
Fabiano Dalpiaz
Paola Spoletini (Eds.)

LN
CS

 1
26

85 Requirements Engineering:
Foundation
for Software Quality
27th International Working Conference, REFSQ 2021
Essen, Germany, April 12–15, 2021
Proceedings

Lecture Notes in Computer Science 12685

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Fabiano Dalpiaz • Paola Spoletini (Eds.)

Requirements Engineering:
Foundation
for Software Quality
27th International Working Conference, REFSQ 2021
Essen, Germany, April 12–15, 2021
Proceedings

123

Editors
Fabiano Dalpiaz
Utrecht University
Utrecht, The Netherlands

Paola Spoletini
Kennesaw State University
Kennesaw, GA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-73127-4 ISBN 978-3-030-73128-1 (eBook)
https://doi.org/10.1007/978-3-030-73128-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4480-3887
https://orcid.org/0000-0001-7922-4936
https://doi.org/10.1007/978-3-030-73128-1

Preface

It is our great pleasure to welcome you to the proceedings of the 27th International
Working Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2021). The REFSQ working conference series is a leading international forum
for discussing requirements engineering (RE) and its role for software quality. REFSQ
is an inclusive forum in which experienced researchers, PhD candidates, practitioners,
and students can inform each other, learn about, discuss, and advance the
state-of-the-art research and practice in RE. The first REFSQ meeting took place in
1994. The conference has been organized as a stand-alone conference since 2010 and is
now well established as a premier conference series on RE, located in Europe. REFSQ
2021 was expected to be held in Essen, Germany, but the COVID-19 pandemic led the
organizers to the decision to opt for a virtual conference that took place during April
12–15, 2021.

The theme of REFSQ 2021 was “Ethics as a cornerstone of Requirements Engi-
neering”, which we chose to emphasize the importance of human values, such as
privacy and fairness, when designing software-intensive systems as well as the chal-
lenges that intelligent and autonomous systems pose due to the tight interplay with
humans. To strengthen this perspective throughout the conference, besides some of the
papers included in these proceedings, one of the keynote addresses and a few of the
industry track presentations also focused on ethics.

We are pleased to present this volume comprising the REFSQ 2021 proceedings. It
features 15 papers included in the technical program of REFSQ 2021, presented during
the conference. These papers were selected by an international Program Committee of
leading experts in RE from both academia and industry. The committee evaluated the
papers via a rigorous peer-review process. This year, we received 54 abstracts, 52 of
which were followed by a paper submission. We desk rejected 2 papers, leading to 50
papers sent out to the reviewers. Each paper was reviewed by three members of the
REFSQ 2021 Program Committee, followed by an online discussion in EasyChair
moderated by an additional member of the Program Committee who did not act as a
reviewer. While most decisions were taken through the online discussion in EasyChair,
we organized synchronous online meetings for 11 papers on January 14-15.

The accceptance rate of REFSQ 2021 was 28.8% (15/52). If we further analyze the
details by paper category, we obtain the following:

– Technical Design (3 accepted out of 16 submissions)
– Scientific Evaluation (8 accepted out of 20)
– Research Preview (3 accepted out of 13)
– Vision (1 accepted out of 3)

The REFSQ 2021 conference was organized as a three-day symposium preceded by
a day of co-located events. On Monday, the pre-conference program included three
workshops (CreaRE, NLP4RE, and RE4AI), the doctoral symposium, and the graduate

students' event, a special event dedicated to welcome students to the RE community
prior to the beginning of a PhD. The 15 accepted papers were presented on Tuesday
and Thursday. Furthermore, these two days included three keynote addresses: Katie
Shilton (University of Maryland) gave a keynote on values and the role of RE as a
catalyst for technology justice; Vidya Setlur (Tableau Research) focused on the
embedding of AI within intelligent visual analytics tools; and Martin Glinz (University
of Zurich) offered a speech on teaching requirements engineering. This third keynote
paved the way for the OpenRE track, which focused on the sharing of tutorials and
educational resources regarding RE. Moreover, the posters and tools track served as a
way to promote early, ongoing research. Finally, the industry track program involved
nine invited talks that were given on Wednesday. The papers included in all the satellite
events and tracks can be found in a separate proceedings volume published via CEUR.

REFSQ 2021 would not have been possible without the engagement and support of
many individuals who contributed in many different ways. As editors of this volume,
we would like to thank the REFSQ Steering Committee members, in particular the
chair, Kurt Schneider, and the vice-chair, Anna Perini, for their availability and
excellent guidance. Special thanks go to Klaus Pohl for his long-term engagement for
REFSQ. We are grateful to all the members of the Program Committee for their timely
and thorough reviews of the submissions and for their time dedicated to the online
discussions. We especially thank those Program Committee members who volunteered
to serve in the role of gatekeeper for conditionally accepted papers. We are grateful to
the chairs, who organized the various events included in REFSQ 2021, and the social
media and publicity chairs Blagovesta Kostova and Oliver Karras. Finally, we would
like to thank Vanessa Stricker and the team at the University of Duisburg-Essen who
made the organization of the virtual conference possible and who maintained the
website.

This volume consists of presentations of research results or new ideas that we hope
the reader will find interesting to follow in the pursuit of his/her own work in
requirements engineering.

February 2021 Fabiano Dalpiaz
Paola Spoletini

vi Preface

Organization

Program Committee Chairs

Fabiano Dalpiaz Utrecht University, Netherlands
Paola Spoletini Kennesaw State University, USA

Local Organization Chair

Vanessa Stricker University of Duisburg-Essen, Germany

Background Organization Chair

Klaus Pohl University of Duisburg-Essen, Germany

Industry Chairs

Anne Hess Fraunhofer IESE, Germany
Stan Bühne IREB, Germany

OpenRE Chairs

Neil Ernst University of Victoria, Canada
Alessio Ferrari CNR-ISTI, Italy

Posters and Tools Chairs

Elda Paja IT University of Copenhagen, Denmark
Norbert Seyff Fachhochschule Nordwestschweiz, Switzerland

Doctoral Symposium Chairs

Travis Breaux Carnegie Mellon University, USA
Xavier Franch Universitat Politècnica de Catalunya, Spain

Workshops Chairs

Sepideh Ghanavati University of Maine, USA
Andreas Vogelsang University of Cologne, Germany

Graduate Students Event Chair

Marcela Ruiz ZHAW School of Engineering, Switzerland

Social Media and Publicity Chairs

Oliver Karras Leibniz University Hannover, Germany
Blagovesta Kostova EPFL, Switzerland

Proceedings Chairs

Fatma Başak Aydemir Boǧaziçi University, Turkey
Catarina Gralha Universidade NOVA de Lisboa, Portugal

Program Committee

Raian Ali Hamad Bin Khalifa University, Qatar
Carina Alves Universidade Federal de Pernambuco, Brazil
Fatma Başak Aydemir Boğaziçi University, Turkey
Muneera Bano Deakin University, Australia
Nelly Bencomo Aston University, UK
Richard Berntsson Svensson Chalmers | University of Gothenburg, Sweden
Dan Berry University of Waterloo, Canada
Tanmay Bhowmik Mississippi State University, USA
Travis Breaux Carnegie Mellon University, USA
Sjaak Brinkkemper Utrecht University, Netherlands
Nelly Condori-Fernández Universidade da Coruña, Spain
Luiz Marcio Cysneiros York University, Canada
Maya Daneva University of Twente, Netherlands
Joerg Doerr Fraunhofer IESE, Germany
Alessio Ferrari CNR-ISTI, Italy
Xavier Franch Universitat Politècnica de Catalunya, Spain
Samuel A. Fricker Fachhochschule Nordwestschweiz, Switzerland
Matthias Galster University of Canterbury, New Zealand
Vincenzo Gervasi University of Pisa, Italy
Sepideh Ghanavati University of Maine, USA
Martin Glinz University of Zurich, Switzerland
Michael Goedicke University of Duisburg-Essen, Germany
Catarina Gralha Universidade NOVA de Lisboa, Portugal
Alicia Grubb Smith College, USA
Paul Grünbacher Johannes Kepler University Linz, Austria
Renata Guizzardi Universidade Federal do Espirito Santo, Brazil
Emitzá Guzmán Vrije Universiteit Amsterdam, Netherlands
Irit Hadar University of Haifa, Israel
Andrea Herrmann Herrmann & Ehrlich, Germany
Jennifer Horkoff Chalmers | University of Gothenburg, Sweden
Fuyuki Ishikawa National Institute of Informatics, Japan
Zhi Jin Peking University, China
Erik Kamsties Dortmund University of Applied Sciences and Arts,

Germany

viii Organization

Alessia Knauss Zenseact, Sweden
Eric Knauss Chalmers | University of Gothenburg, Sweden
Kim Lauenroth adesso AG, Germany
Seok-Won Lee Ajou University, South Korea
Emmanuel Letier University College London, UK
Grischa Liebel Reykjavik University, Iceland
Nazim Madhavji University of Western Ontario, Canada
Gunter Mussbacher McGill University, Canada
John Mylopoulos University of Ottawa, Canada
Nan Niu University of Cincinnati, USA
Nicole Novielli University of Bari, Italy
Andreas Opdahl University of Bergen, Norway
Barbara Paech Universität Heidelberg, Germany
Elda Paja IT University of Copenhagen, Denmark
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Anna Perini Fondazione Bruno Kessler, Italy
Klaus Pohl University of Duisburg-Essen, Germany
Bjorn Regnell Lund University, Sweden
Mehrdad Sabetzadeh University of Ottawa, Canada
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Norbert Seyff Fachhochschule Nordwestschweiz, Switzerland
Vitor E. Silva Souza Federal University of Espírito Santo, Brazil
Angelo Susi Fondazione Bruno Kessler, Italy
Michael Unterkalmsteiner Blekinge Institute of Technology, Sweden
Michael Vierhauser Johannes Kepler University Linz, Austria
Andreas Vogelsang University of Cologne, Germany
Yves Wautelet Katholieke Universiteit Leuven, Belgium
Didar Zowghi University of Technology Sydney, Australia

Additional Reviewers

Anders, Michael
Dell’Anna, Davide
Dey, Sangeeta
Gupta, Sanonda Datta
Hess, Anne
Jain, Vijayanta
Kaplan, Stephen

Kleebaum, Anja
Koch, Matthias
Rohmann, Astrid
Shojaifar, Alireza
Villela, Karina
Waga, Masaki

Organization ix

Organizers

Sponsors

x Organization

Keynotes

Practicing (Whose?) Values: Requirements
Engineering as a Catalyst for Technology

Justice

Katie Shilton

University of Maryland College Park, College Park, USA
kshilton@umd.edu

Abstract. Requirements engineering (RE) is a critical site for technology ethics.
Technology ethics researchers have long advocated that ethical concerns be
central to early design processes [1–3], and requirements engineering provides
methods and processes for such reflection. RE has already begun exploring ways
that social values like privacy, accessibility, and fairness can become technical
requirements [4–6]. Methods have been proposed to support and systematize
ethical design [7–9]. But these methods face steep challenges on the road to
widespread adoption. Agile methodologies and technical cultures where ethical
deliberation takes a backseat to production make values-oriented design diffi-
cult. And even after decades of debate, practitioners of values-oriented design
struggle with the fundamental problem of whose values should be built into
technologies which are meant to be flexible, interoperable, and global.
This talk will suggest that reframing values and ethics as explicitly about

justice – considerations of power and historical oppressions – helps solve one
challenge (whose values) while making the other (adoption in software engi-
neering communities) potentially more difficult. I will then present two con-
trasting case studies as tools to think with and potential ways forward. The first
is from my qualitative work studying independent mobile application devel-
opers. My findings suggest that there are practices already embedded in even the
most informal software work which can ease the problem of adoption of ethics
and justice-centered requirements engineering. The second is the history of a
radically different profession: anthropology. Anthropology is a discipline that
has openly grappled with power and its place in the world, and I suggest its
history provides lessons for how software engineering might make reflections on
power more central to development practice.

Keywords: Ethics � Justice � Software engineering.

https://orcid.org/0000-0003-1816-6140

References

1. Brey, P.A.E.: Anticipatory ethics for emerging technologies. Nanoethics. 6, 1–13 (2012).
2. Friedman, B., Nissenbaum, H.: Bias in computer systems. In: Friedman, B. (ed.) Human

Values and the Design of Computer Technology, pp. 21–40. Cambridge University Press,
Cambridge and New York (1997)

3. Shilton, K.: Values and ethics in human-computer interaction. Found. Trends Human-Com-
put. Interact. 12, 107–171 (2018). https://doi.org/10.1561/1100000073

4. Becker, C., Betz, S., Chitchyan, R., Duboc, L., Easterbrook, S.M., Penzenstadler, B., Seyff,
N., Venters, C.C.: Requirements: the key to sustainability. IEEE Softw. 33, 56–65 (2016).
https://doi.org/10.1109/MS.2015.158

5. Anthonysamy, P., Rashid, A., Chitchyan, R.: Privacy requirements: present future. In: 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in
Society Track (ICSE-SEIS), pp. 13–22 (2017). https://doi.org/10.1109/ICSE-SEIS.2017.3

6. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Four reference models for transparency
requirements in information systems. Requirements Eng. 23, 251–275 (2018). https://doi.org/
10.1007/s00766-017-0265-y

7. Aydemir, F.B., Dalpiaz, F.: A Roadmap for ethics-aware software engineering. In: 2018
IEEE/ACM International Workshop on Software Fairness (FairWare), pp. 15–21 (2018).
https://doi.org/10.23919/FAIRWARE.2018.8452915

8. Spiekermann, S.: Ethical IT Innovation: A Value-Based System Design Approach. Auerbach
Publications, Boca Raton (2015)

9. Perera, H., Mussbacher, G., Hussain, W., Shams, R.A., Nurwidyantoro, A., Whittle, J.:
Continual human value analysis in software development: a goal model based approach. In:
2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 192–203
(2020). https://doi.org/10.1109/RE48521.2020.00030

xiv K. Shilton

https://doi.org/10.1561/1100000073
https://doi.org/10.1109/MS.2015.158
https://doi.org/10.1109/ICSE-SEIS.2017.3
https://doi.org/10.1007/s00766-017-0265-y
https://doi.org/10.1007/s00766-017-0265-y
https://doi.org/10.23919/FAIRWARE.2018.8452915
https://doi.org/10.1109/RE48521.2020.00030

The Challenge(s) of Teaching Requirements
Engineering

Martin Glinz

University of Zurich, Zurich, Switzerland
glinz@ifi.uzh.ch

Abstract. This extended abstract summarizes my keynote given at REFSQ
2021.

Keywords: Requirements engineering � Teaching � Education � Training

Motivation

When a new discipline such as Requirements Engineering (RE) emerges and starts
spreading, we are confronted with the challenge of teaching it, both by educating
students and training professionals in practice.

A Historic Perspective

The famous papers by Royce (1970) and Boehm (1976) were among the first that stated
the need for treating and documenting requirements systematically. Boehm provided
perspectives on systematic RE, thus giving first hints about what to teach in RE. With
the advent of the special issue of IEEE TSE on RE in January 1977, the trend became
clear: teach how to model requirements and the corresponding modeling languages.

Others, inspired by abstract data types and program verification, advocated teaching
how to specify requirements formally, be it with logic or algebraic specifications.

The release of the IEEE standard 830 in 1984 added further teaching objectives:
what are the qualities of good requirements and how to structure a requirements
specification systematically.

The 1990ies and 2000s added a lot to the RE teaching agenda, for example:
stakeholders, systematic requirements elicitation and validation, the importance of
system context, value orientation, writing natural language requirements with phrase
templates, prototyping, creativity and innovation in RE, goal-oriented RE, non-func-
tional requirements, RE@runtime, use cases, and UML. The advent of requirements
management tools added requirements management, in particular, traceability and
tools.

The publication of the IREB CPRE foundation level syllabus in 2007 marked a
milestone, providing a guideline for what to teach in RE on an elementary level.

More recently, the RE teaching agenda was augmented by further topics, for
example, requirements evolution, collaboration, shared understanding, collecting and
analyzing user feedback, and automated analysis of natural language requirements.

The growing popularity of agile development challenged RE as such and, in par-
ticular, challenged the classic, document-centric and method-focused notion of RE. As
a consequence, the focus shifted toward a “principles and practices”-oriented teaching
of RE, which eventually led to the new IREB CPRE syllabus version 3, published in
2020.

The Challenge(s)

Teaching modern RE is a challenge per se and it entails several challenges that teachers
or trainers in RE must deal with. Below I sketch some of them that I deem important.

Motivation. Most students and many practitioners do not have practical experience in
RE when attending a class or training in RE. This inevitably leads to a situation where
the teacher answers questions that the students never have asked – this impedes the
students’ motivation to learn what they are taught.

Size. Practical exercises are a crucial ingredient of effective teaching in RE. However,
such exercises suffer from a size problem: Exercises of realistic size that let students
feel the pain of missing or bad RE typically are beyond of what can be done in an RE
course. Conversely, exercises that fit the schedule of a course are small enough that
students could solve them successfully without applying the practices that we teach.

Context. The context in which RE is applied in practice ranges from agile development
and evolution of small apps to very large, plan-driven, safety-critical systems and from
small, well-understood problems to complex, not or badly understood ones. It is
impossible to cover such a broad field with a single, uniform set of RE methods,
processes and tools – so what kinds of application contexts should we consider in
teaching?

Procedures and Tools vs. Principles and Practices. Students, particularly in indus-
trial training courses, prefer hands-on content (such as procedures and tools) that is
directly applicable in practice. However, such knowledge ages rapidly and is not
applicable in a broad context. Teachers, on the other hand, pursue the goal of teaching
durable and broadly applicable content. This calls for teaching principles and practices.

Process. There is no universal RE process that fits most practical RE problems.

Stakeholders. Any realistic exercise in RE teaching needs stakeholders or people who
act as stakeholders. However, how and from where can we get the people we need?

Consequences for Today’s RE Education and Training

We cannot teach everything which is important in RE in every relevant application
context. So we need to teach a set of practices, how and where to apply them, and the
principles behind them. Furthermore, we should teach students how to acquire RE

xvi M. Glinz

knowledge themselves. Case studies are a way to address the motivation and size
challenges. The context and process challenges can be addressed to some extent by
demonstrating how to tailor and apply RE practices in selected application contexts,
using case study exercises, for example. Such demonstrations also address the students’
preference for hands-on content and help mitigate the motivation challenge. Real
stakeholders are possible when a course includes or is followed by a real project. Other
options are simulating stakeholders with computer-based games, role plays, or scripted,
multi-step case studies that describe the stakeholders’ statements, behavior and reac-
tions.

Conclusion

This is a personal and very condensed view of the topic. I do not claim any form of
completeness, neither concerning the challenges nor the consequences. I hope that my
keynote clarifies the historic context of RE teaching and provokes thoughts and dis-
cussions about the challenge(s) of teaching RE and how to deal with them.

The Challenge(s) of Teaching Requirements Engineering xvii

What Makes Intelligent Visual Analytics Tools
Really Intelligent?

Vidya Setlur

Tableau Research

Visual analysis helps people see and understand data. Effective visualizations depend
on the task at hand and need to be simple, yet meaningful. While data-driven inquiry
has become the norm of business practices and decision making, there is a huge
untapped market of “data enthusiasts” who aren’t database or computer experts; yet,
they are great analytical thinkers and need tools to support their questions. There have
been recent advances looking at how AI technologies can assist the analytical workflow
ranging from smarter data transformations, automatic visual encodings, to supporting
analytical conversation using natural language. Machine learning approaches have
shown to be promising for approximating the cues for continuous learning in these
systems. With a better understanding as to how users explore data in their flow of
analysis, a natural question is can user behavior be applied as a set of engineering
requirements to developing smarter tools? That is, can people doing analysis be sup-
ported or even replaced by more intelligent tools? In this talk, I will explore this
question.

