
Automatically Classifying Non-functional
Requirements with Feature Extraction

and Supervised Machine Learning Techniques:
A Research Preview

Mahtab EzzatiKarami(B) and Nazim H. Madhavji

The University of Western Ontario, London, ON N65B7, Canada
mezzati@uwo.ca

Abstract. Context and Motivation: In large projects, extracting the relevant
NFR-information as per the stakeholder’s responsibility and needs can be time-
consuming and challenging. Question/Problem: Classification of NFRs is one
way to mitigate this problem. However, because of the size and complexity of the
SRS, the manual classification of NFRs is considered time-consuming, labour-
intensive, and error-prone. An automated solution is needed that provides a reli-
able and efficient classification of NFRs. Principal ideas/results: Using natu-
ral language processing and supervised machine learning (SML) algorithms, we
investigate feature extraction techniques (i.e., POS-tagging based, BoW, and TF-
IDF) to assess their efficacy in automated classification, in conjunction with the
SML algorithms (such as: SVM, SGD SVM, LR, DT, Bagging DT, Extra Tree,
RF, GNB,MNB, and BNB).Contribution: The proposed combinations: (i) SVM
with TF-IDF, (ii) LR with POS and BoW, and (iii) MNB with BoW, all achieve
precision and recall values greater than 0.85, and process execution time of less
than 0.1 s. Comparison with related work is favourable as is preliminary validation
using an industry dataset.

Keywords: Non-functional requirements · Classification · Supervised Machine
Learning · Feature extraction

1 Introduction

Non-functional requirements (NFRs) describe desirable quality attributes (e.g., perfor-
mance, reliability, and availability) of a software system. In a software requirements
specification (SRS) document, the functional requirements and NFRs are often mixed
together (perhaps categorised under domain or application-specific headers). In large
projects, understanding and extracting the relevant NFR-information as per the stake-
holder’s responsibility and needs can be time-consuming and challenging, due to the
size, complexity, and lack of familiarity with the SRS.

For example, in one large project [1], there were approx. 600 regulatory requirements
buried amongst 12,000 requirements spread over a thousand pages of a contract. In such

© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 71–78, 2021.
https://doi.org/10.1007/978-3-030-73128-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_5


72 M. EzzatiKarami and N. H. Madhavji

cases, manually identifying the needed NFRs for project-work is effortful and error-
prone [1]. Other researchers [2] have also shown that classifying NFRs into different
types can aid stakeholders’ project concerns [2].

In our research, we investigated how accurately we can classify NFRs automati-
cally into various types; in particular, usability, security, performance, and operational
requirements – which are the top four NFR-types in the PROMISE dataset. The goal of
our research is to provide stakeholders with a reliable and efficient solution for extract-
ing specific NFRs from SRS documents using natural language processing techniques
combined with supervised machine learning (SML) algorithms. We investigate feature
extraction techniques (i.e., POS-tagging based, BoW, and TF-IDF) to assess their effi-
cacy in automated classification, in conjunctionwith the SMLalgorithms (such as: SVM,
SGD SVM, LR, DT, Bagging DT, Extra Tree, RF, GNB, MNB, and BNB).

The resultant combinations: (i) SVM with TF-IDF, (ii) LR with POS and BoW, and
(iii)MNBwithBoW, all achieve precision and recall values greater than 0.85 and process
execution times of less than 0.1 s; meaning, the right NFRs would be rendered, and
quickly, to the stakeholder concerned. Comparison with related work [2, 4] is favourable
as is the classification of NFRs in an industry dataset.

2 Related Work

We describe and analyse several previous attempts at classifying NFRs using machine
learning techniques. In 2006, Cleland-Huang et al. [2] classified 370 NFRs from 15 SRS
documents developed by graduate students. Their used certain keywords as indicator
terms to distinguish different types of NFRs, trained these, and then classified NFRs
from given documents according to the occurrence of the indicator terms. Their model
yielded a classification recall of approx. 0.8 (considered high) and precision of 0.12
(low) due to a high rate of false positives.

In 2011, Zhang et al. [3] conducted an empirical study on classifying NFRs using
SVM and the PROMISE dataset. Three kinds of index terms, at different levels of
linguistic semantics (N-grams, individual words, and multi-word expressions (MWE))
were used in the representation ofNFRs. Their results show that index terms as individual
words with Boolean weighting outperform N-grams and MWEs; and using MWEs does
not enhance the representation of individual words significantly. Also, they observed
that automatic classification results in better performance on categories of large sizes
than of small sizes. They conclude that individual words are the best index terms in text
representation of short NFR descriptions. In comparison to the study by Cleland-Huang
et al. [2], they report higher precision but lower recall values.

