
Label Contrastive Loss is calculated by a dictionary look-up task. The query is each
graph of the input graph minibatch, and the dictionary is a memory bank that can
continuously update the label-known graph representations. The graph representation
in the memory bank is updated by the graph encoder fk, which is momentum-updated.
After training, the learned graph encoder fq, and the graph classifier can serve for graph
classification tasks.

by the mechanism [7]. At the same time, LCGNN also uses Classification Loss
to ensure the discriminability of classes. LCGNN can utilize label information
more effectively and comprehensively from instance-level and class-level, allowing
using fewer label data to achieve comparative performance, which can be con-
sidered as a kind of label augmentation in essence. We validate the performance
of LCGNN on graph classification tasks over eight benchmark graph datasets.
LCGNN achieves SOTA performance in seven of the graph datasets. What is
more, LCGNN outperforms the baseline methods when using less training data,
which verifies its ability to learn from label information more comprehensively.

The contributions of our work are summarized as follows:

– We propose a novel label contrastive coding based graph neural network
(LCGNN) to reinforce supervised GNNs with more discriminative informa-
tion.

– The Label Contrastive Loss extends the contrastive learning to the supervised
setting, where the label information can be imported to ensure intra-class
compactness and inter-class separability.

– The momentum-updated graph encoder and the dynamic label memory bank
are proposed to support our supervised contrastive learning.

– We conduct extensive experiments on eight benchmark graph datasets.
LCGNN not only achieves SOTA performance on multiple datasets but also
can offer comparable results with fewer labeled training data.



126 Y. Ren et al.

2 Related Works

Graph Classification. Several different techniques have been proposed to solve
the graph classification problem. One important category is the kernel-based
method, which learns a graph kernel to measure similarity among graphs to dif-
ferentiate graph labels [25]. The Weisfeiler-Lehman subtree kernel (WL) [21],
Multiscale Laplacian graph kernels (MLG) [13], and Graphlets kernel(GK) [22]
are all representative graph kernels. Another critical category is the deep-
learning-based method. Deep Graph Kernel (DGK) [30], Anonymous Walk
Embeddings (AWE), and Graph2vec [16] all employ the deep-learning frame-
work to extract the graph embeddings for graph classification tasks. With the
rise of graph neural networks (GNNs), many GNNs are also used for graph classi-
fication tasks by learning the representation of graphs, which will be introduced
below.

Graph Neural Network. The graph neural network learns the low-dimensional
graph representations through a recursive neighborhood aggregation scheme [29].
The derived graph representations can be used to serve various downstream
tasks, such as graph classification and top-k similarity search. According to the
learning method, the current GNN serving graph classification can be divided
into end-to-end models and pre-train models. The end-to-end models are usually
under supervised or semi-supervised settings, with the goal of optimizing classi-
fication loss or mutual information, mainly including GIN [29], CapsGNN [28],
DGCNN [32] and InfoGraph [23]. The pre-trained GNNs use certain pre-training
tasks [9] to learn the graph’s general representation under the unsupervised set-
ting. In order to perform graph classification tasks, a part of label data will be
used to fine-tuning the models [18].

Contrastive Learning. Contrastive learning has been widely used for unsu-
pervised learning by training an encoder that can capture similarity from data.
The contrastive loss is normally a scoring function that increases the score on
the single matched instance and decreases the score on multiple unmatched
instances [17,26]. In the graph domain, DGI [24] is the first GNN model utilizing
the idea of contrastive learning, where the mutual information between nodes and
the graph representation is defined as the contrastive metric. HDGI [19] extends
the mechanism to heterogeneous graphs. InfoGraph [23] performs contrastive
learning in semi-supervised graph-level representation learning. When faced with
the task of supervised learning, such as graph classification, we also need to use
the advantage of contrastive learning to capture similarity. GCC [18] utilizes con-
trastive learning to pre-train a model that can serve for the downstream graph
classification task by fine-tuning. Compared to them, our method is an end-
to-end model and performs label contrastive coding to encourage instance-level
intra-class compactness and inter-class separability.



Label Contrastive Coding Based Graph Neural Network 127

3 Proposed Method

In this section, we introduce the label contrastive coding based graph neural
network (LCGNN). Before introducing LCGNN, we provide the preliminaries
about graph classification first.

3.1 Preliminaries

The goal of graph classification is to predict class labels of graphs based on
the graph structural information and node contents. Formally, we denote it as
follows:

Graph Classification. Given a set of labeled graphs GL = {(G1, y1),
(G2, y2), . . . } and yi ∈ Y is the corresponding label of Gi. The task is to learn a
classification function f : G −→ Y to make predictions for unseen graphs GU .

3.2 LCGNN Architecture Overview

A learning process illustration of the proposed LCGNN is shown in Fig. 1. Usu-
ally, for the input graph, we need to extract the latent features that can serve
the graph classification through a high-performance graph encoder. In order to
cooperate with the proposed mixed loss (Label Contrastive Loss & Classification
Loss), LCGNN contains two graph encoder fk and fq, which serve for encoding
input key graphs and query graphs respectively. Label Contrastive Loss encour-
ages instance-level intra-class compactness and inter-class separability simulta-
neously by keeping intermediate discriminative representations, while Classifi-
cation Loss ensures the class-level discriminability. A dynamic memory bank
containing key graph representations and corresponding labels works for label
contrastive loss calculation. A graph classifier takes the representations from the
graph encoder fq as its input to predict the graph labels. In the following parts,
we will elaborate on each component and the learning process of LCGNN in
detail.

3.3 Label Contrastive Coding

Existing contrastive learning has been proved a success in training an encoder
that can capture the universal structural information behind graph data [18]. In
the graph classification task, we focus on classification-related structural patterns
compared with the universal structural patterns. Therefore, our proposed label
contrastive coding learns to discriminate between instances with different class
labels instead of treating each instance as a distinct class of itself and contrasting
to other distinct classes.

Contrastive learning can be considered as learning an encoder for a dictionary
look-up task [7]. We can describe the contrastive learning as follows. Given an



128 Y. Ren et al.

encoded query q and a dictionary containing m encoded keys {k1,k2, . . . ,km},
there is only a single positive key k+ (normally encoded from the same instance
as q). The loss of this contrastive learning is low when q is similar to the positive
key k+ while dissimilar to negative keys for q (all other keys in the dictionary).
A widely used contrastive loss is InfoNCE [17] like:

L = − log
exp(q · k+/τ)

∑m
i=1 exp(q · ki/τ)

(1)

Here, τ is the temperature hyper-parameter [26]. Essentially, the loss of
InfoNCE is a classification loss aiming to classify q from m = 1 classes to the
same class as k+.

However, when facing graph classification tasks, the class labels have been
determined. We hope to import known label information in the training data to
assist contrastive learning in serving the graph classification task. In this way,
we design the label contrastive coding.

Fig. 2. Label Contrastive Loss. The query graph Gq and key graphs Gk are encoded by
fq and fk to low-dimensional representations q and k respectively. k1 and k2 having
the same label as q are denoted as positive keys. k3 and k4 are negative keys due
to different labels. The label contrastive loss encourage the model to distinguish the
similar pair (Gq, Gk1) and (Gq, Gk2) from dissimilar instance pairs, e.g., (Gq, Gk3).

Define Similar and Dissimilar. In the graph classification task, we seek that
instances with the same label can be pulled closer, while instances with different
labels will be pushed away from each other. Therefore, in the label contrastive
coding, we consider two instances with the same label as a similar pair while
treating the pair consisting of different label instances as dissimilar.



Label Contrastive Coding Based Graph Neural Network 129

Label Contrastive Loss. Still from a dictionary look-up perspective, given
an labeled encoded query (q, y), and a dictionary of m encoded labeled keys
{(k1, y1), (k2, y2), . . . , (km, ym)}, the positive keys k+ in label contrastive coding
are the keys ki where yi = y. The label contrastive coding looks up the positive
keys ki that the query q matches in the dictionary. For the encoded query (q, y),
its label contrastive loss LLC is calculated by

LLC(q, y) = − log
∑m

i=1 1yi=y · exp(q · ki/τ)
∑m

i=1 exp(q · ki/τ)
(2)

Here, 1statement ∈ {0, 1} is a binary indicator that returns 1 if the statement is
true. We illustrate the label contrastive loss in Fig. 2 for reference. In LCGNN,
key graph representations are stored in a dynamic memory bank. For the sake of
brevity, we have not shown in Fig. 2. We introduce the dynamic memory bank
and the updating process next.

The Dynamic Memory Bank. In label contrastive coding, the m-size dic-
tionary is necessary. We use a dynamic memory bank to work as a dictionary.
In order to fully utilize label information, the size of the memory bank is equal
to the size of the set of labeled graphs GL, i.e., m = |GL|. The memory bank
contains both the encoded low-dimensional key graph representations along with
the corresponding labels, i.e., {(k1, y1), (k2, y2), . . . , (k|GL|, y|GL|)}. Based on the
conclusions in MoCo [7], the key graph representations should be kept as con-
sistent as possible when the graph encoder fk encoder evolves during training.
Therefore, in each training epoch, newly encoded key graphs will dynamically
replace the old version in the memory bank.

3.4 Graph Encoder Design

For given graphs Gq and Gk, LCGNN empolys two graph encoders fq and fk to
encode them to low-dimensional representations.

q = fq(Gq)

k = fk(Gk)
(3)

In LCGNN, fq and fk have the same structure. Graph neural network has proven
its powerful ability to encode graph structure data [27]. Many potential graph
neural networks can work as the graph encoder in LCGNN.

Two kinds of encoders are considered in LCGNN. The first is Graph Isomor-
phism Network (GIN) [29]. GIN uses multi-layer perceptrons (MLPs) to conceive
aggregation scheme and updates node representations as:

hk
v = MLP(k)

(
(1 + ε(k)) +

∑
u∈N (v)

h(k−1)
u

)
(4)

where ε is a learnable parameter or a fixed scalar, and k represents k-th layer.
Given embeddings of individual nodes, the readout function is proposed by GIN



130 Y. Ren et al.

to produce the representation g of the entire graph G for graph classification
tasks:

g =
K

‖
k=1

(
SUM({hk

v |v ∈ G})

)
(5)

Here, ‖ is the concatenation operator.
The second encoder we consider is Hierarchical Graph Pooling with Struc-

ture Learning (HGP-SL) [33]. HGP-SL incorporates graph pooling and structure
learning into a unified module to generate hierarchical representations of graphs.
HGP-SL proposes a graph pooling operation to identify a subset of informa-
tive nodes to form a new but smaller graph. The details about the Manhattan
distance-based pooling operation can be referenced to [33]. For graph G, HGP-
SL repeats the graph convolution and pooling operations for several times and
achieves multiple subgraphs in different layers: H1,H2, . . . ,HK . HGP-SL uses
the concatenation of mean-pooling and max-pooling to aggregate all the node
representations in the subgraph as follows:

rk = R(Hk) = σ

(
1

nk

nk∑
p=1

Hk(p, :) ‖ d
max
q=1

Hk(:, 1)

)
(6)

where σ is a nonlinear activation function. nk is the node number in the k-th
layer subgraph. In order to achieve the final representation g of the entire graph
G, another readout function is utilized to combine subgraphs in different layers.

g = SUM(rk|k = 1, 2, . . . , K) (7)

In the experiment section, we will show the performance along with the
analysis of using GIN and HGP-SL as graph encoders in LCGNN.

3.5 LCGNN Learning

The training process illustration is provided in Fig. 1. During the training process,
the input of LCGNN is a batch of labeled graphs Gb ⊂ GL. For each mini-batch
iteration, the set of key graphs and the set of query graphs are the same as Gb. The
graph encoder fq and fk will be initialized with the same parameters (θq = θk).
The memory bank’s size is equal to the size of the set of labeled graphs GL. The
labeled graph Gi with the label yi is assigned with a random representation to
initialize the memory bank. The set of key graphs will be encoded by fk to low-
dimensional key graph representations K, which will replace the corresponding
representations in the memory bank. The set of query graphs are encoded by fq to
query graph representations Q, whereas Q is also the input of the graph classifier.
In LCGNN, a logistic regression layer serves as the graph classifier. Based on the
output of the graph classifier, Classification Loss can be calculated by:

LCla = − 1
|Q|

∑

qi∈Q

∑

j∈Y

1qi,j log(pqi,j) (8)



Label Contrastive Coding Based Graph Neural Network 131

where 1 is a binary indicator (0 or 1) that indicates whether label j is the correct
classification for the encoded query graph qi. Besides, pqi,j is the predicted
probability.

Q and the memory bank work together to implement the label contrastive
coding described in previous parts. Based on the Eq. 2, Label Contrastive Loss
of the mini-batch Gb is:

LLC = − 1
|Q|

∑

qi∈Q

LLC(qi, yqi
) (9)

In order to train the model by utilizing label information more effectively and
comprehensively, we try to minimize the following mixed loss combining both
the Label Contrastive Loss and the Classification Loss:

Ltotal = LCla + β LLC (10)

Here, the hyper-parameter β controls the relative weight between the label con-
trastive loss and the classification loss. The motivation behind Ltotal is that
LLC encourages instance-level intra-class compactness and inter-class separabil-
ity while LCla ensures the discriminability of classes. The graph encoder fq, and
the graph classifier can be updated end-to-end by back-propagation according
to the loss Ltotal. The parameters θk of fk follows a momentum-based update
mechanism as MoCo [7] instead of the back-propagation way. Specifically, the
momentum updating process is:

θk ←− αθk + (1 − α)θq (11)

where α ∈ [0, 1) is the momentum weight to control the speed of fk evolving. We
use this momentum-based update mechanism not only to reduce the overhead of
backpropagation but also to keep the key graph representations in the memory
bank as consistent as possible despite the encoder’s evolution.

After completing the model training, the learned graph encoder fq along
with the graph classifier can be used to perform graph classification tasks for
the unlabeled graphs GU .

4 Experiments

4.1 Experiment Settings

Datasets. We test our algorithms on 8 widely used datasets. Three of them are
social networks benchmark datasets: IMDB-B, IMDB-M, and COLLAB; the rest
five datasets: MUTAG, PROTEINS, PTC, NCI1, and D&D, belong to biological
graphs datasets [28–30]. Each dataset contains multiple graphs, and each graph is
assigned with a label. The statistics of these datasets are summarized in Table 1.
What should be mentioned is that the biological graphs have categorical node
attributes, while social graphs do not come with node attributes. In this paper,
for the encoders requiring node attributes as input, we follow [29] to use one-
hot encodings of node degrees as the node attributes on datasets without node
features.



132 Y. Ren et al.

Table 1. Datasets in the experiments

Datasets # graphs Avg # nodes Avg # edges # classes

IMDB-B 1000 19.77 96.53 2

IMDB-M 1500 13.00 65.94 3

COLLAB 5000 74.49 2457.78 3

MUTAG 188 17.93 19.79 2

PROTEINS 1113 39.06 72.82 2

PTC 344 25.56 25.56 2

NCI1 4110 29.87 32.30 2

D&D 1178 284.32 715.66 2

Methods Compared. We select 3 categories of models as comparison
methods:

– Kernel-based method: Weisfeiler-Lehman subtree kernel (WL) [21], AWE
[10], and Deep Graph Kernel (DGK) [30]: They first decompose graphs into
sub-components based on the kernel definition, then learn graph embeddings
in a feature-based manner. For graph classification tasks, a machine learning
model (i.e., SVM) will be used to perform the classification with learned graph
embeddings.

– Graph embedding-based methods: Sub2vec [1], Graph2vec [16]: They
extend document embedding neural networks to learn representations of
entire graphs. A machine learning model (i.e., SVM) work on the classifi-
cation tasks with learned graph representations.

– Graph neural network methods: GraphSAGE [6], GCN [12], DCNN [2]:
They are designed to learn meaningful node level representations. A readout
function is empolyed to summarize the node representations to the graph
representation for graph-level classification tasks; DGCNN [32], Caps-
GNN [28], HGP-SL [33], GIN [29], InfoGraph [23]: They are GNN-based
algorithms with the pooling operator for graph representation learning. Then
a classification layer will work as the last layer to implement graph classifi-
cation; GCC [18]: It follows pre-training and fine-tuning paradigm for graph
representation learning. A linear classifier is used to support the fine-tuning
targeing graph classification; LCGNNGIN, LCGNNHGP-SL: They are two
variants of the proposed LCGNN. LCGNNGIN uses GIN [29] as the graph
encoders, and LCGNNHGP−SL sets the graph encoders as HGP-SL [33].

Experiment Configurations. We adopt two graph model structures: GIN [29]
and HGP-SL [33] as the graph encoders. For LCGNN with different encoders,
we follow the model configurations from the initial papers as the default set-
tings. For the LCGNN structure, we choose the hidden representation dimen-
sion as 64 and 128 for two respective encoders; the contrastive loss weight



Label Contrastive Coding Based Graph Neural Network 133

β ∈ {0.1, 0.6, . . . , 1.0}; the momentum term α ∈ [0.0, 1.0); the temperature
τ = 0.07. For the graph classification tasks, to evaluate the proposed LCGNN we
adopt the procedure in [28,29] to perform 10-fold cross-validation on the afore-
mentioned datasets. For the training process of LCGNN, we select the Adam [11]
as the optimizer, and tune the hyperparameters for each dataset as: (1) the batch
size ∈ {32, 128, 512}; (2) the learning rate ∈ {0.01, 0.001}; (3) the dropout rate
∈ {0.0, 0.5}; (4) number of training epochs 1000 and select the epoch as the same
with [29]. We run the experiments on the Server with 3 GTX-1080 ti GPUs, and
all codes are implemented in Python3. Code and supplementary materials are
available at: LCGNN 1.

4.2 Experimental Results and Analysis

Overall Evaluation. We present the main experimental results in Table 2.
For the graph datasets that comparison methods do not have the results in
the original papers, we denote it as “−”. From the table, we can observe that
LCGNN outperforms all comparison methods on 7 out of the total 8 datasets.
The improvement is especially evident on datasets such as IMBD-B and D&D,
which can be up to about 1.0%. At the same time, we can find that LCGNN using
different graph encoders have achieved SOTA performance on different datasets
(LCGNNGIN in 3 datasets; LCGNNHGP−SL in 4 datasets). The results also
show that for different datasets, the selection of graph encoders has a critical
impact on performance. Nonetheless, LCGNN generally outperforms all other
baselines methods.

We also note that, compared to the baseline methods GIN and HGP-SL,
LCGNNGIN and LCGNNHGP−SL can acquire better results when adopting
them as corresponding encoders. For the COLLAB dataset results, LCGNN
actually achieves much higher performance compared with the result we get
when running GIN source code (71.7 ± 3.5). However, the result reported by
the original paper [29] is 80.1 ± 1.9, which we also report in Table 2. To further
evaluate the advantages of LCGNN and highlight the effectiveness of Label Con-
trastive Loss, we compare the classification loss during the training processes and
show the curves of GIN and LCGNN in Fig. 3. From the figure, we can see that
not only LCGNN has a faster convergence rate, but also can finally converge
to lower classification loss. The classification loss comparison results on other
datasets are also consistent, but we did not show them all due to space limita-
tion. Thus we can conclude that with the support of label contrastive coding,
LCGNN has better potential on graph classification tasks.

Besides, through the comparison between GCC and LCGNN, we can find
that for the task of graph classification, The proposed label contrastive coding
shows more advantages than the contrastive coding in GCC. We believe that
the contrastive coding in GCC mainly focuses on learning universal represen-
tations. The label contrastive coding in LCGNN has a stronger orientation for

1 https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-
Network-for-Graph-Classification-.

https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-Network-for-Graph-Classification-
https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-Network-for-Graph-Classification-


134 Y. Ren et al.

T
a
b
le

2
.
T
es

t
se

ts
cl

a
ss

ifi
ca

ti
o
n

a
cc

u
ra

cy
o
n

a
ll

d
a
ta

se
ts

.
W

e
u
se

b
o
ld

to
d
en

o
te

th
e

b
es

t
re

su
lt

o
n

ea
ch

d
a
ta

se
t.

C
a
te

g
o
ri

es
M

et
h
o
d
s

IM
D

B
-B

IM
D

B
-M

C
O

L
L
A

B
M

U
T
A

G
P

R
O

T
E

IN
S

P
T

C
N

C
I1

D
&

D

K
er

n
el

s
W

L
7
3
.4

±
4
.6

4
9
.3

±
4
.8

7
9
.0

±
1
.8

8
2
.1

±
0
.4

7
6
.2

±
4
.0

−
7
6
.7

±
2
.0

7
6
.4

±
2
.4

A
W

E
7
4
.5

±
5
.9

5
1
.5

±
3
.6

7
3
.9

±
1
.9

8
7
.9

±
9
.8

−
−

−
7
1
.5

±
4
.0

D
G

K
6
7
.0

±
0
.6

4
4
.6

±
0
.5

7
3
.1

±
0
.3

8
7
.4

±
2
.7

7
5
.7

±
0
.5

6
0
.1

±
2
.5

8
0
.3

±
0
.5

7
3
.5

±
1
.0

G
ra

p
h

G
ra

p
h
2
v
ec

7
1
.1

±
0
.5

5
0
.4

±
0
.9

−
8
3
.2

±
9
.3

7
3
.3

±
1
.8

6
0
.2

±
6
.9

7
3
.2

±
1
.8

−
E

m
b
ed

d
in

g
S
u
b
2
v
ec

5
5
.2

±
1
.5

3
6
.7

±
0
.8

−
6
1
.0

±
1
5
.8

−
6
0
.0

±
6
.4

−
−

G
N

N
s

D
C

N
N

7
2
.4

±
3
.6

4
9
.9

±
5
.0

7
9
.7

±
1
.7

7
9
.8

±
1
3
.9

6
5
.9

±
2
.7

−
7
4
.7

±
1
.3

−
G

C
N

7
3
.3

±
5
.3

5
1
.2

±
5
.1

8
0
.1

±
1
.9

8
7
.2

±
5
.1

7
5
.2

±
3
.6

−
7
6
.3

±
1
.8

7
3
.3

±
4
.5

G
ra

p
h
S
A

G
E

7
2
.4

±
3
.6

4
9
.9

±
5
.0

7
9
.7

±
1
.7

7
9
.8

±
1
3
.9

6
5
.9

±
2
.7

7
4
.7

±
1
.3

−
D

G
C

N
N

7
0
.0

±
0
.9

4
7
.8

±
0
.9

7
3
.8

±
0
.5

8
5
.8

±
1
.7

7
5
.5

±
0
.9

5
8
.6

±
2
.5

7
4
.4

±
0
.5

7
9
.4

±
0
.9

C
a
p
sG

N
N

7
3
.1

±
4
.8

5
0
.3

±
2
.7

7
9
.6

±
0
.9

8
6
.7

±
6
.9

7
6
.3

±
3
.6

−
7
8
.4

±
1
.6

7
5
.4

±
4
.2

H
G

P
-S

L
−

−
−

8
2
.2

±
0
.6

8
4
.9

±
1
.6

−
7
8
.5

±
0
.8

8
1
.0

±
1
.3

G
IN

7
5
.1

±
5
.1

5
2
.3

±
2
.8

8
0
.2

±
1
.9

8
9
.4

±
5
.6

7
6
.2

±
2
.8

6
4
.6

±
7
.0

8
2
.7

±
1
.7

−
In

fo
G

ra
p
h

7
3
.0

±
0
.9

4
9
.7

±
0
.5

−
8
9
.0

±
1
.1

−
6
1
.7

±
1
.4

−
−

G
C

C
7
3
.8

5
0
.3

8
1
.1

−
−

−
−

−
P

ro
p
o
se

d
L
C

G
N

N
G
I
N

7
6
.1

±
6
.9

5
2
.4

±
6
.7

7
2
.3

±
6
.3

8
9
.9

±
4
.8

7
6
.9

±
6
.8

6
4
.7

±
2
.0

8
2
.9

±
3
.6

7
7
.4

±
1
.2

L
C

G
N

N
H

G
P

−
S
L

7
5
.4

±
1
.5

4
6
.5

±
1
.3

7
7
.5

±
1
.2

9
0
.5

±
2
.3

8
5
.2

±
2
.4

6
5
.9

±
2
.8

7
8
.8

±
4
.4

8
1
.8

±
3
.6



Label Contrastive Coding Based Graph Neural Network 135

representation learning, that is, extracting features that significantly affect the
intra-class compactness and inter-class separability.

Table 3. Experiments with less labeled training data

Datasets Methods Training ratio

60% 70% 80% 90% 100%

IMDB-B GIN 61.8 65.4 69.2 70.5 75.1

LCGNNGIN 66.3 70.8 71.3 72.2 76.1

IMDB-M GIN 40.5 41.4 41.8 46.0 52.3

LCGNNGIN 43.4 42.8 43.6 48.1 52.4

(a) IMDB-B (b) IMDB-M

(c) MUTAG (d) PROTEINS

Fig. 3. Training Classification Loss versus training epoch

Performance with Less Labeled Data. To validate our claim that LCGNN
can utilize label information more comprehensively and use fewer label data
to achieve comparative performance, we conduct experiments with less train-
ing data. For each fold of cross-validation, we extract only part of the training
set (e.g., 60% of the data in the training set) as the training data and main-
tain the test set as the same. We present the results in Table 3. In Table 3, the
training ratio denotes how much data in the training set is extracted as the



136 Y. Ren et al.

training data. When the training ratio is 100%, it means using the full training
set in each fold. From the results, it is obvious that LCGNNGIN can always
outperform the baseline GIN when using less training data. What’s more, in
many cases when LCGNNGIN with less training data (e.g., 70% training data
for LCGNNGIN while 80% for GIN; 60% for LCGNNGIN while 70% for GIN),
LCGNNGIN still obtains more competitive results than GIN. The experimen-
tal results demonstrate that LCGNN can utilize the same amount of training
data more comprehensively and efficiently. The capability also makes LCGNN
possible to learn with less training data to obtain a better performance than
comparison methods when they need more training data.

Fig. 4. The effectiveness of Label Contrastive Loss

The Effectiveness of the Label Contrastive Coding. In order to further
verify the effectiveness of the proposed label contrastive coding on the task of
graph classification, we conduct comparison experiments between LCGNNGIN

and LCGNN+InfoNCE. Here, LCGNN+InfoNCE replaces the label contrastive
loss in LCGNNGIN with InfoNCE loss [17] but keeps other parts the same. We
present the results in Fig. 4. The experimental results show that the performance
of LCGNNGIN on all data sets exceeds LCGNN+InfoNCE, which also demon-
strates that the label contrastive coding can effectively utilize label information
to improve model performance. In addition, we observe that the performance of
LCGNN+InfoNCE is even worse than GIN. It verifies that the inherent large
intra-class variations may import noise to graph classification tasks if we treat
the intra-class instances as distinct classes like the existing comparative learning.

Hyper-parameter β Analysis. We consider the influence of label contrastive
loss weight term β and conduct experiments with different values. The results is
exhibited in Table 4. We select β from {0.1, 0.2, . . . , 1.0}, and find the trend of
using a relatively larger β inducing better results. Thus in the experiment, we



Label Contrastive Coding Based Graph Neural Network 137

Table 4. LCGNNGIN with different contrastive loss weight β

Datasets Contrastive loss weight β

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IMDB-B 73.8 75.1 76.1 75.5 76.0 75.4 75.7 75.7

IMDB-M 50.5 51.2 52.4 51.9 51.7 51.5 51.5 51.6

empirically select from β ∈ {0.5, 0.6, . . . , 1.0} to achieve the best performance.
Nevertheless, we also observed that when β gradually increases, the performance
does not continue to increase. Our analysis is that when the label contrastive
loss weight is too high, the learning of the model places too much emphasis on
instance-level contrast. More fine-grained discriminative features on the instance-
level will reduce the generalization performance of the model on the test set.

Fig. 5. LCGNN with different momentum weight

Momentum Ablation. The momentum term plays an important role in con-
trastive learning problems. In our experiments, we also try different momentum
weight α when running LCGNNGIN on D&D and show the results in Fig. 5.
Unlike [7], LCGNNGIN also achieves good performance when α = 0. The main
reason should be that the D&D is not extremely large, which makes it easy
for representations to ensure consistency during encoder evolving. Furthermore,
in this set of experiments, the momentum term did not show much impact on
Accuracy, that is, the model performance is relatively stable, which should be
caused by the moderate-sized dataset as well.



138 Y. Ren et al.

5 Conclusion

In this paper, we have introduced a novel label contrastive coding based graph
neural network, LCGNN, which works on graph classification tasks. We extend
the existing contrastive learning to the supervised setting and define the label
contrastive coding. The label contrastive coding treats instances with the same
label as multiple positive instances, which is different from the single posi-
tive instance in unsupervised contrastive learning. The label contrastive coding
can pull the same label instances closer and push the instances with different
labels away from each other. We demonstrate the effectiveness of LCGNN on
graph classification tasks over eight benchmark graph datasets. The experimen-
tal results show that LCGNN achieves SOTA performance in 7 datasets. Besides,
LCGNN can take advantage of label information more comprehensively. LCGNN
outperforms the baseline method when using less training data, which verifies
this advantage.

Acknowledgement. This work is also partially supported by NSF through grant
IIS-1763365.

References

1. Adhikari, B., Zhang, Y., Ramakrishnan, N., Prakash, B.A.: Sub2Vec: feature learn-
ing for subgraphs. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M.,
Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 170–182. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93037-4 14

2. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in
Neural Information Processing Systems, pp. 1993–2001 (2016)

3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

4. Elsayed, G., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep
networks for classification. In: Advances in Neural Information Processing Systems,
pp. 842–852 (2018)

5. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using
graph convolutional networks. In: Advances in Neural Information Processing Sys-
tems, pp. 6530–6539 (2017)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. arXiv-1911 (2019)

8. Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. arXiv preprint arXiv:1808.06670 (2018)

9. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265 (2019)

10. Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: International Conference
on Machine Learning, pp. 2186–2195 (2018)

11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representaion (2015)

https://doi.org/10.1007/978-3-319-93037-4_14
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/1808.06670
http://arxiv.org/abs/1905.12265


Label Contrastive Coding Based Graph Neural Network 139

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representaion (2017)

13. Kondor, R., Pan, H.: The multiscale Laplacian graph kernel. In: Advances in Neural
Information Processing Systems, pp. 2990–2998 (2016)

14. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin Softmax loss for convolutional
neural networks. In: ICML, vol. 2, p. 7 (2016)

15. Meng, L., Ren, Y., Zhang, J., Ye, F., Philip, S.Y.: Deep heterogeneous social
network alignment. In: 2019 IEEE First International Conference on Cognitive
Machine Intelligence (CogMI), pp. 43–52. IEEE (2019)

16. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

17. van den Oord, A, Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748 (2018)

18. Qiu, J., et al..: Gcc: Graph contrastive coding for graph neural network pre-
training. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

19. Ren, Y., Liu, B., Huang, C., Dai, P., Bo, L., Zhang, J.: Heterogeneous deep graph
infomax. arXiv preprint arXiv:1911.08538 (2019)

20. Ren, Y., Zhu, H., Zhang, J., Dai, P., Bo, L.: Ensemfdet: An ensemble approach to
fraud detection based on bipartite graph. arXiv preprint arXiv:1912.11113 (2019)

21. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539–2561
(2011)

22. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495 (2009)

23. Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-
supervised graph-level representation learning via mutual information maximiza-
tion. arXiv preprint arXiv:1908.01000 (2019)

24. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. arXiv preprint arXiv:1809.10341 (2018)

25. Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph ker-
nels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

26. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-
parametric instance-level discrimination. arXiv preprint arXiv:1805.01978 (2018)

27. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

28. Xinyi, Z., Chen, L.: Capsule graph neural network. In: International Conference
on Learning Representations (2018)

29. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

30. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374 (2015)

31. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems, pp. 4800–4810 (2018)

http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1911.08538
http://arxiv.org/abs/1912.11113
http://arxiv.org/abs/1908.01000
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1805.01978
http://arxiv.org/abs/1810.00826


140 Y. Ren et al.

32. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

33. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint
arXiv:1911.05954 (2019)

34. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

35. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning
of visual embeddings. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 6002–6012 (2019)

http://arxiv.org/abs/1911.05954
http://arxiv.org/abs/2006.04131


Which Node Pair and What Status?
Asking Expert for Better Network

Embedding

Longcan Wu1, Daling Wang1(B), Shi Feng1, Kaisong Song2, Yifei Zhang1,
and Ge Yu1

1 Northeastern University, Shenyang, China
{wangdaling,fengshi,zhangyifei,yuge}@cse.neu.edu.cn

2 Alibaba Group, Hangzhou, China
kaisong.sks@alibaba-inc.com

Abstract. In network data, the connection between a small number of
node pair are observed, but for most remaining situations, the link sta-
tus (i.e., connected or disconnected) of node pair can not be observed. If
we can get more useful information hidden in node pairs with unknown
link status, it will help improve the performance of network embedding.
Therefore, how to model the network with unknown link status actively
and effectively remains an area for exploration. In this paper, we for-
mulate a new network embedding problem, which is how to select valu-
able node pair (which node pair) to ask expert about their link sta-
tus (what status) information for improving network embedding. To
tackle this problem, we propose a novel active learning method called
ALNE, which includes a proposed network embedding model AGCN,
three active node pair selection strategies and an information evalua-
tion module. In this way, we can obtain the real valuable link statuses
information between node pairs and generate better node embeddings.
Extensive experiments are conducted to show the effectiveness of ALNE.

Keywords: Network embedding · Active learning · Graph
convolutional network

1 Introduction

Recently, much effort in the literature has been invested in network embedding
(NE) methods, which aims to assign nodes in a network to low-dimensional rep-
resentations and preserve the network structure [9]. Despite the effectiveness of
the existing NE models, they tend to rely on rich network information, including
attribute or label of node, and network structure [16].

In terms of network structure, real-world networks are usually partially
observed, i.e., the connection between a small number of node pair are observed
and there are a large number of node pairs with unknown link status (i.e., con-
nected or disconnected), which leads to the lack of crucial information about
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 141–157, 2021.
https://doi.org/10.1007/978-3-030-73194-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_11


142 L. Wu et al.

network and brings in difficulties for NE and corresponding downstream tasks.
Take online social networks as an example. We can observe there is a close con-
nection between user pair by comments interaction or thumb up. For most user
pairs, we can not observe these interactions between them, and we need some
experts to judge whether there are close connections between them in other ways.

In order to achieve more information about the original network, active learn-
ing (AL) based methods have been adopted [2]. Currently, most existing stud-
ies focus on how to obtain label information for specific nodes in the network
through AL [3,10]. Only few literature has proposed to apply AL in obtain-
ing link status information in network [6,27]. The aforementioned researches
design AL strategies only for specific downstream tasks such as node classifica-
tion or link prediction. Limited literature has been reported for improving the
performance of network embedding through AL, which eventually makes better
performance on common downstream tasks. Moreover, in some case, it is more
important and easy to get the link status information between node pair than
to get the label of a specific node.

In this paper, we formulate a new NE problem, namely how to select the
valuable node pairs (which node pair) to ask expert about their link statuses
(what status) information for improving the performance of NE. Several new
challenges emerge when addressing this problem. (i) This problem involves two
part: NE and AL. How to make AL query and NE interact and reinforce with
each other for better NE? (ii) Based on NE model and characteristics of network
data, how to design effective AL query strategies for selecting valuable node
pairs? (iii) According to the result of link status given by experts, how to judge
whether the link status information has positive effect on the NE model?

To tackle these challenges, we propose a method called ALNE in the active
learning framework, i.e. Asking Link status information for better Network
Embedding, as shown in Fig. 1. Firstly, in order to use the latest link status
information obtained from AL in the next epoch of network embedding process,
we propose a network embedding model AGCN, Active Graph Convolutional
Neural, inspired by [15]. Secondly, we design three effective AL query strategies,
namely gradient-based, representativeness-based and uncertainty-based strate-
gies. With the three AL query strategies evaluating node pairs from different
perspectives, we can rate the node pairs with unknown link statuses, and fur-
ther choose a batch of node pairs to ask the expert about their link statuses.
Thirdly, we need to make a secondary selection of node pair in the batch accord-
ing to their effectiveness for network embedding model AGCN. Thus we design
an evaluation module to evaluate the information about node pairs. After each
embedding iteration, the AL query and information evaluation are conducted
for obtaining more and more useful node pairs, which make AGCN yield better
network representation. Meanwhile, in AL query process, we can find more valu-
able node pairs with the help of gradient-based AL criterion generated based on
AGCN model.

According to the above description, in ALNE method, the network embed-
ding and active learning query can interact and reinforce with each other.



Asking Link Status Information for Better Network Embedding 143

Therefore, the proposed model ALNE is a good solution to the three challenges
raised above. To sum up, the main contributions of this paper are as follows:

– We formulate a new network embedding problem, which is how to select the
valuable node pairs to ask their link statuses information for improving the
performance of network embedding.

– We propose a novel method ALNE in active learning framework, in which
the proposed network embedding model AGCN and AL query strategies can
interact and reinforce with each other to generate better node embedding
results.

– We propose three AL query strategies from different perspectives and design
an information evaluation module to elicit the real valuable node pairs for
the network embedding model AGCN.

– We have carried out detailed experiments on five public available datasets
and two classic downstream tasks: node classification and link prediction.
Experimental results show the validity of ALNE we proposed.

2 Related Work

Recently, a series of network embedding methods have been proposed because
of its effectiveness in network data analysis [9,20,24]. In these methods, the
graph convolutional network (GCN) models have shown obvious advantages in
modeling the network data [15]. The GCN model propagated information from
each node in the network to other nodes through layer-wise propagation rule,
thus allowing node information to spread over the network. Based on the GCN
model, the researchers have put forward GAT [21] and DAGCN [4]. A detailed
review of the GCN can be found in the papers [22].

In the actual application scenarios, there is very little data with labels. In
order to take advantage of a large number of unlabeled data, semi-supervised
learning and active learning are used [1]. As a human-computer interac-
tion framework, active learning has attracted great attentions from academic
researchers. At present, the applications of AL in network mainly focus on net-
work node classification [2,13,25]. In addition, some literature has applied AL
for link related task in the network data [8]. Zhu et al. [27] proposed a novel
measure to apply AL in anchor link prediction. Chen et al. [6] modeled the link
prediction problem as a classification problem, and the most uncertain node
pairs were selected to give the network a high information gain.

Based on the success of GCN related models, it is necessary to explore how
to integrate the network embedding models into the active learning framework.
Based on GCN model, Cai et al. [3] obtained the label of informative node accord-
ing to AL to enhance the performance of node classification. Gao et al. [10] used
a multi-armed bandit mechanism to further fuse AL query strategies. Similarly,
Chen et al. [7] adapted the same idea to heterogeneous network embedding. Xiao
et al. [14] proposed to transform experts’ cognition into a weight link to advance
network embedding.



144 L. Wu et al.

Different from above models, we aim to improve the performance of net-
work embedding by obtaining the link status information of disconnected node
pairs in the network through AL queries, and thus improve the performance of
downstream tasks with better embedding results.

3 Problem Definition

Given an undirected network G = (V,E, Y ), V is the set of nodes with size of N ,
and E denotes the set of all node pairs with size of N(N − 1)/2. The elements
in E can be divided into three groups: Ep, En, Eu. In Ep (En), the node pairs
have (do not have) an edge. In Eu, the link status between node pair is unknown.
Based on E, we can obtain positive adjacency matrix Ap and negative adjacency
matrix An, where Ap, An ∈ R

(N×N). If node pair (i, j) belongs to Ep (or En),
Apij

=1 and Anij
=0 (or Apij

=0 and Anij
=1); if node pair (i, j) belongs to Eu,

Apij
=0 and Anij

=0. Y ∈ R
(L×C) denotes label matrix, where L is the number

of nodes with label, and C is the number of classes.
In real-world network data, we usually get a sparse matrix Ap and a zero

matrix An, which means we only know the connected status between some node
pairs. Moreover, Ap is so sparse that directly implementing network embedding
on Ap can not achieve a satisfactory result. Besides, there is a lot of useful
information hidden in Eu and we can obtain them through asking expert in the
way of active learning. According to the information obtained from Eu, we can
enrich Ap and An, which is useful to network embedding. Therefore, the problem
we study can be formalized as below.

Problem 1 (Selecting Node Pairs and Asking Link Status Information
for Better Network Embedding). Given the network G, how to design the
AL query strategy to select a batch of node pairs from Eu and ask the expert
about the node pair’s link status information in each iteration; these node pairs
are evaluated and then added to Ap or An for the next round of embedding, which
ultimately improves the performance of the network embedding and common
downstream tasks.

4 Our Solution: ALNE

In this section, we first give the overall framework of the ALNE model, then
describe the three components of ALNE in detail.

4.1 ALNE Framework

The overview of proposed ALNE is shown in Fig. 1. In general, ALNE follows
the active learning framework, which mainly consists of three parts: network
embedding, AL query strategies and information evaluation. The ALNE model
runs as follows:



Asking Link Status Information for Better Network Embedding 145

(1) We feed network G into our proposed network embedding model
AGCN, optimize the loss function in one epoch, and obtain the gradi-
ent matrix Gp and Gn.

(2) At each epoch of selecting node pairs, we first obtain candidate node
pairs set Ecand

u based on Eu according to gradient matrix Gp.
(3) With the help of AGCN model and network structure, we design three

different types of AL query strategies to select valuable node pairs.
(4) We use AL query strategies to rate node pair in Ecand

u and choose a
batch of node pairs to ask the expert about their link statuses based
on utility score.

(5) After link status acquisition, we further evaluate the information (gra-
dient and link status) about node pairs to pick out what is really useful
to the model.

(6) For the node pairs that do not meet the criteria, we store them in the
information pool first.

(7) As the training going on, we re-evaluate the node pairs in the pool in
subsequent iterations.

(8) Finally, the really useful node pairs can be added into network G.
(9) The above process repeats until the maximum number of query q

exhausts or the AGCN model converges.

Fig. 1. Framework of proposed model ALNE.

4.2 Network Embedding: AGCN

Given G = (V,E, Y ), adjacency matrix Ap and An, we propose a network rep-
resentation method based on GCN [15]. Firstly, we review the layer-wise propa-
gation rule of GCN:



146 L. Wu et al.

H(l+1)=σ

(
D̃p

− 1
2
ÃpD̃p

− 1
2
H(l)W (l)

p

)
(1)

According to above propagation rule, we can only model the network data on
Ap. However, in the setting of AL, we not only have Ap, but also have negative
adjacency matrix An. So, we propose a new model active graph convolutional
network (dubbed as AGCN), which can simultaneously employ Ap and An to
model the network data. The propagation rule of AGCN is as follow:

H
(l+1)
p =D̃p

− 1
2
ÃpD̃p

− 1
2
H(l)W

(l)
p

H
(l+1)
n =D̃n

− 1
2
ÃnD̃n

− 1
2
H(l)W

(l)
n

H(l+1)=σ
(
H

(l+1)
p + H

(l+1)
n λn

) (2)

where Ãn = An + IN is similar to Ãp in Eq. (1), D̃nii
=

∑
j Ãnij

is similar to

D̃p

− 1
2 , W

(l)
p and W

(l)
n are trainable weight matrix, H(l) is an activation matrix

of lth hidden layer, σ denotes the ReLU activation function. Considering the
influence of An on H(l+1), we use a real number λn to denote its contribution
on H(l+1).

In our method, we regard adjacent matrix Ap and An as two types of matrices,
which represent two relationship between nodes. Although these two relationship
are in opposition, there exists complex correlation between them. So, our idea is
similar to some method using GCN in multi-relationship network [17].

After obtaining node representation matrix H from Eq. (2), we apply softmax
function to each row of H to obtain labels of node. Finally, the cross-entropy
loss is used for multi-class classification over all the labeled nodes. The above
process can be expressed in the following:

Z =softmax(H) (3)

Jsup=−
∑
l

C∑
c=1

YlcZlc (4)

In order to save the structural proximities between nodes in latent space,
we make use of graph structure to further constrain node embedding. Because
AUC depicts the relationship between node pairs [11], AUC is considered as
a part of the loss function. In order to optimize AUC, we need to select the
node pairs with links as positive data, and node pairs without links as negative
data. If we only consider positive and negative data in the network, lots of
node pairs with unknown link status are not fully utilized. Previous studies have
shown that PU-AUC risk RPU is equivalent to supervised AUC risk RPN with
a linear transformation [23]. Based on above conclusion, we define AUC-based
loss function Jauc as the sum of RPU and RPN :

Jauc = RPU + RPN (5)



Asking Link Status Information for Better Network Embedding 147

RPU =
∑

(i,j,k)∈T

max (0, δPU + S (hi, hj) − S (hi, hk)) (6)

RPN =
∑

(i,j)∈Ep

(m,n)∈En

max (0, δPN + S (hi, hj) − S (hm, hn)) (7)

where hi is node i representation, S(hi, hj) denotes the distance between node
i and node j and we use L2 norm to calculate the distance, max(0, ) is the
hinge function and δPU and δPN are threshold. There are many node pairs with
unknown link status. To reduce the computational cost, we construct a set of
triplets T by negative sampling when we calculate RPU . For the every triplet
(i, j, k) in T , node pair (i, j) has link and the link status of node pair (i, k) is
unknown. For the loss function RPN , we directly use positive data from Ep and
negative data from En. The final loss function for optimization is the sum of the
cross-entropy loss Jsup and AUC-based loss function Jauc:

J = Jsup + Jauc (8)

4.3 AL Query Strategy

In this section, we first introduce our proposed three types of AL query criteria,
and then explain how to combine different AL query criteria to obtain the final
utility score of node pair.

Gradient-Based Query Strategy. We hope that the selected node pairs
can influence model significantly. In other words, the link status information
of selected node pairs can let the model’s loss function decrease the most. As
we all know, gradient information is important in optimizing model parameters,
through which the loss of model can drop rapidly. Inspired by [5], we proposed
a gradient-based query strategy.

Specifically, if we treat Ap and An of layer-wise propagation rule in Eq. (2) as
a group of variables like W

(l)
p and W

(l)
n , we can extract the gradient of Ap and An

using loss function J . Take Ap as an example, we can obtain the gradient gp(i,j)
of Ap(i,j) as shown in Eq. (9). Considering we focus on the undirected network,
we denote the gradient of node pair (i, j) as the average of gp(i,j) and gp(j,i) as
shown in Eq. (10). Finally, we denote Sg(i, j) = Gp(i,j) as gradient-based score
for node pair (i, j) based on Ap.

gp(i,j)=
∂J

∂Ap(i,j)

(9)

Gp(i,j) = Gp(j,i) =
(
gp(i,j) + gp(j,i)

)
/2 (10)

According to above equations, we can obtain the gradient matrix Gp and Gn.
The element in Gp (or Gn) may be positive or negative, which means we need



148 L. Wu et al.

to decrease or increase the corresponding element in Ap (or An) for minimizing
loss function J .

For any node pair (i, j) ∈ Eu, Gp(i,j), Gn(i,j) and link status have eight
possible combinations as shown in Table 1. We leave out the subscript (i, j) to
make the expressions more concise in Table 1 and the following sections where
no confusion occurs. We take Gp<0 and Gn>0 as an example, and analyze the
effect of link status of (i, j) on the loss function. When Gp < 0 and Gn > 0, we
can improve the value of Ap(i,j) or reduce the value of An(i,j) to minimize the
loss function according to the analysis in the previous paragraph. If there is link
between node pair (i, j), i.e. nodes are connected, the value of Ap(i,j) improves
from 0 to 1 and An(i,j) stays at 0, so the message of link between node pair
(i, j) is beneficial to model and we use the symbol

√
to represent advantage. If

the node pair (i, j) is disconnected, the value of Ap(i,j) stays at 0 and An(i,j)

improves from 0 to 1. Because of the Gn(i,j) > 0, the link status information of
(i, j) is bad for model and we use the symbol × to represent disadvantage. We
can also analyze other situations in the Table 1 in the same way.

From Table 1 we can see that when Gp < 0, the link status information is
good for the model in most cases. So, in our proposed model ALNE, we first
pick out node pair set from Eu to construct candidate set Ecand

u based on the
condition of Gp < 0, and then choose a batch of node pairs from Ecand

u using
AL query strategy as shown in step (2) in Fig. 1. It is also important to note
that when selecting the node pair (i, j), we prefer ones with higher magnitude of
negative gradient |−Sg(i, j)|, which means the link status have higher influence
on the loss function.

Table 1. Combinations between gradient and link status.

Gradient Link status

Connected Disconnected

Gp >0, Gn >0 × ×
Gp >0, Gn <0 × √

Gp <0, Gn >0
√ ×

Gp <0, Gn <0
√ √

Representativeness-Based Strategy. If we only rely on the gradient-based
query strategy proposed above, we might choose the noisy and unrepresentative
node pairs, because the gradient-based query strategy only considers how to
make the loss function descend the fastest, not considers how to make the loss
function descend to a reasonable area. Therefore, if we can choose those repre-
sentative node pairs, we may let the loss function down to a reasonable area in
the right direction.



Asking Link Status Information for Better Network Embedding 149

In the network, the importance of nodes can be measured by graph centrality
[18]. In this paper, we utilize graph centrality of node to measure the representa-
tiveness of node pair, which is the sum of graph centrality of nodes. Considering
that An has fewer nonzero elements, in order to better calculate representative-
ness of node pairs, we use Ap to calculate the centrality of node. Finally, we
denote Sr(i, j) as representativeness score of node pair (i, j).

Sr(i, j) = centrality(i) + centrality(j) (11)

where centrality(i) represents the graph centrality of node i and we use degree
centrality here. Obviously, we prefer to elect node pairs with large representa-
tiveness score.

Uncertainty-Based Strategy. In AL query strategies, uncertainty-based
strategy is the most common strategy. In order to select the most uncertain node
pairs, we propose the uncertainty-based query strategy. In the link prediction
task, researchers often use similarity based method [18]. Take the method Short-
est Path as an example, if the length of shortest path of node pair (i, j) ∈ Eu is
small, that means there is a high probability of existing a link for (i, j); if there
is no edge between (i, j), the node pair (i, j) is uncertain for the graph. Based on
above description, we can use similarity of node pair as uncertainty score. In this
paper, we define Su(i, j) as uncertainty score of node pair (i, j) using negative
length of Shortest Path as shown in Eq. (12).

Su(i, j) = − |ShortestPathi,j | (12)

Similar to representativeness-based query strategy, we use Ap to calculate
the uncertainty score of node pair. Obviously, we prefer to elect the node pairs
with higher uncertainty score.

Combination of Different AL Query Strategy. The scores obtained based
on above AL strategies are not in the same order of magnitude, so we con-
vert them into percentiles as in [3,26] and then implement weighted sum to get
the final utility score. We use P strategy(i, j) to represent the percentile score of
node pair (i, j) in terms of strategy ∈ {g, r, u} in set Ecand

u . Finally, we take
the weighted sum of the three types of percentiles score to obtain the utility
score U(i, j) of node pair (i, j) in the following equation, where a, b, c are hyper-
parameter and range in [0, 1].

U(i, j) = a ∗ P g(i, j) + b ∗ P r(i, j) + c ∗ Pu(i, j). (13)

4.4 Information Evaluating

When we get link statuses of a batch of node pairs, we need to decide whether
to use the link status information. The reason is that the node pair with Gp <
0 is not necessarily good for the network embedding model AGCN as shown



150 L. Wu et al.

in Table 1. When a node pair satisfies the condition, i.e. Gp < 0, Gn > 0 and
disconnected, it is unuseful to the model in this epoch. Therefore, for node pairs
that meet the aforementioned criterion, we just store them in the information
pool as shown in (6) in Fig. 1. For node pairs that do not meet above criterion,
we directly add them into network G, i.e. updating Ap or An. In subsequent
iterations, if a node pair satisfies Gp < 0 and Gn < 0, it is valuable for AGCN
model, and we will remove it from information pool and use it in the next network
embedding learning iteration.

5 Experiments

In this section, we conduct experiments on five real-world datasets to evaluate
the proposed ALNE model with respect to two common downstream tasks. We
first compare ALNE with other active learning baselines. Then we empirically
analyze the effect of proposed three AL query strategies. Finally, we also study
how various hyper-parameters, e.g., the weight of An (λn in Eq.(2)), affect the
performance of ALNE.

5.1 Experimental Settings

Datasets. We conduct experiments on five common used real-world datasets:
Caltech, Reed, Flickr, Cora and Citeseer. We summarize the statistics of five
processed datasets in Table 2. As illustrated in the table, Caltech, Reed, Flickr
contain more edges; Cora and Citeseer have more nodes. Caltech and Reed [12]
are two university Facebook network. Node represents student, edge represents
“friendship” on Facebook, and label means resident. In Flickr [19] dataset, we
treat users as nodes, following relationships between them as edges, and groups
as labels. Cora, Citeseer [21] are two public citation network datasets.

Table 2. Datasets statistics.

Dataset Caltech Reed Flickr Cora Citeseer

#Nodes 762 962 1120 2708 3327

#Edges 16651 18812 15939 5429 4732

#Density 0.0574 0.0407 0.0254 0.0015 0.0009

#Labels 9 18 6 7 6

Baselines. Specific information about baselines is described below:

– GCN [15]. When An is zero matrix, AGCN is approximately equivalent to
GCN. We leverage GCN to learn on the initial network data without involving
AL.



Asking Link Status Information for Better Network Embedding 151

– ALNE-R. It randomly selects a batch of node pairs in each round of AL to
ask their link statuses.

– ALNE-E. This model is a variant of our model, which dose not have infor-
mation evaluation process.

– AGE [3]. This model used GCN to obtain a node classifier, then used AL to
select a batch of node pairs in each round of AL to ask their link statuses.

– HALLP [6]. Based on the edge classifier and network data, this model chose
a batch of node pairs in each round of AL according to uncertainty and
representativeness of them.

– NEEC [14]. NEEC firstly selected prototype node using k-medodis. Consid-
ering we only use network structure in network data, then NEEC selected a
batch of node pairs according to the uncertainty and representativeness of
node pair used in our proposed method.

Evaluation Protocols. In order to simulate experts in active learning process,
we set the following with reference to related papers [14]: we randomly select
a fraction of all edges in the original network as the initial network, and then
the remaining edge collection serve as the expert’s judgment to answer the link
status between the node pair.

We use PyTorch to implement our algorithm. For ALNE and its variants,
a two-layer model is used in the network embedding model AGCN, where the
first layer has 64 dimensions and the second layer has 16 dimensions. We set
the size of node embedding as 16, the number of node pairs asked at every
query as 8, the maximum number of queries q as 10, and λn as 0.1. For the
hyperparameter a, b, c in Eq. (13), we conduct grid-search on numerical interval
[0, 1]. We utilize Adam for model optimization, and if the evaluation metrics of
the task do not change, we early stop the training process. For other baselines,
we set the parameters according to the corresponding paper and optimize them
to obtain the best performance.

Table 3. Performance on Cora and Citeseer datasets.

Methods Node classification Link prediction

Cora Citeseer Cora Citeseer

GCN 58.75 37.44 69.76 79.77

ALNE-R 59.72 37.97 79.09 85.97

AGE 59.65 38.32 73.30 84.27

HALLP 59.81 38.14 77.75 84.22

NEEC 59.57 38.15 77.23 85.55

ALNE 59.99∗ 38.35∗ 79.95∗ 86.83∗



152 L. Wu et al.

5.2 Node Classification

In node classification task, for Caltech, Reed and Flick dataset we first remove
90% of the links and ensure that the remaining network data are connected. We
randomly select p% of the node as the training set, the remaining nodes as the
testing set. For node classification tasks, we use Micro-F1 as evaluation criteria.
The above experimental process repeats ten times and the average Micro-F1
values are reported. The final results of experiment are shown in the Table 4 with
the best result highlighted in bold and the second best results are underlined.
From the table, we have draw the following conclusions:

Table 4. Node classification performance on Caltech, Reed and Flick datasets.

Dataset p% GCN ALNE-R ALNE-E AGE HALLP NEEC ALNE

Caltech 10% 37.11 37.7 37.95 38.01 37.71 37.46 38.64∗

20% 41.66 41.82 42.26 42.52 42.34 42.04 42.63∗

30% 43.79 46.99 47.33 47.46 47.52 47.46 47.7∗

40% 49.78 50.3 50.87 50.31 50.33 50.13 51.29∗

50% 50.00 50.28 50.76 50.92 51.21 50.00 51.42∗

Reed 10% 36.98 37.17 37.73 37.38 37.30 37.58 37.82∗

20% 42.14 43.15 43.65 43.52 43.23 43.23 43.9∗

30% 45.67 46.68 47.21 46.74 47.02 47.29 47.77∗

40% 48.69 49.13 49.65 49.35 49.51 49.24 49.68∗

50% 50.15 51.36 51.81 51.28 51.52 51.73 52.23∗

Flickr 10% 66.73 66.39 67.80 66.72 66.50 66.64 68.06∗

20% 68.61 69.27 69.65 68.83 69.17 69.05 69.86∗

30% 73.05 73.28 73.99 72.82 73.68 73.51 74.96∗

40% 75.88 75.82 76.00 75.66 76.14 76.65 76.48∗

50% 77.51 77.51 77.79 77.41 77.78 77.77 78.06∗

– Compared with other models, the proposed model ALNE achieves the best
performance in most cases. Compared with GCN, ALNE further improves
the Micro-F1 value by 3.91, 2.1, 1.91 in Caltech, Reed, Flickr datasets. We
use “∗” to indicate the improvement of ALNE over GCN is significant based
on paired t-test at the significance level of 0.01.

– In ALNE, we can select node pairs really useful to network embedding model
AGCN based on information evaluation module. Thus in Table 4, the ALNE
model can achieve better performance than ALNE-E.

– Compared with other three active learning models, we can find that our
proposed ALNE achieves the best performance except in one case. The reason
is that ALNE uses gradient-based query strategy and this strategy helps to
find the most influential node pair.



Asking Link Status Information for Better Network Embedding 153

– Besides that, as shown in Table 3, we also conduct node classification on Cora
and Citeseer datasets, which contain more nodes than Caltech, Reed and
Flickr. We remove 50% of the links and randomly select 10% of the nodes as
the training set. From the table, we can see that our proposed model ALNE
outperforms all baselines.

5.3 Link Prediction

For the link prediction task, we randomly remove the p% link and ensure that the
remaining networks are connected. For link prediction task, we choose AUC as
the evaluation measurements. Similarly, the above procedure repeats ten times
and the value of average AUC is reported. The final results of the experiment
are shown in Table 5 with the best result highlighted in bold and the second best
results are underlined. From the table, we can find:

Table 5. Link prediction performance on Caltech, Reed and Flick datasets.

Dataset p% GCN ALNE-N ALNE-E AGE HALLP NEEC ALNE

Caltech 90% 59.26 64.35 65.06 66.06 62.69 62.42 66.87∗

85% 68.82 70.67 72.14 73.01 72.25 70.43 72.59∗

80% 71.73 75.57 76.04 75.99 74.26 74.91 76.31∗

75% 74.61 77.11 77.3 76.73 76.74 77.08 78.11∗

70% 76.5 78.65 77.95 79.08 79.53 76.17 79.97∗

Reed 90% 60.79 65.3 66.8 66.53 65.30 65.05 67.02∗

85% 65.9 70.65 71.36 71.80 67.55 69.41 71.68∗

80% 70.06 73.13 73.32 73.57 70.95 71.77 73.90∗

75% 72.93 74.89 75.52 76.22 72.91 75.11 76.38∗

70% 74.46 76.66 77.49 74.75 74.37 75.27 77.6∗

Flickr 90% 78.2 83.3 86.92 86.78 85.33 81.79 87.15∗

85% 87.2 89.33 90.87 91.29 89.18 88.90 91.04∗

80% 89.83 90.69 92.2 92.42 91.27 90.03 92.50∗

75% 90.93 91.5 92.74 93.27 91.92 90.77 93.26∗

70% 91.55 91.85 92.85 94.28 92.26 91.60 93.43∗

– Generally, ALNE achieves the best performance in most cases. We use “∗” to
indicate the improvement of ALNE over GCN is significant based on paired
t-test at the significance level of 0.01. In addition, we can observe that when
the network has fewer edges, ALNE has better performance improvements
over GCN. This shows the effectiveness of idea of improving the quality of
network embedding by actively querying link status of node pair.



154 L. Wu et al.

– Compared with other three active learning models, we can find that our
proposed ALNE achieves the best performance in most cases. The reason
is that ALNE use gradient-based query strategy and information evaluating,
which help to find the most influential node pairs.

– Besides that, we also conduct link prediction on Cora and Citeseer datasets
as shown in Table 3. From the table, we can see that our proposed model
ALNE outperforms all baselines.

(a) Node Classification (b) Link Prediction

Fig. 2. Ablation studies on different AL query strategy.

Fig. 3. Parameter sensitivity w.r.t the weight of An: λn, the number of queries: q.

5.4 Ablation Study

In order to verify the effectiveness of three AL query strategies, we conduct the
ablation study based on the model ALNE. Firstly, we remove Q-based query
strategy, and denote the models as −Q (Q ∈ {Gradient, Representation, Uncer-
tainty} and we use {G, Rep, U} for brevity sake). Then node classification and



Asking Link Status Information for Better Network Embedding 155

link prediction tasks are carried out on Caltech dataset. Figure 2 reports the
ablation study results. We can see that for two tasks, each type of AL query
strategy contributes to the final result. Using three strategies together can max-
imize the model performance.

5.5 Parameter Sensitivity

We investigate the effect hyperparameters: the weight of An in propagation rule
(λn in Eq. (2)), and the number of queries q on the model’s performance. We use
Caltech and Cora datasets and conduct node classification for sensitivity analy-
sis. From the Fig. 3(a) we can see that the performance of our model improves
when we consider the An. After λn is greater than 0.1, the performance decreases
dramatically. This is because An has less information compared with Ap and big
value of λn introduces noises to the model. So, we set the weight of An as 0.1. For
the number of queries q in Fig. 3(b), one can see that the performance improves
with the increase of the number of queries, reaching the highest value at 10.

6 Conclusion

In this paper, we formulate a novel problem about improving the performance
of network embedding by asking link statuses of node pairs in AL framework
and propose an effective method ALNE to solve this problem. ALNE includes a
novel network embedding model AGCN, three types of valid AL query strategy
and a information evaluation module, based on which the valuable node pairs
can be selected. We have conducted extensive experiments on five open datasets
and two classic downstream tasks, and the results demonstrate the effectiveness
of our proposed model. In the future, we will extend our model to more domains,
such as recommendation and anti-fraud.

Acknowledgement. The work was supported by the National Key R&D Program
of China under grant 2018YFB1004700, and National Natural Science Foundation of
China (61772122, 61872074)

References

1. Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active learning: a survey. In:
Data Classification: Algorithms and Applications, pp. 571–606 (2014)

2. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Pro-
ceedings of the 27th International Conference on Machine Learning, pp. 79–86
(2010)

3. Cai, H., Zheng, V.W., Chen-Chuan Chang, K.: Active learning for graph embed-
ding. arXiv e-prints arXiv:1705.05085, May 2017

4. Chen, F., Pan, S., Jiang, J., Huo, H., Long, G.: DAGCN: dual attention graph
convolutional networks. In: International Joint Conference on Neural Networks,
pp. 1–8. IEEE (2019)

http://arxiv.org/abs/1705.05085


156 L. Wu et al.

5. Chen, J., Lin, X., Shi, Z., Liu, Y.: Link prediction adversarial attack via iterative
gradient attack. IEEE Trans. Comput. Soc. Syst. 7(4), 1081–1094 (2020)

6. Chen, K., Han, J., Li, Y.: HALLP: a hybrid active learning approach to link pre-
diction task. JCP 9(3), 551–556 (2014)

7. Chen, X., Yu, G., Wang, J., Domeniconi, C., Li, Z., Zhang, X.: ActiveHNE: active
heterogeneous network embedding. In: Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, pp. 2123–2129 (2019)

8. Cheng, A., et al.: Deep active learning for anchor user prediction. In: IJCAI 2019,
Macao, China, 10–16 August 2019, pp. 2151–2157 (2019)

9. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans.
Knowl. Data Eng. 31(5), 833–852 (2019)

10. Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S., Hu, Y.: Active discriminative network
representation learning. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, pp. 2142–2148 (2018)

11. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

12. He, K., Li, Y., Soundarajan, S., Hopcroft, J.E.: Hidden community detection in
social networks. Inf. Sci. 425, 92–106 (2018)

13. Hu, X., Tang, J., Gao, H., Liu, H.: ActNet: active learning for networked texts
in microblogging. In: Proceedings of the 13th SIAM International Conference on
Data Mining, pp. 306–314 (2013)

14. Huang, X., Song, Q., Li, J., Hu, X.: Exploring expert cognition for attributed net-
work embedding. In: Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM 2018, pp. 270–278 (2018)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017 (2017)

16. Leroy, V., Cambazoglu, B.B., Bonchi, F.: Cold start link prediction. In: Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 393–402 (2010)

17. Ma, Y., Wang, S., Aggarwal, C.C., Yin, D., Tang, J.: Multi-dimensional graph
convolutional networks. In: Proceedings of the 2019 SIAM International Conference
on Data Mining, SDM 2019, pp. 657–665 (2019)

18. Mutlu, E.C., Oghaz, T.A.: Review on graph feature learning and feature extraction
techniques for link prediction. arXiv preprint arXiv:1901.03425 (2019)

19. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social repre-
sentations. In: The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2014, pp. 701–710 (2014)

20. Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin: discriminative learning of net-
work representation. In: Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI, pp. 3889–3895 (2016)

21. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations,
ICLR 2018 (2018)

22. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. arXiv preprint arXiv:1901.00596 (2019)

23. Xie, Z., Li, M.: Semi-supervised AUC optimization without guessing labels of unla-
beled data. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, pp. 4310–4317 (2018)

http://arxiv.org/abs/1901.03425
http://arxiv.org/abs/1901.00596


Asking Link Status Information for Better Network Embedding 157

24. Yang, C., Xiao, Y., Zhang, Y., Sun, Y., Han, J.: Heterogeneous network repre-
sentation learning: survey, benchmark, evaluation, and beyond. arXiv preprint
arXiv:2004.00216 (2020)

25. Yang, Z., Tang, J., Zhang, Y.: Active learning for streaming networked data. In:
Proceedings of the 23rd ACM International Conference on Conference on Informa-
tion and Knowledge Management, pp. 1129–1138 (2014)

26. Zhang, Y., Lease, M., Wallace, B.C.: Active discriminative text representation
learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, pp. 3386–3392 (2017)

27. Zhu, J., et al.: Constrained active learning for anchor link prediction across multiple
heterogeneous social networks. Sensors 17(8), 1786 (2017)

http://arxiv.org/abs/2004.00216


Keyword-Centric Community Search over
Large Heterogeneous Information

Networks

Lianpeng Qiao1(B), Zhiwei Zhang2, Ye Yuan2, Chen Chen2, and Guoren Wang2

1 Northeastern University, Shenyang, China
qiaolp@stumail.neu.edu.cn

2 Beijing Institute of Technology, Beijing, China
Yuan-ye@bit.edu.cn

Abstract. Community search in heterogeneous information networks
(HINs) has attracted much attention in recent years and has been widely
used for graph analysis works. However, existing community search stud-
ies over heterogeneous information networks ignore the importance of
keywords and cannot be directly applied to the keyword-centric commu-
nity search problem. To deal with these problems, we propose kKP-core,
which is defined based on a densely-connected subgraph with respect to
the given keywords set. A kKP-core is a maximal set of P-connected
vertices in which every vertex has at least one KP-neighbor and k path
instances. We further propose three algorithms to solve the keyword-
centric community search problem based on kKP-core. When searching
for answers, the basic algorithm Basic-kKP-core will enumerate all paths
rather than only the path instances of the given meta-path P. To improve
efficiency, we design an advanced algorithm AdvkKP-core using a new
method of traversing the search space based on trees to accelerate the
searching procedure. For online queries, we optimize the approach with
a new index to handle the online queries of community search over HINs.
Extensive experiments on HINs are conducted to evaluate both the effec-
tiveness and efficiency of our proposed methods.

Keywords: Keyword-centric · Community · Heterogeneous
information networks

1 Introduction

Heterogeneous information networks (HINs) [11,17] are the networks involving
multiple objects and multiple links denoting different types and relations, and
has been widely used to model bibliographic networks, social media networks,
and knowledge networks. Figure 1(a) depicts an HIN of the bibliographic net-
work, which describes the relationships between different types of entities. In this
network, vertices with labels A, P, V, and T represent authors, papers, venues,
and time. It consists of four types of entities. The directed lines between the
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 158–173, 2021.
https://doi.org/10.1007/978-3-030-73194-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_12


Keyword-Centric Community Search over Large HINs 159

vertices denote their semantic relationships. For example, the links between a1,
a2, p1, v1 indicate that the author a1 and a2 have written a paper p1 accepted
by CIKM.

Fig. 1. An example HIN of DBLP network

On the other hand, many real-world networks have a significant community
structure, in which vertices in a community are densely connected. Community
search has essentially studies in graph analysis, and has attracted much attention
in the literature. For HINs, there are also some works focusing on community
search problem in them [11,27–29,33]. However, these studies focus on either
structure density or keyword cohesiveness, and few of them consider all these at
the same time.

Existing works on network community search can be classified into com-
munity detection [12,24,27–29,33] and community search [4,6,7]. Community
detection algorithms aim to detect all communities for a graph, which means
they are not designed for online query. Different from community detection,
query-based community search has been studied [7,10,15], in which the vertices
and keywords are given, and they aim to find the most cohesive subgrahs related
the given vertices and keywords. The vertices and edges in HINs carry different
semantic meanings. In this scenario, existing approaches for community search
on homogeneous networks cannot solve the community search problem in HINs.

In this paper, we focus on searching communities concerning given keywords
set in HINs, in which vertices are with a specific type (e.g., a community of
authors in the bibliographical network, as shown in Fig. 1). For the keyword-
centric community, we need to deal with three questions. (1) How to combine
the keywords with the community? (2) How to measure the connectivity of two
vertices of the same type? (3) How to measure the cohesiveness of a community?

For the first two questions, we adopt the meta-path concept [23] to connect
two vertices since the vertices with the same type may not be connected directly
in the HIN. For the third question, existing solutions adopt a minimum degree
[7,9], k-truss [15], or k-clique [6,30] to measure the community cohesiveness.



160 L. Qiao et al.

The minimum degree is the most common metric to ensure every vertex is well
engaged in the community. In this paper, we extend such metric for HINs.

For the problem of community search in HINs, the community returned by
the queries should be the subgraph in which the distance between vertices is
small. Also, the community need to be cohesive considering all the keywords
given in the queries. Therefore, we propose a new model called kKP-core in
HINs. There are three requirements for a kKP-core S: (1) every vertex v has at
least k path instances of the given meta path P in S starting with v; (2) every
vertex v has at least one instance contains the given set of keywords; (3) for the
connected graph S, any two vertex u and v could be connected by a path p, and
any two adjacent vertices in p should be connected by a path instance. Given an
HIN G(V,E), a query q ∈ V , keywords set K, and an integer k, our goal is to
find a maximum kKP-core containing q, in which all the vertices are with the
same type of q and contain the keywords set K.

In summary, we make the following contributions.

• We propose a keyword-centric community model called kKP-core and formu-
late the problem of the keyword-centric community search;

• We propose a baseline algorithm to search the community in HINs;
• We design a new method to traversal the search space based on trees to

accelerate the community search algorithm, as shown in Algorithm 2 and
Algorithm 3. We further propose the optimization for the approach as shown
in Sect. 3.3.

• We conduct a series of experiments on real-world HINs to evaluate the effec-
tiveness and efficiency of our algorithms.

The rest of this paper is organized as follows. In Sect. 2, we define the
keyword-centric community search problem in HINs. In Sect. 3, we proposed
several Algorithms to solve the problem. In Sect. 4, we conduct extensive experi-
ments on real-world HINs to show the effectiveness and efficiency of our methods.
We review the related work in Sect. 5 and conclude in Sect. 6.

2 Problem Definition

In this section, we introduce several definitions used in this paper. Furthermore,
we define the problem of keyword-centric community search in HINs.

Definition 1 (HIN) [11,17]. An HIN is a directed graph G(V,E) with a vertex
type mapping function ψ : V → A and an edge type mapping function φ : E → R,
where each vertex v ∈ V belongs to a vertex type ψ(v) ∈ A, and each edge e ∈ E
belongs to an edge type (also called relation) φ(e) ∈ R.

Definition 2 (HIN schema). Given an HIN G(V,E) with mappings ψ : V → A
and φ : E → R, its schema Gs is an undirected graph defined over vertex types
A and edge types (as relation) R, i.e., Gs(A,R).



Keyword-Centric Community Search over Large HINs 161

Figure 1(b) is the schema of the HIN, in which the vertices labeled A, P ,
V , and T denote author, paper, venue, time. The schema describes all the edge
types between all the vertex types that exist in HIN. In [11,17], HIN schema is
defined on directed graph, our approach can also be applied to the HIN schema
of directed graph.

In this paper, we try to find a community concerning given keywords set in
an HIN, in which all the vertices have the same type, such type is called target
type. Since the vertices in a community should be connected cohesively, we define
the connection between vertices in an HIN using the symmetric meta-path P,
whose source object and target object are with the target type. To describe
the cohesiveness between the vertices with the target type in a community, we
extend the classic k-core as kKP-core with a symmetric meta-path P.

Definition 3 (Meta-path) [11]. A meta-path P is a path defined on an HIN
schema Gs = (A,R), and is denoted in the form A1A2...Al, where Ai ∈ A(1 ≤
i ≤ l) and φ(Aj , Aj+1) ∈ R(1 ≤ j ≤ l − 1).

Definition 4 (Path instance). Given an HIN G = {V,E}, a meta-path P =
(A1A2...Al), the path a1 → a2 → ... → al between vertices a1 and al is a
path instance of P, if it satisfies ψ(ai) = Ai(1 ≤ i ≤ l), and φ(aj , aj+1) =
φ(Aj , Aj+1)(1 ≤ j ≤ l − 1).

According to Definition 4, we say that a vertex v is a P-neighbor of vertex
u if an instance of P can connect them. For example, in Fig. 1, P = (APV PA)
is a meta-path of the given HIN, vertex a4 is a P-neighbor of vertex a1, since
an instance of P = (APV PA) can connect them. We say that two vertices u
and v are P-connected if a chain of vertices can connect them, such that every
vertex is a P-neighbor of its adjacent vertex in the chain. The definition of
P-connected and P-neighbor denotes the connectivity between vertices in HIN
and meta paths. Furthermore, we propose K-instance to denote the correlations
between keywords in the nodes, which is introduced as follows.

Definition 5 (K-instance). Given an HIN G(V,E), a meta-path P and a set
of input keywords K = {k1, k2, ..., kw}, a K-instance of P is a path instance p
whose labels set contains all the keywords in K.

Example 1. Given an HIN as shown in Fig. 1 and K = {“Selection”, “CIKM”},
the path p = a1 → p1 → v1 → p4 → a4 is an K-instance of P = (APV PA),
since p1 contains keyword “Selection” and v1 contains keyword “CIKM”.

Definition 6 (KP-neighbor). Given a meta-path P and a set of input keywords
K = {k1, k2, ..., kw}, we say that a vertex u is a KP-neighbor of a vertex v, if
they can be connected by a K-instance of P.

Definition 7 (deg(v, S)). Given an HIN, a set of vertices S and a meta-path
P, we define deg(v, S) as the number of path instances of P between v and all
the other vertices in S\{v}.



162 L. Qiao et al.

To ensure the cohesiveness of the keyword-centric community, existing works
often use k-core to characterize the cohesiveness of a community. In this paper,
we aim to find a community in an HIN containing a query vertex q, in which all
the vertices have the same vertex type as ψ(q). We use a symmetric meta-path
P to connect vertices with the target type. Then we can extend the k-core model
for HINs as follow.

Definition 8 (kKP-core). Given an HIN G, a keywords set K, a symmetric
meta path P and an integer k, a kKP-core is a maximal set S of P-connected
vertices, s.t. ∀v ∈ S, deg(v, S) ≥ k and v has at least one KP-neighbor.

Example 2. We use degK(a, S) to present the number of KP-neighbors of vertex
a in S\{a}. Consider the HIN G(V,E) in Fig. 1, a meta-path P = (APV PA)
and a keywords set K = {“Selection”, “CIKM”}. Let k = 3. Then we can see
that the induced subgraph of {a1, a2, a3, a4} denoted as S is a kKP-core. It has
deg(a1, S) = 5, deg(a2, S) = 5, deg(a3, S) = 5, deg(a4, S) = 3 and degK(a1, S) =
3 > 1, degK(a2, S) = 3 > 1, degK(a3, S) = 3 > 1, degK(a4, S) = 3 > 1.

Based on Definition 8, we can find different types of communities. As shown in
Example 2, we get a community of authors using the meta-path P = (APV PA),
which represents a potential collaborative community of papers. Besides, we
could get different communities of vertices with different types by using different
meta-paths. Note that all the meta-paths we used in the rest of the paper are
symmetric. Now we introduce the keyword-centric community search problem
in HINs as follow:

Problem. Given an HIN G, a query vertex q, a keywords set K, a meta-path
P and an integer k, the keyword-centric community we search in G is the corre-
sponding kKP-core containing q.

As shown in Example 2, let q = a1, K = {“Selection”, “CIKM”}, meta-
path P = (APV PA) and k = 3. We could get the corresponding keyword-centric
community C(V,E), in which V = {a1, a2, a3, a4} and the labels of the vertices
include “Jeffrey Xu Yu”, “Hong Cheng”, “Lu Qin”, and “Alexander J. Smola”,
since C is a maximum kKP-core containing q, which means that there could
be more collaborations between the authors in C. Note that Jeffrey Xu Yu and
Alexander J. Smola have published papers with the same keyword “Selection”
in the same venue “CIKM”. According to Definition 8, we can know that the
keyword-centric community satisfies the structural maximality and connectivity.

Theorem 1. Given an HIN G, a query vertex q, keywords set K, a meta-path
P and an integer k, the kKP-core containing q is unique.

Proof. Suppose that X and Y are two different kKP-cores containing q, we could
get that X ∪ Y could be a new kKP-core. For each vertex v ∈ Y , we can get
that p and v are P-connected. Then we can get that all the vertices in X and
Y are P-connected. Since all the vertices in X and Y have k or more than k
P-neighbors, we can get that X ∪ Y is a new kKP-core containing q, which is
against the initial assumption.



Keyword-Centric Community Search over Large HINs 163

3 Search Algorithm

We adopt kKP-core as the model to search the keyword-centric communities in
HINs. In this section, we present efficient solutions for the community search
problem in HINs.

Algorithm 1: Basic-kKP-core

Input: the HIN graph G(V, E); query vertex q; the keywords set K = {k1, k2, ..., kw}; the
meta-path P and k

Output: the set of all kKP − core.
1 collect the set S of vertices with the same vertex type as q;
2 deg(v, S) ← the number of all path instances of P starting with v and end with u for each

u ∈ S\{v};
3 KP neighbor[v] ← KP neighbor[v] ∪ {u}, if the path instance of P starting with v and end

with u cover all the keywords in K, ∀u ∈ S;
4 foreach v ∈ S do
5 if deg(v, S) < k or KP neighbor[v] = ∅ then
6 remove v from S;
7 foreach u ∈ S do
8 if u is the KP-neighbor of v then remove v from KP neighbor[u] ;
9 update deg(u, S);

10 remove all the vertices which are not P-connected with q from S;
11 return S;

3.1 The Basic Algorithm

Based on the concept of kKP-core, we present a basic algorithm, as shown in
Algorithm 1 to find the maximum kKP-core containing the query vertex q in
an HIN. In general, it consists of four steps: (1) collect the set S of all vertices
with target type (line 1); (2) for each vertex v ∈ S, enumerate all path instances
of P starting with v and end with the nodes in S\{v}, and find the set of KP-
neighbors of v in S. Incidentally, we use i-th(P) to present the i-th vertex type
of P (lines 2–3); (3) remove the vertex v which has less than k path instances
starting with v or has no KP-neighbor from S and update the remaining vertices
iteratively until there is no vertex in S can be removed (lines 4–9); (4) the
remaining S is the keyword-centric community we are looking for (lines 10–11).

Example 3. Consider the HIN in Fig. 1 and the meta-path P = (APV PA). Let
the query vertex be a1, k = 4 and keywords K = {“Selection”, “CIKM”}.
First, we compute the number of the path instances starting with the vertex
in S = {a1, a2, a3, a4, a5} and the set of KP-neighbors of the vertex in S. By
enumerate all the path instances of meta path P, we can get deg(a1, S) = 6,
deg(a2, S) = 6, deg(a3, S) = 7, deg(a4, S) = 3, deg(a5, S) = 4, degK(a1, S) = 3,
degK(a2, S) = 3, degK(a3, S) = 3, degK(a4, S) = 3, degK(a5, S) = 0. Since
we get deg(a4, S) = 3 < 4 and degK(a5, S) = 0 < 1. We have to remove a4

and a5 from S. Because a4 is the KP-neighbor of ∀v ∈ {a1, a2, a3}, we can
update the degK(v, S) ∀v ∈ {a1, a2, a3} which is 2, 2, 2 respectively. Since we
remove a4 and a5 from S, we have to recompute the path instance starting
with the vertex in {a1, a2, a3}. Finally, we get deg(a1, S) = 4, deg(a2, S) = 4,



164 L. Qiao et al.

deg(a3, S) = 4, degK(a1, S) = 2, degK(a2, S) = 2, degK(a3, S) = 2 which
means that {a1, a2, a3} is a keyword-centric community.

In Algorithm 1, we enumerate all the instances starting with each v ∈ V ,
and the complexity of this process can be bounded by |S| ∗ |V |l, where S is the
set of vertices with the target type, and l is the length of the meta-path P.

Algorithm 2: TraversalTreeBuild

Input: the HIN graph G(V, E); the set S of vertices with the target type; the keywords set
K = {k1, k2, ..., kw}; the meta-path P; the parameter of length h

1 foreach v ∈ S do
2 push the vertex v into an empty queue C, count(u, v) ← 1 for each u ∈ S if (u, v) ∈ E;
3 i ← 1;
4 while i ≤ h AND C 	= ∅ do
5 u ← C.pop();
6 foreach z which have (z, u) ∈ E and ψ(z) = (i + 1) − th(P) do
7 C.push(z);
8 root[z] ← v;
9 count(z, v) ← count(z, v) + count(u, v);

10 insert X ∪ {key[z]} into key(z, v) for each X ∈ key(u, v);

11 i + +;

Theorem 2. Given an HIN G(V,E), a keywords set K, a query vertex q and
the meta-path P. Let l be the length of P. The complexity of Algorithm 1 is
O(|S| ∗ nl), where n = |V |.

3.2 Advanced Algorithm

Algorithm 1 is very costly to enumerate all instances, starting with each vertex
in S in step (2) and step (3). To speed up step (2) and step (3), we propose
Algorithm 2 and Algorithm 3 using a new method of traversing the search space
based on trees. Note that we use K.has(v) to judge whether there is a keyword
in K which is contained by v, key[v] to express the keyword in K which is
contained by v and key(u, v) to express the set of keywords contained by the
path from u to v in the trees. The general idea of the approach is to maintain
the number of path instances and keywords set between u and v whose vertex
types are the same as the target type and the middle vertex type of the given
meta path P respectively. Based on these trees, we can save a lot of time when
calculating the number of path instances of P and judging whether there is a
K-instance between two nodes with target type.

The process of building the trees is shown in Algorithm 2. First, we push
vertex v into queue C and initialize count(u, v) (lines 1–2). Then, we iteratively
push the vertices with the corresponding vertex type as P into C, until we get
the number of the path instances and the group of the keywords sets between v
and those vertices with the vertex type h-th(P) (lines 3–11).

The next operation is shown in Algorithm 3. First of all, we collect the set
S of all vertices with target type and get the set of all index trees rooted at the
vertex in S (lines 1–3). Next, we move the vertices which are not P-connected



Keyword-Centric Community Search over Large HINs 165

Algorithm 3: AdvkKP-core

Input: the HIN graph G(V, E); query vertex q; the keywords set K = {k1, k2, ..., kw}; the
meta-path P and k

Output: the maximum set of kKP − core containing q.
1 collect the set S of vertices with the same vertex type as q;
2 queue Q ← ∅;
3 TraversalTreeBuild(G, S, P, 
 sizeof(P)

2 �);
4 foreach v ∈ S do
5 if v and q are not P-connected then S ← S\{v}; Q.push(v); ;

6 foreach v ∈ S do
7 deg(v, S) ← 0; k neighbor[v] ← ∅;
8 foreach u ∈ S\{v} do
9 foreach leaf vertex z of v do

10 deg(v, S) ← deg(v, S) + count(z, v) ∗ count(z, u);
11 if X ∪ Y = K where X ∈ key(z, v) and Y ∈ key(z, u) then
12 k neighbor[v].push(u);

13 if deg(v, S) < k OR k neighbor[v] = ∅ then S ← S\{v}, Q.push(v); ;

14 foreach u ∈ Q do
15 foreach v ∈ S do
16 C ← the commen leaf nodes between u and v;
17 foreach z ∈ C do
18 deg(v, S) ← deg(v, S) − count(z, v) ∗ count(z, u);
19 k neighbor[v].remove(z);

20 if deg(v, S) < k OR k neighbor[v] = ∅ OR v and q are not P-connected then
S ← S\{v}, Q.push(v);

21 return S;

with q from S to Q (lines 4–5). Then we get deg(v, S) the number of the path
instances starting with the v in S and k neighbor[v] the set of KP-neighbors of
v. If we have deg(v, S) < k or k neighbor[v] = ∅, we can move all vertices v from
S to Q (lines 6–13). Afterwards, we remove all vertex u ∈ Q from S and update
deg(v, S) and k neighbor[v] for all v ∈ S\Q iteratively until there is no vertex
can be removed from S (lines 14–20). Finally, we return S as the keyword-centric
community we are searching for (line 21).

Example 4. Consider the HIN in Fig. 1(a) and the meta-path P = (APV PA).
Let query vertex be a1, k = 4 and K = {“Selection”, “CIKM”}. First of all, we
build the traversal trees rooted at each vertex in S = {a1, a2, a3, a4, a5, } as shown
in Fig. 2. Consider the tree rooted at a1 as a example, we can get deg(a1, S) =
count(v1, a1) ∗ (count(v1, a2) + count(v1, a3) + count(v1, a4)) + count(v2, a1) ∗
(count(v2, a2)+count(v2, a3)+count(v2, a5)) = 1∗(1+1+1)+1∗(1+1+1) = 6.
Secondly, we can get deg(a2, S) = 6, deg(a3) = 7, deg(a4, S) = 3, deg(a5, S) = 4.
Next, we can get k neighbor[a1] = {a2, a3, a4}, k neighbor[a2] = {a1, a3, a4},
k neighbor[a3] = {a1, a2, a4}, k neighbor[a4] = {a1, a2, a3}, k neighbor[a5] = ∅.
According to the above calculation, we can move a4 and a5 from S to Q. Then
we can update the deg(v, S) and k neighbor[v], ∀v ∈ {a1, a2, a3}. According to
lines 14–20 in Algorithm 3, we can get that deg(a1, S) = 6 − 1 ∗ 1 − 1 ∗ 1 = 4,
deg(a2, S) = 6−1∗1−1∗1 = 4, deg(a2, S) = 6−1∗1−1∗1 = 4, k neighbor[a1] =
{a2, a3}, k neighbor[a2] = {a1, a3}, and k neighbor[a3] = {a1, a2}. Finally we
return {a1, a2, a3} as the keyword-centric community.



166 L. Qiao et al.

Fig. 2. An example for traversal trees

According to the above example, we can see that when we remove some
vertices from S, we can quickly update deg(v, S) and k neighbor[v] ∀v ∈ S
using trees.

Theorem 3. Given an HIN G(V,E), a keywords set K, a query vertex q and
the meta-path P. Let l be the length of P. The complexity of Algorithm 3 is
O(|S| ∗ n

l
2 ), where n = |V |.

3.3 Optimization for the Approaches

In this section, We propose a new index to immediately get the numbers of the
path instances of all meta paths, which can save much time when we handle the
community search problem over HINs.

Algorithm 4: PreIndexTree

Input: The HIN graph G(V, E); the HIN schema Gs = (A, R)
1 insert all the meta paths of Gs into the empty set Q;
2 foreach v ∈ V do
3 construct a spanning tree rooted at v;
4 foreach u 	= v AND ψ(u) = ψ(v) do
5 ins count(v, P, u) ← the number of the path instances of P between v and u, for

each P ∈ Q;

The process of building the index is shown in Algorithm 4. Based on the
HIN schema, we maintain the number of the path instances of all the meta
paths between v and the other vertices (lines 1–5). We can save a lot of time
when calculating and updating the number of path instances as shown in lines
10 and 18 in Algorithm 3. The detail of the optimization approach is described
in the following example.



Keyword-Centric Community Search over Large HINs 167

Fig. 3. A part of the new index trees

Example 5. Consider the HIN G in Fig. 1(a), the meta-path P = (APV PA)
and the HIN schema Gs = (A,R). Let query vertex be a1, k = 4 and
K = {“Selection”, “CIKM”}. First of all, we build the index trees rooted
at each vertex in V respectively as shown in Fig. 3 which is the part of the
index trees. Consider the index tree rooted at a1 as a example as shown
in Fig. 3(a), we can immediately get deg(a1, S) = 6. Secondly we can get
deg(a1, S) = ins count(a1, V, a2) + ins count(a1, V, a3) + ins count(a1, V, a4) +
ins count(a1, V, a5) = 2 + 2 + 1 + 1 = 6, deg(a2) = 6, deg(a3) = 7,
deg(a4, S) = 3, deg(a5, S) = 4. Next, we can get k neighbor[a1] = {a2, a3, a4},
k neighbor[a2] = {a1, a3, a4}, k neighbor[a3] = {a1, a2, a4}, k neighbor[a4] =
{a1, a2, a3}, k neighbor[a5] = ∅. According to the above calculation, we can
remove a4 and a5 from S. Then we can update the deg(v, S) and k neighbor[v],
∀v ∈ {a1, a2, a3} and get that deg(a1, S) = 6 − 1 ∗ 1 − 1 ∗ 1 = 4, deg(a2, S) =
6 − 1 ∗ 1 − 1 ∗ 1 = 4, deg(a3, S) = 7 − 1 ∗ 1 − 2 ∗ 1 = 4, k neighbor[a1] =
{a2, a3}, k neighbor[a2] = {a1, a3}, k neighbor[a3] = {a1, a2}. Finally we return
{a1, a2, a3} as the keyword-centric community.

4 Experiments

We now present the experimental results. We first discuss the experimental setup
in Sect. 4.1.

4.1 Experimental Setup

To search the keyword-centric community in HINs, we implement three
approaches called Baseline, AdvCore, and OptCore, respectively. Baseline is
based on the basic algorithm Basic-kKP-core, which is shown in Algorithm 1.
AdvCore is the advanced approach with the AdvkKP-core algorithm as shown
in Algorithm 2 and Algorithm 3. OptCore is the optimized approach as shown
in Sect. 3.3. All algorithms are implemented in C++. All the experiments are
conducted on a computer with Intel(R) Core(TM) i5-9500 CPU @ 3.00 GHz and
16G main memory. Windows 10 X64 operating system with kernel 18362.1139.



168 L. Qiao et al.

Table 1. Datasets used in the following experiments

Dataset Vertices Edges Vertex types Edge types

Foursquare 43,199 405,476 5 4

DBLP 682,819 1,951,209 4 3

IMDB 4,467,806 7,597,591 4 3

DBpedia 5,900,558 17,961,887 4 3

Datasets. We use four real datasets: Foursquare1, DBLP2, IMDB3, and DBpe-
dia4. Their detailed information is shown in Table 1. Foursquare contains the
users’ check-in records in the US, and there are five types of vertices in the
dataset. DBLP contains the publication information in computer science areas,
which has four types of vertices. IMDB contains the movie rating information
since 2000, and there are four types of vertices in the dataset (actors, directors,
writers, and movies). DBpedia is the data set extracted from Wikipedia.

Queries. For each dataset, we collect a set of meta-paths, and the size of the
set is presented in Table 1. Based on the current works, we get that the default
lengths of all meta-path we used in this paper do not exceed four unless otherwise
specified. We collect all the possible meta-paths of the first two datasets, because
the relationships in these two datasets are relatively small. For the other two
datasets, there are a lot of relationships in these two datasets. Then we choose
50 meta-paths with the highest frequencies from the sets of the possible meta-
paths of these two datasets, respectively. For each dataset, we generate 100
queries. To generate a query, we first randomly choose a meta-path. Then we
first choose a vertex that has 50 instances or more starting with it and then
get several keywords from a random instance of the meta-path starting with the
chosen vertex. By default, we set k as 50, and for the results mentioned in the
following, each value in the chart is the average result for these 100 queries.

4.2 Effectiveness Testing

4.2.1 Core Analysis
To analyze the proposed kKP-core, we examine the size distribution of kKP-
core, where k ranges from 20 to 120. In this part, we only show results contain
two different queries, which are P1 = (TPAPT ), K1 = {“20”} and P2 =
(APV PA), K2 = {“report”} respectively. According to the result shown in
Fig. 4, we can get that the proposed kKP-core can achieve strong cohesiveness.

1 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
2 http://dblp.uni-trier.de/xml/.
3 https://www.imdb.com/interfaces/.
4 https://wiki.dbpedia.org/Datasets.

https://sites.google.com/site/yangdingqi/home/foursquare-dataset
http://dblp.uni-trier.de/xml/
https://www.imdb.com/interfaces/
https://wiki.dbpedia.org/Datasets


Keyword-Centric Community Search over Large HINs 169

Fig. 4. Number of the vertices in kKP-core

Table 2. Result of a case study on DBLP network.

P1 = APV PA P2 = APTPA

K1 = {Attack,Meltdown} K2 = {Attack,Meltdown}
Daniel Genkin, Daniel Gruss,
Mickael Schwarz, Mike Hambury,
Moritz Lipp, Paul Kocher, Stefan
Mangard, Thomas Prescher, Werner
Haas, Yuval Yarom

Daniel Genkin, Daniel Gruss, Diego
Gragnaniello, Francesco Marra,
Giovanni Poggi, Limin Zhang, Lu
Feng, Luisa Verdoliva, Michael
Schwarz, Mike Hamburg, Moritz
Lipp, Paul Kocher, Pengyuan Lu,
Stefan Mangard, Thomas Prescher,
Werner Haas, Yuval Yarom

4.2.2 Case Study
We perform two queries on DBLP. In the first query, we set q = Prof. Paul
Kocher, P = (APV PA), K = {“Attack”, “meltdown”}, and k = 10. Note
that we regard the types of conference and journal as V . As shown in Table 2,
the first community contains ten researchers who collaborated intensively. On
the other hand, some researchers have published papers containing keyword
“Attack” in a journal containing “meltdown”. This community includes those
researchers who can cooperate in a specific field, which will help researchers
find new collaborators to expand their research field. In the second query, we
set q =Prof. Paul Kocher, P = (APTPA), K = {“Attack”, “Meltdown”}, and
k = 10. We get the second community contains seventeen researchers, as shown
in Table 2. We can see that the second community has seven more people than the
first community because we use “T” to constraint the community instead of “V ”.
Compared with the first community, the second community realizes the discovery
of potential collaborators without considering conferences or journals because
the keywords “meltdown” contained by the vertices with vertex type “V ” in
DBLP are all lowercase. Therefore, the second community can help researchers
find more potential partners than the first community.



170 L. Qiao et al.

Fig. 5. Runtime of different algorithms

Fig. 6. Scalability test of different algorithms

4.3 Efficiency Testing

Runtime of Baseline, AdvCore, and OptCore. We evaluate the runtime
of Baseline, AdvCore, and OptCore for the keyword-centric community query
in HINs. As shown in Fig. 5(a), OptCore is consistently faster than AdvCore
and Baseline. Since Foursquare is sparse and small in scale, we can see that
all these three algorithms have a short response time. As shown in Fig. 5(c),
we can see that only OptCore can respond to the query within ten seconds.
Unlike Foursquare, IMDB has many vertices and edges, and there are few vertex
types in this data set, which means that for a meta path P, there are many
path instances of P in IMDB. Since OptCore is implemented based on the opti-
mization approach, the response time of OptCore is short than the other two
approaches.

Scalability Test. For each dataset, we randomly select 20%, 40%, 60%, 80%,
and 100% vertices and get four subgraphs induced by these vertices, respec-
tively. We run Baseline, AdvCore, and OptCore on all datasets. According to
the results, as shown in Fig. 6, we can see that these three algorithms scale well
with the number of vertices.

5 Related Work

Keyword Search. The keyword search over graphs mainly focuses on the con-
nection between the vertices and the keywords in the query. The semantics used
in the existing works can be roughly divided into two categories, one is tree
semantics [8,14,18,22] and the other is subgraph semantics [19,21]. Among the
tree semantics, Steiner trees are used in [2] to present a new backward search



Keyword-Centric Community Search over Large HINs 171

algorithm. In [8], a dynamic programming approach for finding all Steiner trees
in graphs. The dynamic programming approach is feasible for input queries with
a small number of keywords. The algorithm proposed in [13] follows Lawler’s
procedure [20] produces Steiner trees with polynomial delay. For the subgraph
semantics, Kargar and An [19] find the subgraph containing all keywords in K,
which is the set of the keywords. The authors use the sum of the shortest dis-
tance between all vertex pairs to measure the weight. Lei et al. [21] study the
problem of clustering based on keywords. However, these semantics could be
used to solve our problems.

Community Search. Community search aims to find connected subgraphs
containing a query vertex. People use some metrics to ensure the cohesiveness
of the community found in a graph. The minimum degree metric is the most
frequent one used in the problem of the community search. It requires that the
degree of each vertex in the community is at least k, which is similar to the
constraint of the k-core [1,3,25]. For example, Sozio et al. proposed to find a
community as the connected k-core containing the query vertex in [26]. Zhang
et al. solve the keyword-centric community search problem over attribute graphs
based on k-core in [32]. The other metrics used in the problem of community
search are k-truss [5,15,31], k-clique [6,30] and K-ECC respectively. For example,
Huang et al. and Chen et al. used k-truss as a metric to search the community
in [4,16]; Yuan et al. proposed a k-clique percolation community model based
on k-clique to solve the densest clique percolation community search problem
in [30]. However, all these works focus on homogeneous graphs. We cannot use
them to solve the keyword-centric community search problem over HINs.

6 Conclusion

In this paper, we study the problem of keyword-centric community search over
HINs. We propose a basic algorithm, as shown in Algorithm 1 to find the commu-
nity. However, the basic algorithm is very costly. Then we propose an advanced
algorithm using a new method of traversing the search space based on trees.
Since the trees are built based on the query vertex and the given meta-path P,
the advanced algorithm is not suitable for online query. According to that, we
propose an optimization algorithm based on index trees to solve the problem.
Extensive experiments on large real-world networks demonstrate the effective-
ness and efficiency of our solution.

Acknowledgement. Zhiwei Zhang is supported by National Key R&D Program of
China (Grant No. 2020YFB1707902), NSFC (Grant No. 62072035), Hong Kong GRF
(Grant No. 12201518) and Zhejiang Lab (Grant No. 2020KE0AB04). Ye Yuan is sup-
ported by the NSFC (Grant No. 61932004) and the Fundamental Research Funds for
the Central Universities (Grant No. N181605012). Guoren Wang is supported by the
NSFC (Grant No. 61732003 and 61729201).



172 L. Qiao et al.

References

1. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. arXiv preprint cs/0310049 (2003)

2. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: ICDE, pp. 431–440. IEEE
(2002)

3. Bonchi, F., Khan, A., Severini, L.: Distance-generalized core decomposition. In:
ICDM, pp. 1006–1023 (2019)

4. Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., Wang, B.: Maximum co-located
community search in large scale social networks. Proc. VLDB Endow. 11(10),
1233–1246 (2018)

5. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. National Secu-
rity Agency Technical Report 16, pp. 3–29 (2008)

6. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping
communities. In: SIGMOD, pp. 277–288 (2013)

7. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large
graphs. In: SIGMOD, pp. 991–1002 (2014)

8. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in databases. In: ICDE, pp. 836–845. IEEE (2007)

9. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large
attributed graphs. Proc. VLDB Endow. 9(12), 1233–1244 (2016)

10. Fang, Y., et al.: A survey of community search over big graphs. VLDB J. 29(1),
353–392 (2020)

11. Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community
search over large heterogeneous information networks. Proc. VLDB Endow. 13(6),
854–867 (2020)

12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
13. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data

graphs. In: SIGMOD, pp. 927–940 (2008)
14. Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational

databases. In: VLDB, pp. 670–681. Elsevier (2002)
15. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community

in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)
16. Huang, X., Lakshmanan, L.V.: Attribute-driven community search. Proc. VLDB

Endow. 10(9), 949–960 (2017)
17. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure:

computing relevance in large heterogeneous information networks. In: KDD, pp.
1595–1604 (2016)

18. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar,
H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp.
505–516 (2005)

19. Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. Proc. VLDB
Endow. 4(10), 681–692 (2011)

20. Lawler, E.L.: A procedure for computing the k best solutions to discrete optimiza-
tion problems and its application to the shortest path problem. Manage. Sci. 18(7),
401–405 (1972)

21. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 key-
word search method for unstructured, semi-structured and structured data. In:
SIGMOD, pp. 903–914 (2008)



Keyword-Centric Community Search over Large HINs 173

22. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational
databases. In: SIGMOD, pp. 563–574 (2006)

23. Meng, C., Cheng, R., Maniu, S., Senellart, P., Zhang, W.: Discovering meta-paths
in large heterogeneous information networks. In: WWW, pp. 754–764 (2015)

24. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

25. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

26. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: KDD, pp. 939–948 (2010)

27. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating
clustering with ranking for heterogeneous information network analysis. In: EDBT,
pp. 565–576 (2009)

28. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: PathSelClus: integrating
meta-path selection with user-guided object clustering in heterogeneous informa-
tion networks. TKDD 7(3), 1–23 (2013)

29. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information
networks with star network schema. In: KDD, pp. 797–806 (2009)

30. Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique
percolation community search in networks. IEEE Trans. Knowl. Data Eng. 30(5),
922–935 (2017)

31. Zhang, Y., Yu, J.X.: Unboundedness and efficiency of truss maintenance in evolving
graphs. In: SIGMOD, pp. 1024–1041 (2019)

32. Zhang, Z., Huang, X., Xu, J., Choi, B., Shang, Z.: Keyword-centric community
search. In: ICDE, pp. 422–433. IEEE (2019)

33. Zhou, Y., Liu, L.: Social influence based clustering of heterogeneous information
networks. In: KDD, pp. 338–346 (2013)



KGSynNet: A Novel Entity Synonyms
Discovery Framework with Knowledge

Graph

Yiying Yang1, Xi Yin1, Haiqin Yang1(B), Xingjian Fei1, Hao Peng2(B),
Kaijie Zhou1, Kunfeng Lai1, and Jianping Shen1

1 Ping An Life Insurance Company of China, Ltd., Shenzhen, China
{yangyiying283,yinxi445,feixingjian568,zhoukaijie002,laikunfeng597,

shenjianping324}@pingan.com.cn, hqyang@ieee.org
2 BDBC, Beihang University, Beijing, China

penghao@act.buaa.edu.cn

Abstract. Entity synonyms discovery is crucial for entity-leveraging
applications. However, existing studies suffer from several critical issues:
(1) the input mentions may be out-of-vocabulary (OOV) and may come
from a different semantic space of the entities; (2) the connection between
mentions and entities may be hidden and cannot be established by sur-
face matching; and (3) some entities rarely appear due to the long-tail
effect. To tackle these challenges, we facilitate knowledge graphs and pro-
pose a novel entity synonyms discovery framework, named KGSynNet.
Specifically, we pre-train subword embeddings for mentions and entities
using a large-scale domain-specific corpus while learning the knowledge
embeddings of entities via a joint TransC-TransE model. More impor-
tantly, to obtain a comprehensive representation of entities, we employ
a specifically designed fusion gate to adaptively absorb the entities’
knowledge information into their semantic features. We conduct exten-
sive experiments to demonstrate the effectiveness of our KGSynNet in
leveraging the knowledge graph. The experimental results show that the
KGSynNet improves the state-of-the-art methods by 14.7% in terms of
hits@3 in the offline evaluation and outperforms the BERT model by
8.3% in the positive feedback rate of an online A/B test on the entity
linking module of a question answering system.

Keywords: Entity synonyms discovery · Knowledge graph

1 Introduction

Entity synonyms discovery is crucial for many entity-leveraging downstream
applications such as entity linking, information retrieval, and question answering
(QA) [19,28]. For example, in a QA system, a user may interact with a chatbot
as follows:

Y. Yang and X. Yin—Equal contribution.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 174–190, 2021.
https://doi.org/10.1007/978-3-030-73194-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_13


KGSynNet 175

Fig. 1. An illustration of linking the synonymous entity of the mention “skin relax-
ation” to “Ehlers-Danlos” with the help of an external knowledge graph.

User query: Am I qualified for the new insurance policy as I suffer from skin
relaxation recently?

System reply: Unfortunately, based on the policy, you may fall into the
terms of Ehlers-Danlos, which may exclude your protection. Please contact
our agents for more details.

In this case, we can correctly answer the user’s query only linking the men-
tion of “skin relaxation” to the entity, “Ehlers-Danlos”. This is equivent to the
entity synonyms discovery task, i.e., automatically identifying the synonymous
entities for a given mention or normalizing an informal mention of an entity to
its standard form [8,26].

In the literature, various methods, such as DNorm [15], JACCARD-based
methods [27], and embedding-based methods [6,11], have been proposed to solve
this task. They usually rely on matching of syntactic string [8,27] or lexical
embeddings [6,11,25] to build the connections. Existing methods suffer from the
following critical issues: (1) the input mentions and the entities are often out-
of-vocabulary (OOV) and lie in different semantic spaces since they may come
from different sources; (2) the connection between mentions and entities may
be hidden and cannot be established by surface matching because they scarcely
appear together; and (3) some entities rarely appear in the training data due to
the long-tail effect.

To tackle these challenges, we facilitate knowledge graphs and propose a
novel entity synonyms discovery framework, named KGSynNet. Our KGSynNet



176 Y. Yang et al.

resolves the OOV issue by pre-training the subword embeddings of mentions and
entities using a domain-specific corpus. Moreover, we develop a novel TransC-
TransE model to jointly learn the knowledge embeddings of entities by exploit-
ing the advantages of both TransC [17] in distinguishing concepts from instances
and TransE [4] in robustly modeling various relations between entities. More-
over, a fusion gate is specifically-designed to adaptively absorb the knowledge
embeddings of entities into their semantic features. As illustrated in Fig. 1, our
KGSynNet can discover the symptom of “extremely elastic skin” in the entity
of “Ehler-Danlos” and link the mention of “skin relaxation” to it.

In summary, our work consists of the following contributions:

– We study the task of automatic entity synonyms discovery, a significant task
for entity-leveraging applications, and propose a novel neural network archi-
tecture, namely KGSynNet, to tackle it.

– Our proposed KGSynNet learns the pre-trained embeddings of mentions and
entities from a domain-specific corpus to resolve the OOV issue. Moreover, our
model harnesses the external knowledge graph by first encoding the knowl-
edge representations of entities via a newly proposed TransC-TransE model.
Further, we adaptively incorporate the knowledge embeddings of entities into
their semantic counterparts by a specifically-designed fusion gate.

– We conduct extensive experiments to demonstrate the effectiveness of our
proposed KGSynNet framework while providing detailed case studies and
errors analysis. Our model significantly improves the state-of-the-art methods
by 14.7% in terms of the offline hits@3 and outperforms the BERT model by
8.3% in the online positive feedback rate.

2 Related Work

Based on how the information is employed, existing methods can be divided into
the following three lines:

– The first line of research focuses on capturing the surface morphological fea-
tures of sub-words in mentions and entities [8,9,27]. They usually utilize
lexical similarity patterns and the synonym rules to find the synonymous
entities of mentions. Although these methods are able to achieve high perfor-
mance when the given mentions and entities come from the same semantic
space, they fail to handle terms with semantic similarity but morphological
difference.

– The second line of research tries to learn semantic embeddings of words or sub-
words to discover the synonymous entities of mentions [6,10,11,16,19]. For
example, the term-term synonymous relation has been included to train the
word embeddings [11]. More heuristic rule-based string features are expanded
to learn word embeddings to extract medical synonyms [26]. These meth-
ods employ semantic embeddings pretrained from massive text corpora and
improve the discovery task in a large margin compared to the direct string
matching methods. However, they perform poorly when the terms rarely
appear in the corpora but reside in external knowledge bases.



KGSynNet 177

– The third line of research aims to incorporate external knowledge from either
the unstructured term-term co-occurrence graph or the structured knowledge
graph. For example, Wang et al. [29] utilizes both semantic word embed-
dings and a term-term co-occurrence graph extracted from unstructured text
corpora to discover synonyms on privacy-aware clinical data. More powerful
methods, such as SynSetMine [23] and SA-ESF [13], have been proposed to
leverages the synonym of entities in knowledge graphs or the knowledge rep-
resentations. They ignore other relations among entities, e.g., the hypernym-
hyponym relations, and lack a unified way to absorb the information. This
motivates our further exploration in this work.

3 Methodology

Here, we present the task and the main modules of our KGSynNet accordingly.

3.1 Task Definition

The task of entity synonyms discovery is to train a model to map the mention
to synonymous entities as accurate as possible given a set of annotated mention-
entity pairs Q, a knowledge graph KG, and a domain-specific corpus, D. The
mention-entity pairs, Q = {(qi, ti)}Ni=1, record the mentions from queries and
their corresponding synonymous entities, where N is the number of annotated
pairs, qi = qi1 . . . qi|qi| denotes the i-th mention with |qi| subwords and ti =
ti1 . . . ti|ti| ∈ E denotes the i-th entity in KG with |ti| subwords. The knowledge
graph is formalized as KG = {C, I,R,S}, where C and I denote the sets of
concepts and instances, respectively, R is the relation set and S is the triple
set. Based on the above definition, we have E = C ∪ I. After we train the
model, for a given mention, we can recommend a list of synonymous entities
from the knowledge graph. The domain-specific corpus, D, is used for learning
the embeddings of mentions and entities.

As illustrated in Fig. 2, our proposed KGSynNet consists of four main mod-
ules: (1) a semantic encoder module to represent mentions and entities; (2) a
knowledge encoder module to represent the knowledge of entities by a jointly-
learned TransC-TransE model; (3) a feature fusion module to adaptively incorpo-
rate knowledge information via a specifically designed fusion gate; (4) a classifier
with a similarity matching metric to train the entire model.

3.2 Semantic Encoder

Given a mention-entity pair, (q, t), we may directly apply existing embeddings,
e.g., Word2Vec [18], or BERT [7], on q and t to represent the semantic informa-
tion of mentions and entities. However, it is not effective because many subwords
are out-of-vocabulary (OOV), since the pre-trained embeddings are trained from
corpora in general domains.



178 Y. Yang et al.

Fig. 2. The architecture of our KGSynNet.

To leverage the contextualized information of each mention and entity from
D, we train a set of subword-level Word2Vec embeddings from scratch on D,
and apply them to initialize the semantic representations of the subwords of
the mentions and the entities in Q. Then, similar to the fastText approach [2],
we obtain the initialized semantic representations of mentions and entities by
averaging their subword representations:

e(q) =
1
|q|

|q|∑

k=1

e(qk), e(t) =
1
|t|

|t|∑

k=1

e(tk). (1)

After that, the semantic embeddings of the mentions and the entities are fur-
ther fed into a two-layer fully-connected (FC) network to extract deeper seman-
tic features. Here, we adopt shared weights as in [5] to transform the learned
embedding e(v) into a semantic space of k-dimension:

es(v) = tanh(W2 tanh(W1e(v) + b1) + b2) ∈ R
k, (2)

where v can be a mention or an entity. The parameters, W1 ∈ R
k×d and W2 ∈

R
k×k, are the weights on the corresponding layers of the FC network. b1 ∈ R

k

and b2 ∈ R
k are the biases at the corresponding layers.

3.3 Knowledge Encoder

Though entities can be encoded in the semantic space as detailed above, their
representations are not precise enough due to lack of the complementary infor-
mation included in the knowledge graph.



KGSynNet 179

In the knowledge graph KG, the relation set R is defined by R = {re, rc} ∪
Rl∪RIC ∪RCC, where re is an instanceOf relation, rc is a subClassOf relation, Rl

is the instance-instance relation set, RIC is the Non-Hyponym-Hypernym (NHH)
instance-concept relation set, and RCC is the NHH concept-concept relation set.
It is noted that different from the three kinds of relations defined in TransC [17],
we specifically categorize the relations into five types to differentiate the NHH
relations of the instance-concept pairs from the concept-concept pairs. Therefore,
the triple set S can be divided into the following five disjoint subsets:

1. The instanceOf triple set: Se =
{(

i, re, c
)
k

}|Se|
k=1

, where i ∈ I is an instance,
c ∈ C is a concept, and re is the instanceOf relation.

2. The subClassOf triple set: Sc =
{(

ci, rc, cj
)
k

}|Sc|
k=1

, where ci, cj ∈ C are con-
cepts, ci is a sub-concept of cj , and rc is the subClassOf relation.

3. The instance-instance triple set: Sl =
{(

i, rij , j
)
k

}|Sl|
k=1

, where rij ∈ Rl defines
the instance-instance relation from the head instance i to the tail instance j.

4. The NHH instance-concept triple set: SIC =
{(

i, ric, c
)
k

}|SIC|
k=1

, where i and c
are defined similarly as Se. ric ∈ RIC is an NHH instance-concept relation.

5. The NHH concept-concept triple set: SCC =
{(

ci, rcicj , cj
)
k

}|SCC|
k=1

, where
ci, cj ∈ C denote two concepts, rcicj ∈ RCC is an NHH concept-concept rela-
tion.

We now learn the knowledge embeddings of entities. Since TransE [4] is good
at modeling general relations between entities while TransC [17] excelling in
exploiting the hierarchical relations in the knowledge graph, we propose a unified
model, the TransC-TransE model, to facilitate the advantage of both models.

Specifically, TransE represents an entity by v ∈ R
n, where n is the size of the

knowledge embedding, and defines the loss for the instance-instance triples [4]:

fl(i, rij , j) = ‖vi + vrij − vj‖22, (3)

where (i, rij , j) ∈ Sl denotes a triple in the instance-instance relation set, vi,
vrij , and vj denote the corresponding TransE representations.

In TransC, an instance i is represented by a vector, vi ∈ R
n, same as that of

an entity in TransE. A concept c is represented by a sphere, denoted by (pc,mc),
where pc ∈ R

n and mc ∈ R+ define the corresponding center and radius for the
concept, respectively. The corresponding losses can then be defined as follows:

– The loss for the instanceOf triples [17]:

fe(i, c) = ‖vi − pc‖2 − mc, ∀i ∈ c. (4)

– The loss for the subClassOf triples [17]:

fc(ci, cj) =
{
mci − mcj , cj is a subclass of ci, or cj ⊆ ci
‖pci − pcj‖2 + mci − mcj , otherwise . (5)

However, the spherical representation is not precise enough to model the NHH
relations. We therefore denote the concept of c by an additional node embedding,
vc ∈ R

n, and define the following additional loss functions:



180 Y. Yang et al.

– The loss for the NHH instance-concept triples [4]:

fIC(i, ric, c) = ‖vi + vric − vc‖22, (6)

where the triplet (i, ric, c) ∈ SIC denotes the NHH instance-concept relation
ric connecting the instance i to the concept c.

– The loss for the NHH concept-concept triples [4]:

fCC(ci, rcicj , cj) = ‖vci + vrcicj
− vcj‖22, (7)

where the triplet (ci, rcicj , cj) ∈ SCC denotes the NHH concept-concept rela-
tion rcicj connecting the concept ci to the concept cj .

Therefore, the knowledge embeddings of entities are learned by minimizing
the following objective function:

Lk =
∑

(i,re,c)∈Se

fe(i, c) +
∑

(ci,rc,cj)∈Sc

fc(ci, cj) +
∑

(i,rij ,j)∈Sl

fl(i, rij , j)

+
∑

(i,ric,c)∈SIC

fIC(i, ric, c) +
∑

(ci,rcicj ,cj)∈SCC

fCC(ci, rcicj , cj). (8)

It is noted that our objective differs from TransC by explicitly including both
the NHH instance-concept relations and the NHH concept-concept relations.
Similarly, we apply the negative sampling strategy and the margin-based ranking
loss to train the model as in [17].

After training the unified TransC-TrainsE model in Eq. (8), we obtain the
knowledge embeddings for both instances and concepts, e.g., vi for an instance
i, and the representation of (pc,mc) and vc for a concept c. For simplicity and
effectiveness, we average the center and the node embedding of a concept to
yield its final knowledge embedding et:

et =
{
vt ∀t ∈ I
(pt + vt)/2 ∀t ∈ C . (9)

Similar to the semantic embeddings, the learned knowledge embeddings of
entities obtained in Eq. (9) are transformed into the same k-dimensional semantic
space by a two-layer fully connected network to yield elt:

elt = tanh(W4(tanh(W3et + b3)) + b4) ∈ R
k, (10)

where W3 ∈ R
k×q and W4 ∈ R

k×k are the weights on the corresponding layers
of the FC network. b3 ∈ R

k and b4 ∈ R
k are the biases at the layers.

3.4 Fusion Gate

A critical issue in the task is that the semantic features and the knowledge
embeddings are learned separately. To effectively integrate these two types of
information, we design a fusion network, named Fusion Gate, to adaptively



KGSynNet 181

absorb the transformed knowledge information elt into the semantic informa-
tion es(t) for an entity t. As illustrated in the upper right grid box of Fig. 2, the
final representation of an entity t is computed by

eft = es(t) + elt ⊗ g(es(t), elt). (11)

Here, the implementation is motivated by the highway network [24], but is differ-
ent on the specific information carrying. Here, we directly feed all the semantic
information of the entities to the next level without filtering to guarantee the
consistency of the semantic representations between mentions and entities. The
interaction of the semantic embeddings and knowledge embeddings of the enti-
ties is then fulfilled by the transform gate to determine the amount of knowledge
incorporated into the semantic feature, defined by g(a,b):

g(a,b) = Softmax(Wg[a;b;a − b;a ⊗ b]), (12)

where Wg ∈ R
k×4k is the weight of a fully-connected network to reduce the

dimension of the concatenated features. The first two features maintain the orig-
inal form while the latter two measuring the “similarity” or “closeness” of the
two features. This allows to compute the high-order interactions between two
input vectors [5,20]. Finally, the Softmax operator is applied to determine the
proportion of the flow-in knowledge.

3.5 Similarity Matching and Classification

As the training data only consist of the positive pairs, for each pair (qi, ti), we
additionally sample some negative pairs {(qi, tij )}Ni

j=1, where tij is sampled from
other mention-to-entity pairs and Ni is the number of sampled negative pairs.
Hence, we derive the objective function for the final matching:

Lm=
N∑

i=1

− log

⎛

⎝
exp

(
es(qi)Te

f
ti

)

exp
(
es(qi)Te

f
ti

)
+

∑Ni

j=1 exp
(
es(qi)Te

f
tij

)

⎞

⎠ . (13)

It is noted that each term in Eq. (13) defines the Noise-Contrastive Estimation
(NCE) [12], which is the cross-entropy of classifying the positive pair (qi, ti).
After training, given a new mention q, we can determine the list of the candidate
entities by the rank of es(qi)Te

f
ti .

4 Experiments

In the following, we present the curated dataset along with the associated knowl-
edge graph, as well as the experimental details.



182 Y. Yang et al.

Table 1. Data statistics.

Knowledge All Insurance Occupation Medicine Cross

Graph Domain

# Entities 75,153 1,409 2,587 71,157 0

# Entity type 17 2 2 13 0

# Relations 1,120,792 2,827 2,580 1,098,280 17,105

# Relation type 20 2 2 13 4

# Mention-entity pairs in Train/Dev/Test 45,500/5,896/5,743

# Regular cases/# Difficult cases 5,303/440

4.1 Datasets

Knowledge Graph. The existing open-source knowledge graphs [1,3] cannot
be used for this task, because they do not provide sufficient disease entities and
relations required by the task. Therefore, we construct a specific knowledge graph
(KG) to verify this task. Table 1 records the statistics of the constructed KG, a
heterogeneous KG with entities collected from three categories: Insurance Prod-
ucts, Occupation, and Medicine. In Insurance Products, there are 1,393 insurance
products and 16 concepts; while in Occupation, there are 1,863 instances and 724
concepts obtained from the nation’s professional standards1. Both Insurance
Products and Occupation contain only two types of relations, i.e., the instanceOf
relation and the subClassOf relation. In Medicine, 45K disease entities and 9,124
medical concepts are extracted from three different resources: (1) raw text of
insurance products’ clauses; (2) users’ query logs in the app; (3) the diagnos-
tic codes of International Classification of Diseases (ICD-10). Furthermore, 18K
other types of medical entities, such as symptom, body part, therapy, and treat-
ment material, are extracted from some open-source medical knowledge graphs2.
The relation types include not only instanceOf and subClassOf, but also the
instance-instance relations, the NHH concept-instance relations, and the NHH
concept-concept relations, 13 types in total.

Data. We collect a large-scale Chinese medical corpus from 14 medical text-
books3, 3 frequently used online medical QA forums, and some QA forums4.
We also deploy a self-developed BERT-based NER tool to extract 100K disease
mentions from users’ query logs in the professional app. From the extracted
disease mentions and KG entities, we generate 300K candidate synonymous
mention-entity pairs based on the similarity score computed by BERT. The
extracted mention-entity candidates are double-blindly labeled to obtain 57,139
high-quality disease mention-entity synonym pairs. After that, the dataset is
1 http://www.jiangmen.gov.cn/attachment/0/131/131007/2015732.pdf.
2 http://openkg.cn/dataset/symptom-in-chinese; http://openkg.cn/dataset/omaha-

data.
3 https://github.com/scienceasdf/medical-books.
4 https://github.com/lrs1353281004/Chinese medical NLP.

http://www.jiangmen.gov.cn/attachment/0/131/131007/2015732.pdf
http://openkg.cn/dataset/symptom-in-chinese
http://openkg.cn/dataset/omaha-data
http://openkg.cn/dataset/omaha-data
https://github.com/scienceasdf/medical-books
https://github.com/lrs1353281004/Chinese_medical_NLP


KGSynNet 183

randomly split into the sets of training, development, and test, respectively,
approximately at a ratio of 8:1:1. We further divide the test set (the All case
group) into two groups based on the surface form similarity. That is, a Regular
case means that there is at least one identical subword between the mention and
the entity, while the rest pairs belong to the Difficult case group.

4.2 Compared Methods

We compare KGSynNet with the following strong baselines:

(1) JACCARD [21]: a frequently used similarity method based on the surface
matching of mentions and entities;

(2) Word2Vec [6]: a new subword embedding is trained on the medical corpus
to learn representations. Cosine similarity is then applied to the average of
subword embeddings of each mention-entity pair to rank their closeness;

(3) CNN [19]: a CNN-based Siamese network is trained using the triplet loss
with the newly trained word2vec embeddings for the mentions and entities.

(4) BERT [7]: the [CLS] representations of mentions and entities are extracted
from the fine-tuned BERT to compute their cosine similarity;

(5) DNorm [15]: one of the most popular methods that utilizes the TF-IDF
embedding and a matching matrix, trained by the margin ranking loss, to
determine the similarity score between mentions and entities.

(6) SurfCon [29]: one of the most popular methods that constructs a term-term
co-occurrence graph from the raw corpus to capture both the surface infor-
mation and the global context information for entity synonym discovery.

4.3 Experimental Setup and Evaluation Metrics

The number of sampled negative mention-entity pairs is tuned from {10, 50, 100,
200, 300} and set to 200 as it attains the best performance in the development
set. ADAM is adopted as the optimizer with an initial learning rate of 0.001. The
training batch size is 32, and the dimension of the knowledge graph embedding
is 200. Besides, the dimension of the semantic embeddings of both mentions and
entities are set to 500, and the dimensions of the first and the second FC networks
are set to 300. These parameters are set by a general value and tuned in a
reasonable range. Dropout is applied in the FC networks and selected as 0.5 from
{0.3, 0.5, 0.7}. The knowledge embedding is trained by an open-source package5.
Early stopping is implemented when the performance in the development set
does not improve in the last 10 epochs.

To provide fair comparisons, we set the same batch size, embedding sizes, and
dropout ratio to all baseline models. For SurfCon, we construct a co-occurrence
graph of 24,315 nodes from our collected Chinese medical corpus, and obtain
the graph embedding according to [29]6.

5 https://github.com/davidlvxin/TransC.
6 https://github.com/yzabc007/SurfCon.

https://github.com/davidlvxin/TransC
https://github.com/yzabc007/SurfCon


184 Y. Yang et al.

Filtered hits@k, the proportion of correct entities ranked in the top k predic-
tions by filtering out the synonymous entities to the given mention in our con-
structed KG, because it is an effective metric to determine the accuracy of entity
synonyms discovery [17]. We follow the standard evaluation procedure [4,17] and
set k = 3, 5, 10 to report the model performance.

4.4 Experimental Results

Rows three to nine of Table 2 report the experimental results of the baselines
and our KGSynNet. It clearly shows that

– JACCARD yields no hit on the difficult case because it cannot build connec-
tions on mentions and entities when they do not contain a common sub-word.

– Word2Vec yields the worst performance on the All case and the Regular case
since the representations of mentions and entities are simply obtained by their
mean subword embeddings, which blur the effect of each subword.

– CNN improves Word2Vec significantly because of the Siamese network, but
cannot even beat JACCARD due to the poor semantic representation learned
from Word2Vec.

– BERT gains further improvement over JACCARD, Word2Vec, and CNN
by utilizing the pre-trained embeddings. The improvement is not significant
enough especially in the Difficult case because the representation of the token
[CLS] does not fully capture the relations between mentions and entities.

– DNorm further improves the performance by directly modeling the interaction
between mentions and entities. SurfCon yields the best performance among
all baselines because it utilizes external knowledge bases via the term-term
co-occurrence graph.

– Our KGSynNet beats all baselines in all three cases. Especially, we beat the
best baseline, SurfCon, by 14.7%, 10.3%, and 5.6% for the All case, 14.2%,
10.0%, and 5.4% for the Regular case, and 45.7%, 24.4%, and 10.2% for

Table 2. Experimental results: − means that KGSynNet removes the component while
→ means that KGSynNet replaces the fusion method.

Methods hits@3 hits@5 hits@10

All Regular Difficult All Regular Difficult All Regular Difficult

JACCARD [21] 52.28% 56.61% 0.00% 58.03% 62.83% 0.00% 63.76% 69.04% 0.00%

Word2Vec [6] 47.00% 50.88% 0.00% 52.28% 56.59% 2.30% 58.31% 63.10% 4.60%

CNN [19] 51.76% 55.69% 4.33% 57.75% 61.98% 6.38% 65.13% 69.72% 9.34%

BERT [7] 54.60% 58.87% 2.96% 60.41% 65.02% 4.78% 66.50% 71.39% 7.52%

DNorm [15] 56.23% 59.78% 12.76% 63.79% 67.58% 17.77% 71.89% 75.64% 26.42%

SurfCon [29] 58.29% 62.02% 12.98% 66.27% 70.11% 19.59% 75.20% 79.03% 28.93%

KGSynNet 66.84% 70.81% 18.91% 73.09% 77.13% 24.37% 79.41% 83.35% 31.89%

−KE 64.91% 69.07% 14.58% 71.56% 75.77% 20.73% 79.12% 83.14% 30.52%

−TransC 65.80% 69.92% 15.95% 71.44% 75.79% 18.91% 78.94% 83.18% 27.80%

→DA 63.51% 67.19% 19.13% 70.85% 74.47% 27.10% 78.13% 81.77% 34.17%

→EF 61.98% 65.85% 15.26% 68.63% 72.54% 21.41% 76.28% 80.29% 27.79%



KGSynNet 185

the Difficult case with respect to Hits@3, Hits@5, and Hits@10, respectively.
We have also conducted the statistical significance tests, and observe that
for the All case group, p<< 0.01 under the paired t-tests. The significant
improvement clearly shows that our KGSynNet is effective in integrating the
knowledge information with the semantic features.

4.5 Ablation Study

To better understand why our KGSynNet works well, we compare it with four
variants: (1) −KE: removing the knowledge embedding and the Fusion Gate; (2)
−TransC: removing losses of Eq. (4) and Eq. (5) from Eq. (8) of TransC, to learn
the knowledge embedding by utilizing only TransE; (3) →DA: directly adding
the learned semantic features and knowledge features of entities together; and
(4) →EF: fusing the learned semantic features and knowledge information via a
FC network [30].

Table 2 reports the results of the variants in the last four rows and clearly
shows three main findings:

– By excluding the knowledge embedding (see the last fourth row in Table 2),
our KGSynNet drops significantly for the All case, i.e., 1.93 for hits@3, 1.53
for hits@3, and 0.29 for hits@10, respectively. Similar trends appear for the
Regular case and the Difficult case. The performance decay is more serious
than those in other variants, −TransC and →DA. This implies the effective-
ness of our KGSynNet in utilizing the knowledge information.

– By removing TransC, we can see that the performance decays accordingly in
all cases. The results make sense because learning the knowledge represen-
tation by TransE alone does not specifically model the InstanceOf relation
and the SubclassOf relation. This again demonstrates the effectiveness of our
proposed TransC-TransE framework.

– In terms of the fusion mechanism, the performance exhibits similarly under
the three metrics. Here, we only detail the results of hits@3. It shows that the
performance by Fusion Gate beats “DA” and “EF” 3.3 to 5.0 in both the All
and Regular cases. However, “DA” improves the performance significantly
on the Difficult case, i.e., no common sub-word appearing in the mention-
entity pairs. The results make sense because in the Difficult case, the model
depends heavily on the external knowledge. Setting the weight to 1, i.e., the
largest weight, on the learned knowledge features can gain more knowledge
information. On the contrary, “EF” yields the worst performance on the All
and Regular cases, but gains slightly better performance than −KE on the
Difficult case. We conjecture one reason is that the available data is not
sufficient to trained a more complicated network in “EF”.

4.6 Online Evaluation

Our KGSynNet has been deployed in the entity linking module, a key module
of the KBQA system of a professional insurance service app, served more than



186 Y. Yang et al.

Fig. 3. The architecture of online system.

one million insurance agents. The architecture of the online system is shown in
Fig. 3. On average, the requests of the KBQA service of the app are 700K per
day with more than 50 requests per second at the peak.

We conducted an A/B test to compare the original BERT model and our
KGSynNet on the entity linking module of the KBQA system for two weeks.
The traffic was evenly split into two groups. Approximately 10% of users’ queries
involve disease mentions, within which the proportion of queries with user expe-
rience feedback is around 5%. Eventually, BERT and KGSynNet received about
25K and 26K user feedbacks, respectively. The positive rate of the feedback for
BERT is about 34.9%, while the positive rate of KGSynNet is about 37.8%,
significantly better with p < 0.05 under the paired t-test.

Moreover, we randomly selected and labeled 1000 disease related queries from
each of the two groups. The proportion of queries involving difficult cases was
around 3% in both groups. Results in Table 3 show that KGSynNet consistently
outperforms BERT in terms of hits@3, hits@5, and hits@10, respectively.

Table 3. Online evaluation results

Metric BERT KGSynNet

All Regular Difficult All Regular Difficult

hits@3 58.2% 59.9% 3.3% 68.4% 70.0% 18.8%

hits@5 63.2% 64.9% 6.7% 75.4% 77.1% 25.0%

hits@10 70.0% 71.9% 10.0% 81.7% 83.4% 31.3%

4.7 Case Studies

We provide several typical examples to show the effectiveness of our KGSynNet.
In Table 4, four query mentions are selected with the top-5 discovered synony-
mous entities. The results show that:

– Our KGSynNet can successfully detect at least one annotated synonym for
each mention. For example, for the mention, “hyperelastic skin”, our found
top-5 synonymous entities are all correct.



KGSynNet 187

– For the mention of “facial paralysis”, other than its synonym “facioplegia”,
our KGSynNet can discover “prosopoplegia” through the semantic equiva-
lence. Other top predicted terms, e.g., “neonatal facial paralysis”, “peripheral
facial paralysis”, and “idiopathic facial paralysis”, are all hyponyms of the
mention with specific clinical manifestations.

Table 4. Query mentions and the corresponding top 5 synonymous entities: the correct
synonyms are underlined.

Mention Top 5 Found Entities

hyperelastic skin Ehlers-Danlos syndrome, Ehlers-Danlos syndrome, dermatolysis, Ehlers-Danlos, cutis laxa

stomachache collywobbles, pain, hypogastralgia, generalized pain, lipomatosis dolorosa

prosopoplegia, facioplegia, neonatal facial paralysis, peripheral facial paralysis,
facial paralysis

idiopathic facial paralysis

exhaustion debility, asthenia, dystonia, insomnia, asthenozoospermia

4.8 Error Analysis

We provide a concrete error analysis by sampling 10% of the incorrectly predicted
mention-entity pairs in our KGSynNet. Table 5 lists the main error types:

– More than half of the errors (54%) occur due to the lack of knowledge in the
knowledge graph. For example, since the entity “bow legs” is not in the KG,
the mention “knee varus” mistakenly found “knee valgus” and “congenital
knee valgus” through surface matching.

– The second largest error comes from hypernyms distraction, which accounts
for 29% of the total errors. For example, the mention “pituitary gland cancer”
is distracted to its hypernym “brain cancer” and “cerebral cancer”, and failed
to identify the true entity “pituitary gland malignant tumor”.

– Another 12% of the errors are due to the keyword extraction error. For exam-
ple, the golden entity for the mention, “lung calcification”, is “lung mineral-
ization”. Our KGSynNet makes a wrong extraction on the keyword “calcifica-
tion” and discovers a wrong entity, “bronchial calcification”, for this mention.
It seems that this problem may be alleviated by adding an fine-grained feature
interaction between mentions and entities in our KGSynNet.



188 Y. Yang et al.

Table 5. Error analysis. The “Golden Entity” is the correct entity for the corresponding
mention.

5 Conclusion

In this paper, we tackle the task of entity synonyms discovery and propose
KGSynNet to exploit external knowledge graph and domain-specific corpus. We
resolve the OOV issue and semantic discrepancy in mention-entity pairs. More-
over, a jointly learned TransC-TransE model is proposed to effectively represent
knowledge information while the knowledge information is adaptively absorbed
into the semantic features through fusion gate mechanism. Extensive experi-
ments and detailed analysis conducted on the dataset show that our model sig-
nificantly improves the state-of-the-art methods by 14.7% in terms of the offline
hits@3 and outperforms the BERT model by 8.3% in the online positive feedback
rate. Regarding future work, we can extend our KGSynNet to other domains,
e.g., education or justice, to verify its generalization ability.

Acknowledgement. The authors of this paper were supported by NSFC under grants
62002007 and U20B2053.

References

1. Bizer, C., et al.: DBpedia - a crystallization point for the web of data. J. Web
Semant. 7(3), 154–165 (2009)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguistics 5, 135–146 (2017)

3. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD,
pp. 1247–1250. ACM (2008)

4. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

5. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for
natural language inference. In: ACL, pp. 1657–1668 (2017)

6. Cho, H., Choi, W., Lee, H.: A method for named entity normalization in biomed-
ical articles: application to diseases and plants. BMC Bioinform. 18(1), 1–12, 451
(2017)

7. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)



KGSynNet 189

8. Dogan, R.I., Lu, Z.: An inference method for disease name normalization. In: AAAI
(2012)

9. D’Souza, J., Ng, V.: Sieve-based entity linking for the biomedical domain. In: ACL
and IJCNLP, pp. 297–302 (2015)

10. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E.H., Smith, N.A.:
Retrofitting word vectors to semantic lexicons. In: NAACL, pp. 1606–1615 (2015)

11. Fei, H., Tan, S., Li, P.: Hierarchical multi-task word embedding learning for syn-
onym prediction. In: ACM SIGKDD, pp. 834–842 (2019)

12. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation prin-
ciple for unnormalized statistical models. AISTATS 9, 297–304 (2010)

13. Hu, S., Tan, Z., Zeng, W., Ge, B., Xiao, W.: Entity linking via symmetrical
attention-based neural network and entity structural features. Symmetry 11(4),
453 (2019)

14. Jiang, L., et al.: GRIAS: an entity-relation graph based framework for discovering
entity aliases. In: IEEE ICDM, pp. 310–319 (2013)

15. Leaman, R., Dogan, R.I., Lu, Z.: DNorm: disease name normalization with pairwise
learning to rank. Bioinformatics 29(22), 2909–2917 (2013)

16. Li, H., et al.: CNN-based ranking for biomedical entity normalization. BMC Bioin-
form. 18(S-11), 79–86 (2017)

17. Lv, X., Hou, L., Li, J., Liu, Z.: Differentiating concepts and instances for knowledge
graph embedding. In: EMNLP, pp. 1971–1979 (2018)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

19. Mondal, I., et al.: Medical entity linking using triplet network. In: Clinical NLP
(2019)

20. Mou, L., et al.: Natural language inference by tree-based convolution and heuristic
matching. In: ACL (2016)

21. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard
coefficient for keywords similarity. In: IMECS (2013)

22. Schumacher, E., Dredze, M.: Learning unsupervised contextual representations for
medical synonym discovery. JAMIA Open 2, 538–546 (2019)

23. Shen, J., Lyu, R., Ren, X., Vanni, M., Sadler, B.M., Han, J.: Mining entity syn-
onyms with efficient neural set generation. In: AAAI, pp. 249–256 (2019)

24. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:
NIPS, pp. 2377–2385 (2015)

25. Sung, M., Jeon, H., Lee, J., Kang, J.: Biomedical entity representations with syn-
onym marginalization. In: ACL, pp. 3641–3650 (2020)

26. Wang, C., Cao, L., Zhou, B.: Medical synonym extraction with concept space
models. In: IJCAI, pp. 989–995 (2015)

27. Wang, J., Lin, C., Li, M., Zaniolo, C.: An efficient sliding window approach for
approximate entity extraction with synonyms. In: EDBT, pp. 109–120 (2019)



190 Y. Yang et al.

28. Wang, X., et al.: Improving natural language inference using external knowledge
in the science questions domain. In: AAAI, pp. 7208–7215 (2019)

29. Wang, Z., Yue, X., Moosavinasab, S., Huang, Y., Lin, S.M., Sun, H.: SurfCon:
synonym discovery on privacy-aware clinical data. In: ACM SIGKDD, pp. 1578–
1586 (2019)

30. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced language
representation with informative entities. In: ACL, pp. 1441–1451 (2019)



Iterative Reasoning over Knowledge
Graph

Liang Xu and Junjie Yao(B)

East China Normal University, Shanghai, China
junjie.yao@cs.ecnu.edu.cn

Abstract. The concept reasoning is an essential task in text data man-
agement and understanding. Recent methods usually capture shallow
semantic features and cannot extend to multi-hop reasoning. Knowledge
graphs have rich text information and connections. We use a knowl-
edge graph to encode complex semantic relation between evidence and
question. The nodes represent valuable information as clue entities and
candidate answers in evidence and question, and the edges represent the
reasoning rules between nodes.

In this paper, we propose a graph-based reasoning framework with
iterative steps. The model obtains the completed evidence chain through
iterative reasoning. The new approach iteratively infers the clue entities
and candidate answers from the question and clue paragraphs to as new
nodes to expand the semantic relation graph. Then we update the seman-
tic representation of the questions and context via memory network and
apply the graph attention network to encode the reasoning paths in the
knowledge graph. Extensive experiments on commonsense reasoning and
multi-hop question answering verified the advantage and improvements
of the proposed approach.

Keywords: Iterative reasoning · Knowledge graph · Clue entities

1 Introduction

Recently, some neural network models have outperformed humans on answer-
ing questions among several public datasets. Does it indicate that the ability
of neural networks to comprehend and reason about text has reached human
standards? The answer is obviously unsure.

Much of the existing work has focused on the shallow semantic interaction of
the question and evidence, resulting in the inability to capture semantic infor-
mation at a deeper level and being unable to complete complex reasoning tasks.
In addition, the reasoning process of neural network models is implicit, which
leads to many unreliable and counterintuitive results. Especially for multi-hop
question answering (QA), the model needs to understand complex semantics and
have a powerful reasoning engine.

This work was supported by NSFC grant 61972151.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 191–206, 2021.
https://doi.org/10.1007/978-3-030-73194-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_14


192 L. Xu and J. Yao

Fig. 1. An example of the reasoning process of the multi-hop question answering. The
second and third sentences cannot be obtained directly from the question, and need to
be obtained step by step through iterative reasoning.

As shown in Fig. 1, the question is “what nationality was James Henry Miller’s
wife?”. According to the way of reasoning like humans, we must first find the valu-
able clue information of “James Henry Miller” from the evidence source. Then,
we try to find the information about his wife according to the clue information
of “James Henry Miller”. At last, we get his wife’s nationality as answer accord-
ing to the clue information of his wife. This is a very typical case of multi-hop
reasoning. To get the final answer, it must go through a multi-stage iterative rea-
soning process. If directly based on the text of the question, the second and third
step documents cannot be retrieved directly by the method of pattern matching,
which does not conform to the reasoning way. The rigorous reasoning must be to
iteratively deal with the semantic relationship between the question and the evi-
dence and finally make a prediction. Many current models are similar to black
boxes to input directly questions and evidence into deep neural network models
to infer answers. This approach is not only inaccurate but also not interpretable.

The inference engine needs to understand the complex semantics in the text.
For an open-domain question answering, if all the relevant evidence is retrieved
based only on the question at the beginning, then the evidence is related to the
question, but the evidence is independent of each other. In addition, the evi-
dence obtained through simple retrieval methods such as pattern matching not
only has low accuracy but also creates a lot of noise, making it difficult to get
the correct final answer. Because the pattern matching method can only retrieve
directly related evidence, and multi-hop reasoning often requires a lot of interme-
diate clues to form a complete evidence chain, and these intermediate clues are
often not directly retrieved by pattern matching. Therefore, a complex multi-hop
reasoning model not only needs to be able to handle the semantic relationship
between the question and the retrieved evidence, but also the complex semantic
relationship between different evidence. Only through iterative reasoning can
the complete chain of evidence be accurately retrieved. Most of the previous
work is based on the question to retrieve documents in the external information
source as the external knowledge of reasoning, but direct retrieval often loses a
lot of important indirect related evidence, and at the same time adds a lot of
worthless redundant information. In addition, there is still a lot of work that



Iterative Reasoning over Knowledge Graph 193

involves step-by-step reasoning through multiple rounds of interaction, and the
next round of reasoning is based on the results of the previous step. This is closer
to the way people think. However, the reasoning engine proposed by many works
is very simple and the effect is not ideal. In addition, the reasoning model based
on the attention mechanism used by these methods has poor reasoning ability.
With the development of graph neural network models, a lot of work began to
do text reasoning based on graph neural networks. However, these works use
simple link relationships between question and retrieved evidence to construct
graphs, thereby losing a lot of semantic information in the text, resulting in low
accuracy of inference results.

In order to solve the above problem, we propose a novel framework for graph-
based iterative reasoning. Similar to people’s way of thinking, it is not to let the
question directly interact with all the information, but to find related clues first,
infer the deeper clues of the next hop based on the existing clues, until the
answer is found.

We initialize the raw question text as clues, and then construct a semantic
relationship graph by iterating between retrieval and reasoning. At each itera-
tion, the semantic relation graph will expand with new nodes and edges. The
node contains the representation of the context and question which update iter-
atively, and the edge encodes the inference path information. Paths of reasoning
will be diverse because the process of reasoning is uncertain.

In the current hop, we use the key entities called clue entities in the question
and context to retrieve information called clue paragraphs. Based on the previ-
ous hop clue paragraphs, we then reasoned to obtain the next hop clue entities
and candidate answers until we find the correct answer. This kind of iteration
process of retrieval-reasoning can provide complete evidence chain.

Complex multi-hop reading comprehension QA requires complete evidence
chain to describe the rigor of its reasoning logic. Previous deep learning based
models cannot provide a sufficient explanation of the reasoning process and lack-
ing persuasiveness. HotpotQA [23] asks the model for supporting facts, which
means interpretability at the sentence level. Our approach extracts several enti-
ties at each step, and finally provides entity-level interpretability through the
explicit inference paths. To improve the reasoning accuracy, we use clue entities
and candidate answers to iteratively construct graph, then utilize a graph atten-
tion network [19] to aggregate the information of the inference paths. With the
deepening of reasoning, the expression of the question has different from the
original question. Therefore, We use a dynamic memory network [10,17,18] to
update iteratively the semantic information of the question at each hop. The
contribution of this work can be summarized as follows:

1. We propose a novel framework of graph-based reasoning for multi-hop ques-
tion answering;

2. Our model uses iterative reasoning to continuously retrieve clue evidence to
form a complete evidence chain.

3. Experiments on two datasets verify the improvements, compared with the
baselines;



194 L. Xu and J. Yao

2 Related Works

This work is related to several areas. We briefly review them in this section.

Machine Reading Comprehension: R-Net [21] proposes a self-matching
attention mechanism to refine the representation by matching the passage
against itself, which effectively encodes information from the whole passage.
BiDAF [16] network, a multi-stage hierarchical process that represents the con-
text at different levels of granularity and uses bidirectional attention flow mech-
anism to obtain a query-aware context representation without early summariza-
tion. DrQA [4] leverages a neural model to extract the accurate answer from
retrieved paragraphs, usually called retrieval-extraction framework. Multi-step
Retriever-Reader [5] uses gated recurrent unit to update the query at each step
conditioned on the state of the reader and the reformulated query is used to
re-rank the paragraphs by the retriever.

Knowledge Graph: Graph modeling is increasingly used in reasoning. In
BAG [3], relationships are modeled between nodes in an entity graph and atten-
tion information is utilized between a query and the entity graph. Entity-GCN [2]
considers three different types of edges that connect different entities in the entity
graph. HGN [8] provides multi-level fine-grained graphs with a hierarchical struc-
ture for joint answer and evidence prediction. construct a hierarchical graph for
each question to capture clues from sources on different levels of granularity:
question, paragraphs, sentences, and entities. DFGN [22] constructs a dynamic
entity graph, wherein each reasoning step irrelevant entities are softly masked
out, and a fusion module is designed to improve the interaction between the
entity graph and the documents.

Multi-hop Reasoning [1] introduces a new graphbased recurrent retrieval
approach that learns to retrieve reasoning paths over the Wikipedia graph to
answer multi-hop open-domain questions. [14] answers Complex Open-domain
Questions Through Iterative Query Generation. [13] utilizes evidence extracted
from both structured knowledge base ConceptNet and Wikipedia to construct
graph. ORQA [11] treats evidence retrieved from open corpus as a latent variable.
jointly learn simultaneously the retriever and reader from question-answer string
pairs and without any IR system. QANet [24] consists exclusively of convolution
and self-attention, where convolution models local interactions and self-attention
models global interactions. Cognitive Graph QA [7] employs an machine read-
ing comprehension model to predict answer spans and possible next-hop spans,
and then organizes them into a cognitive graph. Coref-GRN [6] extracts and
aggregates entity information in different references from scattered paragraphs.
It utilizes co-reference resolution to detect different mentions of the same entity.
These mentions are combined with a graph recurrent neural network to produce
aggregated entity representations. KagNet [12] match tokens in questions and
answers to sets of mentioned concepts from the knowledge graph ConceptNet,
then construct sub-graph via path finding.



Iterative Reasoning over Knowledge Graph 195

3 Framework Overview

For complex multi-hop reasoning question, the key clues are found from the origi-
nal question as the frontier clues, and new evidence is found based on the frontier
clues in each iteration. This iterative reasoning method makes the evidence found
more accurate and comprehensive. While retrieving evidence, it is necessary to
deal with the complex semantic relationship between the context and the prob-
lem. For many jobs, the complex relationship between them is handled through
a simple link method, which leads to the loss of semantics. Therefore, we propose
a semantic relationship diagram to indicate complex semantic relationships in
text. The nodes in the graph are the key information in each document, and
there is a logical deduction between different information. This push-to-relation
mining is also achieved through iterative reasoning. At each step of reasoning,
new clues will be found to continue to the next round. In the process of iterative
reasoning, the representation of the problem also changes. We can see complex
semantic relations, from question to answer, there is a clear reasoning path.

WikipediaQuery Wikipedia Query

Prediction
Module

Graph 
Reasoning

Engine

Graph 
Reasoning

Engine

Graph 
Reasoning

Engine

0.1

0.3
0.2

…

Fig. 2. The framework of iterative reasoning with knowledge graph. We iteratively
infer clue entities and candidate answers through the inference engine as new nodes to
expand the knowledge graph.

The model of text reasoning usually consists of two parts, one is a powerful
reasoning engine, and the other is a knowledge graph. Open field multi-hop
question and answer, the model retrieves evidence from external information
sources according to the question, and uses the reasoning engine to iteratively
reason on the new evidence. In complex situations, only one-time retrieval of
evidence based on the problem description often fails to retrieve the evidence in
the intermediate process of the reasoning evidence chain, and can only retrieve
the evidence that contains partial information. Just like human thinking, it must



196 L. Xu and J. Yao

be a step-by-step search on the basis of existing evidence to obtain new evidence,
and iterative reasoning to unearth new clues, and then the next step of search
and reasoning. This retrieval method cannot be through pattern matching, but
the inference relationship between clues and evidence. The model needs to solve
two. First, how to retrieve information that allows us to retrieve comprehensive
and accurate information, does not contain redundant information, and has less
noise? Second, the answer to the question is contained in several documents
retrieved. How to deal with the semantic relationship between documents and
between documents and questions? Only by correctly and effectively representing
the semantic relationship between them, can complex reasoning be carried out.
There are complex semantic relationships between documents, and what we need
most is to encode the inference relationships among them. The nodes of the
knowledge graph are fragments extracted from the document, and the edges of
the graph are the push-to-relationships between nodes. Let the model learn to
derive new clues based on the question text. The semantic relationship graph
is used to encode the semantic relationship of the text, and the graph neural
network is used as the reasoning engine for path information aggregation and
answer prediction.

As shown in the Fig. 2, we construct the knowledge graph by generating
new clue entities and candidate answers through iterative reasoning. On this
basis, the graph neural network is used as the reasoning engine for answer pre-
diction. Our approach encodes the question memory iteratively. We first take
the raw question text as the initialization of clue paragraphs, and extract the
key information in the clue paragraphs as the clue entities, then retrieve para-
graphs related to clue entities as the next hop clue paragraphs. The clue entities
and candidate answers are used as nodes, and an knowledge graph is established
according to the progressive relationship in the reasoning process. Each node has
two vector embeddings representation, one is the question memory and the other
is the context semantic embedding. The context semantic embedding requires
the graph attention neural network model aggregate neighbor information of the
inference paths, and the question memory update is based on the memory of
the previous hop and the question semantic embedding of the current hop via
iterative memory network.

4 Approach

This chapter mainly introduces the realization of the reasoning model proposed
in this paper. The proposed framework in Fig. 3. It consists of three core mod-
ules: Knowledge Graph Constructor, Iterative Memory Network, Graph Atten-
tion Reasoning. The Semantic Relation Graph Constructor iteratively extracts
clue entities and candidate answers, the Graph Attention Reasoning module
encodes the information of the inference paths, and the iterative question mem-
ory is updated accordingly at each hop.



Iterative Reasoning over Knowledge Graph 197

Fig. 3. The framework consists of three core modules: Knowledge Graph Constructor,
Iterative Memory Network and Graph Attention Reasoning.

4.1 Knowledge Graph Constructor

In this section, we will introduce the implementation of Semantic Relation Graph
Constructor. In order to construct explicit and logical reasoning paths, we pro-
pose a semantic relation graph that can encode complex entities-level seman-
tic logical relationships between different text. The nodes of semantic relation
graphs encode the representation of query and context, and the directed edges of
different nodes directly indicate inference paths. We take questions and choices,
and related documents as input to the module to obtain multi-level features
that include question embedding, context semantic embedding, and clue entities
and candidate answers. Given a question q consisting of l tokens {q1, ..., ql}, sev-
eral choices are initialized as candidate answers a{a1, ...., ak} for multiple-choice
questions. If no choices are given with question, model need to extract text span
from paragraphs as answer for span-extraction QA. Span-extraction QA initial-
izes entities from raw question text by fuzzy matching as first hop clue entities x.
Multiple-choices QA initializes entities from raw question text by fuzzy match-
ing and all choices as first hop clue entitiesx. For the task of machine reading
comprehension for open-domain QA, model needs to use clue entities retrieve a
document or a small set of documents of n paragraphs where a single paragraph
p consists of m tokens {p1, ..., pm} from external knowledge source.

We input Wikipedia, a collection of article, as external source, and using clue
entities x to retrieve related document para[x] from it. Then we transform these
document mentioned clue entities x in previous hop as clue[x] in current hop to



198 L. Xu and J. Yao

extract candidate answers a and useful next-hop clue entities y from the para[x].

(â, y, E(x), C(x)) = Bert(q, a, clue[x], para[x]) (1)

where â is the expansion of candidate answers, E(x) is the question vector rep-
resentation of the current hop clue entities x, the C(x) is the context semantic
vector representation for the combination of question and clue paragraphs.

Pointer Network. We use Pointer Network [20] variants to train the model.
Pointer Networks directly takes the probability obtained after softmax as an
output, allowing the probability to assume the role of a pointer to a specific
element of the input sequence as follows:

ui
j = vT tanh(W1ej + W2di) (2)

P i
j = softmax(ui

j) (3)

e is pointer vector,d is output vector of BERT, vT ,W1and W2 are learnable
parameters. we also utilize Shop, Ehop, Sans, Eans as additional learnable pointer
vectors to predict targeted spans. The probability of the ith input token to be
the start of an candidate answer span P start

ans [i] is calculated as follows:

P start
ans [i] =

ev
T tanh(W1Sans+W2di)

∑
j ev

T tanh(W1Sans+W2dj)
(4)

Let P end
ans [i] be the probability of the i th input token to be the end of an candidate

answer span, which can be calculated following the same formula. We only focus
on the positions with top k start probabilities startk. For each k, the end position
endk is given by:

endk = arg max
startk≤j≤startk+maxL

P end
ans [j] (5)

Where maxL is the maximum possible length of spans. The process extract the
candidate answers based on Sans and Eans, and extracting the next hop clue
entities based on Shop and Ehop. We use the next hop clue entities y to extract
relevant documents para[y] from Wikipedia, and use the predecessor documents
para[x] which extracted clue entities y as current hop clue paragraphs clue[y].
Both are put into the model to extract the further hop candidate answers and
clue entities.

Semantic Encoding: Outputs of BERT at position 0 have the ability to sum-
marize the input sequence. Thus the most straightforward method is to use
T0 as sem[q, clue[x], para[x]]. In our experiment, the summary of the four-to-
last layer output at position 0 as sem[q, clue[x], para[x]] performs the best.
The node of knowledge graph initialize the vector representation by using
h0 = sem[q, clue[x], para[x]].



Iterative Reasoning over Knowledge Graph 199

Fig. 4. The example of graph reasoning for multi-hop question answering, which itera-
tively obtains clue entities and candidate answers as nodes of semantic relation graph.

4.2 Iterative Memory Network

Figure 4 illustrates an example where our framework handles multi-hop reading
comprehension.

As the reasoning deepens step by step, the characterization of the question
should change iteratively. The question memory m iterates over the question
vector representations outputted by the semantic relation graph constructor.
In its general form, the question memory module is comprised of an attention
mechanism as well as a recurrent network with which it updates its memory
[10]. During each iteration,the attention mechanism attends over the question
vector representations E and the previous memory mi−1. The scoring function
S takes as input the feature set z(c,m, q) and produces a scalar score. We first
define a large feature vector that captures a variety of similarities between input,
memory and question vectors:

z(E,m) = [E,m,E ◦ m,ETWm] (6)

In our work, we use a gating function as our attention mechanism. For each
iteration i, the mechanism takes the vector representation E of current question
and a previous memory mi−1 as inputs to compute gating.

gi = S(E,M i−1) = σ
(
W2tanh

(
W1z(E,mi−1) + b1

)
+ b2

)
(7)

Different inference paths have different effects on question memory. According
to the inference path, each entity obtained from current clue[x] has different
memories. Based on the previous memory mi−1 ,we update the question memory
for each time of the multi source knowledge extraction. The initial state of this
GRU is initialized to the question vector itself: m0 = E0.

hi
t = giGRU(E, hi

t−1) + (1 − gi)hi
t−1 (8)

mi = GRU(hi
t,m

i−1) (9)



200 L. Xu and J. Yao

4.3 Graph Attention Reasoning

Algorithm 1 describes the procedure of iterative graph attention reasoning. The
nodes of semantic relation graph are iteratively added based on the reasoning
of each hop. At each reasoning hop, we will obtain new candidate answers and
clue entities from semantic relation graph constructor as new nodes to expand
the knowledge graph. At the same time, we use the context semantic vector
outputed as the initialization vector representation of the knowledge graph nodes
and the current hop question memory vector as the question memory of the
candidate answers nodes. Then using the latest clues to retrieve clue paragraphs
in Wikipedia, and re-place them into the semantic relation graph constructor
to extract candidate answers and clue entities for the next hop to continuously
expand the knowledge graph and fill node properties. The knowledge graph can
effectively aggregate the information of the inference path through the encoding
of multiple neural attention layers. There may be multiple paths passing through
the same node. Therefore, using the attention mechanism for different paths of
this node will capture the information differences of different inference paths
more finely.