Contents

Natural Language Processing and Machine Learning

Is Requirements Similarity a Good Proxy for Software Similarity?
An Empirical Investigation in Industry. 3

Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul Enoiu,
and Mehrdad Saadatmand

Automatic Detection of Causality in Requirement Artifacts: The CiRA
Approach . 19

Jannik Fischbach, Julian Frattini, Arjen Spaans, Maximilian Kummeth,
Andreas Vogelsang, Daniel Mendez, and Michael Unterkalmsteiner

Improving Trace Link Recovery Using Semantic Relation Graphs
and Spreading Activation . 37

Aaron Schlutter and Andreas Vogelsang

CORG: A Component-Oriented Synthetic Textual
Requirements Generator . 54

Aya Zaki-Ismail, Mohamed Osama, Mohamed Abdelrazek, John Grundy,
and Amani Ibrahim

Automatically Classifying Non-functional Requirements with Feature
Extraction and Supervised Machine Learning Techniques:
A Research Preview . 71

Mahtab EzzatiKarami and Nazim H. Madhavji

RE for AI-Enabled Systems

AdaptationExplore – A Process for Elicitation, Negotiation,
and Documentation of Adaptive Requirements . 81

Fabian Kneer, Erik Kamsties, and Klaus Schmid

Trustworthy AI Services in the Public Sector: What Are Citizens Saying
About It? . 99

Karolina Drobotowicz, Marjo Kauppinen, and Sari Kujala

Defining Utility Functions for Multi-stakeholder Self-adaptive Systems 116
Rebekka Wohlrab and David Garlan

Risk-Driven Compliance Assurance for Collaborative AI Systems:
A Vision Paper . 123

Matteo Camilli, Michael Felderer, Andrea Giusti, Dominik Tobias Matt,
Anna Perini, Barbara Russo, and Angelo Susi

From Software to Systems and Services

Requirements Engineering in the Planning Phase of a Software Ecosystem. . . 133
Kati Saarni and Marjo Kauppinen

Power and Privacy in Software Ecosystems: A Study on Data Breach
Impact on Tech Giants. 149

Maria Eduarda Rebelo, George Valença, and Fernando Lins

Iterative and Scenario-Based Requirements Specification in a System
of Systems Context . 165

Carsten Wiecher, Joel Greenyer, Carsten Wolff, Harald Anacker,
and Roman Dumitrescu

Specifying Requirements for Data Collection and Analysis in Data-Driven
RE. A Research Preview . 182

Maurizio Astegher, Paolo Busetta, Anna Perini, and Angelo Susi

Analysts' Competence and Training

SaPeer Approach for Training Requirements Analysts: An Application
Tailored to a Low-resource Context. 191

Jéssyka Vilela and Alessio Ferrari

On Understanding the Relation of Knowledge and Confidence
to Requirements Quality. 208

Razieh Dehghani, Krzysztof Wnuk, Daniel Mendez, Tony Gorschek,
and Raman Ramsin

Author Index . 225

xx Contents

Natural Language Processing
and Machine Learning

Is Requirements Similarity a Good Proxy
for Software Similarity? An Empirical

Investigation in Industry

Muhammad Abbas1,2(B), Alessio Ferrari3, Anas Shatnawi4,
Eduard Paul Enoiu2, and Mehrdad Saadatmand1

1 RISE Research Institutes of Sweden, Väster̊as, Sweden
{muhammad.abbas,mehrdad.saadatmand}@ri.se

2 Mälardalens University, Väster̊as, Sweden
{muhammad.abbas,eduard.enoiu}@mdh.se

3 CNR-ISTI, Pisa, Italy
alessio.ferrari@isti.cnr.it

4 Berget-Levrault, Montpellier, France
anas.shatnawi@berget-levrault.com

Abstract. [Context and Motivation] Content-based recommender
systems for requirements are typically built on the assumption that sim-
ilar requirements can be used as proxies to retrieve similar software.
When a new requirement is proposed by a stakeholder, natural language
processing (NLP)-based similarity metrics can be exploited to retrieve
existing requirements, and in turn identify previously developed code.
[Question/problem] Several NLP approaches for similarity computa-
tion are available, and there is little empirical evidence on the adoption
of an effective technique in recommender systems specifically oriented to
requirements-based code reuse. [Principal ideas/results] This study
compares different state-of-the-art NLP approaches and correlates the
similarity among requirements with the similarity of their source code.
The evaluation is conducted on real-world requirements from two indus-
trial projects in the railway domain. Results show that requirements
similarity computed with the traditional tf-idf approach has the highest
correlation with the actual software similarity in the considered context.
Furthermore, results indicate a moderate positive correlation with Spear-
man’s rank correlation coefficient of more than 0.5. [Contribution] Our
work is among the first ones to explore the relationship between require-
ments similarity and software similarity. In addition, we also identify
a suitable approach for computing requirements similarity that reflects
software similarity well in an industrial context. This can be useful not
only in recommender systems but also in other requirements engineering
tasks in which similarity computation is relevant, such as tracing and
categorization.

Keywords: Requirements similarity · Software similarity · Correlation

This work has been supported by and received funding from the ITEA3 XIVT, and
KK Foundation’s ARRAY project.

c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-73128-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_1

4 M. Abbas et al.

1 Introduction

Recommender systems have been widely studied in requirements engineering
(RE) [14,19,28], and several diverse applications of this paradigm have been pro-
posed in the literature. These include stakeholder recommendation for require-
ments discussions [8], refactoring recommendation based on feature requests [27]
and also bid management [14]. One typical application scenario of recommender
systems in RE is related to requirements retrieval [9,20] in reactive software prod-
uct line engineering (SPLE) [22,35]. With SPLE, companies manage software
reuse in a structured way to satisfy multiple variations of customer requirements
while minimizing development effort [29]. Specifically, in a reactive SPLE con-
text [22], when a new requirement is proposed, the requirements analyst looks for
reuse opportunities and compares the new proposal with existing requirements
in order to adapt their previously developed models and implementations. This
can be supported by content-based recommender systems [24], which, given a
new requirement, return the most similar ones in a historical database of product
releases, together with the associated artifacts. The rationale of the approach is
that similar requirements can be used as proxies to retrieve similar software,
i.e., code that can be adapted with little effort to address the new needs. Differ-
ent NLP techniques exist to compute semantic requirements similarity, and the
recent emerging of novel NLP language models provides promising options [38].
However, it is unclear to which extent requirements similarity implies software
similarity and what are the most effective techniques to support requirements
similarity computation in a way that is optimized for code retrieval. This paper
aims to empirically study the problem in the context of the requirements of Bom-
bardier Transportation AB (BT), a world-leading railway company. The main
objective of this study is to improve the requirement-based software retrieval pro-
cess in the studied setting. To study the relationship between requirements sim-
ilarity and software similarity, we consider 254 real-world requirements related
to two Power Propulsion Control (PPC) projects. We consider different state-
of-the-art language models to semantically represent the requirements and sup-
port similarity computation, namely the traditional tf-idf [25], and the more
advanced Doc2Vec [23], FastText [5], and Bidirectional Encoder Representations
from Transformers (BERT) [10]. Surprisingly, our results show that, in our con-
text, the traditional tf-idf model is the one that leads to the highest correlation
with the software similarity, computed with JPLag [30]. Furthermore, we show
that, with the exception of the Doc2Vec case, the correlation between require-
ments similarity and code similarity is moderate. This provides some evidence
that similar implementations realize similar requirements in the context of the
considered case study but also suggests that there is further space for research
about novel methods to retrieve similar software that goes beyond requirements
similarity.

The rest of the paper is organized as follows. Related work is discussed in
Sect. 2. Section 3 discusses the research design, with context, research questions,
and procedures. In Sect. 4, we present the results, and in Sect. 5 we discuss

Is Requirements Similarity a Good Proxy for Software Similarity? 5

the main takeaway messages. Threats to validity are presented in Sect. 6. We
conclude the paper and draw future directions in Sect. 7.

2 Related Work

In software engineering, several approaches rely on similarity measurements
to analyze relationships between different software artifacts. Typical goals
include feature identification [39], feature location [12], architecture recovery [35],
reusable service identification [34] and clone detection [36]. In the RE field,
similarity computation normally involves using NLP techniques to represent
the requirements [38], as these are typically written in NL [15]. Computation
of similarity is key for many typical requirements management tasks, includ-
ing traceability [6,17,18], identification of equivalent requirements [13], clus-
tering [3], and also recommender systems based on Information Retrieval (IR)
approaches [2,8,9,11,14,19,27,28,32]. As our research is focused on this latter
group of applications, we will compare our work with representative ones in
this area. One of the seminal contributions is the work by Natt och Dag et
al. [9], where the tf-idf language model and cosine similarity are used to sup-
port retrieval of previous requirements on a large industrial dataset. Dumitru et
al. [11] propose an approach for feature recommendation based on online product
descriptions, with the support of association rule mining and kNN clustering.
This type of clustering is also used by Castro-Herrera et al. [8], who proposes
to recommend relevant stakeholders to requirements discussion forums based on
their expertise. The OpenReq EU project [14,28] aims to take a more holis-
tic perspective, with recommendations in elicitation, specification, and analysis,
and also includes a proposal for bid management. Similarly to our work, the
researchers plan to use content-based recommender systems for requirements
and adopt vector-space language models to support similarity computation. On
a different note, but still using tf-idf to support similarity computation, Nya-
mawe et al. [27] recommend refactoring based on new feature requests. Finally,
in a recent contribution [2], we used requirements descriptions to recommend
the reuse of their implementation for new requirements.

Compared to our previous work [2], which was dedicated to the whole task
of software reuse, the current investigation is explicitly focusing on exploring the
relationship between requirements similarity and the actual software similarity.
With respect to other related studies, the work presented in this paper is the first
one that, while focusing on requirements and software similarity, compares the
most recent state-of-the-art NLP techniques to support similarity computation
and applies these techniques in an industrial context. This is particularly relevant
also for the whole NLP for the RE field, as the recent survey of Zhao et al. [38]
clearly highlights limited experimentation with advanced NLP techniques in RE
research.

6 M. Abbas et al.

Tender Doc.

3

Internal
Standard Reqs.

Req. Analysis 1

Customer Reqs.

uses

4 Reqs. Reuse5

Project-specific
Reqs.

2
3

PPC
Reqs.

Requirements
Repo.

Developement

Fig. 1. The overall process of receiving requirements from a customer

3 Study Design

This section outlines the research method used to obtain the results. This work
can be regarded as an exploratory case study [33], oriented to understand the
relationship between requirements and their associated code and exploit this
relationship for software retrieval in the specific context of a railway company. We
designed this study following the guidelines of Runeson et al. [33] for conducting
and reporting case studies by providing an overview of the context, our objective,
and research questions, followed by the data collection and analysis procedures.

3.1 Study Context

We have studied the PPC software development team of BT. In this team, the
software is developed by reusing existing components from the assets base [1].
The development of a new product starts after receiving customer require-
ments from different teams at the company. Since the system is a safety-critical
software-intensive system, the requirements for all existing products can be
traced to the source code. The team consists of more than 140 employees, devel-
oping safety-critical products, and thus the requirements have to be dealt with in
detail. Therefore, all the team members participate in the requirements engineer-
ing activities. As shown in Fig. 1, requirement analysis and elicitation activities
are performed on tender documents to extract the customer requirements. The
customer requirements relevant to the propulsion system are received by this
team. The input requirements (PPC reqs.) are internalized by reusing standard
internal domain requirements and existing requirements from other projects.
This results in project-specific internal requirements to be implemented.

To support reuse, the engineers also conduct reuse analysis to identify exist-
ing similar customer requirements and, by exploiting traceability information,
identify existing software components that could be reused to realize the new
requirements. However, this process is heavily dependent on the experience of
engineers and is time-consuming. Currently, the process is being automated with
a recommender system called VARA [2]. Like most RE recommender systems,
VARA is also based on the assumption that similar requirements can be used as
proxies to retrieve similar software.

Is Requirements Similarity a Good Proxy for Software Similarity? 7

3.2 Objective and Research Questions

Our main goal is to improve the software retrieval process in the studied setting.
To this end, we need first to check the typical assumption of content-based
recommender systems for requirements, i.e., that similar requirements can be
used as proxies to retrieve similar software. In other terms, we want to check
if a relationship can be identified between requirements similarity and software
similarity so that similar requirements can be assumed to point to similar code.
Then, we want to check which NLP approach performs best in exploiting this
similarity. To achieve these objectives, we define the following research question.

RQ: To which extent can we use requirements similarity, automatically com-
puted through different language models, as a proxy for software similarity?

This research question aims at exploring the relationship between require-
ments similarity and software similarity. Language models are commonly used
to compute the similarity among requirements. Therefore, this research question
also aims to identify the most effective language model in our specific case for
computing requirements similarity that correlates well with the software simi-
larity and can be better exploited in the given setting.

The case under study is the relationship between requirement similarity and
software similarity in the considered industrial setup. The unit under analysis
in our case are the projects developed in the Power Propulsion Control software
at Bombardier Transportation.

3.3 Data Collection

We collected data from two projects at Bombardier Transportation AB, devel-
oped by the Power Propulsion Control software team. Due to limited access to
the company’s repository, the projects were selected based on convenience by
a company’s project manager. The requirement documents were subjected to
cleaning to remove all non-requirements such as headings and definitions. This
resulted in a final set of 254, selected out of 265 entries. In data collection, one
project manager from the company was involved in validating our procedure.
Table 1 outlines the data about two projects with information on requirements
and lines of code.

Table 1. Summary of the selected requirements with and without stop-words

Project Reqs. With Without SLOC

- - Words AVG. Words Words AVG. Words -

A 112 5823 51.9 3308 29.5 53.7K

B 142 10736 75.6 6478 45.6 61K

Total 254 16559 63.7 9786 37.5 114.7K

8 M. Abbas et al.

We conducted the investigation for our dataset, both with and without stop-
words. This is because some language models can utilize stop-words, suffix, and
prefix information for learning. We use a pre-processing pipeline to remove all the
English stop-words and lemmatize the words of the requirements to their roots.
An example requirement from the PURE dataset before and after pre-processing
is shown as follows [16].

Before Pre-Processing: The number of block movement in incremented
of 1. The difference of time of the block movement and the previous recorded
time is recorded.
After Pre-Processing: number block movement incremente 1 difference
time block movement previous record time record

In the studied projects, the requirements are realized in Simulink models, and
code is generated from the models for deployment. Besides, there are not many
available tools for computing similarity between Simulink models. Therefore, to
mimic the studied setting, we used Simulink Embedded Coder1 with MinGW64
gmake tool-chain to generate code from the models. The related code realizing
each requirement was traced and moved to directories tagged with the require-
ment’s identifiers.

3.4 Language Models for Requirements Similarity

Language models are used to derive feature vectors from the requirements’ text.
Various similarity metrics are used on the vectors to compute similarity among
them. The cosine similarity metric is based on the cosine angle between the
vectors and is heavily used in the area of NLP. The effectiveness of the similarity
computed with cosine is heavily dependent on the choice of language model used
for computing feature vectors. In addition, some language models are sensitive
to pre-processing, such as removal of stop-words and lemmatization. This is
why we selected some of the most seminal language models and fed them the
dataset with and without pre-processing applied. Particularly, we considered tf-
idf (TF), Doc2Vec (DW), FastText (FT), and BERT. In addition, to see the
effect of pre-processing, we combined these language models with pre-processing
(pTF, pDW, pFT, and pBERT). Note that for DW, FT, and BERT, the hyper-
parameters are not in our control and are coming from the original pre-trained
models. In our case, the input to each language model is the requirements from
two projects, and the output is vectors of requirements. Given the total number
of requirements, we select the top 50 similar pairs of requirements using cosine
similarity to fulfill the sample size requirement. A pair is created by retrieving
the most similar requirement from project B for each requirement in project
A. The similarity between each pair of requirements’ vectors is calculated using
the cosine similarity metric implementation available in scipy [31]. In this sub-
section, we first present the pre-process pipeline, then the different language
models used to generate vectors to compute the similarity between requirement
pairs.
1 The option “optimize for traceability” was selected in Embedded Coder.

Is Requirements Similarity a Good Proxy for Software Similarity? 9

Pre-Process. The pre-process pipeline takes the requirements text and removes
English stop-words from it. After the removal of the stop-words, each token of
the requirements text is tagged with Part-of-speech (POS) tags to guide the
lemmatization. The pre-trained spaCy model2 is used to lemmatize the text of
the requirement. The output of this pipeline is the pre-processed text of the
requirement. The dataset before and after pre-processing is shown in Table 1. In
the remainder of this section, the names of language models starting with “p”
are the model variants where pre-processing is applied.

TF is based on the tf-idf score from IR. TF extracts term-matrix from the
input requirements where the terms are treated as features, and the frequencies
are treated as values of the features. Minimum and maximum term frequencies
can be defined to drop irrelevant features such as potential stop-words. The
matrix also considers the co-occurring terms (n-grams) as features. The term
matrix is usually of very high dimensions, and thus dimensionality reduction
techniques are used to select the top features from the matrix. Such an approach
is useful in cases where the requirements share common terms. In our case, the
model is configured to build the term-document matrix on project B and then
uses Principal Component Analysis (PCA) [21] to select the top features based
on the explained variance of 95%from the matrix. The minimum and maximum
document frequencies are set to 6 and 0.5, respectively. We consider n-grams
ranging from 1 to 8.

DW is based on the Word2Vec approach, where every word in a document
is mapped to a vector of real numbers using a neural network. The vectors are
concatenated to get vectors for the entire document, preserving the contextual
and semantic information For example, words like “simple” and ‘easy” would
result in similar vectors. This helps in inferring feature vectors of fixed-length
for a variable length of requirements. In our case, the pre-trained Doc2Vec model
available in Gensim data3 is used. The model has a vector size of 300, with a
minimum frequency set to 2. The model is trained on the English Wikipedia
documents resulting in a vocabulary size of 35,556,952.

FT is another model based on Word2Vec, where instead of learning word
vectors directly, it utilizes the character level n-grams. For example, the word
“run” would be divided into n-grams such as “ru,” “run,” “un”. Such a model is
useful in cases where shorter words are used. In addition, FastText also under-
stands suffixes (such as verb ending) and prefixes (such as unhappy, where un is
the prefix) better because it utilizes character-level information. In our case, we
use the pre-trained FT model available in Gensim data. The model has a vector
size of 100 with a minimum frequency set to 1. The model is trained on the
English Wikipedia documents on the sub-word-level, resulting in a vocabulary
size of 2,519,370. Both FT and DW are based on the skip-gram neural network
architecture [26], known for contextual word prediction.

BERT is a recent breakthrough in language understanding research. It is
a bi-directional model based on the Transformer encoder architecture that also

2 https://spacy.io/.
3 https://github.com/RaRe-Technologies/gensim-data.

https://spacy.io/
https://github.com/RaRe-Technologies/gensim-data

10 M. Abbas et al.

considers positional and contextual information of words. BERT is known for the
so-called contextual embedding and is trained on BooksCorpus and the English
Wikipedia with 2,500M words. Such a model could be handy for capturing the
semantic of the requirements. In our case, we use the uncased pre-trained BERT
model by Google Research [10]. The model has 12 layers and a vector size of
768. We use the BERT implementation available in BERT-as-a-service4.

3.5 Software Similarity Pipeline

Our software similarity pipeline takes pairs of requirement’s identifiers as input.
It copies each pair’s code to separate folders5. The pipeline then uses JPLag
to compute the similarity between the pair of source code. To compute the
similarity between the source code of the two requirements, we use the JPLag’s
Java ARchive (JAR) with C/C++ as a language parameter [30]. JPLag was
originally designed to detect plagiarism in students’ assignments and thus is able
to detect semantically similar code. Note that JPLag ignores code comments and
white-spaces and scans and parses the input programs to convert the programs
into string tokens. JPLag then uses a greedy version of string tiling algorithm
to compute the similarity between the tokens of the source code. The similarity
number is basically the percentage of similar tokens in the pairs of source code.
The output of this pipeline is the software similarity values between 0 and 100,
later converted to range between 0 and 1 for the input pairs.

Source Code

realized by

Requirements Similar Pairs of
Reqs.

Source Code
Similarity

Similarity
Computation

Pairs Selector

Results

Source Code Similarity Pipleline

JPLag

Requirements-related tasks Source code-related tasks Output

Fig. 2. Execution procedure overview

3.6 Execution

Figure 2 shows a high-level view of the execution procedure followed to obtain
the results. We started with two requirement documents as input to all the
language models presented in Sect. 3.4. Each language model outputs vectors of
the requirements that are used to select the 50 most similar pairs of requirements
4 Xiao Han, https://github.com/hanxiao/bert-as-service.
5 In our case, each folder for a pair contains two sub-folders with code of each require-

ment.

https://github.com/hanxiao/bert-as-service

Is Requirements Similarity a Good Proxy for Software Similarity? 11

Fig. 3. Software similarity distribution in the top 50 similar requirement pairs

based on cosine similarity. For each model, the Pairs Selector searches, selects
and structures the code of the requirements for JPLag. The pipeline then uses
JPLag to compute the similarity between each input pair of the source code and
produces the software similarity values for each language models’ result.

3.7 Data Analysis

First, we visualize the data in bar and scatter plots to provide descriptive statis-
tics on the software similarity percentages among the identified pairs by using
each language model. Then, we apply the correlation analysis to quantify the
relationship between the two variables using R Studio6. As our data are not
normally distributed and we do not assume any linear correlation between the
variables, we use Spearman’s rank correlation coefficient test.

4 Results

In this section, we quantitatively answer our posed research question. First, we
present the descriptive statistics, and then we present the correlation analysis.

Descriptive Statistics. To understand the results, we divided the similar pairs of
the requirements—computed based on different language models—against the
actual software similarity into three classes. The first class represents the cases
where the retrieved software shares less similarity (<60% software similarity, A).
The second class represents cases where the retrieved software share moderate
similarity (between 60 and 80% between the software of the pairs, B), finally,
third class represent cases where the retrieved software shares high similarity
(>80% similarity between the software of the pairs, C). The above classes are

6 RStudio, Available online, https://rstudio.com/.

https://rstudio.com/

12 M. Abbas et al.

defined to show the extent to which requirements similarity can be used to
recommend requirements-based code reuse. Figure 3 shows the distribution of
software similarity among the top 50 similar pairs of requirements based on each
language model. As it can be seen, in all cases, in at-least 60% of the pairs, the
software similarity stays above 80% (in class C).

0.75 0.85 0.95

0.
6

0.
8

1.
0

TF

S
S

0.80 0.90

0.
6

0.
8

1.
0

DW

S
S

0.96 0.98 1.00

0.
5

0.
7

0.
9

FT

S
S

0.75 0.85 0.95

0.
3

0.
5

0.
7

0.
9

pTF

S
S

0.75 0.85 0.95

0.
6

0.
7

0.
8

0.
9

1.
0

pDW

S
S

0.95 0.97 0.99

0.
5

0.
7

0.
9

pFT

S
S

0.93 0.95 0.97 0.99

0.
6

0.
7

0.
8

0.
9

1.
0

BERT

S
S

0.94 0.96 0.98 1.00

0.
5

0.
7

0.
9

pBERT

S
S

Fig. 4. Scatter plots of the requirements and software similarity

In addition, Fig. 4 presents a holistic view of the association between the
requirements similarity and software similarity. The requirements similarity (on
X-Axis) is calculated using different language models. The software similarity is
plotted on Y-Axis and is calculated using our JPLag-based pipeline, shown in
Fig. 2. The blue line is the trendline between the two variables, giving insights
into the relationship between them. In all cases, as can be seen from the trend-
lines, there could be a positive association between the two variables. Besides,
we also visualize the interquartile range (IQR), mean, and outliers in our vari-
ables in Fig. 5. As can be seen from Fig. 5, the software similarity for most
requirement pairs stays above 70%.