In 2017, Lu et al. [4] classified app user reviews into four types of NFRs (i.e.,
reliability, usability, portability, and performance), functional requirements, and others.
Their approach combines four classification techniques (BOW, TF-IDF, CHI2 andAUR-
BOW) with three machine learning algorithms (Naïve Bayes (NB), J48, and Bagging)
to classify the reviews. The combination of AUR-BOW with Bagging achieved the
best result (precision: 0.71 and recall: 0.72). An interesting observation made was that
automatic classification using an imbalanced dataset performs poorlywhen the numeracy
of certain types of NFRs is low.



Automatically Classifying Non-functional Requirements 73

2.1 Analysis

Some opportunities motivated us to conduct our research:

• Most of the related works have used the PROMISE dataset, which has at least two
issues: (i) it is imbalanced, and (ii) the number of NFRs is not numerous (370
NFRs). For our investigation, we combined two datasets (PROMISE and PURE
(with 160 NFRs)) totalling more than 500 NFRs. In addition, we separately apply (or
preliminarily validate) our techniques on an industry dataset (of approx. 260 NFRs).

• We cover a number of techniques in combinations: three feature extraction techniques
(BOW, TF-IDF, and POS-tagging) and 10 supervised machine learning techniques
(SVM, SGD SVM, DT, Extra Tree, Bagging Tree, LR, RF, GNB, BNB, and MNB).

3 Research Investigation

As mentioned in Sect. 1, our investigation focuses on four NFR types: usability,
performance, security, and operational NFRs. The key research question we ask is:

Which combination of feature extraction techniques (BOW, TF-IDF, and POS-tagging)
and SML algorithms (SVM, SGD SVM, DT, Extra Tree, Bagging Tree, LR, RF, GNB,
BNB, and MNB) yields the highest precision and recall values?

The higher the precision value, more the proportion of the identified NFRs that are
relevant to the inquiring stakeholder. The higher the recall value, less the relevant NFRs
that are missed (or not identified) from the dataset.

In a practical setting, the best combination of feature extraction technique and the
SML algorithm could be a basis for a real-time interactive tool that serves the needs of
various kinds of stakeholders: analysts, architects, programmers, testers, product man-
agers, domain experts andmore. They all need to know the details of theNFRs relevant to
their concern, in a given project, from time to time. For example: What are the reliability
needs of the system and have I addressed them all in the design of the system’s architec-
ture? Is my choice of algorithms to code appropriate for the performance requirements
of this device? Does the envisaged core quality of the system give us a competitive
advantage?

3.1 Datasets

We use two datasets: NFR PROMISE dataset and the PURE dataset1. The PROMISE
dataset consists of 625 requirements (255 functional, 370 NFRs). There are 11 groups
of NFRs but because the number of instances of a few types is low, we chose the top four
types for classification: usability (62), performance (48), security (58), and operational
(61).We also used the PURE dataset (which focuses on public requirements documents).
It consists of 296 requirements (136 functional and 160 NFR). There are 16 groups of
NFRs in this dataset and the top three types are usability (54), performance (18), and
security (17).

1 https://zenodo.org/record/1414117#.X7wfOWhKiUk.

https://zenodo.org/record/1414117%23.X7wfOWhKiUk.


74 M. EzzatiKarami and N. H. Madhavji

We combine these two datasets in a sequence to form the training set. The effect on
precision and recall of mixing the two datasets differently (e.g., interleaved NFRs) is
not empirically tested though it seems that the SML algorithms are agnostic about the
ordering of the NFRs in the dataset.

Given a dataset of all requirements, we first identify functional requirements and,
separately, NFRs. For this, we use the distinguishing criteria from the established liter-
ature [5]. We then further classify the NFRs into the four (for PROMISE) and three (for
PURE) predominant types. By stripping off extraneous metadata, we then convert the
datasets into standard CSV files. They include the columns: “Requirement Description”,
“F/NF” for functional or NFR, and “Subtype” of NFRs. Table 1 depicts example NFRs
from the PROMISE and PURE datasets.

Table 1. Example NFRs from the PROMISE and PURE datasets

Label Requirement text Dataset

Availability “Aside from server failure the software product shall achieve 99.9%
up time”

PROMISE

Safety “The system will do periodic backups through a live internet
connection”

PURE

3.2 Research Methodology

We want to determine the best combination pair of the (i) feature extraction and (ii)
supervisedmachine learning, techniques.Weoverview this process in this Previewpaper;
for further details see (the first author’s thesis): https://ir.lib.uwo.ca.

Step 1: Data Preprocessing
In this step,wefirst parse theCSVfile into aDataFrame for the convenience of processing
with Python, with each row in the DataFrame representing a single requirement sample.
This involves: (i) parsing the given csv file, (ii) using NLTK library to remove case
distinctions, (iii) tokenization and punctuation removal, (iv) stop word removal (v) part
of speech tagging, and (vi) stemming and lemmatization.