Algorithm 1. Iterative Answer Generation.
Require: Question q, Entity Sequence S, Graph G,Preductor F ,Full Wiki W , Seman-

tic Relation Graph Constructor SE,Question Encoder QE, Question Embedding
qe,Context Semantic Embedding sem,Entities hop[x]

1: Initialize S and G with clue entities from question and choices
2: repeat
3: pop a entity x from S
4: fetch clue[x] and para[x] from W
5: if x is clue entity then
6: generate multi-level features qe, sem, hop[x] = SE(q, clue[x], para[x])
7: for y in hop[x] do
8: initialize the representation G[y] = sem
9: update question memory my = QE(mx, qe])

10: add y and edge(x, y) to G
11: push y in S
12: end for
13: end if
14: update node representation G[x] via aggregating neighbors information
15: until S is null
16: return answer with arg max F (M [x], G[x])

We use graph attention networks (GAT) [19] to encode the information of
different inference paths. Specifically, GAT takes all the nodes as input, and
updates node feature through its neighbors in the graph. The input to our layer
is a set of node features, h = {h1, h2, ..., hN}, hi ∈ RF , where N is the number
of nodes, and F is the number of features in each node. The layer produces a



Iterative Reasoning over Knowledge Graph 201

new set of node features h
′
= {h

′
1, h

′
2, ..., h

′
N} as its output. Then performing a

shared attentional mechanism a to computes attention coefficients

eij = a(Whi,Whj) (10)

That indicate the importance of node j’s features to node i. To make coefficients
easily comparable across different nodes, we normalize them across all choices of
j using the softmax function: In the implementation, the attention mechanism
a is a single-layer feedforward neural network, and applying the LeakyReLU
nonlinearity. Fully expanded out, the coefficients computed by the attention
mechanism may then be expressed as:

aij =
exp

(

LeakyRelu

(

Weij [hi||hj ]
))

∑
j∈Ni

exp

(

LeakyRelu

(

Weik [hi||hk]
)) (11)

Where Weij is the weight matrix corresponding to the edge type eij between
the i-th and j-th nodes. Where W ∈ Rd×d is a weight matrix to be learned, σ(·)
denotes an activation function, and aij is the attention coefficients, which can
be calculated by:

h
′
i = σ

( ∑

j∈Ni

aijWhj

)

(12)

5 Experiment

In this chapter, we will verify the validity and interpretability of our model
through experiments. Experiments were conducted from common-sense reason-
ing and multi-hop machine reading comprehension tasks. In order to further
analyze the contribution of each component of the model to the whole, we com-
pare and analyze the independent value of each module through ablation exper-
iments. In addition, we also conducted a case study to analyze how our model
uses knowledge to iteratively infer the correct answer step by step.

5.1 Datasets

We use CommonSenseQA1 and HotpotQA2 for the evaluation. Common-
SenseQA is a dataset for multi-choices commonsense question answering which
inferences correct answer with prior knowledge. It collected 12,247 commonsense
questions which each question has only one correct answers and four distractors.
The full-wiki dump of HotpotQA contains training set (90,564 questions), a
development set (7,405 questions).

1 https://www.tau-nlp.org/commonsenseqa.
2 https://hotpotqa.github.io.

https://www.tau-nlp.org/commonsenseqa
https://hotpotqa.github.io


202 L. Xu and J. Yao

5.2 Baselines

In order to verify the reasoning ability of our proposed model, we conducted
comparative experiments with other models.

– Bert [23] follows the retrieval-extraction framework of DrQA and subsumes
the advanced techniques in QA, such as self-attention, character-level model,
bi-attention.

– MUPPET [9] uses a bidirectional GRU to process the paragraph and obtain
the contextualized word representation.

– CogQA [7] framework for multi-hop reading comprehension QA at scale.
– ESIM+ELMO [23] is a strong NLI model.
– CoS-E [15]is used to train language models to automatically generate expla-

nations.
– KagNet [12] effectively utilizes external structured commonsense knowledge

graphs to perform explainable inferences.

In order to verify the independent contributions of the two component mod-
ules to the model framework and the overall contribution of the combination,
we conducted the following four sets of comparative analysis experiments:

– Baseline performs self-attention interaction between the context and query
to produce the final answer.

– Baseline + memory interacts with the context in multi-hop to update the
query.

– Baseline + graph adds the semantic relation graph constructor on the basis
of the baseline model.

– Baseline + memory + graph is the complete framework of our proposed
model, including memory network and semantic relation graph constructor.

5.3 Quantitative Study of Commonsense Reason

In CommonSenseQA, multiple options are given along with the question, and
the model needs to pick the one option as correct answer. The accuracy of the
answer is the main indicator of the evaluation model. The results on the Com-
monSenseQA dataset showing in Fig. 5 illustrates that our model outperform
all comparison models.

From the comparison chart of accuracy, our approach makes the accuracy
higher. Compared to other models that only use the raw question text as con-
text material, we use external knowledge sources like Wikipedia as supporting
facts for inference,and make full use of the semantic information of the relevant
documents retrieved. Although there is often a complex reasoning relationship
between external knowledge and question, our model can handle them well and
thus exhibit higher accuracy. In addition, since we iteratively use external sources
as supporting facts, the path of inference is explicit and interpretable.



Iterative Reasoning over Knowledge Graph 203

Fig. 5. The results of different models on commonsenseQA, our model achieved the
highest accuracy.

5.4 Quantitative Study on Question Answering

For the evaluation of HotpotQA, Exact Match (EM), precision, recall and F1
score of not only answers but also sentence-level supporting facts to verify the
model’s reasoning ability and explainability.

Accuracy Results: The results on HotpotQA dataset are listed in Table. 1. Not
only Exact Match (EM), precision, recall and F1 score of our proposed approach
performs much better than the baseline model and MUPPET, but also strong
competition with the latest models CogQA.

Table 1. Results on HotpotQA. The evaluation of answer and supporting facts consists
of two metrics: Exact Match (EM) and F1. Joint EM is 1 only if answer and supporting
facts are both strictly correct.

Methods Answer Supporting facts Joint

EM F1 Pre Recall EM F1 Pre Recall EM F1 Pre Recall

Baseline 17.70 26.40 27.56 27.71 2.538 27.76 34.88 26.12 0.985 10.21 13.02 10.22

MUPPET 31.09 39.22 41.20 42.76 17.94 50.31 58.02 55.45 10.04 28.89 29.44 31.94

CogQA 36.56 48.49 51.29 49.06 22.44 58.15 63.58 59.90 11.64 34.42 39.22 35.88

Our approach 37.03 50.53 51.60 49.51 22.64 62.14 64.02 60.37 12.52 38.15 40.66 35.90

Explainability Study: For multi-hop reading comprehension QA, not only
need to gain the final answer, often the internal process of multi-hop reasoning
is very critical. The higher the comprehensive evaluation metrics of supporting
facts, the stronger the model reasoning ability. Our proposed model achives the
highest value of supporting facts in Table 1, indicating that our model has strong
multi-hop reasoning ability and interpretability.



204 L. Xu and J. Yao

Query memory mechanism provides iterative memory for our reasoning at
each hop, and updates simultaneously clue entities and documents, which make
it more accurate to get supporting facts. The graph attention neural network
has greater advantages in aggregating inference paths information, and obtaining
accurate reasoning answers.

5.5 Ablation Study

In order to verify the effectiveness of each module in the framework proposed in
the paper, we constructed four sets of comparative experiments. On the basis of
the baseline model, we continue to add components to verify the independent
contribution of each component to the model. The Table 2 shows the experi-
mental results between different comparison models.

Table 2. Ablation study results of HotpotQA and CommonSenseQA.

Model CommonSenseQA HotpotQA

Answer Answer Supporting facts

Accuracy EM F1 Pre Recall EM F1 Pre Recall

Baseline 57.32 27.32 38.97 40.01 38.45 24.37 39.50 38.99 40.45

Baseline + Memory 69.84 34.84 48.98 50.02 47.87 28.84 51.38 49.16 54.27

Baseline + Graph 63.22 33.22 47.45 48.98 46.33 37.11 55.98 57.63 55.64

Baseline + Memory + Graph 74.53 37.03 50.53 51.60 49.51 42.01 61.98 63.16 61.55

The baseline model uses self-attention mechanism. Although it has a cer-
tain effect, the score is the lowest in the comparison. Models based on the self-
attention mechanism are often the extraction and matching of shallow semantic
features, making it difficult to handle complex multi-hop reasoning. It illustrates
that the memory network interacts with the context multiple times through
external memory modules to successfully capture complex semantic information.
Adding semantic relation graph achieves higher accuracy than joining memory
network, indicating that the graph structure has a more powerful representation
capability and can summarize the deep semantic information of context and
query. The semantic relation graph has explicit inference paths, so the neighbor
nodes and paths information can be encoded through the graph neural network,
which has a more powerful inference ability. Combining the memory network
and the semantic relationship graph together to obtain the best results on the
two data sets.

5.6 Case Study

Through case studies, we analyze the explicit reasoning process of common-
senseQA and multi-hop reading comprehension tasks. We show how the knowl-
edge graph reason model clearly explains complex reasoning processes in our
experiments in Fig. 6. For each question, the model iteratively extracts relevant



Iterative Reasoning over Knowledge Graph 205

paragraphs from Wikipedia and constructs a graph based on the semantic rela-
tionship between the text. The model not only obtains accurate answers, but
also clearly shows the path of reasoning. The result of reasoning is reliable and
rigorous, and the process of reasoning is also clear and interpretable.

Fig. 6. Examples of knowledge graph construction and iterative reasoning of com-
monsenseQA and HotpotQA. The model iteratively finds clue entities and candidate
answers to construct a knowledge graph.

HotpotQA for general questions in HotpotQA, model need to extract text
span from related paragraph as final correct answer. Span extraction module
extracts clue entities and candidate answers to construct iteratively directed
graph where edge <x, y> is that entity y is extracted from para[x] based on
question and clue[x]. The construction of iterative directed graph are main three
categories: tree, directed acyclic graph and directed cycle graph. We show an
example of a tree structure. Because the HotpotQA is multi-hop reading com-
prehension question answer, the inference path is more inclined to progressive
relationship, and more tree structure. CommonsenseQA the structure categories
of graph in CommonsenseQA are same with HotpotQA. However, Not only the
entity extracted from the question, but also the answer options of the question
are initialized as the 1-hop entity, the inference paths tend to establish connec-
tion between them. Therefore, it often shows the structure of the directed cycle
graph.

References

1. Asai, A., Hashimoto, K., Hajishirzi, H., Socher, R., Xiong, C.: Learning to retrieve
reasoning paths over Wikipedia graph for question answering. In: ICLR (2020)



206 L. Xu and J. Yao

2. Cao, N.D., Aziz, W., Titov, I.: Question answering by reasoning across documents
with graph convolutional networks. In: NAACL, pp. 2306–2317 (2019)

3. Cao, Y., Fang, M., Tao, D.: BAG: bi-directional attention entity graph convolu-
tional network for multi-hop reasoning question answering. In: NAACL-HLT, pp.
357–362 (2019)

4. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions. In: ACL, pp. 1870–1879 (2017)

5. Das, R., Dhuliawala, S., Zaheer, M., McCallum, A.: Multi-step retriever-reader
interaction for scalable open-domain question answering. In: ICLR (2019)

6. Dhingra, B., Jin, Q., Yang, Z., Cohen, W., Salakhutdinov, R.: Neural models for
reasoning over multiple mentions using coreference. In: NAACL, pp. 42–48 (2018)

7. Ding, M., Zhou, C., Chen, Q., Yang, H., Tang, J.: Cognitive graph for multi-hop
reading comprehension at scale. In: ACL 2019, pp. 2694–2703 (2019)

8. Fang, Y., Sun, S., Gan, Z., Pillai, R., Wang, S., Liu, J.: Hierarchical graph network
for multi-hop question answering. CoRR abs/1911.03631 (2019)

9. Feldman, Y., El-Yaniv, R.: Multi-hop paragraph retrieval for open-domain question
answering. In: ACL, pp. 2296–2309 (Jul 2019)

10. Kumar, A., et al.: Ask me anything: dynamic memory networks for natural lan-
guage processing. In: ICML, pp. 1378–1387 (2016)

11. Lee, K., Chang, M., Toutanova, K.: Latent retrieval for weakly supervised open
domain question answering. In: ACL, pp. 6086–6096 (2019)

12. Lin, B.Y., Chen, X., Chen, J., Ren, X.: KagNet: knowledge-aware graph networks
for commonsense reasoning. In: Proceedings of EMNLP-IJCNLP (2019)

13. Lv, S., et al.: Graph-based reasoning over heterogeneous external knowledge for
commonsense question answering. CoRR abs/1909.05311 (2019)

14. Qi, P., Lin, X., Mehr, L., Wang, Z., Manning, C.D.: Answering complex open-
domain questions through iterative query generation. In: EMNLP-IJCNLP, pp.
2590–2602 (2019)

15. Rajani, N.F., McCann, B., Xiong, C., Socher, R.: Explain yourself! Leveraging
language models for commonsense reasoning. In: ACL (2019)

16. Seo, M.J., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow
for machine comprehension. In: ICLR (2017)

17. Shen, Y., Huang, P., Gao, J., Chen, W.: ReasoNet: learning to stop reading in
machine comprehension. CoRR abs/1609.05284 (2016)

18. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: Weakly supervised memory
networks. CoRR abs/1503.08895 (2015)

19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR, pp. 1–12 (2018)

20. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 28, pp. 2692–2700. Curran Associates, Inc. (2015). http://
papers.nips.cc/paper/5866-pointer-networks.pdf

21. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks
for reading comprehension and question answering. In: ACL, pp. 189–198 (2017)

22. Xiao, Y., et al.: Dynamically fused graph network for multi-hop reasoning (2019).
arxiv:1905.06933Comment. Accepted by ACL 19

23. Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W.W., Salakhutdinov, R., Manning,
C.D.: HotpotQA: a dataset for diverse, explainable multi-hop question answering.
In: EMNLP, pp. 2369–2380 (2018)

24. Yu, A.W., et al.: QANet: combining local convolution with global self-attention for
reading comprehension. In: ICLR (2018)

http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://arxiv.org/abs/1905.06933Comment


Spatial-Temporal Attention Network for
Temporal Knowledge Graph Completion

Jiasheng Zhang1,2, Shuang Liang1, Zhiyi Deng1, and Jie Shao1,2(B)

1 University of Electronic Science and Technology of China, Chengdu 611731, China
{zjss12358,shuangliang,zhiyideng}@std.uestc.edu.cn, shaojie@uestc.edu.cn

2 Sichuan Artificial Intelligence Research Institute, Yibin 644000, China

Abstract. Temporal knowledge graph completion, which aims to pre-
dict missing links in temporal knowledge graph (TKG), is an important
research task due to the incompleteness of TKG. Recently, TKG embed-
ding methods have proved to be effective for this task. However, most
of existing methods regard TKG as a set of independent facts and con-
sequently ignore the implicit relevance among facts. Actually, as a kind
of dynamic heterogeneous graph, the evolving graph structure of TKG
is able to reflect a wealth of information. To this end, in this paper we
regard temporal knowledge graph as heterogeneous and discrete spatial-
temporal resource, and propose a novel spatial-temporal attention net-
work to learn TKG embeddings by modeling spatial-temporal property
of TKG while considering its special characteristics. Specifically, our
model employs a Multi-Faceted Graph Attention Network (MFGAT)
to extract rich structural information from the egocentric network of
each entity. Additionally, an Adaptive Temporal Attention Mechanism
(ADTAT) is utilized to flexibly model the correlation of entity repre-
sentations in the time dimension. Finally, by combing our obtained rep-
resentations with existing static KG completion methods, they can be
extended to spatial-temporal versions to predict missing links in TKG
while considering its inherent graph structure and time-evolving prop-
erty. Experimental results on three real-world datasets demonstrate the
superiority of our model over the state-of-the-art methods.

Keywords: Temporal knowledge graph completion · Temporal
knowledge graph embedding learning · Spatial-temporal data mining

1 Introduction

Temporal knowledge graph (TKG) is a knowledge base system which contains
facts happened in real-world with the corresponding happened times. As shown
in Fig. 1, TKG can be represented as a dynamic heterogeneous graph in which
nodes denote entities in real-world and labeled edges represent relations among
entities. Moreover, nodes and edges in the graph will appear or disappear
with the development of time which leads to that the structure of the graph
evolves over time and the static graph in each timestamp is called a snapshot.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 207–223, 2021.
https://doi.org/10.1007/978-3-030-73194-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_15


208 J. Zhang et al.

Fig. 1. An example of temporal knowledge graph. In each snapshot we give an example
of the egocentric network of South Korea.

Compared with static knowledge graph (KG) which ignores the time annotations
of facts, TKG is more adequate for real-world scenarios and thus receives a surge
of interest in recent years. However, same as static knowledge graph, temporal
knowledge graph is also far from complete. Therefore, the task of predicting
missing links in TKG, which is known as temporal knowledge graph completion
(TKGC) becomes an increasingly important research task in this field.

KG embedding methods, which aim to map each element of KG to a hidden
vector representation, is a powerful technique for static knowledge graph com-
pletion. However, such methods fail to consider the time annotations of facts.
Therefore, some researchers turn to temporal knowledge graph embedding meth-
ods for the TKGC task in recent years, several methods have been proposed such
as TAE [10] and HyTE [3]. Although these methods outperform KG embedding
methods on the TKGC task, they mostly regard TKG as a set of independent
facts and thus ignore the graph structure of TKG, which fails to capture the
implicit relevance among facts. Furthermore, most of them treat facts in each
snapshot separately and thus ignore the time-evolving property of TKG, which
fails to obtain more accurate representations based on the information of his-
tory snapshots. Therefore, the performance of TKGC is still far from satisfactory
and it is necessary to develop a model that can consider graph structure and
time-evolving property of TKG simultaneously.

Actually, we notice that temporal knowledge graph can be viewed as a kind
of spatial-temporal resource where graph structure in each snapshot reflects its
spatial property and the correlation of different snapshots in the time dimension
reflects its temporal property. Recently, deep spatial-temporal models [24] have
achieved successes in many fields due to their effectiveness in modeling spatial-
temporal correlation of data, so we argue that learning TKG embeddings via
deep spatial-temporal models can effectively consider its graph structure and
time-evolving property. However, there are still no studies applying such models
to TKG because TKG has two characteristics: 1) heterogeneity, as shown in
Fig. 1, nodes in the graph correspond to entities in the real world, which leads
to that different nodes have different semantics and thus play different roles
in the graph; 2) discreteness, facts in TKG are discretely distributed in the



Spatial-Temporal Attention Network 209

time dimension, which leads to that data quantities of different snapshots are
inhomogeneous. For a particular entity, some snapshots contain more related
facts while others contain fewer or even no related facts.

Based on above considerations, in this paper, we propose a novel spatial-
temporal attention network to learn TKG embeddings by modeling its spatial-
temporal property. First, in order to model the spatial property and hetero-
geneity of TKG, we focus on the egocentric network [8], which is defined as
the induced graph of a node with its immediate neighbors. It is considered as
the basic structure that dominates the attributes and behaviors of nodes in the
field of social network analysis [1]. As shown in Fig. 1, we give an example of
egocentric networks of South Korea in different snapshots. Compared with the
star-like structure considered by previous graph neural network (GNN) models,
such as GAT [23] and R-GCN [20], which can only consider the binary relation-
ships between nodes, egocentric network can capture the multiple relationships
among a node and its neighbors, and thus is able to describe the role of a node in
the graph more accurately. In this way, we develop a novel Multi-Faceted Graph
Attention Network (MFGAT) based on the egocentric network. Specifically, for
each snapshot, it firstly constructs rich structural features from the egocentric
network of each entity, and then an attention mechanism is applied for each
feature independently. Finally, by fusing different kinds of features, our MFGAT
can effectively learn TKG embeddings of each snapshot while considering the
graph structure and heterogeneity of TKG.

Additionally, in order to model the time-evolving property of TKG while
addressing the inhomogeneity problem brought by discrete distribution, we pro-
pose a novel Adaptive Temporal Attention Mechanism (ADTAT). The core
component of ADTAT is a mask function which is able to dynamically select
attention position for each entity to focus on the information of active snap-
shots. Furthermore, it can adaptively model the time span information based
on the fact distribution of each entity in the time dimension. By employing an
attention mechanism with our mask function, ADTAT is able to flexibly model
the temporal correlation of entity representations in different snapshots.

Combining the above two parts, our spatial-temporal attention network can
learn TKG embeddings while considering the graph structure and time-evolving
property of TKG simultaneously. Furthermore, existing static knowledge graph
embedding methods can be extended to a spatial-temporal version for the TKGC
task by applying our obtained representations in the score function. Main con-
tributions of our work are summarized as follow:

– We propose a novel spatial-temporal attention network for TKG completion.
To the best of our knowledge, this is the first work that learns TKG embed-
dings from the perspective of spatial-temporal data modeling.

– We introduce egocentric network to the field of TKG, and propose a novel
multi-faceted graph attention network based on egocentric network of each
entity to capture the structural information of TKG more effectively.



210 J. Zhang et al.

– Experimental results on three real-world datasets demonstrate the superiority
of our model. Our source code and datasets are publicly available at https://
github.com/zjs123/ST-ConvKB.

2 Related Work

In this section, we first provide an overview of the typical methods for static
knowledge graph embedding learning and temporal knowledge graph embedding
learning respectively, and then briefly review deep spatial-temporal model and
its recent advances in several fields.

2.1 Static Knowledge Graph Embedding Methods

Static knowledge graph embedding methods aim to represent each element
of knowledge graph as a low-dimensional vector while preserving its inherent
semantic. There exist two kinds of typical methods, namely translation meth-
ods and semantic matching methods. TransE [2] is a typical translation method,
which maps each entity to a vector and regards relation as the translation from
subject entity to object entity. Based on TransE, a number of improved methods
have been proposed, such as TransH [25], TransR [15], and TransD [9]. RESCAL
[19] is the first semantic matching method that utilizes restricted Tucker decom-
position for static knowledge graph embedding learning. Due to too many param-
eters of RESCAL, DistMult [27] simplifies RESCAL by using diagonal matrix.
Other semantic matching methods have been further proposed, such as HoIE [18]
and ComplEx [22]. Besides the above two kinds of methods, in recent years, some
researchers attempt to learn KG representations based on convolution, such as
ConvE [4] and ConvKB [17]. Furthermore, there are also some works attempt to
learn KG representations based on graph neural networks, such as R-GCN [20]
and KBAT [16].

2.2 Temporal Knowledge Graph Embedding Methods

Temporal knowledge graph embedding methods aim to learn representations for
each element of TKG while considering the happened times of facts. TAE [10] is
the first work that attempts to incorporate temporal order information between
relations into TKG embeddings. Based on this, TKGFrame [28] formally defines
the relation chain of TKG and incorporates it into TKG embeddings. Inspired by
the objective of TransH, HyTE [3] projects the embeddings of entity and relation
to a time-specific hyperplane and applies TransE score function for the embed-
dings in each hyperplane. TTransE [14] is an extension of TransE by considering
time embeddings in the score function. TA-DistMult [6] constructs temporal
relation embeddings for each fact by encoding corresponding time annotation
with an LSTM model. Recently, DE-DistMult [7] provides a diachronic entity
embedding function to distinguish entities in different time stamps. Inspired by
the canonical decomposition of tensors of order 4, TNTComplEX [13] proposes

https://github.com/zjs123/ST-ConvKB
https://github.com/zjs123/ST-ConvKB


Spatial-Temporal Attention Network 211

a new regularization scheme and presents a temporal extension of ComplEX.
Although these methods have achieved significant performance on the TKGC
task, all of them ignore graph structure of TKG and they mostly are unable to
capture the correlation of facts in the time dimension. RE-NET [11] is the only
work that considers both of them, but this model is designed for extrapolation
problem rather than learning embeddings for TKGC.

2.3 Deep Spatial-Temporal Models

Deep spatial-temporal models are a kind of spatial-temporal data mining model
based on deep learning techniques. These models mostly contain a spatial part
to model the spatial property of data, and the most used deep learning models
are convolutional neural network and graph convolutional network (GCN) [12].
A temporal part is used to capture the temporal correlation of data, in which
recurrent neural network (RNN) is widely used. Based on the above architecture,
several models have been proposed in different fields to model data with spatial-
temporal property. For example, GMAN [29] combines a spatial attention model
and a temporal attention model with a gated mechanism to predict future traf-
fic conditions, ConvLSTM [21] integrates the structure of CNN and LSTM to
predict the spatial-temporal sequences and ST-GCN [26] combines spatial and
temporal convolutions for action recognition. These successful attempts demon-
strate the universality of deep spatial-temporal models and inspire us to design a
spatial-temporal model for temporal knowledge graph embedding learning. More
detailed introduction of deep spatial-temporal models can be viewed in [24].

3 Preliminaries

Definition 1 (Temporal Knowledge Graph). Temporal knowledge graph
can be denoted as a sequence of static snapshots G = {G1, G2, ..., G|T |}, where
each snapshot contains facts happened in the same time. Gt = {(si, ri, oi, t)} in
which si ∈ E and oi ∈ E are subject entity and object entity respectively, ri ∈ R
is the relation and t ∈ T denotes the happened time of these facts.

Definition 2 (Temporal Knowledge Graph Completion). Temporal
knowledge graph completion (as known as link prediction) aims to predict fact
(s, r, o, t) when s or o is missing. It can be divided into two subtasks, one is sub-
ject entity prediction to predict s given r and o in time t, and the other is object
entity prediction to predict o given r and s in time t.

Definition 3 (Egocentric Network). Given a node u in network G, the
egocentric network of u is a subgraph which is composed of u, its neighbors
N (u), and edges between them, which can be denoted as Gu = (Vu, Eu), where
Vu = u ∪ N (u) and Eu are node set and edge set of Gu respectively. Particu-
larly, in this paper we use Gt

e to denote the egocentric network of entity e in the
snapshot Gt.



212 J. Zhang et al.

4 Proposed Model

In this section, we give an introduction of our model in detail. As shown in Fig. 2,
our model takes a sequence of snapshots {G1, G2, ..., G|T |} as input (part (b)),
the multi-faceted graph attention network (part (a)) is first used to obtain entity
and relation representations in each snapshot, and then adaptive temporal atten-
tion mechanism is utilized to model the temporal correlation of entity represen-
tations in different snapshots. After obtaining final entity and relation represen-
tations, they can be used to predict missing links via a score function (part (c)).

Fig. 2. We give an overview of the architecture of our proposed model in part (b),
the detailed illustration of MFGAT is shown in part (a), and after obtaining the final
embeddings, they will be used to predict missing links as shown in part (c).

4.1 Multi-faceted Graph Attention Network

As shown in Fig. 2(a), first, due to the complex structure of egocentric network,
our MFGAT constructs three kinds of structural features called triple feature,
group feature, and path feature based on egocentric network of each entity to
adequately describe its structure. Then, the attention mechanism is applied for
each feature independently to screen out important information. Finally, the
representation of each entity is obtained via a fully connected layer. In this part,
we take entity e in snapshot Gt as an example to introduce the detailed process
of our MFGAT to obtain its representation and representations of other entities
can be obtained in the same way.

Triple Feature. Triple is the basic structure in temporal knowledge graph which
can describe the binary relation among entities. In the egocentric network Gt

e,
triples that involve e are able to illustrate the direct relevance between e and its
neighbors, therefore it is important to integrate the information of such basic



Spatial-Temporal Attention Network 213

structure. We construct triple feature for each fact (e, ri, ei, t) in the egocentric
network Gt

e as follows:
ut
i = ri � ei, (1)

in which ri ∈ R
d is the initial embedding of relation ri and ei ∈ R

d is the
initial embedding of entity ei. We obtain the triple feature ut

i ∈ R
d via circular-

correlation operation � which is employed in HoIE [18] due to its high expres-
sivity. Finally, by constructing triple feature for each fact that involves e, we can
obtain a set of triple features {ut

1,u
t
2, ...,u

t
|N t(e)|} where |N t(e)| is the number

of neighbors of entity e in snapshot Gt.

Group Feature. Neighbors in egocentric network can be divided into several
independent groups based on their connectivity and the connected neighbors in
each group are generally a set of entities that have similar characteristics to the
central entity. Specifically, we regard each group in the egocentric network as a
set of nodes that can be connected through paths that do not go through the
central entity. As shown in Fig. 1, there are two groups in the egocentric network
of South Korea in 2014/07/10, one contains Obama and Shinzo Abe which are the
presidents of partner countries of South Korea while the other contains Colombia
and Morocco which are cooperation countries. Groups in the egocentric network
can reflect the multiple relations among neighbor entities and provide an abstract
perspective for the relevance between an entity and its neighbors. Therefore, in
order to consider the information of such structure, we define the graph feature
of each graph in the egocentric network Gt

e as follows:

vt
i = MAXPOOL{e1, e2, ..., en}, (2)

where ek ∈ R
d is the initial embedding of each entity in the group and n is the

total number of entities in the group. The group feature vt
i ∈ R

d is obtained
by applying max-pooling operation for entities in the group to screen out the
most prominent features of them. Finally, we can obtain a set of group features
{vt

1,v
t
2, ...,v

t
|Gt(e)|} where |Gt(e)| is the number of groups in Ge

t .

Path Feature. Relational path is widely used to model complex graph structure
of knowledge graph because it can reflect multi-hop relations between entities. In
the egocentric network Gt

e, relational path between e and each of its neighbors is
able to illustrate indirect relevance between them. In this part, for each neighbor
entity ei in Gt

e, we randomly find a relational path of length 2 from e to ei in the
egocentric network, which can be denoted as (e, ri1, ri2, ei). The corresponding
path feature is obtained as follows:

ot
i = Wo[ri1 : ri2 : ei], (3)

in which ri1 ∈ R
d and ri2 ∈ R

d are initial embeddings of relations involved
in the path and ei ∈ R

d is the initial embedding of neighbor entity ei, Wo ∈
R

d×3d denotes the linear transform matrix and [:] is concatenation operation.
By constructing path feature for each neighbor, we can obtain a set of path
features {ot

1,o
t
2, ...,o

t
|N t(e)|} where |N t(e)| is the number of neighbors of entity

e in snapshot Gt.



214 J. Zhang et al.

Feature Fusion. After obtaining the above three kinds features {ut
i}, {vt

i} and
{ot

i}, we then apply the attention mechanism to each of them independently, and
for each kind of feature we can obtain a set of attention weights {αt

1, α
t
2, ..., α

t
Nc

}
which quantify the importance of feature {ct1, ct2, ..., ctNc

} for entity e. c can be
u, v and o, and Nc is the length of each feature sequence.

αt
i =

exp(e�Ucti)
∑Nc

j=1 exp(e�Uctj)
, (4)

c̃t =
Nc∑

i=1

αt
ic

t
i, (5)

in which U ∈ R
d×d is the transfer matrix to be learned and e is the initial

embedding of entity e. As shown in Eq. 5, we obtain the corresponding output
vector c̃t ∈ R

d of each kind of feature as the weighted average. Finally, we con-
catenate the obtained three kinds of feature vectors with the initial embedding
of e and employ a fully connected layer to obtain the output representation of
entity e in snapshot Gt as follows:

ẽt = σ(W[e : ũt : ṽt : õt] + b). (6)

Unseen Entity Transform. If there are no related facts of entity e in snap-
shot Gt, our MFGAT obtains the corresponding representation via another fully
connected layer as follows:

ẽt = σ(Wente + bent). (7)

Finally, by applying MFGAT for entity e in different snapshots, we can obtain
a sequence of output representation vectors for different snapshots, which can
be denoted as {ẽ1, ẽ2, ..., ẽ|T |}, where |T | is the total number of snapshots.

Relation Transform. Further, after obtaining entity representations via multi-
faceted graph attention network, the relation representations are also trans-
formed as follows:

r̃ = r · Wrel, (8)

where r ∈ R
d is the initial relation embedding and r̃ ∈ R

d is the transformed
relation embedding. Wrel ∈ R

d×d is the learnable transform matrix used to
project relation embeddings to the same vector space as entity embeddings.

4.2 Adaptive Temporal Attention Mechanism

In temporal knowledge graph, the temporal correlation of entity representations
in different snapshots mainly relies on two parts. First, it is affected by the
inherent semantic correlation of entity representations. As shown in Fig. 1, rep-
resentations of South Korea in 2014/07/02 and 2014/07/03 tend to have high
correlation because South Korea interact with Japan, China, and North Korea



Spatial-Temporal Attention Network 215

in both two snapshots. Second, it is also affected by the time span between
snapshots, and entity representations with long time span tend to have low cor-
relation because the effects of facts will attenuate over time. Our MFGAT can
effectively learn entity representations in each snapshot, but it fails to model the
correlation of entity representations in different snapshots. Furthermore, as we
mentioned, data quantities of different snapshots are inhomogeneous in temporal
knowledge graph which leads to the complexity of modeling temporal correla-
tion of entity representations. To this end, we develop a novel adaptive temporal
attention mechanism (ADTAT) to flexibly capture the correlation of entity rep-
resentations in different snapshots. For each entity e, our ADTAT takes the
output representation sequence {ẽ1, ẽ2, ..., ẽ|T |} of our MFGAT as input and
the correlation of its representations in time t and tj (tj ≤ t) is measured as
follows:

βt,tj =
me(t, tj)exp(σ(a� · [W1ẽt : W2ẽtj ]))

∑
tk≤t me(t, tk)exp(σ(a� · [W1ẽt : W2ẽtk ]))

, (9)

where ẽt ∈ R
d and ẽtj ∈ R

d are representations of entity e in time t and tj
respectively, W1 ∈ R

d×d and W2 ∈ R
d×d are two learned transform matrices,

and a ∈ R
2d is the attention vector. m() is a mask function, in which firstly, in

order to avoid attention smooth problem brought by inhomogeneous data dis-
tribution, for each entity e, if there are no facts that involve e in the snapshot
Gtj , me(t, tj) will be set as 0, which forces our attention mechanism to focus
on the active snapshots of entity e. In addition, in order to capture time span
information of TKG, we employ a temporal attenuation function with a dynamic
attenuation coefficient γt

e, since facts of each entity are distributed inhomoge-
neously in the time dimension, too large attenuation coefficient will lead to local
sparse entities fails to capture sufficient history information, but too small atten-
uation coefficient will make our model unable to adequately consider the effect
of time span. Therefore, we define the dynamic attenuation coefficient as follows:

γt
e =

∑

|ti−t|≤
√

|T |
2

|N ti(e)|
√

|T | − 1
· λ, (10)

in which |N ti(e)| is the number of neighbors of entity e in the snapshot Gti , and
λ is the basic attenuation coefficient. For each entity e, the size of γt

e is related
to the distribution of facts around snapshot Gt, and the sparser distribution will
lead to the smaller attenuation coefficient. Combining above two parts, the mask
function of our ADTAT can be defined as follows:

me(t, tj) =
{

exp(−γt
e(|t − tj |)), e ∈ Gtj

0, otherwise
. (11)

Based on the mask function, our ADTAT is able to model the temporal
correlation of entity representations while effectively tackle the inhomogeneity
problem of TKG. The output representation of each entity e in time t is obtained
as follows:

ht
e =

∑

tj≤t

βt,tj ẽtj . (12)



216 J. Zhang et al.

Finally, our ADTAT can obtain the final representations {h1
e,h

2
e, ...,h

|T |
e } of

each entity e in different snapshots while considering the graph structure and
temporal correlation of TKG.

4.3 Training

After obtaining the final representations of entity and relation, they can be used
in the score function of existing static knowledge graph embedding methods such
as TransE [2] and DistMult [27] to obtain the spatial-temporal version of these
methods for TKGC. Here, we give the illustration of using ConvKB [17] score
function because it achieves the best performance in our experiment and the
performances of different score functions will be presented in Sect. 5. The score
function of each fact (s, r, o, t) can be defined as follows:

f(s, r, o, t) = contact(g([ht
s : r̃ : ht

o] ∗ Ω)) · w, (13)

where ht
s ∈ R

d and ht
o ∈ R

d are obtained representations of s and o in time
t respectively, and r̃ ∈ R

d is the obtained relation representation for r. After
obtaining the score of each fact, the model is then trained using soft-margin loss
as follows:

L =
∑

x∈{S∪S′}

log(1 + exp(lx · f(x))) +
λ

2
||w||22, (14)

where S is the set of positive facts, and S′ is a set of negative facts obtained
by randomly replacing subject or object entity of each positive fact. lx is the
indicator variable which is set as 1 when x ∈ S and −1 when x ∈ S′.

5 Experiments

In this section, we first provide an overview of the detailed settings in our exper-
iment, and then we report extensive experimental evaluations and provide the
analysis of the experimental results.

5.1 Experimental Settings

Datasets. We evaluate our model and baselines on three public datasets released
by TA-DistMult [6], which are derived from two popular temporal knowledge
graph resources, namely ICEWS and Wikidata [5]. Simple statistics of three
datasets are summarized in Table 1, and we detail each dataset as follows:

– ICEWS14: This is a short-range version subset of ICEWS recourse by col-
lecting all facts from 2014/1/1 to 2014/12/31 with the granularity of daily,
and there are 7,128 distinct entities and 230 types of relations in this dataset.

– ICEWS05-15: This is a long-range version subset of ICEWS recourse which
is almost 5 times larger than ICEWS14. It contains facts from 2005/1/1 to
2015/12/31 with the granularity of daily and there are 10,488 distinct entities
and 251 types of relations in this dataset.



Spatial-Temporal Attention Network 217

– WIKIDATA11k: This is a subset of Wikidata which contains 11,134 distinct
entities, 95 types of time-sensitive relations, and in total of 28.5k facts with
the granularity of year.

Table 1. Statistics of datasets.

Datasets Entity Relation Fact Time

Train Valid Test

ICEWS14 6,869 230 72.8k 8.9k 8.9k 365

ICEWS05-15 10,094 251 368k 46.2k 46k 4017

WIKIDATA11k 11,134 95 121k 14.3k 14.2k 306

Since our model is designed for the TKGC task rather than extrapolation,
we utilize random-split and sample roughly 80% of instances as training, 10% as
validation, and 10% for testing on each dataset.

Baselines. We compare our model with a suite of state-of-the-art baselines
which have been introduced in Sect. 2, such as TAE [10], HyTE [3], and DE-
DistMult [7]. Note that, we did not compare our model with RE-NET [11]
because RE-Net is designed for extrapolation task rather than TKGC. Further-
more, in order to compare the performance of our model using different score
functions, we refer to the resulting models as ST-X, such as ST-TransE and
ST-DistMult, where ST is short for Spatial-Temporal.

Metrics. For each test fact (s, r, o, t), we corrupt it by replacing the subject or
object entity by all possible entities in turn and obtain a list of candidate facts,
and then these candidate facts and original fact are ranked in descending order
of their plausibility score. The rank of original fact denoted as rank(s, r, o, t) is
the basic metric of the TKGC task, and then we use two kinds of refined metrics
based on this to evaluate the performance of each model. One is mean reciprocal
rank (MRR) defined as MRR = 1

|Test|
∑

(s,r,o,t)∈Test
1

rank(s,r,o,t) , which is the
average of the reciprocal of the rank of each test fact, and the higher MRR
denotes the better model performance. The other is Hits@N which is defined as
Hits@N = 1

|Test|
∑

(s,r,o,t)∈Test ind(rank(s, r, o, t) ≤ N), where ind() is 1 if the
inequality holds and 0 otherwise.

Implementation. We implement our model in PyTorch, and all the experi-
ments are performed on an Intel Xeon CPU E5-2640(v4) with 128 GB main
memory, and Nvidia TITAN RTX. We initialize all the baselines with the param-
eter settings in the corresponding papers and then turn them on our datasets
for the best performance for a fair comparison. For our model, we create 100
mini-batches for each epoch during training. The dimension of embedding rep-
resentations d ∈ {50, 100, 200}, learning rate l ∈ {10−2, 10−3, 10−4}, negative
sampling ratio n ∈ {1, 3, 5, 10}, basic attenuation coefficient λ ∈ {1, 3, 5}. The
best configuration is chosen based on MRR on the validation dataset. The final
parameters are d = 100, l = 10−2, n = 5, λ = 1 for the ICEWS14 dataset.
For the WIKIDATA11k and and ICEWS05-15 datasets, the best configuration
is d = 100, l = 10−2, n = 3, λ = 3.



218 J. Zhang et al.

Table 2. Comparison of different methods on three datasets for link prediction. The
best and second best results in each column are boldfaced and underlined respectively
(the higher is better for each metric).

Dataset ICEWS14 ICEWS05-15 WIKIDATA11k

Models MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.280 9.4 – 63.7 0.294 9.0 – 66.3 0.316 18.1 – 65.9

DistMult 0.439 32.3 – 67.2 0.456 33.7 – 69.1 0.316 18.1 – 66.1

ConvKB 0.335 22.4 38.7 56.6 – – – – 0.267 12.2 29.6 63.1

TAE 0.263 10.1 49.7 66.2 0.295 10.4 49.0 71.4 0.319 18.3 39.2 65.7

TA-DistMult 0.435 31.5 49.1 68.3 0.468 35.2 51.8 72.8 0.557 40.6 58.6 78.4

TTransE 0.227 7.2 30.1 58.2 0.243 7.6 26.5 57.8 0.294 18.3 35.2 60.9

HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 0.371 21.5 45.9 75.1

DE-DistMult 0.501 39.2 56.9 70.8 0.484 36.6 54.6 71.8 0.396 24.1 45.7 74.5

TNTComplEX 0.616 51.8 65.7 75.8 0.665 59.0 70.5 80.7 0.408 23.9 47.8 75.6

ST-TransE 0.396 9.1 66.8 86.4 0.457 12.4 76.2 93.2 0.647 56.3 70.4 78.8

ST-DistMult 0.603 48.3 67.2 83.0 0.673 55.1 75.0 91.6 0.625 54.9 67.0 75.8

ST-ConvKB 0.629 51.0 71.5 85.1 0.704 59.3 79.6 91.9 0.649 57.3 73.4 77.9

5.2 Performance Comparison

Table 2 illustrates the results of baselines and our proposed models using differ-
ent score functions in the link prediction task. According to the results, firstly,
our proposed model outperforms all the baselines by a significant improvement,
which demonstrates the superiority of our model to obtain more accurate rep-
resentation for temporal knowledge graph. The improvement of Hits@10 on the
ICEWS05-15 dataset is the highest, which may be because that ICEWS05-
15 is relatively larger and hence the subgraph in each snapshot is denser, so
that our MFGAT can capture richer structural information. TNTComplEX [13]
fails to achieve good performance on the WIKIDATA11k dataset because its
model is sensitive to data sparsity. Furthermore, the spatial-temporal version
of each static method outperforms original counterpart on all metrics, which
gives evidence of the merit of considering graph structure and temporal correla-
tion of TKG. DE-DistMult [7] outperforms static KG method DistMult [27] on
all datasets, which demonstrates the importance of integrating temporal infor-
mation for the TKGC task. However, DE-DistMult fails to consider structural
information of TKG, therefore, our ST-DistMult consistently outperforms DE-
DistMult, which shows the necessity of considering graph structure in the TKGC
task. DistMult-based models consistently outperform TransE-based models [2]
due to the higher expressivity of DistMult score function. ConvKB [17] has
the highest expressivity and thus achieves the best performance. What is more,
ST-TransE gets low Hit@1 on ICEWS14 and ICEWS05-15 but high on WIKI-
DATA11k because the number of relations in ICEWS14 and ICEWS05-15 is
much larger than that of WIKIDATA11k which leads to higher complexity.



Spatial-Temporal Attention Network 219

5.3 Model Variants and Ablation Study

We run experiments on the ICEWS14 dataset with several variants of our pro-
posed model to provide a better understanding of the effectiveness of each part
in our model. The results are shown in Table 3, which includes ST-ConvKB and
its variants.

Table 3. Performance of different variants of our model for link prediction.

Variants MRR Hit@1 Hit@10

Replacing MFGAT with GAT [23] 0.480 29.7 81.7

Replacing MFGAT with KBAT [16] 0.582 45.8 82.4

Replacing MFGAT with R-GCN [20] 0.531 34.2 83.1

MFGAT without triple feature 0.568 42.6 83.6

MFGAT without group feature 0.583 46.3 81.5

MFGAT without path feature 0.581 46.0 81.1

ADTAT without temporal attenuation 0.598 47.4 85.4

ADTAT with static temporal attenuation coefficient (λ = 0.1) 0.605 48.9 84.8

ADTAT with static temporal attenuation coefficient (λ = 1) 0.610 49.6 84.3

ST-ConvKB 0.629 51.0 85.1

Effect of Different Spatial Models. First, as shown in Table 3, the perfor-
mance of variants with different graph neural network models outperform most
of baselines, which indicates the importance of integrating structure information
of temporal knowledge graph. Hit@1 of the variant with GAT is lower than other
variants because GAT only considers neighbor entities but ignores the informa-
tion of relations. Hit@10 of all variants are at the same level because all of them
are able to capture the co-occurrence relationship among entities. Furthermore,
ST-ConvKB outperforms all these variants, which illustrates the superiority of
egocentric network considered in our model.

Effect of Each Feature in MFGAT. As shown in Table 3, we compare our
model with three variants without triple feature, group feature, and path feature
respectively. First, all of these variants are unable to outperform our original
model which illustrates that all three kinds of features are effective and con-
tribute to the final performance of our model. Furthermore, the performance of
the variant without triple feature drops most because triple feature provides the
most intuitive relevance of an entity with its neighbors.

Effect of Adaptive Temporal Attenuation Function. We first compare
our model with a simple attention version without temporal attenuation. The
Hit@10 result of this variant is at the same level as ST-ConvKB, which indicates
that both our original model and this variant are able to capture adequate
history information for each snapshot. However, the MRR and Hit@1 results
of this variant are lower because it is unable to consider time span and thus
the information of long-range snapshots will confuse the model to obtain more
accurate predictions. Furthermore, we compare our model with variants using



220 J. Zhang et al.

different static temporal attenuation coefficients (λ = 0.1 and λ = 1). They are
unable to outperform our original model because large attenuation coefficient
will let the model fail to capture sufficient history information for locally sparse
entities, and small attenuation coefficient will let the model fail to consider the
effect of time span adequately.

50 100 200
0

0.2

0.4

0.6

0.8

1

embedding dimension d

M
R
R

ST-DistMult
DE-DistMult
DistMult

(a)

1 5 10
0.2

0.4

0.6

0.8

number of negative sampling n

M
R
R

ST-DistMult
DE-DistMult
DistMult

(b)

Fig. 3. Influence of the embedding dimension and negative sampling number.

5.4 Parameter Analysis

We study the impact of the training parameters of our model in this part, includ-
ing the dimension of embedding representations d and the number of negative
samples n.

Dimension of Embedding Representation. Here, we analyze the perfor-
mance of ST-DistMult which considers both the graph structure and time-
evolving property of TKG, DE-DistMult which only considers the time-evolving
property and static KG method DistMult on changing the dimension of embed-
ding representations. As shown in Fig. 3(a), with the increase of dimension d, the
performance of each model increases firstly and then decreases. This is because
when d is too small, representations have insufficient capacity to capture rich
information from temporal knowledge graph, and when d is too large, the model
will be trapped in overfitting problem. Furthermore, we notice that with the rep-
resentation dimension d changes, the performance of our ST-DistMult changes
less compared with the other two models, which is because ST-DistMult can
extract more effective information from TKG and thus it is more stable.

Number of Negative Sampling. As shown in Fig. 3(b), by comparing the
performance of ST-DistMult, DE-DistMult and DistMult with different nega-
tive sampling numbers, we observe that with the increase of negative sampling



Spatial-Temporal Attention Network 221

number n, the performance of each model increases consistently. This is because
a larger negative sampling number can provide more positive-negative pairs for
each model to learn, and thus provide more information. However, we notice that
when n is large, keep on increasing n leads to small performance improvement
of ST-DistMult, which is because obtaining negative facts by random sampling
can only provide coarse-grained information. Furthermore, compared with the
other two models, ST-DistMult can still achieve significant performance when n
is small, which demonstrates our ST-DistMult is able to obtain richer represen-
tations and thus each positive-negative pair can provide more information for
model to learn.

6 Conclusion

In this work, we study the temporal knowledge graph completion task. We take
temporal knowledge graph as a kind of spatial-temporal resource, and develop
a spatial-temporal attention network which is able to obtain representation for
each element of TKG while considering the graph structure and time-evolving
property of TKG simultaneously. Our model contains a multi-faceted graph
attention network used to capture structural information of each snapshot, and
an adaptive temporal attention mechanism to model the temporal correlation
of different snapshots. The representations obtained by our model can be used
in the score function of existing static knowledge graph methods and result in
the spatial-temporal version of these methods for the TKGC task. We test our
proposed model on the link prediction task on three benchmark datasets. The
experimental results show the superiority of our model and the effectiveness of
each component in our model. In the future work, we aim to model the temporal
correlation of TKG based on the structure evolution of egocentric network of
each entity.

Acknowledgments. This work is supported by the National Nature Science Foun-
dation of China (No. 61832001) and Sichuan Science and Technology Program (No.
2021JDRC0067 and No. 2019YFG0535).

References

1. Arnaboldi, V., Conti, M., Gala, M.L., Passarella, A., Pezzoni, F.: Ego network
structure in online social networks and its impact on information diffusion. Com-
put. Commun. 76, 26–41 (2016)

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

3. Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: HyTE: hyperplane-based temporally
aware knowledge graph embedding. In: EMNLP, pp. 2001–2011 (2018)

4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: AAAI, pp. 1811–1818 (2018)



222 J. Zhang et al.

5. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
Wikidata to the linked data Web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 4

6. Garćıa-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for tem-
poral knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)

7. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for
temporal knowledge graph completion. In: AAAI, pp. 3988–3995 (2020)

8. Gupta, S., Yan, X., Lerman, K.: Structural properties of ego networks. In: Agarwal,
N., Xu, K., Osgood, N. (eds.) SBP 2015. LNCS, vol. 9021, pp. 55–64. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16268-3 6

9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: ACL, pp. 687–696 (2015)

10. Jiang, T., et al.: Encoding temporal information for time-aware link prediction. In:
EMNLP, pp. 2350–2354 (2016)

11. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure
inference over temporal knowledge graphs. In: EMNLP (2020)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

13. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowl-
edge base completion. In: ICLR (2020)

14. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Champin,
P., Gandon, F.L., Lalmas, M., Ipeirotis, P.G. (eds.) WWW, pp. 1771–1776 (2018)

15. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

16. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embed-
dings for relation prediction in knowledge graphs. In: ACL, pp. 4710–4723 (2019)

17. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding
model for knowledge base completion based on convolutional neural network. In:
NAACL-HLT, pp. 327–333 (2018)

18. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: AAAI, pp. 1955–1961 (2016)

19. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: ICML, pp. 809–816 (2011)

20. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

21. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional LSTM
network: a machine learning approach for precipitation nowcasting. In: NIPS, pp.
802–810 (2015)

22. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

24. Wang, S., Cao, J., Yu, P.S.: Deep learning for spatio-temporal data mining: a
survey. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.
2020.3025580

25. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-16268-3_6
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1109/TKDE.2020.3025580
https://doi.org/10.1109/TKDE.2020.3025580


Spatial-Temporal Attention Network 223

26. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: AAAI, pp. 7444–7452 (2018)

27. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (2015)

28. Zhang, J., Sheng, Y., Wang, Z., Shao, J.: TKGFrame: a two-phase framework for
temporal-aware knowledge graph completion. In: Wang, X., Zhang, R., Lee, Y.-K.,
Sun, L., Moon, Y.-S. (eds.) APWeb-WAIM 2020. LNCS, vol. 12317, pp. 196–211.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60259-8 16

29. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for
traffic prediction. In: AAAI, pp. 1234–1241 (2020)

https://doi.org/10.1007/978-3-030-60259-8_16


Ranking Associative Entities
in Knowledge Graph by Graphical
Modeling of Frequent Patterns

Jie Li, Kun Yue(B), Liang Duan, and Jianyu Li

School of Information Science and Engineering, Yunnan University, Kunming, China
{jiel,jylee}@mail.ynu.edu.cn, {kyue,duanl}@ynu.edu.cn

Abstract. Ranking associative entities in Knowledge Graph (KG) is
critical for entity-oriented tasks like entity recommendation and asso-
ciative inference. Existing methods benefit from explicit linkages in KG
w.r.t. exactly two query entities via the closely appearing co-occurrences.
Given a query including one or more entities in KG, it is necessary to
obtain the implicit associative entities and uncover the strength of asso-
ciations from data. To this end, we leverage KG with Web resources
and propose an approach to ranking associative entities based on fre-
quent pattern mining and graph embedding. First, we construct an entity
dependency graph from the frequent patterns of entities generated from
both KG and Web resources. Thus, the existence and strength of asso-
ciations between entities could be depicted effectively in a holistic way.
Second, we embed the dependency graph into a lower-dimensional space
and consequently fulfill entity ranking on the embedding. Finally, we
conduct an extensive experimental study on real-life datasets, and ver-
ify the effectiveness of our proposed approach compared to competitive
baselines.

Keywords: Knowledge graph · Associative entity · Association
ranking · Frequent entity · Graph embedding

1 Introduction

Many entity-oriented applications, like entity alignment [4], entity recommen-
dation [20] and entity associations inference [16], benefit from the results of
top-ranked associative entities in knowledge graph (KG). The task of ranking
associative entities (a.k.a. association ranking) is to sort candidate entities w.r.t.
a query including one or more given entities in KG. For example, {1. Microsoft ;
2. COVID-19 ; 3. Windows} is a ranking list of candidate entities w.r.t. the query
entity Bill Gates sorted by their association strength.

It is straightforward to represent associative entities based on the triple-
structured data of KG. One feasible solution to ranking associative entities is

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 224–239, 2021.
https://doi.org/10.1007/978-3-030-73194-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_16


Ranking Associative Entities by Graphical Modeling of Frequent Patterns 225

Windows

Bill Gates

COVID-19

VaccineMicrosoft

Apple Inc.
0.62

0.35

0.930.44

0.710.81

……

Entity Dependency Graph

Microsoft
QueryBill Gates

Search engine (Google, Bing, Baidu, …)

Embedding

1. Bill Gates\Harvard\Microsoft\...
2. Apple Inc.\charity\Bill Gates...
3. Bill Gates\COVID-19\...
4. Forbes\Windows\Bill Gates...
5. Bill Gates\Vaccine\Intel\...
6. Blog\Bill Gates\Books\...

……

Entity Itemset Associative Ranking

Cosine similarityKG⟨ ⟩Wikipedia,DBpedia, …
Ranking list

1. Microsoft
2. COVID-19
3. Windows

……

1 2 3

Fig. 1. Overview of EDGM.

based on the semantic associations (a.k.a. relatedness) between words or enti-
ties [19] upon the prerequisite that frequently occurring entities are regarded
to be highly associated. However, only the frequencies of two closely appear-
ing entities are considered, while the highly associated entities do not necessar-
ily co-occur significantly in the neighboring context. The underlying local co-
occurrence principle leads to limited coverage and precision. Recently, multiple
association features between words, concepts, and entities are combined to con-
struct an association network [9,15] to improve the relatedness measurement.
However, these models could not be well learned in an unsupervised manner.
Meanwhile, these methods focus on measuring the semantic association between
exactly two entities within KG. It will be more scalable if any number of query
entities are allowed and multiple Web resources could be introduced.

By using linked Web resources, explicit associations could be found easily
to enhance Web applications like search engines [21]. However, implicit asso-
ciations between entities show usefulness in many domains including national
security and biomedical research [5]. For example, it is necessary to identify
the importance of implicit associations such as common preferences and simi-
lar behaviors in social networks. Potential connections between a group of users
may contribute to suspect search. Thus, additional Web resources outside KG
are incorporated to improve the ranking results [14,26]. Figure 1 illustrates an
example of ranking associative entities based on both KG and Web resources.
As shown in part 2, Bill Gates and Vaccine are associative with the strength
of 0.62, which corresponds to the news topic of “Bill gates pledges $1.6 billion
to vaccine research against COVID-19”. That is, even though Bill Gates and
Vaccine are not directly linked in KG, there is still a strong association between
them. By introducing retrieved results of Web pages w.r.t. Bill Gates in part 1,
it is available to uncover these kinds of implicit associations.

Thus, we consider refining the association features by incorporating KG and
Web resources to fulfill the task of ranking associative entities, in which we will
have to solve the following 2 questions:



226 J. Li et al.

(1) How to find the associative entities w.r.t. one or more query entities in KG
using association features from both KG and Web resources?

(2) How to measure the strength of associations between entities by holistically
aggregating multiple co-occurrences?

In this paper, as shown in Fig. 1, we propose an Entity Dependency Graph
Model (EDGM) to rank associative entities by graph embedding. In our EDGM,
we use association features from both KG and Web resources based on asso-
ciative Wikipedia articles and contents of Web pages w.r.t. the query entities.
The associations especially for up-to-date situations could be determined by the
rapidly changing or generated Web resources or user behavioral records that we
regard as the transactions in frequent pattern mining [1]. By this way, we pro-
pose a method to bridge the gap between frequent pattern mining and graphical
model. Upon the graph structure of frequent entities, we aggregate frequencies
of both single entities and the co-occurrences of entities to evaluate the asso-
ciations quantitatively. To obtain highly represented embedding of associative
entities and fulfill effective ranking, we adopt a BFS-biased random walk sam-
pling mechanism based on node2vec [10]. This enables our EDGM to better
measure the strength of associations by capturing neighboring and co-occurring
features accurately. The contributions of this paper are as follows:

First, as illustrated in part 1 of Fig. 1, we generate an entity itemset con-
taining sequences of candidate entities to the query from both KG and Web
resources. By incorporating the extracted Web resources, it is practical to inte-
grate various statistics of entities. Then, we adopt the frequent pattern mining
algorithm on the entity itemset to build an undirected weighted graph, where
each node represents an entity, and each edge represents the associations between
entities. By an unsupervised manner, co-occurrence associations w.r.t. one or
more query entities could be discovered.

Second, to improve the effectiveness of ranking associative entities, we mea-
sure the weight of each edge on EDG, which could present the strength of asso-
ciations by refining both the informativeness and specificness of co-occurrences
simultaneously. To fulfill entity ranking for each associative candidate to the
given query, we use graph embedding to transform the nodes on the weighted
graph into a low-dimensional space and then rank the candidate entities based
on the similarity between node embeddings.

Finally, we conduct extensive experiments on two real-life datasets to evaluate
the effectiveness of our EDGM. Experimental results illustrate that our approach
outperforms some state-of-the-art competitors in ranking associative entities.

The rest of this paper is organized as follows: Sect. 2 introduces related work
and preliminaries. Section 3 presents our methods for learning EDG and rank-
ing associative entities. Section 4 shows experiments and performance studies.
Section 5 concludes and discusses future work.

2 Related Work and Preliminaries

In this section, we review related work, followed by giving necessary definitions
and formulating the problem.



Ranking Associative Entities by Graphical Modeling of Frequent Patterns 227

2.1 Related Work

Most research efforts for ranking associative entities could be divided into 3
categories: entity relatedness ranking, association ranking of KG, and entity
ranking by graph embedding.

Entity Relatedness Ranking. Entity relatedness ranking optimizes the par-
tial order of the associative entities into desired positions upon semantic relat-
edness [20]. For measuring relatedness between exactly two entities, text-based
methods [2,8] build high-dimensional weighted vectors to represent words and
Wikipedia concepts. Other graph-based approaches [27] adopt the link structure
of Wikipedia to obtain the distance of entities. These methods are insufficient
to uncover more profound co-occurrences with only text semantics or graphical
structural relatedness. Better results could be achieved by integrating existing
methods through designing comprehensive frameworks [25]. To further leverage
more types of co-occurrences in KG, network-based methods [9,15] specify asso-
ciations among words and concepts in a supervised manner upon well-generated
datasets from psychological studies.

Association Ranking of KG. Techniques for ranking associations between
two or more entities are developed with the emergence of graph-structured Web
resources, which could be divided into data-centric and user-centric. Data-centric
techniques mainly use various statistical information of entities, and user-centric
techniques focus on user preference. Typically, the associations are regarded as
paths connecting two or more entities in KG [7]. Simple associations could be
obtained directly by triple-linked data from KG, but implicit associations are
more preferred in some domains [5]. To search and rank implicit associations, the
frequent pattern mining algorithm has been proved to be efficient and effective
[6]. By counting the frequency of canonical codes uniquely representing entity
patterns, associations could be ranked upon the edit distance between graph
structures.

Entity Ranking by Graph Embedding. Graph embedding techniques like
DeepWalk [23] are effective for association analysis in graphical structures [3],
in which low-dimensional representations of the nodes with neighboring and co-
occurrence relations are learned. Zhang et al. [29] propose a graph embedding-
based neural ranking framework to overcome the query-entity sparsity problem
by integrating features in click-graph data. On heterogeneous information net-
works, recent studies for proximity search [18] learn graph embedding models to
rank associative nodes by given semantic relations. These techniques are based
on user intent with a certain amount of behavior preference labels. Differently,
we choose node2vec [10] to embed the associations between entities, since the co-
occurrences on EDG, together with their strength, could be expressed by using
the biased and dynamic random walk.

2.2 Definitions and Problem Formulation

Firstly, the symbols and notations are given in Table 1. Then, we define several
concepts as the basis of later discussions.



228 J. Li et al.

Table 1. Notations.

Notation Description

D�q Associative datasets w.r.t. query �q

Ψ(�q) Entity itemset w.r.t. �q

Υ Set of all 1-frequent entities

Ax A maximal set of frequent entities

GE = (V, E, W ) Entity dependency graph with nodes V , edges E and weights W

vivj Edge between 1-frequent entities vi and vj

H|V |×d Representation space of EDG with the dimension of |V | × d

L(�q) Ranking list of associative entities w.r.t. �q

To obtain D�q from both the KG and the Web, associative data like Web
pages and Wikipedia articles w.r.t. the query entities �q could be retrieved and
collected by search engines.

Definition 1. A knowledge graph is denoted as G = (E ,R), where E represents a
finite set of nodes indicating entities, and R is a set of directed edges representing
relations between entities.

Sequences of associative entities could be generated based on items in D�q

and named entities of G. The definition of Ψ(�q) is as following:

Definition 2. Let ψ = {e1, e2, ..., eM} be a sequence of entities, where ei ∈ E
and ψ ∈ Ψ(�q). Each ψ is corresponding to an item in D�q.

Based on the idea of frequent pattern mining [1], Ψ(�q) could be regarded as
the transactions of D�q. Next, we define the set of frequent entities.

Definition 3. v(v ∈ E) is called a 1-frequent entity if p(v) ≥ σ, where p(v) is the
support of v (i.e., the proportion of sequences in Ψ(�q) containing v) and σ is the
threshold of minimal-support. The set of all 1-frequent entities is denoted as Υ .

Definition 4. A set of frequent entities Ax ⊂ Υ is called maximal, if there
are no other super-sets Ay in A satisfying Ax ⊂ Ay, where A = {A1, ..., Am}
includes all the sets of frequent entities.

Following, we define the entity dependency graph (EDG) to describe the
existence and strength of associations between entities.

Definition 5. An EDG is an undirected weighted graph, denoted as GE =
(V,E,W ). V is the set of nodes, and V ⊂ Υ . Each edge vivj ∈ E (vi, vj ∈ V, i �=
j) indicates the co-occurrence association between vi and vj. Each wij ∈ W
represents the weight of vivj.

Problem Formulation. Given the query �q, we first extract its itemset Ψ(�q)
from D�q as the input to construct EDG. For each node in EDG, the representa-
tion space H is learned as:

f : V −→ H |V |×d (1)



Ranking Associative Entities by Graphical Modeling of Frequent Patterns 229

Upon the matrix H |V |×d, we measure the strength of associations between
each candidate entity and �q from a global perspective, and output the ranking
list of candidate entities L(�q) w.r.t. �q.

3 Methodology

In this section, we introduce the approach to ranking associative entities by our
EDGM. First, the structure of EDG is learned by mining frequent patterns from
the transactions of both KG and Web resources, and then the weights of edges
on EDG are measured based on an extension principle of co-occurrences. Finally,
the ranking process is implemented by graph embedding.

For the given KG G and query �q, the sequences of entities recognized from
KG are transactions of D�q, for which the entity itemset Ψ(�q) is generated from
D�q (e.g., Wikipedia articles and Web pages retrieved w.r.t. �q) by entity linking.
Then, by learning the graphical structure and measuring the weights of edges,
the EDG GE = (V,E,W ) is constructed to depict the associations between
frequently co-occurring entities in a holistic way.

3.1 Structure Learning

Learning the structure of GE aims to determine the set of nodes V and the set
of edges E. The nodes in V are generated by mining frequent entities in Ψ(�q),
and the edges in E depend on the test of conditional independence [17] between
frequent entities.

To achieve a high recall in line with the inherence of co-occurrence between
entities, the node set V should contain the candidate entities related to the query
as many as possible. Given Υ = {v1, v2, ..., vn} as a set of 1-frequent entities in
D�q, we generate V from Υ by neglecting the entities whose support values are
less than the threshold σ according to the probability cut defined as follows:

pσ(I) =

{
0 p(I) < σ

p(I) p(I) ≥ σ
(2)

As is known that only frequent entities are concerned when computing p(I)
by the classic Apriori algorithm [11]. If I is a set of frequent entities, then all
the non-empty subsets of I must also be frequent. If there is no set of frequent
entities J in such Υ that I ⊂ J , we call I is the maximal. To include the
entities concerning all co-occurrences, we adopt the entities in the maximal set
of frequent entities as nodes in V .

To determine the edges among the nodes in V , we first generate completely
connected subgraphs over each maximal set of frequent entities. According to the
conclusion in [17], the associations between frequent entities imply probabilistic
conditional independences. Thus, two entities in the set of frequent entities are
not connected in GE by an edge if they are conditionally independent. By testing



230 J. Li et al.

conditional independence, the graphical topology of frequent entities could be
obtained.

The conditional independence between entities is closely related to the fre-
quent set, to which the entities belong. Let I, J and K be three disjoint subsets
of Υ . We use < I|K|J > to denote that “I is independent of J given K”, namely
p(I ∩ J |K) = p(I|K)p(J |K). By focusing on the conditional independence rela-
tions between frequent entities, we analyze possible associations between them.

Specifically, let I and J (I, J ⊆ Υ ) be two different sets of maximal frequent
entities and I ∩J = K. We consider the following three cases. For two entities in
different sets with intersections, an edge is added between these two entities to
reflect their mutual dependency. Two entities in different sets without overlap
are unconnected. Two entities are also unconnected if they are already in one
set and do not co-occur in any other sets.

Case 1. If there exist 1-frequent entities va ∈ I and vb ∈ J such that
the entity set {va, vb} is non-frequent, then < va|K|vb > is false, denoted as
< va|K|vb >. That is, va and vb are associative and there is an edge vavb.

Case 2. If {va, vb} is non-frequent for all va ∈ I and vb ∈ J when K = ∅,
then < va|Υ − va − vb|vb > is true. In other words, if there is no any frequent
entity vc such that {va, vc} and {vb, vc} are frequent when {va, vb} is non-
frequent, va and vb are independent and there is no edge between them.

Case 3. Suppose < va|I − va − vc|vc > is true, where va, vc ∈ I. If there
is no such J that va, vc ∈ J , then < va|Υ − va − vc|vc > is true. That is, two
conditionally independent entities va and vc do not share an edge if they co-occur
only in one maximal set of frequent entities.

Algorithm 1. Structure learning of EDG
Input: Υ ; A = {A1, ..., Am}, where each Ax ∈ A, Ax = {vxy|vxy ∈ Υ, 1 ≤ y ≤ n}(x ∈ [1, m])
Output: V , the set of nodes in GE ; E, the set of edges in GE

1: V ← Υ , E ← {}, GA ← {}
2: for each Ax ∈ A do
3: Generate GAx (VAx , EAx ) // Join each pair of distinct entities in Ax

4: GA ← GA ∪ GAx // GAx is the complete graph of Ax and GA is the set of GAx
5: end for
6: for each pair (Ax, Ay) ∈ A × A do // Case 1
7: if Ax ∩ Ay �= ∅ then
8: for each edge vxsvyt do // vxs ∈ Ax − Ay and vyt ∈ Ay − Ax

9: E ← E ∪ vxsvyt // Add vxsvyt to the set of edges
10: end for
11: end if
12: end for
13: for each GAx ∈ GA do
14: for each edge vxsvxt ∈ GAx do
15: if < vxs|Ax − vxs − vxt|vxt > then // Case 2
16: E ← E − vxsvxt

17: end if
18: for each Ay ∈ A − Ax do // Case 3
19: if < vxs|Ay − vxs − vxt|vxt > or vxs /∈ Ay or vxt /∈ Ay then
20: E ← E − vxsvxt

21: end if
22: end for
23: end for
24: end for
25: return V , E



Ranking Associative Entities by Graphical Modeling of Frequent Patterns 231

A B

C

C D

D E

F

(a) Three undirected com-
plete subgraphs

E

A B

C

D

F

(b) Undirected graph gen-
erated by Algorithm 1

E

A B

C

D

F

(c) Results EDG over Υ

Fig. 2. A running example of Algorithm 1.

Next, we illustrate the execution of Algorithm 1 by the following example.
Given Υ = {A,B,C,D,E, F} as the set of 1-frequent entities. {A,B,C}, {C,D},
and {D,E, F} are three maximal sets of frequent entities over Υ .

Firstly, we add edges for entities within one maximal set of frequent entities
respectively in Fig. 2(a) to generate three undirected complete subgraphs accord-
ing to Case 1. Secondly, we add undirected edges AD, CE, BD and CF shown
by dotted lines in Fig. 2(b) to represent the possible associations. According to
Case 2, following edges should not exist: AE,AF ,BE,BF . Finally, suppose that
the conditional independence tests show < E|D|F > and < E|C|F > are true.
Then, according to Case 3, EF will be deleted. The actual structure of EDG is
shown in Fig. 3(c).

Step 2 in Algorithm 1 could be done in O(|A1|2 + ... + |Am|2) time, and
does not exceed O(m × n2), where |Ax| is the number of entities in Ax and
|Ax| ≤ n(1 ≤ x ≤ m). Step 6 could be done in O(m × n2) time at most. Step 13
could be achieved in O(|A1|2 + ... + |Am|2) time and no larger than O(m × n2).
The overall time complexity of Algorithm 1 is O(m × n2). Besides, the Apriori
algorithm directly provides all probability values for the construction of EDG.

3.2 Calculation of Weights

Given the structure of graph GE , it is necessary to accurately quantify the
weights of edges by further exploring the co-occurrences statistics from data.
Thus, we introduce coefficient of association coa(vi, vj) as the weight wij ∈ W of
each edge vivj . According to the intuition of coa(vi, vj), the following properties
should be satisfied:

• Symmetry : coa(vi, vj) = coa(vj , vi).
• Non-negativity : coa(vi, vj) > 0.
• Identical boundedness: coa(vi, vj) ≤ 1, coa(vi, vj) = 1 only if vi = vj .
• Informativeness of co-occurrence: The fewer occurrences of ψ in Ψ(�q) contain-

ing an entity pair (vi, vj), the more informative the (vi, vj) is, corresponding
to a higher coa(vi, vj).



232 J. Li et al.

• Specificness of entity frequency : Entity frequency (EF) denotes the proportion
of an entity to the total number of entities in Ψ(�q). The greater the difference
in frequency between vi and vj , the smaller the coa(vi, vj).

To compute coa(vi, vj), we first consider the informativeness of co-occurrence
by describing the ratio of the number of co-occurrence entries for entity pairs in
Ψ(�q):

ln
SN (Ψ(�q))
TN (vi, vj)

(3)

where SN (Ψ(�q)) denotes the total number of transactions in Ψ(�q), and
TN (vi, vj) represents the number of entity sequences containing both vi and
vj .

Actually, we aim to distinguish the importance of different entity pairs by
informativeness of co-occurrence. If (vi, vj) appears frequently and dispersedly
in multiple entity sequences, we consider the co-occurrence of (vi, vj) is trivial
and less informative. In contrast, if vi and vj co-occur in a smaller number of
entity sequences, the associations between them are more representative and
informative, which leads to a larger strength. Next, we consider the difference of
frequency at the single entity level:

exp |EF (vi) − EF (vj)| (4)

where EF (vi) and EF (vj) means entity frequency of vi and vj respectively.
Equation (4) takes the specificness of entity frequency into account. The

smaller the difference between EF (vi) and EF (vj) the closer of vi and vj . We
choose exponential function to ensure that the overall value of Eq. (4) is a number
greater than or equal to 1. At the same time, the trend of Eq. (4) is positively
correlated with the frequency difference between vi and vj .

To combine Eq. (3) and Eq. (4) to jointly measure the weights of edges, we
form Eq. (5) to reasonably reflect both trends. The unnormalized weight of vivj

is defined as follows:

ξ(vi, vj) =
ln SN(Ψ(�q))

TN(vi,vj)

exp |EF (vi) − EF (vj)| (5)

Here, the upper bound of ξ(vi, vj) is not constrained, which does not facilitate
our specific comparison between the weights of any two edges. The sum of all
ξ(vi, vj) in GE is specified as follows:

Sum(GE) =
∑

vi,vj∈V,i�=j

ξ(vi, vj) (6)

Then, ξ(vi, vj) could be normalized by combining Eq. (5) and Eq. (6).

coa(vi, vj) =
ξ(vi, vj)

Sum(GE)
(7)

We measure the coa(vi, vj) individually to get the actual weights wij of each
edge vivj ∈ E. Finally, the set of weights W of EDG could be obtained.



Ranking Associative Entities by Graphical Modeling of Frequent Patterns 233

3.3 Ranking Associative Entities

To measure the association strength of any two entities in the EDG, we transform
the nodes of GE into low-dimensional vector space by graph embedding.

Specifically, given an EDG GE = (V,E,W ), we learn the co-occurrence fea-
tures and the neighboring relations among nodes in two steps: random walk
sampling and skip-gram.

We use a tunable bias random walk mechanism [10] in the procedure of
neighborhood sequences sampling. Let vs ∈ V be a source node, and cl be the
lth node in the walk, c0 = vs. The unnormalized transition probability π(cl, cl+1)
is:

π(cl, cl+1) = ηmn(cl−1, cl+1) × coa(cl, cl+1) (8)

where ηmn(cl−1, cl+1) is a hyper parameter determined by the shortest path
distance between cl−1 and cl+1. m and n are user-defined parameters to control
the bias of random walk. Then, the actual transition probability from vi to vj is
κt, defined as follows:

κt = (cl = vj |cl−1 = vi) =

{
π(vi,vj)

Z vivj ∈ E

0 otherwise
(9)

where Z is the normalizing constant.
Upon the sample sequences, we aim to map each vi ∈ V into the same space:

f : vi −→ R
d (equivalent to Eq. (1)) by maximizing the log-probability function:

max
f

∑
vi∈V

log[p(Nb(vi)|f(vi))] (10)

where Nb(vi) ⊂ V is the network neighboring [10] of vi generated by the random
walk sampling strategy controlling by Eq. (8).

A matrix H |V |×d could be obtained by Eq. (10). Each entry of H |V |×d repre-
sents the vector of a specific entity in EDG. The association strength ad(vi, �q) of
vi to �q in EDG could be measured by the cosine similarity of vectors in H |V |×d:

ad(vi, �q) =

∑d
j=1 Hij × H�q√∑d

j=1 H2
ij × ∑d

j=1 H2
�q

(11)

where H�q denotes the vector representation of query �q. Note that if there are
more than one entities in �q, the final ad(vi, �q) is the average of similarities
between the vector of vi to the vectors of different entities in �q.

Finally, we could obtain a top-k ranked list L(�q) = {ad(v1, �q), ..., ad(vk, �q)},
where ad(vi, �q)(1 ≤ i ≤ n) is the ith maximal value in L(�q).

4 Experiments

In this section, we present experimental results on two real-life datasets to evalu-
ate our proposed method. We first introduce the experimental settings, and then



234 J. Li et al.

conduct three sets of experiments: (1) ranking associative entities, (2) entity
relatedness ranking, and (3) impacts of parameters to evaluate our method com-
pared with existing methods.

4.1 Experiment Settings

Datasets. We perform experiments on two widely used datasets for evaluating
entity relatedness, KORE [13] and ERT [12], and extract the datasets containing
associative Wikipedia articles and Web pages from search engines.

Table 2. Statistics of datasets.

Dataset Query entities Candidate entities Wikipedia articles Google & Bing URLs

KORE 21 420 4,200 12,600

ERT 40 937 8,000 24,000

• KORE, extracts entities from YAGO2 covering four popular domains: IT
companies, Hollywood celebrities, video games, and television series. For each
query entity, 20 candidate entities linked to the query’s Wikipedia article are
ranked in descending order of human rating association scores and regarded
as the ground-truth of the most relevant entities to the query.

• ERT, consists of query entity pairs within two topics: the first 20 groups
are from the music Website last.fm, and the last 20 groups originate in the
movie dataset IMDb. Several to dozens of candidate entities with association
scores are given for each entity pair. The scores are computed by considering
multiple properties of entities from DBpedia

To generate D�q of each query, we extract the associative texts of all query
entities in the two datasets from search engines and Wikipedia. Specifically, we
first crawl the Web pages of the top 300 URLs from Google and Bing by using the
query entities as queries. We then collect the top-ranked 200 Wikipedia articles
by inputting the query entities into the Wikipedia dump. We finally combine
these text contents as D�q. Note that we also pre-process these texts by removing
redundancy and building indices. The important statistics about these datasets
are summarized in Table 2.

Evaluation Metrics. Three groups of metrics are chosen in our experiments: (1)
Normalized discounted cumulative gain (NDCG) [20] to evaluate the accuracy of
each entity ranking method, (2) Pearson, Spearman correlation coefficients and
their harmonic mean [25] to evaluate the consistency between ranking results and
ground truth, and (3) precision, recall and F1-score to evaluate the effectiveness
of EDG with varying the user-defined threshold of minimal-support σ.

Comparison Methods. We choose six methods for comparison with our
EDGM.



Ranking Associative Entities by Graphical Modeling of Frequent Patterns 235

• Milne-Witten (MW) [27] is a typical graph-based approach to measure asso-
ciations between entities using hyperlink structures of Wikipedia.

• ESA [8] is a representative text-based method by using entity co-occurrence
information and TF-IDF weights.

• Entity2vec (E2V) [28] jointly learns vector representations of words and enti-
ties from Wikipedia by the skip-gram model.

• TSF [25] is a two-stage entity relevance computing framework for Wikipedia
by first generating a weighted subgraph for co-occurrence information and
then computing the relatedness on the subgraph.

• E-PR is the EDG with PageRank [22] to rank the associative entities.
• E-DW is the EDG with the DeepWalk for graph embedding.

Implementation. To generate transactions in our EDGM, we use the tool
WAT [24] to link entities in D�q to their corresponding entity-IDs in Wikipedia,
and filter the Top-300 matching candidates with the highest similarity to the
given query based on KG embedding by OpenKE.1 For ESA and MW, we take
the current query and candidate entities in the corresponding EDG as input,
and generate the ranking list based on the relatedness between the candidate
entities and the query. For E2V, we obtain the representations of words and
entities based on the same version of Wikipedia chosen for EDGM. For TSF, we
adopt the recommended configurations [25] to achieve the optimal results. We
transform the undirected edges of EDG to bidirectional directed edges for E-PR
and perform E-DW on the unweighted graph structure of EDG2.

To balance the effectiveness and efficiency of EDG construction, we fix the
threshold σ to 11 on KORE and 6 on ERT. For EDGs constructed by each query,
they contain an average of 37 entity nodes on KORE and 49 entity nodes on ERT.
We also set the node2vec parameters dimensions, walklength, numberofwalks
to 128, 30 and 200 on KORE and 128, 30 and 100 on ERT for better graph
embedding. Besides, we find that the BFS random walk strategy (m = 1, n = 2)
is more conducive to achieving the best results for our model.

4.2 Experimental Results

Exp-1: Ranking Associative Entities. To test the accuracy of associative
entities ranking by our EDGM, we record NDCG of the top-k ranked lists found
by all methods when k is fixed to 5, 10, 15 and 20 on KORE and 3, 5 and 10 on
ERT. The results are shown in Fig. 3(a) and Fig. 3(b) respectively. All methods
rank the entities that exist in the current EDG, and missing entities are ignored
and skipped.

The results tell us that (1) our method EDGM achieves the highest NDCG
scores and outperforms other methods on all datasets by taking the advantages
of weighted associations between entity nodes in EDG, (2) our EDGM per-
forms consistently better than other methods on all datasets by presenting the
frequency characteristics including informativeness of co-occurrence and speci-
ficness of entity frequency, while some methods perform unstably on different
1 http://139.129.163.161/index/toolkits.
2 https://github.com/opp8888/ConstructionofEDG.

http://139.129.163.161/index/toolkits
https://github.com/opp8888/ConstructionofEDG


236 J. Li et al.

(a) NDCG on KORE (b) NDCG on ERT

Fig. 3. Results of associative entities ranking.

datasets. For example, ESA performs better than MW in KORE but works worse
than MW in ERT, and (3) E-DW is better than E-PR, which indicates that graph
embedding is effective for our entity ranking model, and EDGM outperforms E-
DW, which also suggests that node2vec is more suitable for embedding the EDG
than DeepWalk. In fact, our EDGM improves NDCG by 6.7% and 7.5% over
the second-highest method TSF on KORE and ERT, respectively. This verifies
the effectiveness of our proposed method.

Table 3. Comparison of entity relatedness ranking on KORE.

Domain Metrics MW ESA E2V TSF E-PR E-DW EDGM

IT companies Pearson 0.496 0.489 0.579 0.753 0.192 0.652 0.749

Spearman 0.537 0.664 0.613 0.741 0.425 0.688 0.767

Harmonic 0.516 0.563 0.596 0.747 0.265 0.670 0.758

Hollywood celebrities Pearson 0.515 0.577 0.675 0.727 0.216 0.613 0.811

Spearman 0.634 0.692 0.589 0.792 0.372 0.582 0.805

Harmonic 0.568 0.629 0.629 0.758 0.273 0.597 0.808

Video games Pearson 0.607 0.552 0.616 0.781 0.18 0.587 0.793

Spearman 0.592 0.621 0.542 0.810 0.489 0.675 0.791

Harmonic 0.599 0.584 0.577 0.795 0.263 0.628 0.792

Television series Pearson 0.671 0.521 0.637 0.833 0.261 0.712 0.691

Spearman 0.735 0.585 0.671 0.732 0.491 0.716 0.754

Harmonic 0.702 0.551 0.654 0.779 0.341 0.714 0.721

Exp-2: Entity Relatedness Ranking. Exp-2 aims to test whether our EDGM
could generate the ranking lists having a high degree of consistency compared
with the ground truth. The results on KORE and ERT are shown in Table 3
and Table 4, respectively. Since the number of entities of EDG are not fixed, the
top-5 candidate entities in the current EDG are selected for discussion.

The results tell us that (1) EDGM performs better than the traditional text-
based, graph-based methods (MW and ESA) and the pure entity representation
approach (E2V) in all domains of the two datasets, (2) EDGM outperforms TSF
in most domains of ERT and performs as well as TSF on KORE, and (3) EDGM
achieves the highest harmonic mean in most domains of the two datasets. Our



Ranking Associative Entities by Graphical Modeling of Frequent Patterns 237

Table 4. Comparison of entity relatedness ranking on ERT.

Domain Metrics MW ESA E2V TSF E-PR E-DW EDGM

Music Pearson 0.677 0.531 0.652 0.795 0.257 0.694 0.781

Spearman 0.589 0.663 0.598 0.732 0.386 0.660 0.787

Harmonic 0.630 0.590 0.624 0.762 0.309 0.677 0.784

Movie Pearson 0.615 0.466 0.681 0.828 0.190 0.785 0.825

Spearman 0.463 0.569 0.626 0.764 0.429 0.682 0.771

Harmonic 0.528 0.512 0.652 0.795 0.263 0.730 0.797

EDGM gives better results in total rank, which verifies the effectiveness of EDG
that generates a powerful presentation of the associations upon neighboring and
co-occurrence features of entities.

Exp-3: Impacts of Parameters. To evaluate the impacts of the threshold σ,
we vary σ from 9 to 12 on KORE and from 3 to 7 on ERT. The results are
reported in Fig. 4(a)–Fig. 4(f), respectively.

(a) Precision on KORE (b) Recall on KORE (c) F1-score on KORE

(d) Precision on ERT (e) Recall on ERT (f) F1-score on ERT

Fig. 4. Results of impacts of parameters.

The results tell us that (1) the precision increases (recall decreases) with
the increase of σ, which is consistent with the theoretical expectation that the
number of entity nodes in EDG decrease when σ increases, and (2) the F1-score
remains relatively stable when varying σ, which demonstrates that our method



238 J. Li et al.

could efficiently recall candidate entities in the ground truth. Note that our
model achieves better recall than precision, which is suitable for the application
scenarios of ranking problems requiring a higher recall. Hence, we fix σ to 11 on
KORE and 6 on ERT to balance the size of EDG and guarantee high recall.

5 Conclusions and Future Work

In this paper, we propose the entity dependency graph model (EDGM) to rank
associative entities in KG by graph embedding upon frequent entities. By incor-
porating multiple features of the association from both KG and Web resources
effectively, one or more entities are allowed as a query to achieve better scal-
ability. EDGM facilitates the discovery of associative entities with high recall,
since the co-occurrence of entities in KG and the behavioral associations could
be represented by a global model in an unsupervised manner.

However, the path and label information in KG, as well as the impacts of
neighbors in a random walk on EDGM have not been well considered, which
needs further exploration. Moreover, open world KG completion is worthwhile
to study further by incorporating with semantic/implicit associations between
entities achieved by our method.

Acknowledgements. This paper is supported by National Natural Science Foun-
dation of China (U1802271, 62002311), Science Foundation for Distinguished Young
Scholars of Yunnan Province (2019FJ011), China Postdoctoral Science Foundation
(2020M673310), Program of Donglu Scholars of Yunnan University. We thank Prof.
Weiyi Liu from Yunnan University for his insightful advice.

References

1. Aggarwal, C.C., Bhuiyan, M.A., Hasan, M.A.: Frequent pattern mining algorithms:
a survey. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 19–64.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2 2

2. Aggarwal, N., Buitelaar, P.: Wikipedia-based distributional semantics for entity
relatedness. In: AAAI (2014)

3. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

4. Chen, J., Gu, B., Li, Z., Zhao, P., Liu, A., Zhao, L.: SAEA: self-attentive hetero-
geneous sequence learning model for entity alignment. In: DASFAA, pp. 452–467
(2020)

5. Cheng, G.: Relationship search over knowledge graphs. SIGWEB Newsl., 8 p.
(2020). https://doi.org/10.1145/3409481.3409484. Article ID 3

6. Cheng, G., Liu, D., Qu, Y.: Fast algorithms for semantic association search and
pattern mining. IEEE Trans. Knowl. Data Eng. 33(04), 1490–1502 (2019). https://
doi.org/10.1109/TKDE.2019.2942031. ISSN 1558–2191

7. Cheng, G., Shao, F., Qu, Y.: An empirical evaluation of techniques for ranking
semantic associations. IEEE Trans. Knowl. Data Eng. 29(11), 2388–2401 (2017)

https://doi.org/10.1007/978-3-319-07821-2_2
https://doi.org/10.1145/3409481.3409484
https://doi.org/10.1109/TKDE.2019.2942031
https://doi.org/10.1109/TKDE.2019.2942031


Ranking Associative Entities by Graphical Modeling of Frequent Patterns 239

8. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for nat-
ural language processing. J. Artif. Intell. Res. 34, 443–498 (2009)

9. Gong, X., Xu, H., Huang, L.: Han: Hierarchical association network for computing
semantic relatedness. In: AAAI (2018)

10. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In:
SIGKDD, pp. 855–864 (2016)

11. Han, J., Kamber, M., Pei, J.: Data Mining (Third Edition). Morgan Kaufmann,
Burlington (2012)

12. Herrera, J.E.T., Casanova, M.A., Nunes, B.P., Leme, L.A.P.P., Lopes, G.R.: An
entity relatedness test dataset. In: ISWC, pp. 193–201 (2017)

13. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE:
keyphrase overlap relatedness for entity disambiguation. In: CIKM, pp. 545–554
(2012)

14. Imrattanatrai, W., Kato, M.P., Tanaka, K., Yoshikawa, M.: Entity ranking for
queries with modifiers based on knowledge bases and web search results. IEICE
Trans. Inf. Syst. 101(9), 2279–2290 (2018)

15. Li, J., Chen, W., Gu, B., Fang, J., Li, Z., Zhao, L.: Measuring semantic relatedness
with knowledge association network. In: DASFAA, pp. 676–691 (2019)

16. Li, L., Yue, K., Zhang, B., Sun, Z.: A probabilistic approach for inferring latent
entity associations in textual web contents. In: DASFAA, pp. 3–18 (2019)

17. Liu, W., Yue, K., Wu, H., Fu, X., Zhang, Z., Huang, W.: Markov-network based
latent link analysis for community detection in social behavioral interactions. Appl.
Intell. 48(8), 2081–2096 (2017). https://doi.org/10.1007/s10489-017-1040-y

18. Liu, Z., et al.: Distance-aware dag embedding for proximity search on heterogeneous
graphs. In: AAAI, pp. 2355–2362 (2018)

19. Navigli, R., Martelli, F.: An overview of word and sense similarity. Nat. Lang. Eng.
25(6), 693–714 (2019)

20. Nguyen, T., Tran, T., Nejdl, W.: A trio neural model for dynamic entity relatedness
ranking. In: CoNLL, pp. 31–41 (2018)

21. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale
knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

22. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab (1999)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: SIGKDD, pp. 701–710 (2014)

24. Piccinno, F., Ferragina, P.: From TagME to WAT: a new entity annotator. In:
The First International Workshop on Entity Recognition and Disambiguation, pp.
55–62 (2014)

25. Ponza, M., Ferragina, P., Chakrabarti, S.: On computing entity relatedness in
wikipedia, with applications. Knowl.-Based Syst. 188, 105051 (2020)

26. Schuhmacher, M., Dietz, L., Ponzetto, S.P.: Ranking entities for web queries
through text and knowledge. In: CIKM, pp. 1461–1470 (2015)

27. Witten, I.H., Milne, D.N.: An effective, low-cost measure of semantic relatedness
obtained from wikipedia links. In: AAAI (2008)

28. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding
of words and entities for named entity disambiguation. In: SIGNLL, pp. 250–259
(2016)

29. Zhang, Y., Wang, D., Zhang, Y.: Neural IR meets graph embedding: a ranking
model for product search. In: WWW, pp. 2390–2400 (2019)

https://doi.org/10.1007/s10489-017-1040-y


A Novel Embedding Model for
Knowledge Graph Completion Based

on Multi-Task Learning

Jiaheng Dou, Bing Tian, Yong Zhang(B), and Chunxiao Xing

BNRist, Department of Computer Science and Technology, RIIT,
Institute of Internet Industry, Tsinghua University, Beijing, China

{djh19,tb17}@mails.tsinghua.edu.cn, {zhangyong05,xingcx}@tsinghua.edu.cn

Abstract. Knowledge graph completion is the task of predicting miss-
ing relationships between entities in knowledge graphs. State-of-the-art
knowledge graph completion methods are known to be primarily knowl-
edge embedding based models, which are broadly classified as transla-
tional models and neural network models. However, both kinds of mod-
els are single-task based models and hence fail to capture the underlying
inter-structural relationships that are inherently presented in different
knowledge graphs. To this end, in this paper we combine the trans-
lational and neural network methods and propose a novel multi-task
learning embedding framework (TransMTL) that can jointly learn multi-
ple knowledge graph embeddings simultaneously. Specifically, in order to
transfer structural knowledge between different KGs, we devise a global
relational graph attention network which is shared by all knowledge
graphs to obtain the global representation of each triple element. Such
global representations are then integrated into task-specific translational
embedding models of each knowledge graph to preserve its transition
property. We conduct an extensive empirical evaluation of multi-version
TransMTL based on different translational models on two benchmark
datasets WN18RR and FB15k-237. Experiments show that TransMTL
outperforms the corresponding single-task based models by an obvi-
ous margin and obtains the comparable performance to state-of-the-art
embedding models.

1 Introduction

Knowledge Graphs (KGs) such as WordNet [16] and Freebase [1] are graph-
structured knowledge bases whose facts are represented in the form of rela-
tions (edges) between entities (nodes). This can be represented as a collection
of triples (head entity, relation, tail entity) denoted as (h, r, t), for example
(Beijing, CapitalOf , China) is represented as two entities: Beijing and China
along with a relation CapitalOf linking them. KGs are important sources in
many applications such as question answering [2], dialogue generation [10] and

J. Dou and B. Tian – contribute equally to this work.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 240–255, 2021.
https://doi.org/10.1007/978-3-030-73194-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_17


A Novel Embedding Model for KGC Based on MTL 241

recommender systems [34]. Containing billions of triples though, KGs still suffer
from incompleteness, that is, missing a lot of valid triples [24,31]. Therefore,
many research efforts have concentrated on the Knowledge Graph Completion
(KGC) or link prediction task which entails predicting whether a given triple is
valid or not [4,24]. Recent state-of-the-art KGC methods are known to be pri-
marily knowledge embedding based models, which are broadly classified as trans-
lational models [3,21,32] and neural network models [8,20,23]. Translational
models aim to learn embeddings by representing relations as translations from
head to tail entities. For example, the pioneering work TransE [3] assumes that if
(h, r, t) is a valid fact, the embedding of head entity h plus the embedding of rela-
tion r should be close to the embedding of tail entity t, i.e. vh+vr ≈ vt (here, vh,
vr and vt are embeddings of h, r and t respectively). In order to learn more deep
expressive features, recent embedding models have raised interests in applying
deep neural networks for KGC such as Convolutional Neural Network (CNN) [8]
and capsule network [20]. Recently, some studies explored a new research direc-
tion of adopting Graph Neural Network (GNN) [23] for knowledge graph comple-
tion, which demonstrates superior effectiveness and advantages than traditional
translational methods since it takes the relationship of different triples into con-
sideration. Among the GNN models, Graph Attention Network (GAT) [29] is
an effective and widely used model which utilizes attentive nodes aggregation
to learn neighborhood information. Although the effectiveness of these models,
they are all single-task based models and ignore the inter-structural relations
that are inherently presented in different knowledge graphs. To that end, such
methods need to train different models for each knowledge graph, which involves
substantial extra efforts and resources.

Cumberland
County

Dauphin
County

Eastern Time
Zone

United States
dollar

oceania

austronesia

archipelago
instance_hypernym

instance_hypernym
similar_to

currency

time_zones

time_zones
adjoinsmicronesia

has_part

WordNet Freebase

has_part currency

Fig. 1. An example of shared structure pattern

Nevertheless, we find that different knowledge graphs are structurally inter-
related and one knowledge graph can benefit from others. On the one hand, since
different knowledge graphs have different data characteristics, they can comple-
ment each other by simultaneously learning the representations. For example,
WordNet provides semantic knowledge of words. It contains few types of rela-
tions but each relation corresponds to a large number of triples. In comparsion,
Freebase provides more specific facts of the world and contains a lagre num-
ber of relations with fewer entities. Therefore, knowledge representation model
based on WordNet would be good at modeling and inferring the patterns of (or



242 J. Dou et al.

between) each relation such as symmetry/antisymmetry, inversion and compo-
sition [25] whereas the model based on Freebase enables to model more complex
relations. As such, simultaneously learning the representations of these knowl-
edge graphs can definitely promote and benefit each other. On the other hand,
we observe that one knowledge graph may contain some common structural pat-
terns that are beneficial for other knowledge graphs. An example is shown in
Fig. 1 where the dotted line is the link needs to be predicted. For the missing
link (Dauphin Country, ?, United Stated dollar) in Freebase, it is essential to
understand the structural pattern that two entities connected by a symmetric
relation usually exist in some triples linked by the same relations. However, it is
hard for Freebase based embedding model to capture this kind of pattern since
it is rare in this knowledge graph. As this kind of struture pattern is very com-
mon in WordNet which is shown in the left of the figure, the knowledge graph
completion task based on Freebase can definitely benefit from them.

Motivated by such observations, in this paper we propose a novel embedding
model for knowledge graph completion based on multi-task learning (TransMTL)
where multiple knowledge graphs can be trained and represented simultaneously
and benefit from each other. Specifically, in order to preserve the transition prop-
erty of knowledge graphs, we first adopt the widely used translational models
such as TransE, TransH and TransR to represent the entities and relations of
each single knowledge graph. And then, we devise a global Translation preserved
Relational-Graph Attention Network (TR-GAT) which is shared by all knowl-
edge graphs to capture the inter-structural information between different knowl-
edge graphs and obtain the global representation of each triple element. Such
global representations are then integrated intotask-specific translational embed-
ding models of each knowledge graph to enhance its transition property. In this
way, each single knowledge graph can benefit from the common inter-structural
information from other knowledge graphs through the global shared layer. Recall
the example in Fig. 1, with the help of MTL, the information learned from Word-
Net can be transferred to Freebase representation task by means of the global
sharing mechanism. Specifically, in WordNet, there exists a triple (austronesia,
similar to, oceania) containing the symmetry realtion similar to. Then the head
entity austronesia and tail entity oceania would exist in some triples linked by
the same relation such as instance hypernym and has part. Once recognizing this
kind of pattern in WordNet, the multi-task learning model could take advantage
of such knowledge for link prediction in Freebase dataset. As there exists a triple
(Dauphin Country, adjoins, Cumberland Country) with the symmetric relation
adjoins and the head entity Dauphin Country and tail entity Cumberland Coun-
try exist in triples linked by the same relation time zones, we can assume that
the entity Dauphin Country may also linked by the relation currency since the
Cumberland Country and United Stated dollar are linked by currency. We con-
duct an extensive empirical evaluation TransMTL based on different translational
models on two benchmark datasets WN18RR and FB15k-237. Experiments show
that our TransMTL outperforms the corresponding single-task based models by
an obvious margin and obtains the comparable performance to state-of-the-art
embedding models.



A Novel Embedding Model for KGC Based on MTL 243

Contributions of this paper are summarized as follows:

– We propose a novel embedding model for knowledge graph completion based
on multi-task learning (TransMTL) that can learn embeddings of multiple
knowledge graphs simultaneously. To the best of our knowledge, this is the
first attempt of multi-task learning in the field of knowledge representation
for knowledge graph completion.

– We devise a translation preserved relational-graph attention network (TR-
GAT) to utilize the shared information from multiple knowledge graphs, cap-
turing inter-structural information in different knowledge graphs.

– We conduct extensive experiments on WN18RR and FB15k-237. Experimen-
tal results show the effectiveness of our model TransMTL.

2 Related Work

2.1 Knowledge Graph Completion (KGC)

Representation learning has been widely adopted in a variety of applica-
tions [15,35,36]. Recently, several variants of KG embeddings have been pro-
posed following the paradigm of representation learning. These methods can be
broadly classified as: semantic matching, translational and neural network based
models. Firstly, semantic matching models such as DistMult [32], ComplEx [28]
and Holographic Embeddings model (HolE) [22] use similarity-based functions to
infer relation facts. Differently, translational models aim to learn embeddings by
representing relations as translations from head entities to tail entities. For exam-
ple, Bordes et al. [3] proposed TransE by assuming that the added embedding
of h + r should be close to the embedding of t with the scoring function defined
under L1 or L2 constraints. Starting with it, many variants and extensions of
TransE have been proposed to additionally use projection vectors or matrices to
translate embeddings into the vector space, such as TransH [30], TransR [13] and
TransD [11]. In recent studies, neural network models that exploit deep learning
techniques have yielded remarkable predictive performance for KG embeddings.
Dettmers et al. [8] introduced ConvE that used 2D convolution over embed-
dings and multiple layers of non-linear features to model knowledge graphs. To
preserve the transitional characteristics, Nguyen et al. [19] proposed ConvKB
that applied the convolutional neural network to explore the global relationships
among same dimensional entries of the entity and relation embeddings. To cap-
ture long-term relational dependency in knowledge graphs, recurrent networks
are utilized. Gardner et al. [9] and Neelakantan et al. [18] proposed Recurrent
Neural Network (RNN)-based models over relation path to learn vector represen-
tation without and with entity information, respectively. To cover the complex
and hidden information that is inherently implicit in the local neighborhood
surrounding a triple, some studies used Graph Neural Networks (GNNs) for
knowledge embeddings such as R-GCN [23] and KBGAT [17] etc.

Though the effectiveness of these models, they are all single-task based mod-
els and hence fail to capture the underlying inter-structural relationships that
are inherently present in different knowledge graphs.



244 J. Dou et al.

2.2 Multi-Task Learning

Multi-Task Learning (MTL) [5] is a learning paradigm in machine learning aim-
ing at leveraging potential correlations and common features contained in multi-
ple related tasks to help improve the generalization performance of all the tasks.
It has been widely adopted in many machine learning applications from var-
ious areas including web applications, computer vision, bioinformatics, health
informatics, natural language processing and so on. For example, Chapelle et
al. [6] introduced a multi-task learning algorithm based on gradient boosted
decision trees that is specifically designed with web search ranking in mind. Yim
et al. [33] proposed a multi-task deep model to rotate facial images to a target
pose and the auxiliary task aimed to use the generated image to reconstruct the
original image. Chowdhury et al. [7] provided an end-to-end multi-task encoder-
decoder framework for three adverse drug reactions detection and extraction
tasks by leveraging the interactions between different tasks. Tian et al. [26]
devised a multi-task hierarchical inter-attention network model to improve the
task-specific document representation in nature language processing for docu-
ment classification. In this paper, we utilize the idea of multi-task learning to
transfer structural knowledge between different KGs by jointly learning multiple
knowledge graph embeddings simultaneously.

3 Method

We begin this section by introducing the notations and definitions used in the
rest of the paper, followed by a brief background on GAT [29]. Immediately
afterwards, we introduce the details of our TransMTL framework as displayed
in Fig. 2. It consists of two components: the task-specific knowledge embedding
layer and the global shared layer. The task specific knowledge embedding layer
is a translational model in which each KG learns low-dimensional embeddings
of entities and relations. The global shared layer enables multi-task learning:
we devise a Translation preserved Relational-Graph Attention Network (TR-
GAT) to acquire the entity and relation embeddings simultaneously consisting
of common structural information from all the knowledge graphs. Then such
information is shared and integrated into the task-specific knowledge embedding
layer to further enhance the entity and relation representations.

3.1 Background and Definition

A knowledge graph G is donated by G = (E,R, T ) where E, R and T represent
the set of entities (nodes), relations (edges) and triplets, respectively. It contains
a collection of valid factual triples in the form of (head entity, relation, tail
entity) denoted as (h, r, t) such that h, t ∈ E and r ∈ R, representing the specific
relation r linking from the head entity h to tail entity t. Knowledge embedding
models aim to learn an effective representation of entities, relations, and a scoring
function f which gives an implausibility score for each triple (h, r, t) such that



A Novel Embedding Model for KGC Based on MTL 245

Fig. 2. The overall architecture of TransMTL

valid triples receive lower scores than invalid triples. With the learned entity and
relation embeddings, the knowledge graph completion is to predict the missing
head entity h given query (?, r, t) or tail entity t given query (h, r, ?).

3.2 Graph Attention Networks (GAT)

The concept of Graph Convolutional Networks (GCN) was first proposed in [12],
which extended existing neural networks for processing the graph structured
data. It gathers information from the entity’s neighborhood and all neighbors
contribute equally in the information passing. To resolve the shortcomings the
GCNs, Velickovic et al. [29] proposed Graph Attention Networks (GAT). The
advantage of GAT lies in the aspect that it leverages attention mechanism to
assign varying levels of importance to nodes in every node’s neighborhood, which
enables the model to filter out noises and concentrate on important adjacent
nodes. Specifically, the convolution layer attentionally aggregates features of
each node in the graph as well as its one-hop neighbors as new features. The
convolution process on the tth layer for node v is formalized as Eq. (1)–(2).

h(t)
v = σ(

∑

u∈N (v)∪v

αvuW (t)h(t−1)
u ) (1)

αvu = softmax(f(aT
t [W (t)h(t−1)

v ||W (t)h(t−1)
u ]))

=
exp(f(aT

t [W (t)h
(t−1)
v ||W (t)h

(t−1)
u ]))

∑
j∈N (v)∪v

exp(f(aT
t [W (t)h

(t−1)
v ||W (t)h

(t−1)
j ]))

(2)

where W (t) is the weight matrix, αvu is the attention coefficient of node u
to v, N (v) presents the neighborhoods of node v in the graph, f donates the
LeakyReLU function and at is the weight vector.



246 J. Dou et al.

3.3 Task-Specific Knowledge Embedding Layer

In order to integrate the strength of translational property in knowledge graphs,
we adopt the widely-used translation-based methods for each involved KG in task
specific knowledge embedding layer, which benefit the multi-task learning tasks
by representing embeddings uniformly in different contexts of relations. Here,
we take the basic translational model TransE as an example to describe the
embedding model. TransE [3] projects both relations and entities into the same
continuous low-dimension vector space, in which the relations are considered
as translating vectors from head entities to tail entities. Following the energy-
based framework in TransE, the energy of a triplet is equal to d(h+r, t) for some
dissimilarity measure d. Specifically, the energy function is defined as:

E(h, r, t) = ‖h + r − t‖ (3)

To learn such embeddings, we minimize the margin-based objective function over
the training set, defined as:

K = Σ(h,r,t)∈TL(h, r, t), (4)

where L(h, r, t) is a margin-based loss function with respect to the triple
(h, r, t):

L(h, r, t) = Σ(h′,r′,t′)∈T ′ [γ + E(h, r, t) − E(h′, r′, t′)]+, (5)

where [x]+ = max(0, x) represents the maximum between 0 and x. T ′ stands for
the negative sample set of T , donated as follows:

T ′ = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E}
∪ {(h, r′, t)|r′ ∈ R}, (h, r, t) ∈ T. (6)

The set of corrupted triplets, constructed according to Eq. (6), is composed
of training triplets with either the head or tail replaced by a random entity (but
not both at the same time). The objective function is optimized by stochastic
gradient descent (SGD) with mini-batch strategy.

Note that in this paper, we aim at providing a general multi-task leaning
solution to take advantage of the inter-structural knowledge between different
KGs and not limited to any knowledge representation learning method. In other
words, this task specific knowledge embedding layer can also be implemented
through any other knowledge representation learning methods, including trans-
lational models and neural network models. In order to illustrate the effective-
ness of multi-task learning in knowledge graph representation and KGC task, we
implemented our TransMTL model based on TransE, TransH [30] and TransR [13]
in this paper. The energy functions of TransH and TransR are defined as in
Eq. (7) and Eq. (8) respectively.



A Novel Embedding Model for KGC Based on MTL 247

E(h⊥, r, t⊥) = ‖h + dr − t‖
=

∥∥(h − w�
r hwr) + dr − (t − w�

r twr)
∥∥ , ‖wr‖2 = 1 (7)

E(hr, r, tr) = ‖hr + r − tr‖ = ‖hMr + r − tMr‖ (8)

3.4 Global Shared Layer for Multi-task Learning

On the basis of task-specific model, we then utilize MTL techniques to improve
the entity and relation representations. The intuition is that different knowledge
graphs share some common structural knowledge, which can help improve the
entity and relation representations of each knowledge graph and contribute to
a better knowledge graph completion performance. The key factor of multi-task
learning is the sharing scheme among different tasks. Considering the observa-
tions that existing KG embedding models treat triples independently and thus
fail to cover the complex and hidden information that is inherently implicit in
the local neighborhood surrounding a triple, we propose TR-GAT in Fig. 3 to
acquire the entity and relation embeddings simultaneously by capturing both
entity and relation features in any given entity’s neighborhood.

Fig. 3. Embedding processing in TR-GAT. Orange represents the center entity, brown
represents relations connected with it, and green and blue represent its neighboring
entities. If the entity has the head role, accumulating its neighboring tail nodes and
relations with t − r. If it has the tail role, accumulating its neighboring head nodes
and relations with h+r. Then the role discrimination representations passed through a
GAT network during which the embeddings of entities and relations are updated.(Color
figure online)

TR-GAT integrates the strength of GAT and the translational property in
knowledge graphs (h+ r ≈ t) to design the new propagation model. As such, we
modify the update rule in GAT for the entity and relation embeddings and the
convolution process on the tth layer for node v is formalized as Eq. 9:



248 J. Dou et al.

hl
v = σ(W l(

∑

r∈Nr

∑

t∈Nr
t

αvtc(hl−1
t , hl−1

r ) +
∑

r∈Nr

∑

h∈Nr
h

αvhc̃(hl−1
h , hl−1

r ) + αvh
l−1
v ))

(9)
where Nr denotes the set of relations connecting the entity i, Nr

t represents the
set of tail entities connected with the entity i by the relation r, Nr

h is the set of
head entities connected with the entity i by the relation r. hl

h ∈ Rd(l), hl
r ∈ Rd(l)

and hl
t ∈ Rd(l) denote the lth layer embedding of the head entity, relation and tail

entity respectively in the neural network and d(l) is the dimension of this layer.
σ is the activation function. c(·, ·) is the function to describe the relationship
between hl

t and hl
r, and c̃(·, ·) describes the relationship between hl

h and hl
r. W l

is the weight matrix of the lth layer.
Equation 9 features the role discrimination criterion to identify if entity v

in the knowledge graph takes the role of head or tail entity regarding a specific
relation r. It performs different convolution operations for them: if v has the head
entity role, its embedding is calculated by combining the related tail entity h

(l−1)
t

and relation h
(l−1)
r . Otherwise, its embedding is calculated with the related head

entity h
(l−1)
h and relation h

(l−1)
r . Thereafter, all occurrences of head roles and

tail roles of v are added, together with a single self-connection representation
hl−1
v , to infer the l representation of the entity v.

The design of function c and c̃ features the translation adoption criterion
which is h+r ≈ t for a triplet (h, r, t) in the graph. Alternatively, the translational
property can be transformed into h ≈ t − r and t ≈ h + r. Therefore,

c(hl
t, h

l
r) = hl

t − hl
r (10)

c̃(hl
h, hl

r) = hl
h + hl

r (11)

Based on the TR-GAT, the overall embedding process of our TransMTL is
as follows: for each entity and relation in a knowledge graph k (G[k]), we first
compute the global output based on the global shared TR-GAT with Eq. (12) to
utilize the global shared inter-structural information of all KGs.

(h(s), r(s), t(s)) = TR-GAT((E,R, T ), Θ(s)) (12)

Here, we use a TR-GAT(·, ·) as a shorthand for convolution process (Eq. (9)–(11))
in the global shared layer and Θ represents the parameters of global shared layer
which are shared by all KGs. Then such global information is integrated into each
task to enhance the embeddings of each KG. Formally, for a specific task k, the
energy function in Eq. (3) is modified as follows:

(h(k) + Mhh(s)) + (r(k) + Mrr
(s)) ≈ (t(k) + Mtt

(s)) (13)

E(h, r, t)[k] =
∥∥∥(h(k) + Mhh(s)) + (r(k) + Mrr

(s)) − (t(k) + Mtt
(s))

∥∥∥ (14)

where h(k), r(k), t(k) are the task specific embeddings of knowledge graph k,
h(s), h(s), h(s) are global embeddings obtained through the shared TR-GAT layer,



A Novel Embedding Model for KGC Based on MTL 249

and Mh,Mr,Mt are transform matrix to guarantee the consistency of the vector
spaces between the embeddings of task-specific and global shared layers. In this
way, every entity and relation of each single knowledge graph can benefit from
common knowledge and extra information from all other knowledge graphs.

3.5 Training

Following the translational models, to learn such embeddings, we adopt a margin-
based loss function respect to the triples for all tasks:

L =
∑

k∈K

∑

(h,r,t)∈S

∑

(h′,r′,t′)∈S

[γ + d(h + r, t) − d(h′ + r, t′)]+ (15)

h = h(k) + Mhh(s); r = r(k) + Mrr
(s); t = t(k) + Mtt

(s) (16)

where K is the number of knowledge graphs.

4 Experiments

In this section, we evaluate the performance of our framework. We conduct
an extensive empirical evaluation of multi-version TransMTL based on TransE,
TransH and TransR respectively to verify the effectiveness of the proposed model.
We further vary the training set size to illustrate that our proposed multi-task
learning framework can still perform well on low resource settings.

4.1 Experiment Setup

Data Sets. Our model is evaluated on two widely used knowledge graphs:
WordNet [16] and Freebase [1]. WordNet provides semantic knowledge of words.
Entities in WordNet are synonyms which express distinct concepts. Relations in
WordNet are conceptual-semantic and lexical relations. In this paper, we employ
the dataset WN18RR [8] from WordNet. Freebase provides general facts of the
world. In this paper, we employ data set FB15k-237 [27] from Freebase.

Notably, WN18RR and FB15k-237 are correspondingly subsets of two com-
mon data sets WN18 and FB15k. It is firstly discussed by [27] that WN18 and
FB15k suffer from test leakage through inverse relations, i.e. many test triplets
can be obtained simply by inverting triplets in the training set. To address this
issue, Toutanova and Chen et al. [27] generated FB15k-237 by removing redun-
dant relations in FB15k and greatly reducing the number of relations. Likewise,
Dettmers et al. [8] removed reversing relations in WN18. As a consequence,
the difficulty of reasoning on these two data sets is increased dramatically. The
statistics of the two datasets are described in Table 1.



250 J. Dou et al.

Table 1. Statistics of the datasets

Dataset #Relation #Entity #Train #Valid #Test

WN18RR 11 40,943 86,835 3,034 3,134

FB15k-237 237 14,541 272,115 17,535 20,466

Baselines. We first compared our TransMTL with the corresponding single-task
models, namely TransE [3], TransH [30] and TransR [13] respectively. To fur-
ther illustrate the effectiveness of multi-task learning, we then compared our
model with recent knowledge embedding models, including both non-neural
models and neural models. Specifically, we compared our TransMTL with Dist-
Mult [32], ConvE [8], ComplEx [28], KBGAT [17], ConvKB [19], RotatE [25]
and DensE [14] for comparison.

Evaluation Protocol. Link prediction aims to predict the missing h or t for a
triplet (h, r, t). In this task, the model is asked to rank a set of candidate entities
from the KG, instead of giving one best result. For each test triplet (h, r, t),
we replace the head/tail entity by all possible candidates in the KG, and rank
these entities in ascending order of scores calculated by score function showed
in Eq. 14. We follow the evaluation protocol in [3] to report filtered results.
Because a corrupted triplet, generated in the aforementioned process of removal
and replacement, may also exist in KG, and should be considered as correct. In
other words, while evaluating on test triples, we filter out all the valid triples
from the candidate set, which is generated by either corrupting the head or tail
entity of a triple. We report three common measures as our evaluation metrics:
the average rank of all correct entities (Mean Rank), the mean reciprocal rank of
all correct entities (MRR), and the proportion of correct entities ranked in top
10 (Hits@10). We report average results across 5 runs. We note that the variance
is substantially low on all the metrics and hence omit it. A good link predictor
should achieve lower Mean Rank, higher MRR,

Training Protocol. We use the common Bernoulli strategy [13,30] when sam-
pling invalid triples. We select 500 as the batch size, which is not too big or
too small for both the two datasets. There are two learning rates in our multi-
task model: one for the global shared layer and the other for the task specific
knowledge embedding layer. We use grid search method to find the appropriate
learning rate for the two parts. And finally in our experiments, we use learn-
ing rate 0.5 for task-specific knowledge embedding layer and 0.01 for the global
shared TR-GAT model. We use the Stochastic Gradient Descent (SGD) optimizer
for training. In our model, the embedding size of entities and relations from the
two knowledge graphs should be equal and we set it to 200. We use a two-layer
GAT for the global shared TransMTL model that allows message passing among
nodes that are two hops away from each other. As a result, although for some
entity pairs, there are no direct edges in the knowledge graph, the two-layer



A Novel Embedding Model for KGC Based on MTL 251

GAT is still capable to learn the inter-entity relations and enables the informa-
tion exchange between pairs of entities. In our preliminary experiment, we found
that a two-layer GAT performs better than a one-layer GAT, while more layers
do not improve the performances. We set the dropout rate as 0.1 in order to
release overfitting.

For multi-task learning, the training data come from completely different
datasets, so our training process is conducted by looping over the tasks as follow:

1. Select a random task.
2. Select a mini-batch of examples from this task.
3. Backward the model and update the parameters of both task-specific layer

and global shared layer with respect to this mini-batch.
4. Go to 1.

4.2 Results and Analysis

Table 2. Link prediction results of WN18RR and FB15k-237 compared with transla-
tional models. [*]: Results are taken from [19]. Best scores are highlighted in bold.

Models WN18RR FB15k-237

MR MRR Hit@10 (%) MR MRR Hit@10 (%)

TransE[*] 3384 0.226 50.1 347 0.294 46.5

TransH 3048 0.286 50.3 348 0.284 48.8

TransR 3348 0.303 51.3 310 0.310 50.6

TransMTL-E 3065 0.363 54.1 116 0.336 52.6

TransMTL-H 2521 0.498 57.0 111 0.349 53.7

TransMTL-R 3154 0.465 54.6 133 0.333 52.2

Table 2 compares the experimental results of our TransMTL with different task
specific knowledge embedding models to the corresponding single-task based
models, using the same evaluation protocol. Here, TransMTL-E, TransMTL-H
and TransMTL-R are models with TransE, TransH and TransR as their task
specific knowledge embedding models respectively. From the table, we can see
that our multi-task learning models outperform the corresponding single-task
based models by an obvious margin. Specifically, TransMTL-E shows an improve-
ment of Hit@10 4%, 6.1% to TransE on WN18RR and FB15k-237 respectively.
TransMTL-H shows an improvement of Hit@10 6.7%, 4.9% to TransH and such
numbers are 3.3% and 1.6% for the pair of TransMTL-R and TransR on dataset
WN18RR and FB15k-237. Moreover, our TransMTL also obtains better MR
and MRR scores than single-task models on both datasets. We argue that it
is because with the global shared TR-GAT layer, the entities and relations of
each single task can benefit from extra information from other tasks for better
representations.



252 J. Dou et al.

To further illustrate the effectiveness of multi-task learning, we then com-
pared our model with recent knowledge embedding models, including both non-
neural models and neural models. The experimental results are shown in Table 3.
Since the datasets are same, we directly copy the experiment results of sev-
eral baselines from [14,17]. From the table, we can see that even with the basic
translational models, our TransMTL can obtain comparable performance to these
recent models that integrate much additional information and new technologies
into their models. Moreover, our TransMTL performs better on FB15k-237 than
on WN18RR. The reason may be that there are rich conceptual-semantic and
lexical relations in WN18RR and the entities and relations in FB15k-237 can
benefit from these information through multi-task learning.

Table 3. Link prediction results for WN18RR and FB15k-237. Best scores are high-
lighted in bold.

Models WN18RR FB15k-237

MR MRR Hit@10 (%) MR MRR Hit@10 (%)

DistMult 5110 0.430 49.0 512 0.281 44.6

ConvE 4187 0.43 52.0 244 0.325 50.1

ComplEx 7882 0.449 53.0 546 0.278 45.0

KBGAT 1921 0.412 55.4 270 0.157 33.1

ConvKB 1295 0.265 55.8 216 0.289 47.1

RotatE 3340 0.476 57.1 177 0.338 53.3

DensE 3052 0.491 57.9 169 0.349 53.5

TransMTL-E 3065 0.363 54.1 116 0.336 52.6

TransMTL-H 2521 0.498 57.0 111 0.349 53.7

TransMTL-R 3154 0.465 54.6 133 0.333 52.2

Varying the Data Size. In order to illustrate the robustness of our proposed
multi-task learning framework, we vary the data sizes by randomly sampling
different ratios of the training data for training and test them on the whole
test sets of two datasets. Figure 4 shows the experimental results of Hit@10
scores of our TransMTL and the corresponding single task translational models:
TransE, TransH, and TransR on two datasets respectively. Here, for the per-
formance of single task translational models in different training data sizes, we
use the same settings to the task-specific models of our TransMTL. From the
figure, we can readily see that TransMTL consistently outperforms all single-task
models across all datasets. Besides, we can see that with the decrease of training
triples, the Hit@10 metrics decrease with different degrees. More specifically, the
performance gap between our TransMTL models and the baselines are larger in
small dataset settings than in big dataset settings. For example, with only the
60% of the training data, the performance of our TransMTL is still competitive,
which shows an improvement of Hit@10 8.5% and 8% to TransE on WN18RR



A Novel Embedding Model for KGC Based on MTL 253

and FB15k-237 respectively. We argue that this is because our multi-task learn-
ing framework can exploit the underlying inter-structural relationships that are
inherently presented in different knowledge graphs, thus it can alleviate the data
insufficiency problem and achieve good results with less data.

Fig. 4. The Hit@10 with different percentage of training data

5 Conclusions

In this paper, we propose a novel embedding model based on multi-task learning
that can jointly learn multiple knowledge graph embeddings simultaneously for
knowledge graph completion. We devise a global translation preserved relational
graph attention network which is shared by all knowledge graphs to capture
and transfer structural knowledge between different KGs. To preserve the tran-
sition property of each KG, we then integrate the global information learned
by the global shared layer into the translational models for each KG. Experi-
mental results on two benchmark datasets WN18RR and FB15k-237 show that
our proposed model outperforms the corresponding single-task based models by
an obvious margin and obtains the comparable performance to state-of-the-art



254 J. Dou et al.

embedding models, indicating the effectiveness of multi-task learning on knowl-
edge graph representations.

Acknowledgements. This work was supported by NSFC (91646202), National Key
R&D Program of China (2018YFB1404401, 2018YFB1402701).

References

1. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD,
pp. 1247–1250 (2008)

2. Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings.
In: EMNLP, pp. 615–620 (2014)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

4. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: AAAI (2011)

5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
6. Chapelle, O., Shivaswamy, P.K., Vadrevu, S., Weinberger, K.Q., Zhang, Y., Tseng,

B.L.: Multi-task learning for boosting with application to web search ranking. In:
ACM SIGKDD, pp. 1189–1198 (2010)

7. Chowdhury, S., Zhang, C., Yu, P.S.: Multi-task pharmacovigilance mining from
social media posts. In: WWW, pp. 117–126 (2018)

8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: AAAI, pp. 1811–1818 (2018)

9. Gardner, M., Talukdar, P.P., Krishnamurthy, J., Mitchell, T.M.: Incorporating
vector space similarity in random walk inference over knowledge bases. In: EMNLP,
pp. 397–406 (2014)

10. He, H., Balakrishnan, A., Eric, M., Liang, P.: Learning symmetric collaborative
dialogue agents with dynamic knowledge graph embeddings. In: ACL, pp. 1766–
1776 (2017)

11. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: ACL, pp. 687–696 (2015)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Bonet, B., Koenig, S. (eds.) AAAI, pp. 2181–
2187. AAAI Press (2015)

14. Lu, H., Hu, H.: Dense: An enhanced Non-Abelian group representation for knowl-
edge graph embedding. CoRR abs/2008.04548 (2020)

15. Luo, L., et al.: Beyond polarity: interpretable financial sentiment analysis with
hierarchical query-driven attention. In: IJCAI, pp. 4244–4250 (2018)

16. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

17. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embed-
dings for relation prediction in knowledge graphs. In: ACL, pp. 4710–4723 (2019)

18. Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for
knowledge base completion. In: ACL, pp. 156–166 (2015)



A Novel Embedding Model for KGC Based on MTL 255

19. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding
model for knowledge base completion based on convolutional neural network. In:
NAACL-HLT, pp. 327–333 (2018)

20. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A capsule
network-based embedding model for knowledge graph completion and search per-
sonalization. In: NAACL-HLT, pp. 2180–2189 (2019)

21. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: Neighborhood mixture model for
knowledge base completion. In: CoNLL, pp. 40–50 (2016)

22. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: AAAI, pp. 1955–1961 (2016)

23. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: ESWC, pp.
593–607 (2018)

24. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)

25. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by rela-
tional rotation in complex space. In: ICLR (2019)

26. Tian, B., Zhang, Y., Wang, J., Xing, C.: Hierarchical inter-attention network for
document classification with multi-task learning. In: IJCAI, pp. 3569–3575 (2019)

27. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: CVSM (2015)

28. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

29. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

31. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base
completion via search-based question answering. In: WWW, pp. 515–526 (2014)

32. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (2015)

33. Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., Kim, J.: Rotating your face using
multi-task deep neural network. In: IEEE CVPR, pp. 676–684 (2015)

34. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.: Collaborative knowledge base
embedding for recommender systems. In: ACM SIGKDD, pp. 353–362 (2016)

35. Zhao, K., et al.: Modeling patient visit using electronic medical records for cost
profile estimation. In: DASFAA, pp. 20–36 (2018)

36. Zhao, K., et al.: Discovering subsequence patterns for next POI recommendation.
In: IJCAI, pp. 3216–3222 (2020)



Gaussian Metric Learning for Few-Shot
Uncertain Knowledge Graph Completion

Jiatao Zhang, Tianxing Wu, and Guilin Qi(B)

School of Computer Science and Engineering, Southeast University, Nanjing, China
{zjt,tianxingwu,gqi}@seu.edu.cn

Abstract. Recent advances in relational information extraction have
allowed to automatically construct large-scale knowledge graphs (KGs).
Nevertheless, an automatic process entails that a significant amount of
uncertain facts are introduced into KGs. Uncertain knowledge graphs
(UKGs) such as NELL and Probase model this kind of uncertainty as
confidence scores associated to facts for providing more precise knowl-
edge descriptions. Existing UKG completion methods require sufficient
training examples for each relation. However, most relations only have
few facts in real-world UKGs. To solve the above problem, in this paper,
we propose a novel method to complete few-shot UKGs based on Gaus-
sian metric learning (GMUC) which could complete missing facts and
confidence scores with few examples available. By employing a Gaussian-
based encoder and metric function, GMUC could effectively capture
uncertain semantic information. Extensive experiments conducted over
various datasets with different uncertainty levels demonstrate that our
method consistently outperforms baselines.

1 Introduction

Knowledge graphs (KGs) describe structured information of entities and rela-
tions, which have been widely used in many intelligent applications such as
question-answering and semantic search. Despite large scales of KGs, they are
still far from complete to describe infinite real-world facts. In order to complete
KGs automatically, many efforts [3,7,18,22,25,31] have been studied to infer
missing facts.

Most KGs such as Freebase [2], DBpedia [1], and Wikidata [28] consist of
deterministic facts, referred to as Deterministic KGs (DKGs). Due to the auto-
matic process has been widely applied in the construction of large-scale KGs,
there are many uncertain facts that make it hard to guarantee the determina-
tion of knowledge. Besides, lots of knowledge in some fields such as medicine
and finance cannot be represented as deterministic facts. Therefore, Uncertain
KGs (UKGs) such as NELL [4] and ConceptNet [24] represent the uncertainty as
confidence scores associated to facts. Since such scores could provide more pre-
cise information, UKGs benefit many knowledge-driven applications, especially
for highly risk-sensitive applications such as drug discovery [23] and investment
decisions [19].
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 256–271, 2021.
https://doi.org/10.1007/978-3-030-73194-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_18


Gaussian Metric Learning for Few-Shot UKG Completion 257

Inspired by the completion methods for DKGs, some research efforts [6,13]
have been made to complete UKGs. Existing research on UKG completion usu-
ally assumes the availability of sufficient training examples for all relations. How-
ever, due to the long-tail distribution of relations, most relations only have few
facts in real-world UKGs. It is crucial and challenging to deal with such cases.

Table 1. Example facts of relation “synonymfor” and entity “redhat” in NELL.

Relation: synonymfor Entity: redhat

<(macos, synonymfor, linux), 0.94> <(redhat, categories, software), 1.00>

<(adobe, synonymfor, flash), 0.94> <(redhat, categories, enterprise), 1.00>

<(america, synonymfor, us), 1.00> <(redhat, synonymfor, linux), 1.00>

<(ford, synonymfor, ibm), 1.00> <(redhat, synonymfor, fedora), 1.00>

In UKGs, entities and relations usually have significant uncertainty of its
semantic meaning. For example, in Table 1, the fact (america, synonymfor, us)
reflects the semantic meaning of synonymfor precisely, while other facts such as
(adobe, synonymfor, flash) and (macos, synonymfor, linux) are obviously not
precise for the original semantic meaning of synonymfor. Another example is
entity redhat, which has different meaning in facts (redhat, categories, software)
and (redhat, categories, enterprise). Such a condition is very common in UKGs.
We refer this uncertainty as internal uncertainty of entities and relations.

Completing UKGs in few-shot settings is a non-trivial problem for the fol-
lowing reasons: (1) The internal uncertainty of entities and relations is essential
to complete UKGs in few-shot scenarios but ignored by previous works. Exist-
ing UKG relational learning methods [6,12,13] interpret entities and relations
as “points” in low-dimensional spaces. Since there are nothing different about
these “points” except their positions, different internal uncertainty of entities
and relations cannot be expressed. The ignorance of internal uncertainty leads
to insufficient modeling of entities and relations, especially under settings with
few and noisy facts. (2) Existing methods of few-shot DKGs completion [30,33]
could not be used to complete UKGs directly. These models assume that all facts
in KGs are entirely correct without any noise and ignore different qualities of
facts. This assumption is obviously not reasonable for UKGs and leads to poor
performance in a completion process, which can also be validated in our experi-
ments. Besides, these methods could only complete missing facts but could not
estimate confidence scores of completion results.

To address the above issues, we propose a novel method to complete few-
shot UKGs based on Gaussian metric learning (GMUC). Given a set of few-shot
facts for each relation, our model aims at learning a metric of similarity that can
be used to complete missing facts and their confidence scores. Specifically, we
first propose a Gaussian neighbor encoder to represent the facts of a relation as
multi-dimensional Gaussian distributions, in which the semantic feature (mean)



258 J. Zhang et al.

and internal uncertainty (variance) can be learned simultaneously. Gaussian-
based representation could innately express internal uncertainty of entities and
relations, and enable more expressive parameterization of decision boundaries
[26]. Next, a Gaussian matching function considering fact qualities is designed
to discover new facts and predict their confidence scores.

In experiments, we newly construct a four datasets under few-shot settings.
In order to examine completion performance in real-world UKGs, these datasets
have different amounts of noisy facts (i.e., uncertainty levels) to simulate an auto-
matic construction process. We then evaluate our model on two tasks, includ-
ing link prediction and confidence prediction. The results demonstrate that our
model could achieve the best performance on all tasks.

Our main contributions are summarized as follows:

– We are the first to consider the long-tail distribution of relations in UKG
completion tasks and formulate the problem as few-shot UKG completion.

– We propose a novel method to complete few-shot UKGs based on Gaussian
metric learning. Our model could predict missing facts and their confidence
scores by considering fact qualities and internal uncertainty of entities and
relations.

– We newly construct a set of datasets for few-shot UKG completion, which
contains four datasets with different uncertainty levels.

– We evaluate our model on two tasks, including link prediction and confidence
prediction, and our model could achieve promising performances.

2 Related Works

2.1 Completion Methods for DKGs

Various works have been proposed to automatically complete DKGs by learn-
ing relation representation. RESCAL [18] represents inherent structures of rela-
tional data as tensor factorization. TransE [3] regards the relation between enti-
ties as a translation operation on low-dimensional embeddings. More advanced
approaches have been invested, such as DistMult [31] and ComplEx [25].
Recently, methods utilizing deep neural networks, such as ConvE [7], have also
been proposed.

2.2 Completion Methods for UKGs

Inspired by completion methods for DKGs, some UKG completion methods are
have also been invested. UKGE [6] is the first UKG embedding model that is
able to capture both semantic and uncertain information in embedding space.
GTransE [13] uses confidence-margin-based loss function to deal with uncertainty
on UKGs. PKGE in [12] employs Markov Logic Network (MLN) to learn first-
order logic and encodes uncertainty.



Gaussian Metric Learning for Few-Shot UKG Completion 259

2.3 Few-Shot Learning

Recent few-shot learning methods can be divided into two categories: (1) Metric-
based methods [15,21,27,32], trying to learn a similarity metric between new
instances and instances in the training set. Most of the methods in this category
use the general matching framework proposed in the deep siamese networks given
in [15]. An example is the matching networks [27], which make predictions by
comparing input examples with small support set with labels. (2) Methods based
on meta-learners [9,16,17,20], aiming to directly predict or update parameters
of the model according to training data.

Recently, few-shot learning has been applied in DKG completion. Gmatch-
ing [30] designs a matching metric by considering both learned embeddings and
local-subgraph structures. FSRL [33] proposes a more effective neighbor encoder
module to capture heterogeneous graph structure of knowledge. Unlike metric-
based methods, MetaR [5] focuses on transferring meta information of a relation
to learn models effectively and efficiently. CogKR [8] solves one-shot DKG com-
pletion problem by combining summary and reasoning modules. However, these
methods are intractable for UKG completion since they ignore the fact qualities
and cannot predict confidence scores.

As far as we know, this is the first work to study the few-shot UKG completion
problem.

3 Problem Definition

Definition 1. Uncertain Knowledge Graph
An Uncertain Knowledge Graph (UKG) is denoted as G = {< (h, r, t), s >},
where (h, r, t) ∈ E × R × E represents a fact as a triple, E and R are the sets
of all entities and relations, s ∈ [0, 1] is the confidence score which means the
confidence of this triple to be true.

Definition 2. Few-Shot Uncertain Knowledge Graph Completion
For a relation r and one of its head entities hj in an UKG G, few-shot UKG
problem is to predict corresponding tail entities and confidence scores based on a
few-shot support set Sr = {< (hi, ti) , si > |(< (hi, r, ti) , si >∈ G}. The problem
can be formally represented as r :< (hj , ?), ? >.

Table 2. Examples of a training task and a testing task in 3-shot UKG completion
problem

Phase Training Testing

Task Relation: productby Relation: synonymfor

<(word, microsoft), 1.00> <(us, america), 1.00>

Support set <(alphago, google), 0.50> <(adobe, flash), 0.94>

<(ps4, nintendo), 0.37> <(linux, microsoft), 0.50>

Query <(iphone, apple), 0.94> (Hewlett-Packard, HP)



260 J. Zhang et al.

Fig. 1. The framework of GMUC: it first encodes support set and queries into multi-
dimensional Gaussian distributions by Gaussian neighbor encoders. Then a Gaussian
matching function is employed to construct similarity distribution between queries and
the support set which is denoted as Similarity. Based on Similarity, we define two
matching results Rsimilarity and Rconfidence to complete missing triples and confidence
scores.

As above definition, a few-shot UKG completion task can be always defined
for a specific relation. During a testing process, there usually is more than one
triple to be completed. We denote such triples as a query set Qr = {r :<
(hj , ?) , ? >} (Table 2).

A few-shot UKG completion method aims to gain the capability to predict
new triples and their confidence scores about a relation r with only observing
a few triples about r. Therefore, its training process is based on a set of tasks
Ttrain = {Ti}M

i=1, where Ti = {Si,Qi} indicates an individual few-shot UKG
completion task. Every task has its own support set and query set. In the testing
process, a set of new tasks Ttest = {Tj}N

j=1 (Ttest ∩ Ttrain = ∅), which can be
constructed similarity.

4 Methodology

In this section, we present the detail of our proposed model GMUC (Fig. 1).
First, we give the architecture of Gaussian neighbor encoder to represent queries
and support set by capturing the semantic information and uncertainty. Then,
we focus on Gaussian matching to measure the similarity between the queries
and the support set. Finally, we describe the learning process of GMUC.

4.1 Gaussian Neighbor Encoder

Many point-based UKG relational learning methods [6,12,13] have desirable per-
formances with sufficient training data, but these models ignore internal uncer-
tainty which is essential in few-shot settings. Inspired by [10,33], we design the



Gaussian Metric Learning for Few-Shot UKG Completion 261

Fig. 2. (a) Multi-dimensional Gaussian embedding for entities and relations. The mean
embeddings eμ of such multi-dimensional Gaussian distribution indicates its semantic
feature, and the variance embeddings eΣ indicates the corresponding internal uncer-
tainty; (b) A diagram of Gaussian Neighbor Encoder. Two neighbor encoders NEμ and
NEΣ are employed to learn enhanced mean embeddings μ and variance embeddings Σ
of triples respectively.

Gaussian neighbor encoder to encode a support set and queries, which could
naturally capture internal uncertainty by employing multi-dimensional distribu-
tions.

As Fig. 2(a) shows, we first represent each entity and relation as a multi-
dimensional Gaussian distribution N (eμ, eΣ), where eμ ∈ R

d×1 is the mean
embedding and eΣ ∈ R

d×1 is the variance embedding of entity or relation, d is
embedding dimension. The mean embedding indicates its semantic feature, and
the variance embedding indicates the corresponding internal uncertainty.

Based on the Gaussian-based representation of entities and relations, we then
use heterogeneous neighbor encoders [33] to enhance the representation of each
entity with its local structure in a knowledge graph (Fig. 2(b)). Specifically, for a
entity h, we denote the enhanced representation as N (NEμ(h),NEΣ(h)), where
NEμ and NEΣ are two heterogeneous neighbor encoders. The set of neighbors
of h denoted as Nh ={<(ri, ti) , si> |<(h, ri, ti) , si> ∈ G}, where ri and ti rep-
resent the i-th relation and corresponding tail entity of h, si is confidence score
of this triple. Besides, an attention module is introduced to consider different
impacts of neighbors <(ri, ti), si>∈ Nh. The calculation process of a heteroge-
neous neighbor encoder is defined as follows:

NE∗ (h) = Tanh(
∑

i

siαie
∗
ti) (1)

αi =
exp

{
uT

rt

(
Wrt

(
e∗
ri

⊕ e∗
ti

)
+ brt

)}

∑
j exp

{
uT

rt

(
Wrt

(
e∗
rj

⊕ e∗
tj

)
+ brt

)} (2)



262 J. Zhang et al.

Fig. 3. (a) A diagram of Gaussian matching function. Two LSTM-based matching
networks MNε and MNδ are used to calculate mean values ε and variance values δ of
Similarity, respectively. (b) The structure of a LSTM-based matching network.

where ∗ could be μ or Σ, eμ
ti and eμ

ri
are mean embeddings of ti and ri, eΣ

ti and
eΣ
ri

are variance embeddings of ti and ri. Moreover, urt ∈ R
d×1, Wrt ∈ R

d×2d

and brt ∈ R
d×1 are learnable parameters, ⊕ is a concatenation operator.

Each triple in a support set and queries is interpreted as N (μ,Σ), where
mean embedding μ and variance embedding Σ are defined as follows:

μ = [NEμ (hk) ⊕ NEμ (tk)] (3)

Σ = [NEΣ (hk) ⊕ NEΣ (tk)] (4)

By above approach, we can get the representation of a query N (μq,Σq). For
the representations of support set {N (μi,Σi) |<(hi, ti) , si> ∈ Sr}, we use max-
pooling to aggregate these distributions into one multi-Gaussian distribution
N (μs,Σs), where μs and Σs are defined as follows:

μs = poolmax(si · μi) (5)

Σs = poolmax(si · Σi) (6)

4.2 Gaussian Matching Function

Given the Gaussian neighbor encoder module, we now present the Gaussian
matching function to measure the similarity of queries and the support set
(Fig. 3(a)). Most existing metric-based functions complete missing triples by
a single value similarity, but they cannot give confidence scores to the comple-
tion results, which is inadequate for UKG completion. To address this issue,
we propose Gaussian matching function to complete missing triples and their
confidence scores simultaneously.



Gaussian Metric Learning for Few-Shot UKG Completion 263

We first define the matching similarity Similarity as a one-dimensional Gaus-
sian distribution N (ε, δ), where mean value ε ∈ R can be regarded as the most
likely similarity value and the variance value δ ∈ [0, 1] refers to the uncertainty
of such similarity value.

Then, we employ LSTM-based matching networks [27] to calculate
Similarity. Compared with a simple cosine similarity, the matching networks
perform a multi-step matching process, which could effectively improve the
matching capability [30]. Figure 3(b) shows the structure of a matching network.
The calculation process of a matching network MN is defined as follows:

MN (x, y) = gt · x

gt = g′
t + y

g′
t, ct = LSTM(y, [gt−1 ⊕ x, ct−1]) (7)

where x and y are embeddings to be matched, LSTM(z, [gt, ct]) is a LSTM cell
[11] with input z, hidden state gt and cell state ct. After T processing steps, we
use the inner product between gt and x as the matching score of x and y.

Two matching networks MNε and MNδ are used to get the mean value ε and
variance value δ of Similarity by the following formulas:

ε = MNε(μs, μq) (8)

δ = sigmoid(W · MNδ(Σs,Σq) + b) (9)

where sigmoid(x) = 1/(1 + exp(−x)), W and b are learnable parameters.
To complete missing triples and their confidence scores, we define two match-

ing results Rsimilarity and Rconfidence based on the Similarity as follows:

Rsimilarity = ε + λ(1 − δ) (10)
Rconfidence = 1 − δ (11)

where λ is hyper-parameter. Finally, we use the Rsimilarity as ranking scores to
complete missing triples and the Rconfidence to predict confidence scores.

4.3 The Learning Process

For a relation r, we randomly sample a set of few positive entity pairs {<
(hk, tk) , sk > | < (hk, r, tk) , sk >∈ G} and regard them as the support set Sr.
The remaining positive entity pairs Qr = {< (hl, tl) , sl > | < (hl, r, tl) , sl >∈
G ∩ < (hl, tl) , sl >/∈ Sr} are utilized as positive queries.

Lmse is designed to minimize the mean squared error (MSE) between the
ground truth confidence score s and our predicting confidence score Rconfidence

for each triple < (h, t), s >∈ Qr. Specifically, Lmse is defined as:

Lmse =
∑

<(h,t),s>∈Qr

|Rconfidence − s|2 (12)



264 J. Zhang et al.

Following TransE [3], we design a margin-based ranking loss Lrank to make
the mean value ε of positive entity pairs to be higher than those of negative entity
pairs. In order to reduce the impact of poor quality queries, we filter queries by
threshold thr and get Qthr

r = {< (hl, tl) , sl > | < (hl, r, tl) , sl >∈ Qr and sl ≥
thr}. Then we construct a group of negative entity pairs Qthr−

r =
{(

hl, t
−
l

)∣∣ <(
hl, r, t

−
l

)
, ∗ >/∈ G} by polluting the tail entities. The ranking loss is formulated

as:
Lrank =

∑

<(h,t),s>∈Qthr
r

∑

(h,t′)∈Qthr−
r

s · [γ + ε(h,t) − ε(h,t′)]+ (13)

where [x]+ = max[0, x] and γ is a safety margin distance, ε(h,t) and ε(h,t′) are
mean value of Similarity between query (h, tl/t′l) and support set Sr. Here the
triple confidence score s instructs our model to pay more attention on those
more convincing queries.

Finally, we define the final objective function as:

Ljoint = Lrank + Lmse (14)

Our objective is to minimize Ljoint in the training process for all query tasks.
The detail of this process can be summarized in Algorithm 1.

Algorithm 1: GMUC Training Procedure
Input:
a) Meta-training task (relation) set Ttrain;
b) Embeddings of entities and relations ϕ;
c) Initial parameters θ of the metric model

1 for epoch:=0 to MAXepoch do
2 for Tr in Ttrain do
3 Sample few entity pairs as support set Sr

4 Sample a batch of positive queries Qr and filtered queries Qthr
r

5 Pollute the tail entity of queries to get Qthr−
r

6 Calculate the loss by Eq. (14)
7 Update parameters θ and ϕ

8 return Optimal model parameters θ and ϕ

5 Experiments

In this section, we present the detail of experiments. First, we introduce newly
constructed datasets under few-shot settings. Then, we describe baseline mod-
els and the experimental setup. Finally, we evaluate our model on two tasks,
including link prediction and confidence prediction.



Gaussian Metric Learning for Few-Shot UKG Completion 265

5.1 Datasets

In this paper, we evaluated our model based on NL27K [6], which is a typical
UKG dataset extracted from NELL [4]. However, the triples in NL27K are high
quality (confidence scores ≥0.95) which rarely has noises or uncertain data.
Therefore, similar to the work given in CRKL [29], we generated new datasets
with different amounts of noisy triples (i.e., uncertainty levels) based on NL27K
to simulate the real-world UKGs constructed by an automatic process with less
human supervision. Specifically, based on NL27K, we constructed four datasets:
NL27K-N0, NL27K-N1, NL27K-N2 and NL27K-N3 which include 0%, 10%, 20%
and 40% negative triples of positive triples. Then we utilized CKRL [29] to assign
confidence scores to the triples in datasets. The confidence scores are calculated
by the following function:

C(h, r, t) = ω1 · LT (h, r, t) + ω2 · PP (h, r, t) + ω3 · AP (h, r, t) (15)

where LT is the local triple confidence which concentrates on the inside of a
triple. PP is the prior path confidence which utilizes the co-occurrence of a
relation and a path to represent their dissimilarity. AP is the adaptive path
confidence which could flexibly learn relation-path qualities. ω1, ω2 and ω2 are
hyper-parameters. Following [29], we selected ω1 = 0.75, ω2 = 0.05 and ω3 = 0.2
to create the datasets.

After assigning confidence scores to triples of datasets, following [30], we
selected the relations with less than 500 but more than 50 triples to construct
few-shot tasks. We referred to the rest of the relations as background relations
since their triples provide important background knowledge to match entity
pairs. Table 3 shows the datasets statistics. We used 101/13/20 tasks for train-
ing/validation/testing separately.

Table 3. Statistics of the Datasets. #Entities denotes the number of unique entities
and #Relations denotes the number of all relations. #Triples denotes the number of all
triples. #Tasks denotes the number of relations we used as few-shot tasks. #Neg Triples
denotes the number of negative examples. Avg(s) and Std(s) are the average and stan-
dard deviation of the confidence scores.

Dataset #Entities #Relations #Triples #Tasks

NL27K-N0 27,221 404 175,412 134

Datasets NL27K-N0 NL27K-N1 NL27K-N2 NL27K-N3

#Neg Triples 0 17,541 35,082 70,164

Avg(s) 0.863 0.821 0.787 0.732

Std(s) 0.111 0.176 0.210 0.244



266 J. Zhang et al.

5.2 Baseline Methods

Three categories of baseline methods are considered.
Embedding Models for UKG Completion. UKGE [6] is a recently pro-

posed UKG embedding model. UKGE preserves the semantic and uncertain
information by matching the representation of entities and relations in embed-
ding space.

Metric-based Models for Few-Shot DKG Completion. GMatching
[30] and FSRL [33] are metric-based few-shot DKG completion models. However,
these models cannot deal with the confidence scores of triples, which may suffer
poor-quality triples. Besides, these models can only complete missing triples but
cannot predict their confidence scores.

Variant Models of GMUC. We proposed two variant models of GMUC,
called GMUC-noconf and GMUC-point. GMUC-noconf removes all the processes
considering triple qualities. GMUC-point only uses the mean embedding μ of
queries and a support set and the mean value ε of Similarity to calculate ranking
scores and confidence scores, which is a point-based model.

5.3 Experimental Setup

Adam optimizer [14] is used for training. For baseline models, we reported results
based on their best hyper-parameter. We identified each model based on the
validation set performance. For hyper-parameter tuning, we searched the best
hyper-parameter as follows: learning rate lr ∈ {0.001, 0.005, 0.01}, dimension d ∈
{64, 128, 256, 512}, batch size b ∈ {128, 256, 512, 1024}, margin γ ∈ {1.0, 5.0},
threshold thr ∈ {0.2, 0.3, 0.4, 0.5}, trade-off factor λ ∈ {0.1, 0.5, 1.0}. The train-
ing was stopped using early stopping based on Hit@10 on the validation set,
computed every 10 epochs. The maximum number of local neighbors in Gaus-
sian neighbor encoder is set to 30 for all datasets. For the LSTM module in
Gaussian matching function, the hidden state is set to 128 and the number of
recurrent steps equals 2. Specifically, for each dataset, the optimal configura-
tion is {lr = 0.01, d = 128, b = 128, γ = 5.0}. For NL27K-N0, NL27K-N1 and
NL27K-N2, we set {thr = 0.3, λ = 0.1}, while {thr = 0.5, λ = 1.0} for NL27K-
N3. Besides, the few-shot size |Sr| is set to 3 for the following experiments.

5.4 Link Prediction

This task is to complete missing tail entities for a given relation r and a head
entity h,denoted as (h, r, ?).

Evaluation Protocol. We followed the same protocol as in FSRL [33]: In
the testing phase, for each positive query <(h, r, t), s>, we replaced the tail
entity by candidate entities in UKG and ranked these entities in descending
order of ranking scores. The maximum candidate entities size is set to 1000
for all datasets. Based on these entity ranking lists, we used three evaluation



Gaussian Metric Learning for Few-Shot UKG Completion 267

metrics by aggregation over all the queries: first, the mean reciprocal rank of
correct entities (denoted as MRR); then, the proportion of correct entities in
the top1 and top10 in entity ranking lists (denoted as Hits@1, Hits@10). A good
method should obtain higher MRR, Hits@1 and Hits@10. Considering some
corrupted triples for (h, r, t) also exists in datasets, such a prediction should also
be regarded correct. To eliminate this factor, we removed those corrupted triples
that already appear in training, validation and testing sets before obtaining the
ranking entity list of each query. We termed the setting as “Filter” and used it
for our evaluation.

Table 4. Result of link prediction

Dataset NL27K-N0 NL27K-N1 NL27K-N2 NL27K-N3

Metrics MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

GMatching 0.361 0.272 0.531 0.193 0.123 0.315 0.125 0.066 0.253 0.025 0.005 0.051

FSRL 0.397 0.304 0.589 0.188 0.101 0.333 0.123 0.052 0.264 0.027 0.007 0.045

UKGE 0.053 0.058 0.138 0.071 0.107 0.153 0.057 0.066 0.153 0.092 0.091 0.144

GMUC-noconf 0.420 0.324 0.611 0.179 0.113 0.310 0.127 0.071 0.271 0.092 0.048 0.155

GMUC-point 0.413 0.316 0.603 0.215 0.130 0.344 0.131 0.113 0.272 0.065 0.006 0.156

GMUC 0.433 0.342 0.644 0.219 0.148 0.332 0.143 0.110 0.292 0.148 0.107 0.194

Results. Table 4 shows the results of link prediction in datasets with different
uncertainty levels, from which we could observe that:

(1) Our model outperforms baselines on all datasets. Compared with UKGE,
GMUC has consistent improvements, demonstrating that GMUC could bet-
ter complete a UKG in few-shot settings. Additionally, GMUC outperforms
few-shot DKG completion methods (i.e., GMatching and FSRL), especially
for NL27K-N3 GMUC achieves 0.194 of Hit@10 while GMatching only has
0.051, which indicates the promising effectiveness of GMUC for KG com-
pletion in uncertain scenarios.

(2) Comparing evaluation results between different datasets, we found that
FSRL and Gmatching achieve good performance for NL27K-N0 but have a
great descent when the uncertainty level goes up. Taking Hit@10 of FSRL
as an example, it achieves 0.589 for NL27K-N0, but it only has 0.045 for
NL27K-N3. It demonstrates the few-shot DKG completion methods could
not be used to complete UKGs directly. Conversely, the performance of
UKGE is worse than FSRL and GMatching for the datasets with lower
uncertainty level, including NL27K-N0, NL27K-N1 and NL27K-N3, but
keeps stable from NL27K-N0 to NL27K-N3. GMUC consistently outper-
forms FSRL, GMatching and UKGE. A possible reason is that FSRL and
GMatching are based on ranking loss which is sensitive for noisy data,
while UKGE is based on MSE-loss which is better suitable for noisy data in
UKGs. GMUC based on the similarity distribution which can be regarded
as a combination of these two methods.



268 J. Zhang et al.

(3) For a more detailed analysis of the component effectiveness, we compared
GMUC and its variant models to do ablation studies. First, to investigate
the design of the multi-dimensional Gaussian representation of Gaussian
neighbor encoder, we compared GMUC with GMUC-point which can be
seen as a point-based function. The results of GMUC-point are worse than
GMUC, demonstrating the benefit of Gaussian representation. It can also
suggest that confidence scores of triples are essential information that could
be used to enhance the performance of link prediction. Then, GMUC out-
performs GMUC-noconf, demonstrating our strategy considering the triple
qualities is useful.

5.5 Confidence Prediction

The objective of this task is to predict confidence scores of triples, formulated
as < (h, r, t) , ? >.

Evaluation Protocol. For each triple (h, r, t) in the query set, we predicted
its confidence score and reported the Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

Table 5. Result of confidence prediction

Dataset NL27K-N0 NL27K-N1 NL27K-N2 NL27K-N3

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

UKGE 0.070 0.198 0.061 0.177 0.063 0.184 0.072 0.199

GMUC-noconf 0.019 0.106 0.022 0.111 0.028 0.126 0.029 0.130

GMUC-point 0.038 0.154 0.035 0.143 0.042 0.156 0.046 0.157

GMUC 0.013 0.086 0.018 0.096 0.022 0.104 0.027 0.113

Results. Table 5 shows the results of confidence prediction. We could find that:

(1) UKGE has larger MAE and MSE for NL27K-N0 (few-shot settings dataset)
than the original NL27K (non-few-shot dataset) in [33], which validates that
UKGE could not complete UKGs well in few-shot scenarios. Our model con-
sistently outperforms UKGE, demonstrating the effectiveness of GMUC for
UKG completion in few-shot settings. Comparing with evaluation results
between different datasets, we found that our model and UKGE keep sta-
ble. It is the reason why these methods can get stable results on the link
prediction task with different uncertainty levels.

(2) To investigate the effect of using Gaussian-based representation, we com-
pared GMUC and its variant model GMUC-point which could be regarded
as a point-based method. The results of GMUC-point are worse than



Gaussian Metric Learning for Few-Shot UKG Completion 269

GMUC, demonstrating the benefit of Gaussian representation. A possible
reason why the Gaussian representation could enhance the completion per-
formance is that the point-based UKG completion methods try to capture
the semantic and uncertain information in one embedding space simulta-
neously, while Gaussian representation uses mean embedding and variance
embedding to learn such information respectively in two embedding spaces
with different learning targets.

(3) By comparing GMUC and GMUC-noconf, we could find that our strategy
considering triple qualities can also improve the performance of confidence
prediction.

6 Conclusion and Future Work

In this paper, we proposed a novel method to complete few-shot UKGs based
on Gaussian metric learning (GMUC), which could complete missing triples
and confidence scores with few examples available. Compared with the state-
of-the-art UKG completion model and few-shot DKG completion models on
few-shot UKG datasets, our model has comparable effectiveness of capturing
uncertain and semantic information. Experimental results also show our method
consistently outperforms baselines in datasets with different uncertain levels. The
source code and datasets of this paper can be obtained from https://github.com/
zhangjiatao/GMUC.

In the future, we will explore the following research directions:

(1) The meta-information of relation could provide the common knowledge
which could help model learn more efficiently in few-shot setting. We will
explore to combine the metric-based method and meta-based method to
better complete UKG with few examples.

(2) We observe that the uncertainty levels of datasets could highly adverse the
completion result in few-shot settings. In the future, we may design a metric
to measure the uncertainty of data, which is set by manual in this work.

(3) External knowledge such as logic rules could enrich KGs. Our future work
will introduce external knowledge to further enhance the precision of com-
pletion.

Acknowledgements. This work was partially supported by the National Key
Research and Development Program of China under grants (2018YFC0830200,
2017YFB1002801), the National Natural Science Foundation of China grants
(U1736204, 62006040), and the Judicial Big Data Research Centre, School of Law
at Southeast University. In addition, we wish to thank Prof. Qiu Ji for her valuable
suggestion.

https://github.com/zhangjiatao/GMUC
https://github.com/zhangjiatao/GMUC


270 J. Zhang et al.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC-2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

2. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, pp. 1247–1250 (2008)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of the 2013 Annual
Conference on Neural Information Processing Systems, NeurIPS 2013, pp. 2787–
2795 (2013)

4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: Proceedings of the
2010 AAAI Conference on Artificial Intelligence, AAAI 2010 (2010)

5. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning
for few-shot link prediction in knowledge graphs. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2019, pp.
4216–4225 (2019)

6. Chen, X., Chen, M., Shi, W., Sun, Y., Zaniolo, C.: Embedding uncertain knowledge
graphs. In: Proceedings of the 2019 AAAI Conference on Artificial Intelligence,
AAAI 2019, pp. 3363–3370 (2019)

7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: Proceedings of the 2018 AAAI Conference on Artificial
Intelligence, AAAI 2018, pp. 1811–1818 (2018)

8. Du, Z., Zhou, C., Ding, M., Yang, H., Tang, J.: Cognitive knowledge graph rea-
soning for one-shot relational learning. CoRR (2019)

9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 2017 International Conference on Machine
Learning, ICML 2017, vol. 70, pp. 1126–1135 (2017)

10. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with
Gaussian embedding. In: Proceedings of the 2015 ACM International Conference
on Information and Knowledge Management, CIKM 2015, pp. 623–632 (2015)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

12. Huang, Z., Iyer, R.G., Xiao, Z.: Uncertain knowledge graph embedding using prob-
abilistic logic neural networks (2017)

13. Kertkeidkachorn, N., Liu, X., Ichise, R.: GTransE: generalizing translation-based
model on uncertain knowledge graph embedding. In: Ohsawa, Y., et al. (eds.)
JSAI 2019. AISC, vol. 1128, pp. 170–178. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-39878-1 16

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) Proceedings of the 2015 International Conference on Learning
Representations, ICLR 2015 (2015)

15. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: Proceedings of the 2015 Workshop on International Confer-
ence on Machine Learning, ICML 2015, vol. 2 (2015)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-030-39878-1_16
https://doi.org/10.1007/978-3-030-39878-1_16


Gaussian Metric Learning for Few-Shot UKG Completion 271

16. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: Learning to learn quickly for few
shot learning. CoRR abs/1707.09835 (2017)

17. Munkhdalai, T., Yu, H.: Meta networks. Proc. Mach. Learn. Res. 70, 2554 (2017)
18. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on

multi-relational data. In: Proceedings of the 2011 International Conference on
Machine Learning, ICML 2011, pp. 809–816 (2011)

19. Qi, G., Gao, H., Wu, T.: The research advances of knowledge graph. Technol. Intell.
Eng. 3, 4–25 (2017)

20. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Pro-
ceedings of the 2017 International Conference on Learning Representations, ICLR
2017 (2017)

21. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning.
In: Proceedings of the 2017 Annual Conference on Neural Information Processing
Systems, NeurIPS 2017, pp. 4077–4087 (2017)

22. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: Proceedings of the 2013 Annual Con-
ference on Neural Information Processing Systems, NeurIPS 2013, pp. 926–934
(2013)

23. Sosa, D.N., Derry, A., Guo, M., Wei, E., Brinton, C., Altman, R.B.: A literature-
based knowledge graph embedding method for identifying drug repurposing oppor-
tunities in rare diseases. bioRxiv, p. 727925 (2019)

24. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of
general knowledge. In: Proceedings of the 2017 AAAI Conference on Artificial
Intelligence, AAAI 2017, pp. 4444–4451 (2017)

25. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Proceedings of the 2016 International Confer-
ence on Machine Learning, ICML 2016, pp. 2071–2080 (2016)

26. Vilnis, L., McCallum, A.: Word representations via gaussian embedding. In: Ben-
gio, Y., LeCun, Y. (eds.) Proceedings of the 2015 International Conference on
Learning Representations, ICLR 2015 (2015)

27. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: Proceedings of the 2016 Annual Conference on
Neural Information Processing Systems, NeurIPS 2016, pp. 3630–3638 (2016)

28. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57, 78–85 (2014)

29. Xie, R., Liu, Z., Lin, F., Lin, L.: Does William Shakespeare REALLY Write Ham-
let? knowledge representation learning with confidence. In: Proceedings of the 2018
AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 4954–4961 (2018)

30. Xiong, W., Yu, M., Chang, S., Wang, W.Y., Guo, X.: One-shot relational learning
for knowledge graphs. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP 2018, pp. 1980–1990 (2018)

31. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: Proceedings of the 2015 International
Conference on Learning Representations, ICLR 2015 (2015)

32. Yu, M., et al.: Diverse few-shot text classification with multiple metrics. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,
pp. 1206–1215 (2018)

33. Zhang, C., Yao, H., Huang, C., Jiang, M., Li, Z., Chawla, N.V.: Few-shot knowl-
edge graph completion. In: Proceedings of the 2020 AAAI Conference on Artificial
Intelligence, AAAI 2020, pp. 3041–3048 (2020)



Towards Entity Alignment in the Open
World: An Unsupervised Approach

Weixin Zeng1, Xiang Zhao1(B), Jiuyang Tang1, Xinyi Li1, Minnan Luo2,
and Qinghua Zheng2

1 Science and Technology on Information Systems Engineering Laboratory,
National University of Defense Technology, Changsha, China

{zengweixin13,xiangzhao,jiuyang tang}@nudt.edu.cn
2 Department of Computer Science, Xi’an Jiaotong University, Xi’an, China

{minnluo,qhzheng}@mail.xjtu.edu.cn

Abstract. Entity alignment (EA) aims to discover the equivalent enti-
ties in different knowledge graphs (KGs). It is a pivotal step for integrat-
ing KGs to increase knowledge coverage and quality. Recent years have
witnessed a rapid increase of EA frameworks. However, state-of-the-art
solutions tend to rely on labeled data for model training. Additionally,
they work under the closed-domain setting and cannot deal with entities
that are unmatchable.