Correlation Analysis. We applied correlation analysis to quantify the relationship
and find the most suitable approach toward requirements similarity computation.

Is Requirements Similarity a Good Proxy for Software Similarity? 13

We measure the correlation between the similarity of the top 50 most similar
pairs of the requirements and their source code similarity. We choose the top 50
pairs because it is a suitable number for a sample size (for applying statistical
tests) and, at the same time, not a large number of pairs compared to the total
requirements.

Table 2 show the results of Spearman’s rank correlation. The p-value indi-
cates the significance of the obtained results. The rho column is the correlation
coefficient, which ranges from −1 to 1. As it can be observed, there is a positive
association between the requirements similarity and software similarity for all
the language models.

TF S
S

pT
F

S
S

D
W S
S

pD
W S
S FT S
S

pF
T

S
S

B
E
R
T

S
S

pB
E
R
T

S
S

0.
3

0.
5

0.
7

0.
9

Requirements Similarity Vs Software Similarity

Fig. 5. Requirements Similarity (blue) and their corresponding Software Similarity
(SS, purple) for all pipelines (Color figure online)

Table 2. Spearman’s rank Correlation Results with Moderate correlation in bold text.
The best pipeline (pTF) is also reported in bold.

TF pTF DW pDW FT pFT BERT pBERT

rho 0.5089 0.5927 0.2642 0.3104 0.5718 0.4676 0.3865 0.5575

p-value 0.0001 5.753e−06 0.0636 0.0282 1.439e−05 0.0006 0.0055 2.594e−05

5 Discussion

From the results shown in Fig. 3, it can be seen that even in worst cases, the
requirements-based code retrieval would result in retrieving code with a high
software similarity (that is more than 80%), which can be therefore a good
candidate for reuse. Based on the descriptive statistics, we can make the following
conclusion.

14 M. Abbas et al.

Requirement-level similarity can be used as proxy for retrieving relevant
software (sharing at-least 80% software similarity) for reuse in at-least 60%
of the cases.

In addition, the trendlines in Fig. 4 also shows that the results from all
the language models could have a positive association with software similarity.
However, in some cases these language models can produce inaccurate results.
As it can be seen in Fig. 5, there are some outliers in the retrieved software.
Besides it can also be seen from Fig. 5, the variance in the software similarity
across the pairs is high in case of FT and BERT, suggesting that these models
tend to capture more nuanced semantic similarities in requirements, which may
point to more fine-grained variations of the software. For these language models,
the minimum software similarity can also be quite low, therefore indicating that
the nuanced similarities in requirements can also lead to software that cannot
be easily reused. These more semantically-laden representation may be more
appropriate for tasks other than code retrieval, such as, e.g., requirements-to-
requirements tracing, where dependencies tend to go far beyond lexical aspects.
Figure 5 also shows that similarity ranges largely vary between language models
(e.g., BERT and DW have very limited range with respect to the others). This
suggests that having a code-retrieval system that is based on thresholds over
the similarity values (e.g., consider software with requirements similarity higher
than 75%) may not be the most appropriate solution.

The correlation analysis (presented in Table 2) shows that for all language
models, we were able to find a positive correlation between requirements similar-
ity and software similarity. In particular, there is a moderate positive correlation
between the requirements similarity computed with tf-idf, FastText and BERT
(shown in bold text in Table 2). Results also show that pre-processing improves
the correlation for all language models except FastText.

Our results indicate that term-frequency inverse document frequency (tf-
idf)-based language model with pre-processing shows a moderately positive
correlation (with rho of 5.92) to software similarity.

Surprisingly, the decades-old tf-idf performs better than the new state-of-
the-art language models. This can be explained by the limited vocabulary and
high similarity of terms used in the requirements of the two projects, as typical
in the RE domain [16], where synonyms are not recommended, and company
practices encourage uniform terminology. In tasks where requirements might be
sharing fewer terms—e.g., in case of comparison between high-level customer
requirements and low-level specifications—, the benefit of language models cap-
turing semantics, such as BERT, could be more evident. The worst performance
is obtained with Doc2Vec. This language model works well with long documents
and might not be a good candidate for RE tasks, as single requirements are typi-
cally short, but maybe beneficial in contexts where the comparison is performed
between entire requirements documents.

Is Requirements Similarity a Good Proxy for Software Similarity? 15

It is worth remarking that our final objective is to improve requirements-
based software reuse. At this stage, our results can be used to build recommender
systems that use requirements similarity to retrieve candidate software for reuse.
The actual in-field assessment of the quality of the retrieval—or, in other terms,
the answer to the question: does the retrieved software satisfy my requirement?—
will need to be addressed with the involvement of human operators.

6 Threats to Validity

In this section, we present validity threats according to Runeson et al. [33].
We based the problem of software retrieval for reuse at the requirements-

level and provided empirical evidence on the association between requirements
similarity and software similarity. In our procedure, we used pre-trained models
that are heavily dependent on the quality of the training dataset. The quality of
the results might differ if different pre-trained language models are considered.
To mitigate potential threats to construct validity, we selected a diverse set of
approaches (see Sect. 3.4) to represent the semantics of the requirements. We
did not consider similarity as assessed by human subjects, as our goal is to use
language models for automatic similarity computation. However, different results
may emerge if human subjects are involved in the assessment.

To mitigate potential internal validity threats, we followed standard proce-
dure and open source implementations. In addition, we also involved researchers
from diverse backgrounds to validate the study design and execution. Finally,
we also involved a technical project manager at the company in validating our
data collection procedure.

Our results are based on data provided by one company using a data set of
two projects developed by a team. We do not claim the generalizability of our
results beyond this context. In addition, our results are only limited to one level
of abstraction since we do not consider multiple levels of requirement refinement.
Considering guidelines for case-based generalization [37], these results might be
applicable to similar contexts, where similar RE practices are followed. Further
studies are needed on other abstraction levels of requirements and in different
companies and domains to generalize the results.

Finally, we address the threats to the reliability of our results by providing
enough details on the experimental setup and implementation. In addition, we
also provide the R script and the similarity values between the pairs for replica-
tion purposes7.

7 Conclusion and Future Work

Content-based recommender systems for code retrieval typically use require-
ments as queries to identify previously developed requirements, and in turn,
reuse their implementation. These systems take the operational assumption that

7 Replication package, https://doi.org/10.5281/zenodo.4275388.

https://doi.org/10.5281/zenodo.4275388

16 M. Abbas et al.

similar requirements can be used as proxies to retrieve similar code that can be
reused with limited adaptation. This paper presents an empirical investigation
on the relationship between requirements similarity and code similarity in the
context of a railway company. The goal of the work is to explore to which extent
similar requirements can be considered as a proxy to retrieve similar code. We
consider two related projects in the company. We use different NLP-based lan-
guage models to represent the requirements and support similarity computation.
Given similar requirements, we identify the associated code, and we compute
code similarity with JPLag. Our analysis shows that the correlation between
requirements and code similarity is moderately positive, even in the best case.
So, a relationship exists between the two, but there is also a need for further
research on language models and similarity measurement approaches that can
better reflect software similarity. In our specific case, the language model that
reflects software similarity better is the traditional tf-idf.

Future work will consider a broader set of possible application scenarios of
recommender systems for code reuse. Avenues that we plan to explore include:
(1) considering the original tender requirements, and identify the relationship
with existing requirements and associated software, to support early evalua-
tion during bid proposal (2) considering feature or refactoring requests as input
queries, to support change impact analysis [4,7] (3) consider other companies
and domains other than railways to increase external validity of the results (4)
involve domain experts in the assessment of similarity measurements, as well as
in the empirical evaluation of requirements-based software retrieval for reuse (5)
identify when a specific language model is more appropriate to compute similar-
ity, given the types of relationship between the format of the queries accepted
by the recommender system, the characteristics of the requirements (e.g., high-
vs low-level, functional vs quality), and the type of activity that is expected to
be performed with the retrieved software, which can be reused, but also cor-
rect, remove, end even validate. Indeed, similarity measures and code retrieval
can also be exploited to identify incorrectly traced software or missing trace
links [17,18], as well as potentially tacit requirements that are implemented in
the software but are not specified.

References

1. Abbas, M., Jongeling, R., Lindskog, C., Enoiu, E.P., Saadatmand, M., Sundmark,
D.: Product line adoption in industry: an experience report from the railway
domain. In: Proceedings of the 24th ACM Conference on Systems and Software
Product Line: Volume A - Volume A. SPLC 2020. ACM, New York (2020)

2. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., Lindskog, C.: Automated
reuse recommendation of product line assets based on natural language require-
ments. In: Ben Sassi, S., Ducasse, S., Mili, H. (eds.) Reuse in Emerging Software
Engineering Practices, pp. 173–189. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64694-3 11

3. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated extraction and
clustering of requirements glossary terms. Trans. Soft. Eng. 43(10), 918–945 (2016)

https://doi.org/10.1007/978-3-030-64694-3_11
https://doi.org/10.1007/978-3-030-64694-3_11

Is Requirements Similarity a Good Proxy for Software Similarity? 17

4. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.: Change impact
analysis for natural language requirements: an NLP approach. In: International
Requirements Engineering Conference (RE), pp. 6–15. IEEE (2015)

5. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

6. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empir. Softw. Eng.
19(6), 1565–1616 (2014). https://doi.org/10.1007/s10664-013-9255-y

7. Borg, M., Wnuk, K., Regnell, B., Runeson, P.: Supporting change impact anal-
ysis using a recommendation system: an industrial case study in a safety-critical
context. IEEE Trans. Soft. Eng. 43(7), 675–700 (2016)

8. Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Enhancing stakeholder pro-
files to improve recommendations in online requirements elicitation. In: Interna-
tional Requirements Engineering Conference, pp. 37–46. IEEE (2009)

9. Natt och Dag, J., Regnell, B., Gervasi, V., Brinkkemper, S.: A linguistic-
engineering approach to large-scale requirements management. IEEE Softw. 22(1),
32–39 (2005)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

11. Dumitru, H., et al.: On-demand feature recommendations derived from mining
public product descriptions. In: International Conference on Software Engineering,
pp. 181–190 (2011)

12. Eyal-Salman, H., Seriai, A.D., Dony, C.: Feature-to-code traceability in a collection
of software variants: combining formal concept analysis and information retrieval.
In: 2013 IEEE 14th International Conference on Information Reuse & Integration
(IRI), pp. 209–216 (2013)

13. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing tech-
niques. Trans. Softw. Eng. 39(1), 18–44 (2011)

14. Felfernig, A., Falkner, A., Atas, M., Franch, X., Palomares, C.: OpenReq: recom-
mender systems in requirements engineering. In: RS-BDA, pp. 1–4 (2017)

15. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empir.
Softw. Eng. 22(5), 2298–2338 (2017)

16. Ferrari, A., Spagnolo, G.O., Gnesi, S.: Pure: a dataset of public requirements doc-
uments. In: 2017 IEEE 25th International Requirements Engineering Conference
(RE), pp. 502–505 (2017). https://doi.org/10.1109/RE.2017.29

17. Gervasi, V., Zowghi, D.: Supporting traceability through affinity mining. In: Inter-
national Requirements Engineering Conference (RE), pp. 143–152. IEEE (2014)

18. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability
using deep learning techniques. In: International Conference on Software Engineer-
ing (ICSE), pp. 3–14. IEEE (2017)

19. Hariri, N., Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Recommendation
systems in requirements discovery. In: Robillard, M.P., Maalej, W., Walker, R.J.,
Zimmermann, T. (eds.) Recommendation Systems in Software Engineering, pp.
455–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45135-
5 17

20. Irshad, M., Petersen, K., Poulding, S.: A systematic literature review of software
requirements reuse approaches. IST J. 93, 223–245 (2018)

https://doi.org/10.1007/s10664-013-9255-y
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1007/978-3-642-45135-5_17
https://doi.org/10.1007/978-3-642-45135-5_17

18 M. Abbas et al.

21. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent devel-
opments. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202
(2016)

22. Krueger, C.W.: Easing the transition to software mass customization. In: van der
Linden, F. (ed.) PFE 2001. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-47833-7 25

23. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

24. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems:
state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.
(eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston, MA (2011).
https://doi.org/10.1007/978-0-387-85820-3 3

25. Manning, C.D., Schütze, H., Raghavan, P.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

26. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

27. Nyamawe, A.S., Liu, H., Niu, N., Umer, Q., Niu, Z.: Automated recommendation
of software refactorings based on feature requests. In: International Requirements
Engineering Conference (RE), pp. 187–198. IEEE (2019)

28. Palomares, C., Franch, X., Fucci, D.: Personal recommendations in requirements
engineering: the OpenReq approach. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.)
REFSQ 2018. LNCS, vol. 10753, pp. 297–304. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77243-1 19

29. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

30. Prechelt, L., Malpohl, G., Philippsen, M., et al.: Finding plagiarisms among a set
of programs with JPlag. J. UCS 8(11), 1016 (2002)

31. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50. ELRA, May 2010

32. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommen-
dation Systems in Software Engineering. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-45135-5

33. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

34. Shatnawi, A., Seriai, A., Sahraoui, H., Ziadi, T., Seriai, A.: Reside: reusable service
identification from software families. JSS 170 (2020)

35. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering software product line architec-
ture of a family of object-oriented product variants. J. Syst. Softw. 131, 325–346
(2017)

36. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. In: International Conference on Automated Soft-
ware Engineering (ASE), pp. 87–98. IEEE (2016)

37. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering the-
ories. Sci. Comput. Program. 101, 136–152 (2015)

38. Zhao, L., et al.: Natural language processing (NLP) for requirements engineering:
A systematic mapping study. arXiv preprint arXiv:2004.01099 (2020)

39. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature identification from the
source code of product variants. In: 2012 16th European Conference on Software
Maintenance and Reengineering, pp. 417–422. IEEE (2012)

https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-3-319-77243-1_19
https://doi.org/10.1007/978-3-319-77243-1_19
https://doi.org/10.1007/978-3-642-45135-5
https://doi.org/10.1007/978-3-642-45135-5
http://arxiv.org/abs/2004.01099

Automatic Detection of Causality in
Requirement Artifacts: The CiRA

Approach

Jannik Fischbach1(B), Julian Frattini2, Arjen Spaans1, Maximilian Kummeth1,
Andreas Vogelsang3, Daniel Mendez2,4, and Michael Unterkalmsteiner2

1 Qualicen GmbH, Munich, Germany
{jannik.fischbach,arjen.spaans,maximilian.kummeth}@qualicen.de

2 Blekinge Institute of Technology, Karlshamn, Sweden
{julian.frattini,daniel.mendez,michael.unterkalmsteiner}@bth.se

3 University of Cologne, Cologne, Germany
vogelsang@cs.uni-koeln.de

4 fortiss GmbH, Munich, Germany
mendez@fortiss.org

Abstract. [Context & motivation:] System behavior is often
expressed by causal relations in requirements (e.g., If event 1, then event
2). Automatically extracting this embedded causal knowledge supports
not only reasoning about requirements dependencies, but also various
automated engineering tasks such as seamless derivation of test cases.
However, causality extraction from natural language (NL) is still an open
research challenge as existing approaches fail to extract causality with
reasonable performance. [Question/problem:] We understand causal-
ity extraction from requirements as a two-step problem: First, we need to
detect if requirements have causal properties or not. Second, we need to
understand and extract their causal relations. At present, though, we lack
knowledge about the form and complexity of causality in requirements,
which is necessary to develop a suitable approach addressing these two
problems. [Principal ideas/results:] We conduct an exploratory case
study with 14,983 sentences from 53 requirements documents originat-
ing from 18 different domains and shed light on the form and complexity
of causality in requirements. Based on our findings, we develop a tool-
supported approach for causality detection (CiRA, standing for Causality
in Requirement Artifacts). This constitutes a first step towards causality
extraction from NL requirements. [Contribution:] We report on a case
study and the resulting tool-supported approach for causality detection
in requirements. Our case study corroborates, among other things, that
causality is, in fact, a widely used linguistic pattern to describe system
behavior, as about a third of the analyzed sentences are causal. We fur-
ther demonstrate that our tool CiRA achieves a macro-F1 score of 82%
on real word data and that it outperforms related approaches with an
average gain of 11.06% in macro-Recall and 11.43% in macro-Precision.
Finally, we disclose our open data sets as well as our tool to foster the
discourse on the automatic detection of causality in the RE community.

c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 19–36, 2021.
https://doi.org/10.1007/978-3-030-73128-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_2

20 J. Fischbach et al.

Keywords: Causality · Case study · Requirements engineering ·
Natural Language Processing

1 Introduction

System behavior is usually described by causal relations, e.g. “A confirmation
message shall be shown if the system has successfully processed the data.” Hence,
causal relations are often inherently embedded in the textual descriptions of
requirements. Understanding and extracting these causal relations offers great
potential for Requirements Engineering (RE); for instance, by supporting the
automated derivation of test cases and by facilitating reasoning about depen-
dencies between requirements [7]. However, automated causality extraction from
requirements is still challenging for two reasons. First, requirements are mostly
expressed by unrestricted natural language (NL) so that the system behavior
is specified in arbitrarily complex ways. Second, causality can occur in different
forms [2] such as marked/unmarked or explicit/implicit which makes it difficult
to identify and extract the causes and effects. Existing approaches [1] fail to
extract causality from NL with a performance that allows for use in practice.
Therefore, we argue for the need of a novel method for the extraction of causality
from requirements. We understand causality extraction as a two-step problem:
We first need to detect whether requirements contain causal relations. Second,
if they contain causal relations, we need to understand and extract them. To
address both problems, we have to comprehend in which form and complexity
requirements causality occurs in practice. This enables us to develop efficient
approaches for the automated identification and extraction of causal relations.
However, empirical evidence on causality in requirements is presently still weak.
In this paper, we report on how we addressed this research gap and make the
following contributions (C):

– C 1: We report on an exploratory case study where we analyze form and
complexity of causality in requirements based on 14,983 sentences emerging
from 53 requirement documents. These documents originate from 18 differ-
ent domains. We corroborate, for example, that causality tends to occur, in
fact, in explicit and marked form, and that about 28% of the analyzed sen-
tences contain causal knowledge about the expected system behavior. This
strengthens our confidence in the relevance of our approach.

– C 2: We present our tool-supported approach named CiRA (Causality detec-
tion in Requirement Artifacts), which forms a first step towards causality
extraction from NL requirements. We train and empirically evaluate CiRA
using the pre-analyzed data set and achieve an macro-F1 score of 82%. Com-
pared to baseline systems that classify causality based on the presence of
certain cue phrases, or shallow ML models, CiRA leads to an average perfor-
mance gain of 11.43% in macro-Precision and 11.06% in macro-Recall.

CiRA: Causality Detection in Requirement Artifacts 21

– C 3: To strengthen transparency and facilitate replication, we disclose our
tool, code, and data set used in the case study.1

2 Terminology

Causality represents a semantic relation that has been studied by various disci-
plines, e.g. by psychology [27]. Before we can investigate in which form causality
occurs in requirements, we must first understand what causality actually means.

Concept of Causality. Causality is a relation between two events: a causing event
(the cause) and a caused event (the effect). An event is “any situation (including
a process or state) that happens or occurs either instantaneously (punctual) or
during a period of time (durative)” [19]. The connection between causes and
effects is counterfactual [17]: If a cause c1 did not occur, then an effect e1 could
not have occurred either. Consequently, a causal relation requires that the effect
may only occur if and only if the cause has occurred. Therefore, in the view of
Boolean algebra, a causal relation can be interpreted as an equivalence between
a cause and effect (c1 ⇐⇒ e1). If the cause is true, the effect is true and if the
cause is false, the effect is also false. The relation between a cause and effect can
be defined in three different ways [26]: as a cause, enable or prevent relationship.

– c1 causes e1: If c1 occurs, e1 also occurs (c1 ⇐⇒ e1). This can be illustrated
by REQ 1: “After the user enters a wrong password, a warning window shall
be shown.” In this case, the wrong input is the trigger to display the window.

– c1 enables e1: If c1 does not occur, e1 does not occur either (e1 is not
enabled). REQ 2: “As long as you are a student, you are allowed to use
the sport facilities of the university (c1 ⇐⇒ e1).” Only the student status
enables to do sports on campus.

– c1 prevents e1: If c1 occurs, e1 does not occur (c1 ⇐⇒ ¬e1). REQ 3: “Data
redundancy is required to prevent a single failure from causing the loss of
collected data.” There will be no data loss due to data redundancy.

Temporal Ordering of Causes and Effects. Causes and effects can occur in three
different temporal relations [19]. In the first temporal relation, the cause occurs
before the effect (before relation). REQ 1 requires the user to enter a wrong
password before the warning window will be displayed. In this example, the cause
and effect represent two punctual events. In the second temporal relation, the
occurrence of the cause and effect overlaps: “The fire is burning down the house.”
In this case, the occurrence of the emerging fire overlaps with the occurrence of
the increasingly brittle house (overlaps relation). In the third temporal relation
(during relation), cause and effect occur simultaneously. REQ 2 describes such
a relation, as the effect that you are allowed to do sports on the campus is only
valid as long as you have the student status. The start and end time of the cause
is therefore also the start and end of the effect. Here, both events are durative.
1 A demo of CiRA can be accessed at http://cira.diptsrv003.bth.se/. Our code and

annotated data sets can be found at https://github.com/fischJan/CiRA.

http://cira.diptsrv003.bth.se/
https://github.com/fischJan/CiRA

22 J. Fischbach et al.

Forms of Causality. Causality can be expressed in different forms [2]: marked
and unmarked causality, explicit and implicit causality, and ambiguous and non-
ambiguous cue phrases.

– Marked and unmarked: A causal relation is marked if a certain cue phrase
indicates causality. The requirement “If the user presses the button, a window
appears” is marked by the cue phrase “if”, while “The user has no admin
rights. He cannot open the folder.” is unmarked.