Step 2: Feature Extraction
We now want to extract features as input to our classification algorithm:

• Requirements are converted into numeric vectors using the BoW in [6].
• TF-IDF scores associated with each term present in a given requirement is used in
this classification framework.

• We adopted a feature list proposed by Hussain et al. [7] with which they attained 95%
accuracy in the binary classification of FRs and NFRs. (However, note that they did
not classify NFRs into sub-types) Thus, adopting the NFR-characteristics from [5],
we added a number of syntactic features (e.g., # Adjectives, #Adverbs, and #Nouns)
and coded keyword features as part of speech groups.

https://ir.lib.uwo.ca


Automatically Classifying Non-functional Requirements 75

At this point, three feature sets are prepared. For each of them we have xtrain (data
frame with requirement features) and ytrain (data frame that includes target values):
(i) For the classification of functional/NFR, ytrain contains 1 (for functional) or 0 (for
NFR); and (ii) For multiclass classification of NFRs, ytrain contains 1 for usability, 2
for security, 3 for performance, and 4 for operational types. The output of this step is
the three extracted feature sets that are input to machine learning algorithms of training
classifiers.

Step 3: Training Classifiers
Here, we investigate the performance of the 10 mentioned classifiers using stratified
10-fold cross-validation technique [2]. Each time the dataset is divided into 10 subsets,
nine are used for training and the remaining one is used for testing.We repeat the process
10 times and the performance of the classification is measured as average precision and
recall of the 10 repetitions complemented by their execution time.

Step 4: Classifying Requirements
Each of the classifiers trained in Step 3 is used to predict for each requirement whether
it belongs to usability, performance, security, or operational.

4 Preliminary Evaluation

This section describes the results of the described investigations. In Sect. 4.1, we give
precision and recall to evaluate how well the model learnt to classify non-functional
requirements. Comparison with related work is also described. In Sect. 4.2, we show
the performance of the model using an industry dataset. Results of the experiments with
this dataset are shown as well.

4.1 Preliminary Analysis

Table 2 gives an overviewof the results ofmulti-class classification ofNFRs. The average
of POS, BoW, and TF-IDF shows that SVM achieved the best results with recall of 0.88
and precision of 0.89. LR, Extra Tree, MNB and SGD- SVM with recall values of 0.86,
0.85, 0.85, and 0.84 (resp.) performed well too. All classifiers achieved recall values
above 0.8 except DT, Bagging Tree, and BNB.

Among all the combinations of feature extraction techniques and machine learn-
ing algorithms, SVM with TF-IDF (recall: 0.9, precision: 0.92), LR with POS and
BOW (recall:0.90, precision: 0.87), and MNB with BOW (recall: 0.90, precision: 0.88)
achieved the best results. However, further empirical work is needed to assess the
root-causes of the 70-odd misclassified NFRs and how to improve the performance.

Comparison with related work, e.g. [2, 4], is generally favourable (except DT (0.74)
and Bagging Tree (0.75) vs. [2]: 0.76). Our best case SVM/TF-IDF vs. Related work
are depicted in Table 3.



76 M. EzzatiKarami and N. H. Madhavji

Table 2. Results of NFR classification

Algorithm POS BOW TF-IDF Averege

Precision Recall Time Precision Recall Time Precision Recall Time Precision Recall Time

SVM 0.89 0.87 0.13 0.88 0.87 0.1 0.92 0.9 0.08 0.89 0.88 0.1

SGD SVM 0.85 0.83 0.25 0.88 0.86 0.27 0.84 0.82 0.3 0.86 0.84 0.27

LR 0.9 0.87 0.09 0.90 0.87 0.9 0.9 0.85 0.09 0.9 0.86 0.09

DT 0.78 0.76 0.14 0.77 0.74 0.16 0.76 0.72 0.17 0.77 0.74 0.16

Extra tree 0.88 0.85 1.6 0.88 0.84 1.72 0.9 0.86 1.8 0.89 0.85 1.7

Bagging tree 0.81 0.76 0.87 0.8 0.76 0.94 0.81 0.74 1.03 0.81 0.75 0.94

RF 0.82 0.78 0.2 0.85 0.81 0.22 0.84 0.8 0.21 0.84 0.8 0.21

GNB 0.81 0.81 0.08 0.82 0.82 0.1 0.8 0.79 0.1 0.81 0.81 0.09

MNB 0.88 0.86 0.04 0.9 0.88 0.05 0.89 0.83 0.05 0.89 0.85 0.04

BNB 0.85 0.77 0.08 0.87 0.75 0.1 0.88 0.78 0.11 0.87 0.77 0.09

Table 3. Best case comparison with related work

Precision Recall Execution
time

Our 0.92 0.90 0.08s

Reference [2] 0.24 0.76 Not
specified

Reference [4] 0.71 0.72 Not
specified

4.2 Preliminary Validation

Table 4 shows recall values ≥0.89 and precision values ≥0.92 of the three classifiers
using an industry dataset (262NFRs): SVM, LR, andMNB, formulti-class classification
of the four mentioned NFR types. An example NFR from this dataset is:

Table 4. Multi-class NFR classification of the industry dataset

Algorithm POS BOW TF-IDF

Precision Recall Time Precision Recall Time Precision Recall Time

SVM 0.93 0.91 0.09 0.96 0.95 0.06 0.96 0.96 0.09

LR 0.93 0.92 0.03 0.96 0.94 0.04 0.93 0.90 0.04

MNB 0.92 0.90 0.02 0.94 0.9 0.03 0.92 0.89 0.02



Automatically Classifying Non-functional Requirements 77

5 Conclusion and Future Work

We used three feature extraction techniques: BoW, TF-IDF, and POS-tagging, combined
with 10 supervised machine learning algorithms SVM, SGD SVM, LR, DT, Extra Tree,
Bagging Tree, RF, GNB, MNB, and BNB for classifying four NFR types (usability, per-
formance, security, and operational NFRs). Also, we used a combination of PROMISE
and PURE datasets (see Sect. 3.1) as our training set. SVM with TF-IDF, LR with POS
and BOW, and MNB with BOW achieved the best results (see Table 2) with recall value
over 0.90 and precision value over 0.87.

Comparison with related work is favourable (see Sect. 4.1). We also preliminarily
validated our results, using an industry dataset (see Table 4), showing recall values≥0.89
and precision values≥0.92. These values suggest that the right NFRswould be rendered,
and quickly, to the stakeholders concerned.

In this research, we used a multi-class classifier for the specified NFR types. For
future work, we intend to investigate whether developing binary classifiers for each of
these NFR types could possibly improve the performance of the classification task at
hand.

Also, in our research thus far, we have considered product quality attributes such as
usability, performance, security, etc. Apart from extending the coverage of the product
quality attributes (e.g., reliability, privacy, and security), a further step in providing a
concern-based NFR classification tool for stakeholders is to consider process quality
aspects such as implementation risk, effort, and cost, which are the bedrock of software
projects in industry. For example, recognising risky requirements can help in prioritising
these requirements over less risky ones in early decision-making in the development
process using the Spiral model of development [8].

Acknowledgments. Thiswork is supported, in part, byNatural Science andEngineeringResearch
Council (NSERC) of Canada.

References

1. Nekvi, I., Madhavji, N.H.: Impediments to requirements-compliance in contractual systems
engineering projects: a case study. ACM Trans. Manage. Inf. Syst. 5(3), 15, 1–35 (2014)

2. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-functional
requirements. Requirements Eng. 12(2), 103–120 (2007). https://doi.org/10.1007/s00766-007-
0045-1

3. Zhang, W., Yang, Y., Wang, Q., Shu, F.: An empirical study on classification of non-functional
requirements. In: Proceedings of the 23rd International Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 190–195 (2011)

4. Lu, M., Liang, P.: Automatic classification of non-functional requirements from augmented
app user reviews. In: Proceedings of the 21st Int. Conference on Evaluation and Assessment
in Software Engineering, June 2017, pp. 344–353 (2017)

5. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley, New
York (1997)

6. Slankas, J., Williams, L.: Automated extraction of non-functional requirements in avail able
documentation. In: Proceedings IEEE 1st Workshop NaturaLiSE, pp. 9–16 (2013)

https://doi.org/10.1007/s00766-007-0045-1


78 M. EzzatiKarami and N. H. Madhavji

7. Hussain, I., Kosseim, L., Ormandjieva, O.: Using linguistic knowledge to classify non-
functional requirements in SRS documents. In: Kapetanios, E., Sugumaran, V., Spiliopoulou,
M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 287–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69858-6_28

8. Boehm,B.W.:A spiralmodel of software development and enhancement. IEEEComput. 21(5),
61–72 (1988)

https://doi.org/10.1007/978-3-540-69858-6_28

	Automatically Classifying Non-functional Requirements with Feature Extraction and Supervised Machine Learning Techniques: A Research Preview
	1 Introduction
	2 Related Work
	2.1 Analysis

	3 Research Investigation
	3.1 Datasets
	3.2 Research Methodology

	4 Preliminary Evaluation
	4.1 Preliminary Analysis
	4.2 Preliminary Validation

	5 Conclusion and Future Work
	References