To address these deficiencies, we offer an unsupervised framework that
performs entity alignment in the open world. Specifically, we first mine
useful features from the side information of KGs. Then, we devise an
unmatchable entity prediction module to filter out unmatchable entities
and produce preliminary alignment results. These preliminary results
are regarded as the pseudo-labeled data and forwarded to the progres-
sive learning framework to generate structural representations, which are
integrated with the side information to provide a more comprehensive
view for alignment. Finally, the progressive learning framework gradually
improves the quality of structural embeddings and enhances the align-
ment performance by enriching the pseudo-labeled data with alignment
results from the previous round. Our solution does not require labeled
data and can effectively filter out unmatchable entities. Comprehensive
experimental evaluations validate its superiority.

Keywords: Entity alignment · Unsupervised learning · Knowledge
graph

1 Introduction

Knowledge graphs (KGs) have been applied to various fields such as natural
language processing and information retrieval. To improve the quality of KGs,
many efforts have been dedicated to the alignment of KGs, since different KGs
usually contain complementary information. Particularly, entity alignment (EA),
which aims to identify equivalent entities in different KGs, is a crucial step of
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 272–289, 2021.
https://doi.org/10.1007/978-3-030-73194-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_19


Towards Entity Alignment in the Open World: An Unsupervised Approach 273

KG alignment and has been intensively studied over the last few years [1–8]. We
use Example 1 to illustrate this task.

Example 1. In Fig. 1 are a partial English KG and a partial Spanish KG con-
cerning the director Hirokazu Koreeda, where the dashed lines indicate known
alignments (i.e., seeds). The task of EA aims to identify equivalent entity pairs
between two KGs, e.g., (Shoplifters, Manbiki Kazoku).

KGEN KGES

[Japan]

[Hirokazu 
Koreeda]

[Still Walking]

[Nobody Knows]

[Kirin Kiki]

[Shoplifters]

[Nadie sabe]

[Kirin Kiki]

[Japón]

[Aruitemo 
aruitemo]

[Manbiki 
Kazoku]

[Ryo Kase] [Hirokazu 
Koreeda]

Fig. 1. An example of EA.

State-of-the-art EA solutions [9–12] assume that equivalent entities usually
possess similar neighboring information. Consequently, they utilize KG embed-
ding models, e.g., TransE [13], or graph neural network (GNN) models, e.g.,
GCN [14], to generate structural embeddings of entities in individual KGs. Then,
these separated embeddings are projected into a unified embedding space by
using the seed entity pairs as connections, so that the entities from different
KGs are directly comparable. Finally, to determine the alignment results, the
majority of current works [3,15–17] formalize the alignment process as a rank-
ing problem; that is, for each entity in the source KG, they rank all the entities
in the target KG according to some distance metric, and the closest entity is
considered as the equivalent target entity.

Nevertheless, we still observe several issues from current EA works:

– Reliance on labeled data. Most of the approaches rely on pre-aligned seed
entity pairs to connect two KGs and use the unified KG structural embed-
dings to align entities. These labeled data, however, might not exist in real-
life settings. For instance, in Example 1, the equivalence between Hirokazu
Koreeda in KGEN and Hirokazu Koreeda in KGES might not be known in
advance. In this case, state-of-the-art methods that solely rely on the struc-
tural information would fall short, as there are no seeds to connect these
individual KGs.

– Closed-domain setting. All of current EA solutions work under the closed-
domain setting [18]; that is, they assume every entity in the source KG has an
equivalent entity in the target KG. Nevertheless, in practical settings, there



274 W. Zeng et al.

always exist unmatchable entities. For instance, in Example 1, for the source
entity Ryo Kase, there is no equivalent entity in the target KG. Therefore,
an ideal EA system should be capable of predicting the unmatchable entities.

In response to these issues, we put forward an unsupervised EA solution
UEA that is capable of addressing the unmatchable problem. Specifically, to mit-
igate the reliance on labeled data, we mine useful features from the KG side
information and use them to produce preliminary pseudo-labeled data. These
preliminary seeds are forwarded to our devised progressive learning frame-
work to generate unified KG structural representations, which are integrated
with the side information to provide a more comprehensive view for alignment.
This framework also progressively augments the training data and improves the
alignment results in a self-training fashion. Besides, to tackle the unmatchable
issue, we design an unmatchable entity prediction module, which leverages
thresholded bi-directional nearest neighbor search (TBNNS) to filter out the
unmatchable entities and excludes them from the alignment results. We embed
the unmatchable entity prediction module into the progressive learning frame-
work to control the pace of progressive learning by dynamically adjusting the
thresholds in TBNNS.

Contribution. The main contributions of the article can be summarized as
follows:

– We identify the deficiencies of existing EA methods, namely, requiring labeled
data and working under the closed-domain setting, and propose an unsuper-
vised EA framework UEA that is able to deal with unmatchable entities. This
is done by (1) exploiting the side information of KGs to generate prelimi-
nary pseudo-labeled data; and (2) devising an unmatchable entity prediction
module that leverages the thresholded bi-directional nearest neighbor search
strategy to produce alignment results, which can effectively exclude unmatch-
able entities; and (3) offering a progressive learning algorithm to improve the
quality of KG embeddings and enhance the alignment performance.

– We empirically evaluate our proposal against state-of-the-art methods, and
the comparative results demonstrate the superiority of UEA.

Organization. In Sect. 2, we formally define the task of EA and introduce
related work. Section 3 elaborates the framework of UEA. In Sect. 4, we intro-
duce experimental results and conduct detailed analysis. Section 5 concludes this
article.

2 Task Definition and Related Work

In this section, we formally define the task of EA, and then introduce the related
work.

Task Definition. The inputs to EA are a source KG G1 and a target KG G2.
The task of EA is defined as finding the equivalent entities between the KGs,



Towards Entity Alignment in the Open World: An Unsupervised Approach 275

i.e., Ψ = {(u, v)|u ∈ E1, v ∈ E2, u ↔ v}, where E1 and E2 refer to the entity sets
in G1 and G2, respectively, u ↔ v represents the source entity u and the target
entity v are equivalent, i.e., u and v refer to the same real-world object.

Most of current EA solutions assume that there exist a set of seed entity
pairs Ψs = {(us, vs)|us ∈ E1, vs ∈ E2, us ↔ vs}. Nevertheless, in this work, we
focus on unsupervised EA and do not assume the availability of such labeled
data.

Entity Alignment. The majority of state-of-the-art methods are supervised or
semi-supervised, which can be roughly divided into three categories, i.e., meth-
ods merely using the structural information, methods that utilize the iterative
training strategy, and methods using information in addition to the structural
information [19].

The approaches in the first category aim to mine useful structural signals
for alignment, and devise structure learning models such as recurrent skipping
networks [20] and multi-channel GNN [17], or exploit existing models such as
TransE [3,9,21–23] and graph attention networks [3]. The embedding spaces of
different KGs are connected by seed entity pairs. In accordance to the distance
in the unified embedding space, the alignment results can hence be predicted.

Methods in the second category iteratively label likely EA pairs as the train-
ing set and gradually improve alignment results [15,21–24]. A more detailed
discussion about these methods and the difference from our framework is pro-
vided in Sect. 3.3. Methods in the third category incorporate the side informa-
tion to offer a complementing view to the KG structure, including the attributes
[10,25–29], entity descriptions [16,30], and entity names [12,24,31–34]. These
methods devise various models to encode the side information and consider them
as features parallel to the structural information. In comparison, the side infor-
mation in this work has an additional role, i.e., generating pseudo-labeled data
for learning unified structural representations.

Unsupervised Entity Alignment. A few methods have investigated the align-
ment without labeled data. Qu et al. [35] propose an unsupervised approach
towards knowledge graph alignment with the adversarial training framework.
Nevertheless, the experimental results are extremely poor. He et al. [36] utilize
the shared attributes between heterogeneous KGs to generate aligned entity pairs,
which are used to detect more equivalent attributes. They perform entity align-
ment and attribute alignment alternately, leading to more high-quality aligned
entity pairs, which are used to train a relation embedding model. Finally, they
combine the alignment results generated by attribute and relation triples using a
bivariate regression model. The overall procedure of this work might seem similar
to our proposed model. However, there are many notable differences; for instance,
the KG embeddings in our work are updated progressively, which can lead to more
accurate alignment results, and our model can deal with unmatchable entities. We
empirically demonstrate the superiority of our model in Sect. 4.

We notice that there are some entity resolution (ER) approaches established
in a setting similar to EA, represented by PARIS [37]. They adopt collective
alignment algorithms such as similarity propagation so as to model the relations



276 W. Zeng et al.

among entities. We include them in the experimental study for the comprehen-
siveness of the article.

3 Methodology

In this section, we first introduce the outline of UEA. Then, we elaborate its
components.

As shown in Fig. 2, given two KGs, UEA first mines useful features from
the side information. These features are forwarded to the unmatchable entity
prediction module to generate initial alignment results, which are regarded as
pseudo-labeled data. Then, the progressive learning framework uses these pseudo
seeds to connect two KGs and learn unified entity structural embeddings. It
further combines the alignment signals from the side information and structural
information to provide a more comprehensive view for alignment. Finally, it
progressively improves the quality of structural embeddings and augments the
alignment results by iteratively updating the pseudo-labeled data with results
from the previous round, which also leads to increasingly better alignment.

KGEN

KGES

Side information

Structural information

Unmatchable 
entity prediction

Progressive 
learning

Fig. 2. Outline of UEA. Colored lines represent the progressive learning process.

3.1 Side Information

There is abundant side information in KGs, such as the attributes, descriptions
and classes. In this work, we use a particular form of the attributes—the entity
name, as it exists in the majority of KGs. To make the most of the entity name
information, inspired by [12], we exploit it from the semantic level and string-
level and generate the textual distance matrix between entities in two KGs.



Towards Entity Alignment in the Open World: An Unsupervised Approach 277

More specifically, we use the averaged word embeddings to represent the
semantic meanings of entity names. Given the semantic embeddings of a source
and a target entity, we obtain the semantic distance score by subtracting their
cosine similarity score from 1. We denote the semantic distance matrix between
the entities in two KGs as Mn, where rows represent source entities, columns
denote target entities and each element in the matrix denotes the distance score
between a pair of source and target entities. As for the string-level feature,
we adopt the Levenshtein distance [38] to measure the difference between two
sequences. We denote the string distance matrix as Ml.

To obtain a more comprehensive view for alignment, we combine these two
distance matrices and generate the textual distance matrix as Mt = αMn +
(1 − α)Ml, where α is a hyper-parameter that balances the weights. Then, we
forward the textual distance matrix Mt into the unmatchable entity module
to produce alignment results, which are considered as the pseudo-labeled data
for training KG structural embeddings. The details are introduced in the next
subsection.

Remark. The goal of this step is to exploit available side information to generate
useful features for alignment. Other types of side information, e.g., attributes
and entity descriptions, can also be leveraged. Besides, more advanced textual
encoders, such as misspelling oblivious word embeddings [39] and convolutional
embedding for edit distance [40], can be utilized. We will investigate them in the
future.

3.2 Unmatchable Entity Prediction

State-of-the-art EA solutions generate for each source entity a corresponding
target entity and fail to consider the potential unmatchable issue. Nevertheless,
as mentioned in [19], in real-life settings, KGs contain entities that other KGs do
not contain. For instance, when aligning YAGO 4 and IMDB, only 1% of entities
in YAGO 4 are related to movies, while the other 99% of entities in YAGO 4
necessarily have no match in IMDB. These unmatchable entities would increase
the difficulty of EA. Therefore, in this work, we devise an unmatchable entity
prediction module to predict the unmatchable entities and filter them out from
the alignment results.

More specifically, we put forward a novel strategy, i.e., thresholded bi-
directional nearest neighbor search (TBNNS), to generate the alignment results,
and the resulting unaligned entities are predicted to be unmatchable. As can be
observed from Algorithm 1, given a source entity u and a target entity v, if u
and v are the nearest neighbor of each other, and the distance between them is
below a given threshold θ, we consider (u, v) as an aligned entity pair. Note that
M(u, v) represents the element in the u-th row and v-th column of the distance
matrix M.



278 W. Zeng et al.

Algorithm 1: TBNNS in the unmatchable entity prediction module
Input : G1 and G2: the two KGs to be aligned; E1 and E2: the entity sets in

G1 and G2; θ: a given threshold; M: a distance matrix.
Output : S: Alignment results.

1 foreach u ∈ E1 do
2 v ← arg min

v̂∈E2

M(u, v̂);

3 if arg min
û∈E1

M(v, û) = u and M(u, v) < θ then

4 S ← S + {(u, v)}
5 return S.

The TBNNS strategy exerts strong constraints on alignment, since it requires
that the matched entities should both prefer each other the most, and the dis-
tance between their embeddings should be below a certain value. Therefore,
it can effectively predict unmatchable entities and prevent them from being
aligned. Notably, the threshold θ plays a significant role in this strategy. A
larger threshold would lead to more matches, whereas it would also increase the
risk of including erroneous matches or unmatchable entities. In contrast, a small
threshold would only lead to a few aligned entity pairs, and almost all of them
would be correct. This is further discussed and verified in Sect. 4.4. Therefore,
our progressive learning framework dynamically adjusts the threshold value to
produce more accurate alignment results (to be discussed in the next subsection).

3.3 The Progressive Learning Framework

To exploit the rich structural patterns in KGs that could provide useful signals
for alignment, we design a progressive learning framework to combine structural
and textual features for alignment and improve the quality of both structural
embeddings and alignment results in a self-training fashion.

Structural Information. As mentioned above, we forward the textual distance
matrix Mt generated by using the side information to the unmatchable entity
prediction module to produce the preliminary alignment results, which are con-
sidered as pseudo-labeled data for learning unified KG embeddings. Concretely,
following [25], we adopt GCN1 to capture the neighboring information of enti-
ties. We leave out the implementation details since this is not the focus of this
paper, which can be found in [25].

Given the learned structural embedding matrix Z, we calculate the structural
distance score between a source and a target entity by subtracting the cosine sim-
ilarity score between their embeddings from 1. We denote the resultant structural
distance matrix as Ms. Then, we combine the textual and structural information
to generate more accurate signals for alignment: M = βMt + (1 − β)Ms, where
1 More advanced structural learning models, such as recurrent skipping networks [20],

could also be used here. We will explore these alternative options in the future.



Towards Entity Alignment in the Open World: An Unsupervised Approach 279

β is a hyper-parameter that balances the weights. The fused distance matrix M
can be used to generate more accurate matches.

The Progressive Learning Algorithm. The amount of training data has an
impact on the quality of the unified KG embeddings, which in turn affects the
alignment performance [10,41]. As thus, we devise an algorithm (Algorithm 2) to
progressively augment the pseudo training data, so as to improve the quality of
KG embeddings and enhance the alignment performance. The algorithm starts
with learning unified structural embeddings and generating the fused distance
matrix M by using the preliminary pseudo-labeled data S0 (line 1). Then, the
fused distance matrix is used to produce the new alignment results ΔS using
TBNNS (line 2). These newly generated entity pairs ΔS are added to the align-
ment results (which are considered as pseudo-labeled data for the next round),
and the entities in the alignment results S are removed from the entity sets (line
3–6). In order to progressively improve the quality of KG embeddings and detect
more alignment results, we perform the aforementioned process recursively until
the number of newly generated entity pairs is below a given threshold γ (line
7–13).

Notably, in the learning process, once a pair of entities is considered as
a match, the entities will be removed from the entity sets (line 5–6 and
line 12–13). This could gradually reduce the alignment search space and lower
the difficulty for aligning the rest entities. Obviously, this strategy suffers from
the error propagation issue, which, however, could be effectively mitigated by
the progressive learning process that dynamically adjusts the threshold. We will
verify the effectiveness of this setting in Sect. 4.3.

Algorithm 2: Progressive learning.
Input : G1 and G2: the two KGs to be aligned; E1 and E2: the entity sets in

G1 and G2; M
t: textual distance matrix; S0: preliminary labeled

data; θ0: the initial threshold.
Output : S: Alignment results.

1 Use S0 to learn structural embeddings, generate Ms and M;
2 ΔS ←TBNNS(G1, G2, E1, E2, θ0, M);
3 S ← S0 + ΔS;
4 θ ← θ0 + η;
5 E1 ← {e|e ∈ E1, e /∈ S};
6 E2 ← {e|e ∈ E2, e /∈ S};
7 while the number of the newly generated alignment results is above γ do
8 Use S to learn structural embeddings, generate Ms and M;
9 ΔS ←TBNNS(G1, G2, E1, E2, θ, M);

10 S ← S + ΔS;
11 θ ← θ + η;
12 E1 ← {e|e ∈ E1, e /∈ S};
13 E2 ← {e|e ∈ E2, e /∈ S};

14 return S.



280 W. Zeng et al.

Dynamic Threshold Adjustment. It can be observed from Algorithm 2 that,
the matches generated by the unmatchable entity prediction module are not
only part of the eventual alignment results, but also the pseudo training data
for learning subsequent structural embeddings. Therefore, to enhance the overall
alignment performance, the alignment results generated in each round should,
ideally, have both large quantity and high quality. Unfortunately, these two goals
cannot be achieved at the same time. This is because, as stated in Sect. 3.2, a
larger threshold in TBNNS can generate more alignment results (large quantity),
whereas some of them might be erroneous (low quality). These wrongly aligned
entity pairs can cause the error propagation problem and result in more erroneous
matches in the following rounds. In contrast, a smaller threshold leads to fewer
alignment results (small quantity), while almost all of them are correct (high
quality).

To address this issue, we aim to balance between the quantity and the quality
of the matches generated in each round. An intuitive idea is to set the threshold
to a moderate value. However, this fails to take into account the characteristics
of the progressive learning process. That is, in the beginning, the quality of
the matches should be prioritized, as these alignment results will have a long-
term impact on the subsequent rounds. In comparison, in the later stages where
most of the entities have been aligned, the quantity is more important, as we
need to include more possible matches that might not have a small distance
score. In this connection, we set the initial threshold θ0 to a very small value
so as to reduce potential errors. Then, in the following rounds, we gradually
increase the threshold by η, so that more possible matches could be detected.
We will empirically validate the superiority of this strategy over the fixed weight
in Sect. 4.3.

Remark. As mentioned in the related work, there are some existing EA
approaches that exploit the iterative learning (bootstrapping) strategy to
improve EA performance. Particularly, BootEA calculates for each source entity
the alignment likelihood to every target entity, and includes those with likeli-
hood above a given threshold in a maximum likelihood matching process under
the 1-to-1 mapping constraint, producing a solution containing confident EA
pairs [22]. This strategy is also adopted by [15,23]. Zhu et al. use a threshold to
select the entity pairs with very close distances as the pseudo-labeled data [21].
DAT employs a bi-directional margin-based constraint to select the confident EA
pairs as labels [24]. Our progressive learning strategy differs from these exist-
ing solutions in three aspects: (1) we exclude the entities in the confident EA
pairs from the test sets; and (2) we use the dynamic threshold adjustment strat-
egy to control the pace of learning process; and (3) our strategy can deal with
unmatchable entities. The superiority of our strategy is validated in Sect. 4.3.

4 Experiment

This section reports the experiment results with in-depth analysis. The source
code is available at https://github.com/DexterZeng/UEA.

https://github.com/DexterZeng/UEA


Towards Entity Alignment in the Open World: An Unsupervised Approach 281

4.1 Experiment Settings

Datasets. Following existing works, we adopt the DBP15K dataset [10] for evalu-
ation. This dataset consists of three multilingual KG pairs extracted from DBpe-
dia. Each KG pair contains 15 thousand inter-language links as gold standards.
The statistics can be found in Table 1. We note that state-of-the-art studies
merely consider the labeled entities and divide them into training and testing
sets. Nevertheless, as can be observed from Table 1, there exist unlabeled enti-
ties, e.g., 4,388 and 4,572 entities in the Chinese and English KG of DBP15KZH-EN,
respectively. In this connection, we adapt the dataset by including the unmatch-
able entities. Specifically, for each KG pair, we keep 30% of the labeled entity
pairs as the training set (for training the supervised or semi-supervised meth-
ods). Then, to construct the test set, we include the rest of the entities in the first
KG and the rest of the labeled entities in the second KG, so that the unlabeled
entities in the first KG become unmatchable. The statistics of the test sets can
be found in the Test set column in Table 1.

Table 1. The statistics of the evaluation benchmarks.

Dataset KG pairs #Triples #Entities #Labeled ents #Relations #Test set

DBP15KZH-EN DBpedia (Chinese) 70,414 19,388 15,000 1,701 14,888

DBpedia (English) 95,142 19,572 15,000 1,323 10,500

DBP15KJA-EN DBpedia (Japanese) 77,214 19,814 15,000 1,299 15,314

DBpedia (English) 93,484 19,780 15,000 1,153 10,500

DBP15KFR-EN DBpedia (French) 105,998 19,661 15,000 903 15,161

DBpedia (English) 115,722 19,993 15,000 1,208 10,500

Parameter Settings. For the side information module, we utilize the fastText
embeddings [42] as word embeddings. To deal with cross-lingual KG pairs, follow-
ing [32], we use Google translate to translate the entity names from one language
to another, i.e., translating Chinese, Japanese and French to English. α is set to
0.5. For the structural information learning, we set β to 0.5. Noteworthily, since
there are no training set or validation set for parameter tuning, we set α and
β to the default value (0.5). We will further verify that the hyper-parameters
do not have a large influence on the final results in Sect. 4.4. For progressive
learning, we set the initial threshold θ0 to 0.05, the incremental parameter η to
0.1, the termination threshold γ to 30. Note that if the threshold θ is over 0.45,
we reset it to 0.45. These hyper-parameters are default values since there is no
extra validation set for hyper-parameter tuning.

Evaluation Metrics. We use precision (P), recall (R) and F1 score as eval-
uation metrics. The precision is computed as the number of correct matches
divided by the number of matches found by a method. The recall is computed



282 W. Zeng et al.

as the number of correct matches found by a method divided by the number of
gold matches. The F1 score is the harmonic mean between precision and recall.

Competitors. We select the most performant state-of-the-art solutions for com-
parison. Within the group that solely utilizes structural information, we compare
with BootEA [22], TransEdge [15], MRAEA [41] and SSP [43]. Among the methods
incorporating other sources of information, we compare with GCN-Align [25],
HMAN [16], HGCN [11], RE-GCN [44], DAT [24] and RREA [45]. We also include
the unsupervised approaches, i.e., IMUSE [36] and PARIS [37]. To make a fair
comparison, we only use entity name labels as the side information.

Table 2. Alignment results.

ZH-EN JA-EN FR-EN

P R F1 P R F1 P R F1

BootEA 0.444 0.629 0.520 0.426 0.622 0.506 0.452 0.653 0.534

TransEdge 0.518 0.735 0.608 0.493 0.719 0.585 0.492 0.710 0.581

MRAEA 0.534 0.757 0.626 0.520 0.758 0.617 0.540 0.780 0.638

SSP 0.521 0.739 0.611 0.494 0.721 0.587 0.512 0.739 0.605

GCN-Align 0.291 0.413 0.342 0.274 0.399 0.325 0.258 0.373 0.305

HMAN 0.614 0.871 0.720 0.641 0.935 0.761 0.674 0.973 0.796

HGCN 0.508 0.720 0.596 0.525 0.766 0.623 0.618 0.892 0.730

RE-GCN 0.518 0.735 0.608 0.548 0.799 0.650 0.646 0.933 0.764

DAT 0.556 0.788 0.652 0.573 0.835 0.679 0.639 0.922 0.755

RREA 0.580 0.822 0.680 0.629 0.918 0.747 0.667 0.963 0.788

IMUSE 0.608 0.862 0.713 0.625 0.911 0.741 0.618 0.892 0.730

PARIS 0.976 0.777 0.865 0.981 0.785 0.872 0.972 0.793 0.873

UEA 0.913 0.902 0.907 0.940 0.932 0.936 0.953 0.950 0.951

4.2 Results

Table 2 reports the alignment results, which shows that state-of-the-art super-
vised or semi-supervised methods have rather low precision values. This is
because these approaches cannot predict the unmatchable source entities and
generate a target entity for each source entity (including the unmatchable ones).
Particularly, methods incorporating additional information attain relatively bet-
ter performance than the methods in the first group, demonstrating the benefit
of leveraging such additional information.



Towards Entity Alignment in the Open World: An Unsupervised Approach 283

Regarding the unsupervised methods, although IMUSE cannot deal with the
unmatchable entities and achieves a low precision score, it outperforms most of
the supervised or semi-supervised methods in terms of recall and F1 score. This
indicates that, for the EA task, the KG side information is useful for mitigating
the reliance on labeled data. In contrast to the abovementioned methods, PARIS
attains very high precision, since it only generates matches that it believes to
be highly possible, which can effectively filter out the unmatchable entities. It
also achieves the second best F1 score among all approaches, showcasing its
effectiveness when the unmatchable entities are involved. Our proposal, UEA,
achieves the best balance between precision and recall and attains the best F1
score, which outperforms the second-best method by a large margin, validating
its effectiveness. Notably, although UEA does not require labeled data, it achieves
even better performance than the most performant supervised method HMAN

(except for the recall values on DBP15KJA-EN and DBP15KFR-EN).

4.3 Ablation Study

In this subsection, we examine the usefulness of proposed modules by conducting
the ablation study. More specifically, in Table 3, we report the results of UEA w/o

Unm, which excludes the unmatchable entity prediction module, and UEA w/o

Prg, which excludes the progressive learning process. It shows that, removing the
unmatchable entity prediction module (UEA w/o Unm) brings down the perfor-
mance on all metrics and datasets, validating its effectiveness of detecting the
unmatchable entities and enhancing the overall alignment performance. Besides,
without the progressive learning (UEA w/o Prg), the precision increases, while
the recall and F1 score values drop significantly. This shows that the progressive
learning framework can discover more correct aligned entity pairs and is crucial
to the alignment progress.

To provide insights into the progressive learning framework, we report the
results of UEA w/o Adj, which does not adjust the threshold, and UEA w/o Excl,
which does not exclude the entities in the alignment results from the entity sets
during the progressive learning. Table 3 shows that setting the threshold to a
fixed value (UEA w/o Adj) leads to worse F1 results, verifying that the progressive
learning process depends on the choice of the threshold and the quality of the
alignment results. We will further discuss the setting of the threshold in the
next subsection. Besides, the performance also decreases if we do not exclude
the matched entities from the entity sets (UEA w/o Excl), validating that this
strategy indeed can reduce the difficulty of aligning entities.

Moreover, we replace our progressive learning framework with other state-of-
the-art iterative learning strategies (i.e., MWGM [22], TH [21] and DAT-I [24])
and report the results in Table 3. It shows that using our progressive learning
framework (UEA) can attain the best F1 score, verifying its superiority.



284 W. Zeng et al.

Table 3. Ablation results.

ZH-EN JA-EN FR-EN

P R F1 P R F1 P R F1

UEA 0.913 0.902 0.907 0.940 0.932 0.936 0.953 0.950 0.951

w/o Unm 0.553 0.784 0.648 0.578 0.843 0.686 0.603 0.871 0.713

w/o Prg 0.942 0.674 0.786 0.966 0.764 0.853 0.972 0.804 0.880

w/o Adj 0.889 0.873 0.881 0.927 0.915 0.921 0.941 0.936 0.939

w/o Excl 0.974 0.799 0.878 0.982 0.862 0.918 0.985 0.887 0.933

MWGM 0.930 0.789 0.853 0.954 0.858 0.903 0.959 0.909 0.934

TH 0.743 0.914 0.820 0.795 0.942 0.862 0.807 0.953 0.874

DAT-I 0.974 0.805 0.881 0.985 0.866 0.922 0.988 0.875 0.928

UEA-Ml 0.908 0.902 0.905 0.926 0.924 0.925 0.937 0.931 0.934

Ml 0.935 0.721 0.814 0.960 0.803 0.875 0.948 0.750 0.838

UEA-Mn 0.758 0.727 0.742 0.840 0.807 0.823 0.906 0.899 0.903

Mn 0.891 0.497 0.638 0.918 0.562 0.697 0.959 0.752 0.843

4.4 Quantitative Analysis

In this subsection, we perform quantitative analysis of the modules in UEA.

Fig. 3. Alignment results given different threshold values. Correct-θ refers to the num-
ber of correct matches generated by the progressive learning framework at each round
given the threshold value θ. Wrong refers to the number of erroneous matches generated
in each round.

The Threshold θ in TBNNS. We discuss the setting of θ to reveal the trade-off
between the risk and gain from generating the alignment results in the progres-
sive learning. Identifying a match leads to the integration of additional structural
information, which benefits the subsequent learning. However, for the same rea-
son, the identification of a false positive, i.e., an incorrect match, potentially
leads to mistakenly modifying the connections between KGs, with the risk of



Towards Entity Alignment in the Open World: An Unsupervised Approach 285

amplifying the error in successive rounds. As shown in Fig. 3, a smaller θ (e.g.,
0.05) brings low risk and low gain; that is, it merely generates a small number of
matches, among which almost all are correct. In contrast, a higher θ (e.g., 0.45)
increases the risk, and brings relatively higher gain; that is, it results in much
more aligned entity pairs, while a certain portion of them are erroneous. Addi-
tionally, using a higher threshold leads to increasingly more alignment results,
while for a lower threshold, the progressive learning process barely increases
the number of matches. This is in consistency with our theoretical analysis in
Sect. 3.2.

Unmatchable Entity Prediction. Zhao et al. [19] propose an intuitive strat-
egy (U-TH) to predict the unmatchable entities. They set an NIL threshold, and
if the distance value between a source entity and its closest target entity is above
this threshold, they consider the source entity to be unmatchable. We compare
our unmatchable entity prediction strategy with it in terms of the percentage
of unmatchable entities that are included in the final alignment results and the
F1 score. On DBP15KZH-EN, replacing our unmatchable entity prediction strategy
with U-TH attains the F1 score at 0.837, which is 8.4% lower than that of UEA.
Besides, in the alignment results generated by using U-TH, 18.9% are unmatch-
able entities, while this figure for UEA is merely 3.9%. This demonstrates the
superiority of our unmatchable entity prediction strategy.

Fig. 4. The F1 scores by setting α and β to different values.

Influence of Parameters. As mentioned in Sect. 4.1, we set α and β to 0.5
since there are no training/validation data. Here, we aim to prove that different
values of the parameters do not have a large influence on the final results. More
specifically, we keep α at 0.5, and choose β from [0.3, 0.4, 0.5, 0.6, 0.7]; then we
keep β at 0.5, and choose α from [0.3, 0.4, 0.5, 0.6, 0.7]. It can be observed from
Fig. 4 that, although smaller α and β lead to better results, the performance
does not change significantly.



286 W. Zeng et al.

Influence of Input Side Information. We adopt different side information
as input to examine the performance of UEA. More specifically, we report the
results of UEA-Ml, which merely uses the string-level feature of entity names as
input, UEA-Mn, which only uses the semantic embeddings of entity names as
input. We also provide the results of Ml and Mn, which use the string-level and
semantic information to directly generate alignment results (without progressive
learning), respectively.

As shown in Table 3, the performance of solely using the input side informa-
tion is not very promising (Ml and Mn). Nevertheless, by forwarding the side
information into our model, the results of UEA-Ml and UEA-Mn become much
better. This unveils that UEA can work with different types of side informa-
tion and consistently improve the alignment results. Additionally, by comparing
UEA-Ml with UEA-Mn, it is evident that the input side information does affect
the final results, and the quality of the side information is of significance to the
overall alignment performance.

Pseudo-Labeled Data. We further examine the usefulness of the preliminary
alignment results generated by the side information, i.e., the pseudo-labeled data.
Concretely, we replace the training data in HGCN with these pseudo-labeled
data, resulting in HGCN-U, and then compare its alignment results with the
original performance. Regarding the F1 score, HGCN-U is 4% lower than HGCN

on DBP15KZH-EN, 2.9% lower on DBP15KJA-EN, 2.8% lower on DBP15KFR-EN. The minor
difference validates the effectiveness of the pseudo-labeled data generated by the
side information. It also demonstrates that this strategy can be applied to other
supervised or semi-supervised frameworks to reduce their reliance on labeled
data.

5 Conclusion

In this article, we propose an unsupervised EA solution that is capable of deal-
ing with unmatchable entities. We first exploit the side information of KGs to
generate preliminary alignment results, which are considered as pseudo-labeled
data and forwarded to the progressive learning framework to produce better
KG embeddings and alignment results in a self-training fashion. We also devise
an unmatchable entity prediction module to detect the unmatchable entities.
The experimental results validate the usefulness of our proposed model and its
superiority over state-of-the-art approaches.

Acknowledgments. This work was partially supported by Ministry of Science and
Technology of China under grant No. 2020AAA0108800, NSFC under grants Nos.
61872446 and 71971212, NSF of Hunan Province under grant No. 2019JJ20024, Post-
graduate Scientific Research Innovation Project of Hunan Province under grant No.
CX20190033.



Towards Entity Alignment in the Open World: An Unsupervised Approach 287

References

1. Hao, Y., Zhang, Y., He, S., Liu, K., Zhao, J.: A joint embedding method for entity
alignment of knowledge bases. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T.,
Ruan, T. (eds.) CCKS 2016. CCIS, vol. 650, pp. 3–14. Springer, Singapore (2016).
https://doi.org/10.1007/978-981-10-3168-7 1

2. Shi, X., Xiao, Y.: Modeling multi-mapping relations for precise cross-lingual entity
alignment. In: EMNLP, pp. 813–822 (2019)

3. Li, C., Cao, Y., Hou, L., Shi, J., Li, J., Chua, T.S.: Semi-supervised entity alignment
via joint knowledge embedding model and cross-graph model. In: EMNLP, pp.
2723–2732 (2019)

4. Sun, Z., et al.: Knowledge graph alignment network with gated multi-hop neigh-
borhood aggregation. In: AAAI, pp. 222–229 (2020)

5. Xu, K., Song, L., Feng, Y., Song, Y., Yu, D.: Coordinated reasoning for cross-
lingual knowledge graph alignment. In: AAAI, pp. 9354–9361 (2020)

6. Chen, J., Gu, B., Li, Z., Zhao, P., Liu, A., Zhao, L.: SAEA: self-attentive hetero-
geneous sequence learning model for entity alignment. In: Nah, Y., Cui, B., Lee,
S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.) DASFAA 2020, Part I. LNCS,
vol. 12112, pp. 452–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59410-7 31

7. Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Neighborhood matching network
for entity alignment. In: ACL, pp. 6477–6487 (2020)

8. Sun, Z., et al.: A benchmarking study of embedding-based entity alignment for
knowledge graphs. Proc. VLDB Endow. 13(11), 2326–2340 (2020)

9. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embed-
dings for cross-lingual knowledge alignment. In: IJCAI, pp. 1511–1517 (2017)

10. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving
embedding. In: d’Amato, C., et al. (eds.) ISWC 2017, Part I. LNCS, vol. 10587, pp.
628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 37

11. Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Jointly learning entity and relation
representations for entity alignment. In: EMNLP, pp. 240–249 (2019)

12. Zeng, W., Zhao, X., Tang, J., Lin, X.: Collective entity alignment via adaptive
features. In: ICDE, pp. 1870–1873 (2020)

13. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907 (2016)

15. Sun, Z., Huang, J., Hu, W., Chen, M., Guo, L., Qu, Y.: TransEdge: translating
relation-contextualized embeddings for knowledge graphs. In: Ghidini, C., et al.
(eds.) ISWC 2019, Part I. LNCS, vol. 11778, pp. 612–629. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30793-6 35

16. Yang, H.W., Zou, Y., Shi, P., Lu, W., Lin, J., Sun, X.: Aligning cross-lingual
entities with multi-aspect information. In: EMNLP, pp. 4430–4440 (2019)

17. Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.S.: Multi-channel graph neural
network for entity alignment. In: ACL, pp. 1452–1461 (2019)

18. Hertling, S., Paulheim, H.: The knowledge graph track at OAEI. In: Harth, A.,
et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 343–359. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-49461-2 20

19. Zhao, X., Zeng, W., Tang, J., Wang, W., Suchanek, F.: An experimental study of
state-of-the-art entity alignment approaches. IEEE Trans. Knowl. Data Eng. 01,
1 (2020)

https://doi.org/10.1007/978-981-10-3168-7_1
https://doi.org/10.1007/978-3-030-59410-7_31
https://doi.org/10.1007/978-3-030-59410-7_31
https://doi.org/10.1007/978-3-319-68288-4_37
https://doi.org/10.1007/978-3-030-30793-6_35
https://doi.org/10.1007/978-3-030-49461-2_20


288 W. Zeng et al.

20. Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies in
knowledge graphs. In: ICML, pp. 2505–2514 (2019)

21. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge
embeddings. In: IJCAI, pp. 4258–4264 (2017)

22. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowl-
edge graph embedding. In: IJCAI, pp. 4396–4402 (2018)

23. Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: Neighborhood-aware attentional rep-
resentation for multilingual knowledge graphs. In: IJCAI, pp. 1943–1949 (2019)

24. Zeng, W., Zhao, X., Wang, W., Tang, J., Tan, Z.: Degree-aware alignment for
entities in tail. In: SIGIR, pp. 811–820 (2020)

25. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment
via graph convolutional networks. In: EMNLP, pp. 349–357 (2018)

26. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs
using attribute embeddings. In: AAAI, pp. 297–304 (2019)

27. Yang, K., Liu, S., Zhao, J., Wang, Y., Xie, B.: COTSAE: co-training of structure
and attribute embeddings for entity alignment. In: AAAI, pp. 3025–3032 (2020)

28. Chen, B., Zhang, J., Tang, X., Chen, H., Li, C.: JarKA: modeling attribute inter-
actions for cross-lingual knowledge alignment. In: Lauw, H.W., Wong, R.C.-W.,
Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020, Part I. LNCS
(LNAI), vol. 12084, pp. 845–856. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47426-3 65

29. Tang, X., Zhang, J., Chen, B., Yang, Y., Chen, H., Li, C.: BERT-INT: a BERT-
based interaction model for knowledge graph alignment. In: IJCAI, pp. 3174–3180
(2020)

30. Chen, M., Tian, Y., Chang, K.W., Skiena, S., Zaniolo, C.: Co-training embeddings
of knowledge graphs and entity descriptions for cross-lingual entity alignment. In:
IJCAI, pp. 3998–4004 (2018)

31. Xu, K., et al.: Cross-lingual knowledge graph alignment via graph matching neural
network. In: ACL, pp. 3156–3161 (2019)

32. Wu, Y., Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-aware entity
alignment for heterogeneous knowledge graphs. In: IJCAI, pp. 5278–5284 (2019)

33. Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M.: Deep graph matching
consensus. In: ICLR (2020)

34. Zeng, W., Zhao, X., Tang, J., Lin, X., Groth, P.: Reinforcement learning based col-
lective entity alignment with adaptive features. ACM Transactions on Information
Systems. to appear (2021)

35. Qu, M., Tang, J., Bengio, Y.: Weakly-supervised knowledge graph alignment with
adversarial learning. CoRR, abs/1907.03179 (2019)

36. He, F., et al.: Unsupervised entity alignment using attribute triples and relation
triples. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA
2019, Part I. LNCS, vol. 11446, pp. 367–382. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18576-3 22

37. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of
relations, instances, and schema. PVLDB 5(3), 157–168 (2011)

38. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Phy. Doklady 10, 707–710 (1966)

39. Edizel, K., Piktus, A., Bojanowski, P., Ferreira, R., Grave, E., Silvestri, F.: Mis-
spelling oblivious word embeddings. In: NAACL-HLT, pp. 3226–3234 (2019)

40. Dai, X., Yan, X., Zhou, K., Wang, Y., Yang, H., Cheng, J.: Convolutional embed-
ding for edit distance. In: SIGIR, pp. 599–608 (2020)

https://doi.org/10.1007/978-3-030-47426-3_65
https://doi.org/10.1007/978-3-030-47426-3_65
https://doi.org/10.1007/978-3-030-18576-3_22
https://doi.org/10.1007/978-3-030-18576-3_22


Towards Entity Alignment in the Open World: An Unsupervised Approach 289

41. Mao, X., Wang, W., Xu, H., Lan, M., Wu, Y.: MRAEA: an efficient and robust
entity alignment approach for cross-lingual knowledge graph. In: WSDM, pp. 420–
428 (2020)

42. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

43. Nie, H., et al.: Global structure and local semantics-preserved embeddings for entity
alignment. In: IJCAI, pp. 3658–3664 (2020)

44. Yang, J., Zhou, W., Wei, L., Lin, J., Han, J., Hu, S.: RE-GCN: relation enhanced
graph convolutional network for entity alignment in heterogeneous knowledge
graphs. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E.
(eds.) DASFAA 2020, Part II. LNCS, vol. 12113, pp. 432–447. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59416-9 26

45. Mao, X., Wang, W., Xu, H., Wu, Y., Lan, M.: Relational reflection entity align-
ment. In: CIKM, pp. 1095–1104 (2020)

https://doi.org/10.1007/978-3-030-59416-9_26


Sequence Embedding for Zero or Low
Resource Knowledge Graph Completion

Zhijuan Du1,2(B)

1 Inner Mongolia University, Hohhot 010021, China
2 Inner Mongolia Discipline Inspection and Supervision Big Data Laboratory,

Hohhot 010015, China

Abstract. Knowledge graph completion (KGC) has been proposed to
improve KGs by filling in missing links. Previous KGC approaches
require a large number of training instances (entity and relation) and
hold a closed-world assumption. The real case is that very few instances
are available and KG evolve quickly with new entities and relations being
added by the minute. The newly added cases are zero resource in train-
ing. In this work, we propose a Sequence Embedding with Adversarial
learning approach (SEwA) for zero or low resource KGC. It transform the
KGC into a sequence prediction problem by making full use of inherently
link structure of knowledge graph and resource-easy-to-transfer feature of
adversarial contextual embedding. Specifically, the triples (<h, r, t>) and
higher-order triples (<h, p, t>) containing the paths (p = r1 → · · · → rn)
are represented as word sequences and are encoded by pre-training model
with multi head self-attention. The path is obtained by a non-parametric
learning based on the one-class classification of the relation trees. The
zero and low resources issues are further optimizes by adversarial learn-
ing. At last, our SEwA is evaluated by low resource datasets and open
world datasets.

Keywords: Knowledge graph · Zero/low resource · Structure
sequence · Multi head attention · Non-parameter · Adversarial learning

1 Introduction

Knowledge Graphs (KGs) organize facts in a structured way as triples in the
form of <head entity, relation, tail entity>, abridged as <h, r, t>, where r builds
relations between entities h and t. In this formalism a statement like “Beijing
is the capital of China” can be represented as <Beijing, capitalOf, China>.
Usually KG is not a complete graph, which has many potential links or new
facts to discover. This problem is called KG completion (KGC). Its equivalent

Supported by the Natural Science Foundation of Inner Mongolia in China
(2020BS06005, 2018BS06001), the Inner Mongolia Discipline Inspection and Supervi-
sion Big Data Laboratory Open Project (IMDBD2020010), and the High-level Talents
Scientific Research Foundation of Inner Mongolia University (21500-5195118).

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 290–306, 2021.
https://doi.org/10.1007/978-3-030-73194-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_20&domain=pdf
http://orcid.org/0000-0002-0502-8374
https://doi.org/10.1007/978-3-030-73194-6_20


SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 291

task is link prediction or triples classification. For example, predict the missing
part ? in <?, capitalOf, China>, <Beijing,?, China>, <Beijing, capitalOf,?>
or assess plausibility of <Beijing, capitalOf, China>. Previous KGC approaches
(TransE [3], ComplEx [21], ConvE [4], RotatE [20], TuckER [1]) require a large
number of training instances (An entity with only a small training samples is
limited to update opportunities due to fewer occurrences, resulting in it being
represented by an approximately random vector.) and are restricted by the closed
world assumption [17] (Untrained entities cannot be updated from any inference
function and can only be represented by an initial random vector.). As shown in
Fig. 1(b), the fewer entity occurrences, the larger MRR (mean reciprocal rank)
(larger MRR means less accurate)1.

1234 20 40 60 80 100 120 140 160 180 20020
00

0040
00

0060
00

0080
00

005.0
0E

+00
7

1.0
0E

+00
8

1.5
0E

+00
8

2.0
0E

+00
8

2.5
0E

+00
8

en
tit

y 
nu

m
be

r

occurrences

10 20 30 40 50
300000

600000

900000
2500000
5000000
7500000

10000000

en
tit

y 
nu

m
be

r

occurrences

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3
 mean reciprocal rank
 entity occurrence

entity occurrence

m
ea

n 
re

ci
pr

oc
al

 ra
nk

0
2000

4000
6000

co
un

t o
f e

nt
iti

es

'0213 '0215 ‘0217 ’0220 ‘0222 ’0224 ‘0227 ’0229
0.0

0.5

30

60

90

120

ne
w

 e
nt

ity
 v

ol
um

e 
(G

B)

time

(a) (b) (c)

Fig. 1. (a) occurrences ≤200; (b) entity frequency vs MRR; (c) new entity growth.

However, the real case is that very few instances are available and evolve
quickly with new entities and relations being added by the minute. As shown in
Fig. 1(a), 53% entities appear only once and 78% entities appear up to 4 times
in Freebase2, as shown in Fig. 1(c), Wikidata grows 12 GB new entities per day
in February this year. We call this case with only a small or zero training sample
as a low-zero-resource issue. The small and zero training sample are also called
few-shot and zero-shot (or new entity or open-world). Currently, few methods
such as wRAN [31] and LAN [24] are working on low resource issue. The for-
mer incorporates text information beyond KG triples and the latter designs a
neighbor-assisted strategy within KG triples. Besides, OWE [18], ConMask [19],
KG-BERT [29] incorporates text information to solve zero-shot issue. Those
works yet still have some limitations. First, they can only solve one type of issue
in low or zero resource. Second, the text information are entity descriptions or
Web corpus. But not all entities have text information, and not all text informa-
tion is valid and available, e.g. only 10, 159, 119 out of 184, 346, 843 entities in
Freebase have descriptions. More importantly, text is extra information beyond
KG triples. Third, newly added or few shot cases often have few neighboring

1 This results are measured by the classic TransE model on the baseline dataset
FB15K. FB15K is a subset of Freebase, Freebase is a subset of Wikidata.

2 The results come from 2016 release data in Freebase. The total number of entities
in Freebase is 507, 480, 694, of which 271, 330, 531 entities occur only once and 124,
378, 009 entities occur 2 to 4 times. 15449 entities occur from 1257 to 97922175.



292 Z. Du

entities (in and out edges). For example, let’s take the one-shot as an example,
as shown in Fig. 2. It’s a special case of few-shot.

ba

c

d

r1
r2

r3

aquila 
chrysaetos

moschus 
moschiferus

prey

habitat

habits

coniferous 
mixed forest

rock climbing

Fig. 2. An example of KG structure

The entity a, c and d appear once and b 3 times in Fig. 2. Hence, b is not a
one-shot entity. The basic idea of neighbor-assisted strategy is to use the sum
of neighbors to represent entities. In Fig. 2, a has a neighbor b (or (r1, b)), b
has two neighbors c (or (r2, c)) and d (or (r3, d)), and there are no neighbors
for c and d. So the neighbor-assisted strategy is not very effective for entities
with fewer neighbors. But given an entity a, if a path is added, there will be 3
triples containing entity a, such as <a, r1, b>,<a, r1 → r2, c>,<a, r1 → r3, d>.
So that the entity a can train twice more than before. However, there are 3
issues that need to be addressed: (1) There are many paths in KG for a given
entity pair. E.g. 100 relations can form billions 4-step paths. So it’s better to
learn relational features rather than hand-crafted. (2) Each relation expresses
different semantics in different paths. [13] shares the view that words might
exhibit different meanings when they appear in different textual contexts. (3)
Usually, only its related high-resource entities and relations can really help low-
resource objects. This is particularly important for low and zero-resource objects.

To solve those problems, we borrow the idea of relational one-class classifi-
cation (relOCC) [9]) and first-order logical decision trees (TILDE) [2] to learn
relational features, introduce pre-trained language model [5] to realize knowledge
share and keep language patterns, use multi-head self-attention mechanism [23]
to capture the diverse meaning and importance of each word in different con-
texts, adversarial learning [22] to further optimized against zero-resources issues.
So far, we propose a novel KGC approach with low and zero resource references,
namely SEwA (Sequence Embedding with Adversarial learning). The key con-
tributions as follows: (1) We propose a pre-training model SEwA, which modeling
(higher-order) triples as word sequences and turn KGC into a sequence predic-
tion. (2) We obtain the path via non-parametric relational one-class classification
to improve path learning ability. (3) We use adversarial learning to further opti-
mized against low and zero-resources issues. (4) We evaluate our SEwA from
different aspects on low or zero resource datasets.

The rest of the paper is organized as follows. Section 2 describes related works.
Section 3 gives a problem formulation, elaborates the methodology, which details
the pre-training sequence embedding model SEwA, non-parametric path acqui-
sition and adversarial learning. Section 4 evaluates the performance of various
methods in multi-type datasets. Section 5 concludes the paper.



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 293

2 Related Work

The relevant work is introduced from knowledge graph embedding and pre-
trained language model.

2.1 Knowledge Graph Embedding

Embedding is the mainstream method of knowledge graph completion. The ear-
lier approach focused on four types of relations (1-to-1, 1-to-n, n-to-1, n-to-n [3]),
especially latter three. There are many classic methods, Trans family such as
Trans (E, H, R, D, Sparse) [3,7,8,12,25]. PTransE [11], Bilinear family such as
DistMult [28], ComplEx [21] HolE [15] and deep learning approaches such as
ConvE [4], ConvKG [14]. Later methods target more complex relation types, such
as (anti)symmetry, inversion relation and composition relation. The most famous
RotatE [20] and TuckER [1]) methods fall into this category. Recently, research
has focused on zero-shot and few-shot issues. OWE [18], ConMask [19], KG-
BERT [29] incorporates text information. LAN [24] designs a neighbor-assisted
strategy within KG triples to solve zero-shot issue. wRAN [31] claims to solve
low-resource problems, but essentially it solves few-shot issue via incorporates
text information beyond KG triples. Neural networks are basically used in these
methods. But they all treat the three elements of a triple group as separate
symbols. Moreover, newly added or few shot cases often have few neighboring
entities. So far, the zero-low resources issue still has a long way to go.

2.2 Pre-trained Language Model

The language model has the ability to capture syntactic and semantic informa-
tion about words from large-scale unlabeled text. So word vectors are standard
components of most of the latest natural language processing (NLP) architec-
tures. A literature survey of pre-trained language models has been conducted
by [16]. It can be seen that the attention mechanism is a milestone in the lan-
guage model. Since the introduction of the attention mechanism, the Seq2seq
model that joined attention has improved on all tasks, so the current seq2seq
model refers to the model that combines RNN and attention. Then Google put
forward a Transformer model [23] to solve the problem of to sequence, replac-
ing LSTM with the full structure of self-attention mechanism. To that end, he
became another watershed. Then a multilayer bidirectional Transformer encoder
BERT [5] is built. It is a state-of-the-art pre-trained contextual language rep-
resentation model. There are two steps in BERT framework: pre-training and
fine-tuning. During pre-training, BERT is trained on large-scale unlabeled gen-
eral domain corpus over two self-supervised tasks: masked language modeling
and next sentence prediction. In masked language modeling, BERT predicts ran-
domly masked input tokens. In next sentence prediction, BERT predicts whether
two input sentences are consecutive. For fine-tuning, BERT is initialized with
the pre-trained parameter weights, and all of the parameters are fine-tuned using
labeled data from downstream tasks such as sentence pair.



294 Z. Du

3 Methodology

This section will introduce our pre-training model based on sequence embedding
with adversarial learning for zero or low resource knowledge graph completion.

3.1 Problem Formulation

We denote triple by <h, r, t>, entity by e ∈ {h, t}, relation by r, path by p, col-
umn (matrix) vector by bold lower (upper) case letter, KG by G = {E,R, T} =
{〈h, r, t〉 |h, t ∈ E, r ∈ R}. The formal definitions are as follows:

Definition 1 (Entity). Given KG G, it is divided into train set Δtrain and
test set Δtest, and it satisfies G = {{Δtrain ∪ Δtest} |Δx = {Ex, Rx, T x} , x ∈
{train, test} (

OΔtest∩ OΔtrain �= ∅) ∩ (
TΔtest ∩ TΔtrain = ∅)

, O ∈ {E,R}. The
regular entity is denoted as ecom = {e|Ne > δ, e ∈ E}, the few-shot entity is
denoted as efew = {e|Ne ≤ δ, e ∈ E},the one-shot entity is denoted as eone =
{e|Ne = 1, e ∈ E}, the zero-shot entity is denoted as ezero = {e|Ne = 0, e ∈
EΔtest ∩ e /∈ EΔtrain

}
, Ne is e occurrences in Δtrain.

Definition 2 (Low-Zero-Resource KG, LZKG). Low-zero-resource KG
satisfies Glz = {G ||efew| ≥ θ, |ezero| ≥ σ}. Here, efew and ezero is few-shot
and zero-shot entity. |•| is the number •.
Definition 3 (Higher-order Triples, HT). Given two entities h, t ∈ E, the
direct relation r ∈ R and the indirect relation set pi ∈ Ph,t between them, the
high-order triple is represented as <h, pi, t>. Here, Ph,t = {p1, p1, · · · pN}, pi =
r1 → r2 → · · · → rn is a path linking entity h, t.

The paper use word sequence representation, e.g. given a triple <h, r, t> and
higher-order triple <h, p, t>, then they are represented as follows:

<h, r, t>: h → r → t
<h, p, t>: h → r1 → ri → · · · → rn → t
here h, r, p, t is the name (words sequences, e.g. aquila chrysaetos) rather than

a symbolic mark (e.g. a). → denote sequence formed by a list of two elements.

Definition 4 (LZKG completion, LZC). With a low-zero-resource KG Glz,
given a support set S ∈ {<h, r, t>,<h, p, t>} about entity h and t, predicting a
missing entity (<?, r, t> or <?, p, t> or <h, r, ?> or <h, p, ?>) in the input
sequence si (si ∈ S), is called low-zero resource KG completion.

3.2 Framework Overview

Our goal is to use paths to help complete zero and low-resource KGs. The key
idea is to transform it into a sequence prediction problem. Specifically, the triples
(<h, r, t>) and higher-order triples (<h, p, t>) are represented as word sequences.
Then encode the word sequence with a stack of Transformer [23] blocks. So
architecture of the our SEwA is shown in Fig. 3.



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 295

prey(High-order) Triple Sequence rock climbing

e
1x

+
p
1x

0
1h

Word +Position Embedding

Input Embedding

e
2x p

2x

0
2h

e
3x p

3x

0
3h

+
e
4x p

4x

0
4h

1
Lh 2

Lh 3
Lh 4

Lh

Softmax Classification
aquila chrysaetos

Transformer Encoders

Multi-Headed Attention

Final Hidden States

Entity Prediction
Feed Forward

[mask] [1] [2] [3] [4]

+ +

1Q 1K 1V 2Q 2K 2V 3Q 3K 3V 4Q 4K 4V

1
3h

Language Model

Fig. 3. Overview of our approach.

Input Encoder. In Fig. 3, we first represent entities, relations, triples, and
higher-order triples as names lists, i.e., natural language sentences. For example,
various objects in Fig. 2 can be represented as follows:

Entities: aquila chrysaetos, moschus moschiferus,et al.
Relations: prey, habitat, habits.
Triple: aquila chrysaetos prey moschus moschiferus, et al.
Higher-order triples: aquila chrysaetos prey habits rock climbing,et al.

The above word sequence serves as input into a stack of L successive Trans-
former encoders [23], and each entity and relation serves as each element in the
word sequence, separated by [SEP]. Here, as usual, each element is represented
by an element vector and a position vector, as shown in Eq. (1).

X = {x1, · · · , xn} = {[xe
1 + xp

1] , · · · , [xe
n + xp

n]} (1)

x1, xn ∈ E, xi∈[2,n−1] ∈ R. xe
i is element embedding used to identify the current

element. xp
i is the position embeddings used to represent its position in the

sequence. xp
i is calculated using Eq. (2).

xp
i =

{
sin(i/10000k/d), k%2 = 0, k ≤ d
cos(i/10000k/d), k%2 = 1, k ≤ d

(2)

d is embedding dimension, k%2 = 0(or1) represents the even (or odd) dimension.
This not only eliminates parameter training, but also adapts to the length of
sentences that have never been met. So input sentence is denoted as h0

i = xe
i +xp

i .

Non-parametric Path Acquisition. We have adopted a path-assisted strat-
egy. So the path information needs to be obtained. Usually, the path can be



296 Z. Du

expressed in the form of predicate logic. For example, ∃xr1 (h, x) ∧ r2 (x, t) for-
mulas capture 2-step paths between h and t, ∃x, yr1 (h, x) ∧ r2 (x, y) ∧ r3 (y, t)
formulas capture 3-step paths between h and t. Then these structure learning is
done with one-class classification problem for relations (relOCC) [9]. Specifically,
top-down induction of first-order logical decision trees (TILDE) [2] is used to
learn relation trees. The trees represents a decision list of relation rules. The rela-
tional distance between a pair of instances u and v is calculated by lowest com-
mon ancestors (LCA), as shown in Eq. (3). Here, u, v is the relational represen-
tation of triples, such as the Prey(aquila chrysaetos,moschus moschiferus).

dis (u, v) =
{

0 , LCA (u, v) is leaf
e−λdepth(LCA(u,v)), otherwise

(3)

Here, depth (LCA (u, v)) is the depth of instances u and v to lowest com-
mon ancestors. E.g. depth (LCA (r1(a, b), r2(b, c))) = 1, depth(LCA(r1(a, b),
r3(b, d))) = 0 in Fig. 4 (A first-order logic decision tree of Fig. 2).

Fig. 4. A case of lowest common ancestors.

There is usually more than one tree. The total distance function can be
represented as the weighted sum of the individual tree-level distances, as shown
in Eq. (4).

Dis (u, v) =
∑

i

ωidisi (u, v) ,
∑

i

ωi = 1, ωi ≥ 0 (4)

Dis (·, ·) can then be used to compute the density expectation for a new
relational instance o as a weighted sum of the distance of o from all training
instances x ∈ T , as shown in Eq. (5).

Ed (o /∈ class) =
∑

x∈T

εxDis (x, o) ,
∑

x∈T

εx = 1, εx ≥ 0 (5)

We learn a tree-based distance iteratively [9] to introduce new relational fea-
tures that perform one-class classification. The left-most path in each relational
tree is a conjunction of predicates (clause), which can be used as a relational
feature. The splitting criteria is the squared error over the instances and the goal
is to minimize squared error in each node as shown in Eq. (6) and Eq. (7).



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 297

L =min

⎛
⎝ ∑

y∈xr

⎛
⎝I (o) − Ed (o /∈ class) −

∑
j:xj∈xl

εjωidisi (xj , o)

⎞
⎠

2

+
∑
y∈xl

⎛
⎝I (o) − Ed (o /∈ class) −

∑
j:xj∈xr

εjωidisi (xj , o)

⎞
⎠

2⎞
⎠

(6)

I (o) =
{

0, o is an labeled instance
1, otherwise

(7)

Here, xl and xr are the examples that take the left and right branch respec-
tively. A greedy search approach is employed for tree learning, thereby it is a
non-parametric approach.

Sequence Encoder. The input representations h0
i = xe

i + xp
i synthesize a

matrix H =
[
h0
1,h

0
2, · · ·h0

n

]T are fed into a block of L successive Transformer
encoders [23]. h0

i is the row vector, n is the number of elements. Then self-
attention use 3 linear transformations to get query (Q), key (K) and value (V )
as shown in Eq. (8).

⎧
⎨

⎩

Q = linearq(H) = H × WQ

K = lineark(H) = H × WK

V = linearv(H) = H × WV
(8)

The lineark, linearq and linearv are independent of each other, weights
WQ,WK ,WV are different and can be obtained by training. The scaled dot-
product attention (Q,K, V ) is calculated by Eq. (9).

Attention (Q,K, V ) = softmax
(
QKT

√
dk

)
V (9)

In Eq. (9), dk is the column numbers of the Q,K matrix, which is the vector
dimension. Equation (9) allows each element to attend to all elements in the
sequence. It can not only increase the training times of the low-shot objects, but
also transfer high resource knowledge to low or zero resource objects.

Multi-head attention allows the model to jointly attend to information from
different representation subspaces at different positions. With a single attention
head, averaging inhibits this, as shown in Eq. (10) and Eq. (11).

MultiHeadAttention (Q,K, V ) = Concat (head1, · · · , headh)WO (10)

headi = Attentioni

(
QWQ

i ,KWK
i , V WV

i

)
(11)

Where the projections are parameter matrices WQ
i ,WK

i ∈ R
d×dk , WV

i ∈
R

d×dv and WO ∈ R
hdv×d. h is parallel attention layers, dk = dv = d/h. d is

embedding dimension. Due to the reduced dimension of each head, the total



298 Z. Du

computational cost is similar to that of single-head attention with full dimen-
sionality.

In addition to attention sub-layers, each block contains a add-norm layer and
a fully connected position-wise feed-forward network, which is applied to each
position separately and identically. This consists of two linear transformations
with a ReLU activation in between, as shown in Eq. (12)–(14).

hl
i = LayerNorm

(
hl−1

i +
(
SubLayer

(
hl−1

i

)))
(12)

SubLayer
(
hl

i

)
=

{
MultiHeadAttention

(
hl

i

)

FeedForward
(
hl

i

) (13)

FeedForward
(
hl

i

)
= max(0,hl

iW1 + b1)W2 + b2 (14)

Here, l ∈ [1, L], i ∈ [1, n], hl
i is the hidden state of xi after the l-th layer. When

L-th block is finished, we will get the final hidden states hL
i .

Entity Prediction. According to Definition 4, our task is to predict ? in <
?, r, t> or <?, p, t> or <h, r, ?> or <h, p, ?>. According to the masked language
model(MLM) [29], the corresponding position of ? in the sequence is replaced by a
special token [MASK]. E.g. if predict h, x1 in the sequence needs to be replaced
with [MASK], as shown in Fig. 3. Here the masked and predicted entities are
only selected in the given triple or high-order triple. The final hidden state hL

1

or hL
n corresponding to [MASK] is obtain by Transformer [23] encoding. hL

1 or
hL

n cannot yet be used directly for prediction. It also needs to go through feed
forward and standard softmax classification, as shown in Eq. (15).

{
zL

i = Feedforward
(
hL

i

)
, i ∈ {1, n}

pi = softmax
(
EezL

i

)
, i ∈ {1, n} (15)

Here, Ee ∈ RV ×H3 is classification weight that shared with the input element
embedding matrix, V is entity vocabulary size, H is hidden state size and pi

is predicted distribution of xi over all entities. pi is equivalent to the scoring
function in the traditional KGC models. We compute the cross-entropy loss
with pi and label yi, i ∈ {1, n} as shown in Eq. (16).

L = −
∑

k

yk
i logpk

i , yk
i =

{
ε, target entity
1 − ε, others

(16)

Generally, rather than requiring one best answer, entity prediction empha-
sizes more on ranking a set of candidate entities [3,29]. So, yk

i is not a one-hot
label. yk

i and pk
i are the k-th component of yi and pi, i ∈ {1, n}. Where 1 − N

scoring in ConvE [4] may be a solution to improve the efficiency. It can fast
evaluation for link prediction tasks because it take one (e, r) pair and score it
against all entities o ∈ E simultaneously.

3 It is the only new parameters introduced during entity prediction fine-tuning.



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 299

Adversarial Learning. We introduce adversarial learning to further enhance
the high-resource objects transfer knowledge to related low-zero-resource objects.
The overview of adversarial procedure in Fig. 5. Wherein, the feature extractor
F , which encode the instance semantics into a vector to learn common fea-
tures adaptable from source to target object. The adversarial discriminator D is
trained to distinguish the source object from the target object, and adaptation
discriminator Da is trained to identify the unrelated source objects.

Fig. 5. The adversarial procedure for SEwA.

The feature extractor F adopt the method of Fig. 3. The hight and low-zero
resource objects adopt unshared feature extractors [22].

The essence of adversarial procedure is to minimize the loss of the label pre-
dictor of the source data while maximize the loss of the adaptation discriminator,
as shown in Eq. (17).

min
SEwA S
SEwA T

max
D

Lst =
∑

ps(x)logD (SEwA S (x)) +
∑

pt(x) (1 − log D (SEwA T (x)))

(17)

As mentioned before, only its related high-resource entities and relations can
really help low-resource objects. In other words, the unrelated high-resource
objects are nontransferable. So the source object weight function should be
inversely related to the adaptation discriminator Da [30], which learning by
the output of the optimal parameters of Da. For example Eq. (18).

w =
Da (SEwA T )

Da (SEwA T ) + Da (SEwA S)
= (18)

Where the optimal parameters of Da come from Eq. (19) and Eq. (20).

min
SEwA T

max
Da

La =
∑

ps(x)logDa (SEwA S (x)) +
∑

pt(x) (1− logDa (SEwA T (x))) (19)

Da (·) = p (y = ε |x ) (20)

Where x is the input from the source and the target object.



300 Z. Du

After adding the relevance weights to the source objects for the adversarial
discriminator Dw, the loss of Dw is is shouwn in Eq. (21) and Eq. (22).

min
SEwA T

max
Dw

Lw =
∑

ps(x)w logDw (SEwA S (x)) +
∑

pt(x) (1− logDw (SEwA T (x)))

(21)

Dw (x) =
wps(x)

wps(x) + pt(x)
(22)

4 Performance Evaluation

To demonstrate the effectiveness of SEwA, we will conduct experiments on 2
tasks: low resource link prediction and open-world KG completion. We use 3
evaluation metrics: (1) MRR mean reciprocal rank of correct entities or relations,
(2) Hit@k the proportion of valid entities or relations ranked in top-k predictions
and (3) MR mean rank of correct entities or relations. A higher MRR or Hit@k
or low MR is better. Low resource datasets WN11, FB13, Wiki, NELL [6,19,
27] and open-world datasets DB50k,DB500k [19], FB12K and FB20K [26] are
used as our datasets. FB12K is constructed according to [19] from FB15K. The
statistics of these data sets are listed in Table 1. Here, #Rel and #Ent represents
the number of relations and entities, respectively. #Train, #Valid and #Test
represents training, validation, and test datasets, respectively.

Table 1. Datasets used in our experiments

Dataset Low resource datasets Open-world datasets

WN11 FB13 Wiki NELL DB50k DB500k FB12K FB20K

#Rel 11 13 822 358 654 654 1,192 1,345

#Ent 38,551 75,043 4,838,244 68,545 49,900 517,475 13,456 19,923

#Train 110,361 316,232 4,859,240 360,239 32,388 3,102,677 360,239 494,328

#Valid 2,602 5,908 5,000,000 10,000 399 10,000 40,000 50,000

#Test 10,462 23,733 5,000,000 10,000 10,969 1,155,937 40,822 50,000

We also use a filtered setting, removing all corrupted triples appearing in
training, validation, or test dataset before getting the rank of each testing
triple4. Unlike rank of TransE, SEwA replace xi,i∈{1,n} with [MASK] and feed
the sequence into itself when given a test triple <h, r, t>. x1 and xn are sequence
representations of h and t, respectively. Then obtain the predicted distribution
of s over all entities. We sort the distribution probabilities in descending order
and get the rank of xi,i∈{1,n}. We use the following configuration for our SEwA:

4 Note: If a corrupted triple exists in the knowledge graph, it is also correct. It may
be ranked above the test triple, but this should not be counted as an error because
both triples are true.



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 301

the number of Transformer blocks L = 6, number of self-attention heads A = 4,
hidden size H = 256. The maximum input sequence length is K = 3 in triple
and K = 4 in path. All layers have dropout with the rate ρ ∈ {0.1, 0.5}. The
label value of target entity ε ∈ (0, 1] , steps = 0.05 . Learning rate of Adam [10]
η ∈ {

3e−4, 5e−4
}
. Batch size B ∈ {512, 4096} for at most 1000 epochs.

4.1 Low Resource Link Prediction

This section conduct 2 experiments. One is re-evaluating the link prediction
effects of various models on the low-resource datasets. Another is analyze the
impact of few-shot size K. The results are shown in Table 2 and Fig. 6.

Table 2. The results of link prediction on low resource datasets (%).

Model WN11 FB13 Wiki NELL

MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

TransE 9.7 16.9 25.3 33.4 30.5 46.4 13.7 22.3

ComplEx 10.8 17.3 25.7 33.6 31.6 43,2 11.2 15.3

ConvE 12.0 18.7 26.3 35.4 33.2 48.7 17.3 29.2

RotatE 10.1 17.1 25.5 33.5 30.7 46.6 13.9 22.6

TuckER 12.3 19.0 26.6 35.5 31.4 47.3 14.6 26.7

ConMask 12.4 18.8 26.5 35.7 36.3 49.2 35.7 43.5

KG-BERT 13.6 20.1 27.9 37.0 42.0 51.5 45.2 59.8

TransN 11.6 17.9 27.0 35.4 38.7 51.9 37.3 57.6

GMatching 12.9 18.8 27.3 36.3 38.7 51.9 37.3 57.6

LAN 13.2 19.0 27.6 36.9 40.1 52.3 39.6 58.7

PTransE 15.3 24.9 28.3 36.9 43.9 52.6 46.8 61.2

PaSKoGE 15.6 25.6 29.1 37.4 45.1 54.0 47.0 61.4

SEwA T 14.6 20.6 28.8 38.1 43.6 52.7 46.5 60.7

SEwA P 20.8 30.0 31.7 41.3 47.1 56.3 49.3 64.1

As we can see Table 2, SEwA P performs extremely well on 4 datasets, which
illustrates the correctness of our motivation and the effectiveness of our meth-
ods. Path-aided methods PTransE and PaSKoGE and our SEwA P are clearly
very dominant. This shows that the path has a greater effect on low resource
KGC than other features. In path-aided models, our SEwA P performs best,
and in purely triple-oriented models, our SEwA T is optimal. This shows that
the word sequence is more suitable for encoding KGs inherently link structure
and capturing words syntax and semantics characteristics. Looking closely, we
also find that almost all models have the highest accuracy on the NELL dataset,
followed by Wiki and FB13, and the worst on WN11. This is mainly due to the
different degree of few-shot of the datasets.

We further verify that the few-shot size K has an impact on KG completion.
To do so, we consider a link prediction task on the 4 datasets. Figure 6 reports



302 Z. Du

2 3 4 5 6 7
0.15

0.20

0.25

M
R

R

K

 SEwA_P
 PTransE WN11

2 3 4 5 6 7
0.20

0.25

0.30

0.35

0.40

M
R

R

K

 SEwA_P
 PTransE FB13

2 3 4 5 6 7
0.40

0.45

0.50

0.55

M
R

R

K

 SEwA_P
 PTransE Wiki

2 3 4 5 6 7
0.40

0.45

0.50

0.55

M
R

R

K

 SEwA_P
 PTransE NELL

Fig. 6. Impact of few-shot size K.

the performances of our model and path-aided models in 4 test datasets with
different settings of K. We reach the following conclusions according to the Fig. 6:
(1) With the increment of K, performances of all models increase. It indicates
that larger path set may produce better path embedding for the low resource
objects. (2) Our model consistently outperforms other path-aided models in
different K, demonstrating the stability of the proposed model for low resource
KG completion.

4.2 Open-World KG Completion

Zero-shot learning [19] and open-world knowledge graph completion [19] are
essentially the same. The tasks of open-world knowledge graph completion focus
on the situation when at least one entity in a test triple is out of KGs [19].
Datasets DB50k, DB500k [19], FB12K and FB20K [26] with new entities are
used here. The results as shown in Fig. 7.

53.1

55.3

57
57.6

58.4

61.5

E CM PT PS ST SP
51

54

57

60

63

H
its

@
10

Model

 DB50k

(%)

1683

639

574 563

596

531

E CM PT PS ST SP
500

550

600

650

1600

1700

M
ea

nR
an

k

Model

 DB50k

30.4

23.6

33.8 34.3 34.5

37.2

E CM PT PS ST SP
20

25

30

35

40

H
its

@
10

Model

 DB500k

(%)

1548

2069 1987

1340
1170

E CM PT PS ST SP
1000

1500

2000

5600

5800

6000

M
ea

nR
an

k

Model

 DB500k

63

67.5
65.7

70.1

75.3

78.5

E CM PT PS ST SP
55

60

65

70

75

80

H
its

@
10

Model

 FB12K

(%)
86

77 78

70
66

60

E CM PT PS ST SP
50

60

70

80

90

M
ea

nR
an

k

Model

 FB12K

30.3

34.5

36.8
37.9

39.6

43.8

E CM PT PS ST SP
25

30

35

40

45

H
its

@
10

Model

 FB20K

(%)
309

287

219

201

234

193

E CM PT PS ST SP
160

200

240

280

320

M
ea

nR
an

k

Model

 FB20K

Fig. 7. The results of link prediction on Open-world datasets.

In Fig. 7, the model names are abbreviated. E.g. E, CM, PT, PS, ST and SP
denotes TransE, ConMask, PTransE, PaSKoGE, SEwA T and SEwA P. From
the results shown in Fig. 7, we observe the following conclusions: (1) All models
have better predictions on dataset DB50k than on DB500k. This is probably



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 303

because the random sampling procedure used to create DB500k generates a
sparse graph. All knowledge graph completion models, which rely exclusively on
structural features, have a more difficult time with sub-sampled KGs. (2) our
SEwA T and SEwA P are significantly better than others, which shows that
the sequence embedding with multi-head attention and adversarial learning are
very beneficial to zero resource knowledge graph completion. (3) All models have
better predictions on dataset FB12K and FB20K than on DB50k and DB500k.
Mainly because of the following five aspects: a) They have more relation types
than DB50k and DB500k. There are also significant differences in the number of
attribute and relational entities. b) Link structures among entities are different.
c) Different relation types cover different number of triples, such as 1-to-1, 1-to-
n,n-to-1, n-to-n. d) Semantic differences between head and tail entities linked by
a relation. e) The occurrences of entities and relations are different.

5 Conclusions

The paper proposes a novel completion or embedding approach for low and
zero resource knowledge graph. It is a Sequence Embedding with Adversarial
learning approach (SEwA). The key differences between SEwA and previous
approaches are as follows: (1) It is a pre-training model with multi head self-
attention. (2) It introduces path and models triples and higher-order triples
as word sequences. (3) It turns knowledge graph completion into a sequence
prediction problem. (4) The path acquisition adopts a non-parametric learning
based on the one-class classification of the relation trees. (5) It optimizes zero
and low resources issues via adversarial learning. Finally, SEwA is evaluated
by low resource datasets and open world datasets, which shows our model can
both deal with zero resource and low resource problem well. We also found
some phenomena in the experiments. For example, although neighbors are not as
efficient as path for low-resource knowledge graph completion, they can still play
a role. Therefore, we will investigate the effectiveness of link structure beyond
edges and paths in the future.

References

1. Balazevic, I., Allen, C., Hospedales, T.M.: Tucker: tensor factorization for knowl-
edge graph completion. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7
November 2019, pp. 5184–5193 (2019)

2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1–2), 285–297 (1998)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held 5–8 December 2013, Lake Tahoe,
Nevada, USA, pp. 2787–2795 (2013)



304 Z. Du

4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowl-
edge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, USA (2018)

5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Burstein, J., Doran, C., Solorio,
T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and
Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019)

6. Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, pp. 318–327 (2015)

7. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language Processing,
ACL 2015, 26–31 July 2015, Beijing, China, Volume 1: Long Papers, pp. 687–696
(2015)

8. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse
transfer matrix. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, Phoenix, Arizona, USA, pp. 985–991 (2016)

9. Khot, T., Natarajan, S., Shavlik, J.W.: Relational one-class classification: A non-
parametric approach. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 27–31 July 2014, Québec City,
Québec, Canada, pp. 2453–2459. AAAI Press (2014)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

11. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for
representation learning of knowledge bases. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, pp. 705–714 (2015)

12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed-
dings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 25–30 January 2015, Austin, TX, USA, pp.
2181–2187 (2015)

13. Mehta, S., Rangwala, H., Ramakrishnan, N.: Low rank factorization for compact
multi-head self-attention. CoRR abs/1912.00835 (2019)

14. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding
model for knowledge base completion based on convolutional neural network. In:
Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT,
New Orleans, Louisiana, USA, 1–6 June 2018, Volume 2 (Short Papers), pp. 327–
333 (2018)

15. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, 12–17 February, 2016, Phoenix, Arizona, USA, pp. 1955–1961 (2016)

16. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models for
natural language processing: A survey. CoRR abs/2003.08271 (2020)



SEwA: A Method of Zero or Low Resource Knowledge Graph Completion 305

17. Reiter, R.: On closed world data bases. Logic and Data Bases. In: 1977 Symposium
on Logic and Data Bases, Centre d’études et de recherches de Toulouse, France,
pp. 55–76 (1977)

18. Shah, H., Villmow, J., Ulges, A., Schwanecke, U., Shafait, F.: An open-world exten-
sion to knowledge graph completion models. In: The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, 27 January – 1 February 2019, pp. 3044–3051 (2019)

19. Shi, B., Weninger, T.: Open-world knowledge graph completion. In: McIlraith,
S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February
2018, pp. 1957–1964. AAAI Press (2018)

20. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by rela-
tional rotation in complex space. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA (2019)

21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June
2016, pp. 2071–2080 (2016)

22. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2962–2971. IEEE
Computer Society (2017)

23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, pp. 5998–6008 (2017)

24. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation
for inductive knowledge graph embedding. In: The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
27 January – 1 February 2019, pp. 7152–7159 (2019)

25. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by trans-
lating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, Québec City, Québec, Canada, pp. 1112–1119 (2014)

26. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, Phoenix, USA, pp. 2659–2665 (2016)

27. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning
for knowledge graphs. In: Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Belgium, 31 October – 4 November
2018, pp. 1980–1990 (2018)

28. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. CoRR abs/1412.6575 (2014)

29. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion.
CoRR abs/1909.03193 (2019)



306 Z. Du

30. Zhang, J., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets
for partial domain adaptation. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp.
8156–8164. IEEE Computer Society (2018)

31. Zhang, N., Deng, S., Sun, Z., Chen, J., Zhang, W., Chen, H.: Relation adversarial
network for low resource knowledge graph completion. In: WWW 2020: The Web
Conference 2020, Taipei, Taiwan, pp. 1–12 (2020)



HMNet: Hybrid Matching Network
for Few-Shot Link Prediction

Shan Xiao1, Lei Duan1(B), Guicai Xie1, Renhao Li1, Zihao Chen1,
Geng Deng1, and Jyrki Nummenmaa2

1 School of Computer Science, Sichuan University, Chengdu, China
{shanxiao,guicaixie,lirenhao,chenzihao}@stu.scu.edu.cn,

leiduan@scu.edu.cn
2 Tampere University, Tampere, Finland

jyrki.nummenmaa@tuni.fi

Abstract. Knowledge graphs (KGs) are widely used in many real-world
applications, such as information retrieval, question answering system,
and personal recommendation. However, most KGs are suffering from
the incompleteness problem. To deal with the task of link prediction,
previous knowledge graph embedding methods require numerous refer-
ence instances for each relation. It is worth noting that most relations
in KGs have only a few reference instances available. Existing works for
few-shot link prediction evaluate the authenticity of triplets from a single
relation perspective. In this paper, we propose Hybrid Matching Network
(HMNet) for few-shot link prediction, evaluating triplets from entity and
relation two perspectives. At the entity-aware matching network, HMNet
uses attentive inductive embedding layer to aggregate entity features and
relation-aware topology, and then provides entity-aware score to imple-
ment first perspective evaluation. At the relation-aware matching net-
work, HMNet integrates feature attention mechanism to implement rela-
tion perspective evaluation. Experiments on two public datasets indicate
that HMNet achieves promising performance in few-shot link prediction.

Keywords: Few-shot link prediction · Hybrid matching network ·
Feature attention mechanism

1 Introduction

Knowledge graphs (KGs), collection of triplets (e.g., <head entity, relation, tail
entity>), have been widely used in a range of applications, such as question
answering [3], recommender system [29], and information retrieval [5]. A typical
large-scale KG, such as Freebase [1] or YAGO [18], contains billions of triplets.
However, they are suffering from the incompleteness problem [26]. For instance,
75% of person entities have no nationality information in Freebase [7]. As a

This work was supported in part by the National Natural Science Foundation of China
(61972268), the Sichuan Science and Technology Program (2020YFG0034), and the
Academy of Finland (327352).

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 307–322, 2021.
https://doi.org/10.1007/978-3-030-73194-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_21


308 S. Xiao et al.

Fig. 1. (a) The histogram of relation frequencies in NELL-One dataset; and (b) Illustra-
tion of an example of few-shot link prediction (Each edge denotes a reference instance).

result, it is hard to accurately answer questions like “How many users are from
the same country as Leonardo DiCaprio?”.

Clearly, it is time-consuming and labor intensive to deal with all incomplete
triplets manually. Thus automatically completing a knowledge graph, which is
also called link prediction, has become an important research task. There are
some studies [2,6,15,16,20,27] that have been proposed to predict missing val-
ues in incomplete triplets based on existing knowledge. The main idea of these
methods is consummating incomplete triplets via low-dimensional representa-
tions of entities and relations. However, the precondition of these methods solv-
ing the incompleteness problem is that each relation contains numerous reference
instances.

It is worth noting that the relation frequency in many KGs always shows a
long-tail distribution, as shown in Fig. 1(a). That is, a large portion of relations
have only a few reference instances [26]. The automatic completion of knowledge
graph under long-tail distribution is called few-shot link prediction task. In this
task, only a few reference instances are available for each relation. To better
understand the task, an example is shown in Fig. 1(b).

Example 1. In an existing KG, we need to perform link prediction on relation
“ActedBy”, that is, predicting tail entity from the candidate set given head entity
“Titanic” and relation “ActedBy”. Different from other relations, “ActedBy” has
only 5 reference instances. Therefore, there is a little information available for
it. Few-shot link prediction task focuses on these less informativeness relations.

There are some few-shot learning studies [4,26,28] for the above task. Specif-
ically, these methods first construct query triplets by splicing all candidate tail
entities with the given head entity, and then learn embeddings of query triplets
and representation of the relation of reference set. Finally, they match each query
triplet with the reference set to get a score. The goal is to make true triplets rank
high. Obviously, for each query triplet, these methods evaluate its authenticity
from a single relation perspective. In addition, most of existing works calculate



HMNet: Hybrid Matching Network for Few-Shot Link Prediction 309

the score for each triplet by applying dot product under the assumption that
all features of the relation contribute equally. Although these methods achieve
encouraging improvements, the performance remains unsatisfactory.

In this paper, we propose a novel model Hybrid Matching Network (HMNet)
for few-shot link prediction. It consists of an entity-aware matching network
and a relation-aware matching network. HMNet can evaluate the authenticity of
triplets from two perspectives:

– Entity perspective: The entity-aware matching network obtains the entity-
aware scores between different candidates and reference instances as the first
perspective evaluation.

– Relation perspective: The relation-aware matching network obtains the
relation-aware scores as the second perspective. It simultaneously weights
different features of relation with unequal contributions when calculating the
score.

The final prediction result of each triplet is acquired by combining these two
matching scores.

The contributions of this work are summarized as follows:

– designing a novel model HMNet, which employs hybrid matching and inte-
grates attention mechanism for few-shot link prediction.

– pointing out the importance of entity-aware matching, and providing an extra
perspective evaluation.

– evaluating HMNet model on two public datasets. Empirical results prove the
effectiveness of our proposed model HMNet over many competitive baselines.

The rest of the paper is organized as follows. We review related work in
Sect. 2, and formulate the problem of few-shot link prediction in Sect. 3. In
Sect. 4, we discuss the critical techniques of the proposed model HMNet. We
report a systematic empirical evaluation in Sect. 5, and conclude the paper in
Sect. 6.

2 Related Work

Our work is related to the existing research on knowledge graph embedding and
few-shot learning. We introduce the related work briefly below.

2.1 Knowledge Graph Embedding

To consummate incomplete triplets in KGs, it is vital to obtain embeddings of
entities and relations in the continuous low-dimensional space. Existing knowl-
edge graph embedding models can be divided into two main categories: distance
based models and bilinear based models.

Aiming to translate distance between entity pairs, Bordes et al. [2] first
proposed a translational distance based method TransE. It can obtain low-
dimensional embeddings by optimizing the distance function between triplets



310 S. Xiao et al.

of the relational semantic. After that, in order to break through the limitation
of TransE in dealing with complex relations, several models have been proposed,
such as TransH (Wang et al. [24]) and TransR (Lin et al. [13]). Focused on ten-
sor decomposition, Nickel et al. [15] firstly designed a bilinear model RESCAL,
which can obtain relation embeddings by modeling the potential structure of
KGs. Later, DistMult proposed by Yang et al. [27] simplifies RESCAL by limit-
ing the relational matrix to the diagonal matrix. ComplEx introduced by Trouil-
lon et al. [20] extends DistMult into the complex space to better model reversible
relations in KGs.

The performance of above methods strongly relies on numerous reference
instances. In practical applications, these methods fail to achieve their expected
performance, due to the relation frequency in real datasets often has a long-tail
distribution.

2.2 Few-Shot Learning

Few-shot learning enables models to achieve impressive results with insuffi-
cient data. Existing approaches include learning a metric space over input fea-
tures [12,17,21,26], such that similar instances are close together while dissim-
ilar can be more easily differentiated. Recently, meta-learning is proposed to
solve few-shot learning problem. Specially, the meta-learner gradually learns
generic information (meta-knowledge) across tasks, and task-learner generalizes
to the new task based on meta-knowledge and specific information of the new
task [8,14,23]. Although few-shot learning has developed fast in recent years, it
mainly focus on computer vision applications and text classification.

To the best of our knowledge, the work proposed by Xiong et al. [26] is
the first research on few-shot link prediction. It’s a metric based model called
GMatching, which includes two components: neighbor encoder and matching
processor. The neighbor encoder uses entities’ one-hop neighbors to obtain their
embeddings. And then each relation representation is obtained by concatenat-
ing the embeddings of the head entity and tail entity. The matching proces-
sor matches each query instance with the reference set. Following the work of
GMatching [26], Zhang et al. [28] proposed a relation-aware heterogeneous neigh-
bor encoder based on the attention mechanism to learn entity embedding, and
used recurrent auto-encoder to aggregate information from reference instances.
Chen et al. [4] employed the relation-specific meta information transferring from
the reference set to query set and proposed the MetaR model.

Previous methods solve the few-shot link prediction task only considering
the relation perspective evaluation. This work is attempting to design a new
framework that can evaluate the authenticity of triplets from two perspectives
by leveraging valuable semantic information provided by the reference set.

3 Problem Definition

We start with some preliminaries. Let E and R be the sets of entities and rela-
tions, respectively. A knowledge graph is viewed as a graph G = {(h, r, t)} ⊆



HMNet: Hybrid Matching Network for Few-Shot Link Prediction 311

E × R × E , where h ∈ E and t ∈ E represent the head entity and tail entity,
respectively, and r ∈ R denotes a specific relation connecting h and t. The goal
of link prediction is to predict the missing values in incomplete triplets when
two elements are given. In this study, we focus on predicting the tail entity given
the head entity and query relation.

Under the few-shot learning setting, the model can be optimized on the set
of training tasks Ttrain = {Ti}M

i=1 and its generalization can be evaluated on the
set of test tasks Ttest = {Tj}N

j=1. Each task Ti =
{
Dref ,Dquery

}
corresponds

to a few-shot learning task with reference set Dref and query set Dquery. Each
task Tj ∈ Ttest is similar to Ti. According to the reference instances, the model
needs to make prediction for instances in the query set. It should be noted that
all tasks in testing are invisible in training, that is, Ttrain ∩ Ttest = ∅.

Definition 1 (Few-shot link prediction). Few-shot link prediction is defined
as a task to predict the true tail entity tj of the missing triplet (hj , r, ?), given
the reference set Dref

r = {(hi, ti) | (hi, r, ti) ∈ G} of relation r. K = |Dref
r | rep-

resents the number of triplets in reference set, which is a small number. The
set of all instances to be predicted of relation r is the query set Dquery

r ={
(hj , cj)|cj ∈ Chj ,r

}
, where Chj ,r is candidate tail entities set for a given head

entity hj and relation r (Chj ,r including the true tail entity tj).

In the few-shot link prediction task, R1 and R2 are sets of relations involved
in training and testing, respectively, and R1∩R2 = ∅. Each task corresponds to
a relation r ∈ R1 ∪ R2. Following the standard problem definition of work [26],
we assume that the method to solve the task can access a background graph G′,
where G′ = {(h, r, t)|(h, r, t) ∈ G ∧ r ∈ R \ (R1 ∪ R2)} .

4 The Design of HMNet

In this section, we present the details of HMNet. Figure 2 shows the frame-
work of HMNet, which includes two components: entity-aware matching network
and relation-aware matching network. Different from previous studies that focus
on single relation perspective evaluation, HMNet can evaluate the authentic-
ity of triplets from two perspectives. In Sect. 4.1, we describe the mechanism of
entity-aware matching network. Relation-aware matching network for evaluation
is described in Sect. 4.2.

4.1 Entity-Aware Matching Network

The objective of entity-aware matching network is to evaluate triplets from entity
perspective. Specifically, it assigns high scores for true tail entities of triplets
with tail entities’ information in the reference set. This component consists of
following two modules: attentive inductive embedding layer and entity-aware
score.



312 S. Xiao et al.

Fig. 2. Illustration of the proposed HMNet model.

Attentive Inductive Embedding Layer (AI Embed Layer). Low dimen-
sional representations of nodes in the network have been proved useful in a
variety of graph analysis tasks [10]. Existing works show that it is beneficial
to use the relation-aware topology of an entity for link prediction task [26,30].
In addition, attention mechanism is widely used in recent deep learning studies
[25,28]. Different from existing few-shot link prediction works [26,28] only mod-
eling the relation-aware topology explicitly, HMNet employs AI Embed Layer
to obtain entity embedding. Since it simultaneously captures the relation-aware
topology and entity features, AI Embed Layer retains the advantages of previous
methods and fully aggregates the information provided by reference set.

Specifically, for any entity e, the set of link information with head entity e in
G′ denotes as Ie = {(r, t)|(e, r, t) ∈ G′}. Hence, entity e is assigned relation-aware
topology embedding as follows,

Fe = σ(
∑

(r,t)∈Ie

a(r,t)(W1[vr ⊕ vt]))

a(r,t) =
exp(P(W1[vr ⊕ vt]))∑

(r′,t′)∈Ie
exp(P(W1[vr′ ⊕ vt′ ]))

(1)

where ⊕ represents concatenation operation, vr ∈ R
d and vt ∈ R

d are pre-
trained embeddings of the relation r and tail entity t, respectively. d is the
embedding size. σ represents the Tanh activation function, and a(r,t) indicates
the weight of link information (r, t) when representing the entity e. P ∈ R

1×d

and W1 ∈ R
d×2d are trainable weight matrices.

Aggregating features of entity e with its relation-aware topology representa-
tion has been widely used in many tasks and achieves good performance [22,30].
In order to make full use of the information of reference set, AI Embed Layer
further combines them to get the entity embedding of e: ωe = W2ve + Fe,



HMNet: Hybrid Matching Network for Few-Shot Link Prediction 313

where ve is the pre-trained embedding of e and W2 ∈ R
d×d is a trainable weight

matrix.

Entity-Aware Score. The problem we tackle is that given a head entity and
a relation, we need to predict the tail entity. According to the information of
tail entities in the reference set, for each query instance (h′, t′), we can calculate
the entity-aware score to implement the first perspective evaluation. First, by
applying the AI Embed Layer to each tail entity t from Dref

r and (h′, t′), HMNet
gets the representation ωt of t. Then, HMNet summarizes output features of tail
entities in the reference set Dref

r as follows,

Eref =
1
K

∑K

i=1
ωti (2)

where ti ∈
{
t|(h, t) ∈ Dref

r

}
. Finally, HMNet calculates the entity-aware score

for (h′, t′). Without loss of generality, HMNet employs the following way to
calculate entity-aware score,

scoree−aware = Eref � ωt′ (3)

where � represents dot product.

4.2 Relation-Aware Matching Network

To implement the relation perspective evaluation, we design a relation-aware
matching network. In this section, we start by describing how to get the embed-
ding of corresponding relation based on reference set. And then we discuss how
to select more discriminative features to achieve more appropriate relation per-
spective evaluation.

Relation Encoder. HMNet assumes that each query instance expresses a spe-
cial relation, and then measures whether this relation is similar to the relation
expressed by reference set. HMNet employs the multilayer perceptron to encoder
entity pairs. It can obtain the relation embedding represented by entity pair (h, t)
as follows,

er←(h,t) = Wr(W[ωh ⊕ ωt]) + [ωh ⊕ ωt] (4)

where ωh and ωt are embeddings of the head entity and tail entity, respectively,
obtained by applying AI Embed Layer to h and t. Wr ∈ R

2d×4d and W ∈ R
4d×2d

are trainable weight matrices.
If the relation representation of each instance in Dref

r is far away from each
other, the resulting prototype vector of relation cannot capture common and
representative features. Here, we employ a network to perform information prop-
agation between reference instances, so that reference instances are closer in the
metric space. LSTM network [11] has achieved good performance in the NLP
field based on the long-distance information memory characteristic. But it can



314 S. Xiao et al.

Fig. 3. The architecture of feature attention module.

only achieve unidirectional information propagation. Therefore, HMNet uses the
BiLSTM network to implement bidirectional information propagation.

Given relation representations of reference instances, calculated by Eq. 4,
BiLSTM performs information propagation on them to obtain the new rela-
tion representation sr(hi, ti) for each reference instance (hi, ti): sr(hi, ti) =
BiLSTM(er←(hi,ti)).

Relation-Aware Score. The works by Xiong et al. [26] and Zhang et al. [28]
use dot product to calculate the score for each query instance. These methods
believe that all features of relation contribute equally. However, when few-shot
reference instances are used to represent the corresponding relation, the obtained
information is limited and may contain noise information. It is hard to accurately
capture all unique features of the relation. Therefore, we should pay more atten-
tion to discriminative features. HMNet is required to measure the importance of
captured features when calculating score under the few-shot setting.

Since there are only a few reference instances for each relation, it is diffi-
cult to extract important features using feature engineering algorithms. Inspired
by the work of [9] on text classification, HMNet uses a feature attention mod-
ule to measure the importance of relation features, which enhances generality
applicability of the model.

The feature attention module uses the convolution operation to iteratively
update feature weights. The relation representation of each instance in the refer-
ence set is combined to form a matrix sK

r ∈ R
K×2d. Figure 3 shows the module

framework.
In order to aggregate the information of reference set when measuring the

importance of each feature, the size of all convolution kernels of this module is
set to K × 1. More specific steps are as follows:

Step 1: HMNet uses 16 convolution kernels to perform convolution operation on
sK

r , and sets stride to 1× 1. It pads the bias to participate in the calculation.
The output HK

r ∈ R
16×K×2d can be obtained.

Step 2: HMNet uses 32 convolution kernels to perform convolution operation
again. Channels are 16, other settings are the same as previous step. The
output is HK

r ∈ R
32×K×2d.



HMNet: Hybrid Matching Network for Few-Shot Link Prediction 315

Step 3: A convolution kernel with 32 channels is used, and stride is set to K ×1
to obtain feature attention weight OK

r ∈ R
1×1×2d for relation matching.

Algorithm 1. HMNet
Input: Training task set Ttrain; Background graph G′; The number of training steps

Nstep; Learning rate α; Margin distance γ; Hyperparameter β
Output: θ: Learning parameters of HMNet
1: Load the pre-trained embeddings;
2: Initialize θ;
3: for i = 1 → Nstep do
4: Shuffle the tasks in Ttrain;
5: for each task Tr in Ttrain do
6: Sample reference set Dref

r and positive query instances set Qr from Tr;
7: Construct negative query instances set Q−

r by replacing tail entities of Qr;
8: Compute the matching score for each triplet in Qr ∪ Q−

r using Eq.6;
9: Compute the loss L using Eq. 7;

10: θ ← Adam(∇θL, θ, α, β);
11: end for
12: end for
13: return θ;

After applying the relation encoder module, we obtain the relation represen-
tation of each reference instance in a metric space. Taking these representations
as input of the feature attention module, HMNet gets feature attention weights.
Like the tail entity information aggregation, HMNet uses the average of repre-
sentations of reference instances to get the prototype representation of relation r:
cr = 1

K

∑K
i=1 sr(hi, ti). Then HMNet reduces the dimensionality of the feature

attention weights, so that OK
r ∈ R

1×1×2d → OK
r ∈ R

2d. For each query instance
(h′, t′), HMNet uses OK

r to calculate the final relation-aware score:

scorer−aware = OK
r � (cr ⊗ er←(h′,t′)) (5)

where ⊗ denotes elements wise multiplication, and er←(h′,t′) represents the rela-
tion embedding between h′ and t′ which is calculated by Eq. 4.

For a query instance (h′, t′), the final score is:

Score = scorer−aware + β · scoree−aware (6)

where β is the hyperparameter indicating the weight of entity perspective eval-
uation.

4.3 Learning Objective and Algorithm

Given the background graph G′, and reference set Dref
r of relation r, we aim to

select the true tail entity tj from the candidate set for each hj . Based on this
learning objective, we rewrite the loss function following the definition of [28],

Lθ =
∑

r∈R1

∑

(hj ,tj)∈Qr

∑

(hj ,t−
j )∈Q−

r

[γ − Score(hj ,tj) + Score(hj ,t−
j )]+ (7)



316 S. Xiao et al.

where Qr = {(hj , tj)|(hj , r, tj) ∈ G} is the set of positive query instances of
relation r, Q−

r =
{
(hj , t

−
j )|(hj , r, t

−
j ) /∈ G

}
is the set of negative query instances

of relation r, which is constructed by replacing tail entities of positive instances.
Lθ is standard hinge loss, and γ is margin distance.

Based on the discussions above, we present the pseudo-code of HMNet in
Algorithm 1.

5 Experiments

We evaluate the performance of HMNet on two public datasets. All experiments
are conducted on a server with an RTX2080 Ti and 11 GB memory. The model
HMNet is implemented by Python 3.6 based on Pytorch 1.5.1.

5.1 Experimental Setup

Datasets: 1) NELL-One1 consists of 181,109 triplets, 68,545 entities, and 358
relations. 2) Wiki-One, which is a subset of Wikidata2, consists of 5,829,240
triplets, 4,838,244 entities, and 822 relations. Following the experimental set-
tings of work [26], we select relations with less than 500 but more than 50
triplets as few-shot link prediction tasks. Table 1 shows the statistics of two
datasets (#Training/Validation/Test denotes the number of relations for train-
ing/validation/testing).

Table 1. Statistics of the datasets.

Dataset #Entities #Relations #Triplets #Training/Validation/Test

NELL-One 68,545 358 181,109 51/5/11

Wiki-One 4,838,244 822 5,829,240 133/16/34

Baselines: In our experiments, several related methods are selected as baselines.

– Knowledge graph embedding methods. Knowledge graph embedding
methods map relations and entities into continuous low-dimensional space.
TransE [2] is a translational distance based method which defines the score
function as fr(h, t) = −‖h + r − t‖1/2. RESCAL [15] is a bilinear based
method. This method represents each relation as a full rank matrix Mr.
DistMult [27] uses a bilinear score function to compute scores of knowledge
triplets. ComplEx [20] extends DistMult to the complex space instead of
real-valued ones.

1 http://rtw.ml.cmu.edu/rtw/.
2 https://test.wikidata.org.

http://rtw.ml.cmu.edu/rtw/
https://test.wikidata.org


HMNet: Hybrid Matching Network for Few-Shot Link Prediction 317

– Few-shot learning methods. These models use a background graph G′

to get the pre-trained embeddings of entities and learn a representation
of relation. Then they adopt different score functions to get the ranking.
GMatching [26] tackles the problem by enhancing the representation of
entity and learning a relation metric space. MetaR [4] proposes relation-
meta and gradient-meta two kinds of relation-specific meta information to
solve this problem. FSRL [28] extends GMatching [26], from one-shot link
prediction to few-shot link prediction.

Evaluation Metrics: Two metrics Hits@k and MRR are applied to evaluate
the performance of the proposed model. Hits@k is the proportion of the correct
tail entities in the top-k of all candidate entities. MRR (Mean Reciprocal Rank)
is the average of all correct tail entities reciprocal ranking.

Implementation Details: For TransE, ComplEx, and DistMult, the imple-
mentation3 released by Sun et al. [19] is adopted in our experiments. For
RESCAL, we implement it by ourselves. For the above knowledge graph embed-
ding methods, all the triplets from G′ and training set are utilized for training.
In addition, for each relation, K triplets from validation and test sets are chosen
for training. In iterative training, only one negative sample is constructed for
each true triplet in the batch task by replacing tail entity. Following GMatch-
ing [26], the embedding dimension is set to 100 and 50 for NELL-One and Wiki-
One datasets, respectively. The maximum number of neighbors is set to 50 and
margin distance is set to 5 for two datasets. The pre-trained embedding is set
to ComplEx for all models. During the training procedure, HMNet uses Adam
with the initial learning rate as 0.0001 to update parameters. The size of the
hidden layer in the BiLSTM structure is set to 2d, where d is the embedding
dimension of datasets. The β is set to 0.5 for both datasets. All learning param-
eters are randomly initialized. For GMatching, we employ max/mean pooling
(denoted as MaxP/MeanP) to obtain the prototype vector of the relation in ref-
erence set. Following FSRL [28], the maximum score between a query instance
and K instances in the reference set is also considered as the final ranking score
of this query instance (denoted as Max). For MetaR, we use pre-trained mode
to maintain a consistent experimental environment. The results reported in the
paper [28] are under the setting where the maximum size of the candidate set is
1000. Here, entities that satisfy type constraints [26] are added to the candidate
set, where all candidates are considered in our work. In the absence of specific
knowledge to choose otherwise, K is set to 5.

5.2 Results

The performance comparison results on two datasets are presented in Table 2,
where the best results are shown in bold. We have following observations:

3 https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding


318 S. Xiao et al.

Table 2. Link prediction results on two datasets. Results with * are reported in [26].

Model NELL-One Wiki-One

MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

TransE [2] .131 .220 .182 .081 .144 .204 .172 .108

RESCAL [15] .033 .055 .038 .019 .060 .112 .081 .029

DistMult [27] .051 .134 .081 .010 .027 .058 .035 .010

ComplEx* [20] .200 .325 .269 .133 .033 .066 .046 .015

GMatching (MaxP) [26] .189 .301 .225 .136 .134 .287 .181 .066

GMatching* (MeanP) [26] .201 .311 .264 .143 .242 .419 .318 .163

GMatching (Max) [26] .190 .305 .247 .123 .125 .251 .167 .065

MetaR [4] .164 .320 .252 .083 .220 .347 .287 .158

FSRL [28] .184 .341 .248 .105 .126 .242 .154 .068

HMNet .209 .364 .296 .129 .294 .423 .353 .230

– HMNet yields the best performance under most evaluation metrics. Taking
Hits@10 and MRR as examples, HMNet improves over the strongest baselines
w.r.t. Hits@10 by 6.74% in NELL-One and w.r.t. MRR by 21.48% in Wiki-
One, respectively. In particular, HMNet yields 41.1% higher performance
w.r.t. Hits@1 than GMatching on Wiki-One. This verifies the significance
of entity perspective evaluation. Moreover, compared with the fixed weights
used in the other three few-shot learning methods, HMNet verifies the effec-
tiveness of the feature attention mechanism.

– It can be seen that graph embedding methods work poorly on relations that
have only a few triplets to train. It demonstrates the limitations of previous
graph embedding methods for few-shot link prediction.

5.3 Further Analysis

Impact of Few-Shot Size: We conduct experiments to analyze the impact
of few-shot size settings with K ∈ {3, 4, 5, 6}. The test results on NELL-One of
different methods measured using Hits@k and MRR are shown in Fig. 4. HMNet
outperforms other baseline methods on most evaluation metrics in different few-
shot size settings, indicating its stability on few-shot link prediction. In addi-
tion, the performance of most methods does not improve with the few-shot size
increasing in this experimental setting. The reason may be that unrepresentative
instances are added to the reference set, which are far away from the prototype
representation of the relation.

Impact of Embedding Methods: To observe the impact of different embed-
ding methods for relation representation, we compare the performance between
our model HMNet and the latest method FSRL [28]. Figure 5 shows the results
of HMNet and FSRL on NELL-One dataset. We can see that FSRL obtains the
best performance when using ComplEx as the embedding method. Compared
with FSRL, HMNet achieves better performance in four different embedding
method settings. It further indicates the superior performance of our model in
terms of few-shot link prediction in KGs.



HMNet: Hybrid Matching Network for Few-Shot Link Prediction 319

Fig. 4. Impact of few-shot size.

Table 3. Impact of hyperparameter β.

Hyperparameter β MRR Hits@10 Hits@5 Hits@1

0.2 .184 .325 .242 .112

0.5 .209 .364 .296 .129

1.0 .184 .356 .233 .111

On Parameter Selection for HMNet: We investigate the impact of different
entity-aware score weights β on the few-shot link prediction performance. We
conduct the experiment with hyperparameter β ∈ {0.2, 0.5, 1.0} while other
factors are fixed. The results on NELL-One are reported in Table 3 with the best
results bold. HMNet reaches the best performance with β = 0.5. Moreover, the
performance of our model first improves and then declines when β increases. The
reason is that the entities matching can provide a valuable evaluation indicator.
However, when β is larger than 0.5, it greatly reduces the influence of relation
perspective evaluation which harms the hybrid matching performance.



320 S. Xiao et al.

Fig. 5. Impact of embedding methods.

5.4 Ablation Study

HMNet consists of two components, and each component contains different mod-
ules. To get deep insight into HMNet, we analyze the contribution of each
module. Specifically, we remove the entity-aware score module and only keep
the AI Embed Layer (denoted as HMNetw/oEntityMatching). For the relation
encoder module, we remove the BiLSTM network and only keep the multi-
layer perceptron to get the representation of relation of each instance (denoted
as HMNetw/oBiLSTM). To explore the impact of score function selection, we
remove the feature attention module (denoted as HMNetw/oCNN). The parame-
ters follow the above settings, and the results on NELL-One dataset are reported
in Table 4 with the best results bold. Several observations from these results are
worth noting:

– The best results of most evaluation metrics on the NELL-One dataset are
obtained by complete HMNet.

– Removing the entity-aware score or CNN from the complete model causes
the most significant performance drop on all evaluation metrics, showing the
crucial role of entity perspective evaluation and the feature attention module
in general.

– Removing the BiLSTM causes performance drop on some evaluation met-
rics but not all. All the components of HMNet together lead to the robust
performance of our approach.



HMNet: Hybrid Matching Network for Few-Shot Link Prediction 321

Table 4. Results of ablation study on NELL-One.

Model MRR Hits@10 Hits@5 Hits@1

HMNetw/oEntityMatching .189 .326 .256 .119

HMNetw/oBiLSTM .205 .352 .277 .134

HMNetw/oCNN .193 .348 .263 .120

HMNet .209 .364 .296 .129

6 Conclusion

In this paper, we propose a novel few-shot link prediction model, named HMNet.
HMNet with entity-aware matching network and relation-aware matching net-
work can evaluate the authenticity of triplets from two different perspectives.
The comprehensive results on two public datasets indicate that HMNet can
obtain more superior performance than state-of-the-art baseline methods. With
in-depth analysis and ablation empirical evidence, we show the effectiveness and
importance of each module of the HMNet model.

In the future, we will study the impact of different entity feature aggregation
methods on experimental performance. Furthermore, we plan to integrate extra
information (e.g., text information) to improve performance.

References

1. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD,
pp. 1247–1250 (2008)

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

3. Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly super-
vised embedding models. In: ECML-PKDD, pp. 165–180 (2014)

4. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning for
few-shot link prediction in knowledge graphs. In: EMNLP-IJCNLP, pp. 4216–4225
(2019)

5. Dalton, J., Dietz, L., Allan, J.: Entity query feature expansion using knowledge
base links. In: SIGIR, pp. 365–374 (2014)

6. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: AAAI, pp. 1811–1818 (2018)

7. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: SIGKDD, pp. 601–610 (2014)

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML, pp. 1126–1135 (2017)

9. Gao, T., Han, X., Liu, Z., Sun, M.: Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In: AAAI, pp. 6407–6414 (2019)

10. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1024–1034 (2017)



322 S. Xiao et al.

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML (2015)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

14. Munkhdalai, T., Yu, H.: Meta networks. In: ICML, pp. 2554–2563 (2017)
15. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on

multi-relational data. In: ICML, pp. 809–816 (2011)
16. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,

M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

17. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In:
NIPS, pp. 4077–4087 (2017)

18. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW, pp. 697–706 (2007)

19. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by rela-
tional rotation in complex space. In: ICLR (2019)

20. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

21. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: NIPS, pp. 3630–3638 (2016)

22. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention
network for recommendation. In: KDD, pp. 950–958 (2019)

23. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a
survey on few-shot learning. ACM Comput. Surv. 53(3), 63:1–63:34 (2020)

24. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

25. Xie, Y., Xiong, Y., Zhu, Y.: SAST-GNN: a self-attention based spatio-temporal
graph neural network for traffic prediction. In: DASFAA, pp. 707–714 (2020)

26. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning
for knowledge graphs. In: EMNLP, pp. 1980–1990 (2018)

27. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (2015)

28. Zhang, C., Yao, H., Huang, C., Jiang, M., Li, Z., Chawla, N.V.: Few-shot knowledge
graph completion. In: AAAI, pp. 3041–3048 (2020)

29. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.: Collaborative knowledge base
embedding for recommender systems. In: SIGKDD, pp. 353–362 (2016)

30. Zhang, Z., Zhuang, F., Zhu, H., Shi, Z., Xiong, H., He, Q.: Relational graph neural
network with hierarchical attention for knowledge graph completion. In: AAAI,
pp. 9612–9619 (2020)

https://doi.org/10.1007/978-3-319-93417-4_38


OntoCSM: Ontology-Aware
Characteristic Set Merging for RDF

Type Discovery

Pengkai Liu, Shunting Cai, Baozhu Liu, and Xin Wang(B)

College of Intelligence and Computing, Tianjin University, Tianjin, China
{liupengkai,caishunting,liubaozhu,wangx}@tju.edu.cn

Abstract. With the growing popularity and application of knowledge-
based artificial intelligence, the scale of knowledge graph data is dra-
matically increasing. The RDF, as one of the mainstream models of
knowledge graphs, is widely used to describe the characteristics of Web
resources due to its simplicity and flexibility. However, RDF datasets
are usually incomplete (without rdf:type information) and noisy, which
hinders downstream tasks. RDF entities can be characterized by their
characteristic sets that is the sets of predicates of the RDF entities. Since
untyped entities can be assigned to closest types by merging characteris-
tic sets, optimally merging characteristic sets has become a crucial issue.
In this paper, aiming at the Optimal Characteristic Set Merge Problem
(OCSMP), we propose an Ontology-Aware Characteristic Set Merging
algorithm, called OntoCSM, which extracts an ontology hierarchy using
RDF characteristic sets and guides the merging process by optimizing
the objective function. Extensive experiments on various datasets show
that the efficiency of OntoCSM is generally higher than that of the state-
of-the-art algorithms and can be improved by orders of magnitude in the
best case. The accuracy and scalability of our method have been verified,
which shows that OntoCSM can reach competitive results to the existing
algorithms while being ontology-aware.

Keywords: RDF data · Ontology-aware · Type discovery

1 Introduction

With the rapid development of artificial intelligence, knowlege graphs have been
widely used in many fields. In the Semantic Web community, the Resource
Description Framework (RDF) [1] is a model for representing Web resources,
which has become a standard format for knowledge graphs and has been exten-
sively applied. However, as the data volume increasing, due to the flexible struc-
ture of RDF and fewer constraints on instances, some RDF datasets often contain
incomplete or noisy data, especially the RDF type information, which makes rea-
soning tasks more difficult and inconvenience for type-based storage and query

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 323–339, 2021.
https://doi.org/10.1007/978-3-030-73194-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_22


324 P. Liu et al.

processing. Thus, specifying types for untyped entities in the dataset has become
an essential problem for effective RDF knowledge graph data management.

To group entities with identical or similar types and solve the various prob-
lems caused by untyped entities, various methods have been proposed. Among
the existing RDF type discovery methods, statistical methods [2–5] divide enti-
ties into different clusters according to the similarity between them, however,
these methods suffer from scalability issues and rarely consider the hierarchical
relationships between the entities in RDF datasets [6]. Some reasoning-based
approaches [7,8] apply inference rules to make implicit facts explicit to obtain
the type information of the entity. However, only those facts strictly abided by
logic rules can be inferred, which makes reasoning-based approaches not suit-
able for type discovery task on datasets with erroneous or conflicting statements.
Additionally, some works [9,10] use machine learning methods to classify data
whose type information is partially available, but they require labeled datasets
and cannot deal with completely untyped data. Related to the work of this paper,
the predicates and objects of RDF entities have been utilized in some research
works to obtain the schema information of the knowledge graph. In [11], the
proposed approach processes the RDF dataset by grouping the properties of the
entities according to the similarity of their subjects or/and objects.

The set of predicates of each entity, refered to as the characteristic set [12], can
be used to represent the features of the entity, as shown in Fig. 1. By constructing
the hierarchical structure between characteristic sets, the type of untyped entities
can be specified by defining the distance between the entity characteristic sets and
merging them into the closest entity set of the known-type. Entities can be clas-
sified into the same cluster when they have the same characteristic set or the dis-
tance between their characteristic sets is less than a threshold. To this end, we pro-
pose an Ontology-aware Characteristic Set Merging algorithm, named OntoCSM.
Moreover, OntoCSM relaxes the constraints for prior type information on RDF
datasets, significantly broadening the applicability of the proposed method.

s1

s3

s2

actIn

actIn

"Hannah Quinlivan"

"Dwayne Douglas Johnson"

"Skyscraper"

Actor

Movie

rdf:type

1993-08-12

1972-05-02

name rdf:type

birthdatename

name birthdate

s4

"Rawson Marshall Thurber"

Director

name
1975-02-09birthdate

rdf:type

s5

direct

direct

"Beau Flynn"
name

"301 million$"

boxOfficeIncome

Untype s3 name, birthdate, actIn

Director s4 name, birthdate, direct

Untype s5 name,  direct

Movie s2 name, boxOfficeIncome

Actor s1 name, birthdate, actIn

Type Entity Characteristic Set

Fig. 1. An example of RDF graph and its corresponding characteristic sets

Our contributions in this paper can be summarized as follows:

(1) We propose a novel ontology-aware characteristic set merging algorithm,
OntoCSM, which merges the entity characteristic sets using an optimization
method to solve the problem of RDF type discovery.



Ontology-Aware Characteristic Set Merging for RDF Type Discovery 325

(2) In order to obtain the hierarchical structure between untyped entities, we
devise an algorithm that can extract ontology information from the charac-
teristic sets of entities.

(3) Extensive experiments have been conducted to verify the efficiency and accu-
racy of the proposed method on various datasets. The experimental results
show that the proposed method can significantly improve the efficiency in
most cases and is suitable for processing large-scale datasets while ensuring
accuracy and scalability.

The rest of this paper is organized as follows. Section 2 reviews related works.
In Sect. 3, we introduce preliminary definitions of OCSMP. In Sect. 4, we describe
the OntoCSM algorithm for RDF type discovery in detail. Section 5 shows exper-
imental results, and we conclude in Sect. 6.

2 Related Work

As most large open knowledge bases lack type information, which is an essential
component, in order to deal with untyped entities, researchers have raised several
approaches to solve RDF type discovery problem in recent years. The existing
methods can be divided into the following three categories:

(1) Statistical approaches. Among the state-of-the-art methods, statistical
approaches are more robust to noisy data, therefore more suitable for the
type prediction task, making them become the mainstream algorithm to
solve the type discovery problem in RDF. The key challenge of RDF type
discovery is the noisy data in the knowledge bases, which hampers the col-
lection of statistics over RDF graphs. Statistical approaches divide a dataset
into different clusters according to dataset statistics, increasing intra-cluster
similarity while reducing inter-cluster similarity.
An entity can be assigned to a type by data mining algorithms such as KNN
[13], as mentioned in [2]. However, this algorithm requires some parameters
given in advance, e.g., the number of types in the dataset. DBSCAN [3] is a
density-based clustering algorithm, which does not need to declare the number
of clusters in advance. SDA [4] proposes the concept of probabilistic type pro-
files based on DBSCAN, in which, however, the similarity threshold parameter
must be specified. SDA++ [5], an extension of SDA, proposes an incremen-
tal algorithm that can effectively solve the problem of dataset expansion and
assign multiple types to an entity, at the same time automatically detecting
the similarity threshold. In [6], hierarchical clustering is used to support struc-
ture inference from RDF resources which only contain instance-level data.

(2) Reasoning-based approaches. Specific solutions based on logical reasoning to
the RDF type inference problem have also been proposed recently. Logical
reasoning can be used to solve the type inference problem by applying RDF
schema (RDFS) or OWL entailment regimes. Logical methods only allow
reasoning information from datasets that strictly obey the rules, which can-
not be applied to the knowledge base which contains erroneous or conflicting



326 P. Liu et al.

statements. Although it is identified in [7] that the problems of inference on
noisy data in the Semantic Web, and since then a technique is given in [8] to
process noisy semantic data, the inference-based approach is still not appli-
cable to type inference scenario, where most rdf:type values are missing.

(3) Machine learning-based approaches. Machine learning approaches are also
used to solve the problem of formulating RDF types with labeled training sets.
The method proposed in [9] discusses an approach of iterative classification to
train the machine learning models with relational data and iteratively utilizes
the models to process untyped instances. DL-Learner system [10] conducts
inductive learning on Semantic Web data, provides an OWL-based machine
learning tool to solve supervised learning tasks, and infers types in knowledge
graphs through induction process. Machine learning-based approaches do not
make available for situations when there is no prior RDF types information.

Approaches that more closely related to ours build a hierarchy of types from
the characteristics of entities. The similarity of entities contained in the data
is discussed in [14], which regards building categories as a learning process.
Dynamic generation of concepts hierarchies [15] preprocesses linked data and
then formalizes the hierarchy. Statistical schema induction is proposed in [16]
to mine association rules from RDF data, which can help obtain schema level
ontology knowledge. Standard ascending hierarchical clustering is presented in
[6] to build structured abstraction of linked data.

Our method differs from all the aforementioned algorithms in terms of objec-
tives and methods. To the best of our knowledge, OntoCSM is the first method
to classify entities based on the distance between the characteristic sets, using the
idea of optimal merging to make the RDF type discovery algorithm be able to deal
with two cases, in which the type information of the dataset is partially known or
completely unknown. Moreover, OntoCSM can guide the classification process by
integrating the structure information of ontology, which makes it ontology-aware.

3 Preliminaries

In this section, we introduce the definitions of relevant background knowledge.
Table 1 gives the main notations used throughout this paper.

Table 1. List of notations.

Notation Description

SC(s) The characteristic set of entity s

P(V ) The power set of V

αi The membership of property pi to cluster C

sem(C) The semantic feature of cluster C

dist(Ci, Cj) Distance between cluster Ci and Cj

σ(CS) The evaluation function of CS (the set of clusters)

avg(Ci) Average distance between characteristic sets in cluster Ci



Ontology-Aware Characteristic Set Merging for RDF Type Discovery 327

Definition 1 (RDF Graph). Consider three disjoint infinite sets U, B, and
L representing Uniform Resource Identifiers (URI), blank nodes, and literals,
respectively. RDF graph is a finite set of RDF triples (s, p, o) ∈ (U ∪ B) × U ×
(U ∪ B ∪ L), in which s is the subject, p is the predicate, and o is the object.
A triple (s, p, o) is a statement of a fact, which means there is a connection p
between s and o or the value of property p for s is o.

In most RDF graphs, entities can be uniquely identified by a proper subset of
their emitting edges. While we might not be able to clearly identify an entity as
one type (due to the lack of rdf:type information), an entity can be character-
ized by its emitting edges [12], i.e., characteristic set.

Definition 2 (Characteristic Set Partition). Formally, for each entity s
that appears in an RDF dataset R, its characteristic set is defined as follows:

SC (s) := {p | ∃o : (s, p, o) ∈ R} (1)

Let V be the entity set of R, for an entity set V ⊆ V , the set of all SC for V is:
SC (V) := {SC(s) | s ∈ V}. Characteristic Set Partition CSP = {SP 1, · · · , SPn}
is a subset of P (V ), where n = |SC(R)|. CSP needs to satisfy the following
conditions:

(1) ∀SP i ∈ CSP, SP i �= ∅;
(2) ∀SP i, SP j ∈ CSP, SP i ∩ SP j = ∅ if i �= j;
(3)

⋃n
i=1SP i = V ;

(4) ∀SP i ∈ CSP, SC(sp) = SC(sq) if sp ∈ SPi ∧ sq ∈ SPi;
(5) ∀SP i, SP j ∈ CSP, SC (SP i) �= SC (SP j) if i �= j.

Among them, (4) ensures there is only one characteristic set in each SPi, and
(5) prevents different elements of CSP from holding the same characteristic.

The characteristic set provides a node-centric division for the entities in a
knowledge graph, based on the node structure [17]. Each entity only belongs
to one single characteristic set. According to the definition of characteristic set,
entities with slightly different properties should also be divided into different
characteristic sets, but in fact, they may belong to the same type. In our work,
the entities will be merged into the same cluster if their characteristic sets are
similar.

Definition 3 (Cluster). According to the CSP, the cluster C is composed of
entities from several SPi, and CS is the set of all clusters, which is defined as
CS = {C1, C2, · · · , Cm} ,∀Cj ∈ CS, where Cj =

⋃ {SP1, SP2, · · · , SPk} (1 ≤
k ≤ n, 1 ≤ j ≤ m).

Based on the idea of word frequency and reverse document frequency, we
use αi to describe the membership of property pi to cluster C, which can be
defined as

αi =
count (C, pi)

count(C)
log

m

mi
(2)



328 P. Liu et al.

In Eq. 2, mi represents the number of clusters containing property pi in CS,
m represents the current total number of clusters, count(C) shows the number
of entities in cluster C, count(C, pi) corresponds to the number of entities in
cluster C containing property pi. The semantic feature of cluster C is defined
as sem (C) = {(p1, α1), (p2, α2), · · · , (pk, αk)}, in which k = |⋃m

i=1Ci| represents
the number of properties in the Ci of CS.

The process of merging characteristic sets involves two extreme cases. In the
first case, the entities in each SPi form a seperate cluster, which makes entities of
the same type in different SPi divided into different clusters. In the second case,
all entities are in one single cluster, which will cause the problem of sparse prop-
erties contained in the characteristic set within the cluster. OntoCSM uses the
semantic statistical information of characteristic sets which represents the sim-
ilarity between clusters, combining with the hierarchical relationships between
types to help get the most appropriate set of clusters. The main issue discussed
in this paper is to merge similar entities into the same cluster according to their
characteristic sets. In order to get the best merging result, we consider the issue
as an optimization problem, and thus put forward the Optimal Characteristic
Set Merge Problem (OCSMP).

Example 1. As shown in Fig. 2, entities (e1 − e12) are partitioned according
to characteristic sets, and CSP is obtained after the partitioning. SP1 and SP3

are suppoesd to be merged into the same cluster C1 because of the similar
characteristic sets they have. SP2 and SP4 are supposed to be merged into the
same cluster C2 for the same reason.

Fig. 2. An example of OCSMP

Definition 4 (Optimal Characteristic Set Merge Problem, OCSMP).
To estimate the outcome of merging process, the evaluation function is defined as

σ (CS) =
1
k

∑k
i=1 max

j �=i

(
avg(Ci) + avg(Cj)

dist(Ci, Cj)

)

(3)

The numerator measures the average distance of characteristic sets in each clus-
ter, where avg(C) represents for the average value of the distance between each
characteristic set in cluster C, where sem (C) = {(p1, α1), · · · , (pk, αk)}, and



Ontology-Aware Characteristic Set Merging for RDF Type Discovery 329

avg(C) is calculated by the difference of the predicates contained in each charac-
teristic set, which is defined as

avg(C) =

∑
Ci∈C

∑
pj∈{p1,...,pk}αjbj

|C| (4)

if pj ∈ Ci, bj = 0, else bj = 1. The denominator measures the distance between
clusters, and dist(Ci, Cj) can be calculated with the semantic features from clus-
ter Ci and Cj. OCSMP is the process to obtain the optimal solution of CS from
CSP by evaluation function σ(CS).

4 Ontology-Aware Characteristic Set Merging Approach

In this section, we present the ontology-aware characteristic set merging algo-
rithm, i.e., OntoCSM, aiming to solve the problem of RDF type discovery, which
exploits the characteristic set partitioning introduced in Sect. 3. First, we illus-
trate the workflow of our approach, then we describe the extraction process of
the ontology hierarchy from the characteristic sets and the implementation of
the ontology-aware optimization algorithm. Finally, we analyze the complexity
results of the proposed algorithm.

4.1 Workflow

The entities in the RDF graph can be divided according to their characteristic
sets, and entities with the same characteristic set are initialized into the same
cluster after entity partitioning. Through the recursive merging of clusters, sim-
ilar characteristic sets are merged into one cluster. Since there is a hierarchical
relationship between the types of entities, the ontology hierarchy that represents
the hierarchical relationship between clusters can help each entity to be merged
in an optimal way. After the merging process, we can assign the type of the
entity to the cluster where the entity resides.

Example 2. Figure 3 briefly depicts the workflow of OntoCSM, which can be
divided into three stages. (1) In the first phase (Fig. 3(a)–(b)), after the RDF
data is loaded, entities (representing s1–s4) are given different colors according
to their types, and white nodes (e.g. s5) represent entities without types. Entities
are divided into SP1 . . . SPn based on their characteristic sets; (2) In the second
phase (Fig. 3(b)–(c)), the ontology hierarchy for clusters is constructed according
to the similarity between the characteristic sets of entities. Specifically, each SPi

is initialized as a cluster, and the undirected graph G is formed according to
the distance between the clusters, where each cluster corresponds to a node in
the graph. The minimum spanning tree T is composed of nodes whose shortest
distance to neighboring nodes is between e1 and e2 (e.g., SP3), and is selected
as the ontology hierarchy; (3) In the third phase (Fig. 3(c)–(d)), the remaining
clusters (C1, ..., Ci) are merged into the generated ontology hierarchy according
to their distance from the nodes on the tree T . Based on the extracted ontology
hierarchy, the untyped entities are merged and their types are assigned as the
type of the cluster in which it is located.



330 P. Liu et al.

4.2 Characteristic Set-Based Ontology Extraction

As an extension of the basic RDF vocabulary, RDFS provides mechanisms
for describing groups of related resources and the relationships between these
resources, using rdf:type (stating that a resource is an instance of a type) and
rdfs:subClassOf (stating that one class is a subclass of another). In order to
identify the relationships among characteristic sets and guide the merging pro-
cess of characteristic sets, it is essential to extract the type hierarchy from an
RDF graph using RDFS vocabulary. Though the ontology information may not
be directly provided by RDFS, the ontology hierarchy can be extracted and
constructed based on the distance among the characteristic sets.

(a) A fragment of RDF graph

……

1 2
43 5

, , … , ,, less than , between 1 and 2, greater than 2

(c) A complete graph of SPi and the distance table

(b) Characteristic Set Partition

(d) The creation of a ontology hierarchy

Ontology hierarchy made up 
from 

Newly arrived SPi may 
create a new cluster

Newly arrived SPi may 
combine with existing cluster

1 5

43

1

1 2

2
3
3

5

4 4
4
1

4
1

5 1 3
6

6 4
25

Untyped entities

452

Entity Characteristic Set Type

1
2

45

3 3 1

1 3 1

642

Entity Characteristic Set Type

UNKNOWN ∅…… …… ……

… several SPi

Fig. 3. The overview of OntoCSM

In the initial phase, Algorithm 1 divides entities according to their charac-
teristic sets by hash function, maps entities with the same characteristic set to
the same index value, and returns a hash table HT = (CS, Index, S, Type),
including the characteristic sets CS, index value Index, corresponding entity
set S, and the type set Type. Each characteristic set is initialized as a cluster
(line 2–3), containing all the corresponding entities. For newly arrived entities,
if their characteristic sets have already been added in the hash table and their
types information is given, the rows of corresponding CS will be updated (line
6–7). The type of a given cluster is the union of entity types within this cluster.
Clusters are sorted in descending order according to the characteristic set with
the largest number of properties in the cluster.

In order to solve the problem of missing type information, we design an
ontology information extraction approach based on characteristic sets. By cal-
culating the distance between clusters, an undirected graph G can be con-
structed regarding each cluster as a node. Given two clusters Ci and Cj ,



Ontology-Aware Characteristic Set Merging for RDF Type Discovery 331

Algorithm 1: Characteristic Set Hashing
Input: Entity set S and characteristic set SC (s) for each entity s in S
Output: Hash Table HT = (CS, Index, S, Type)

1 for each si ∈ S do
2 if HT.get(SC(si)) =NULL then

// the CS appears for the first time

3 HT.insert(SC(si), si);
// insert characteristic set and its corresponding entities

into the CS and S columns of the hash table

4 else
5 HT.get(SC(si)).S ∪ {si};

// insert a new entity into the corresponding row of the hash

table

6 if si.type �=NULL then
// the type of the entity is given

7 HT.get(SC(si)).Type ∪ {si.type};
// insert a new type into the corresponding row of the

hash table

8 return HT

sem(Ci) = {(p1, α1), ..., (pm, αm)} , sem(Cj) = {(p1, α1), ..., (pn, αn)} , Pi =
{p1, ..., pm} , Pj = {p1, ..., pn} , P = {p1, ..., pt} = P1 ∪P2, then Ai = [αi1, ..., αit],
if pk /∈ Pi, αik = 0, else αik is the α value corresponding to pk in sem(Ci). The same
is true for Aj = [αj1, ..., αjt]. The formula for calculating the distance between two
clusters is defined as follows:

dist(Ci, Cj) =
t∑

k=1

|Aik − Ajk| (5)

Algorithm 2 presents an overview of the ontology extraction process. We
define e1 and e2 as two thresholds to decide whether a node should be merged,
used to construct the ontology hierarchy, or regarded as noisy data. For all nodes
in graph G = 〈V,E〉, where the node set V stands for the clusters (every cluster
is regarded as one node) and the edge set E represents the links between nodes,
we calculate the distance between nodes to obtain a distance matrix. Then we
divide nodes into three disjoint sets V1, V2, and V3 by the distance from a node
to other nodes comparing with e1 and e2. For any node v in G:

(1) if minDis(v) < e1, V1 = V1 ∪ {v}, where V1 represents the node set corre-
sponding to the characteristic sets to be merged (line 4);

(2) if e1 < minDis(v) < e2, V2 = V2 ∪ {v}, where V2 represents the node
set corresponding to the characteristic sets used to construct the ontology
hierarchy (line 6);



332 P. Liu et al.

(3) if e2 < minDis(v), V3 = V3∪{v}, where V3 represents the set of noisy nodes,
and the characteristic sets corresponding to these nodes do not participate
in the merging process or the construction of the ontology hierarchy (line 8).

The minimum spanning tree T is the ontology hierarchy constructed from
the nodes belonging to V2. Each node in V2 is considered as an independent
tree node. We find the shortest edge 〈v1, v2〉 from graph G, given that v1 and
v2 belong to V2. If v1 and v2 are not in the same tree, v1, v2 will be connected,
and 〈v1, v2〉 is added to the edge set E′ of the spanning tree T (line 12), and the
algorithm is repeated until all edges in G have been traversed. In the end, we
can obtain the minimum spanning tree T = 〈V2, E

′〉 for graph G.

4.3 Ontology-Aware Characteristic Set Merging Algorithm

According to the characteristic set of the entity and the extracted ontology
hierarchy, we propose an Ontology-Aware Characteristic Set Merging Algorithm,
i.e., OntoCSM. Based on the idea of optimizing the objective function, OntoCSM
simulates the process of merging the characteristic set of the untyped entities to
obtain the best threshold and then achieves the best classification results.

Algorithm 2: Ontology Hierarchy Extraction
Input: Characteristic sets relationship graph G = 〈V,E〉;
Similarity threshold e1 and e2
Output: Ontology hierarchy T = 〈V2, E

′〉
1 for each v ∈ V of G do
2 minDis := min(dist(v, u));

// distance between node v and the nearest neighbor u
3 if minDis < e1 then
4 V1 := V1 ∪ {v};

// the set of nodes to be merged

5 else if minDis < e2 then
6 V2 := V2 ∪ {v};

// the set of nodes to construct the ontology hierarchy

7 else
8 V3 := V3 ∪ {v} ; // the set of noisy nodes

9 C := V2; // nodes to be added to T
10 while C �= ∅ do
11 (u0, v0) := findMin (C);

// find the nodes u0 and v0 in V2, which have the minimium

distance, u0 and v0 are not in the same connected component

12 E′ := E′ ∪ {(u0, v0)};
// add (u0, v0) as an edge to E′

13 return T



Ontology-Aware Characteristic Set Merging for RDF Type Discovery 333

Algorithm 3 introduces the details of the characteristic set merging process.
After the preprocessing of characteristic set partitioning, the remaining clusters
will be merged with an existing cluster in the currently constructed ontology
hierarchy if the distance between the newly added cluster and the clusers in the
ontology hierarchy is less than e1 (line 3–5). The merge(u0, v0) function merges
the clusters corresponding to u0 and v0. If the distance is between e1 and e2,
the cluster will be used to form a hierarchical structure based on its distance
from the nearest cluster (line 6–9). The clusters without specified types are also
merged in this manner. The remaining clusters are regarded as noisy data.

Algorithm 3: Ontology-Aware Characteristic Set Merging
Input: The Set of nodes to be merged V1 and ontology hierarchy T = 〈V2, E

′〉
Output: Characteristic sets merged sturcture tree T ′ = 〈V2, E

′〉
1 for each vi ∈ V1 do
2 (u0, v0) := findMin (V2, V1);

// find nodes u0 ∈ V2 and v0 ∈ V1 which have the minimium distance

3 if dist(u0, v0) < e1 then
4 merge (u0, v0) ; // merge the clusters corresponding to u0 and v0

5 V1 := V1 \ {v0} ;

6 else if e1 <dist(u0, v0) < e2 then
7 v0.head := u0; // u0 is the father of v0 in the ontology

hierarchy

8 V2 := V2 ∪ {v0};
// add v0 to the ontology hierarchy collection V2

9 E′ := E′ ∪ {(u0, v0)};
10 V1 := V1 \ {v0} ;

11 return T′

Case Study. It is conceivable that in the real-world RDF graph, as shown in
Fig. 1, the type of the entities whose characteristic sets are {name, birthdate}
would probably be People, which is the superclass of Singer, Actor, etc. The
type of entities that with {name} as their characteristic sets could be a higher-
level superclass of People and Movie, i.e., the owl:Thing in the RDF graph.
For the more general form given in Fig. 3(a), using OntoCSM, the characteristic
sets that are relatively far away from each other will construct the hierarchy
among type classes, and characteristic sets that are relatively close to each other
will be merged, thereby untyped entities will be merged into the closest set of
entities of known types. For RDF graphs with little or no entity type information,
OntoCSM can efficiently provide a hierarchical structure constructed from the
data to guide type discovery.



334 P. Liu et al.

4.4 Scalability and Complexity

Scalability. The scale of the datasets may expand, and new entities are con-
stantly being added at any time. Therefore, the algorithm needs to be scalable
to incrementally cope with the expansion of the dataset. For the newly arrived
entity, OntoCSM can remerge or reconstruct the ontology hierarchy according to
the relationship between the threshold and the closest distance to the nodes on
the ontology hierarchy, which is constructed using the existing entities, accord-
ing to the process similar to Algorithm 3, without affecting the previous merged
results.

Complexity. The time complexity of the OntoCSM algorithm is bounded by
O

(
|V |2 + |M |2 · log |M | + |M | · |N |

)
, where |V | is the total number of character-

istic sets, |M | is the number of characteristic sets used to construct the ontology
hierarchy, and |N | is the number of characteristic sets used for merging.

Proof (Sketch). The time complexity of OntoCSM consists of three parts: (1)
The algorithm firstly calculates the |N | · |N | distance matrix between the char-
acteristic sets; (2) the ontology hierarchy is generated from |M | nodes that sat-
isfy the threshold condition, with the complexity of |M |2 · log |M |; (3) finally,
the remaining |N | characteristic sets is merged with the |M | nodes in the ontol-
ogy hierarchy. Hence, the overall time complexity of the proposed algorithm is
O

(
|V |2 + |M |2 · log |M | + |M | · |N |

)
. ��

5 Experiments

In this section, we implement our algorithm and verify the effectiveness, effi-
ciency, and scalability of OntoCSM, compared with the baseline algorithms on
several datasets.

5.1 Experimental Settings

The proposed algorithm was implemented in Python, which is deployed on a
single-node server. The server has an 8-core Intel(R) Xeon(R) Platinum 8255C@
2.5 GHz CPU, with 32 GB of memory, running 64-bit CentOS 7.6 operating
system.

Datasets. Our experiments were conducted on four different datasets which are
also used in other methods [4,5] solving the relevant problem. (1) The Confer-
ence1 dataset contains data about several Semantic Web conferences, keynotes,
and workshops with 1,430 triples; (2) Histmunic2 dataset with 119,151 triples
is an open government dataset; (3) another dataset is extracted from DBpedia3

1 http://data.semanticweb.org/dumps/conferences/dc-2010-complete.rdf.
2 https://opendata.swiss/dataset.
3 http://dbpedia.org/.

http://data.semanticweb.org/dumps/conferences/dc-2010-complete.rdf
https://opendata.swiss/dataset
http://dbpedia.org/


Ontology-Aware Characteristic Set Merging for RDF Type Discovery 335

with 19,696 triples and consider the following types: Politician, Soccer player,
Museum, Movie, Book, and Country ; (4) BNF4 dataset, includes data about the
French National Library (Bibliothèque Nationale de France) with 381 triples.
Table 2 shows the statistics about each dataset, including the number of triples,
the number of instances, and the number of types.

Table 2. Statistics of datasets

Datasets #triples #instances #types

BNF 381 31 5

Conference 1,430 403 12

DBpedia 19,696 100 6

Histmunic 119,151 12,132 14

Baselines. We compare OntoCSM against two clustering algorithms, which have
already been mentioned in Sect. 2. SDA++ [5] utilizes a method to transform
group instances of RDF data into types in a deterministic and automatic way.
StaTIX [18] uses the inference technique to leverage a new hierarchical clustering
algorithm. The rest of methods are neither directly applicable nor as good as
these two algorithms. Therefore, we take these two state-of-the-art methods,
SDA++ and StaTIX, as the baselines for our evaluation.

Evaluation Criteria. In order to evaluate the quality of results produced by dif-
ferent algorithms, we use the metrics proposed in [5]. In these metrics, algorithms
are run on the datasets without type information. Each cluster Ci is appointed
the most frequent type label of its entities. For each type label Li corresponding
to type Ti in the dataset, the precision Pi is defined as Pi(Ti, Ci) = |Ti ∩ Ci| /Ci

and the recall Ri is defined as Ri(Ti, Ci) = |Ti ∩ Ci| /Ti. The final precision P
and final recall R is defined as follows:

P =
k∑

i=1

|Ci|
n

× Pi(Ti, Ci), R =
k∑

i=1

|Ci|
n

× Ri(Ti, Ci)

in which k is the number of clusters. Furthermore, F1 score is the harmonic
average of precision and recall, which represents the robustness of the model
and the quality of the result. The formula is defined as F1 = 2PR

P+R .

5.2 Experimental Results

Exp 1. Effectiveness of the Algorithms in Accuracy. To evaluate the effec-
tiveness of OntoCSM, we appoint the most frequent type shown in the merged
cluster as the type of the characteristic set corresponding to the cluster, using
the original type information (rdf:type) of each entity. While calculating the

4 http://datahub.io/fr/dataset/data-bnf-fr.

http://datahub.io/fr/dataset/data-bnf-fr


336 P. Liu et al.

relevant evaluation index, the thresholds e1 and e2 are set to the value which
optimize the objective function. The precision P , recall R, and score F1 obtained
by different methods on the four datasets are defined by the formula introduced
in Sect. 5.1.

Figure 4 shows all the effectiveness results of different algorithms executed on
four datasets. It is noteworthy that SDA++ could not finish within limited time
on the Histmunic dataset, so the experimental results of SDA++ on Histmunic
are eliminated. OntoCSM can achieve a comparable result against the other
two algorithms on the Conference and BNF dataset. Since both of datasets
have regular data, considering the statistical information of characteristic sets,
OntoCSM reaches better effectiveness. However, because these two datasets do
not have a strict hierarchical structure, the extraction of the ontology hierarchy
may have a certain impact on the results. In addition, OntoCSM can achieve
the same effectiveness in handling noisy data compared with SDA++, which
manages noisy data deliberately. It should be noticed that some of the precision
and F1 values can reach 1, since the Histmunic dataset has extremely regular
data.

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

V
al

ue

HistmunicDBpediaConferenceBNF

STATIX SDA++ OntoCSM

Fig. 4. The experimental results of effectiveness on four datasets

Exp 2. Time Efficiency of the Algorithms. In order to verify the effi-
ciency of OntoCSM, we record the execution time of different algorithms on four
datasets. Without type information given (rdf:type does not participate in the
process of algorithms), entities are merged according to their characteristic sets.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

BNF Conference DBpedia Histmunic

Ex
ec

ut
io

n 
tim

e
(m

s)

Datasets

STATIX
SDA++
OntoCSM

(a) Running time on various datasets

 0.1

 1

 10

 100

 1000

 10000

BNF Conference DBPedia Histmunic
 0.1

 1

 10

 100

 1000

Ex
ec

ut
io

n 
tim

e
(m

s)

N
um

be
r o

f o
rig

in
al

 c
ha

ra
ct

er
is

tic
 s

et
s

Datasets

number
execution time

(b) Characteristic sets number effect

Fig. 5. The experimental results of efficiency on four datasets



Ontology-Aware Characteristic Set Merging for RDF Type Discovery 337

The execution time of different algorithms is shown in Fig. 5(a). OntoCSM
shows the best performance in processing the Histmunic dataset because Hist-
munic is regular and has a few numbers of characteristic sets, which further
demonstrates that the characteristic set-based approach has excellent results in
the case of fewer characteristic sets but more entities. Figure 5(b) reveals that the
time complexity of OntoCSM depends on the number of original characteristic
sets in the dataset.

Exp 3. Scalability of the Algorithms. In order to verify the scalability of our
method, we add entities incrementally to the Histmunic dataset. Since STATIX
is not incremental and SDA++ is not suitable for handling large-scale data,
we fix the number of entities to construct the ontology hierarchy and observe
the performance changes of the algorithm when different number of entities are
added (U1−U5 represents the test set consisting of tuples randomly selected from
the original dataset with 50%−85%, and about 9% as the interval).

 0

 2

 4

 6

 8

 10

U1 U2 U3 U4 U5

 0

 5

 10

 15

 20

Ex
ec

ut
io

n 
tim

e 
(m

s)

N
um

be
r o

f o
rig

in
al

 c
ha

ra
ct

er
is

tic
 s

et
s

Tuples for Added Entities

number
execution time

(a) Running time while adding entities

 0

 0.2

 0.4

 0.6

 0.8

 1

U1 U2 U3 U4 U5

V
al

ue

Tuples for Added Entities

Precision
Recall
F1

(b) Effectiveness while adding entities

Fig. 6. The experimental results of scalability on the Histmunic dataset

As the entities added, Fig. 6(a) shows the change in the execution time of the
algorithm, and the relationship between time and the number of added entities
is nearly linear. Figure 6(b) shows the precision, recall, and F1 value obtained as
entities added. It can be noticed that different numbers of added entities would
not affect the effectiveness results, which shows the scalability of the proposed
algorithm.

6 Conclusion

In this paper, we present an ontology-aware characteristic set merging algorithm,
OntoCSM, a novel method to solve the problem of RDF type discovery from the
perspective of the ontology hierarchy. We model the problem as an optimization
problem and use the objective function to direct the process of merging entities.
Compared with the other state-of-the-art algorithms, OntoCSM exhibits bet-
ter results on execution time, the scale of datasets, and awareness of ontology.



338 P. Liu et al.

Besides, OntoCSM can also handle datasets regardless of whether ontology infor-
mation is provided in advance. The effectiveness, efficiency, and scalability of our
method have been verified by extensive experiments. We will consider to extend
our algorithm to cope with multiple type hierarchies and multiple inheritance in
the future work.

Acknowledgment. This work is supported by the National Key Research and Devel-
opment Program of China (2019YFE0198600), National Natural Science Foundation of
China (61972275), and CCF-Huawei Database Innovation Research Plan (CCF-Huawei
DBIR2019004B).

References

1. World Wide Web Consortium: RDF 1.1 concepts and abstract syntax (2014)
2. Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F.: Prediction of class and property

assertions on OWL ontologies through evidence combination. In: Proceedings of
the International Conference on Web Intelligence, Mining and Semantics, pp. 1–9
(2011)

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

4. Kellou-Menouer, K., Kedad, Z.: Schema discovery in RDF data sources. In: Johan-
nesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015.
LNCS, vol. 9381, pp. 481–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25264-3 36

5. Kellou-Menouer, K., Kedad, Z.: A self-adaptive and incremental approach for
data profiling in the semantic web. In: Hameurlain, A., Küng, J., Wagner, R.
(eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIX.
LNCS, vol. 10120, pp. 108–133. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-54037-4 4

6. Christodoulou, K., Paton, N.W., Fernandes, A.A.A.: Structure inference for linked
data sources using clustering. In: Hameurlain, A., Küng, J., Wagner, R., Bianchini,
D., De Antonellis, V., De Virgilio, R. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems XIX. LNCS, vol. 8990, pp. 1–25. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46562-2 1

7. Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the web?
Semantic Web 1(1, 2), 45–52 (2010)

8. Ji, Q., Gao, Z., Huang, Z.: Reasoning with noisy semantic data. In: Antoniou,
G., et al. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 497–502. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21064-8 42

9. Neville, J., Jensen, D.: Iterative classification in relational data. In: Proceedings of
the AAAI-2000 Workshop on Learning Statistical Models from Relational Data,
pp. 13–20 (2000)

10. Bühmann, L., Lehmann, J., Westphal, P.: DL-learner-a framework for inductive
learning on the semantic web. J. Web Semant. 39, 15–24 (2016)

11. Čebirić, Š., Goasdoué, F., Manolescu, I.: Query-oriented summarization of RDF
graphs. In: Maneth, S. (ed.) BICOD 2015. LNCS, vol. 9147, pp. 87–91. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20424-6 9

https://doi.org/10.1007/978-3-319-25264-3_36
https://doi.org/10.1007/978-3-319-25264-3_36
https://doi.org/10.1007/978-3-662-54037-4_4
https://doi.org/10.1007/978-3-662-54037-4_4
https://doi.org/10.1007/978-3-662-46562-2_1
https://doi.org/10.1007/978-3-642-21064-8_42
https://doi.org/10.1007/978-3-319-20424-6_9


Ontology-Aware Characteristic Set Merging for RDF Type Discovery 339

12. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference
on Data Engineering, pp. 984–994. IEEE (2011)

13. Dasarathy, B.V.: Nearest Neighbor (NN) norms: NN pattern classification tech-
niques. IEEE Computer Society Tutorial (1991)

14. Chen, J.X., Reformat, M.Z.: Learning categories from linked open data. In: Lau-
rent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS,
vol. 444, pp. 396–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08852-5 41

15. Zong, N., Im, D.H., Yang, S., Namgoon, H., Kim, H.G.: Dynamic generation of
concepts hierarchies for knowledge discovering in bio-medical linked data sets. In:
Proceedings of the 6th International Conference on Ubiquitous Information Man-
agement and Communication, pp. 1–5 (2012)

16. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.)
ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21034-1 9

17. Meimaris, M., Papastefanatos, G., Mamoulis, N., Anagnostopoulos, I.: Extended
characteristic sets: graph indexing for sparql query optimization. In: IEEE 33rd
International Conference on Data Engineering (ICDE), pp. 497–508. IEEE (2017)

18. Lutov, A., Roshankish, S., Khayati, M., Cudré-Mauroux, P.: Statix-statistical type
inference on linked data. In: 2018 IEEE International Conference on Big Data (Big
Data), pp. 2253–2262. IEEE (2018)

https://doi.org/10.1007/978-3-319-08852-5_41
https://doi.org/10.1007/978-3-319-08852-5_41
https://doi.org/10.1007/978-3-642-21034-1_9
https://doi.org/10.1007/978-3-642-21034-1_9


EDKT: An Extensible Deep Knowledge
Tracing Model for Multiple

Learning Factors

Liangliang He1, Xiao Li2, Jintao Tang1(B), and Ting Wang1(B)

1 College of Computer, National University of Defense Technology, Changsha, China
{heliangliang19,tangjintao,tingwang}@nudt.edu.cn

2 Information Center, National University of Defense Technology, Changsha, China
xiaoli@nudt.edu.cn

Abstract. Knowledge Tracing (KT) refers to the problem of predicting
learners’ future potential performance given their past learning history in
e-learning systems. In order to better trace the learners’ knowledge, KT
tasks have become increasingly complicated recently, and various factors
related to learning (such as skill, exercise, hint, etc.) have been incor-
porated into the modeling of KS of the learner, which renders it inade-
quate for the traditional KT definition to formalize these tasks. There-
fore, this paper first gives a more general formal definition of KT tasks,
and then proposes an Extensible Deep Knowledge Tracing model for
multiple learning factors based on this general definition, named EDKT.
EDKT can integrate various different learning factors by extending or
ablating factors in two plug-ins on the basis of minor modifications. To
demonstrate the effectiveness of the proposed model, we conduct exten-
sive experiments on three real-world benchmark datasets, and the results
show that EDKT comprehensively outperforms the state-of-the-art KT
models on predicting future learner responses.

Keywords: Knowledge Tracing (KT) · Deep Knowledge Tracing ·
Knowledge state modeling

1 Introduction

Knowledge Tracing (KT) [3] is an important task in e-learning [16,20], whose goal
is to model the knowledge state (KS) of the learner, i.e., the level of the learner’s
mastery of skills [21], based on the history of the learner’s interaction with the
e-learning platform. On an e-learning platform, learners can learn related skills
by completing specific exercises. And the platform traces the learner’s KS about
the learned skills based on a KT model. Finally, the platform determines whether
the learners have mastered these skills by a when-to-stop policy [17].

In a traditional KT task, given a learner’s historical interaction sequence
Xt = (x1,x2 . . .xt) up to the timestamp t, KT models try to predict the prob-
ability that the learner will correctly perform a learning action (e.g., respond-
ing an exercise) in the next timestamp t + 1, i.e., p(rt+1 = 1|qt+1,Xt), where
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 340–355, 2021.
https://doi.org/10.1007/978-3-030-73194-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_23


EDKT: Extensible Deep Knowledge Tracing 341

xt = (qt, rt) is an input tuple containing the exercise tag qt at the timestamp t
and the learner’s response rt to qt [9,21,22].

Recent years, Deep Learning based Knowledge Tracing (DLKT) methods
[4,16,21,22] have been shown to be significantly better than traditional mod-
els [6], such as Bayesian Knowledge Tracing (BKT) [3], Latent Factor Models
(LFM) [1,15] and Item Response Theory (IRT) [20]. Therefore, this paper only
focuses on the field of DLKT. Deep Knowledge Tracing (DKT) [16], as the first
DLKT model, uses Long Short-Term Memory (LSTM) network [7] to capture
the sequential dependency between each skill. Dynamic Key-Value Memory Net-
work (DKVMN) [22] models the relationship between underlying concepts and
traces the learner’s KS about each concept. The self-attentive knowledge tracing
(SAKT) method [13] is the first to apply attention mechanism to the field of
KT, to deal with sparse data caused by learners’ interaction with few skills.

In order to better trace learners’ KSs, KT tasks have become increasingly
complicated in recent years, and more and more side factors (such as hints [2],
forgetting [12], text [8], etc.) have been incorporated into the modeling work of
learner’s KS. Nagatani et al. [12] extends the DKT model by modeling the infor-
mation related to forgetting. Chaudhry et al. [2] extends the DKVMN model
by modeling learners’ hints data. Ghosh et al. [4] propose a new DLKT method
by building context-aware representations of exercises and responses. Liu et al.
proposes an Exercise-aware Knowledge Tracing (EKT) [8] framework by incorpo-
rating the information of skills and the textual content existed in each exercise.

However, while each of these models shows better performance than models
adapted to the definition of the traditional KT task, each model is only suit-
able for the KT tasks with specific factors. To address this problem, this paper
first gives a more general formal definition of KT tasks, and then proposes an
Extensible Deep Knowledge Tracing model for multiple learning factors based
on this general definition, named EDKT. EDKT is compatible with various KT
tasks with different factors by extending or ablating factors in both extended
plug-ins on DKVMN. To demonstrate the effectiveness of the proposed model,
we conduct extensive experiments on three real-world benchmark datasets, and
the results show that EDKT comprehensively outperforms the state-of-the-art
KT model on predicting future learner responses.

To summarize, the contributions of this paper are summarized as follows:

(1) Based on the analysis of various existing KT tasks, a general definition of KT
tasks is given. And this definition not only applies to all current KT tasks,
but the generality allows for more factors to be extended in the future.

(2) Proposing an Extensible Deep Knowledge Tracing model for multiple learn-
ing factors based on DKVMN, named EDKT. EDKT is compatible with
various KT tasks with different factors by extending or ablating factors in
the both extended plug-ins on DKVMN.

(3) Conducting extensive experiments on three real-world benchmark datasets,
and the results show that EDKT comprehensively outperforms the state-of-
the-art KT model on predicting future learner responses.



342 L. He et al.

The rest of this paper is organized as follows. Section 2 reviews the previ-
ous works. Section 3 introduce the general formal definition of KT task and the
DKVMN model. Section 4 proposes the EDKT model. Section 5 conducts exper-
iments and result analysis. The last section concludes this paper and presents
the future work.

2 Related Works

In this section, we will give a brief overview of the existing works in the field of
DLKT according to the number of learning factors extended by the KT model.

2.1 Single-Factor Models

For single-factor KT models, the single factor usually refers to skill or exercise.
Since the exercise library is considerably larger than the skill set and many
exercises are only learned by few learners in most e-learning patterns [13]. To
avoid over-parameterization [4], researchers usually use skills to retrieve exer-
cises, i.e., all exercises covering the same skill are treated as a single exercise
(st = qt), unless the learning setting does not provide skill tags for the exercises.
Representative methods are as follows.

The earliest single-factor DLKT model is Deep Knowledge Tracing (DKT)
[16], which applies Long Short-Term Memory (LSTM) network [7] to the KT
task. DKT uses hidden states as a kind of summary of the past learning sequence.
Dynamic Key-Value Memory Networks (DKVMN) [22] with the ability to exploit
the relationship between underlying concepts is the best single-factor model in
recent years. DKVMN can automatically learn the correlation between the input
skills and the underlying concepts, so as to trace the KS of the learner about
each underlying concept. The self-attentive knowledge tracing (SAKT) method
[13] is the first to apply attention mechanism to the field of KT, to deal with
sparse data caused by learners’ interaction with few exercises. SAKT models a
learner’s interaction sequence up to the current timestamp and predicts his(or
her) performance on the next timestamp by considering the relevant exercises
from his(or her) past interactions. In addition, there are some works [10,11,19,21]
about the application of the above single-factor model to the specific KT tasks.

2.2 Multi-factor Models

Unlike the single-factor models, the multi-factor KT models require no less than
two factors. Because there are many factors involved, the multi-factor models
usually show better performance than the single-factor models.

Nagatani et al. [12] extends DKT by modeling the information related to
forgetting. They consider both the learning sequence and the forgetting behav-
ior by explicitly modeling the different forgetting behaviors of a learner using
multiple features. Chaudhry et al. [2] extends DKVMN by modeling learners’
hints data. In the process of updating the learner’s KS, they use the triplet of



EDKT: Extensible Deep Knowledge Tracing 343

adding hint instead of the doublet of only skill and response as the input to
acquire the learner’s knowledge growth after a response. Pandey and Srivastava
propose a Relation-aware self-attention Knowledge Tracing (RKT) model [14]
based on the SAKT model. They take into account the relations between skills
involved in the interactions and time elapsed since the last interaction to inform
the self-attention mechanism. Ghosh et al. propose a new KT method which is
completely dependent on attention network Attentive Knowledge Tracing (AKT)
[4]. AKT improves upon existing KT methods by building context-aware repre-
sentations of exercises and responses, using a monotonic attention mechanism to
summarize past learner performance in the right time scale. Liu et al. proposes
an Exercise-aware Knowledge Tracing (EKT) [8] framework by incorporating the
information of skill tags, exercise tags and the textual content of each exercise
into a single model. They extend the LSTM model in different ways to extract
the content features of the exercises and trace the KSs of learners.

3 Preliminaries

In this section, we introduce a general formal definition of KT tasks, and briefly
explain the DKVMN model, which is the basic component of our model.