– Explicit and implicit: An explicit causal relation provides information
about both the cause and effect. The requirement “In case of an error, the
systems prints an error message to the console” is explicit as it contains the
cause (error) and effect (error message). “A parent process kills a child pro-
cess” is implicit because the effect that the child process is terminated is not
explicitly stated.

– Ambiguous and non-ambiguous cue phrases: Given the difference
between marked and unmarked causality, it seems feasible to deduce the
presence of causality in a sentence from the occurrence of certain cue phrases.
However, there are cue phrases (e.g. since) that may indicate causality, but
also occur in other contexts (e.g. to denote time constraints). Such cue phrases
are called ambiguous, while cue phrases (e.g. because) that mostly indicate
causality are called non-ambiguous.

Complexity of Causality. Our previous explanations refer to the simplest case
where the causal relation consists of a single cause and effect. With increasing
system complexity, however, the expected system behaviour is described by mul-
tiple causes and effects that are connected to each other. They are linked either
by conjunctions (c1 ∧ c2 ∧ . . . ⇐⇒ e1) or disjunctions (c1 ∨ c2 ∨ . . . ⇐⇒ e1)
or a combination of both which increases the complexity of the causal relation.
Furthermore, causal relations can not only be contained in a single sentence, but
also span over multiple sentences, which is a significant challenge for causality
extraction. Additionally, the complexity increases when several causal relations
are linked together, i.e. if the effect of a relation r1 represents a cause in another
relation r2. We define such causal relations, where r2 is dependent on r1, as event
chains (e.g. r1 : c1 ⇐⇒ e1 and r2 : e1 ⇐⇒ e2).

3 Case Study: Causality in Requirement Documents

The case study was performed according to the guidelines of Runeson and
Höst [23]. Based on the classification of Robson [22], our case study is exploratory
as we seek for new insights into causality in requirement documents. In this
section, we describe our research questions, study objects, study design, study
results, and threats to validity. We also give an overview of the implications of
the study on the causality detection and extraction from requirements.

3.1 Research Questions

We are interested in the form and complexity of causality in requirement doc-
uments. Based on the terminology introduced in Sect. 2, we investigate the fol-
lowing research questions (RQ):

CiRA: Causality Detection in Requirement Artifacts 23

– RQ 1: To which degree does causality occur in requirement documents?
– RQ 2: How often do the relations cause, enable and prevent occur?
– RQ 3: How often do the temporal relations before, overlap and during occur?
– RQ 4: In which form does causality occur in requirement documents?

RQ 4a: How often does marked and unmarked causality occur?
RQ 4b: How often does explicit and implicit causality occur?
RQ 4c: Which causal cue phrases are used? Are they mainly ambiguous or
non-ambiguous?

– RQ 5: At which complexity does causality occur in requirement documents?
RQ5a: How often do multiple causes occur?
RQ5b: How often do multiple effects occur?
RQ5c: How often does two sentence causality occur?
RQ5d: How often do event chains occur?

3.2 Study Objects

We considered three criteria when selecting a suitable data set for our case
study: 1) the data set shall contain requirements documents that are/were used
in practice, 2) the data set shall not be domain-specific, rather it shall contain
documents from different domains, and 3) the documents shall originate from
different years. Consequently, our analysis is not restricted to a single year or
domain, but rather allows for a comprehensive view on causality in requirements.
Based on these criteria, we selected the data set provided by Fischbach et al. [7].
To the best of our knowledge, this data set is currently the most extensive collec-
tion of requirements available in the RE community. It contains 463 documents,
from which the authors extracted and pre-processed 212k sentences. For our
analysis, we have randomly selected 53 documents from the data set. Our final
data set consists of 14,983 sentences from 18 different domains (see Fig. 1).

Fig. 1. Descriptive statistics of our data set. The left graph shows the number of
sentences per domain. The right graph depicts the year of creation per document.

24 J. Fischbach et al.

3.3 Study Design

Model the phenomenon. In order to answer our RQ, we need to annotate the sen-
tences in our data set with respect to certain categories (e.g. explicit or implicit
causality). According to Pustejovsky and Stubbs [21], the first step in each anno-
tation process is to “model the phenomenon” that needs to be annotated. Specif-
ically, it should be defined as a model M that consists of a vocabulary T, the
relations R between the terms as well as the interpretations I of terms. RQ 1
can be understood as a binary annotation problem, which can be modeled as:

– T: {sentence, causal, not causal}
– R: {sentence :: = causal|not causal}
– I: {causal = “A sentence is causal if it contains a relation between at least

two events, where e1 causes the occurrence of e2”, ¬causal = “A sentence is
not causal if it describes a state that is independent on any events”}
Modeling an annotation problem has two advantages: It contributes to a clear

definition of the research problem and can be used as a guide for the annotators
to explain the meaning of the labels. We have modeled each RQ and discussed
it with the annotators. In addition to interpretation I, we have also provided
an example for each label to avoid misunderstandings. After modeling all RQs,
the following nine categories emerged, according to which we annotated our
data set: Causality , Explicit , Marked , Single Sentence , Single Cause ,

Single Effect , Event Chain , Relationship and Temporality .

Annotation Environment. We developed our own annotation platform tailored
to our research questions.2 Contrary to other annotation platforms [20] which
only show single sentences to the annotators, we also show the predecessor and
successor of each sentence. This is required to determine whether the causality
extends over one sentence or across multiple ones (see RQ 5c). For the binary
annotation problems (see RQ 1, RQ 4a, RQ 4b, RQ 5a–d), we provide two labels
for each category. Cue phrases present in the sentence can either be selected by
the annotator from a list of already labeled cue phrases or new cue phrases can
be added using a text input field (see RQ 4c). Since RQ 2 and RQ 3 are ternary
annotation problems, the platform provides three labels for these categories.
Annotation Guideline. Prior to the labeling process, we conducted a workshop
with all annotators to ensure a common understanding of causality. The results
of the workshop were recorded in the form of an annotation guideline. All annota-
tors were instructed to observe the following annotation rules: First, you should
not just check for cue phrases and label the sentence directly as causal, but rather
read the sentence completely before making a labeling decision. Otherwise, too
many False Positives will be introduced. Second, you should check if the cause
is really necessary for the effect to occur. Only if the cause is mandatory for the
effect, it is a causal relation.

2 The platform can be accessed at http://clabel.diptsrv003.bth.se/suite.

http://clabel.diptsrv003.bth.se/suite

CiRA: Causality Detection in Requirement Artifacts 25

Table 1. Inter-annotator agreement statistics per category. The two categories Rela-
tionship and Temporality were jointly labeled by the first and second author and there-
fore do not require a reliability assessment.

Causal Explicit Marked Single sentence Single cause Single effect Event chain Avg.

0 1 0 1 0 1 0 1 0 1 0 1 0 1

Confusion 0 2034 193 24 25 1 22 12 8 41 77 63 72 450 27

Matrix 1 274 499 39 411 12 464 17 462 43 338 46 318 13 9

Agreement 84.4 % 87.2 % 93.1 % 95.0 % 76.0 % 76.4 % 92.0 % 86.3 %

Cohen’s Kappa 0.579 0.358 0.023 0.464 0.261 0.362 0.27 0.331

Gwet’s AC1 0.753 0.84 0.926 0.945 0.645 0.625 0.91 0.806

Annotation Validity. To verify the reliability of our annotations, we calculated
the inter-annotator agreement. We assigned 3,000 sentences to each annotator, of
which 2,500 are unique and 500 overlapping. Based on the overlapping sentences,
we calculated the Cohen’s Kappa [3] measure to evaluate how well the annotators
can make the same annotation decision for a given category. We chose Cohen’s
Kappa since it is widely used for assessing inter-rater reliability [25]. However,
a number of statistical problems are known to exist with this measure [18].
In case of a high imbalance of ratings, Cohen’s Kappa is low and indicates
poor inter-rater reliability even if there is a high agreement between the raters
(Kappa paradox [6]). Thus, Cohen’s Kappa is not meaningful in such scenarios.
Consequently, studies [28] suggest that Cohen’s Kappa should always be reported
together with the percentage of agreement and other paradox resistant measures
(e.g. Gwet’s AC1 measure [10]) in order to make a valid statement about the
inter-rater reliability. We involved six annotators in the creation of the corpus
and assessed the inter-rater reliability on the basis of 3,000 overlapping sentences,
which represents about 20% of the total data set. We calculated all measures
(see Table 1) using the cloud-based version of AgreeStat [11]. Cohen’s Kappa
and Gwet’s AC1 can both be interpreted using the taxonomy developed by
Landis and Koch [16]: values ≤ 0 as indicating no agreement and 0.01–0.20 as
none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1.00 as almost perfect agreement. Table 1 demonstrates that the inter-
rater agreement of our annotation process is reliable. Across all categories, an
average percentage of agreement of 86% was achieved. Except for the categories
Single Cause and Single Effect , all categories show a percentage of agreement

of at least 84%. We hypothesize that the slightly lower value of 76% for these two
categories is caused by the fact that in some cases the annotators interpret the
causes and effects with different granularity (e.g., annotators might break some
causes and effects down into several sub causes and effects, while some do not).
Hence, the annotations differ slightly. The Kappa paradox is particularly evident
for the categories Marked and Event Chain . Despite a high agreement of over
90%, Cohen’s Kappa yields a very low value, which “paradoxically” suggests
almost no or only fair agreement. A more meaningful assessment is provided
by Gwet’s AC1 as it did not fail in case of prevalence and remains close to
the percentage of agreement. Across all categories, the mean value is above 0.8,

26 J. Fischbach et al.

which indicates a nearly perfect agreement. Therefore, we assess our labeled data
set as reliable and suitable for further analysis and the implementation of our
causality detection approach.

28.13

71.87

89.42

10.58

84.6

15.4

92.81

7.19

80.9

19.1

79.17

20.83

6.88

93.12

33.58

56.62

9.8

48.49

42.73

8.78

Causality Explicit Marked Single Sentence Single Cause Single Effect Event Chain Relationship Temporality
0

25

50

75

100

Fr
ac

tio
n

of
 s

en
te

nc
es

 in
 %

Causality

Not Causal

Causal

Explicit

Implicit

Explicit

Marked

Unmarked

Marked

Single Sentence

Two Sentence

Single Sentence

Single Cause

Several Causes

One Cause

Single Effect

Several Effects

One Effect

Event Chain

No Event Chain

Event Chain

Relationship

Prevent

Enable

Cause

Temporality

Overlap

During

Before

Fig. 2. Annotation results per category. The y axis of the bar plot for the category
“Causality” refers to the total number of analyzed sentences. The other bar plots are
only related to the causal sentences.

3.4 Study Results

Figure 2 presents the analysis results for each labeled category. When inter-
preting the values, it is important to note that we analyze entire requirement
documents in our study. Consequently, our data set contains records with dif-
ferent contents, which do not necessarily represent all functional requirements.
For example, requirement documents also contain non-functional requirements,
phrases for content structuring, purpose statements, etc. Hence, the results of
our analysis do not only refer to functional requirements but in general to the
content of requirement documents.

Answer to RQ1: Figure 2 highlights that causality occurs in requirement doc-
uments. About 28% of the analyzed sentences are causal. It can therefore be
concluded that causality is a major linguistic element of requirement documents
since almost one third of all sentences are causal.

Answer to RQ2: The majority (56%) of causal sentences contained in require-
ment documents express an enable relationship between certain events. Only
about 10% of the causal sentences indicate a prevent relationship. Cause rela-
tionships are found in about 34% of the annotated data.

Answer to RQ3: Interestingly, we found that causes and effects occur almost
equally often in a before and during relation. With about 48%, the before relation
is the most frequent temporal relation in our data set, but only with a difference
of about 6% compared to the during relation. The overlap relation occurred only
in a minority (8.78% of the sentences).

Answer to RQ4a: Figure 2 shows that the majority of causal sentences contain
one or more cue phrases to indicate the causal relationship between certain
events. Unmarked causality occurs only in about 15% of the analyzed sentences.

CiRA: Causality Detection in Requirement Artifacts 27

Answer to RQ4b: Most causal sentences are explicit, i.e. they contain infor-
mation about both the cause and the effect. Only about 10% of causal sentences
are implicit.

Answer to RQ4c: Table 2 provides an overview of the causal cue phrases used
in the requirement documents. The left side of the table shows the different cue
phrases ordered by word group. On the right side, all verbs used to express causal
relations are listed. We order the verbs according to whether they express a cause,
enable or prevent relationship. To measure the ambiguity of the individual cue
phrases, we introduce the ambiguity factor (AF). We define AF for a cue phrase x
as the conditional probability that a sentence is causal given that the cue phrase
x occurs in the sentence: Pr(Causal|X is present in sentence). Hence, a high AF
value indicates a non-ambiguous cue phrase, while low values indicate strongly
ambiguous cue phrases. Table 2 demonstrates that a number of different cue
phrases are used to express causality in requirement documents. Not surprisingly,
cue phrases like “if”, “because” and “therefore” show AF values of more than
90%. However, there is a variety of cue phrases that indicate causality in some
sentences but also occur in other non-causal contexts. This is especially evident
in the case of pronouns. Relative sentences can indicate causality, but not in
every case, which is reflected by the low AF value. A similar pattern emerges
with regard to the used verbs. Only a few verbs (e.g., “leads to, degrade and
enhance”) show a high AF value. Consequently, the majority of used verbs do
not necessarily indicate a causal relation if they are present in a sentence.

Answer to RQ 5a: Figure 2 illustrates that a causal relation in requirement
documents often includes only a single cause. Multiple causes occur in only 19.1%
of analyzed causal sentences. The exact number of causes was not documented
during the annotation process. However, the participating annotators reported
consistently that in the case of complex causal relations, two to three causes
were usually included. More than three causes were rare.

Answer to RQ5b: Interestingly, the distribution of effects is similar to that
of causes. Likewise, single effects occur significantly more often than multiple
effects. According to the annotators, the number of effects in case of complex
relations is limited to two effects. Three or more effects occur rarely.

Answer to RQ5c: Most causal relations can be found in single sentences.
Relations where cause and effect are distributed over several sentences occur
only in about 7% of the analyzed data. The annotators reported that most often
the cue phrase “therefore” was used to express two-sentence causality.

Answer to RQ5d: Figure 2 shows that event chains are rarely used in require-
ment documents. Most causal sentences contain isolated causal relations and
only a few event chains.

3.5 Implications for Causality Detection and Extraction

Based on the results of our case study, we draw the following conclusions: Causal-
ity matters in requirements documents, which underlines the necessity of an app-

28 J. Fischbach et al.

Table 2. Overview of cue phrases used to indicate causality in requirement docu-
ments. Bold AF values highlight non-ambiguous phrases that mostly indicated causal-
ity (Pr(Causal|X is present in sentence) ≥ 0.8).

Type Phrase Causal Not Causal Ambiguity Factor (AF) Type Phrase Causal Not Causal AF

Conjunctions if 387 41 0.90 Cause force(s/ed) 21 18 0.54

as 607 1313 0.32 cause(s/ed) 32 10 0.76

because 78 7 0.92 lead(s) to 5 0 1.00

but 100 204 0.33 reduce(s/ed) 48 28 0.63

in order to 141 33 0.81 minimize(s/ed) 28 11 0.72

so (that) 88 86 0.51 affect(s/ed) 13 19 0.41

unless 23 4 0.85 maximize(s/ed) 11 5 0.69

while 71 90 0.44 eliminate(s/ed) 8 11 0.42

once 48 15 0.76 result(s/ed) in 50 43 0.54

except 9 5 0.64 increase(s/ed) 49 34 0.59

as long as 12 1 0.92 decrease(s/ed) 5 8 0.38

Adverbs therefore 61 6 0.91 impact(s) 37 68 0.35

when 331 64 0.84 degrade(s/ed) 11 2 0.85

whenever 10 0 1.00 introduce(s/ed) 11 12 0.48

hence 21 9 0.70 enforce(s/ed) 2 1 0.67

where 213 150 0.59 trigger(s/ed) 11 7 0.61

since 65 32 0.67 Enable depend(s) on 28 21 0.57

consequently 2 6 0.25 require(s/ed) 316 262 0.55

wherever 5 2 0.71 allow(s/ed) 187 130 0.59

rather 16 30 0.35 need(s/ed) 98 162 0.38

to this/that end 12 0 1.00 necessitate(s/ed) 7 2 0.78

thus 66 17 0.80 facilitate(s/ed) 29 28 0.51

for this reason 7 3 0.70 enhance(s/ed) 16 4 0.80

due to 91 26 0.78 ensure(s/ed) 145 66 0.69

thereby 4 2 0.67 achieve(s/ed) 30 24 0.56

as a result 11 4 0.73 support(s/ed) 128 301 0.30

for this purpose 1 2 0.33 enable(s/ed) 75 36 0.68

Pronouns which 277 608 0.31 permit(s/ed) 10 13 0.43

who 28 52 0.35 rely on 3 5 0.38

that 732 1178 0.38 Prevent hinder(s/ed) 1 1 0.50

whose 16 11 0.59 prevent(s/ed) 38 17 0.69

Adjectives only 127 126 0.50 avoid(s/ed) 14 23 0.38

prior to 26 20 0.57

imperative 1 3 0.25

necessary (to) 36 19 0.65

Preposition for 1209 2753 0.31

during 327 137 0.70

after 133 57 0.70

by 506 1171 0.30

with 680 1554 0.30

in the course of 2 1 0.67

through 114 204 0.36

as part of 19 51 0.27

in this case 18 3 0.86

before 54 27 0.67

until 33 11 0.75

upon 25 48 0.34

in case of 30 7 0.81

in both cases 1 0 1.00

in the event of 15 2 0.88

in response to 6 7 0.46

in the absence of 8 1 0.89

roach for the automatic detection and extraction of causal requirements. The
complexity of causal relations ranges from low to medium, since they usually

CiRA: Causality Detection in Requirement Artifacts 29

consist of a single cause and effect relationship. However, for the approaches to
be applicable in practice, they need to comprehend also more complex relations
containing between two to three causes and two effects. Hence, the approaches
must be capable of understanding conjunctions, disjunctions and negations in
the sentences to fully capture the relationships between causes and effects. Two-
sentence causality and event chains occur only rarely. Thus, both aspects can
initially be neglected in the development of the approaches, while still more
than 92% of the analyzed sentences can be covered. Since most causal relations
in requirements documents are explicit, the detection and extraction of causal-
ity is simplified. The information about both causes and effects is embedded
directly in the sentences, so that the approaches require little or no implicit
knowledge. The analysis of the AF values reveals that most of the used cue
phrases are ambiguous. Consequently, our methods require a deep understand-
ing of language as causality can not only be deduced from the presence of certain
cue phrases but rather from a combination of the syntax and semantics of the
sentence.

3.6 Threats to Validity

Internal Validity : A major threat to internal validity are the annotations them-
selves as an annotation task is to a certain degree subjective. To minimize the
bias of the annotators, we performed two mitigation actions: First, we conducted
a workshop prior to the annotation process to ensure a common understanding
of causality. Second, we assessed the inter-rater agreement by using multiple
metrics (Gwet’s AC1 etc.). External Validity : To achieve reasonable generaliz-
ability, we selected requirements documents from different domains and years.
As Fig. 1 shows, our data set covers a variety of domains, but the distribution of
the sentences is imbalanced. The domains aerospace, data analytics, and smart
city account for a large part of the data set (9,724 sentences), while the other 15
domains are underrepresented. Hence, our results do not allow a general conclu-
sion about causality in requirements documents. Future studies should expand
to more documents from these underrepresented as well as further domains to
achieve a more global insight into causality in requirements documents.

4 Approach: Detecting Causal Requirements

This section presents the implementation of our causal classifier. Initially, we
describe our applied methods followed by a report of the results of our experi-
ments, in which we compare the performance of the individual methods.

30 J. Fischbach et al.

4.1 Methods

Rule Based Approach. The baseline approach for causality detection involves
the use of simple regex expressions. We iterate through all sentences in the test
set and check if one of the phrases listed in Table 2 is included. For the positive
case, the sentence is classified as causal and vice versa.

Machine Learning Based Approach. As a second approach, we investi-
gate the use of supervised ML models that learn to predict causality based on
the labeled data set. Specifically, we employ established binary classification
algorithms: Naive Bayes (NB), Support Vector Machines (SVM), Random For-
est (RF), Decision Tree (DT), Logistic Regression (LR), Ada Boost (AB) and
K-Nearest Neighbor (KNN). To determine the best hyperparameters for each
binary classifier, we apply Grid Search, which fits the model on every possi-
ble combination of hyperparameters and selects the most performant. We use
two different methods as word embeddings: Bag of Words (BoW) and Term
Frequency-Inverse Document Frequency (TF-IDF). In Table 3 we report the clas-
sification results of each algorithm as well as the best combination of hyperpa-
rameters.

Deep Learning Based Approach. With the rise of Deep Learning (DL), more
and more researchers are using DL models for Natural Language Processing
(NLP) tasks. In this context, the Bidirectional Encoder Representations from
Transformers (BERT) model [4] is prominent and has already been used for
question answering and named entity recognition. BERT is pre-trained on large
corpora and can therefore easily be fine tuned for any downstream task without
the need for much training data (Transfer Learning). In our paper, we make
use of the fine tuning mechanism of BERT and investigate to which extent it
can be used for causality detection of requirement sentences. First, we tokenize
each sentence. BERT requires input sequences with a fixed length (maximum
512 tokens). Therefore, for sentences that are shorter than this fixed length,
padding tokens (PAD) are inserted to adjust all sentences to the same length.
Other tokens, such as the classification (CLS) token, are also inserted in order
to provide further information of the sentence to the model. CLS is the first
token in the sequence and represents the whole sentence (i.e. it is the pooled
output of all tokens of a sentence). For our classification task, we mainly use
this token because it stores the information of the whole sentence. We feed the
pooled information into a single-layer feedforward neural network that uses a
softmax layer, which calculates the probability that a sentence is causal or not.
We tune BERT in three different ways and investigate their performance:

– BERTBase In the base variant, the sentences are tokenized as described above
and put into the classifier. To choose a suitable fixed length for our input
sequences, we analyzed the lengths of the sentences in our data set. Even
with a fixed length of 128 tokens we cover more than 97% of the sentences.
Sentences containing more tokens are shortened accordingly. Since this is only
a small amount, only little information is lost. Thus, we chose a fixed length

CiRA: Causality Detection in Requirement Artifacts 31

of 128 tokens instead of the maximum possible 512 tokens to keep BERT’s
computational requirements to a minimum.