3.1 Knowledge Tracing Tasks

To formalize the increasingly complex KT tasks, a more general form is defined
as follows: given a learner’s historical interaction sequence Xt = (x1,x2 . . .xt)
up to the timestamp t (where xt = (qt, rt[, st][,ot]) is an input tuple containing
the exercise tag qt, the skill tag st and the set of other factor tags ot at the
timestamp t and the learner’s response rt (correct/incorrect) to qt.), the exercise
tag qt+1, the skill tag st+1 and other factors ot+1 at timestamp t+1 on a specific
learning scenario, KT models try to predict the probability that the learner will
correctly perform a learning action (e.g., responding an exercise) at timestamp
t + 1, i.e., p(rt+1 = 1|qt+1[, st+1][,ot+1],Xt). In this formal definition, q and r
exist by default, and s and o are optional to meet different KT tasks.

Compared with the traditional formal definition of KT tasks, the new defi-
nition extends xt from doublet (qt, rt) to quadruplet (qt, rt[, st][,ot]), where ot

is an open set which allows other factors related to learning (such as hints, for-
getting, text, etc.) to be extended. For the traditional formal definition, skills
usually replace exercises as input to a KT model due to the sparsity of the exer-
cise data. However, the success of more KT models (such as EKT [8] and AKT
[4]) has shown that both skills and exercises can be used as inputs to obtain
superior KT performance.

In a word, this new formal definition of KT tasks not only applies to all
current KT tasks, but the generality allows for more factors to be extended by
enriching the set of other factor tags o in the future.



344 L. He et al.

3.2 Dynamic Key-Value Memory Networks

The knowledge tracing process of DKVMN [22] is shown in Fig. 2(a). At the
timestamp t, DKVMN traces the KS of the learner by reading and writing to
the value-memory matrix Mv

t using the correlation weight computed from the
input skill and the key-memory matrix Mk, and predicts the response of the
learner to the skill based on the read memory content rt and the input skill
embedding ks

t . M
k and Mv are used to store the underlying concepts and the

mastery levels of each concept, respectively. Details of DKVMN are as follows:

Correlation Weight. The correlation weight vector wt, which denotes the cor-
relation between the input skill and each underlying concept, involves in two
processes: response prediction and memory update.

wt = Softmax(MkTkt) (1)

Response Prediction. Firstly, rt is retrieved by the weighted sum of all memory
slots in Mv

t based on wt:
rt = wt (Mv

t )
T

, (2)
Then, rt and kt are input into the Tanh activation layer after being concatenated
to generate ft:

ft = Tanh(Wf [rt,kt] + bf ), (3)
where ft denotes a summary vector contained both the learner’s mastery level
and the difficulty of st; Wf and bf are the linear transformation matrix and
bias vector, respectively. Finally, ft is passed through a fully connected layer to
predict the probability pt:

pt = P (st) = σ (Wpft + bp) , (4)

where pt is a scalar that denotes the probability of responding st correctly; Wp

and bp are the linear transformation matrix and bias vector, respectively.

Memory Update. The knowledge growth embedding vt is used to update the
value-memory Mv

t after working on st. Firstly, Mv
t is erased based on vt, and

the erase process is as follows:

et = σ (Wevt + be) . (5)

M̃v
t+1 = Mv

t ⊗ (1 − wtet)
T

, (6)

where M̃v
t+1 is the intermediate of memory update. Then, Mv

t is added based
on wt and vt, and the added process is as follows:

at = tanh (Wavt + ba) , (7)

Mv
t+1 = M̃v

t+1 + wtaTt , (8)
where et and at are the erase vector and the add vector computed from vt,
respectively. And Mv

t is updated as the value-memory of the next timestamp
t+1, Mv

t+1. The erase-followed-by-add mechanism [5] allows forgetting and
strengthening concept states in the learning process of a learner, a step simi-
lar to forget gates in LSTMs [7].



EDKT: Extensible Deep Knowledge Tracing 345

4 Model

DKVMN is just a single factor KT model based on skill or exercise. This section
will introduce the EDKT model by integrating more factors based on DKVMN.
We utilize DKVMN as our basic model because it is the state-of-the-art single-
factor KT model, and a deep neural network that can easily incorporate multiple
side factors.

4.1 Correlation Factors

In the real world, the completion of an exercise for a learner is affected by various
factors, such as the difficulty of the exercise, the difficulty of the related skill,
with or without hints, the current KS of the learner, forgetting factors, etc.
Usually, specific exercises can only be completed if one or more of these factors
are present. For example, when a learner has fully mastered all skills of a field,
the learner can theoretically complete any exercise in the field without looking
at the hints, and without making mistakes or forgetting; or when learners have
the basic knowledge of a field, they can finish the exercise by using the hints, so
as to realize the self-learning of the knowledge of the field. In this section, we
analyze the four objective factors that may affect the learners’ performance by
combining real-world e-learning platform ASSISTments1.

Exercise. As an object in the learning process, the difficulty of exercise greatly
affects the learners’ correct rate of doing exercises. However, due to the large
size of exercise library, many exercises are seldom learned (refer to Table 1).
Therefore, just using the exercise in the single-factor KT models may lead to
over-parameterization of the related models [4].

Skill. In most cases, skills appear at the same time as the exercise, i.e., each
exercise is assigned to a skill or multiple skills. Like the exercise, the skill itself
also has the difficulty. Although the difficulty of the skill may determine the
difficulty of the exercise to some extent, it is not exactly the same as the difficulty
of the exercise. For example, if Addition and Multiplication are two different
skills, the latter is obviously more difficult than the former. However, there is also
the difference in the difficulty between their exercises of “1+1” and “413+926”
or “1 × 1” and “413 × 926”.

Template. In some cases, the exercise is generated based on the template. Com-
pared with the exercise, the scale of the template set is smaller, but compared
with the skill, the scale of the template set is relatively considerable. Therefore,
using the template as a bridge between the exercise and the skill can help model
the difficulty of exercise together with the skill (the relationship between the
template and the skill is usually many-to-many).

1 https://new.assistments.org.

https://new.assistments.org


346 L. He et al.

Hint. In e-learning, the way for learners to achieve self-learning is to look at
the outcome after attempting. A better way is to break the final outcome into
multiple steps and set them as the hints, so that the learner will not look at
the outcome directly without working on it, ensuring sufficient time to think.
In general, the number of hints assigned by the platform for each exercise can
reflect the difficulty of the exercise to a certain extent. We can see from Fig. 1
that the more the number of hints for an exercise, the more difficult the exercise
is, given that ACR indicates the difficulty of the exercise.

(a) For ASSISTments2009 (b) For ASSISTments2017

Fig. 1. The distributions of ACR on the number of hint for datasets ASSISTments2009
and ASSIST2017 (refer to Table 1), where ACR is the Average Correct Rate of all
exercises with #hint hints.

The factors in different e-learning setting are different, so the objective factors
that affect the learning effectiveness of learners are far from limited to these
four kinds. However, it is obvious that if one or more effective factors can be
incorporated into the single model, the effect of tracing learners’ knowledge will
be greatly improved on the basis of minimal time efficiency.

4.2 Extensible Deep Knowledge Tracing

For DKVMN (refer to Sect. 3.2), the main idea is to a predict first and update
later. In other words, the response of the current skill is firstly predicted, and
then the model is updated based on the real response of the learner to the skill.
Unfortunately, only features related to the skill participate in both processes.

As we described in Sect. 4.1, the completion of an exercise for a learner is
affected by various factors. Usually, specific exercises can only be completed if
one or more of these factors are present. In addition, the essence of learning is not
only the improvement of the level of doing exercises, but also the improvement
of other abilities.

Therefore, we propose an Extensible Deep Knowledge Tracing model for mul-
tiple learning factors, named EDKT, and the overall model architecture is shown
in Fig. 2(b). EDKT extends DKVMN by two plug-ins with similar structure:
the Learning Factor Plug-in (LFP) and the Knowledge Growth Plug-in (KGP).



EDKT: Extensible Deep Knowledge Tracing 347

The former is used to provide features of the extended factors in the process
of Response Prediction. The latter is used to enrich the learner’s knowledge
growth in the process of Memory Update. Both of them are indispensable in
the whole learning process of learners.

Softmax

Sigmoid Tanh

(a) Architecture for DKVMN [22]

Softmax

Sigmoid Tanh

...

...

(b) Architecture for EDKT

Fig. 2. In both architecture, the model is only drawn at the timestamp t, where the
yellow components describe the extraction process of the correlation weight; the pur-
ple components describe the read process and the red components describe the write
process; the green plug-in and the blue plug-in describe the preparation process of
the extended factors and the extended knowledge growth, respectively. (Color figure
online)

Learning Factor Plug-in. The basic model, DKVMN, only uses the features of
the skill in Response Prediction, except for the KS extracted in the reading
process. In order to model the KS of the learner reasonably, more other factors
must be extended. LFP accomplishes this purpose and the structure is shown
in Fig. 3(a). Where the green shaded region means that more factors can be
extended; kplug−in

t represents the feature vector of the extended plug-in, and
is formed by concatenating all the embedding vectors (kq

t , ko1

t ,...,koN

t ) of the
exercise and other factors. Each of these embedding vectors is embedded by the
corresponding embedding matrix A.

Knowledge Growth Plug-in. Same as the structure of LFP, the purpose of KGP
(refer to in Fig. 3(b)) is to extract learners’ knowledge growth about the exercise
and other factors after one interaction. Where the blue shaded region represents
an extensible structure corresponding to LFP (i.e., one doublet per extended
factor); vplug−in

t represents the knowledge growth vector of the extended plug-
in, which is formed by concatenating all the knowledge growth vector of the



348 L. He et al.

...

LFP

(a) LFP

KGP

...

(b) KGP

Fig. 3. Learning factor plug-in (LFP) and knowledge growth plug-in (KGP) in EDKT.

exercise and other factors (vq
t , vo1

t ,...,voN

t ); each of these vectors is embedded by
the corresponding embedded matrix B.

Knowledge Tracing Based on EDKT. The KT process of EDKT is similar
to that of DKVMN, and the difference is that embedding of the extended plug-
ins needs to be added before predicting and writing, respectively.

Embedding Layer. All factors and factor-response tuples are input into the EDKT
model after embedding. The former contains s, q and o which denotes the set of
side factors need to be extended, i.e. o = o1, o2, ..., oN , and the latter contains
(s, r), (q, r), (o1, r), (o2, r), ..., (oN , r). Where N denotes the number of extended
factors in EDKT. Each input factor is multiplied by Afactor to get kfactor:

kfactor = factor · Afactor, (9)

where factor represents one of all factors (including s, q and o); Afactor and
kfactor represents the continuous embedding matrix and vector of this factor,
respectively. Each input tuple is multiplied by Bfactor to get vfactor:

vfactor = tuple · Bfactor, (10)

where tuple represents the joint tuple of factor and r; Bfactor and vfactor rep-
resents the continuous embedding matrix and vector of tuple, respectively.

Attention Layer. Due to the sparsity of the exercise data, we use the one-hot
embedding of the skill tag to compute the correlation weight between the skill
and the underlying concepts. Given the continuous embedding vector ks

t of the
input skill st at timestamp t, the correlation weight vector wt is computed by
taking the softmax activation of the inner product between ks

t and key-memory
Mk (refer to Eq. 1).

Response Prediction. When a skill st comes, the read vector rt is firstly retrieved
by the weighted sum of all memory slots in Mv

t using wt (refer to Eq. 2), and
the extracted read vector rt is treated as a summary of the learner’s mastery



EDKT: Extensible Deep Knowledge Tracing 349

level of this skill. Secondly, the extended LFP embedding kplug−in
t is formed by

concatenating ks
t , k

q
t and ko1

t , ...,koN

t :

kplug−in
t = [kq

t ,k
o1

t , ...,koN

t ], (11)

where kplug−in
t is treated as a summary of the difficulty of the exercise and the

difficulties of the other side factors. Thirdly, we concatenate the read vector rt,
the input skill embedding ks

t and the input LFP embedding kplug−in
t and then

pass it through a fully connected layer with a Tanh activation to get a summary
vector ft, which contains the learner’s mastery level, the prior difficulty of the
skill, the prior difficulty of the exercise and other prior factor:

ft = Tanh(WT
f [rt,ks

t ,k
plug−in
t ] + bf ), (12)

Finally, ft is passed through another fully connected layer with a Sigmoid acti-
vation to predict the performance of the learner (refer to Eq. 4).

Memory Update. After the learner complete the skill st, the value-memory
matrix is updated according to the correctness of the learner’s response. Specif-
ically, vt is written to Mv

t with the same correlation weight wt used in pre-
dicting process (refer to Eq. 5−8). Where vt is formed by concatenating the
skill-response embedding vs

t and the extended KGP embedding vplug−in
t and is

treated as the knowledge growth of the learner after the interaction at times-
tamp t. And vplug−in

t is formed by concatenating the exercise-response joint
embedding vq

t and the extensible factor-response joint embedding vo1

t , ...,voN

t :

vplug−in
t = [vq

t ,v
o1

t , ...,voN

t ]. (13)

Model Training. All model parameters in EDKT are jointly learned by minimiz-
ing the following cross entropy loss between pt and rt during training.

L = −
∑

t

(rt log (pt) + (1 − rt) log (1 − pt)) (14)

Note that if a skill tag is not set for each exercise in the online learning
environment, the correlation weight vector wt in Attention Layer will be com-
puted by taking the softmax activation of the inner product between kq

t and
key-memory Mk. At the same time, kq

t will be removed from kplug−in
t . Simi-

larly, vq
t will participate in the process of Memory Update instead of vs

t and vq
t

will be removed from vplug−in
t .

Extensibility Specification. For EDKT, kplug−in
t and vplug−in

t can be
extended to integrate various factors related to learning. The whole extension
process is divided into: i) each extended factor and the corresponding extended
tuple are respectively embedded by Eq. 9 and Eq. 10 to get the correspond-
ing factor embedding and tuple embedding; ii) the factor embedding and tuple
embedding are concatenated in kplug−in

t and vplug−in
t , respectively.



350 L. He et al.

5 Experiments

In this section, we conduct extensive experiments on three real-world bench-
mark datasets to demonstrate the effectiveness of our proposed model, including
ablation experiments on two datasets.

5.1 Experimental Setup

Datasets. The performances of EDKT and three baselines are respectively tested
on three benchmark datasets ASSISTments20092, ASSISTments20173 and Stat-
ics20114. The datasets of ASSISTments are collected from an online tutoring
platform. The dataset of Statics2011 is collected from a college-level engineering
course on statics5. For all these datasets, the users with only one interaction are
removed. The main statistics of all datasets are listed in Table 1.

Table 1. Statistical information for all datasets. Where # is the identifier of “the
number of”; “−” means the corresponding item is missing.

Statistics Datasets

ASSISTments2009 ASSISTments2017 Statics2011

#records 525,534 942,816 261,947

#learners 4,217 1,709 333

#skills 124 102 −
#exercises 26,688 3,162 300

#steps − − 382

#templates 816 − −
#maximum hints 10 56 −

Baselines and Metric. We compare EDKT against several baseline KT methods,
including DKT [16], DKVMN [22], and the recently proposed model AKT [4],
which is a two-factor KT model that integrating both exercise and skill. We use
the Area Under the Curve (AUC) as the metric to evaluate the performances of
all methods on predicting binary-valued future learner responses to exercises. The
role of AUC is to evaluate the prediction accuracy of a model on specific datasets:
AUC of 0.5 is equivalent to the predicted results obtained by random guessing;
the higher the AUC value, the better the prediction performance of a model [22].

2 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
3 https://sites.google.com/view/assistmentsdatamining/dataset.
4 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.
5 http://oli.stanford.edu/engineering-statics.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/view/assistmentsdatamining/dataset
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
http://oli.stanford.edu/engineering-statics


EDKT: Extensible Deep Knowledge Tracing 351

Implementation Details. The input factors are presented to neural networks
using “one-hot” input vectors. Take skill data for example, if S different skill
exist in total, then the skill tag st for the key-memory part is a length S vector
whose entries are all zero except for the st-th entry, which is one. Similarly, the
tuple input (st, rt) for the value-memory matrix is a length 2S vector, where
the (st + rt × S)-th entry is one.

For evaluation purposes, we perform 5-fold cross-validation for all models and
all datasets. Thus, for each fold, 20% learners are used as the test set, 20% are
used as the validation set, and 60% are used as the training set. For each fold,
we use the validation set to perform early stopping and tune the parameters for
every KT method.

5.2 Results and Discussion

Overall Model Performance. Table 2 lists the performance of all KT meth-
ods across all datasets on predicting future learner responses, and Fig. 4 presents
the results in an intuitive way. For EDKT, the best performing instance of all
variants is selected, where EDKT STH for ASSISTments2009, EDKT SQH for
ASSISTments2017, and EDKT QS (exercise and step) for Statics2011 (refer to
Table 3). we report the averages as well as the standard deviations across five
test folds.

Table 2. Performances of all methods on all datasets. Where EDKT comprehensively
outperforms the state-of-the-art KT models on each of the datasets. Best models are
bold and second best models are ‘*’.

Datasets Knowledge Tracing Models

DKT DKVMN AKT EDKT

ASSISTments2009 0.8170.0043 0.83720.0120 0.86010.0089* 0.86380.0097

ASSISTments2017 0.72630.0054 0.71830.0038 0.76640.0031* 0.86900.0024

Statics2011 0.82330.0039* 0.80850.0077 0.8180.0068 0.86070.0067

ASSISTments2009 ASSISTments2017 Statics2011

0.75

0.8

0.85

A
U

C

DKT
DKVMN
AKT
EDKT

Fig. 4. Performances of all methods on all datasets.

The proposed EDKT (using the parameter optimization method in [18])
exhibits advanced performances on all datasets, and this result suggests that



352 L. He et al.

the importance of other factors to model the KS of the learner. Compared
with the state-of-the-art methods, EDKT improves the AUC value by 0.43%,
13.39%, and 4.54% on datasets ASSISTments2009, ASSISTments2017 and Stat-
ics2011, respectively. Compared with the basic model DKVMN, EDKT improves
the AUC value by 3.17%, 20.98%, and 6.46% on datasets ASSISTments2009,
ASSISTments2017 and Statics2011, respectively. The reason for the limited per-
formance improvement for ASSISTments2009 is that the exercise is not inte-
grated with other factors in EDKT, due to over-parameterization (refer to Fac-
tor Ablation Study below for details).

Factor Ablation Study. In order to determine the contribution of different
factors in EDKT to the final performance, we conduct a series of ablation exper-
iments on ASSISTments2009 and ASSISTments2017 with more learning factors.
Table 3 show the results of the ablation experiments, and Fig. 5 presents the
results in an intuitive way.

Table 3. Ablation experiments of EDKT on ASSISTments2009 and ASSIST-
ments2017. Where EDKT Q and EDKT S as the single-factor instances of EDKT
are equivalent to DKVMN taking exercise and skill as input, respectively; EDKT ST
is the double-factor EDKT integrating skill and template; EDKT SQ is the double-
factor EDKT integrating exercises and skills; EDKT STH is the triple-factor EDKT
integrating skill, template and hint; EDKT SQH is the triple-factor EDKT model inte-
grating skill, exercise and hint.

ASSISTments2009 EDKT Q EDKT S EDKT ST EDKT STH

0.7540 0.8372 0.8577 0.8638

ASSISTments2017 EDKT Q EDKT S EDKT SQ EDKT SQH

0.7183 0.6908 0.7734 0.8678

In general, the single-factor model shows the worst performance; the integra-
tion of more factors in the model results in better performance; the contribution

EDKT-Q EDKT-S EDKT-ST EDKT-STH

0.76

0.78

0.8

0.82

0.84

0.86

A
U

C

AUC
Worst Value

(a) For ASSISTments2009
EDKT-Q EDKT-S EDKT-SQ EDKT-SQH

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

A
U

C

AUC
Worst Value

(b) For ASSISTments2017

Fig. 5. Ablation experiments of EDKT.



EDKT: Extensible Deep Knowledge Tracing 353

of different factors to the final performance of the model is different. The results
fully illustrate that one or more effective factors can be incorporated into the
single model, the effect of tracing learner’s KS will be affirmatively improved.

0 5 10 15 20 25 30 35 40 45 50
#iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

Valid and train AUC for 50 iterations

EDKT_S_Train
EDKT_S_Valid
EDKT_Q_Train
EDKT_Q_Valid

(a) For ASSISTments2009

0 5 10 15 20 25 30 35 40 45 50
#iteration

0.5

0.55

0.6

0.65

0.7

0.75

A
U

C

Valid and train AUC for 50 iterations

EDKT_S_Train
EDKT_S_Valid
EDKT_Q_Train
EDKT_Q_Valid

(b) For ASSISTments2017

Fig. 6. Validation and training AUC of EDKT S and EDKT Q on ASSISTments2009
and ASSISTments2017.

For ASSISTments2009, EDKT Q that only integrates exercises achieves
worse performance compared with the single-factor model EDKT S. The anal-
ysis of the results show that, EDKT Q suffers severe over-fitting. As indicated
in Fig. 6, no huge gap exists between the training AUC and the validation AUC
of EDKT S, and the validation AUC of EDKT S increases smoothly. However,
as the epoch proceeds, the training AUC of EDKT Q increases continuously,
and the validation AUC of EDKT only increases in the first several epochs and
begins to decrease slowly. As many exercises are only learned by few learn-
ers (refer to Fig. 7), the model is over-parameterized in the training process.

(a) The distribution of #exercise (b) The distribution of #skill

Fig. 7. The distribution of the number of exercise and skill on the learned times for
ASSISTments2009, where many exercises are rarely assigned to learners, while skill
data is relatively evenly distributed.



354 L. He et al.

The data analysis also finds that some of the exercises in the validation set and
the test set are completely invisible to all learners in the training set. Therefore,
exercises are not integrated in EDKT with other factors together. And the over-
parameterization problem caused by data sparsity will be alleviated in future
work.

For ASSISTments2017, EDKT S only integrates exercises achieves worse per-
formance compared with EDKT Q. As indicated in Fig. 6, EDKT Q does not
suffer over-fitting, thanks to the suitable size of the exercise library. However,
the size of the skill set is too small to reflect the difficulty of the exercises ade-
quately, resulting in the worst performance. Compared with ASSISTments2009,
hints makes a significantly greater contribution on ASSISTments2017, the rea-
son is that the number of hint for an exercise is a better indicator of the difficulty
of the exercise in the latter (refer to Fig. 1).

6 Conclusion and Future Work

This paper first gives a more general formal definition of KT tasks, and then pro-
poses an Extensible Deep Knowledge Tracing model for multiple learning factors
based on this general definition, named EDKT. EDKT is an extended version
of DKVMN and is compatible with various KT tasks with different factors by
extending or ablating factors in both extended plug-ins: Learning Factor Plug-in
(LFP) and Knowledge Growth Plug-in (KGP). To demonstrate the effectiveness
of the proposed model, we conduct extensive experiments on three real-world
benchmark datasets, and the results show that EDKT comprehensively outper-
forms the state-of-the-art KT models on predicting future learner responses,
with a maximum improvement of 20%. In the future, our work will focus on the
over-fitting of models in the face of large-scale exercises and mining more side
factors.

Acknowledgment. We would like to thank the anonymous reviewers for their helpful
comments. The research is supported by the National Key Research and Development
Program of China (2018YFB1004502) and the National Natural Science Foundation of
China (61702532, 61532001, 61690203).

References

1. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for
cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan,
T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006).
https://doi.org/10.1007/11774303 17

2. Chaudhry, R., Singh, H., Dogga, P., Saini, S.K.: Modeling hint-taking behavior and
knowledge state of students with multi-task learning. International Educational
Data Mining Society (2018)

3. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of
procedural knowledge. User Model. User-Adap. Inter. 4(4), 253–278 (1994)

https://doi.org/10.1007/11774303_17


EDKT: Extensible Deep Knowledge Tracing 355

4. Ghosh, A., Heffernan, N., Lan, A.S.: Context-aware attentive knowledge tracing.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2330–2339 (2020)

5. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)

6. He, L., Tang, J., Li, X., Wang, T.: ADKT: adaptive deep knowledge tracing. In:
Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS,
vol. 12342, pp. 302–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-62005-9 22

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Huang, Z., Yin, Y., Chen, E., Xiong, H., Su, Y., Hu, G., et al.: Ekt: exercise-aware
knowledge tracing for student performance prediction. IEEE Trans. Knowl. Data
Eng. 33(1), 100–115 (2019)

9. Khajah, M., Lindsey, R.V., Mozer, M.C.: How deep is knowledge tracing? arXiv
preprint arXiv:1604.02416 (2016)

10. Minn, S., Desmarais, M.C., Zhu, F., Xiao, J., Wang, J.: Dynamic student clas-
siffication on memory networks for knowledge tracing. In: Yang, Q., Zhou, Z.-H.,
Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol.
11440, pp. 163–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16145-3 13

11. Minn, S., Yu, Y., Desmarais, M.C., Zhu, F., Vie, J.J.: Deep knowledge tracing and
dynamic student classification for knowledge tracing. In: 2018 IEEE International
Conference on Data Mining (ICDM), pp. 1182–1187. IEEE (2018)

12. Nagatani, K., Zhang, Q., Sato, M., Chen, Y.Y., Chen, F., Ohkuma, T.: Augmenting
knowledge tracing by considering forgetting behavior. In: The World Wide Web
Conference, pp. 3101–3107 (2019)

13. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv
preprint arXiv:1907.06837 (2019)

14. Pandey, S., Srivastava, J.: RKT: relation-aware self-attention for knowledge trac-
ing. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 1205–1214 (2020)

15. Pavlik Jr., P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new
alternative to knowledge tracing. Online Submission (2009)

16. Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information
Processing Systems, pp. 505–513 (2015)

17. Rollinson, J., Brunskill, E.: From predictive models to instructional policies. Inter-
national Educational Data Mining Society (2015)

18. Tan, Z., He, L.: An efficient similarity measure for user-based collaborative filtering
recommender systems inspired by the physical resonance principle. IEEE Access
5, 27211–27228 (2017)

19. Wang, L., Sy, A., Liu, L., Piech, C.: Learning to represent student knowledge on
programming exercises using deep learning (2017)

20. Wilson, K.H., Karklin, Y., Han, B., Ekanadham, C.: Back to the basics: Bayesian
extensions of IRT outperform neural networks for proficiency estimation. arXiv
preprint arXiv:1604.02336 (2016)

21. Yeung, C.K.: Deep-IRT: make deep learning based knowledge tracing explainable
using item response theory. arXiv preprint arXiv:1904.11738 (2019)

22. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for
knowledge tracing. In: Proceedings of the 26th International Conference on World
Wide Web, pp. 765–774 (2017)

http://arxiv.org/abs/1410.5401
https://doi.org/10.1007/978-3-030-62005-9_22
https://doi.org/10.1007/978-3-030-62005-9_22
http://arxiv.org/abs/1604.02416
https://doi.org/10.1007/978-3-030-16145-3_13
https://doi.org/10.1007/978-3-030-16145-3_13
http://arxiv.org/abs/1907.06837
http://arxiv.org/abs/1604.02336
http://arxiv.org/abs/1904.11738


Fine-Grained Entity Typing via Label
Noise Reduction and Data Augmentation

Haoyang Li(B), Xueling Lin, and Lei Chen

The Hong Kong University of Science and Technology, Hong Kong, China
{hlicg,xlinai,leichen}@cse.ust.hk

Abstract. Fine-grained entity typing aims to assign one or more types
for entity mentions in the corpus. Recently, distant supervision has been
utilized to generate training data. However, it has two drawbacks. First,
the same labels are assigned to every entity mention in a context-agnostic
manner, which introduces label noise. Some approaches alleviate this issue
by hand-crafted features. However, they require efforts from experts. Sec-
ond, the entity mentions out of Knowledge Base (KB) are ignored and
hence cannot be added to the training data, which decreases the size of
the training data. Furthermore, the existing entity typing systems neglect
the types of other entity mentions in the same context which provide evi-
dence to infer the types of the target entity mentions. In this paper, we first
propose graph-based and sampling-based approaches, to reduce the label
noise generated by the distant supervision, and then augment the train-
ing data by finding potential entity mentions in the corpus and inferring
their types. Moreover, we propose a hierarchical neural network, which
involves the types of other mentions in the context and satisfies the type
consistency, to predict the types. Experiments on two datasets show that
our system outperforms state-of-the-art entity typing systems.

Keywords: Entity typing · Noise reduction · Data augmentation

1 Introduction

Fine-grained entity typing [19,25] is proposed to assign one or more specific
fine-grained types to an entity mention, which contributes to many real-world
applications, such as question answering [4] and KB population [12]. Specifically,
such fine-grained types can be organized in a tree-structured hierarchy. For exam-
ple, actor is a child type of person, and person is the parent type of singer.
One of the major challenge of this task is the absence of training dataset. Most
traditional entity typing systems [16] generate training data manually, which
requires extensive human efforts. To address it, distant supervision [15] is pro-
posed to generate training data [2,17,18,23,27], by annotating the types of an
entity mention based on its types recorded in an existing KB.

However, distant supervision will invoke two major problems. First, it may
introduce label noise, since it assigns type labels in a context-agnostic man-
ner. Take Fig. 1(a) as an example, under distant supervision, the type labels of
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 356–374, 2021.
https://doi.org/10.1007/978-3-030-73194-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_24


Fine-Grained Entity Typing 357

Fig. 1. Example of distant supervision and framework overview

Arnold Schwarzenegger in all the sentences are {person, politician, actor,
businessman} by consulting the KB. However, based on their context, the
correct labeling should be {person, politician}, {person}, and {person,
actor} for sentences s1, s2, s3, respectively. Recently, some works reduce label
noise by pruning heuristics such as deleting entity mentions with conflicting
types [6]. However, such strategies reduce the size of the training dataset sharply.
Moreover, some studies utilize heterogeneous graphs to reduce the label noise
with hand-crafted features [18,19], which need the efforts from experts.

Second, the training dataset generated by distant supervision is limited. The
reason is that only the entity mentions, that can be linked to the entities in the
KB, are labeled. However, the coverage of entities in the KB is always limited.
For example, the singer Jay Chou has a nickname President Chou that does not
exist in the KBs such as DBpedia [10]. Hence, utilizing limited entities in the
KB for annotation causes the KB-restriction problem that the entity mentions in
the corpus out of KB will be ignored and not labeled. Thus, distant supervision
cannot take full advantage of the corpus and decrease the size of training data.

Besides, there are two additional problems in fine-grained entity typing sys-
tem. First, when the state-of-the-art methods [23,25] predict types for a tar-
get entity mention, they typically ignore the types of other entity mentions.
Intuitively, the types of other entity mentions in the same context also pro-
vide valuable evidence. As shown in s3 of Fig. 1(a), the type of Terminator is
film role, which indicates that Arnold tends to be an actor. Secondly, cur-
rent works [21,23] regards types independently without involving the hierarchy
structure information, and cannot satisfy hierarchical consistency that the prob-
ability of an entity with a parent type should not be less than the probability of
this entity with a child type. Hence, they may suffer from the underfitting prob-
lem [24]. For example, in s1, the probability of Arnold being person should not
be less than politician. The reason is that an entity mention is politician
implies that it is also person, but the reverse does not holds.

To address these challenges, we propose a novel framework. First, to reduce
the label noise and address the KB-restriction problem, we propose the graph-
based and sampling-based approaches. (1) Graph-based approach: we assume that
the types of entity mentions in the same context should be coherent. Specifically,



358 H. Li et al.

for each context, we build a coherence graph of the entity mentions, with type
coherence scores between each pair of entity mentions as the edge weights. We
then reduce label noise by finding the maximum weight subgraph, where the max-
imal coherent score among types of entity mentions is selected. Finally, we assign
types to potential entity mentions based on both the semantic score as well as the
type coherence. (2) Sampling-based approach: we assume that two entity men-
tions share similar feature representation in the latent space if they have simi-
lar types. Specifically, we first obtain the feature representations of entity men-
tions and potential entity mentions based on their context, then reduce the label
noise by a sampling-based iterative algorithm. Finally, we assign the potential
entity mentions types based on their feature representation. The major difference
between these two approaches is that the graph-based approach only considers
entity mentions in the context, while the sampling-based approach involves all
words, including the non-entity mention words. In addition, to satisfy the hierar-
chical consistency and involve the type information of other mentions, we propose
a novel hierarchical neural network with an attention mechanism to predict types
for the target entity mentions in the context.

In this paper, we first introduce the important definitions in Sect. 2 and
framework overview in Sect. 3. We then propose graph-based and sampling-based
approaches in Sect. 4 and 5, respectively. In Sect. 6, we propose a hierarchical
neural network. We present the evaluation results of experiments in Sect. 7,
discuss the related work in Sect. 8 and conclude in Sect. 9.

2 Problem Definition

We first briefly introduce the important definitions used in this paper as follows.

Definition 1 (Knowledge Base and Target Type Hierarchy). A Knowl-
edge Base (KB) Ψ stores a lot of ontological knowledge, including the types of
entities. We denote the entities stored in the KB Ψ as EΨ , and the type schema
of the KB Ψ as YΨ . Specifically, a target type hierarchy Y ⊆ YΨ is organized into
a tree, where the nodes represent the types. Furthermore, we denote the set of
entities with target types in the KB Ψ as T = {(e, y)} ⊂ EΨ ×Y. Specifically, fol-
lowing [18,19], we assume that the types of each entity consist of one type-path,
which indicates one entity has at most one type in each level.

Definition 2 (Labeled Training Corpus). A labeled corpus generated by dis-
tant supervision consists of three major elements: (1) a set of entity mentions,
i.e., {mi}N

i=1, where m = {w1, w2..., w|m|} is a word span in the text represent-
ing a real-world entity; (2) a set of the context regrading to each entity mention
mi, i.e., {ci}N

i=1, where ci = {w1, w2..., w|ci|} to represent its context (e.g., sen-
tences or paragraphs in the text corpus) (3) a set of candidate type set of each
entity mention mi, i.e., {Yi}N

i=1. Therefore, we denote the raw training dataset
as Draw = {di}N

i=1 = {(mi, ci,Yi)}N
i=1, where di = (mi, ci,Yi) is an instance.



Fine-Grained Entity Typing 359

Definition 3 (Problem Definition). Given a KB Ψ with its hierarchy type
schema YΨ , a target type hierarchy Y, the entity-type facts T = {(e, y)} ⊂ EΨ ×Y
and a text corpus D, our task is to predict correct types Y ′

i ⊂ Y for each entity
mention mi based on its context ci.

3 Framework Overview

The framework is illustrated in Fig. 1(b), and we present details of each stage.
Stage 1: Labeled Training Corpora Generation. Given corpus D, a KB Ψ
with hierarchy type YΨ , and a target type Y ⊆ YΨ , our target is to automatically
generate a clean and large labeled training corpus. There are three major steps:
A. Raw Labeled Training Corpora Generation. Following distant super-
vision, we apply entity linking tools on D to obtain the candidate types for each
entity mention mi from the KB Ψ . The output is Draw = {(mi, ci,Yi)}|Draw|

i=1 .
B. Labeled Training Corpora Noise Reduction. Given Draw, we propose
graph-based and sampling-based approaches to reduce the label noise in Sect.
4.1 and 5.1, respectively. We then obtain a clean training dataset Dclean =
{(mi, ci,Y

′
i )}

|Dclean|
i=1 .

C. Labeled Training Corpora Augmentation. We augment the training
corpora by adding the entity mentions out of the KB Ψ , i.e., potential entity
mentions. We first obtain a training dataset Rpotential = {(pi, ci)}|Rpotential|

i=1

by extracting high-quality entity mentions {pi} from the text corpus D. We
then infer types for each pi based on its context ci and Dclean, and output the
potential training dataset Dpotential = {(pi, ci,Y

′
i )}

|Dpotential|
i=1 . Two approaches

are proposed for training data augmentation in Sect. 4.2 and 5.2.
Stage 2: Type Prediction via a Hierarchical Neural Network. We design
a hierarchical neural network in Sect. 6 that satisfies the type consistency and
is trained on the clean and potential training datasets obtained in Stage 1.

4 Graph Based Improvement

In this section, we propose a novel graph-based approach to reduce the label noise
for entity mentions in a top-to-down manner, and then augment the training
dataset by adding potential entity mentions and their types, based on a type
coherence graph among mentions and the semantic score. The intuition is that
the types of entity mentions in the same context should be coherent. Take Fig.
1(a) as an example, in the sentence s3, the type of Terminator is film role,
which indicates that Arnold tends to be an actor instead of a politician, since
film role is more coherent with actor than politician.



360 H. Li et al.

Fig. 2. Normalized candidate type set and the noise reduction in Level 2 (Color figure
online)

4.1 Labeled Training Corpora Noise Reduction

In this task, we first conduct data normalization on Draw, and then reduce the
label noise in a top-to-down manner.

Step 1: Data Normalization. Given Draw = {(mi, ci,Yi)}|Draw|
i=1 , we first

transform Yi into a normalized type set Y∗
i , by adding a none type as the child

type for each level (except for the root level). Please note that the none types
in different type path are different. Figure 2(a) shows an example. We then

transform Draw into D′
raw = {Ci}|D′

raw|
i=1 where Ci = {(mk,Y∗

k )}|Ci|
j=1 and {mk}|Ci|

k=1

denotes entity mentions in the same context ci.
Step 2: Label Noise Reduction. As discussed earlier, there is a type-path for
each entity mention involving its context [18,19]. Thus, one entity mention can
only have at most one type in each level. Following this, we conduct the label
noise reduction in a top-to-bottom manner. Specifically, we select at most one
type as the correct type for each level, and gather its children type as candidate
types for the next level. Finally, these correct types can consist of only one type-
path. For simplicity and generality, let Cl

i = {(m1,Y l
1), · · · , (mn,Y l

n)} denote
entity mentions in context ci with their normalized candidate type set in the
l-th level. There are two steps to conduct the noise reduction (1) to construct
the type coherence graph Gl

i based on Cl
i , and (2) to find the maximum weight

subgraph in the graph Gl
i. We define the type coherence graph and maximum

weight subgraph as follows.

Definition 4 (Coherence Score). Given two types yi and yj, the coherence

score is defined as defined as: w(yi, yj) =
oij/fyi

+oij/fyj

2 , where fyi
and fyj

are
the frequency of the type yi and yj in D

′
raw, and oij is the co-occurrence times

between yi and yj in D
′
raw.



Fine-Grained Entity Typing 361

Definition 5 (Type Coherence Graph). A type coherence graph describes
the coherence among all the types of entity mentions in one context. Formally,
given a context ci consisting of n entity mentions with candidate type sets of the
l-th level, i.e., Cl

i = {(m1,Y l
1), · · · , (mn,Y l

n)}, the type coherence graph of Cl
i

is an undirected graph Gl
i = (Yi, Ei). Specifically, Yi denotes the types y ∈ Y l

i .
The edge e ∈ Ei is connected by a pair of types that are from different entity
mentions. The weight of an edge denotes the coherence score between two types.

Definition 6 (Maximum Weight Subgraph). Given a type coherence graph
Gl

i constructed on Cl
i = {(mk,Y l

k)}n
k=1, the target is to find a maximum weight

subgraph by selecting only one type yl
k from Y l

k for mk. We denote the total and
the average edge weight of the maximum weight subgraph as wlmax

i and w
lavg

i ,

respectively, i.e., w
lavg

i = 2·wlmax
i

n(n−1) since there are n(n−1)
2 edges in the subgraph.

Example. Figure 2(b) illustrates a toy example of label noise reduction of the
second level. The candidate type sets in the second level of these three entity
mentions are shown in the table. We first construct a coherence graph by adding
edges among types that are from different entity mentions, and the edge weight
is the coherence score. Then we obtain the maximum weight subgraph that
is shown by green lines. As a result, the correct types for these three entity
mentions are politician, politician and official residence, respectively,
w2max

i = 0.87 and w
2avg

i = 0.29.
Algorithm 1 shows the details of graph-based label noise reduction. Specif-

ically, for the l-th level, we obtain the candidate type set Y l
i for each entity

mention mi, by involving the children types of the correct type yl−1
i in the last

level from the normalized candidate type set Y∗
i (line 4). We then construct the

type coherence graph Gl
i based on Cl

i (line 5), and reduce the label noise by
finding a maximum weight subgraph from Gl

i (line 6). Specifically, since find-
ing a maximum weight subgraph is NP-hard [1], we propose a greedy algorithm
that consequently select the edge with the maximum weight until we find a sub-
graph. We repeat the label noise reduction process for Ci for all levels (lines
3–6). Finally, we obtain the result by fusing the clean types {yl

i} from 1 to the
H-th level into one type set Y ′

i (line 7). Please note that we can transform D′
clean

into another format Dclean by deleting all none types of Y ′
i from D′

clean.

Time Complexity. We construct H coherence graphs and find their maximum
weight subgraphs that traverse all edges in the coherence graphs. Hence, the time
complexity is O(

∑H
l=1 El · |D′

raw|), where El = n(n−1)
2 m2

l , n is the number of
mentions, and ml is the average number of types in the l-th level.



362 H. Li et al.

Algorithm 1: Label Noise Reduction by Type Coherence Graph

Input: D′
raw = {Ci}|D′

raw|
i=1 where Ci = {(mi,Y∗

i )}|Ci|
i=1

Output: D′
clean = {C′

i}|D′
clean|

i=1 where C
′
i = {(mi,Y ′

i )}|C′
i |

i=1

1 D′
clean ← ∅

2 foreach instance Ci = {(mi,Y∗
i )

|Ci|
i=1 } ∈ D′

raw do
3 foreach l in range(H) do

4 Cl
i = {(mi,Y l

i)}|Ci|
i=1 ← get the l-th level candidate types

5 Gl
i ← construct the l-th level type coherence graph

6 Cl
′

i = {(mi, {yl
i})}|Ci|

i=1 ← maximum weight subgraph of Gl
i

7 C
′
i ← Union(C1

′
1 , · · · , CH

′
i )

8 D
′
clean ← D

′
clean ∪ C

′
i

9 Return D′
clean = {C′

i}|D′
clean|

i=1

4.2 Labeled Training Corpora Augmentation

In this subsection, we infer the types of the potential entity mention pi based
on its context ci in a top-to-down manner. Specifically, when we assign the type
yl

i for potential entity mention pi as the correct type in the l-th level, it should
satisfy two conditions: (1) pi should be semantically coherent with yl

i, and (2)
yl

i should be coherent with the types of other entity mentions in the context ci.

Semantic Score. Given the potential entity mention pi and the type yl
i, the

semantic score Sem(pi, y
l
i) = max(cosine(rpi

, rej
)), where ej ∈ {e|(e, yl

i)} ⊂ T ,
and rpi

and rej
are computed by averaging the word embedding of the words

in pi and ej , respectively.

Coherence Degree. Given the type yl
i and Cl

′

i = {(ml
k, {yl

k})}|Cl′
i |

k=1 obtained in
Sect. 4.1, the coherent degree between yl

i and the correct types of other mentions

in Cl
′

i is W(yl
i,ci)

=
∑|Cl′

i |
k=1 w(yl

i, y
l
k), where w(yl

i, y
l
k) is coherence score.

Algorithm 2 shows the detail of labeled training corpora augmentation. The
basic idea is to assign types for each instance (pi, ci) ∈ Rpotential in a top-
to-down manner (lines 3–11). More specifically, similar to Algorithm 1, we
first construct the candidate type set Y l

i . We then assign type yl
i to pi, if

yl
i = arg maxyl

i∈Yl
i
(W(yl

i,ci)
· Sem(pi, y

l
i)) and

W(yl
i
,ci)

|C′
i | ≥ w

lavg

i . The type assign-
ment terminates when there is no suitable type for pi, or we have assigned the
type in the H level for pi. Finally, the output is the augmented training dataset
Dpotential = {(pi, ci,Y

′
i )}

|Dpotential|
i=1 .



Fine-Grained Entity Typing 363

Algorithm 2: Graph-based Training Dataset Augmentation

Input: Rpotential = {pi, ci}|Rpotential| and D′
clean = {C′

j}|D′
clean|

j=1

Output: Dpotential = {(pi, ci,Y ′
i )}

|Dpotential|
i=1

1 Dpotential ← ∅
2 foreach instance di = (pi, ci) ∈ Rpotential do

3 Y ′
i ← ∅

4 C
′
i ← get from D′

clean

5 for l in range(H) do

6 Y l
i ← gets the l-th level candidate types

7 yl
i ← arg maxyl

i∈Yl
i
(W(yl

i,ci)
· Sem(pi, y

l
i))

8 if
W

(yl
i
,ci)

|C′
i | ≥ w

avgl
i then

9 Y ′
i ← Y ′

i ∪ {yl
i}

10 else
11 break

12 Dpotential ← Dpotential ∪ (pi, ci,Y ′
i )

13 Return Dpotential = {(pi, ci,Y ′
i )}

|Dpotential|
i=1

Time Complexity. Suppose that on average there are n entity mentions in
each instance of D′

clean. We compute the semantic score and the type coherence
score for each potential instance, which takes O(|Y|n + |T |) time. Hence, the
time complexity is O((|Y| · n + |T |) · |Rpotential|).

5 Sampling Based Improvement

The graph-based approach is efficient, but ignores the non-entity mention words
in the context, which also indicate the types of the target entity mentions. For
example, in the sentence s2 of Fig. 1(a), a local cultural association provides an
evidence that Forum Stadtpark tends to be an organization.

Therefore, we propose a novel sampling-based approach to reduce the label
noise and augment the training dataset, by utilizing the distributed feature rep-
resentation of all the words in context. Our intuition is that if two entity mentions
have similar types, their feature representation in the latent space in the context
should be similar.

5.1 Labeled Training Corpora Noise Reduction

We propose four major steps to reduce the label noise in Draw.
Step 1. Entity Mention Centered Embedding Method. BERT [5] is
trained on unlabeled data and has proved its capability to capture the semantic
meaning of words in many tasks. In this step, we utilize the training dataset Draw



364 H. Li et al.

to fine tune the pre-trained BERT model to capture the feature representation of
the entity mentions based on their context. In our work, the pre-trained BERT
model is bert-base-uncased, and its output dimension for each word is 768. As
illustrated in Fig. 3(a), for each instance di = (mi, ci,Yi) ∈ Draw, we transform
it into ([CLS],mi,[SEP],ci,[SEP]) format, where the [SEP] symbol is to separate
the entity mention and its context, and [CLS] is used as a symbol to aggregate
the features from other words in the same context. Moreover, we add a fully
connected layer with R768×|Y| dimensions. We use the output vector [CLS] as its
input to predict entity types, and fine tune the BERT model by minimizing the
cross-entropy loss between the predicted types and Yi. We assume that a men-
tion based on its context should be embedded closer to its relevant types rather
than its irrelevant types. Hence, the fune-tuned BERT groups entity mentions
with the same types into the same latent space based on their context.

We then generate the feature representation of the entity mentions based on
context. Given the raw training dataset Draw = {(mi, ci,Yi)}|Draw|

i=1 and the fine-
tuned BERT model, we transform mi and ci as the input of BERT, and obtain
the output vector [CLS] as its feature representation ri. Also, for each instance
(pj , cj) ∈ Rpotential, we get the feature representation rj using the same method.
Please note that obtaining the representation of potential mentions based on the
context does not need the label.
Step 2. Similarity Between Instances in the Labeled Training Corpora.
Given two instances in Draw, i.e., di = (mi, ci,Yi) and dj = (mj , cj ,Yj), we
define the similarity between di and dj as sim(di, dj) = ri ·rj

‖ri ‖·‖rj ‖ , where ri and
rj are the feature representations of di and dj . sim(di, dj) is larger if the types
of entity mention mi and mj are similar. Specifically, dj is a positive sample of
di if sim(di, dj) > 0.5, or else dj is a negative sample. We use Posi and Negi to
denote the set of positive and negative samples of di, respectively.
Step 3. Confidence Score Between Types. The confidence score cof(yj |yi)
as the probability that an entity mention has the type yj under the condition

that it has the type yi. Formally, we define cof(yj |yi) =
|Tyi

∩Tyj
|

|Tyi
| where Tyi

=
{e|(e, yi)} ⊂ T and Tyj

= {e|(e, yj)} ⊂ T .
Step 4. Probability of Type Assignment. For each instance di = (mi, ci,Yi),
the probability p(yi|mi, ci) that each yi ∈ Yi can be assigned for mi is computed
as follows: p(yi|mi, ci) = r(yi|mi,ci)

r(yi|mi,ci)+r(ȳi|mi,ci)
, where r(yi|mi, ci), r(ȳi|mi, ci) are

the reliability of type yi belonging to, not belong to mi in terms of ci, respectively.



Fine-Grained Entity Typing 365

Algorithm 3: Label Noise Reduction by Sampling

Input: The raw training dataset Draw = {(mi, ci,Yi)}|Draw|
i=1 , and {ri}|Draw|

i=1 .
Output: The clean training dataset Dclean = {(mi, ci,Y ′

i )}|Dclean|
i=1

1 Dclean ← ∅
2 while unconverge do
3 foreach instance di = (mi, ci,Yi) ∈ Draw do
4 Posi, Negi ← RandomSelectFrom(Draw)
5 foreach yi ∈ Yi do
6 p(yi|mi, ci) ← step 4

7 foreach instance di = (mi, ci,Yi) ∈ Draw do
8 Y ′

i ← ∅
9 for l in range(H) do

10 Y l
i ← get the l-th level candidate types

11 yl
i = argmaxyl

i∈Yl
i
p(yl

i|mi, ci)

12 if p(yl
i|mi, ci) ≥ 0.5 then

13 Y ′
i ← Yi ∪ {yl

i}
14 else
15 break

16 Dclean = Dclean ∪ {(mi, ci,Y ′
i )}

17 Return Dclean = {(mi, ci,Y ′
i )}|Dclean|

i=1

Intuitively, if the representation of two instance are similar, the types of their
entity mentions should be similar and conversely, it also holds. Hence, we define
the reliability r(yi|mi, ci) = 1

|Posi|
∑

dj∈Posi
sim(di, dj)cof(yi|yj)p(yj |mj , cj)

and r(ȳi|mi, ci) = 1
|Negi|

∑
dj∈Negi

(1 − sim(di, dj))cof(yi|yj)p(yj |mj , cj) where
yj = arg maxyj∈Yj

cof(yi|yj).

Remark. For each instance di ∈ Draw, we can utilize the rest |Draw| − 1
instances to infer its correct types. However, it is time-consuming especially
when Draw is large. Hence, for efficient purpose, we propose a sampling method
that we sample η positive samples and η negative samples respectively for di. We
assume the similarity distribution for an instance di fits the uniform distribution
from 0 to 1. Hence, the sample number expectation is less than η

0.5 + η
0.5 = 4η.

Algorithm 3 shows the detail of sampling-based label noise reduction. Specif-
ically, for each di = (mi, ci,Yi) ∈ Draw, we first randomly select η positive
samples and η negative samples (lines 4) to compute the probability p(yi|mi, ci)
following step 4, where yi ∈ Yi. After I iterations or when the difference of the
average type probability of all instances in Draw between two adjacent itera-
tions is less than 0.01, the type assignment procedure converges. We then select
the clean types in a top-to-down manner (lines 14–22). Specifically, we select
the type yl

i from the candidate type set Y l
i as the clean type of the l-th level

if yl
i = arg maxyl

i∈Yl
i
p(yl

i|mi, ci) and p(yl
i|mi, ci) > 0.5. We then construct the

candidate type set Y(l+1)
i of the (l+1)-th level by involving the children types of



366 H. Li et al.

Fig. 3. Fine-tuned BERT model and hierarchical neural network

yl
i from Yi. If we cannot find clean type in the l-th level, we regard there is no

clean type in the l-th and deeper level. Finally, we get the clean training dataset
Dclean = {(mi, ci,Y

′
i )} as output. The initial value of p(yi|mi, ci) is set as 0.5.

Time Complexity. Suppose on average there are m types for each instance. For
each instance, we sample η positive samples and η negative samples to compute
the probability of types, which runs I iterations, so this procedure takes O((4η+
2ηm) · I) time. Also, label noise reduction takes O(m) time. Overall, the time
complexity of Algorithm 3 is O((4η + 2ηm) · I|Draw|).

5.2 Labeled Training Corpora Augmentation

The basic idea is to utilize Dclean to infer types for potential mention pi based
on its representation ri. Specifically, for each (pi, ci) ∈ Rpotential, we select η
positive and η negative samples from Dclean based on ri. Second, we adopt a
top-to-down manner to infer a type-path for pi from the first level to the H-th
level. Specially, in the l-th level, type yl

i is regarded as the correct type, only
if yl

i = arg maxyl
i∈Yl

i
p(yl

i|mi, ci) and p(yl
i|mi, ci) > 0.5. We then construct the

(l+1)-th candidate type set Y l+1
i by involving the children types of yl

i from Y.
Finally, we obtain Dpotential = {(pi, ci,Y

′
i )}

|Dpotential|
i=1 . Similar to Algorithm 3,

the time complexity is O((4η + 2η · |Y|) · |Rpotential|).

6 Type Prediction via Hierarchical Neural Network

In this section, we propose a hierarchical neural network, that involves the type
of other entity mentions and satisfies hierarchical consistency, to predict types
for the target entity mention. The model architecture is shown in Fig. 3(b).



Fine-Grained Entity Typing 367

6.1 The Architecture

Embedding Layers. For each word w in mi, we get the word embedding value
we from the pretrained embedding. For each word w in context ci, we incorporate
the word position embedding wp to reflect relative distances between w and mi.
Similarly, we incorporate the type of other entity mentions into the embedding.
Every type y can be mapped to a type embedding wy. Then, the type embedding
value of wi can be generated by wt = 1

T

∑T
k=1 wyk

, where yk is the types of the
other mention m containing wi. Finally, the word embedding of wi is wc

i =
[we,wp,wt].

Representation Layers. Given an entity mention mi = {we
i } and a BiLSTM

that consists of two sub-networks for the forward and the backward pass, the
mention representation can be obtained as rmi

=
−−−→
hright ⊕←−−

hleft, where ⊕ denotes
element-wise plus,

−−−→
hright and

←−−
hleft denote the outputs of forward and backward

pass. Similarly, given context ci = {wc
i} and a BiLSTM, for each word wj in

the context ci, the feature vector hi,j can be generated by hi,j =
−−→
hi,j ⊕ ←−−

hi,j .
Since the word in context have different impact on inferring the type of the
entity mention, we employ the attention mechanism to obtain the context rep-
resentation rci =

∑l
j=0 βi,jhi,j , where βi,j = exp(rmi

tanh(W ·hi,j))
∑l

k=0 exp(rmi
tanh(W ·hi,k))

denotes
the context word weight on mi, and W is the parameter matrix. Then, the final
feature representation is ri = rmi

	 rci , where 	 denotes vector concatenation.

Prediction Layers. We then feed ri through H + 1 fully connected layers
with residual format input [7], and get the global predicted results of all types
in Y, and the local predicted results in each hierarchical level. Formally, let Y l

be the set of types of Y in the l-th level. The activation value F l
G after the l-th

global fully connected layer is defined as Fl
G = φ(Wl

G(Fl−2
G 	Fl−1

G )+bl
G), where

Wl
G ∈ R

|Fl
G|×(|Fl−2

G |+|Fl−1
G |) is the weight parameter and bl

G ∈ R
|Fl

G|×1 is the bias
parameter. Please note that F0

G = ri. The global predicted results are obtained
as: PG = σ(WH+1

G (FH−1
G 	 FH

G ) + bH+1
G ), where WH+1

G ∈ R
|Y|×(|FH−1

G |+|FH
G |) ,

bH+1
G ∈ R

|Y|×1, and σ denotes the sigmoid function. For the l-th level, we can
get the local predicted results: Pl

L = σ(Wl
LFl

G + bl
L), where Wl

L ∈ R
|Yl|×|Fl

G|

is a weight parameters matrix and bl
L ∈ R

|Yl|×1 is the bias parameter vector.
Then the final predicted result is generated by: PF = βPL + (1 − β)PG where
β ∈ [0, 1] is to control the proportion between the local and global information.

6.2 Optimization

We optimize the neural network by minimizing the global loss LG, and the
local loss LL, and the hierarchical inconsistency loss LH . Formally, the global
loss LG = − 1

N

∑N
i=0

∑|Y|
j=1 ŷij logpi(yj) + (1 − ŷij)log(1 − pi(yj)), the local loss

LL = − 1
N

∑N
i=0

∑H
l=1

∑|Yl|
j=|Yl−1| ŷij logpl

i(yj) + (1 − ŷij)log(1 − pl
i(yj)), where



368 H. Li et al.

ŷij is a binary type indicator denoting whether mi belongs to yj type, pi(yj)
and pl

i(yj) are the global and local predicted result, respectively. The incon-
sistency loss, that can guarantee the hierarchical consistency and keep the
type dependency in the type path, is denoted as LH = 1

H

∑H
l=1 Ll where

Ll = |max(0, pl
i(yj) − pl−1

i (ya))|2, yj is the type in l-th level and ya is the parent
of yj . Therefore the total loss of this model LM is LM = LL +LG +LH +λ‖Θ‖2,
where Θ denotes all parameters in the model. Finally, we optimize the neural
network by minimizing LM .

7 Experiments

7.1 Datasets and Preprocessing

Description of Datasets. We use two real-world datasets. (1) BC5CDR1: the
corpora is from recent BioCreativew V Chemical and Disease Mention Recog-
nition task, which is a medicine-domain dataset that mainly includes entity
mentions with drug, chemicalsubstance and disease types. (2) NYT: The
training corpus consists of 1000 articles from New York Times collected by [11]
on general domains, such as politics, food, sports and movies.

Table 1. Statistics of the datasets.

#target types #all types #train #test max depth H Average |Yi|
BC5CDR 36 97 18181 2377 3 1.61

NYT 68 108 19725 2060 3 2.64

Generation of Evaluation Dataset. For each dataset, we follow a 90/10 ratio
to separate the data into training corpora and evaluation corpora. To evaluate
our model, we annotate the evaluation set semi-automatically. We first employ a
sentence tokenization tool NLTK [13] to separate each evaluation corpus into sen-
tences. We then utilize an entity linking tool DBpedia Spotlight [14] to recognize
the entity mentions in each sentence and link them to the entities in DBpedia.
Specifically, we keep the types in evaluation dataset whose frequency is over 10
as the target type set Y, and regard the other types as side information. After-
wards, we delete the wrong annotations manually. We further randomly select
10% mentions from the evaluation corpora as the validation dataset.

Generation of Training Dataset. We first employ NLTK [13] and DBpedia
Spotlight [14] to generate Draw. Specifically, if the words of an entity mention
are labeled separately, we regard the union of the types of such words as the can-
didate type set. We then obtain the training dataset Draw = {(mi, ci,Yi)}|Draw|

i=1 .
The details are listed in Table 1.

1 https://www.ncbi.nlm.nih.gov/research/bionlp/Data/.

https://www.ncbi.nlm.nih.gov/research/bionlp/Data/


Fine-Grained Entity Typing 369

Generation of Potential Training Dataset. Given entity-type facts T =
{(e, y)} ⊂ EΨ × Y and corpus D, we use AutoPhrase [20] to extract high quality
phrases from D that are similar to e in T , and we regard these high-quality
phrases as potential entity mentions. Finally, we get the Rpotential = {(pi, ci)}.

Type Confidence Score. We utilize 2016-10 DBpedia, which has 6.6M enti-
ties, 13B triples, and 760 classes, to compute the confidence score between types.

Hyper Parameter. We set the sampling number in Sect. 5 to be 60 and 170
for BC5CDR and NYT, respectively. The parameters of the neural network are
searched by Hyperopt [3]. Due to the space limit, we do not report them here.

Baselines. We compare our model with several state-of-the-art approaches.
We search hyper parameters for PLE, AFET by grid search and for NFETC by
Hyperopt [3] approach. We then run each model three times and use the average
value as their results. Duo to space limit, we only report the results.

1. AFET [19] proposes an embedding method to model entity mentions in terms
of the number of their type path and train the model with partial label loss.

2. PLE [18] proposes heterogeneous partial-label embedding for label noise
reduction to improve the performance of entity typing systems. We compare
the PLE model with FIGER typing system as a baseline.

3. NFETC [25] proposes a neural network with hierarchy loss functions to
handle the overly-specific labels. We compare the NFETC with partial label
and hierarchical loss functions that are denoted as NFETC and NFETChier.

4. CType is our proposed entity typing model. We report results with five
variants. In CType, the hierarchical neural network is directly trained on the
Draw. In CTypegc and CTypesc, the hierarchical neural network is trained on
the Dclean obtained by the graph-based and sampling-based noise reduction
algorithm in Sect. 4 and 5 respectively. In CTypegca and CTypesca, the
neural network is trained on the both Dclean and Dpotential.

Table 2. Performance evaluation in the BC5CDR dataset.

Method Accuracy Macro-P Macro-R Macro-F1 Micro-P Micro-R Micro-F1

AFET 0.825 0.885 0.868 0.876 0.875 0.845 0.860
PLE+FIGER 0.657 0.945 0.773 0.850 0.865 0.712 0.781
NFETC 0.660 0.909 0.768 0.833 0.917 0.714 0.803
NFETChier 0.754 0.882 0.796 0.837 0.891 0.749 0.813
CType 0.873 0.926 0.911 0.918 0.958 0.893 0.924
CTypegc 0.886 0.930 0.921 0.925 0.957 0.903 0.929
CTypegca 0.913 0.943 0.939 0.941 0.956 0.928 0.942
CTypesc 0.899 0.939 0.928 0.933 0.958 0.917 0.937
CTypesca 0.928 0.958 0.955 0.957 0.963 0.946 0.954



370 H. Li et al.

Table 3. Performance evaluation in the NYT dataset.

Method Accuracy Macro-P Macro-R Macro-F1 Micro-P Micro-R Micro-F1

AFET 0.585 0.780 0.731 0.755 0.807 0.755 0.780
PLE+FIGER 0.452 0.918 0.668 0.773 0.698 0.672 0.685
NFETC 0.639 0.842 0.818 0.830 0.869 0.825 0.847
NFETChier 0.668 0.858 0.827 0.842 0.895 0.832 0.862
CType 0.801 0.930 0.938 0.934 0.938 0.942 0.941
CTypegc 0.824 0.944 0.942 0.943 0.951 0.945 0.948
CTypegca 0.755 0.900 0.909 0.904 0.910 0.914 0.912
CTypesc 0.860 0.954 0.949 0.952 0.963 0.952 0.957
CTypesca 0.822 0.935 0.927 0.931 0.947 0.932 0.939

Evaluation Metrics. Let P denote the evaluation set. For mention m ∈ P ,
we denote its ground-truth types as tm and the predicted types as t̂m. Simi-
larly to [18,19,26], we use the following metrics (1) Accuracy: Accuracy =∑

m∈P 1(tm = t̂m)/|P |. (2) Loose Macro. The Macro Precision and Macro
Recall are computed for each mention: Ma-P = 1

|P |
∑

m∈P |tm ∩ t̂m|/|t̂m| and
Ma-R = 1

|P |
∑

m∈P |tm ∩ t̂m|/|tm|. (3) Loose Micro. The Micro Precision
and Micro Recall are computed by averaging all entity mentions: Mi-P =∑

m∈P |tm ∩ t̂m|//
∑

m∈P |t̂m| and Mi-R =
∑

m∈P |tm ∩ t̂m|/
∑

m∈P |tm|.

7.2 Comparison and Analysis

Comparing Baselines with Our Model. Tables 2 and 3 summarize the
results on BC5CDR and NYT, respectively. All variants of our model outper-
form other baselines in strict accuracy, Macro-F1 and Micro-F1 metrics. AFET
and PLE suffer from low strict accuracy. The reason is that they manually define
features to capture the shallow semantic meaning of entity mentions with their
context, which may not represent the semantic meaning fully. Moreover, NFETC
selects the type with the maximum confidence among candidate types. However,
it is a suboptimal in the early stage whose parameters are randomly initialized,
and introduces errors. CTypegc and CTypesc outperform other baselines, which
implies that our framework can achieve satisfying performance on noisy datasets.

Comparing Variants of Our Model. The performance of CTypegc and
CTypesc is better than CType on both dataset. This result indicates that
the reduction of label noise improves the performance. Moreover, CTypesc and
CTypesca perform better than CTypegc and CTypegca, since the graph-based
approach ignores the non-entity mentions. Also, CTypegca and CTypesca achieve
better performance compared with CTypegc and CTypesc on BC5CDR, while
the trend is different at NYT. The reason is that most of the entity mentions in
NYT corpora have similar contexts. Therefore, it is easy to introduce errors for
the type inference of potential entity mentions, which hurts the performance.



Fine-Grained Entity Typing 371

Fig. 4. Experiment results

Test at Different Type Levels. Figure 4(a)(b) reports the accuracy of six
models at different levels. The results show that AFET and PLE obtain satisfying
performance at the first level. Nevertheless, they are difficult to detect correct
types in deeper levels. For example, they only reach 27.6% and 13.5% in the
third level on BC5CDR. The variants of our model outperform all baselines in
three levels on both dataset, and also improve the accuracy in the deeper levels
significantly. More specifically, CTypesca achieves a 27.5% improvement in level
3 compared with the beset baseline AFET on BC5CDR, and CType achieves
a 18.3% improvement compared with the best baseline NFETChier on NYT.
These gains prove the effectiveness of our entity typing system.

Efficiency and Effectiveness of Sampling Algorithm. We explore Algo-
rithm 3 in terms of different sampling numbers. As illustrated in Fig. 4(c)(d),
when the sampling number is less than 40 (150) in BC5CDR (NYT), the algo-
rithm will not converge within 5 h. The accuracy of both datasets is steady when
Algorithm 3 converges. Also, for BC5CDR (NYT), the time cost decreases when
the sampling number increases from 40 to 60 (150 to 170), then increases as the
sampling number becomes larger. The reason is that smaller sampling number
leads to more iterations before convergence, and larger sampling number results
in longer time for each iteration.



372 H. Li et al.

8 Related Work

Fine-Grained Entity Typing. To reduce label noise, Gillick [6] proposes
three pruning heuristics to get clean training dataset. However, these heuris-
tics decrease the size of training dataset sharply. Recently, AFET [19] models
clean and noisy mentions separately with different loss function incorporating
type hierarchy information obtained from training dataset. Moreover, PLE [18]
proposes a heterogeneous partial-label framework to reduce label noise. However,
these two methods rely on hand-crafted features heavily. NFETC [25] proposes
a hierarchical loss function to reduce label noise, but it suffers from error aggre-
gation problem since the model at the beginning is sub-optimal.

Some research works utilize neural networks. Shimaoka et al. [21] propose
an attentive neural network with LSTM to capture the context feature. How-
ever, it neglects the label noise. AAA [2] proposes a neural network incorporat-
ing label noise information with a hinge loss function. However, it treats types
equally without considering the correlations among types. Xin et al. [23] uti-
lizes the attention mechanism and incorporates information from KBs and text,
but ignores the label noise. Moreover, the above approaches do not consider the
side information of other entity mentions in the context and the hierarchical
consistency.

Data Augmentation. It deals with the problem that the training dataset
is not enough. [22] replaces words in the context with synonyms on the text
classification task, but how to choose word is a non-trivial problem. [8] com-
bines a variational auto-encoder and attribute discriminator to generate fake
data. [9] proposes a bi-directional language model to replace words based on the
context. However, training a variational auto-encoder or bidirectional language
model need a lot of work. More importantly, above approaches cannot solve KB
restriction problem since they cannot detect new entity mentions.

9 Conclusion

In this paper, we propose a novel framework CType for the fine-grained entity
typing task. We first propose two approaches to reduce label noise from training
dataset introduced by distant supervision approach and augment the training
dataset by finding potential entity mentions from corpora. Then, we design a
hierarchical neural network considering the side information of other entity men-
tions and satisfying the type hierarchical consistency, to predict types for the
target entity mentions based on their context. Experiments on two real-world
datasets demonstrate that our framework outperforms state-of-the-art models.

Acknowledgment. This work is partially supported by the Hong Kong RGC GRF
Project 16202218, CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project
AoE/E-603/18, China NSFC No. 61729201, Guangdong Basic and Applied Basic
Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and



Fine-Grained Entity Typing 373

ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, Didi-HKUST
joint research lab project, and Wechat and Webank Research Grants.

References

1. Althaus, E., Blumenstock, M., Disterhoft, A., Hildebrandt, A., Krupp, M.: Algo-
rithms for the maximum weight connected k-induced subgraph problem. In: Zhang,
Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 268–282.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12691-3 21

2. Anand, A., et al.: Fine-grained entity type classification by jointly learning repre-
sentations and label embeddings. arXiv (2017)

3. Bergstra, J., et al.: Hyperopt: a python library for optimizing the hyperparameters
of machine learning algorithms. In: SciPy, pp. 13–20. Citeseer (2013)

4. Cui, W., et al.: KBQA: learning question answering over QA corpora and knowl-
edge bases. PVLDB 10(5), 565–576 (2017)

5. Devlin, J., et al.: Bert: pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018)

6. Gillick, D., et al.: Context-dependent fine-grained entity type tagging (2014)
7. He, K., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778

(2016)
8. Hu, Z., Yang, Z., et al.: Toward controlled generation of text. In: ICML, vol. 70,

pp. 1587–1596. JMLR. org (2017)
9. Kobayashi, S.: Contextual augmentation: data augmentation by words with

paradigmatic relations. arXiv:1805.06201 (2018)
10. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted

from Wikipedia. Semant. Web 6(2), 167–195 (2015)
11. Lin, X., Chen, L.: Canonicalization of open knowledge bases with side information

from the source text. In: ICDE, pp. 950–961. IEEE (2019)
12. Lin, X., et al.: KBPearl: a knowledge base population system supported by joint

entity and relation linking. PVLDB 13(7), 1035–1049 (2020)
13. Loper, E., et al.: Nltk: the natural language toolkit. arXiv preprint (2002)
14. Mendes, P.N., et al.: DBpedia spotlight: shedding light on the web of documents.

In: I-SEMANTICS, pp. 1–8. ACM (2011)
15. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-

tion without labeled data. In: ACL—AFNLP, pp. 1003–1011 (2009)
16. Nadeau, D., et al.: A survey of named entity recognition and classification. Lingvis-

ticae Investigationes 30(1), 3–26 (2007)
17. Ren, X., El-Kishky, A., et al.: Clustype: effective entity recognition and typing by

relation phrase-based clustering. In: SIGKDD. ACM (2015)
18. Ren, X., He, W.O.: Label noise reduction in entity typing by heterogeneous partial-

label embedding. In: SIGKDD, pp. 1825–1834. ACM (2016)
19. Ren, X., et al.: AFET: automatic fine-grained entity typing by hierarchical partial-

label embedding. In: EMNLP, pp. 1369–1378 (2016)
20. Shang, J., Liu, J., Jiang, M., Ren, X., Voss, C.R., Han, J.: Automated phrase

mining from massive text corpora. IEEE TKDE 30(10), 1825–1837 (2018)
21. Shimaoka, S., et al.: An attentive neural architecture for fine-grained entity type

classification. arXiv preprint arXiv:1604.05525 (2016)
22. Wei, J.W., et al.: EDA: easy data augmentation techniques for boosting perfor-

mance on text classification tasks. arXiv:1901.11196 (2019)

https://doi.org/10.1007/978-3-319-12691-3_21
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1805.06201
http://arxiv.org/abs/1604.05525
http://arxiv.org/abs/1901.11196


374 H. Li et al.

23. Xin, J., Lin, Y., Liu, Z., Sun, M.: Improving neural fine-grained entity typing with
knowledge attention. In: AAAI (2018)

24. Xu, D., et al.: A survey on multi-output learning. arXiv (2019)
25. Xu, P., Barbosa, D.: Neural fine-grained entity type classification with hierarchy-

aware loss. arXiv:1803.03378 (2018)
26. Yogatama, D., et al.: Embedding methods for fine grained entity type classification.

In: ACL—IJCNLP (2015)
27. Zeng, D., et al.: Distant supervision for relation extraction via piecewise convolu-

tional neural networks. In: EMNLP, pp. 1753–1762 (2015)

http://arxiv.org/abs/1803.03378


DMSPool: Dual Multi-Scale Pooling
for Graph Representation Learning

Hualei Yu, Chong Luo, Yuntao Du, Hao Cheng, Meng Cao,
and Chongjun Wang(B)

National Key Laboratory for Novel Software Technology, Department of Computer
Science and Technology, Nanjing University, Nanjing, China

{hlyu,duyuntao,chengh,caomeng}@smail.nju.edu.cn, chjwang@nju.edu.cn

Abstract. Graph neural networks (GNNs) have recently become a pow-
erful graph representation technique for graph-related tasks. However,
the existing GNN models mainly focus on generalizing convolution and
pooling operations in a pre-defined unified architecture, limiting the
model’s ability to capture meaningful information of nodes or local struc-
tures. Besides, the importance of subgraphs at various levels has not been
well-reflected. To address the above challenges, we propose Dual Multi-
Scale Pooling (DMSPool), which uses multiple architectures concurrently
to integrate graph convolution and pooling modules in an end-to-end
fashion. Specifically, these modules adopt multiple GNN architectures to
learn node-level embeddings and nodes’ importance from different aggre-
gation iterations. Additionally, we employ attention mechanism to adap-
tively determine the contribution of subgraphs’ representations at vary-
ing levels to graph classification and integrate them to perform the cross-
scale graph level representation. Experiment results show that DMSPool
achieves superior graph classification performance over the state-of-the-
art graph representation learning methods.

Keywords: Graph neural networks · Graph convolution · Graph
pooling · Multiple GNN architectures

1 Introduction

Graph neural networks (GNNs) have recently become a powerful graph repre-
sentation technique for numerous graph-related tasks in various fields [1,2]. The
existing GNN models can be generally classified into two categories: spectral and
spatial approaches. The spectral methods focus on defining convolution opera-
tion utilizing graph Fourier transform and convolution theorem in the spectral
domain [3,4]. For the spatial methods [1,5–7], convolution operations follow the
message-passing process, in which the key steps involve transferring, transform-
ing, and aggregating the node feature information from topological neighbors.
The aforementioned methods mainly focus on generalizing convolution opera-
tions in a pre-defined architecture. [8] devises an appropriate aggregation strat-
egy for each node to obtain useful information. It is worth noting that their goal is

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 375–384, 2021.
https://doi.org/10.1007/978-3-030-73194-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_25


376 H. Yu et al.

performing node classification tasks. Commonly adopted approach to obtain the
corresponding graph-level representations is global pooling. With growing inter-
est in graph pooling, several innovative methods have been proposed to learn
hierarchical representations of graphs [9–12]. However, these methods mentioned
above have the following problems: (1) Firstly, they generally utilize the convo-
lution operations designed for node classification tasks to extract node features.
(2) Additionally, these methods fail to consider the fact that the graphs with
different sizes and properties may need different architectures to fully capture
useful information. (3) Lastly, the importance of subgraphs at various levels has
not been well-reflected.

The main contributions can be summarized as follows:

– A novel graph pooling framework DMSPool is presented to perform hier-
archical graph representation learning in an end-to-end fashion. Combined
with attention mechanism, the contributions of subgraphs’ representations at
different levels to graph classification can be adequately fused.

– To the best of our knowledge, we are the first to propose the hypothesis that
graph convolution operation in graph classification tasks should be different
from that in node classification tasks.

– We evaluate our algorithm DMSPool on five widely used benchmarks. Experi-
mental results clearly show that DMSPool achieves superior performance over
other state-of-the-art graph representation learning methods.

2 Related Work

Bruna et al. [13] first design the convolution for graph data from the spectral
domain. Then, the ChebNet [14] and AGCN [3] are proposed to further improve
the convolution performance. GCN [1] simplifies the convolution operation and
aggregates the node features from the one-hop neighbors. GAT [6] introduces
the attention mechanism to specify varying weights to different nodes’ features.
GraphSAGE [5], a general inductive framework, can sample and aggregate fea-
tures of nodes with mean/max/LSTM pooling. AM-GCN [15] extracts the spe-
cific and common embeddings from node features, topological structures and
their combination simultaneously.

Graph pooling operation is of vital importance for graph classification tasks
and can be grouped into global and hierarchical pooling. The global pooling
methods do not learn the structure information of subgraphs, which is essential
to the whole graph. DiffPool [9] learns a soft cluster assignment matrix in layer
l, which contains the probability values of nodes being assigned to clusters. The
gPool [16] designs a novel SortPooling layer that sorts graph vertices consistently
so that traditional neural networks can be trained on the graphs. SAGPool [11]
introduces self-attention using graph convolution, allows the pooling method to
consider both node features and graph topology. Besides these, numerous graph
hierarchical pooling methods have emerged recently, including EigenPooling [17],
Relational Pooling [18], HGP-SL [12] and StructPool [19].



DMSPool: Dual Multi-Scale Pooling for Graph Representation Learning 377

3 Problem Formulation

We represent a graph G as (V,E,A,X), where the set V = (v1, v2, . . . , vn) collects
all the n nodes of graph G, and each e ∈ E denotes an edge between nodes in
graph G. A ∈ Rn×n denotes the adjacency matrix, where the entry Aij = 1 if
there is an edge between vi and vj , and X ∈ Rn×d is the node feature matrix,
and d is the dimension of node features. In the graph classification setting, given
a set of graphs G = {G1,G2, . . . ,Gn} and each being associated with a label.
Formally, we can define our problem as follows:

Input: Given a set of graphs GL = {G1,G2, . . . ,GL} with corresponding label
information {y1, y2, . . . , yL}, graph neural network architecture M, pooling rate
k, and other hyperparameters.

Output: Predicting the unseen graphs G/GL in the dataset with M in an
end-to-end fashion.

4 Methodology

4.1 The Proposed DMSPool Layer

Our proposed DMSPool is a multi-layer hierarchical GNN model, and shown
in Fig. 1. Each layer consists of a convolution module and a pooling module.
In the convolution module, DMSPool launches multiple GCNs with different
aggregation iterations to learn node embeddings. Then, various node embed-
dings resulted from multiple GCNs are merged to generate the new node fea-
tures for the next module. In the pooling module, DMSPool employs multiple
GCN architectures, which acquire several nodes’ scores based on self-attention
by considering both node features and graph topology from multiple scales simul-
taneously. The scores can be summed to obtain the final scores representing the
importance of nodes within the graph. According to the final importance scores,
we retain a partion of nodes of the input graph to generate a subgraph as the
new input graph for the next layer.

Input graph

target node

GNN

GNN

embeddings

GNN

GNN

GNNGNN

Scale-1

Scale-2

Scale-3

concatenation

Multi-Scale Graph Convolution Module

sum

Output graph

Masking

Next
Hierarchical 

layer …

Multi-Scale Score Pooling Module

Top-k Selection

Fig. 1. Framework of the DMSPool layer.



378 H. Yu et al.

4.2 Multi-scale Graph Convolution Module

We discuss how to ‘diversely’ model the process of learning a node features aggre-
gation strategy. One of the most representative methods is Graph Convolution
Network (GCN) [1]. And the k -th layer in GCN can be written as:

H(k+1) = σ( ˜D− 1
2 ˜A ˜D− 1

2 H(k)W (k)) (1)

where σ(·) is a non-linear activation function, ˜A is the adjacent matrix with
self-connections, ˜D is the diagonal degree matrix of ˜A, and H(k) represents the
hidden representation matrix of nodes in the k-th layer, where H(0) = X is the
origin node feature matrix. W (k) ∈ Rdk×dk+1 is a trainable weight matrix.

We insist that the derived low-dimensional vector may not retain the com-
plete and accurate information if a pre-defined unified convolution architecture
is adopted. In our model, we use multiple GCN architectures with a different
number of aggregation iterations concurrently to learn various node embeddings.
Suppose that there are nc GCN architectures running concurrently at each layer
l, we will have nc node hidden representations H1

(l),H2
(l),. . . ,Hnc

(l) as follows:

H1
(l) = σ(GCN1(H(l-1), A(l))),

H2
(l) = σ(GCN2(σ(GCN1(H(l-1), A(l))), A(l))), (2)
...

Hnc

(l) = σ(GCNnc
(σ(GCNnc−1(σ(GCNnc−2(. . . )), A(l))), A(l))).

where the H2
(l) denotes the indirect aggregation of two-hop nodes; Hnc

(l)

denotes the indirect aggregation of nc-hop nodes. Then we integrate H1
(l),

H2
(l),. . . ,Hnc

(l) to generate complete node embeddings H(l) as follow (concate-
nation):

H(l) = H1
(l) ⊕ H2

(l) ⊕ . . . ⊕ Hnc

(l) (3)

4.3 Multi-scale Graph Pooling Module

In this subsection, we introduce the graph pooling operation. Here, we follow
SAGPool [11]. Specifically, if the convolution formula of GCN [1] is used, at
each layer l, the multi-scale nodes’ scores Z1

(l), Z2
(l),. . . , Zns

(l) are calculated
as follows:

Z1
(l) = σ(GCNscore(H(l), A(l))),

Z2
(l) = σ(GCNscore(σ(GCNscore(H(l), A(l))), A(l))), (4)
...

Zns

(l) = σ(GCNscore(σ(GCNscore(σ(GCNscore(. . . )), A(l))), A(l))).

The formulation of basic block self-attention GCNscore is:

GCNscore = σ(( ˜D− 1
2 ˜A ˜D− 1

2 )(l)H(l)Θatt
(l)) (5)



DMSPool: Dual Multi-Scale Pooling for Graph Representation Learning 379

Cross-Scale Attention 
Merging Module Classification

Multi-Scale Graph 
Convolution Module

Multi-scale Graph 
Pooling Module

MLP

Input Graph

1-layer

Multi-Scale Graph 
Convolution Module

Multi-scale Graph 
Pooling Module

2-layer

Readout

Multi-Scale Graph 
Convolution Module

Multi-scale Graph 
Pooling Module

1-layer

Readout

Readout

Fig. 2. Multi-layering hierarchical architecture.

where Θatt
(l) ∈ RF×1 is a trainable weight matrix. Then we merge the various

scores by summing to derive the final node importance scores:

Z(l) = Z1
(l) + Z2

(l) + · · · + Zns

(l) (6)

Following the node selection proposed by [10], the pooling ratio k ∈ (0, 1)
determines the number of nodes to retain. The top �kN� nodes are selected:

idx = top rank(Z(l), �kN�),
Zmask

(l) = Zidx
(l),

H
(l)
out = H

(l)
idx,: � Zmask

(l), (7)

A
(l)
out = A

(l)
idx,idx

where top rank is the function that returns the indices of the top �kN�, Zidx

is an indexing operation and Zmask
(l) is the feature attention mask. H

(l)
idx,: is

the row-wise indexed feature matrix, � is the elementwise product. H
(l)
out and

A
(l)
out are the node feature matrix and adjacent matrix of the new subgraph,

respectively.

4.4 Multi-layering

In this subsection, we introduce the residual portion of the DMSPool architecture
(Fig. 2), which involves readout layer, attention merging module, and linear
layer.

Readout Layer. The outputs of each basic layer are summarized in the readout
layer, which uses the formulation as: s = 1

Nl

∑Nl

i=0 hi||maxNl
i=0 hi, where Nl is the

number of nodes in l -th layer’s input graph, hi is the node hidden representation
of i -th node, and || denotes concatenation.

Attention Merging Module. Now we have s1, s2, . . . , sl. In our implementa-
tion, we set l = 3. We use att(s1, s2, s3) to learn their corresponding impor-
tance as: (α1, α2, α3) = att(s1, s2, s3), where α1, α2, α3 indicate the atten-
tion values of different level’s graph embeddings. For s1, we get the w1 by
w1 = qT · tanh(W · (s1)T + b). Similarly, we can get w2, w3. Normalizing the



380 H. Yu et al.

attention values with softmax. Then we combine these to obtain the final graph
level representation embG:

embG = α1 · s1 + α2 · s2 + α3 · s3 (8)

Use HSIC Strategy for Enhancing the Disparity. To ensure s1, s2, s3 can
capture diverse information from different perspectives, we employ the Hibert-
Schmidt Independence Criterion (HSIC) [20] to enhance the disparity of any two
hidden representations. Formally, the HSIC constraint is defined as:

HSIC(si, sj) = (n − 1)−2tr(RKiRKj) (9)

where the i, j = 1, 2, 3 and i != j, K1 and K2 are the Gram matrices with
k1,ij = k1(si1, s1j), and k2,ij = k2(s2i, s2j). R = I− 1

nee
T , where I is an identity

matrix and e is an all-one column vector. In our implementation, we use the
inner product kernel function for K1 and K2. So the whole constraints can be
discribed as follows:

Ld = HSIC(s1, s2) + HSIC(s1, s3) + HSIC(s2, s3) (10)

Finally, we feed the embG into MLP layer, and the loss function is defined
as follows:

Lloss = −
∑

i∈GL

c
∑

j=1

Yij log(softmax(MLP (embG))) (11)

where GL denotes the training set of graphs that have lables, c represents the
number of graph labels, Yij is the ground truth.

Objective Function. Combining the graph classification task and constraints,
we have the overall objective function as follows:

L = Lloss + γLd (12)

where γ is the parameter of the disparity constraint terms.

5 Experiment

5.1 Datasets and Baselines

Our proposed DMSPool is evaluated on five widely used public benchmarks
datasets. The statistics and properties are summarized in Table 1. We compare
the proposed DMSPool method with several state-of-the-art graph convolution
network methods: GCN [1], GraphSAGE [5], GAT [6], DGCNN [16], Diff-
Pool [9], EigenPool [17], gPool [16], SAGPool [11], HGP-SL [12].



DMSPool: Dual Multi-Scale Pooling for Graph Representation Learning 381

Table 1. The Statistics of five widely used datasets.

Dataset #graph #[min, max]node #[min, max]edge # class

PROTEINS 1113 [4, 620] [5, 1049] 2

D&D 1178 [30, 5748] [63, 14267] 2

NCI1 4110 [3, 111] [2, 119] 2

NCI109 4127 [4, 111] [3, 119] 2

Mutagenicity 4337 [4, 417] [3, 112] 2

5.2 Parameter Setting

In order to ensure a fair comparison, we randomly split each dataset: 80%
as the training set, 10% as the validation set, and the remaining 10% as the
test set. This randomly splitting process is repeated 10 times, and the aver-
age performance with standard derivation is reported. We implement our pro-
posed DMSPool with PyTorch, and the Adam optimizer is utilized to optimize
the model. Early stopping criterion, patience, and weights decay strategy are
employed in the training process. In addition, we adopt the widely used evalua-
tion metric, i.e., accuracy, for graph classification to evaluate the performance.

5.3 Performance Comparison on Benchmark Datasets

The performance of DMSPool model and these state-of-the-art baselines are
reported in Table 2. From the table, we have the following observations:

– First of all, our proposed DMSPool generally achieves the best performance
all the datasets. Especially, DMSPool achieves maximum relative improve-
ments of 1.47% on PROTEINS and 1.55% on D&D compared with the
best baseline, HGP-SL.

Table 2. The average on graph classification.

Baselines PROTEINS D&D NCI1 NCI109 Mutagenicity

GCN 75.23 ± 3.63 73.26 ± 4.46 76.29 ± 1.79 75.91 ± 1.84 79.81 ± 1.58

GraphSAGE 74.01 ± 4.27 75.78 ± 3.91 74.73 ± 1.34 74.17 ± 2.89 78.75 ± 1.18

GAT 74.72 ± 4.01 77.30 ± 3.68 74.90 ± 1.72 75.81 ± 2.68 78.89 ± 2.05

DGCNN 79.99 ± 0.44 70.07 ± 1.21 74.08 ± 2.19 78.23 ± 1.31 80.41 ± 1.02

DiffPool 79.90 ± 2.95 78.61 ± 1.32 77.73 ± 0.83 77.13 ± 1.49 80.78 ± 1.12

EigenPool 78.84 ± 1.06 78.63 ± 1.36 77.24 ± 0.96 75.99 ± 1.42 80.11 ± 0.73

gPool 80.71 ± 1.75 77.02 ± 1.32 76.25 ± 1.39 76.61 ± 1.39 80.30 ± 1.54

SAGPool 81.72 ± 2.19 78.70 ± 2.29 77.88 ± 1.59 75.74 ± 1.47 79.72 ± 0.79

HGP-SL 84.37 ± 1.71 80.21 ± 1.19 77.89 ± 0.75 79.83 ± 1.38 80.85 ± 0.74

DMSPool 85.84± 0.80 81.76± 0.65 78.23± 0.72 80.97± 0.63 82.13± 0.89



382 H. Yu et al.

– DMSPool consistently outperforms GCN, GraphSAGE, and GAT on all the
datasets, indicating the effectiveness of hierarchical structure in DMSPool,
because it can extract more useful information than these inherently “flat”
graph neural networks.

– The SAGPool model is the most similar one to our DMSPool. Our model out-
performs SAGPool by an average of 3.04%. We can learn that it makes sense
to integrate multiple-scale node level representations from different perspec-
tives, which help us learn more complete and richer structure information.

5.4 Variants of DMSPool

In this subsection, we compare DMSPool with its three variants to validate
the effectiveness of adopting multiple architectures simultaneously. In our com-
parative experiments, we still follow the multi-channel setting in convolution
and pooling modules. If all channels adopt the unified architectures in convolu-
tion/pool module, it means that the iteration number of convolution operations
in each layer’s will be equal to 3. (a) DMSPool-mcup, the settings are multiple
architectures in convolution module and unified architecture in pooling module.
(b) DMSPool-ucmp: The settings are unified architecture in convolution mod-
ule and multiple architectures in pooling module. (c) DMSPool-ucup: The
settings are unified architecture in convolution module and unified architecture
in pooling module.

Table 3. The results(%) of DMSPool and its variants on five datasets.

Variants PROTEINS D&D NCI1 NCI109 Mutagenicity

DMSPool-ucup 81.16 70.51 75.18 75.85 81.89

DMSPool-mcup 81.43 74.79 73.97 79.83 77.28

DMSPool-ucmp 83.48 76.98 76.72 80.45 78.87

DMSPool 85.84 81.76 78.23 80.97 82.13

From the results in Table 3, we can draw the following conclusions: (1) The
results of DMSPool are consistently better than all the other three variants, indi-
cating the effectiveness of using the multiple architecture concurrently in both
convolution module and pooling module. (2) The DMSPool-ucmp is generally
better than DMSPool-mcup, DMSPool-ucup, which implies the multiple archi-
tectures in pooling module play a more vital role in this framework. (3) The
results of DMPool-mcup are usually better than DMSPool-ucup, verifying the
usefulness of adopting multiple GNNs architectures in convolution module.

6 Conclusion

In this paper, we proposed a simple but effective model DMSPool for hierachi-
cal graph representation learning. DMSPool adopts multiple GNN architectures



DMSPool: Dual Multi-Scale Pooling for Graph Representation Learning 383

concurrently to learn node-level embeddings and nodes’ importance from differ-
ent aggregation iterations, then integrate and perform top-ranked nodes selec-
tions to generate a subgraph as the input graph for the next layer. Futhermore,
we employ attention mechanism to determine the contribution of subgraphs’
representations at various levels to graph classification. Our results show that
DMSPool has gained performance improvement over the state-of-the-art graph
representation learning methods. In the future, we are particularly interested in
further providing theoretical proofs to explain the similarities and differences of
graph convolution operations in different downstream tasks, thus improving the
interpretability of the model.

Acknowledgements. This paper is supported by the National Key Research and
Development Program of China (Grant No. 2018YFB1403400), the National Natu-
ral Science Foundation of China (Grant No. 61876080), the Collaborative Innovation
Center of Novel Software Technology and Industrialization at Nanjing University.

References

1. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional net-
works. arXiv, abs/1609.02907 (2017)

2. Fan, W., et al.: Graph neural networks for social recommendation. In: The World
Wide Web Conference (2019)

3. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks.
In: AAAI (2018)

4. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Graph neural networks with
convolutional arma filters. arXiv, abs/1901.01343 (2019)

5. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

6. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. arXiv, abs/1710.10903 (2018)

7. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv, abs/1810.00826 (2019)

8. Xie, Y., Li, S., Yang, C., Wong, R.C.-W., Han, J.: When do GNNs work: under-
standing and improving neighborhood aggregation. In: IJCAI (2020)

9. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. arXiv, abs/1806.08804
(2018)

10. Gao, H., Ji, S.: Graph u-nets. In: ICML (2019)
11. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: ICML (2019)
12. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv,

abs/1911.05954 (2019)
13. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally

connected networks on graphs. CoRR, abs/1312.6203 (2014)
14. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on

graphs with fast localized spectral filtering. In: NIPS (2016)
15. Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: AM-GCN: adaptive multi-

channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (2020)



384 H. Yu et al.

16. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI (2018)

17. Ma, Y., Wang, S., Aggarwal, C., Tang, J.: Graph convolutional networks with
eigenpooling. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (2019)

18. Murphy, R., Srinivasan, B., Rao, V., Ribeiro, B.: Relational pooling for graph
representations. arXiv, abs/1903.02541 (2019)

19. Yuan, H., Ji, S.: Structpool: structured graph pooling via conditional random fields.
In: ICLR (2020)

20. Song, L., Smola, A., Gretton, A., Borgwardt, K., Bedo, J.: Supervised feature
selection via dependence estimation. In: ICML 2007 (2007)



A Parameter-Free Approach for Lossless
Streaming Graph Summarization

Ziyi Ma1,2, Jianye Yang1(B), Kenli Li1, Yuling Liu1(B), Xu Zhou1,
and Yikun Hu1

1 College of Computer Science and Electronic Engineering,
Hunan University, Changsha, China

{maziyi,jyyang,lkl,yuling liu,yikunhu}@hnu.edu.cn
2 Academy of Military Sciences PLA China, Beijing, China

Abstract. In rapid and massive graph streams, it is often impractical
to store and process the entire graph. Lossless graph summarization as
a compression technique can provide a succinct graph representation
without losing information. However, the problem of lossless stream-
ing graph summarization is computationally and technically challeng-
ing. Although the state-of-the-art method performs well with respect to
efficiency, its summarization quality is usually unstable and unsatisfac-
tory. This is because it is a randomized algorithm and depends heavily
on the pre-tuned parameters. In this paper, we propose a parameter-free
lossless streaming graph summarization algorithm. As the graph changes
over time, we incrementally maintain the summarization result, by care-
fully exploring the influenced subgraph, which is shown to be a bounded
neighborhood of the inserted edge. To enhance the performance of our
method, we further propose two optimization techniques regarding can-
didate supernodes refinement and destination supernode selection. The
experiment results demonstrate that the proposed methods outperform
the state-of-the-art by a large margin in terms of compression quality
with comparable running time on the majority of datasets.

Keywords: Incremental algorithms · Lossless graph summarization ·
Parameter-free · Streaming graph

1 Introduction

Graph model is ubiquitous and has been used to model the relationship between
entities in a wide range of applications, such as social networks, online transac-
tion networks, transportation networks, citation networks, to name just a few.
Two common properties of these graphs are large in scale and highly dynamic.
Take Facebook as an example, there are more than 2.5 billion monthly active
users and approximately 6 new users join Facebook each second1. Such large
dynamic graphs are naturally represented as a streaming graph, i.e., a sequence
of time evolving edges 〈e1, e2, ..., et〉.
1 https://www.statista.com/topics/751/facebook/.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 385–393, 2021.
https://doi.org/10.1007/978-3-030-73194-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_26&domain=pdf
https://www.statista.com/topics/751/facebook/
https://doi.org/10.1007/978-3-030-73194-6_26


386 Z. Ma et al.

Motivation. To manage such highly dynamic large graphs, a useful technique is
graph summarization, which aims to represent the graph in a succinct form [3,4].
For example, Twitter are evolving with user interactions generated rapidly. As
a result, an important task is to summarize the connections in real time by
grouping users and topics together to reveal the public trend on time. Meanwhile,
lossless graph summarization is one of the most effective graph compression
techniques, which can be applied to many applications, such as information
exchange and data visualization. By lossless, we mean the original graph can be
precisely restored from the compressed graph.

In this paper, we study the problem of lossless streaming graph summariza-
tion. Formally, given a streaming graph G = (E, V ), the goal of lossless streaming
graph summarization is to construct a summary graph G = (S,L) together with
corrections C = (C+, C−), such that G can be precisely restored from G and C,
and the edges in G and C is minimized, where C+ denotes the set of edges to
be inserted and C− denotes the set of edges to be deleted.
Challenges. The problem of lossless streaming graph summarization is compu-
tationally challenging. On one hand, it is shown to be NP-hard to even summa-
rize a static graph optimally [8], which means that frequently re-summarizing
the graph from the scratch is computationally unaffordable. On the other hand,
in a streaming environment, edges usually arrives rapidly, which implies that
updating the summarization result in near constant time complexity is needed.
These present great computational and technical challenges to us.

Recently, several studies are devoted to dynamic graph summarization [1,2,
9]. Most of existing solutions are incremental and heuristic. Gou et al. [1] adjust
the size of windows to summarize graph streams and thus cannot obtain the
whole summary graph. Tsalouchidou et al. [9] consider to incrementally update
previous timestamps. Nevertheless, the data structure employed can only store
a fixed the number of nodes, and thus is inapplicable for large scale graphs.
The state-of-the-art, called MoSSo [2], subjects to incrementally summarize a
streaming graph by randomly select movable nodes and destination nodes, which
can achieve high efficiency. However, this method tends to provide unstable and
unsatisfactory summarization result regarding compression ratio. This is because
the node movement strategy is randomly determined. Besides, this method uti-
lizes two important parameters when making decisions on node movement. As
a result, the performance of MoSSo in terms of both efficiency and effectiveness
is heavily dependent on the parameters tuned. Moreover, for large streaming
graphs, the task of tuning the parameter itself is time-consuming.

In this paper, we resort to designing novel and efficient techniques to deal
with the problem of lossless streaming graph summarization by considering both
computation efficiency and compression quality.

Contributions. (1) A parameter-free lossless streaming graph summarization
framework. (2) Two optimization techniques to further improve the performance.
(3) Extensive performance studies on real datasets.

2 Preliminaries

Streaming Graph. A streaming graph Gt = (Vt, Et) consists of an unbounded
time evolving sequence of edges, i.e., Et = 〈e1, e2, ..., et〉, where each edge ei ∈ Et



A Parameter-Free Approach for Lossless Streaming Graph Summarization 387

Fig. 1. The example illustrates the processes of summarization and reconstruction. (a)
a graph G, (b) a summary graph G and corrections C.

Fig. 2. Framework overview.

is an unweighted and undirected relation between two distinct nodes u, v ∈ Vt.
Given a node v ∈ Vt, we use N(v) to denote the neighborhood of v, i.e., the set
of nodes adjacent to v. In addition, we use N2(v) to denote the 2-hop neighbor-
hood of v, i.e., the set of nodes that v can reach in 2-hop. In the following, for
presentation simplicity, we omit the time stamp t in the notations by referring
to Gt = (Vt, Et) simply as G = (V,E) if the context is self-evident.

Summary Graph. Given a streaming graph G = (V,E), its summary graph
G = (S,L) is defined as the concise representation of G, where S is a partition
of V , i.e., each node S ∈ S contains a set of nodes in V , and V = ∪Si∈SSi

with Si ∩ Sj = ∅ for any two distinct nodes Si, Sj ∈ S. Besides, there is an
edge between two nodes Si, Sj ∈ S in G if there exists an edge (u, v) ∈ E with
u ∈ Si and v ∈ Sj , respectively. For presentation clarity, we call nodes and
edges in a summary graph supernodes and superedges. By S(v), we denote the
supernode in S that contains node v. Consider the example in Fig. 1. A graph G
and its summary graph G are shown in Fig. 1(a) and Fig. 1(b), respectively. In
particular, the 7 nodes in G are merged into 4 supernodes in G. Take supernode
A for example. It contains two nodes of G, i.e., a and c. The superedges are
constructed accordingly. Note that G might contain self-loops (e.g., (A,A) in G).

Definition 1 (Lossless Summarization). Given a graph G = (V,E), a loss-
less summarization of G consists of a summary graph G with the corresponding
corrections C = (C+, C−), such that G can be precisely restored from G and C,
where C+ (Resp. C−) denotes the set of edges to be inserted (Resp. deleted).

Problem Statement. Given a streaming graph G = (V,E), the goal of this
work is to efficiently find for G a lossless summarization instance, namely a
summary graph G = (S,L) and corrections C = (C+, C−), at each time
a new edge coming, such that the following object function is minimized,
Φ = |L|+ |C+|+ |C−|. Note that, |L| counts only non-loop superedges since the
self-loops in L can be encoded concisely using 1 bit per supernode regardless of
their count.



388 Z. Ma et al.

Lemma 1. The problem of graph lossless summarization is NP-Hard [8].

3 Proposed Method

3.1 Framework Overview

At each time a new edge coming, a straightforward method is to re-summarize
the entire graph from the scratch using a static graph summarization method
(e.g., SWeG [7]). However, this method is cost-prohibitive since edges tend to
arrive rapidly in a streaming graph, which implies that it is necessary to update
the summarization result quickly. To avoid such high recomputation cost, we
resort to a incremental method. Particularly, we propose a parameter-free incre-
mental method, called Streaming Graph Summarization (SGS).

Algorithm 1: Overview of SGS
Input: new edge et = (u, v), streaming graph Gt−1, summary graph Gt−1, edge

corrections Ct−1

Output: summary graph Gt, corrections Ct

1 Identify the influenced nodes in Gt−1 and candidate supernodes in Gt−1 ;
// Section 3.2

2 Select the most promising influenced supernodes as the destination supernode;
// Section 3.3

3 Update the summarization Gt−1 and Ct−1; // Section 3.4
4 return Gt and Ct

Overview. The overview of SGS is illustrated in Algorithm 1. When an edge
et = (u, v) is inserted, SGS greedily moves u and v, while fixing the other nodes,
such that the objective function Φ is minimized. We observe that candidate
supernodes can be bounded within local neighborhood of u and v. Then, we
greedily select the best candidate in the bounded candidates as the destination
supernode and update the summarization. Figure 2 shows an example for moving
c, where node color indicate the membership to supernodes.

3.2 Identify Candidate Supernodes

We devise effective techniques to identify the candidate supernodes when moving
the two end nodes of the inserted edge. For presentation simplicity, we only
discuss for one of them (e.g., v) in the following, since we can process the other
in exactly the same way.

Key Idea. We merge nodes with similar neighborhood together based aggre-
gation summarization methods [5,7], and can reduce the number of edges in
the summary graph substantially [10]. Clearly, it is enough to just keep one of
the nodes as a delegate in the summary graph, since the neighborhood of other
nodes can be restored by the delegate node. In a streaming graph, when an edge
is inserted, the neighborhood of influenced nodes might change, and therefore we



A Parameter-Free Approach for Lossless Streaming Graph Summarization 389

need to update the membership of nodes to supernodes to maintain high quality
compression result. Fortunately, we observe that the number of influenced nodes
can be bounded in a local neighborhood of the two end nodes of the inserted
edge. Thus, the number of candidate supernodes can also be bounded.

Definition 2 (Node Similarity). Given two nodes u and v in streaming graph
G, the structural similarity between u and v is defined as the Jaccard similarity

of their neighbor sets, i.e., J(u, v) =
|N(u) ∩ N(v)|
|N(u) ∪ N(v)| .

Lemma 2. Given a streaming graph G, when an edge (u, v) is inserted, the
number of node pairs that might have changed similarity can be bounded by
|N2(u)| + |N2(v)|.

With the help of Lemma 2, we can exclude all supernodes that do not contain
any nodes in N2(u)∪N2(v) when moving u and v. Formally, by CS(v), we denote
the set of supernodes that contain at least one node in N2(v), which is called
the candidate supernodes of v. Clearly, the number of candidate supernodes of
v, i.e., |CS(v)|, can be bounded by |N2(v)|. Consider the example in Fig. 2.
When edge (c, d) is inserted, we only need to recalculate the similarity between
c and its 2-hop neighbors, i.e., a, b, d, f, h. We process for node d in a similar
way. When moving node c, the candidate supernodes are A, B and C.

3.3 Destination Supernode Selection (DSS)

In this section, we discuss how to select the most promising supernode to move
v. Intuitively, node v should move to a candidate supernode that contains many
nodes that are similar to v. Next, Definition 3 is extended by Definition 2.

Definition 3 (Supernode Similarity). Given a node v ∈ V and a supernode
S ∈ S, the supernode similarity between v and S is defined as follows:

SJ(v, S) =

∑
u∈N(v)∪N(S) min(w(u, v), w(S, u))

∑
u∈N(v)∪N(S) max(w(u, v), w(S, u))

, (1)

where N(S) = ∪u∈SN(u) is the set of nodes adjacent to any node in S, and
w(S, u) = |p ∈ S : {p, u} ∈ E| is the number of nodes in S adjacent to u.

Generally, SJ(v, S) measures the similarity between v and S in terms of their
common neighbors. It is worth noticing that SJ(v, S) is 1 if v and S have same
neighbors (i.e., w(u, v) = w(S, u) for every u ∈ N(v)∪N(S)), and 0 otherwise if
they have no common neighbors (i.e., N(v)∩N(S) = ∅). We calculate similarity
between a node v ∈ V and each supernode S ∈ CS(v), and then selects the one
with maximum similarity.

Creating New Supernode. In addition to the existing candidate supernodes,
we also consider creating a new supernode for v if the current supernode size
|S(v)| is large than 1.

Determine Proposal of Movement. From the above discussion, we have
the following three choices of movement for v, namely (i) staying in its previ-
ous supernode, (ii) moving to adjacent supernode, (iii) forming a new supernode.



390 Z. Ma et al.

Next, we introduce the concept of moving cost to evaluate the benefit of each mov-
ing choice. Here, we assume the summarization result is available after moving v.

Definition 4. Given two supernodes A and B, the moving cost of moving node
v from A to B is

MC(v,A,B) = 1 − Costaft(v,A,B)
Costbef (v,A,B)

, (2)

where Costbef (v,A,B) (Resp. Costaft(v,A,B)) is the number of edges that
adjacent to A and B together with the number of edges that adjacent to v in
corrections C before (Resp. after) moving v.

A positive value of MC(v,A,B) implies that we reduce the number edges in
the summarization by moving v to the corresponding supernode, i.e., one of the
above two cases (ii) and (iii). We therefore accept the proposal of node moving.

3.4 Update of Summarization

After settling down the moving plan, e.g., moving v from A to B, we update
the summarization to achieve least size of summary graphs and corrections by
MDL techniques [5]. ΠAB (Resp. ΨAB ) denotes all possible (Resp. actual) edges
of G between nodes in A and B. For the inter-supernode, if |ΨAB | > |ΠAB |/2, we
create a superedge between A and B, and insert into C− all edges in ΠAB \ΨAB .
Otherwise, ΨAB is inserted into C+. Similarly, for intra-supernode, we create a
superloop for A and insert edges in ΠAA − ΦAA into C− if |ΨAA| > |ΠAA|/4.
Otherwise, only edges between nodes in A are inserted into C+.

4 Optimizations

Motivation. When an edge (u, v) is inserted, SGS needs to consider all 2-hop
neighbors of u and v for similarity computation, which is rather time-consuming.
To enhance the performance of SGS, we devise advanced techniques towards the
following two aspects. First, we observe that some nodes in N2(u) may have a
decreased similarity with u after the insertion (u, v). This implies that we can
safely exclude these nodes from the influenced node set since we are only inter-
ested in increasing the similarity. Based on this property, we can retrieve a set
of refined candidate supernodes (Sect. 4.1). Second, we observe that calculating
the similarity between a supernode and a movable node is still computationally
expensive. To alleviate this issue, we resort to a utility function based heuristic
method to select the most promising supernode (Sect. 4.2).

4.1 Candidate Supernode Refinement

However, we observe that the similarity between v and nodes in N2(v) might
increase, remain the same, or decrease. Since our goal is to find the supernode
with high similarity, we can skip processing those with non-increasing similarity
to reduce computation cost.



A Parameter-Free Approach for Lossless Streaming Graph Summarization 391

Lemma 3. Given a streaming graph G, when an edge (u, v) is inserted, for node
v, only nodes in N(u) would have an increased similarity with v. We have similar
property for node u.

Clearly, the number of candidate supernodes of v, i.e., |CS(v)|, can be
bounded by |N(v)|. By RSGS, we denote the new version of SGS that is equipped
with the advanced method of candidate supernode collecting.

4.2 Advanced Destination Supernode Selection

In Sect. 3.3, we select the most promising destination supernode by calculating
the supernode similarity (Eq. 1), which is a rather time-consuming operation
under the streaming envorinment where edges may arrive rapidly. To facilitate
the computation, a straightforward method is to randomly select a candidate
supernode in CS(v). However, this simple method may lead to unacceptable
compression ratio. In the following, we tackle this issue by employing an effective
and efficient utility function.

Definition 5 (Utility Function). Given an inserted edge (u, v) in a streaming
graph G, let CS(v) be the candidate supernodes of v. Then, for a supernode
S ∈ CS(v), its utility function is defined as .

τ(v, S) =
|N(u) ∩ S|

|S| . (3)

Intuitively, the utility function evaluates the raio of “useful” nodes in a can-
didate supernode. By “useful”, we mean the nodes with increased similarity to v,
i.e., nodes in N(u) according to Lemma 3. Next, guided by this utility function,
we present two candidate supernode selection strategies.

Greedy Based Method. In this method, we simply choose the supernode with
the largest utility score. We omit the details of algorithm GU-DSS due to space
constraint.

Algorithm 2: RU-DSS: Random Utility Function based DSS

Input: a node v ∈ V , candidate supernodes CS(v) of v
Output: a destination supernode Dst

1 Sum ← 0;
2 Thr ← 0;
3 Dst ← NULL;
4 for each S ∈ CS(v) do
5 Sum ← Sum + τ(v, S);

6 sample X ∼ uniform(0, 1);
7 for each S ∈ CS(v) do
8 Thr ← Thr + τ(v, S);
9 θ ← Thr/Sum;

10 if X ≤ θ then
11 return S;

12 return Dst;



392 Z. Ma et al.

Random Based Method. In some cases, GU-DSS might fall into local optimal.
To remedy this issue, we further propose a random selection based method. In
specific, a candidate supernode with a larger utility score would be selected
as a destination supernode with higher probability. Precisely, for a supernode
S ∈ CS(v), the probability of S being selected is the ratio of its utility score to
the overall utility score of supernodes in CS(v), i.e.,

Prob(S) =
τ(v, S)

∑
T∈CS(v) τ(v, T )

. (4)

In Algorithm 2, we first calculate the overall utility score of nodes in CS(v) (Lines
4–5). Then, we uniformly sample a random number (Line 6). Finally, we find
the region of this random number falls and return the corresponding candidate
supernode (Lines 7–11). The time complexity of Algorithm 2 is O(|N(v)|).

5 Experiments

Experimental Setting. All experiments are conducted on a machine with
a 3.3 GHz Intel i9-7900X CPU and 64 GB memory, running Linux. RSGS-GU-
DSS, RSGS-RU-DSS, and MoSSo are implemented by C++. We evaluate the
algorithms on 4 real-world graph datasets that can obtained from [6], such that
web-wiki, cit-patent, soc-livejournal, and delaunay-n24.

Evaluation Metric. Given a summary graph G = (S,L) and edge corrections
C = <C+, C−> of a streaming graph G = (V,E), the compression ratio is
(|L| + |C+| + |C−|)/|E|.

Performance Evaluation. Based on the comprehensive comparisons of perfor-
mance tuning, we use RSGS-GU-DSS and RSGS-RU-DSS to compare with MoSSo.
We set the same parameters following [2] for MoSSo.

Experimental Results. In compression ratio, as shown in Fig. 3, RSGS-GU-
DSS and RSGS-RU-DSS consistently outperform MoSSo in all datasets. In the
average processing time for each new edge insertion, Table 1 reports the efficien-
cies of RSGS-GU-DSS and RSGS-RU-DSS are worse than MoSSo within 1 order
of magnitude.

(b) web-wiki (c) cit-patent (d) soc-livejournal (e) delaunay-n24

Fig. 3. Evaluating compression ratio.



A Parameter-Free Approach for Lossless Streaming Graph Summarization 393

Table 1. Processing time in microseconds for each edge update.

Dataset RSGS-GU-DSS RSGS-RU-DSS MoSSo

web-wiki 6526.47 8037.26 1792.14

cit-patent 203.22 189.84 81.06

soc-livejournal 1190.06 673.11 159.42

delaunay-n24 61.41 62.80 42.86

6 Conclusion

In this paper, we investigate the problem of lossless streaming graph summa-
rization. To efficiently deal with this problem, we present a novel parameter-free
framework to incrementally summarize a streaming graph and two optimization
techniques.

Acknowledgment. This research was supported in part by National Key Research
and Development Program of China (2018YFB0204302), and NSFC (Grant No.
62002108, 61772182, 61802032, 61872134).

References

1. Gou, X., Zou, L., Zhao, C., Yang, T.: Fast and accurate graph stream summariza-
tion. In: ICDE (2019)

2. Ko, J., Kook, Y., Shin, K.: Incremental lossless graph summarization. In: SIGKDD
(2020)

3. Koutra, D., Vreeken, J., Bonchi, F.: Summarizing graphs at multiple scales: new
trends. In: ICDM (2018)

4. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and
applications: a survey. ACM Comput. Surv. (CSUR) 51(3), 1–34 (2018)

5. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD (2008)

6. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015)

7. Shin, K., Ghoting, A., Kim, M., Raghavan, H.: Sweg: lossless and lossy summa-
rization of web-scale graphs. In: WWW (2019)

8. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: SIGMOD (2008)

9. Tsalouchidou, I., Bonchi, F., Morales, G.D.F., Baeza-Yates, R.: Scalable dynamic
graph summarization. TKDE 32(2), 360–373 (2020)

10. Yang, J., Zhang, W., Wang, X., Zhang, Y., Lin, X.: Distributed streaming set
similarity join. In: ICDE (2020)



Expanding Semantic Knowledge for
Zero-Shot Graph Embedding

Zheng Wang1,2(B), Ruihang Shao2, Changping Wang3, Changjun Hu2,
Chaokun Wang4, and Zhiguo Gong1

1 State Key Laboratory of Internet of Things for Smart City,
Department of Computer and Information Science,

University of Macau, Macao, China
fstzgg@um.edu.mo

2 Department of Computer Science and Technology, University of Science
and Technology Beijing, Beijing, China

wangzheng@ustb.edu.cn
3 Kwai Inc., Beijing, China

4 School of Software, Tsinghua University, Beijing, China

Abstract. Zero-shot graph embedding is a major challenge for super-
vised graph learning. Although a recent method RECT has shown
promising performance, its working mechanisms are not clear and still
needs lots of training data. In this paper, we give deep insights into
RECT, and address its fundamental limits. We show that its core part
is a GNN prototypical model in which a class prototype is described by
its mean feature vector. As such, RECT maps nodes from the raw-input
feature space into an intermediate-level semantic space that connects
the raw-input features to both seen and unseen classes. This mechanism
makes RECT work well on both seen and unseen classes, which how-
ever also reduces the discrimination. To realize its full potentials, we
propose two label expansion strategies. Specifically, besides expanding
the labeled node set of seen classes, we can also expand that of unseen
classes. Experiments on real-world datasets validate the superiority of
our methods.

Keywords: Graph embedding · Zero-shot learning · Data mining

1 Introduction

Graph embedding is becoming a major trend among various graph processing
methods [14,18]. Most recently, there has been an increasing interest in super-
vised graph embedding [4]. However, little work has considered the zero-shot
graph embedding (ZGE) problem where some classes have no labeled data at
the training time. This problem has practical significance, especially in domains
where the graph size is typically large and node class labels can take on many
values. Moreover, general supervised methods would deliver very unsatisfying
results in this setting.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 394–402, 2021.
https://doi.org/10.1007/978-3-030-73194-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_27


Expanding Semantic Knowledge for Zero-Shot Graph Embedding 395

To fix this problem, RSDNE [16] relaxes the constraints of intra-class simi-
larity and inter-class dissimilarity, so as to avoid the negative influence of miss-
ing the labeled data from unseen classes. However, this method cannot model
the high non-linear information or the rich information of a graph. A recently
proposed graph neural network (GNN) [12] method named RECT [15] over-
comes these limits, having shown favorable performance. Nevertheless, its work-
ing mechanisms are still not clear, significantly hindering its practicality.

In this paper, we demystify the RECT for ZGE. In particular, we show
that its core part (named RECT-L) can be thought as a GNN prototypical
model which learns a nearest class mean (NCM) classifier [17]. This explains
why RECT works on seen classes. On the other hand, the learned prototypical
model maps nodes from the raw-input feature space into a “semantic” space
where a class is described by its mean feature vector. This enables transferring
knowledge from seen classes to unseen classes, which is the fundamental reason
why RECT works well on the nodes coming from unseen classes. However, it
also leads to the ineffectiveness of RECT, as semantic knowledge contains much
less discriminative information than the original binary labels.

To overcome this limit and realize the full potentials of RECT, we design two
label expansion strategies. The first is to expand the labeled node set of seen
classes, which will make RECT “see” more labels. This overcomes the local-
ized nature of the used GNN model [6]. The other one is to jointly expand the
labeled node sets of both seen and unseen classes. This improves the diversity of
labels, which would yield more robust embedding results. Combining these two
strategies can substantially improve the performance of RECT, especially when
the labeled data is very limited. In addition, we further provide some theoreti-
cal analysis for the proposed expansion strategies. Finally, we conduct extensive
experiments to demonstrate the effectiveness of our methods.

2 Why RECT Work

2.1 Problem Definition

The problem of zero-shot graph embedding (ZGE) in this paper follows [16]. A
graph generally consists of a set of nodes that are possibly connected by edges.
We are given a labeled training node set L whose label set is Cs (i.e., the seen
class set). The rest are testing nodes some of which come from an unseen class set
Cu, i.e., Cs ∩ Cu = ∅. By using the labeled nodes only from Cs where no labeled
nodes of Cu is available, we aim to learn low-dimensional node representation
vectors, such that the nodes with similar neighbors, features, or labels are close
to each other in the learned embedding space.

2.2 Preliminaries: RECT

RECT contains two sub-parts: RECT-N and RECT-L, both of which utilize
GNN [12] layers for embedding learning. The first part RECT-N is unsupervised,



396 Z. Wang et al.

aiming to preserve the original graph structure. The other and most notewor-
thy part is the supervised method RECT-L. Inspired by the success of ZSL,
RECT-L learns with the class-semantic descriptions of seen classes, i.e., seman-
tic knowledge is introduced for transferring supervised knowledge from seen to
unseen classes. Unlike traditional ZSL methods whose semantic knowledge is
human annotated or provided by some third-party resources (like the word2vec
tools [8]), RECT-L obtains this knowledge in a practical domain-dependent man-
ner with a “readout” function. Specifically, for each seen class c, it uses the mean
feature of all corresponding nodes in this class as its class-semantic description
vector ŷc: ŷc = MEAN({xi|∀i Cs

i = c}), where xi and Cs
i are node i’s feature vec-

tor and seen class label, respectively. Finally, RECT-L minimizes the difference
between the predicted and the actual class-semantic description vectors:

J =
∑

i∈L
�(ŷ′

Cs
i
, ŷCs

i
) (1)

where ŷ′
Cs

i
and ŷCs

i
stand for the predicted and actual class-semantic vector of

node i respectively, and �(·, ·) is a sample-wise loss function.

2.3 RECT-L v.s. ZSL Methods

Theoretically, a typical ZSL method can be thought of a semantic output code
classifier F : Xd → Y , such that F contains two other functions, S and Q [9]:

F = Q(S(·))
S : Xd → Zp

Q : Zp → Y

(2)

where S is a semantic mapping function which maps from a d-dimensional raw-
input space Xd into a p-dimensional semantic space Zp; and Q is a semantic
decoding function which maps the obtained semantic encoding to a class label
from a label set Y . The classifier F is given a knowledge base K which guides the
learning of S and Q. Practically, K is usually simplified as a one-to-one encoding
between class labels and semantic space points. A commonly used encoding is:
a class label and its corresponding class-semantic description vector.

In RECT-L, a class (prototype) is described by its mean feature vector, indi-
cating the used semantic space is directly constructed from the d-dimensional
raw-input features. As such, the knowledge base K could only guide the learn-
ing of semantic mapping function S rather than the semantic decoding function
Q. This is because only the one-to-one encoding between seen class labels and
semantic space points (i.e., a seen class and its mean feature vector) is known
in ZGE problem. In other words, K does not contain any knowledge about the
relationship between semantic space points and unseen classes, since it is impos-
sible to obtain the mean feature vectors of unseen classes when there exists no
labeled nodes from unseen classes. This is the fundamental difference between
RECT-L and ZSL methods.



Expanding Semantic Knowledge for Zero-Shot Graph Embedding 397

Remark 1 (The Difference Between RECT-L and ZSL Methods). In the seman-
tic space of ZSL methods, class prototypes are described by human annotation
or third-part resources; while in the semantic space of RECT-L, class proto-
types are described by their mean feature vectors. In addition, in RECT-L, the
knowledge of relationship between unseen classes and semantic space points is
unknown.

2.4 The Mechanisms of RECT

We continue with it’s core part RECT-L. As analysed above, RECT-L adopts
GNN layers and finally ends with a semantic loss (i.e., Eq. 1), where class pro-
totypes are represented by their mean feature vectors. From the viewpoint of
classification theory, this is the NCM classifier loss [7].

Remark 2 (The Reasonability of RECT-L). As shown above, RECT-L actu-
ally learns a prototypical model with the labeled data of seen classes, reflecting
its reasonability on seen classes. On the other hand, as shown in Remark 1,
the learned prototypical model maps the data from the raw-input space into
a semantic space, like ZSL methods. As validated by lots of ZSL methods, this
enables the success of transferring supervised knowledge of seen classes to unseen
classes, indicating its reasonability on unseen classes.

3 How to Improve RECT

3.1 The Proposed Method

We overcome the limit of RECT by designing two label expansion strategies.
The first is to expand the seen class label set. As directly learning with the
binary labels would get unappealing results in ZGE problem [16], we preform
label expansion based on the semantic method RECT-L. This naturally leads to
a self-training strategy. Specifically, we first train a RECT-L model as described
in Sect. 2.2. Then, we use the learned model to get the predicted class-semantic
descriptions of unlabeled nodes. After that, for each seen class, we can find top
k closest unlabeled nodes to its class-semantic description vector in the semantic
space, and finally add them to the labeled node set of this class.

The other is to expand both the seen and unseen class label sets. This
would improve the diversity of labels and obtain more robust node embeddings.
Although we know little about unseen classes, we can still find some “labeled”
data for them. Our idea is quite simple: exploring the discriminative informa-
tion of both seen and unseen classes via clustering. Specifically, we first train a
RECT-L model to get the node embeddings. Then, we apply K-means clustering
on the resulted embeddings. After that, for each cluster (class), we can find top k
nearby nodes w.r.t. each class center, and finally use them as the labeled data of
this class. As K-means clustering is performed on all classes, the newly obtained
labeled node set is expected to cover all of them.



398 Z. Wang et al.

3.2 Risk Bounds Analysis

We apply the related learning theories in domain adaptation [1] to our method.
Let Dtrain = {Dtrain

original ∪ Dtrain
expand} denote the final labeled training node set,

where Dtrain
original denotes the original labeled node set and Dtrain

expand denotes the
newly added labeled set via label expansion. Let Dtest = D − Dtrain

original denote
the testing node set, where D is the whole node set. The distribution of Dtrain is
Ptrain and of Dtest is Ptest. The true class-semantic description labeling function
is h(x) and the learned prediction function is f(x). We define the prediction error
in Dtrain and Dtest as:

εtrain(f) = Ex∼Ptrain
[|h(x) − f(x)|]

εtest(f) = Ex∼Ptest
[|h(x) − f(x)|] (3)

We can consider it as a domain adaptation problem. Suppose the hypothesis
space H containing f is of VC-dimension d̄. According to Theorem 1 in [1], with
probability at least 1−δ, for every f ∈ H, the expected error εtest(f) is bounded:

εtest(f) ≤ ε̂train(f) +

√
4
l
(d̄ log

2el

d̄
+ log

4
δ
)

+ dH(Dtrain,Dtest) + ρ

(4)

where ε̂train(f) is the empirical error of f in Dtrain, e is the base of natural loga-
rithm, l is the labeled node number after label expansion, ρ = infh∈H[εtrain(f)+
εtest(f)], and dH(Dtrain,Dtest) is the distribution distance between Dtrain and
Dtest.

The first term in Eq. 4 is explicitly minimized by training with Dtrain in Eq. 1.
If we have high quality Dtrain

expand, it is expected that we can learn a model that has
a small error on Dtrain. On the other hand, the bad Dtrain

expand, e.g., random labels,
may lead to a large empirical error. For the second term, we can notice that the
final labeled node number l (after label expansion) is definitely larger than the
original one. This verifies the reasonability of our label expansion strategy. The
third term reflects the relatedness between training and testing data. In the
best situation where Dtrain and Dtest have the same conditional distribution
given a class, and suppose all instances are i.i.d., the distribution distance will
be small. Besides, introducing more correctly labeled nodes will also reduce this
distance [2], as we have Dtrain

expand ⊆ Dtest.

4 Experiments

In this section, we conduct extensive experiments to demonstrate the effective-
ness of our methods: 1) OursSL: only expanding the labeled node set of seen
classes; 2) OursSUL: expanding the labeled node sets of both seen and unseen
classes, when the real class number is given; 3) OursSUL∗ : expanding the labeled



Expanding Semantic Knowledge for Zero-Shot Graph Embedding 399

Table 1. The statistics of datasets.

Dataset Nodes Edges Classes Features

Citeseer 3,312 4,732 6 3,703

Cora 2,708 5,429 7 1,433

Pubmed 19,717 44,338 3 500

Table 2. Micro-F1 scores on node classification tasks.

Citeseer Cora Pubmed

1% 3% 5% 1% 3% 5% 1% 3% 5%

DeepWalk 0.1941 0.2935 0.3713 0.1972 0.3401 0.4916 0.3766 0.5879 0.6350

LSHM 0.1779 0.2143 0.2648 0.1284 0.1295 0.2233 0.3331 0.3591 0.3965

RSDNE 0.2291 0.3066 0.4035 0.2465 0.3869 0.5167 0.4193 0.6219 0.6862

GCN 0.4194 0.5211 0.5478 0.4756 0.5984 0.6266 0.6067 0.6479 0.6664

APPNP 0.4192 0.5397 0.5692 0.4921 0.6380 0.6791 0.6036 0.6287 0.6514

TEA 0.2554 0.3564 0.4010 0.2996 0.4966 0.5770 0.4953 0.5848 0.6431

RECT-L 0.4506 0.5754 0.6204 0.4964 0.6564 0.7325 0.6679 0.7495 0.7668

OursSL 0.5001 0.6004 0.6326 0.5288 0.6748 0.7374 0.7206 0.7622 0.7586

OursSUL 0.5343 0.6228 0.6497 0.5125 0.6761 0.7275 0.6641 0.7419 0.7336

OursSUL∗ 0.5281 0.6226 0.6500 0.4984 0.6636 0.7208 0.6612 0.7406 0.7309

OursSL-SUL 0.5297 0.6229 0.6513 0.5450 0.6963 0.7515 0.7224 0.7704 0.7688

OursSL-SUL∗ 0.5293 0.6226 0.6518 0.5474 0.6919 0.7507 0.7353 0.7752 0.7730

node sets of both seen and unseen classes, when the real class number is esti-
mated automatically1; 4) OursSL-SUL: concatenating the embeddings obtained
by OursSL and OursSUL; and 5) OursSL-SUL∗ : concatenating the embeddings
obtained by OursSL and OursSUL∗ .

4.1 Setup

We conduct our experiments on three widely used citation networks: Citeseer,
Cora, and Pubmed [13]. Table 1 shows their statistics. In each dataset, nodes are
documents, edges are citations among them, and labels are research topics. Their
features are all bag-of-words features. Besides RECT-L, we further compare a
famous unsupervised method DeepWalk [10] and some other supervised methods
(LSHM [3], RSDNE [16], GCN [4], APPNP [5] and TEA [20]). Following [16],
we set the embedding dimension to 200. For all baselines, we adopt their best
hyper-parameters. In RECT-L and our methods, we all adopt two GCN layers,
PReLU activation, mean squared error loss, and Xavier initialization. We also
follow [19] to reduce the node feature dimension to 200 via SVD decomposition,
and follow [6] to expand the original labeled node set size to n/ζτ , where n is
the graph node number, ζ is the average node degree, and τ is the number of the

1 The optimal class number is determined by silhouette coefficient [11].



400 Z. Wang et al.

6 5 4 3 2 1
#seen class

0.56

0.58

0.6

0.62

0.64

0.66

M
ic

ro
-F

1

6 5 4 3 2 1
#seen class

0.5

0.52

0.54

0.56

0.58

0.6

0.62

M
ac

ro
-F

1

Fig. 1. Classification performance w.r.t. #seen class on Citeseer with 5% label rate.

used GCN layers. In addition, we fix the training epoch number to 100, adopt
Adam SGD optimizer, and use the 200-dimensional outputs of the first hidden
layer as embedding results, following [15].

4.2 Node Classification

This experiment follows the same procedure as in [16]. Specifically, we first ran-
domly choose two classes as unseen in Citeseer and Cora, and one class as unseen
in Pubmed. After that, we remove all the nodes from the unseen classes in the
training data, and then apply various graph embedding methods. Finally, an
SVM classifier, which is trained based on the resulted embeddings and the orig-
inal balanced training data, is used to classify the testing nodes.

Table 2 reports the classification performance in terms of Micro-F1. At a
glance, we can see the advantage of our label expansion strategies. Generally, our
methods outperform the original RECT-L and other baselines by a large margin
in most label settings. This improvement would become more significant when
the training size is very small. In addition, a very surprising finding is that the
performance of OursSUL is closely related to the performance of OursSUL∗ . This
indicates that we can always find discrimination information for unseen classes
through clustering, even if the true class number is unknown. At last, we can
find that combing two label expansion results would get the best performance.
This indicates that our two label expansion strategies are complementary for
effective embedding learning.

4.3 The Effect of Seen/Unseen Class Number

We continue to use the Citeseer dataset with 5% label rate. As shown in Fig. 1,
although all the performance declines smoothly when the seen class number
decreases, our two label expansion strategies (especially when combing both of
them) steadily improve the performance of RECT-L. This clearly reflects the
effectiveness of our methods.



Expanding Semantic Knowledge for Zero-Shot Graph Embedding 401

5 Conclusion

In this paper, we give new insights into the mechanisms of RECT and its appli-
cation in ZGE. In particular, we analyse its relationship with ZSL methods, and
the possible limits that it has. To fully realize its potentials, we propose two label
expansion strategies. Specifically, we propose to expand the label sets of both
seen and unseen classes. In addition, we also study the theoretical properties
of our methods. Finally, we conduct extensive experiments to demonstrate the
effectiveness of our methods.

Acknowledgment. This work is supported in part by National Key D&R Program of
China (2019YFB1600704), National Natural Science Foundation of China (61902020,
61872207), Macao Youth Scholars Program (AM201912), FDCT (FDCT/0045/2019/
A1, FDCT/0007/2018/A1), GSTIC (EF005/FST-GZG/2019/GSTIC), University of
Macau (MYRG2018-00129-FST), and Baidu Inc.

References

1. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations
for domain adaptation. In: NIPS, pp. 137–144 (2007)

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

3. Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for
classifying in heterogeneous social networks. In: WSDM, pp. 373–382 (2014)

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

5. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized PageRank. In: ICLR (2019)

6. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: AAAI, pp. 3538–3545 (2018)

7. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale
image classification: generalizing to new classes at near-zero cost. In: Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol.
7573, pp. 488–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33709-3 35

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

9. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning
with semantic output codes. In: NIPS, pp. 1410–1418 (2009)

10. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online learning of social represen-
tations. In: KDD, pp. 701–710 (2014)

11. Rousseeuw, P.J., Kaufman, L.: Finding Groups in Data. Wiley Online Library,
Hoboken (1990)

12. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

13. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–106 (2008)

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-33709-3_35
https://doi.org/10.1007/978-3-642-33709-3_35
http://arxiv.org/abs/1301.3781


402 Z. Wang et al.

14. Wang, C., Wang, C., Wang, Z., Ye, X., Yu, J.X., Wang, B.: DeepDirect: learning
directions of social ties with edge-based network embedding. TKDE 31(12), 2277–
2291 (2018)

15. Wang, Z., Ye, X., Wang, C., Cui, J., Yu, P.S.: Network embedding with completely-
imbalanced labels. TKDE (2020). https://doi.org/10.1109/TKDE.2020.2971490

16. Wang, Z., Ye, X., Wang, C., Wu, Y., Wang, C., Liang, K.: RSDNE: exploring
relaxed similarity and dissimilarity from completely-imbalanced labels for network
embedding. In: AAAI, pp. 475–482 (2018)

17. Webb, A.R.: Statistical Pattern Recognition. Wiley, Hoboken (2003)
18. Xiao, G., Guo, J., Da Xu, L., Gong, Z.: User interoperability with heterogeneous

IoT devices through transformation. TII 10(2), 1486–1496 (2014)
19. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning

with rich text information. In: IJCAI, pp. 2111–2117 (2015)
20. Yang, Y., Chen, H., Shao, J.: Triplet enhanced autoencoder: model-free discrimi-

native network embedding. In: IJCAI, pp. 5363–5369 (2019)

https://doi.org/10.1109/TKDE.2020.2971490


Spatial and Temporal Data



Online High-Cardinality Flow Detection
over Big Network Data Stream

Yang Du1, He Huang1(B), Yu-E Sun2, An Liu1, Guoju Gao1, and Boyu Zhang1

1 School of Computer Science and Technology, Soochow University, Suzhou, China
{duyang,huangh,anliu,gjgao}@suda.edu.cn

2 School of Rail Transportation, Soochow University, Suzhou, China
sunye12@suda.edu.cn

Abstract. High-cardinality flow detection over the big network data
stream plays an important role in many practical applications. To pro-
cess large and fast data streams in real-time, most existing work uses
compact data structures like sketches to fit themself in high-speed but
small on-chip memory. However, this design suffers from expensive com-
putation and thus only supports periodical high-cardinality flow detec-
tion. Although NDS can provide online flow cardinality estimation, it
is designed to estimate all flows accurately. In contrast, high-cardinality
flow detection only concerns whether a flow’s cardinality exceeds a cer-
tain threshold. This paper complements the prior work by proposing
an online high-cardinality flow detection method with high resource
efficiency. Based on the on-chip/off-chip design, the proposed method
reduces large flows’ resource consumption by constructing a virtual
bitmap sharing module over the physical bitmap. We evaluate the perfor-
mance of the proposed method using the real-world Internet traces down-
loaded from CAIDA. The experimental results show that our method can
save up to 65.8% on-chip memory when bounding the same constraints
for false-positive rates and false-negative rates.

Keywords: Data stream processing · Network data stream · Online
high-cardinality flow detection

1 Introduction

With the proliferation of Internet-connected devices, the big network data stream
that flows on the Internet has become the largest data stream in the world [1–5].
For example, Google gets over 3.5 billion searches daily. A high-speed router can
forward the network packets at hundreds of Gbps or even multiple Tbps. Such a
velocity poses great challenges for real-time network traffic measurement, which
has attracted significant attention in recent years [6–10]. This paper focuses
on online high-cardinality flow detection, a fundamental problem in network
traffic measurement. It has many practical applications in load balancing, access
profiling, and attack detection [11–16].

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 405–421, 2021.
https://doi.org/10.1007/978-3-030-73194-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_28


406 Y. Du et al.

In a general definition, online high-cardinality flow detection reports high-
cardinality flows when their estimated cardinalities (number of distinct elements)
exceed a certain threshold for the first time. Here a flow is a set of network
packets sharing the same flow label (e.g., destination address). The elements in
the flow can be source address or any user-defined values. We want to stress
that high-cardinality flow detection is highly correlated to the concept named
per-flow cardinality estimation [6–8,17] but has a different focus. In particular,
it only needs to judge whether a flow’s cardinality exceeds a threshold rather
than accurately estimating all flows’ cardinalities.

The function of network traffic measurement (including per-flow cardinality
estimation and high-cardinality flow detection) is often implemented as a module
placed on the router/gateway, whose network processor unit can catch up with
the ever-higher line rate. However, the actual bottleneck of implementing such
network functions is the memory update speed when recording the flow traffic.
To solve this problem, most recent work uses high-speed on-chip memory like
SRAM to store the flow traffic. Because a large SRAM is expensive and slow, the
on-chip memory of a modern router/gateway is usually less than 8.25 MB, which
is very limited, considering the numerous flows in the network data stream. It is
impossible to assign each flow a separate counter in the limited on-chip memory
[18], let alone the larger and more complex data structure required for estimating
flow cardinalities.

To address the mismatch between on-chip memory size and flow amount,
most existing work uses compact data structures like sketches to store all flow
traffic at limited on-chip memory [19–21]. However, adopting this aggressive bit-
sharing (or register-sharing) strategy means their estimation accuracy has to
give. Moreover, due to the expensive computation for cardinality estimation,
they download the flow traffic data for off-chip analysis at the end of each mea-
surement period, thus only providing periodical high-cardinality flow detection,
e.g., every 5 or 10 min. Such a lag between the appearance and the identifica-
tion of a high-cardinality flow will delay the reaction of upstream applications,
making the network vulnerable to sudden events like scan attack or DDoS attack.

Given the limitations of sketch-based methods, NDS [16] adopts an on-
chip/off-chip model to provide accurate per-flow cardinality estimation. It uses
on-chip memory to sample each distinct element with a predefined probability
and stores sampled elements in the off-chip memory. The choice of using off-chip
memory also make itself support online flow cardinality query. However, when
performing high-cardinality flow detection, it is not resource-efficient to provide
accurate estimation results for all flows since we only care whether the flow is
larger than the threshold.

We aim to fill the gap left by prior arts by addressing their limitations.
In particular, we expect a flow’s resource consumption grows slower when its
cardinality exceeds the threshold. However, it is tricky to tune the resource
consumption for different flows since network packets arrive in real-time, and we
do not know the exact flow cardinalities. There is recently some work [22,23]
trying to predict the flow traffic, assigning different sampling probabilities to



Online High-Cardinality Flow Detection over Big Network Data Stream 407

different flows. However, predicting flow cardinality is challenging due to the
network data stream’s dynamicity and uncertainty. Thus, these methods cannot
provide any performance guarantees for their prediction results.

This paper presents a novel approach for online high-cardinality flow detec-
tion with high resource efficiency. The proposed method adopts an on-chip/off-
chip design in [16], maintaining a bitmap at on-chip memory to filter the dupli-
cates. Then we implement a virtual bitmap sharing module to reduce large flows’
resource consumption, i.e., mapping a flow’s elements to a virtual bitmap which
partially overlaps with the physical bitmap. With this design, we limit the num-
ber of physical bits a flow is correlated to, reducing large flows’ resource con-
sumption while ensuring high-cardinality flow detection performance.

In summary, the contributions of our method are as follows:

– We propose a novel online high-cardinality flow detection method based on
the on-chip/off-chip model, reducing the lag between a large flow’s appearance
and identification. It can provide real-time support for applications like scan
detection and DDoS detection.

– We propose a virtual bitmap sharing module to reduce the resource consump-
tions of large flows by ensuring a flow can only correlate to limited physical
bits. We also provide optimal parameter selection for the proposed method
with probabilistic performance guarantees.

– We run extensive experiments on real-world Internet traces to evaluate
the proposed method’s performance. The experimental results show that
our method outperforms state-of-the-art solutions by significantly reducing
the on-chip memory usage while providing accurate results for online high-
cardinality flow detection.

2 Problem Statement

The input to online high-cardinality flow detection is a network data stream
P = {P1,P2,P3, · · · }. From each network packet Pi ∈ P, we can extract a flow
label f and an element label e, where both labels can be flexibly defined to meet
the interests of different applications. For example, we may treat the source
address as the flow label, use the destination address as the element label, or
configure the labels as arbitrary subsets in the packet header. By abstracting the
packets with the same flow label as a flow, we model the network data stream
as a set of flows F = {f1, f2, f3, · · · }. We use notation nf to represent the flow
cardinality of a flow f , representing the number of distinct elements in this flow.

The problem of online high-cardinality flow detection is to configure a firewall
or defense system that identifies the flows whose cardinalities are no less than
a certain threshold T during a measurement interval. We refer to these flows as
high-cardinality flows. Notice that the high-cardinality flows are reported when
their estimated cardinalities exceed the threshold for the first time.

Given the constraints of on-chip memory and packet processing speed, we
cannot accurately count the cardinalities of all flows. Instead, we only provide
estimations for each flow’s cardinality. Let n̂f be the estimation of nf , i.e., the



408 Y. Du et al.

estimated cardinality of flow f . We want our high-cardinality flow detection
method satisfying the probabilistic performance constraints as in [13]: Let α and
β be two probability values that satisfy 0 < α, β < 1. Supposing we have two
integers h and l (l < T < h), the objective is to report any flow whose cardinality
is h or larger as a high-cardinality flow with a probability no less than α and
report any flow whose cardinality is l or lower as a high-cardinality flow with a
probability no more than β. Formally, n̂f , the estimation of nf , should satisfy
the following constraints:

Pr(n̂f ≥ T ) ≥ α, nf ≥ h,

Pr(n̂f ≥ T ) ≤ β, nf ≤ l
(1)

In this case, a false positive refers to misclassifying a normal flow (whose
cardinality is no larger than l) as a high-cardinality flow. Besides, a false negative
refers to misclassifying a flow (whose cardinality is no less than h) as a normal
flow. Thus, the above probabilistic performance objective is equivalent to bound
the false-negative rate by 1 − α and bound the false-positive rate by β.

This paper focuses on minimizing the on-chip memory requirement of achiev-
ing the above objective.

3 Design of Online High-Cardinality Flow Detection

This section presents our design of online high-cardinality flow detection. Unlike
traditional sketch-based methods that store all flow traffic in the limited on-chip
memory, our solution is based on the on-chip/off-chip model [16], using both
on-chip memory and off-chip memory to process the big network data stream.

As shown in Fig. 1, the proposed method is deployed as a module at the
router/gateway, identifying the high-cardinality flows from the network data
stream passing through it. The proposed method contains two components: on-
chip sampling and off-chip recording, designed to serve different goals.

Fig. 1. The system model of online high-cardinality flow detection

The on-chip sampling is designed to process the data stream whenever a
packet arrives, meeting real-time processing requirements. Particularly, it selects
and sends only a part of flow traffic to the off-chip recording. Unlike [16], which



Online High-Cardinality Flow Detection over Big Network Data Stream 409

samples all distinct elements with the same probability, we will not treat those
elements equally. Instead, we assign each flow a virtual bitmap, which partially
overlaps with the physical bitmap. The benefits of virtual bitmap sharing are
two-fold: First, we can limit the bits a large flow is mapped to, reducing its
resource consumption. Second, we can tune the virtual map size and overlapping
ratio to ensure that our estimation results can achieve the desired accuracy for
flows whose cardinalities are nearby the threshold T .

The function of the off-chip recording is to store the selected flow statis-
tics. By maintaining a separate counter for each flow, we eliminate the noises
introduced by other flows. This design also enables us to answer queries in real-
time, while sketch-based methods can only answer queries after the measurement
epoch.

3.1 Data Structure

As shown in Fig. 2, our on-chip data structure contains a bitmap B of m bits
and a counter c that records the number of ones in B. At the beginning of each
measurement epoch, we initialize all bits in the bit array to 0. Thus, counter c
will also be set to 0. Our off-chip data structure is composed of a hash table,
where we assign each flow f a separate counter, namely cf .

Fig. 2. The on-chip data structure of the proposed method

For each flow f , we assign it a virtual bitmap of s virtual bits. Notice that, if
we connect all virtual bits to the physical bitmap, the small flows will consume
too much on-chip memory. Therefore, we design two kinds of virtual bits. One is
valid virtual bits, each of which is pseudo-randomly mapped to one physical bit
in B. The other kind is called void bits, which we will not map them to physical
bits in B. In other words, only the valid part of the virtual bitmap overlaps with
the physical bitmap.

Given s virtual bits, we use s1 to represent the number of valid virtual bits
and let the remained s−s1 bits be void bits. Thus, the overlapping ratio between
virtual bitmap and physical bitmap, i.e., the probability of an element being
mapped to a valid virtual bit, is p1 = s1

s .



410 Y. Du et al.

3.2 Algorithm Design

In the following, we will demonstrate our method for online high-cardinality
flow detection. The proposed method supports two operations: update opera-
tion and online query operation. The update operation is performed on each
arrival packet, while the online query operation returns the current estimated
cardinality for an arbitrary flow. Notice that online high-cardinality flow detec-
tion is built on the online query operation. Whenever a flow label is sent to
off-chip analysis, the proposed method will compare the flow cardinality with
the threshold T . It will report the flow as a high-cardinality flow if the esti-
mated flow cardinality exceeds the threshold T for the first time.

Update Operation: As shown in Algorithm 1, for each packet in the network
data stream, the proposed method will perform the update operation when it
arrives, determining whether to select the element this packet carries and updat-
ing the flow traffic if it is selected.

Algorithm 1: Update Operation
INPUT : Bit array size m, counter c, network data stream P, non-duplicate

sampling probability p2, virtual bitmap size s, valid virtual bit
number s1

Create an on-chip bitmap of size m and initialize all bits to 0;
Initialize counter c to 0;
for each arrival packet Pi in packet stream P do

Extract flow label f and element label e;
Map element < f, e > to virtual bit h1 = H(f ⊕ e) mod s;
if h1 < s1 then

Map virtual bit h1 to a physical bit h2 = H ′(f ⊕ h1) mod m;
if B[h2] = 0 then

Compute a hash value h3 = H ′′(f ⊕ e) ;
Compute p3 = p2

m
m−c

;

if h3 < p3X then
Send flow label f to off-chip recording;
if label f appears for the first time then

Initialize counter cf to 0;
end
Set cf = cf + 1;

end
Set B[h2] = 0 to 1;
Set c = c + 1;

end

end

end



Online High-Cardinality Flow Detection over Big Network Data Stream 411

We want to ensure that each virtual bit in a virtual bitmap has the same
probability of being downloaded and stored at off-chip memory, simplifying the
computation for cardinality estimation. Let overall sampling probability p repre-
sent such probability. Recall that a virtual bit has a probability of p1 = s1

s to be
a valid virtual bit. Then we adopt the non-duplicate sampling as in [16] to sam-
ple each valid virtual bit with a probability p2. To ensure the overall sampling
probability is p, we have p = p1p2.

At the beginning of a measurement epoch, we will initialize all bits in B
to 0 and set counter c to 0. Then update operation for each arrival packet is
performed as follows: Consider an arbitrary packet; we first extract the flow
label f and element label e from the information this packet carries. Then, we
map this element to one virtual bit h1 in the virtual bitmap by executing a hash
h1 = H(f ⊕ e) mod s, where H is a hash function. Notice that we only map
the s1 valid virtual bits to physical bits. Thus, when h1 < s1, we say this packet
is mapped to a valid virtual bit, and its corresponding bit in B can be obtained
by h2 = H ′(f ⊕ h1) mod m, where H ′ is another hash function.

Given the status of B[h2], there are two cases to consider: First, when B[h2] =
1, we regard this element as a duplicate that has been seen before and take no
further operation. The second case is B[h2] = 0, which means this is the first
appearance of <f, e>. At this time, we sample this element with a temporal
probability p3 = p2

m
m−c . To perform the above sampling, we run another hash

h3 = H ′′(f ⊕ h1) and check if h3 < p3X, where X is the maximum output of
the hash function. When h3 < p3X, we will select <f, e> and send flow label f
to off-chip recording and increase the flow f ’s counter, i.e., cf , by 1. We want
to stress that, no matter if a new element <f, e> is selected, we will always set
B[h2] to 1, ensuring all its subsequent appearances will be regarded as duplicates.
Therefore, we will not download the same flow element twice.

Online Query Operation: The choice of storing flow traffic in the off-chip
memory enables us to perform online query operation during the measurement
epoch. Specifically, we can query an arbitrary flow’s cardinality at any time.
When querying the flow cardinality of flow f , we first retrieve the counter value
cf for this flow. Then we can estimate the number of ones in the valid virtual
bits as cf

p2
and approximate the fraction of ones in the virtual bitmap by cf

sp .
According to the probabilistic counting algorithm, we can estimate the flow
cardinality as follows:

n̂f = −s ln (1 − cf
sp

) (2)

3.3 Online High-Cardinality Flow Detection

Based on the online query operation, our online high-cardinality flow detection
is triggered whenever a flow label arrives. It will report a flow as the high-
cardinality flow when its estimated cardinality exceeds the threshold for the
first time. Based on Eq. 2, we can obtain a counter threshold cT with respect to
threshold T as follows:

cT = sp(1 − e−T
s ) (3)



412 Y. Du et al.

Apparently, when a flow’s counter value is cT or larger, its estimated car-
dinality is no less than T , and we will report it as a high-cardinality flow. To
simplify the computation, when performing online detection for a flow f , instead
of querying estimated cardinality, we will compare the counter value cf with cT .
The proposed method will report f as a high-cardinality flow if cf = �cT �, which
ensures a flow will be reported as a high-cardinality flow when this flow’s current
estimated cardinality exceeds the threshold for the first time.

4 Optimal System Parameters

In this section, we present the parameter selection for the proposed mechanism.
As discussed in Sect. 2, our goal is to minimize the on-chip memory require-
ment while providing the following probabilistic performance guarantees. The
proposed method will report any flow whose cardinality is h or larger as a high-
cardinality flow with a probability no less than α and report any flow whose
cardinality is l or lower as a high-cardinality flow with a probability no more
than β.

We need to select four parameters for the proposed model: physical bitmap
size m, virtual bitmap size s, valid virtual bit number s1, and the non-duplicate
sampling probability p2. As discussed above, for each virtual bit, its overall
sampling probability is always p = s1p2

s .

4.1 Report Probability

Consider a flow f with cardinality nf (n for short in the following context);
when its estimated cardinality n̂ is T or larger, we will report this flow as a high-
cardinality flow. Given sampling probability p and threshold T ; let F (n, s, p, T )
represent the probability of reporting a flow with cardinality n as a high-
cardinality flow, namely, report probability. As shown in Eq. 7, it can be computed
by the sum of probabilities when the estimated cardinality n̂ is T or larger:

F (n, s, p, T ) =
∞
∑

i=T

Pr{n̂ = i|s, p} (4)

As demonstrated in Sect. 3.2, for each flow f , we assign an s-bit virtual
bitmap to it for counting the cardinality. Suppose both valid virtual bits and void
ones can record values, and they are set to 0 at the beginning of the measurement.
Whenever an element of this flow is pseudo-randomly hashed onto one bit of 0,
we set this bit to 1 and use v to count the number of ones in total s virtual bits.
According to the probabilistic counting algorithm, v is expected to be s(1−e− n

s ).
In this paper, we operate a ceiling operation on the expected value and define v
as follows:

v = �s(1 − e− n
s )� (5)

Let c represent the counter value for flow f with cardinality n. Apparently, it
follows a Binomial distribution Binomial(v, p), where v is the number of trails,



Online High-Cardinality Flow Detection over Big Network Data Stream 413

p is the probability of success, and v is the number of successes. Then we can
calculate Pr{c = j|v, p}, the probability of c being j, as follows:

Pr{c = j|v, p} = Cj
vp

j(1 − p)v−j (6)

According to Eq. 2, when c is �cT � or larger, we will report flow f as a high-
cardinality flow. Therefore, F (n, s, p, T ) is equivalent to adding up the probabil-
ities when c varies from �cT � to v, which we denote as F ′(v, p, �cT �). Formally,
the following equation always holds:

F (n, s, p, T ) = F ′(v, p, �cT �) =
v

∑

j=�cT �
Pr{c = j} (7)

4.2 Constraints for System Parameters

The probabilistic performance objective can be stated as two constraints. First,
the reporting probability of a flow with cardinality n ≥ h must be at least α.
That is, F ′(v, p, �cT �) ≥ α,∀n ≥ h. The second constraint requires that our
method report a flow with cardinality n ≤ l as a high-cardinality flow with a
probability no more than β. Formally, F ′(v, p, �cT �) ≤ β,∀n ≤ l.

Before explaining the selection of system parameters, we start by proving
that report probability F ′(v, p, �cT �) is a monotonically increasing function in v.

Theorem 1. Suppose c is drawn from a Binomial distribution Binomial(v, p).
Report probability F ′(v, p, �cT �) =

∑v
j=�cT � Pr{c = j} is a monotonically

increasing function in v.

Proof. Let cv,p denote the counter value given binomial distribution parameters
v and p. Based on the definition of report probability, we say F ′(v+1, p, �cT �) is
equivalent to Pr{cv+1,p ≥ �cT �}, the probability when cv+1,p is �cT � or larger. It
can be computed by separately considering the cases when cv,p is at least �cT �
or equal to �cT � − 1.

Pr{cv+1,p ≥ �cT �}
= Pr{cv+1,p ≥ �cT �|cv,p ≥ �cT �} × Pr{cv,p ≥ �cT �}

+ Pr{cv+1,p ≥ �cT �|cv,p = �cT � − 1} × Pr{cv,p = �cT � − 1}
(8)

Apparently, Pr{cv+1,p ≥ �cT �|cv,p ≥ �cT �} equals to 1 since cv+1,p ≥ �cT �
always holds when cv,p ≥ �cT �. Consider when cv,p = �cT � − 1; inequality
cv+1,p ≥ �cT � is true only when the (v+1)-th trail is successful, whose probability
is p. Therefore, we have the following equation:

Pr{cv+1,p ≥ �cT �} = Pr{cv,p ≥ �cT �} + p × Pr{cv,p = �cT � − 1} (9)

Apparently, Pr{cv,p = �cT �−1} is a positive value, which means Pr{cv+1,p ≥
�cT �} is always larger than Pr{cv,p ≥ �cT �}. In summary, report probability
F ′(v, p, �cT �) is a monotonically increasing function in v. 	




414 Y. Du et al.

As we discussed above, F (n, s, p, T ) is equivalent to F ′(v, p, �cT �). From Eq. 5,
we know that v increases when n grows. Therefore, F (n, s, p, T ) is also a mono-
tonically increasing function in n.

Consider the probabilistic performance guarantees in Eq. 1. To ensure that
F (n, s, p, T ) ≥ α is satisfied for all n ≥ h, we only have to consider the worst
case, i.e., n = h. When F (h, s, p, T ) ≥ α holds, for any flow with cardinality
n ≥ h, its report probability is at least α, according to Theorem 1. Similarly,
for the second constraint F (n, s, p, T ) ≤ β,∀n ≤ l, it is satisfied if the report
probability of worst-case F (l, s, p, T ) is β or lower. Therefore, the probabilistic
performance guarantee in Eq. 1 can be transformed into the following constraint:

(F (h, s, p, T ) ≥ α) ∧ (F (l, s, p, T ) ≤ β) (10)

We want to stress that the above constraint is only related to s and p. In the
following, we will explain how to select the optimal value of m, p1 = s1

s2
, and p2

when s and p are fixed.
Suppose there are two parameters s and p satisfying the probabilistic per-

formance constraints. We use notation N ′ to represent the total number ‘1’s in
all virtual bitmaps, which can be computed by adding up the number of ones
in each flow’s virtual bitmap. Formally, N ′ can be obtained by the following
equation:

N ′ =
∑

f∈F
s(1 − e−nf

s ) (11)

In the update operation, each virtual bit has a probability of p1 to be a
valid virtual bit. Therefore, the number of ones in the valid virtual bits will be
N ′p1. Recall that the probability of selecting a new valid virtual bit that has
been hashed onto one bit of 0 is p3 = p2

m
m−c ≤ 1. According to the probabilistic

counter algorithm, we can estimate the counter’s maximum value, i.e., c = m(1−
e−N′p1

m ), reached when we hashed N ′p1 valid bits to B and set the corresponding
bits to 1. Gathering the above results, we have m ≥ N ′p1

ln p2
. Recall that p = p1p2,

we can transform this inequality into a function of p2 as follows:

m ≥ − N ′p
p2 ln p2

(12)

To ensure that p1 = p
p2

is a valid probability value (within (0, 1]), the range

of p2 is [p, 1]. The first derivative of − N ′p
p2 ln p2

is N ′p(1+ln p2)
(p2 ln p2)2

, which is lower than
0 when p2 < 1

e and larger than 0 when p2 > 1
e . Thus, to minimize the value of

m, the optimal values of p1 and p2 is as follows:

p1 = min{ep, 1}; p2 = max{p,
1
e
} (13)

Consider that s1 = sp1 is an integer. We will set s1 to �sp1� to ensure the
performance of the proposed method. Therefore, the parameter selection can be
expressed as the following problem.



Online High-Cardinality Flow Detection over Big Network Data Stream 415

min m

s.t.

⎧

⎪

⎨

⎪

⎩

m ≥ −N ′�smin{ep,1}�
s ln(max{p, 1e})

F (h, s, p, T ) ≥ α
F (l, s, p, T ) ≤ β

(14)

In the above problem, the first constraint ensures that the selected m is
sufficient so that the sampling probability p3 is within (0, 1]. The second and
third constraints ensure that the optimal parameters s and p can bound the
false-negative rate by 1 − α and bound the false-negative rate by β.

5 Experimental Evaluation

5.1 Experiment Setup

This section evaluates the performance of the proposed algorithm through exten-
sive experimental evaluations on 5-min Internet trace downloaded from CAIDA
[24]. This dataset has 513889 distinct per-destination flows, 3150740 distinct ele-
ments. In the following table, we present the distributions of flow cardinalities.
Our goal is to identify the high-cardinality per-destination flows in this dataset
when setting different threshold T (Table 1).

Table 1. The distribution of per-destination flows in different cardinality ranges

Cardinality 1∼10 11∼20 21∼50 51∼100 101∼200 201∼500 501∼1000 1001∼
#Flows 490998 7734 6917 3932 2039 1383 594 292

We run our evaluation on a server equipped with two six-core Intel Xeon E5-
2643 v4 3.40 GHz CPU and 256 GB RAM. We have implemented our solution
in C++. For comparison purposes, we also implemented NDS [16] in C++.
The hash functions used in our experiments are MURMUR3 hash with different
initial seeds.

In the following, we first compare our method and NDS in the on-chip mem-
ory they require to satisfy different constraints. Then we compare the proposed
method and NDS for their performance on high-cardinality flow detection in
terms of estimation accuracy, false-positive rate (FPR), and false-negative rate
(FNR). FPR refers to the fraction of normal flows (cardinalities are less than l)
that are falsely identified as high-cardinality flows. FNR is defined as the fraction
of high-cardinality flows that are not identified as high-cardinality flows.



416 Y. Du et al.

5.2 Comparison in Terms of Memory Requirements

We first compare our method and NDS for the amount of memory needed to
satisfy the constraints given in Eq. 14. Table 2 shows the memory requirements
of our method and NDS with respect to h and l, which were computed by the
parameter selection methods proposed in this work and [16]. Notice that, given
the values of h and l, the threshold T is set to (h+ l)/2. Besides, the values of α
and β are set to 0.95 and 0.05, which means we want to bound the false-negative
rate by 1 − α = 0.05 and bound the false-positive rate by β = 0.05 at the same
time.

Table 2. On-chip memory requirements of NDS and our method (MB)

h l

0.5 h 0.6 h 0.7 h 0.8 h 0.9 h

NDS Ours NDS Ours NDS Ours NDS Ours NDS Ours

100 0.303 0.223 0.410 0.317 0.610 0.477 1.097 0.924 4.505 3.779

200 0.219 0.152 0.271 0.220 0.378 0.332 0.690 0.593 2.311 2.121

300 0.177 0.115 0.226 0.173 0.303 0.269 0.497 0.460 1.683 1.476

500 0.149 0.077 0.170 0.110 0.226 0.186 0.348 0.342 0.974 0.964

1000 0.117 0.040 0.134 0.060 0.170 0.108 0.241 0.213 0.574 0.568

From Table 2, we found that when setting different h and l, NDS always
requires more on-chip memory than the proposed method, which indicates the
resource-efficiency of the proposed method. For example, we observe that our
solution save 26.4% on-chip memory than NDS when h = 100, l = 50 and save
35.2% on-chip memory than NDS when h = 500, l = 300. This is because the
proposed method can reduce the resource consumption of large flows, i.e., uti-
lizing the on-chip memory with higher efficiency.

5.3 Comparison in Terms of High-Cardinality Flow Detection

In this part of the evaluation, we compare the proposed method and NDS for
high-cardinality flow detection performance under different probabilistic perfor-
mance constraints.

In the first set of experiments, we compare our method and NDS when
h = 200, l = 120, α = 0.95, β = 0.05. The system parameters of NDS and the pro-
posed method are configured according to the parameter selection methods pro-
posed in [16] and this work. At this time, NDS requires 0.271 MB on-chip memory
to satisfy the above constraints, while our method only requires 0.229 MB, saving
15.4% on-chip memory. This is because our method can reduce the resource con-
sumption of large flows and show better space efficiency. Figure 3(a) and Fig. 3(b)
show the estimation accuracy of NDS and our method. The x-axis represents the



Online High-Cardinality Flow Detection over Big Network Data Stream 417

100

101

102

103

104

100 101 102 103 104

Es
tim

at
ed

C
ar
di
na
lit
y

Actual Cardinality
(a) NDS, M = 0.271MB

100

101

102

103

104

100 101 102 103 104

Es
tim

at
ed

C
ar
di
na
lit
y

Actual Cardinality
(b) ours, M = 0.220MB

Fig. 3. Cardinality estimation accuracy of NDS and our method when h = 200, l =
120, α = 0.95, β = 0.05

Table 3. Mean relative error for NDS and our method (h = 200, l = 120, α = 0.95, β =
0.05)

Algorithm Cardinality

All flows 1∼100 101∼200 201∼500 501∼1000 1001∼
NDS 1.364 1.375 0.121 0.083 0.054 0.032

Ours 1.324 1.334 0.125 0.090 0.075 0.124

Table 4. False positive rate and false negative rate of NDS and our method when
h = 200, l = 120, α = 0.95, β = 0.05

FPR FNR

Cardinality 1∼100 101∼110 111∼120 200∼210 211∼220 221∼
NDS 0 0 0.018 0.029 0.022 0.001

Ours 0 0 0.018 0.039 0 0

actual cardinality; the y-axis represents the estimated cardinality. A point refers
to a flow. Therefore, the closer a point is to the line y = x, the more accurate
the estimation result is. Also, we list the mean relative error of the estimated
cardinalities in Table 3. We found out that NDS’s estimation accuracy increases
when the flow cardinality grows. It achieves the best accuracy when the flow
cardinality is much larger than h.

We want to stress that such a high accuracy for the large flows is not desired for
high-cardinality flow detection. Different from NDS, our method achieves the best
accuracy when flow cardinality is close to threshold T . But when flow cardinality
is much larger than T , e.g., 1000, our method will limit the on-chip memory this
flow occupies, decreasing the estimation accuracy while ensuring the performance
constraints. In Table 4, we compare the proposed method and NDS in terms of
FNR and FPR. We found that both methods’ FPRs and FNRs satisfy the given



418 Y. Du et al.

constraints, which means our method can show the same performance on high-
cardinality identification while using 81.1% on-chip memory that NDS requires.

100

101

102

103

104

100 101 102 103 104

Es
tim

at
ed

C
ar
di
na
lit
y

Actual Cardinality
(a) NDS, M = 0.226MB

100

101

102

103

104

100 101 102 103 104

Es
tim

at
ed

C
ar
di
na
lit
y

Actual Cardinality
(b) ours, M = 0.186MB

Fig. 4. Size estimation accuracy of NDS and the our method when h = 500, l =
350, α = 0.95, β = 0.05

Table 5. Mean relative error for NDS and our method (h = 500, l = 350, α = 0.95, β =
0.05)

Algorithm Cardinality

All flows 1∼100 101∼200 201∼500 501∼1000 1001∼
NDS 1.495 1.506 0.146 0.093 0.063 0.038

Ours 1.466 1.478 0.143 0.094 0.073 0.055

Table 6. False positive rate and false negative rate of NDS and the our method when
h = 500, l = 350, α = 0.95, β = 0.05

FPR FNR

Cardinality 1∼330 331∼340 341∼350 500∼510 511∼520 521∼
NDS 0 0 0 0 0 0

Ours 0 0 0.050 0.111 0 0

In the second sets of experiments, we configure the performance constraints
to h = 500, l = 350, α = 0.95, β = 0.05. At this time, NDS requires 0.226 MB
on-chip memory, while our method only needs 0.186 MB, i.e., saving 17.6% on-
chip memory. The cardinality estimation results are presented in Fig. 4(a) and
Fig. 4(b) and Table 5, where we can obtain similar results as in the first set
of experiments. Then we present the FNRs and FPRs of both algorithms in
Table 6. It shows that our method can significantly reduce the required on-chip
memory while ensuring the same performance constraints, indicating the pro-
posed method’s resource efficiency.



Online High-Cardinality Flow Detection over Big Network Data Stream 419

6 Related Work

The concept of high-cardinality flow detection is similar to per-flow cardinality
estimation but has a different focus. Per-flow cardinality estimation is designed to
estimate the cardinalities for all flows. Differently, high-cardinality flow detection
only concerns if a flow’s cardinality exceeds a predefined threshold.

Sketch-based methods [19–21,25] are often used to implement per-flow car-
dinality estimation and high-cardinality flow detection. To reduce the memory
demand and fit in limited on-chip memory, sketch-based methods use compact
data structures, like CM, Bitmap, HLL, to compress the flow traffic and reduce
memory usage. Placing all flow traffic in the on-chip memory has the benefit of
catching up with the line rate and results in one limitation: they need to scan
hundreds or thousands of bits/registers when performing either per-flow car-
dinality estimation or high-cardinality flow detection. Therefore, these off-chip
analysis is only executed periodically.

A different strategy for per-flow cardinality estimation is using sampling.
Recently, NDS [16] presents a non-duplicate sampling method based on the on-
chip/off-chip design. Unlike sketch-based methods, it only uses on-chip memory
to filter the duplicates, then sends and stores the sampled elements in the off-chip
memory. The benefit of using off-chip memory is two-fold. First, it maintains a
separate counter for each flow in the off-chip memory, reducing the estimation
error and estimation time. Second, it can answer online queries since compu-
tation for cardinality estimation is low. However, NDS is designed for per-flow
cardinality estimation that provides accurate estimation results for all flows.
Differently, high-cardinality flow detection only concerns whether a flow’s car-
dinality exceeds a certain threshold. NDS’s accurate estimation results for large
flows are not desired since it does not affect the identification performance but
wastes unnecessary resources.

This motivates us to explore online high-cardinality flow detection. We opt
to report the high-cardinality flows when their estimated cardinalities exceed
the threshold for the first time. Meanwhile, we want to achieve better resource
efficiency than the methods proposed for per-flow cardinality estimation.

7 Conclusion

This paper proposes an online high-cardinality flow detection method over the
big network data stream, which reports the high-cardinality flows when their
estimated cardinalities exceed the threshold for the first time during the mea-
surement epoch. Based on an on-chip/off-chip design, the proposed method con-
structs a virtual bitmap sharing module over the physical bitmap, uses on-chip
memory to filter the duplicates, and uses off-chip memory to store the flow traf-
fic. With this design, the proposed method can achieve online high-cardinality
flow detection with high resource efficiency while meeting the performance con-
straints. The experimental results based on real Internet traffic traces demon-
strate that our solution can achieve higher resource efficiency when bounding



420 Y. Du et al.

the same constraints for false-positive rates and false-negative rates compared
to the state-of-the-art methods.

Acknowledgements. This research was supported by the National Natural Science
Foundation of China (Grant No. 62072322, 61873177, and U20A20182) and Natu-
ral Science Research Project of Jiangsu Higher Education Institution (Grant No.
18KJA520010).

References

1. Yang, T., Zhou, Y., Jin, H., Chen, S., Li, X.: Pyramid sketch: a sketch framework
for frequency estimation of data streams. Proc. VLDB Endow. 10(11), 1442–1453
(2017)

2. Wu, G., et al.: Accelerating real-time tracking applications over big data stream
with constrained space. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.)
DASFAA 2019. LNCS, vol. 11446, pp. 3–18. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18576-3 1

3. Huang, H., et al.: An efficient k-persistent spread estimator for traffic measurement
in high-speed networks. IEEE ACM Trans. Netw. 28(4), 1463–1476 (2020)

4. Yang, Z., Zheng, B., Li, G., Zhao, X., Zhou, X., Jensen, C.S.: Adaptive top-k
overlap set similarity joins. In: 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pp. 1081–1092. IEEE (2020)

5. Zheng, B., et al.: Answering why-not group spatial keyword queries. TKDE 32(1),
26–39 (2020)

6. Estan, C., Varghese, G.: New directions in traffic measurement and accounting:
focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst. (TOCS)
21(3), 270–313 (2003)

7. Lieven, P., Scheuermann, B.: High-speed per-flow traffic measurement with proba-
bilistic multiplicity counting. In: Proceedings of the IEEE Conference on Computer
Communications (INFOCOM 2010), pp. 1–9 (2010)

8. Yoon, M., Li, T., Chen, S., Kwon Peir, J.: Fit a spread estimator in small memory.
In: Proceedings of the IEEE Conference on Computer Communications (INFO-
COM 2009), pp. 504–512 (2009)

9. Zhou, Y., Zhou, Y., Chen, M., Xiao, Q., Chen, S.: Highly compact virtual counters
for per-flow traffic measurement through register sharing. In: Proceedings of the
IEEE GLOBECOM 2016, pp. 1–6 (2016)

10. Ting, D.: Approximate distinct counts for billions of datasets. In: Proceedings
of the International Conference on Management of Data (SIGMOD), pp. 69–86.
Association for Computing Machinery, New York (2019)

11. Zheng, J., Xu, H., Chen, G., Dai, H.: Minimizing transient congestion during net-
work update in data centers. In: Proceedings of IEEE International Conference on
Network Protocols (ICNP 2015), pp. 1–10 (2015)

12. Xu, H., Yu, Z., Qian, C., Li, X., Liu, Z., Huang, L.: Minimizing flow statistics
collection cost using wildcard-based requests in SDNs. IEEE ACM Trans. Netw.
25(6), 3587–3601 (2017)

13. Li, T., Chen, S., Luo, W., Zhang, M.: Scan detection in high-speed networks based
on optimal dynamic bit sharing. In: Proceedings of the IEEE Conference on Com-
puter Communications (INFOCOM 2011), pp. 3200–3208 (2011)

https://doi.org/10.1007/978-3-030-18576-3_1
https://doi.org/10.1007/978-3-030-18576-3_1


Online High-Cardinality Flow Detection over Big Network Data Stream 421

14. Hu, C., Liu, B., Wang, S., Tian, J., Cheng, Y., Chen, Y.: ANLS: adaptive non-
linear sampling method for accurate flow size measurement. IEEE Trans. Commun.
60(3), 789–798 (2012)

15. Hao, F., Kodialam, M., Lakshman, T.: ACCEL-RATE: a faster mechanism for
memory efficient per-flow traffic estimation. ACM SIGMETRICS Perform. Eval.
Revi. 32, 155–166 (2004)

16. Sun, Y., Huang, H., Ma, C., Chen, S., Du, Y., Xiao, Q.: Online spread estimation
with non-duplicate sampling. In: Proceedings of the IEEE Conference on Computer
Communications (INFOCOM 2020), pp. 2440–2448 (2020)

17. Heule, S., Nunkesser, M., Hall, A.: HyperLogLog in practice: algorithmic engineer-
ing of a state of the art cardinality estimation algorithm. In: Proceedings of the
16th International Conference on Extending Database Technology (EDBT 2013),
pp. 683–692 (2013)

18. Yang, T., et al.: A generic technique for sketches to adapt to different counting
ranges. In: Proceedings of the IEEE Conference on Computer Communications
(INFOCOM 2019), pp. 2017–2025 (2019)

19. Yoon, M., Li, T., Chen, S., Peir, J.K.: Fit a compact spread estimator in small
high-speed memory. IEEE ACM Trans. Network. (TON) 19(5), 1253–1264 (2011)

20. Huang, H., et al.: You can drop but you can’t hide: k-persistent spread estimation
in high-speed networks. In: Proceedings of the IEEE Conference on Computer
Communications (INFOCOM 2018), pp. 1889–1897 (2018)

21. Zhou, Y., Zhou, Y., Chen, S., Zhang, Y.: Highly compact virtual active counters for
per-flow traffic measurement. In: Proceedings of the IEEE Conference on Computer
Communications (INFOCOM 2018), pp. 1–9 (2018)

22. Zhang, Y.: An adaptive flow counting method for anomaly detection in SDN. In:
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies, pp. 25–30. Association for Computing Machinery, New York
(2013)

23. Cheng, G., Yu, J.: Adaptive sampling for OpenFlow network measurement meth-
ods. In: Proceedings of the 12th International Conference on Future Internet Tech-
nologies, pp. 1–7. Association for Computing Machinery, New York (2017)

24. CAIDA: The CAIDA UCSD anonymized internet traces (2016). http://www.caida.
org/data/passive/passive 2016 dataset.xml. Accessed 28 July 2019

25. Wang, P., Jia, P., Zhang, X., Tao, J., Guan, X., Towsley, D.: Utilizing dynamic
properties of sharing bits and registers to estimate user cardinalities over time. In:
Proceedings of the IEEE International Conference on Data Engineering (ICDE),
pp. 1094–1105 (2019)

http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml


SCSG Attention: A Self-centered Star
Graph with Attention for Pedestrian

Trajectory Prediction

Xu Chen1, Shuncheng Liu1, Zhi Xu1, Yupeng Diao1, Shaozhi Wu2,
Kai Zheng1,2, and Han Su1,2(B)

1 School of Computer Science and Engineering, Chengdu, China
{xuchen,liushuncheng,zhixu023,yupengdiao}@std.uestc.edu.cn,

{zhengkai,hansu}@uestc.edu.cn
2 Yangtze Delta Region Institute (Quzhou),

University of Electronic Science and Technology of China, Chengdu, China
wszfrank@uestc.edu.cn

Abstract. Pedestrian trajectory prediction enables faster progress in
autonomous driving and robot navigation where complex social and envi-
ronmental interactions involve. Previous models use grid-based pooling
or global attention to measure social interactions and use Recurrent
Neural Network (RNN) to generate sequences. However, these meth-
ods can not extract latent features from temporal and spatial infor-
mation simultaneously. To address the limitation of previous work, we
propose a Self-Centered Star Graph with Attention (SCSG Attention)
framework. Firstly, pedestrians’ historical trajectories are encoded. Then
multi-head attention mechanism plays a role as enhancement of social
interaction awareness and simulation of physical attention from human
beings. Lastly, the self-centered star graph decoder can aggregate tempo-
ral and spatial features and make predictions. Experiments are conducted
on public benchmark datasets and measured with uniform standards.
Our results show an improvement over the state-of-the-art algorithms
by 38% on average displacement error (ADE) and 19% on final displace-
ment error (FDE). Furthermore, it is demonstrated that the star graph
has better performance in efficiency of training convergence and ends up
with better results in limited time.

Keywords: Pedestrian trajectory prediction · Spatial temporal
model · Multi-head attention

1 Introduction

Autonomous driving and robotics that involves human-machine interactions are
one of the most promising field of research because there is an unprecedented
tendency that let artificial intelligence serve human being and change people

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 422–438, 2021.
https://doi.org/10.1007/978-3-030-73194-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_29


SCSG Attention 423

lifestyle. Among all the robotics problems, how to make a machine have a com-
prehensive understanding of people’s motion is a significant issue. Pedestrian tra-
jectory prediction is a branch of the problem from human motion study because
it allows robots to plan their own movement to avoid the collision. For example,
a self-driving car can make a prediction of pedestrians’ movement on the road
to make a reasonable adjustment in advance thus avoid the collision. A domestic
robot can predict people’s trajectory in the room and plan its own movement
to minimize the impact on people. Besides, pedestrian trajectory prediction has
some important applications in urban city planning and surveillance systems.

Previous work can be classified into four categories: hand-craft rules, grid-
based methods, attention-based methods, and graph-based methods. First, the
traditional hand-craft rules that simulate human social force [7] have decent
results in some circumstances but can not be generalized well on modern datasets
because rigid methods are not flexible enough to simulate complex situations in
modern datasets. Second, in recent years, Social LSTM [1] is a pioneering work
that uses RNN models to make a prediction and also utilizes grid-based pooling
to aggregate multiple interactions. After that many different social awareness
models are proposed to extract social interactions [3–5]. However, grid-based
measurement is not efficient. Sparse grids occupy numerous storage so it needs a
large amount of computational power and traversal through grids. Besides, there
is a lack of bias on social interaction, which means impacts from different people
are considered similarly. Third, to allocate weights to different people and obsta-
cles, global attention models are used in Sophie [14]. However, the drawback of
global attention is that it ignores impacts on himself and some potential infor-
mation from other pedestrians. Forth, recently, SAPTP [6] uses a graph-based
method to associate temporal and spatial information and achieve competitive
results. Nevertheless, they use a complete graph to extract superfluous features,
which will cost redundant computational power.

Fig. 1. Attention to different social interaction (Color figure online)



424 X. Chen et al.

According to the problems mentioned above, challenges mainly come from
two factors: (1) how to extract features that represent social interactions is a diffi-
cult task. Let’s take Fig. 1 as a running example. The pedestrian k in red changes
his path mainly because he wants to hide away from pedestrian 1 in purple while
he is less influenced by pedestrian 3 in yellow. It shows that he is influenced by
others who are not only close to him but also in conflict direction, fast relative
speed, etc. All the potential factors can be influential in social interactions. In
addition, multiple external impacts including dynamic and static interactions are
supposed to be considered at the same time. The variety of social interactions
has not been considered by recent studies. (2) How to aggregate temporal and
spatial information simultaneously is also a critical problem. Trajectory predic-
tion can be regarded as a two-dimensional sequence generation issue. Therefore,
the chronological order of pedestrians’ position is essential. Previous works only
consider temporal features at decoder, which is not enough to generate future
sequences.

To tackle these challenges, a self-centered star graph based on a multi-head
attention model is proposed. We use the multi-head attention model to simulate
human being’s attention in the real world because it indicates people’s reflection
on the environment and social impacts. For example, when a person walks on
an empty street, he probably will not change his direction and walk in a straight
line. On the contrary, when a person walks on a crowded street, he will change his
direction and speed to avoid other pedestrians. Therefore, the moving behavior
of the pedestrian is mainly influenced by how much attention he should pay
to the surroundings. That idea inspires us to build an attention-based model
to learn environmental influence. The multi-head attention consists of several
layers. Every layer can extract useful latent features respectively thus it is a more
comprehensive representation of a human being attention. In addition, the novel
self-centered star graph is a data structure designed for pedestrian trajectory
prediction. It can combine temporal and spatial information because both of
them will flow through the graph. We use the graph at the decoder to capture
dynamic and static changes in the environment. Besides, it generates attention
simulation from a personal perspective and gets rid of redundant calculations.

Contribution of our paper can be summarized as following:

– We propose the utilization of multi-head attention to simulate pedestrians’
attention. Multi-head attention can extract different levels of latent features
from social interactions. With a more comprehensive feature representation,
our model can find the most possible decision made by the pedestrian.

– A self-centered star graph is proposed to capture temporal and spatial fea-
tures simultaneously. At the same time, it only takes account of the target
pedestrian’s interaction with nearby people thus it accelerates training speed.

– Our model is conducted on the benchmark datasets and achieves state-of-
the-art accuracy and efficiency of convergence. Extensive experiment results
show an improvement over that of previous work by 38% on ADE and 19%
on FDE.



SCSG Attention 425

The remainder of the paper is structured as follows. Section 2 introduces
some important notations and a formal definition of the pedestrian trajectory
prediction problem. Our SCSG Attention framework as well as its components
are illustrated in Sect. 3. Section 4 presents our evaluation of experimental results
and a case study. Lastly, the related work and conclusion are shown in Sect. 5
and Sect. 6.

2 Problem Definitions and Important Notations

Definition 1 (Trajectory sample point). A trajectory sample point p is a
location in two-dimensional space, and pt

i represents the sample point at a specific
time stamp t of person i.

Each scene of pedestrians is captured at a fixed frequency in videos, where
time can be regarded as frame based on videos. Therefore there is a corre-
sponding time sequence {t|t = 1, 2, 3, . . . , n} where n is final frame. In each
frame, every pedestrian will be represented by a two-dimension world coordi-
nate P = {(xt

i, y
t
i)|t = 1, 2, 3, . . . , n i = 1, 2, 3, . . . , I} where I is the number of

distinct pedestrians of all time. And pt
i denotes pedestrian i’s position at time t.

Definition 2 (Trajectory). Trajectory is a sequence of trajectory sample
points, ordered by time stamps t. In this problem, pedestrian i’s trajectory is a
sequence of two-dimensional trajectory sample points: Ti = [p1i , p

2
i , . . . , p

n
i ].

Problem Definition. At any frame t, the problem can be defined as following:
from observation of target person k’s historical trajectory Th

k = [pt−λ+1
k , . . . , pt

k]
and his neighbor Th

i = [pt−λ+1
i , . . . , pt

i] where i �= k, we want to predict the target

pedestrian k’s future trajectory T̂k
f

= [pt+1
k , . . . , pt+δ

k ]. λ and δ are historical and
future length respectively. Specifically, the target person is denoted by index k
in this paper. A static object in the street can be treated as a static pedestrian.

This task can also be viewed as a sequence generation problem, where the
input sequence corresponds to the observed positions of a person and we want
to generate an output sequence. Our goal is to make predictions T̂k

f
as accurate

as possible to the ground truth trajectory T f
k .

3 Methodology

3.1 SCSG Attention Framework

The overview of model architecture can be shown in Fig. 2. There are three
components in our framework, namely (1) spatial and temporal encoder, (2)
attention mechanism, (3) self-centered star graph decoder. In the beginning, the
historical trajectory of target pedestrian k and his neighboring pedestrians i are
encoded by temporal and spatial encoder respectively. Hidden states ht

k and ht
i



426 X. Chen et al.

Fig. 2. SCSG attention framework overview

are then entered to our attention mechanism to analog pedestrian k’s attention.
Finally, the weighted sum of attention vectors is passed through our self-centered
star graph decoder to output a predicted location one at a time. At the same
time, the neighboring hidden states will be continuously decoded in the graph.
Specifically, we calculate attention for every future frame.

3.2 Spatial and Temporal Encoder

Pedestrian location description is based on Cartesian coordinates, thus trajecto-
ries in a scene can be shown by Fig. 1. The historical trajectories are represented
by a solid line and dash line shows future trajectories. The pedestrian k’s his-
torical trajectory contains temporal information and other pedestrian i’s histor-
ical trajectories are regarded as spatial information. Long Short-Term Memory
Networks (LSTM) shows promising functionality in sequence memorization and
encoding. For this specific problem, temporal information and spatial informa-
tion are encoded separately.

For temporal encoding, we defined a dedicated time embedding mapping
function to convert historical trajectory Th

k from locations to a high dimension
vector et

k as follows:
et
k = φtemporal(pt

k;W ) (1)

where φtemporal(.) is a fully connected neural network and pt
k denotes the location

of pedestrian k at frame t, W denotes embedding parameters.



SCSG Attention 427

To aggregate historical trajectory features, we define a dedicated temporal
LSTM layer to transform temporal embedding et

k to a hidden state ht
k as follows:

ht
k = LSTM(et

k, ht−1
k ;W ) (2)

where ht−1
k is the hidden state at last frame, W denotes temporal LSTM param-

eters. Temporal LSTM layer is executed recursively to obtain the final hidden
state ht

k.
Similarly, a spatial embedding layer is built to transform neighboring pedes-

trian trajectories Th
i to high dimension vectors. The embedding layer consists

of a fully connected layer. Notably, it does not share parameters with tempo-
ral embedding layer but it shares parameters among neighboring pedestrians
because neighboring pedestrians together represent context of the target pedes-
trian. The vector et

i is defined as follows:

et
i = φspatial(pt

i;W ) (3)

where i is a neighboring pedestrian(i �= k) in the scene, pt
i is location of neigh-

boring pedestrian i at frame t, And W denotes spatial embedding parameters.
We use spatial embedding as input of spatial LSTM in order to incorporate

location information of neighboring pedestrians. The spatial LSTM does not
share parameters with temporal LSTM. Hidden states ht

i are defined as follows:

ht
i = LSTM(et

i, h
t−1
i ;W ) (4)

where i is a neighboring pedestrian(i �= k) in the scene, ht−1
i is the pedestrian

i’s spatial hidden state at previous frame and W denotes spatial LSTM parame-
ters. Spatial LSTM is executed recursively to obtain spatial hidden states of all
neighboring pedestrians.

3.3 Attention Mechanism

Human being’s attention can allocate bias on different objects thus it makes peo-
ple focus on useful information. For example, someone who walks on a street will
pay more attention to other noticeable pedestrians. Like human beings, atten-
tion mechanisms let machines learn useful features thus it makes machines more
efficient. In [14], global attention is used to find weights on other pedestrians,
but it can not extract features from multiple perspectives. Recently, multi-head
attention proposed in [17] vastly boosts the development of the attention mecha-
nism. It is a substitute to simulate physical attention awareness from a personal
perspective in our model. To be more specific, multi-head personalized attention
is used to mimic physical attention to nearby people in a radius. Therefore, dif-
ferent nearby pedestrians will be measured by unique weights. And multi-head
attention can simulate the attention from multiple potential reasoning, which
vastly increases the robustness of our model.

The architecture of attention mechanism can be shown in Fig. 3. It shows the
calculation process of target pedestrian’s attention to himself and his neighboring



428 X. Chen et al.

Fig. 3. Attention mechanism

pedestrians in the scene. To calculate attention weights, the output of temporal
LSTM ht

k will be embedded to three vectors namely query vector Qt
k, key vector

Kt
k and value vector V t

k (size = dm), which are measured as follows:

Qt
k = φt(ht

k;Wqt) (5)

Kt
k = φk(ht

k;Wkt) (6)

V t
k = φt(ht

k;Wvt) (7)

where Wqt,Wkt,Wvt in the embedding function are their parameters respectively.
For outputs from spatial LSTM ht

i, they will be embedded to key vectors Kt
i

and value vectors V t
i . They are defined as follows:

Kt
i = φk(ht

i;Wks) (8)

V t
i = φt(ht

i;Wvs) (9)

where Wks and Wvs in the functions are embedding function parameters.
For target pedestrian k in the scene, the attention values of latent feature j

Scoret
j of pedestrian k can be calculated as follows:

Scoret
j =

n∑

i=1

Softmax(
Qt

k × Kt
i√

dm

) × V t
i (10)

where index j indicates index of latent features, user can define how many fea-
tures to calculate.

Finally, this workflow will be repeated for a user-defined fixed number n.
Every output is a layer of attention. The benefit of multi-head attention is that
every separated attention will extract a feature from a different perspective.



SCSG Attention 429

Different from local attention or global attention, it makes a well-rounded con-
sideration to simulate pedestrians’ physical attention. The final attention score
F t

k is defined as follows:

F t
k = Wa × Concat(Scoret

1, Scoret
2, . . . , Scoret

n) (11)

where Wa is matrix representing a linear transformation.

3.4 Self-centered Star Graph Decoder

LSTM can be a sequence generator since it can decode hidden states and pre-
dict results one at a time. But it is hard to capture dynamic changes by naively
applying LSTM on some real-world problems that are highly dependent on tem-
poral and spatial features. A spatio-temporal graph-based model was proposed
in SAPTP [6] to solve pedestrian prediction. While they use a complete graph in
their model, a simplified version namely a self-centered star graph is proposed in
our model without sacrificing effectiveness and accuracy. The self-centered star
graph decreases the number of edges from O(n2) to O(n), resulting in a faster
convergence speed compared to a complete graph.

Fig. 4. Self-centered star graph structure

Figure 4 shows the structure of self-centered star graph. It is established in
three steps: (1) Add each pedestrian k and i to the vertex set V. So according
to the running example in Fig. 1, there are five vertices vk, v1, v2, v3, v4 in the
beginning. Then add undirected edges from vk to vi, denoted by e(k, i). Now a
plane self-center star graph is completed (2) Repeat step (1) for δ−1 times. When
δ = 5 (shown in Fig. 4), we get a three-dimensional self-centered star graph. (3)
Add undirected grey edges from vi to vi and from vk to vk respectively from
each frame t to t + 1, denoted by e(i, i) and e(k, k). That is how the running
example in Fig. 1 becomes Fig. 4 topology.

Different edges represent different calculations. From every frame t to
t + 1, edge e(i, i) represents propagation of spatial information. Specifically, the



430 X. Chen et al.

neighboring pedestrians hidden states ht
i will be inputted into a spatial decoder

as follows:
ht

i = LSTM(ht−1
i ;W ) (12)

where ht−1
i is the hidden state from previous frame and W denotes the spatial

LSTM parameter.
Besides, from every frame t to t + 1, edge e(k, k) represents propagation of

temporal information. Specifically, the target pedestrian hidden states will be
decoded by a temporal LSTM as follows:

ht
k = LSTM(F t

k, ht−1
k ;W ) (13)

where ht−1
k is hidden state of the target pedestrian from previous frame, F t

k is
attention score shown in Eq. 11 and W denotes the temporal LSTM parameters.

At every frame t, edge e(k, i) represents attention from pedestrian k to pedes-
trian i. The calculation is shown in Eq. 10. After that, the target hidden state
will time a matrix W0 to generate predicted location of the target pedestrian p̂t

k

as follows:
p̂t

k = Wo × ht
k (14)

Finally, L2 loss is used as our loss function. We have tried both to sample
from bivariate Gaussian distribution and to use L2 loss. We find using L2 loss
is much beneficial to gradient descent since it boosts the velocity of gradient
descent and achieves better results in a shorter time.

4 Experiments and Analysis

In this section, we evaluate our method on several benchmark pedestrian
datasets. Besides, our model is compared with selected baselines on two met-
rics: ADE/FDE.

4.1 Experimental Setup

Datasets: We use two public pedestrian datasets. First, ETH [13] has 750 pedes-
trians and is divided into two datasets (ETH and hotel) according to two differ-
ent scenarios. Second, the UCY dataset [10] has 786 pedestrians in total and is
divided into three different datasets (zara01, zara02, and univ.) according to dif-
ferent scenarios. Therefore, we used a total of five scenarios to verify our model.
These datasets were collected from the real world, including a variety of complex
scenes, such as a crowd or two pedestrians walking together. Each pedestrian
has a nonlinear trajectory at different speeds.

Evaluation Metrics: According to our baselines, two evaluative metrics are
used. The smaller of these two metrics are, the better the model performs.

– Average displacement error(ADE): it calculates the mean square error
between all predicted points and ground truth points in a trajectory.



SCSG Attention 431

– Final displacement error(FDE): it calculates the distance between the final
point of a predicted trajectory and ground truth value of final point.

Evaluation Baselines: We compare our model with the previous competitive
models.

– LSTM (vanilla LSTM model): a vanilla LSTM that contain classic encoder-
decoder architecture.

– S-LSTM [1]: Social LSTM proposed a grid-based pooling layer, which is
designed to model each person via an LSTM with the hidden states being
pooled at each time.

– S-GAN [5]: an Generative Adversarial Network(GAN) is used to generate
multiple socially-acceptable trajectories. Gupta et al. propose a new grid-
based pooling mechanism which encodes the subtle cues for all pedestrians
involved in a scene. This model performs well in crowded scenes.

– CF-LSTM [18]: Cascaded Feature-Based Long Short-Term Networks where
the feature information of the previous two timestamps is considered as the
input of LSTM. Only one pedestrian feature is used in this model.

– SAPTP [6]: a spatio-temporal graph-based model use complete graph to make
prediction.

– Global attention model: global attention is used in our model as a comparison
to multi-head attention. It only extracts one latent feature and it does not
count pedestrian attention to himself.

– Local attention model: local attention is used in our model as a comparison
to multi-head attention. Similarly, it only extracts one latent feature. And it
generate output attention randomly instead of a weighted sum.

We try our best to reproduce the Cascaded Feature-Based LSTM model
(CF-LSTM) following implementation details in the paper [18] and reproduce
the vanilla LSTM model to predict the trajectory. Besides, there are three groups
of experiments designed to prove our method better than other methods.

Implementation Details: According to all benchmark results, the leave-one-
out approach [18] is used to train and validate model parameters. To more spe-
cific, every time we train and validate our model on 4 datasets and test on the
remaining one. We set λ = 8 and δ = 12, in other word 3.2 s and 4.8 s respec-
tively. LSTM with 128 units of hidden states is used as encoder and decoder in
our model. We use six heads for multi-head attention. Our model is trained with
a batch size of 128 for 100 epochs using Adam with a default setting.

4.2 Performance Evaluation

In this subsection, in order to demonstrate the effectiveness of our method, we
compare our evaluation metrics with other baselines.

Our Model vs Baselines: Our model is evaluated based on two metrics ADE
and FDE against different baselines in Table 1. All baselines use LSTM as the



432 X. Chen et al.

base model since the classic encoder-decoder architecture is powerful in sequence-
related problems. The majority of deep learning models in trajectory prediction
is based on vanilla LSTM. As expected, all models perform better than it but
CF-LSTM is worse than LSTM in FDE. We try our best to reproduce CF-
LSTM and fine-tuned parameters on real-world datasets. It is probably because
it only extracts limited features from one person while other models make use
of multiple people’s trajectory. As shown in Table 1, S-GAN performs better
than LSTM, CF-LSTM, S-LSTM, and SAPTP, since it revises the pooling layer
in S-LSTM and uses generative modeling to produce multiple possible results.
Our model outperforms all other models in ADE and FDE since we use a more
well-rounded attention mechanism compared to S-GAN. Furthermore, better
aggregation graph is used in our model compared to traditional encoder-decoder
methods.

Table 1. Quantitative results of baselines and our models on all datasets

Performance (ADE/FDE)

Type Base Model Pooling Pooling Individual Graph Graph

Datasets LSTM S-LSTM S-GAN CF-LSTM SAPTP Our Model

ETH 1.41/3.13 1.09/2.35 0.87/1.62 1.36/3.40 1.24/2.35 0.58/1.47

HOTEL 0.54/1.38 0.79/1.76 0.67/1.37 0.44/1.22 0.48/0.80 0.20/0.65

UNIV 1.47/2.83 0.67/1.40 0.76/1.52 1.18/2.86 0.69/1.45 0.53/1.53

ZARA1 0.41/1.00 0.47/1.0 0.35/0.68 0.38/1.13 0.51/1.15 0.20/0.62

ZARA2 0.34/0.93 0.56/1.17 0.42/0.84 0.33/0.96 0.56/1.13 0.19/0.60

Average 0.83/1.85 0.72/1.54 0.61/1.21 0.74/1.91 0.70/1.38 0.34/0.97

Effectiveness of Multi-head Attention: Attention mechanism plays an
important role in our model, and different attention mechanism has different
performance. In this set of experiments, we compare the ADE and FDE of
different attention mechanisms. As shown in Fig. 5, ADE and FDE from the
multi-head attention model are the lowest among all datasets so the multi-head
attention model outperforms other methods evidently. An important reason is
that the multi-head attention mechanism can pay attention to the subtle cues
of pedestrians around. However, global-attention and local-attention both can
only pay attention to partial information, leading to negligence of some impor-
tant information.

Effectiveness of Different Amount of Heads: The amount of the head
represents how many times we count attention. It may affect the effectiveness of
our attention mechanism since the number of heads partly determines how many
features our model can learn. For example, six multi-head means that there are
six attention layers to learn six different latent features while hand-craft rules
can only extract one rigid feature. These six results will be concatenated and
passed to the next layer. In this set of experiments, we compare the ADE and



SCSG Attention 433

Fig. 5. Comparison of ADE and FDE among attention mechanisms

FDE of different amounts of heads. As shown in Table 2, when the head equals
6, the model outperforms other values of the head. Besides, we only consider the
head equal to these values {2, 4, 6, 8, 10, 12}, the result will be worse with larger
number of heads, since it causes overfitting.

Table 2. Multi attention mechanism (Hyparamater)

Datasets Performance of different head numbers (ADE/FDE)

2 4 6 8 10 12

ETH 0.75/2.04 0.64/1.60 0.58/1.47 0.62/1.51 0.59/1.54 0.61/1.57

HOTEL 0.22/0.87 0.24/0.91 0.20/0.65 0.21/0.72 0.17/0.56 0.20/0.74

UNIV 0.56/1.59 0.55/1.55 0.53/1.53 0.54/1.54 0.55/1.53 0.56/1.55

ZARA1 0.21/0.66 0.20/0.64 0.20/0.62 0.20/0.63 0.20/0.65 0.20/0.65

ZARA2 0.19/0.61 0.20/0.62 0.19/0.60 0.20/0.64 0.20/0.62 0.20/0.61

Average 0.39/1.15 0.37/1.06 0.34/0.97 0.35/1.01 0.34/0.98 0.35/1.02

Effectiveness of the Self-centered Star Graph: The self-centered star graph
exhibits two advantages compared with other methods. First, it is designed to
capture spatial and temporal features simultaneously, which is shown in the
model architecture part. And the average displacement error comparison to the
complete graph proves the effectiveness of the star graph. In the experiment (see
Table 3), ADE and FDE are compared to show that the effectiveness of star graph
is comparable to that of complete graph. Second, less computation is generated
in the star graph, which is expected to produce results in less time. According to
our experiments, the complete graph model occupies 95% GPU memory while
star graph model occupies 83% GPU memory. A stochastic gradient descent loss
graph (see Fig. 6) is presented to prove its velocity. Obviously, a faster decreasing
tendency can be shown in the graph. Although the loss of a star graph is higher
at the beginning, it finally becomes lower in the limited time. Compared with



434 X. Chen et al.

Fig. 6. Loss of star and complete graph

Table 3. ADE and FDE of two graphs

Performance (ADE/FDE)

Datasets Complete graph Star graph

ETH 0.65/1.32 0.58/1.47

HOTEL 0.19/0.57 0.20/0.65

UNIV 0.51/1.47 0.53/1.53

ZARA1 0.19/0.62 0.20/0.62

ZARA2 0.13/0.66 0.19/0.60

Average 0.33/0.93 0.34/0.97

the complete graph, the self-centered star graph can focus on the interaction
from valuable people, and also reduce the amount of calculation.

4.3 Case Study

In this section, according to the results of experiments, some of predicted tra-
jectories are visualized in Fig. 7.

In the first row, the background of these pictures is from ETH, and has
two characteristics: simple situations where there are interactions only among
people, and there are few noticeable obstacles; most pedestrians move in the
same direction. In these four pictures, Figure(a) shows the straight trajectory
of a pedestrian with fewer interactions from people around, Figure(b) shows the
straight trajectory of a pedestrian with more interactions from people around.
Figure(c) shows the crooked trajectory of a pedestrian. Figure(d) shows the
trajectory of a pedestrian following multiple pedestrians in the same direction.
Obviously, our proposed model has a smaller error and the direction of the
predicted trajectory is closer to the ground truth.

In the second row, the background of these pictures is from HOTEL, com-
pared to the first row, these pictures involve complex situations, there are many
obstacles in the scene, such as a bench, street lamp, trees. Those static objects
will be regarded as static pedestrians so they will be taken into consideration.
Besides, these pedestrians move in different directions. In these four pictures,
Figure(e) shows that a pedestrian moves in a straight trajectory at a normal
speed. Figure(f) shows that a pedestrian walks through the road between a tree
and a street lamp. Figure(g) shows that a pedestrian wants to pass the pedes-
trian ahead. Figure(h) shows the predicted trajectory of two parallel pedestrians.
It can be seen that our model has better performance than other models in such
complicated situations.

Above all, our model can detect environmental and social interactions. It
can also incorporate spatial and temporal features simultaneously with help of
attention mechanism and the star graph.



SCSG Attention 435

(a) pic1. (b) pic2. (c) pic3. (d) pic4.

(e) pic5. (f) pic6. (g) pic7. (h) pic8.

Fig. 7. Visualization of predicted trajectory

5 Related Work

In this section, some important milestones about sequence models, social interac-
tion models, and attention models are introduced. Some of them are used in the
real world extensively. State-of-the-art algorithms and techniques are inspired
by these previous researches.

5.1 RNN Based Sequence Model

Recurrent Neural Networks(RNNs) are deep learning models used in natural lan-
guage processing extensively. RNNs are mainly used for sequence processing like
machine translation [2,16], image captioning [15] and so on. They are inherently
good at sequence memorization and generation since inputs of RNNs are fixed-
length sequences and are read step by step. Long Short-Term Memory Networks
(LSTM) [8] is a kind of RNNs to avoid gradient exploding and gradient vanish-
ing thus it is capable of encoding more temporal information. With the great
success of LSTM in natural language processing [12,19], it is used as temporal
information encoded in our model. However, the classic encoder-decoder model
is not able to aggregate spatial architecture and temporal information simulta-
neously. In many real-world applications, problems highly depend on temporal
and spatial information. So spatio-temporal LSTM [9,11] are proposed to solve
this issue. It uses a spatio-temporal graph to be the abstraction of dynamics
information. The edges and vertices are converted to unfolded LSTM layers
through shared parameters. The core idea of structured LSTM that can incor-
porate spatio-temporal encoding is utilized in our model.



436 X. Chen et al.

5.2 Social Interaction Awareness Model

Pedestrian trajectory prediction has been researched for several decades. Helbing
et al. (1995) [7] measured social interaction and inner motivation as social force.
The simulations of trajectory prediction are based on some heuristic algorithms.
Their algorithms achieved decent results in less complicated circumstances. How-
ever, in crowded places, deep learning models tend to perform better [3]. Social
LSTM [1] is a pioneering model introducing social interaction in LSTM. Pedes-
trians’ trajectory is described in a grid that can show people relative position
and interaction. People in the same grid are then aggregated by pooling layers to
obtain synthesized social influence. After Social LSTM, several comparable mod-
els are introduced like Convolutional Social Pooling [4], which is a convolutional
neural network based on the grid. However, grid-based feature extraction cost
a large volume of storage space to cover all interaction around the experiment
object. Especially in a sparse environment, which is common in some datasets,
the sparse matrix can introduce side effects and redundant storage costs. Since
pedestrian trajectory depends on multiple possible factors, Generative Adversar-
ial Networks (GANs) based LSTM was introduced in Social GAN that is able to
generate multiple possible results [5]. Their social interaction aggregation is also
based on grid pooling. Recently, CF-LSTM [18] predicts pedestrian trajectory
without extracting features in social interaction. They make use of the residual
network to learn features.

5.3 Attention Model

Attention Mechanism achieves great success in Nature Language Processing
(NLP), especially in neural machine translation [16]. It is inherently suitable
for sequence generation because it let the generator focus on relevant context
instead of considering every information equivalently. In trajectory prediction,
pedestrian attention will distribute differently according to different social inter-
actions and spatial situations. In the former models like Social LSTM and Social
GAN, weights on every pedestrian are considered equivalently, which is not effi-
cient compared to the attention mechanism. There are three types of attention
namely global attention, local attention, and self-attention. Different attention
mechanisms will have a substantially different evaluation of social interaction.
Haddad et al. [6] use a variant of self-attention to achieve a great result. Their
attention is based on historical trajectory, while our model is based on current
interaction.

6 Conclusion

In this paper, we focus on predicting the future trajectory of pedestrians in a
scene. The self-centered star graph is proposed to make predictions. The pedes-
trian trajectories will first pass through encoders to become high dimensional
vectors. Then these vectors will be extracted latent features by the attention



SCSG Attention 437

mechanism. Lastly, a self-centered star graph decoder can decode these features
and make predictions. We show the efficiency and effectiveness of our model
by experiments. Our model proves to work effectively and try to reconstruct
complex situations and social norms in real life as much as possible.

Acknowledgment. This work is supported by NSFC (No. 61802054, 61972069,
61836007, 61832017, 61532018), Alibaba Innovation Research (AIR), scientific
research projects of Quzhou Science and Technology Bureau, Zhejiang Province
(No.2020D010, No.2020D12) and Sichuan Science and Technology Program under
Grant 2020JDTD0007. And We thank Qiyang Lyu for his helpful advise.

References

1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.:
Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971
(2016)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Becker, S., Hug, R., Hübner, W., Arens, M.: An evaluation of trajectory prediction
approaches and notes on the TrajNet benchmark. arXiv preprint arXiv:1805.07663
(2018)

4. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory predic-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 1468–1476 (2018)

5. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially
acceptable trajectories with generative adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264
(2018)

6. Haddad, S., Wu, M., Wei, H., Lam, S.K.: Situation-aware pedestrian trajectory
prediction with spatio-temporal attention model. arXiv preprint arXiv:1902.05437
(2019)

7. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51(5), 4282 (1995)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning
on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5308–5317 (2016)

10. Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an
image-based motion context for multiple people tracking. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3542–3549
(2014)

11. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates
for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46487-9 50

12. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101 (2016)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1805.07663
http://arxiv.org/abs/1902.05437
https://doi.org/10.1007/978-3-319-46487-9_50
https://doi.org/10.1007/978-3-319-46487-9_50
http://arxiv.org/abs/1605.05101


438 X. Chen et al.

13. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling
of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios,
N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15549-9 33

14. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese,
S.: SoPhie: an attentive gan for predicting paths compliant to social and physi-
cal constraints. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1349–1358 (2019)

15. Soh, M.: Learning CNN-LSTM architectures for image caption generation. Depart-
ment of Computer Science, Stanford University, Stanford, CA, USA, Technical
report (2016)

16. Stahlberg, F.: Neural machine translation: a review. J. Artif. Intell. Res. 69, 343–
418 (2020)

17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

18. Xu, Y., Yang, J., Du, S.: CF-LSTM: cascaded feature-based long short-term net-
works for predicting pedestrian trajectory. In: AAAI, pp. 12541–12548 (2020)

19. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

https://doi.org/10.1007/978-3-642-15549-9_33


Time Period-Based Top-k Semantic
Trajectory Pattern Query

Munkh-Erdene Yadamjav1(B), Farhana M. Choudhury2, Zhifeng Bao1,
and Baihua Zheng3

1 RMIT University, Melbourne, Australia
{munkh-erdene.yadamjav,zhifeng.bao}@rmit.edu.au
2 The University of Melbourne, Melbourne, Australia

farhana.choudhury@unimelb.edu.au
3 Singapore Management University, Singapore, Singapore

bhzheng@smu.edu.sg

Abstract. The sequences of user check-ins form semantic trajectories
that represent the movement of users through time, along with the types
of POIs visited. Extracting patterns in semantic trajectories can be
widely used in applications such as route planning and trip recommenda-
tion. Existing studies focus on the entire time duration of the data, which
may miss some temporally significant patterns. In addition, they require
thresholds to define the interestingness of the patterns. Motivated by
the above, we study a new problem of finding top-k semantic trajectory
patterns w.r.t. a given time period and given categories by considering
the spatial closeness of POIs. Specifically, we propose a novel algorithm,
EC2M that converts the problem from POI-based to cluster-based pat-
tern search and progressively consider pattern sequences with efficient
pruning strategies at different steps. Two hashmap structures are pro-
posed to validate the spatial closeness of the trajectories that constitute
temporally relevant patterns. Experimental results on real-life trajectory
data verify both the efficiency and effectiveness of our method.

Keywords: Pattern search · Trajectory queries · Semantic-temporal

1 Introduction

Recommendation systems utilize data analysis techniques to identify items
that match the user’s preferences and interests. According to Verified Market
Research, global recommendation system market is projected to reach $15.46B
by 2026 from $1.12B in 2018 [1]. In this paper, we focus on finding top-k seman-
tic trajectory patterns which is related to a type of recommendation particularly
useful for tourism. A typical use case is that Alice, who is going to visit New
York City for the first time during Easter holiday, wants to spend quality time at
museum, park, and shops. She does not have time to study NYC before her trip.
Instead, she relies on the wisdom of the crowd and wants to follow the popular
routes people took to visit museums/parks/shops last Easter.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 439–456, 2021.
https://doi.org/10.1007/978-3-030-73194-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_30


440 M.-E. Yadamjav et al.

Popular location-based services such as Foursquare, Gowalla, and Yelp allow
users to upload and update the description of Points-of-interests (POIs) and
hence lots of POIs are associated with semantic information such as categories.
Accordingly, the sequence of check-ins of a specific user over time forms a seman-
tic trajectory, which represents the movement of that user at different times-
tamps. To support Alice’s query, we focus only on the part of the trajectories
during last Easter where the visited POIs belong to museums, and/or parks,
and/or shops. Ideally, such trajectories of many other users should constitute
the most popular routes taken during Easter by users who share similar interests
as Alice. Since there can be many spatially close-by POIs of the same category
(e.g., shops), the popular routes are expected to include the trajectories that go
through close-by POIs of the same category. We study the problem of finding
such top-k popular routes, in other words, top-k semantic trajectory patterns.

Fig. 1. A running example of six trajectories with their corresponding check-in
sequences and timestamps (Color figure online)

Although there are existing studies on semantic trajectory pattern min-
ing [5,18] and top-k frequent pattern mining [9], they suffer from at least one of
the following drawbacks. (i) Finding a threshold that defines the interestingness
of a pattern is difficult. Existing studies [5,18] measure the interestingness of a
pattern based on the number of trajectories that exhibit that pattern, namely
support, and rely on users to specify a minimum support. Hence, the search
results highly depend on users’ knowledge on the support number of certain
patterns, and an improper value may run the risk of missing interesting pat-
terns. (ii) Not considering time may miss interesting patterns. Existing stud-
ies [5,18] mine the patterns from the entire trajectory time duration. However,
it is well-known that the activities people perform and the places people visit
vary at different times. Although these mining algorithms can be applied over
the subtrajectories w.r.t. the given time period, their efficiency suffers greatly
when we consider a set of different category sequences. (more details in Sect. 6).
Moreover, the other drawbacks still apply when their work is extended for time
dimension. (iii) Lack of spatial closeness consideration. The study [9] can only
be applied over semantic trajectory sequences by ignoring the spatial closeness
between trajectories.

Motivated by the above and to complement existing studies, we propose
a new problem of finding top-k semantic trajectory patterns for a given set of
categories ψ and time period P . Informally, the query finds k semantic trajectory



Time Period-Based Top-k Semantic Trajectory Pattern Query 441

patterns, where each pattern is represented by a sequence of POI clusters of
given categories. A POI cluster in the pattern consists of the POIs of the same
category and are spatially close (e.g., shops that are close-by) to overcome the
third drawback. The consideration of P addresses the first drawback. The rank
of the pattern considers both the number of query categories appearing in the
pattern and the number of trajectories that cover the pattern. Thus, we avoid
the necessity of specifying any threshold and overcome the second drawback.

To illustrate the patterns of interest, we plot an example in Fig. 1 with six
trajectories. Existing work [9] will return the most frequent pattern contain-
ing two categories cs1 = 〈attraction → restaurant〉 with a support of all
six trajectories. If the time period is set to P = 〈5:15〉, the support of cs1
changes to T2, T3, T4, T5, T6. However, since these trajectories are spatially far-
away, such a sequence is not able to suggest any practical route that the user
could follow. If we consider the spatial closeness of matching categories, pattern
s1 = 〈PCattraction

1 → PCrestaurant
2 〉 shown with black line ellipse containing

trajectories (T3, T5, T6) is a popular route to take w.r.t. P .
To find such top-k semantic trajectory patterns, we have to address two chal-

lenges. First, how to assign close-by trajectories into the same pattern efficiently
and represent the pattern in an informative way? Second, how to accelerate the
finding of top-k patterns without enumerating all the subsets of given categories,
where we can check as few candidates as possible and prune unpromising pat-
terns at an early stage?. In order to address the above challenges, we make the
following contributions:

– We address the drawbacks of existing studies that interesting semantic pat-
terns may get missed by proposing the novel Time Period-based Top-k Seman-
tic Trajectory Pattern query, which considers a given time period of interest
and a set of categories as input and returns top-k patterns w.r.t. the con-
straints.

– We propose the algorithm EC2M that converts the problem from POIs to a
cluster-based pattern search problem to limit the search space significantly.
We apply a progressive search strategy from shorter to longer patterns to
guarantee the return of top-k patterns. We present a hashmap-based data
structure, namely Enclosing Cluster Co-occurrence Map for efficient prun-
ing at different steps and another structure namely Neighbors Bitmap for
validating the spatial closeness of trajectories within given time period.

– We conduct extensive experiments to evaluate the efficiency of our query
processing algorithm over two real-world datasets and case studies to demon-
strate the effectiveness of our top-k semantic trajectory patterns.

2 Problem Formulation

Let S be a set of semantic categories (e.g., restaurant, park), and O be a set of
POIs, where each o ∈ O is a pair (o.loc, o.cat) of a location o.loc and a category
o.cat ∈ S. Let D be a database of trajectories, where a trajectory T ∈ D is
represented as a finite sequence of pairs of a POI and a timestamp (oi, ti). Here,
timestamp ti corresponds to the time when the POI oi was visited by T .



442 M.-E. Yadamjav et al.

A POI cluster (PC ) is formed by a set of POIs that belong to the same
category and meanwhile are located close to each other. A semantic trajectory
pattern (pattern in short) is a sequence of such POI clusters where each
trajectory in the pattern visits at least one POI in every PC of the sequence.

Example 1. Three close-by POIs with the category ‘restaurant’ (blue dots) in
Fig. 1 form a POI cluster PC2 bounded by a blue ellipse. Note that POIs of the
same category inside the blue dotted ellipse are not a part of PC2 because they
are located far away. Three close-by ‘attraction’ POIs (red triangles) also form a
POI cluster PC1 bounded by a red ellipse. Since trajectories T3, T5, T6 visit at
least one POI in PC1 followed by another POI in PC2, these trajectories form
a pattern s = 〈PCattraction

1 → PCrestaurant
2 〉.

The closeness relationship for clustering depends on the intended application.
We use DBSCAN [8] to guarantee the spatial proximity among POIs in a PC ,
while our problem and approaches are orthogonal to the choice of clustering
technique. To find patterns during a specific time period P , we only need to
consider the subtrajectories where the corresponding timestamps are within P .
Now, we are ready to formally define the trajectory coverage of a pattern.

Definition 1. Trajectory coverage: Given a time period P and a threshold
Δt, a trajectory T covers a pattern s = 〈PCcat1

1 , . . . , PCcati
i 〉 with the category

sequence 〈cat1, · · · , cati〉 if the following conditions are satisfied: (i) there is a
subsequence of POIs in T , denoted as T ′ = (o1, o2, . . . , oi), such that ∀oi ∈ T ′,
oi.cat = cati; (ii) the timestamps of all POIs in T ′ are within P ; and (iii) for
any POI oj ∈ T ′ with j < i, the time gap between oj and its subsequent POI
oj+1 is always bounded by Δt, i.e., (tj+1 − tj) ≤ Δt always holds.

Here, the parameter Δt is used to find the patterns where the consecutive
POI visits happened within a reasonable time gap (e.g., by setting Δt = 24
hours). Note that, if a trajectory contains multiple subtrajectories with the same
category sequence, that trajectory covers the pattern only once, but all those
unique subtrajectories are used to form the clusters of the pattern.

Example 2. A pattern s = 〈PCattraction
1 → PCrestaurant

2 〉 located in the solid
black ellipse is covered by trajectories T3, T5, and T6 w.r.t. P = 〈5, 15〉 and
Δt = 10, (Fig. 1). Although T1 contains POIs belonging to the given categories,
its corresponding timestamps are not within P . Hence, it is worth noting that
the POIs that belong only to T1 are not included in the pattern’s POI clusters.

When a pattern w.r.t. a time period is covered by many trajectories, it actu-
ally implies a “popular” route taken by users when visiting those categories
within that time period. Now we introduce a measure of the popularity of a
pattern that considers both the number of trajectories covering the pattern, and
its semantic importance to a user query.



Time Period-Based Top-k Semantic Trajectory Pattern Query 443

Definition 2. Popularity measure: Given a set of categories ψ, a pattern s
where ∀cati ∈ s, cati ∈ ψ, and the trajectories covering s w.r.t. P and Δt (by
Definition 1), the popularity of s, denoted as Sr(s, ψ), is computed by Eq. (1).

Sr(s, ψ) = α
|Ds

P |
|DP | + (1 − α) × |s|

|ψ| (1)

Here, Ds
P is the set of trajectories covering s, DP is the set of trajectories

containing at least one POI of any category in ψ, |s| is the number of categories in
the pattern s, and α ∈ [0, 1] is used to set the preference over one component to
the other. The second component |s|

|ψ| (denoted as ‘category sub-score’) quantifies
the matching between the categories of s and ψ. Although there are many ways
to combine two components in a scoring function, weighted summation is the
most common in many spatial-keyword studies [7,10]. Now we introduce our
Time Period-based Top-k Semantic Trajectory Pattern query.

Definition 3. Time period-based Top-k Semantic Trajectory Pattern
(short): Given a trajectory database D, a time period P , a time threshold Δt,
and categories of interest ψ, the TkSP query is to find k highest scoring patterns
w.r.t. P and ψ (by Definition 2).

Example 3. A TkSP query is given with k = 1, P = 〈5, 15〉, Δt = 10, and ψ =
〈restaurant, attraction〉. We find six candidate patterns s1 = 〈PCattraction

1 〉 :
{T3, T5, T6}, s2 = 〈PCrestaurant

2 〉 : {T3, T5, T6}, s3 = 〈PCattraction
3 〉 : {T2, T4},

s4 = 〈PCrestaurant
4 〉 : {T2, T4}, s5 = 〈PCattraction

1 → PCrestaurant
2 〉 :

{T3, T5, T6}, and s6 = 〈PCattraction
3 → PCrestaurant

4 〉 : {T2, T4}. Their scores
for α = 0.5 are calculated as, Sr(s1, ψ) = Sr(s2, ψ) = 0.5 · 3

5 + 0.5 · 1
2 = 0.55,

Sr(s3, ψ) = Sr(s4, ψ) = 0.5 · 2
5 + 0.5 · 1

2 = 0.45, Sr(s5, ψ) = 0.5 · 3
5 + 0.5 · 2

2 = 0.8,
Sr(s6, ψ) = 0.5 · 2

5 + 0.5 · 2
2 = 0.7. Pattern s5 that contains both query keywords

and 3 trajectories is returned as the result with the highest score.

3 Baseline Method

Since existing approaches do not directly answer TkSP query, we tailor the
state-of-the-art Top-k sequential pattern mining (TkS) [9], denoted as TkS* ,
for our baseline. It follows a retrieval-and-refinement framework. It first retrieves
the POIs of trajectories satisfying ψ and P , with trajectories indexed by their
timestamps using a B+-tree [6]. It then applies TkS* to find the top-k pat-
terns from these subtrajectories. We use ‘trajectory’ instead of ‘subtrajectory’
in the following for simplicity. One may think of enumerating all permutations of
query categories and finding the trajectories covering a permutation as a pattern.
However, trajectories covering spatially distant patterns with the same category
sequence need to be distinguished (Sect. 2). Different from TkS, TkSP expects
multiple patterns corresponding to a category sequence and hence TkS is tai-
lored to compute their popularity scores independently.



444 M.-E. Yadamjav et al.

Generation of Top-k Patterns. TkS* first generates the POI clusters from
the retrieved POIs. Similar to TkS, we use a vertical bitmap representation to
find trajectories covering a specific POI and create a co-occurrence map to find
subsequent POIs visited within Δt timestamps for a specfic POI. If a trajectory
contains a POI in the POI cluster, the position that POI of that trajectory in
the bitmap is set to 1, otherwise 0. These POI clusters are the 1-length patterns,
which are the current candidate patterns. The candidates are maintained in
descending order of their popularity scores. In each iteration, if the popularity
score of the head pattern hp (i.e., the candidate with the highest score) is larger
than that of a current result, the result set is updated accordingly with hp.
Since a pattern can be extended by adding a POI cluster of a new category, the
popularity score of any longer pattern can increase. Hence, we check what could
be the ‘potential’ score by extending hp. As an extended pattern from hp can
have at most the same trajectories as hp and at most |ψ| categories, the potential
score is calculated by putting these maximum values in Eq. (1). If this potential
score is larger than that of the k-th pattern in the current result set, we extend
hp using the POI co-occurrence map w.r.t. Δt constraint and the cluster validity
(Sect. 4.1). If the extended patterns of hp have potential popularity scores that
are greater than k-th pattern in the current result set, these patterns are added
as candidates. Once all candidates are checked, the result set of k patterns is
returned.

TkS* is simple but suffers from several major drawbacks: (i) Generating
the POI clusters is expensive. (ii) The candidates cannot be pruned if a longer
pattern with potential score higher than the current results can be generated
from them. As a result, a huge number of candidates need to be checked and the
actual trajectories covering those patterns need to be verified in each iteration.

4 Our Approach

To overcome the drawbacks of the baseline, we propose a novel algorithm based
on an Enclosing Cluster Co-occurrence Map, namely EC2M , that takes advan-
tage of the closeness relations of POI clusters and a progressive search technique.
We start by presenting some high level key concepts of the algorithm.

1) POI to cluster conversion. It is well-known that POIs (e.g., restaurants)
do not change their locations often. Hence, we include this pre-processing step
where all POIs in the dataset are clustered based on the category and spa-
tial closeness, but without considering the exact trajectories passing through
them. We denote these clusters as the ‘enclosing clusters’. In Fig. 1, the green
ellipse shows an enclosing cluster corresponding to category ‘attraction’.

2) Pruning search space by pattern length. For simplicity, we refer to
the number of POI-clusters in a pattern as its ‘length’. The following key
concept can significantly prune the search space – The maximum length
of a pattern for any given query is |ψ|. The reason is: the popularity
score of pattern s is determined by two sub-scores, where one depends on



Time Period-Based Top-k Semantic Trajectory Pattern Query 445

the number of covering trajectories and the other depends on its number of
categories. Adding a new cluster to s whose category already exists in s does
not increase its number of categories. Moreover, for any pattern s′ extended
from s, the trajectories that cover s′ will always cover s. Therefore, extending
a pattern from a given pattern s by adding a new cluster whose category
already exists in s, the popularity score does not increase. Therefore, we only
need to consider the patterns up to length l = |ψ|.

3) Upper bound score. To enable the filtering of unpromising candidates,
we introduce the enclosing cluster co-occurrence map. This map has each
enclosing cluster as the keys and the list of its covering trajectories w.r.t.
Δt and P as values. It is created only when we need to search for patterns
greater than 1-length (explained later). The maximum number of the covering
trajectories for a pattern is the number of trajectories that are common in all
‘enclosing clusters’ of that pattern, which can be readily obtained from the
map. Such upper bound can be loose if we consider a specific time period.
Therefore, we split the time dimension into multiple bins of fixed duration
and organize the co-occurrence map accordingly as shown in Fig. 2c. If a
trajectory spans two or more consecutive time bins, we store it in all the
corresponding bins.

4) Pattern extension and progressive search. If a pattern s is extended to
s′ by adding a category that is not in s, s′ may have a higher popularity score
than s as its category sub-score increases. Thus, we cannot prune any candi-
date s without checking all its potential extensions that might outscore it.

Fig. 2. Enclosing cluster information



446 M.-E. Yadamjav et al.

Therefore, we progressively search patterns from length l = 1 to length l =
|ψ|. For each length, we find top-k patterns up to that length. Hence, for pattern
s with length i currently under consideration, it will be guaranteed that all
the shorter patterns that s might outscore have been already considered. We
also compute the maximum possible score that can be obtained by extending
current s using the enclosing cluster co-occurrence map. Only when that score
is greater than the current results, we consider the possible patterns of length
i + 1 extended from s (also obtained from the map). This step guarantees that
any longer pattern that might outscore a shorter pattern will not be missed.

If the pattern under consideration cannot be pruned based on enclosing clus-
ter based upper bound, we need to find the covering trajectories on the fly to
refine its actual POI clusters. All clusters in a pattern need to be checked against
the ‘cluster validity’ using the covering subtrajectories. The cluster validation
is presented in more details next.

4.1 Cluster Validity Check

All patterns that are passed to the cluster validity check contain POIs grouped by
the enclosing cluster information. However, as the enclosing clusters are formed
without considering the exact trajectories actually passing through their POIs,
it is possible that some POIs in an enclosing cluster are not part of the actual
pattern. The following example illustrates one such scenario.

Example 4. Figure 2a shows a pattern s generated based on the enclosing clusters
EC1 and EC2. Enclosing clusters are generated based on all POIs w.r.t. spatial
closeness. We use DBSCAN clustering w.r.t. the parameters: minPts and ε,
where at least minPts POIs have to be within ε distance from any POI of the
same cluster to form a cluster. EC1 contains five ‘attraction’ and EC2 contains
eight ‘restaurant ’ POIs. Assume the pattern is covered by trajectories T1, T2,
T3, and T4. The attraction POIs of the four trajectories form a cluster, but
T4’s restaurant POI cannot form a cluster with the restaurant POIs of other
trajectories. This is because none of the restaurant POIs in T1, T2, T3 is within
ε from the restaurant POI in T4. Hence, there are actually two patterns (split
from EC1 and EC2), where one pattern s1 is covered by T1, T2, and T3, and the
other pattern s2 is covered only by T4.

Although the number of POIs in an enclosing cluster is much smaller than
the total number of POIs, we still need to compute the distances of every pairs of
POIs if we re-cluster them. To overcome this limitation, we store a bitmap rep-
resentation of neighbors for each POI w.r.t. its enclosing cluster. Such structure
eliminates the need for spatial distance computation for every pair. Furthermore,
the POIs are compared with only the near-by POIs that potentially could form a
cluster. Figure 2b shows the neighbor bitmaps for each POI in EC2. The length
of each POI’s bitmap equals to the size of the enclosing cluster, e.g., eight in this
example. A bit position is assigned to each POI in the cluster. If two POIs are
within ε distance, then the corresponding bit is 1. For example, the bit sequence
01000000 associated with POI r1 indicates only r2 is located within ε to it.



Time Period-Based Top-k Semantic Trajectory Pattern Query 447

Algorithm 1: EC2M
Input: B+-tree tree, time period P , time constraint Δt, query categories ψ, k
Output: set of k patterns R

1.1 R ← ∅, PQ ← an empty priority queue
1.2 Enqueue(PQ, enclosing clusters satisfying constraints(tree, ψ, P ))
1.3 if |ψ| > 1 then
1.4 ccMap ← generate co-occuring cluster map(ψ, P , Δt)
1.5 for j ← 1 to |ψ| do
1.6 NQ ← ∅
1.7 while PQ is not empty do
1.8 cand ← dequeue(PQ)
1.9 if getScore(cand) > getMinScore(R) then

1.10 List ← getTrajectoryList(cand)
1.11 validateClusters(List, j, R)

1.12 if getMaxScore(cand) > getMinScore(R) then
1.13 Enqueue(NQ, extendP (cand, ccMap))

1.14 PQ ← NQ

1.15 return R

4.2 Algorithm

The pseudo code of the EC2M algorithm is presented in Algorithm 1. In this
approach, the trajectories are indexed by a B+-tree. A max-priority queue PQ
is maintained to keep track of the candidate patterns, where the key is their
upper bound popularity score. Result set R keeps k patterns with the highest
popularity scores found so far (Line 1.1). At first, the set of enclosing clusters is
obtained by retrieving trajectories that pass through at least one query category
within P using tree. Since each enclosing cluster is a pattern of length 1 (Line
1.2), they are enqueued to PQ. An enclosing cluster co-occurrence map is created
w.r.t. P and the query categories ψ by considering time bins that intersect with
P . This map is created only when we need to search for longer patterns, i.e.,
when |ψ| > 1 (Lines 1.3–1.4). The map contains the enclosing clusters as keys,
and the list of trajectory IDs as values.

The candidate patterns are progressively considered from length j = 1 to
length j = |ψ| (Line 1.5). For a length j under consideration, another priority
queue NQ stores the patterns that may need to be extended to length (j + 1)
in next iteration. For a candidate pattern cand dequeued from PQ, we perform
two actions. First, we compare its upper bound score with the current k-th best
score. Note, when R has less than k results, getMinScore(R) returns 0. If cand
has a higher score, we extract all the trajectories that cover cand, and further
validate the pattern via the function validateClusters (Lines 1.9–1.11). The
pseudo-code for cluster validation step is presented in Algorithm 2 and will be
explained later. Second, we estimate the maximum possible popularity score of
any longer pattern that can be extended from cand. If this estimated score is
greater than the current k-th best score, we generate the extensions of cand
of length j + 1 using the co-occurrence map, and enqueue them to NQ (Lines
1.12-1.13). At the end of the iteration corresponding to a length j, we replace
PQ with NQ for the next length j + 1 (Line 1.14). Finally, we return result set
R with k most popular patterns (Line 1.15).



448 M.-E. Yadamjav et al.

Algorithm 2: validateClusters()
Input: list of trajectories LT , length l, current result set R

2.1 MAPP ← createPOIMap(LT ); MAPind ← createIndexMap(LT )
2.2 QT ← getIDs(LT )
2.3 while QT is not empty do
2.4 LP ← getPOIs(QT .poll(), MAPind, 1); C ← clusterPOIs(LP )
2.5 foreach cluster c ∈ C do
2.6 LT ′ ← getTrajectory(c, MAPP )

2.7 if getScore(l, |LT ′|) > getMinScore(R) then
2.8 p ← Initialize with cluster c; Update R if the length of p equals l
2.9 for j ← 2 to l do

2.10 NLP ← getPOIs(LT ′, MAPind, j)
2.11 CN ← clusterPOIs(NLP )
2.12 if |CN | = 1 then
2.13 p.add(c′ ∈ CN); Update R if the length of p equals l
2.14 else
2.15 foreach cluster c′ ∈ CN do
2.16 NLT ′ ← LT ′ ∩ getTrajectory(c′, MAPP )

2.17 if |LT ′| = |NLT ′| then
2.18 p.add(c′); Update R if the length of p equals l
2.19 else
2.20 QT .add(NLT ′)
2.21 if ∀c′ ∈ CN not extends p then
2.22 break

Cluster Validation Algorithm. The function validateClusters validates a
candidate pattern, with its pseudo-code presented in Algorithm 2. As mentioned
in Sect. 3, the candidate patterns are generated from enclosing clusters that do
not consider the exact trajectories passing through them, hence the validation
procedure is necessary to find the actual patterns with valid POI clusters. Here,
two hashmaps MAPP and MAPind are created from the input list of trajectories
LT (Line 2.1). MAPP has each POI as a key and the list of trajectories passing
through that POI as the value. A trajectory ID in LT and the order of a POI visit
is a key (as a tuple) in MAPind and the list of POIs visited by that trajectory
at the corresponding order of visit are the value. A first-come-first-serve queue
QT is maintained for the set of trajectories that needs to be considered. QT is
initialized with LT (Line 2.2). For the trajectory set dequeued from QT , we find
the first POI visited by each trajectory using MAPind, and store these POIs in
LP . We use the neighbors bitmap information (Sect. 4.1) to obtain the actual
POI clusters C formed by the POIs in LP (Line 2.4).

For each cluster c ∈ C, we obtain the trajectories covering c using MAPP

(Line 2.6), and store them in a list LT ′. Note, LT ′ ⊆ LT . To facilitate pruning of
an unpromising candidate at this stage, we compute an upper bound popularity
score using c, where the number of covering trajectories is set to |LT ′| (as any
extended pattern will not have more covering trajectories) and the number of
categories is set to l (the maximum categories in a pattern of length l). If this
score is lower than the k-th best score, we can safely terminate the examination
of c. Otherwise, we initialize a pattern p with c. If l = 1, we update R accordingly
(Line 2.8). For l > 1, we extend p by checking the POIs visited subsequently
until its length reaches l. We use parameter j to indicate the visiting order of
POIs to be evaluated next (Line 2.9).



Time Period-Based Top-k Semantic Trajectory Pattern Query 449

We scan each trajectory in LT ′ to retrieve the j-th visited POIs using
MAPind and store these POIs in NLP (Line 2.10). The neighbors bitmap is
used to obtain the actual POI clusters formed by the POIs in NLP , and the
resulting clusters are stored in CN (Line 2.11). If CN has only one cluster c′

(i.e., the POIs visited next are all contained in one POI cluster), we can extend
the current pattern p by appending c′. If the length of p becomes l and it’s score
is higher than the k-th best score, R is updated (Lines 2.12–2.13). If there are
multiple clusters in CN , it indicates that there are multiple options in terms
of the next POI cluster to visit from the current p, and we have to explore
each c′ ∈ CN . For each c′ ∈ CN , we obtain the list of trajectories in LT ′ that
also visits a POI in c′ in its j-th place, and store them in NLT ′ (Line 2.16). If
|NLT ′| = |LT ′|, c′ is added to p and we check if R needs to be updated (Lines
2.17–2.18). Otherwise, we add NLT ′ to QT as a candidate pattern (Lines 2.19–
2.20). If no cluster in CN could extend p, we stop the validation of the current
c (Lines 2.21–2.22).

5 Experimental Evaluation

In this section, we compare our proposed algorithm with the baseline through
an experimental evaluation using real datasets. All algorithms were implemented
in Java. Experiments were ran on a 24 core Intel Xeon E5-2630 2.3 GHz using
256 GB RAM, and 1TB 6G SAS 7.2Krpm SFF (2.5-in.) SC Midline disk drives
running Red Hat Enterprise Linux Server release 7.5. We test the following
methods to answer TkSP queries on real-life datasets: (1) TkS* , a tailored Top-
k Sequential Pattern Mining [9] on top of a B+-tree index as baseline (introduced
in Sect. 3); (2) EC2M , a Time Period-based Top-k Semantic Trajectory Pattern
query processing algorithm on top of a B+-tree index using the enclosing clus-
ters co-occurrence map (introduced in Sect. 4).

Datasets. Foursquare [17] dataset includes check-in data collected from 4 April
2012 to 16 February 2013 in Tokyo, Japan. Yelp dataset includes check-in data
between 12 October 2004 and 13 Dec 2019. Each trajectory in the dataset is a
sequence of POIs with the corresponding timestamps and semantic categories.
Table 1 shows statistics on Foursquare and Yelp datasets.

Table 1. Database statistics

Description Foursquare Yelp

# of POIs 61,856 209,393

# of check-ins 573,012 8,016,526

# of users 2,293 1,968,703

# of categories 247 21

Table 2. Experimental parameters

Parameter Dataset Values

Time period P Foursquare 2, 4, 6, 8, 11 (month)

Yelp 3, 6, 9, 12, 15 (year)

Preference α Both 0.1, 0.3, 0.5, 0.7, 0.9

# of categories |ψ| Both 1, 2, 3, 4



450 M.-E. Yadamjav et al.

Evaluation and Parameterization. We compared the runtime of all methods
by varying the query input parameters as shown in Table 2, where the values in
bold represent the default values. For all experiments, a single parameter is var-
ied while other parameters are set to their default values.

Clustering. We evaluated varying parameter combinations for minPts and
ε to cluster POIs w.r.t. the category using DBSCAN [8] algorithm and chose
the following values for our experiment by considering the number of obtained
clusters: minPts = 3 and ε = 100 m.

5.1 Efficiency Study

We conduct experiments to evaluate the efficiency of our proposed algorithm
against the baseline. We study the impact of each parameter by running 100
queries and report the average query execution time while varying parameters.
The results over Foursquare and Yelp datasets are shown in Figs. 3 and 4 respec-
tively. The performance for multiple runs is shown in boxplots, where the bound-
ing box shows the first and third quartiles; the whiskers show the range, up to 1.5
times of the interquartile range; and the outliers are shown as separate points.
The average values are shown as connecting lines.

Effect of the Number of Categories. Figures 3a and 4a show the efficiency
studies for varying |ψ| over Foursquare and Yelp datasets, respectively. The
execution time gap between the algorithms is small for |ψ| = 1 since there is
no need to generate longer patterns. EC2M outperforms TkS* in all cases by
using the bitmap-based POI neighbors information to cluster POIs of the same
category. As we add more categories to the query, the benefit of enclosing clus-
ter co-occurrence map becomes more significant. The performance gap between
TkS* and EC2M is larger for Yelp than Foursquare dataset. The reason is, Yelp
contains more POIs and less categories than Foursquare, which results in more
POIs in the POI clusters of Yelp than Foursquare dataset. Hence, the clustering
step in the query processing over Yelp dataset greatly benefits from using the
bitmap-based POI neighbors information.

Effect of α. Figures 3b and 4b show the performance for varying α over
Foursquare and Yelp, respectively. The performance gap between two algorithms
is not big for smaller values of α in Foursquare dataset. The reason is that
Foursquare contains only 2,293 trajectories. As we check the query result for
those values of α, the result mostly contains patterns of 1-length. The scores of
extended patterns are still lower than the k-th best result. The execution time
of the baseline declines for values of α that are higher than 0.5. The reason is
that the increase of the k-th best score allows the skip of more shorter patterns,
leading to less candidate check. In contrast, Yelp has 1,968,703 trajectories and
a small value of α can still contribute significantly to the popularity score.



Time Period-Based Top-k Semantic Trajectory Pattern Query 451

Fig. 3. Efficiency studies on Foursquare dataset

Fig. 4. Efficiency studies on Yelp dataset

Effect of Time Period. As we increase time period P , the runtime increases
substantially for the baseline in Foursquare dataset, as shown in Fig. 3c. In con-
trast, the query execution time gradually increases w.r.t. varying time periods
for Yelp dataset. The reason is that time periods for Foursquare dataset are in
the unit of months while time periods for Yelp dataset are in the unit of years
(Fig. 4c). The number of trajectories covering a certain pattern significantly dif-
fers w.r.t. the short time periods. As we expand the time period of interest to a
longer time span, eventually we find almost all the trajectories covering a given
pattern and the number of new candidate trajectories starts decreasing.

Enclosing Clusters Co-occurrence Map. We obtain 777,018 and 1,513,218
enclosing clusters w.r.t. our clustering settings for Foursquare and Yelp datasets,
respectively. Furthermore, we split trajectories covering each co-occurrence into
different time bins to see the correlation between time bin size and the co-
occurrence map size. The sizes of enclosing cluster co-occurrence maps for
Foursquare dataset are 25 MB, 22 MB, 20 MB for time bins of 1-day, 1-month,
and 1-year, respectively. The sizes of enclosing cluster co-occurrence maps for
Yelp dataset are 54 MB, 79 MB, 48 MB for time bins of 7-day, 3-month, and
1-year, respectively. The size increases for 3-month time bin, likely due to the
larger number of covering trajectories that span two consecutive time bins.



452 M.-E. Yadamjav et al.

Fig. 5. Varying sizes of time bins

Fig. 6. Clustering time

Figures 5a and 5b depict the query execution time of EC2M for varying time
periods over Foursquare and Yelp, respectively, by using three different time
bins of enclosing cluster co-occurrence maps. Overall, queries over Foursquare
dataset run slightly faster on time bins of 1-month for all different time periods.
Bigger time bins perform better for large P s, while queries for short time periods
perform slightly faster using small time bins. Queries over Yelp dataset consider
different time periods of interest, starting from 3 years to 15 years. For larger P s,
the enclosing cluster co-occurrence map on 1-year time bins shows better query
performance. However, queries using 1-week time bins perform slightly better for
time periods up to 9 years. Here, non-uniform check-in distribution and sparsity
in a user’s trajectory result in better performance even we use smaller time bins.

Cluster Computation. Our algorithm uses a bitmap representation for cluster-
ing close-by POIs. Figures 6a and 6b show the clustering time by running queries
for varying number of categories over Foursquare and Yelp datasets, respectively.
Since Yelp dataset contains larger clusters, the query performance over Yelp
dataset saves significantly more time in the POI clustering than Foursquare
dataset. The cluster validity check in the pattern greatly benefits from the
bitmap-based clustering algorithm as the length of the pattern increases.

5.2 Case Study

Last, we conduct a case study by presenting the difference between traditional
pattern mining over category sequences and semantic trajectory pattern mining



Time Period-Based Top-k Semantic Trajectory Pattern Query 453

Table 3. Top-5 frequent category
sequence over Foursquare

Semantic sequence

Subway→Train Station: 1479

Train Station→ Subway: 1452

Train Station→ Japanese Restaurant: 1381

Train Station→Ramen/Noodle House: 1366

Japanese Restaurant→Train Station: 1294

Table 4. Top-5 popular semantic tra-
jectory patterns over Foursquare

Semantic trajectory pattern

Train Station→Electronics Store: 465

Electronics Store→Train Station: 377

Train Station: 1517

Train Station→Hobby Shop: 296

Train Station→Electronics Store: 295

Fig. 7. Case study on the Foursquare dataset

proposed in this paper. Table 3 shows top-5 frequent category sequences of length
2 in Foursquare dataset. The support values depict the number of people (out
of 2,293) whose trajectories cover the corresponding sequence. Next, we run our
query to find the top-5 semantic trajectory patterns of up to 2-length, which
considers the spatial closeness among covering trajectories. The result shown in
Table 4 contains 1-length pattern at the third result. The rank is computed by
both the number of trajectories and the number of categories.

Typical patterns (e.g. Subway → Train Station) created by people’s daily
movement can outweigh the potential patterns of interest. Thus, to guide a user
to make a better planning based on the interest of places to visit, we accept a
set of categories as a user input. Here, we choose the following keywords: Train
Station, Hobby Shop, Electronics Store to further explore the region where that
pattern is mostly observed. We find two patterns s1 = { Electronics Store →
Hobby Shop → Train Station } and s2 = { Train Station → Hobby Shop →
Electronics Store } shown in Figs. 7b and 7c, respectively. Pattern s1 is covered
by 36 trajectories for the whole database timespan while pattern s1 is covered
by 37 trajectories.

Next, we show the frequency of those two patterns w.r.t. the given time
periods. Since Foursquare contains 11-month check-in data, we split data into
one-month periods and show the changes in the frequency of each pattern w.r.t.
the given month. From the results presented in Fig. 7a, we find the pattern
frequencies do change, depending on the time period of interest which can also
contribute to the overall ranking of a specific pattern in the result set.



454 M.-E. Yadamjav et al.

6 Related Work

In this section, we review the studies closely related to our work, including (i)
semantic trajectory pattern mining, and (ii) top-k sequential pattern mining.

Semantic Trajectory Pattern Mining. A semantic pattern defined in [18]
is the closest to the pattern we consider in this paper. Specifically, a pattern
is defined as a sequence of areas in [18], with each area containing places that
are spatially close-by and belong to the same category. A top-down pattern dis-
covery technique called Splitter was proposed. It first generates spatially coarse
patterns via a tailored PrefixSpan [12], and then clusters trajectories for each
coarse pattern by a variant of the mean shift algorithm. Thus, Splitter works on
each category sequence independently, while our work considers different cate-
gory sequences that can be formed by the given set of categories. Choi et al. [5]
find all regional areas where a semantic pattern is expected to be locally frequent
in each area. Trajectories that contain each semantic pattern are clustered by a
tailored DBSCAN. The subtrajectories covering the pattern form a dense cluster
of routes. However, the corresponding categories of the subtrajectories that cover
a pattern are not necessarily spatially clustered w.r.t. the category. In contrast,
the pattern in our work consists of POI clusters where POIs in a cluster reside
spatially close-by and belong to the same category. In addition, the above tech-
niques consider the whole time period in a database and require an input of the
minimum support threshold to mine semantic patterns, which is a challenging
task for most users. Even if these techniques can be extended by considering
subtrajectories w.r.t. a specific time period, the semantic trajectory patterns
found for a given category sequence are not necessarily to be same patterns in
our problem setting.

Top-k Sequential Pattern Mining. Many studies have been proposed to
mine sequential patterns in transactional databases. Majority of them require
specifying a threshold for the minimum number of transactions that need to be
contained in a frequent pattern. The performance of the mining algorithms can
degrade substantially if the support threshold is set to a smaller value, while the
patterns of interest can be overlooked by a larger threshold. Top-k sequential
pattern mining algorithms [9,13,14] have been proposed to find k most frequent
patterns without requiring to specify the threshold. However, these techniques
do not consider the spatial property of the trajectories contained in the result
pattern. Thus, the trajectories that cover a specific pattern might be scattered
over the search space. In contrast, we aim to find semantic patterns where the
trajectories that contain each result pattern are spatially close-by. Moreover,
none of the existing work supports a query input for the categories of interest.

Other Related Work. Our query is also loosely related to top-k spatial key-
word query and collective spatial keyword query. A traditional top-k spatial-
keyword query has been studied extensively in literature [7,15,19]. It returns
k most similar objects w.r.t. a query location and keywords by considering



Time Period-Based Top-k Semantic Trajectory Pattern Query 455

both spatial and textual similarities. One variant is a collective spatial keyword
query [2–4,11,16] which aims to fulfil a user request by considering multiple
objects collectively instead of a single object. However, none of the methods is
applicable in our case as we do not require the result to be close to a query loca-
tion. Instead, we aim at supporting users who prefer the past travel experience
of other users over the proximity between the places to be visited and the query
location.

7 Conclusion

In this paper, we studied the problem of finding top-k semantic trajectory pat-
terns w.r.t. a set of query categories and a time period of interest. We formally
defined the problem and proposed algorithms and data structures that improve
the efficiency of the query processing. Experimental study on real-life datasets
shows the efficiency and effectiveness of our approach.

Acknowledgement. Zhifeng Bao is supported by ARC DP200102611. Baihua Zheng
is supported by the Ministry of Education, Singapore, under its AcRF Tier 2 Funding
(Grant No: MOE2019-T2-2-116).

References

1. Global recommendation engine market by type, by application, by geographic
scope and forecast to 2026. https://www.verifiedmarketresearch.com/product/
recommendation-engine-market/

2. Cao, X., Cong, G., Guo, T., Jensen, C.S., Ooi, B.C.: Efficient processing of spatial
group keyword queries. TODS 40(2), 1–48 (2015)

3. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying.
In: SIGMOD, pp. 373–384 (2011)

4. Chan, H.K.H., Long, C., Wong, R.C.W.: On generalizing collective spatial keyword
queries. TKDE 30(9), 1712–1726 (2018)

5. Choi, D.W., Pei, J., Heinis, T.: Efficient mining of regional movement patterns in
semantic trajectories. VLDB 10(13), 2073–2084 (2017)

6. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121–137 (1979)
7. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial

web objects. Proc. VLDB Endowment 2(1), 337–348 (2009)
8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In: SIGKDD, pp. 226–231
(1996)

9. Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R.: TKS:
efficient mining of top-K sequential patterns. In: Motoda, H., Wu, Z., Cao, L.,
Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8346, pp.
109–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53914-
5 10

10. Li, Z., Lee, K.C., Zheng, B., Lee, W.C., Lee, D., Wang, X.: IR-tree: an efficient
index for geographic document search. TKDE 23(4), 585–599 (2010)

https://www.verifiedmarketresearch.com/product/recommendation-engine-market/
https://www.verifiedmarketresearch.com/product/recommendation-engine-market/
https://doi.org/10.1007/978-3-642-53914-5_10
https://doi.org/10.1007/978-3-642-53914-5_10


456 M.-E. Yadamjav et al.

11. Long, C., Wong, R.C.W., Wang, K., Fu, A.W.C.: Collective spatial keyword
queries: a distance owner-driven approach. In: SIGMOD, pp. 689–700 (2013)

12. Pei, J., et al.: PrefixSpan: mining sequential patterns by prefix-projected growth.
In: ICDE, pp. 215–224 (2001)

13. Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: mining top-k sequential patterns
under leverage. Data Min. Knowl. Disc. 30(5), 1086–1111 (2016). https://doi.org/
10.1007/s10618-016-0467-9

14. Tzvetkov, P., Yan, X., Han, J.: TSP: mining top-k closed sequential patterns. KAIS
7(4), 438–457 (2005). https://doi.org/10.1007/s10115-004-0175-4

15. Wu, D., Cong, G., Jensen, C.S.: A framework for efficient spatial web object
retrieval. VLDB J. 21(6), 797–822 (2012). https://doi.org/10.1007/s00778-012-
0271-0

16. Xu, H., Gu, Y., Sun, Y., Qi, J., Yu, G., Zhang, R.: Efficient processing of moving
collective spatial keyword queries. VLDB J. 29(4), 841–865 (2019). https://doi.
org/10.1007/s00778-019-00583-8

17. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference
by leveraging user spatial temporal characteristics in LBSNs. Trans. Syst. Man
Cybern. Syst. 45(1), 129–142 (2014)

18. Zhang, C., Han, J., Shou, L., Lu, J., La Porta, T.: Splitter: mining fine-grained
sequential patterns in semantic trajectories. VLDB 7(9), 769–780 (2014)

19. Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top k
spatial keyword search. TKDE 28(7), 1706–1721 (2016)

https://doi.org/10.1007/s10618-016-0467-9
https://doi.org/10.1007/s10618-016-0467-9
https://doi.org/10.1007/s10115-004-0175-4
https://doi.org/10.1007/s00778-012-0271-0
https://doi.org/10.1007/s00778-012-0271-0
https://doi.org/10.1007/s00778-019-00583-8
https://doi.org/10.1007/s00778-019-00583-8


Optimal Sequenced Route Query
with POI Preferences

Wenbin Li1,2, Huaijie Zhu1,2(B), Wei Liu1,2, Jian Yin1,2, and Jianliang Xu3

1 School of Computer Science and Engineering, Sun Yat-Sen University,
Guangzhou, China

liwb33@mail2.sysu.edu.cn, issjyin@mail.sysu.edu.cn, xujl@comp.hkbu.edu.hk
2 Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China

zhuhuaijie@mail.sysu.edu.cn
3 Hong Kong Baptist University, Kowloon Tong, China

liuw259@mail.sysu.edu.cn

Abstract. The optimal sequenced route (OSR) query, as a popular
problem in route planning for smart cities, searches for a minimum-
distance route passing through several POIs in a specific order from a
starting position. In reality, POIs are usually rated, which helps users in
making decisions. Existing OSR queries neglect the fact that the POIs
in the same category could have different scores, which may affect users’
route choices. In this paper, we study a novel variant of OSR query,
namely Rating Constrained Optimal Sequenced Route query (RCOSR),
in which the rating score of each POI in the optimal sequenced route
should exceed the query threshold. To efficiently process RCOSR queries,
we first extend the existing TD-OSR algorithm to propose a baseline
method, called MTDOSR. To tackle the shortcomings of MTDOSR, we
try to design a new RCOSR algorithm, namely Optimal Subroute Expan-
sion (OSE) Algorithm. To enhance the OSE algorithm, we propose a
Reference Node Inverted Index (RNII) to accelerate the distance compu-
tation of POI pairs in OSE and quickly retrieve the POIs of each category.
To make full use of the OSE and RNII, we further propose a new effi-
cient RCOSR algorithm, called Recurrent Optimal Subroute Expansion
(ROSE), which recurrently utilizes OSE to compute the current optimal
route as the guiding path and update the distance of POI pairs to guide
the expansion. The experimental results demonstrate that the proposed
algorithm significantly outperforms the existing approaches.

Keywords: Route planning · Optimal sequenced route · Spatial
database.

1 Introduction

With the ever-growing popularity of smartphones and other location-based ser-
vices, various route queries have been studied to cater to users’ different needs.
Among these route queries, the optimal sequenced route (OSR) query has received
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 457–473, 2021.
https://doi.org/10.1007/978-3-030-73194-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_31


458 W. Li et al.

Fig. 1. Running example road networks.

significant research momentum in recent years [12]. It is designed to find the opti-
mal route passing through a sequence of points of interest (POIs) of specific cat-
egories (e.g., gas stations, restaurants, and shopping malls) in a particular order.
An example of the OSR query in a road network is shown in Fig. 1(a).

The example shows four POI categories, where pSj (j = 1, 2, 3, 4) denotes POIs
of supermarkets (represented by squares), pRj (j = 1, 2, 3) denotes POIs of restau-
rants (represented by rhombus), and pGj (j = 1, 2, 3) denotes POIs of gas stations
(represented by triangle), pHj (j = 1, 2) denotes the hotels (represented by pen-
tagon). There is a number denoting its corresponding rating score, for example,
〈pSj , 70〉 means the rating score of pSj is 70. The black circles denote the nodes in the
road network. Given a user u1 located at v1, she wants to pass through a sequence
of POIs (e.g., restaurant, supermarket) to arrive at the destination node v16, this
OSR query returns a route {v1, pS1 , pR1 , v16}1 with the cost of 55.

The OSR query is first studied by Sharifzadeh et al. [12,13], followed up by
a number of variants [2,8,9,13,17]. However, these prior works assume that the
POIs in the same category have the same preference (i.e., they are rated with
the same score). In the works [1,4], the weight of POIs is considered as a factor
in route cost functions. But in real applications, the rating scores of POIs in
the same category could be different, which affects users’ route choices. That is,
users usually prefer to visit the POIs with a high rating score, while those having
a rating score lower than their expectations will not be taken into consideration.
For different categories of POIs, the expected rating scores are also different.
Take restaurants and gas stations for example. For most customers, they expect
a higher rating score for a restaurant than a gas station, but the exact score
threshold depends on different individuals.

Motivated by this, in this paper, we propose a new OSR query, namely Rating
Constrained Optimal Sequenced Route (RCOSR) query, where for each category

1 Between two POIs, the shortest path is used in default, e.g., {pS1 , v3, pR1 } is for pS1 , p
R
1 .



Optimal Sequenced Route Query with POI Preferences 459

of POIs, there is a threshold representing the minimum rating score acceptable
to the query user. Given a starting node and a destination node, and a set of
sequenced POI categories with the corresponding rating score thresholds, the
RCOSR query finds the route with the minimum distance that visits only one
POI of each category in order and the rating score of each POI satisfies the
user specified threshold. Revisit the example of the RCOSR query illustrated
in Fig. 1(a). Given a starting node vs = v1, and a destination node vd = v16,
an RCOSR query Q(v1, v16, 〈S, 70〉, 〈R, 90〉, 〈G, 50〉, 〈H, 90〉) returns an optimal
route in which one of the POI in each category is visited and the rating scores
of S,R,G,H are greater than 70, 90, 50, 90, respectively.

To answer the RCOSR query, one may adopt a greedy search to find the
nearest POI satisfying the threshold in each step and generate the route result.
Consider the example Fig. 1(a). While this method can quickly find a feasible
result

−→
Rg = {v1, pS2 , pR2 , pG2 , pH2 , v16} with a total cost of 114 (i.e., the blue route),

but it is not optimal. The optimal solution of this RCOSR query is actually−→
Ro = {v1, pS1 , pR1 , pG2 , pH2 , v16}, which costs 85 only (i.e., the red route). It is
obvious that the greedy search may not ensure the optimality for this problem.
An idea is to filter the POIs that do not satisfy the rating score threshold to avoid
unnecessary expanding exploration. However, the latest optimal sequenced route
algorithm TD-OSR [3] cannot be directly applied to this problem, which does
not consider the constrained rating score and is not efficient for our problem.

To tackle the RCOSR query problem, we first revise the TD-OSR algorithm as
our baseline, named as MTDOSR. The TD-OSR algorithm is originally designed
for OSR queries in time-dependent road networks, but it can be also extended
to address the traditional OSR problem. For our problem, we modify TD-OSR
to apply on static road networks and solve RCOSR queries. The main idea of
MTDOSR is to use the A* search scheme equipped with an admissible heuristic
function. To find the next node to expand the current subroutes during the net-
work expansion, MTDOSR checks the POI to see whether it satisfies the query
threshold before inserting it into the path. However, such an expansion scheme
fails to exploit all the query categories and generates a large number of candidate
subroutes, which consumes a lot of memory to store them in the heap. Further
more, the top entry (i.e., subroute) may not be the globally optimal choice to be
used to expand. To overcome these two shortcomings, we try to propose a new
RCOSR algorithm, Optimal Subroute Expansion (OSE) , which iteratively finds
the optimal subroute forQ(vs, pcij , 〈c1, . . . , ci−1〉) and pcij is one specific POI in cat-
egory ci until the optimal route ending at destination node is obtained, which is
the query result. However, OSE is very time-consuming to compute the distance
of many POI pairs for obtaining the cost of each optimal subroute. To enhance
the OSE algorithm, we propose an index, called Reference Node Inverted Index
(RNII), to accelerate the distance computation and quickly retrieve POIs of each
category for POI filtering. To determine the appropriate reference nodes for RNII,
we develop a Greedy Merge (GM) strategy to determine the reference nodes by
maximizing the number of POI pairs they can cover. To effectively utilize RNII
and OSE, we propose a new efficient RCOSR algorithm, called Recurrent Optimal



460 W. Li et al.

Subroute Expansion (ROSE), which iteratively searches the optimal route using
OSE. By continuously updating the lower bound distance between POIs com-
puted by RNII with the exact shortest distance, the guiding path that obtained
from OSE gets closer to the optimal solution. ROSE terminates when the cost of
guiding path is equal to its shortest length.

The contributions of this paper are summarized as follows:

– This paper presents and tackles the rating constrained optimal sequenced
route (RCOSR) query problem in which the POIs in the sequenced route
should satisfy category rating thresholds.

– We propose the MTDOSR algorithm as our baseline to answer the RCOSR
query and explain its inefficiency.

– We propose a new OSE algorithm, which expands the optimal subroutes in
dynamic programming scheme.To accelerate the distance computation of POI
pairs in OSE, we propose a new index (RNII).

– Based on the OSE and RNII, we further develop a new algorithm (ROSE),
which iteratively computes the optimal rating constrained sequenced route
as the guiding path to guide the exploration.

– We conduct extensive experiments on synthetic and real road networks to
evaluate the proposed algorithms. The experimental results show that ROSE
significantly outperforms the baseline by 92.25% in query time and 79.94%
in expanded nodes on average.

2 Related Work

This work is relevant to two lines of research, including optimal route queries,
and indexes for the road networks.

2.1 Optimal Route Queries

Li et al. [7] first propose the trip planning query (TPQ) in spatial databases.
After that, a variant of the TPQ query, namely the optimal sequenced route
query (OSRQ) is studied by Sharifzadeh et al. [12]. In OSRQ, the POI sequence
in the optimal route is specified by the user. Three corresponding algorithms
(i.e., LORD, R-LORD, and PNE) are developed for both Euclidean and general
graphs. Moreover, Sharifzadeh et al. [13] study the OSR query processing algo-
rithm using Voronoi Diagram. Recently, Liu et al. [9] study the top-k optimal
sequenced route query, which mainly designs the efficient algorithms for finding
the k optimal routes. Yawalkar et al. [16] solve the personalized route preference
problem with skyline route queries. Chen et al. [2] study the multi-rule Partial
Sequenced Route (MRPSR) query, which finds the optimal route via a number
of POIs in a partial visiting order defined by the user. Costa et al. [3] study
optimal sequenced route queries in time-dependent road networks and propose
an effective algorithm called TD-OSR, which is based on the A* scheme with
an admissible heuristic function. In this paper, we first modify the TD-OSR to
answer our RCOSR query as our baseline.



Optimal Sequenced Route Query with POI Preferences 461

As for weight constraints on POIs, some research attention has been paid to
this area. Dai et al. [4] consider not only road length but also other factors such as
POI rating and propose the personalized and sequenced route planning (PSR)
query. In PSR, a score is computed for each route for a query, which is deter-
mined by both route length and POI rating. Sasaki [11] et al. propose the sky-
line sequenced route query which searches for all preferred sequenced routes to
users by extending the shortest route search with the semantic similarity of POIs
in the route. Yao et al. [15] study the multi-approximate-keyword routing query,
which returns the shortest route that passes through at least one matching POI
for each query keyword. Later in [1], the authors consider weighted POIs in opti-
mal sequenced group trip planning query, where the weight of POIs is computed
as utility and the cost of a trip consists of a distance value and utility value.

2.2 Indexes for Road Networks

To accelerate distance computation and nearest neighbor searching, a number
of researches on road network indexes have been investigated. R-tree and its
variants [5] as the most popular spatial indices have been used in recent years.
Zhong et al. [18] propose G-tree for shortest distance computation and nearest
neighbor query on large road networks, which splits the road network into multi-
ple sub-networks and then constructs a balanced tree. Thus each node in G-tree
corresponds to a sub-network. One of its advantages is that the space complexity
is relatively low, thus it can easily scale up to large datasets. Another effective
index is Voronoi Diagram [13], which partitions the space into regions named
cells, but it uses Euclidean distance of two nodes to split, thus works mostly for
Euclidean graph.

Kriegel et al. [6] propose graph network embedding to speed up the range
and k-nearest neighbor queries. This work is the most related one to our work.
Although the idea of graph embedding utilizing reference nodes has been studied
to build the filter-refinement architecture, our work is the first attempt to apply
the idea of graph embedding in the RCOSR problem. In this paper, we propose
a new reference node distribution strategy to guide the determination of the
reference nodes.

3 Problem Formalization

In this section, we first introduce some fundamental notations, then formalize
RCOSR problem. Generally, a road network is typically represented as a graph.

Definition 1. (Graph). A graph G(V,E, P ) consists of a node-set V and an
undirected weighted edge set E ⊆ V × V . P is a set of POIs located on the
edges, where each POI belongs to one category, denoted by ci. The total number
of nodes (not including the POIs) is denoted as |V | and the weight on the edge
indicates the length of the edge. In addition, dist(vi, vj) denotes the shortest
distance between nodes vi and vj. We assume that the distance satisfies the
triangle inequality, and specially dist(vi, vi) = 0. Besides, each POI is associated
with a rating score, which ranges from 0 to 100.



462 W. Li et al.

Definition 2. (Route). We define a route
−→
R = {v1, v2, ..., vn} where vi (1 ≤

i ≤ n) is a node/POI in a road network. The cost of a route
−→
R , denoted by

cost(
−→
R ), is

∑n
i=1 dist(vi−1, vi).

Before defining the RCOSR query, we first define the feasible rating con-
strained route and optimal rating constrained sequenced route.

Definition 3. (Feasible rating constrained route). Given a source-destination
pair (vs, vd) and a category sequence C = {c1, c2, . . . , ck} as well as the cor-
responding rating threshold set T = {t1, t2, . . . , tk} (for simplicity, we use
CT = {〈c1, t1〉, 〈c2, t2〉, . . . , 〈ck, tk〉} and |CT | = k to represent the category-
threshold pair sequence), a feasible rating constrained route

−→
R satisfies the fol-

lowing constraints: (i)
−→
R starts from starting node and ends at the destination

node. (ii)
−→
R passes through at least one POI for each category in C and follows

the sequence order in C. (iii) The rating score of the POIs in
−→
R should be equal

or larger than the corresponding threshold in T .

According to the definition of feasible rating constrained route, we now define
the optimal rating constrained sequenced route below.

Definition 4. (Optimal rating constrained sequenced route). Given a source-
destination pair (vs, vd), a category-threshold pair sequence CT , the feasible route−→
Ro is the optimal rating constrained sequenced route with threshold constraint if
for any feasible rating constrained route

−→
R′, such that cost(

−→
Ro) ≤ cost(

−→
R′).

Based on the above definitions, we now formally define the RCOSR query.

Definition 5. (RCOSR query). Given a graph G, the RCOSR query is defined
as Q = (vs, vd, CT ), where vs and vd are the starting node and destination node,
and CT is the category-threshold pair sequence. Especially, if the rating score
threshold of the category is not specified by the user, it is set as the average rating
score of POIs in that category. The query returns the optimal rating constrained
sequenced route, as defined in Definition 4.

When the number of categories |CT | is greater than 1, it can be reduced
from TSP [7] that the RCOSR problem is also NP-Hard.

4 Baseline for RCOSR

In this section, we present our baseline algorithm, namely MTDOSR, which
extends the TD-OSR algorithm [3] to address the RCOSR problem. The main
idea of MTDOSR is to utilize A* scheme with an admissible heuristic function
to guide the network expansion. To find the most potential node to expand,
MTDOSR uses a function f(v) = g(v) + h(v), where g(v) is the distance from
starting node to the current node v through the corresponding route, and the
heuristic function h(v) is computed as h(v) = max(dist(v, vd), dist(v, pcnn)),



Optimal Sequenced Route Query with POI Preferences 463

where vd is the destination node, pcnn is the nearest POI of node v in cate-
gory c. To accelerate calculating the heuristic function, before the query comes,
an improved TD-NE-A* [3] algorithm is executed to calculate the distance of
each node to its nearest POI in each category, i.e., dist(v, pcnn). When computing
f(v), the POIs are checked whether it satisfies the query threshold.

During the expansion, a min-heap H is used to store the intermediate sub-
routes (i.e., entries). The form of the entry is (v, g(v), f(v), visitedPOIset),
where v is the current node, visitedPOIset is the POI sequence visited in this
subroute. In the following, we explain the running process for the running exam-
ple in Fig. 1(a) with the query Q = (v1, v16, 〈cS , 70〉, 〈cR, 90〉, 〈cG, 50〉, 〈cH , 90〉).
MTDOSR begins to examine the starting node v1 and computes function f(v1).
Since g(v1) is 0, f(v1) is 85 (the shortest distance from v1 to destination node
v16), and the POI sequence in this subroute is empty, then the entry (v1, 0, 85, {})
is pushed in H. In the second iteration, v1 is popped from H and its adjacent
nodes v3, v11, v2 are found and pushed in H. At the same time, POIs pS1 (i.e.,
over the edge v3v1) and pS2 (i.e., over the edge v11v1) are checked and inserted
in the corresponding subroute, respectively. The above iterations continue until
all the query categories are visited and the destination node v16 of the query is
found, the algorithm returns the result Ro = {pS1 , pR1 , pG2 , pH2 }. During this pro-
cess, this expansion of subroutes guided by f(v) produces many invalid subroutes,
e.g., when expanding on node v4, node v5 is de-heap from H and visited, which
is not in the optimal route. The main reason is that the heuristic function of v
used in MTDOSR only utilizes either the farthest POI or the destination node,
which fails to make full use of all the query category sequences in the query, thus
MTDOSR is not efficient.

5 Recurrent Optimal Subroute Expansion

As analyzed in the above section, if we can fully make use of the information with
respect to all the query categories, the route expansion can be more effective.
Inspired by this, we try to design a new RCOSR algorithm, Optimal Subroute
Expansion (OSE), to search for the optimal solution.

5.1 Optimal Subroute Expansion Algorithm

The main idea of optimal subroute expansion is to iteratively find the optimal
rating constrained sequenced route for Q = (vs, pcij , 〈c1, . . . , ci−1〉) where pcij
is one POI in category ci, until the optimal rating constrained route ending
at destination node is obtained, which is the query result. The above idea is
naturally implemented using dynamic programming shown as follows.

Definition 6. (Dynamic programming formulation). Given a query Q =
(vs, vd, CT ), we construct a dynamic programming matrix OS with k + 1 rows
and max(|ci|) columns, where i = (0, 1, . . . , k). The value of OS[i, j] represents
the cost of ORCS ending at pcij . Especially, the (k+1)-th row represents the
ORCS ending at node vd. The dynamic programming formulation is as follows:



464 W. Li et al.

OS[i, j]=

⎧
⎨

⎩

0 if i = 0
min

1≤l≤|ci−1|
{OS[i−1, l]+dist(pci−1

l , pcij )} if i > 0 (1)

Consider a query Q = (vs, vd, CT ). The OSE accepts the query Q and a
currently feasible route cost costcurr, which is initialized with the cost of the
greedy route (there is a greedy search after the query comes which generates a
greedy route) to be used as a pruning threshold. For each query category ci, we
first retrieve the POIs of ci and check if the POI satisfies the rating constraint
and those unqualified POIs are filtered. Then we construct the optimal subroute
of each POI in dynamic programming and check whether the cost of the optimal
subroute is greater than the current threshold costcurr. If the cost of the current
subroute exceeds costcurr, it is considered invalid and should be pruned.

When constructing the optimal subroute of each POI in dynamic program-

ming, with the optimal subroutes set Sps, for each subroute
−−−−→
Rpci−1

os ending at
pci−1 , we extract the POI pci−1 from the route and compute each new subroute

cost costcurr by adding up the distance from pci to pci−1 and the cost of
−−−−→
Rpci−1

os ,
then compares the result with the current minimum cost minCost to find the
optimal one.

Notice that in OSE, to calculate the cost of the optimal subroutes, the com-
putation of the exact shortest distance between each two POIs is required, thus
it is too expensive to simply use the OSE algorithm to answer our RCOSR query.
Therefore, our idea is to adopt the estimated distance (i.e., a lower bound) for
each two POIs instead of the exact shortest distance to accelerate the computa-
tion. For efficient distance estimation between each two POIs, we next propose
a new Reference Node Inverted Index (called RNII).

5.2 Reference Node Inverted Index

In this section, we develop our Reference Node Inverted Index (RNII), which is
used for distance estimation and POI filtering.

Graph Embedding. As the basis of our RNII, we first recall the idea of graph
embedding, which is proposed by Kriegel et al. [6]. Graph embedding is used
to perform distance approximation in large datasets. The main idea of graph
embedding is to find a set of reference nodes on the graph and computes the
shortest distances from each object (i.e., nodes, POIs) to these reference nodes
on the graph, then transforming these distances into vectors. When estimating
the distance between any two objects, a vector operation is executed to obtain
the upper or lower bounds of the road network distance. Compared with regular
distance approximation methods such as Euclidean distance estimation, utilizing
graph embedding can significantly accelerate the computation, and the accuracy
is relatively higher [6].

Given a reference nodes set RN = (r1, r2, . . . , rk), for any POI pi, the dis-
tance vectors are Vpi

= (dist(pi, r1), . . . , dist(pi, rk))T .



Optimal Sequenced Route Query with POI Preferences 465

As shown in Fig. 1(b), assuming two reference nodes are v5 and v6, the
distance vector of POI p1 is computed as Vp1 = (dist(p1, v5), dist(p1, v6))T =
(3, 6)T , and for p2 it is Vp2 = (dist(p2, v5), dist(p2, v6))T = (6, 3)T . Once the
distance vectors are built, we then perform distance approximation by vector
operation. Accordingly, we find the maximum value among each dimension of
the vector from the difference (denoted as LBp1,p2 = max(|3 − 6|, |6 − 3|) = 3).
Formally, we give the equations of LBpi,pj

.

LBpi,pj
= max

l=1,...,k
(Vpi

[l] − Vpj
[l]) (2)

Where Vpi
[l] indicates the l-th element of vector Vpi

. According to the triangle
inequality, we can infer that LBpi,pj

≤ dist(pi, pj), which represents the lower
bound of the distance approximation.

Selecting appropriate reference nodes is important to the accuracy. For exam-
ple, in the road network in Fig. 1(b), the lower bound distance between p1 and
p2 is to be estimated. It is better to select v7 as the reference node than v1. Such
an ideal reference node is desired to obtain the exact or tighter lower bound
distance. Furthermore, the accuracy of distance approximation using the refer-
ence nodes rely on the number and distribution of the selecting reference nodes.
According to these issues above, we discuss the strategy of how to determine the
reference nodes below.

Determining the Reference Nodes. The strategy of determining reference
nodes significantly influences the accuracy of distance approximation. Notice
that in the rating constrained optimal subroute expansion, we just exploit the
lower bound to estimate the approximate distance of POIs. Thus, our goal is
to derive a tight lower bound of distance approximation instead of the upper
bound when designing the strategy of determining reference nodes. A natural
and simple idea is to randomly pick up nodes (e.g., v1, v2, ..., vn)2 from the road
network. Since this strategy is with high uncertainty, thus it cannot guarantee the
efficiency of RNII. Accordingly, we propose a new Greedy Merge (GM) strategy
to guide how to determine the reference nodes.

Consider a reference node r and a pair of POIs 〈pi, pj〉 in the road network.
If the LBpi,pj

computed according to r is exactly equal to dist(pi, pj), we say r
covers the pair 〈pi, pj〉, the more pairs it covers, the better lower bound estima-
tion it provides. The main idea of the GM strategy is to find a set of nodes as
the reference nodes that maximize the number of POI pairs they can cover. To
achieve this goal, we first calculate how many pairs of POI that each node covers,
and greedily choose the node which can cover the largest number of POI pairs
into the reference node-set iteratively. This process continues until the number of
reference nodes reaches the preset value or the total number of POI pairs covered
does not increase anymore. Take the road network in Fig. 1(a) as an example.
Assume the number of reference nodes is 3, we choose nodes {v7, v16, v0} as the
reference nodes using the GM strategy. This reference node-set can cover 132
pairs of POIs, while the total number of POI pairs in this road network is 144.
2 Theoretically, the reference node can be any point in the road network, but for

simplicity we select the nodes as the reference nodes.



466 W. Li et al.

RNII Data Structure. Inverted index is the mapping from keywords to doc-
uments, is widely used in the search engine, large-scale database index, doc-
ument retrieval, multimedia retrieval/information retrieval [14]. In this work,
we utilize an inverted index to retrieve the POIs by their categories. Each
inverted item in RNII consists of two parts: category ID and corresponding
POI entities. All the POI entities of category ci can be retrieved quickly by
querying the records of the inverted index with category ci. A POI entity
p is represented as 〈PID, score(p), Vp〉, where PID is the id of p, score(p)
is the rating score of p, and Vp is the corresponding distance vector (i.e.
Vp = dist(p, r1), dist(p, r2), . . . , dist(p, rk)), where dist(p, rk) is the shortest dis-
tance from p to the k-th reference node.

5.3 The ROSE Algorithm

Based on the OSE and RNII, we further design a new ROSE algorithm. The
ROSE initially adopts the approximate distance (which is computed quickly
using RNII) for each two POI and utilizes the OSE algorithm to find the optimal
route under the approximate distance. Notice that the route computed by OSE
using the approximate distance is not the optimal solution. To find the optimal
one, the route is served as the guiding path and then we calculate the exact
shortest length of this guiding path using the shortest distance algorithm. While
calculating the exact shortest length, the exact shortest distances between POIs
in the guiding path are obtained and we replace the approximate distance with
the exact shortest distance for these POI pairs. After that, we again employ OSE
to find a new guiding path with the updated distance information. By continuing
the above steps, the cost of the guiding path gets closer to the optimal solution.
The algorithm terminates when the cost of the guiding path is equal to the exact
cost of the corresponding expanded route, which is the solution to RCOSR.

Algorithm 1. Recurrent Optimal Subroute Expansion (ROSE)
Require: Query Q = {vs, vd, CT} (|CT | = k)

Ensure:
−−→
Ros:optimal rating constrained sequenced route for vd

1: costguide ← 0, Rguide ← ∅, costexact ← 0;
2: obtain the exact cost costexact by invoking the greedy search;
3: Initialize current optimal cost costtresh with costexact
4: while costguide �= costexact do
5: 〈Rguide, costguide〉 ← OSE(Q, costtresh);
6: costexact ← computeRouteDistance(Rguide);
7: if costexact < costtresh then
8: costtresh ← costexact;
9: end if

10: end while
11:

−−→
Ros ← Rguide;

12: return
−−→
Ros;



Optimal Sequenced Route Query with POI Preferences 467

The pseudo-code of ROSE is illustrated in Algorithm1. Given a query Q,
we first find a current feasible route (which is updated later) by invoking the
greedy search (Line 2). Next, the recurrent process goes as follows: we find
the guiding path and obtain its exact shortest length as the threshold cost of
the current feasible route (Lines 5–6). Note that when executing OSE, if the
shortest distance of some POI pairs has been explored, we use the shortest
distance stored in an unordered map pairDistMap, otherwise we use the lower
bound distance calculated by RNII. After that, we calculate the exact distance by
invoking function computeRouteDistance() (Line 6). computeRouteDistance()
can be implemented by any shortest distance algorithms in road networks, such
as A* with graph embedding as the heuristic function [6] and H2H-Index [10].
At the same time, the exact distance of the involved POI pairs is stored in a map
pairDistMap, which is used in further distance estimation. We also update the
cost of the current solution (Lines 7–8). This process continues until the cost of
the expanded route is the same as the cost of its guiding path.

20

10

20

30

25

25 12

vs

vd

4525
6555

p
1

p
2

p
3

p
4

p
5

(a) Initial
state.

25

20

10

20

30

25

12

vs

vd

4525

p
1

p
2

p
3

p
4

p
5

6555

(b) Finding
the guiding
path.

25

30

40

30

25

25 12

vs

vd

25 45

p
1

p
2

p
3

p
4

p
5

6555

(c) Comput-
ing the exact
distance.

25

30

40

30

25

25 12

vs

vd

25 45

p
1

p
2

p
3

p
4

p
5

6555

(d) Find-
ing another
guiding path.

25

30

40

30

25

30 12

vs

vd

25 45

p
1

p
2

p
3

p
4

p
5

6555

(e) Comput-
ing the exact
distance.

30

25

30

30

25

12

vs

vd

25 45

p
1

p
2

p
3

p
4

p
5

6555

40

(f) Termi-
nated.

Fig. 2. An example of illustrating ROSE.

Example 1. Figure 2 illustrates an example of ROSE. In the initial state, the dis-
tance between each two POI is initialized with the lower bound distance, which is
represented by the dashed line (Fig. 2(a)). The first iteration computes the opti-
mal route in the current lower bound distance as the guiding path {vs, p1, p3, vd}
(i.e., the black bold line in Fig. 2(b)). Then ROSE calculates as well as records
the shortest distance from vs to p1, the shortest distance from p1 to p3, the
shortest distance from p3 to vd (i.e., the red line in Fig. 2(c)). In the second
iteration, another guiding path (i.e., the black bold line in Fig. 2(d)) is found
and the exact distance of the corresponding POI pairs is calculated (i.e., the
red line in Fig. 2(e)). In the last iteration, the guiding path found by ROSE
is {vs, p1, p4, vd}, whose cost is equal to the actual length of the corresponding
path, thus ROSE terminates and {vs, p1, p4, vd} is returned as the result.

Compared to MTDOSR, ROSE has the following advantages: (1) ROSE uti-
lizes the information of every query category. The guiding path is an optimal
route under lower bound distance of the query, which consists of POI in every



468 W. Li et al.

query category, thus it can lead to more accurate guidance of the expansion.
(2) ROSE uses an inverted index to manage and pre-filter the unqualified POIs,
rather than filtering the POIs during route expansion. (3) ROSE updates and
uses the cost threshold for pruning in OSE, while MTDOSR has no pruning
strategies.

5.4 Complexity Analysis

In this section, we analyze the time and space complexity of MTDOSR and
ROSE. Let |V | be the size of nodes in the graph, |E| be the number of edges,
|C| be the total categories of POI, r be the number of reference nodes, and
k be the size of query categories. In addition, we assume m is the average
number of qualified POIs in each category. Because a Dijkstra shortest dis-
tance algorithm is executed before the main loop, the complexity of MTDOSR
is O(k|E|logk|V |+ |V ||E|log|V |) [3]. For each iteration in ROSE, we first invoke
the OSE to find the guiding path. In OSE, it constructs the optimal subroute
for each POI using dynamic programming, whose time complexity is O(mr).
Moreover, it requires exploring km POIs. Thus, OSE takes O(krm2) time for
each iteration. After that, computeRouteDistance takes O(k|V ||E|log|V |) to
compute the exact distance of guiding path (using Dijkstra). The total itera-
tions of ROSE depend on the accuracy of lower bound distance computed by
RNII, in the worst case, the iteration goes mk times for each query. Note that
in reality, due to the lower bound estimation provided by RNII, the iteration
goes far less than mk times. In theory, the overall time complexity of ROSE is
O(kmk(m2r+|V ||E|log|V |)). Besides, the space complexity of RNII is O(|C|mr).

6 Experiments

In this section, we conduct a number of experiments to evaluate the performance
of the proposed algorithms and RNII using both real datasets and synthetic
datasets. All the algorithms are implemented using C++, and the experiments
are conducted on a server with an Intel Core i7-9700 CPU of 3.0 GHz and 16
GB RAM. We use the following real datasets:

– CA. The CA dataset is the real road network of California3. It contains
21,048 nodes, 21,693 road edges, and 87,635 POIs belong to 64 categories.

– OL. The OL dataset is the real road network of Oldenburg city(see footnote
3). It contains 6,105 nodes, 7,035 road edges, and 2,404 POIs belong to 26
categories.

In addition, we generate a synthetic dataset that contains 100,000 nodes,
125,000 road edges, and 10,000 POIs belong to 50 categories and we randomly
set the rating score ranging from 0 to 100 for each POI.

We conduct the performance evaluation in two aspects: (1) evaluating the
efficiency of RCOSR algorithms. We compare the query time and the number
3 http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm


Optimal Sequenced Route Query with POI Preferences 469

of visited nodes (i.e., the number of times the nodes get visited) under various
parameters, including the query size (i.e., the number of query categories), the
network size (i.e., |V |), the POI numbers, shown in Table 1; and (2) evaluat-
ing the efficiency of RNII. We compare the query time and cover rate using
RNII concerning the reference nodes strategies. The bold number represents the
default values. In each experimentation, we vary one parameter at a time and
fix the other parameters as the default value, and generate 100 random queries.
The reported experimental results are obtained by averaging the query time as
well as the number of visited nodes.

6.1 Efficiency of RCOSR Algorithms

In this section, we evaluate the efficiency of MTDOSR and ROSE. While imple-
menting the computeRouteDistance() function in ROSE, we use A* algorithm
to calculate the shortest distance between POIs and use the lower bound dis-
tance as the heuristic function. Moreover, we construct the RNII by adopting
the GM strategy with the number of reference nodes as 80 in ROSE.

Table 1. Parameter ranges and default values

Parameters Query size Network size
(×1000)

POI numbers Average degree
of nodes

Number of
reference nodes

Ranges 1, 3, 5, 7, 9 10, 40, 70, 100 100, 500, 1000 1.5, 2.5, 3.5 20, 40, 80, 160, 320

100

1000

10000

100000

1000000

1 3 5 7 9

Q
ue

ry
�T

im
e�

(m
s.

)

Query�Size

MTDOSR

ROSE_RD

ROSE_GM

(a) Query time in CA
dataset

1000

10000

100000

1000000

1 3 5 7 9

#�
of

�V
is

ite
d�

N
od

es

Query�Size

MTDOSR
ROSE_RD
ROSE_GM

(b) Visited nodes in
CA dataset

0

50

100

1 3 5 7 9#�
of

�O
SE

�it
er

at
io

ns

Query�Size

ROSE_RD
ROSE_GM

(c) Number of itera-
tions in CA dataset

1

10

100

1000

10000

100000

1 3 5 7 9

Q
ue

ry
�T

im
e�

(m
s.

)

Query�Size

MTDOSR
ROSE_RD
ROSE_GM

(d) Query time in OL
dataset

100

1000

10000

100000

1 3 5 7 9

#�
of

�V
is

ite
d�

N
od

es

Query�Size

MTDOSR
ROSE_RD
ROSE_GM

(e) Visited nodes in
OL dataset

0

2

4

6

8

10

1 3 5 7 9

#�
of

�O
SE

�it
er

at
io

ns

Query�Size

ROSE_RD
ROSE_GM

(f) Number of itera-
tions in OL dataset

Fig. 3. Performance w.r.t query size in real road network



470 W. Li et al.

Algorithm Performance in Real Road Network. The query size refers to
the number of POI categories in the query (i.e., the |CT |). In this experiment, we
compare the efficiency of ROSE using the random strategy (noted as ROSE RD),
ROSE using greedy merge strategy (noted as ROSE GM), and MTDOSR using
the two real datasets. From the results shown in Fig. 3, we can see that the
query time and the number of visited nodes for all algorithms increase when
the query size increases. ROSE GM outperforms MTDOSR with regard to the
query time (with 85.07% in CA and 98.88% in OL improvement for average
query size, respectively) and the number of visited nodes (with 66.8% in CA and
93.08% in OL improvement for average query size, respectively), and ROSE GM
outperforms ROSE RD with regard to the query time (with 42.96% in CA and
93.8% in OL improvement for average query size, respectively) and the number
of visited nodes (with 37.3% in CA and 46.2% in OL improvement for average
query size, respectively). For the OL dataset, the superiority of ROSE is more
obvious compared to that in the CA dataset. It can be explained that the number
of POIs in the OL dataset is smaller than that of CA. That is because ROSE
computes the guiding path using all the POI categories information, the ROSE
runs faster in a sparser road network. Figures 3(c) and 3(f) shows the number
of OSE iterations before the optimal route is found. For the CA dataset, the
average numbers of iterations using random and greedy merge strategy are 60.89
and 34.11 respectively, while in the OL dataset the ROSE only needs 6.84 and
5.16 iterations on average to find the optimal route with respect to random and
greedy merge strategies.

Effect of the Network Size. Figure 4 shows the query time and the number
of visited nodes of ROSE and MTDOSR with respect to different network sizes in
the synthetic dataset. As illustrated in Fig. 4, the query time of the two algorithms
increases by increasing the network sizes, while ROSE outperforms the MTDOSR
significantly. Figure 4 also describes the results of the number of visited nodes by
varying the network sizes. When the network size increases, finding the optimal
rating constrained sequenced route requires to visit more nodes.

1

100

10000

1000000

100000000

10 40 70 100

Q
ue

ry
�T

im
e�

(m
s.

)

Network�Size�(×1000)

MTDOSR
ROSE

1

100

10000

1000000

100000000

10 40 70 100

#�
of

�V
is

ite
d�

N
od

es

Network�Size�(×1000)

MTDOSR

ROSE

Fig. 4. Time w.r.t. network size

1

100

10000

1000000

100 500 1000

Q
ue

ry
�T

im
e�

(m
s.

)

POI�Numbers

MTDOSR

ROSE

1

100

10000

1000000

100 500 1000

#�
of

�V
is

ite
d�

N
od

es

POI�Numbers

MTDOSR

ROSE

Fig. 5. Time w.r.t. POI numbers

Effect of POI Numbers. As expected, the query time and the number of
visited nodes of ROSE increase when increasing the POI percentages in Fig. 5
When the POI number increases, there are more guiding paths that are close to
the optimal rating constrained sequenced route, thus ROSE requires to spend
more iterations to find the optimal one incurring more computations of the



Optimal Sequenced Route Query with POI Preferences 471

exact distance between the POIs when constructing optimal subroutes. ROSE
outperforms MTDOSR with respect to the effect of the POI number, especially
when the POI number is small. As the number of POI numbers grows, the query
time of both algorithms increase, and ROSE is more sensitive to the number of
POI numbers.

Effect of the Average Degree of Nodes. Figure 6 compares the algorithm
performance with respect to the average degree of nodes. For the two algorithms,
the query time and the number of visited nodes increase slightly when increas-
ing the average degree of nodes, because the network becomes more complex
and there is more possibility to search the routes. In addition, we can observe
from Fig. 6 that MTDOSR takes more time to visit the same amount of nodes
compared to ROSE. This can be explained by the computation cost of the heap
that MTDOSR maintains. The heap used in MTDOSR stores the nodes of the
entire path, which makes the number of nodes increase as the iteration contin-
ues. Moreover, it is very time-consuming to arrange and search the heap, while
ROSE uses A* algorithm to compute the distance of two POIs, which only needs
to maintain a small number of nodes in the heap.

1

10

100

1000

10000

100000

1.5 2.5 3.5

Q
ue

ry
�T

im
e�

(m
s.

)

Average�Degree�of�Nodes

MTDOSR ROSE

1

10

100

1000

10000

100000

1.5 2.5 3.5

#�
of

�V
is

ite
d�

N
od

es

Average�Degree�of�Nodes

MTDOSR ROSE

Fig. 6. Time w.r.t. average degree of
nodes

1

10

100

1000

10000

20 40 80 160 320

Q
ue

ry
�T

im
e�

(m
s.

)

#�of�reference�nodes

GM Random

0%

20%

40%

60%

80%

100%

20 40 80 160 320

C
ov

er
�R

at
e

#�of�reference�nodes

GM Random

Fig. 7. RNII performance w.r.t. number
of reference nodes

6.2 Efficiency of RNII Index

As discussed in Sect. 5.2, determining the reference nodes is an essential issue
in the construction of RNII. To achieve the desired RNII, we propose the GM
strategy. In this section, we evaluate the performance of the GM strategy, in
comparison with the Random strategy (i.e., this strategy randomly chooses the
reference nodes) under a various number of reference nodes. We use the synthetic
network of 10,000 nodes and 1000 POIs, which belong to 10 categories.

Effect of Strategies and Number of Reference Nodes. It is shown in Fig. 7
that GM outperforms Random significantly under a various number of reference
nodes. This also indicates that the reference nodes decided by the GM strategy
ensure higher accuracy in estimating the lower bound distance than the reference
nodes decided by Random. From Fig. 7, we can observe that the more reference
nodes we decide, the more POI pairs we can cover, which illustrates that the
more reference nodes we use, the more accuracy we gain.



472 W. Li et al.

7 Conclusion

In this paper, we formalize and study the Rating Constrained Optimal Sequenced
Route (RCOSR) query, which constrains the rating score of all POIs in the
result and the optimal route should satisfy the user thresholds. To answer the
query, we adapt the TD-OSR algorithm as MTDOSR to serve as a baseline.
Next, we try to propose a new Optimal Subroute Expansion (OSE) algorithm
to solve the problem. Moreover, we propose a Reference Node Inverted Index
(RNII) to accelerate the distance computation in OSE. Based on OSE and RNII,
we propose a new Recurrent Optimal Subroute Expansion (ROSE) algorithm.
At last, a comprehensive performance evaluation is conducted to validate the
proposed ideas and demonstrate the efficiency and effectiveness of the proposed
index and algorithms.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (61902438, 61902439, U1811264, U19112031), Natural Science Foundation
of Guangdong Province under Grant (2019A1515011704, 2019A1515011159), Guang-
dong Basic and Applied Basic Research Foundation (2019B1515130001), National Sci-
ence Foundation for Post-Doctoral Scientists of China under Grant (2018M643307,
2019M663237), Young Teacher Training Project of Sun Yat-sen University under Grant
(19lgpy214,19lgpy223)and Hong Kong RGC Grant 12200817.

References

1. Barua, S., Jahan, R., Ahmed, T.: Weighted optimal sequenced group trip planning
queries. In: MDM, pp. 222–227 (2017)

2. Chen, H., Ku, W., Sun, M., Zimmermann, R.: The multi-rule partial sequenced
route query. In: SIGSPATIAL, pp. 1–10 (2008)

3. Costa, C.F., Nascimento, M.A., Macêdo, J.A., Theodoridis, Y., Pelekis, N.,
Machado, J.: Optimal time-dependent sequenced route queries in road networks.
In: SIGSPATIAL, pp. 1–4 (2015)

4. Dai, Jian., Liu, Chengfei., Xu, Jiajie, Ding, Zhiming: On personalized and
sequenced route planning. World Wide Web 19(4), 679–705 (2015). https://doi.
org/10.1007/s11280-015-0352-2

5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD, pp. 47–57 (1984)

6. Kriegel, H., Kröger, P., Kunath, P., Renz, M., Schmidt, T.: Proximity queries in
large traffic networks. In: GIS, pp. 1–8 (2007)

7. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.: On trip planning
queries in spatial databases. In: SSTD, pp. 273–290 (2005)

8. Li, J., Yang, Y.D., Mamoulis, N.: Optimal route queries with arbitrary order con-
straints. TKDE 25(5), 1097–1110 (2013)

9. Liu, H., Jin, C., Yang, B., Zhou, A.: Finding top-k optimal sequenced routes, pp.
569–580 (2018). CoRR abs/1802.08014

10. Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets
2-hop-labeling: efficient shortest distance queries on road networks. In: ICMD, pp.
709–724 (2018)

https://doi.org/10.1007/s11280-015-0352-2
https://doi.org/10.1007/s11280-015-0352-2


Optimal Sequenced Route Query with POI Preferences 473

11. Sasaki, Y., Ishikawa, Y., Fujiwara, Y., Onizuka, M.: Sequenced route query with
semantic hierarchy. EDBT 2018, 37–48 (2018)

12. Sharifzadeh, M., Kolahdouzan, M.R., Shahabi, C.: The optimal sequenced route
query. VLDB J 17(4), 765–787 (2008)

13. Sharifzadeh, M., Shahabi, C.: Processing optimal sequenced route queries using
voronoi diagrams. GeoInformatica 12(4), 411–433 (2008)

14. Singhal, A.: Modern information retrieval: a brief overview. IEEE DEB 24(4),
35–43 (2001)

15. Yao, B., Tang, M., Li, F.: Multi-approximate-keyword routing in GIS data. In:
SIGSPATIAL, pp. 201–210 (2011)

16. Yawalkar, P., Ranu, S.: Route recommendations on road networks for arbitrary
user preference functions, pp. 602–613 (2019)

17. Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route
search on road networks. TKDE 12(4), 1846–1859 (2017)

18. Zhong, R., Li, G., Tan, K., Zhou, L.: G-tree: an efficient index for KNN search on
road networks. In: CIKM, pp. 39–48 (2013)



Privacy-Preserving Polynomial
Evaluation over Spatio-Temporal Data

on an Untrusted Cloud Server

Wei Song1(B), Mengfei Tang1, Qiben Yan2, Yuan Shen1, Yang Cao3, Qian
Wang4, and Zhiyong Peng1

1 School of Computer Science, Wuhan University, Wuhan, China
{songwei,mengfeitang,yuanshen,peng}@whu.edu.cn
2 Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, USA

qyan@msu.edu
3 Department of Social Informatics, Kyoto University, Kyoto, Japan

yang@i.kyoto-u.ac.jp
4 School of Cyber Science and Engineering, Wuhan University, Wuhan, China

qianwang@whu.edu.cn

Abstract. Nowadays, with the popularity of location-aware devices,
multifarious applications based on the spatio-temporal data come forth
in our lives. In these applications, a platform (enterprise) collects the
users’ spatio-temporal data based on which it recommends the top-k
users (passengers) to the registered service providers (drivers). Outsourc-
ing the tremendous scale of spatio-temporal data to cloud provides an
economical way for the enterprises to implement their applications. In
this paradigm, the third-party cloud server is not completely trustwor-
thy. The collected spatio-temporal data can hold users’ privacy, so it’s
a critical challenge to design a secure and efficient query mechanism for
this scenario, such as the ride-hailing or the ride-sharing services. How-
ever, the existing solutions for the privacy-preserving kNN queries mainly
focus on data privacy protection or computation complexity. There still
lacks a practical privacy-preserving polynomial evaluation solution over
the spatio-temporal data. In this paper, we propose a virtual road net-
work structure to storage and index the spatio-temporal data in the road
network and design a novel homomorphic encryption scheme based on
Order-Revealing Encryption to enable an untrusted cloud server to exe-
cute the polynomial evaluation over the encrypted spatio-temporal data
in the road network. We formally prove the security of the proposed
scheme under the random oracle model. Extensive experiments on real
world data demonstrate the effectiveness and efficiency of the proposed
scheme over alternatives.

1 Introduction

In last decade, we have witnessed the development of multifarious Location
Based Services (LBS) based on the spatio-temporal data with the popularity
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 474–490, 2021.
https://doi.org/10.1007/978-3-030-73194-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_32


Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 475

of location-aware devices. In these applications, the enterprises always have to
collect the tremendous scale of spatio-temporal data and deal with a number of
users’ queries. Outsourcing the spatio-temporal database to cloud is an econom-
ical way for them to implement the applications. The collected spatio-temporal
data hold the users’ privacy, however the third-party cloud server is not com-
pletely trustworthy and is possible to infer the users’ privacy by analyzing the
stored spatio-temporal data and the received query messages. So, it is a problem
must be resolved that how to protect user privacy during the services. Encrypting
the data before outsourcing is a natural choice to protect user privacy.

An intuitive idea to address this issue is to design a homomorphic encryption
algorithm to enable the cloud server to execute query over the encrypted spatio-
temporal data or insert noise into the original data. However, both of them
are not feasible for the real applications. For the first design, the enormous
volume of the spatio-temporal data will inevitably lead to decreased efficiency.
For the second design, the users need the accurate query results which are hard
to achieve within the noise-based methods. So, the main motivation of this work
is to design a privacy-preserving polynomial evaluation scheme over a huge scale
of spatio-temporal data. There have been a number of research efforts [1–12]
on the privacy-preserving kNN query over road networks. Nonetheless, most of
them mainly focus on the data privacy or the computation complexity. There
still lacks a practically privacy-preserving polynomial evaluation solution over
spatio-temporal data supporting the dynamic evaluation function rather than
the fixed one in advance.

Motivated by this, we propose a novel homomorphic encryption scheme based
on Order-Revealing Encryption (ORE) to enable the secure polynomial evalua-
tion over the spatio-temporal data in road network. The main contributions of
this paper can be summarized as:

– We design a novel homomorphic encryption scheme, which contains an
extended ORE scheme, to achieve the privacy-preserving polynomial evalua-
tion over the encrypted spatio-temporal data.

– To support the huge scale of the spatio-temporal data, we propose a vir-
tual road network index structure to manage the data and enable the
untrusted cloud server to efficiently execute the polynomials over them.

– The proposed method is practical that can be extended to support any
polynomial evaluation function moreover supports the dynamic conditions in
the function, which is still an open problem.

2 Related Work

In recent years, many efforts have been spent to address the issue of Privacy-
Preserving kNN query (PPkNN), which can be classified into three categories.

PPkNN Query: Wong et al. [1] first proposed an asymmetric scalar-product-
preserving encryption (ASPE) scheme as the distance recoverable encryption to
implement the secure kNN query. Voronoi diagram is widely used for PPkNN



476 W. Song et al.

query [2–4]. When meeting the dynamic conditions, the schemes based on
Voronoi diagram need to part again and will cause huge maintenance overheads.
Lei et al. [5] proposed a PPkNN solution to support two-dimensional data. As a
comparison, our scheme can extend to support multi-attributes. All these works
can execute only the approximate PPkNN query. To implement the accurate
PPkNN query, some methods [6,7] are proposed. But they have low efficiency
because they need to evaluate all data. All the above studies did not consider
the situation of the road networks with dynamic conditions.

PPkNN Query Over Road Network: If the underlying road network is
taken into consideration, the problem of PPkNN query becomes more complex.
Palanisamy et al. [8] proposed the mix-zones to preserve the location privacy
but it is vulnerable to the background knowledge attack. Yi et al. [9] proposed a
generic scheme to support multiple discrete attributes of private location-based
queries. Paulet et al. [10] proposed a scheme which combines PIR with a stage of
oblivious transfer. These schemes just support the range query. Yang et al. [11]
proposed a verifiable privacy-preserving kNN query scheme based on Voronoi
diagram. Zeng et al. [12] proposed a privacy-preserving query scheme which
only supports boolean query. In general, all the above schemes are not practical
enough since they just support the fixed kNN query function.

PPkNN Query over Spatio-temporal Data: Privacy-preserving ride-hailing
services were introduced in [13–15]. Pham et al. [13] proposed PrivateRide to
provide anonymous ride-hailing services. They improved PrivateRide [14] by
adding accountability and enhanced the privacy by increasing the anonymity
set. The scheme in [15] recursively divides the area into quad regions with a
quadtree but has the huge communication costs because each user needs to
send an encryption for each region. There are some studies [16–19] for the ride-
sharing services. Sherif et al. [16] proposed a kNN encryption scheme to protect
the passenger’s and the driver’s privacy. Li et al. [17] proposed a scheme using an
anonymous authentication scheme to recover the malicious users’ real identities.
The closest to our work is [20]. In the scheme, the platform can build a directed
graph based on the passengers’ routes, however it is still not efficient enough and
cannot be applied to top-k query directly.

All the above researches do not consider to support the dynamic conditions.
In reality, it is high desirable. In a recent work of [21], the scheme supports top-
k ranking queries based on the ranking function. However, the scheme is only
suitable to the static data because it needs to preprocess all attributes. Another
work [22] proposed a privacy-preserving polynomial evaluation scheme. However,
1) when meeting large scale of data, the scheme has low efficiency because it
needs to evaluate all data; 2) the scheme doesn’t support the evaluation with
some dynamic conditions.

So as far now, the existing work can not solve the challenges of the practical
privacy-preserving polynomial evaluation over the large scale of spatio-temporal
data, not to mention high efficiency.



Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 477

3 Problem Statement

3.1 System Model

In this paper, we take a ride-hailing application as the example to explain the
system model as shown in Fig. 1, which contains five main entities: the platform
(enterprise), the computation cloud server (S1), the en/decryption cloud server
(S2), the service providers (drivers), and the users (passengers).

Fig. 1. The system model

In a ride-hailing application, the passenger sends the reservation request
including the pick up location, the destination, and the pick up time to the
ride-hailing platform. The platform uses a model to calculate a price for each
order and encrypts the spatio-temporal data of all the orders then uploads them
to the cloud server (S1). We do not discuss the pricing mechanism in this work.
While a driver wants to pick up a user, he firstly generates the query request
based on his current location and his preference. To protect the driver’s privacy,
the platform then encrypts his original query request to generate the query trap-
door and submits it to S1. Finally, S1 executes the driver-decided polynomial
evaluation over all the encrypted spatio-temporal data and returns top-k results
to the driver.

In our model, two cloud servers S1 and S2 work on the hybrid cloud mode
and are non-colluding. S1 is a public cloud, which has the strong computing and
storage capability but is considered as a semi-trusted entity. S2 is a private cloud
server built by the platform itself to execute the comparing operations over the
ciphertext with S1.

3.2 Threat Model and Design Goals

In our system model, the cloud server S1 is not completely trusted. It may be
vulnerable to the corrupt employees or the external malicious attacks, so we
focus on two types of privacy in our paper:



478 W. Song et al.

– Passenger Privacy: The passenger’s sensitive information includes the pick
up location, the pick up time and the destination. Our scheme should ensure
that S1 cannot learn any passenger’s sensitive information by analyzing the
encrypted data and the received messages.

– Driver Privacy: The driver’s sensitive information mainly is the driver’s
current location. To protect the driver privacy, the platform encrypts his
exact location to generate the query trapdoor. Our scheme ensures that S1

can not learn the driver’s location by analyzing the query trapdoor.

In addition to protecting the privacy, other design goals of our work include:

– Scalability: The evaluation function can be an arbitrary polynomial function
and decided by the driver, rather than fixed in advance.

– Practicality: The evaluation method should comprehensively consider the
factors of time and space in the spatio-temporal data, and can efficiently
support huge scale of spatio-temporal data. Moreover, the query is based on
the road network instead of the Euclidean distance, moreover it can support
some dynamic factors in the road network, such as the traffic condition.

4 Privacy-Preserving Polynomial Evaluation over
Spatio-temporal Data

4.1 Paillier Homomorphic Encryption

We adopt Paillier to implement the privacy-preserving polynomial evaluation.
Suppose EPK(·) and DSK(·) are the en/decrypting operators of a Paillier cryp-
tosystem in which PK, SK are the public/secret keys. For convenience, we
use E(·),D(·) to instead of EPK(·),DSK(·). Given messages m1,m2 ∈ ZN ,
ct1 = E(m1), ct2 = E(m2), it has two important properties which can be
exhibited as: 1) D(E(m1) × E(m2)) = m1 + m2 mod N2, 2)D(E(m1)a) =
a × m1 mod N2,∀a ∈ ZN .

4.2 Order-Revealing Encryption

An Order-Revealing Encryption (ORE) [23] scheme is a computable func-
tion that compares two ciphertexts with strong security guarantee. It can
be defined as a tuple of polynomial algorithms Π=(ORE.Setup, ORE.Encrypt,
ORE.Compare):

– ORE.Setup(1λ) → sk: On input a security parameter λ, the Setup algorithm
outputs a secret key sk.

– ORE.Encrypt(sk,m) → ct: On input a secret key sk and a message m ∈ D,
the Encrypt algorithm outputs a ciphertext ct for m.

– ORE.Compare(ct1, ct2) → b: On input ciphertexts ct1, ct2, Compare algorithm
outputs a bit b ∈ {0, 1}. If m1 < m2, output 1. Otherwise, output 0.

Correctness: We say an ORE scheme defined over a well-ordered domain D
is correct if for all message m1,m2 ∈ D, Pr[ORE.Compare(ct1, ct2) = 1(m1 <
m2)] = 1 − negl(λ) in which negl(λ) denotes a negligible function in λ.



Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 479

4.3 The Proposed Encryption Scheme

We design a novel homomorphic encryption scheme with ORE character to
encrypt the spatio-temporal data. We detail it as below:

– Setup(1λ) → {PK,SK,MUL,ADD, F, SK} is run by the platform to initialize
the system. It takes a security parameter λ as input and outputs the global
security parameters. It first constructs a Paillier cryptosystem with key pair
(PK,SK) and homomorphic additive/multiplicative encryption algorithms
ADD and MUL. It stores SK locally and uploads it to S2.

ADD(m1,m2) = E(m1) × E(m2) = E(m1 + m2),
MUL(a,m) = E(m)a = E(a × m).

Second, it constructs a secure pseudorandom function [24] F : {0, 1}λ ×
{0, 1}λ → {0, 1}λ, and samples n PRF key ki

R←− {0, 1}λ for F and n uniform
random permutation πi : [N ] → [N ] where N is the message space.

Finally, the Setup algorithm outputs the secret key as SK = {sk1, . . . ,
skn}, ski = (ki, πi) which are stored by the platform.

– EncryptL(sk,m) → ctL(m) is the left encryption algorithm run by the plat-
form. Given the secret key sk = (k, π) ∈ SK, a message m ∈ ZN , the EncryptL
algorithm outputs the left ciphertext for m as:

ctL(m) = (F (k, π(m)), π(m)).

– EncryptaddR (sk,m) → ctaddR (m) is the right additive encryption algorithm run
by the platform. Its inputs are same with those in EncryptL. It samples a
random element r

R←− {0, 1}λ. For each i ∈ [N ], it computes vi and outputs
the right addition ciphertext ctaddR (m) for m as:

ctaddR (m) = (r, v1, v2, . . . , vN ), vi = ADD(π−1(i),m) + H(F (k, i), r), (1)

in which H : {0, 1}λ × {0, 1}λ → Zp is a secure Hash function.
– Encryptmul

R (sk,m) → ctmul
R (m) is the right multiplicative encryption algorithm

run by the platform. For each i ∈ [N ], it computes wi and outputs the right
multiplication ciphertext ctmul

R (m) for m as:

ctmul
R (m) = (r, w1, w2, . . . , wN ), wi = MUL(π−1(i),m) + H(F (k, i), r). (2)

– Addition(ctL(m), ctaddR (n)) → E(m+n) is the secure addition algorithm run by
S1. It takes ctL(m) and ctaddR (n) as inputs and outputs the ciphertext E(m+n)
as:
It first parses (s, t) = ctL(m) = (F (k, π(m)), π(m)). Then, it picks out:

vt = ADD(π−1(π(m)), n) + H(F (k, t), r) = ADD(m,n) + H(F (k, π(m)), r)

Finally, the algorithm outputs the result as: result = vt − H(s, r) =
ADD(m,n) + H(F (k, π(m)), r) − H(F (k, π(m)), r) = ADD(m,n).



480 W. Song et al.

– Multiplication(ctL(a), ctmul
R (m)) → E(a × m) is a secure multiplication algo-

rithm executed by S1. It takes ctL(a) ← EncryptL(sk, a), a ∈ ZN and ctmul
R (m)

as inputs and outputs the ciphertext E(a × m) as:
It first parses (s, t) = ctL(a) = (F (k, π(a)), π(a)). Then, it picks out:

wt = MUL(π−1(π(a)),m) + H(F (k, t), r) = MUL(a,m) + H(F (k, π(a)), r)

Finally, the algorithm outputs the result as: result = wt − H(s, r) =
MUL(a,m) +H(F (k, π(a)), r) − H(F (k, π(a)), r) = MUL(a,m).

– Compare(E(m),E(n)) → {1, 0,−1} is a secure comparison algorithm run by
S1 and S2. It takes E(m) and E(n) as inputs and outputs 1 while m > n,
outputs 0 while m = n, outputs −1 while m < n. Suppose N = 2z, S1 first
executes the bit-decomposition operation BD(·) [25] to get the encryptions of
the individual bits of binary representation of m and n as:

BD(E(m)) = 〈E(m1), . . . ,E(mz)〉, BD(E(n)) = 〈E(n1), . . . ,E(nz)〉,

in which mi, ni are the ith bits of m and n respectively.

Second, S1 uses BitMultiply algorithm to do the bit-multiplication over E(mi)
and E(ni) for all i ∈ [z] with the help of S2 as below:
(1) S1 picks two random numbers rmi

, rni
∈ ZN , computes hm = E(mi) ×

E(rmi
), hn = E(ni) × E(rni

) and sends them to S2.
(2) S2 decrypts hm, hn as km = D(hm) = mi + rmi

, kn = D(hn) = ni + rni
.

Then, S2 encrypts km × kn as E(km × kn) and sends it to S1.
(3) S1 computes μ = E(mi)N−rni , ν = E(ni)N−rmi , ω = E(rmi

rni
)N−1, and

gets E(mi × ni) = E(km × kn) × μ × ν × ω.
Third, after get E(mi × ni), S1 computes Gi, Ĝi, Ri, R̂i as:

Gi = E(mi × (1 − ni)) = E(mi) × E(mi × ni)N−1

Ĝi = E(ni × (1 − mi)) = E(ni) × E(ni × mi)N−1.

Ri =
{

G1 if i = 1
E(D(Ri−1) ∨ D(Gi)) if i > 1 , R̂i =

{
Ĝ1 if i = 1
E(D(R̂i−1) ∨ D(Ĝi)) if i > 1.

Property 1 (bitwise-or operation). Obviously, a ∨ b = (a + b) − (a × b) always
holds. Given two bits a and b which are not known for S1 and S2, S1 holds the
ciphertexts of a, b. S1 can obtain E(a × b) by BitMultiply algrithm. So, S1 can
output E(a ∨ b) = E(a) × E(b) × E(a × b)N−1 = E(a + b − a × b).

Finally, S1 computes Γ =
∏

(Ri) = E(
∑

D(Ri)), Γ̂ =
∏

(R̂i) = E(
∑

D(R̂i)) and
sends them to S2. S2 decrypts Γ, Γ̂ as Λ = D(Γ ), Λ̂ = D(Γ̂ ). If Λ > Λ̂, it outputs
1. If Λ < Λ̂, output −1. If Λ = Λ̂, output 0.



Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 481

4.4 Virtual Road Network

To support huge scale of spatio-temporal data, we design a virtual road network
structure in Fig. 2 to store and maintain all the orders in road network. Given
a city’s road network RN(R, I) where R = {R1, . . . , Rn} and I = {I1, . . . , Il}
represent the sets of the roads and the intersections in RN , O = {O1, . . . , Om}
represents the users’ orders. The majority of data including the data of roads
and orders are stored at S1, and the platform only stores the secret key and the
basic information for every road.

Fig. 2. The virtual road network index stored at S1 and the platform

We use Ri(Ri, IRi
, leni, Counti, Upperi, Loweri) to describe a road. Ri is

the road’s unique identifier. We randomly choose one of Ri’s intersections IRi

as its intersection. leni, Counti ∈ ZN represent Ri’s length and the count of
the orders the pick up locations of which are on Ri. The platform encrypts
leni by Encryptmul

R (ski, leni). For every road Ri, Upperi and Loweri records
the boundary values of distance, price, and pick up time of all the orders on
Ri. They decide the possible max/min evaluation values for all the orders on
Ri. The price is calculated by the platform based on the pick up location and
destination. The platform randomly picks a key ski = (ki, πi) ∈ SK as Ri’s
secret key and stores Ri(Ri, ski, IRi

, leni, condi) at local. According to Baidu
Map, condi ∈ [1, 6] represents Ri’s current traffic condition. The larger condi

value represents the worse traffic condition.
S1 stores all the orders as Oi(Oi, Rj , Oi.dis,Oi.price,Oi.time) in which Oi

is the order’s identifier and Rj is the road covers Oi’s pick up location. Oi.dis,
Oi.price, Oi.time ∈ ZN represent the distance from the location to IRj

, the price
value, and the pick up time. To protect the passenger’s privacy, Oi.dis,Oi.price,
and Oi.time are encrypted.

There are a number of available paths between two intersections. In this
paper, we do not discuss how to select the optimal path. S1 stores several path
candidates between two intersections. For example, two candidate paths from I1



482 W. Song et al.

to I7 are stored in S1 in Fig. 2. During query, the platform will select an optimal
path from these candidates based on the current traffic conditions.

4.5 Encrypting Spatio-temporal Data over Virtual Road Network

By the proposed encryption scheme, the platform encrypts the data (i.e., the
road data, the order data) before uploading to protect the passenger’s privacy.

Encrypting Road Data: For a road Ri, the platform calls Encryptmul
R (ski, leni)

to encrypt its length (Ri.len). Then, it sets the count of orders, the upper bound,
the lower bound as NULL to finish the road initialization. Note that the road
network encryption is only executed once, so it will not overburden the platform.

Encrypting Order Data: For a passenger’s order Oi(Oi, Rj , Oi.dis,Oi.price,
Oi.time), the platform encrypts Oi.dis, Oi.price, and Oi.time by Rj ’s secret key
skj and uploads (Oi, Rj , ctmul

R (Oi.dis), ctaddR (Oi.price), ctaddR (Oi.time)) to S1.
In our system, when a passenger submits a new order, the platform will

encrypt this order and upload it to S1. After that, the platform updates the
count of orders, the upper bound, and the lower bound for this road as well.

4.6 Executing Polynomials over Encrypted Spatio-temporal Data

Given a driver d at the point Q(Rk, Q.dis) on the road Rk in which Q.dis is
the distance from Q to Rk’s intersection IRk

, the order Oi(Oi, Rj , ctmul
R (Oi.dis),

ctaddR (Oi.price), ctaddR (Oi.time)) is stored at S1, d decides the polynomial evalu-
ation function as in Eq. (3):

Eval(Q,Oi) = α×Oi.price−β×
∑

Ri∈Path(Q,Oi)

condi×Ri.len−γ×Oi.time, (3)

in which α, β, γ ∈ ZN is selected by the driver according to his preference,
Path(Q,Oi) is the path from Q to Oi, and condi is Ri’s traffic condition. Note
that we use the above polynomial to explain our design but our method can
support an arbitrary polynomial function. Based on the proposed virtual road
network, we assume that the driver Q always goes to IRk

first, and then goes
to IRj

, and picks up the passenger at Oi at last. As in Fig. 2, the path from the
driver on R18(I5) to O1 on R4(I1) is driver → I5 → I1 → O1.

Obviously, β × condRk
× Q.dis are same for the evaluations over any order.

So, the platform removes this part as Eq. (4) to simplify the computation and
hide the driver’s exact location. It will not affect the correctness of evaluation.

Eval(Q,Oi) = α×Oi.price−β
∑

Ri∈Path(IRk
,Oi)

condi ×Ri.len−γ×Oi.time. (4)

The driver first submits an original request Q(Q,α, β, γ, k) to the platform.
Then, the platform randomly picks two random numbers r1, r2 ∈ ZN and gen-
erates a query trapdoor Q as Eq. (5) for all the orders on the road Rj with the
secret key skj(kj , πj). The platform periodically updates the traffic condition for
every road from a traffic condition provider.



Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 483

Q = (ctL(r1 × β × condj
i ), ctL(r2), r1 × α, r1 × γ). (5)

Before detailing the top-k polynomial evaluation method, we explain how S1

decides the optimal path from IRk
to Oi based on the current traffic condition.

Given an order Oi on Rj , C = {C1, . . . , Cw} in which Ci = {R1
i , R2

i , . . .} is
the ith candidate path from IRk

to Oi and Rj
i is the jth road in Ci, S1 decides

the optimal path with Algorithm1, in which skj
i , condj

i represent Rj
i ’s secret key

and the current traffic condition value.

Algorithm 1. EvalDistance(r1, IRk
, Oi) → E(r1 × β ×

∑
condi × Ri.len))

Input: IRk
, Oi(Oi, Rj , ctmul

R (Oi.dis), ctaddR (Oi.price), ctaddR (Oi.time)), r1 ∈ ZN

Output: E(r1 × β ×
∑

condi × Ri.len)
1: Platform:
2: for i = 1; i ≤ w; i + + do
3: for j = 1; j ≤ |Ci|; j + + do
4: EncryptL(sk

j
i , r1 × β × condj

i ) → ctL(r1 × β × condj
i );

5: end for
6: end for
7: Send ctL(r1βcondj), ctL(r1βcondj

i ), r1α, ctL(r2) to S1.
8: S1:
9: for i = 1; i ≤ w; i + + do

10: for j = 1; j ≤ |Ci|; j + + do
11: Multiplication(ctL(r1βcondj

i ), ct
mul
R (Rj

i .len)) → E(r1 × β × condj
i ×

Rj
i .len)

12: end for
13: E(Ci) =

∏
E(r1 × β × condj

i × Rj
i .len) = E(r1 × β ×

∑
condj

i × Rj
i .len)

14: end for
15: E(Ci) = E(Ci) × Multiplication(ctL(r1βcondj), ctmul

R (Oj .dis))
16: return min(E(r1 × β ×

∑
condi × Ri.len)) by Compare(E(m),E(n)).

By Algorithm 1, the cloud server is able to evaluate the spatial factor in the
polynomial function i.e., the second part in Eq. (4), then S1 evaluates the tem-
poral and other factors, i.e., the first and the third parts in Eq. (4), to finish the
evaluation by Algorithm2.