– BERTPOS Studies have shown that the performance of NLP models can be
improved by providing explicit prior knowledge of syntactic information to
the model [24]. Therefore, we enrich the input sequence with syntactic infor-
mation and feed it into BERT. More specifically, we add the corresponding
Part-of-speech (POS) tag to each token by using the spaCy NLP library [12].
One way to encode the input sequence with the corresponding POS tags is
to concatenate each token embedding with a hot encoded vector represent-
ing the POS tag. Since the BERT token embeddings are high dimensional,
the impact of a single added feature (i.e. the POS tag) would be low. Con-
trary, we hypothesize that the syntactic information has a higher impact if
we annotate the input sentences directly with the POS tags and then put the
annotated sentences into BERT. This way of creating linguistically enriched
input sequences has already proven to be promising during the development
of the NLPL word embeddings [5]. Figure 3 shows how we incorporated the
POS tags into the input sequence. By extending the input sequence, the fixed
length for the BERT model has to be adapted accordingly. After a further
analysis, a length of 384 tokens proved to be reasonable.

– BERTDEP Similar to the previous fine-tuning approach, we follow the idea of
enriching the input sequence by linguistic features. Instead of using the POS
tags, we use the dependency (DEP) tags (see Fig. 3) of each token. Thus, we
provide knowledge about the grammatical structure of the sentence to the
classifier. We hypothesize that this knowledge has a positive effect on the
model performance, as a causal relation is a specific grammatical structure
(e.g. it often contains an adverbial clause) and the classifier can learn causal
specific patterns in the grammatical structure of the training instances. The
fixed token length was also increased to 384 tokens.

BertBase: If the process fails, an error message is shown.

BertPOS: If SCONJ the DET process NOUN fails VERB , PUNCT an DET er-

ror NOUN message NOUN is AUX shown VERB . PUNCT

BertDEP: If mark the det process nsubj fails advcl , punct an det error compound mes-

sage nsubjpass is auxpass shown ROOT . punct

Fig. 3. Input sequences used for our different BERT fine tuning models. POS tags are
marked orange and DEP tags are marked blue. (Color figure online)

4.2 Evaluation Procedure

Our labeled data set is imbalanced as only 28.1% are positive samples. To avoid
the class imbalance problem, we apply Random Under Sampling (see Fig. 4). We
randomly select sentences from the majority class and exclude them from the
data set until a balanced distribution is achieved. Our final data set consists of
8,430 sentences of which 4,215 are equally causal and non-causal. We follow the
idea of Cross Validation and divide the data set in a training, validation and

32 J. Fischbach et al.

test set. The training set is used for fitting the algorithm while the validation set
is used to tune its parameters. The test set is utilized for the evaluation of the
algorithm based on real world unseen data. We opt for a 10-fold Cross Validation
as a number of studies have shown that a model that has been trained this way
demonstrates low bias and variance [13]. We use standard metrics, for evaluating
our approaches: Accuracy, Precision, Recall and F1 score [13]. When interpreting
the metrics, it is important to consider which misclassification (False Negative
or False Positive) matters most resp. causes the highest costs. Since causality
detection is supposed to be the first step towards automatic causality extraction,
we favor Recall over Precision. A high Recall corresponds to a greater degree of
automation of causality extraction, because it is easier for users to discard False
Positives then to manually detect False Negatives. Consequently, we seek high
Recall to minimize the risk of missed causal sentences and acceptable Precision
to ensure that users are not overwhelmed by False Positives.

Labeled Data Set

1 2 3 4 k…

Training Set Test Set

Balanced Data Set

Random Under
Sampling

Training folds Validation fold

DL
Approaches

ML
Approaches

Add POS and
DEP tags Training

Trained Models

Rule-based
Approach

Tune Hyperparameters /
Adjust Model Weights

4,215 causal
4,215 not causal

Evaluate
Generalization

Best Performing
Model (CiRA)

4,215 causal
10,786 not causal

Fig. 4. Implementation and evaluation procedure of our binary classifier

4.3 Experimental Results

Table 3 demonstrates the inability of the baseline approach to distinguish
between causal (F1 score: 66%) and non-casual (F1 score: 64%) sentences. This
coincides with our observation from the case study that searching for cue phrases
is not suitable for causality detection. In comparison, most ML based approaches
(except KN and DT) show a better performance. The best performance in this
category is achieved by RF with an Accuracy of 78% (gain of 13% compared
to baseline approach). The overall best classification results are achieved by our
DL based approaches. All three variants were trained with the hyperparameters
recommended by Devlin et al. [4]. Even the vanilla BERTBase model shows a
great performance in both classes (F1 score ≥ 80% for causal and non-causal).
Interestingly, enriching the input sequences with syntactic information did not
result in a significant performance boost. BERTPOS even has a slightly worse

CiRA: Causality Detection in Requirement Artifacts 33

Accuracy value of 78% (difference of 2% compared to BERTBase). An improve-
ment of the performance can be observed in the case of BERTDEP, which
has the best F1 score for both classes among all the other approaches and also
achieves the highest Accuracy value of 82%. Compared to the rule based and ML
based approaches, BERTDEP yields an average gain of 11.06% in macro-Recall
and 11.43% in macro-Precision. Interesting is a comparison with BERTBase.
BERTDEP shows better values across all metrics, but the difference is only
marginal. This indicates that BERTBase already has a deep language under-
standing due to its pre-training and therefore can be tuned well for causality
detection without much further input. However, over all five runs, the use of
the DEP tags shows a small but not negligible performance gain - especially
regarding our main decision criterion: the Recall value (85% for causal and 79%
for non-causal). Therefore, we choose BERTDEP as our final approach (CiRA).

Table 3. Recall, Precision, F1 scores (per class) and accuracy. We report the averaged
scores over five repetitions and highlight in bold the best results for each metric.

Best hyperparameters Causal (Support: 435) Not causal (Support: 408)

Recall Precision F1 Recall Precision F1 Accuracy

Rule based - 0.65 0.66 0.66 0.65 0.63 0.64 0.65

ML based NB alpha: 1, fit prior: True, embed:
BoW

0.71 0.7 0.71 0.68 0.69 0.69 0.7

SVM C: 50, gamma: 0.001, kernel: rbf,
embed: BoW

0.68 0.8 0.73 0.82 0.71 0.76 0.75

RF Criterion: entropy, max features:
auto, n estimators: 500, embed:
BoW

0.72 0.82 0.77 0.84 0.74 0.79 0.78

DT Criterion: gini, max features: auto,
splitter: random, embed: TF-IDF

0.65 0.68 0.66 0.67 0.65 0.66 0.66

LR C: 1, solver: liblinear, embed:
TF-IDF

0.71 0.78 0.74 0.79 0.72 0.75 0.75

AB Algorithm: SAMME.R, n estimators:
200, embed: BoW

0.67 0.78 0.72 0.8 0.7 0.75 0.74

KNN Algorithm: ball tree, n neighbors: 20,
weights: distance, embed: TF-IDF

0.61 0.68 0.64 0.7 0.63 0.66 0.65

DL based BERTBase batch size: 16, learning rate: 2e-05, 0.83 0.80 0.82 0.78 0.82 0.80 0.81

BERTPOS weight decay: 0.01, optimizer: 0.82 0.76 0.79 0.71 0.83 0.77 0.78

BERTDEP (CiRA) AdamW 0.85 0.81 0.83 0.79 0.84 0.81 0.82

5 Related Work

As indicated in Sect. 2, many disciplines have already dealt with causality. To the
best of our knowledge, we are the first to focus on causality from the perspective
of RE. In our previous paper [7], we motivated why the RE community should
engage with causality, while in this paper we provide empirical evidence for the
relevance of causality in requirement documents and an insight into its form
and complexity. Detecting causality in natural language has been investigated
by several studies. Multiple papers [14,29] use handcrafted patterns to identify
causal sentences. These approaches are highly dependent on the manually cre-
ated patterns and show weak performance. Recent papers apply neural networks

34 J. Fischbach et al.

and exploit, similarly to us, the Transfer Learning capability of BERT [15]. How-
ever, we see a number of problems with these papers regarding the realization
of our described RE use cases: First, neither the code nor a demo is published,
making it difficult to reproduce the results and testing the performance on RE
data. Second, they train and evaluate their approaches on strongly unbalanced
data sets with causal to non-causal ratios of 1:2 and 1:3, but only report the
macro-Recall and macro-Precision values and not the metrics per class. Thus, it
is not clear whether the classifier has a bias towards the majority class or not.

6 Conclusion and Next Steps

System behavior is often specified by causal relations in requirements. Extract-
ing this causal knowledge supports automatic test case derivation and reasoning
about requirement dependencies [7]. However, existing methods fail to extract
causality with reasonable performance [1]. Therefore, we argue for the need of
a novel method for causality extraction. We understand causality extraction as
a two-step problem: First, we need to detect if requirements have causal prop-
erties. Second, we need to comprehend and extract their causal relations. At
present, however, we lack knowledge about the form and complexity of causality
in requirements, which is needed to develop suitable approaches for these two
problems. In this paper, we address this research gap and contribute: (1) an
exploratory case study with 14,983 sentences from 53 requirements documents
originating from 18 different domains. We found that causality is a widely used
linguistic pattern to describe system functionalities and that it mainly occurs
in explicit, marked form. (2) CiRA as an approach for the automatic detection
of causality in requirements documents. This constitutes a first step towards
causality extraction from NL requirements. We empirically evaluate our app-
roach and achieve a macro-F1 score of 82% on real word data. (3) we disclose
our code, tool and annotated data set to facilitate replication.

Two further research directions exist: First, extending the case study and
analyzing the sentences from the requirements documents in a more granular way
by categorizing them e.g. in functional and non-functional requirements. This
would expand our current insight into causality in requirements documents in
general by an insight into causality in specific requirement categories. Second, we
are enhancing our previous approaches [8,9] to address the second sub-problem:
the actual extraction of causal relations.
Acknowledgements. We would like to acknowledge that this work was supported
by the KKS foundation through the S.E.R.T. Research Profile project at Blekinge
Institute of Technology. Further, we thank Yannick Debes for his valuable feedback.

References

1. Asghar, N.: Automatic extraction of causal relations from natural language texts:
A comprehensive survey. arXiv abs/1605.07895 (2016)

https://arxiv.org/abs/1605.07895

CiRA: Causality Detection in Requirement Artifacts 35

2. Blanco, E., Castell, N., Moldovan, D.: Causal relation extraction. In: LREC 2008
(2008)

3. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20, 37–46 (1960)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL 2019 (2019)

5. Fares, M., Kutuzov, A., Oepen, S., Velldal, E.: Word vectors, reuse, and replicabil-
ity: Towards a community repository of large-text resources. In: NoDaLiDa 2017
(2017)

6. Feinstein, A.R., Cicchetti, D.V.: High agreement but low Kappa: I the problems
of two paradoxes. J. Clin. Epidemiol. 43, 543–549 (1990)

7. Fischbach, J., Hauptmann, B., Konwitschny, L., Spies, D., Vogelsang, A.: Towards
causality extraction from requirements. In: RE 2020 (2020)

8. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.:
Specmate: automated creation of test cases from acceptance criteria. In: ICST 2020
(2020)

9. Frattini, J., Junker, M., Unterkalmsteiner, M., Mendez, D.: Automatic extraction
of cause-effect-relations from requirements artifacts. In: ASE 2020 (2020)

10. Handbook of Inter-rater Reliability: the Definitive Guide to Measuring the Extent
of Agreement Among Raters (2012)

11. Gwet, K.: AgreeStat Analytics (Cloud-based version (AgreeStat360) was used in
Sept. 2020). https://www.agreestat.com/

12. Honnibal, M., Montani, I.: spaCy NLP library (We use the newest version of the
en core web sm model in Sept. 2020). https://spacy.io/

13. James, G., Witten, D., Hastie, T., Tibshirani, R.E.: An Introduction to Statistical
Learning. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

14. Khoo, C.S.G., Chan, S., Niu, Y.: Extracting causal knowledge from a medical
database using graphical patterns. In: ACL 2000 (2000)

15. Kyriakakis, M., Androutsopoulos, I., i Ametllé, J.G., Saudabayev, A.: Transfer
learning for causal sentence detection. arXiv abs/1906.07544 (2019)

16. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33, 159–174 (1977)

17. Lewis, D.: Counterfactuals (1973)
18. McHugh, M.L.: Interrater reliability: the Kappa statistic. Biochemia Medica 22,

276–282 (2012)
19. Mostafazadeh, N., Grealish, A., Chambers, N., Allen, J., Vanderwende, L.:

CaTeRS: causal and temporal relation scheme for semantic annotation of event
structures. In: EVENTS 2016 (2016)

20. Neves, M., Ševa, J.: An extensive review of tools for manual annotation of docu-
ments. Brief. Bioinform. 22, 146–163 (2019)

21. Pustejovsky, J., Stubbs, A.: Natural Language Annotation for Machine Learning -
a Guide to Corpus-Building for Applications. O’Reilly Media Inc., Newton (2012)

22. Robson, C.: Real World Research - A Resource for Social Scientists and
Practitioner-Researchers. Wiley, New York (2002)

23. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

24. Sundararaman, D., Subramanian, V., Wang, G., Si, S., Shen, D., Wang, D., Carin,
L.: Syntax-infused transformer and bert models for machine translation and natural
language understanding (2019)

25. Viera, A., Garrett, J.: Understanding interobserver agreement: the Kappa statistic.
Fam. Med. 7, 360–363 (2005)

https://www.agreestat.com/
https://spacy.io/
https://doi.org/10.1007/978-1-4614-7138-7
https://arxiv.org/abs/1906.07544

36 J. Fischbach et al.

26. Wolff, P.: Representing causation. J. Exp. Psychol. Gen. 136, 82 (2007)
27. Wolff, P., Song, G.: Models of causation and the semantics of causal verbs. Cogn.

Psychol. 7, 276–332 (2003)
28. Wongpakaran, N., Wongpakaran, T., Wedding, D., Gwet, K.: A comparison of

Cohen’s Kappa and Gwet’s AC1 when calculating inter-rater reliability coefficients:
a study conducted with personality disorder samples. BMC Med. Res. Methodol.
13, 61 (2013). https://doi.org/10.1186/1471-2288-13-61

29. Wu, C.H., Yu, L.C., Jang, F.L.: Using semantic dependencies to mine depressive
symptoms from consultation records. IEEE Intell. Syst. 20, 50–58 (2005)

https://doi.org/10.1186/1471-2288-13-61

Improving Trace Link Recovery Using
Semantic Relation Graphs and Spreading

Activation

Aaron Schlutter1(B) and Andreas Vogelsang2

1 Technische Universität Berlin, Berlin, Germany
aaron.schlutter@tu-berlin.de

2 Software and Systems Engineering, Universität zu Köln, Köln, Germany
vogelsang@cs.uni-koeln.de

https://www.aset.tu-berlin.de/menue/team/aaron schlutter/

https://cs.uni-koeln.de/sse

Abstract. [Context & Motivation] Trace Link Recovery tries to
identify and link related existing requirements with each other to sup-
port further engineering tasks. Existing approaches are mainly based
on algebraic Information Retrieval or machine-learning. [Question/
Problem] Machine-learning approaches usually demand reasonably
large and labeled datasets to train. Algebraic Information Retrieval
approaches like distance between tf-idf scores also work on smaller
datasets without training but are limited in considering the context of
semantic statements. [Principal Ideas/Results] In this work, we revise
our existing Trace Link Recovery approach that is based on an explicit
representation of the content of requirements as a semantic relation graph
and uses Spreading Activation to answer trace queries over this graph.
The approach generates sorted candidate lists and is fully automated
including an NLP pipeline to transform unrestricted natural language
requirements into a graph and does not require any external knowledge
bases or other resources. [Contribution] To improve the performance,
we take a detailed look at five common datasets and adapt the graph
structure and semantic search algorithm. Depending on the selected con-
figuration, the predictive power strongly varies. With the best tested
configuration, the approach achieves a mean average precision of 50%, a
Lag of 30% and a recall of 90%.

1 Introduction

Trace Link Recovery (TLR) is a common problem in software engineering. While
many engineering tasks profit from explicit links between related development
artifacts [1,26], these links are laborious to maintain manually and therefore
rarely exist in projects [9]. Automatic TLR approaches aim for supporting engi-
neers in finding related artifacts and creating trace links. Most approaches frame
TLR as an Information Retrieval (IR) problem [12]. The IR approach builds
upon the assumption that if engineers refer to the same aspects of the system,
c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 37–53, 2021.
https://doi.org/10.1007/978-3-030-73128-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_3&domain=pdf
http://orcid.org/0000-0003-0537-3271
http://orcid.org/0000-0003-1041-0815
https://doi.org/10.1007/978-3-030-73128-1_3

38 A. Schlutter and A. Vogelsang

similar language is used across different software artifacts. Thus, tools suggest
trace links based on Natural Language (NL) content [3].

State-of-the-art approaches use algebraic IR models (e.g., vector space mod-
els (VSM), Latent Semantic Indexing (LSI)), or probabilistic models (e.g., Latent
Dirichlet Allocation (LDA)) [3]. More recently, machine-learning approaches
have also been applied successfully [17]. It is hard to compare the performance
of different approaches due to inconsistent use of evaluation metrics and severe
threats to validity regarding the used datasets [3]. Algebraic and probabilistic
as well as machine-learning approaches rely on implicit models of key terms in
requirements (e.g., as points in a vector space or as probability distribution).
Trace links are recovered based on similarity notions defined over these models.
Therefore, it is hard to analyze and explain why specific trace links are iden-
tified in the model. Another drawback of machine-learning approaches is the
need to train the models on reasonably large datasets. However, TLR datasets
usually consists of less than 500 artifacts (at least the ones used in scientific
publications [3]). Most are domain-specific, which means that additional care
must be taken to ensure that the respective configuration (e.g., the neural net of
a machine-learning approach) is not over fitted and thus less reusable for other
datasets.

We follow a different approach and base our TLR approach on an explicit
model of the knowledge represented in unrestricted NL requirements. Our
pipeline translates NL requirements automatically into a semantic relation graph
that encodes terms and their relations as vertices and edges. We use Spreading
Activation to identify related target requirements (i.e., trace links) for a given
query requirement. The semantic search algorithm spreads activation in pulses
over the vertices starting from the query vertex. Vertices with higher activation
indicate higher relevance for the query. In our previous work [23], we introduced
the basic concepts and evaluated the approach with bad to mediocre results.

To improve the results, we take a detailed look at the used datasets with their
pitfalls and how this influence the performance of our approach. Subsequently, we
elaborate improvements for the graph building and structure as well as resulting
adjustments to Spreading Activation. We applied and evaluated the approach on
5 datasets, commonly used in TLR research, in terms of mean average precision
and Lag for a result list length of 5, 10, and 30 trace link candidates. With the
best tested configuration, our approach achieves an average precision around
50%, Lag around 30% and recall around 90%.

2 Background

2.1 Trace Link Recovery

Requirements traceability is defined as “the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction” [6], i.e., over
several phases and periods of refinement during those phases. A trace link states
a dependency, relation, or similarity between two artifacts, the source and the

Improving TLR Using Semantic Relation Graphs and Spreading Activation 39

target. We do not distinguish the type of links in the following work as we
interpret all of them as some kind of relation.

Borg et al. [3] present a mapping study of IR approaches for traceability. They
focus on text retrieval and classify 79 publications including their approaches
based on the used retrieval model. Borg et al. treat the IR process as essential,
NLP techniques are interpreted as an optional prerequisite. They differentiate
between algebraic, probabilistic, and statistical language models as well as mis-
cellaneous aspects like weighting scheme, similarity measures/distance functions,
and enhancement strategies. The majority of classified publications applied an
algebraic model, while most were evaluated in experiments on benchmarks (with-
out human intervention) and used precision and recall as metrics.

Our approach does not match in general any of the retrieval models or their
categories as we do not transfer requirements into a mathematical (algebraic,
probabilistic, or statistical) model nor do we primarily apply any mathematical
operations. We use several NLP techniques to analyze textual requirements,
extract terms and their relations [21]. Subsequently, we transfer the results into
a semantic relation graph and use a semantic search algorithm to find related
artifacts. This includes some of the miscellaneous aspects of Borg et al. like
phrasing, term frequency, and optionally similarity measures. Our approach does
not support any other kind of requirements than textual ones.

Likewise, we do not focus on automatic linking of related requirements with-
out human intervention since we assume that trace links are usually used in
sophisticated scenarios where every link is created manually based on given rules
or guidelines. In our view, this cannot be achieved due to the ambiguity of natu-
ral language and the variety of guidelines. Instead, we want to support engineers
who manually create trace links with a sorted candidate list.

2.2 Knowledge Representation

Knowledge representation focuses on the depiction of information that enables
computers to solve complex problems. Borgida et al. [4] already noted in 1985
that knowledge representation is the basis for requirements engineering.

Dermeval et al. [5] report on the use of ontologies in requirements engineering
in their systematic literature review. They reviewed 67 publications from aca-
demic and industrial application contexts dealing with different types of require-
ments. While only 34% reused existing ontologies, most of them specified their
own ontology. The largest number of publications rely on textual requirements
as the RE modeling style, especially in the specification phase.

Robeer et al. [19] automatically derive conceptual models from user stories.
The models enable discussion between stakeholders and show promising accuracy
results (precision and recall between 80–92%). They use heuristics to analyze the
user stories due to semi-structured natural language.

In a former publication [21], we presented an NLP pipeline that extracts
knowledge from requirement documents and transforms it into a graph repre-

40 A. Schlutter and A. Vogelsang

senting RDF1 triples (subjects and objects become vertices, predicates become
edges). The two generated sample graphs were not well-connected and yielded
only a subset of fully connected vertices in a main graph. They used one graph
to show the separation of two subsystems in an exemplary requirement specifi-
cation.

2.3 Existing Approach

In our previous work [23], we used NLP techniques to extract semantic informa-
tion from requirements and build a semantic relation graph as a knowledge base.
We used Spreading Activation as semantic search algorithm to find, for a given
query (trace link source), all related information (targets). The approach is fully
automated to enable engineers to apply TLR to NL requirements without any
further effort (e.g., maintain external resources like dictionaries). Comparable to
machine-learning, an appropriate configuration must be initially determined for
the approach. Such a configuration includes the general structure of the semantic
relation graph as well as the configuration of Spreading Activation.

We built an NLP pipeline consisting of Stanford CoreNLP [15] and Deep-
SRL [8] to extract information from the requirements and to build the graph.
The main goal while building the semantic relation graph is to depict seman-
tic parts of common NL in vertices and connect these with each other based
on their relation. The graph structure resembled a tree structure with multiple
roots (identifier vertices) and vertices arranged in levels for verbs, arguments,
and noun phrases. This structure supported that short phrases have a greater
distance (i.e., are less relevant) to a certain specification than complex phrases
or whole (verb) statements [22]. We used the given structure of semantic role
labeling (SRL), which associates arguments with a semantic role to their predi-
cate within a sentence. In addition, we used several basics like Lemmatizing or
part-of-speech tagging to split and compare natural language phrases or filter
insignificant parts.

To answer trace queries with the help of the semantic relation graph, we used
Spreading Activation. We utilized the state-of-the-art options and algorithm by
Hartig [7] to configure the spreading of activation2. There are several modes and
parameter to adjust attenuation, sending or branching to calculate the activa-
tion values during the pulsation. To find an appropriate configuration, we used
an exploratory approach and discovered 500 random configurations. The final
activation values of the identifier vertices are used to build a sorted candidate
list with all (reachable) targets for a query based on their relation.

We evaluated the approach on five datasets of Huffman Hayes et al. [13]. We
achieved bad to mediocre results, i.e., the top configurations have a mean average
precision of 40% and a Lag of 50%, while most configurations have much worse
results. Certain discrete modes are clearly favored and the chosen values for the
numerical parameters seem to fit as there are (local) maxima identifiable. To

1 https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.
2 Our Implementation: https://github.com/tub-aset/spreadingactivation.

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://github.com/tub-aset/spreadingactivation

Improving TLR Using Semantic Relation Graphs and Spreading Activation 41

compare the performance of configurations, we ranked them and found out that
a configuration has a constant quality for different datasets. This is probably
the case because the basic (syntactic and semantic) structure of requirements or
natural language per se is usually similar, even if the concrete content differs.

We concluded that an almost optimal configuration, once determined, may be
reused on other datasets with different requirements, key terms and relations.
Even if there are specific configurations for individual datasets that perform
better in individual case, the evaluation has shown that a uniform configuration
for all datasets provides almost equivalent results. That is probably because
the basic characteristics of natural language (like the relation between semantic
arguments) and trace links (e.g., related requirements use equivalent terms) are
similar in different domains. Furthermore, we concluded that improvements for
the approach will mainly be found in adjustments of the graph.

Table 1. Vocabulary of all Datasets

Infusion P. CCHIT GANNT CM-1 WARC WARCf

High Low High Low High Low High Low High Low High Low

Stopwords 1,090 486 875 9,621 228 635 1,954 6,874 355 512 404 654

Token 2,325 948 1,560 16,311 327 940 3,159 10,310 634 987 745 1,239

Token (SRL) 2,036 813 1,552 16,245 275 936 3,030 9,502 616 947 741 1,230

Sentences 296 52 121 1,167 29 107 276 1,019 66 98 66 99

Sent. (SRL) 186 49 120 1,163 29 106 274 811 60 85 66 99

Noun phrases 1,251 527 908 9,921 215 595 1,865 6,150 369 538 417 668

NP (SRL) 961 382 878 9,706 170 578 1,715 5,139 343 479 408 640

Lemma 2,325 948 1,560 16,311 327 940 3,159 10,310 634 987 745 1,239

(unique) 646 225 563 1,978 125 196 696 1,718 262 426 287 462

Representatives 46 45 15 157 6 29 42 360 8 15 8 16

Nominal 30 42 12 105 2 21 20 283 1 8 1 8

Pronominal 22 10 5 73 4 17 17 87 4 7 4 8

Proper 0 11 0 7 0 1 9 202 3 3 3 3

3 Datasets: Characteristics of Requirements

We use five common datasets of Huffman Hayes et al. [13] to evaluate our app-
roach: Infusion Pump, CCHIT-2-WorldVista, GANNT, CM-1, and WARC. They
come from different domains like health care, science, or business, and are dif-
ferent according to their size and scope of the requirements. We also used them
in our previous work [23]. In the meantime we found out that the download
link3 of Huffman Hayes et al. contains a faulty WARC dataset where several
requirements missed parts of their content (i.e., the original dataset contains the
identifier of a requirement as prefix followed by a dash but Huffman Hayes et
al. incorrectly removed text before the last rather than the first occurrence of a
dash). To circumvent this issue, we use a fixed version4, hereby called WARCf.
3 https://selab.netlab.uky.edu/AIRE-2019-hayes-payne-leppelmeier-meta-data.zip.
4 http://sarec.nd.edu/coest/datasets/WARC.zip.

https://selab.netlab.uky.edu/AIRE-2019-hayes-payne-leppelmeier-meta-data.zip
http://sarec.nd.edu/coest/datasets/WARC.zip

42 A. Schlutter and A. Vogelsang

Table 1 contains a statistical overview of the vocabulary of all datasets, sep-
arated into high-level (query) and low-level (target) requirements. At first, we
removed all stop words using the NLTK5 stop word list. The suffix (SRL) for
tokens means that there is an SRL argument that covers this token in terms of
indices. For Lemma of tokens we also determined how many unique occurrences
there are in order to draw conclusions about the reuse of words. To parse the
natural language text, we use Stanford CoreNLP [15] and DeepSRL [8].

Table 1 reveals that DeepSRL does not consider all token and even miss
several sentences (especially in Infusion Pump high and CM-1 low). These tokens
and sentences are not parsable, e.g., the sentence does not contain an (identified)
verb. The same observation also applies to noun phrases. On average, only 90%
of all noun phrases are covered by an SRL argument, with a minimum of almost
72%. It is also evident that the lemma of tokens is often reused with an average
of about 4 times to a maximum of more than 8 times.

Figure 1 and 2 show the intersection of unique lemma vocabulary for all
datasets. While the lemma of tokens is much more reused between high-level
and low-level requirements, this is not the case for noun phrases.

Fig. 1. Intersection of Token lemmas

Fig. 2. Intersection of Noun phrase lemmas

4 Approach Revisions

Based on the insights in Sect. 3, we revise our approach to improve the perfor-
mance on TLR. The analysis of the datasets shows that we need to focus more
on single words than on whole phrases and also take the frequency into account.
Furthermore, we need to consider parts that are not parsed by SRL.
5 https://www.nltk.org.

https://www.nltk.org

Improving TLR Using Semantic Relation Graphs and Spreading Activation 43

4.1 Knowledge Base Construction

We reuse the NLP pipeline [23] with the same techniques such as part-of-speech
tagging, lemmatizing (morphological analysis), dependency parser (grammatical
structure), coreference resolution and SRL. In contrast to our previous work, we
changed significantly the building and the resulting structure of the graph.

Unlike before we choose a bottom-up approach, starting with single words.
While we continue to believe that words like adjectives, verbs or adverbs without
their context or role should not be used, all nouns (identified by their POS tag)
are added as a vertex to the graph. On the next level, nouns are assembled
into phrases. Therefore, all noun and person phrases (NP and PP within the
dependency tree) that do not contain a verb phrase (VP) are also added as
vertices to the graph and connected via edges to their contained nouns. If nouns
or phrases occur multiple times, the same vertices are reused. To support this
reuse, the lemma of words is used. In addition, phrases are trimmed based on
the POS tag, e.g., determiners or prepositions at the beginning are removed.

Coreferences are also applied to the graph. If a phrase is pronominal, no
vertex is added but instead the vertex of the representative is used. Other coref-
erences are depicted as edges between the reference and representative vertices.

Last but not least verb vertices are added to graph. As before, we assume
that a predicate describe a larger context between their arguments. This time,
we do not add separate argument vertices but instead use directly the noun and
phrase as argument vertices. Arguments are assigned to their verb in two ways.
If there is an SRL predicate with an argument, that covers a phrase or a single
noun, we add the verb as vertex and connect it via an argument edge labeled
with the semantic role to the corresponding vertex of the noun or phrase. But
if SRL was not able to find a predicate for an argument, the dependency tree
is used to find a superordinated verb phrase (VP). In this case, the verb of the
verb phrase is added as verb vertex and linked to the argument vertex without
a certain semantic role label, i.e., we just use arg as any argument.

Verb vertices are only reused, if the lemma of the verb and its arguments are
equal. The arguments are differentiated according to their type. If the verb has
any noun or phrase argument, only they are used to check the equality of verbs.
If no such argument is present, all other verb arguments are taken into account.

Adjectives and adverbs are also represented in the graph. While adjectives
are implicit contained in phrases, adverbs are explicitly added as parts to the
label of verb vertices. Again, if they are covered by an SRL argument, we use
additional to the lemma itself the semantic role as prefix. If an adverb is not
covered by SRL, we use the same process as for phrase arguments to search
within the dependency tree for the corresponding verb.

To omit the distance between identifier and short phrase vertices, we elim-
inated the identifier vertices. Instead, the requirement identifiers are added as
metadata to all vertices of a requirement. If a noun or phrase is used several
times within a requirement, the identifier is also indicated several times. Thus,
the frequency can be considered in the further course.

44 A. Schlutter and A. Vogelsang

Fig. 3. Graph structure

Figure 3 shows the model and an abstract instance of the graph structure.
While most parts are used by both requirements req1 and req2, therefore indi-
cating a high relevance to each other, there are some vertices to which this does
not apply. Vertex noun1 is only used once in requirement req1, likewise phrase3
is used twice only in req2. Although noun1 has no relation to the other words, its
vertex can be attributed to the corresponding requirement and may contribute
to TLR, if in the further course more requirements are added that will also use
it.

In contrast to our previous graphs, even if there is no verb within a sentence,
other (relevant) parts like phrases or nouns are assigned to requirements and
therefore taken into account for TLR. Adjectives and adverbs are closer the
words they refer to. If SRL is not able to parse the sentence or single phrases,
we use dependency relations to find the corresponding verb relation.

4.2 Semantic Search

The graph algorithm Spreading Activation consists of three phases. In the ini-
tial phase, the start vertices are activated, i.e., they will be assigned an initial
activation value. During the spreading phase, this activation is step wise dis-
tributed over the graph, i.e., the activation of a vertex is transferred to related
(connected) vertices. These steps are called pulses and at the end of each pulse,
a termination condition is checked to stop the pulsation. In the final phase, a
sorted candidate list is created using the activation values to sort all vertices by
relevance.

Due to the fact that there are no identifier vertices for requirements any-
more, we need to change phase 1 and 3 of Spreading Activation. For the initial
activation, we use the metadata by selecting the vertices that are included in
the query requirement. To consider the frequency, vertices with multiple query
occurrences are higher activated, i.e., we use tf-idf values [14] as initial activation
values. The tf-idf values are also used in phase 3, where the target requirements
are determined by adding the final activation values with tf-idf as factor.

Improving TLR Using Semantic Relation Graphs and Spreading Activation 45

Table 2. Semantic relation graphs

Dataset Vertices Edges

High Both Low High Both Low

Infusion P. 1,130 80 306 1,249 1,059 352

CCHIT 655 238 5,552 582 5,137 6,894

GANNT 156 34 431 141 378 564

CM-1 1,096 378 4,514 1,094 5,765 5,120

WARCf 294 149 591 252 803 582

Fig. 4. Distribution of tf-idf values

In addition, we also adjust phase 2, the spreading process. We now consider
the level/type of vertices and edges, e.g., a noun vertex might need a different
treatment than a verb one or an A1 edge might be more relevant than an adjunct
one. Therefore, we use different modes and parameter based on the type, except
for pmax as a global parameter. In case of the edge weight, we introduce a new
parameter W that replaces the CONSTANT factor of 1 (cf. [23, Table IV]) to
give various semantic roles different weight. To optimally map the relevance of
semantic roles to W , we follow the formula in the PropBank Guidelines: A0 >
A1 > A2-A6 > AM [2, p. 8]. For the argument type arg, we use the A1 weight.

5 Evaluation

We evaluate the approach for TLR on the five given datasets (Infusion Pump,
CCHIT-2-WorldVista, GANNT and CM-1 of [13] as well as WARCf).

We build semantic relations graphs for each dataset, containing both high
and low level requirement specifications. Table 2 gives an overview of the number
of vertices and edges that have only high-level or low-level requirements as origin
and intersecting elements (comparable to the Venn diagrams in Fig. 1 and 2).

To find an appropriate Spreading Activation configuration, we used an
exploratory approach and discovered 500 random but valid configurations. While
the modes are randomly chosen, the numerical parameter ranges are d ∈ [0− 1],
τ ∈ [0−1], pmax ∈ [1−50], and W ∈ [0−1]. A configuration is valid if spreading
stops before the given number of pulses for all queries of all datasets. Otherwise,
this indicates too strong restriction to spread activation and lead to no results.

As we use tf-idf values for initial activation, we need to adapt τ , the minimum
activation needed to spread in current pulse, for each dataset. Figure 4 shows the

46 A. Schlutter and A. Vogelsang

distribution of tf-idf values for all datasets. While the basic shape is equal for
all datasets, they all have their mean at a different level. If we would choose
the same τ for all datasets, this would result in different limitations of the tf-
idf activation values for the same configurations. Instead, we add per dataset a
factor of three times the mean value to τ , indicated as red lines in Fig. 4.

5.1 Metrics

There are several evaluation metrics that depend on different goals when evalu-
ating TLR. Shin et al. [24] performed a systematic literature review and defined
three different goals. Goal 1 is to find trace links with high accuracy, e.g., to
support tasks like coverage analysis. Goal 2 is to find relevant requirements
excluding irrelevant requirements to reduce unnecessary effort for human ana-
lysts. Goal 3 is to rank all requirements so that the relevant ones are near the
top of the retrieved list, also to reduce human effort. Our approach supports
goal 3, as we build a ranked list of all requirements.

To evaluate the achievement of goal 3, Shin et al. mention three different
metrics, i.e., average precision (AP), Lag, and AUC (area under the ROC curve).
Each metric focuses on different weighting schemes for the position in the ranked
list. AP assigns a non-proportionally higher weight to a correct link ranked
at the top and thereby rewards correct links at the top. Lag assigns a non-
proportionally higher weight to a correct link ranked at the bottom of the list,
which penalizes those links. AUC uses the same weight for all correct links
but is not applicable as it is a classification accuracy metric and not a rank
accuracy metric [10]. While a high value is desired for AP, Lag indicates how
many incorrect links are proposed before a correct one and should be as low as
possible.

Shin et al. show five different types of thresholds for the ranked list. Despite
the fact that they recommend relative thresholds rather than absolute ones,
we use ND (number of retrieved requirements) with the values 5, 10, and 30,
which cuts the list after a fixed number of retrieved requirements. We justify
this decision by assuming that the approach should be used in setups including
a lot of requirements, but a user is not capable to check through thousands of
potential candidates. A relative threshold such as 10% of the list would yield
only 2 results for Infusion Pump but more than 40 for CCHIT.

In addition to AP and Lag, we evaluate the recall [14] at certain ND, i.e.,
the fraction of relevant links that are found until ND limit is reached. In case
there are more valid links than ND, we use ND as maximum of relevant links.

The metric values are summarized on average across all traces, i.e., mean
average precision (MAP) for AP. We calculated the metrics only for source arti-
facts that are linked because our approach does no classification and provides
results for all queries (even for queries without any correct answer).

Improving TLR Using Semantic Relation Graphs and Spreading Activation 47

5.2 Results for Datasets

Figure 5 shows the MAP, Lag and recall values at ND 5, 10, and 30 for each
dataset. The numbers above and below are the respective top values. While the
majority of configurations already show improved results, the best ones achieve a
MAP roughly around 50% and a Lag around 30% on all ND thresholds, depend-
ing on the dataset. While Lag of CCHIT is comparable to the other datasets,
the MAP indicates that correct results are not in top results but shown at a
lower position.

Fig. 5. MAP and Lag at ND 5, 10, and 30

Figure 6 shows all search results for the CM-1 dataset as heat maps. The
x-axis lists the 500 configurations, the y-axis contains 155 queries for each linked
high-level requirement. The color scheme indicates the recall, i.e., the ratio of
correct links in the answer list, from light gray for no correct links at all to dark
gray for 100% of all correct links, independent of the position in the result list.
The darker a column is, the better a configuration, and the darker a row it is
easier to answer a query correctly. There are a few queries where, regardless of
the configuration, valid links are found often, e.g., around query 135 and 75.
This pattern becomes clearer as the ND threshold increases. In addition, there
are some queries where results almost never contain a valid link, e.g., around
140. Comparable to this horizontal patterns, there are vertical ones with some
of the best configurations around 300 and some of the worst around 160.

The corresponding heat maps of the other datasets (Fig. 7) have similar ver-
tical patterns at the same places, especially for the configurations around 300.
This leads us to the assumption that a configuration has a constant quality for
different datasets. We already showed that the quality of configurations is quite
constant for different datasets [23].

Table 3 shows the best metric values of all configurations for each dataset
and threshold of our new approach compared to our previous approach [23, cf.

48 A. Schlutter and A. Vogelsang

Fig. 6. Results of the CM-1 dataset Fig. 7. Other results at certain ND

Fig. 8. Parameter distributions of top-50

Fig. 9. Parameter distributions of top-50 noun vertices

Improving TLR Using Semantic Relation Graphs and Spreading Activation 49

Fig. 10. Parameter distributions of top-50 phrase vertices

Fig. 11. Parameter distributions of top-50 verb vertices

Table 3. Best configurations

ND Inf. P. CCHIT GANNT CM-1 WARCf

5 10 30 5 10 30 5 10 30 5 10 30 5 10 30

Per metric New

approach

MAP .51 .53 .54 .24 .20 .20 .41 .44 .49 .34 .37 .40 .59 .60 .62

Lag .43 .43 .45 .50 .41 .44 .18 .22 .34 .46 .46 .50 .28 .29 .32

Recall .74 .90 1.0 .32 .32 .43 .53 .68 .89 .53 .66 .87 .78 .84 .97

Improvement

to [23]

MAP .08 .08 .07 .13 .10 .10 .06 .05 .07 .08 .09 .09 .26 .24 .23

Lag .07 .09 .07 .16 .19 .10 .11 .06 .0 .08 .05 .05 .21 .19 .18

Overall New

approach

MAP .52 .53 .54 .22 .18 .19 .35 .39 .43 .32 .36 .39 .59 .60 .62

Lag .43 .43 .45 .54 .47 .46 .30 .28 .42 .47 .48 .51 .29 .29 .32

Recall .73 .84 .92 .29 .29 .41 .47 .61 .79 .47 .63 .84 .75 .83 .92

Improvement

to [23]

MAP .12 .10 .10 .14 .11 .12 .05 .04 .05 .06 .08 .09 .29 .27 .26

Lag .09 .10 .10 .17 .14 .11 .13 .14 .0 .07 .03 .04 .25 .24 .23

TABLE VIII], with the deviation by how much the metric value have improved.
The overall best configuration is determined by the best harmonic mean between
MAP and Lag. In all cases the new approach has better results in metric values
with an average increase of almost 10%. The WARC dataset has improved even
more, but this is due to the fact that the old evaluation used the unfixed version.
Except for CCHIT, the recall is above 90% at ND30.

5.3 Limitations

In our previous work, we stated that there are mainly two parts of the approach
that affect the performance results, the graph and Spreading Activation. As we
have already seen in Sect. 3, also the datasets with their characteristics need to
be taken into account to have an influence on the performance. Even though we

50 A. Schlutter and A. Vogelsang

have tried to take a closer look at them and to address or avoid certain problems,
there will still be some that have a negative impact.

For example, the datasets reveal at a brief overview that some of the sen-
tences or statements are formulated in a very complex way or contain a list of
key points. This may lead to heavily branched (verb) vertices, which might be
handled differently by Spreading Activation than other (simpler or more com-
mon) sentence structures, e.g., the initial activation might be broadly distributed
and lead to super-spreading of those vertices or to no spreading at all due to a
high τ .

In addition, we rely on the quality of the NLP tools, especially the complex
tasks SRL and dependency trees. If they fail to capture the natural language,
these errors will also appear in the graph and probably result in a lower perfor-
mance.

Figure 8, 9, 10 and 11 show the parameter distribution of top-50 configu-
rations for all levels and types. Figure 8 reveals that the first argument is most
important, while adjunct arguments seem to almost be ignored. This insight does
not take place in the graph structure, e.g., arguments are considered uniformly
to find identical verbs. The parameter τ seems to have a low limit below 0.5 (at
least for nouns and verbs), this may be due to the fact that three times the mean
tf-idf value as upper limit is too restrictive in combination with a high pmax.