Algorithm 2. Eval(TQ, Oi) → Eval(Q,Oi)

Input: Q = (ctL(r1 × β × condj
i ), ctL(r2), r1 × α, r1 × γ), Oi

Output: Eval(Q,Oi),which is the result of Eq. (4)
1: Addition(ctL(r2), ctaddR (Oi.price)) → E(r2 + Oi.price)
2: Addition(ctL(r2), ctaddR (Oi.time)) → E(r2 + Oi.time)

3: result = E(r2 + Oi.price)r1α × E(r1β
∑

condi × Ri.len)︸ ︷︷ ︸
output of Algorithm 1

N−1
× E(r2 +

Oi.time)N−r1γ

4: return result



484 W. Song et al.

Proof (correctness of evaluation). For a query Q and any two passengers’ orders
O and O′, if we have D(Eval(TQ), O) > D(Eval(TQ), O′) which are the outputs
of Algorithm 2, we must have Eval(Q,O) > Eval(Q,O′) by Eq. (4). Based on
the properties of Paillier cryptosystem, we have:

result = E(r1α(r2 + O.price) − r1β
∑

condi × Ri.len − r1γ × (r2 + O.time))

= E(r1 × Eval(Q,O) + r1 × r2 × (α − γ)).

r1r2(α − γ) is same for all orders, so the correctness of evaluation always holds.

By Algorithm 2, S1 can execute the polynomials over the encrypted spatio-
temporal data. However, it has to execute the evaluations over all the orders.
Obviously, it is inefficient. We improve the proposed method based on the
designed virtual road network. Given a driver at Q(Rk, Q.dis) asks the plat-
form to execute top-k polynomial evaluation for him, the platform first selects
several roads near to IRk

as the road candidates for this query. The sum of the
orders on the candidate roads is larger than k (we let the sum is larger than
3k). In Fig. 3, the platform selects 7 roads in red as the candidates for a top-10
query.

Fig. 3. Top-k (k=10) polynomial evaluation over the virtual road network

After the platform generates the trapdoor TQ and sends it to S1. S1 calls
Eval(TQ, Oi) to evaluate all the upper bounds and lower bounds of the road
candidates and ranks them by the Compare(E(m),E(n)) algorithm. Intuitively,
the evaluation values of the orders on a road are between its upper bound and
lower bound. We divide the relationship of two roads R1 and R2 into three
categories: if R1’s upper bound is less than R2’s lower bound, we say R1 is R2’s
‘behind road’ and R2 is R1’s ‘ahead road’; if R1’s range overlaps R2’s range, we
say they are competitive. Then, S1 executes the 1st round top-k query as:

1. S1 removes all the roads from the candidates, if the sum of orders on their
ahead roads is larger than k. The roads R9, R20 are removed, because the
sum of orders on R5, R13, R16 is larger than k.



Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 485

2. If the sum of the orders on Ri, its competitive roads, and its ahead roads
is less than k, put all the orders on Ri into result without evaluating. For
example, 5 reservation orders on R16 is put into result without evaluation.

3. Assume there are a orders in result after Step 2. S1 evaluates other orders in
the candidates and ranks them by Compare algorithm. S1 selects top-(k − a)
orders into result and chooses the minimum one as the ‘symbol order’.

S1 sends the ‘symbol order’ Os to the platform which decrypts and calculates
Os’s evaluation value. Then, S1 executes the 2nd round top-k query as:

1. S1 evaluates the upper bound of the remaining roads and removes those the
upper bound evaluation values by Algorithm2 of which are less than Os’s.

2. S1 combines the remaining roads and the 1st round query remaining road
candidates as the final road candidates.

Finally, S1 re-executes the 1st round query over the final candidates and returns
the final result to the platform which decrypts and returns it to the driver to
finish the top-k polynomial evaluation.

5 Security and Performance Analysis

5.1 Security Analysis

Theorem 1 (security of our scheme). Our scheme Π is secure with the best
possible leakage function L(·) under the random oracle model.

Proof. Let Π be the encryption scheme defined in Sect. 4.3, A = (A1, . . . ,Aq) be
an adversary for q = polynomial(λ), S = (S0, . . . ,Sq) be a simulator, L(·) be a
leakage function. We say that Π is secure with L(·) if for all A = (A1, . . . ,Aq),
there exists a simulator S = (S0, . . . ,Sq) such that the outputs of the experi-
ments REALA(λ) and SIMA,S,L(λ) are computationally indistinguishable.

Let m ∈ [N ] be a message. We prove that the adversary’s view in the exper-
iment is independent of f(π(m)) with a PRF f . Consider ct(m′) = ctaddR (m′)
or ctmul

R (m′) A obtains when it requests some encrypted messages m′ 
= m.
For ctaddR (m′) = (r′, v′

1, . . . , v
′
N ), r′ is distributed independently of f(π(m)), so

∀i ∈ [N ], v′
i = ADD(π−1(i),m′) + H(f(i), r′) is also independent of H(f(i), r′)

with the collision resistant hash function H. So, the ciphertext of the order
Oi(ctmul

R (Oi.dis), ctaddR (Oi.price), ctaddR (Oi.time)) also is distributed indepen-
dently of f(π(m)). We let q1, . . . , qz, z = polynomial(λ) be the adversary’s
queries on the random oracle model before A requests for an encryption of
m. The probability that qi = ADD(f(π(m)),m) is z/2λ = negl(λ) which is
negligible. Any adversary can not decide which experiments (REALA(λ) and
SIMA,S,L(λ)) he is in with a non-negligible probability. We have proved Theo-
rem1, so we conclude that the proposed encryption scheme Π is secure under
the random oracle model.



486 W. Song et al.

5.2 Performance Analysis

Computing Cost. The computing cost of generating a left ciphertext is TF +Tπ

in which TF , Tπ represent the operations of one pseudorandom function and one
uniform random permutation. For the platform, the main computing cost is to
generate the trapdoor TQ. So, the computing cost at the platform is (L+3)Tmul+
(L+1)(TF +Tπ) in which L is the count of the roads involved in the query, Tmul

represents one multiplication operation over ZN .
The main computing costs at S1 include the costs of evaluating the boundary

values of road candidates and evaluating all the necessary orders. The computing
cost of evaluating one order by Algorithm 1 and 2 is (L + 2)(THash + Tadd2) +
(L + 1)Tmul2 in which THash, Tadd2, and Tmul2 represent one Hash operation,
one addition operation and one multiplication operation over ZN2 .

Overheads of Storage and Communication. The size of the query trapdoor
TQ is 4 × Sint in which Sint represents the size of the element in ZN . So, the
total communication cost for a query is 4L × Sint.

By the proposed virtual road network, S1 stores the roads, the orders and
the paths. The total storage overheads at S1 are Croad(2Sid +8Sint +7NSint2)+
Corder(2Sid +3Sint +3NSint2)+Cpath × (2× lroad ×Sid) in which Croad, Corder,
Cpath represent the counts of the roads, the orders and the paths, lroad represents
the average count of roads in a path, Sid, Sint, Sint2 represent the size of the
identifier, an element in ZN , and an element in ZN2 , N represents the size of the
message space. And the total storage overheads at the platform are Croad(2Sid +
3Sint + Sπ) in which Sπ is the size of the random permutation.

6 Experimental Study

6.1 Experimental Setup

We utilize jPaillier to implement the proposed encryption scheme and use the
real-world data set (https://uofi.app.box.com/NYCtaxidata) of NYC taxi rides
in New York with records which contains pick up location, destination, and
time as the experimental data. The default size of secret key SK is 1024 bits.
We run the experiments on a machine with a 3.6 GHz processor and 16 GB
memory. There is not a solution of privacy-preserving polynomial evaluation
over spatio-temporal data in the existing literatures, so we choose the related
studies [9,10,20–22] as the comparison basis. We randomly pick three numbers
from 1 to 10 as the parameters α, β, and γ in Eq. (4) as the evaluation function.
We also pick a random number in [1,6] as the traffic condition for every road.
For every experiment, we randomly pick 100 points in the road network as the
driver’s location to launch the queries.

6.2 Encrypting Costs

We measure the time of encrypting data at the platform with the different scales
of passenger orders from 10,000 to 100,000. The platform can build the index

https://uofi.app.box.com/NYCtaxidata


Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 487

structure before encrypting so we only measure the time costs of encrypting
processes. The experimental results are shown in Fig. 4(a). The time costs of
encrypting data in our scheme range from 2.3 to 10.5 s. Overall, the encrypt-
ing costs of our scheme are comparable to others. That clearly shows that the
platform in our scheme is able to efficiently encrypt the new order data.

1 2 3 4 5 6 7 8 9 10

The scale of the dataset(x 104)

0

5

10

15

20

Th
e 

tim
e 

co
st

s 
of

 d
at

a 
en

cr
yp

tio
n(

s)

Yi et al. [9]
Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
our scheme

(a) time costs of encryption

4 8 12 16 20
k

0
2
4
6
8

10
12
14
16
18
20
22
24

Th
e 

tim
e 

co
st

s 
at

 s
er

ve
r S

1(s
) Yi et al. [9]

Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme

(b) time costs vs. k

2 4 6 8 10

The scale of the dataset(x 104)

0

5

10

15

20

Th
e 

tim
e 

co
st

s 
at

 s
er

ve
r S

1(s
)

Yi et al. [9]
Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme

(c) time costs vs. scales

Fig. 4. The time costs of encrypting data, executing the query on server side

6.3 Time Costs of Executing Polynomial Evaluation

To evaluate the efficiency of our scheme, we carry out the experiments to respec-
tively measure the time costs at the server side and the platform side.

Server Side, since most of the computing operations are executed at S1,
we only measure the time costs of executing polynomial evaluation at S1. The
results are illustrated in Fig. 4(b) and Fig. 4(c) respectively. In Fig. 4(b), order
scale is 100,000 and our scheme has the fewer time costs than others. In Fig. 4(c),
the k is 20 and the time cost of our scheme keeps a minor increase with the
scale of orders increasing because our scheme doesn’t need the computations
on all data comparing to [10,20,22]. In general, our solution has the smallest
time overhead and maintains a small increase in the face of large data volumes.
Moreover, our scheme supports the privacy-preserving polynomial evaluation
with dynamic conditions over the spatio-temporal data.

We also evaluated the impact of different key size on query efficiency. As
shown in Fig. 5(a), with the key size SK increasing, the query time of the method
increases exponentially, and our solution is still optimal.

Platform Side, We carry out the similar experiments to measure the time
costs at the platform. As the experimental results shown in Fig. 5(b) and 5(c),
the time costs at the platform side are less than others. Based on the proposed
virtual road network index, most of computation of the evaluation are delegated
to cloud (S1), the computing overheads at the platform is very little. So, our
scheme can make full use of the advantage of the cloud outsourced service model.



488 W. Song et al.

256 512 1024
SK

0

5

10

15

20
Th

e 
tim

e 
co

st
 o

f e
va

lu
at

io
n(

s) Yi et al. [9]
Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme

(a) Time cost vs. SK

4 8 12 16 20
k

100

200

400

600

800

1000

Th
e 

tim
e 

co
st

s 
of

 p
la

tfo
rm

(m
s) Yi et al. [9]

Paulet.et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme

(b) time costs vs. k

2 4 6 8 10

The scale of the dataset(x 104)

100

200

400

600

800

1000

Th
e 

tim
e 

co
st

s 
of

 p
la

tfo
rm

 (m
s) Yi et al. [9]

Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme

(c) time costs vs. scales

Fig. 5. The time costs of evaluation with varying SK and at the platform

6.4 Overheads of Communication

To evaluate the communication costs of a query between cloud and platform,
we measure the communication costs with the varying k values(data scale is
100,000) and data scales(k is 20). The results shown in Fig. 6(a) and Fig. 6(b)
respectively. Because just our scheme and [21] utilize the model of two clouds, we
also evaluate the communication costs between the clouds. As the experimental
results shown, the communication costs of our scheme are heavily influenced by
k, but values are small and still will not affect the efficiency of our scheme.

4 8 12 16 20
k

0

10

20

30

40

50

60

C
om

m
un

ic
at

io
n(

Kb
yt

es
) Yi et al. [9]

Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme
Meng et al. [21]*
Our scheme*

(a) comm. costs vs. k

2 4 6 8 10

The scale of the dataset(x 104)

0

20

40

60

80

100

C
om

m
un

ic
at

io
n(

Kb
yt

es
)

Yi et al. [9]
Paulet et al. [10]
Nabil et al. [20]
Meng et al. [21]
Song et al. [22]
Our scheme
Meng et al. [21]*
Our scheme*

(b) comm. costs vs. the data scales

Fig. 6. The communication costs. Note that the first six figures in the legend are
the communication costs between server and platform and the last two ones with *
illustrate the communication costs between two cloud servers, their units are Mbytes.

7 Conclusion

In this paper, we examined an important problem of privacy-preserving polyno-
mial evaluation over the spatio-temporal data in road networks with dynamic
conditions. To address this challenging problem, we proposed an encryption
scheme which combines the properties of the homomorphic encryption and the
order-revealing encryption. The homomorphic property enables the cloud server
to execute polynomials over the encrypted spatio-temporal data. And the prop-
erty of order-revealing encryption enables the cloud server to securely compare
the evaluation values. As a future work, we will extend our research to other
complex operations over the encrypted spatio-temporal data in the outsourced
database paradigm.



Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data 489

Acknowledgements. This work is partially supported by National Key Research
and Development Project of China Nos. 2020YFC1522602, 2020AAA0107700,
National Natural Science Foundation of China Nos. 62072349, U1811263, 61572378,
61822207, U20B2049, Technological Innovation Major Program of Hubei Province No.
2019AAA072, JSPS KAKENHI No.19K20269, and CCF-Tencent Open Fund WeBank
Special Fund.

References

1. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN computation on
encrypted databases. In: SIGMOD, pp. 139–152 (2009)

2. Yao, B., Li, F., Xiao, X.: Secure nearest neighbor revisited. In: ICDE, pp. 733–744
(2013)

3. Choi, S., Ghinita, G., Lim, H.S., Bertino, E.: Secure kNN query processing in
untrusted cloud environments. TKDE 26(11), 2818–2831 (2014)

4. Cui, N., Yang, X., et al.: SVkNN: efficient secure and verifiable k-nearest neighbor
query on the cloud platform. In: ICDE, pp. 253–264 (2020)

5. Lei, X., Liu, A.X., Li, R., Tu, G.-H.: SecEQP: a secure and efficient scheme for
SkNN query problem over encrypted geodata on cloud. In: ICDE (2019)

6. Rodrigo, A., Dayarathna, M., Jayasena, S.: Latency-aware secure elastic stream
processing with homomorphic encryption. Data Sci. Eng. 4(3), 223–239 (2019).
https://doi.org/10.1007/s41019-019-00100-5

7. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: ICDE, pp. 664–675 (2014)

8. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over
road networks. In: ICDE, pp. 494–505 (2011)

9. Yi, X., Paulet, R., Bertino, E., Varadharajan, V.: Practical approximate k nearest
neighbor queries with location and query privacy. TKDE 28(6), 1546–1559 (2016)

10. Paulet, R., Kaosar, M.G., Yi, X., Bertino, E.: Practical approximate k nearest
neighbor queries with location and query privacy. TKDE 26(5), 1200–1210 (2014)

11. Yang, S., Tang, S., Zhang, X.: Privacy-preserving k nearest neighbor query with
authentication on road networks. JPDC 134, 25–36 (2019)

12. Zeng, M., Zhang, K., Chen, J., Qian, H.: P3GQ: a practical privacy-preserving
generic location-based services query scheme. PMC 51, 56–72 (2018)

13. Pham, A., Dacosta, I., et al.: PrivateRide: a privacy-enhanced ride-hailing service.
Priv. Enhancing Technol. 2017(2), 38–56 (2017)

14. Pham, A., Dacosta, I., et al. ORide: a privacy-preserving yet accountable ride-
hailing service. In: USENIX Security, pp. 1235–1252 (2017)

15. Wang, F., Zhu, H., et al.: Efficient and privacy-preserving dynamic spatial query
scheme for ride-hailing services. IEEE Trans. Veh. Technol. 67(11), 11084–11097
(2018)

16. Sherif, A., Rabieh, K., et al.: Privacy-preserving ride sharing scheme for
autonomous vehicles in big data era. IEEE Internet Things J. 4(2), 611–618 (2016)

17. Li, M., Zhu, L., Lin, X.: Efficient and privacy-preserving carpooling using
blockchain-assisted vehicular fog computing. IEEE Internet Things J. 6(3), 4573–
4584 (2018)

18. Song, W., Wang, B., Wang, Q., Shi, C., Lou, W., Peng, Z.: Publicly verifiable
computation of polynomials over outsourced data with multiple sources. TIFS
12(10), 2334–2347 (2017)

https://doi.org/10.1007/s41019-019-00100-5


490 W. Song et al.

19. Xu, Y., Tong, Y., Shi, Y., Tao, Q., Xu, K., Li, W.: An efficient insertion operator
in dynamic ridesharing services. In: TKDE (2020)

20. Nabil, M., Sherif, A., et al.: Efficient and privacy-preserving ridesharing organiza-
tion for transferable and non-transferable services. TDSC PP, 1 (2019)

21. Meng, X., Zhu, H., Kollios, G.: Top-k query processing on encrypted databases
with strong security guarantees. In: ICDE, pp. 353–364 (2018)

22. Song, W., Shi, C., Shen, Y., Peng, Z.: Select the best for me: privacy-preserving
polynomial evaluation algorithm over road network. In: Li, G., Yang, J., Gama,
J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 281–297.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18579-4 17

23. Lewi, K., Wu. D.J.: Order-revealing encryption: new constructions, applications,
and bounds. In: CCS, pp. 1167–1178 (2016)

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

25. Samanthala, B.K., Chun, H., Jiang, W.: An efficient and probabilistic secure bit-
decomposition. In: AsiaCCS, pp. 541–546 (2013)

https://doi.org/10.1007/978-3-030-18579-4_17


Exploiting Multi-source Data for
Adversarial Driving Style Representation

Learning

Zhidan Liu1(B), Junhong Zheng1, Zengyang Gong2, Haodi Zhang1,
and Kaishun Wu1

1 Shenzhen University, Shenzhen, China
{liuzhidan,hdzhang,wu}@szu.edu.cn,
zhengjun4hong2019@email.szu.edu.cn

2 Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

zgongae@cse.ust.hk

Abstract. Characterizing human driver’s driving behaviors from GPS
trajectories is an important yet challenging trajectory mining task. Pre-
vious works heavily rely on high-quality GPS data to learn such driv-
ing style representations through deep neural networks. However, they
have overlooked the driving contexts that greatly govern drivers’ driv-
ing activities and the data sparsity issue of practical GPS trajectories
collected at a low-sampling rate. To address the limitations of existing
works, we present an adversarial driving style representation learning
approach, named Radar. In addition to summarizing statistic features
from raw GPS data, Radar also extracts contextual features from three
aspects of road condition, geographic semantic, and traffic condition. We
further exploit the advanced semi-supervised generative adversarial net-
works to construct our learning model. By jointly considering statistic
features and contextual features, the trained model is able to efficiently
learn driving style representations even from sparse trajectories. Exper-
iments on two benchmark applications, i.e., driver number estimation
and driver identification, with a large real-world GPS trajectory dataset
demonstrate that Radar can outperform the state-of-the-art approaches
by learning more effective and accurate driving style representations.

Keywords: GPS trajectory · Multi-source data · Driving style
representation · Generative adversarial networks

1 Introduction

The advances of GPS and wireless communication techniques have enhanced the
ability of various systems in collecting the spatio-temporal vehicular trajectories.
The massive GPS trajectories stimulate a number of trajectory mining tasks for
better understanding human mobility patterns and behaviors [29], among which
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 491–508, 2021.
https://doi.org/10.1007/978-3-030-73194-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_33


492 Z. Liu et al.

characterizing human driver’s driving behaviors is an important yet challeng-
ing task. Similar as the bio-metrics, it is believed that each driver also has a
distinguishable pattern of driving, which is referred as driving style [13]. Specif-
ically, driving style reflects a driver’s fine-grained behavioral habits of steering
and speed control and their temporal combinations [2]. Learning drivers’ driving
style representations from their trajectories can benefit many intelligent applica-
tions, e.g., driving assessment and assistance [25], driver-vehicle interaction [13],
autonomous driving [12], and etc. In addition, auto insurance companies have
been interested in utilizing the driving style information for risk assessments and
personalized insurance pricing [9].

In the literature, some valuable efforts have been made to derive the driving
style representations. Traditional approaches heavily rely on the data collected
from automobile sensors (e.g., controller area network buses) [6] or dedicated
sensors (e.g., high-definition cameras) [8] for driving style learning. However, it
is difficult to retrieve data from automobile sensors while dedicated devices will
incur installation costs. Recent studies [2,10,30] turn to leverage deep learning
models to process GPS trajectories for learning the driving style representations.
Compared to automobile and dedicated sensors, GPS sensor data are often eas-
ier to access and thus are more popular in large-scale study [2,29]. These works,
however, require high-frequency rate of GPS data collections, which may be pro-
hibited due to privacy and energy consumption [15]. Furthermore, these works
merely focus on feature extractions from GPS data, but have overlooked the
instant driving context information, such as road conditions and traffic condi-
tions. As a result, they are inadequate to acquire accurate driving style repre-
sentations.

Despite these research efforts, it is still non-trivial to efficiently learn driving
style representation from GPS trajectories, mainly due to following challenges.
First, practical GPS data are usually collected at a low-sampling rate, e.g., 1
sample per 30 s [15], and are probably sparse, i.e., there may be insufficient
qualified data to train a deep learning model [10]. Second, driving is a complex
activity and the resultant driving style is influenced by many factors. The GPS
trajectory data themselves cannot capture the complete view of a driver’s driving
style, and hence the external context information should be taken into account.
However, how to properly integrate the features from GPS data and context
information into one model needs to be well designed and thus is challenging.

In this paper, we present an adversarial driving style representation learning
approach, named Radar, which extracts comprehensive features from multi-
source data and builds a semi-supervised generative adversarial networks
(SGAN) based model to learn driving style representations from these extracted
features. To better describe a driver’s driving behaviors, Radar not only trans-
forms raw GPS trajectory data to fine-grained statistic features about driver’s
habits of steering and speed control, but also additionally considers each GPS
trajectory’s contextual features, which are captured by three aspects of road con-
dition, geographic semantic, and traffic condition. In particular, different from
the specific GPS locations, geographic semantic encodes high-level geographic



Adversarial Driving Style Representation Learning 493

features of a trajectory by mapping it to the whole city area. These driving
contexts greatly govern a driver’s driving activity, and thus are important com-
plements for learning driving styles. To tackle data sparsity issue, Radar makes
use of SGAN to construct the learning model, which equally treats statistic
features and contextual features as the input to learn the driving style represen-
tations. Our learning model consists of three different components: generator,
discriminator, and classifier, which work together to not only classify drivers
from inputted trajectories but also generate fake samples close to the training
data. As a result, Radar’ learning model can achieve better generalization abil-
ity through both data augmentation and the competition between generator and
discriminator.

In summary, the contributions of our work are as follows:

– To the best of our knowledge, we are the first to consider the problem of
context-aware driving style representation learning from sparse trajectories,
which improves existing works by considering the driving contexts.

– We propose an adversarial driving style representation learning approach –
Radar, which exploits multi-source data and a SGAN based learning model
to efficiently learn driving style representations from practical trajectories.

– We conduct extensive experiments with two benchmark applications, namely
driver number estimation and driver identification, using a large real-world
trajectory dataset. Experimental results demonstrate Radar outperforms
state-of-the-art approaches, e.g., on average improving the accuracy of driver
number estimation and driver identification by 9.6% and 5.6%, respectively.

The remainder of the paper is organized as follows. We review related works
in Sect. 2. The problem statement is presented in Sect. 3. We elaborate and eval-
uate our proposed approach in Sect. 4 and Sect. 5, respectively. Finally, Sect. 6
concludes this paper.

2 Related Work

The related works can be grouped into two categories: driving behavior analysis
and trajectory mining. We review and discuss these works as follows.

Driving Behavior Analysis. Extensive studies have been conducted on the
driving behavior analysis. Previous works primarily rely on the data collected
from automobile sensors, e.g., on-board diagnostic systems [9], controller area
network buses [6], and digital cameras [8], to analyze drivers’ driving behaviors.
For example, Ezzini et al. utilize the measurements taken from various in-vehicle
sensors to realize driver identification and fingerprinting [3]. However, it is rel-
atively difficult to collect data from these automobile sensors, while dedicated
devices like cameras bring installation costs. These constraints greatly limit their
usability. Some recent works [1] resort to collect driving data using the internal
sensors in smartphones and analyze the sensing data for monitoring drivers’
behaviors. These works concern about driving safety, rather than driving styles.



494 Z. Liu et al.

Compared to automobile sensors, GPS sensor data are much easier to col-
lect and GPS trajectory based driving behavior analysis has attracted many
research efforts [2,10,25,27] in recent years. For example, Yang et al. analyze
GPS traces of peer vehicles to proactively alter drivers of the vehicles with dan-
gerous behaviors nearby [27]. By jointly modeling the peer and temporal depen-
dencies of driving trajectories, Wang et al. enable the applications of driving
score prediction and risk area detection [25]. The two works, however, mainly
concern the identification of dangerous driving behaviors, rather than captur-
ing a driver’s latent driving styles. Instead, Dong et al. propose an autoencoder
regularized deep neural network and a trip encoding framework to learn drivers’
driving styles directly from GPS trajectories [2]. Tung et al. propose a trajectory-
to-image representation framework that encodes both geographic features and
driving behaviors of trajectories into multi-channel images [10]. Although the
two works can achieve remarkable performances, they are still not sufficiently
efficient and practical. First, they require high-quality GPS trajectories that are
collected at a high-sampling rate such 1 Hz, while most practical GPS trajec-
tories are collected at a low frequency, e.g., 1 sample per 30 s, due to concerns
of energy consumption and privacy [15]. Second, they merely extract features
from GPS data while overlooking the driving contexts, within which a trajec-
tory has been generated. Our approach overcomes these limitations by utilizing
multi-source data to fully describe driving behaviors and the advanced SGAN
modeling, and thus can learn more effective and accurate driving style represen-
tations.

Trajectory Mining. The wide availability of GPS trajectories has inspired a
wide range of applications [29], e.g., urban traffic estimation [17] and prediction
[16], personalized recommender systems [28], and ridesharing [14]. To enable
such applications, various trajectory mining tasks have been widely studied,
e.g., trajectory pattern mining [11], trajectory-user linking [30], and etc.. In
particular, trajectory-user linking, which links trajectories to users who produce
them, is quite relevant to our work. Existing works on this problem mainly
analyze mobility trajectories by exploiting various deep learning models to learn
the semantic trajectory representations [4,19,22,30]. For example, Feng et al.
present a deep learning framework to link heterogeneous mobility data, which
are collected from different online services, to the users [4]. Ren et al. build a
spatio-temporal Siamese network model to predict whether an income set of
trajectories belong to a certain agent based on historical trajectory data [22].
In addition, Miao et al. utilize recurrent networks with attention mechanism to
solve the trajectory-user linking problem [19]. Different from these works, we aim
to learn drivers’ driving style representations from practical GPS trajectories,
which involves more complex human behaviors and thus is more challenging.



Adversarial Driving Style Representation Learning 495

3 Problem Statement

3.1 Definitions and Notations

The GPS trajectory data are collected when a set of drivers U = {u1, · · · , u|U|}
drive their vehicles, which have been equipped with GPS sensors, on a road
network. The GPS trajectory set Tui

generated by driver ui implicitly encodes
ui’s driving style. Accurately learning the driving style representation can ben-
efit many potential applications, such as driving assessment and assistance [25],
driver-vehicle interaction [13], autonomous driving [12], and so on.

Definition 1 (GPS trajectory). Let T i
j ∈ Tui

denotes the j-th trajectory gen-
erated by driver ui. Specifically, T i

j = {g1, · · · , g|T i
j |} is a time-ordered sequence

of GPS records, where each record is denoted as a tuple < ts, lat, lng, v, dir >,
indicating that ui’s vehicle located at latitude lat and longitude lng at time ts,
with instant travel speed v in direction dir.

Due to GPS localization errors, we have to map raw GPS locations to their
actual locations on the roads through map matching techniques [20]. Therefore,
a trajectory Tj

1 could be mapped to a travel route Rj on the road network G.

Definition 2 (Road network). A road network is modelled as graph G =
{V,E}, where V represents the set of road intersections and E represents the
set of road segments in a city. In addition, each road segment has following
attributes: ID of road segment, road type, number of lanes, and one-way indica-
tor.

Definition 3 (Travel route). The travel route Rj for a GPS trajectory Tj is
denoted by a sequence of road segments, i.e., Rj = {e1, e2, · · · , e|Rj |}, on road
network G, where ei ∈ E is a road segment in route Rj and |Rj | is the number
of all traveled road segments. Note that end point of ei is the start point of ei+1.

3.2 Problem Statement

Definition 4 (Context-aware driving style representation learning).
Given a set of GPS trajectories generated by drivers in U, we aim to learn driv-
ing style representations for drivers in U by exploiting necessary context infor-
mation, so as to support applications like driver number estimation and driver
identification.

Different from previous works [2,10] that heavily rely on high-quality GPS
trajectories, we should devise an approach that works well for practical tra-
jectories and incorporates contextual information for much better driving style
representation learning. To that end, we have to address the following challenges.

1 We omit the upper-script if the context is clear.



496 Z. Liu et al.

(1) Data sparsity. This challenge is arised from two aspects. On one hand, in
practice GPS data are usually collected at a low-sampling rate, e.g., 0.1Hz.
On the other hand, trajectories are of different lengths and may contain
deficient driving behavior information, resulting in insufficient qualified tra-
jectories. These factors will lead to low-quality data for training the deep
learning models and thus impair their performances.

(2) Balanced integration of features from GPS data and contextual information.
Although driving contexts would benefit driving style representation learn-
ing, how to efficiently encode these contextual information and further grace-
fully integrate features extracted from raw GPS data and driving contexts
should be wisely designed. The driving contexts involve various information,
and the resultant feature vectors may be of different dimensions.

4 The Design

4.1 Overview

Figure 1 illustrates the architecture of our approach, which consists of three
major modules: GPS data transformation, driving context representation, and
learning model. At high-level, Radar takes raw GPS trajectories and road map
as the input, and exploits the modules of GPS data transformation and driving
context representation to extract features from a GPS trajectory and the cor-
responding contexts. The integrated feature tensors are fed into learning model
to compute driving style representations, which can support many trajectory
mining applications, e.g., driver number estimation and driver identification.

GPS 
Trajectories

Road Map

GPS Data Transformation

Driving Context Representation

...

Feature fusion

Sliding window Statistic features

Learning Model

Feature tensor

Generator 

Noise z

Road condition

Geographic semantic

Traffic condition

Map 
matching

Route 

Applications 

Driver identification

Driver number 
estimation

Real / Fake

Domain
classification

D

Fig. 1. The architecture of Radar.

Specifically, GPS data transformation utilizes a sliding window to calculate
various statistics of the GPS data, which finally form the statistic feature matrix.
For the driving context representation modules, it firstly applies map matching
technique to transform each GPS trajectory to an actual travel route. With
this route, Radar derives context information about road conditions, geographic
semantic (i.e., geographical distribution of the route over the whole city area),



Adversarial Driving Style Representation Learning 497

and traffic conditions. These context information are fused to form a contex-
tual feature matrix. Lastly, both statistic feature matrix and contextual feature
matrix are integrated as the input for the learning model. In particular, we adopt
the emerging semi-supervised generative adversarial network architecture [21] for
building our model to learn effective and accurate driving style representations.

4.2 GPS Data Transformation

Instead of inputting raw GPS data to deep learning models, we will transform
each GPS trajectory into more stable statistic features. Similar as previous work
[2], we divide a GPS trajectory into segments of a fixed length Ls, with a shift
of Ls

2 to avoid much information loss between any two adjacent segments. We
employ five basic features to capture the instantaneous vehicular movement fea-
tures, namely speed norm, difference of speed norm, acceleration norm, difference
of acceleration norm, and angular speed. To reduce the possible impact of out-
liers, we further divide a segment into frames of a fixed size Lf , with a shift Lf

2 .
For each frame, we calculate seven statistics for each basic feature, including
mean, minimum, maximum, 25%, 50% and 75% quartiles, and standard devia-
tion. For each trajectory Tj consisting of a sequence of time-ordered GPS records
in the form of gi =< ts, lat, lng, v, dir >, we can easily calculate speed statistics
using travel speed v, acceleration statistics with location (lat, lng), and angular
statistics with travel direction dir, respectively. As a result, we can derive a set of
statistic feature matrices, each of which consists of 5×7 = 35 rows and 2×� Ls

Lf
�

columns. A statistic feature matrix encodes the driving behavior information of
a trajectory segment, and serves as partial input to the learning model with its
class label (i.e., the driver identifier) as the original GPS trajectory Tj .

In our implementation, we set Ls = 195 and Lf = 6 for the best performance.
Therefore, we obtain a set of statistic feature matrices of size 35 × 64 for each
trajectory. In particular, if a trajectory segment is shorter than Ls, we will pad
zeros into the matrix, so as to unify the size of all statistic feature matrices. In
principle, long trajectories contain more information about the driving behaviors,
and thus are more preferable for the model training.

4.3 Driving Context Representation

Since driving activities will be implicitly governed by the surrounding driving
environment, thus Radar also takes driving context information into consider-
ation to let machines deeply “understand” drivers’ behaviors especially under
certain circumstances. In the design of Radar, we particularly consider the three
contexts of road conditions, geographic semantic, and traffic conditions.

Figure 2 illustrates how Radar processes each raw GPS trajectory to generate
the contextual features. For each GPS trajectory Tj , we firstly recover the travel
route Rj through map matching techniques [20]. Since GPS data transformation
module outputs one statistic feature matrix for each trajectory segment, thus
the driving context representation module operates on trajectory segment and



498 Z. Liu et al.

Road type

Road lanes

One-way

O
ne-hotEncoding

Em
bedding 

C
oncatenate 

Flatten  

Linear   

Traffic 
estimation

N x N grids

GPS data

Travel route

C
oncatenate 

R
eshape  

Map 
matching

Relative 
speeds

Contextual 
feature matrix

D
ense  

Fig. 2. The framework of driving context representation module.

its associated travel route segment as well, and accordingly produces one con-
textual feature matrix. Based on road network G, the s-th trajectory segment
Tjs and its travel route segment Rjs, we derive each context representation as
follows.

Road Condition. We utilize static road attributes of road type, number of
lanes, and one-way indicator to characterize road conditions. Let nt, n�, and
no to represent the numbers of possible values in the three types of categori-
cal attributes, we thus employ three attribute vectors of length nt, n�, and no,
respectively, to encode the attributes of each road segment, respectively. Specif-
ically, one-hot encoding is adopted to generate the attribute vectors. Given a
travel route Rjs, we derive road type vectors of road segments covered by Rjs,
and sequentially connect them into one vector, which describes the road types
a vehicle had traveled when generating trajectory Tjs. In addition, we adopt
an embedding layer to reduce the dimensionality of the sparse attribute vector.
Similarly, we apply the same operations to the attributes of road lanes and one-
way, and derive their attribute vectors for route Rjs, respectively. Finally, we
concatenate the three embedding vectors into one vector of size 195 × 1.

Geographic Semantic. The GPS data only reflect the instantaneous driving
statuses, but not capture the high-level geographic semantic of a trajectory, e.g.,
origin, destination, and traveled regions. Thus, Radar maps each GPS trajectory
segment to the whole city area to derive its geographic semantic representation,
which is formally defined as follows.

Definition 5 (Geographic semantic representation). We partition the city
area into N ×N grids. For each trajectory Tj, we compute a geographic semantic



Adversarial Driving Style Representation Learning 499

representation matrix Mj, where we set Mj [a, b] = 1 if the travel route Rj of Tj

intersects with the grid [a, b]; otherwise Mj [a, b] = 0.

As shown in Fig. 2, we further flatten the matrix Mj as a vector, which is fed
into a linear layer for reducing the dimensionality. In our design, we set the final
geographic semantic vector of size 195 × 1. It is worthy noting that we generate
such a vector for each trajectory segment Tjs as well.

Traffic Condition. In addition to road conditions, another factor that has great
impact on driving activities is real-time traffic conditions. Considering both vehi-
cle’s instantaneous movements and surrounding traffic conditions could better
define a driver’s driving behaviors. Therefore, we use the relative speed, which is
calculated as the ratio between vehicle’s travel speed and average travel speed
of the vehicle’s locating road segment, to represent traffic condition context.

To that end, we make use of all available GPS data to estimate the real-time
traffic conditions. For each road segment, its traffic condition can be approxi-
mated as the average travel speed of all vehicles passing by within a time slot Δt.
Therefore, we classify all GPS records to road segments according to their map
matching results. For a given road segment, we calculate its average travel speed
of a specific time slot using the GPS records falling into that time slot. Due to
data sparsity, we may not derive a complete traffic conditions of the whole road
network G over all time slots. For simplicity, we directly apply temporal-spatial
interpolations to infer the traffic conditions of uncovered road segments by lever-
aging the inherent traffic correlations among roads. In fact, some advanced traf-
fic estimation methods [15] can be adopted to compute the complete real-time
traffic conditions. Once we obtain the traffic conditions of all road segments, we
calculate the relative speeds for the road segments covered by travel route Rjs of
a trajectory segment Tjs. These relative speeds then form Tjs’s traffic condition
representation.

As shown in Fig. 2, when the three representations of driving contexts are
ready, Radar concatenates them into one vector, which is then fed into a dense
layer to derive a vector of size 2240 × 1. To be compatible with the statistic
feature matrix, we reshape it into a contextual feature matrix of size 35×64×1.

4.4 Learning Model

To tackle the poor data quality issue, we employ generative adversarial networks
(GAN) [7] to construct the learning model. Essentially, GAN operates by training
two neural networks that play a min-max game: a discriminator is trained to
discriminate real samples from fake ones, while a generator tries to generate
fake training data to fool the discriminator. Therefore, GAN is able to generate
samples very similar to real trajectories for training data augmentation and as
a result improves the generalization ability of the derived model.

In particular, we adopt the emerging semi-supervised GAN (SGAN ) archi-
tecture [21] to build our learning model, which mainly consists of a generator G
and a discriminator D, as shown in Fig. 3. In SGAN, discriminator D can also



500 Z. Liu et al.

Generator G

Noise z

Linear

R
eshape 

Transpose 
C

N
N

s

Real features

Fake features Discriminator D

Linear 

C
N

N
s

Flatten 

Driving style

Return 
reward

Sample 
(label c)

Sample
(label c) Traditional GAN 

Classifier C

Fig. 3. The framework of learning model.

act as a classifier C to classify each input sample into one of the predefined (k+1)
classes, where k is the number of classes and the additional class label is added
for a new “fake” class. The competition and interaction (via reward) between
generator and discriminator will improve the quality of resultant driving style
representations. Therefore, our model can not only classify drivers according to
the learned driving styles, but also for a given class c generates corresponding
fake driving style features, which are similar to training samples belonging to
class c. To achieve this goal, the model training will involve both traditional unsu-
pervised GAN task and supervised classification task simultaneously. Training
in unsupervised mode allows our model to learn useful feature extraction capa-
bilities from unlabeled samples, whereas training in supervised mode allows the
model to use the extracted features and apply classifications.

Discriminator D (and classifier C). As shown in Fig. 3, discriminator takes
either real samples, generated from GPS data and context information, or fake
samples, produced by generator G, as the input, which are further processed
by a neural network to derive driving style representations. Discriminator D is
trained in both unsupervised mode and supervised mode.

– Unsupervised mode. In this mode, discriminator D, with parameter θd, pre-
dicts whether a sample is true (sampled from real trajectory data) or fake
(generated by the generator G) by calculating the probability score D(x|θd)
that the sample x is true. We train our learning model like traditional GANs
by maximizing the score for real samples and minimizing it for fake ones. We
achieve this objective by minimizing L(D), which is defined as follows.

L(D) = −[Ex∼pr(x) log D(x|θd) + Ex∼G log (1 − D(x|θd))], (1)

where pr(x) represents the distribution of real samples from trajectory data.
– Supervised mode. In this mode, discriminator D acts as classifier C to com-

plete a multi-class classification problem. For each sample, classifier C, with
parameter θc, predicts if the sample belongs to one of the predefined (k + 1)
classes. Because the label of driving style features generated by the generator
G is known, classifier C can also utilize the labels of fake samples for training.
Thus the generalization ability of the model could be improved. In addition,



Adversarial Driving Style Representation Learning 501

classifier C’s classification on both real and fake samples can be used as feed-
back (via reward) to improve generator G, i.e., higher classification accuracy
will bring more returns. To train the classifier C, we aim to minimize the
classifier loss L(C), i.e., the cross entropy loss on true labeled samples that is
computed using the overall classifier score.

L(C) = −Ep(xc,c)[log C(c|xc, θc)], (2)

where x is a sample of class c, and C should correctly classify it as class c.

We implement above two modes in one unified framework, as shown in Fig. 3.
Discriminator D and classifier C share the same feature extraction layers, but
have different output layers. Specifically, we use a stack of convolution layers
with LeakyReLu to process each input sample. After a series of convolutions, we
get a feature tensor that is flatten and inputted to a dense layer to derive the
driving style representation vector. For traditional GAN task, the vector is fed
into tanh to discriminate real samples and fake ones. For classifier C, the vector
is fed into softmax to obtain classification probabilities of the (k + 1) classes.

Generator G. Given the distribution pr(x) of real samples and k class labels
from real training data, generator G aims to find the parameterized conditional
distribution G(z, c, θg) that is close to the real distribution pr(x). The generated
fake samples are conditioned on the network parameters θg, noise vector z, and
class label c, which are sampled from prior distribution pz and pc, respectively.
Label c of a fake sample y can be known when the generator G generates y, so that
the actual classification label of each generated sample is retained for training
classifier C. Following the feature matching technique proposed to addresses the
instability of GANs [23], we train G by minimizing loss L(G) expressed as:

L(G) = ||Ex∼pr(x)f(x, θf ) − Ez∼pz
f(G(z, c, θg), θf )||22, (3)

where f(·) denotes activation on an intermediate layer (e.g., the stack of convo-
lution layers) of discriminator D, θf is the parameter subset of θd corresponding
to the intermediate layer of discriminator D, and c is the class label of real sam-
ple x. The objective of generator training is thus to minimize the discrepancy
between the real and generated data distributions in feature space.

As shown in Fig. 3, generator G is implemented with four deconvolution lay-
ers, which transform noise vector z into fake driving style features. In particular,
each deconvolution layer is followed by a nonlinear activation based on batch
normalization and rectified linear unit (ReLU). z is a 128 dimensional vector
sampled from a uniform distribution pz, and it is processed by dense and reshape
layers before inputting to the deconvolution layers. Finally, generator G outputs
a 35 × 64 × 2 feature tensor as the same size of real feature tensors. The values
of tensor items are shape squashed within [−1, 1] through tanh function.



502 Z. Liu et al.

5 Performance Evaluation

5.1 Experimental Setup

Dataset. We use a large real-wold anonymized GPS trajectory dataset for the
experiments. This dataset contains 1.3 billions GPS records that are collected
from 10000 drivers in Shanghai city, China, during a six-month period in 2015.
The GPS records are collected at a low-sampling rate as 0.1 Hz (i.e., one sample
per ten seconds). Each GPS record includes the driver identifier, a timestamp,
location with longitude and latitude, travel speed, and travel direction. Further-
more, we download the road network of the city area covered by GPS records
from OpenStreetMap (OSM)2, and model the road network as a graph G(V,E),
which has 159386 vertices and 30336 edges (i.e., road segments) in total. In addi-
tion, we obtain the attributes of each road segment from OSM as well. After map
matching, we have 430 trajectories for each driver on average.

Baseline Approaches. We compare Radar with following baseline approaches,
which can also learn driving style representations from GPS trajectories.

– ARNet is one of the state-of-the-art approaches. ARNet proposes an autoen-
coder regularized neural network for driving style representation learning,
merely from raw GPS data [2].

– T2INET is one of the state-of-the-art approaches as well. T2INET represents
a GPS trajectory as the multi-channel images that capture both geographic
and driving behavior features using a sequence of convolution layers [10].

– Radar-C serves as one variant of our approach Radar by disabling the driving
context representation module. As a result, Radar-C only takes the statis-
tic features extracted from GPS records as input for the learning model to
compute driving style representations.

Implementation. We implement Radar and all baseline approaches in Python
3.7.3 with Keras3 2.3.1 and TensorFlow4 2.2.0 for building various machine/deep
learning models. We set Radar’s parameters as follows. We set Ls = 195 and
Lf = 6 for GPS data transformation. The city area is partitioned into 80 × 80
grids for geographic semantic representation. In graph G, we have nt = 5 road
types, maximum number of lanes n� = 6, and no = 2 for indicating one-way or
not. We estimate traffic conditions with time slot Δt = 30 min. For the learning
model, we use Adadelta as the optimizer, and set learning rates for generator
G and discriminator D as 0.0001 and 0.0004, respectively. We set batch size as
128 and the epochs as 5000. Besides, we directly adopt the implementations of
ARNet [2] and T2INET [10], which are provided by the authors respectively,
and tune their parameters with our data to achieve their best performances.

We evaluate these approaches with two benchmark applications, i.e., driver
number estimation and driver identification, on a server, which is equipped with
2 OpenStreetMap: https://www.openstreetmap.org/.
3 Keras: https://keras.io/.
4 TensorFlow: https://www.tensorflow.org/.

https://www.openstreetmap.org/
https://keras.io/
https://www.tensorflow.org/


Adversarial Driving Style Representation Learning 503

Intel Core i9-9900K CPU@3.60 GHz, NAVIDA GeForce RTX 2080 Ti GPU, and
32 GB memory. We repeat each experiment setting 10 times, and only the average
results are reported in this section.

5.2 Driver Number Estimation

This application aims to estimate the number of drivers from a set of anony-
mous trajectories. To solve this problem, we train the driving style representa-
tion learning models with a set of labeled trajectories (i.e., with known driver
identifiers), and exploit trained models to represent each testing trajectory as a
driving style representation vector. Then, we employ the affinity propagation [5]
clustering algorithm to classify all representation vectors into clusters. In theory,
a desired model should effectively learn drivers’ driving styles, and would clas-
sify the testing trajectories generated by a specific driver into the same cluster.
Finally, the number of clusters is regarded as the number of drivers.

Training and Testing. We randomly select 10 drivers from the driver set U and
take their labeled trajectories as the training data. In addition, we randomly
select κ drivers from the remaining drivers, who are absent in the training data,
to form a group, denoted by Group κ. We vary κ from 1 to 10. For each group, we
randomly sample 50 trajectories from the κ drivers, and use these trajectories as
the testing data. We repeat 10 runs for each κ value and report average results.

Performance Metrics. We compare different approaches on the following two
performance metrics: (1) the mean absolute error (MAE ), which is the difference
between the ground truth of driver number and the estimation; (2) the adjusted
mutual information score (AMI ) [24] that measures the clustering quality. The
AMI values fall in the range of [0, 1], and larger AMI values are preferable.

Table 1. Performance comparisons on MAE for driver number estimation.

Group κ ARNet T2INET Radar-C Radar

1 0.64 ± 0.60 0.70 ± 0.68 0.80 ± 0.64 0.78 ± 0.65

2 0.82 ± 0.80 0.88 ± 0.74 0.92 ± 1.20 0.84 ± 0.97

3 1.08 ± 1.26 1.22 ± 1.48 1.02 ± 1.24 0.98 ± 1.24

4 1.18 ± 1.40 1.04 ± 1.46 0.92 ± 1.02 1.02 ± 1.07

5 0.98 ± 1.24 0.88 ± 1.56 1.20 ± 0.90 1.02 ± 0.88

6 1.24 ± 0.98 1.24 ± 0.96 1.04 ± 1.24 1.04 ± 1.06

7 1.60 ± 1.24 1.42 ± 1.64 1.42 ± 1.44 1.24 ± 1.12

8 1.48 ± 1.46 1.46 ± 1.45 1.46 ± 1.50 1.38 ± 1.24

9 1.74 ± 1.48 1.82 ± 1.46 1.62 ± 1.42 1.56 ± 1.48

10 2.32 ± 1.50 2.10 ± 1.68 1.94 ± 1.54 1.82 ± 1.46

Average 1.308 1.276 1.234 1.168



504 Z. Liu et al.

Experimental Results. Table 1 shows the MAE results and deviations, where the
best result of each group is marked in bold. When κ increases, the driver number
estimation problem becomes harder, and thus the MAE is larger. Among all the
experiments, we see our approach (Radar and Radar-C) wins 7 best results (i.e.,
the smallest MAE) out of ten tests. For the three lost cases, our approach falls
behind with marginal differences, e.g., 0.14 at most. As shown by the average
experiment results in the last row of Table 1, Radar-C achieves slightly better
performance than the state-of-the-art approaches, i.e., ARNet and T2INET .
It implies that our learning model is more effective on capturing driving style
features from raw GPS data. By incorporating the driving context information,
Radar further improves Radar-C by reducing average MAE from 1.234 to 1.168.
Overall, our approach Radar can improve ARNet and T2INET on the perfor-
mance metric of MAE by 10.7% and 8.5%, respectively.

Table 2 presents the AMI results and deviations, where we also mark the best
AMI of each group in bold. Similarly, we find that Radar outperforms other two
baselines in most cases, with six wins out of ten tests. The results in Table 2
are in accordance with the results in Table 1. In general, a better clustering
quality (i.e., a larger AMI) potentially leads to a better estimation of driver
number (i.e., a smaller MAE). The average AMI values of the four approaches
are 0.212, 0.234, 0.225, and 0.239, respectively. The results in both Table 1 and
Table 2 demonstrate that Radar is capable of learning more effective and accurate
driving style representations, which thus well support the application of driver
number estimation, with smaller MAE and larger AMI.

Table 2. Performance comparisons on AMI for driver number estimation.

Group κ ARNet T2INET Radar-C Radar

1 0.34 ± 0.06 0.32 ± 0.12 0.27 ± 0.06 0.25 ± 0.09

2 0.37 ± 0.08 0.36 ± 0.07 0.25 ± 0.08 0.28 ± 0.03

3 0.21 ± 0.04 0.21 ± 0.08 0.26 ± 0.08 0.27 ± 0.03

4 0.16 ± 0.08 0.24 ± 0.05 0.22 ± 0.05 0.25 ± 0.04

5 0.19 ± 0.06 0.23 ± 0.08 0.19 ± 0.08 0.18 ± 0.06

6 0.18 ± 0.05 0.22 ± 0.04 0.26 ± 0.06 0.26 ± 0.07

7 0.17 ± 0.07 0.17 ± 0.05 0.20 ± 0.08 0.23 ± 0.02

8 0.19 ± 0.06 0.19 ± 0.06 0.14 ± 0.05 0.18 ± 0.04

9 0.15 ± 0.08 0.14 ± 0.08 0.20 ± 0.04 0.22 ± 0.08

10 0.16 ± 0.07 0.26 ± 0.04 0.26 ± 0.05 0.27 ± 0.04

Average 0.212 0.234 0.225 0.239



Adversarial Driving Style Representation Learning 505

acc@1 acc@2 acc@5
25

30

35

40

45

50

55

60

65

70

75

80

85
A

cc
ur

ac
y 

(%
)

Metric

SVM         SVM+
GBDT       GBDT+
ARNet      T2INet
Radar-C   Radar

Fig. 4. Performance comparisons on Top-
n accuracy with the long trajectories.

acc@1 acc@2 acc@5
15

20

25

30

35

40

45

50

55

60

65

A
cc

ur
ac

y 
(%

)

Metric

SVM         SVM+
GBDT       GBDT+
ARNet      T2INet
Radar-C   Radar

Fig. 5. Performance comparisons on Top-
n accuracy with the short trajectories.

5.3 Driver Identification

The driver identification problem aims to identify the driver of a given unlabeled
trajectory, which belongs to the supervised multi-class classification problem.

Training and Testing. In each experiment, we randomly select 10 drivers and use
their GPS trajectories for model training and testing. Specifically, 70% of the
trajectory data are used for training, 10% for validation, and the remaining 20%
for testing. The models of all approaches are trained with labeled trajectories,
and for a testing trajectory the models should predict its driver identifier.

Performance Metric. We employ the top-n accuracy (denoted by acc@n) to
evaluate the prediction performances of all approaches. In particular, acc@n is
calculated as the percentage of testing trajectories for which the ground truth
drivers are in the top n predictions. For a testing trajectory, we rank the pre-
dicted driver identifiers in the descending order of probability values.

Experimental Results. In addition to the aforementioned three baselines, we fur-
ther include two typical supervised learning models, i.e., support vector machines
(SVM) [26] and gradient boosting decision trees (GBDT) [18], for performance
comparisons. More specifically, SVM and GBDT take the statistic features pro-
duced by Radar as input for the predictions, while SVM+ and GBDT+ make
use of both statistic and contextual features generated by Radar for the predic-
tions. Furthermore, we partition drivers’ trajectories into two sets: long trajecto-
ries (with duration more than 1950 s) and short trajectories (with duration less
than 1950 s). We conduct experiments on each set of trajectories separately, and
present the results in Fig. 4 and Fig. 5, respectively.

As shown in Fig. 4, when n increases, the top-n accuracy of each approach
becomes higher. Our approach achieves the highest acc@5 accuracy as 81.3%.
These deep learning models, i.e., ARNet , T2INET , Radar-C and Radar, always
have better predictions than traditional supervised learning models, i.e., SVM



506 Z. Liu et al.

and GBDT and their variants, with the largest performance gap as 36.6% on
acc@2. It implies that deep learning models are indeed powerful at representation
learning, and thus can support various applications better. On the other hand, by
comparing the performances of traditional models, we find that SVM+/GBDT+
outperform SVM/GBDT, e.g., with acc@1 accuracy improvement by 1.2% and
3.6%, respectively. Hence, it is necessary to include contextual features for bet-
ter modeling. Compared to state-of-the-art ARNet and T2INET , our approach
Radar has more accurate predictions, e.g., on average improving them by 2.6%,
4.2%, and 2.4% for acc@1, acc@2, and acc@5, respectively.

The prediction results on short trajectory set are plotted in Fig. 5. Since short
trajectories contain less information, and thus the prediction performances of all
approaches have been seriously deteriorated. However, we find that the perfor-
mance gap between ARNet/T2INET and our approach becomes even larger,
i.e., on average Radar improves the two advanced approaches by 7.1%, 12.0%,
and 5.2% for acc@1, acc@2, and acc@5, respectively. These comparisons reflect
that Radar is able to extract more useful and accurate features from low-quality
trajectory data, and thus can still achieve reasonably high prediction accuracy.

6 Conclusion

In this paper, we present an adversarial driving style representation learning app-
roach – Radar. Different from previous works, Radar not only extracts statistic
features from raw GPS data, but also builds contextual features by jointly con-
sidering road conditions, geographic semantics, and traffic conditions. We further
exploit an advanced semi-supervised GAN architecture to construct the learn-
ing model to compute more effective and accurate driving style representations.
Experiment results from a large GPS trajectory dataset demonstrate that Radar
outperforms state-of-the-art approaches on two benchmark applications.

Acknowledgments. This work was supported in part by the National Science
Foundation of China (NSFC) under Grant Nos. 61802261, 61806132, 61872248,
and U2001207, the grant of Guangdong Basic and Applied Basic Research
Foundation (No. 2020A1515011502), Tencent Rhino-Bird Young Faculty Open
Fund, Guangdong NSF No. 2017A030312008, Shenzhen Science and Technol-
ogy Foundation (No. ZDSYS20190902092853047), the Project of DEGP (No.
2019KCXTD005),the Guangdong “Pearl River Talent Recruitment Program” under
Grant No. 2019ZT08X603, Guangdong Science and Technology Foundation (Nos.
2019B111103001, 2019B020209001).

References

1. Castignani, G., Derrmann, T., Frank, R., Engel, T.: Driver behavior profiling using
smartphones: a low-cost platform for driver monitoring. IEEE Intell. Transp. Syst.
Mag. 7(1), 91–102 (2015)

2. Dong, W., Yuan, T., Yang, K., Li, C., Zhang, S.: Autoencoder regularized network
for driving style representation learning. In: IJCAI (2017)



Adversarial Driving Style Representation Learning 507

3. Ezzini, S., Berrada, I., Ghogho, M.: Who is behind the wheel? Driver identification
and fingerprinting. J. Big Data 5(1), 9 (2018)

4. Feng, J., et al.: User identity linkage via co-attentional neural network from het-
erogeneous mobility data. IEEE Trans. Knowl. Data Eng. 1, 1–15 (2020)

5. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science
315(5814), 972–976 (2007)

6. Fugiglando, U., et al.: Driving behavior analysis through CAN bus data in an
uncontrolled environment. IEEE Trans. Intell. Transp. Syst. 20(2), 737–748 (2018)

7. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
8. Guangyu Li, M., et al.: DBUS: human driving behavior understanding system. In:

IEEE ICCV Workshops (2019)
9. He, B., Zhang, D., Liu, S., Liu, H., Han, D., Ni, L.M.: Profiling driver behavior for

personalized insurance pricing and maximal profit. In: IEEE Big Data (2018)
10. Kieu, T., Yang, B., Guo, C., Jensen, C.S.: Distinguishing trajectories from different

drivers using incompletely labeled trajectories. In: ACM CIKM (2018)
11. Kim, Y., Han, J., Yuan, C.: TOPTRAC: topical trajectory pattern mining. In:

ACM SIGKDD (2015)
12. Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous

vehicles from demonstration. In: IEEE ICRA (2015)
13. Lin, N., Zong, C., Tomizuka, M., Song, P., Zhang, Z., Li, G.: An overview on study

of identification of driver behavior characteristics for automotive control. Math.
Probl. Eng. 2014, 1–15 (2014)

14. Liu, Z., Gong, Z., Li, J., Wu, K.: Mobility-aware dynamic taxi ridesharing. In:
IEEE ICDE (2020)

15. Liu, Z., Li, Z., Li, M., Xing, W., Lu, D.: Mining road network correlation for
traffic estimation via compressive sensing. IEEE Trans. Intell. Transp. Syst. 17(7),
1880–1893 (2016)

16. Liu, Z., Li, Z., Wu, K., Li, M.: Urban traffic prediction from mobility data using
deep learning. IEEE Network 32(4), 40–46 (2018)

17. Liu, Z., Zhou, P., Li, Z., Li, M.: Think like a graph: real-time traffic estimation at
city-scale. IEEE Trans. Mob. Comput. 18(10), 2446–2459 (2018)

18. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient
descent. In: NeurIPS (2000)

19. Miao, C., Wang, J., Yu, H., Zhang, W., Qi, Y.: Trajectory-user linking with atten-
tive recurrent network. In: ACM AAMAS (2020)

20. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparse-
ness. In: ACM SIGSPATIAL (2009)

21. Odena, A.: Semi-supervised learning with generative adversarial networks. arXiv
preprint arXiv:1606.01583 (2016)

22. Ren, H., Pan, M., Li, Y., Zhou, X., Luo, J.: ST-SiameseNet: spatio-temporal
siamese networks for human mobility signature identification. In: ACM SIGKDD
(2020)

23. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: NeurIPS (2016)

24. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

25. Wang, P., Fu, Y., Zhang, J., Wang, P., Zheng, Y., Aggarwal, C.: You are how
you drive: peer and temporal-aware representation learning for driving behavior
analysis. In: ACM SIGKDD (2018)

http://arxiv.org/abs/1606.01583


508 Z. Liu et al.

26. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Mach. Learn. Res. 5(Aug), 975–1005 (2004)

27. Yang, S., Wang, C., Zhu, H., Jiang, C.: APP: augmented proactive perception for
driving hazards with sparse GPS trace. In: ACM MobiHoc (2019)

28. Zhao, K., et al.: Discovering subsequence patterns for next POI recommendation.
In: AAAI (2020)

29. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol.
6(3), 1–41 (2015)

30. Zhou, F., Gao, Q., Trajcevski, G., Zhang, K., Zhong, T., Zhang, F.: Trajectory-user
linking via variational AutoEncoder. In: IJCAI (2018)



MM-CPred: A Multi-task Predictive
Model for Continuous-Time Event

Sequences with Mixture Learning Losses

Li Lin, Zan Zong, Lijie Wen(B), Chen Qian, Shuang Li, and Jianmin Wang

School of Software, Tsinghua University, Beijing, China
{lin-l16,zongz17,lsa18}@mails.tsinghua.edu.cn,

{wenlj,jimwang}@tsinghua.edu.cn

Abstract. Sequence prediction is a well-defined problem with a prolif-
eration of applications, such as recommendation systems, social media
monitor, economic analysis, etc. Recently, RNN-based methodologies
have shown their superiority in time-series data analysis and sequence
modeling. The question of which event would happen next is not difficult
to answer anymore, but the prediction of when it would happen is still
a mountain to climb. In this paper, we propose a Multi-task model to
predict both event and their continuous timestamps at the same time.
Specifically, (1) we design a two-layer RNN encoder for event sequences
and a CNN encoder for time sequences, both equipped with multi-head
self-attention to align history features; (2) we form multiple generative
adversarial models for predicting future time sequences to solve the prob-
lem of multi-modal time distribution; (3) Mixture learning losses are
adopted to conduct a 3-step learning strategy for training our model,
the cross-entropy loss for events, Huber loss and adversarial classifica-
tion loss which induces the Wasserstein distance for times. Due to these
characteristics, we name it MM-CPred. The experiments on 4 real-life
datasets confirmed its improvements compared with the baselines.

Keywords: Multi-task prediction · Neural networks ·
Continuous-time sequence · Mixture learning

1 Introduction

Sequence prediction is a well-defined problem with wide applications in recom-
mendation systems [15] and information management systems [14].

In the field of recommendation systems, some item-to-item methods [20]
and matrix factorization machines [17] have shown successful applications. Such
rule-based recommendation algorithms can efficiently capture the relationships
between items but the sequential nature is not considered. Some Markov Chain-
based methods [22] were proposed to capture the chronological dependence in
event sequences. But Markov Decision Process is limited to short time order
information, and cannot deal with either long or non-stationary sequences.
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 509–525, 2021.
https://doi.org/10.1007/978-3-030-73194-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_34


510 L. Lin et al.

Recently, Deep Learning (DL) has shown strong competitiveness in data anal-
ysis. Taking advantages of Recurrent Neural Networks (RNNs), sequence model-
ing has profound developments in many fields. RNNs are also widely referred to
as a basic model of end-to-end predictor for event sequences, because its recur-
sive computation can naturally capture the history information and the cascade
of nonlinear computation layers helps understand the complex relations between
given histories and the target.

Either traditional event sequence models or neural networks for modeling
event sequences are trying to capture features from event data and its discrete
attributes [14]. They seldom considered the effects of timestamps. These years,
the importance of time for events arouses researchers’ interests and widespread
concern [27,28]. In this paper, we concentrate on predicting event sequence and
the timestamp for each event simultaneously through a multi-task predictive
model.

The simultaneous prediction of events and their corresponding timestamps
is a challenge because (1) discrete event sequence and real-value time have their
own characteristics; thus it’s not appropriate to encode the event sequence and
timestamps using a same or shared encoder as most multi-task learning models
do and (2) the probability density distribution of time tends to contain multiple
modes, which is difficult to be described by a single decoder. Meanwhile existing
sequence predictors take history events as input but just output one next event
in the future, which lacks foresight. Even some of them proposed to predict a set
of candidates for users. However the order information and causality between
this candidates are still not considered. To bridge these gaps, we propose MM-
CPred (A Multi-task Predictive model for Continuous-time event sequences
via Mixture learning losses), which is able to predict future event sequence and
the timestamps of events at the same time rather than output only the next one
event. The main contributions are summarized as follows.

– We design a two-layer RNN encoder for event sequences to capture the sequen-
tial information and a CNN-based encoder for time sequences to capture the
local numerical distributions.

– Self-attention mechanism is applied to provide weights calculation for history
events and time features. Then the unified features will be pushed into the
decoders to generate event sequence and the timestamps, respectively.

– Inspired by that the Gaussian Mixture Model can approximate almost any
arbitrary density functions with multiple Gaussian Distributions. Similarly,
we construct multiple generators for time sequences to deal with the multi-
modal problem of time distributions.

– We take mixture learning losses, which consist of cross-entropy, Huber loss,
and adversarial learning loss, to conduct a 3-step training strategy for
MM-CPred.

In the experiments, we evaluate the performance of MM-CPred on four dif-
ferent datasets. Empirical results show that the proposed model achieved the
state-of-the-art on sequence prediction tasks.



MM-CPred: A Multi-task Predictive Model for Continuous-Time 511

2 Related Work

Event sequence learning tries to understand and model the sequential user
events, like the interactions between users and items, and the evolution of users’
preferences and item popularity over time. Many researchers have made efforts in
this regard. [19] presented a music recommendation system exploiting a dataset
containing the listening histories of users who posted what they were listening
to at the moment on the microblogging platform Twitter. In [18], the problem
of future event prediction in video: if and when a future event will occur was
considered. [5] provided a predictive model to be used in narrative generation
systems. While in [12], an event graph was constructed to better utilize the event
network information for script event prediction.

However when faced with a sequence of timestamps in continuous space,
many researchers preferred to discretize the real-value timestamps to a given
range to adapt the characteristic of RNNs. JUMP was proposed as a joint pre-
dictor for user click and interval to enhance the performance of recommenda-
tion [27]. In [28], several LSTM variants were proposed, i.e., Time-LSTMs, to
model users’ sequential actions, equipping LSTM with specifically designed time
gates to model time intervals. The discretization of timestamps relies on prior
knowledge of the data. For example, in [27] and [28], authors truncated sequences
to alleviate the incremental size of the look-up table for long-range timestamps.
Besides, when the interval between two adjacent events is out of range prede-
fined, they cut the sequence into two pieces.

Discretizing the real-value times couldn’t capture the true features of
continuous-time sequences. Because the prediction of future timestamps was
established as a classifier but not a generator, which loses the continuity of
time. To construct a general method for continuous-time sequence prediction,
we should take advantages of generative models and CNNs [10]. Because CNNs
sre designed for capturing local dependencies among item values on adjacent
locations, without considering these values are continuous or discrete.

Recently, researchers begin to find out various applications of GANs [4] on
sequence modeling. A set of experiments was compared on different GAN models
to find out the potential of GANs in language modeling [21]. SeqGAN [26] was
proposed to bypass the generator differentiation problem by directly performing
gradient policy update by modeling the data generator as a stochastic policy
in reinforcement learning (RL). Most of the existing generative adversarial net-
works for sequence generation suffer from the instability of policy gradient. Since
loss functions of supervised learning like MLE (Maximum Likelihood Estimation)
can dominate the samples tending to satisfy the real data, which can balance
out the unstable performance from the generative model when combined with
GANs. LeakGAN [6], MaskGAN [3], RankGAN [13], DPGAN [24] all guided the
generative adversarial networks with the rewards information from discrimina-
tive models to stably generate the discrete sequences. Such applications show
that the Mixture of MLE loss and adversarial learning loss has gained great
success in text generation and language learning.



512 L. Lin et al.

Thus, the overall learning strategy for our model is a mixture of super-
vised learning and unsupervised learning. Supervised learning methods for event
sequence and time sequence take the real future items followed up as labels, to
make the predicted sequences and the ground truth approximate. Meanwhile,
the unsupervised learning algorithm assists in holding the consistency of time
distribution density between the predicted time sequence and the sampled ones.

3 Continuous-Time Event Sequence

Discrete-time event sequence prediction tasks consider event sequence as a series
of tokens (events) with order information, evolving synchronously in unit time
step, e.g., sentences of words. Continuous-time event sequence prediction attends
to the sequence where the events occur asynchronously, i.e., the intervals between
consecutive events vary a lot.

Time prediction is an important task along with event prediction. Some
studies considered that the timestamps of history events have effects on the
probabilities of the next event to be elevated or decreased. As most of them
do [11,16,25], we subtract the timestamps of two adjacent events to get inter-
vals between events to construct the time sequences.

Given the event set E, we define the history event sequence Se = 〈e1, e2, . . . ,
en〉, ei ∈ E and the corresponding time sequence St = 〈t1, t2, t3, . . . , tn〉, ti ∈ R,
where t1 = 0 because there is no prefix for e1. A continuous-time event sequence
predictor Fθ will be learnt to predict the most possible event sequence and its
time sequence Pe = 〈en+1, en+2, . . . , en+m〉 and Pt = 〈tn+1, tn+2, . . . , tn+m〉,
where m is a hyper-parameter which decides the length of the output sequence.

(Pe, Pt) = Fθ(Se, St; θ), Pe ⊆ E
∗, Pt ⊆ (R+)∗ (1)

4 Methodology

To solve the simultaneous prediction issue for events and times, we propose
MM-CPred, a multi-task predictive model with mixture learning losses. In this
section, we will explain the details of our model.

The architecture of MM-CPred is shown in Fig. 1. We use a lookup layer to
transform an event into an embedding xi

e ∈ R
le . The input of time encoder is

raw real-value time sequences xi
t = ti. Event encoder and time encoder compress

the event sequences to compact representations and expand 1-dimensional time
sequences to high-dimension vectors respectively. We apply the multi-head atten-
tion mechanism to align the history features into combined vectors for follow-up
generators. The generators are RNN-based which can output sequences bene-
fiting from their recurrent nature. Based on the characteristic of discrete event
sequences, cross-entropy loss is applied to train the event generator, while for
time generators, Huber loss is designed to force the numerical approximation
of times. Meanwhile, the adversarial learning loss (i.e. Wasserstein distance) is
used to constrain the consistency of time distributions.



MM-CPred: A Multi-task Predictive Model for Continuous-Time 513

Fig. 1. The architecture of MM-CPred. Three main components are respective Encoders
for events and times, Multi-Head Attentions to align history features and Multiple time
generators with a selector proposed aiming to capture multimodal time distributions.

4.1 RNN Encoder and CNN Encoder

Given a history event sequence 〈x1
e,x

2
e, . . . ,x

n
e 〉 and its time sequence 〈x1

t ,
x2

t , . . . ,x
n
t 〉. We design two encoders for capturing the order information of them

respectively. In this paper, we use GRU (Gated Recurrent Unit) as the basic cell
of RNN Encoder for event sequences. Due to space limitations, we won’t talk
about the details about GRU. The computation of GRU cell we used in this
paper is the same as that defined in [2]. In this paper, the event encoder was
established with 2-layer GRU networks.

Fig. 2. The definition of Conv1D operation and ResBlock

But for time sequences, they are series of 1-dimensional real values, and
adjacent times usually present local consistency. Therefore we design a Conv1D
operator for time sequences, which conducts convolutions along the orders of
items only. Then a CNN encoder for time sequences was established based on
ResNet [7]. The reasons why we choose ResNet are: (1) the layers are reformu-
lated as learning residual functions with reference to the layer inputs instead



514 L. Lin et al.

of learning unreferenced functions, which takes raw inputs as a part of outputs
preventing forgetting history information; (2) the architecture is simple and prac-
ticable, where deep stacking of layers can increase the effective history length.
Conv1D unit and the basic model of ResBlock are presented in Fig. 2. Same as
CNN, the core of Conv1D is a filter weight F ∈ Rdt×dF . Sliding the filter across a
sequence 〈x1

t ,x
2
t , . . . ,x

n
t 〉 via a same padding trick can divide the entire sequence

into n subsequences (windows) as following shows: X = [X1,X2, . . . , Xn], where
Xi = [xi

t,x
i+1
t , . . . ,xi+k−1

t ] is the i-th window. As Fig. 2 shows, the size of filters
kF = 3. We omit the pooling operation in Conv1D, thus the output of convo-
lutional layer is a vector feature ui = FXi + bF . The ui ∈ R

lF represents the
higher-level representation that aggregates local information inside i-th window.
Its goal is to capture the local context dependencies among time sequences. At
the end, Conv1D transforms the input sequence to a feature sequence with equal
length.

ResBlock we used in this paper was constructed with cascaded units consist-
ing of a ReLU layer and a Conv1D layer. Both event encoder and time encoder
bring out feature sequences of the same length as the input sequences. As most
encoder-decoder models do, we also add an attention block between the encoder
and generator: the Multi-Head Self-attention [23]. The attention function can be
described as a mapping from a query and a set of key-value pairs to an output,
where the query(Q), keys(K), values(V), and outputs(O) are all vectors. We
use the bold uppercase to represent vectors in Multi-Head Attention, especially
to keep pace with the original definition in [23]. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed
by a compatibility function of Q with the corresponding K.

⎡
⎣
Q
K
V

⎤
⎦ =

⎡
⎣
Wq

Wk

Wv

⎤
⎦xi +

⎡
⎣
bq

bk

bv

⎤
⎦ (2)

where Wq ∈ R
dmodel×dq , Wk ∈ R

dmodel×dk , Wv ∈ R
dmodel×dv and bq,bk,bv are

parameter matrices to be learned.
Then the computation of attention is:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (3)

Linear projection in Eq. 2 is conducted on the queries, keys and values h times
respectively. On each of these projected versions of queries, keys, and values,
the attention function was performed in parallel, yielding dv-dimensional output
values. The output of the multi-head attention can be calculated in the following
formula:

O = MultiHead(Q,K,V) = concat(head1,head2, . . . ,headh)Wo (4)

where headi = Attention(QWi
q,KWi

k,VWi
v). In this paper, we take the same

size for queries, keys, and values as dmodel/h.



MM-CPred: A Multi-task Predictive Model for Continuous-Time 515

4.2 Generators and Discriminator

Different from traditional predictive models that output the event keeping in only
one step given history event sequence, MM-CPred takes hidden representations
into generators to output future sequences. Additionally, we design multiple gen-
erators for time sequences to solve the multi-modal issue in distributions of times.

Event Generator. We apply two-layer GRU networks to decode the hidden
representation re to generate future event sequences. The probabilities Pe of
future events over E can be caught from the output layer.

Multiple Generators. In order to ensure the distribution consistency between
the predicted times and the targets, we intend to combine regression loss and
generative adversarial loss when training time sequence generators. We observe
the training of generative models is still challenging because it can be easily
trapped into the mode collapsing problem where the generator only concentrates
on producing samples lying on a few modes instead of the whole data space while
the multi-modal distributions of times are ubiquitous in contrast.

Fig. 3. The distribution of time values in a sampled sequence from four different
datasets respectively. X-axis: the min-max normalized values of log(t), Y-axis: the
probability density.

Figure 3 shows the time distributions from four different datasets. We visu-
alize the probability density distribution of min-max normalized logarithmic
values of times. It can be clearly seen that there are multiple distinct peaks in
the distributions. To better model the multi-modal distributions, we propose
multiple generators G1

t , G
2
t , G

3
t , . . . , G

k
t to produce times {t1i , t

2
i , t

3
i , . . . , t

k
i }, i ∈

{1, 2, 3, . . . ,m} at each step i but only one of them can be selected by the selec-
tor and injected to the discriminator.

tji = Gj
t (Pe, rt; θGj

t
), i ∈ {1, 2, . . . ,m}&j ∈ {1, 2, . . . , k} (5)

For the selector at each time step i, the following formulations tell how to choose
the output.

a = softmax(Wa · rt + ba)

v = index(max(a)), v ∈ {1, 2, . . . k}
where v is the index of time generators selected. It means the predicted time at
i-step is ti = Gv

t (Pe, rt; θGv
t
). But selecting the max from softmax distribution

makes the model non-differentiable. To address this issue, the Straight-Through
Gumbel-Softmax [9] function is used for training the selector:



516 L. Lin et al.

qi =
exp(ai+gi

τ )∑k
j=1 exp(ai+gi

τ )
(6)

where gi is the Gumbel noise which can be sampled from Gumbel distribu-
tion and τ is the temperature parameter which controls the smoothness of the
vector q. If τ is close to zero, q will reach the one-hot vector corresponding to
One Hot(v) ∈ R

k. We set τ = 0.0001 in our experiments. In the backward pass,
the function approximates the gradients of Selector v by using the gradients of q
to ensure end-to-end model training. While the conventional softmax function
is used to produce the index of output event. After m steps of generation, we
finally have the predicted time sequence Pt = 〈t1, t2, t3, . . . , tm〉.

To train the time predictor from supervised learning perspective, we perform
the regression error Huber loss [8] which is defined as follows:

losshuber(x) =

{
0.5x2 |x| ≤ d

0.5x2 + d(|x| − d) |x| > d

where d ∈ R
+ is a hyperparameter. It is tempting to look at this loss as the

log-likelihood function of the underlying heavy-tailed error distribution.
Besides Huber loss, the discriminator will give out the Wasserstein distance

between generated time sequence and samples from real-time sequences to con-
strain the consistency of predicted and real-time distributions from the perspective
of unsupervised learning. When the discriminator cannot distinguish generated
sequences and real samples, the adversarial training tends to get an equilibrium.

Discriminator. We concatenate the raw inputs of times St and predicted ones
Pt as a complete-time sequence marked as Tg. Time samples Tr with the same
length as Tg are randomly sampled from the dataset. The discriminator is in
charge of distinguishing real samples Tr from generated time sequences Tg. Same
as the time sequence encoder, we take the basic ResNet illustrated in Fig. 2 as
the architecture of the discriminator, which concentrates on capturing the local
dependencies among the sliding window when scanning time sequences.

4.3 Training Strategy

In this section, we provide details about training methods. We will define the
loss function of each task and training methods in this subsection. As described
above, we have

re = Encodere(〈x1
e,x

2
e, . . . ,x

n
e 〉; θEe

) (7)

rt = Encodert(〈x1
t ,x

2
t , . . . ,x

n
t 〉; θEt

) (8)

Cross-entropy Loss. For event generation, we use cross-entropy to measure
the similarity between predicted event sequences and target sequences. The com-
putation is in the following:

losse = − 1
m

m∑
i=1

logP(en+i)Generatore(re; θEe
, θGe

)i (9)



MM-CPred: A Multi-task Predictive Model for Continuous-Time 517

Algorithm 1. A Multi-task Predictive Model for Continuous-time Event Sequence

with Mixture Learning Losses

Require: dataset X = {xi
e,x

i
t}N

i=1, initialization of γ, α = 1.0, learning rates lri =
1e − 4, i ∈ {1, 2, 3}, number of time generators ng = 3

Ensure: future events and respective time sequence Pe, Pt

1: repeat
2: for every batch of data do
3: Train event predictor: minimize cross-entropy loss in (9), update θEe , θGe .
4: Forward the events to time generators.
5: Train time predictor: minimize loss function in (10), update θEt , θGt .
6: if this is discriminative epoch then
7: Do sampling and train discriminator to minimize loss function in (12), update

w.
8: else
9: Jointly train the whole model to maximize loss function in (11) , update

θEe , θEt , θGe , θGt .
10: end if
11: Compute losses on validate data, and update γ, α using the loss ratios to balance

the different losses.
12: end for
13: Until reach the max epochs

Huber Loss. For supervised training of time generation, we use Huber loss to
measure the regression error between predicted and target times.

losst =
m∑

i=1

losshuber(tn+i − Generatort(Oe, rt; θEt
, θGt

)i) (10)

where θGt
= {θG1

t ,θG2
t
, . . . , θGk

t
}.

Adversarial Training Loss. Except the regression loss, we also use adversarial
training loss to constrain the consistency of time distributions.

min
θ

max
w

V (Dw, Gθ) = Et∼Pt
[fw(Tr)] − Ert

[fw(Tg))]

where θ is the parameter set for generators consisting of θEe
, θGe

, θEt
, θGt

, w
represents the parameters of the discriminator, Tr is randomly sampled from
datasets and Tg is the concatenation of input time sequence and predicted
sequence from time generators. In order to have parameters w lie in a com-
pact space, we clamp the weights to a fixed box (say w = [−0.01, 0.01]) after
each gradient update [1].

Finally, we conduct a 3-step learning strategy to train MM-CPred as Algo-
rithm 1 shows: first, we train the event predictor using loss in Eq. 9; second, we
train the time predictor to minimize Huber loss in Eq. 10; third, we jointly train
the whole model according to the combined loss in Eqs. 11 and 12. In this paper,
we train the discriminator once after every 5-epochs of generative training. The



518 L. Lin et al.

reasons we adopt the 3-step training strategy are that (1) event sequence con-
tains the causal information of users’ behavior, which decides the future events
of interests; (2) when would an event happen relies on the type of event; thus
the prediction of times takes advantage of predicted events and history time
sequences’ features at the same time, and (3) taking the linear combination of
above losses as the last step helps to regularize different losses and jointly update
the parameters to keep the global optimization.

θ = argmin V (Dw, Gθ) + γllosst + αlosse (11)

w = argmin − V (Dw, Gθ) (12)

γ, α are hyperparameters that regularize the combined loss function, which can
be automatically tuned according to the loss values on validation datasets.

5 Experiments

5.1 Datasets

We conduct experiments on three public datasets including RECSYS151,
CIKM162, and LastFM3. RECSYS15 is used for RecSys Challenge 2015. It con-
tains click streams with timestamps collected from a commerce site. CIKM16 is
published by CIKMCup 2016. It contains sequences of anonymous transactions
provided by DIGINETICA. The LastFM dataset consists of the keywords artist,
title, timestamp, similars, and tags. We extract the events and timestamps from
the above datasets and re-organize the events and times (intervals between adja-
cent events) along with time order. Since LastFM has a huge amount of low-
frequency events, as well as we expect to verify the effectiveness of the model on
datasets of different sizes, we extract most k-frequent events from LastFM to con-
struct two Small scale datasets: LastFM-5k and LastFM-1k. The statistics of these
four datasets are illustrated in Table 1. The original time unit in RECSYS15 (resp.
CIKM16, LastFM-5k, and LastFM-1k) is second (resp. milesecond). To keep it
consistent, we show the intervals using second (s) as the time unit.

Table 1. Basic statistics of the datasets

Dataset RECSYS15 CIKM16 LastFM-5k LastFM-1k

Number of items 52,739 122,911 5,000 1,000

Number of seqs 9.25M 310,062 983 977

Average length 3.57 3.98 828.40 685.29

Max interval (s) 3,600 1.19M 121.21M 160.72M

Average interval (s) 249.48 0.17M 12.75M 15.68M

1 http://recsys.yoochoose.net.
2 http://cikm2016.cs.iupui.edu/cikm-cup.
3 http://www.last.fm/api.

http://recsys.yoochoose.net
http://cikm2016.cs.iupui.edu/cikm-cup
http://www.last.fm/api


MM-CPred: A Multi-task Predictive Model for Continuous-Time 519

For each dataset, 70% sequences are randomly selected as training data. The
remaining sequences are split into a 2:1 ratio, where two-thirds are for validation,
and the left is test data. We didn’t do any other pre-processing on RECSYS15
and CIKM16, including large word removing or session clipping. For extracting
frequent events from LastFM, we conduct the same pre-processing as [28] did.

5.2 Compared Methods

We compare MM-CPred with the following methods.
NHP (Neural Hawkes Process) [16]. It models streams of discrete events

in continuous time, by constructing a neurally self-modulating multivariate point
process in which the intensities of multiple event types evolve according to a novel
continuous-time LSTM.

T-LSTMs [28]. These are several new LSTM variants, i.e., Time-LSTMs, to
model users’ sequential actions, equipping LSTM with specifically designed time
gates to model time intervals. But they only concentrate on the prediction of
event sequences rather than time intervals. We take the best variant T-LSTM3
as a baseline.

GRU4e, GRU4t. These two are basic RNN models for events and times
separately. The encoder and decoder were constructed with 2-layer GRU cells.

GAN4t. Similar to GRU4t, this is an encoder-decoder model constructed
with 2-layer GRUs. Discriminator was applied to jointly learning the numerical
approximation and distributional consistency.

MM-CPred-iG. The variants of proposed MM-CPred equipped with dif-
ferent numbers of time generators.

5.3 Metrics

The metrics we used to evaluate the event prediction performance are MRR@10
and Recall@10.

Mean Reciprocal Rank (MRR) is a statistic measure for evaluating the
process that produces a list of possible items. It takes into account the rank of
the items. The specific formulation is:

MRR@k =
1

|Q|
|Q|∑
i=1

1
ranki

(13)

where Q denotes the desired events and ranki is event’s rank in the corresponding
result list. And the reciprocal rank is set to zero if the rank is over k.

Recall@k is the proportion of relevant items found in the top-k recommen-
dations which can be written as:

Recall@k =
#relevant recommended events@k

#total relevant items
(14)



520 L. Lin et al.

5.4 Experiments on Event Prediction

In this subsection, we compare the next one event prediction performance of our
model with the baselines. We evaluate MRR@10, Recall@10 of these methods
on RECSYS15, CIKM16, LastFM-5k, and LastFM-1k. For NHP and T-LSTM3,
we use the same settings as they were proposed. For GRU4e and MM-CPred,
the dimension of the event embedding vectors and all hidden states of GRU is
set to 200. At the beginning of training, we initialize the linear regularization
factor for joint loss function with γ = 1.0, α = 1.0. The learning rates for all
three steps of training are 1e−4.

Table 2. The accuracy(%) of predicting the next one event on four datasets.
(M@10:MRR@10, R@10:Recall@10)

Models RECSYS15 CIKM16 LastFM-5k LastFM-1k

M@10 R@10 M@10 R@10 M@10 R@10 M@10 R@10

NHP - - - - 6.3 10.1 11.2 28.8

T-LSTM3 1.2 5.4 0.5 4.7 15.2 30.2 19.2 36.8

GRU4e 10.5 26.4 3.6 8.6 7.3 15.6 21.0 35.4

MM-CPred 10.2 30.8 4.1 10.2 19.4 35.8 24.6 40.5

The results are shown in Table 2. We can see MM-CPred outperforms almost
all the baselines on four datasets, except MRR@10 on RECSYS15, which is 0.3%
lower than GRU4e. The reason for the decrement is probably that joint training
of MM-CPred in the third step sacrifices the accuracy in event prediction to
facilitate the improvement on time prediction, which is quite normal in multi-
task learning models. This phenomenon also reflects that time features are not
always helpful for predicting what events would happen in the future. Besides,
NHP failed in predicting the next event because the sizes of events in REC-
SYS15 and CIKM16 are beyond the capability of modeling. Thus we cannot get
MRR@10 and Recall@10 on these two datasets.

5.5 Experiments on Time Prediction

We validate the accuracy of time prediction of MM-CPred comparing with NHP,
T-LSTM3, GRU4t and GAN4t. NHP and MM-CPred are able to predict events
and times simultaneously, so the predicted times are brought out from above
trained models. For GRU4t and GAN4t, we take the same setting as introduced
in previous subsection. Since T-LSTM3 was not designed for time prediction
at all, we re-implement the T-LSTM3 cell and apply it into GAN4t to get the
predicted times. The accuracy of time prediction is measured by Mean Absolute
Error (MAE). From the results reported in Table 3, we can see MM-CPred
outperforms all baselines on time prediction. At the bottom of Table 3, we show
the maximum relative differences between our model and baselines. On LastFM-
5k, the model achieved a 39.7% error reduction compared with NHP.



MM-CPred: A Multi-task Predictive Model for Continuous-Time 521

Table 3. MAE between predicted and real times(s). The bottom row shows the max-
imum relative differences compared with baselines.

Model RECSYS15 CIKM16 LastFM-5k LastFM-1k

NHP 98.10 63.22 34.87 61.03

T-LSTM3 84.11 47.32 21.19 50.88

GRU4t 89.29 49.72 26.99 52.30

GAN4t 85.22 48.58 21.58 51.72

MM-CPred 83.44 45.23 21.02 50.88

�14.9% �28.5% �39.7% �16.6%

Table 4. Time MAE comparison of MM-CPred-iGs

Model RECSYS15 CIKM16 LastFM-All

MM-CPred-1G 88.69 (s) 46.17 (s) 114.02 (ms)

MM-CPred-3G 83.44 (s) 45.23 (s) 107.77 (ms)

MM-CPred-6G 88.28 (s) 45.89 (s) 109.84 (ms)

5.6 Ablation Study

To clarify the contributions of mixture learning losses, we design GRU4e and
GRU4t, which only captures the order information of events and times respec-
tively. Table 2 shows without the third step, joint learning for events and times,
the accuracy of events prediction decreased on most datasets. GAN4t was estab-
lished by equipping GRU4t with the adversarial training. Compare with MM-
CPred, GAN4t skipped the first step of training, which means that there is no
event information used in it. MAE of times in Table 3 shows that the improve-
ments of MM-CPred on time prediction benefit from adversarial training and
multi-task learning.

The number of time generators (ng) controls the multi-modal of time distri-
butions. If we use a large ng, time distribution density will be flattened, which
leads to that the predicted mean value would be greater than the real mean.
But if ng is small, time distribution density will be sharp, which leads to mode
collapse. To depict this, we vary the number of time generators and report the
prediction accuracies of the next event’s time in Table 4. We see that when
applying 3 time generators, MM-CPred-3G gets the best performance on time
prediction. To verify the contribution of mixture generators for time, we visu-
alize the distribution densities of two samples from RECSYS15 in Fig. 4. From
the comparison of time distribution densities between Fig. 5(a) and 5(b), we can
see when 3 time generators were applied in MM-CPred, the distribution of pre-
dicted times appears 3 obvious peaks, which increased the overlap area with the
real-time distribution.



522 L. Lin et al.

Fig. 4. Time distributions from varied number of generators

5.7 Discussion of Sequence Length

MM-CPred is proposed to predict future events and their timestamps, in other
words, it outputs event sequences and the relative time sequences at the same
time rather than just one next event. In Fig. 5, we show the performance of our
model using varied output length. In this experiment, the length of sequences
injected into MM-CPred is 20. We set the output length with 1, 5, 10, 15, and
20 respectively. The MAE between predicted and real times decreases as the
length of output sequences increases, which is the opposite of common RNN-
based sequence prediction models. The reason is that the adversarial learning
algorithm aims to hold the consistency of distribution densities between the
predicted times and real samples. The longer sequence we have, the more precise
distance we can obtain. Thus the mean errors decreased. MRR@10 for events
maintains stable when the length increases, which shows the 3-step training
strategy is effective even for long sequence prediction.

Fig. 5. Experimental results varying the length of output sequences on the dataset
RECSYS15 and LastFM-5k in terms of Time MAE and MRR@10

5.8 Experimental Details

We implement MM-CPred using Tensorflow v1.14.0. The models are trained on
single GeForce GTX 1080ti GPU. The lookup table for events is constructed by



MM-CPred: A Multi-task Predictive Model for Continuous-Time 523

a uniform initializer. We set the hidden size of vectors in our model as the same
with the dimension of event embeddings de, which means dmodel = de = 200. The
batch size is 512, and the input length is set to 5 when predicting next one event.
We employ h = 4 parallel attention layers (heads) in multi-head attention. For
each of these we use dk = dv = dmodel/h = 50. The initialization of regularizer
parameters for mixture loss γ, α = 1.0, but they can be updated by the ratio of
losses on the validation set. We set the learning rate for each step of training
as 0.0001. RMSPropOptimizer is used to backward the gradients in our model.
Since we train the model linearly following the 3-step training strategy, though
the architecture itself is not very deep, the time cost for one batch training must
be considered. In the experiments, we scale the batch size to 512 and decrease
the number of batches. When training MM-CPred, the time cost for training
one batch of data is 8.9 s.

6 Conclusion and Future Work

We explore using multiple generative models to keep the consistency of predicted
time distribution with real-time samples. Mixture losses are used to conduct a
3-step training strategy on MM-CPred, taking into account the different charac-
teristics between discrete event sequences and continuous timestamps. The joint
loss function in our model is an aggregate of MLE, regression, and adversar-
ial loss. The RNN encoder for event sequences and the CNN encoder for time
sequences can capture the information of them separately. The introduction
of the multi-head attention mechanism helps align history features effectively.
Empirical results validate the performance of MM-CPred not only on event
sequence prediction but also on time sequence prediction.

We are looking forward to the future of MM-CPred and plan to apply them
to sequence generation. We plan to combine the adversarial learning with MLE
estimation on event prediction to generate complete event sequences. Though the
multiple generators with a selector can capture the multi-modal characteristics of
probabilities, the stability is still a weak point because they sometimes sharpen
the indistinct distribution in real data, which may also cause the model not to
converge.

Acknowledgment. The work was supported by the National Key Research and
Development Program of China (No. 2019YFB1704003), the National Nature Science
Foundation of China (No. 71690231), Tsinghua BNRist.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv:abs/1701.
07875

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation (2014). arXiv preprint: arXiv:1406.1078

3. Fedus, W., Goodfellow, I., Dai, A.M.: MaskGAN: better text generation via filling
in the blank. In: International Conference on Learning Representations (2018)

http://arxiv.org/abs/abs/1701.07875
http://arxiv.org/abs/abs/1701.07875
http://arxiv.org/abs/1406.1078


524 L. Lin et al.

4. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)
5. Granroth-Wilding, M., Clark, S.: What happens next? Event prediction using a

compositional neural network model. In: Thirtieth AAAI Conference on Artificial
Intelligence (2016)

6. Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J.: Long text genera-
tion via adversarial training with leaked information (2017). arXiv preprint:
arXiv:abs/1709.08624

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Huber, P.J.: Robust estimation of a location parameter. In: Kotz, S., Johnson,
N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives
in Statistics)Springer Series in Statistics (Perspectives in Statistics), pp. 492–518.
Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9 35

9. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: ICLR (2017)

10. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. The Handbook of Brain Theory and Neural Networks 3361(10), 1995 (1995)

11. Li, Y., Du, N., Bengio, S.: Time-dependent representation for neural event sequence
prediction (2017). arXiv preprint arXiv:1708.00065

12. Li, Z., Ding, X., Liu, T.: Constructing narrative event evolutionary graph for script
event prediction. In: IJCAI (2018)

13. Lin, K., Li, D., He, X., Zhang, Z., Sun, M.T.: Adversarial ranking for language
generation. In: NIPS (2017)

14. Lin, L., Wen, L., Wang, J.: MM-Pred: a deep predictive model for multi-attribute
event sequence. In: Proceedings of the 2019 SIAM International Conference on
Data Mining, pp. 118–126. SIAM (2019)

15. Linden, G., Smith, B., Bullet, J.L.: Recommendations item-to-item collaborative
filtering (2001)

16. Mei, H., Eisner, J.M.: The neural Hawkes process: a neurally self-modulating mul-
tivariate point process. In: Advances in Neural Information Processing Systems,
pp. 6754–6764 (2017)

17. Musto, C., Semeraro, G., Degemmis, M., Lops, P.: Word embedding techniques for
content-based recommender systems: an empirical evaluation. In: RecSys Posters
(2015)

18. Neumann, L., Zisserman, A., Vedaldi, A.: Future event prediction: if and when. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2019)

19. Pichl, M., Zangerle, E., Specht, G.: Now playing on spotify: leveraging spotify
information on twitter for artist recommendations. In: ICWE Workshops (2015)

20. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: WWW (2001)

21. Semeniuta, S., Severyn, A., Gelly, S.: On accurate evaluation of GANs for language
generation (2018). ArXiv: arXiv:abs/1806.04936

22. Tavakol, M., Brefeld, U.: Factored MDPs for detecting topics of user sessions. In:
RecSys (2014)

23. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information
processing systems, pp. 5998–6008 (2017)

24. Xu, J., Ren, X., Lin, J., Sun, X.: Diversity-promoting GAN: a cross-entropy based
generative adversarial network for diversified text generation. In: EMNLP (2018)

http://arxiv.org/abs/abs/1709.08624
https://doi.org/10.1007/978-1-4612-4380-9_35
http://arxiv.org/abs/1708.00065
http://arxiv.org/abs/arXiv:abs/1806.04936


MM-CPred: A Multi-task Predictive Model for Continuous-Time 525

25. Yi, X., Hong, L., Zhong, E., Liu, N.N., Rajan, S.: Beyond clicks: dwell time for
personalization. In: Proceedings of the 8th ACM Conference on Recommender
Systems, pp. 113–120. ACM (2014)

26. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial
nets with policy gradient (2016). ArXiv:abs/1609.05473

27. Zhou, T., Qian, H., Shen, Z., Zhang, C., Wang, C., Liu, S., Ou, W.: Jump: a jointly
predictor for user click and dwell time. In: IJCAI (2018)

28. Zhu, Y., et al.: What to do next: modeling user behaviors by time-LSTM. In:
IJCAI, pp. 3602–3608 (2017)

http://arxiv.org/abs/abs/1609.05473


Modeling Dynamic Social Behaviors with
Time-Evolving Graphs for User Behavior

Predictions

Tianzi Zang1, Yanmin Zhu1(B), Chen Gong1, Haobing Liu1, and Bo Li2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

{zangtianzi,yzhu,gongchen,liuhaobing}@sjtu.edu.cn
2 Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR

bli@cse.ust.hk

Abstract. The full coverage of Wi-Fi signals and the popularization
of intelligent card systems provide a large volume of data that contain
human mobility patterns. Effectively utilizing such data to make user
behavior predictions finds useful applications such as predictive behav-
ior analysis, personalized recommendation, and location-aware services.
Existing methods for user behavior predictions merely capture tempo-
ral dependencies within individual historical records. We argue that user
behaviors are largely affected by friends in their social circles and such
influences are dynamic due to users’ dynamic social behaviors. In this
paper, we propose a model named SDSIM which consists of three inde-
pendent and complementary modules to jointly model the influences
of user dynamic social behaviors, user demographics similarities, and
individual-level behavior patterns. We construct time-evolving graphs to
indicate user dynamic social behaviors and design a novel component
named DSBcell which captures not only the social influences but also
the regularity and periodicity of user social behaviors. We also construct
a graph based on user similarities in demographics and generate a rep-
resentation for each user. Experiments on two real-world datasets for
multiple user behavior-related prediction tasks prove the effectiveness of
our proposed model compared with state-of-the-art methods.

Keywords: User behavior prediction · Time-evolving graphs ·
Dynamic graph convolution network

1 Introduction

With the rapid development of informatization and digitalization, a large num-
ber of user behavior logs (e.g., Wi-Fi records and smart card records) contin-
uously generate at all times [5,29]. The availability of such data offers a good
opportunity to depict user behavior patterns which has a variety of applica-
tions including marketing strategy formulation, rational allocation of resources,
personalized recommendation, and thus has attracted a lot of attentions [20,29].

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 526–541, 2021.
https://doi.org/10.1007/978-3-030-73194-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_35


Modeling Dynamic Social Behaviors with Time-Evolving Graphs 527

Fig. 1. An example of the social influences and users’ dynamic social behaviors.

In this paper, we focus on multiple user behavior-related prediction tasks.
Specifically, we study the behaviors of individuals with respect to three impor-
tant aspects, namely, geographical location (where will a user visit), time (when
will a user visit locations of a given category), and payment amount (how
much will a user spend). These tasks investigate user mobility predictions in the
spatial-temporal dimensions and have a deep sight in the consumption-ability of
users, which are of great significance for providing personalized recommendations
at the right place, time, and price.

Through an empirical study on real-world datasets, we find that user behav-
iors are influenced not only by historical behaviors but also by behaviors of others
in their social circles. Furthermore, users’ social behaviors are dynamic, which
results in users being influenced by different friends each day. Figure 1 shows
an example. As we can see, Tom has three friends (i.e., Jack, David, and Alice)
with different interests and hobbies. On the first day, Tom and Alice meet at a
conference, so Tom may eat pasta with Alice at her usual restaurant as Alice
likes pasta. At that time, Tom’s behaviors are mainly influenced by Alice and
have nothing to do with Jack and David. On the second day, Tom receives Jack’s
invitation to see a movie, and Tom’s behaviors will be more influenced by Jack
than Alice and David. Besides, we propose that demographics also affect user
behaviors, and users with similar demographics tend to have similar behaviors.
A common scenario is that women generally shop more frequently than men
while men eat more than women leading to a higher dining payment amount.

Existing research on user behavior modeling can be divided into two cate-
gories (i.e., probability graphical-based methods and recurrent neural network-
based (RNN) methods). The probability graphical-based methods [6,20,25,26]
regard multiple predictions such as spatial, temporal, payment, and category as
different variables and build probability graphs to describe relationships among
the variables. These methods are based on known casual relationships and condi-
tional independence among variables, thus cannot model complex latent depen-
dencies among variables. The RNN-based methods [1,10,17,28] utilize deep



528 T. Zang et al.

learning methods and treat user behavior predictions as sequence prediction
tasks. There are multiple variants (e.g., bidirectional RNN [11] and Time-LSTM
[29]) being applied to capture temporal dependencies within a sequence. How-
ever, these methods assume users behave independently and ignore the influences
of user dynamic social behaviors as well as the demographics described above.

There are three main challenges to capturing the influences of user dynamic
social behaviors and demographic similarities. First, in many cases, there are no
explicit user-user relationships or observed social circles. The challenge is how to
infer social relationships among users based on other signals in the data. Second,
as shown in Fig. 1, users dynamically interact with different people within their
social circles, thus different friends affect users’ behaviors each day. However,
there is no ready-made way to simultaneously capture such social influences as
well as the regularity of users’ dynamic social behaviors. Third, the demographics
contain much information fields with redundancies and noises, the challenge is
how to effectively utilize such information for user behavior predictions.

In response to the challenges mentioned above, we propose a model named
SDSIM which consists of three independent and complementary modules to
simultaneously capture the influences of user dynamic social behaviors, user sim-
ilarities in demographics, and individual-level behavior patterns. First, to cap-
ture the influences of user dynamic social behaviors, we treat user co-occurrence
behaviors as indications of social relationships and construct a graph to rep-
resent social circles among users. Based on this graph, we further construct
time-evolving graphs in days to represent the dynamic social behaviors of users
on each day. Then we design a novel component named DSBcell to capture the
social influences from friends as well as the regularity and periodicity of users’
social behaviors. Second, to capture the influences of user demographics similar-
ities, instead of taking the information directly as input, we construct a graph
based on user similarities in demographics and apply a graph embedding method
mapping it into a dense latent space to reduce noises and redundancies. Third,
we capture the influences of individual-level behavior patterns at different tem-
poral granularities by an improved 1D dilated convolutional network. After that,
we obtain predicted results based on the outputs of these three modules.

Our main contributions can be summarized as follows:

• We focus on multiple user behavior-related predictions and propose a model
named SDSIM which jointly captures influences of user dynamic social behav-
iors, similarities in demographics, and individual-level behavior patterns.

• We construct time-evolving graphs in days based on co-occurrence behaviors
among users to indicate user dynamic social behaviors. We design a compo-
nent named DSBcell to capture the social influences from friends as well as
the regularity and periodicity of user dynamic social behaviors.

• We demonstrate the effectiveness of our proposed SDSIM model in various
applications. The experiments are conducted on two real-world datasets and
results show that SDSIM consistently outperforms competitive baselines.

The remainder of this paper is organized as follows. After surveying the
related work in Sect. 2, we formally define the user behavior prediction problem



Modeling Dynamic Social Behaviors with Time-Evolving Graphs 529

in Sect. 3. Section 4 introduces our proposed SDSIM model in detail. Section 5
presents the evaluation datasets, the baselines, and the experimental results.
Finally, we conclude this paper in Sect. 6.

2 Related Work

2.1 User Behavior Modeling

Probabilistic Graphical-Based Models. Probabilistic graphical-based mod-
els [6,20,25,26] predict the mobility of an individual from multiple aspects such
as spatial, temporal, payment, and category. They regard multiple predictions
as different variables and construct graphs in which nodes denote variables and
edges describe the conditional independence between variables. Wen et al. [20]
modeled customer behaviors using a payment dataset from banks. Yuan et al. [25]
studied individuals’ mobility behaviors from aspects of the user, geographic infor-
mation, time, and text contents from Twitter data. Cho et al. [6] took effects
of social ties on human mobility into consideration. However, these methods
are based on known casual relationships and conditional independence among
variables. They cannot model complex latent dependencies among variables.

Recurrent Neural Network-Based Models. RNN-based models utilize deep
learning methods and treat user behavior predictions as sequential modeling
tasks. RNN and its variants (e.g., GRU and LSTM) have been widely proven
to be powerful in modeling temporal dependencies within a sequence. In recent
years, some work tries to improve the structure of the cells or adds attention
mechanisms to enhance performance. Specifically, Ma et al. [11] utilized bidirec-
tional RNN and attention mechanisms to predict patients’ future health infor-
mation using electronic health records. Time-LSTM [29] models time intervals
between users’ actions to improve recommendation performance. Liu et al. [10]
proposed a profile-aware LSTM for multiple predictions about students. Yang
et al. [21,22] predicted the time a user will visit a specific location using data
collected from location-based social networks. However, these methods assume
users behave independently and ignore the fact that users are often influenced
by the activities of their friends and peers.

2.2 Graph Convolution Network-Based Prediction Models

Graph Convolutional Networks (GCNs) focus on integrating or aggregating sig-
nals from neighbor nodes by defining weighted average functions [12,13] or mul-
tiplication of signals in the Fourier domain [4,7]. They can model interactions
between connected nodes and are suitable structures to capture social influ-
ences among users. To capture the dynamics of graphs in real-world scenarios,
GCRN [16] combined the LSTM network with ChebNet. DCRNN [9] incorporated
a proposed diffusion graph convolutional layer into a GRU network. STGCN [23]
and ASTGCN [8] interleaved 1D-CNN layers with graph convolutional layers to
jointly learn spatiotemporal dependencies. These methods only focus on changes



530 T. Zang et al.

in the inputs while cannot capture changes in the graph structures. A recently
proposed approach named EvolveGCN [14] captured the dynamism of the graph
sequence by using an RNN to evolve the GCN parameters. Our proposed DSBcell
is different from theirs as it captures both the social influences from friends and the
regularity and periodicity of users’ dynamic social behaviors in the time-evolving
graphs.

3 Problem Statement

In this section, we introduce relevant definitions and formulate the problem of
user behavior predictions.

User Mobility Record. One user mobility record is denoted as Ru =
{user id, time, loc id, context} in which user id is the identification of user u.
time and loc id indicate when and where the record is generated. context contains
other related information such as the payment amount. Each loc id represents a
unique location which can be classified into different categories, such as canteen,
theater, and workspace, based on functional descriptions.

Demographics. Demographics involve some basic information of a user which is
denoted as Du = {du,1, du,2, ..., du,z}. z denotes the total number of information
fields that differ in different scenarios and datasets. Typically, the information
fields include gender, age, nationality, and occupation.

Problem Formulation. The problem of user behavior predictions is defined
as follows: given a user’ past mobility records RT

u = {RT−M+1
u , ..., RT−1

u , RT
u } of

previous M days and her demographics Du, we aim to predict multiple behavior-
related values (e.g., the next visit time Tnext

u,c to locations of a specific category
c, that is, the time in one record Ru; the next dining position Pnext

u that is the
loc id in Ru; the payment amount Anext

u of a meal which is contained in the
context of Ru).

4 Proposed Model

In this section, we first show the overall structure of the proposed SDSIM model
and then introduce the implementations of each module in detail.

4.1 Overview

Figure 2 shows the overall structure of our proposed SDSIM model which con-
sists of three independent and complementary modules. The first module aims
to capture the influences of user dynamic social behaviors. We construct time-
evolving graphs in days based on user co-occurrence behaviors and design a novel
component named DSBcell to capture such dynamic influences. The second mod-
ule is designed to capture the influence of user similarities in demographics. The
third module hierarchically captures the influences of individual-level behavior
patterns. We concatenate the output of each module to generate predict values.

In the following, we introduce the functionality of each module as well as the
implementations in detail.



Modeling Dynamic Social Behaviors with Time-Evolving Graphs 531

Fig. 2. The structure of SDSIM. It consists of three modules to jointly modeling the
influences of user dynamic social behaviors, user similarities in demographics, and
individual-level behavior patterns.

4.2 Modeling User Dynamic Social Behaviors

In many cases, social relationships among users are hidden without explicit
description. Moreover, due to users’ dynamic social behaviors, a user may be
influenced by different friends each day. Therefore, as shown in Fig. 2 (a), we pro-
pose to construct time-evolving graphs to indicate user dynamic social behaviors
and design a component named DSBcell to capture the influences from friends
as well as the regularity and periodicity of user dynamic social behaviors.

Constructing Time-Evolving Graphs. When explicit social relationships
are unavailable, we propose to represent user social circles based on co-occurrence
behaviors among users as companionship can be seen as an indicator of social
relationships. A co-occurrence behavior between user ui and uj is defined as they,
respectively, have a mobility record Rui

and Ruj
which satisfy that loc idui

=
loc iduj

and |timeui
− timeuj

| is smaller than a fixed interval I.
We count the number of co-occurrence behaviors N(ui, uj) in the training

set and get a graph Gg(V,E) where each node u ∈ V denotes a user and the
adjacent matrix Ag represents the social relationships among users. The values
of entries in Ag are determined according to Eq. (1).

Ag(ui, uj) =

{
0,

N(ui,uj)
Ntr(ui,uj)

< α

1,
N(ui,uj)

Ntr(ui,uj)
� α,

(1)

Ntr(ui, uj) = |Rui
| + |Ruj

|.



532 T. Zang et al.

|Ru| is the number of mobility records in the training set of user u. Though
one co-occurrence behavior may happen just due to chance, co-occurrence behav-
iors more than a proportion among users can be seen as an indication of
social relationships. Therefore, a threshold α is set to mitigate the effects of
chance events. Ag(ui, uj) = 1 means that two users are in a social circle while
Ag(ui, uj) = 0 means not.

To represent the dynamic social behaviors of users, we further construct
day-wise graphs GT

d (V T , ET ). An edge eT
ij ∈ ET is the co-occurrence times

NT (ui, uj) on that day between two users who have an edge in Gg. Formally,

eT
ij =

{
NT (ui, uj), Ag(ui, uj)=1
0, Ag(ui, uj)=0.

(2)

As only co-occurrence times of users with an edge in Gg are counted, it is
guaranteed that the social relationships contained in the day-wise graphs are
subsets of users’ social circles. Therefore, each day-wise graph reflects the social
behaviors of users on a day and a sequence of such time-evolving graphs contains
the regularity and periodicity of user social behaviors.

Designing DSBcell. To capture the influences of dynamic social behaviors in
the time-evolving graphs, we design a component named DSBcell which incor-
porates graph convolution operations into the LSTM structure. Figure 3 shows
an illustration of DSBcell.

The adjacent matrix At of time-evolving graphs and the record matrix Xt

on that day take turns as input to DSBcell. Each row in Xt is a record vector
Xt

u generated from mobility records Rt
u of a user. Taking predicting when a user

will visit locations locc of a specific category as an example. We divide a day
into S time slots and generate Xt

u ∈ R
S where Xt

u[s] represents the number of
times that u had visited locc between the s-th and (s + 1)-th time slot on that
day. The record vectors of all users are stacked together to form Xt.

When update states, instead of just considering previous states, DSBcell first
performs graph convolution operations on Xt to capture the influences from
connected friends. Besides, the RNN-based structure makes DSBcell able to
capture the periodicity and regularity of users’ social behaviors contained in
the sequence of time-evolving graphs. The updating formulas are as follows.

it = σ(WiAt + gθhki
∗G [Ht−1 ⊕ Xt

u] + bi), (3)
ft = σ(WfAt + gθhkf

∗G [Ht−1 ⊕ Xt
u] + bf ), (4)

ot = σ(WoAt + gθhko
∗G [Ht−1 ⊕ Xt

u] + bo), (5)
Ct = ft ◦ Ct−1 + it ◦ tanh(WcAt + gθck

∗G [Ht−1 ⊕ Xt
u] + bc), (6)

Ht = ot ◦ tanh(Ct), (7)

where it, ft and ot denote the input gate, the forget gate, and the output gate
and Ct, Ht are the memory and hidden states. gθ are convolution filters and b
are biases. ∗G denotes the spectral graph convolution operation. Formally,



Modeling Dynamic Social Behaviors with Time-Evolving Graphs 533

Fig. 3. An illustration of DSBcell which integrates graph convolution operation into
the structure of LSTM. It captures the social influences from users as well as the
regularity and periodicity of users’ dynamic social behaviors.

gθ ∗G x = gθ(L)x =
K∑

k=0

θkTk(L̃)x, (8)

where x is the input and θk ∈ R
K is a vector of polynomial coefficients that

act as convolutional filters. L̃ = 2
λmax

L − IN , where L is the normalized Lapla-
cian matrix and IN is a unit matrix. The Chebyshev polynomial is a recursive
definition where Tk(a) = 2aTk−1(a) − Tk−2(a) and T0(a) = 1, T1(a) = a. The
hyper-parameter K determines that the 0 to (K − 1)-th order neighbors are
considered when generate the predict values.

The hidden state HT in the last step is treated as the generated representation
of all users.

4.3 Modeling User Similarities in Demographics

To model user similarities in demographics, we first extract user feature vectors
from demographics and construct a graph based on the feature vector similari-
ties of every pair of users. We then apply a graph embedding method to generate
a dense representation for each user where similar users have closer representa-
tions. We illustrate this process in Fig. 2(b).

Constructing Similarity Graph. Since demographics contain much infor-
mation fields with redundancies and noises, to integrate them and facilitate
predictions, we first extract the feature vector Fu ∈ R

Ld of each user by encod-
ing discrete values with one-hot coding and concatenate them with continuous
values. We then calculate the similarities between user feature vectors and get
a static graph Gs(V s, Es) in which each node u ∈ V s is a user while an edge
es
ij ∈ Es denotes the cosine similarity between ui and uj . Formally,



534 T. Zang et al.

es
ij =

Fui
· Fuj

‖Fui
‖‖Fuj

‖ =

∑Ld

l=1(F
l
ui

× F l
uj

)√∑Ld

l=1(F l
ui

)2 ×
√∑Ld

l=1(F l
uj

)2
, (9)

where Ld denotes the total length of the feature vector. F l
ui

is the l-th value in
the feature vector of ui.

Generating User Representations. We apply a graph embedding method
called LINE [18] to encode each user into a low-dimensional dense represen-
tation. It has a carefully designed objective function that preserves both the
first-order and second-order proximities. Given the graph Gs(V s, Es), for each
node (i.e., a user), it outputs a dense latent representation Eu ∈ R

Ls where
Ls � Ld that preserves the structure of the graph. Therefore, the generated
representations reflect similarities among users by forcing similar users to have
closer representations. Note that LINE can be replaced with any other graph
embedding methods, and we leave this for future work.

4.4 Modeling Individual-Level Behavior Patterns

We argue that there exist individual-level behavior patterns on different tempo-
ral scales contained in user mobility records. In general, user behaviors have a
periodicity in days or weeks. Existing RNN-based methods tend to capture only
temporal dependencies without explicitly modeling such periodicity. Therefore,
we perform L dilated convolution layers (DCNN) [19,24] with different dilated
rates on the input hierarchically to capture individual-level patterns at different
temporal scales. For example, when the dilated rate is set to 7, this layer extracts
dependencies between the same days of adjacent weeks.

Given X T
u = {XT−M+1

u , ...,XT−1
u ,XT

u } ∈ R
M×S as input, the formula of

DCNN is shown in the following.

Ol
u = θl

d ∗D X T
u , l = 1, 2, ..., L, (10)

where ∗D denotes the dilated convolutional operation. θl
d ∈ R

Ml×S and Ol
u ∈

R
M×S are convolution filters and outputs of the l-th layer where Ml is the dilated

rate. We applied padding operation to keep the shape of output consistent. A
more detailed explanation of the DCNN network can be found in [19,24].

4.5 Generating Prediction Results

At each timestamp T and for each user u, we obtain three representations:
HT

u which contains the influences of user dynamic social behaviors, OT
u which

captures individual-level behavior patterns at different temporal scales, and Eu

which preserves user similarities in demographics. We concatenate them as RT
u =

Eu ⊕HT
u ⊕OT

u and add two fully-connected layers converting RT
u into predicted

values. Formally,



Modeling Dynamic Social Behaviors with Time-Evolving Graphs 535

ŷT+1
u = σ(W2(relu(W1R

T
u + b1)) + b2), (11)

where W1, W2, b1 and b2 are learnable parameters. ŷT+1
u is the predicted value.

relu and σ are activation functions.

4.6 Model Learning

Depending on whether the target values are continuous or discrete, user behavior
predictions can be either regression tasks (e.g., predicting next visit time Tnext

u,c

and predicting payment amount Anext
u ) or classification tasks (e.g., predicting

next dining position Pnext
u ). We learn parameters for regression tasks and clas-

sification tasks by, respectively, minimizing the root of the mean squared loss
(denoted as L1) and the cross-entropy loss (denoted as L2) between predicted
values ŷu and true values yu. The loss functions are as follows:

L1(θ) =

√√√√ 1
U

U∑
u=1

(yu − ŷu)2, L2(θ) = −
U∑

u=1

(yu ∗ log(ŷu)), (12)

where θ are all learnable parameters in the model. U is the number of samples
in a batch. Note that, for the sake of generality, we use ŷu and yu to represent
predicted values and true values for both classification and regression tasks. In a
specific task, y can be Tnext

u,c , Anext
u , Pnext

u or other user behavior-related values.
We adopt the mini-batch gradient descent optimization method and the Adam
optimizer to learn the parameters.

5 Experiments

In this section, based on two real-world datasets, we compare our SDSIM model
with several models concerning both regression and classification tasks. We first
describe the datasets followed by baselines, evaluation metrics, and settings of
hyperparameters. Finally, we present experimental results in detail.

5.1 Dataset

We evaluate our proposed SDSIM model on two real-world datasets. The first
dataset, WIFI1, contains Internet access records of more than 20000 users in the
community of a big company from September 1st, 2014 to January 31th, 2015.
Each record includes user identification (anonymized), location, session start
time, and session duration. There are more than 12,000,000 records. According
to functional descriptions, positions are divided into different categories (e.g.,
canteen, gym, workspace, public activity building). We use this dataset to predict

1 https://www.kesci.com/home/competition/55d1ca96fc5e031af03ddc65/content/1.

https://www.kesci.com/home/competition/55d1ca96fc5e031af03ddc65/content/1


536 T. Zang et al.

users’ next visit time to canteens and workspaces. The records of the first 4
months are used as the training set while the records of the last month are
treated as the test set.

The second dataset, Smart Card, is collected from the campus smart card
system of a university. Smart cards are used by students for making food pay-
ments. This dataset covers records of more than 1000 students from July 1st,
2016 to June 30th, 2017, and there are more than 600,000 records. Each record
contains student id (anonymized), dining time, payment amount, and dining
position. This dataset is used to make predictions about the dining position and
payment amount. We use records of the first 9 months as the training set and
the last 3 months as the test set.

5.2 Baselines and Evaluation Metrics

The baselines used in our experiments are given below:

• HA: Historical Average (HA) gives predictions based on the average values
of historical observations.

• BRR/LR [27]: Bayesian Ridge Regression (BRR) and Logistic Regression
(LR) are two generalized linear models.

• SVR/SVM [27] : Support Vector Regression (SVR) is a variant of Support
Vector machine (SVM) for supporting regression tasks.

• GBDT: Gradient Boosting Decision Tree (GBDT) is an ensemble method
based on a “boosting” idea.

• FNN [15]: A neural network stacked by several fully connected layers.
• Time-LSTM [29]: An improved structure of long-short term memory net-

work (LSTM) which takes time interval into consideration.
• ASTGCN [8]: A spatial-temporal graph convolution model with an attention

mechanism to capture both spatiotemporal dependencies.
• DCRNN [9]: The diffusion process is used to simulate the interactions

between nodes in a graph.
• EvolveGCN [14]: A model that tries to capture dynamic interactions by

combining GCN with GRU.

For regression tasks, we use the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE) as evaluation metrics. For classification tasks, we
adopt three widely used evaluation metrics [2,3]: precision, recall, and macro-F1
score. Due to space limitations, we omit specific calculation formulas.

5.3 Experimental Setting

When predicting user next visit time to canteens, dining payment amount, and
dining position, a day is divided into 18 time slots and each slot is half an hour as
canteens only open between 6−9, 11−14 and 17−20 each day. When predicting
a user’s next visit time to the workspace, we divide a day into 24 time slots and
each time slot is an hour as workspaces are accessible at any time of day. We



Modeling Dynamic Social Behaviors with Time-Evolving Graphs 537

Table 1. Performance comparison between SDSIM and baselines.

Dataset WIF Smart Card

Model Canteen Workspace Payment Position

MAE RMSE MAE RMSE MAE RMSE Precision Recall Macro-F1

HA 0.424 0.538 0.313 0.386 1.658 2.727 − − −
BRR/LR 0.350 0.474 0.241 0.275 1.589 2.603 0.345 0.302 0.310

GBDT 0.342 0.382 0.222 0.251 1.552 2.560 0.312 0.289 0.299

SVR/SVC 0.359 0.427 0.261 0.282 1.669 2.581 0.324 0.298 0.308

FNN 0.358 0.439 0.238 0.264 1.218 2.084 0.319 0.287 0.294

Time-LSTM 0.334 0.382 0.215 0.240 1.150 2.078 0.344 0.274 0.309

ASTGCN 0.329 0.377 0.212 0.237 1.136 2.058 0.384 0.276 0.299

DCRNN 0.327 0.379 0.209 0.235 1.134 2.055 0.388 0.280 0.301

EvolveGCN 0.326 0.363 0.199 0.231 1.121 2.034 0.399 0.283 0.303

SDSIM 0.310 0.363 0.199 0.231 1.073 2.007 0.451 0.286 0.319

append two-dimensional metadata information, indicating the day of a week and
weekday/weekend. For the dining payment amount and position predictions, we
further append the payment amount and position of previous records as input.

In SDSIM, the state size of DSBcell is set to 64 and the length of user
representation generated by LINE is set to 32. For each sample, we utilize records
of the previous 14 days to predict the target values. We stack two-layer dilated
1D convolution networks with dilated rates of 1 and 7 to capture periodicities of
days and weeks. When counting co-occurrence behaviors among users, the time
interval is set to 10 minutes. When training the model, the learning rate is set
to 0.001. We tune the parameters of baselines to get the best performance.

5.4 Experimental Results

In the following, we show the experimental results of SDSIM and baselines to
evaluate the performance.

Performance Comparison. Table 1 shows the performance comparison
between SDSIM and baselines. We can see that, except for the recall score in
the dining position prediction task, SDSIM consistently achieves the best perfor-
mance. The suboptimal performance is because higher precision tends to result in
lower recall in theory. HA gets the worst performance as it does not capture the
dependencies within the input. The performance of traditional machine learning
methods (i.e., BPR, LR, GBDT, SVR, and SVC) is relatively poor resulted from
their deficiencies in capturing complex dependencies. FNN and Time-LSTM get
better performance as they capture non-linear dependencies among inputs. As
both the graph convolution operation in ASTGCN and the diffusion process
in DCRNN can capture social influences among users, they get satisfied per-
formance on all the tasks. EvolveGCN gets the best performance among the



538 T. Zang et al.

Table 2. Ablation analysis of SDSIM

Variants MAE RMSE Precision Recall Macro-F1

SDSIM-I 1.245 2.272 0.306 0.277 0.294

SDSIM-S 1.134 2.054 0.391 0.273 0.296

SDSIM-D 1.127 2.031 0.420 0.281 0.301

SDSIM-DS 1.116 2.020 0.427 0.284 0.307

SDSIM 1.073 2.007 0.451 0.286 0.319

(a) State size (b) Time window size

Fig. 4. Parameter sensitivity of SDSIM and its variants.

baselines as it captures user dynamic social behaviors. The best performance
achieved by SDSIM on both regression and classification tasks demonstrates the
reasonability of our design and the effectiveness to capture the influences of both
the user dynamic social behaviors and demographics similarities.

Ablation Analysis. We study the effects of different modules in SDSIM. We
only show the results on the Smart Card dataset while the results on the WIFI
dataset are similar. To evaluate the impact of each module, we remove one factor
at a time and get four variants. Among them, SDSIM-S is a variant that does
not consider the influences of social behaviors. SDSIM-D is a variant that does
not utilize demographics. SDSIM-I is a variant without modeling individual-level
behavior patterns. SDSIM-DS only captures static social influences which means
we dos not construct day-wise graphs. The performance is reported in Table 2.
As we can see, SDSIM-I gets the worst performance, demonstrating individual-
level behavior patterns are of the most crucial and central significance for user



Modeling Dynamic Social Behaviors with Time-Evolving Graphs 539

behavior predictions. The better performance of SDSIM-DS than SDSIM-S
shows the necessity of capturing the influences of user social behaviors. Mean-
while, compared with SDSIM, the suboptimal performance of SDSIM-DS demon-
strates the effectiveness of considering the dynamics of user social behaviors when
capturing social influences. None of these variants perform as well as SDSIM
showing the validity of our proposed model and the importance of simultane-
ously capturing the three types of influences.

Parameter Sensitivity. Figures 4(a) and 4(b) show the effects of two hyper-
parameters in our model, namely, the state size in DSBcell and time window
size which determines how many days of records we utilize when generating a
training sample. We show the performance changes of SDSIM and the two vari-
ants (i.e., SDSIM-DS and SDSIM-D). We vary the state size from 16 to 112.
From Fig. 4(a), we can see that the state size does not affect the performance
of the model significantly and we get both the smallest MAE and RMSE when
we set the state size to 64. We then vary the time window size and respectively
use records of the previous 5, 7, 14, 21, and 28 days to predict the target values.
From Fig. 4(b), we can see when we set the time window size to 5, we get the
worst performance. This may because that periodicity of weeks cannot be cap-
tured just from the records of the previous 5 days. The performance begins to
improve as we use more records and get the best performance when we set the
time window size to 14. However, when the time window size is too long and the
dataset is relatively small, the number of training samples will be reduced and
the performance of the model begins to decline. Therefore, in our experiment, we
set the time window size to 14. Comparing the curve of SDSIM and the variants,
we can find that SDSIM achieves optimal performance under all settings with
the highest robustness and the lowest parameter sensitivity.

6 Conclusion and Future Work

In this paper, we focus on user behavior predictions. We propose a model named
SDSIM which jointly captures the influences of user dynamic social behaviors,
demographics similarities, and individual-level behavior patterns. We propose to
construct day-wise graphs and design a novel component called DSBcell to cap-
ture the influences from friends as well as the regularity and periodicity of user
social behaviors. We capture user similarities in demographics by constructing a
user similarity graph and generating a static representation of each user. Exper-
iments on two real-world datasets demonstrate the effectiveness of our model.

The proposed SDSIM model can be easily applied to other datasets such as
location-based social network datasets with available social relationships and do
not need to refer them. Besides, our SDSIM model can be easily extended to
other behavior prediction tasks. When predicting some low-frequency behaviors,
such as going to the gym or going to the theater, we can construct week-wise or
month-wise time-evolving graphs to adapt to the new scenarios. In the future,
we will try to improve the way of graph construction to get better performance.



540 T. Zang et al.

Acknowledgments. This research is supported in part by the 2030 National Key AI
Program of China 2018AAA0100503 (2018AAA0100500), National Science Foundation
of China (No. 62072304, No. 61772341, No. 61472254), Shanghai Municipal Science and
Technology Commission (No. 18511103002, No. 19510760500, and No. 19511101500),
the Program for Changjiang Young Scholars in University of China, the Program for
China Top Young Talents, the Program for Shanghai Top Young Talents, SJTU Global
Strategic Partnership Fund (2019 SJTU-HKUST), the Oceanic Interdisciplinary Pro-
gram of Shanghai Jiao Tong University (No. SL2020MS032) and Scientific Research
Fund of Second Institute of Oceanography (No. SL2020MS032).

References

1. Bai, T., Zhang, S., Egleston, B.L., Vucetic, S.: Interpretable representation learning
for healthcare via capturing disease progression through time. In: SIGKDD, pp.
43–51 (2018)

2. Bi, W., Kwok, J.T.: Multi-label classification on tree-and dag-structured hierar-
chies. In: ICML, pp. 17–24 (2011)

3. Braytee, A., Liu, W., Catchpoole, D.R., Kennedy, P.J.: Multi-label feature selection
using correlation information. In: CIKM, pp. 1649–1656 (2017)

4. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: ICLR (2014)

5. Chen, C., et al.: Predictive analysis by leveraging temporal user behavior and user
embeddings. In: CIKM, pp. 2175–2182 (2018)

6. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: SIGKDD, pp. 1082–1090 (2011)

7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NIPS, pp. 3844–3852 (2016)

8. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: AAAI, pp. 922–929
(2019)

9. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. In: ICLR (2018)

10. Liu, H., Zhu, Y., Xu, Y.: Learning from heterogeneous student behaviors for mul-
tiple prediction tasks. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S.,
Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12113, pp. 297–313. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59416-9 18

11. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
SIGKDD, pp. 1903–1911 (2017)

12. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model CNNs. In:
CVPR, pp. 5115–5124 (2017)

13. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: ICML, pp. 2014–2023 (2016)

14. Pareja, A., et al.: EvolveGCN: Evolving graph convolutional networks for dynamic
graphs. In: AAAI (2020)

15. Pi, Q., Bian, W., Zhou, G., Zhu, X., Gai, K.: Practice on long sequential user
behavior modeling for click-through rate prediction. In: SIGKDD, pp. 2671–2679
(2019)

https://doi.org/10.1007/978-3-030-59416-9_18


Modeling Dynamic Social Behaviors with Time-Evolving Graphs 541

16. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence mod-
eling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S.,
Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04167-0 33

17. Su, Y., et al.: Exercise-enhanced sequential modeling for student performance pre-
diction. In: AAAI, pp. 2435–2443 (2018)

18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: WWW, pp. 1067–1077 (2015)

19. Wang, P., et al.: Understanding convolution for semantic segmentation. In: WACV,
pp. 1451–1460 (2018)

20. Wen, Y.T., Yeh, P.W., Tsai, T.H., Peng, W.C., Shuai, H.H.: Customer purchase
behavior prediction from payment datasets. In: WSDM, pp. 628–636 (2018)

21. Yang, G., Cai, Y., Reddy, C.K.: Recurrent spatio-temporal point process for check-
in time prediction. In: CIKM, pp. 2203–2211 (2018)

22. Yang, G., Cai, Y., Reddy, C.K.: Spatio-temporal check-in time prediction with
recurrent neural network based survival analysis. In: IJCAI, pp. 2976–2983 (2018)

23. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: IJCAI, pp. 3634–3640 (2018)

24. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
ICLR (2016)

25. Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Who, where, when and
what: discover spatio-temporal topics for twitter users. In: SIGKDD, pp. 605–613
(2013)

26. Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., Han, J.: PRED: Periodic
region detection for mobility modeling of social media users. In: WSDM, pp. 263–
272 (2017)

27. Zhang, Y., Pennacchiotti, M.: Predicting purchase behaviors from social media. In:
WWW, pp. 1521–1532 (2013)

28. Zhang, Y., et al.: Sequential click prediction for sponsored search with recurrent
neural networks. In: AAAI, pp. 1369–1375 (2014)

29. Zhu, Y., et al.: What to do next: modeling user behaviors by time-LSTM. In:
IJCAI, pp. 3602–3608 (2017)

https://doi.org/10.1007/978-3-030-04167-0_33


Memory-Efficient Storing of Timestamps
for Spatio-Temporal Data Management in

Columnar In-Memory Databases

Keven Richly(B)

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
keven.richly@hpi.uni-potsdam.de

Abstract. Vast amounts of spatio-temporal data are continuously accu-
mulated through the wide distribution of location-acquisition technolo-
gies. Concerning the increased performance requirements of spatio-
temporal data mining applications, in-memory database systems are used
to store and process the data. As DRAM capacities are limited and
expensive, the efficient utilization of the available resources is necessary.
In contrast to storing the positions of moving objects, there is less focus
on optimized storage concepts for the temporal component. However, it
has a significant impact on the memory footprint and the overall system
performance. Especially for columnar databases, the memory-efficient
storing of timestamps is challenging as numerous compression approaches
are optimized for contradicting data characteristics (e.g., low number of
distinct values, sequences of equal values). In this paper, we present and
compare different data layouts for columnar in-memory databases to
store timestamps. Additionally, we propose an optimized approach for
range queries with standard access ranges that uses multiple columns.
We evaluate the memory consumption and performance of different com-
pression techniques for specific access patterns. Based on the results, we
introduce a workload-aware heuristic approach for the selection of per-
formance and cost balancing data layouts. Further, we demonstrate that
workload-driven optimizations for timestamps can significantly reduce
the data footprint and increase the performance of spatio-temporal data
management.

Keywords: In-memory databases · Data layout optimization ·
Spatio-temporal data

1 Introduction

In recent years, the wide distribution of location-acquisition technologies has
led to large amounts of spatio-temporal data. Positioning systems such as GPS
enable the tracking of different moving objects (e.g., persons or vehicles) [25].
Various applications use the generated trajectory data to analyze and optimize

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 542–557, 2021.
https://doi.org/10.1007/978-3-030-73194-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_36


Memory-Efficient Storing of Timestamps in Columnar Databases 543

movement patterns (e.g., ride-sharing) [13]. The trajectory of a moving object is
represented by a chronologically ordered sequence of timestamped coordinates
in a geographical reference system. Due to the massive volumes of continuously
captured data, the storing and processing of trajectory data is challenging [23].
To address the performance requirements of modern spatio-temporal data min-
ing applications, in-memory architectures are used for data management [17,24].
Especially for main-memory optimized databases that keep the most data in rela-
tively limited and expensive DRAM, operating costs can be reduced by utilizing
the available resources more efficiently [2]. The most common data format to
store spatio-temporal data is the sample point format, in which each observed
location is stored as a tuple with a set of attributes. This format is well suited
for the relational schema of modern database systems. In addition to standalone
storage systems specialized for trajectory data, database systems enable a simpli-
fied integration of further data sources (e.g., business data) [14]. By integrating
spatio-temporal data management into relational database systems, the data
querying benefits from the highly optimized data processing capabilities and the
advanced compression techniques of such systems.

In the context of spatio-temporal data, the temporal component is mostly
represented by timestamps to reflect different and varying sample rates. Similar
to the location of a moving object, the memory-efficient storing of timestamps
is challenging as numerous compression approaches in columnar databases are
optimized for contradicting data characteristics (e.g., low number of distinct val-
ues or sequences of equal values). There are several research approaches, which
focus on storing spatial coordinates in columnar databases [6,8]. In contrast,
there is less focus on optimized data structures for the temporal component.
However, it has a significant impact on the memory footprint and the overall
system performance. By still applying storage concepts designed for row-oriented
databases, we do not leverage the columnar data layout’s full potential. Here,
optimized data layouts can improve the runtime performance and reduce the
memory footprint [2,3]. Another aspect is that in various spatio-temporal data
mining applications, the queries request specific time ranges (e.g., all values of a
day or an hour) predominantly, which only address parts of the temporal infor-
mation. By considering these access patterns, we can apply optimized storage
formats for timestamps, which are able to reduce the memory traffic and only
transfer the relevant parts of the timestamp.

In this paper, we present and compare different data layouts for columnar in-
memory databases to store timestamps. We evaluate the memory consumption
and runtime performance of four data layouts in combination with different com-
pression techniques. As the different layouts have advantages and disadvantages
for specific requirements (e.g., memory limitations, performance constraints) and
workload characteristics, we present a heuristic approach for the workload-driven
joint selection of a data layout and compression scheme. Based on the weighted
ratio between memory consumption and runtime performance, the selection can
reflect different requirements. Additionally, we describe a multiple column data
layout for timestamps, which can reduce memory traffic for access patterns that



544 K. Richly

focus on parts of the timestamp. Furthermore, we introduce a linear program-
ming approach to select a compression scheme that optimizes the compression
rate and runtime performance of the multiple column data layout. Our contri-
butions are the following:

– We evaluate the memory consumption and runtime performance of different
data layouts and for timestamps in columnar in-memory databases.

– We present an optimized data layout for temporal range queries with standard
access ranges that use multiple columns to store the different components.

– We introduce a heuristic approach for the workload-driven optimization of
data structures for timestamps.

This paper is organized as follows. We describe related work in Sect. 2. In
Sect. 3, we present four data layouts to represent timestamps in database sys-
tems. In Sect. 4, we evaluate the memory consumption and runtime performance
of the data layouts for different compression techniques based on a real-world
dataset of a transportation network company. Afterward, in Sect. 5, we present a
workload-aware selection heuristic and introduce further optimizations concepts.
We conclude the paper in Sect. 6.

2 Related Work

There are different approaches to store the timestamps of spatio-temporal and
time-series data more efficient. One approach is to calculate the timestamp based
on the position of an observed location in the sequence of chronologically ordered
locations [13]. Here, no main memory is used to store the temporal component,
which reduces the memory footprint of spatio-temporal data significantly. How-
ever, this approach does not apply to applications where the moving objects have
different sample-rates, the locations are tracked without a fixed sample rate, or
the transmission of each observed location can not be guaranteed. Pelkonen
et al. [11] introduced a concept to store timestamps for time-series data as the
delta of deltas. Here, the offset to the standard delta between two data points is
stored with a variable amount of bits depending on the offset. Timestamps with
the same delta can be stored with one bit, which makes the approach memory
efficient. However, this storage concept is optimized for the analysis and visual-
ization of time-series data. For spatio-temporal workloads with trajectory-based
and spatio-temporal range queries, additional overhead is introduced due to the
computation of an observed location’s timestamp based on the deltas, which has
to be performed for various moving objects. Wang et al. [20,21] presented an
I/P frame-based structure to store trajectory data in in-memory column stores.
The authors divide the data into frames of a fixed period (e.g., one minute)
and create for each of these frames two table columns, which store the two-
dimensional coordinates of one representative location for each moving object
in this timeframe. In this approach, the determination of the timespan of one
frame is challenging for use cases with varying sample rates. However, the time-
frames introduce additional uncertainty. A disadvantage of this data layout is
that many columns have to be scanned for spatial range queries.



Memory-Efficient Storing of Timestamps in Columnar Databases 545

Also, different research papers focus on the selection of optimized compres-
sion schemes. Abadi et al. [1] presented a decision tree-based approach to deter-
mine compression scheme in C-store. The selection is based on workload and data
properties but does not adapt to changing environments nor considers memory
budgets. Boissier et al. [2] introduced a workload-driven selection of compression
configurations with memory constraints for columnar databases. The approach
uses a greedy heuristic to determine configurations based on data characteris-
tics and estimated runtime performances based on regression models. Lang et
al. [7] presented data blocks for HyPer. It selects compression schemes stati-
cally based on data characteristics for the data blocks. These approaches focus
on the optimized selection of compression scheme based on data and workload
characteristics but do not consider that different data layouts can be applied to
store specific data types. Based on the applied data layout, columns’ data char-
acteristics can change significantly and consequently create further optimization
potentials.

3 Data Layouts for Timestamps in Columnar Databases

In various spatio-temporal applications, we observed that the provided temporal
data types of columnar databases are not used. Although these data types offer
many features to query and process temporal information, the applications use
customized data layouts based on standard data types due to performance or
memory budget constraints. In this section, we analyze the common data layouts
(i) string format, (ii) Unix timestamps, and (iii) separated date and time columns
concerning their applicability in columnar databases. Additionally, we introduce
a multiple column approach to store timestamps.

3.1 Common Data Layouts for Timestamps

The first format based on standard data types that we observed in spatio-
temporal data mining applications is the string format. It stores a timestamp in
a single column of the data type string. Based on the ISO 8601 guidelines, the
different time units (e.g., year, month, or day) are stored in descending order
and divided by specific delimiters. The format applied by most applications is
YYYY-MM-DD HH:MM:SS. Due to the specified delimiter symbols, it is pos-
sible to query parts of the timestamp (e.g., all observed locations in a specific
hour over multiple days) via SQL LIKE statements. Due to the defined order
of the time units, the chronological order of the timestamps is preserved. SQL
statements that require such an order (e.g., BETWEEN) can be realized via
string comparisons. A disadvantage of this approach is that a relatively high
amount of memory is necessary to store a single element. Consequently, we have
high memory traffic to process the data even if only parts of the timestamp are
queried.

Another approach is the usage of Unix timestamps, which is widely used
by operating systems and file formats. Here, each timestamp is stored as an



546 K. Richly

TIMESTAMP

1541030411

1541030426

1541030502

1541091616

1541225680

TIMESTAMP

2018-11-01 00:00:11

2018-11-01 00:00:26

2018-11-01 00:01:42

2018-11-01 17:00:16

2018-11-03 06:14:40

DATE TIME

2018-11-01 00:00:11

2018-11-01 00:00:26

2018-11-01 00:01:42

2018-11-01 17:00:16

2018-11-03 06:14:40

YEAR MONTH DAY HOUR MINUTE SECOND

2018 11 1 0 0 11

2018 11 1 0 0 26

2018 11 1 0 1 42

2018 11 1 17 0 16

2018 11 3 6 14 40

String
(string)

Unix Timestamp
(integer)

Date/Time
(string)

Multiple Columns
(integer)

Fig. 1. Data layout of the different approaches to represent timestamps in databases.

integer value in a single column. The integer value represents the number of
seconds that have elapsed since the Unix epoch, which is defined as the 00:00:00
UTC on the first of January 1970. Compared to the string format, we need less
memory to store a single timestamp. Additionally, modern CPUs are optimized
to process integers values efficiently [22]. This approach is well-suited for queries
that request a continuous period in the data. Due to leap seconds and years,
the calculation of specific recurring periods in a larger timeframe is not trivial.
For that reason, several database systems convert the Unix timestamps into the
string format to process these types of queries (e.g., all observed locations in an
hour on various days). This entire process is time-consuming, especially for high
spatio-temporal data volumes.

Several efficient compression techniques for columnar databases benefit from
a relatively low number of distinct values (e.g., dictionary-encoding) or a high
number of equal consecutive values (e.g., run-length encoding) [12]. Both pre-
sented data layouts led to a high number of distinct values. To address this issue,
the timestamp is split into a date and time part and stored in separate columns in
some applications. By storing date and time in different columns, we are able to
reduce the number of distinct values. Especially for fine-grained tracking appli-
cations, which store the position of a moving object several times per minute,
we have large sequences of equal values in the date column. Additionally, we can
reduce the memory traffic for queries that only address the date or time unit
of a timestamp. Correspondingly, we have to perform two scan operations for
queries that access both components.

3.2 A Multiple Column Approach to Store Timestamps

Based on the concept of the separation of date and time, we propose a data
layout that stores each time unit in a single integer column. This data layout
has obvious disadvantages for workloads dominated by selects of random times-
tamps or timeframes between two random timestamps as multiple columns have
to be scanned. In contrast, the number of columns that have to be considered
is less for database queries that analyze only parts of the timestamp (e.g., all
observed locations of a month). By applying this data layout, the data charac-
teristic of the different columns changes (see Fig. 1). All columns have a limited
low number of distinct values. Additionally, for most of the columns, we have



Memory-Efficient Storing of Timestamps in Columnar Databases 547

larger sequences of equal values (e.g., the year column), which is beneficial for
different data encodings. For dictionary-encoding, we also have the advantage of
stable dictionaries. Thus, the number of bits necessary to store the dictionary
position will not increase anymore (except the year column). For that reason,
this approach is suited for massive amounts of spatio-temporal data. Due to
simplification reasons, we ignore in this overview fractional seconds, which can
be represented by additional columns.

4 Evaluation

Modern main-memory optimized databases employ a variety of compression
techniques [2]. In this section, we demonstrate the impact on the memory con-
sumption and runtime performance of the presented data layouts (cf. Sect. 3)
in combination with different compression approaches. To evaluate the data lay-
outs, we use a real-world dataset of a transportation company introduced in
Sect. 4.1 and the in-memory research database Hyrise, which is optimized for
columnar data layouts [4]. All measurements have been executed on a four-socket
server equipped with Intel Xeon E7-4880v2 CPUs (2.50 GHz, 30 logical cores).
We use the numactl command to bind the thread and memory to one node to
avoid NUMA effects.

4.1 Dataset

For the evaluation, we use a real-world dataset of a transportation network
company (e.g., Uber or Lyft). The dataset includes the timestamps of ten million
dispatch process-related observed locations of drivers for three consecutive days
in the City of Dubai. In comparison to other passenger transportation datasets
(e.g., NYC Taxi Rides [18]), the dataset has a significantly higher granularity
as the position of a driver is tracked every five seconds. Besides the timestamp,
latitude, longitude, and the driver’s identifier, a status attribute is tracked for
each sample point. This status indicates the driver’s occupation status [15].
Based on the insertion order, a certain temporal ordering of the sample points
exists, but we cannot guarantee that the timestamp column is sorted due to
transmission problems and delayed transmissions.

4.2 Impact of Different Compression Techniques on the Memory
Consumption of the Data Layouts

To analyze the impact on the data footprint of different compression techniques
in combination with the data layouts (cf. Sect. 3), we applied the three compres-
sion techniques (i) dictionary-encoding, (ii) LZ4, and (iii) run-length encoding
on the ten million timestamps of the dataset. As displayed in Fig. 2, the applied
compression approach has a significant impact on the memory size that is neces-
sary to store the timestamps. For example, the Unix timestamp column consumes
with applied LZ4 compression 1.3 MB, which is only 3.2% of the main memory



548 K. Richly

to store the Unix timestamp column with applied dictionary encoding. Addi-
tionally, we observe that data layouts storing the data as integer values have a
better compression rate for LZ4 and run-length encoding. Although the times-
tamps are split in the multiple column approach into six different columns, we
only need 1.7 MB to store the data. Also, the measurements show that different
compression techniques are better suited for specific data layouts. For example,
the separated date and time approach consumes around two-thirds of the string
approach for applied run-length encoding. In contrast, for LZ4 encoding, the
string data layout needs 37.5 MB, which is significantly less memory than the
separated date and time approach (66.88 MB). This is because, through the
separation, the date column contains long sequences of equal values, which can
be efficiently compressed with run-length encoding.

Fig. 2. Comparison of the memory consumption of the different data layouts in com-
bination with various compression techniques.

A remarkable observation is that the multiple column approach has the high-
est memory consumption of the four data layouts for dictionary-encoding, even
though the data characteristics should be beneficial for this compression tech-
nique. The reason for this is that the used columnar database does not support
bit-packing mechanisms [22]. Consequently, one byte is used to store the dic-
tionary position for each value instead of the minimal number of bits that are
necessary to specify the dictionary entry. By applying such bit-packing mecha-
nisms, we can reduce the data footprint significantly. Figure 3 shows the memory
consumption for the six columns of the multiple columns data layout with and
without bit-packing. Note, the memory consumption is calculated for the bit-
packing columns. The bit-optimized storing of the values is particularly efficient
for the YEAR and MONTH column in our dataset. As both columns only contain
one distinct value, we need a single bit to store each value’s dictionary position.
Consequently, we can reduce the necessary data footprint of these columns to
about 1.25 MB. By applying a bit-packing mechanism, the overall memory con-
sumption of the multiple columns data layout could be reduced by nearly 50%
to about 30.5 MB. With a memory consumption of about 30.5 MB the multiple
column data layout would be the data layout with the smallest memory size com-
pared to the other data layouts with applied dictionary encoding. Additionally,
the space efficiency of the storage layout increases significantly [5].



Memory-Efficient Storing of Timestamps in Columnar Databases 549

Encoding

0

2

4

6

8

10

M
em

or
y 

Co
ns

um
pt

io
n 

in
 M

B

Dictionary Dictionary (Bit-optimized)

DAY
HOUR
MINUTE
MONTH
SECOND
YEAR

Data Layout

Fig. 3. Comparison of the memory consumption for the different columns of the multi-
ple column data layout with (right) and without (left) applied bit-packing mechanism.

4.3 Impact of Different Compression Techniques on the Runtime
Performance of the Data Layouts

Data compression is usually a tradeoff between compression rate and runtime
performance [14]. We defined a set of five benchmark queries to analyze the four
data layouts’ runtime performance in combination with different compression
techniques. To consider a broad spectrum of access patterns, the benchmark
contains different commonly establish query types, including single value access
and range scans with varying selectivity values as well as query ranges. The first
query (Q0) is an equal scan that selects one specific timestamp. The second
query (Q1) and the third query (Q2) select all observed locations between two
timestamps. Q1 queries all observed locations between the 1st of November 2018,
21:01:43, and the 3rd of November 2018, 03:15:06, which include five million data
points. Q2 queries all observed locations in a timeframe of 180 s. The queries Q3
and Q4 access only parts of the timestamps. Q3 queries only the date part and
returns all data entries of the 2nd of November 2018 and Q4 returns for all three
days all data entries between 6 am and 6:59 am.

As displayed in Fig. 4, depending on the applied compression technique, there
are significant differences in the query runtime. Overall, dictionary-encoding has
the lowest query runtimes. Also, the string and the approach that separates the
date and time column have a comparable performance for dictionary encoding
compared to the multiple columns and Unix timestamp approach. For all other
compression techniques, these two approaches have significantly slower query
runtimes. We can observe that the separated date and time approach has a
better query runtime than the string data layout except for query Q2. Also, the
multiple columns approach has an equal or better performance compared to the
Unix timestamp except for query Q2. This is because multiple scan operations
that depend on the previous column scans’ results have to be performed for the
multiple columns approach. In contrast, the multiple columns data layout has
a better scan performance for Q4 compared to the Unix timestamp. Finally,
we can observe that the selection of the data layout and compression technique
strongly depends on the given workload characteristics.



550 K. Richly

Fig. 4. Comparison of the runtime performance of the different data layouts in combi-
nation with different compression techniques.

5 Workload-Aware Optimizations of Data Layouts for
Timestamps in Columnar In-Memory Databases

As described in the previous section, the different configurations to store times-
tamps have significant differences in memory consumption and runtime perfor-
mance for various workload characteristics. The selection of cost and perfor-
mance balancing configurations is challenging due to the number of possible
configurations and the fact that usually spatio-temporal applications with query
characteristics operate on the same database table. To optimize the storage
layout of timestamps, we present two different workload-driven approaches. In



Memory-Efficient Storing of Timestamps in Columnar Databases 551

Sect. 5.1, we describe a heuristic approach for the workload-aware selection of
a timestamp storage configuration consisting of a data layout and compression
technique. In Sect. 5.2, we introduce a linear programming model to select a
optimized compression scheme for the multiple column data layout.

5.1 Workload-Driven Combined Data Layout and Compression
Scheme Optimization for Timestamps

To select a configuration for storing timestamps, we can apply different heuristic
approaches. As the selection decisions of a data layout and compression technique
are mutually dependent (cf. Sect. 4), we propose a joint optimization approach.
For each data layout n ∈ N , where N describes the set of available data layouts,
and compression technique e ∈ E, where E defines the set of available data
encodings, we specify bn,e as the memory consumption to store the timestamps
of the dataset with the data layout n and the encoding e. For applications
with strict memory requirements, we can select the configuration with minimal
memory consumption, mine,n(kn,e) for e ∈ E,n ∈ N . Equally, we can select the
configuration based on the maximum performance for a given workload without
any data footprint considerations. We specify a workload Q as a set of queries
q ∈ Q. The performance of a workload Q is determined as the sum of the costs of
each query q ∈ Q, which are calculated based on the costs of the query execution
dn,e,q multiplied with the frequency of the query fq,

∑
q∈Q

dq,n,e · fq. (1)

We calculate the benefit rn,e based on a weighted ratio between memory con-
sumption and runtime performance to optimize the timestamps’ storage config-
uration. A similar approach is used by Valentin et al. [19] in the context of the
index selection problem. For each combination of a data layout n ∈ N and data
encoding e ∈ E, we define the benefit r as (α ≥ 0):

rn,e = 1/
(
kn,e · (

∑
q∈Q

dq,n,e · fq)α
)
. (2)

The α value defines the proportional balancing of memory consumption and
runtime performance for the optimization objective. This factor enables the
database administrator to adapt the optimization process to different applica-
tion requirements. To illustrate the impact of various α values, we analyze the
determined configurations for three chosen α values. In Fig. 5, we visualize the
data layout and compression techniques for a given α value and workload distri-
bution. The workload is defined based on the queries introduced in Sect. 4.3. For
a value α ≤ 1, the memory consumption is higher weighted than the runtime
performance. Consequently, for all three workload distributions, the Unix times-
tamp data layout in combination with LZ4 encoding is selected for α = 0.1, as
this combination has the lowest memory footprint (cf. Fig. 2). The first workload
is dominated by the runtime of Q2 (cf. Fig. 4). For that reason, for all three α
values, the Unix timestamp data layout is selected. As for α = 5 the performance



552 K. Richly

is significantly higher weighted as the memory consumption dictionary encoding
is chosen compared to LZ4 encoding for α = 2. For the two other workload dis-
tributions, the separated date and time format is selected for α = 5 based on the
superior runtime performance for query Q0, Q2, and Q4 with applied dictionary
encoding. As this data layout has a relatively high memory consumption, the
multiple columns approach is selected for α = 2.

Q0 Q1 Q2 Q3 Q4

20 20 20 20 20

15 1 34 40 10

50 1 9 20 20

Workload Distribution in Percent

 = 0.1  = 2  = 5

Unix 
LZ4

Unix
LZ4

Unix
Dictionary

Unix 
LZ4

Multiple Columns
Run-Length

DateTime 
Dictionary

Unix
LZ4

Multiple Columns
Run-Length

DateTime 
Dictionary

Selected Data Layout and Encoding

Fig. 5. Visualization of the selected data layout and compression technique by the
heuristic, cf. (2), for different workloads based on the queries introduced in Sect. 4.3.

Modern databases divide database tables into partitions of fixed size to ben-
efit from pruning during query execution, more efficient workload distribution,
and simplified data tiering [4,7,9,10]. An optimized adaptation of the storage
layout to spatio-temporal access patterns can be archived by applying optimized
configurations individually for each partition [16]. Here, we have to calculate the
benefit for each partition rn,e,p for n ∈ N , e ∈ E, and p ∈ P , where P describes
a set of partitions. Consequently, we have to adapt the equation:

rn,e,p = 1/
(
kn,e,p · (

∑
q∈Q

dq,n,e · fq · ap,q)α
)
. (3)

In Eq. 3, we determine the memory consumption bn,e,p separately for each
partition. Additionally, we have to introduce a parameter ap,q, which determines
the proportional share of the partition p of the costs cq,n,e for a given query
q ∈ Q.

5.2 Workload-Driven Compression Scheme Selection for Storing
Timestamps in a Multiple Column Data Layout

By storing the time units of a timestamp in multiple columns, we have further
potentials for optimizations. As displayed in Fig. 6, the columns in the multiple
columns data layout have different data characteristics. For example, in our
dataset of a transportation network company (cf. Sect. 4.1), the YEAR column
has only one distinct value. Consequently, this column is well-suited for run-
length encoding or could also be stored as a single default value. In contrast,
the SECOND column has significantly shorter sequences of equal values, which
leads to a lower compression rate for run-length encoding. To address this issue,
we propose a linear programming approach to determine optimized compression



Memory-Efficient Storing of Timestamps in Columnar Databases 553

schemes for given workloads and memory budgets. By introducing fixed memory
budgets, we are able to specify the amount of memory that should be used for
the timestamp.

Fig. 6. Comparison of the memory consumption of the different columns in the multiple
columns data layout for timestamps.

To select the best compression technique for each column based on a given
workload Q, we have to determine the proportional costs of each database
operation (e.g., scan operation) for each database column. For that reason,
we define the function D(q), which returns all operations of a query q with
q ∈ Q. As spatio-temporal workloads are often dominated by range queries and
trajectory-based queries [13], we are focusing on scan operations. Correspond-
ingly, S describes the set of all scan operations of a given workload:

S =
⋃

q∈Q
D(q). (4)

The costs of a scan operation s on a column is denoted as cs,e and determined
by the column’s encoding e ∈ E. For s ∈ S, e ∈ E, we define:

cs,e := ps,e · ωs · fs · us,e. (5)

The parameter ps,e defines the measured scan performance of an isolated
scan operation with a similar scan selectivity value on the scan column of ns

with applied encoding e. Further, the parameter ωs denotes the accumulated
selectivity of the previous operations of the same query and fs the frequency
of the scan operation. We use the successive scan penalty us,e as we observed
that consecutive scans are slower than single scan operations, depending on the
applied compression technique e.

The objective of the model is to minimize the costs (in this case, the runtime)
for a given set of scan operations S,



554 K. Richly

min
∑

s∈S,e∈E
xns,e · cs,e (6)

∑
n∈N,e∈E

xn,e · bn,e ≤ B, (7)

where the binary variable xns,e describe whether a certain encoding e is applied
(‘1’) or not (‘0’) on column ns. Here, ns ∈ N is the column in the set of all
columns N that is scanned by the given scan operation s. For the model, we
define two constraints. The first constraint guarantees that the accumulated
memory consumption of all columns n ∈ N with their selected encoding does
not exceed the given memory budget B, i.e.,

To guarantee that for each column n exact one compression approach e ∈ E
is selected, we specify the second constraint:

∑
e∈E

xn,e = 1 ∀n ∈ N. (8)

To evaluate our linear programming model, we defined a set of overall 100
benchmark queries based on the query templates introduced in Sect. 4.3. In
the defined benchmark, we have the following query distribution: all observed
timestamps of a specified day are selected by 40% of the queries, a specific
timestamp is selected by five percent of the queries, and a specific timeframe of
20 s is also selected by five percent of the queries. Additionally, the second half of
the benchmark consists of a set of queries that returns all observed timestamps at
all days in a timeframe of 30 min (20%), before noon (15%), and in a timeframe
of two hours (15%).

Fig. 7. Comparison of the measured runtime performance (left) and memory consump-
tion (right) of the applied compression scheme determined based on the given workload
for different memory budgets B.

We used the model to determine the compression configuration for six differ-
ent columns of the timestamp for various memory budgets B and the described
workload. As displayed in Fig. 7, we applied the configurations on the dataset
of ten million timestamps and measured the runtime performance and memory
consumption. As expected, the runtime of the benchmark queries decreases for
increased memory budgets. The step-wise increases in the runtime performance



Memory-Efficient Storing of Timestamps in Columnar Databases 555

are based on replacing the applied encoding of a column from run-length or
LZ4 encoding to dictionary encoding, which has a faster scan performance. We
could observe that the increases of the consumed memory size have no significant
impact after a memory budget of 50 MB. Here, we use 10 MB to compress the
SECOND column with dictionary encoding, which has no considerable impact
on the overall performance.

YEAR MONTH DAY HOUR MINUTE SECOND

Run-Length Run-Length Run-Length Run-Length Run-Length LZ4

Run-Length Run-Length Run-Length Run-Length Run-Length Run-Length

Run-Length Run-Length Dictionary Run-Length Run-Length LZ4

Run-Length Run-Length Dictionary Run-Length Run-Length Run-Length

Dictionary Dictionary Dictionary Dictionary Dictionary LZ4

Dictionary Dictionary Dictionary Dictionary Dictionary Dictionary 

Compression Schema

Dictionary Dictionary Dictionary Dictionary Dictionary Dictionary

LZ4 LZ4 LZ4 LZ4 LZ4 LZ4

Run-Length Run-Length Run-Length Run-Length Run-Length Run-Length

Unencoded Unencoded Unencoded Unencoded Unencoded Unencoded

B
ud

ge
t

1.1 MB

6.1 MB

11.1 MB

Memory Consumption Runtime

1.05 MB 7609.68 ms

1.73 MB 7580.04 ms

11.05 MB  7205.69 ms

11.73 MB 7054.54 ms

51.02 MB 4943.79 ms

60.00 MB 4927.80 ms

60.00 MB 4927.80 ms

2.39 MB 14429.28 ms

1.73 MB 7534.34 ms

240.00 MB 4967.31 ms

Measurements

16.1 MB

51.1 MB

61.1 MB

Fig. 8. Evaluation of the measured runtime performance and memory consumption
for different compression scheme determined by the linear programming models for
the memory budgets B (top) compared to the standard compression scheme, where all
columns are encoded with the same compression technique (bottom).