Furthermore, we do not merge or connect semantically similar vertices. Two
or more words/phrases are semantically similar if they have the same meaning
but different syntax. There are different approaches to identify such seman-
tic similarities like word embeddings (word2vec [16], GloVe [18]) or databases
(WordNet6). While word embeddings demand additional computation and a
reasonably large dataset, databases often contain only general but not domain-
specific terms.

Overall, it is difficult to determine the influence of individual factors or their
combination, since determining a good and valid configuration for Spreading
Activation by random selection requires a lot of computation. It is possible that
some of the improvements presented are also counterproductive, but we are not
able to verify this in detail. Borg et al. [3] stated that TLR as an IR-problem is
often based on empirical software engineering research with small datasets and
therefore may conduct in “the cave of IR evaluation”.

6 Discussion

We achieve improved results in the evaluation without any explicit assump-
tions on the requirements (e.g., certain patterns like user stories). This time we
included a common IR-solution, the tf-idf values into our approach to improve
the quality. The graph and the algorithm scales for different sizes of datasets
and is (almost) immediately applicable (i.e., no training needed, only one pass
through the NLP pipeline). Also, the graph adapts immediately to changes in

6 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/

Improving TLR Using Semantic Relation Graphs and Spreading Activation 51

the data as new requirements are parsed and vertices/edges are inserted directly
into the graph as well as existing vertices/edges are removed if requirements are
removed. Finding an optimal configuration for the semantic search algorithm
is a non-trivial task. Certain discrete modes are clearly favored and the chosen
values for the numerical parameters seem to fit as there are (local) maxima iden-
tifiable in Fig. 8, 9, 10 and 11. Table 3 shows that the performance of the overall
best configuration is comparable to configurations with an individual best metric
result. We assume that an almost optimal configuration, once determined, may
be reused for other datasets as well.

Unfortunately, as we have already shown in our previous work [23], there are
currently few publications for comparison of our approach. Most of them do not
use the datasets or only report precision, recall, or F1-score. Some approaches
also require manual effort, which may be very specific to the dataset in ques-
tion. For comparison, we used a syntactical VSM approach with tf-idf values for
lemmas and compare requirements using cosine similarity [20,25].

Compared to our previous work [23], the results have improved. While the
top values of MAP and Lag only slightly changed, the average performance of a
random configuration is greatly increased (cf. Fig. 5d and 6 and [23, Fig. 10d and
11]). This is due to the fact that MAP and Lag have non-proportional weights,
which causes strong variation due to changes at the top of the result list, but only
small in the further part. In contrast, the syntactical approach still outperforms
the semantic approach in terms of MAP and Lag but this time our approach is
quite close to baseline performance. From a practical point of view, the recall of
about 90% means that an engineer will have seen almost all links in the sorted
candidate list after only 30 items, independent of the position within the list.
Huffman Hayes et al. [11] rate a recall above 80% as excellent, which we achieve
for every dataset except CCHIT with ND30.

7 Conclusion

In this paper, we improve our novel approach for Trace Link Recovery using
semantic relations between parts of natural language, stored in a semantic rela-
tion graph, and searched by a semantic search algorithm. While the approach is
fully automated, it does not have any prerequisites with regard to the format or
the content of the natural language (except for English language) and is scalable
to various sizes of corpora. We achieve better results than before by incorporating
some general characteristics of the datasets and their requirements. In addition,
we improved Spreading Activation by using a modified graph structure, tf-idf as
activation values and consider even more semantics of natural language.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. Trans. Softw. Eng. 28(10), 970–983
(2002). https://doi.org/10.1109/TSE.2002.1041053

https://doi.org/10.1109/TSE.2002.1041053

52 A. Schlutter and A. Vogelsang

2. Bonial, C., Bonn, J., Conger, K., Hwang, J., Palmer, M., Reese, N.: English
PropBank annotation guidelines (2015). https://raw.githubusercontent.com/
propbank/propbank-documentation/master/annotation-guidelines/Propbank-
Annotation-Guidelines.pdf

3. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empir. Softw. Eng.
19(6), 1565–1616 (2013). https://doi.org/10.1007/s10664-013-9255-y

4. Borgida, A., Greenspan, S., Mylopoulos, J.: Knowledge representation as the basis
for requirements specifications. In: Brauer, W., Radig, B. (eds.) Wissensbasierte
Systeme, vol. 112, pp. 152–169. Springer, Heidelberg (1985). https://doi.org/10.
1007/978-3-642-70840-4 13

5. Dermeval, D., et al.: Applications of ontologies in requirements engineering: a sys-
tematic review of the literature. Require. Eng. 21(4), 405–437 (2015). https://doi.
org/10.1007/s00766-015-0222-6

6. Gotel, O., Finkelstein, C.W.: An analysis of the requirements traceability problem.
Require. Eng. (1994). https://doi.org/10.1109/ICRE.1994.292398

7. Hartig, K.: Entwicklung eines information-retrieval-systems zur Unterstützung von
Gefährdungs- und Risikoanalysen. Ph.D. thesis, Technische Universität Berlin
(2019). https://doi.org/10.14279/depositonce-8408

8. He, L., Lee, K., Lewis, M., Zettlemoyer, L.: Deep semantic role labeling: what works
and what’s next. In: Association for Computational Linguistics, pp. 473–483. ACL
(2017). https://doi.org/10.18653/v1/p17-1044

9. Heindl, M., Biffl, S.: A case study on value-based requirements tracing. Euro-
pean Software Engineering Conference (2005). https://doi.org/10.1145/1081706.
1081717

10. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. Trans. Inf. Syst. 22(1), 529–565 (2004). https://
doi.org/10.1145/963770.963772

11. Huffman Hayes, J., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link gen-
eration for requirements tracing: the study of methods. Trans. Softw. Eng. 32(1),
4–19 (2006). https://doi.org/10.1109/TSE.2006.3

12. Huffman Hayes, J., Dekhtyar, A., Osborne, J.: Improving requirements tracing
via information retrieval. In: Requirements Engineering (2003). https://doi.org/
10.1109/ICRE.2003.1232745

13. Huffman Hayes, J., Payne, J., Leppelmeier, M.: Toward improved artificial intel-
ligence in requirements engineering: metadata for tracing datasets. In: Artificial
Intelligence for Requirements Engineering, pp. 256–262. IEEE (2019). https://doi.
org/10.1109/REW.2019.00052

14. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information
Retrieval. Cambridge University Press, Cambridge (2008). https://doi.org/10.
1017/CBO9780511809071

15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: System Demon-
strations, pp. 55–60. ACL (2014)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. Computing Research Repository (2013). https://arxiv.
org/abs/1301.3781

17. Mills, C.: Towards the automatic classification of traceability links. In: Automated
Software Engineering (2017). https://doi.org/10.1109/ASE.2017.8115723

https://raw.githubusercontent.com/propbank/propbank-documentation/master/annotation-guidelines/Propbank-Annotation-Guidelines.pdf
https://raw.githubusercontent.com/propbank/propbank-documentation/master/annotation-guidelines/Propbank-Annotation-Guidelines.pdf
https://raw.githubusercontent.com/propbank/propbank-documentation/master/annotation-guidelines/Propbank-Annotation-Guidelines.pdf
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/978-3-642-70840-4_13
https://doi.org/10.1007/978-3-642-70840-4_13
https://doi.org/10.1007/s00766-015-0222-6
https://doi.org/10.1007/s00766-015-0222-6
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.14279/depositonce-8408
https://doi.org/10.18653/v1/p17-1044
https://doi.org/10.1145/1081706.1081717
https://doi.org/10.1145/1081706.1081717
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1109/TSE.2006.3
https://doi.org/10.1109/ICRE.2003.1232745
https://doi.org/10.1109/ICRE.2003.1232745
https://doi.org/10.1109/REW.2019.00052
https://doi.org/10.1109/REW.2019.00052
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/ASE.2017.8115723

Improving TLR Using Semantic Relation Graphs and Spreading Activation 53

18. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing, pp. 1532–1543.
ACL (2014). https://doi.org/10.3115/v1/d14-116

19. Robeer, M., Lucassen, G., van der Werf, J.M.E.M., Dalpiaz, F., Brinkkemper,
S.: Automated extraction of conceptual models from user stories via NLP. In:
Requirements Engineering, pp. 196–205. IEEE (2016). https://doi.org/10.1109/
RE.2016.40

20. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1989)

21. Schlutter, A., Vogelsang, A.: Knowledge representation of requirements documents
using natural language processing. In: Natural Language Processing for Require-
ments Engineering. RWTH Aachen (2018). https://doi.org/10.14279/depositonce-
7776

22. Schlutter, A., Vogelsang, A.: knowledge extraction from natural language require-
ments into a semantic relation graph. In: Knowledge Graph for Software Engineer-
ing). ACM (2020). https://doi.org/10.14279/depositonce-9772.2

23. Schlutter, A., Vogelsang, A.: Trace link recovery using semantic relation graphs
and spreading activation. In: Requirements Engineering, pp. 20–31. IEEE (2020).
https://doi.org/10.1109/RE48521.2020.00015

24. Shin, Y., Huffman Hayes, J., Cleland-Huang, J.: Guidelines for benchmarking auto-
mated software traceability techniques. In: Symposium on Software and Systems
Traceability (2015). https://doi.org/10.1109/SST.2015.13

25. Singhal, A.: Modern information retrieval: a brief overview. Comput. Soc. Tech.
Committee Data Eng. 24(4), 35–43 (2001). http://singhal.info/ieee2001.pdf

26. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Softw. Syst. Model. 9, 529–565 (2010). https://
doi.org/10.1007/s10270-009-0145-0

https://doi.org/10.3115/v1/d14-116
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.14279/depositonce-7776
https://doi.org/10.14279/depositonce-7776
https://doi.org/10.14279/depositonce-9772.2
https://doi.org/10.1109/RE48521.2020.00015
https://doi.org/10.1109/SST.2015.13
http://singhal.info/ieee2001.pdf
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s10270-009-0145-0

CORG: A Component-Oriented Synthetic
Textual Requirements Generator

Aya Zaki-Ismail1(B) , Mohamed Osama1 , Mohamed Abdelrazek1 ,
John Grundy2 , and Amani Ibrahim1

1 Information Technology Institute, Deakin University,
Burwood Highway, Burwood, VIC 3125, Australia

{amohamedzakiism,mdarweish,
mohamed.abdelrazek,amani.ibrahim}@deakin.edu.au
2 Information Technology Institute, Monash University,

Wellington Road, Clayton, VIC 3800, Australia
John.Grundy@monash.edu

Abstract. The majority of requirements formalisation techniques oper-
ate on textual requirements as input. To establish and verify the reliabil-
ity and coverage of such techniques, a large set of textual requirements
with diverse structures and formats is required. However, such techniques
are typically evaluated on only a few manually curated requirements that
do not provide enough coverage of the targeted structures. Motivated
by this problem, we introduce a Component-oriented synthetic textual
requirements generator (CORG) that can generate large numbers of syn-
thesised diverse-structure textual requirements, along with key compo-
nents breakdowns. CORG utilises a controlled random-selection (CRS)
strategy throughout the backtracking-based generation. We evaluate the
coverage, diversity, performance and correctness of CORG. The eval-
uation results show that CORG can generate comprehensive diverse-
structure combinations in reasonable time without being affected by the
size of the produced requirements.

Keywords: Requirements engineering · Text generation

1 Introduction

Several requirements formalisation and extraction techniques [9,26,27] rely on
textual requirements. The reliability of such techniques is critical, as they rep-
resent the foundation for the remaining requirements engineering and analysis
tasks (e.g. 3C quality issues detection [26]). However, the evaluation of such
techniques is typically limited to a curated set of few requirements [9,27]. The
main drawbacks of this evaluation approach are:-

Zaki-Ismail and Osama are supported by Deakin PhD scholarships. Grundy is sup-
ported by ARC Laureate Fellowship FL190100035.

c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 54–70, 2021.
https://doi.org/10.1007/978-3-030-73128-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_4&domain=pdf
http://orcid.org/0000-0002-1580-6619
http://orcid.org/0000-0002-6940-0833
http://orcid.org/0000-0003-3812-9785
http://orcid.org/0000-0003-4928-7076
http://orcid.org/0000-0001-8747-1419
https://doi.org/10.1007/978-3-030-73128-1_4

CORG: A Component-Oriented Synthetic Textual Requirements Generator 55

– Structure-biased requirements: In this case, few of the targeted structures
are covered and essential ones required for an exhaustive evaluation may be
missed [9]

– Small number of requirements: The number of requirements used in evaluation
is, in many cases, relatively small. This is because real-world requirements
are typically confidential and not published making them hard to obtain, and
manually developed ones require a considerable amount of time and effort to
develop.

An example of such limitations is present in the evaluation of the requirements
formalisation approach described in [9]. This approach accepts textual require-
ments incorporating events, conditions and actions. However, the evaluation was
performed on requirements with event-action and condition-action formats as
indicated in Fig. 1: part I, in addition to some manually adjusted requirements
from the (If A Then B) format to the (B If A) format as in Fig. 1: part II.
However, requirements holding the popular event-condition-action behavioural
requirements format [24] are completely missed (i.e., not used in any order) as
shown in Fig. 1: part III.

Fig. 1. Curated, synthesised and missed requirements samples by Gosh et al., [9]

In this paper, we tackle the problem of the utilisation of incomplete test data
sets for the evaluation of formalisation techniques, by proposing a component-
oriented synthetic textual requirements generator “CORG”. It can be used to
automatically generate comprehensive combinations of structurally-diverse syn-
thesised textual requirements. In line with achieving such goal, all the generated
requirements are expected to be equally useful for this problem without a need
for a human analyst to assess their semantics. This is because formalisation
techniques are insensitive to the semantics of the input requirements (i.e., their
underlying analysis depends mainly on the requirements’ grammatical syntax to
be transformed into a corresponding formal notation [9,26]). In addition, what
enables a reliable evaluation of such techniques, is the co-existence of diverse
structures within a combinatorially complete set of requirements.

56 A. Zaki-Ismail et al.

We also propose the output layout of the synthesised requirements and the
corresponding formal grammar. CORG adheres to this grammar during the gen-
eration process to produce requirements in the target output layout. The gram-
mar and layout are based on a Requirement Capturing Model (RCM) [28]. RCM
is a reference model that incorporates the key properties (i.e., the key compo-
nents and sub-components) that may exist in a system requirement sentence. It
extends popular requirements expression formats (e.g., EARS[17], etc.).

We evaluated the capabilities of CORG in generating: (1) a complete set of
the possible combinations of requirement’s properties, (2) diverse structures, (3)
correct requirements, and (4) realistic requirements. In addition to evaluating
the generation time.

2 Background

RCM [28] is a semi-formal representation model that aggregates the behavioural
NL-requirements components defined in literature and provides their respective
sub-components and arguments breakdown. It supports a wide range of require-
ments because the model adapts to any permutation of its components.

RCM supports four requirements component types (i.e., Fig. 1 shows sam-
ples):

– Action: expresses the tasks performed by the system.
– Trigger: represents events that implicitly fire actions within the system cycle.
– Condition: stands for specific constraints that should be satisfied and explic-

itly checked by the system for an action to occur.
– Conditional scope: represents the governing conditions required for either

checking the preconditions (triggers and conditions) called “preconditional
scope” or performing the action(s) “called action scope”.

Sub-component types associated with the above components:

– valid-time: the period of time for a component to be valid (e.g., the inhibitor
shall transition to [True] for at most 1 s).

– pre-elapsed-time: the consumed time –from a reference point– before a com-
ponent starts (e.g., within 2 s the IDC transitions to [True]).

– in-between-time: the time between two consecutive repetitions of an event
(e.g., the signal turns to [true] every 2 s).

– hidden-constraint: a constraint held for only one argument (i.e., system entity)
within the component (e.g., the entry whose index exceeds 2 shall be incre-
mented, the underlined text is held for the bold text).

Table 1 shows the possible sub-components of each component type.

CORG: A Component-Oriented Synthetic Textual Requirements Generator 57

Table 1. Sub-components association with each component type

Sub-components Components

PreConditional-Scope Action-Scope Condition Trigger Action

Hidden Constraint ✓ ✓ ✓ ✓ ✓

Valid-time ✓ ✓ ✓ ✓ ✓

Pre-elapsed-time ✓ ✓

In-between-time ✓ ✓

3 CORG Formal Grammar

We designed the output layout (targeting RCM) for the generated requirements,
components, sub-components, and arguments breakdowns as follows:-

Listing 1.1. Generated Requirements Output Layout

req(reqText, CompList).

CompList::= [comp(SubCompList, compText),...]

SubCompList::= [subComp(Type, BreakDowns, subCompText), ...]

Type::= trig|cond|precondScope|actScope|act|hidden|v-time|pre-time|in-time

BreakDowns::= TimeInfo|RelClause|SubClause|Clause

TimeInfo::= [prePosition, quanitfication, value, unit, Nil]

RelClause::= [relNoun, relPronoun, subj, verb, [complement1, complement2,...]]

SubClause::= [Nil, head, subj, verb, [complement1,complement2,...]]

Clause::= [Nil, Nil, subj, verb, [complement1,complement2,...]]

“name()” indicates composite entity, “[]” is list representation, and “Nil”
means an empty item in the list. “req()” is a composite entity representing
a requirement sentence, “reqText” is the text of the generated sentence, and
“CompList” is a list of component entities each represented in “comp()”. “comp-
Text” holds component text, and “SubCompList” is a list of sub-components
entities each represented in “subComp()”. “Type” is the (sub)component type,
“subCompText” is the sub-Component text, and “BreakDowns” is a TimeInfo,
RelClause, SubClause, or Clause according to the sub-component’s type (all
of them are lists of 5 items storing the sub-component arguments, where each
item has a specific role based on its position in the list). “TimeInfo” repre-
sents breakdowns of time-related RCM subcomponents (i.e., valid-time, pre-
elapsed-time and in-between-time). “RelClause”, “SubClause”, and “Clause”
represent the breakdowns of the RCM hidden constraint sub-component,
condition/trigger/condional-Scope, and action component respectively.

Then, we developed a formal grammar to govern the generation process in
line with the output layout. We only support present, future, imperative tenses
and active/passive voices with correct syntax according to the English grammar.
We define the formal grammar of the supported structures as follows:-

58 A. Zaki-Ismail et al.

Listing 1.2. CORG Formal Grammar

<Sentence> ::= <Subclause>*.<Clause>.<Subclause>*

<Subclause> ::= Subordinator.<clause>

<Clause> ::= [<Subject>].[<RelClause>].<Predicate>.<TimeInfo>*

<RelClause> ::= HiddenConstHead.[Property].<Predicate>

<Subject> ::= <NounPh>

<NounPh> ::= Noun.<Modifier>*

<Modifier> ::= Preposition.<NounPh>

<Predicate> ::= [Modality].<MainVerb>.<Complement>+

<MainVerb> ::= Verb |(be).Verb.(ed)

<Complement> ::= [Preposition].(Noun|SystemValue)

Modality ::= "shall"|"will"|...

Subordinator ::= ConditionHead|TriggerHead|ScopeHead

ConditionHead ::= "if"|"provided that"|...

TriggerHead ::= "when"|"once"|"whenever"|...

ScopeHead ::= "after"|"before"|"until"|"while"|...

HiddenConstHead ::= "whose"|"that"

<TimeInfo> ::= TimePreposition. [QuantifyingRel]. Value. Unit

TimePreposition ::= Valid-Time-Prep|Pre-elapsed-Time-Prep|In-Time-Prep

Valid-Time-Prep ::= "for"|"up to"|...

Pre-elapsed-Time-Prep ::= "within"|"in"|"after"|...

In-Between-Time-Prep ::= "every"|...

QuantifyingRel ::= "less than"|"less than or equal"|"at most"|...

Value ::= Number

Unit ::= "seconds"|"minuets"|"milliseconds"|...

where, “*” indicates the presence of zero or more items, “+” means one or
more, “.” means the composition of different items, “...” means other words
in the input dictionary, “< >” means non-terminal, and “[]” means optional
item. Nouns, Verbs, Properties, SystemValues and Prepositions are not further
decomposed (terminals) and are fetched from the input dictionary. The pro-
posed grammar allows temporal operators through the element subordinator. A
requirement sentence consists of at least one clause. A clause consists of at least
a main predicate expressing the core meaning of the sentence, and optionally
a subordinator –conditional or temporal conditional head– can be attached to
extend the meaning as a subordinating clause.

4 CORG

CORG takes as input: (1) a dictionary of the domain lexical words and verb
frames, and (2) size of requirements to be generated. It then utilises backtracking
(a well-known approach previously adopted in textual generation [20]) through
the built-in backward chaining inference engine of the Prolog programming lan-
guage (a descriptive logic programming language consisting of a set of definite
clauses (facts and rules) correlated to artificial intelligence and computational
linguistics [22]).

Backtracking is typically a depth first search (DFS) mechanism, in which, an
arbitrary decision is made at each choice-point. When a dead-end is reached, the
inference engine backtracks to the last decision-point that can have a different
path, makes a different choice, then proceeds from there. It can iterate over all
the possible arrangements of a search space and provide all combinations and

CORG: A Component-Oriented Synthetic Textual Requirements Generator 59

permutations [11]. However, it exploits all the possible permutations of the com-
bination at hand before transitioning to the next combination. CORG performs a
controlled random selection CRS (i.e., based on Prolog equi-distributed randoms
[16]) at specific choice-points. This mitigates the exploitation pattern of DFS,
and ensures combinations comprehensiveness and diversity maintenance even at
small generation sizes while preventing structurally broken combination(s) (e.g.,
a requirement without an action is in-correct).

For each element in the (sub-)components set, CRS assigns a 0 or 1 ran-
dom number to decide its inclusion/exclusion in the current combination. The
combination is then rearranged to allow permutations and maintain generation
diversity. The underlying equi-distribution allows CRS to produce a different
combination at each call (i.e., ensures the coverage of the possible combinations
whenever the generation size exceeds the combinations count). The generation
then goes through Java APIs, SimpleNLG [8], and Stanford-NLP [15] as in Fig. 2.