Figure 8 provides more details about the selected compression scheme for
different memory budgets. The evaluation shows that for low memory budgets,
the linear programming model’s compression scheme reduces the data footprint
to store the ten million timestamps to 1.05 MB. This represents a reduction
of over one-third compared to the scheme that uses run-length encoding for all
columns, which has the lowest memory consumption of the four single encoding
compression scheme with 1.74 MB. With increasing memory budgets, we can
observe that the linear programming model replaces run-length encoded columns
with dictionary-encoded columns, which have a better runtime performance.
Here, we selected the memory budgets in such a way that the model can not
only replace run-length encoded columns with dictionary-encoded columns in
the compression configurations. As displayed in the configuration for a memory
budget of B = 11.1 MB, to apply dictionary encoding on the DAY column and
do not violate the memory budget constraint, cf. (7), the consumed memory
of the SECOND column is reduced by applying LZ4 encoding compared to the
configuration for B = 6.1 MB. This is done due to the fact that the overall
benchmark performance benefits more from faster scan operations on the DAY
column compared to the SECOND column. The DAY column’s scan performance



556 K. Richly

has the proportional highest impact for the given workload, as 80% of the queries
access this column. Consequently, this is the first column the model determines
to apply dictionary encoding.

6 Conclusions and Future Work

This paper demonstrates the impact of different data layouts and compres-
sion approaches for timestamps on data footprint and runtime performance. We
pointed out that the presented commonly established approaches have advan-
tages and disadvantages for different workload characteristics. Furthermore, we
introduce a data layout that uses multiple columns to store a single timestamp.
This optimized data layout for columnar databases is beneficial for various work-
loads and data compression techniques. Additionally, it enables the enhanced
selection of a compression scheme that incorporates the specific workload and
data characteristics (e.g., limited number of distinct values per column). To
determine an optimized compression scheme for a given workload and memory
budget, we introduce a linear programming model. This model enables database
administrators to restrict the used memory for timestamps and evaluate the
anticipated performance decreases.

For the joint workload-aware selection of a superior compression scheme and
data layout, we present and evaluate a heuristic approach, which enables the
balancing of memory consumption and performance requirements. We describe
an extension of the heuristic for partitioned data tables to reflect time-specific
access patterns by applying different configurations for various data partitions.
In future work, the approaches can be extended to include the effects of auxil-
iary data structures such as indexes. Additionally, the database should be able
to optimize the storage configuration of timestamps for specific workloads and
requirements autonomously. It should provide a unified interface (e.g., the times-
tamp data type provided by various database systems) that the applied storage
optimizations are transparent for applications. Overall, we demonstrate that
workload-aware data layout and compression scheme optimizations can signifi-
cantly reduce memory consumption and improve performance.

References

1. Abadi, D.J., et al.: Integrating compression and execution in column-oriented
database systems. In: Proceedings of SIGMOD, pp. 671–682 (2006)

2. Boissier, M., Jendruk, M.: Workload-driven and robust selection of compression
schemes for column stores. In: Proceedings of EDBT, pp. 674–677 (2019)

3. Boncz, P.A., et al.: Database architecture optimized for the new bottleneck: mem-
ory access. In: VLDB, pp. 54–65 (1999)

4. Dreseler, M., et al.: Hyrise re-engineered: an extensible database system for research
in relational in-memory data management. In: Proceedings of EDBT, pp. 313–324
(2019)

5. Dyreson, C.E., Snodgrass, R.T.: Timestamp semantics and representation. Inf.
Syst. 18, 143–166 (1993)



Memory-Efficient Storing of Timestamps in Columnar Databases 557

6. Kazmaier, G.S., et al.: Managing and querying spatial point data in column stores,
Patent app. 13/962,725

7. Lang, H., et al.: Data blocks: hybrid OLTP and OLAP on compressed storage
using both vectorization and compilation. In: Proceedings of SIGMOD, pp. 311–
326 (2016)

8. Pandey, V., et al.: High-performance geospatial analytics in hyperspace. In: Pro-
ceedings of SIGMOD, pp. 2145–2148 (2016)

9. Patel, J.M., et al.: Quickstep: a data platform based on the scaling-up approach.
Proc. VLDB 11, 663–676 (2018)

10. Pavlo, A., et al.: Self-driving database management systems. In: CIDR (2017)
11. Pelkonen, T., et al.: Gorilla: a fast, scalable, in-memory time series database. Proc.

VLDB Endow. 8, 1816–1827 (2015)
12. Plattner, H.: The impact of columnar in-memory databases on enterprise sys-

tems: implications of eliminating transaction-maintained aggregates. Proc. VLDB
Endow. 7, 1722–1729 (2014)

13. Richly, K.: A survey on trajectory data management for hybrid transactional and
analytical workloads. In: IEEE Big Data, pp. 562–569 (2018)

14. Richly, K.: Optimized spatio-temporal data structures for hybrid transactional and
analytical workloads on columnar in-memory databases. In: Proc. VLDB, Ph.D.
Workshop (2019)

15. Richly, K., et al.: Predicting location probabilities of drivers to improve dis-
patch decisions of transportation network companies based on trajectory data.
In: ICORES, pp. 47–58 (2020)

16. Richly, K., et al.: Joint index, sorting, and compression optimization for memory-
efficient spatio-temporal data management. In: Proceedings of ICDE (2021)

17. Shang, Z., et al.: DITA: Distributed in-memory trajectory analytics. In: Proceed-
ings of SIGMOD, pp. 725–740 (2018)

18. Taxi, N., (TLC), L.C.: Trip record data (2020). https://www1.nyc.gov/site/tlc/
about/tlc-trip-record-data.page

19. Valentin, G., et al.: DB2 advisor: an optimizer smart enough to recommend its
own indexes. In: Proceedings of ICDE, pp. 101–110 (2000)

20. Wang, H., et al.: SharkDB: an in-memory column-oriented trajectory storage. In:
Proceedings of CIKM, pp. 1409–1418 (2014)

21. Wang, H., et al.: Storing and processing massive trajectory data on SAP HANA.
In: Sharaf, M.A., Cheema, M.A., Qi, J. (eds.) ADC 2015. LNCS, vol. 9093, pp.
66–77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19548-3 6

22. Willhalm, T., et al.: SIMD-scan: ultra fast in-memory table scan using on-chip
vector processing units. Proc. VLDB Endow. 2, 385–394 (2009)

23. Xie, X., Mei, B., Chen, J., Du, X., Jensen, C.S.: Elite: an elastic infrastructure for
big spatiotemporal trajectories. VLDB J. 25(4), 473–493 (2016). https://doi.org/
10.1007/s00778-016-0425-6

24. Zhang, Z., Jin, C., Mao, J., Yang, X., Zhou, A.: TrajSpark: a scalable and efficient
in-memory management system for big trajectory data. In: Chen, L., Jensen, C.S.,
Shahabi, C., Yang, X., Lian, X. (eds.) APWeb-WAIM 2017. LNCS, vol. 10366, pp.
11–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63579-8 2

25. Zheng, Y.: Trajectory data mining: an overview. ACM TIST 6, 1–41 (2015)

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.1007/978-3-319-19548-3_6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/978-3-319-63579-8_2


Personalized POI Recommendation:
Spatio-Temporal Representation Learning

with Social Tie

Shaojie Dai, Yanwei Yu(B), Hao Fan, and Junyu Dong

Department of Computer Science and Technology,
Ocean University of China, Qingdao, China

daishaojie@stu.ouc.edu.cn, {yuyanwei,fanhao,dongjunyu}@ouc.edu.cn

Abstract. Recommending a limited number of Point-of-Interests (POIs)
a user will visit next has become increasingly important to both users
and POI holders for Location-Based Social Networks (LBSNs). However,
POI recommendation is a challenging task since complex sequential pat-
terns and rich contexts are contained in extremely sparse user check-in
data. Recent studies show that embedding techniques effectively incor-
porate POI contextual information to alleviate the data sparsity issue,
and Recurrent Neural Network (RNN) has been successfully employed
for sequential prediction. Nevertheless, existing POI recommendation
approaches are still limited in capturing user personalized preference due
to separate embedding learning or network modeling. To this end, we pro-
pose a novel unified spatio-temporal neural network framework, named
PPR, which leverages users’ check-in records and social ties to recommend
personalized POIs for querying users by joint embedding and sequential
modeling. Specifically, PPR first learns user and POI representations by
joint modeling User-POI relation, sequential patterns, geographical influ-
ence, and social ties in a heterogeneous graph, and then models user per-
sonalized sequential patterns using the designed spatio-temporal neural
network based on LSTM model for the personalized POI recommendation.
Extensive experiments on three real-world datasets demonstrate that our
model significantly outperforms state-of-the-art baselines for successive
POI recommendation in terms of Accuracy, Precision, Recall and NDCG.
The source code is available at: https://github.com/dsj96/PPR-master.

Keywords: POI recommendation · Location-based social network ·
Spatio-temporal neural network · Heterogeneous graph

1 Introduction

Newly emerging LBSNs has become an important mean for people to share their
experience, write comments, or even interact with friends. With the prosperity of
LBSNs, many users check in at various POIs via mobile devices in real time. There-
fore, a large amount of check-in data is being generated, which is crucial to under-
stand the users’ preferences and behaviors. POI recommendation not only helps
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 558–574, 2021.
https://doi.org/10.1007/978-3-030-73194-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_37&domain=pdf
https://github.com/dsj96/PPR-master
https://doi.org/10.1007/978-3-030-73194-6_37


PPR: Spatio-Temporal Representation Learning with Social Tie 559

users explore attractive and interesting places, but also gives guidance to location-
based service providers, where to launch advertisements to target customers for
marketing. Due to the great significance to both of users and businesses, how to
use spatio-temporal information effectively, and recommend a limited number of
POIs users more likely visit next have been attracting increasing attention in both
industry and academia.

In particular, several studies [2,10,14,20,24] have been conducted to recom-
mend successive POIs for users based on users’ spatio-temporal check-in sequence
in LBSNs. Based on Markov chain model, LORE [24] and NLPMM [2] explore
users’ successive check-in patterns by considering temporal and spatial informa-
tion. ST-RNN [10] employs RNN to capture the users’ sequential check-in behav-
iors. In a follow-up work, STGN [28] carefully designs the time gates and distance
gates in LSTM to model users’ sequential visiting behaviors by enhancing long
short term memory. Additionally, some models [1,4] based on Word2Vec [15]
framework to capture the preference and mobility pattern of users and the rela-
tionship among POIs also achieved decent performance. GE [20] uses graph
embedding to combine the sequential effect, geographical influence, temporal
effect and semantic effect in a unified way for location-based recommendation.
Recently, SAE-NAD [14] utilizes a self-attentive encoder to differentiate the user
preference and a neighbor-aware decoder to incorporate the geographical context
information for POI recommendation.

However, location-based POI recommendation still faces three major chal-
lenges. First, data sparsity, unlike the general e-commerce, music and movie
recommendation, which can be collected and verified just online, location-based
POI recommendation systems usually associate with the POI-entities. Only when
a user visits a POI-entity, a check-in record is generated. Therefore, the check-
in records in the POI recommendation task is much sparser. This issue has
plagued many POI recommendation models based on the collaborative filtering.
Furthermore, data sparsity problem in check-in data makes it difficult to cap-
ture user’s sequential pattern, because the check-in sequence is very short or is
not continuous in time. Second, contextual factors, POI recommendation may be
affected by various contextual factors, including social tie influence, geographi-
cal influence, temporal context, and so on. In fact, social ties are often available
in LBSNs, and recently studies show that social networks associated with users
are important in POI recommendation task since users are more likely to be
influenced by their close friends (Who keeps company with the wolf will learn to
howl). In this work, we incorporate social ties, check-in time interval, sequential
and geographical effect into user-POI interaction graph to joint learn user and
POI representations. Lastly, dynamic and personalized preferences, users’ prefer-
ences are changing dynamically over time. At different time and circumstances,
users may prefer different POIs. For example, some users prefer to visit gourmet
restaurants in the local area, but when they go to a new city, some prefer to visit
the cultural landscapes, while some prefer the natural landscapes. Dynamically
and accurately capturing this trend has been proved to be essential for personal-
ized POI recommendation task. However, effectively modeling the personalized
sequential transitions from the sparse check-in data is challenging.



560 S. Dai et al.

To address the aforementioned challenges, in this work, we stand on advances
in embedding technique and RNN network, and propose our model, named
PPR, which is a spatial-temporal representation learning framework for person-
alized and successive POI recommendation. First, we jointly model the user-POI
relation, sequential effect, geographical influence and social ties by constructing
a heterogeneous graph, and then develop a densifying trick by adding second-
order neighbors to nodes with low in/out-degrees to alleviate the data sparsity
issue. Then, we learn user and POI representations by embedding the densified
heterogeneous graph into a shared low-dimensional space. Furthermore, to better
capture the user dynamic and personalized preference, we also design a spatio-
temporal neural network by concatenating user embedding, POI embedding and
POI category as personalized sequence input to feed the network.

The main contributions of this paper are summarized as follows:

– We propose a novel PPR model for personalized POI recommendation, which
incorporates users’ check-in records and social ties. We construct a hetero-
geneous graph by jointly taking user-POI relation, sequential pattern, geo-
graphical effect and social ties into consideration to learn the representations
of users and POIs.

– We propose a spatio-temporal neural network to model users’ dynamic and
personalized preference by concatenating user, POI embedding and POI cat-
egory to generate personalized behavior sequence.

– We conduct extensive experiments to compare our method with state-of-
the-art baselines, and our method significantly outperforms state-of-the-art
baselines for successive POI recommendation task.

2 Related Work

General POI Recommendation. The most well-known approaches of person-
alized recommendation are collaborative filtering (CF) and Matrix Factorization
(MF). The conventional CF techniques have been widely studied for POI rec-
ommendation. LARS [6] employs item-based CF to make POI recommendation
with the consideration of travel penalty. FCF [22] is a friend-based CF model
based on the common visited POIs among friends, which considers the social
influence. UTE [23] is a collaborative recommendation model that incorporates
with temporal and geographical information. However, such methods suffer the
data sparsity problem, leading them difficult to identify similar users.

Recommendation models based on MF and embedding learning [7,11,12]
have been intensively studied. Rank-GeoFM [9] fits the users’ preference rank-
ings for POIs to learn the latent embeddings. By incorporating the geographical
context, it utilizes a geographical factorization method for calculating the rec-
ommendation score. TSG-MF [26] models the multi-tag influences via extracting
a user-tag matrix and the social influences via social regularization, and uses a
normalized function to model geographical influences.



PPR: Spatio-Temporal Representation Learning with Social Tie 561

Next POI Recommendation. In the literature, next POI recommendation
issues have been studied in [19,28], in which the main objective is to exploit the
user’s check-in sequence between different POIs and dynamic preference.

Markov Chains (MC) Based Methods. MC based models aim to predict
the next behavior according the historical sequential behaviors. FPMC-LR [3]
considers first-order Markov chain for POI transitions and distance constraints.
HMM [21] exploits check-in category information to capture the latent user
movement pattern by using a mixed hidden Markov chain. LORE [24] incremen-
tally mines sequential patterns and represents it as a dynamic location-location
transition graph. By utilize an additive Markov chain, LORE fuses the sequen-
tial, geographical and social influence in a unified way.

Graph-Based Methods. Graph-based approaches are exploring in the litera-
ture of next POI recommendation. GE [20] jointly captures the latent relations
among the POI, region, time slot and words related to the POIs by constructing
four bipartite graphs. HME [5] projects the entities into a hyperbolic space after
study multiple contextual subgraphs. Although the above approaches achieve
promising performance, they can not model the sequential patterns effectively.

RNN-Based Methods. Recently, RNNs such as LSTM or GRU have demon-
strated groundbreaking performance on predicting sequential problem. ST-
RNN [10] utilizes RNN structure to model the temporal contexts by carefully
designing the time-specific and distance-specific transition matrices. NEXT [25]
encodes the sequential relations within the pre-trained POI embeddings by
adopting DeepWalk [16] technique. Time-LSTM [30] employs LSTM with time
gates to capture time interval among users’ behaviors. CAPE [1] first uses a
check-in context layer to capture the geographical influence of POIs and a text
content layer to model the characteristics of POIs from text content. Then,
CAPE employs RNN as recommendation component to predict successive POIs.
PEU-RNN [13] proposes a LSTM based model that combines the user and POI
embeddings, which are learned from Word2Vec. ASPPA [27] proposes to iden-
tify the semantic subsequences of POIs and discover their sequential patterns.
Recently, STGN [28] extends the LSTM gating mechanism with the spatial and
temporal gates to capture the user’s space and time preference. However, these
approaches fail to capture users’ personalized preferences.

3 Problem Definition

In this section, we first give the key concepts used in this paper. Then, the
problem definition for personalized POI recommendation is formulated.

Definition 1 (POI). A POI is a uniquely identified venue in the form of
〈p, �, cat〉, where p is the POI identifier, cat denotes the category of the POI, and
� represents the geographical coordinates of the POI (i.e., longitude and latitude).

Definition 2 (Check-in record). A check-in record is a triple c = 〈u, v, t〉
that represents user u visiting POI v at timestamp t.



562 S. Dai et al.

The collection of all users is denoted as U , and the collection of all POIs is
denoted as V .

Definition 3 (Trajectory). The trajectory of a user u is a sequence of all
check-in records (〈u, v1, t1〉, 〈u, v2, t2〉, . . . , 〈u, vn, tn〉) made by user u in chrono-
logical order. We denote it as Tu.

Definition 4 (Social Ties). Social ties among users is defined as a graph Gu =
(U, Eu), where U is the set of users, and Eu is the set of edges between the users.
Each edge eij ∈ Eu represents users ui and uj being friends in LBSNs and is
associated with a weight wij > 0, which indicates their tie strength.

Problem 1 (Successive POI Recommendation). Given users’ check-in
records and their social ties, and a querying user u with his/her current check-in
〈u, v, t〉, our goal is to recommend top-k POIs that user u would be interested in
in the next τ time period.

4 Methodology

In this section, we first present the details of the proposed framework PPR. Then
we introduce our model how to utilize PPR model to make personalized POI
recommendation.

4.1 Heterogeneous Graph Construction

We first introduce the heterogeneous User-POI graph to model users’ sequential
check-ins and social relationships. Specifically, we employ a heterogeneous graph
G = (V,U, E ,W ) to jointly model the multiple relations between users and POIs.
U and V are the user collection and POI collection respectively, and E is the set
of all edges between nodes in G, which are categorized into three edge types, i.e.,
Eu, Ev, and Eu,v. As mentioned in Definition 4, each edge ei,j ∈ Eu represents
that user ui and uj are friends. Each edge ei,j ∈ Ev denotes that there exists
at least one user visits POI vj after visiting POI vi, and each edge ei,j ∈ Eu,v

indicates that user ui visits POI vj at least one time. Notice that each edge
e ∈ Eu ∪ Eu,v is a bi-directed edge and each edge e ∈ Ev is a directed edge,
and each edge is associated with a weight w ∈ W (w > 0), which indicates the
strength of the relation.

Modeling User-POI Relation. Intuitively, we consider that if user ui visit
POI vj more frequent, ui and vj have a stronger relation than with other POIs.
Therefore, we formulate the weight between user ui and POI vj as:

wi,j = freq(ui, vj), (1)

where freq(, ) denotes check-in frequency of user ui visiting POI vj . Since we
aim to build a directed graph to accommodate the following work, we define
wi,j = wj,i for the bi-directed edge ei,j ∈ Eu,v between user ui and POI vj .



PPR: Spatio-Temporal Representation Learning with Social Tie 563

Modeling Sequential and Geographical Effect. Compared with general
POI recommendation, successive POI recommendation pays more attention to
sequential pattern. The impact of user’s recent check-in behaviors are greater
than those of a long time ago when making POI recommendations [20]. To
further model the sequential effect, we carefully design a weighting strategy for
the edges in Ev.

Let Δtuk,k+1 be the time interval between two consecutive check-in records in
the trajectory Tu of user u. luk,k+1 is the flag that indicates the status of a pair
of consecutive check-in records in the trajectory Tu, which is defined as:

luk,k+1 =
{

1 if Δtuk,k+1 < θ

0 else
, (2)

where θ is a predefined time threshold.
Given an edge ei,j ∈ Ev from POI vi to POI vj , the sequential weight w

(seq)
i,j

for the edge ei,j is defined as:

w
(seq)
i,j =

∑
u∈U

|Tu|−1∑
k=1

luk,k+1, if vk = vi and vk+1 = vj . (3)

Namely, the weight w
(seq)
i,j for the edge from POI vi to POI vj is the total

number of times that all users visit vi first and then vj in their trajectories.
Furthermore, geographical influence indicates the impact of geographical dis-

tance to the users’ spatial behaviors. According to [5,8], the distribution of the
geographical distance between two successive POIs follows the power-law distri-
bution, which means users are more willing to visit POIs close to the current
location. Therefore, we incorporate the geographical distance into our model as
follows:

w
(geo)
i,j =

dκ
i,j∑

vk∈N(vi)

dκ
i,k

, (4)

where N(vi) represents the set of out-neighbor POIs of POI vi in Ev, di,j denotes
the Euclidean distance between POIs vi and vj , and κ is the negative exponent
(i.e., κ < 0). Finally, we combine the sequential and geographical influence as
follows:

wi,j = w
(seq)
i,j · w

(geo)
i,j . (5)

In such way, the sequential, time interval and geographical information are
all reflected in graph G.

Modeling Social Tie Strength. Users in an LBSN have multiple types of
relations with other users, such as friends, family and colleagues. The prefer-
ence of a user in social network are easily affected by his/her close friends or
other users which has some kind of relations with them. Recently, these social
ties are incorporated into the POI recommendation system [25] to improve the



564 S. Dai et al.

recommendation performance. In this work, we propose to assign the weight
between the users based on their historical check-in interactions. Specifically, for
two socially connected users ui and uj , we assign the edge weight wi,j as:

wi,j =
ε +

∑
v∈V

min(fui,v, fuj ,v)

|Tui
∩ Tuj

| + 1
, (6)

where ε is a very small float number to avoid two users have connection but no
common visited POIs, fui,v denotes the frequency of user ui visiting at POI v,
and |Tui

∩ Tuj
| represents the number of the common visited POIs for user ui

and uj . Therefore, the common preferences between socially connected users are
also taken into account in the User-POI graph G.

Densifying Graph. Most recommendation models need to take the data spar-
sity into consideration, but the check-in data in POI recommendation area is
much sparser. To address the data sparsity issue, we propose to construct a
dense graph based on the graph G. Specifically, we regard each user and POI
as a node, and expand the neighbors of those nodes with low in/out degrees by
adding higher order neighbors. In this work, we only consider expanding second-
order neighbors to every node. If the out-degree of a node in G is less than
a predefined threshold ρ, we create an edge from node vi to its second-order
out-neighbor node vj and assign the weight as follows:

wi,j =
∑

vk∈N(vi)

wi,k
wk,j

d
(o)
k

, (7)

where N(vi) is the set of out-neighbors of node vi, and d
(o)
k is the out-degree of

the node vk. The densifying method for nodes with a low in-degree less than ρ is
same. After densifying the User-POI graph, we can get the a more dense network,
denoted by Gdense. Then we use Gdense instead of G and exploit embedding
technique to learn the nodes’ representation vectors.

4.2 Learning Latent Representation

Inspired by LINE [17], which learns the first- and second-order relations repre-
sentations of homogeneous networks. We develop it to learn heterogeneous node
representations on our constructed heterogeneous graph Gdense.

Specifically, we regard each user or POI as a node v and ignore their node
type. In graph Gdense, each node plays two roles: the node itself and a specific
“context” of other nodes. We use −→vi to denote the embedding vector of node vi

when it is treated as a node, and −→vi
′ to denote the embedding vector of vi when

it is treated as a specific “context”. In particular, we use a binary cross-entropy
loss to encourage nodes and their “context” connected with an edge, to have
similar embeddings. Therefore, we minimize the following objective function:

O = −
∑

ei,j∈E

(
log

(
σ(−→vj

′T · −→vi )
)

+ wn

∑
vn∈Neg(vi)

log
(
1 − σ(−→vn

′T · −→vi )
))

, (8)



PPR: Spatio-Temporal Representation Learning with Social Tie 565

where σ() is the sigmoid function, −→vj
′T denotes vector transpose, Neg(vi) is a

negative edge sampling w.r.t. node vi in Gdense, and wn denotes the negative
sampling ratio, which is a tunable hyper-parameter to balance the positive and
negative samples.

By minimizing the objective function O with ASGD (asynchronous stochas-
tic gradient) optimization and edge sampling technique, we can learn a d-
dimensional embedding vector for each user and POI in Gdense. Additionally,
the representation learning is highly efficient and is able to scale to very large
graphs because of the use of edge sampling technique.

4.3 Modeling User Dynamic and Personalized Preference

Fig. 1. Architecture of the proposed model

After representation learning, all users and POIs are mapped into a low dimen-
sional space. However, the latent representations only capture the users’ prefer-
ences or POIs’ characteristics in a general way. Although it can model sequence
transition patterns and geographical influence, some personalized preference may
not be preserved in the node representations.

Furthermore, the categories of POIs are very useful to make a better rep-
resentation of venues and improve the recommendation performance. In order
to model user dynamic and personalized preference, we propose to concatenate
user embedding, POI embedding and POI category to generate a new and more
personalized embedding to represent a check-in record. More concretely, we use
one-hot encoding to represent the POI category information.

Additionally, to better model user dynamic preference and sequential behav-
ior patterns, we utilize LSTM model to construct a spatio-temporal neural net-
work. As illustrated in Fig. 1, ht and ct denote the hidden state and cell state of
LSTM at time t respectively. Given a user u and his/her trajectory sequence Tu,
first, we concatenate the user embedding, POI embeddings with POI categories
that he/she visited, and we can get a new embedding sequence. Second, we feed
LSTM network with these new embedding sequences of all users. Specifically,
we utilize the first i − 1 POIs as input to train the network, and predict the



566 S. Dai et al.

(i + 1)-th POI as the recommended POI based on the current i-th POI. At the
output layer, we also connect a multi-layer perceptron (MLP). Therefore, we use
the following objective function to train the model:

Olstm =
i−1∑
t=1

MSE(MLP (ht),−−→vt+1), (9)

where ht is hidden representation at time step t, MSE(·, ·) is a criterion that
measures the mean squared error (e.g., squared L2 norm) between each element.

4.4 Personalized POI Recommendation

As described in Sect. 4.3, the user embedding and the first i POI embedding
sequence are used to train the spatio-temporal neural network. For the querying
user u, the embedding vector of the (i + 1)-th POI can be predicted by the
current POI vi as:

v̂i+1 = MLP (hi). (10)

Therefore, for each POI v, we calculate its recommendation score as follows:

Score(v|v̂i+1, u, Tu) = 1 − MSE(v̂i+1,
−→v ). (11)

Finally, we rank all POIs by their recommendation scores and select top-k POIs
as the candidate that user u is more likely to visit in the next τ time period.

5 Experiments

5.1 Datasets

We conduct extensive experiments on three public real-world large-scale
datasets: Foursquare1, Gowalla2 and Brightkite3. The basic statistics of these
three datasets are summarized in Table 1. Notice that we preprocess these
datasets utilizing the same method of [29] by filtering the POIs visited by less
than five users and the users with less than ten check-in records.

– Foursuqare: This dataset contains 483,813 check-in records generated by
4,163 users who live in California from December 2009 to July 2013.

– Gowalla: Gowalla is a location-based social networking website where users
share their locations by checking-in. We choose data from Asian area for our
experiments. It includes 251,378 check-in records generated by 6,846 users
over the period of February 2009 to October 2010.

– Brightkite: Brightkite is also a location-based social networking service
provider. We use the same selection strategy to obtain the check-in records
generated by Asian users, which contains 572,739 records of 5,677 users.

Notice that there are 35 POI categories in Foursquare, and no category infor-
mation is attached to Gowalla and Brightkite datasets.
1 https://sites.google.com/site/dbhongzhi/.
2 http://snap.stanford.edu/data/loc-Gowalla.html.
3 http://snap.stanford.edu/data/loc-Brightkite.html.

https://sites.google.com/site/dbhongzhi/
http://snap.stanford.edu/data/loc-Gowalla.html
http://snap.stanford.edu/data/loc-Brightkite.html


PPR: Spatio-Temporal Representation Learning with Social Tie 567

Table 1. Basic statistics of three datasets

Dataset Foursquare Gowalla Brightkite

# of users 4,163 6,846 5,677

# of POIs 121,142 74,856 128,799

# of check-ins 483,813 251,378 572,739

# of categories 35 / /

Time span Dec. 2009–Jul. 2013 Feb. 2009-Oct. 2010 Apr. 2008 - Oct. 2010

5.2 Evaluation Metrics

To evaluate the recommendation model performance, we use four widely-used
metrics, i.e., Accuracy (Acc@k), Precision (Pre@k), Recall (Rec@k) and Nor-
malized Discounted Cumulative Gain (NDCG@k), which are also used to eval-
uate top-k POI recommendation in [1,18,27,28].

Let #hit@k denote the number of hits in the test set, and |DTest| is the
number of all test records. Acc@k is defined as:

Acc@k =
#hit@k

|DTest| . (12)

Let Rk denote the top-k POIs with the highest recommendation score, and
Tk be the ground truth of the corresponding record, respectively. Pre@k and
Rec@k are defined as:

Pre@k =
1

|DTest|
∑ |Rk ∩ Tk|

|Rk| , (13)

Rec@k =
1

|DTest|
∑ |Rk ∩ Tk|

|Tk| . (14)

To better measure the ranking quality, we further utilize NDCG@k, which
assigns higher scores to POIs at top position ranks, to evaluate the model. The
NDCG@k for each test case is defined as:

NDCG@k =
DCG@k

IDCG@k
, (15)

where DCG@k =
k∑

i=1

2reli−1
log2(i+1) , IDCG@k =

k∑
i=1

1
log2(i+1) and reli = 1 refers to

the graded relevance of result ranked at position i. We use the binary relevance
in our experiments, i.e., reli = 1 if the recommended POI is in the ground truth,
otherwise, reli = 0.

5.3 Baselines

We compare our model against the following baselines for successive POI rec-
ommendation:



568 S. Dai et al.

– Rank-GeoFM [9]: It is a ranking based geographical factorization model,
which earns the embeddings of users and POIs by combining geographical
and temporal influence in a weighting scheme.

– ST-RNN [10]: ST-RNN is a RNN-based model with spatial and temporal
contexts for next POI recommendation.

– GE [20]: GE jointly learns the embedding of POIs, regions, time slots and
word into a shared low dimensional space by constructing four bipartite
graphs.

– PEU-RNN [13]: It is a LSTM based model that combines the user and POI
embeddings, which are learned from Word2Vec, for modeling the dynamic
user preference and successive transition influence.

– SAE-NAD [14]: SAE-NAD exploits the self-attentive encoder to differenti-
ate the user preference and the neighbor-aware decoder to incorporate the
geographical context information for POI recommendation.

Notice that STGN [28] and ASPPA [27] are not compared in our experi-
ment due to no publicly available source code. However, our PPR consistently
outperforms ASPPA and STGN in terms of Acc@k on both Foursquare and
Gowalla datasets according to the experimental results reported in [27] (e.g.,
PPR vs. STGN vs. ASPPA: 0.3008: 0.2: 0.2796 in Acc@5, 0.3935: 0.2592: 0.3371
in Acc@10 on Foursquare; PPR vs. STGN vs. ASPPA: 0.3835: 0.1947: 0.2363 in
Acc@5, 0.4905: 0.2367: 0.2947 in Acc@10 on Gowalla).

To further validate the effectiveness of each component in our model, we
design four variations of PPR:

– PPR-RL: This is a simplified version of PPR, which do not use LSTM net-
work for personalized preference modeling. After representation learning on
Gdense, we use Score(v|vc, u) = −→u ·−→v +−→vc ·−→v to calculate the recommendation
score, where vc is the current location of the querying user u.

– PPR-Seq: This variation do not model the sequential and geographical effect
(i.e., ignore POI-POI edges) in graph Gdense, and the other components
remain the same.

– PPR-Den: This variation directly learns representations for users and POIs
on graph G, which do not densify the graph. And the other components remain
the same.

– PPR-GRU: In this variation, we use GRU to replace LSTM in user person-
alized preference modeling, and the other components remain the same.

5.4 Parameter Setting

Following [24,28,29], we utilize the first 80% chronological check-ins of each user
as the training set, the remaining 20% as the test data.

We use the source code released by their authors for baselines. We set learning
rate to 0.0025 in graph embedding, embedding dimension d to 128, the number
of negative samples to 5, threshold θ to 24 h, κ to −2, ε to 0.5 and in/out-degree
threshold ρ to 400. Following [5], we uniformly set the next time period as



PPR: Spatio-Temporal Representation Learning with Social Tie 569

τ= 6 h for all methods unless stated otherwise, and other parameters of all
baselines are tuned to be optimal. In the experiment, we use a two-layer stacked
LSTM, the hidden state size is 128. The learning rate of LSTM is set to 0.001
with epoch decay, which makes the learning rate becomes 1/10 of the original
value when the number of training rounds reaches 75%.

Table 2. Performance comparison on Foursquare dataset

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.2456 0.2983 0.0618 0.0413 0.0509 0.0669 0.0683 0.0468

ST-RNN 0.1642 0.2150 0.0167 0.0118 0.1207 0.1790 0.0175 0.0152

GE 0.1357 0.3100 0.0378 0.0342 0.1579 0.1919 0.0431 0.0362

PEU-RNN 0.2021 0.2775 0.0495 0.0276 0.1888 0.2848 0.0494 0.0375

SAD-NAE 0.2429 0.3221 0.0588 0.0442 0.0333 0.0505 0.0672 0.0542

PPR 0.3008 0.3935 0.0698 0.0501 0.2471 0.3387 0.0802 0.0628

Table 3. Performance comparison on Gowalla dataset

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.2162 0.2643 0.0647 0.0453 0.0887 0.1180 0.0696 0.0499

ST-RNN 0.1865 0.2246 0.0278 0.0217 0.0817 0.1075 0.0606 0.0574

GE 0.1763 0.4060 0.0391 0.0203 0.1363 0.3135 0.0813 0.0157

PEU-RNN 0.3329 0.3766 0.0663 0.0390 0.2504 0.3613 0.0919 0.0627

SAD-NAE 0.3273 0.4300 0.0849 0.0645 0.1102 0.1600 0.0956 0.0777

PPR 0.3835 0.4905 0.0936 0.0687 0.2573 0.3430 0.1055 0.0840

5.5 Performance Comparison

Table 4. Performance comparison on Brightkite dataset

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.3681 0.4270 0.0968 0.0618 0.2497 0.2983 0.1058 0.0700

ST-RNN 0.2396 0.3540 0.0389 0.0394 0.2279 0.3400 0.1166 0.1074

GE 0.1903 0.4259 0.0869 0.0483 0.1303 0.4119 0.1313 0.1217

PEU-RNN 0.7187 0.7383 0.1437 0.0720 0.6944 0.7204 0.2348 0.1538

SAD-NAE 0.2578 0.3383 0.0645 0.0499 0.0703 0.1047 0.0708 0.0584

PPR 0.8717 0.8966 0.1788 0.0927 0.8485 0.8741 0.2875 0.1889

First, we evaluate the overall performance of our model PPR compared with
five baselines on three real-world datasets. We repeat 10 runs for all methods
on each dataset and report average Acc@k, Pre@k, Rec@k and NDCG@k in
Table 2, Table 3 and Table 4, respectively.



570 S. Dai et al.

From Table 2, we observe that PPR is significantly better than all baselines
in terms of four evaluation metrics on Foursquare dataset. Specifically, PPR
achieves 0.3008 in Acc@5 and 0.3935 in Acc@10, improving 22.5% and 22.2% over
second-best baseline Rank-GeoFM and SAD-NAE, respectively. Additionally,
our PPR slightly outperforms the strong baselines (e.g., SAD-NAE) in Pre@k,
but it is significantly better than the strong baselines in Rec@k.

As depicted in Table 3, our PPR also significantly outperforms all baselines
in terms of Acc@k, Pre@k, Rec@k and NDCG@k on Gowalla dataset. In par-
ticular, PPR performs better than the second-best baseline by 14.6% in Acc@k
and 9.2% in NDCG@k on average. PPR shows slightly poor performance com-
pared to PEU-RNN in terms of Rec@10. This phenomenon can be explained
that PEU-RNN uses a distance constraint, which may significantly reduce the
potential POIs as k increases.

As we can see in Table 4, PPR consistently significantly outperforms all base-
lines in terms of all evaluation metrics on Brightkite dataset. PPR achieves the
state-of-the-art performance, e.g., 0.8717 in Acc@5 and 0.8485 in Rec@5. More
specifically, our PPR achieves about 21.3%, 24.4%, 22.2% and 22.4% improve-
ment compared to state-of-the-art RNN-based method PEU-RNN in terms of
Acc@5, Pre@5, Rec@5 and NDCG@5, respectively. Furthermore, all methods
achieve better performance on Brightkite than the other datasets. This is because
users in Brightkite have more check-in records than users in Foursquare and
Gowalla on average, which may enable all methods to model users’ behavior and
preference more accurately.

5.6 Ablation Study

(a) Foursquare (b) Gowalla (c) Brightkite

Fig. 2. Performance comparison of variations

To explore the benefits of incorporating the sequential and geographical effect,
densifying technique and modeling personalized preference into PPR respec-
tively, we compare our model with four carefully designed variations, i.e., PPR-
RL, PPR-Seq, PPR-Den and PPR-GRU. We show the results in terms of Acc@5,
Pre@5, Rec@5, and NDCG@5 on three datasets in Fig. 2.

Based on the results, we have the following observations: First, PPR achieves
the best performance in most cases on three datasets, indicating that PPR



PPR: Spatio-Temporal Representation Learning with Social Tie 571

benefits from simultaneously considering the various contextual factors and
personalized preference in a joint way. Second, the contributions of different
components to recommendation performance are different. Sequential and geo-
graphical effect and modeling personalized preference have comparable impor-
tance, specifically, the later contributes more on Gowalla, and the former con-
tributes more on Foursquare. And both of them are necessary for improving
performance. Furthermore, through the comparison of PPR and PPR-Den, it
is obvious that the densifying trick works for alleviating the data sparse issue.
Third, our PPR and PPR-GRU exhibit a decent performance compared to other
variations, which indicates that sequential pattern and users’ dynamic and per-
sonalized preference play an important role in location-based recommendation.

5.7 Sensitivity of Hyper-parameters

We now investigate the sensitivity of our model compared against three strong
baselines (i.e., Rank-GeoFM, PEU-RNN, and SAE-NAD) with respect to the
important parameters, including embedding dimension d, the number of recom-
mended POIs k, and next time period τ . To clearly show the influence of these
parameters, we report Acc@5 with different parameter settings on Foursquare
and Gowalla datasets. Figure 3 and Fig. 4 show the experimental results.

As shown in Figs. 3(a) and 4(a), PPR achieves best performance compared to
the three strong baselines with the increasing number of dimension d. Meanwhile,
PPR achieves the best result when d = 128, and then begins to decline as
d further increases. From the results in Figs. 3(b) and 4(b), we can see that
the recommendation accuracy of all methods increases as k increases. This is
expected, because the more results are recommended, the easier they are to
fall into the ground truth. However, we also observe that our PPR exhibits an
increasing performance improvement compared to all baselines, as k increases. In
Figs. 3(c) and 4(c), as τ increases, our PPR is also consistently better than the
strong baselines. More specifically, PPR improves the recommendation accuracy
more significantly for near future prediction (e.g., τ = 2 vs. τ = 12), indicating
that our PPR can effectively capture users’ personalized preferences, especially
short-term preferences.

(a) Acc@5 w.r.t. d (b) Acc@k w.r.t. k (c) Acc@5 w.r.t. τ

Fig. 3. Parameter sensitivity w.r.t. parameter d, k and τ on Foursquare



572 S. Dai et al.

(a) Acc@5 w.r.t. d (b) Acc@k w.r.t. k (c) Acc@5 w.r.t. τ

Fig. 4. Parameter sensitivity w.r.t. parameter d, k and τ on Gowalla

6 Conclusion

In this work, we propose a novel spatio-temporal representation learning model
for personalized POI recommendation. By incorporating the user-POI relation,
sequential effect, geographical effect and social ties, we construct a heteroge-
neous network. Afterwards, we exploit the embedding technique to learn the
latent representation of users and POIs. In light of recent success of RNN on
sequential prediction problem, we feed the spatio-temporal network with con-
catenated user and POI embedding sequences for capturing the users’ dynamic
and personalized preference. The results on three real-world datasets demon-
strate the superiority of our proposal over state-of-the-art baselines. Further-
more, we explore the importance of each factor in improving recommendation
performance. We observe that sequential effect, geographical effect, and users’
dynamic and personalized preference play a vital role in POI recommendation
task.

Acknowledgments. This work is partially supported by the National Natural Sci-
ence Foundation of China under grant Nos. 61773331, U1706218 and 41927805,
the National Key Research and Development Program of China under grant No.
2018AAA0100602, and the Natural Science Foundation of Shandong Province under
grant No. ZR2020QF030.

References

1. Chang, B., Park, Y., Park, D., Kim, S., Kang, J.: Content-aware hierarchical point-
of-interest embedding model for successive poi recommendation. In: IJCAI, pp.
3301–3307 (2018)

2. Chen, M., Liu, Y., Yu, X.: NLPMM: a next location predictor with Markov mod-
eling. In: Tseng, V.S., Ho, T.B., Zhou, Z.H., Chen, A.L.P., Kao, H.Y. (eds.)
PAKDD’2014. LNCS, vol. 8444, pp. 186–197. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06605-9 16

3. Cheng, C., Yang, H., Lyu, M.R., King, I.: Where you like to go next: successive
point-of-interest recommendation. In: IJCAI (2013)

https://doi.org/10.1007/978-3-319-06605-9_16
https://doi.org/10.1007/978-3-319-06605-9_16


PPR: Spatio-Temporal Representation Learning with Social Tie 573

4. Feng, S., Cong, G., An, B., Chee, Y.M.: POI2VEC: geographical latent represen-
tation for predicting future visitors. In: AAAI, pp. 102–108 (2017)

5. Feng, S., Tran, L.V., Cong, G., Chen, L., Li, J., Li, F.: HME: a hyperbolic met-
ric embedding approach for next-poi recommendation. In: SIGIR, pp. 1429–1438
(2020)

6. Levandoski, J.J., Sarwat, M., Eldawy, A., Mokbel, M.F.: LARS: a location-aware
recommender system. In: ICDE, pp. 450–461. IEEE (2012)

7. Li, K., Lu, G., Luo, G., Cai, Z.: Seed-free graph de-anonymiztiation with adver-
sarial learning. In: CIKM, pp. 745–754 (2020)

8. Li, X., Han, D., He, J., Liao, L., Wang, M.: Next and next new POI recommen-
dation via latent behavior pattern inference. ACM Trans. Inf. Syst. (TOIS) 37(4),
1–28 (2019)

9. Li, X., Cong, G., Li, X.L., Pham, T.A.N., Krishnaswamy, S.: Rank-GeoFM: a rank-
ing based geographical factorization method for point of interest recommendation.
In: SIGIR, pp. 433–442 (2015)

10. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: AAAI (2016)

11. Liu, Z., Huang, C., Yu, Y., Fan, B., Dong, J.: Fast attributed multiplex heteroge-
neous network embedding. In: CIKM, pp. 995–1004 (2020)

12. Liu, Z., Huang, C., Yu, Y., Song, P., Fan, B., Dong, J.: Dynamic representation
learning for large-scale attributed networks. In: CIKM, pp. 1005–1014 (2020)

13. Lu, Y.-S., Shih, W.-Y., Gau, H.-Y., Chung, K.-C., Huang, J.-L.: On succes-
sive point-of-interest recommendation. World Wide Web 22(3), 1151–1173 (2018).
https://doi.org/10.1007/s11280-018-0599-5

14. Ma, C., Zhang, Y., Wang, Q., Liu, X.: Point-of-interest recommendation: exploiting
self-attentive autoencoders with neighbor-aware influence. In: CIKM, pp. 697–706
(2018)

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

16. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online learning of social represen-
tations. In: KDD, pp. 701–710 (2014)

17. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: WWW, pp. 1067–1077 (2015)

18. Wang, Q., Yin, H., Chen, T., Huang, Z., Wang, H., Zhao, Y., Viet Hung, N.Q.:
Next point-of-interest recommendation on resource-constrained mobile devices. In:
WWW, pp. 906–916 (2020)

19. Wu, Y., Li, K., Zhao, G., Xueming, Q.: Personalized long-and short-term preference
learning for next POI recommendation. IEEE Trans. Knowl. Data Eng. (2020)

20. Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based
poi embedding for location-based recommendation. In: CIKM, pp. 15–24 (2016)

21. Ye, J., Zhu, Z., Cheng, H.: What’s your next move: user activity prediction in
location-based social networks. In: SDM, pp. 171–179. SIAM (2013)

22. Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social
networks. In: SIGSPATIAL, pp. 458–461 (2010)

23. Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M.: Time-aware point-of-
interest recommendation. In: SIGIR, pp. 363–372 (2013)

24. Zhang, J.D., Chow, C.Y., Li, Y.: LORE: exploiting sequential influence for location
recommendations. In: SIGSPATIAL, pp. 103–112 (2014)

25. Zhang, Z., Li, C., Wu, Z., Sun, A., Ye, D., Luo, X.: Next: a neural network frame-
work for next POI recommendation. Front. Comput. Sci. 14(2), 314–333 (2020)

https://doi.org/10.1007/s11280-018-0599-5
http://arxiv.org/abs/1301.3781


574 S. Dai et al.

26. Zhang, Z., Liu, Y., Zhang, Z., Shen, B.: Fused matrix factorization with multi-
tag, social and geographical influences for POI recommendation. World Wide Web
22(3), 1135–1150 (2019)

27. Zhao, K., Zhang, Y., Yin, H., Wang, J., Zheng, K., Zhou, X., Xing, C.: Discovering
subsequence patterns for next POI recommendation. In: IJCAI, pp. 3216–3222
(2020)

28. Zhao, P., et al.: Where to go next: a spatio-temporal gated network for next POI
recommendation. IEEE Trans. Knowl. Data Eng. (2020)

29. Zhao, S., Zhao, T., King, I., Lyu, M.R.: Geo-Teaser: geo-temporal sequential
embedding rank for point-of-interest recommendation. In: WWW, pp. 153–162
(2017)

30. Zhu, Y., et al.: What to do next: modeling user behaviors by time-LSTM. In:
IJCAI, pp. 3602–3608 (2017)



Missing POI Check-in Identification
Using Generative Adversarial Networks

Meihui Shi, Derong Shen(B), Yue Kou, Tiezheng Nie, and Ge Yu

College of Computer Science and Engineering, Northeastern University,
Shenyang 110169, China

shimeihui@stumail.neu.edu.cn,

{shenderong,kouyue,nietiezheng,yuge}@cse.neu.edu.cn

Abstract. The missing point-of-interest (POI) check-ins in real-life
mobility data prevent advanced analysis of users’ preferences and mobile
patterns. Existing approaches for missing POI check-in identification
mainly focus on modelling spatio-temporal dependencies and memoris-
ing transition patterns through users’ check-in sequences. However, these
methods cannot ensure that the generated missing records obey the same
distribution as the observed check-ins. To this end, we propose a novel Bi-
G2AN model, which fuses the merits of generative adversarial network
(GAN) and bi-directional gated recurrent unit (GRU), to identify the
missing POI check-ins. Specifically, we develop a GAN-based method
to mimic the overall distribution of a given check-in dataset, and it
is further utilized to generate more reasonable missing POI check-ins.
In order to capture bi-directional dependencies and historical impact, a
modified bi-directional GRU is utilized in GAN. Moreover, both spatio-
temporal influence and local motion information are employed to learn
users’ dynamic preferences. Finally, experiments conducted on three real
datasets demonstrate the competitiveness of the Bi-G2AN model, out-
performing state-of-the-art approaches.

Keywords: Missing POI check-ins · Generative adversarial network ·
Gated recurrent unit · Time decay

1 Introduction

With the rapid development of mobile technologies, numerous location-based
social network (LBSN) services, such as Foursquare, Instagram and Facebook
place, have become pervasive in our daily lives. These services enable millions of
users to check in at real-world locations and share life experiences with friends,
resulting in a huge amount of mobility data. Data collected from LBSNs pro-
vides great opportunities to understand users’ preferences and mobile patterns.
The analysis of mobility data can lead to improvements in user experiences and
quality of services. Besides, it facilitates targeted advertising to help merchants
attract more potential customers.

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 575–590, 2021.
https://doi.org/10.1007/978-3-030-73194-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_38&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_38


576 M. Shi et al.

Fig. 1. An illustration of missing POI check-in identification task in this paper, where
blue locations are actual check-ins. Assume that there is a long time gap between two
successive observed check-ins. We aim to identify possible missing POI check-ins of the
target user.

However, missing point-of-interest (POI) check-ins in mobility data pose a
challenge for engineers and researchers. In reality, users’ mobility data is typically
incomplete, due to the spatial information missing and personal privacy. Spatial
information missing frequently occurs in actual mobility data. For instance, users
are less likely to check in every time they visit a location, and as a result,
some movement records may be missing. Furthermore, due to personal privacy,
users are unwilling to disclose certain check-ins, resulting in unreal data being
recorded and real POI check-in missing. Such missing POI check-ins in mobility
data hide useful information, which may have a negative impact on further
analysis of users’ preferences and mobile patterns. Therefore, missing POI check-
in identification is quite a vital task for user understanding.

As illustrated in Fig. 1, user Amy visited the cafe at 7am and the library
at 10am successively. She then checked in at the gym at 4pm, and there was a
long time gap between the last two observed check-ins. Based on such check-in
sequence, the existing studies mainly focus on recommending POIs that Amy is
more willing to explore in the future. By contrast, we aim to identify possible
POIs that Amy has visited during that long time gap without check-in records.

In the literature, many efforts have been made for missing data imputation that
are most relevant to missing POI check-in identification. Specifically, the missing
data imputation methods have evolved from statistical imputation [17] to machine
learning [11]. Inspired by the great success of deep learning techniques in various
research areas, recurrent neural network (RNN) and generative adversarial net-
work (GAN) have also been commonly utilized in the field of missing data imputa-
tion [2,26]. Nevertheless, the above methods cannot be directly extended to miss-
ing POI check-in identification, since they are not designed for the spatial-aware
issues. Besides, the methods of POI recommendation [5,14] can also be exploited to
identify missing POI check-ins. However, the POI recommendation methods have
inherent disadvantages, i.e., they only utilize check-ins before the specific time.
Check-in records after the missing POI should also be taken into account.

Though missing POI check-ins are important for user understanding, only
a few existing studies have investigated missing POI check-in identification.



Missing POI Check-in Identification Using Generative Adversarial Networks 577

A successful example is the Bi-STDDP [22] which identified missing check-in
records by integrating spatio-temporal influence and users’ dynamic preferences.
PA-Seq2Seq [13] developed an attention-based sequence-to-sequence model to
capture the actual users’ trajectories. These existing solutions have made inspir-
ing progress, but they have limitations: they cannot ensure that the distribution
of the generated missing POI check-ins obeys that of the actual records. More-
over, the influence of historical observations will disappear over time. Previous
works fail to capture historical impact. In addition, the current studies ignore
local motion information, such as speed and direction, that may have an impact
on revealing user characteristics.

To this end, we propose a novel Bi-G2AN model for missing POI check-
in identification, which combines GAN and bi-directional gated recurrent unit
(GRU) to generate possible missing check-in records. We summarize the main
contributions and innovations of this paper as follows:

• Towards generating robust missing POI check-ins, we develop a GAN-based
framework. It can reconstruct POI check-in records following the distribution
of actual check-ins.

• We design a bi-directional GRU cell with time decay, namely Bi-GTD, to
capture bi-directional dependencies and historical impact.

• We integrate spatio-temporal transitions and local motion information to
learn users’ preferences and mobile patterns, which can achieve better missing
POI check-in identification performance.

• We conduct extensive experiments on three real-world datasets. Experimental
results demonstrate that the proposed Bi-G2AN model outperforms state-of-
the-art approaches.

2 Related Work

In this section, we investigate recent advance of spatial missing data imputation
and POI recommendation, which are relevant to missing POI check-in identifi-
cation.

2.1 Spatial Missing Data Imputation

The missing data negatively affect data analyses results. To ease the issue,
researchers have proposed a set of classical missing data imputation approaches.
These approaches can be classified into statistical imputation and machine learn-
ing based imputation. Statistical imputation methods mainly include mean or
mode [1,17], expectation management [6], linear regression [19] and least squares
[16]. Although methods based on statistical techniques are easy to implement,
they have limited imputation performance. Many machine learning based meth-
ods [11,15] have been applied for missing data imputation. Moreover, there
are some RNN-based [2] and GAN-based imputation methods [26]. Though the
above approaches can be utilized for spatial missing data imputation, they have



578 M. Shi et al.

disadvantages, that is, they are not developed for the spatial-aware issues. To
deal with spatial missing data, collaborative filtering and neighbourhood based
approaches are the two main data imputation approaches. A spatio-temporal
multi-view based learning model (ST-MVL) [24] was proposed to fill missing data
in a set of geo-aware time series data. Furthermore, some spatio-temporal models
have been designed for time series imputation. Besides, recent studies designed
models to identify missing location information. An attention-based sequence-
to-sequence model (PA-Seq2Seq) [13] exploited encoder-decoder framework to
capture the actual users’ trajectories. Bi-directional spatial and temporal depen-
dencies and users’ dynamic preferences model (Bi-STDDP) [22] integrated local
temporal factor and global spatial influence with users’ preferences to identify
missing POI check-ins. However, the above methods cannot ensure the distribu-
tion of the generated missing data obeys that of the actual data.

2.2 POI Recommendation

POI recommendation, which is proposed to predict a location that a certain user
prefers to visit in the future, has attracted wide attention from both academia
and industry [8,20,21]. Both spatio-temporal context and sequential influence
are crucial for POI recommendation. Factorizing personalized Markov chain
(FPMC) [18] was proposed for sequential prediction, and it has been extended by
embedding personalized transitions and localized regions for successive POI rec-
ommendation task [3]. Personalized ranking metric embedding model (PRME)
[5] employed a pair-wise metric embedding method to jointly consider sequen-
tial information and geographical influence. Moreover, Graph-based embedding
learning model (GE) [23] adopted bipartite graph to facilitate the recommenda-
tion performance. In addition, other auxiliary factors include spatial proximity
[25], temporal influence [30], category information [9] and social relationships
[29] have been studied accordingly. In recent years, due to the success of neural
network based methods in various fields, many researchers have extended neural
networks to deal with POI recommendation. Spatial temporal recurrent neural
networks (ST-RNN) [14] employed time-specific and distance-specific transition
matrices to capture the spatio-temporal influence. Hierarchical spatial-temporal
long-short term memory (HST-LSTM) [12] incorporated spatio-temporal effects
in LSTM for modelling contextual visiting history. A category-aware deep model
(CatDM) [27] integrated POI categories and spatial information. Attentional
recurrent neural network (ARNN) [7] jointly modelled transition regularities and
sequential regularities of neighbours. Besides, users’ check-ins are typically fuzzy.
Therefore, some studies focus on alleviating the transition pattern vanishing issue
for more accurate POI recommendation. Interactive multi-task learning model
(iMTL) [28] introduced the interplay between activity and location preferences
to improve the performance of POI recommendation with uncertain records.
The above POI recommendation methods learn sequential patterns based on
past check-in information, thus failing to exploit check-ins after the specific time
when dealing with missing POI check-in identification task.



Missing POI Check-in Identification Using Generative Adversarial Networks 579

3 Problem Formulation

Let U = {u1, u2, . . . , u|U|} be a set of users and V = {v1, v2, . . . , v|V|} be a set of
POIs, where | · | denotes the size of an arbitrary set and each POI v is associated
with its coordinate (latv, lngv).

Definition 1. Check-in sequence. A check-in sequence is a temporally ordered
sequential check-in records, i.e., cs = {ct1 , ct2 , ..., ctT }. Each check-in cti is a
user-POI-time tuple (u, v, ti).

Definition 2. Local motion information. Local motion information contains
user’s local speed and direction at the target time.

Definition 3. Time gap. Time gap δi is the length of time between the current
check-in cti and the last observed check-in.

We further define forward and backward time gap vectors to record the time
gap. Specifically, we first define a masking vector m = [m1 . . . mT ]T to indicate
which records in a check-in sequence are missing.

mi =
{

1, if cti exists
0, otherwise (1)

Then, the time gap vector in forward direction δf = [δf1 . . . δfT ] is calculated as:

δfi =

⎧⎪⎨
⎪⎩

0, i = 1
� ti−1,i, i > 1,mi−1 = 1

� ti−1,i + δfi−1, i > 1,mi−1 = 0

(2)

where �ti−1,i = ti − ti−1 denotes the time length between cti−1 and cti . For
calculating the backward time gap vector δb, we read the sequence in reverse
order, i.e., {ctT , ctT−1 , ..., ct1}. The backward time gap vector δb is calculated in
a similar way to that of the forward time gap vector. For instance, the masking
vector of the check-in sequence illustrated in Fig. 1 is [1 1 0 1]T, the forward
time gap vector is [0 3 3 6]T, and the backward time gap vector is [3 6 3 0]T.

Missing POI check-in identification task is formulated as: for a user u ∈ U ,
assuming that the t-th check-in record ctt is missing, the target of missing POI
check-in identification is to identify possible POIs that user u visited at time tt,
with the help of check-in records before and after tt.

4 Methodology

In this section, we give an overview of our proposed model Bi-G2AN, which
is designed for missing POI check-in identification. At a high level, Bi-G2AN
fuses the merits of GAN and bi-directional GRU. Our model is composed by a
generator module and a discriminator module. Nevertheless, it is different from
the standard GAN. We present the overall framework of Bi-G2AN in Fig. 2.



580 M. Shi et al.

Fig. 2. Framework of Bi-G2AN. The model contains a generator G and a discriminator
D. G is a denoising auto-encoder. D is a modified bi-directional GRU to obtain the
degree of authenticity. The blank box indicates a missing POI check-in.

In brief, the goal of the GAN is to generate synthetic check-ins following
the distribution of actual check-ins, through the adoption of a minimax game
between the generator and the discriminator. With the help of the modified
bi-directional GRU (Bi-GTD) and denoising auto-encoder, the generator recon-
structs a complete check-in sequence x̃ to fool the discriminator. Meanwhile,
we introduce local motion information for behaviour analysis. The discrimina-
tor tries to distinguish the actual sequence and the generated one by adopting
Bi-GTD cells. We take the corresponding check-ins of x̃ as the missing POI
check-ins. The formula is shown as follows:

xidentified = x̃(1 − m) (3)

4.1 Bi-directional GRU Cell with Time Decay

We adopt GRU as the recurrent unit to capture long-term dependencies, due to
its powerful capability of memorizing sequential information. Note that LSTM
can also be exploited to learn high-order sequential regularities, we choose GRU
since it is simpler. In order to utilize more context information, our model
encodes high-dimensional incomplete check-in sequences into a low-dimensional
space with the help of bi-directional GRU. Towards dealing with missing POI
check-in issue, we notice that if the current check-in record was missed a long
time ago, the influence of historical observations will gradually disappear over
time. Thus, we propose a variant of bi-directional GRU cell, namely Bi-GTD,
which introduces a temporal decay mechanism to capture historical impact.

Specifically, we first extend the standard GRU by utilizing temporal decay
factor βi. βi is calculated based on the irregular time gap between two check-
ins. We exploit the logistic decay function to simulate the evolution of historical
influence. The decay function is defined as follows:

βi = 1/(1 + exp(αδi)) (4)



Missing POI Check-in Identification Using Generative Adversarial Networks 581

where α is a decay parameter. δi is the time gap which has already been described
in Sect. 3. By introducing temporal decay factor βi, we obtain the confidence of
historical information. Taking {xi}Ti=1 as input, the update functions of GRU
with time decay can be summarized as follows:

h
′
i−1 = βi � hi−1

zi = σ(W zxi + U zh
′
i−1)

ri = σ(W rxi + U rh
′
i−1)

h̃i = tanh(W hxi + Uh(ri � h
′
i−1))

h i = (1 − zi) � h
′
i−1 + zi � h̃i

(5)

where W z,U z,W r,U r,W h,Uh are training parameters, σ is the logistic func-
tion. zi and ri are respectively update gate and reset gate. The term tanh
represents the hyperbolic tangent function, and � shows the dot product oper-
ation.

Sequentially, we design the bi-directional GRU cells. Bi-directional GRU con-
sists of forward and backward GRUs. With the help of forward and backward
time gap vectors, i.e., δf and δb, we can calculate forward temporal decay factors
{βf

i }Ti=1 and backward temporal decay factors {βb
i }Ti=1 with Eq. 4. The forward

GRU reads the sequence in its original order, and generates forward hidden
states {hf

1 , ...,hf
T } based on {βf

i }Ti=1. The backward GRU reads the sequence
in reverse order, and calculates backward hidden states {hb

1, ...,h
b
T } by using

{βb
i }Ti=1. Then we concatenate forward hidden state hf

i and backward hidden
state hb

i to obtain an representation for each xi, i.e., h̄i = [hf
i ,hb

i ]
T.

4.2 The Generator Module

Inspired by the reconstruction capability of auto-encoder (AE), we exploit it
to generate complete check-in sequences. Compared with classical AE, denois-
ing auto-encoder (DAE) reconstructs each sequence from its corrupted version,
which allows the hidden layer to capture more robust features. Mask-out/drop-
out noise is a common method to destroy the original sequence. Therefore, for
missing POI check-in identification task, we get corrupted sequence xc by using
mask-out corruption. The main idea is to randomly mask some original records.
Then we train a denoising auto-encoder.

G(xc) = x̃ (6)

To ensure that the reconstructed complete check-in sequence x̃ produced by
the generator is similar to the actual sequence x, we introduce a reconstruction
loss Lr, which is a squared error between the actual and the generated sequences.

Lr = ||x · m − x̃ · m||2 (7)

The generator attempts to provide high-quality synthetic check-ins that approx-
imate the true distribution. Specifically, the classification loss Lc can be formu-
lated as follows.

Lc = log(1 − D(x̃)) (8)



582 M. Shi et al.

Fig. 3. Architecture of the generator. The input is a corrupted incomplete check-in
sequence and the output is a reconstructed complete check-in sequence. The concate-
nation operation fuses POI vector vi, speed vector si and direction vector di into xi.
By utilizing the Bi-GTD cells, the encoder compresses the concatenated input into a
low-dimensional vector z and then feeds z to GRU decoder.

The loss function for the generator is formulated as:

LG = λLr + Lc (9)

where λ is a parameter that helps to control the influence of the reconstruction
loss and the classification loss.

The generator module of Bi-G2AN is presented in Fig. 3. We first encode
the location information of a corrupted check-in sequence at each time step.
Since local motion information has an impact on revealing user characteris-
tics and is helpful for analysing behaviours, we integrate each check-in record
with local speed and direction. Here, we utilize a coordinate transformation
to represent these local motion information. Specifically, the speed vector si is
related to �ti−1,i and the corresponding distance �di−1,i. The direction vector
di depends on latvi

− latvi−1 and lngvi
− lngvi−1 . Then, the concatenated vector

xi = [vi, si,di]T is fed into a Bi-GTD cell. Sequentially, we use the Bi-GTD
cells to obtain hidden states {h̄i}Ti=1. An attention layer is further utilized to
calculate the weighted sum of these hidden states. After taking the sum as the
input of a fully connected layer, we obtain a low-dimensional vector z. Next, z is
transmitted to another fully connected layer. This output is taken as the initial
input of a standard GRU layer, and the predicted check-in will be fed into the
next iteration. Finally, the generated sequence is the combination of all outputs.



Missing POI Check-in Identification Using Generative Adversarial Networks 583

Algorithm 1. Bi-G2AN
Require: generator G; discriminator D; LBSN dataset L

1: Initialize G and D with random weights
2: Pre-train G utilizing mean squared error loss
3: Reconstruct check-in sequences utilizing the pre-trained G
4: Pre-train D with Equation 10 utilizing actual sequences as positive samples and

reconstructed sequences as negative samples
5: while not convergent do
6: for g in g-steps do
7: Update G with Equation 9
8: end for
9: for d in d-steps do
10: Reconstruct check-in sequences utilizing G
11: Train D with Equation 10
12: end for
13: end while

4.3 The Discriminator Module

The goal of the discriminator is to distinguish the reconstructed complete check-
in sequence x̃ from the ground truth x as accurately as possible. Therefore,
it tries to rank the true sequence before the fake one. The discriminator also
consists of a Bi-GTD based RNN layer and a fully connected layer. For the
discriminator, the output is the probability of x̃ being sampled from the under-
lying distribution of real sequences. We train the discriminator to obtain a set
of parameters that maximize the probability of correctly classifying sequences.
Therefore, the loss function for the discriminator is:

LD = −log(D(x)) − log(1 − D(x̃)) (10)

We feed the Bi-GTD cells with reconstructed sequence x̃ or actual sequence
x, and the corresponding time gap vectors (δf and δb). After processing the
input utilizing a bi-directional GRU layer, the weighted sum of hidden states
further flows to a fully connected layer. The final output of discriminator is
truth probability.

The overall procedure of Bi-G2AN is summarized in Algorithm 1. Initially,
the generator and the discriminator are initialized by pre-trained models (lines
1–4). Then the generator and the discriminator are trained alternatively during
the adversarial training phase (lines 5–13).

5 Experiments

In this section, we evaluate the Bi-G2AN with the goal of answering the following
questions. RQ1: Does our model outperform state-of-the-art methods? RQ2:
How do different components affect Bi-G2AN? RQ3: How do hyper-parameters
affect our model performance?



584 M. Shi et al.

5.1 Experimental Setup

Datasets. We train and evaluate our model on three real-world LBSN datasets,
NYC1, TKY1 and Gowalla2, with density 0.548%, 0.404% and 0.185%. NYC
dataset is collected from Foursquare, which contains 227,428 check-ins made
within New York. They are made by 1,083 users on 38,333 POIs from April 2012
to February 2013. As for the TKY dataset, it is a dataset similar to NYC, but
it is collected from Tokyo. TKY contains 2,293 users and 61,858 POIs, and the
total number of check-ins is 573,703. Gowalla dataset contains 456,988 check-ins
of 10,162 users and 24,250 POIs collected from February 2009 till October 2010.
The statistics of datasets are summarized in Table 1. Following the previous
work [22], users with fewer than 10 check-in records and POIs visited by fewer
than 10 users are removed.

Table 1. Statistics of the three datasets.

Dataset #User #POI #Check-in Density

NYC 1,083 38,333 227,428 0.548%

TKY 2,293 61,858 573,703 0.404%

Gowalla 10,162 24,250 456,988 0.185%

Baselines. We compare our Bi-G2AN with the following baseline methods for
missing POI check-in identification.

• FTP: This is a counting-based method which directly takes the forward tran-
sition probability among POIs as prediction.

• BTP: This is a method similar to FTP except it utilizes the probability of
backward transition.

• NN: This is a linear interpolation method that chooses the nearest neighbours
around the midpoint of two successive observed check-ins.

• POP: This is another linear interpolation method that selects the most pop-
ular POIs according to the midpoint of two successive observed check-ins.

• PRME [5]: A metric embedding based model which is utilized to capture user
transition patterns.

• PRME-G [5]: It integrates spatial influence and users’ preferences on the basis
of PRME.

• LSTM [10]: A variant of RNN, which contains a memory cell, an input gate,
an output gate and a forget gate. It helps to learn long-term dependencies.

• GRU [4]: This is another variant of RNN, which has two gating mechanisms
and is simpler than LSTM.

• ST-RNN [14]: A RNN-based model that captures spatial and temporal con-
texts with time-specific and distance-specific transition matrices.

1 https://sites.google.com/site/yangdingqi/home/foursquaredataset.
2 http://snap.stanford.edu/data/loc-gowalla.html.

https://sites.google.com/site/yangdingqi/home/foursquaredataset
http://snap.stanford.edu/data/loc-gowalla.html


Missing POI Check-in Identification Using Generative Adversarial Networks 585

Table 2. Performance of various methods on NYC.

Rec@1 Rec@5 Rec@10 F1@1 F1@5 F1@10 MAP

FTP 0.1001 0.2411 0.2765 0.1001 0.0804 0.0503 0.1626

BTP 0.1013 0.2387 0.2786 0.1013 0.0796 0.0507 0.1664

NN 0.0890 0.2406 0.3095 0.0890 0.0802 0.0563 0.1773

POP 0.1069 0.2887 0.3717 0.1069 0.0962 0.0676 0.1907

PRME 0.0965 0.2687 0.3479 0.0965 0.0896 0.0633 0.1750

PRME-G 0.1049 0.2768 0.3677 0.1049 0.0923 0.0669 0.1896

LSTM 0.1216 0.3123 0.3905 0.1216 0.1041 0.0708 0.2097

GRU 0.1250 0.3159 0.3965 0.1250 0.1053 0.0721 0.2105

ST-RNN 0.1275 0.3202 0.4013 0.1275 0.1067 0.0730 0.2213

PA-Seq2Seq 0.1749 0.3475 0.4196 0.1749 0.1158 0.0763 0.2502

Bi-STDDP 0.1703 0.3421 0.4125 0.1703 0.1140 0.0749 0.2455

Bi-G2AN 0.1830 0.3686 0.4358 0.1830 0.1229 0.0792 0.2674

• PA-Seq2Seq [13]: An attention-based sequence-to-sequence method that uti-
lizes a stacked-LSTM structure and the encoder-decoder framework.

• Bi-STDDP [22]: This a novel model that captures bi-directional spatio-
temporal dependencies and users’ dynamic preferences.

Evaluation Metrics. Following the existing works [22,28], we employ three
well-known metrics to evaluate the performance of all methods, i.e., Recall
(Rec@K), F1-score (F1@K) and Mean Average Precision (MAP). Rec@K mea-
sures the presence of the ground truth in the top-K ranked list. F1@K is a
comprehensive index reflecting both precision and recall. Note that instead of
taking only the POI with the highest probability as the result, we return the
K highest-ranked POIs. Empirically, we set K to 1, 5 and 10. MAP is a global
precision metric for evaluating ranking performance.

Implementation Details. The embedding size is set to 120/160/160 for NYC,
TKY and Gowalla, respectively. Initially, the generator is trained via a mean
squared error loss. The weights of the pre-trained model will be utilized for
GAN training. The mask-out rate increases iteratively from 0.1 to 0.5. We sort
the check-ins of each user by time. For all the experiments, we utilize the earliest
80% as the training set, and the latest 10% as the test set and the remaining
10% as the validation set.

5.2 Performance Comparison

The performance evaluated by Rec@K, F1@K and MAP on the three datasets
are summarized in Tables 2, 3 and 4, respectively.



586 M. Shi et al.

Table 3. Performance of various methods on TKY.

Rec@1 Rec@5 Rec@10 F1@1 F1@5 F1@10 MAP

FTP 0.1096 0.2580 0.3158 0.1096 0.0860 0.0574 0.1812

BTP 0.1270 0.2739 0.3269 0.1270 0.0913 0.0596 0.1957

NN 0.1157 0.2665 0.3214 0.1157 0.0889 0.0584 0.2123

POP 0.1308 0.3217 0.3987 0.1308 0.1072 0.0725 0.2218

PRME 0.0438 0.1142 0.1475 0.0438 0.0381 0.0268 0.0839

PRME-G 0.0861 0.1981 0.2539 0.0861 0.0660 0.0462 0.1415

LSTM 0.1430 0.3555 0.4377 0.1430 0.1185 0.0796 0.2410

GRU 0.1504 0.3502 0.4429 0.1504 0.1167 0.0805 0.2424

ST-RNN 0.1591 0.3625 0.4469 0.1591 0.1208 0.0813 0.2529

PA-Seq2Seq 0.2032 0.4098 0.4825 0.2032 0.1366 0.0877 0.2931

Bi-STDDP 0.1996 0.4057 0.4776 0.1996 0.1352 0.0814 0.2855

Bi-G2AN 0.2145 0.4367 0.4908 0.2145 0.1456 0.0892 0.3120

Table 4. Performance of various methods on Gowalla.

Rec@1 Rec@5 Rec@10 F1@1 F1@5 F1@10 MAP

FTP 0.0844 0.1794 0.2256 0.0844 0.0598 0.0410 0.1273

BTP 0.0931 0.1889 0.2309 0.0931 0.0629 0.0419 0.1324

NN 0.0568 0.1335 0.1802 0.0568 0.0445 0.0328 0.1005

POP 0.0583 0.1341 0.1795 0.0583 0.0447 0.0321 0.0989

PRME 0.0306 0.0691 0.0914 0.0306 0.0231 0.0166 0.0512

PRME-G 0.0401 0.0885 0.1128 0.0401 0.0295 0.0205 0.0654

LSTM 0.0663 0.1557 0.2076 0.0663 0.0519 0.0377 0.1137

GRU 0.0665 0.1633 0.2173 0.0665 0.0545 0.0395 0.1180

ST-RNN 0.0674 0.1681 0.2213 0.0674 0.0560 0.0402 0.1289

PA-Seq2Seq 0.0987 0.2295 0.2906 0.0987 0.0765 0.0528 0.1593

Bi-STDDP 0.1069 0.2357 0.2925 0.1069 0.0786 0.0532 0.1636

Bi-G2AN 0.1145 0.2508 0.3124 0.1145 0.0836 0.0568 0.1764

It can be seen that, Bi-G2AN outperforms the baseline methods for all these
cases on the three datasets. Compared with the strongest competitor, Bi-G2AN is
consistently better, obtaining average relative improvements of 5.76% for Rec@1,
6.35% for Rec@5, 4.13% for Rec@10 and 7.05% for MAP, respectively. The sig-
nificant improvement margins indicate that Bi-G2AN has a strong ability to
identify missing POI check-ins.

Moreover, we find that RNN based methods generally performs better than
non-RNN based baselines, demonstrating the sequence modelling capability of
RNN. As for non-RNN based baselines, counting-based methods (FTP and BTP)
have good performance on the three datasets. This is because users’ transition



Missing POI Check-in Identification Using Generative Adversarial Networks 587

Table 5. Comparison of the variant models of Bi-G2AN.

Variants Bi-GTD Local motion information GAN

Speed Direction

G2AN × � � �
Bi-G2ANNS � × � �
Bi-G2ANND � � × �
Bi-GAE � � � ×

regularities have commonalities. Similarly, linear interpolation methods (NN and
POP) also have acceptable performance, which validates the effectiveness of
spatial influence and social information in modelling users’ preferences. Both
counting-based methods and linear interpolation methods achieve better perfor-
mance than metric embedding based methods (PRME and PRME-G). PRME is
outperformed by PRME-G slightly. This further indicates that modelling spatial
impact is essential for missing POI check-in identification. RNN-based methods
(LSTM, GRU) deliver decent results due to the capability of learning long-term
dependencies. ST-RNN can achieve better performance in predicting missing
records by utilizing spatial and temporal contexts. In general, PA-Seq2Seq and
Bi-STDDP perform better than other baselines by taking into account forward
and backward information, while others only consider check-ins before target
time. In addition, Bi-G2AN performs best among all methods, which verifies the
generative adversarial network helps identify missing POI check-ins. Bi-G2AN
exploits Bi-GTD and local motion information to further improve the perfor-
mance.

5.3 Ablation Analysis

To study the effectiveness of different components, we conduct ablation tests with
four variants: (1) G2AN, which replaces the Bi-GTD cells with GRU cells; (2) Bi-
G2ANNS , which ignores the impact of local speed information on depicting user’s
preferences; (3) Bi-G2ANND, which doesn’t consider the direction context when
learning users’ mobile patterns; (4) Bi-GAE, which removes the discriminator
module, is equivalent to a denoising auto-encoder based on a Bi-GTD encoder
and a GRU decoder. We list the characteristics of the variant models in Table 5.

The compared results w.r.t. Rec@1 and MAP on the three datasets are shown
in Fig. 4. We notice that our proposed Bi-G2AN performs significantly better
than all the variants, implying that Bi-GTD, local motion information and the
GAN-based framework indeed improve the model performance. These compo-
nents do not conflict with each other and can be exploited to collaboratively
identify missing POI check-ins. Besides, the performance decrease of Bi-GAE
far exceeds that of other variants, which demonstrates that the GAN-based
framework is significant for generating robust missing POI check-ins. Generally,
G2AN is outperformed by both Bi-G2ANNS and Bi-G2ANND, indicating the



588 M. Shi et al.

(a) Recall (b) MAP

Fig. 4. Performance comparison with variants of Bi-G2AN on the three datasets.

(a) Embedding size (b) Sequence length

Fig. 5. Parameter sensitivity analysis.

advantages of Bi-GTD. Moreover, Bi-G2ANNS inter underperform Bi-G2ANND,
implying that the speed factor is more important the direction factor. In sum-
mary, Bi-G2AN benefits from these components.

5.4 Parameter Analysis

Figure 5 describes the results w.r.t. Rec@1 of parameter sensitivity analysis.
Note that we can observe similar trends for other metrics. We first illustrate
the performance under various settings of embedding size while keeping other
optimal hyper-parameters fixed as shown in Fig. 5(a). A grid search is applied
to find the optimal settings for embedding size. We can see that the performance
of Bi-G2AN improves as the embedding size increases, and gradually becomes
stable when the embedding size increases to a certain level. Therefore, we select
120/160/160 for NYC, TKY and Gowalla as the embedding size, respectively.
Since NYC dataset has fewer locations, the optimal dimension size of NYC is
lower. Furthermore, to investigate the effects of the sequence length, we depict
the performance change with diverse sequence lengths. As shown in Fig. 5(b),
we observe that the optimal performance is achieved with different sequence
lengths on the three datasets. It shows that Bi-G2AN can capture short-term and



Missing POI Check-in Identification Using Generative Adversarial Networks 589

long-term dependencies well. To summarize, our proposed model has powerful
capabilities to process dimensionality and capture mobile patterns.

6 Conclusion

In this paper, we proposed a Bi-G2AN model to generate more reasonable check-
ins for missing POI check-in identification. In particular, we designed a GAN-
based method that can generate missing POI check-ins obey the same distri-
bution as actual check-ins. Moreover, we devised the Bi-GTD cells to capture
bi-directional dependencies and historical impact. In addition, local motion infor-
mation was incorporated into sequential patterns to learn users’ preferences.
Experimental results on three real-world datasets demonstrated substantial per-
formance improvements of Bi-G2AN over multiple state-of-the-art approaches.
Enlightened by the successful application of reinforcement learning in various
research areas, we would like to adopt reinforcement learning to further improve
our method in the future.

Acknowlegements. This work was supported by the National Key R&D Program
of China [2018YFB1003404]; and the National Natural Science Foundation of China
[61672142, 62072086, 62072084, U1811261].

References

1. Amiri, M., Jensen, R.: Missing data imputation using fuzzy-rough methods. Neu-
rocomputing 205, 152–164 (2016)

2. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: BRITS: bidirectional recurrent
imputation for time series. In: NeurIPS, pp. 6776–6786 (2018)

3. Cheng, C., Yang, H., Lyu, M.R., King, I.: Where you like to go next: successive
point-of-interest recommendation. In: IJCAI, pp. 2605–2611 (2013)

4. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv:1412.3555 (2014)

5. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking
metric embedding for next new POI recommendation. In: IJCAI, pp. 2069–2075
(2015)

6. Ghorbani, S., Desmarais, M.C.: Performance comparison of recent imputation
methods for classification tasks over binary data. Appl. Artif. Intell. 31(1), 1–22
(2017)

7. Guo, Q., Sun, Z., Zhang, J., Theng, Y.: An attentional recurrent neural network
for personalized next location recommendation. In: AAAI, pp. 83–90 (2020)

8. Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized
point-of-interest recommendation. In: IJCAI, pp. 2484–2490 (2020)

9. He, J., Li, X., Liao, L.: Category-aware next point-of-interest recommendation via
listwise bayesian personalized ranking. In: IJCAI, pp. 1837–1843 (2017)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

11. Huang, J., et al.: Cross-validation based K nearest neighbor imputation for software
quality datasets: an empirical study. J. Syst. Softw. 132, 226–252 (2017)

http://arxiv.org/abs/1412.3555


590 M. Shi et al.

12. Kong, D., Wu, F.: HST-LSTM: a hierarchical spatial-temporal long-short term
memory network for location prediction. In: IJCAI, pp. 2341–2347 (2018)

13. Li, Y., Luo, Y., Zhang, Z., Sadiq, S.W., Cui, P.: Context-aware attention-based
data augmentation for POI recommendation. In: ICDE, pp. 177–184 (2019)

14. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: AAAI, pp. 194–200 (2016)

15. Nishanth, K.J., Ravi, V.: Probabilistic neural network based categorical data impu-
tation. Neurocomputing 218, 17–25 (2016)

16. Pati, S.K., Das, A.K.: Missing value estimation for microarray data through cluster
analysis. Knowl. Inf. Syst. 52(3), 709–750 (2017). https://doi.org/10.1007/s10115-
017-1025-5

17. Purwar, A., Singh, S.K.: Hybrid prediction model with missing value imputation
for medical data. Expert Syst. Appl. 42(13), 5621–5631 (2015)

18. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
markov chains for next-basket recommendation. In: WWW, pp. 811–820 (2010)

19. de Souto, M.C.P., Jaskowiak, P.A., Costa, I.G.: Impact of missing data imputation
methods on gene expression clustering and classification. Bioinformatics 16, 64:1–
64:9 (2015)

20. Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go
next: modeling long- and short-term user preferences for point-of-interest recom-
mendation. In: AAAI, pp. 214–221 (2020)

21. Wu, S., Zhang, Y., Gao, C., Bian, K., Cui, B.: GARG: anonymous recommendation
of point-of-interest in mobile networks by graph convolution network. Data Sci.
Eng. 5(4), 433–447 (2020)

22. Xi, D., Zhuang, F., Liu, Y., Gu, J., Xiong, H., He, Q.: Modelling of bi-directional
spatio-temporal dependence and users’ dynamic preferences for missing POI check-
in identification. In: AAAI, pp. 5458–5465 (2019)

23. Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based
POI embedding for location-based recommendation. In: CIKM, pp. 15–24 (2016)

24. Yi, X., Zheng, Y., Zhang, J., Li, T.: ST-MVL: filling missing values in geo-sensory
time series data. In: IJCAI, pp. 2704–2710 (2016)

25. Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical col-
laborative deep learning for POI recommendation. IEEE Trans. Knowl. Data Eng.
29(11), 2537–2551 (2017)

26. Yoon, J., Jordon, J., van der Schaar, M.: GAIN: missing data imputation using
generative adversarial nets. In: ICML, pp. 5675–5684 (2018)

27. Yu, F., Cui, L., Guo, W., Lu, X., Li, Q., Lu, H.: A category-aware deep model for
successive POI recommendation on sparse check-in data. In: WWW, pp. 1264–1274
(2020)

28. Zhang, L., et al.: An interactive multi-task learning framework for next POI rec-
ommendation with uncertain check-ins. In: IJCAI, pp. 3551–3557 (2020)

29. Zhang, Z., Liu, Y., Zhang, Z., Shen, B.: Fused matrix factorization with multi-
tag, social and geographical influences for POI recommendation. World Wide Web
22(3), 1135–1150 (2018). https://doi.org/10.1007/s11280-018-0579-9

30. Zhao, S., Zhao, T., Yang, H., Lyu, M.R., King, I.: STELLAR: spatial-temporal
latent ranking for successive point-of-interest recommendation. In: AAAI, pp. 315–
322 (2016)

https://doi.org/10.1007/s10115-017-1025-5
https://doi.org/10.1007/s10115-017-1025-5
https://doi.org/10.1007/s11280-018-0579-9


Efficiently Discovering Regions of Interest
with User-Defined Score Function

Qiyu Liu1, Libin Zheng1(B), Xiang Lian2, and Lei Chen1

1 The Hong Kong University of Science and Technology, Kowloon, Hong Kong
{qliuau,lzhengab,leichen}@cse.ust.hk
2 Kent State University, Kent, OH, USA

xlian@kent.edu

Abstract. Region of Interest (ROI) queries are of great importance
in many location based services. However, the previous studies on ROI
queries usually adopt either a simple spatial data model or a non-flexible
enough query geometry, e.g., fixed-size rectangle. In this paper, to fix
these drawbacks, we propose a new ROI search operator called Radius
Bounded ROI (RBR) query. An RBR query retrieves a subset of spa-
tial objects satisfying co-location constraints and maximizing a user-
configurable score function at the same time. We formally prove that
answering an RBR query is 3SUM-hard, which implies that it is unlikely
to find a sub-quadratic solution. To answer the RBR queries efficiently,
we propose three algorithms, PairEnum, BaseRotation and OptRotation
based on novel geometric findings. In addition, the query processing tech-
nique we proposed can be easily extended to other related problems like
top-k ROI search. To demonstrate both efficiency and effectiveness of
our proposed algorithms, we conduct extensive experimental studies on
both real-world datasets and synthetic benchmarks, and the results show
that OptRotation, our most efficient algorithm, achieves more than 103×
efficiency improvement on both real and synthetic datasets compared
with the baseline algorithm.

Keywords: ROI queries · Spatial database · Computational geometry

1 Introduction

In recent years, a number of location-based service (LBS) providers have emerged
to retrieve location-related heterogeneous information for mobile users. For
example, Google Map [1] and Yelp [3] enable users to query collections of
objects which simultaneously contain geographical locations, textual attributes
and numeric attributes. However, due to the increasing prevalence of mobile
devices, they also face the challenge of managing a booming number of multi-
attribute spatial objects. Effective and efficient query processing techniques are
needed for such platforms to communicate with their users in real-time.

As a typical spatial operator in LBS, Region of Interest (ROI) queries retrieve
one (or several) region(s) such that the enclosed spatial objects optimize a cer-
tain objective function (e.g., the total number of objects). As it is useful in
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 591–608, 2021.
https://doi.org/10.1007/978-3-030-73194-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_39&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_39


592 Q. Liu et al.

Q1: Find a region with the most good sushi places.
Q2: Find a region with the most restaurants with 

baby chairs.
Q3: Find a region with highest stars.

Fig. 1. An application scenario of Radius Bounded ROI (RBR) queries.

many applications like location-based advertising and geo-tagged event detec-
tion, continuous research efforts have been paid to answering the ROI query
[5,6,10,11,14,15,23]. Existing studies usually adopt a simple spatial object
model (e.g., an object is solely associated with either a weight [10] or a doc-
ument [7]). However, spatial data objects in reality are usually more complex
(i.e., with heterogeneous attributes), which makes it infeasible to directly apply
existing methods. Thus, it is important to devise new ROI operators and solu-
tions to deal with such enriched spatial objects.

In this paper, we study a novel spatial operator called Radius Bounded ROI
Query (RBR) over an enriched spatial database where each object has both
textual and numeric attributes. The RBR query retrieves a circular region which
owns the maximum value of a user-configured score function. More specifically,
an RBR query takes a collection of spatial objects O as input where each object
o ∈ O has three attributes: geographic location o.�, numeric attribute o.w and
textual attribute o.d. It outputs a subset of objects O′ ⊆ O such that a user-
configurable score function defined on O′ is maximized while the radius of the
minimum bounding circle (MBC) of point set {o.�|o ∈ O′} is no larger than a
threshold rmax. Two motivation examples are shown as follows to demonstrate
the function of RBR queries.

Example 1 (Yelp’s ROI Recommendation). Figure 1 illustrates a toy example
of an RBR query over four spatial objects O1 ∼ O4. These objects represent 4
restaurants and each of them is associated with a textual attribute “Reviews”
and a numeric attribute “Stars”. Regions R1 and R2 are the minimum bounding
circles of {O1, O2, O3} and {O3, O4}, respectively. Consider a query Q1: find a
region with as many good sushi places as possible. The RBR query is expected
to return region R1 by considering the text relevance between the query keyword
(sushi) and the set of covered restaurants. Similarly, queries Q2 and Q3, shown
in Fig. 1, should return R2 and R1, respectively.

Example 2 (Epidemic Outbreak Detection from Social Media). People would like
to share their life on social media like Twitter, including some upset sick expe-
rience, which provides us chance to detect the region with densely distributed
topics about some specific epidemic, e.g., flu, from a large amount of geo-tagged
tweets. For example, user CamiloidG posted on Twitter “Damn flu... I would



Efficiently Discovering Regions of Interest with User-Defined Score Function 593

Fig. 2. Comparison among MaxRS, MaxCRS, and RBR queries.

love to have someone that can make me a chicken soup..”. With text relevance
between user tweets and “flu” as score function, the RBR query can be period-
ically executed to detect regions with frequent occurrence of topic “flu”.

As shown in Example 1 and Example 2, an RBR query supports customized
scoring function over the enclosed spatial objects, e.g., textual relevance, numeric
aggregates like SUM and COUNT, or their arbitrary linear combination. In this
work, our RBR queries support any monotonic and self-decomposible set func-
tion as a legal region goodness measurement, which differs from existing region
queries like Maximum Range-Sum Queries (MaxRS) [10,11,20] where only SUM
and COUNT are supported.

In addition, instead of a fixed query geometry like a given-size rectangle,
which is adopted by most region search problems like [4,5,9,14,15], our RBR
query retrieves a subset of spatial objects satisfying the minimum bounding circle
constraint. This constraint requires that the radius of the minimum bounding
circle of the covered objects is not larger than rmax. Compared with using fixed-
size query geometries, either rectangle or circle, it has three major merits: 1)
it requires fewer user efforts to specify the parameters; 2) it makes the query
more robust by avoiding covering unnecessary marginal areas (i.e., a big region
contains only few points in the middle); 3) the found optimal region is tight and
unique, whereas there might be infinite optimal solutions for fixed-size geometry
queries (e.g., it does not change the covered objects when we slightly move a loose
rectangle). Example 3 demonstrates the aforementioned merits.

Example 3 (Minimum Bounding Circle). Figure 2a is an instance of a MaxRS
query, which finds the optimal location to place a rectangle of size a × b such
that the weight (we use count here) of covered spatial objects is maximized.
Similarly, Fig. 2b demonstrates the MaxCRS query, the circular version of the
MaxRS query. It is not hard to prove that for fixed-size geometries, either rect-
angle of size a × b or circle of radius r, the solution set is actually infinite as a
rectangle (or a circle) centering in the region bounded by dashed lines in Fig. 2a
(or Fig. 2b) always covers most spatial objects. As a comparison, the optimal
minimum bounding circle for this instance is plotted with a solid line in Fig. 2b,
which is more informative to users than R1 · · · R3 since it covers less unnecessary
area and remains stable even if rmax is set improperly large.



594 Q. Liu et al.

However, answering the RBR query is non-trivial. Existing region search
techniques cannot be directly applied or extended to solve the RBR query due
to their simple data models or the fixed-size geometries. The challenge lies in
that we need to determine the circle size as well as its location during the region
searching process. Note that all circles with radius less than rmax are qualified.
Then, dynamically determining the circle size regarding the objects in the current
search area brings many difficulties, which disables applying existing methods.

In more detail, the major technical contributions we made in this paper are
summarized below.

– We formulate the Radius Bounded ROI (RBR) queries over a multi-attributed
spatial database supporting user-defined score functions, and prove that
answering RBR queries is 3SUM-hard. (� See Sect. 2)

– We propose three exact query processing algorithms based on geometric prop-
erties together with non-trivial pruning strategies, which is near-optimal in
time complexity considering the 3SUM-hardness. (� See Sect. 3)

– We conduct extensive experimental studies on both real-world data and syn-
thetic benchmark. Compared to baselines, our framework achieves more than
103× improvement in terms of the time cost. (� See Sect. 4)

2 Problem Statement

2.1 Preliminaries

Definition 1 (Spatial Object). A spatial object is represented by a triple o =
(�, d, w), where � ∈ R

2 denotes the geographic location of o, d is the document
associated with o, and w is a non-negative weight value.

Our definition of spatial object extends the spatial-textual object, commonly
adopted in spatial-keyword queries [6,7,17,18], by associating a weight value,
which enables us to model more real-world applications (e.g., the Yelp’s service
illustrated in Example 1). We then define the query geometry and region score.

Definition 2 (Minimum Circle Bounded Region). Given a subset of spa-
tial objects O′ ⊆ O, the Minimum Circle Bounded Region (MCBR) of O′,
denoted by RO′ , is a circle covering all objects o ∈ O′ with the smallest radius.
Let r(RO′) denote the radius of RO′ .

Definition 3 (Region Score). Given a subset of spatial objects O′ ⊆ O, the
Region Score of the corresponding MCBR RO′ , denoted by Score(O′), is defined
as a set function f : 2O → R

+ satisfying:

– Monotonicity: f(O′) ≥ f(O′′) holds for any O′′ ⊆ O′ where O′ and O′′ are
two subsets of O;

– Self-decomposability: f(O′ ∪ O′′) = f(O′) � f(O′′) holds for any disjoint
sets O′ and O′′ where � refers to a merge operator. For example, aggregates
COUNT and SUM are self-decomposible, whereas MEDIAN is not.

The monotonicity constraint guarantees that a region covering O′ is not worse
than another region covering a subset of O′. The self-decomposibility constraint
enables the region score to be computed in a decomposing manner.



Efficiently Discovering Regions of Interest with User-Defined Score Function 595

2.2 Radius Bounded ROI (RBR) Queries

Definition 4 (RBR Query). Given a collection of spatial objects O, a region
score function Score(·), and the maximum radius of query region rmax, an RBR
query Q, retrieves a subset O∗ ⊆ O with the highest region score satisfying that
the radius of MCBR of O∗ is no larger than rmax, i.e.,

O∗ = arg max
O′⊆O

Score(O′) s.t. r(RO′) ≤ rmax. (1)

Answering RBR queries is polynomial-time solvable by providing a straight-
forward exact algorithm. An observation about MCBR is that given a collection
of 2D points P , the minimum covering circle of P can be determined by either 2
or 3 points on the boundary of a region. If it is determined by 2 points, then these
two points must form the diameter of this MCBR [22]. Thus, we can simply find
the RBR query result through enumerating all circles determined by any three
points and any two points satisfying the maximum radius constraint. By assum-
ing the computation of the score function is in O(1), such a naive enumeration
takes time O(n3 + n2) = O(n3), which is polynomial. The intrinsic complexity
of the RBR problem is shown in Theorem 1.

Theorem 1 (Hardness). The RBR problem is 3SUM-hard.

The complexity class 3SUM [16] implies that there exists no worst-case sub-
quadratic algorithm, i.e., O(n2−ε) for ∀ε > 0, to answer RBR queries exactly. To
expedite the query processing, we propose an efficient framework based on novel
geometric findings, which turns out to be near-optimal considering the quadratic
lower bound on time complexity.

2.3 Discussion of the Region Score

Our RBR queries enable user-configured functions for scoring a region. In this
paper, we adopt a score function, as shown in Eq. (2), considering both weights
and documents associated on spatial objects.

Score(O′) = α · Score w(O′) + (1 − α) · Score t(O′, q) (2)

where Score w(·) is a user-specified aggregation function (e.g., SUM, COUNT)
defined on the weight set {o.w|o ∈ O′}, Score t(·) is a function to measure the rel-
evance of the document set {o.d|d ∈ O′} to user-specified query keywords q, and
α is a hyper-parameter to tune the relative importance between Score w(·) and
Score t(·). For Score t(·), we follow the convention of spatial-keyword queries [8]
and adopt the Vector Space Model [24] to evaluate the textual similarity between
query keywords and spatial objects. Note that, other information retrieval mod-
els, like Language Model and Bag-of-words Model, can also be adopted, which
does not require any changes to our proposed techniques. We can verify that
Eq. (2) satisfies the two properties of a qualified region score function when
Score w(·) is set to SUM (or COUNT, AVG, etc.) and Score t(·) is set according
to [24]. Example 4 illustrates three different settings of Score(·).



596 Q. Liu et al.

Algorithm 1: PairEnum
Input: An RBR query Q = {O, q, Score, rmax}
Output: The result region of query Q

1 s∗ ← 0, C∗ ← {};
2 for i = 1, · · · , |O| do
3 for j = i + 1, · · · , |O| do
4 if ‖oi.� − oj .�‖2 < 2rmax then
5 R ← circle determined by oi.�, oj .�, rmax;
6 OR ← {o|o.� ∈ R};
7 if Score(OR) > s∗ then
8 s∗ ← Score(OR), C∗ ← OR;

9 return MCBR(C∗);

Example 4. We illustrate three different configurations of our RBR queries over
the spatial database shown in Example 1.

1. α = 0 : Only the textual relevance to query keywords is considered, which
corresponds to queries Q1 and Q2 in Fig. 1. Specifically, for query Q1, the
keyword is “sushi” and apparently region R1 is more textually relevant to
this keyword than region R2.

2. Score w(·) = SUM, α = 1 : Only the object weights are considered. In Fig. 1,
Q3 adopts this setting which implies the user only wants to find a region
with highly-rated restaurants without food preference. In this case, our RBR
query performs like MaxRS queries with the MCBR as the query geometry.

3. Score w(·) = SUM, α ∈ (0, 1) : Both keyword relevance and object weight
values are considered, which is commonly used for queries like “find a region
covering many sushi places with high ratings (stars)”.

3 Query Processing Algorithms

3.1 Baseline Algorithm: PairEnum

Recall that given a set of spatial objects O, we can generate all possible mini-
mum bounding circles by enumerating circles determined by any pair/triple of
the objects. However, since the maximum radius rmax is given, we only need to
check all pairs, instead of pairs and triples, of objects to enumerate the circles.
Based on this intuition, we propose the baseline algorithm PairEnum as shown in
Algorithm 1. Line 1 initializes s∗ and C∗ for tracking the score and the covered
objects of the current optimal solution. Lines 2–8 find the optimal region among
the circles with radius rmax and passing any pair of objects. After the enumera-
tion, Line 9 invokes a subroutine MCBR(C∗) to get the minimum bounding circle
of C∗. The correctness of Algorithm 1 is demonstrated in Theorem 2.

Theorem 2. Let ALG and OPT be the scores of the region found by PairEnum
and the optimal region, respectively. Then, ALG = OPT.



Efficiently Discovering Regions of Interest with User-Defined Score Function 597

Fig. 3. Illustration of circle rotation. Fig. 4. Polar system transformation.

Fig. 5. Angular scan example. Fig. 6. Table of angle scan result.

We then analyze the time complexity of Algorithm 1. The worst case occurs
when the spatial objects are extremely densely distributed and all the n2

(n = |O|) pairs of objects need to be checked. Each object pair requires one
range query and one computation of region score. The subroutine MCBR(C∗)
is implemented by [19], which takes linear amount of time. Suppose that spa-
tial index like R-tree is used to index all spatial objects, then each range
query takes time O(log n + c) where c is the result size. Let O(q) be the
complexity of region score computation, then the total time complexity is
O(n2(log n + max c + q)) = O(n3 + n2q), since we have max c = O(n) in the
worst case.

3.2 Circle Rotation and Angle Scan

PairNum finds the optimal region but has a cubic time complexity. In this section,
we aim to further reduce its time complexity. Existing rectangle-based MaxRS
query studies [10,11] can efficiently generate the candidate regions by scanning
with a sweep line. However, this sweep-line based region generation method
cannot be applied to our RBR queries which target circular regions. To address
this challenge, we propose novel circular region generation method which works
with circle rotation and angle scanning as introduced below. For the ease of
presentation, we first define two notations:



598 Q. Liu et al.

– �A,B,C : the angle of counterclockwise rotation surrounding point A from
direction

−−→
AB to

−→
AC;

– O(C): the center point of a circle C.

Definition 5 (oi-Bounded Circle). Given a radius upper bound rmax and a
spatial object oi, an oi-Bounded Circle, denoted by Ci, refers to any circle with
radius rmax and oi.� on its boundary. Notably, the union of all Ci’s is the circular
region centering at oi.� with radius 2rmax.

The circle rotation process is to fix an object oi as a reference point and scan
the oi-bounded circles surrounding oi.� in counterclockwise order. To introduce
this procedure, we define the polar system (Definition 6) to locate a oi-bounded
circle and the start/end events (Definition 7) to describe the change of object
coverage.

Definition 6 (oi-Polar System). For a reference point oi, the oi-polar system,
denoted by X (oi), is the polar coordinate system with pole oi.� and polar axis−−−−→
oi.�,X where

−−−−→
oi.�,X is a ray from oi.� horizontally to the right.

With the concept of the oi-polar system, we can use the center coordinate
under X (oi) to uniquely represent an oi-bounded circle. Let Ci(θ) be the oi-
bounded circle whose center coordinate is (rmax, θ) under X (oi). Then, the circle
rotation over oi can be described as scanning Ci(θ) by varying θ ∈ [0, 2π]. Instead
of continuously rotating a circle, we are more interested in some key events which
incur change of the objects covered by Ci(θ). We then define the start event and
end event as below.

Definition 7 (Start Event and End Event). Given the reference point oi,
let oj be another spatial object satisfying ||oi.�−oj .�||2 ≤ 2rmax, the start event
and end event for object pair (oi, oj) are defined as the moments that Ci(θ) first
meets and leaves oj .� when rotating it counterclockwise. We denote θstart

ij and
θend

ij as the angles of Ci(θ) for the corresponding start and end events, respec-
tively, and denote Φi as the set of the angles of all events when rotating circle
Ci(θ), i.e., Φi = {θstart

ij } ∪ {θend
ij }.

With some simple deductions, θstart
ij and θend

ij can be calculated as

θstart
ij , θend

ij = θij ± cos−1(
‖oi.� − oj .�‖2

2rmax
) (3)

where θij
1 is the angular coordinate of oj .� in system X (oi), i.e., �oi.�,X,oj .�. We

define the angular pair Θij = (θstart
ij , θend

ij ) as the covering interval for object oj

when rotating circle Ci. There are two observations about Θij :

1. Ci(θ) always covers oj .� when θ ∈ Θij ;
2. the length of Θij , i.e., |θend

ij −θstart
ij | = 2Δij , is no larger than π, and 2Δij = π

i.f.f. ‖oi.� − oj .�‖2 = 2rmax.

1 All angles are in the range [0, 2π] to make the representation unique.



Efficiently Discovering Regions of Interest with User-Defined Score Function 599

Note that we may have θstart
ij > θend

ij (e.g., Fig. 3), as we limit the angles into
the range [0, 2π]. Example 5 illustrates the concepts introduced above.

Example 5. In the example shown in Fig. 3, the object o3 is selected as the
reference point, and o1, o2, & o4 are three objects with distances less than 2rmax

from o3. All six circles in Fig. 3 are o3-bounded circles. By selecting o3 as the
pole and

−−−→
o3,X as the polar axis, we can construct the corresponding o3-polar

system X (o3), which is shown in Fig. 4. The two blue circles, i.e., C3(θstart
34 ) and

C3(θend
34 ), correspond to the start and end events for the object pair (o3, o4).

Under X (o3), the covering intervals for objects o1, o2, o4, i.e., Θ31,Θ32,Θ34 are
represented as segments in Fig. 4.

By traversing the oi-bounded circles with angles in Φi in ascending order,
we can obtain their sets of covered objects, where the difference between two
adjacent sets is incurred by a specific event. Example 6 illustrates such procedure.

Example 6. Continuing with Example 5, three intervals Θ31, Θ32 and Θ34 are
drawn in Fig. 5. Interval Θ34 crosses the boundary between 0 and 2π, which
is represented with a dashed line. We operate a ray originating from oi.� with
the angle θ from 0 to 2π to rotate an o3-bounded circle. Let C denote the set
of spatial objects covered by C3(θ). Then, when L meets θstart

31 , corresponding
to Cstart

31 (the top green circle) in Fig. 3, o1 is added into C (C = {o1, o3}).
Subsequently when L meets θstart

32 (the top pink circle), we have C = {o1, o2, o3}.
When L meets θend

31 (the bottom green circle), we have C = {o2, o3}.

Given a collection of spatial objects O, a reference point oi and the corre-
sponding event set Φi while rotating circle Ci(θ), we could track the current
object set covered by Ci(θ) and the corresponding region score. Specifically, for
a given monotonic function Score, we define two types of optimal circles:

– Locally Optimal Circle is the circle Ci(θ∗
i ) whose region score is maximized.

i.e., θ∗
i = arg maxθ∈Φi

Score(OCi(θ)) where OCi(θ) = {o|o.� ∈ Ci(θ) ∧ o ∈ O}.
Denote the local optimal circle for reference point oi as COPT

i .
– Globally Optima Circle is the circle, denoted by COPT, with the highest

region score among all local optimal circles, i.e., COPT = arg maxC∈{COPT
i }n

i=1

Score(OC).

With the concepts above, the connection between the circle rotation and RBR
query result is shown in Theorem 3.

Theorem 3. For the global optimal circle COPT, for arbitrary subset O′ ⊆ O
satisfying the radius of MCBR(O′) is less than rmax, Score(OCOPT) ≥ Score(O′)
where the equality holds i.f.f. O′ = OCOPT .

Recall that each minimum bounding circle must have at least two points on
its boundary. Theorem 3 implies that if the boundary of an RBR query result
region contains point oi, it can surely be found through the circle rotation process
with oi as the reference point. Thus, by repeatedly performing the circle rotation



600 Q. Liu et al.

Algorithm 2: BaseRotation
Input: A RBR query Q = {O, q, Score, rmax}
Output: The result region of query Q

1 s∗ ← 0, C∗ ← {};
2 for i = 1, · · · , |O| do
3 N (oi) ← {oj | ||oi.� − oj .�||2 < 2rmax, oj ∈ O, j �= i};
4 Q ← new priority queue, C ← {};
5 for o′ ∈ N (o) do

6 calculate θstart
ij and θend

ij as Eq. (3);

7 Q.enqueue(θstart
ij ), Q.enqueue(θend

ij );

8 while Q is non-empty do
9 if Q.pop() is θstart

ij then
10 C ← C ∪ {oi};
11 if Score(C) > s∗ then
12 s∗ ← Score(C), C∗ ← C;

13 else if Q.pop() is θend
ij then

14 C ← C/{oi};

15 return MCBR(C∗);

process with each object o ∈ O as reference point and tracking the region with
the highest score, we can finally obtain the answer to an RBR query. Intuitively,
the circle rotation based method is more efficient than PairEnum since it avoids
computing O(n2) times range queries, and the update of the region with the
highest score can be performed incrementally.

3.3 Algorithm: BaseRotation

Based on the circle rotation principle, we propose algorithm BaseRotation in
Algorithm 2. Line 1 initializes s∗ and C∗, which represents the current highest
score and the corresponding set of covered objects. Lines 2–14 repeatedly run
the circle rotation procedure with the reference point oi for i = 1, · · · , |O|. In
each inner loop, Line 3 is a range query to find all objects within distance 2rmax

from oi, Line 4 creates a priority queue (Min-heap) Q, to store events for angle
scanning and initializes an empty set C to track the current covered spatial
objects, Lines 5–7 calculate θstart

ij , θend
ij for each oj ∈ N (oi) and insert them into

Q, and Lines 8–14 scan the angles, which have been ordered in priority queue
Q. Specifically, at each time we pop one element from Q, which simulates a ray
scanning from 0 to 2π. For start events (i.e., θstart

ij ), the corresponding object
oj is added to a temporary set C which contains objects covered by current
circle Cstart

ij ; whereas, for end events (i.e., θend
ij ), we remove oj from C. s∗ and

C∗ are updated if the current set C yields a higher score. Finally, we return the
minimum bounding circle of C∗ by invoking the subroutine MCBR.

Note that we ignore the corner cases in Algorithm 2 where intervals crossing
0/2π, which can be handled by starting the scan from the first start event. There
is a running example shown in Example 7.



Efficiently Discovering Regions of Interest with User-Defined Score Function 601

Example 7. Suppose Score=COUNT, Fig. 6 illustrates the evolution of C regard-
ing the scan in Fig. 5 where o3 is the reference point. When the sweep-line meets
θstart
32 , the corresponding circle Cstart

32 covers most objects. Thus, after this run
of circle rotation, s∗ and C∗ are updated to 3 and {o1, o2, o3}, respectively.

The correctness of Algorithm 2 can be easily derived from Theorem 3 since
it gives every object a chance to be the reference point. We then analyze its time
complexity. Algorithm 2 contains n range queries on spatial database O (Line
3), which takes time O(n log n) by adopting a common spatial index like R-tree.
Since the region score function is required to be self-decomposible, Score(C)
could be simply updated using the previous value, which takes constant time.
In each inner-loop, supposing there are ci (i.e., |N (oi)|) objects in the result set
of line 3, lines 4–14 involve O(ci) heap operations, which takes time O(ci log ci).
Thus, the total time complexity of BaseRotation is O(

∑n
i=1(log n + ci log ci)) =

O(n log n + nC log C) where C = maxi=1,··· ,n ci. The worst case of Algorithm 2
occurs when the spatial objects are narrowly distributed and rmax is set to some
large value. For such a case, ci = n and thus the time complexity becomes
O(n2 log n), which is near-optimal considering the 3SUM-hardness i.e., Ω(n2).

3.4 Algorithm: OptRotation

The major overhead of BaseRotation lies in its O(ci) heap operations for rotating
an oi-bounded circle. To further improve the time efficiency, 1) we use another
efficient data structure called interval bucket instead of the heap-based event
queue; 2) we use several non-trivial pruning rules, observing that there are some
unnecessary circle rotations.

Interval Bucket. Instead of using a single event queue at runtime, the Interval
Bucket divides the angular space [0, 2π] into k buckets and maintains a sub-
queue for each bucket to store its events (i.e., angles). The event scan is then
conducted bucket by bucket. We suppose that the reference point is oi and
there are ci objects within distance 2rmax from oi.�. Then, by setting the bucket
size k = Θ(ci) (the ith bucket indicates the angular range [2πi/k, 2π(i + 1)/k)
for i = 0, · · · , k − 1) and assuming the events are uniformly distributed into the
buckets, the time complexity of event scan becomes O(ci)2, which improves from
that of the pure heap-based approach, O(ci log ci). To make the events uniformly
distributed into buckets, which would assure the efficiency of the method, we can
use some histogram-base techniques [13] to split or merge some buckets.

Pruning and Lazy Evaluation. We further reduce the time cost of BaseRo-
tation by avoiding unnecessary scanning events and adopting a lazy evaluation
strategy. Two pruning rules are introduced below.

Lemma 1 (Pruning Rule 1). Suppose the current reference point of circle
rotation is oi, if Score(N (oi)) < s∗ where s∗ is the current highest region score,
then it is sure that the optimal solution does not have oi on its boundary.
2 The time complexity analysis is similar to that of distribution sorting [12].



602 Q. Liu et al.

Lemma 1 implies that we can use the current highest score to prune some ref-
erence points at runtime. This pruning rule can be effective if we achieve a large
s∗ at an early stage. To realize that, we start the circle rotation with the reference
points in a relatively dense area, with the intuition that dense areas tend to have
higher scores. To further reduce the time cost for a certain reference point oi, we
next show that the score variable s∗ in BaseRotation can be updated lazily, which
is stated in Lemma 2. We first introduce the concept of Locally Maximal Set.

Definition 8 (Locally Maximal Set). Suppose the current reference point is
oi, the rotating circle Ci(θ) is called a locally maximal circle i.f.f. there exists
no other Ci(θ′) (θ = θ′) such that the objects covered by Ci(θ′) is a superset of
that of Ci(θ), i.e., OCi(θ) ⊂ OCi(θ′). The object set for a locally maximal circle
is called a locally maximal set.

Example 8. Continuing with the circle rotation result shown in Fig. 6, circle
Ci(θstart

31 ) is not a locally maximal circle since {o1, o2, o3} is a superset of {o1, o2},
the set covered by Ci(θstart

31 ). On the other hand, Ci(θstart
32 ) is a locally maximal

circle and {o1, o2, o3} is a local maximal set.

Lemma 2 (Pruning Rule 2). Let COPT denote an optimal solution, then the
object set covered by COPT, denoted by OCOPT , must be a locally maximal set.

Lemma 2 states that the object set covered by the optimal solution must be
a locally maximal set. Thus, during the circle rotation process, we can safely
skip some events if their corresponding circles do not cover a locally maximal
set, which is expected to save much time from updating the current optimal
score and the corresponding object set, i.e., s∗ and C∗ in BaseRotation. Since
s∗ and C∗ are updated only if it is necessary, we call this pruning strategy as
lazy evaluation. We have Lemma 3 to efficiently determine whether the current
scanning event corresponds to a locally maximal set.

Lemma 3. For a reference point oi, we denote θ
tj
ij → θtkik as the transition from

one scanning event to another where labels tj , tk can be either “start” or “end”.
Then, the object set covered by circle Ci(θ

tj
ij) is a locally maximal set i.f.f. tj =

start, tk = end (note that, j can be either equal to k or not).

Example 9. By scanning the intervals shown in Fig. 6, the event θstart
32 corre-

sponds to a locally maximal set {o1, o2, o3} since there is an event transition
θstart
32 → θend

31 satisfying the condition in Lemma 3. θstart
34 can be analyzed analo-

gously. Thus, only θstart
32 and θstart

34 need to be checked, instead of all six events.

Based on the interval bucket and pruning rules introduced above, we propose
OptRotation in Algorithm 3. Similar to BaseRotation, Line 1 initializes s∗ and
C∗ to track the currently found optimum, and Lines 2–19 continuously perform
circle rotation with oi ∈ O. Lines 4–5 implement Pruning Rule 1, which stops
the current rotation if the score of N (oi) is less than s∗. Lines 6–9 put the
scanning events into the interval bucket B. Lines 10–19 scan the events one by
one, which is similar to BaseRotation. The difference is that we record the last



Efficiently Discovering Regions of Interest with User-Defined Score Function 603

Algorithm 3: OptRotation
Input: A RBR query Q = {O, q, Score, α, rmax}
Output: The result region of query Q

1 s∗ ← 0, C∗ ← {};
2 for i = 1, · · · , |O| do
3 N (oi) ← {oj |||oi.� − oj .�||2 < 2rmax, oj ∈ O, j �= i};
4 if Score(N (oi)) < s∗ then
5 continue; � Pruning rule 1

6 B ← new bucket interval with k buckets;
7 for o′ ∈ N (oi) do

8 calculate θstart
ij and θend

ij as Eq. (3);

9 enqueue θstart
ij and θend

ij into proper bucket of B;

10 C ← {}, prev ← NULL;
11 for j = 1, · · · , k do

12 Q ← queue stored in ith bucket of B;
13 while Q is non-empty do
14 if Q.pop() is θstart

ij then
15 C ← C ∪ {oi}, prev ← true;

16 else if Q.pop() is θend
ij then

17 if prev == true and Score(C) > s∗ then
18 C∗ ← C, s∗ ← Score(C); � Pruning rule 2

19 C ← C/{oi}, prev ← false;

20 return MCBR(C∗);

scanning event type in prev, whose value is true for a start event, and s∗ and C∗

are updated only if it indicates a locally maximal set.
We then analyze the time complexity of Algorithm 3. In each rotation, Lines

3–5 retrieve a set of nodes N (oi) through a range query and check whether
Pruning Rule 1 holds. By adopting indexes designed for spatial aggregation query
processing like [21], both the range query and the calculation of Score(N (oi))
can be done in O(log n + ci) where ci = |N (oi)|. As we have analyzed before,
for ith rotation, the event scanning routine in Lines 11–19 takes O(ci) time in
expectation. Let M be the number of conducted circle rotation operations. Then,
the total time complexity is O(n log n + nC + MC) = O(n log n + nC) where
C = max ci. Compared with BaseRotation, Algorithm OptRotation reduces a
factor of log C in time complexity by adopting the interval buckets. In practice,
the efficiency improvement of OptRotation is significant since the two pruning
rules can avoid most of the unnecessary circle rotation procedures.

4 Experimental Studies

In this section, we report experimental results of our proposed RBR query pro-
cessing techniques. All the experiments were conducted on a Linux server with
Intel(R) Xeon(R) CPU X5675 @ 3.07 GHz and 32 GB memory, and all the
algorithms were implemented in Java using JDK10.



604 Q. Liu et al.

Table 1. Summary of real datasets.

Dataset Category #Objects Avg. #Neighbors Max. #Neighbors

Yelp Real 192,610 2785.87 12133

Cal Real 104,770 83.12 898

Table 2. Parameter setting (real).

Parameter Values

p [0.2, 0.4, 0.6, 0.8, 1.0]

rmax [0.5, 1, 5, 10, 50]

Table 3. Parameter setting (synthetic).

Parameter Values

n [50K, 100K, 500K, 1M, 5M]

σ [50, 100, 500, 1000, 5000]

rmax [5, 10, 20, 50, 100]

4.1 Experiment Setting

Compared Algorithms. We implement the baseline algorithm PairEnum (PE) and
the two circle rotation based algorithms BaseRotation (BR) and OptRotation
(OR). We also implement the state-of-the-art solution for the Maximum Range
Sum (MaxRS) queries [11] for comparison.

Datasets. We use both real-world and synthetic datasets to evaluate the meth-
ods. Yelp is a dataset of 192,610 selected businesses [2], which are mostly restau-
rants, with multiple attributes including “stars” and “reviews”. Cal is a dataset
of 104,770 California POIs crawled by using Google Map Places API [1] where
each POI is associated with multiple user-tagged textual labels (e.g., “nice bar-
bershop”). We also adopt two synthetic datasets, Uniform and Mixture, gener-
ated by sampling from a uniform distribution and a Gaussian mixture distri-
bution (with 5 identical Gaussian components), respectively. Table 1 presents
some statistics of the adopted datasets. Specifically, for a dataset O, Avg.
#Neighbors= 1

n

∑n
i=1 ci and Max. #Neighbors=maxi=1,··· ,n ci where ci denotes

the number of objects with distance less than 5 km from oi. These two statistics
depict the distribution and the locality of a spatial dataset.

Region Score and Queries. The score functions are set up as follows. For Yelp,
the region score is Eq. (2) where Score t(·) is the text relevance between query
keywords and user reviews of restaurants, Score w refers to the total sum of stars,
and α = 0.5. Note that, we normalize both text relevance and star value into
range [0, 1] before adding them together. For Cal, since the POIs do not have
ratings, we only consider the text relevance, which means Score(·) = Score t (i.e.,
α = 0). For the two synthetic datasets, we set Score(·) = SUM and the objects
weights are sampled from a uniform distribution U(0, 1). Finally, for datasets
Cal and Yelp which require keywords in the test queries, we randomly select 20
terms whose frequency in the whole text corpus is larger than 500 for each query.

Parameter Settings. The parameter settings are shown in Table 2 and Table 3
where the underlined values are the default settings. Specifically, p is the ratio for



Efficiently Discovering Regions of Interest with User-Defined Score Function 605

sampling the objects from the real datasets. n and σ are the number of objects
and the variance of the distribution for generating the synthetic data. For both
real and synthetic data, rmax is the maximum radius of the query region.

(a) Cal: time v.s. p. (b) Yelp: time v.s. p.

(c) Cal: time v.s. rmax. (d) Yelp: time v.s. rmax.

Fig. 7. Experimental results on real datasets by varying p and rmax.

4.2 Experiment Results

Influence of p. The scalability evaluation results w.r.t. p on real datasets are
shown in Fig. 7a and Fig. 7b. On both Cal and Yelp, the running times of all
three algorithms increase as p increases since both the number of spatial objects
and the object density become larger as p increases. However, the increase of
baseline PE is much faster than that of BR and OR, which coincides with the fact
that the time complexity of PE is higher. This demonstrates the efficiency of our
circle rotation-based techniques. More specifically, the most efficient algorithm,
OR, is 102 ∼ 103× faster than PE. Also, the growth of OR’s running time keeps
smooth over datasets of different locality levels.

Influence of n and σ. Similarly, we also conduct the scalability evaluation w.r.t.
n, the number of samples, and σ, the variance of generated data, on the two
synthetic datasets Uniform and Mix. The results are shown in Fig. 8a–Fig. 8e.
For parameter n, the baseline PE yields “time-out” when n is higher than 1
million, whereas OR increases smoothly over the increase of n. We also find that
the running times all grow faster on the synthetic data, compared with real data.
That is because with the variance parameter σ, the data density increases very
fast as n increases. Nonetheless, OR can finish in 10 s when n is set to 5 million,
which is efficient enough to operate in real-time. The variance parameter σ is
another parameter that affects the data distribution. As σ increases, the spatial
objects tend to be more sparsely distributed. Consequently, the running times
of the algorithms all decrease.



606 Q. Liu et al.

Fig. 8. Experimental results of parameters n and σ on synthetic datasets.

Influence of rmax. As an important query parameter, rmax not only constrains
the maximum radius of the result region, but also influences the RBR query pro-
cessing time. The results of running times w.r.t. rmax on both real and synthetic
datasets are shown in Fig. 7c–Fig. 8f. The running times of all three algorithms
increase since C increases as rmax grows. The running times are particularly
large when the objects are densely distributed, e.g., dataset Yelp. However, algo-
rithm OR still performs well even if rmax is set to some very large value (e.g.,
50 km on Cal and Yelp).

5 Conclusion

In summary, this paper introduces a new type of spatial operator called Radius
Bounded ROI (RBR) queries. Compared with existing studies on best region
search over spatial databases, our RBR queries adopt a more flexible query
geometry and a more generalized spatial data model enabling users to specify a
large spectrum of region goodness measurements. We prove that answering RBR
queries is 3SUM-hard and propose three algorithms PairEnum, BaseRotation and
OptRotation based on non-trivial geometric observations. To demonstrate both
efficiency and effectiveness of our proposed algorithms, we conduct extensive
experimental studies on both real-world datasets and synthetic benchmarks,
and the results show that OptRotation, our most efficient algorithm, beats the
baseline algorithm by a factor of 3.

Acknowledgments. This work is partially supported by the Hong Kong RGC GRF
Project 16207617, CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project
AoE/E-603/18, China NSFC No. 61729201, Guangdong Basic and Applied Basic
Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and
ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, Didi-HKUST



Efficiently Discovering Regions of Interest with User-Defined Score Function 607

joint research lab project, and Wechat and Webank Research Grants. Xiang Lian was
supported by NSF OAC (No. 1739491) and Lian Startup (No. 220981) from Kent State
University.

References

1. Places Google Map (2019). https://cloud.google.com/maps-platform/
2. Yelp Dataset (2019). https://www.yelp.com/dataset
3. Yelp Fusion (2019). https://www.yelp.com/developers/documentation/v3/
4. Amagata, D., Hara, T.: Monitoring MaxRS in spatial data streams. In: EDBT, pp.

317–328. OpenProceedings.org (2016)
5. Amagata, D., Hara, T.: A general framework for MaxRS and MaxCRS monitoring

in spatial data streams. ACM TSAS 3(1), 1:1–1:34 (2017)
6. Cao, X., Cong, G., Guo, T., Jensen, C.S., Ooi, B.C.: Efficient processing of spatial

group keyword queries. ACM Trans. Database Syst. 40(2), 13:1–13:48 (2015)
7. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying.

In: SIGMOD Conference, pp. 373–384. ACM (2011)
8. Cao, X., Cong, G., Jensen, C.S., Yiu, M.L.: Retrieving regions of interest for user

exploration. PVLDB 7(9), 733–744 (2014)
9. Chen, Z., Liu, Y., Wong, R.C., Xiong, J., Cheng, X., Chen, P.: Rotating MaxRS

queries. Inf. Sci. 305, 110–129 (2015)
10. Choi, D., Chung, C., Tao, Y.: A scalable algorithm for maximizing range sum in

spatial databases. PVLDB 5(11), 1088–1099 (2012)
11. Choi, D., Chung, C., Tao, Y.: Maximizing range sum in external memory. ACM

Trans. Database Syst. 39(3), 21:1–21:44 (2014)
12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

MIT Press, United States (2009)
13. Cormode, G., Garofalakis, M.N., Haas, P.J., Jermaine, C.: Synopses for massive

data: samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3),
1–294 (2012)

14. Feng, K., Cong, G., Bhowmick, S.S., Peng, W., Miao, C.: Towards best region
search for data exploration. In: SIGMOD Conference, pp. 1055–1070. ACM (2016)

15. Feng, K., Guo, T., Cong, G., Bhowmick, S.S., Ma, S.: SURGE: continuous detection
of bursty regions over a stream of spatial objects. In: ICDE, pp. 1292–1295. IEEE
Computer Society (2018)

16. Gajentaan, A., Overmars, M.H.: On a class of o(n2) problems in computational
geometry. Comput. Geom. 45(4), 140–152 (2012)

17. Gao, Y., Zhao, J., Zheng, B., Chen, G.: Efficient collective spatial keyword query
processing on road networks. IEEE Trans. Intell. Transp. Syst. 17(2), 469–480
(2016)

18. Long, C., Wong, R.C., Wang, K., Fu, A.W.: Collective spatial keyword queries:
a distance owner-driven approach. In: SIGMOD Conference, pp. 689–700. ACM
(2013)

19. Megiddo, N.: Linear-time algorithms for linear programming in r̂ 3 and related
problems. In: FOCS, pp. 329–338. IEEE Computer Society (1982)

20. Tao, Y., Hu, X., Choi, D., Chung, C.: Approximate MaxRS in spatial databases.
In: PVLDB, vol. 6, no. 13, pp. 1546–1557 (2013)

21. Tao, Y., Papadias, D., Zhang, J.: Aggregate processing of planar points. In: Jensen,
C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 682–700. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45876-X 42

https://cloud.google.com/maps-platform/
https://www.yelp.com/dataset
https://www.yelp.com/developers/documentation/v3/
https://doi.org/10.1007/3-540-45876-X_42


608 Q. Liu et al.

22. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-
bounded k-cores. In: ICDE, pp. 233–244. IEEE Computer Society (2018)

23. Wu, D., Jensen, C.S.: A density-based approach to the retrieval of top-k spatial
textual clusters. In: CIKM, pp. 2095–2100. ACM (2016)

24. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.
38(2), 6 (2006)



An Attention-Based Bi-GRU for Route
Planning and Order Dispatch

of Bus-Booking Platform

Yucen Gao1, Yuanning Gao1, Yuhao Li1, Xiaofeng Gao1(B), Xiang Li2,
and Guihai Chen1

1 Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China
{guo ke,gyuanning,Yggdrasils}@sjtu.edu.cn,

{gao-xf,gchen}@cs.sjtu.edu.cn
2 Beijing University of Chemical Technology, Beijing, China

lixiang@mail.buct.edu.cn

Abstract. To cope with the high needs from passengers, especially for
airports at night, we plan to develop a novel bus-booking platform, which
can dispatch several passenger orders to one bus together. In this paper,
we first give the formal definition of the Order Dispatch and Route Plan-
ning (ODRP) problem for the new bus-booking platform, and prove the
ODRP problem is NP-hard. We then propose a new method based on
attention mechanism and Bi-directional Gated Recurrent Unit (Bi-GRU)
to realize the tasks of order dispatch and route planning simultaneously.
To the best of our knowledge, this is the first method that uses main
ideas of attention mechanism and Bi-GRU in order dispatch and route
planning issues related to urban bus system. It can achieve the goal
of increasing passenger number and reducing platform costs. Through
experiments based on real-world data, we prove the effectiveness of the
proposed method.

Keywords: Bus-booking platform · Order dispatch · Route planning

1 Introduction

With the rapid expansion of urban scale and population growth, the demand
for urban transportation within city grows rapidly in recent years. However, all
existing methods still cannot completely satisfy the needs from passengers, espe-
cially for some locations at special periods. For instance, according to the official

This work was supported by the National Key R&D Program of China
[2020YFB1707903]; the National Natural Science Foundation of China [61872238,
71722007, 71931001], the Huawei Cloud [TC20201127009], the CCF-Tencent Open
Fund [RAGR20200105], and the Tencent Marketing Solution Rhino-Bird Focused
Research Program [FR202001].

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 609–624, 2021.
https://doi.org/10.1007/978-3-030-73194-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_40&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_40


610 Y. Gao et al.

statistics from Beijing Traffic Management Bureau (BTMB), the number of the
passengers arrived at Beijing Capital International Airport is about 18,000 dur-
ing midnight period (23:00–02:00). However, the local public transport capacity
can only provide pick-up service for around 8,200 passengers, including 7,000
passengers by taxi and online car-hailing, and 1,200 passengers by airport shut-
tle buses (less than 7% of the total arrived passengers), leaving a large number
of passengers waiting at the airport for a long duration [1].

To cope with this situation, we plan to develop a novel bus-booking plat-
form. A bus-booking platform can dispatch several passenger orders to one bus
together, compute a specially planned route cycle based on these requirements,
and then ride the passengers to their destinations sequentially. However, its pro-
motion faces many challenges. For example, to operate this new platform requires
solving new variants of order dispatch, route planning and other issues. There is
not much related work to study these issues.

Order dispatch refers to assigning multiple appropriate passenger orders to
one bus. Didi Chuxing has done a lot of related work in modern taxi net-
works [2], but there has not been much reseach in bus networks. Route planning
is another problem that needs to be solved urgently in the promotion of bus-
booking platforms. Generally, route planning is a multi-objective optimization
problem, where the optimization goal is to minimize transportation costs and
maximize passenger number.

In this paper, we first investigate the previous work on the order dispatch
and route planning problems of urban bus systems and cars. We then give a
formal definition of the order dispatch and route planning (ODRP) problem for
the bus-booking platform.

A method based on the attention mechanism [3] and Bi-directional Gated
Recurrent Unit (Bi-GRU) [4] is then proposed to solve the ODRP problem.
Specifically, we first preprocess the order information through the order infor-
mation extraction module to obtain the vector representation of a series of order
features. We then utilize the ideas used in the attention mechanism and give
different degrees of attention to orders of different importance, where a higher
attention weight indicates that the corresponding order has a higher importance
level. This can meet the personalized needs of users and realize the goal of maxi-
mizing the profitability for the bus-booking platform. Finally, we use Bi-GRU to
process station information, and dynamically provide the assigned order infor-
mation and current station information as the context vector to the attention
sub-network. Under the circular operation of attention sub-network and Bi-GRU,
we can get the final order dispatch scheme and planned route.

We also evaluate the proposed method based on real data set. Simulation
experiments under different order quantities, bus numbers and bus capacities
are conducted. The results show that our method can achieve better results
in terms of user experience and order satisfaction compared with the baseline
methods.



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 611

2 Related Work

The new bus-booking platform is a novel system that can process passenger
orders, thus there is little literature related to it. Because we study the route
planning and order dispatch problem of the bus-booking platform, we investigate
the literature related to route planning and order dispatch.

Route Planning: Around 2010, with the increase in urban traffic demand,
researchers began to pay attention to the computational efficiency of the route
planning algorithm, and combined a large amount of real data to conduct tar-
geted analysis [5,6]. During the same period, some researchers also put forward
some novel ideas. Khoa et al. [7] suggested that users can consider walking
between two stations not far away to improve travel efficiency. Wang et al. [8]
applied indexing technology to route planning. Since then, the relevant research
on bus route planning has paid more and more attention to customer needs.
Kong et al. [9] utilized machine learning models to accurately predict user travel
needs with a dynamic programming method for route planning.

Order Dispatch: After the emergence of car-hailing platforms, researchers con-
ducted an in-depth discussion on order dispatch based on the big data collected
by car-hailing platforms and advanced research methods in recent years. Zhang et
al. [10] used Bayesian framework to model the distribution of users and designed
a combinatorial optimization method to maximize the global order success rate.
Xu et al. [2] modeled the order dispatch problem as a large-scale sequential
decision problem in a large-scale on-demand car-hailing platform, and aimed at
optimal global resource utilization.

In addition to these studies that provide strategies for increasing the global
order success rate, some scholars have also paid attention to the profits of
platforms and drivers. On the basis of proving that the constrained optimiza-
tion problem with platform profit as the optimization goal is NP-hard, Zheng
et al. [11] proposed an approximation algorithm and carried out simulation
experiments. Duan et al. [12] utilized a dynamic programming method and
achieved a mutually beneficial win-win situation between car-hailing platform
and passengers.

In this paper, we formally define a multi-objective optimization problem that
considers both passenger experience and platform revenue, which is in line with
the current research trend on order dispatch.

3 Problem Formulation

In this section, we first explain some concepts and describe the problem of order
dispatch and route planning problem for the new bus-booking platform. Then,
we prove the ODRP problem is NP-hard.

Definition 1. (Time unit). A time unit refers to the time span of the bus-
booking platform to dispatch existing orders to different buses and plan routes
for these buses [11], after which the platform batches new orders until the next
time unit.



612 Y. Gao et al.

Definition 2. (Order oi). An order oi is a quinary tuple 〈di, ti, vi, npi, pi〉,
where di refers to the destination station of the order, ti is the time when oi
is collected by the bus-booking platform, vi represents the VIP level of oi, npi
refers to the passenger number of the order, and pi is the priority assigned to
order oi, which represents its importance. The relationship between pi and other
order attributes can be expressed as a function.

pi = f1(ti, vi, npi)

Definition 3. (Departure station DS and destination station si). DS means
the departure station, where all orders and buses start. si is a binary tuple
〈longitudei, latitudei〉, which represents the ith destination station.

Definition 4. (Bus bi). A bus bi is a tuple 〈routei, pbi, L, cb, cr, vb〉, where
routei represents the route plan of the bus, pbi refers to the numbe of passengers
assigned to bi, L means the capacity limit of the bus, cb is the bus fuel cost per
kilometer, cr is the bus cost per route and vb represents the bus speed per hour.

Definition 5. (Travel time t(a, b)i). The travel time function t(a, b)i is the time
from a to b in routei.

According to the definitions mentioned above, we can describe our optimiza-
tion goals: the platform cost C =

∑
bi∈B Ci and the total priority of all accepted

orders P =
∑

oi∈Oaccepted
pi. The cost of the ith bus Ci can be obtained by

cr + costi, where costi is the overall fuel cost of bi.
Given an order set O, a bus set B, a departure station DS and a destination

station set S in a time unit, the capacity constraint for the ODRP problem is:

∀bi ∈ B, pbi ≤ L

In order to give a formal programming form for this problem, we stipulate
that xij = 1 represents the ith order oi is assigned to the jth bus bj . To ensure
that an order is only assigned to one bus, we add constraints:

∑

bj∈B

xij ≤ 1,∀oi ∈ O (1)

The capacity constraints mentioned above can be written as:
∑

oi∈O

xijnpi ≤ L,∀bj ∈ B (2)

Our primary goal is to maximize benefits, and the secondary goal is to min-
imize costs, so the linear programming form of the problem is:

max
∑

oi∈O

xijpi

min
∑

bj∈B

cr + Cj

s.t.Constraint (1), (2)



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 613

Problem Hardness: We prove the ODRP problem is NP-hard by showing that
the Hamiltonian cycle problem, an NPC problem, can be reduced to the ODRP
problem.

Theorem 1. The problem of maximizing priority and minimizing cost for the
bus-booking platform is NP-hard.

Given G(V,E) with |V | = n, we define cost(e) = 1,∀e ∈ E. Assume that
there are n − 1 orders with different destinations, cb = 0 and only one bus is
at the departure station, which can accept all orders. To maximize the priority,
the bus will accept all orders. Then we add edges E′ to G to make G become a
complete graph and define cost(e′) = 2,∀e′ ∈ E′. We can do this operation in
polynomial time. In the situation, we consider the decision version of the ODRP
problem, which is “is there a route planning solution of cost at most n?”. If
the answer is yes, there must be a cycle that visits all nodes exactly once. At
the same time, edges of the cycle are all from E. Therefore we can ensure that
there is a Hamiltonian cycle in G. Since the Hamiltonian cycle problem is NP-
Complete as we mentioned above, the decision version of the ODRP problem is
NP-Complete, hence the ODRP problem is NP-hard.

4 Attention-Based Bi-GRU Method

4.1 Framework Overview

Order Sequence

Destinations

Arrival Times

VIP Levels

Others

…

…

…

…

…

…

Order oi

Attention
Sub-network

…

sc1

sc2

sc3

…

scq

f(t)

Stations

Context

Attention
Sub-network

Attention
Sub-network

Route for buses

Order dispatch and route planning

backward
A 1

A 2

A 3

A j

forward

O
rder Inform

ation Extraction

Encoding

StSt+1St+2

GRU

GRU

GRU

GRU

GRU

GRU

St+2 St+1St+3

Fig. 1. Overview of the attention-based Bi-GRU method

The framework of our proposed method is shown in Fig. 1. The method can be
divided into three parts, an order information extraction module, an attention
sub-network module, and an order dispatch and route planning module. We will
explain the details of each module in combination with mathematical symbols
below.



614 Y. Gao et al.

4.2 Order Information Extraction

In this section, we will introduce the structure and function of the order infor-
mation extraction module in detail. This module is mainly used to process
the original information of orders to generate the corresponding attribute fea-
ture vector. In our discussion, given an order set O = {o1, o2, · · · , on}, where
oi = 〈di, ti, vi, npi, pi〉, we can express the original attributes of the order set
in another form, V = {V 1, V 2, V 3, V 4, V 5}, where V j = {vj

o1 , v
j
o2 , · · · , vj

on}
represents the original vector representation of the jth attribute. Thus, we
can get the order set O ’s corresponding attribute feature vector sequence
A = {A1, A2, A3, A4, A5}, where Aj = {aj

o1 , a
j
o2 , · · · , aj

on} represents the vec-
tor representation of the jth attribute obtained through information extraction.
Because the order attributes are different, the corresponding information extrac-
tion methods are also different. We will then discuss in detail the information
extraction methods of various order attributes considered in the paper.

– Destination: In general, the station information includes the station name
and station location, where the station name is often Chinese or English
characters, and the station location can be characterized by latitude and
longitude coordinates. We will not consider the station location factor in this
module in order to simplify the model.

– Arrival Time: The time when the order oi is collected by the platform is
called the arrival time ti. In order to eliminate the influence of dimension, we
use Min-max normalization method to process ti.

a2
i =

ti
max(V 2) − min(V 2)

– VIP Level: VIP level is a parameter we introduce to measure the importance
of users to the platform. Because online car-hailing platforms have not taken
this into consideration at present, there is no VIP level entry in the data set.
Hence, we use a randomization method to add a VIP level to each order. In
fact, the proportion of VIP users to the total users of the platform is usually
very small, so we think that the VIP level of most orders is zero. We set the
VIP level to three levels: low, medium and high, and its priority is increased
in turn. Therefore, a3

oi can be 0, 1, 2, or 3. Our randomization method can
ensure that the total number of orders with a higher VIP level is less than the
total number of orders with a lower VIP level, which is in line with reality.

– Number of Passengers Included: Unlike car-hailing services, orders of the bus-
booking platform needs to indicate the number of passengers it contains in
order to meet the capacity constraint when the order is dispatched.

– Priority: In fact, the priority should be related to the first four attributes
instead of being obtained directly. The earlier the order arrives at the plat-
form, the higher the VIP level is, and the larger the number of passengers
included is, the higher the priority will be. However, because the attention
sub-network will also consider the aggregation effect of the destination sta-
tions, we stipulate that the order priority pi is only related to ti, vi and npi



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 615

in order to facilitate the calculation. In our discussion, pi can be calculated
through the function f1(·). We can adjust the weight coefficient to flexibly
reflect the impact of the other factors on pi.

a4
oi = w2

p(1 − a2
oi) + w3

pa
3
oi + w4

pa
4
o2

It is worth noting that if the order has more attributes in the future, we can
still convert the attributes into feature vectors by a suitable method, so that the
order information extraction module can still be used to solve the problem. This
structure ensures the scalability of the model.

4.3 Attention Sub-network

This module is used to process the attribute feature vectors of orders to get
an aggregated representation of order set attributes. This aggregated represen-
tation can reflect the user’s overall demand for different destination stations.
Specifically, the attribute feature vector matrix A will be assigned to different
attention sub-networks according to the destination station. Each attention sub-
network then combines the assigned orders and the context vector c to calculate
an aggregated representation of this part of the order attributes.

In fact, the attention mechanism used in our proposed method has some
differences from the attention mechanism used for machine translation. We refer
to the idea of providing different inputs with different attention and utilizing a
variable context vector c to achieve the dynamic change of the weight matrix
between the input and output used in the latter construction process. Such a
mechanism will bring the following benefits:

– We provide different orders with different weights, which can make those
important orders play significant roles in the aggregation representation.

– The impact of different attributes of an order on the final aggregate repre-
sentation is also different.

– The impact of orders on the aggregated representation at different stages
varies, which is related to the current order dispatch scheme and the current
station at this stage.

We introduce attention weight α(i, j, k) to express the influence of the ith
order with sj as the destination on the aggregated representation scj at the
planning stage k. For ease of presentation, we use oji to represent the ith order
with sj as the destination. According to the previous statement, if oji is important
to scj at the planning stage k, then α(i, j, k) should be high. The dynamic
feature of the module is that when k takes different values, α(i, j, k) will also
have different values according to the calculation based on the order dispatch
and route planning situation at the time. We are able to detect changing order
information and station information during the route by using the attention
mechanism to learn α(i, j, k) dynamically, Next, we will introduce in detail how
to obtain the context vector c and the internal structure of the attention sub-
network.



616 Y. Gao et al.

In order to illustrate the construction of the context vector c, we use cjk to
represent the context vector of the attention sub-network for processing orders
whose destination is sj at the planning stage k. cjk is related to the current order
dispatch and route planning scheme. We think that cjk = {cjk[1], cjk[2]}, where
cjk[1] records the information of orders that has been dispatched, cjk[2] records
the relationship between the current station and sj . In the paper, we assume
that cjk[2] mainly reflects distance information, and its value is related to the
distance matrix between stations Mdis.

We introduce Aoji
to represent the attribute characteristics of oji to illustrate

the internal structure of attention sub-network. We define Aoji
= f2(a1

oji
, a2

oji
, a3

oji
,

a4
oji

, a5
oji

). The attention self-network inputs the order attribute feature Aoji
and

the order information part of context vector cjk[1] to a two-layer network, thereby
obtaining the corresponding weight:

α(i, j, k) = ωTφ(Wcc
j
k[1] + WAAoji

+ ε1) + ε2

where the first layer parameters are the matrices Wc, WA and bias ε1, the
second layer parameters are the vector w and bias ε2. Non-linear ReLU function
φ(x) = max(0, x) is leveraged.

We use Oj to denote the collection of all orders with destination sj . Then
each attention sub-network can get an aggregated representation of the order
information at planning stage k.

scj =
∑

oji∈Oj

α(i, j, k)Aoj1

The overall group aggregated representation of all orders gk at planning stage
k can be obtained from a merge function f(·) and the station information part
of context vector cjk[2].

gk = f(c1k[2]sc1, c2k[2]sc2, · · · , c1k[2]scq)

The vector concatenation operation (⊕) is used as the merge function f(·)
for ease of operation,, which also means that the information of each station
is treated fairly. Therefore, the overall group aggregated representation gk =
c1k[2]sc1 ⊕ c2k[2]sc2 ⊕ · · · ⊕ cqk[2]scq in this paper.

4.4 Order Dispatch and Route Planning

In this section, we will explain the details of using Bi-GRU to complete the
task of order dispatch and route planning. In car-hailing services, order dispatch
and route planning are usually two separate issues. Even in urban bus system
research, the two problems are usually handled with different methods. In this
module, while using Bi-GRU to generate the bus route, we can complete the
order dispatch task, which benefits from the detailed processing of the order
information before.



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 617

The input of Bi-GRU in the planning stage k is a q-dimensional one-hot
vector representing a certain station via encoding, where q is the total number
of bus stops. At the same time, the group aggregated representation gk obtained
by attention sub-network and the hidden state of the previous stage will also be
fed to Bi-GRU, and finally output a q-dimensional vector that can be decoded
to the site.

It is worth noting that the group aggregated representation gk at this moment
contains the information of the context vector ck, indicating that ck will also
affect the route planning of Bi-GRU. In addition, we reserve processing space
for the feature vectors related to the current station in Bi-GRU so that we can
take this information into account (for example, historical travel needs of the
station).

Take the GRU with forward propagation at planning stage k as an example,
the formulae are as follows:

rk = σ(Wrxk + Whr(hk−1 � Fk) + br + WaA)
zk = σ(Wrxk + Whz(hk−1 � Fk) + bz + WaA)

h∗
k = tanh(Wh∗

k
xk + Whh∗

k
(rk � (hk−1 � Fk)) + WaA)

hk = (1 − zk) � (hk−1Ak) + zk � h∗
k

yk = σ(Wohk)

where rk is the reset gate, controlling some information in the memory state
to be forgotten. On the contrary, zk is the update gate, used to transfer infor-
mation from the input to the memory state. hk−1 is the old memory state, and
h∗
k is the temporary new memory state. In order to calculate the final memory

state hk at the planning stage k, the update gate needs to confirm which infor-
mation is collected from h∗

k and the previous hk−1. In addition, A is the attribute
group aggregated representation vector, and Wa is the corresponding attribute
weight matrix. Fk is the feature vector related to station information, and � is
an element-wise product operator. The remaining weight matrices W and biases
b that appear in the formulae can be combined with subscripts to know their
roles. These parameters need to be learned during the operation of Bi-GRU.
Since the backward propagation GRU’s formulae are similar to the above, it will
not be repeated here.

From the above statement, we understand the advantages of Bi-GRU. It has
a simple structure and only uses two gates to control the update and reset of
the information in the memory state. By propagating the input and the previous
hidden state into the gates, we can get the corresponding output station.

Finally, we can get the vector representation of the output station obtained
at planning stage k.

rk = max(σ(yf
k + yb

k))

Among them, rk can be decoded into the original station representation. Note
that the moment the route planning is completed, the module will determine
which orders are suitable for being dispatched to this bus. These dispatched



618 Y. Gao et al.

orders and the current station information will be sent back to the attention
sub-network’s context vector c. The two modules run alternately to achieve the
final order dispatch and route planning tasks.

5 Experiments and Analysis

5.1 Dataset and Evaluation Criteria

Dataset. The data set used in this section is the taxi GPS trajectory data from
February 1, 2007 to March 1, 2007 in Shanghai. It contains various fields, such
as record ID, longitude, latitude, as shown in Table 1. The data set contains
about 357, 000 GPS records of 1, 367 taxis in Shanghai.

Data Preprocessing: Data preprocessing includes data filtering and data
expansion. In term of the data filtering step, we first confirm the order infor-
mation according to the status of taxis. We think that the status from idle to
occupied indicates the starting point of an order, and the status from occupied to
idle indicates the destination of an order, thus getting the basic information of an
order: (Order ID, Source, Destination, Start time, End time). In order to adapt
the data to our research scenario, we need to screen out orders that depart from
the vicinity of Shanghai Pudong International Airport during midnight period.
According to the map, we determine the latitude and longitude range of Shang-
hai Pudong International Airport and filter out the required order information.
Because there are not many orders that meet our requirements in one day, data
expansion is necessary. Based on the information of existing orders, we perform
reasonable interpolation to generate more orders, thus expanding the effective
order data set.

Table 1. Description of Taxi GPS track data

Field Annotation

RecordID ID of record

TaxiID ID of taxi

Longitude Longitude of taxi

Latitude Latitude of taxi

Speed Speed of taxi

Datetime Time that GPS record was sent

Status 1: taxi is occupied while 0: taxi is vacant

Evaluation Criteria. In order to compare the performance of different meth-
ods, we specify three evaluation criteria based on the order attributes: average
VIP level V̄ , total priority of all accepted orders P , and platform cost C.

V̄ =

∑
oi∈Oaccepted

vi

Size(Oaccepted)



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 619

P =
∑

oi∈Oaccepted

pi

C =
∑

bi∈B

(costi + cb)

5.2 Destination Stations Selection

In this section, we first propose a DBSCAN-PAM hybrid clustering algorithm
to cluster “hot” grid cells and determine destination stations.

DBSCAN-PAM Hybrid Clustering Algorithm. Our goal is to use the
real taxi GPS data to study the travel hotspots of residents, so as to establish
a proper bus destination station at the central point of the hot spot area. In
order to solve this problem, a hybrid clustering algorithm based on DBSCAN
algorithm and PAM algorithm is designed. The algorithm consists of two steps:

1. The DBSCAN algorithm is used to process the data of the get-off points, and
the noise data is eliminated.

2. The PAM algorithm is used to cluster the data after noise elimination, and
uses the class center point as a candidate station for the bus-booking platform.

We filter out suitable popular stations based on the destination parameter of
valid order data. First, we need to rasterize the city map, which means dividing
the city into 25 m× 25 m grid cells. Grid cells with value greater than θhot are
then marked as “hot” grid cells. Next, DBSCAN-PAM hybrid clustering algo-
rithm is used to cluster and determine the center points of clusters. To conduct
the hybrid algorithm, we need to set two key parameters, eps and MinPts. The
setting of these two parameter values will directly affect the clustering effect.

Fig. 2. 50 selected hot destination stations



620 Y. Gao et al.

According to relevant regulations in China’s “Urban Road Traffic Planning
and Design Specification” GB50220-95, the distance between public transporta-
tion stations in the city’s transportation system should be 500 m to 800 m, and
the distance between stations in the suburban transportation system should be
800 m to 1000 m. Because the purpose of this paper is to design a new bus-
booking platform that is applied to the urban transportation system, we set eps
to 500 m. The value of MinPts affects the distance from the furthest points in
the cluster to the center point. According to the distribution of “hot” grids cells,
we set MinPts to 100. In this way, we can get the results of clustering and center
point determination. At the same time, DBSCAN-PAM algorithm can identify
some noise points and eliminate these noise data.

Shanghai Pudong International Airport is the departure station of the bus-
booking platform in our discussion. Considering the total number of orders in
each station cluster, the distance between other points and the center point, the
distance between center points and the departure station, and some traditional
rules for the location of bus stations, we finally selected 50 popular destination
stations, as shown in Fig. 2.

5.3 Simulations

In this section, we first introduce the baseline methods for comparison. Sim-
ulation experiments are then conducted to investigate the performance of the
baseline methods and our proposed method in terms of evaluation criteria.

Compared Methods. A genetic algorithm for solving classic CVRP prob-
lem and an advanced heuristic route planning method are chosen as baseline
methods. Among them, the former represents the classic methods used for route
planning, and the latter represents the novel methods proposed by scholars in
recent years.

– CVRP: Capacitated Vehicle Routing Problem (CVRP) is to compute the
travel lines for the vehicles with capacity so as to satisfy the requests of all
the passengers and minimize the travel cost of all the vehicles [13–15]. In
the simulation experiment, we use a genetic algorithm to solve the CVRP
problem as one baseline method [14].

– SubBus: SubBus is a dynamic route planning method [9]. Candidate ori-
gins are first determined based on station information and passenger travel
demands. Starting from the candidate origin set, a candidate route set is gen-
erated combined with road network information. A dynamic programming
method is then designed with the optimization goal of minimizing the run-
ning distance to implement the dynamic route planning of multiple buses
running at the same time.

Configurations. Our experiments are conducted on a Mi Notebook Pro with
four processors (4× Intel Core i5-8250U, 1.60 GHz) and one graphics card



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 621

(NVIDIA GeForce MX250). The operating system of the device is Microsoft
Windows 10 (64-bit). The code is mainly written with Python 3.5. Meanwhile,
TensorFlow 1.2 is used as a machine learning framework for our experiments.

Order data is obtained from real-world data through data filtering and data
expansion as mentioned above. The destination and arrival time attributes are
inherent in the order, and the VIP and priority attributes are given by us manu-
ally, which will be discussed in detail below. The scale of experimental data can
refer to Table 2.

Simulation for the ODRP Problem. In the simulation experiment, we use
the control variable method to explore the advantages and disadvantages of each
method and the effectiveness of each method under different conditions. For the
order oi, the attributes di and ti can be obtained directly. However, vi and npi
are not collected by the current car-hailing platform, so we need to give them
values manually. For vi, we use a random assignment method. At the same time,
we ensure that most orders’ vi is 0. In the order group of vi > 0, the order of
large vi is small, which can be achieved by setting the probability matrix. For
npi, we stipulate that npi = 1, 2, or 3 in the simulation, and the ratio between
the three meets 16:3:1. The advantage of this rule is that when we discuss the
special case of pi = npi, the total number of orders and the total number of
passengers can be used as controlled variables at the same time. So far, we have
completed the discussion of attributes of order oi in the simulation experiment.

We then discuss the control variables. In the simulation, we take m × L, and
number of orders n as the controlled variables. We set up five sets of experi-
ments. In the first three sets of experiments, n remained unchanged, and m × L
increased sequentially. In contrast, in the last three sets of experiments, m × L
remained unchanged, and n increased in turn. Therefore, through the first three
sets of experiments, we can observe changes in the effectiveness of different meth-
ods as the total carrying capacity of the platform increases. Through the last
three sets of experiments, we can observe the changes with the total number
of orders increases. For specific parameters of each variable in the five sets of
experiments, please refer to Table 2. Next, we will specifically analyze the effect
of each method on different evaluation criteria in conjunction with the figures
showing the simulation results.

Table 2. Parameters in five experiments

Experiment Bus
number

Bus
capacity

Order
number

Passenger
number

1 20 20 960 1200

2 30 20 960 1200

3 30 30 960 1200

4 30 30 1200 1500

5 30 30 1440 1800



622 Y. Gao et al.

We first analyze the evaluation criterion V̄ . As shown in Fig. 3, the V̄ s
obtained by the first two baseline methods are basically in the range of 0.4–0.6,
which reflects that these two methods do not deal with VIP level specially. How-
ever, the V̄ obtained by the attention-based Bi-GRU method is in a dominant
position and exhibits certain regularity. According to Experiment 1–3, when the
total number of orders is the same, V̄ decreases as the total bus carrying capac-
ity increases. According to Experiment 3–5, when the total carrying capacity of
the bus remains unchanged, V̄ increases as the total number of orders increases.
We speculate that the attention-based Bi-GRU method can absorb most of the
VIP orders in the order set, so that we can derive a similar change trend as in
Fig. 3.

We then analyze P , the total priority of Oaccepted. In the simulation, we define
the function f1(· · · ): pi = npi×{0.5[1−N(ti)]+0.5N(vi)}, where N(·) indicates
the normalization processing function. The simulation results are shown in Fig. 4.
The reason why our method is better than SubBus is because we pay attention
to ti and vi. Under this construction method of pi, the P obtained by our method
is close to the optimal maximum value that P can reach. To maximize P is the
main optimization goal of the ODRP problem. Therefore, our method is very
helpful to solve the problem.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Av
er

ag
e 

VI
P 

le
ve

l

CVRP
SubBus
Our method

Fig. 3. Average VIP level

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

To
ta

l p
rio

rit
y

CVRP
SubBus
Our method

Fig. 4. Total priority of Oaccepted

The special case of pi = npi is also discusses, where P represents the total
number of passengers accepted. According to Fig. 5, we can see that our method
is still in a leading position, thanks to the global consideration of order informa-
tion and the changing attention for orders in different planning stages. Compared
with the baseline method, our method accepts significantly more passengers,
which shows that our method has notable advantages.

The platform cost C is analyzed in the end. As shown in Fig. 6, CVRP always
keeps the platform cost at a low level, thanks to the method only accepting few
passengers. Our method is comparable to the SubBus method. From Experiment
1 to 2, the platform cost increases significantly, because 10 new buses are added.



An Attention-Based Bi-GRU for Route Planning and Order Dispatch 623

From Experiment 2 to 5, although the total carrying capacity of buses and the
number of orders increase, their impact on platform cost is not large. On the
one hand, the simulation result shows that the three methods have achieved
good results in route planning. On the other hand, it shows that reducing the
number of buses used is one of the good ways to save platform cost. Although the
effectiveness of our method in terms of minimizing the platform cost is not very
satisfactory, accepting more passengers means that the platform can earn more
profits as mentioned above. The platform can cover the cost through appropriate
pricing strategies.

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

To
ta

l p
rio

rit
y

CVRP
SubBus
Our method

Fig. 5. P when pi = npi

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Pl
at

fo
rm

 c
os

t

CVRP
SubBus
Our method

Fig. 6. Platform cost

In general, we prove the effectiveness of the attention-based Bi-GRU method
to solve the ODRP problem through simulation experiments and comparison
with the baseline methods. It maximizes the total priority of all accepted orders
while keeping the platform cost as small as possible without violating constraints.
Therefore, we believe that the attention-based Bi-GRU method has broad appli-
cation prospects in the research field of the new bus-booking platform.

6 Conclusion

In this paper, we proposed an attention-based Bi-GRU method to solve the
ODRP problem. The attention mechanism is mainly used to differentiate the
order information. Bi-GRU gives the final order dispatch and route planning
schemes.

Our contribution is mainly that the method not only uses the different order
characteristics to describe the order information, but also dynamically learns the
influence weight of each given order at different planning stages, combined with
station information. In addition, this method is the first to combine the atten-
tion mechanism with Bi-GRU in the order dispatch and route planning problem
related to urban buses. Experiments conducted on real-world data sets show
that our proposed method has better performance than the baseline methods.



624 Y. Gao et al.

References

1. Zhou, H., Gao, Y., Gao, X., Chen, G.: Real-time route planning and online order
dispatch for bus-booking platforms. In: Li, G., Yang, J., Gama, J., Natwichai, J.,
Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 748–763. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-18579-4 44

2. Xu, Z., et al.: Large-scale order dispatch in on-demand ride-hailing platforms: a
learning and planning approach. In: ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pp. 905–913 (2018)

3. Xia, B., Li, Y., Li, Q., Li, T.: Attention-based recurrent neural network for location
recommendation. In: International Conference on Intelligent Systems and Knowl-
edge Engineering (ISKE), pp. 1–6 (2017)

4. Li, L., Cai , G., Chen, N.: A rumor events detection method based on deep bidirec-
tional GRU neural network. In: IEEE International Conference on Image, Vision
and Computing (ICIVC), pp. 755–759 (2018)

5. Xian, O.Y., Chitre, M., Rus, D.: An approximate bus route planning algorithm.
In: IEEE Symposium on Computational Intelligence in Vehicles & Transportation
Systems (CIVTS), pp. 16–24 (2013)

6. Lei, S., Li, Z., Wu , B., Wang, H.: Research on multi-objective bus route planning
model based on taxi GPS data. In: International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), pp. 249–255 (2016)

7. Khoa, V.D., Pham, T.V., Nguyen, H.T., Van Hoai, T.: Multi–criteria route plan-
ning in bus network. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol.
8838, pp. 535–546. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45237-0 49

8. Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public
transportation networks: a labelling approach. In: ACM SIGMOD International
Conference on Management of Data (SIGMOD), pp. 967–982 (2015)

9. Kong, X., Li, M., Tang, T., Tian, K., Moreira-Matias, L., Xia, F.: Shared subway
shuttle bus route planning based on transport data analytics. IEEE Trans. Autom.
Sci. Eng. 15(4), 1507–1520 (2018)

10. Zhang, L., et al.: A taxi order dispatch model based on combinatorial optimization.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 2151–2159 (2017)

11. Zheng, L., Chen, L., Ye, J.: Order dispatch in price-aware ridesharing. Int. Conf.
Very Large Data Bases (VLDB) 11(8), 853–865 (2018)

12. Duan, Y., Wang , N., Wu, J.: Optimizing order dispatch for ride-sharing sys-
tems. In: International Conference on Computer Communication and Networks
(ICCCN), pp. 1–9 (2019)

13. Allahviranloo, M., Chow, J.Y., Recker, W.W.: Selective vehicle routing problems
under uncertainty without recourse. Transp. Res. Part E Logistics Transp. Rev.
62, 68–88 (2014)

14. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle
routing problem: survey. ACM Comput. Surv. 47(2), 1–28 (2014)

15. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: On the capacitated
vehicle routing problem. Math. Program. 94, 343–359 (2003)

https://doi.org/10.1007/978-3-030-18579-4_44
https://doi.org/10.1007/978-3-662-45237-0_49
https://doi.org/10.1007/978-3-662-45237-0_49


Top-k Closest Pair Queries over Spatial
Knowledge Graph

Fangwei Wu1, Xike Xie1(B), and Jieming Shi2

1 University of Science and Technology of China, Hefei, China
wufw1995@mail.ustc.edu.cn, xkxie@ustc.edu.cn

2 The Hong Kong Polytechnic University, Hung Hom, Hong Kong
jieming.shi@polyu.edu.hk

Abstract. Recently, RDF data has been enriched with spatial semantics
enabling spatial keyword search. Research spatial keyword search over
spatial RDF data focus on finding the spatial entities rooted at subtrees
which cover given query keywords. In this work, we study how relevant
spatial entity pairs can be efficiently retrieved, where the relevance is
determined according to both spatial distances and textual similarities.
The retrieved top-k closest pairs are ranked and then returned to users for
the interests of business intelligence and recommendation. We propose a
branch-and-bound framework associated with effective lower and upper
bound pruning techniques and early stopping conditions for efficiently
retrieving relevant top-k closet pairs. The results demonstrate the high
efficiency of our proposal compared to baseline solutions.

Keywords: Knowledge graph · Closest pair query · Spatial keyword
search

1 Introduction

Due to the growth of knowledge-sharing communities and the development of
automated information extraction technologies, large knowledge bases, have been
used in various applications. For example, DBpedia [1] and YAGO [2] extract
facts from Wikipedia automatically and store them in the Resources Description
Framework (RDF) format to support structural queries. An RDF entity is linked
to other entities and/or types and/or descriptions. Therefore, an RDF knowledge
base can also be seen as a directed graph, where entities are entities or types
or descriptions, and edges are predicates that describe the relationship between
entities.

Recently, knowledge bases are enriched with additional spatial seman-
tics. These knowledge bases make the location-based queries and information
retrieval. The standard structured languages such as GeoSPARQL have been
proposed by Open Geospatial Consortium (OGC) to support geospatial search
operations. However, these structured languages often require users to be famil-
iar with specific language and the apriori knowledge of the data domains, which
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 625–640, 2021.
https://doi.org/10.1007/978-3-030-73194-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_41


626 F. Wu et al.

limits the access of common users. Given this, a keyword search on spatial knowl-
edge bases model emerged [15], which is called kSP query and allows users to
retrieve spatial entity without understanding the structure languages. As far as
we know, the kSP query aims to find a subtree rooted at the spatial vertex in the
knowledge graph, which covers all query keywords and minimizes the ranking
scores. The ranking score is determined by the compactness of the subtree and
the spatial distance to a retrieved query location. In other words, the size of a
retrieved subtree can measure the relevance between the spatial entity and the
query keywords.

In the paper, a spatial query that combines join and nearest neighbor queries
based on knowledge graphs is exampled.

Example 1. Figure 1(a) shows the preprocessed graph representation of several
triples extracted from DBpedia. Each node is an entity associated with a docu-
ment. Squares corresponds to spatial vertices, for which the locations have been
extracted and are shown in Fig. 1(b). Circles are non-spatial entities of the RDF
graph. If one wants to find a park and a bus station, which are close to each
other. According to [15], kSP can only find a bus station {s1} and parks {s2, s3}
since kSP aims to find a single spatial vertex that covers all the query keywords.
In addition, kSP can not be leveraged to find two semantic spatial entities and
measure the spatial distance between them. We call the pair of park and bus
station as a spatial entity pair and investigate an efficient solution for finding
top-k paired spatial entities.

(a) RDF graph (b) Map of spatial vertices

Fig. 1. RDF example

To address above mentioned problems, in the paper, we propose a novel way
of searching on a spatial knowledge base, namely Top-k Closest Pair Queries,
which returns k spatial entity pairs with minimum ranking scores. The ranking
function aggregates the spatial distance between the paired entities and the
textual relevance to query keywords.

Our contributions in the paper are summarized as follows.



Top-k Closest Pair Queries over Spatial Knowledge Graph 627

– We define a general score function for ranking spatial entity pairs with respect
to their locations and corresponding textual descriptions, and propose a basic
solution (Sect. 3).

– We index the spatial RDF entities by an R-tree and derive the upper/lower
bounds for the ranking function and an early stopping condition to speed up
the ranking evaluation (Sect. 4).

– We conducted experiments on YAGO and DBpedia datasets to demonstrate
the efficiency of our proposed algorithm (Sect. 5).

In addition, we introduce some preliminaries in Sect. 2 and related works in
Sect. 6.

2 Preliminaries

A knowledge graph can be modeled as a directed graph G = (V,E) where V
indicates a collection of vertices and E indicates a collection of edges. Each
vertex v ∈ V refers to an entity and v.ψ refers to a text description containing
the entity’s URI and literals. The knowledge graph adopted the RDF data model,
which represents the data as collections of <subject, predicate, object> triples.
For each triple, the description of the predicate is added to the document of the
object entity for the purpose of the keyword search. In addition, some of the
entities are associated with spatial attributes (e.g., coordinates). For the ease
of presentation, we call these vertices spatial vertices in the graph and use s to
represent a spatial vertex.

For a spatial vertex, a keyword-based retrieval model over knowledge graphs,
such as [7,11,17], identifies a set of paths that reach vertices containing query
keywords. In order to aggregate the proximity of the query keywords to the
spatial vertex, the sum of the length of the paths denoted as looseness, is defined
as follows:

Definition 1 (Looseness of Spatial Vertex [15]). Assume a spatial vertex
s, a knowledge graph G = (V,E) and query keywords q.ψ = {t1, . . . , tm}. Let
dg(s, ti) = minv∈V ∧ti∈v.ψ d(s, v) be the length of the shortest path from s to
keyword ti ∈ q.ψ, where d(s, v) is the shortest path from s to v. The looseness
of s to q.ψ is defined as

L(s, q.ψ) = 1 +
∑

ti∈q.ψ

min(dg(p, ti), dmax), (1)

where dmax is the threshold of the maximum length of a shortest path.

For each query keyword ti of q.ψ, there must exist at least one path from
s to a vertex v that contains ti in G, so that s is relevant to ti. In addition,
the sum of the length of the shortest path from s to keyword ti can be used
as a relevance score. For normalization purposes, 1 is added to the sum of the
paths to avoid the looseness being 0. The lower the looseness, the more relevant



628 F. Wu et al.

the spatial vertex is to the query keywords. dmax is the maximum length of the
shortest path that a user can tolerate as proposed in [8]. In other words, when
the length of a path from a spatial vertex is larger than dmax, the relevance score
of the keyword is rounded up to dmax.

3 Problem Definition and Basic Algorithm

We define the query in Sect. 3.1, and give a basic algorithm in Sect. 3.2.

3.1 Problem Definition

A top-k pair keyword queries on spatial knowledge graph (kPKQ) q aims to find k
spatial vertex pairs with the smallest looseness values, covering spatial distances
and textual similarities, based on an aggregate function. The kPKQ query q
consists of two arguments: the query keyword set ψR and the query keyword set
ψB .

Thus, we can join the spatial vertices searched by ψR with the spatial vertex
searched by ψB to get a set of spatial vertex pairs and returned the top-k results.
The looseness of a spatial vertex pair sp = (sR, sB) is as follows, according to
Definition 1.

Definition 2 (Pair Looseness). Assume a spatial vertex pair sp = (sR, sB), a
knowledge graph G = (V,E) and query keywords ψR and ψB. The pair looseness
of sp to ψR and ψB is defined as

LP (sp, q) = max(L(sR, ψR), L(sB , ψB)). (2)

The pair looseness is set to the maximum of two looseness values. It represents
that each spatial vertex in the pair is compact and satisfies the corresponding
query keywords so that the pair looseness is not smaller than any of the two
both looseness values. Finally, we define the kPKQ problem as follows.

Definition 3 (kPKQ). Given a kPKQ query q with two sets of query keywords
(ψR, ψB) on a knowledge graph G = (V,E), and a parameter k, the kPKQ
query returns top-k spatial vertex pairs with smallest ranking scores f(LP (sp, q),
S(sp)), where S(sp) is the spatial distance between the two entities of a pair.

The kPKQ query aims to find k pairs of spatial vertices: (i) are spatially
close to each other, (ii) have a looseness to the corresponding query keywords,
respectively, and (iii) have a smaller pair looseness. Without loss of generality,
Euclidean distance S(sp) = |sR, sB | is used as spatial distance in our work. The
ranking function f(LP (sp, q), S(sp)) is described as follows.

f(LP (sp, q), S(sp)) = LP (sp, q) × S(sp). (3)



Top-k Closest Pair Queries over Spatial Knowledge Graph 629

Example 2. Consider again the RDF data in Example 1 and assume an 1PKQ
issued by a tourist who wants to find a bus station and a park which are close to
each other, i.e., ψR = {busstation} and ψB = {park}. Based on the RDF graph
in Fig. 1(a), the spatial vertex pair sp1 = (s1, s2) has LP (sp1, q) = max(1, 1) = 1
and S(sp1) = 0.0154. f(LP (sp1, q), S(sp1)) = LP (sp1, q)×S(sp1) = 0.0154. The
spatial vertex pair sp2 = (s1, s3) has LP (sp2, q) = max(1, 3) = 3 and S(sp2) =
0.0118. f(LP (sp2, q), S(sp2)) = LP (sp2, q) × S(sp2) = 0.0384. Therefore, sp1 is
returned as top-1 result.

3.2 Basic Solution

Assume that VS indicates a collection of spatial vertices in the knowledge graph.
Intuitively, the query can be answered by iterating over all spatial vertex pairs
in VS �� VS and computing the ranking score for each pair. Meanwhile, a global
min-heap Hk is used to maintain the current top-k results in terms of the ranking
score. After all pairs in VS �� VS have been processed, the query returns the k
pairs in top of Hk.

To compute the looseness, a straightforward way is to iterate over all spatial
vertex pairs and use BFS to compute the pair looseness. As shown in Algo-
rithm 1, there is a doubly nested loop in which both the outer loop and the
inner loop iterate a spatial vertex in VS with the corresponding query keywords.
Apparently, the basic algorithm is expensive as it uses BFS for each spatial ver-
tex pair in VS �� VS . In the following section, we propose more efficient methods
to compute LP and to prune disqualified pairs.

Algorithm 1: Basic(q, G, dmax)

1 Minheap Hk = ∅, ordered by f(LP , S);
2 Threshold θ = +∞;
3 while sR =GetNext(VS , ψR) do � Iterate over VS with ψR

4 Compute L(sR, ψR) by BFS;
5 while sB =GetNext(VS , ψB) do � Iterate over VS with ψB

6 Compute L(sB , ψB) by BFS;
7 Compute the ranking score f of (sR, sB);
8 if f < θ then
9 Hk.add((sR, sB), f);

10 update θ;

11 return Hk;

4 Improved Solution

Obviously, the computation of looseness is much more expensive than the com-
putation of spatial distance. Therefore, the key problem to be addressed is to
reduce the number of BFS during the query. The main idea is to estimate the
upper and lower bounds for the current ranking score to avoid looseness compu-
tation as much as possible. Suppose that all spatial vertices are spatially indexed
by an R-tree R. The doubly nested loop in Algorithm 1 can be improved to tra-
verse R-tree node with the query keywords. When accessing an R-tree node,



630 F. Wu et al.

its minimum bounding rectangle can be used to estimate the upper and lower
bounds, which can be used to stop BFS early.

In Sect. 4.1, we propose a vertex-join-node method in which the outer loop
traverses spatial vertices in VS and the inner loop traverses nodes in R. After
that, we propose a vertex-join-node with α-radius keywords index method in
Sect. 4.2.

Algorithm 2: V2N

1 Minheap Hk = ∅, ordered by f(LP , S);
2 Threshold θ = +∞;
3 while sR =GetNext(VS , ψR) do � Iterate VS with ψR,
4 if θ = 0 then
5 break;

6 if sR can not reach ψR then � Pruning Rule 1
7 continue;

8 Compute L(sR, ψR) by BFS;
9 Minheap He = ∅, ordered by |sR, eB |min;

10 He.add(R, |sR, R|min);
11 while He is not empty do � Iterate R with ψB

12 eB = He.pop();
13 if L(sR, ψR) × |sR, eB |min ≥ θ then � Pruning Rule 2
14 break;

15 if eB is a non-leaf node then
16 foreach child node ec

B in eB do
17 He.add(e

c
B , |sR, ec

B |min)

18 else � eB is a leaf node, denoted as sB

19 if sB can not reach ψB then � Pruning Rule 1
20 continue;

21 Compute L(sB , ψB) by BFSP ; � Algorithm 3
22 Compute the ranking score f of (sR, sB);
23 if f < θ then
24 Hk.add((sR, sB), f);
25 update θ;

26 return Hk;

4.1 Vertex Join Node Method: V2N

In the basic method, it needs to compute the looseness to its corresponding
query keywords for each spatial vertex. However, not every spatial vertex can
reach vertices covering all the query keywords by BFS. For the spatial vertex
that can not reach all the query keywords, it can not compute the looseness and
can hence be pruned. We adopt the method in [15] to test whether a spatial
vertex can reach a keyword. The pruning rule is formulated as follows.

Pruning Rule 1. Given a spatial vertex s, a knowledge graph and query keywords
q.ψ = {t1, . . . , tm}, if ∃ti ∈ q.ψ, dg(s, ti) = +∞, we say that the spatial vertex s
can not reach the keyword ti, so that s can be pruned.



Top-k Closest Pair Queries over Spatial Knowledge Graph 631

Algorithm 2 shows the pseudo code of our Vertex Join Node (V2N) search
method for evaluating kPKQ queries. Initially, we maintain a min-heap Hk for
storing the current top-k ranking score and θ is the k-th scores in the heap (line
1–2). When the outer loop iterates to a spatial vertex sR in VS with the query
keywords ψR, Pruning Rule 1 can be used before BFS to avoid unnecessary loose-
ness computation (line 6–7). After L(sR, ψR) is computed, the inner loop begins
to iterate node eB in the R-tree. The accessing order with the query keywords
ψB is in the ascending order of the minimum possible distances between sR and
the minimum bounding rectangle (MBR) of the node, denoted by |sR, eB |min

(line 9–10, 15–17). Based on the iteration order, the early stopping condition is
given in Pruning Rule 2. If eB is a leaf node, we denote it as sB for symbol con-
sistency (line 18). If sB can reach all the query keywords ψB , BFS with Pruning
function (BFSP ) is invoked to compute the looseness of sB by adopting dynamic
upper and lower bounds (line 21).

Pruning Rule 2. Let θ be the current top-k score in the heap. For an iterated
spatial vertex sR in the outer loop, and an iterated node eB in the inner loop,
if L(sR, ψR) × |sR, eB |min ≥ θ, then no spatial vertex pair containing sR can be
added to top-k result heap.

Proof. Suppose that sr
B is one of the rest of non-iterated spatial vertices in

the inner loop and spr = (sR, sr
B) is the spatial vertex pair. As the order of

iteration is in ascending order, the spatial distance from sR to sr
B is not less

than the minimum possible distance from sR to eB , i.e., |sR, sr
B | ≥ |sR, eB |min.

In addition, LP (spr, q) ≥ L(sR, ψR). Hence, we can have f(LP (spr, q), S(sp)) =
LP (spr, q) × |sR, sr

B | ≥ L(sR, ψR) × |sR, eB |min ≥ θ. Therefore, spr can not be
added to top-k result heap, which means that the spatial vertex pair includes
the rest of non-iterated spatial vertices in the inner loop can not be added to
top-k result heap. ��

Function BFSP computes the looseness of sB as BFS, except that dynamic
lower and upper bounds are used during the process. We first derive the lower
and upper bounds in Lemma 1.

Lemma 1. Assume a set of query keywords ψ = {t1, . . . , tj , . . . , tm} and a
distance threshold dmax, without loss of generality. Also, without loss of gen-
erality, we assume that the function have already discovered the first j query
keywords are reached with BFS depth d(s, v), where v is the furthest ver-
tex that BFS visits. A lower bound of the looseness L(s, ψ) is L−(s, ψ) =
1+

∑j
i=1 dg(s, ti)+d(s, v)×(m−j), and an upper bound of the looseness L(s, ψ)

is L+(s, ψ) = 1 +
∑j

i=1 dg(s, ti) + dmax × (m − j).

Proof. For the reached query keywords, the sum length of the shortest path is∑j
i=1 dg(s, ti). For the undiscovered query keywords, the depth of BFS is d(s, v)

where v is the encountering vertex, which means that keywords which are not
reached cannot have a shorter distance from s to v, i.e., dg(s, tk) ≥ d(s, v), j ≤
k ≤ m. In addition, the distance cannot be larger than the distance threshold,



632 F. Wu et al.

i.e., dg(s, tk) ≥ dmax. Therefore, we can have L−(s, ψ) = 1 +
∑j

i=1 dg(s, ti) +
d(s, v) × (m − j) ≤ 1 +

∑m
i=1 min(dg(p, ti), dmax) ≤ 1 +

∑j
i=1 dg(s, ti) + dmax ×

(m − j) = L+(s, ψ). ��
For the iterated vertex sR in the outer loop, the lower and upper bounds of

the looseness L−(sB , ψB) and L+(sB , ψB) can be used for pruning and stopping.
Based on Lemma 1, we introduce the dynamic bounds in Pruning Rule 3 and
Pruning Rule 4.

Pruning Rule 3. Let θ be the current k-th score in the current heap. For an
iterated spatial vertex sR in the outer loop and an iterated spatial vertex sB

in the inner loop, as long as L−(sB , ψB) ≥ θ/|sB , sR|, the spatial pair (sR, sB)
cannot be added to the result heap, and thus (sR, sB) can be pruned.

Proof. For the spatial vertex pair sp = (sR, sB), its pair looseness LP (sp, q) =
max(L(sR, ψR), L(sB , ψB)) ≥ L(sB , ψB) ≥ L−(sB , ψB), so the ranking score of
f(LP (sp, q), S(sp)) = LP (sp, q) × S(sp) ≥ L−(sB , ψB) × |sR, sB | ≥ θ, meaning
that the ranking score of sp must be no smaller than the current k-th score in
the result heap, then sp cannot be in the result. ��

Pruning Rule 4. For an iterated spatial vertex sR in the outer loop and an
iterated spatial vertex sB in the inner loop, as long as L+(sB , ψB) ≤ L(sR, ψR),
the spatial pair (sR, sB) can be added to the result heap, and thus the BFSP

can be immediately stopped.

Proof. For the spatial vertex pair sp = (sR, sB), because L(sB , ψB) ≤
L+(sB , ψB) ≤ L(sR, ψR), its pair looseness LP = max(L(sR, ψR), L(sB , ψB)) ≤
max(L(sR, ψR), L+(sB , ψB)) ≤ max(L(sR, ψR), L(sR, ψR)) = L(sR, ψR). In
addition, LP (sp, q) ≥ L(sR, ψR). Hence, LP (sp, q) = L(sR, ψR), which has
already been computed in the outer loop. Thus, the computation can be
immediately stopped and LR(sR, ψR) can be returned for the computation
of LP . ��

By applying the two dynamic bounds, we can design the algorithm BFSP in
Algorithm 3. It computes the dynamic bounds for sB when BFS encounters a
new vertex (line 3–4). Pruning Rule 3 guarantees the ranking score of (sR, sB)
is no less than k-th score in the result heap (line 5–6). Conversely, Pruning Rule
4 guarantees that it is no larger than k-th score in the result heap (line 7–8).
Finally, the algorithm computes the looseness of sB by Eq. 1 according to the
depth of BFS and dmax (line 9–14).

4.2 Improved Vertex Join Node Method: V2Nα

V2N can only apply pruning techniques at the vertex to the node level. Here,
we develop techniques capable of pruning index node that cannot contribute
to the result which is called Vode Join Node with α-radius keywords index
(V2Nα) method. We notice that in the processing of V2N, the bounds can only



Top-k Closest Pair Queries over Spatial Knowledge Graph 633

Algorithm 3: BFSP

1 LB = 1;
2 Set B = ψB ;
3 while v =BFS(G, sB) and B �= ∅ do
4 Compute the dynamic bounds L+(sB , ψB) and L−(sB , ψB);
5 if L−(sB , ψB) ≥ θ/|sB , sR| then � Pruning Rule 3
6 return +∞;

7 if L+(sB , ψB) ≤ L(sR, ψR) then � Pruning Rule 4
8 return L(sR, ψR);

9 if B ∩ v.ψ �= ∅ then
10 B = B \ v.ψ;
11 LB+=|B ∩ v.ψ| × d(sB , v);

12 if d(sB , v) ≥ dmax then � Distance threshold
13 LB+ = |B| × dmax;
14 break;

15 return LB ;

Algorithm 4: V2Nα

1 Minheap Hk = ∅, ordered by f(LP , S);
2 Threshold θ = +∞;
3 while sR =GetNext(R, ψR) do � Pruning Rule 1
4 if θ = 0 then
5 break;

6 if sR can not reach ψR then � Pruning Rule 1
7 continue;

8 Minheap He = ∅, ordered by |sR, eB |min;
9 He.add(R, |eR, R|min);

10 while He is not empty do
11 eB = He.pop();

12 if L−
α (sR, ψR) × |sR, eB |min ≥ θ then � Pruning Rule 5

13 break;

14 if eB is a non-leaf node then
15 foreach child node ec

B in eB do
16 if L−

α (ec
B , ψB) × |sR, ec

B |min ≥ θ then � Pruning Rule 6
17 continue;

18 else
19 He.add(sR, ec

B);

20 else � eB is a leaf node, denoted as sB

21 if sB can not reach ψB then � Pruning Rule 1
22 continue;

23 Compute L(sR, ψR) by BFS;
24 Compute L(sB , ψR) by BFSP ;
25 Compute the ranking score f of (sR, sB);
26 if f < θ then
27 Hk.add((sR, sB), f);
28 update θ;

29 return Hk;



634 F. Wu et al.

be computed in BFSP . In order to compute the bound at the node level, we
precompute the α-radius keyword neighborhood for each node in R-tree. We
define the α-radius keyword neighborhood of spatial vertex in Definition 4.

Definition 4 (α-radius Keyword Neighborhood of Spatial Vertex). For
a spatial vertex s, its α-radius keyword neighborhood KNα(s) contains a set
of keyword-distance pairs {(ti, dg(s, ti))}, where the length of the shortest path
from the spatial vertex s to keyword ti in KNα(s) is no larger than α, i.e.,
dg(s.ti) ≤ α.

Based on Definition 4, we define the α-radius keyword neighborhood of node
in the R-tree in Definition 5.

Definition 5 (α-radius Keyword Neighborhood of Node). For a node e
of the R-tree R, assuming that {sj} is the set of spatial vertices enclosed in e,
its α-radius keyword neighborhood KNα(e) contains a set of keyword-distance
pairs {ti, dg(e, ti)}, where the keywords in KNα(e) is the union of the keywords
in KNα(sj) for each sj enclosed in e, and dg(e, ti) = minsj∈e dg(sj , ti).

Based on the α-radius keyword neighborhood of spatial vertex, we can derive
the α-lower bound of the looseness for a spatial vertex based on Lemma 2, which
can be added to Pruning Rule 3 to improve the efficiency of pruning BFSP .

Lemma 2 (α-lower Bound of Looseness of Spatial Vertex). Let KNα(s)
be the α-radius keyword neighborhood of spatial vertex s and ψ =
{t1, . . . , tj , . . . , tm} be a set of keywords. Assume that the first j query keywords
correspond to keywords in KNα(s). The α-lower bound of the looseness L(s, ψ)
is L−

α (s, ψ) = 1 +
∑j

i=i dg(s, ti) + (α + 1) × (m − j).

First, we introduce the α-lower bound of a node in R-tree.

Lemma 3 (α-lower Bound of Looseness of Node ). Let KNα(e) be the α-
radius keyword neighborhood of node e in the R-tree and ψ = {t1, . . . , tj , . . . , tm}
be a set of keywords. Assume that the first j query keywords correspond to key-
words in KNα(s). The α-lower bound of the looseness L(e, ψ) is L−

α (e, ψ) =
1 +

∑j
i=i dg(s, ti) + (α + 1) × (m − j) and ∀s ∈ e, L−

α (e, ψ) ≤ L(s, ψ).

Based on Algorithm 2, V2Nα integrates the α-radius index and uses the
Pruning Rule 5 for early stopping and Pruning Rule 6 for pruning the node
whose pair looseness must be larger than the threshold. The proof of Pruning
Rule 5 and Pruning Rule 6 is the same as Pruning Rule 2.

Pruning Rule 5. Let θ be the current top-k score in the result heap. For an
iterated spatial vertex sR in the outer loop and an iterated node eB in the inner
loop, as soon as L−

α (sR, ψR)×|sR, eB |min ≥ θ, then no spatial vertex pair includes
sR with query keywords ψR can be added to top-k result heap.

Pruning Rule 6. Let θ be the current top-k score in the result heap. For an
iterated spatial vertex sR in the outer loop and an iterated node eB in the
inner loop, and the child node of eB is denoted as ec

B , as soon as L−
α (ec

B , ψB) ×
|sR, ec

B |min ≥ θ, then the spatial vertex pair (sR, ec
B) can not be added into He.



Top-k Closest Pair Queries over Spatial Knowledge Graph 635

5 Experiment

We conducted extensive experiments on a Yago dataset and a DBpedia dataset to
test the performance and feasibility of the proposed algorithms: V2V (Sect. 3.2),
V2N (Sect. 4.1) and V2Nα (Sect. 4.2).

5.1 Settings

Datasets. We extracted the data from widely-used knowledge bases: Yago (ver-
sion 2.5) and DBpedia. For the purpose of keyword search, we simplify the graphs
by collecting all the keywords from the URIs, types and literals to form a docu-
ment for each vertex. The documents of all vertices are organized by an inverted
index. In DBpedia, there are 8,099,955 vertices and 72,193,833 edges in the
knowledge graph, and 2,927,026 unique keywords. Among all vertices, there are
883,665 spatial vertices with coordinates. In Yago, there are 8,091,179 vertices
and 50,415,307 edges in the knowledge graph, and 3,778,457 unique keywords.
Among all vertices, there are 4,774,479 spatial vertices with coordinates.

Platform. All methods were implemented in Java and evaluated on a 2.2 Ghz
20 cores machine running Ubuntu with 16 GBytes memory. All data was kept in
memory.

Queries. In kPKQ problems, a join query is implemented to find top-k spatial
vertex pairs, which means that the query process requires a lot of memory and
time. To intuitively show the effect of the algorithms, we randomly set 1,000 spa-
tial vertices from 883,665 spatial vertices in DBpedia and 2,000 spatial vertices
from 4,774,479 spatial vertices in Yago for iteration, and other spatial vertices
will not be iterated in the algorithm.

Preprocessing. We extracted the keywords from DBpedia and Yago and imple-
mented the knowledge graph as adjacency lists for applying the BFS computa-
tion. Spatial vertices were indexed by R-tree. The keywords in vertices and α-
radius keyword neighborhood were indexed using inverted indices. The storage
cost is given in Table 1.

Table 1. Storage Cost (MB)

Dataset Knowledge graph R-tree Inverted index α(= 1, 3, 5) index TF-lable

DBpedia 607.95 0.63 2031.08 4.38 35.81 209.03 5048.48

Yago 454.81 1.20 508.93 0.58 6.32 22.98 1221.08



636 F. Wu et al.

5.2 Efficiency Evaluation

V2V takes too long to finish for the kPKQ problem because (i) BFS wastes lots
of computation for the spatial vertices that can not reach all the query keywords,
and (ii) it does not have early stopping conditions or bounds for pruning. Hence,
in our experiments, we set 1000 s as the maximum runtime for the queries using
V2V and abort those that take a longer time.

100

101

102

103

1 3 5 8 10 15 20

E
xe

cu
tio

n
tim

e
(s

)

top-k

V2N
V2V

V2N3

(a) execution time on DBpedia

101

102

103

1 3 5 8 10 15 20
E

xe
cu

tio
n

tim
e

(s
)

top-k

V2N
V2V

V2N3

(b) execution time on Yago

Fig. 2. Varying k

Figure 2 shows the execution time on DBpedia and Yago, respectively. As
expected, the execution time increases as k increases, since a larger request
number of spatial vertex pairs requires a larger search space. Note that, the
execution time of V2V is always larger than the maximum runtime, which will
affect the performance of the experiments. For the purpose of illustrating the
details, the experiments of the following paper will not consider V2V.

Varying k. Figure 3 shows the test results of the proposed V2N and V2Nα

(α = 1, 3, 5), in terms of the number of execution time and pruning rate of
dynamic bounds in BFSP . The number of query keywords |ψR| and |ψB | is fixed
to 5, respectively, and the distance threshold dmax is fixed to 5. In order to
measure the pruning efficiency, we define the pruning rate of dynamic bounds
as follows:

PRd =
N3 + N4

NBFSP

(4)

where N3 is the number of the spatial vertex pairs pruned by Pruning Rule 3
and N4 is the number of the spatial vertex pairs pruned by Pruning Rule 4.
NBFSP

is the number of calls to BFSP .
We count the number of BFSP that is called and the total number of Pruning

Rule 3 and Pruning Rule 4 that are used in BFSP . The larger PRd indicates the
pruning rate of dynamic bounds is better.

Figure 3(a) and (b) demonstrate that V2Nα is better than V2N with increas-
ing k, and the execution time of V2Nα tends to be shorter with the value of α
increasing.



Top-k Closest Pair Queries over Spatial Knowledge Graph 637

Figure 3(c) and (d) show the PRd in BFSP by varying the value of k. As
k increases, the k-th ranking score in iteration is more difficult to find, and
Pruning Rule 2 can not limit the value of L(sR, ψR), which causes Pruning Rule
4 to prune more spatial vertex pairs.

0

5

10

15

20

25

30

35

1 3 5 8 10 15 20

E
xe

cu
tio

n
tim

e
(s

)

top-k

V2N
V2N1
V2N3
V2N5

(a) execution time on DBpedia

0

50

100

150

200

1 3 5 8 10 15 20

E
xe

cu
tio

n
tim

e
(s

)

top-k

V2N
V2N1
V2N3
V2N5

(b) execution time on Yago

0

20

40

60

80

100

1 3 5 8 10 15 20P
ru

ni
ng

R
at

e
of

B
F

S
P
(%

)

top-k

V2N
V2N1
V2N3
V2N5

(c) pruning rate of BFSP on DBpedia

0

20

40

60

80

100

1 3 5 8 10 15 20P
ru

ni
ng

R
at

e
of

B
F

S
P
(%

)

top-k

V2N
V2N1
V2N3
V2N5

(d) pruning rate of BFSP on Yago

Fig. 3. Varying k

Varing |ψR | and |ψB |. Figure 4(a) and (b) show the execution time of all
method by varying the value of |ψR| and |ψB |. The distance threshold dmax is
fixed to 5 and k is fixed to 10. The execution time of kPKQ increases stably
with |ψR| and |ψB |, and decreases with α. The large |ψR| and |ψB | will lead to
large cost of search space of BFS and BFSP .

5

10

15

20

25

2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

)

# of query keywords

V2N
V2N1
V2N3
V2N5

(a) execution time on DBpedia

0

20

40

60

80

100

120

140

160

180

2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

)

# of query keywords

V2N
V2N1
V2N3
V2N5

(b) execution time on Yago

Fig. 4. Varying |ψR| = |ψB |



638 F. Wu et al.

Varying dmax. Figure 5(a) and (b) show the execution time of all method by
varying the value of dmax. The number of query keywords is fixed to |ψR| =
|ψB | = 5, and k is fixed to 10. We observe that when dmax increases from 1 to
9, the execution time remains basically stable. On the other hand, we define the
stopping rate as follows:

SRd =
Ndmax

NBFSP

(5)

where Ndmax is the number of spatial vertex pairs whose traversal depth of BFS
exceeds the distance threshold.

As shown in Fig. 5(c) and (d), when dmax is less than 5, it can limit the search
space of BFS. However, dmax limits the size of pair looseness, so the current top-
k score in the heap cannot be updated effectively, which makes Pruning Rule 2
not effective.

4

6

8

10

12

14

1 3 5 7 9

E
xe

cu
tio

n
tim

e
(s

)

Distance threhold

V2N
N2N1
N2N3
N2N5

(a) execution time on DBpedia

26

28

30

32

34

36

1 3 5 7 9

E
xe

cu
tio

n
tim

e
(s

)

Distance threshold

V2N
N2N1
N2N3
N2N5

(b) execution time on Yago

0

20

40

60

80

100

1 3 5 7 9

S
to

pp
in

g
ra

te
(%

)

Distance threshold

V2N
V2N1
V2N3
V2N5

(c) stopping rate on DBpedia

0

20

40

60

80

100

1 3 5 7 9

S
to

pp
in

g
ra

te
(%

)

Distance threshold

V2N
V2N1
V2N3
V2N5

(d) stopping rate on Yago

Fig. 5. Varying dmax

6 Related Work

To the best of our knowledge, there is not any previous work on closest pair
query using spatial keyword search over knowledge graph. Hereby, we discuss
the related work about keyword search over knowledge graph and closest pair
query.

Spatial Keyword Search over Knowledge Graph. Conventional spatial
keyword search techniques focus on unstructured or semantic structured data,
e.g., PoIs. Given a set of geo-textual objects, a spatial keyword search aims to find



Top-k Closest Pair Queries over Spatial Knowledge Graph 639

top-k objects w.r.t. keyword relevance and spatial distance[4,6,9,12,18–20,24].
Recently, knowledge graph have been enriched to include spatial information
and it makes the spatial keyword search over knowledge graph feasible. For
example, Jin et al. [10] propose a top-k collective keyword query to find a group
of semantic places to collectively cover the query keywords. Shi et al. [15] propose
the basic semantic place (BSP) and the semantic place retrieval with pruning
(SPP) algorithms to compute looseness of a spatial vertex for the given query
keywords. BSP is retrieved by invoking breadth-first search (BFS) from spatial
vertex s until all the query keywords are searched.

Closest Pair Query. Closest pair query has been well-studied in computational
geometry. Given two spatial databases, the closest pair query aims to find the k
closest pairs in two set join. If both spatial databases are indexed by R-trees, the
synchronous tree traversal employed by R-tree join [3] can be combined for query
processing. [13,21,23] study index structures to improve the query. Except for
two-dimensional, [16] gives an efficient method for the search in high dimensional
space. [5] focus the problems on spatial networks. Besides, [14,22] considers the
range-search of the closest query.

7 Conclusion

In this paper, we address the problem of answering top-k pair keyword queries
on spatial knowledge graph. In order to solve the problem, we propose a basic
solution. Based on it, we design a branch-and-bound framework associated with
effective lower and upper bound pruning techniques and early stopping condi-
tions for efficiently retrieving relevant top-k closet pairs. According to our exper-
imental results, all techniques enables processing V2Nα method in less than a
second for most settings and outperforms the basic method by orders of mag-
nitude. About the future work, we plan to study how to further improve query
performance with some approximates.

Acknowledgments. This work is supported by NSFC (No. 61772492, 62072428) and
CAS Pioneer Hundred Talents Program. Jieming Shi is supported by the startup fund
(1-BE3T) from Hong Kong Polytechnic University.

References

1. DBpedia. http://wiki.dbpedia.org
2. Yago. http://www.mpi-inf.mpg.de/departments/databases-and-information-syste

ms/research/yago-naga/yago/
3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient

and robust access method for points and rectangles. In: SIGMOD, pp. 322–331
(1990)

4. Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial
web objects. PVLDB 3(1–2), 373–384 (2010)

http://wiki.dbpedia.org
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/


640 F. Wu et al.

5. Cheng, J., Huang, S., Wu, H., Fu, A.W.C.: TF-Label: a topological-folding labeling
scheme for reachability querying in a large graph. In: SIGMOD, pp. 193–204 (2013)

6. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB 2(1), 337–348 (2009)

7. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: CIKM, pp. 237–
242 (2011)

8. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational
databases. In: VLDB, pp. 670–681 (2002)

9. Hu, H., et al.: Top-k spatio-textual similarity join. TKDE 28(2), 551–565 (2015)
10. Jin, X., Shin, S., Jo, E., Lee, K.H.: Collective keyword query on a spatial knowledge

base. TKDE 31(11), 2051–2062 (2018)
11. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large

RDF data. TKDE 26(11), 2774–2788 (2014)
12. Liu, Q., Feng, Z., Xie, X., Xu, J., Lin, X., Jensen, C.S.: iZone: efficient influence

zone evaluation over geo-textual data. In: ICDE, pp. 1645–1648 (2018)
13. Lu, H., Yiu, M.L., Xie, X.: Querying spatial data by dominators in neighborhood.

Inf. Syst. 77, 71–85 (2018)
14. Shan, J., Zhang, D., Salzberg, B.: On spatial-range closest-pair query. In: SSTD,

pp. 252–269 (2003)
15. Shi, J., Wu, D., Mamoulis, N.: Top-k relevant semantic place retrieval on spatial

rdf data. In: SIGMOD, pp. 1977–1990 (2016)
16. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest neighbor and

closest pair search in high-dimensional space. TODS 35(3), 1–46 (2010)
17. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-

didates for efficient keyword search on graph-shaped (RDF) data. In: ICDE, pp.
405–416 (2009)

18. Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query
processing. TKDE 24(10), 1889–1903 (2011)

19. Xie, X., Jin, P., Yiu, M.L., Du, J., Yuan, M., Jensen, C.S.: Enabling scalable
geographic service sharing with weighted imprecise voronoi cells. TKDE 28(2),
439–453 (2016)

20. Xie, X., Lin, X., Xu, J., Jensen, C.S.: Reverse keyword-based location search. In:
ICDE, pp. 375–386 (2017)

21. Xie, X., Lu, H., Chen, J., Shang, S.: Top-k neighborhood dominating query. In:
DASFAA, pp. 131–145 (2013)

22. Xue, J., Li, Y., Janardan, R.: Approximate range closest-pair queries. Comput.
Geome. 90, 101654 (2020)

23. Yang, C., Lin, K.I.: An index structure for improving closest pairs and related join
queries in spatial databases. In: IDEAS, pp. 140–149 (2002)

24. Zheng, K., et al.: Interactive top-k spatial keyword queries. In: ICDE, pp. 423–434
(2015)



HIFI: Anomaly Detection for
Multivariate Time Series with High-order

Feature Interactions

Liwei Deng1, Xuanhao Chen1, Yan Zhao2, and Kai Zheng1(B)

1 School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu, China

{deng liwei,xhc}@std.uestc.edu.cn, zhengkai@uestc.edu.cn
2 Aalborg University, Aalborg, Denmark

yanz@cs.aau.dk

Abstract. Monitoring complex systems results in massive multivariate
time series data, and anomaly detection of these data is very impor-
tant to maintain the normal operation of the systems. Despite the recent
emergence of a large number of anomaly detection algorithms for multi-
variate time series, most of them ignore the correlation modeling among
multivariate, which can often lead to poor anomaly detection results. In
this work, we propose a novel anomaly detection model for multivariate
time series with HIgh-order Feature Interactions (HIFI). More specifi-
cally, HIFI builds multivariate feature interaction graph automatically
and uses the graph convolutional neural network to achieve high-order
feature interactions, in which the long-term temporal dependencies are
modeled by attention mechanisms and a variational encoding technique
is utilized to improve the model performance and robustness. Extensive
experiments on three publicly available datasets demonstrate the supe-
riority of our framework compared with state-of-the-art approaches.

Keywords: Multivariate time series · Anomaly detection · Graph
neural networks

1 Introduction

Complex systems such as servers [8] and aircrafts [1] are ubiquitous in the real
world. Monitoring the behaviors of these systems generates huge amounts of
multivariate time series data. A key task in managing complex systems is to
detect system anomalies in a timely and accurate manner in order to reduce or
avoid the losses caused by system anomalies. Due to the various of anomalies
and lack enough labelled anomalies data, supervised anomaly detection methods
are hard to adopt. In this work we will design an unsupervised model to detect
system anomalies.

Recently, many unsupervised anomaly detection models [3,6,8] are proposed.
EncDec-AD [6] uses autoencoder architecture with LSTM and treats the recon-
struction errors as anomaly scores to detect anomaly. OmniAnomaly [8] adopts
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 641–649, 2021.
https://doi.org/10.1007/978-3-030-73194-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_42&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_42


642 L. Deng et al.

advanced variational techniques to improve the ability of modeling complex time
series. Although these methods can get better performance than their baselines
for multivariate time series, they have some disadvantages.

Firstly, these studies ignore the correlation between multivariate, which is
helpful for modeling complex temporal information [11]. Secondly, they generally
adopt RNN or its variants to model temporal information, which hardly capture
the long-term temporal dependencies [7]. Thirdly, some of them use deterministic
models [1] which are unrobustness and weak representation ability [8].

To address the above-mentioned problems, we design a novel unsupervised
model called HIFI (anomaly detection for multivariate time series with HIgh-
order Feature Interactions). Specifically, a feature interaction graph is con-
structed automatically and then is delivered to GNN to model high-order fea-
ture interaction. To capture long-term dependencies and improve the robustness,
attention-based time series modeling module and variational technique are used.

The main contributions of this paper are as follows:

– We design a multivariate feature interaction module, which uses the graph
convolutional neural network to conduct high-order feature interactions on
multi-dimensional temporal variables.

– We utilize the attention mechanism to model the long-term temporal depen-
dence and variational encoding to improve the robustness of the model, which
is critical for anomaly detection.

– We conduct extensive experiments on three publicly available datasets, which
empirically demonstrate the advantages of our proposed model compared with
the representative models.

2 Related Work

In this section, we will introduce some work related to our model, such as unsu-
pervised time series anomaly detection, graph convolutional neural network, and
time series modeling method based on attention mechanism.

EncDec-AD is proposed by [6], which adopts the structure of sequence to
sequence and uses two independent LSTM models as encoder and decoder respec-
tively. [1] develops the LSTM-NDT model, which is used to model the temporal
information through LSTM. OmniAnomaly [8] aims to capture the normal pat-
terns of multivariate time series by stochastic variable connections and planar
normalizing flow. OED [3] is developed to use recurrent autoencoder ensem-
bles to detect anomaly. However, none of them explicitly model the relationship
between features. Therefore, in this work, we use the graph neural network to
model the high-order interaction features.

Graph Convolutional network (GCN) is firstly proposed in [4], which shows
a strong representation ability of unstructured graph in node classification task
and attracts the attention of a large number of researchers. Then a series of
variants of GCN are proposed. GAT [10] introduces the correlation between
nodes through the attention mechanism. PPNP [5] uses personalized pagerank
to extend the size of neighborhood and avoids oversmooth.



HIFI 643

Multivariate Feature 
Interaction Module

Multivariate time 
series data

Long-term 
dependencies

Interaction 
graph 

Higher-order 
features

Interaction Graph 
Construction

Time Series 
Modeling Module Attention-based

Encoder 

Variational 
Encoding Module

 Variational
Encoding

 Graph Convolutional 
Neural Networks

Anomaly scores

Time Series 
Modeling Module

Attention-based
Decoder 

Multivariate time 
series data

Interaction 
graph 

Higher-order 
features

Interaction Graph 
Construction

 Graph Convolutional 
Neural Networks

Multivariate Feature 
Interaction Module

Fig. 1. Framework overview. Our model adopts encoder-decoder architecture in which
three modules are involved such as multivariate feature interaction module, attention-
based time series modeling module and variational encoding module.

Transformer [9] is the first time series modeling approach that completely
abandons both recurrent neural network structures and convolutional neural
network structures. Its performance reflects the superiority of its model struc-
ture. SASRec [2] also adopts the attention mechanism to model the sequential
relation of items, and achieves the good performance in the field of sequential
recommendation. However, few works adopt the attention mechanism in the field
of anomaly detection.

3 Methodology

As shown in Fig. 1, our model consists of three type of parts, namely, the mul-
tivariate feature interaction module, the attention-based time series modeling
module, and the variational encoding module. Each part will be elaborated in
the following.

3.1 Multivariate Feature Interaction Module

In order to model the relationship between variables, the multivariate fea-
ture interaction module firstly constructs the interaction graph through feature
embedding, and then gets the high-order interaction features through the graph
convolutional neural network. In practice, it is hard to use graph convolutional
neural network to get high-order features for multivariate time series because of
the agnostic of relation graph among multivariate. So we construct the relation
graph automatically in which each node represents a variable.

Inspired by MTGNN [11], we directly transform the original features
X = (xt−w+1, xt−w+2, · · · , xt) ∈ R

w×d to the hidden space Xh = (xh
t−w+1,



644 L. Deng et al.

xh
t−w+2, · · · , xh

t ) ∈ R
w×d1 . In this way, we can control the size of the interaction

graph. When the original features have a higher dimension, we can set a smaller
d1 to reduce the amount of calculation of the graph convolution.

xh
i = Whxi + bh (1)

where Wh ∈ R
d1×d, bh ∈ R

d1 are model parameters.
Then, in order to obtain the interaction graph with more expressive capabil-

ity, we adopt an asymmetric construction method and define two independent
feature embedding matrices E1 and E2, in which the i-th row of each matrix
represents the embedding of i-th feature. Then we calculate the embedding sim-
ilarity of each feature, and express the strength of feature correlation by the
similarity as follow.

M1 = tanh(E1Θ1)
M2 = tanh(E2Θ2)

A = ReLU(tanh(M1M
T
2 − MT

2 M1))

(2)

where E1 ∈ R
d1×d1 , E2 ∈ R

d1×d1 , Θ1 ∈ R
d1×d2 , Θ2 ∈ R

d1×d2 are model weights,
which are learnable during training. A ∈ R

d1×d1 is the feature interaction graph.
Obviously, the interaction graph constructed by the above methods is a com-

plete graph. In order to reduce the computation of graph convolution module,
topk is used to return the maximum k values in each row of the adjacency matrix,
turning the complete graph into a sparse graph.

A = topk(A) (3)

Graph Convolution Module. We take the constructed feature interaction
graph A and the hidden features Xh into the graph convolutional network [5] to
obtain the higher-order interaction features. We first calculate Â = D̃− 1

2 ÃD̃− 1
2 ,

where Ã = A + IN and IN is identity matrix and D̃ii =
∑

j Ãij .

Hk+1 = (1 − α)ÂHk + αH0 (4)

where Hk ∈ R
d1×w represents the high-order interaction features obtained by the

k-th convolution. H0 is the hidden features XhT . α is a hyperparameter defining
the amount of information that retains the original feature at every convolution.
It is important to note that the feature interaction does not interact across
time steps. The higher-order interaction features of the current time step are
completely calculated by its own hidden features.

Moreover, since the convolution depth required by each high-order feature
may be different, we concatenate the output of the convolution of each step to
obtain the final higher-order feature representation through linear transforma-
tion.

Xho = Concat(HT
0 ,HT

1 , . . . , HT
K)Who (5)

where Xho = (xho
t−w+1, x

ho
t−w+2, · · · , xho

t ) ∈ R
w×d1 is the high-order features cor-

responding to Xh. Concat denote the concatenation operation. Who ∈ R
Kd1×d1

is the model weights. K is the maximal graph convolutional depth.



HIFI 645

3.2 Attention-Based Time Series Modeling Module

We use the attention mechanism to model temporal information and capture
long-term temporal dependencies, which are hardly captured by RNN model.

Attention Layer. We use one of the most common attention mechanisms,
scaled-dot attention [9], which can be described as follows.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

where Q ∈ R
w×dk , K ∈ R

w×dk , V ∈ R
w×dv are queries, keys and values respec-

tively.
√

dk is the scaling factor. Intuitively, the nature of the attention mecha-
nism is to take the weighted sum of all time steps according to the weights cal-
culated. It allows information from any distance of time steps to flow directly to
the current step, giving the attention mechanism the ability to capture long-term
temporal dependencies. Multi-head attention [9], which can allow the model to
jointly attend to information from different representation subspaces at different
positions, is used in our work.

Nonlinear Layer. Although multi-head attention can aggregate the informa-
tion of each time step through adaptive weights, it is still a linear model. This
greatly limits the capability of the model, so we use two linear network with
ReLU activation to introduce nonlinear information to the model.

NonLinear(X) = Wn
2 ReLU(Wn

1 X + bn
1 ) + bn

2 (7)

where Wn
1 ∈ R

d3×d1 , Wn
2 ∈ R

d1×d3 , bn
1 ∈ R

d3 , bn
2 ∈ R

d1 are model parameters.
Due to the nature of position invariance of attention layer, we follow [9] to intro-
duce sinusoidal positional encoding P ∈ R

w∗d1 to add the sequential information
after multivariate feature interaction module. Specifically, Xin = P + Xho + X
where Xin is the input of attention-based time series modeling module. Our
encoder and decoder can be obtained by alternately stacking multi-head atten-
tion layer and nonlinear layer, in which layer normalization and residual connec-
tion are used to prevent overfitting and gradient disappearance respectively.

3.3 Variational Encoding Module

To improve the robustness and performance of the model, we model the deter-
ministic encoding of the encoder Xeo = (xeo

t−w+1, x
eo
t−w+2, · · · , xeo

t ) ∈ R
w×d1 as

a normal distribution. We obtain the mean and the logarithm of variance of the
normal distribution by two independent linear layers.

μi = Wμxeo
i + bμ

log σ2
i = Wσxeo

i + bσ

(8)



646 L. Deng et al.

where Wμ ∈ R
d1×d1 , Wσ ∈ R

d1×d1 , bμ ∈ R
d1 , bσ ∈ R

d1 are model weights. We
then adopt the reparameterization trick to sample from the normal distribution
and input the samples into the decoder. We fix the number of samples at 1.

zi = μi + ε ∗ σi (9)

where ε is a sample from N(0, 1). μi and σi are the mean and the variance of
normal distribution in i-th time step. The resampled Z is inputted to attention-
based time series modeling module of decoder and treated as Q and K.

3.4 Model Training

We use the reconstruction error of the entire current window and the Kullback-
Leibler divergence between variational encoding of sample and the standard
normal distribution to train the model.

loss =
w∑

i=1

||xi − xrec
i ||2 + β

w∑

i=1

KL(N(μi, σ
2
i )||N(0, 1))) (10)

where β is a hyperparameter, which is used to balance the loss of the two parts.
In current window, we regard ||xt − xrec

t ||2 as the anomaly score, based on
which we can detect anomalies.

4 Experiments

In this section, we evaluate our model by comparing it with some state-of-the-art
models. We begin by introducing the setup of the experiment, and then report
and analyze the results of the experiment.

4.1 Experimental Setup

Datasets and Metrics. We conduct experiments on three publicly available
datasets, i.e. SMD (Server Machine Dataset) [8], SMAP (Soil Moisture Active
Passive satellite) and MSL (Mars Science Laboratory rover) [1], in two different
domains. We use Precision (Pre), Recall (Rec) and F1-score (F1) to evaluate the
performance of HIFI and baselines. We enumerate all possible anomaly thresh-
olds to search for the best F1, denoted as F1best. And a point-adjust [12] is
adopted to get the final prediction which is same as [8].

Baselines. In our experiments, we select four representative models. LSTM-
NDT [1] predicts the values of time step t and uses predictive error as anomaly
scores of step t. EncDec-AD [6] adopts autoencoder architecture with LSTM
and treats reconstruction error as anomaly score. OED-IF [3] employs multiple
autoencoder with different connection structures to improve the performance
of anomaly detection. OmniAnomaly [8] adopts advanced variational encoding
techniques with autoencoder architecture to detect anomaly.



HIFI 647

Implementation Details. All models take the sliding window data of the
original data as input and we set the window size w to 100. We randomly select
30% from the training data as validation sets, set the batch size as 64 for training
and run for 100 epochs. We save the model with the least loss of the validation set
as the final test model. We use Adam optimizer for stochastic gradient descent
with an initial learning rate of 0.005. For our model, we turn hyperparameters
in validation set. Specifically, we set d1 = 64, d2 = 64, dk = 16, l = 2, α = 0.2,
β = 1, K = 3 for all datasets. In MSL dataset, we set d3 = 256 and in other
datasets, we set d3 = 128. For all of the baselines, if they are tested on the same
dataset, we follow the settings of the original paper, or we tune the model to be
optimal.

Table 1. The performance of HIFI with other baseline methods over three datasets

Methods MSL SMAP SMD

F1best Pre Rec F1best Pre Rec F1best Pre Rec

LSTM-NDT 0.8623 0.7830 0.9594 0.7852 0.6756 0.9373 0.7942 0.6865 0.9481

EncDec-AD 0.9039 0.8606 0.9520 0.8707 0.7737 0.9956 0.9491 0.9317 0.9673

OED-IF 0.9185 0.8754 0.9661 0.8458 0.7351 0.9959 0.9730 0.9685 0.9777

OmniAnomaly 0.9257 0.8802 0.9762 0.8966 0.8198 0.9893 0.9503 0.9337 0.9675

HIFI 0.9546 0.9133 0.9998 0.9708 0.9475 0.9952 0.9773 0.9811 0.9737

4.2 Overall Performance Comparison

Table 1 shows the performance of our model compared with the baseline models
in three datasets. LSTM-NDT performs worst in all the baselines in terms of
F1best, which shows the disadvantage of the predictive model. In most cases,
OED-IF can get better performance than EncDec-AD, which shows that model
ensemble is a good strategy for anomaly detection. OmniAnomaly generally
performs better than other baselines, which illustrates the variational encoding
can improve the performance of anomaly detection. Last but not least, HIFI
outperforms all baselines on three datasets in terms of F1best. In particular,
HIFI outperforms the best-performing state-of-the-art method by 2.89%, 7.42%
and 0.43% on MSL, SMAP and SMD dataset respectively, which shows the
effectiveness of the proposed model.

4.3 Ablation Study

We perform an ablation study at F1best to verify the effectiveness of each com-
ponent of our model. We name different variants of HIFI as follows:

w/o FI: HIFI: without multivariate feature interaction module.
w/o VE: HIFI: without variational encoding module.
w/o FI+VE: HIFI without multivariate feature interaction module and
stochastic variable embedding module.



648 L. Deng et al.

w/o FI+VE+EN: HIFI only with encoder part. We stack 4 encoder layers
to fair comparison.

The results of our model and its variants are shown in the Table 2. In most
cases, HIFI can achieve the best results. In the SMD dataset, the performance of
each model is similar. This is because the time series information is sufficient to
detect anomalies, and introducing complex features does not improve the per-
formance of the model. In MSL and SMAP datasets, we can clearly see that w/o
FI and w/o VE outperform w/o FI+VE, which proves the effectiveness of the
multivariate feature interaction module and variational encoding module. Com-
paring performance between w/o FI+VE and w/o FI+VE+EN, we can find that
w/o FI+VE can get better performance, which shows the superiority of Encoder-
Decoder model in anomaly detection. Finally, compared with the baselines, w/o
FI+VE+EN can get better performance generally, which shows the importance
of long-term temporal dependency modeling in anomaly detection.

Table 2. The F1best of HIFI and its variants

Methods MSL SMAP SMD

HIFI 0.9546 0.9708 0.9773

w/o FI 0.9455 0.9674 0.9781

w/o VE 0.9423 0.8821 0.9777

w/o FI+VE 0.9415 0.8703 0.9787

w/o FI+VE+EN 0.9358 0.8295 0.9771

5 Conclusion

In this paper, we propose a model, namely HIFI, an unsupervised anomaly
detection model for multivariate time series with high-order feature interac-
tion. Extensive empirical study based on real datasets confirms the advantage
of our proposed model compared with the state-of-the-art methods as well as
the importance of different components of our model for multivariate anomaly
detection.

Acknowledgements. This work is supported by NSFC (No. 61972069, 61836007,
61832017) and Sichuan Science and Technology Program under Grant 2020JDTD0007.

References

1. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detect-
ing spacecraft anomalies using LSTMs and nonparametric dynamic thresholding.
In: KDD, pp. 387–395 (2018)

2. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: ICDM,
pp. 197–206 (2018)



HIFI 649

3. Kieu, T., Yang, B., Guo, C., Jensen, C.: Outlier detection for time series with
recurrent autoencoder ensembles. In: IJCAI, pp. 2725–2732 (2019)

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. ArXiv (2016)

5. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized PageRank. In: ICLR (2019)

6. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.:
LSTM-based encoder-decoder for multi-sensor anomaly detection. ArXiv (2016)

7. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage
attention-based recurrent neural network for time series prediction. In: IJCAI, pp.
2627–2633 (2017)

8. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection
for multivariate time series through stochastic recurrent neural network. In: KDD,
pp. 2828–2837 (2019)

9. Vaswani, A., et al.: Attention is all you need. ArXiv (2017)
10. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph

attention networks. ArXiv (2018)
11. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:

multivariate time series forecasting with graph neural networks. In: KDD (2020)
12. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for

seasonal KPIs in web applications. In: WWW, pp. 187–196 (2018)



Incentive-aware Task Location in Spatial
Crowdsourcing

Fei Zhu1, Shushu Liu2, Junhua Fang1, and An Liu1(B)

1 School of Computer Science and Technology, Soochow University, Suzhou, China
20184227027@stu.suda.edu.cn, {jhfang,anliu}@suda.edu.cn

2 Department of Communication and Networking, Aalto University, Espoo, Finland
liu.shushu@aalto.fi

Abstract. With the popularity of wireless network and mobile devices,
spatial crowdsourcing has gained much attention from both academia
and industry. One of the critical components in spatial crowdsourcing
is task-worker matching, where workers are assigned to tasks to meet
some pre-defined objectives. Previous works generally assume that the
locations of tasks are known in advance. However, this does not always
hold, since in many real world applications where to put tasks is not
specific and needs to be determined on the fly. In this paper, we pro-
pose Incentive-aware Task Location (ITL), a novel problem in spatial
crowdsourcing. Given a location-unspecific task with a fixed budget, the
ITL problem seeks multiple locations to place the task and allocates the
given budget to each location, such that the number of workers who are
willing to participate the task is maximized. We prove that the ITL prob-
lem is NP-hard and propose three heuristic methods to solve it, including
even clustering, uneven clustering and greedy location methods. Through
extensive experiments on a real dataset, we demonstrate the efficiency
and effectiveness of the proposed methods.

Keywords: Spatial crowdsourcing · Task location · Task assignment

1 Introduction

With the development of mobile Internet and GPS-equipped smart devices, spa-
tial crowdsourcing has been booming in both academia [4,11,15–17] and industry
[1]. In a typical workflow of spatial crowdsourcing, a requester specifies the func-
tional requirement and a budget of a task, then the platform matches available
workers to it, after which the selected workers physically move to the designated
location to complete the task and gain the corresponding reward.

Existing studies mainly focus on the design of task assignment algorithms
[5,6,8,9] where the platform needs to select the most appropriate workers accord-
ing to some optimization objectives. A common assumption is that the location
of a task is specified by its requester, and the platform takes location informa-
tion as a given parameter to conduct task assignment. In practice, however, this
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 650–657, 2021.
https://doi.org/10.1007/978-3-030-73194-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_43&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_43


Incentive-aware Task Location in Spatial Crowdsourcing 651

assumption is too strong, since in many crowdsourced spatiotemporal applica-
tions [2,3], tasks are location-unspecific, that is, requesters do not specify where
these tasks should be completed. For example, foursquare [3] place artificial
rewards at some points of interest to attract spatial users to check-in and write
comments. In this application, how much rewards are placed at which locations
are all determined by the platform whose objective is to achieve the highest
user participation. Another example can be found in the famous game Pokemon
GO [2], in which different pokemons are placed at multiple locations in the AR
scenario and game players need to physically move in the real world to catch
them.

As workers generally prefer nearby tasks, the locations of tasks can affect
the enthusiasm of workers to participate. It is therefore of great importance to
determine where to put these location-unspecific tasks. However, it is non-trivial
due to the following observations:

– Uneven distribution of workers. In practice, workers are unevenly distributed
in space, for example, placing tasks in dense areas is likely to attract more
workers than placing them in sparse areas.

– Rewarding duplication of tasks. Some spatial task can be performed at mul-
tiple places and this deliberate duplication can bring more benefits. Taking
foursquare as an example, the more points of interest can attract new users
to check-in, the more comprehensive data the platform can obtain.

– Correlation between budget and appeal. The willingness of a worker to perform
a task also depends on the reward of the task. Putting a task on multiple
places will reduce its appeal since its budget fixed by the requester will also be
distributed. From this aspect, task duplication (i.e., putting a task on multiple
places) is not a good choice, which is contrary to the above observation.

Motivated by this, we propose a novel problem in spatial crowdsourcing,
namely Incentive-aware Task Location (ITL) problem. Given a task with a fixed
budget, ITL problem seeks multiple locations and allocates the given budget to
them, with the optimization criterion being the maximization of the number of
workers who are willing to perform the task on these locations. Unfortunately,
previous achievements cannot be directly applied to solve this problem. Firstly,
task assignment algorithms [5,7,8,12] focus on a different phase with us. That
is, only after we determine the task locations and attracting as more workers
to participate as possible, can assignment algorithms select appropriate workers
for their own objectives. Secondly, incentive mechanisms [10,14] only deal with
location-specific tasks and never specify locations where workers need to reach.
Last but not least, the algorithms of location problem [13] can put each resource
in an appropriate position to achieve an optimization goal, but they do not
address the problem of allocating a given budget to multiple tasks at different
locations. In a word, we make the following contributions:

– We formalize the ITL problem and prove its hardness by reducing it to the
maximum coverage location problem (MCLP).



652 F. Zhu et al.

– We propose three efficient heuristic approaches, namely even clustering,
uneven clustering and greedy location methods.

– We conduct extensive experiments on real data set and show the efficiency
and effectiveness of our approaches.

2 Problem Statement

Definition 1. Location-unspecific Task. A location-unspecific task t is
defined as 〈F, b〉, where F is the functional requirement of the task and t.b is
the budget for the task.

Definition 2. Location-specific Task. A location-specific task (or task for
short) t is defined as 〈F, b, l〉, where l is the place that the task is carried out,
and F and t.b are defined as above.

Definition 3. Worker. Let W = {w1, . . . , wn} denote a set of available work-
ers. A worker wi is defined as 〈l, d(.),D, r, s〉, where l is the current location of
w with skill s, d(t.b) is the distance w is willing to move given the reward t.b, D
is the maximum distance w is willing to move no matter how much the reward
is, and r is the minimum reward that makes w willing to perform a task.

Definition 4. Valid Task-worker Pair. A task-worker pair 〈t, w〉 is said to
be valid if dist(t, w) ≤ w.d(t.b), dist(t, w) ≤ w.D, w.s = t.F and t.b ≥ w.r.

Definition 5. Participation Set. The participation set of task t is defined as
p(t) = Wt, where Wt is the set of the workers who can form a valid task-worker
pair with task t, that is, Wt = {w|w ∈ W, 〈t, w〉 is valid}.
Definition 6. Candidate Site. Let L = {loc1, . . . , locm} denote the set of m
candidate sites where tasks can be located.

Considering not all geographic locations are suitable for completing tasks,
such as dangerous traffic intersections, the platform determines some suitable
places as the candidate sites for placing tasks and stores these locations in
advance. For each location-unspecific task, the candidate site set is the same.

Definition 7. Incentive-aware Task Location (ITL) Problem. Given a
set W of workers, a set L of candidate sites, and a location-unspecific task t,
the ITL problem is to construct a set T of location-specific tasks, such that the
participation set of T , i.e., p(T ) =

⋃
ti∈T p(ti), is maximized, subject to the

following constraints:

ti.F = t.F,∀ti ∈ T (1)
ti.l ∈ L, tj .l ∈ L, ti.l �= tj .l,∀ti, tj ∈ T (2)
∑

ti∈T

ti.b ≤ t.b (3)



Incentive-aware Task Location in Spatial Crowdsourcing 653

3 Proposed Methods

3.1 Even Clustering Location Method

Workers in real world are often clustered in multiple business districts within a
city, and rarely uniformly distributed. Therefore, we find worker-intensive areas
by clustering, and then place tasks with the same budget near each cluster.

As a typical clustering method, K-means is easy to implement, simple in
principle and fast in clustering. Since the number of clusters to be produced
is unknown, we cannot apply K-means directly. We determine the size of K
under the following consideration. If the number of clusters is too large, the
budget evenly allocated to each task will be too small, even lower than the
minimum accept reward of nearby workers, thus losing the attraction to workers.
Therefore, we set the range as

[
1, t.b

maxwi∈W (wi.r)

]
, where t.b is the budget of

the given location-unspecific task and maxwi∈W (wi.r) is the max value of the
minimum acceptable rewards of all workers. As long as the number of clusters
is less than t.b

maxwi∈W (wi.r)
, the budget evenly allocated to each cluster is greater

than maxwi∈W (wi.r), which can meet all workers’ minimum acceptable reward
constraints.

We also design a filter process to delete those clusters without candidate sites
nearby. If the distance between a cluster to its nearest candidate site exceeds
maxwi∈W (wi.D), the cluster will be filtered out. Otherwise, even if we place
a task in the nearest candidate site, all the workers in this cluster will not be
willing to move so far to complete it.

The complete process of the even clustering location method is as follows.
For every integer K in range

[
1, t.b

maxwi∈W (wi.r)

]
, we use K-means to cluster

workers spatially, then construct K location-specific tasks with the budget t.b
K

at the candidate sites closet to their clusters. After 	 t.b
maxwi∈W (wi.r)


 attempts,
a location strategy that can make the most workers willing to participate is
selected as the final result.

3.2 Uneven Clustering Location Method

Since the number of workers in each cluster may vary significantly, it seems
wasteful to allocate equal rewards to clusters with fewer workers and those with
far more workers, especially when the given budget is limited. Therefore, in the
uneven location method, we not only place tasks at the candidate points closest
to each effective cluster, but also allocate the budget according to the proportion
of the population of each cluster in the total number of workers.

Note that, the K-means clustering methods cannot be applied in this uneven
location method. Because the budget is allocated unevenly, we cannot ensure
that the budget allocated to each cluster will exceed maxwi∈W (wi.r) by limiting
the number of clusters in advance. Hence, we introduce the hierarchical clustering
that can divide workers into clusters without knowing the number of clusters as
a priori, so that workers in the same cluster are close to each other, and those



654 F. Zhu et al.

in different clusters are far away from each other. Specifically, it initializes every
worker to their own individual cluster and then iteratively picks the two clusters
that are the closest to each other to merge into a bigger cluster. The merging
stops when the termination condition is satisfied.

We specify the termination condition of merging adjacent clusters to accom-
modate our ITL problem, rather than apply the clustering method directly. In
our method, the distance between two clusters is calculated by the shortest
distance from a worker of one cluster to another worker of another cluster. If
the distance between two clusters is greater than twice the max value of the
maximum moving distance of all workers, there is always a cluster of workers
unwilling to move to complete the task placed near the other cluster. Therefore,
we set the distance threshold DT to be 2 · maxwi∈W (wi.d).

After hierarchical clustering, we obtain areas where the workers are close
to each other. However, these clusters may include many with a high density
but small number of workers. If we construct a location-specific location in each
cluster and allocate the budget in proportion to the number of people in each
cluster, the allocated budget of the clusters with few workers may not reach
the lowest acceptable price of all workers. Therefore, we only place tasks near
the clusters whose population exceeds the threshold ST = maxwi∈W (wi.r)·n

t.b . We
determine the ST value to ensure that each cluster exceeding it can attract
participation. When the population of a cluster exceeds ST , it can receive a
reward more than ST

n · t.b = maxwi∈W (wi.r), which is higher than all workers’
minimum acceptable rewards. After screening out some clusters that do not meet
the population threshold ST , we obtain several clusters where a large number of
workers gather. The number of workers in each cluster is calculated, and budget
is allocated to these valid clusters according to their proportions of the number
of workers.

3.3 Uneven Greedy Location Method

Because the two methods above are based on clustering, their performances also
highly depend on the clustering result, which means a poor clustering result
will lead to very low participation of tasks. Therefore, we propose a greedy
method to construct the location-specific task set, which iteratively assigns a
unit of reward to a task that contributes to the highest participation increase.
Before we present the greedy algorithm, we first define the increase Δp of p(T ),
the number of workers willing to participate. It is noteworthy that the increase
is calculated differently depending on whether the unit reward is added to a
constructed task or to a newly constructed task.

If t = 〈F, t.b, t.l〉 is a previously constructed location-specific task in set T ,
the increase refers to the number of workers who newly involved in the task set
T after adding a unit reward to the of task t.

If t is a task to be constructed, considering that if only one unit of reward is
allocated, the minimum acceptable rewards of many workers may not be reached.
Therefore, we assign t a reward MT = maxwi∈W (wi.r), at one time when we



Incentive-aware Task Location in Spatial Crowdsourcing 655

just construct it, and then add t into T to calculate the average participation
increase of each unit reward for T .

With the greedy principle, the whole process of the greedy location method is
as follows. At first, we use L new to denote the candidate sites set T includes all
constructed tasks. Before the budget is used up, we may continuously allocate it
in two ways: constructing a new task with a starting reward of MT and adding
a unit reward to a constructed task in the set T . By comparing the unit reward
participation increase Δp generated by the two strategies, we allocate the cor-
responding rewards, and update the relevant variables, including the remaining
budget, the unused candidate sites set L new and the constructed tasks set T .

4 Experimental Study

4.1 Experimental Methodology

Data Set. We use real data from Didi [1] to test our proposed ITL methods,
which includes 5,590,861 order records of Chengdu, Sichuan province in 2016.
From this dataset, we can get the real distribution and the relationship between
travel distance and reward of workers. All pick-up and destination locations are
regarded as candidate sites in our experiments, leaving the task locations to be
determined by our proposed methods.

ITL Methods and Measures. To evaluate our three proposed methods, we
need to compare with the global optimal solution. However, the ITL problem is
NP-hard and thus infeasible to solve it optimally in polynomial time. Alterna-
tively, we compare the effectiveness of our three methods with that of single task
location method, which does not split the given budget and find the best can-
didate site to locate the single task. Table 1 depicts our experimental settings,
where the default values of parameters are in bold font.

Table 1. Experiments settings.

Parameters Values

Number of workers n 1K, 2K, 5K, 7K, 10K
Budget range [B−, B+] [5, 15], [15, 25], [25, 35], [35, 45], [45, 55], [55, 65]

4.2 Experiments on Real Data

In this subsection, we show the effects of the ranges of budget, the number of
workers, minimum acceptable reward and maximum moving distance.

Effect of the Number of Workers n. As shown in Fig. 1(a), when the range of
n increases, the participation rates decrease. In real scenario, the more workers,
the larger the geographical area they cover. Thus, when given the same default



656 F. Zhu et al.

(a) Scores of Participation (b) Running Times

Fig. 1. Effect of the number of workers n.

budget, the more workers are far away from the task location, the participation
is lower. In Fig. 1(b), when the range of the number of workers n increases, the
running times of our tested methods also increase, due to the cost of more valid
task-worker pairs to be searched. Most the proposed methods can finish the ITL
problem of 10K workers in 8 s, which shows the efficiency considering there is no
real-time requirement in our problem.

(a) Scores of Participation (b) Running Times

Fig. 2. Effect of the range of budget
[
B−, B+

]
.

Effect of the Range of Budget
[
B−,B+

]
. In Fig. 2(a), the participation

scores of all the four methods increase, when the value range of task budget
gets larger. For single task location method, even if the reward of single task is
very large, the workers who are far away are unable to participate due to the
w.D limit, which leads to the participation performance of this method remains
unchanged. In any case, it has the lowest score, which proves that our proposed
task location methods are more effective. From Fig. 2(b), we can observe that the
running time of our methods increase which is owing to the fact of the increasing
cost can cover more valid task-worker pairs.



Incentive-aware Task Location in Spatial Crowdsourcing 657

5 Conclusion

In this paper, we formalize the incentive-aware task location (ITL) problem,
which aims to construct a set of tasks with specified locations and allocate bud-
get to maximize the participation under workers’ constraints. We propose three
heuristic methods (i.e., even clustering, uneven clustering, and greedy location
methods), which can efficiently solve the NP-hard problem. Extensive experi-
ments on real data set have shown the efficiency and effectiveness of them.

Acknowledgment. This paper is partially supported by Natural Science Foundation
of China (Grant No. 61572336), Natural Science Research Project of Jiangsu Higher
Education Institution (No. 18KJA520010), and a Project Funded by the Priority Aca-
demic Program Development of Jiangsu Higher Education Institutions.

References

1. https://gaia.didichuxing.com/
2. https://www.pokemongo.com/
3. https://foursquare.com/
4. Chen, Z., Cheng, P., Chen, L., Lin, X., Shahabi, C.: Fair task assignment in spatial

crowdsourcing. Proc. VLDB Endow. 13(11), 2479–2492 (2020)
5. Chen, Z., Cheng, P., Zeng, Y., Chen, L.: Minimizing maximum delay of task assign-

ment in spatial crowdsourcing. In: ICDE, pp. 1454–1465. IEEE (2019)
6. Cheng, P., Chen, L., Ye, J.: Cooperation-aware task assignment in spatial crowd-

sourcing. In: ICDE, pp. 1442–1453. IEEE (2019)
7. Cheng, Y., Li, B., Zhou, X., Yuan, Y., Wang, G., Chen, L.: Real-time cross online

matching in spatial crowdsourcing. In: ICDE, pp. 1–12 (2020)
8. Li, B., Cheng, Y., Yuan, Y., Wang, G., Chen, L.: Three-dimensional stable match-

ing problem for spatial crowdsourcing platforms. In: KDD, pp. 1643–1653. ACM
(2019)

9. Tao, Q., Tong, Y., Zhou, Z., Shi, Y., Chen, L., Xu, K.: Differentially private online
task assignment in spatial crowdsourcing: a tree-based approach. In: ICDE, pp.
517–528. IEEE (2020)

10. Tong, Y., et al.: The simpler the better: a unified approach to predicting original
taxi demands based on large-scale online platforms. In: SIGKDD, pp. 1653–1662
(2017)

11. Tong, Y., Zhou, Z., Zeng, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: a
survey. VLDB J. 29(1), 217–250 (2019)

12. Tran, L., To, H., Fan, L., Shahabi, C.: A real-time framework for task assignment
in hyperlocal spatial crowdsourcing. TIST 9(3), 37:1–37:26 (2018)

13. Wolf, G.W.: Facility location: concepts, models, algorithms and case studies. Int.
J. Geogr. Inf. Sci. 25(2), 331–333 (2011)

14. Xiao, M., et al.: SRA: secure reverse auction for task assignment in spatial crowd-
sourcing. TKDE 32(4), 782–796 (2020)

15. Zhao, Y., Zheng, K., Cui, Y., Su, H., Zhu, F., Zhou, X.: Predictive task assignment
in spatial crowdsourcing: a data-driven approach. In: ICDE, pp. 13–24 (2020)

16. Zheng, B., et al.: Online trichromatic pickup and delivery scheduling in spatial
crowdsourcing. In: ICDE, pp. 973–984 (2020)

17. Zheng, B., et al.: Answering why-not group spatial keyword queries. TKDE 32(1),
26–39 (2020)

https://gaia.didichuxing.com/
https://www.pokemongo.com/
https://foursquare.com/


Efficient Trajectory Contact Query
Processing

Pingfu Chao(B), Dan He, Lei Li, Mengxuan Zhang, and Xiaofang Zhou

School of Information Technology and Electrical Engineering,
University of Queensland, Brisbane, Australia

{p.chao,d.he,l.li3}@uq.edu.au, mengxuan.zhang@uqconnect.edu.au,

zxf@itee.uq.edu.au

Abstract. During an infectious disease outbreak, the contact tracing is
regarded as the most crucial and effective way of disease control. As the
users’ trajectories are widely obtainable due to the ubiquity of position-
ing devices, the contact tracing can be achieved by examining trajecto-
ries of confirmed patients to identify other trajectories that are contacted
either directly or indirectly. In this paper, we propose a generalised Tra-
jectory Contact Search (TCS) query, which models the contact tracing
problem as well as other similar trajectory-based problems. In addition,
we answer the query by proposing an iterative algorithm that finds con-
tacted trajectories progressively along the transmission chains, and we
further optimise each iteration in terms of time and space efficiency by
proposing a hop scanning algorithm and a grid-based time interval tree.
Extensive experiments on large-scale real-world data demonstrate the
effectiveness of our proposed solutions over baseline algorithms.

1 Introduction

Nowadays, our daily movements are collected into trajectory data by various
devices like GPS, Bluetooth, cellular tower, etc. Among different trajectory query
types, there is a lack of research on exploiting the trajectory’s contact feature,
which happens when two objects travel nearby each other over a period of time,
such that information (contagious disease, chemical/radiative leaks, airborne
materials, etc.) could spread from one to another. A direct application is the
contact tracing during the COVID-19 pandemic. Massive literature emphasises
the importance of contact tracing and several countries have established apps to
track contact events through Bluetooth connection between devices. However,
such a method is hardly practical as it requires users’ strict participation and it is
not capable of detecting contact events with different radius due to the hardware
limitation. In contrast, contact tracing through trajectories is more applicable
as the trajectory distance is measurable and the data is widely available.

Therefore, in this paper, we propose a new type of trajectory query, termed
as Trajectory Contact Search (TCS), which finds all trajectories that directly
and indirectly contact the query trajectory. Specifically, when two trajectories

c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 658–666, 2021.
https://doi.org/10.1007/978-3-030-73194-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_44&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_44


Efficient Trajectory Contact Query Processing 659

appear within a distance over a time period, we say they make a contact and one
can influence the other. Then, given a query trajectory Trq, a distance ε, and
the time step threshold k, we aim to find not only all trajectories R′ it contacts,
but also all the trajectories contacted by the influenced results R′ subsequently.

In fact, trajectory contact tracing is non-trivial. As pre-computing all con-
tact events is not viable due to the flexibility of contact definition (ε and k), the
query can only be answered by searching direct contacts to the influenced trajec-
tory recursively. Besides, as a contact event requires both spatial and temporal
continuity, new index and scanning algorithm are required to store and retrieve
timestamp-level trajectories efficiently. Overall, our contributions are as follows:

– We propose a Trajectory Contact Search query for contact tracing problem.
– We propose an iteration-based solution to answer the contact search query

without redundancy. In addition, we propose a hop scanning algorithm and
a time interval grid index to further improve the time and space efficiency.

– Extensive experiments on large-scale real-world dataset show that our meth-
ods can answer the TCS query more efficiently than existing methods.

2 Related Works

To the best of our knowledge, the travelling group discovery problem is closely
related to TCS. It finds all groups of objects that move together over a period of
time. Depending on how to define proximity (distance-based [1,2,4], or density-
based [3,7,9]) and whether the time period is required to be consecutive [2,3,7]
or not [5,9], various group patterns are identified. To discover the groups, the
trajectories are first sliced into temporal snapshots, then a clustering algorithm
or predefined criteria is applied to each snapshot to find groups. Finally, the
clusters from adjacent snapshots are intersected and concatenated until forming
a long time sequence satisfying travel requirements. Besides, to enable distance
comparison in every timestamp, linear interpolation is introduced to ensure an
object to appear in every snapshot it crosses, which greatly inflates the input
size and the processing cost. To reduce the cost, [3] uses trajectory segments
instead of points, and it further simplifies trajectories using Douglas-Peucker
algorithm. Meanwhile, [7] proposes a travelling buddy structure to capture the
minimal groups of objects and perform intersection on buddies instead.

Besides, IMO [8] is the only demo that works on a similar problem to ours.
However, it focuses on simulating the disease spread and analysing the effective-
ness of the policies in preventing transmission. The demo is integrated into an
open-source spatial-temporal database and utilises the built-in spatial-temporal
indices to reduce the search space of finding the infected trajectories. Although
it is regarded as the first work that introduces the trajectory contact tracing
problem, it doesn’t work on the query optimisation, which is our main focus.



660 P. Chao et al.

3 Problem Statement

Definition 1 (Trajectory). A trajectory is a series of chronologically ordered
points Tro = 〈p1 → p2 → · · · → pn〉 representing the historical trace of an object
o. Each point pi = 〈x, y, t〉 indicates the location of o at time pi.t.

Note that, since the trajectories are sampled periodically, we define that the
time interval between any two consecutive trajectory points is the multitude of
Δt, i.e. pn+1.t − pn.t = x ∗ Δt, x ∈ N , which we call a time step.

As for a contact event, two objects are defined as contacted if their trajectories
(1) are close to each other at a certain point in time, and (2) such proximity is
kept for a continuous period of time, formally defined as follows:

Definition 2 (Contact Event). Given a distance threshold ε and a duration k,
objects a and b are directly contacted during [tu, tv] if ∀ti ∈ [tu, tv], dist(a, b, ti) ≤ ε
and tv − tu ≥ k ∗ Δt, denoted as a contact event Cε,k(a, b, [tu, tv]).

Subsequently, we define the direct contact search problem below:

Definition 3 (Direct Contact Search (DCS)). Given a trajectory set R, a
query trajectory Trq, a starting time t, a distance threshold ε and a duration k, a
direct contact search DCS(Trq, t, ε, k) returns all trajectories Tro that satisfies:
∃Cε,k(q, o, [tu, tv]) where tu ≥ t (direct contact).

Note that, if not specified, the query starting time t is assumed to set to the
starting time of Trq. Now we are ready to define the trajectory contact search
which further capture the indirect contacts:

Definition 4 (Trajectory Contact Search (TCS)). Given a trajectory set
R, a query trajectory Trq, a distance threshold ε and a duration k, the trajectory
contact search TCS(Trq, ε, k) returns all trajectories Tra which satisfy: there
exists a sequence of trajectories 〈Tr0, T r1, ..., T rn〉 where (1) Tr0 = Trq, Trn =
Tra, (2) ∀i ∈ [1, n], Tri and Tri−1 are contacted directly as Cε,k(i−1, i, [cti, cti+
k ∗ Δt]) and (3) ∀i ∈ [2, n], cti ≥ cti−1 + k ∗ Δt.

4 Iteration-Based Trajectory Contact Search

A direct solution to address TCS follows the same routine of the disease trans-
mission process. Starting from the query trajectory, it performs a DCS on a
contacted trajectory in each iteration. Then trajectories retrieved by DCS are
regarded as the newly contacted trajectories. The algorithm terminates when all
contacted trajectories are examined. Intuitively, the iteration process may follow
either Breath-First Search (BFS) or Depth-First Search (DFS) order. However,
both can retrieve the result correctly but they may incur redundant computation,
as one trajectory may contact multiple reported trajectories. Motivated by this,
we propose an Iterative Direct Contact Search (Iterative-DCS) algorithm that



Efficient Trajectory Contact Query Processing 661

Algorithm 1: Iterative-DCS Algorithm
Input: Trajectory Set R, Query Trajectory Trq, Contact Parameter 〈ε, k〉
Output: A set of contacted trajectories Rq

1 Let QT be a priority queue to store contacted trajectory;
2 QT .enqueue(〈Trq, tq〉);
3 while QT �= ∅ do
4 〈Tri, ti〉 ← QT .dequeue() ;
5 L ← DCS(Tri, ti, ε, k) ;
6 for 〈Trj , tj〉 ∈ L and Trj /∈ Rq do
7 if

〈
Trj , t

′
j

〉 ∈ QT and tj < t′
j then

8 Update the entry of Trj with tj ;

9 else if
〈
Trj , t

′
j

〉
/∈ QT then

10 QT .enqueue(〈Trj , tj〉);
11 Rq ← Rq ∪ {Tri} ;

12 return Rq;

performs iterations through temporal order, which ensures that each contacted
trajectory is observed and processed only once, demonstrated in Algorithm1.

To enable the distance calculation between trajectories all the time, in the
preprocessing step, we align all trajectories to the same frequency through linear
interpolation, such that each trajectory has one point every time step Δt during
its lifetime. In the algorithm, we maintain a priority queue QT that stores all
contacted trajectories that have not been processed, where each entry consists of
a contacted trajectory Tri and a time ti indicating the time that this trajectory
was first contacted, and the priority is defined by ti of each entry. Initially, the
given query trajectory Trq and its trajectory starting time are enqueued into
QT (Line 2). In each iteration, we dequeue a trajectory from QT with smallest
ti and perform a DCS to retrieve a list L of contacted trajectories (Line 3–5).
We then check if each item already exists in QT . If yes, we update the entry of
Trj only if tj is earlier than the existing contact time (Line 7–8). Otherwise, we
enqueue the pair to QT (line 9–10) directly. Lastly, we add it to the result set
Rq (Line 11). The algorithm terminates when QT is empty and we return Rq

as the TCS result (Line 12). By doing so, the Interactive-DCS guarantees that
each contacted trajectories is processed only once.

Regarding the DCS algorithm, the main goal is to find trajectories which have
no less than k consecutive points that are pair-wisely close to Trq. Therefore, we
employ a slice-based grid for indexing. Specifically, for each timestamp t, we build
a grid index Gt for all trajectory points at t, where each point is assigned with
the trajectory id it belongs to. Meanwhile, we construct a B-tree for the temporal
dimension to quickly retrieve the corresponding grid slice. The DCS algorithm
works as follows: 1) For each point pi ∈ Trq (1 ≤ i ≤ n), we perform a spatial
range query on the grid index Gpi.t that contains pi to retrieve the neighbour list
Nε(pi) of points whose distance to pi is no larger than ε. 2) We scan through all



662 P. Chao et al.

the neighbour lists chronologically and keep track of the continuous occurrence
for each trajectory by maintaining a hash table. Specifically, for a trajectory who
has consecutive points appearing in a sequence of neighbour lists, we record the
first and last occurrence time step, and it resets whenever there is an interruption
before reaching k time steps. 3) We report all the trajectories with no less than
k consecutive points falling into the neighbour lists.

5 Advanced Contact Search Algorithm

In this section, we introduce two optimisation strategies on the DCS algorithm
to improve the time and space efficiency, respectively. Recall that during one
DCS in the iterative-DCS algorithm, we generate a neighbour list for every
time step of the trajectory, and scan all of them chronologically. However, it is
impossible for two trajectories to be contacted during a duration of k∗Δt if they
fail to keep the distance at any moment amid the period. Thus, the full scan is
unnecessary, motivated by which we propose a hop scanning algorithm.

First iteration
Second iteration
Third iteration

k

Fig. 1. Example of a hop scanning algorithm

5.1 Hop Scanning Algorithm

The idea of hop scanning is first generating a neighbour list Nε for every certain
number of points, such that two adjacent neighbour lists are far enough but still
within a time duration k ∗ Δt. Therefore, if the intersection result of them is
empty, we can safely prune this time period. We repeat it for the remaining time
periods iteratively by shrinking the gap size until all points are investigated.
Specifically, given a query trajectory Trq, in the ith iteration, we first generate
neighbour lists (if not exist) once every hi points, i.e., pjhi

where j = 0, 1, 2, . . .
and hi = k ∗ Δt

2i , representing the current hop length. After generating the
list Nε(pjhi

), we create hop neighbour lists, denoted by HNε(j, hi) to check
if there is any possible contact event during this period, where HNε(j, hi) =
⋂2i−1

l=0 Nε(p(j+l)hi
). After the intersection, objects in HNε(j, hi) are the only

objects that possibly contact with Trq during the period of [jhi, (j + 1)hi].
Besides, given that hi < k ∗ Δt holds at all time, this result can further extend
to [jhi, jhi + k ∗ Δt], meaning no contact event during k.

Figure 1 illustrates an example of hop scanning algorithm. In the figure, each
line point represents a time step of the query trajectory, and k = 16 is given by



Efficient Trajectory Contact Query Processing 663

the query. The top bold line lasting k time steps is a contact event between Tra

and Trq. In the first iteration (h1 = 8 ∗ Δt), the time steps labelled by triangles
are scanned to generate neighbour lists. When calculating the hop neighbour
list, we can find that Tra ∈ HNε(1, h1) as both Nε(ph1) and Nε(p2h1) contain
it. However, from the second iteration (h2 = 4 ∗ Δt), the neighbour lists to
be generated consist of both existing triangle ones and the new arrow-labelled
ones, and the hop neighbour lists will not be built from scratch. For example,
the HNε(1, h2) is the intersection result of three components: (1) the calculated
parent HNε(1, h1), (2) Nε(p3h2) that falls within the time range of the parent
HNε(1, h1) and (3) an extra Nε(ph2) which is adjacent to HNε(1, h1). In fact,
for all subsequent hop neighbour list calculations, we will find that there is
always one item in components (1) and (3), while the number of items in second
component is decided by the iteration count, i.e. 2i−1 − 1. Meanwhile, it is also
worth noting that different hop neighbour lists may share the same parent. In
general, the hop neighbour lists follow a binary tree structure, where each non-
leaf node has two children (except the first and last HN in each iteration).
Therefore, to avoid repetitive calculation, instead of generating hop neighbour
lists sequentially, in ith iteration, we first intersect each parent HN with all
2i−1−1 neighbour lists that fall within its time range (component (2)), the result
is then split into two HNs by intersecting left and right adjacent neighbour lists
(component (3)), respectively. Hence, the algorithm ensures both children are
generated by only processing their parent once. Meanwhile, even in the worst-
case scenario when all neighbour lists are generated, each list is only generated
once, which does not introduce extra cost over the full scan solution. Overall, it
accelerates the process by efficiently pruning out the irrelevant time periods.

5.2 Time Interval Grid Index

In Iterative-DCS algorithm, we use slice-based grid to index all trajectory points.
As the slice-based grid index maintains one index per time step, it aims for
the optimal efficiency at the cost of massive space consumption. Note that the
number of time steps is determined by the time span of the dataset and Δt. It is
usually very large. Alternatively, by fitting each slice with multiple time steps,
the index size can be significantly reduced at the cost of slower query speed.
Therefore, we propose the time interval grid (TIG) index which reduces the
number of the indexed points while keeping the query efficiency. The main idea
of our index is to achieve spatial partitioning using grid index while constructing
a time interval tree in each grid cell to enable efficient temporal searches.

Data Structure. The data structure consists of two layers. The first layer
is a spatial grid index. When constructing the index, each trajectory from the
dataset is split into a set of sub-trajectories, named as trajectory fragments, each
of which is the longest sequence of consecutive trajectory points that falls in the
same grid cell. The second layer is a time interval index. Following the idea from
[6], for each grid cell i, we build a time interval index Si to store all fragments
located in it. Each fragment f(j) = Tro(a, b) is represented by the timestamp



664 P. Chao et al.

Table 1. Data specification

Name # of objects # of points Time span
(hours)

Avg length
(sec)

Map size
(km2)

Point density
(pts/(km2 ∗ sec))

Beijing-M 196K 6.82M 120 398 57 3.18

Beijing-L 953K 50.82M 120 469 589 1.76

(a) Hop scanning efficiency (M) (b) Index sizes comparison (L) (c) Index query efficiency (L)

Fig. 2. Experimental results

of its left and right endpoints, i.e., lj = pa.t and rj = pb.t (lj ≤ rj). Therefore,
a fragment fj is stored as a time interval [lj , rj ] in Si. The construction process
is omitted due to page limit and can be found in the original paper [6].

Neighbour Search Query. To find neighbours of a given trajectory point pq

at time tq, we first search the grid index to find all cells intersecting the circular
query region centred at pq with the radius ε. For each grid cell Ii, we search
the corresponding time interval index Si by performing an interval stabbing
query [6]. An important feature of the tree structure is that all intervals stabbed
by the query q stay close, which ensures optimal query performance. Finally,
we return the ids of trajectories that are stabbed by q. After the time interval
tree search in each cell, we merge the results found from different cells and filter
out the points whose actual distances to the query point pq are larger than
epsilon due to the low grid resolution. In general, since every time we compare
an interval with q during traversal, we either add it to the output (if stabbed) or
stop the subsequent search, the query complexity is O(1 + m) (m is the number
of output intervals), and the tree construction time and space complexity are
both O(n) (n is the number of intervals in S). Therefore, both search and space
complexities are theoretically optimal. Compared with the basic slice-based grid
index, the time interval tree only stores endpoints of each trajectory fragments
instead of one point per time step. Although one trajectory may have multiple
fragments, it is still more effective in terms of the storage cost (especially when
grid cells are big), while its time efficiency is competitive.

6 Experiments

6.1 Experiment Settings

There is a lack of public trajectory dataset that has sufficiently large scale as
well as high density, especially for pedestrian trajectories, so we conduct our



Efficient Trajectory Contact Query Processing 665

experiments on real-world commercial data sets of taxi trajectories from Beijing,
China. Besides, we set Δt = 1 s, and the data specification is listed in Table 1.

To ensure the correctness of evaluation results, we randomly select 25 trajec-
tories from dataset as the query trajectories, and evaluate the total running time
as well as the average running time taken to trace one contacted object (ms/rec).
Our algorithms are implemented in C++, and all experiments are conducted on
a single server. Our candidate solutions include our basic iterative-DCS solution
with Linear Scanning (LS) and Slice-based Grid (SG) index, as well as the Hop
Scanning (HS) algorithm and the Time Interval Grid (TIG) index. In addition,
we introduce two more grid-based indices as references: (1) The typical spatial
grid (G) which partitions the trajectory points only by their spatial location.
(2) The Window-based Grid (WG) first partitions the temporal dimension into
multiple windows and constructs a grid index for each window. In addition, we
implement the only related work IMO [8] as another baseline. We test IMO on
different grid indices, and we find that it achieves the best search performance
when using WG with a 100 s window, which will be set as the default setting.

6.2 Effectiveness Study

Hop Scanning Algorithm. Figure 2a depicts the average running time of each
DCS search using different scanning algorithms and indices. We can see that both
hop scanning solutions (HS+WG & HS+TIG) outperform their linear scanning
counterpart constantly, and the gap is more significant as k increases, which
meets our expectation as a longer k enables more pruning opportunities. On the
other hand, our advanced algorithm HS+TIG outperforms IMO significantly.

Time Interval Grid Index. We evaluate the performance of our proposed TIG
index when ε = 100m and k = 30 s. Figures 2b and 2c illustrate its space and
time efficiency on Beijing-L. As we expected, the slice-based grid consumes
the largest space, which reduces steadily as the grid size increases due to the
reduction of grid cell entries. In contrast, the grid cell size is crucial to TIG.
A smaller grid cell means more trajectory fragments, resulting to more index
entries. The figures show that the size of TIG is only 1

3 of the others once the
grid width reaches 1 km. Meanwhile, Fig. 2c shows that extremely small grid cells
do not generally lead to better query performance. This is due to the excessive
number of grid cells creates too many index entries, which slows down the entry
search. In our experiments, by choosing a grid cell of 1 km×1 km, we can achieve
almost the best query performance and storage cost.

7 Conclusion

In this paper, we introduced a new trajectory contact search query to model the
trajectory contact problem. We proposed an iteration-based algorithm which
performs direct contact search iteratively to find all contacted trajectories. In
addition, we further optimised it with a hop scanning algorithm and a time



666 P. Chao et al.

interval grid index, which improved the time and space efficiency, respectively.
The experiments show that our proposal achieves both faster query speed and
smaller space consumption.

References

1. Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory
grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 219–230. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40104-6 19

2. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion
patterns in spatio-temporal data sets. In: Proceedings of the 12th Annual ACM
International Workshop on Geographic Information Systems, pp. 250–257 (2004)

3. Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In:
ICDE, pp. 1457–1459. IEEE (2008)

4. van Kreveld, M., Löffler, M., Staals, F., Wiratma, L.: A refined definition for groups
of moving entities and its computation. Int. J. Comput. Geom. Appl 28(02), 181–196
(2018)

5. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object
clusters. PVLDB 3(1–2), 723–734 (2010)

6. Schmidt, J.M.: Interval stabbing problems in small integer ranges. In: Dong, Y.,
Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 163–172. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6 18

7. Tang, L.A., et al.: On discovery of traveling companions from streaming trajectories.
In: ICDE, pp. 186–197. IEEE (2012)

8. Xu, J., Lu, H., Bao, Z.: IMO: a toolbox for simulating and querying “infected”
moving objects. PVLDB 13(12), 2825–2828 (2020)

9. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering
patterns over trajectories. TKDE 26(8), 1974–1988 (2013)

https://doi.org/10.1007/978-3-642-40104-6_19
https://doi.org/10.1007/978-3-642-40104-6_19
https://doi.org/10.1007/978-3-642-10631-6_18


STMG: Spatial-Temporal Mobility Graph
for Location Prediction

Xuan Pan1,3, Xiangrui Cai2,3(B), Jiangwei Zhang4, Yanlong Wen1,3,
Ying Zhang1,3, and Xiaojie Yuan2,3

1 College of Computer Science, Nankai University, Tianjin, China
panxuan@dbis.nankai.edu.cn, {wenyl,yingzhang}@nankai.edu.cn

2 College of Cyber Science, Nankai University, Tianjin, China
{caixr,yuanxj}@nankai.edu.cn

3 Tianjin Key Laboratory of Network and Data Security Technology,
Nankai University, Tianjin, China

4 Department of Computer Science, National University of Singapore,
Singapore, Singapore
A0054808@u.nus.edu

Abstract. Location-Based Social Networks (LBSNs) data reflects a
large amount of user mobility patterns. So it is possible to infer users’
unvisited Points of Interest (POIs) through the users’ check-in records
in LBSNs. Existing location prediction approaches typically regard user
check-ins as sequences, while they ignore the spatial and temporal cor-
relations between non-adjacent records. Moreover, the serialized form
is insufficient to analog user complex POI moving behaviors. In this
paper, we model user check-in records as a graph, named Spatial-
Temporal Mobility Graph (STMG), where the nodes and edges fuse
the spatial-temporal information in absolute and relative aspect respec-
tively. Based on STMG, we propose a location prediction model named
Spatial-temporal Enhanced Graph Neural Network (SEGN). In SEGN,
the STMG nodes are encoded as the embeddings with specific time and
location semantics. Last but not the least, we introduce three kinds
of matrices, which completely depict the user moving behaviors among
POIs, as well as the relative relationships of time and location on STMG
edges. Extensive experiments on three real-world LBSNs datasets demon-
strate that with specific time information, SEGN outperforms seven
state-of-the-art approaches on four metrics.

Keywords: Location-Based Social Network · User mobility · Graph
Neural Network · Location prediction

1 Introduction

While Location Based Social Networks (LBSNs) are getting popular, more and
more people share their locations with timestamps anytime and anywhere they
want. As a result, large number of user check-ins at Points of Interest (POIs) are
accumulated in LBSNs. As the user mobility is a significant property of people
c© Springer Nature Switzerland AG 2021
C. S. Jensen et al. (Eds.): DASFAA 2021, LNCS 12681, pp. 667–675, 2021.
https://doi.org/10.1007/978-3-030-73194-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73194-6_45&domain=pdf
https://doi.org/10.1007/978-3-030-73194-6_45


668 X. Pan et al.

behaviors, LBSNs data brings a great value in the study of human movement
characteristics. Location prediction (also known as POI recommendation) is a
typical task in user mobility prediction. Based on user check-in records, the task
aims to predict the POIs that users have never been to. So the key issue of the
task is understanding the complex user mobility via LBSNs data.

In fact, the user mobility is primarily manifested by two aspects of LBSNs
data. On one hand, the mobility patterns such as sequentiality and periodicity
can be reflected by the moving behaviors among large amount of POIs. On the
other hand, the location habits are hidden behind the complex heterogeneous
spatial-temporal contexts. In each user’s check-in records, the visiting timestamp
indicates the absolute time, and the time difference between every pair check-
ins indicates the relative time. So as for locations, the POI coordinate means
the absolute position, and the distance between each POI pair is the relative
position. In this sense, absolute and relative information are equally important,
but current location prediction methods are failed to cover them all.

To overcome the problem of insufficient attributes modeling on LBSNs data,
we propose Spatial-Temporal Mobility Graph (STMG), a new kind of compre-
hensive representation for user mobility. Particularly, to enhance the POI mov-
ing behaviors, STMG connect both adjacent and nonadjacent check-in records.
Besides, each node in the graph is expanded from a POI to a POI with the abso-
lute time and location information. Meanwhile, edges fuse the relative infor-
mation which consists of distances and time differences in the check-in pairs.
Therefore, STMG carries a full spectrum of the information about time and
locations. Then we propose the STMG embedding network with location predic-
tion model, named Spatial-temporal Enhanced Graph Neural Network (SEGN).
Gated Graph Neural Network [4] is used as the base model for graph embedding.
The differences are the personalized node vectors with specific time and location
semantics, as well as the extended node updating functions. With SEGN based
on STMG, user mobility patterns with integrated spatial-temporal attributes can
be explicitly understood. We conduct extensive experiments on three real-world
LBSNs datasets. The experiment result show that with specific time information,
SEGN outperforms seven state-of-the-art approaches on four metrics.

2 Related Work

Location Prediction Methods. Existing works can be roughly categorized
into two groups. Matrix Factorization [3,5] based methods focus on looking for
optimized factorized methods for user-location matrix. But they are not sufficient
in establishing the user POI moving behaviors. Sequence-based approaches such
as the Markov chain [15] and Recurrent Neural Networks [10,12] based models
treat adjacent check-in records as serialized trajectories. But their inadequate
exploitation of nonadjacent records is still a serious problem.

Graph Embedding. Recent location prediction models focus on developing
customized Deep Neural Networks for learning POI, user or spatial-temporal con-
texts embedding vectors. Some embedding methods use graphs such as user-POI



STMG: Spatial-Temporal Mobility Graph for Location Prediction 669

graphs [11], user-user graphs [14] and POI-POI graphs [16] as the model inputs
to represent LBSNs data. However, none of above graphs integrate the spatial-
temporal attributes both in absolute and relative aspects. Also, the graphs are
not enough to indicate how user moves. So the above representations lack of the
knowledge of time and space from a real-life perspective.

3 Proposed Model

3.1 Problem Definition

We define P = {p1, p2, . . . , pm} as a set of POIs appearing in LBSNs data.
Each of these POIs corresponds a site in real world, so every POI has a coor-
dinate consisting of latitude and longitude. U = {u1, u2, . . . , un} is the user
set. Let R = {R1, R2, . . . , Rn} denotes the set of user check-in records. Ri is
a collection composed by all check-ins of user ui. Each check-in record can be
formally denoted as a tuple (t, p), where t is the timestamp, and p is the POI ID.
Through a user’s existing check-in records, the goal is to generate a prediction
list of unvisited POIs which the user is likely to go to.

3.2 Spatial-temporal Mobility Graph Construction

A Spatial-Temporal Mobility Graph (STMG) is constructed on a user basis. Each
user corresponds to a graph or a graph collection. A STMG is formally denoted
as G = {V,E}, where V = {v1, v2, . . . , vk} is the node set, and E is the edge set.
In STMG, nodes represent POIs as well as the absolute spatial-temporal infor-
mation. Therefore, each node means a POI in a specific time and locating at a
certain place, rather than an isolated POI. For ease of representation in practice,
the time is denoted as the time slot number where the timestamp is located, and
the location is denoted as the region number gridded according to the geographic
coordinate. STMG edges fuse the relative information of time and position. For
an edge (vi, vj) ∈ E, it contains the time difference and the position distance
between vi and vj . Particularly, the edges connect both of the adjacent and
nonadjacent check-in records for each user. The directions of the edges depend
on the time chronological order. So all nodes of a user’s STMG can be associ-
ated with each other with the direction of time. Therefore, the edges hold the
relative spatial-temporal attributes as well as analog the multi-connected POI
moving behaviors. In the end, user mobility can be comprehensively represented
by STMG.

3.3 Spatial-temporal Enhanced Graph Neural Network

In this section, we introduce Spatial-temporal Enhanced Graph Neural Network
(SEGN for short) for STMG embedding and location prediction. The overall
model is shown in Fig. 1. SEGN is a modified Gated Graph Neural Networks
(GG-NNs) [4], which encodes STMG from two perspectives. Firstly, for STMG



670 X. Pan et al.

Fig. 1. The overall architecture of SEGN. The node embeddings consist of POI, time
slot and region vectors. The connectivity as well as the information of the edges are
converted to the matrices Atr, Aiv and Adt respectively. After updating the node
states, the prediction list is generated by the prediction network.

nodes, the absolute information consisting of the POI, time slot and region
are embedded as three kinds of vectors, which are concatenated as the node
vector hv. All three kinds of vectors can be learned through the network simul-
taneously. As a result, the node vectors have the semantics of POIs with the
spatial-temporal context, which are rendered by users’ real activities. Secondly,
the nodes states are updated by spatial-temporal enhanced recurrence func-
tions. To integrate the relative information and the connectivity of the edges,
we extend the single A in vanilla recurrence function to three matrices. The
first matrix is Atr ∈ R

|V |×2|V |, where |V | is the node number of STMG. It is
used to represent the POI moving behaviors. Similar with SR-GNN [13], Atr is
a concatenation of two submatrices, which represent the outgoing and incoming
edges respectively. The values in each submatrix denote the connection weights,
which are decided by the directed relations in STMG. With the rich check-ins
associations, Atr hold more nodes transition relationships than serialized ses-
sions in SR-GNN. So it is informative to simulate user transfer behaviors. The
second matrix is Aiv ∈ R

|V |×|V |. It is used to represent the time differences
in node pairs which have edges in STMG. Values of Aiv are determined by
the exponential decay function of the time interval between nodes. The third
matrix is Adt ∈ R

|V |×|V |, which represents the distances of STMG node pairs.
For measuring the geographic correlations, Here we adopt Gaussian Radial Basis
Function (RBF) kernel according to coordinates of the POIs as [9,16] did. In this
way, Atr fuses the activations of POI transfers from edges in both directions.
Meanwhile, Aiv and Adt hold the relative information of time and locations.
Then each of the three matrices passes information among nodes respectively.
The spatial-temporal enhanced recurrence functions in SEGN are as following:



STMG: Spatial-Temporal Mobility Graph for Location Prediction 671

a
(t)tr
v =A

tr�
v:

[
h
(t−1)�
1 . . .h

(t−1)�
|V |

]�
+b

tr (1)

a
(t)iv
v =A

iv�
v:

[
h
(t−1)�
1 . . .h

(t−1)�
|V |

]�
+b

iv (2)

a
(t)dt
v =A

dt�
v:

[
h
(t−1)�
1 . . .h

(t−1)�
|V |

]�
+b

dt (3)

a
(t)
v =W

tr
a
(t)tr
v +W

iv
a
(t)iv
v +W

dt
a
(t)dt
v +b (4)

z
t
v = σ

(
W

z
a
(t)
v + U

z
h

(t−1)
v

)
(5)

r
t
v = σ

(
W

r
a
(t)
v + U

r
h

(t−1)
v

)
(6)

h̃
(t)
v = tanh

(
Wa

(t)
v +U

(
r
t
v�h

(t−1)
v

))
(7)

h
(t)
v =

(
1−z

t
v

)
�h

(t−1)
v + z

t
v � h̃

(t)
v . (8)

Formula (1), (2) and (3) indicate that information passes between different
nodes in three ways, then all the information is aggregated in formula (4). In
the following GRU settings, zv acts as the update gate, and rv is the reset gate.
σ(x) is the logistic sigmoid function, and � denotes element-wise multiplication.
With the recurrence functions processing, each node receives message from the
other nodes and from the previous time-step to update its hidden state. The
final states of all nodes can be obtained until the network converges.

After the nodes updating process, the nodes hidden state h(t)
v is used as the

input of the location prediction model. h(t)
v is firstly delivered to the attention

layer. Each node embedding obtains the overall STMG weights as the global
preference. Then after the linear layers processing, node embeddings multiply
all POI embeddings to get the prediction probabilities. Finally, the probability
distribution of all POIs is generated via a softmax function.

In the training set, each user’s check-in records are split into two parts. One
part is used for STMG constructing, the other part is used as the ground truths.
For every STMG, we use cross-entropy as the object function as following:

L = −
k∑

i=1

yi log (ŷi) + (1 − yi) log (1 − ŷi) (9)

Where k is the number of the unvisited POIs to current STMG, and yi

is the one hot vector of the ground truth i. In the prediction stage, with the
user’s known check-ins, the STMGs are generated as SEGN inputs. And in the
model outputs, the unvisited POIs with higher probabilities are composed as the
prediction list.

4 Experiments

4.1 Datasets and Settings

Datasets. We conduct the experiments on Gowalla1, Foursquare2 and Yelp3,
which are three real-world LBSNs datasets. The data version and the schemes of
data filtering and splitting are as same as the previous work [7]. For each user,

1 http://snap.stanford.edu/data/loc-gowalla.html.
2 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
3 https://www.yelp.com/dataset.

http://snap.stanford.edu/data/loc-gowalla.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://www.yelp.com/dataset


672 X. Pan et al.

the earliest 70% check-in records are used for training. The latest 20% are for
testing. And the remaining 10% are for validation.

Settings. For users with large check-in records, it is difficult to use only one
STMG for the model to embed. Here we uniformly construct STMGs in weekly
check-ins for each user. So every user have a graph collection for training. For
Gowalla and Foursquare, we split one week as 24 * 7 time slots, and segment
7,500 regions according to the coordinates of POIs. Since Yelp only provides
the check-in date instead of specific time, we can only split one week as 7 time
slots, and segment 4500 regions for locations. We set the time decay coeffi-
cient to 0.03 for Gowalla and Foursquare, and 0.27 for Yelp. For all datasets,
the geographical correlation level for RBF kernel is set to 60, the dimension of
POI embedding and region embedding is set to 100 and 50 respectively for all
datasets. And the dimension of time slot is 50 for Gowalla and Foursquare, and
10 for Yelp. In the prediction stage, we generate each user’s STMG collection
from the training set as the inputs, and the cumulative scores of the collection
outputs are ranked as the prediction results. We use four metrics to evaluate our
model. Precision (Pre@K) is the percentage of POIs among the top k prediction
results has been visited by each user. Recall (Rec@K) is the percentage of each
user’s visiting POIs can emerge in the top k prediction results. Mean average
precision (MAP@K) is the mean average precision in top k results. Normalized
discounted cumulative gain (NDCG@K) considers the rank of the top k predic-
tions by assigning higher score to the hits at higher POIs. All the metrics are
with larger value, the better the performance. We choose seven location predic-
tion models MGMPFM [1], LRT [2], IRenMF [8], GeoMF [5], RankGeoFM [3],
GeoPFM [6] and SAE-NAD [9] for comparison.

4.2 Performance Comparison

The performances of SEGN and baselines are shown in Fig. 2, Fig. 3, Fig. 4 and
Fig. 5. The observations are as following:

Spatial-temporal Context Mining. In Gowalla and Foursquare, SEGN
achieves the best performance compared with all baselines. For example, with
the metrics of average precision, recall, MAP and NDCG on Gowalla, SEGN
has respectively reached 8.9%, 9.9%, 9.9% and 8.5% better than the second best
model RankGeoFM. But in Yelp, SEGN doesn’t outperform several models. The
reason is that our method is strongly dependent on the spatial-temporal con-
texts. As mentioned above, Yelp does not provide the specific check-in time, so
SEGN is inability to grasp user moving behaviors by hours. This is the direct
cause of the performance degradation. Therefore, compared with other models,
SEGN has obtained more absolute and relative spatial-temporal information
respectively. It enables SEGN to learn the mobility patterns from user check-in
records more completely than other baselines.

Semantic Richness. Compared to the embedding models SAE-NAD, SEGN
embeds absolute spatial-temporal information as additional valuable knowledge



STMG: Spatial-Temporal Mobility Graph for Location Prediction 673

Fig. 2. The comparison of precision on the three datasets.

Fig. 3. The comparison of recall on the three datasets.

Fig. 4. The comparison of MAP on the three datasets.

Fig. 5. The comparison of NDCG on the three datasets.

of POI, instead of the POI embeddings only. It makes the STMG nodes holding
proper representation of the spatial-temporal semantics.

Moving Behaviors Modeling. The matrix factorization methods such as
MGMPFM, LRT and IRenMF can not establish the users’ POI moving behav-
iors. In contrast, SEGN captures the complex POI transferring relationships not



674 X. Pan et al.

only in the adjacent check-ins, but also in the nonadjacent ones. In a result,
SEGN realizes a comprehensive understanding of user mobility patterns.

5 Conclusion

In this paper, we propose Spatial-Temporal Mobility Graph as a new kind of com-
prehensive representation of user mobility. It integrates the absolute and relative
spatial-temporal contexts contained in user check-in records. Particularly, edges
in the graph analog the complex moving behaviors. Then, we propose SEGN as
the location prediction model. The specifics of STMG are fused in the embed-
ding settings and node updating functions respectively. Relevant experiments
indicate that SEGN brings the improvements in the location prediction task.

Acknowledgments. This work is supported by NSFC-General Technology Joint
Fund for Basic Research (No. U1936206, No. U1836109), and National Natural Sci-
ence Foundation of China (No. 62077031, No. U1903128).

References

1. Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geo-
graphical and social influence in location-based social networks. In: AAAI, pp.
17–23 (2012)

2. Gao, H., Tang, J., Hu, X., Liu, H.: Exploring temporal effects for location recom-
mendation on location-based social networks. In: RecSys, pp. 93–100. ACM (2013)

3. Li, X., Cong, G., Li, X., Pham, T.N., Krishnaswamy, S.: Rank-geoFM: a ranking
based geographical factorization method for point of interest recommendation. In:
SIGIR, pp. 433–442. ACM (2015)

4. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural
networks. In: ICLR (2016)

5. Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: joint geograph-
ical modeling and matrix factorization for point-of-interest recommendation. In:
SIGKDD, pp. 831–840. ACM (2014)

6. Liu, B., Xiong, H., Papadimitriou, S., Fu, Y., Yao, Z.: A general geographical prob-
abilistic factor model for point of interest recommendation. IEEE Trans. Knowl.
Data Eng. 27(5), 1167–1179 (2015)

7. Liu, Y., Pham, T., Cong, G., Yuan, Q.: An experimental evaluation of point-of-
interest recommendation in location-based social networks. Proc. VLDB Endow.
10(10), 1010–1021 (2017)

8. Liu, Y., Wei, W., Sun, A., Miao, C.: Exploiting geographical neighborhood char-
acteristics for location recommendation. In: CIKM, pp. 739–748. ACM (2014)

9. Ma, C., Zhang, Y., Wang, Q., Liu, X.: Point-of-interest recommendation: exploiting
self-attentive autoencoders with neighbor-aware influence. In: CIKM, pp. 697–706.
ACM (2018)

10. Manotumruksa, J., Macdonald, C., Ounis, I.: A contextual attention recurrent
architecture for context-aware venue recommendation. In: SIGIR, pp. 555–564.
ACM (2018)



STMG: Spatial-Temporal Mobility Graph for Location Prediction 675

11. Su, Y., et al.: HRec: heterogeneous graph embedding-based personalized point-of-
interest recommendation. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP
2019. LNCS, vol. 11955, pp. 37–49. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36718-3 4

12. Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go
next: Modeling long- and short-term user preferences for point-of-interest recom-
mendation. In: AAAI, pp. 214–221 (2020)

13. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommen-
dation with graph neural networks. In: AAAI, pp. 346–353 (2019)

14. Yang, C., Bai, L., Zhang, C., Yuan, Q., Han, J.: Bridging collaborative filtering
and semi-supervised learning: A neural approach for POI recommendation. In:
SIGKDD, pp. 1245–1254. ACM (2017)

15. Ying, H., et al.: Time-aware metric embedding with asymmetric projection for suc-
cessive POI recommendation. World Wide Web 22(5), 2209–2224 (2018). https://
doi.org/10.1007/s11280-018-0596-8

16. Zhong, T., Zhang, S., Zhou, F., Zhang, K., Trajcevski, G., Wu, J.: Hybrid graph
convolutional networks with multi-head attention for location recommendation. In:
World Wide Web, pp. 1–27 (2020)

https://doi.org/10.1007/978-3-030-36718-3_4
https://doi.org/10.1007/978-3-030-36718-3_4
https://doi.org/10.1007/s11280-018-0596-8
https://doi.org/10.1007/s11280-018-0596-8


Author Index

Akintande, Olalekan J. III-633
Ao, Xiang II-120

Bai, Jiyang I-123
Bao, Siqi III-516
Bao, Xuguang III-608
Bao, Zhifeng I-439
Böhm, Klemens II-721
Bonfitto, Sara III-643

Cai, Shunting I-323
Cai, Tianchi III-499
Cai, Xiangrui I-667, III-413, III-445
Cao, Manliang II-516
Cao, Meng I-375
Cao, Sichen II-629
Cao, Yang I-474
Cao, Yikang II-400
Chai, Yunpeng I-53
Chang, Chao III-165
Chang, Liang III-608
Chao, Pingfu I-658
Chen, Cen II-152
Chen, Chen I-158
Chen, Dawei II-186
Chen, Enhong I-3, II-168, III-461
Chen, Gang II-549
Chen, Guihai I-609, II-701, III-20, III-330
Chen, Hong II-20
Chen, Huan III-511
Chen, Jessica II-70
Chen, Jiayin II-3
Chen, Jiaze III-529
Chen, Junsha II-658
Chen, Ke II-280, II-549
Chen, Lei I-356, I-591, II-104, III-375,

III-516
Chen, Qinhui III-600
Chen, Siyuan II-675
Chen, Xi II-3
Chen, Xiaojun III-541
Chen, Xiao-Wei II-291
Chen, Xu I-422
Chen, Xuanhao I-641

Chen, Yinghao II-400, II-429
Chen, Zhenyang III-165
Chen, Zhigang II-186
Chen, Zhihao III-341
Chen, Zihao I-307, III-627
Cheng, Dawei II-603
Cheng, Daxi III-499
Cheng, Hao I-375
Choudhury, Farhana M. I-439
Čontoš, Pavel III-647
Cui, Fengli II-429
Cui, Jie I-71
Cui, Lizhen II-692
Cui, Qing III-579
Cui, Yue III-148

Dai, Feifei III-321
Dai, Shaojie I-558
Deng, Geng I-307
Deng, Liwei I-641, III-148
Deng, Sijia III-622
Deng, Zhiyi I-207
Diao, Yupeng I-422
Ding, Ling III-541
Dong, Junyu I-558
Dong, Qian II-88
Dong, Xinzhou III-315
Dong, Yu III-553
Dong, Yucheng II-70
Dou, Jiaheng I-240
Du, Xiaofan III-341
Du, Xin II-675
Du, Yang I-405
Du, Yichao III-461
Du, Yuntao I-375, II-400, II-429, II-449
Du, Zhijuan I-290
Duan, Lei I-307, II-325
Duan, Liang I-224

Fan, Hao I-558
Fan, Hongjie II-612, II-620
Fan, Liyue II-342
Fan, Wei III-622
Fang, Junhua I-650, III-36



Fei, Xingjian I-174
Feng, Hao I-96, II-120
Feng, Shi I-141
Fu, Bin II-359
Fu, Min II-325
Fu, Yanan I-37
Fukumoto, Fumiyo II-202

Gao, Guoju I-405
Gao, Hong II-710
Gao, Neng II-658
Gao, Qianfeng III-244
Gao, Weiguo II-262
Gao, Xiaofeng I-609, II-701, III-3, III-20,

III-330
Gao, Yichen III-622
Gao, Yuanning I-609
Gao, Yucen I-609
Ge, Ningchao III-595
Geng, Haoyu III-3
Gong, Bin II-761
Gong, Chen I-526
Gong, Xiaolong II-3
Gong, Zengyang I-491
Gong, Zhiguo I-394
Gu, Binbin II-186
Gu, Chengjie I-71
Gu, Hansu III-69
Gu, Jinjie III-499
Gu, Lihong III-499
Gu, Ning III-69, III-358
Gu, Tianlong III-608
Gu, Xiaoyan III-321
Guo, Gaoyang III-664
Guo, Qingsong III-659
Guo, Zhiqiang III-279

Han, Siyuan III-375
Han, Yongliang II-500
Hao, Shufeng III-100
Hao, Yongjing III-115, III-211
Hao, Zhenyun II-392
Hao, Zhuolin III-529
Haritsa, Jayant R. I-105
He, Bingsheng II-761
He, Dan I-658
He, Huang III-516
He, Liangliang I-340
He, Ming III-297, III-306

He, Ruifang II-641
He, Zhenying III-244
Hong, Xudong III-461
Hsieh, Hsun-Ping III-667
Hu, Binbin III-553
Hu, Changjun I-394
Hu, Guoyong III-165
Hu, Huiqi III-478
Hu, Qinghua II-710
Hu, Tianxiang II-37
Hu, Tianyu III-195
Hu, Yikun I-385
Hu, Ying II-307
Hu, Zehua II-675
Hua, Liping III-600
Hua, Yifan III-393
Huang, Bingyang I-96
Huang, Chenchen III-478
Huang, Dong II-291
Huang, Hailong II-262
Huang, He I-405
Huang, Jen-Wei III-652
Huang, Jun II-152
Huang, Junheng III-85
Huang, Junzhou II-778
Huang, Kaixin III-393
Huang, Linpeng III-393
Huang, Shanshan II-392, III-228
Huang, Xin III-617
Huang, Xinjing II-152
Huang, Zhangmin I-37
Huo, Chengfu III-553

Iosifidis, Vasileios III-617

Ji, Daomin III-262
Ji, Feng II-152
Ji, Genlin II-307
Ji, Hangxu I-20
Jia, Jinping II-307
Jia, Shengbin III-541
Jiang, Di III-516
Jiang, Nan III-622
Jiang, Peng III-165
Jiang, Shimin II-70
Jiao, Pengfei II-53
Jin, Beihong III-315
Jin, Cheqing III-341, III-622
Jing, Yinan III-244

678 Author Index



Kang, U. III-662
Kou, Yue I-575
Kudo, Mineichi II-569

Lai, Kunfeng I-174
Lai, Yantong II-271
Li, Beibei III-315
Li, Bo I-526, III-321
Li, Changheng III-211
Li, Cuiping II-20
Li, Dongsheng III-69
Li, Guohui III-279
Li, Haotian II-629
Li, Haoyang I-356
Li, Huiyuan III-53
Li, Jianjun II-738, III-279
Li, Jianyu I-224
Li, Jie I-224
Li, Jiyi II-202
Li, Kenli I-385
Li, Lei I-658
Li, Longfei III-579
Li, Longhai II-325
Li, Meng III-579
Li, Ning II-219
Li, Qinghua II-20
Li, Qingzhong II-692
Li, Renhao I-307
Li, Shuang I-509
Li, Wenbin I-457
Li, Xiang I-609, III-330
Li, Xiangyu II-629
Li, Xiao I-340
Li, Xiaoyong II-376
Li, Xinyi I-272
Li, Xuan II-262
Li, Yanhong II-738
Li, Yuanxiang III-262
Li, Yuchen II-761
Li, Yuhao I-609
Li, Yunyi III-179
Li, Zhanhuai II-219
Li, Zhi I-3
Li, Zhixu II-186, II-533
Lian, Rongzhong III-516
Lian, Xiang I-591
Liang, Chen III-499
Liang, Jingxi II-37
Liang, Shuang I-207
Liao, Chung-Shou III-604

Liao, Ming II-778
Lin, Fandel III-667
Lin, Lan II-516
Lin, Li I-509
Lin, Xueling I-356
Lin, Zheng II-253
Link, Sebastian I-113
Litvinenko, Ilya I-113
Liu, An I-405, I-650
Liu, Baozhu I-323
Liu, Binghao III-132
Liu, Chaofan III-358
Liu, Chengfei III-36
Liu, Chenxu II-620
Liu, Guang II-262
Liu, Hao III-566
Liu, Haobing I-526
Liu, Hongtao II-53
Liu, Hongzhi II-359
Liu, Huanyu II-641
Liu, Junfei II-612, II-620
Liu, Lei II-692
Liu, Lu I-71
Liu, Ning III-429
Liu, Pengkai I-323
Liu, Qi I-3, II-168
Liu, Qiyu I-591
Liu, Richen II-307
Liu, Shuncheng I-422
Liu, Shushu I-650
Liu, Wei I-457, III-604
Liu, Xinwang II-376
Liu, Xuefeng I-37
Liu, Yanchi III-115, III-132, III-179, III-211
Liu, Yiming II-701
Liu, Yuling I-385
Liu, Yun II-104
Liu, Zhen III-617
Liu, Zhengxiao II-253
Liu, Zhidan I-491
Liu, Ziqi III-499
Lou, Yunkai III-664
Lu, Guangben III-20
Lu, Jiaheng II-585, III-659
Lu, Jinjie III-608
Lu, Kejing II-569
Lu, Tun III-69, III-358
Lu, Xudong II-692
Luo, Changyin II-738
Luo, Chong I-375

Author Index 679



Luo, Fangyuan III-85
Luo, Minnan I-272
Luo, Pengfei III-461
Luo, Yifeng II-603
Lv, Yao III-36
Lyu, Qiuyi II-761

Ma, Hao-Shang III-652
Ma, Zhiyi II-3
Ma, Ziyi I-385
Mao, Yuzhao II-262
Meng, Lingkang III-100
Mondal, Anirban III-487

Ni, Shiguang III-529
Nie, Tiezheng I-575
Niu, Jianwei I-37
Niu, Shuzi II-88, III-53
Nummenmaa, Jyrki I-307, II-325

Ouyang, Jiawei III-413

Pan, Peng III-279
Pan, Wei II-219
Pan, Xuan I-667
Pandey, Sarvesh III-638
Peng, Hao I-174
Peng, Jinhua III-516
Peng, Peng III-595
Peng, Zhaohui II-392, III-228
Peng, Zhiyong I-474
Pu, Xiao III-511

Qi, Guilin I-256
Qi, Xiaodong III-341
Qi, Zhixin I-88
Qian, Chen I-509
Qian, Mingda III-321
Qian, Weining II-603
Qiao, Lianpeng I-158
Qin, Gang III-622
Qin, Zheng III-595
Qiu, Minghui II-152
Qiu, Ye II-3

Reddy, P. Krishna III-487
Ren, Chao III-461
Ren, Kaijun II-376
Ren, Weijun III-553

Ren, Yuxiang I-123
Richly, Keven I-542
Rong, Yu II-778

Sanghi, Anupam I-105
Santhanam, Rajkumar I-105
Schäler, Martin II-721
Shahabi, Cyrus II-342
Shanker, Udai III-638
Shao, Jie I-207
Shao, Ruihang I-394
Shen, Derong I-575, II-558
Shen, Jianping I-174, II-262
Shen, Jundong II-413, II-465
Shen, Yuan I-474
Sheng, Victor S. III-115, III-132, III-179,

III-211
Shi, Chongyang III-100
Shi, Gengyuan I-96
Shi, Jieming I-625
Shi, Meihui I-575
Shi, Qitao III-579
Shi, Tianyao III-330
Shijia, E. III-541
Shou, Lidan II-280, II-549
Shu, Lihchyun II-738
Siddiqie, Shadaab III-487
Song, Jinbo III-165
Song, Kaisong I-141
Song, Kehui III-445
Song, Shuangyong III-511
Song, Sujing III-612
Song, Wei I-474
Song, Yan II-120
Song, Yang II-359
Song, Yuanfeng III-516
Song, Zhenqiao III-529
Su, Han I-422
Su, Peifeng II-585
Su, Xiangrui III-100
Su, Yijun II-271
Sun, Chenchen II-558
Sun, Fei III-165
Sun, Hao III-148
Sun, Jie III-612
Sun, Xuehan III-330
Sun, Yu-E I-405
Sung, Chang-Wei III-604
Surbiryala, Jayachander III-617

680 Author Index



Tan, Zhiwen II-449
Tang, Haibo III-622
Tang, Jintao I-340
Tang, Jiuyang I-272
Tang, Mengfei I-474
Tang, Shaojie I-37
Tang, Xiu II-549
Tang, Xuejiao III-617
Tian, Bing I-240
Tian, Xintao III-115
Tong, Xing III-622
Tran, Luan II-342
Tu, Chenyang II-658

Wang, Binbin I-96, III-664
Wang, Chang-Dong II-291
Wang, Changping I-394, III-664
Wang, Chao II-701, III-511
Wang, Chaokun I-96, I-394, III-664
Wang, Chaoyang III-279
Wang, Chengyu II-152
Wang, Chongjun I-375, II-400, II-413,

II-429, II-449, II-465
Wang, Daling I-141
Wang, Deqing III-115, III-179
Wang, Dongsheng II-612
Wang, Fali II-253
Wang, Guoren I-20, I-158
Wang, Hongya II-500
Wang, Hongzhi I-88
Wang, Jiahai II-675
Wang, Jian II-392
Wang, Jianmin I-509
Wang, Jianyong III-429
Wang, Jiaqi II-136
Wang, Jingbing III-529
Wang, Jinghao III-529
Wang, Jun I-3
Wang, Lei II-253
Wang, Lizhen III-608
Wang, Peng II-629
Wang, Qian I-474
Wang, Senzhang II-392, III-228
Wang, Shaohua II-70
Wang, Shipeng II-692
Wang, Ting I-340
Wang, Weiping III-321
Wang, Wenjun II-53
Wang, X. Sean III-244
Wang, Xiang II-376

Wang, Xiaofan II-235
Wang, Xiaxia II-280
Wang, Xin I-323, II-710
Wang, Xiting II-120
Wang, Xiuchong III-553
Wang, Xue II-392
Wang, Yan II-70
Wang, Yangyang I-53
Wang, Yashen II-483
Wang, Yijun II-168
Wang, Zehui III-511
Wang, Zheng I-394
Wang, Zhuo III-321, III-664
Wei, Junjie III-600
Wei, Tianxin II-168
Wei, Ziheng I-113
Wen, Han III-297, III-306
Wen, Lijie I-509
Wen, Xinyu III-228
Wen, Yanlong I-667
Willkomm, Jens II-721
Wu, Fangwei I-625
Wu, Gang I-20
Wu, Hua III-516
Wu, Jun III-85
Wu, Kaishun I-491
Wu, Likang I-3
Wu, Longcan I-141
Wu, Sai II-280, II-549
Wu, Shaozhi I-422
Wu, Tianxing I-256
Wu, Zhonghai II-359
Wu, Zijian III-148

Xian, Xuefeng III-132, III-179
Xiang, Yang III-541
Xiang, Zhenglong III-262
Xiao, Shan I-307
Xiao, Yingyuan II-500
Xie, Guicai I-307, II-325
Xie, Huizhi III-499
Xie, Xike I-625
Xing, Chunxiao I-240
Xiong, Hui III-566
Xu, Chen III-627
Xu, Chi II-120
Xu, Chuanyu III-553
Xu, Hongyan II-53
Xu, Jiajie III-36
Xu, Jianliang I-457

Author Index 681



Xu, Jianqiu III-612
Xu, Liang I-191
Xu, Tong III-461, III-566
Xu, Xiaokang II-392
Xu, Yifan II-325
Xu, Zheng III-358
Xu, Zhi I-422
Xu, Zhizhen III-627
Xu, Zichen II-376
Xu, Zihuan III-375
Xue, Cong II-271
Xue, Taofeng III-315

Yadamjav, Munkh-Erdene I-439
Yan, Qiben I-474
Yang, Fangzhou II-603
Yang, Haiqin I-174
Yang, Jiandong III-529
Yang, Jianye I-385
Yang, Min II-120
Yang, Qiang II-533
Yang, Wei III-195
Yang, Xinghao III-604
Yang, Xinxing III-579
Yang, Yajun II-710
Yang, Yingjie III-622
Yang, Yiying I-174
Yao, Bo II-516
Yao, Junjie I-191
Yao, LingLing III-541
Yao, Yirong II-449
Ye, Wei II-37
Yin, Dan II-710
Yin, Jian I-457
Yin, Xi I-174
Yu, Cheng II-465
Yu, Ge I-141, I-575
Yu, Guoxin II-120
Yu, Hualei I-375, II-449
Yu, Jeffrey Xu II-778
Yu, Kui II-376
Yu, Philip S. II-392, III-228
Yu, Shenglong III-445
Yu, Shuodian III-3
Yu, Yanwei I-558
Yuan, Gongsheng II-585
Yuan, Tao III-53
Yuan, Xiaojie I-667, III-413, III-445
Yuan, Ye I-20, I-158
Yue, Kun I-224

Zang, Tianzi I-526
Zeng, Jiajun II-629
Zeng, Weixin I-272
Zeng, Xiaodong III-499
Zha, Daren II-253, II-271
Zha, Rui III-566
Zhang, Bo II-104
Zhang, Boyu I-405
Zhang, Chao III-659
Zhang, Chen III-516
Zhang, Daokun II-692
Zhang, Guang-Yu II-291
Zhang, Haiwei III-445
Zhang, Hang II-710
Zhang, Hanyu III-297, III-306
Zhang, Haodi I-491
Zhang, Huanhuan II-483
Zhang, Ji III-617
Zhang, Jiangwei I-667
Zhang, Jiasheng I-207
Zhang, Jiatao I-256
Zhang, Jiawei I-123
Zhang, Jing I-71
Zhang, Kai III-244
Zhang, Le III-566
Zhang, Li II-136, II-533
Zhang, Lijun II-219
Zhang, Mengdi I-3
Zhang, Mengxuan I-658
Zhang, Mingli III-617
Zhang, Peng III-69, III-358
Zhang, Rui III-429
Zhang, Ruiting II-400
Zhang, Shikun II-37
Zhang, Shuxun III-659
Zhu, Junchao III-664
Zhang, Tao II-359
Zhang, Wang II-738
Zhang, Wei III-429
Zhang, Weiming II-376
Zhang, Wenbin III-617
Zhang, Xiaoming II-104
Zhang, Xiaowen II-429, II-449
Zhang, Xue II-20
Zhang, Ya-Lin III-579
Zhang, Yi II-413, II-465
Zhang, Yifei I-141, II-658
Zhang, Yin II-152
Zhang, Ying I-667, III-413, III-445
Zhang, Yong I-240

682 Author Index



Zhang, Yuhao III-413
Zhang, Zhao III-341, III-622
Zhang, Zhe III-461
Zhang, Zhecheng II-413
Zhang, Zhenghao III-69
Zhang, Zhiqiang III-499
Zhang, Zhiwei I-158
Zhao, Bin II-307
Zhao, Gang III-600
Zhao, Hongke I-3
Zhao, Hui III-600
Zhao, Kangfei II-778
Zhao, Liangliang II-641
Zhao, Pengpeng III-115, III-132, III-179,

III-211
Zhao, Xiang I-272
Zhao, Yan I-641, III-148
Zhao, Yuhai I-20
Zhao, Ziheng III-20
Zheng, Baihua I-439
Zheng, Junhong I-491
Zheng, Kai I-422, I-641, III-148
Zheng, Libin I-591
Zheng, Mingyu II-253
Zheng, Qinghua I-272
Zheng, Shengan III-393
Zheng, Wenguang II-500
Zheng, Yanan II-70

Zheng, Yi III-461
Zhong, Hong I-71
Zhou, Aoying II-603, III-478
Zhou, Da III-553
Zhou, Ding III-566
Zhou, Hao III-529
Zhou, Jun III-579
Zhou, Kaijie I-174
Zhou, Minping III-529
Zhou, Rui III-36
Zhou, Xiangdong II-516
Zhou, Xiaofang I-658
Zhou, Xu I-385
Zhou, Yumeng II-400
Zhou, Yu-Ren II-291
Zhu, Fei I-650
Zhu, Huaijie I-457
Zhu, Jiatao II-629
Zhu, Junchao III-664
Zhu, Junxing II-376
Zhu, Ke II-500
Zhu, Peng II-603
Zhu, Yanmin I-526
Zhu, Yao II-359
Zhuang, Fuzhen III-132, III-211
Zhuo, Wei III-315
Zong, Zan I-509
Zou, Lei III-595

Author Index 683


	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Contents – Part III
	Big Data
	Learning the Implicit Semantic Representation on Graph-Structured Data
	1 Introduction
	2 Related Works
	3 Semantic Graph Convolutional Networks
	3.1 Preliminary
	3.2 Latent Factor Routing
	3.3 Discriminative Semantic Aggregation
	3.4 Independence Learning for Mapping Subspaces
	3.5 Algorithm Framework
	3.6 Time Complexity Analysis and Optimization

	4 Experiments
	4.1 Experimental Setup
	4.2 Semi-Supervised Node Classification
	4.3 Multi-label Node Classification
	4.4 Node Clustering
	4.5 Visualization Analysis and Semantic-Paths Sampling

	5 Conclusion
	References

	Multi-job Merging Framework and Scheduling Optimization for Apache Flink
	1 Introduction
	2 Background and Related Work
	2.1 Flink DAGs
	2.2 Flink Slot
	2.3 Related Work

	3 Framework Structure
	3.1 Model
	3.2 Advantages

	4 Multi-job Merging and Scheduling
	4.1 Multi-job Merging
	4.2 Multi-job Scheduling

	5 Evaluation Results
	5.1 Experimental Setup
	5.2 Testing of Multi-job Merging
	5.3 Testing of Scheduling Optimization

	6 Conclusion and Discussion
	References

	CIC-FL: Enabling Class Imbalance-Aware Clustered Federated Learning over Shifted Distributions
	1 Introduction
	2 Related Work
	3 The CIC-FL
	3.1 System Overview
	3.2 Requirements of the Feature for Clustering
	3.3 Locally Estimated Global Label Distribution ( LEGLD )
	3.4 Bipartition

	4 Experiments
	4.1 Experimental Settings and Evaluation Metrics
	4.2 Experimental Results of CIC-FL
	4.3 CIC-FL at Different Levels of Class Imbalance
	4.4 CIC-FL at Different Levels of Concept Shift

	5 Conclusion
	References

	vRaft: Accelerating the Distributed Consensus Under Virtualized Environments
	1 Introduction
	2 Background and Motivation
	2.1 The Raft Protocol for Distributed Consensus
	2.2 Motivation

	3 Design of vRaft
	3.1 Overview
	3.2 Algorithm Design
	3.3 Linearizability of vRaft

	4 Implementation and Evaluation
	4.1 Experimental Setup
	4.2 Overall Results
	4.3 Impacts of the Number of Replica
	4.4 Impacts of System Load
	4.5 Scalability Evaluation

	5 Related Work
	6 Conclusion
	References

	Secure and Efficient Certificateless Provable Data Possession for Cloud-Based Data Management Systems
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Background
	2.1 Elliptic Curve Cryptosystem (ECC)
	2.2 Network Model

	3 Proposed Scheme
	3.1 Setup Algorithm
	3.2 Key Generation Algorithm
	3.3 Store Algorithm
	3.4 Challenge Algorithm
	3.5 Generate-Proof Algorithm
	3.6 Verify-Proof Algorithm

	4 Security Analysis
	4.1 Security Model
	4.2 Security Theorem
	4.3 Discussion

	5 Performance Evaluation
	5.1 Computation Cost
	5.2 Communication Cost

	6 Conclusion
	References

	Dirty-Data Impacts on Regression Models: An Experimental Evaluation
	1 Introduction
	2 Generalized Evaluation Framework
	3 Evaluation Results and Analyses
	3.1 Data Sets, Models, and Setup
	3.2 Varying Missing Rate
	3.3 Varying Inconsistent Rate
	3.4 Varying Conflicting Rate
	3.5 Lessons Learned

	4 Conclusion
	References

	UniTest: A Universal Testing Framework for Database Management Systems
	1 Introduction
	2 Related Work
	2.1 Benchmark Testing
	2.2 Load Testing

	3 The UniTest
	3.1 User Interface
	3.2 Test Management Module
	3.3 Test Execution Module

	4 Experiments
	4.1 Functional Testing
	4.2 Performance Testing

	5 Conclusion
	References

	Towards Generating HiFi Databases
	1 Introduction
	1.1 Hydra
	1.2 HF-Hydra

	2 LP Formulation
	3 Data Generation
	4 Experimental Evaluation
	4.1 Volumetric Similarity
	4.2 Database Summary Overheads

	5 Conclusions
	References

	Modelling Entity Integrity for Semi-structured Big Data
	1 Introduction
	2 The Running Example
	3 Related Work
	4 Possibilistic SQL Tables
	5 Possibilistic SQL Constraints
	6 Conclusion and Future Work
	References

	Graph Data
	Label Contrastive Coding Based Graph Neural Network for Graph Classification
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Preliminaries
	3.2 LCGNN Architecture Overview
	3.3 Label Contrastive Coding
	3.4 Graph Encoder Design
	3.5 LCGNN Learning

	4 Experiments
	4.1 Experiment Settings
	4.2 Experimental Results and Analysis

	5 Conclusion
	References

	Which Node Pair and What Status? Asking Expert for Better Network Embedding
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Our Solution: ALNE
	4.1 ALNE Framework
	4.2 Network Embedding: AGCN
	4.3 AL Query Strategy
	4.4 Information Evaluating

	5 Experiments
	5.1 Experimental Settings
	5.2 Node Classification
	5.3 Link Prediction
	5.4 Ablation Study
	5.5 Parameter Sensitivity

	6 Conclusion
	References

	Keyword-Centric Community Search over Large Heterogeneous Information Networks
	1 Introduction
	2 Problem Definition
	3 Search Algorithm
	3.1 The Basic Algorithm
	3.2 Advanced Algorithm
	3.3 Optimization for the Approaches

	4 Experiments
	4.1 Experimental Setup
	4.2 Effectiveness Testing
	4.3 Efficiency Testing

	5 Related Work
	6 Conclusion
	References

	KGSynNet: A Novel Entity Synonyms Discovery Framework with Knowledge Graph
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Task Definition
	3.2 Semantic Encoder
	3.3 Knowledge Encoder
	3.4 Fusion Gate
	3.5 Similarity Matching and Classification

	4 Experiments
	4.1 Datasets
	4.2 Compared Methods
	4.3 Experimental Setup and Evaluation Metrics
	4.4 Experimental Results
	4.5 Ablation Study
	4.6 Online Evaluation
	4.7 Case Studies
	4.8 Error Analysis

	5 Conclusion
	References

	Iterative Reasoning over Knowledge Graph
	1 Introduction
	2 Related Works
	3 Framework Overview
	4 Approach
	4.1 Knowledge Graph Constructor
	4.2 Iterative Memory Network
	4.3 Graph Attention Reasoning

	5 Experiment
	5.1 Datasets
	5.2 Baselines
	5.3 Quantitative Study of Commonsense Reason
	5.4 Quantitative Study on Question Answering
	5.5 Ablation Study
	5.6 Case Study

	References

	Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion
	1 Introduction
	2 Related Work
	2.1 Static Knowledge Graph Embedding Methods
	2.2 Temporal Knowledge Graph Embedding Methods
	2.3 Deep Spatial-Temporal Models

	3 Preliminaries
	4 Proposed Model
	4.1 Multi-faceted Graph Attention Network
	4.2 Adaptive Temporal Attention Mechanism
	4.3 Training

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison
	5.3 Model Variants and Ablation Study
	5.4 Parameter Analysis

	6 Conclusion
	References

	Ranking Associative Entities in Knowledge Graph by Graphical Modeling of Frequent Patterns
	1 Introduction
	2 Related Work and Preliminaries
	2.1 Related Work
	2.2 Definitions and Problem Formulation

	3 Methodology
	3.1 Structure Learning
	3.2 Calculation of Weights
	3.3 Ranking Associative Entities

	4 Experiments
	4.1 Experiment Settings
	4.2 Experimental Results

	5 Conclusions and Future Work
	References

	A Novel Embedding Model for Knowledge Graph Completion Based on Multi-Task Learning
	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Completion (KGC)
	2.2 Multi-Task Learning

	3 Method
	3.1 Background and Definition
	3.2 Graph Attention Networks (GAT)
	3.3 Task-Specific Knowledge Embedding Layer
	3.4 Global Shared Layer for Multi-task Learning
	3.5 Training

	4 Experiments
	4.1 Experiment Setup
	4.2 Results and Analysis

	5 Conclusions
	References

	Gaussian Metric Learning for Few-Shot Uncertain Knowledge Graph Completion
	1 Introduction
	2 Related Works
	2.1 Completion Methods for DKGs
	2.2 Completion Methods for UKGs
	2.3 Few-Shot Learning

	3 Problem Definition
	4 Methodology
	4.1 Gaussian Neighbor Encoder 
	4.2 Gaussian Matching Function 
	4.3 The Learning Process

	5 Experiments
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Experimental Setup
	5.4 Link Prediction
	5.5 Confidence Prediction

	6 Conclusion and Future Work
	References

	Towards Entity Alignment in the Open World: An Unsupervised Approach
	1 Introduction
	2 Task Definition and Related Work
	3 Methodology
	3.1 Side Information
	3.2 Unmatchable Entity Prediction
	3.3 The Progressive Learning Framework

	4 Experiment
	4.1 Experiment Settings
	4.2 Results
	4.3 Ablation Study
	4.4 Quantitative Analysis

	5 Conclusion
	References

	Sequence Embedding for Zero or Low Resource Knowledge Graph Completion
	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Embedding
	2.2 Pre-trained Language Model

	3 Methodology
	3.1 Problem Formulation
	3.2 Framework Overview

	4 Performance Evaluation
	4.1 Low Resource Link Prediction
	4.2 Open-World KG Completion

	5 Conclusions
	References

	HMNet: Hybrid Matching Network for Few-Shot Link Prediction
	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Embedding
	2.2 Few-Shot Learning

	3 Problem Definition
	4 The Design of HMNet
	4.1 Entity-Aware Matching Network
	4.2 Relation-Aware Matching Network
	4.3 Learning Objective and Algorithm

	5 Experiments
	5.1 Experimental Setup
	5.2 Results
	5.3 Further Analysis
	5.4 Ablation Study

	6 Conclusion
	References

	OntoCSM: Ontology-Aware Characteristic Set Merging for RDF Type Discovery
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Ontology-Aware Characteristic Set Merging Approach
	4.1 Workflow
	4.2 Characteristic Set-Based Ontology Extraction
	4.3 Ontology-Aware Characteristic Set Merging Algorithm
	4.4 Scalability and Complexity

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

	EDKT: An Extensible Deep Knowledge Tracing Model for Multiple Learning Factors
	1 Introduction
	2 Related Works
	2.1 Single-Factor Models
	2.2 Multi-factor Models

	3 Preliminaries
	3.1 Knowledge Tracing Tasks
	3.2 Dynamic Key-Value Memory Networks

	4 Model
	4.1 Correlation Factors
	4.2 Extensible Deep Knowledge Tracing

	5 Experiments
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusion and Future Work
	References

	Fine-Grained Entity Typing via Label Noise Reduction and Data Augmentation
	1 Introduction
	2 Problem Definition
	3 Framework Overview
	4 Graph Based Improvement
	4.1 Labeled Training Corpora Noise Reduction
	4.2 Labeled Training Corpora Augmentation

	5 Sampling Based Improvement
	5.1 Labeled Training Corpora Noise Reduction
	5.2 Labeled Training Corpora Augmentation

	6 Type Prediction via Hierarchical Neural Network
	6.1 The Architecture
	6.2 Optimization

	7 Experiments
	7.1 Datasets and Preprocessing
	7.2 Comparison and Analysis

	8 Related Work
	9 Conclusion
	References

	DMSPool: Dual Multi-Scale Pooling for Graph Representation Learning
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Methodology
	4.1 The Proposed DMSPool Layer
	4.2 Multi-scale Graph Convolution Module
	4.3 Multi-scale Graph Pooling Module
	4.4 Multi-layering

	5 Experiment
	5.1 Datasets and Baselines
	5.2 Parameter Setting
	5.3 Performance Comparison on Benchmark Datasets
	5.4 Variants of DMSPool

	6 Conclusion
	References

	A Parameter-Free Approach for Lossless Streaming Graph Summarization
	1 Introduction
	2 Preliminaries
	3 Proposed Method
	3.1 Framework Overview
	3.2 Identify Candidate Supernodes
	3.3 Destination Supernode Selection (DSS)
	3.4 Update of Summarization

	4 Optimizations
	4.1 Candidate Supernode Refinement
	4.2 Advanced Destination Supernode Selection

	5 Experiments
	6 Conclusion
	References

	Expanding Semantic Knowledge for Zero-Shot Graph Embedding
	1 Introduction
	2 Why RECT Work
	2.1 Problem Definition
	2.2 Preliminaries: RECT
	2.3 RECT-L v.s. ZSL Methods
	2.4 The Mechanisms of RECT

	3 How to Improve RECT
	3.1 The Proposed Method
	3.2 Risk Bounds Analysis

	4 Experiments
	4.1 Setup
	4.2 Node Classification
	4.3 The Effect of Seen/Unseen Class Number

	5 Conclusion
	References

	Spatial and Temporal Data
	Online High-Cardinality Flow Detection over Big Network Data Stream
	1 Introduction
	2 Problem Statement
	3 Design of Online High-Cardinality Flow Detection
	3.1 Data Structure
	3.2 Algorithm Design
	3.3 Online High-Cardinality Flow Detection

	4 Optimal System Parameters
	4.1 Report Probability
	4.2 Constraints for System Parameters

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Comparison in Terms of Memory Requirements
	5.3 Comparison in Terms of High-Cardinality Flow Detection

	6 Related Work
	7 Conclusion
	References

	SCSG Attention: A Self-centered Star Graph with Attention for Pedestrian Trajectory Prediction
	1 Introduction
	2 Problem Definitions and Important Notations
	3 Methodology
	3.1 SCSG Attention Framework
	3.2 Spatial and Temporal Encoder
	3.3 Attention Mechanism
	3.4 Self-centered Star Graph Decoder

	4 Experiments and Analysis
	4.1 Experimental Setup
	4.2 Performance Evaluation
	4.3 Case Study

	5 Related Work
	5.1 RNN Based Sequence Model
	5.2 Social Interaction Awareness Model
	5.3 Attention Model

	6 Conclusion
	References

	Time Period-Based Top-k Semantic Trajectory Pattern Query
	1 Introduction
	2 Problem Formulation
	3 Baseline Method
	4 Our Approach
	4.1 Cluster Validity Check
	4.2 Algorithm

	5 Experimental Evaluation
	5.1 Efficiency Study
	5.2 Case Study

	6 Related Work
	7 Conclusion
	References

	Optimal Sequenced Route Query with POI Preferences
	1 Introduction
	2 Related Work
	2.1 Optimal Route Queries
	2.2 Indexes for Road Networks

	3 Problem Formalization
	4 Baseline for RCOSR
	5 Recurrent Optimal Subroute Expansion
	5.1 Optimal Subroute Expansion Algorithm
	5.2 Reference Node Inverted Index
	5.3 The ROSE Algorithm
	5.4 Complexity Analysis

	6 Experiments
	6.1 Efficiency of RCOSR Algorithms
	6.2 Efficiency of RNII Index

	7 Conclusion
	References

	Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data on an Untrusted Cloud Server
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 System Model
	3.2 Threat Model and Design Goals

	4 Privacy-Preserving Polynomial Evaluation over Spatio-temporal Data
	4.1 Paillier Homomorphic Encryption
	4.2 Order-Revealing Encryption
	4.3 The Proposed Encryption Scheme
	4.4 Virtual Road Network
	4.5 Encrypting Spatio-temporal Data over Virtual Road Network
	4.6 Executing Polynomials over Encrypted Spatio-temporal Data

	5 Security and Performance Analysis
	5.1 Security Analysis
	5.2 Performance Analysis

	6 Experimental Study
	6.1 Experimental Setup
	6.2 Encrypting Costs
	6.3 Time Costs of Executing Polynomial Evaluation
	6.4 Overheads of Communication

	7 Conclusion
	References

	Exploiting Multi-source Data for Adversarial Driving Style Representation Learning
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Definitions and Notations
	3.2 Problem Statement

	4 The Design
	4.1 Overview
	4.2 GPS Data Transformation
	4.3 Driving Context Representation
	4.4 Learning Model

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Driver Number Estimation
	5.3 Driver Identification

	6 Conclusion
	References

	MM-CPred: A Multi-task Predictive Model for Continuous-Time Event Sequences with Mixture Learning Losses
	1 Introduction
	2 Related Work
	3 Continuous-Time Event Sequence
	4 Methodology
	4.1 RNN Encoder and CNN Encoder
	4.2 Generators and Discriminator
	4.3 Training Strategy

	5 Experiments
	5.1 Datasets
	5.2 Compared Methods
	5.3 Metrics
	5.4 Experiments on Event Prediction
	5.5 Experiments on Time Prediction
	5.6 Ablation Study
	5.7 Discussion of Sequence Length
	5.8 Experimental Details

	6 Conclusion and Future Work
	References

	Modeling Dynamic Social Behaviors with Time-Evolving Graphs for User Behavior Predictions
	1 Introduction
	2 Related Work
	2.1 User Behavior Modeling
	2.2 Graph Convolution Network-Based Prediction Models

	3 Problem Statement
	4 Proposed Model
	4.1 Overview
	4.2 Modeling User Dynamic Social Behaviors
	4.3 Modeling User Similarities in Demographics
	4.4 Modeling Individual-Level Behavior Patterns
	4.5 Generating Prediction Results
	4.6 Model Learning

	5 Experiments
	5.1 Dataset
	5.2 Baselines and Evaluation Metrics
	5.3 Experimental Setting
	5.4 Experimental Results

	6 Conclusion and Future Work
	References

	Memory-Efficient Storing of Timestamps for Spatio-Temporal Data Management in Columnar In-Memory Databases
	1 Introduction
	2 Related Work
	3 Data Layouts for Timestamps in Columnar Databases
	3.1 Common Data Layouts for Timestamps
	3.2 A Multiple Column Approach to Store Timestamps

	4 Evaluation
	4.1 Dataset
	4.2 Impact of Different Compression Techniques on the Memory Consumption of the Data Layouts
	4.3 Impact of Different Compression Techniques on the Runtime Performance of the Data Layouts

	5 Workload-Aware Optimizations of Data Layouts for Timestamps in Columnar In-Memory Databases
	5.1 Workload-Driven Combined Data Layout and Compression Scheme Optimization for Timestamps
	5.2 Workload-Driven Compression Scheme Selection for Storing Timestamps in a Multiple Column Data Layout

	6 Conclusions and Future Work
	References

	Personalized POI Recommendation: Spatio-Temporal Representation Learning with Social Tie
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Methodology
	4.1 Heterogeneous Graph Construction
	4.2 Learning Latent Representation
	4.3 Modeling User Dynamic and Personalized Preference
	4.4 Personalized POI Recommendation

	5 Experiments
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Baselines
	5.4 Parameter Setting
	5.5 Performance Comparison
	5.6 Ablation Study
	5.7 Sensitivity of Hyper-parameters

	6 Conclusion
	References

	Missing POI Check-in Identification Using Generative Adversarial Networks
	1 Introduction
	2 Related Work
	2.1 Spatial Missing Data Imputation
	2.2 POI Recommendation

	3 Problem Formulation
	4 Methodology
	4.1 Bi-directional GRU Cell with Time Decay
	4.2 The Generator Module
	4.3 The Discriminator Module

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Ablation Analysis
	5.4 Parameter Analysis

	6 Conclusion
	References

	Efficiently Discovering Regions of Interest with User-Defined Score Function
	1 Introduction
	2 Problem Statement
	2.1 Preliminaries
	2.2 Radius Bounded ROI (RBR) Queries
	2.3 Discussion of the Region Score

	3 Query Processing Algorithms
	3.1 Baseline Algorithm: PairEnum
	3.2 Circle Rotation and Angle Scan
	3.3 Algorithm: BaseRotation
	3.4 Algorithm: OptRotation

	4 Experimental Studies
	4.1 Experiment Setting
	4.2 Experiment Results

	5 Conclusion
	References

	An Attention-Based Bi-GRU for Route Planning and Order Dispatch of Bus-Booking Platform
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Attention-Based Bi-GRU Method
	4.1 Framework Overview
	4.2 Order Information Extraction
	4.3 Attention Sub-network
	4.4 Order Dispatch and Route Planning

	5 Experiments and Analysis
	5.1 Dataset and Evaluation Criteria
	5.2 Destination Stations Selection
	5.3 Simulations

	6 Conclusion
	References

	Top-k Closest Pair Queries over Spatial Knowledge Graph
	1 Introduction
	2 Preliminaries
	3 Problem Definition and Basic Algorithm
	3.1 Problem Definition
	3.2 Basic Solution

	4 Improved Solution
	4.1 Vertex Join Node Method: V2N
	4.2 Improved Vertex Join Node Method: V2N

	5 Experiment
	5.1 Settings
	5.2 Efficiency Evaluation

	6 Related Work
	7 Conclusion
	References

	HIFI: Anomaly Detection for Multivariate Time Series with High-order Feature Interactions
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Multivariate Feature Interaction Module
	3.2 Attention-Based Time Series Modeling Module
	3.3 Variational Encoding Module
	3.4 Model Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance Comparison
	4.3 Ablation Study

	5 Conclusion
	References

	Incentive-aware Task Location in Spatial Crowdsourcing
	1 Introduction
	2 Problem Statement
	3 Proposed Methods
	3.1 Even Clustering Location Method
	3.2 Uneven Clustering Location Method
	3.3 Uneven Greedy Location Method

	4 Experimental Study
	4.1 Experimental Methodology
	4.2 Experiments on Real Data

	5 Conclusion
	References

	Efficient Trajectory Contact Query Processing
	1 Introduction
	2 Related Works
	3 Problem Statement
	4 Iteration-Based Trajectory Contact Search
	5 Advanced Contact Search Algorithm
	5.1 Hop Scanning Algorithm
	5.2 Time Interval Grid Index

	6 Experiments
	6.1 Experiment Settings
	6.2 Effectiveness Study

	7 Conclusion
	References

	STMG: Spatial-Temporal Mobility Graph for Location Prediction
	1 Introduction
	2 Related Work
	3 Proposed Model
	3.1 Problem Definition
	3.2 Spatial-temporal Mobility Graph Construction
	3.3 Spatial-temporal Enhanced Graph Neural Network

	4 Experiments
	4.1 Datasets and Settings
	4.2 Performance Comparison

	5 Conclusion
	References

	Author Index