Fig. 2. CORG Framework

Text generation typically consists of five main tasks: content determination,
textual structuring, sentence aggregation, lexicalisation, realization[7]. These
tasks are applied differently according to the nature of the addressed problem.
The underlying text generation approach adopted by CORG has been widely
used in addressing a similar problem (i.e. sentence generation for quality test-
ing and reliability evaluation) where several attempts have been carried out to
generate textual sentences to test programming languages compilers [14,23,29],
and regular expressions [25,30]. We also add a checking task to ensure fault free
generation. The first four tasks are implemented with Prolog and the remaining
two are implemented with Java as in Fig. 2. CORG follows the proposed for-
mal grammar and generates requirements in the proposed format. The six tasks
are described in the following subsections and supported with a step by step
generation example in Fig. 3.

60 A. Zaki-Ismail et al.

Fig. 3. Step by step CORG generation example.

4.1 Content Determination

This task determines which components and sub-components will be included
in the generated requirement R. It consists of two levels, the selection(s) made
at each level lead(s) to different choices in the next level(s). At the first level,
CRS is applied on the components set: Preconditional scope, condition, trigger,
action scope except the mandatory action component as in Fig. 3.1.1. In the
second level, CRS is applied on the sub-comoponents set: different for each
chosen component in the previous level as in Fig. 3.1.2 (i.e., Table 1 for sub-
components association). Eventually, the count and types of components and
sub-components contributing in the generated requirement are identified. This
task embodies the first four lines of the formal grammar and the CompList, and
SubCompList in the output layout of the generated requirements.

Components and sub-components available for selection can be controlled
before the generation process through CORG settings. This allows for adaptation
into different domains and usage scenarios (e.g., CIRCE [1] uses only event-
condition-action ECA components).

CORG: A Component-Oriented Synthetic Textual Requirements Generator 61

4.2 Textual Structuring
Listing 1.3. Random Reordering Algo-
rithm

OutComps = ϕ
While(InComps �= ϕ){

CrrComp = InComps.removeFirst()
Len = OutComp.length()
RandomIdx = getRandom(0, Len+1)
OutComp.insertAt(RandomIdx, CrrComp)

}

This task determines the order of
the components within the sen-
tence and the sub-components within
the component. Alternative arrange-
ment/permutation can be achieved
through the random reordering tech-
nique. The approach takes one ele-
ment (of a given combination) at a
time and inserts it at a random free position in the new version as indicated
in Algorithm 1.3. Similar to CRS, the random reordering is capable of providing
a different permutation at each call (i.e., which ensures the comprehensiveness
of the permutations for the same combination in large enough sizes and main-
tains diversity in small sizes). Figure 3.2 shows the reordered components after
applying random reordering.

4.3 Sentence Aggregation

This task selects the grammatical structures to apply on an individual compo-
nent. By the end of this task, the outlined formal grammar clauses in Task1
shall be assigned a complete random grammatical structure as in Fig. 3.3. A
clause may include up to four different types of parts (i.e., Subject, RelClause,
Predicate and TimeInfo as in Grammar 1.2). Each part has more than one valid
structure. Table 2 lists the alternative structures of each part conforming to the
proposed formal grammar, where NounSize and VFrameSize indicate the count
of distinct nouns and verb-frames in the dictionary respectively. In addition, it
highlights how these structures are used to select a new random structure.

Table 2. Alternative structure for clause’s breakdowns Controlled in CORG

Type Grammatical Rules Pseudo Type Grammatical Rules Pseudo

Subject

if nominalCount = 1 then
ID getRandom(1,NounSize)
Noun getNominal(ID)
return Noun

else
Prep getCompositionPrep()
Noun Prep + getNomi-
nal(nominalCount -1)
return Noun

end if

Predicate

Dictionary selection: the grammatical frames of
each verb stored in the dictionary

ID getRandom(1,VFrameSize)
VFrame selectFrame(ID)
return VFrame

TimeInfo

if Type = ValidTime then
Prep getRandVTimePrep()

else if Type = PreElapsed then
Prep getRandPreTimePrep()

else if Type = InTime then
Prep getRandInTimePrep()

end if
QR getRandQantRel()
Val getRandValue()
Unit getRandUnit()
TI aggregat(Prep,QR,Val,Unit)
return TI

RelClause

if Type = OnProperty then
RelP getPropRelPronoun()
Prop getRandProperty()

else if Type = OnNoun then
RelP getNounRelPronoun()
Property ϕ

end if
VFrame getVerbFrame()
RVF realizeFrame(VFrame)
RC aggregat(RelP,Prop,RVF)
return RC

62 A. Zaki-Ismail et al.

4.4 Lexicalisation

In this task, the chosen grammatical rules in the previous task are populated
with randomly selected lexical words conforming to the grammatical roles as in
Fig. 3.4. These words are fetched from the dictionary. Table 3 lists the structures
(each has a grammatical role) in the dictionary with descriptions. Each structure
instance has an “Id” to allow random selection from the same structure type
(i.e., a random number is generated to fetch the lexical word whose id equals
the generated number and whose structure (grammatical role) is regulated by
the syntactic rules as indicated in Table 2). By the end of this task, the sub-
components’ breakdowns in the output layout shall be complete.

Table 3. Dictionary Metamodel

Structure Description Example

noun(ID, Noun) Nominal Noun noun(1, ‘the car’)

vFrame(ID,Verb,ArgList) verb-frame representing the predicate structure.

-*ArrgList: expresses the verb associated:

arguments notations and prepositions in order

within the frame *Arg-notations: (‘v’ →
sys-value) and (‘n’ → noun)

vFrame(1, ‘set’, [‘to’, ‘v’])

property(ID, Property) Property for nominal nouns used in relative

clauses

property(1, ‘door’)

sysValue(ID, Value) domain values for nominal nouns or properties sysValue(1, ‘[Locked]’)

4.5 Realisation

The generated components for each requirement require tense adjustment as per
the English grammar. This task considers adjusting the tense of each component
(each expressed by a clause). In this task, all components’ types are assigned
to the present tense except actions (future tense), as shown in Algorithm1.4.

Listing 1.4. Tense Adjustment

If(Comp.Type = "act")

Voice = get random voice

If(Voice = "Active"}

adjustToImperative(Comp)

Else

adjustToPassiveFuture(Comp)

Else

adjustToActivePresent(Comp)

For diversity, we put the action in the
imperative form using active and pas-
sive voices randomly. Figure 3.5 shows
an example of the components after
tense adjustment. We adjust the tense
using SimpleNLG. First, we prepare
the subject, verb and complement of
the current component. Then we feed
them to the SimpleNLG realiser along side other grammatical flags (e.g., tense(in
both levels), voice, person). Finally, we readjust the affected parts in the require-
ment and their breakdowns.

4.6 Requirements Checking

In the generated requirement a “,” is appended to all the components (except
the last one). Depending on the generated components, random re-ordering may

CORG: A Component-Oriented Synthetic Textual Requirements Generator 63

cause grammatical errors because of the incorrect punctuation. We use Stan-
fordNLP to detect ungrammatical sentences by analysing the output of the parse
tree. The parse tree represents the syntactic structure of the given string accord-
ing to a specific context-free-grammar. A requirement sentence whose obtained
parsing tree is labeled with an “s” (i.e., sentence) is correct [21]. Figure 4 shows
two parsing tree (a) and (b) of the same requirement (with different punctua-
tion), tree in (b) is grammatically correct while the other one in (a) is incorrect.
(a) can be corrected by removing incorrect comma(s) as in (b). In general it is
not recommended to depend on the output of the parse tree alone in such check-
ing. However, in our case it is effective because the realisation task ensures the
correctness of each component. According to Fig. 3.6, the generated requirement
in the tracing example is correct.

Fig. 4. Parsing trees of (the same requirement sentence with different punctuation)

5 Evaluation

In this section, we evaluate CORG1 using assessment criteria (coverage and time
performance metrics) that have proven effective in evaluating text generation in
several approaches [14,25,30]. We conducted five experiments to evaluate CORG
on such metrics in addition to assessing diversity, correctness, and realisticness:

– Coverage: Does CORG provide comprehensive combinations of the compo-
nents and sub-components according to RCM?

– Time Performance: How does the requirements size affect CORG’s generation
time?

– Diversity: Is CORG capable of providing all the possible arrangements of each
combination?

– Correctness: Does CORG correctly generate requirements as expected?
– Realisticness: Can CORG generate semantically sound requirements

The dictionary2 used in the generation contains 16 nominal nouns, 7 verb
frames, 4 values and one property (i.e., obtained from requirements used in [9]).
1 CORG Source Code: https://github.com/ABC-7/CORG/tree/main/CORG.
2 Dictionary and Generated-requirements:https://github.com/ABC-7/CORG/tree/

main/Experiment.

https://github.com/ABC-7/CORG/tree/main/CORG
https://github.com/ABC-7/CORG/tree/main/Experiment
https://github.com/ABC-7/CORG/tree/main/Experiment

64 A. Zaki-Ismail et al.

5.1 Generation Coverage

In this experiment, we generated 500 unique requirements (see Footnote 2) since
the possible combinations of components and sub-components are 448 (i.e., cal-
culated using nCr). The basis of our evaluation is the correct combinations of
the possible power set of components and sub-components that can constitute
one requirement. We evaluate the coverage on two levels.

First level tests the coverage of the possible correct components combinations.
Figure 5(a) shows a Venn-diagram highlighting in dark the correct combinations
of components among all the possible combinations (i.e., a requirement with-
out action is incorrect). Figure 5(b) shows the percentage of each components
combination within the generated requirements. It can be seen that, the gener-
ated requirements cover all the correct combinations and do not incorporate any
incorrect combinations (e.g., a requirement with no action).

Fig. 5. (a) Venn-diagram for components combination (correct combinations high-
lighted in dark gray). (b) Components combinations percentages in generated require-
ments

In the second level, we evaluate the coverage of the sub-components of each
individual component. Figure 6 shows the ability of CORG to cover the gener-
ation of the possible sub-components combinations (i.e., where, the action has
24 = 16 possible combinations of its associated sub-components, condition and
trigger have 23 = 8, and the other components have 22 = 4 combinations). Each
column shows the percentages corresponding to each combination of the sub-
components for the intended component within the entire requirements. It can
be seen that, no combination is missed.

CORG: A Component-Oriented Synthetic Textual Requirements Generator 65

Fig. 6. The possible sub-components combinations coverage

5.2 Time Performance

Fig. 7. CORG avg. Generation time

We evaluated CORG generation time
(on Prolog) for unique and redundant
requirements on ten different data-
set sizes. We measured the average
time of five samples for each data-set
size in both (unique and redundant
data-sets). Figure 7 shows that CORG
generates up-to 10000 unique require-
ments in around seven seconds and
around one second for the redundant
requirements. Unique data-set generation requires more time since more time is
required to eliminate and replace redundant generation attempts with unique
ones. The unique generation time depends on the dictionary size (larger dictio-
nary sizes guarantee less generation time especially for larger data-set sizes).

5.3 Diversity Evaluation

The textual structuring step in Sect. 4.2 is responsible for maintaining struc-
ture diversity within the generated requirements (i.e., by getting different per-
mutation each time for the given combination). To assess diversity, we set
an experiment to generate all requirements holding one combination, then
assess diversity (i.e., permutations) within the generated requirement. The pre-
sumed combination is a requirement with condition, trigger and action com-
ponents (i.e., any generated requirement would have the three components).
This combination has six permutations: {(Cond,Act,Trig), (Cond,Trig,Act),

66 A. Zaki-Ismail et al.

(Trig,Act,Cond), (Trig,Cond,Act), (Act,Trig,Cond), (Act,Cond,Trig)}. Finally,
we informed CORG to generate just 10 requirements with this setting. Figure 8
shows that, the six arrangements are generated in the first seven requirements
(i.e., the remaining requirements have repeated arrangements). It is worth noting
that, this displayed output is before the tense adjustment step.

Fig. 8. 10 generated requirements for the combination (condition, trigger, action) high-
lighting the corresponding complete six permutations

5.4 Correctness Evaluation

We feed the 500 requirements generated in the coverage experiment to an auto-
mated NLP-based requirements extraction approach [28]. Then, we automat-
ically compared the generated breakdowns (i.e., components, sub-components
and, arguments) to the extracted ones3 through string matching. The experi-
ment shows that all requirements are generated correctly as expected. The used
extraction approach depends mainly on StanfordNLP typed dependency which
has a percentage of error [28]. To provide the extraction with fully correct inter-
pretations, the sub-components text of each generated sentence are addressed
apart by StanfordNLP and their corresponding typed dependencies are aggre-
gated. Finally, the aggregated typed dependencies are used in the extraction.

3 Extraction-Output: https://github.com/ABC-7/CORG/blob/main/Extractionlog.
xml.

https://github.com/ABC-7/CORG/blob/main/Extractionlog.xml
https://github.com/ABC-7/CORG/blob/main/Extractionlog.xml

CORG: A Component-Oriented Synthetic Textual Requirements Generator 67

5.5 Realisticness Evaluation

We evaluated the ability of CORG to generate realistic requirements (similar
to human-written ones). To achieve this, we fed the tool with the dictionary
of a group of manually-specified requirements for a target system. Then, we
used CORG to check if these requirements can be generated or not - reverse
engineering utilising the inference engine of Prolog to check if a given output
could be produced from the given input.

We conducted the experiment on a data-set of 19 requirements collected from
the literature - used in [9]. We fed CORG with (a) the requirements dataset and
(b) the system dictionary. CORG successfully constructed the breakdown of
all input requirements4. This experiment shows that a subset of the generated
requirements is both syntactically and semantically correct.

5.6 Strengths and Limitations

The key strengths of CORG are: (1) providing combinatorially complete coverage
for components and sub-components, (2) allowing the customisation of compo-
nents and sub-components contributing in the generation process, (3) ensuring
structure-diversity in small and large data-set sizes, (4) associating the generated
requirements with their breakdowns and (5) large number of requirements may
be generated from a small dictionary with very few details (i.e., just lexical words
and verb frames). It is also worth noting that CORG can be easily enhanced to
ensure the generation of semantically reasonable requirements by adding associ-
ation rules to the input dictionary to only allow certain lexical words and verb
frames to be selected together.

The main limitation of CORG is that the generated requirements are not all
semantically reasonable because the concrete system relations are not considered
in the dictionary. However, this does not affect the effectiveness of the generated
requirements in enabling a reliable evaluation of the formalisation approaches
because such approaches are only affected by the syntax of the input.

6 Related Work

We cover the related work from three perspectives:
(a) sentence generation from lexical words: data driven textual gen-

eration is a widely used text generation approach (HALogen [13], Nitrogen [12]
and FERGUS [2]. These approaches adopt a two-stage architecture. In the first
stage, a forest of the possible expressions is constructed. In the second stage, the
expressions are selected using a probabilistic model. In contrast, CORG applies
CRS instead of the forest construction to save generation time. GENERATE
[10] randomly generates sentences using a small set of English phrases, syntactic

4 Input-requirements, Used-dictionary, and Resulting-breakdowns for realisticness
experiment: https://github.com/ABC-7/CORG/tree/main/ValidationExperiement.

https://github.com/ABC-7/CORG/tree/main/ValidationExperiement

68 A. Zaki-Ismail et al.

rules and transformation rules to form valid sentences. As input, it takes a dic-
tionary containing both the nouns and verbs (semantically coded to assure that
invalid sentences such as “The building smoked a cigar” will not be produced).
The dictionary consists of twenty verbs and twenty nouns. For flexibility, CORG
supports dictionaries with or without semantics.

(b) Requirements generation: most approaches generate textual require-
ments from software engineering models [19]. In [18], NL requirements are gener-
ated from UML class diagrams. This approach uses a rule set in conjunction with
a linguistic ontology to express the components of the diagram. Alternatively,
the approach presented in [4] relied on system domain-specific grammar to pro-
vide description and information regarding specific requirements technical terms.
In [5] the Semantics of Business Vocabulary and Business Rules (SBVR) was
used as an intermediate representation for transforming UML into constrained
natural language. Similarly, CORG uses a defined grammar for the generated
requirements controlled by a set of rules. However, the content of the generated
requirement(s) is syntactically correct but not limited by a specific system since
no relations are enforced in the dictionary. Other approaches generate creative
requirements (i.e., more useful and novel requirements) for the sustainability
of software systems. Bhowmik et al [3] propose a framework to obtain creative
requirements by making unfamiliar connections between familiar possibilities of
requirements. In [6], a novel framework generates creative requirements utilis-
ing NLP and ML techniques for both novel and existing software. The frame-
work reuses requirements from similar software in the application domain and
leverages the concept of requirement boilerplate to generate candidate creative
requirements. Such approaches include a manual checking process to discard use-
less outcome. Similarly, CORG eliminates useless requirements –syntax oriented–
through an automatic checking process.

(c) Text generation for evaluation: several attempts [14,23,29] have been
carried out to generate sentences to test the parsing of programming languages
compilers. In addition, textual strings are generated in [25,30] to evaluate reg-
ular expressions. The main feature of these techniques is that the generated
text must obey to the formal grammar of the compiler/regular expression. Sim-
ilarly, requirements generated by CORG follow a formal grammar for describing
systems behavior. We share with such approaches the goals and metrics of the
generated text (i.e., combinations coverage for robust evaluation and generation
performance).

7 Conclusion

In this paper, we introduced CORG; a synthetic requirements generator that
can produce all the possible combinations and diverse structures with respect to
the RCM set of key requirements properties. First, we defined a formal grammar
for the generated requirements. Then, we employed the backtracking technique
with a controlled random-selection to ensure combinatorial comprehensiveness
and maintain diversity in small data-sets. Evaluation results show that CORG is

CORG: A Component-Oriented Synthetic Textual Requirements Generator 69

able to generate comprehensive combinations with diverse structures regardless
of the size of the generated requirements. In the future, we aim to investigate
CORG capabilities in: (1) generating requirements in other languages, (2) fil-
tering semantically unreasonable requirements utilising both human vetting and
dictionary rules (which can be useful for generating creative requirements).

References

1. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language require-
ments with circe. Autom. Softw. Eng. 13(1), 107–167 (2006)

2. Bangalore, S., Rambow, O.: Exploiting a probabilistic hierarchical model for gen-
eration. In: Proceedings of the 18th Conference on Computational Linguistics, vol.
1, pp. 42–48. Association for Computational Linguistics (2000)

3. Bhowmik, T., Niu, N., Mahmoud, A., Savolainen, J.: Automated support for com-
binational creativity in requirements engineering. In: 2014 IEEE 22nd International
Requirements Engineering Conference (RE), pp. 243–252. IEEE (2014)

4. Burden, H., Heldal, R.: Natural language generation from class diagrams. In: Pro-
ceedings of the 8th International Workshop on Model-Driven Engineering, Verifi-
cation and Validation, pp. 1–8 (2011)

5. Cabot, J., Pau, R., Raventós, R.: From UML/OCL to SBVR specifications: a
challenging transformation. Inf. Syst. 35(4), 417–440 (2010)

6. Do, Q.A., Bhowmik, T., Bradshaw, G.L.: Capturing creative requirements via
requirements reuse: a machine learning-based approach. J. Syst. Softw. 170, 110730
(2020)

7. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation:
core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)

8. Gatt, A., Reiter, E.: SimpleNLG: a realisation engine for practical applications.
In: Proceedings of the 12th European Workshop on Natural Language Generation
(ENLG 2009), pp. 90–93 (2009)

9. Ghosh, S., Shankar, N., Lincoln, P., Elenius, D., Li, W., Steiener, W.: Automatic
requirements specification extraction from natural language (arsenal). Technical
report, SRI INTERNATIONAL MENLO PARK CA (2014)

10. Hackenberg, R.G.: Generate: a natural language sentence generator. CALICO J.
2(2), 5–8 (2013)

11. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A new algorithm for
the hypergraph transversal problem. In: Wang, L. (ed.) COCOON 2005. LNCS,
vol. 3595, pp. 767–776. Springer, Heidelberg (2005). https://doi.org/10.1007/
11533719 78

12. Langkilde, I.: Forest-based statistical sentence generation. In: Proceedings of the
1st North American chapter of the Association for Computational Linguistics Con-
ference, pp. 170–177. Association for Computational Linguistics (2000)

13. Langkilde-Geary, I.: An empirical verification of coverage and correctness for a
general-purpose sentence generator. In: Proceedings of the International Natural
Language Generation Conference, pp. 17–24 (2002)

14. Lutovac, M.M., Bojić, D.: Techniques for automated testing of Lola industrial robot
language parser. Telfor J. 6(1), 69–74 (2014)

15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The Stanford CorenLP natural language processing toolkit. In: Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 55–60 (2014)

https://doi.org/10.1007/11533719_78
https://doi.org/10.1007/11533719_78

70 A. Zaki-Ismail et al.

16. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. (TOMACS) 8(1), 3–30 (1998)

17. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (ears). In: 17th IEEE International Requirements Engineering Conference,
RE 2009, pp. 317–322. IEEE, August 2009

18. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language speci-
fications from UML class diagrams. Requirements Eng. 13(1), 1–18 (2008)

19. Nicolás, J., Toval, A.: On the generation of requirements specifications from soft-
ware engineering models: a systematic literature review. Inf. Softw. Technol. 51(9),
1291–1307 (2009)

20. O’Donnell, M.: Sentence analysis and generation-a systemic perspective. Ph.D.
thesis, University of Sydney (1994)

21. Osama, M., Zaki-Ismail, A., Abdelrazek, M., Grundy, J., Ibrahim, A.: Score-based
automatic detection and resolution of syntactic ambiguity in natural language
requirements. In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 651–661. IEEE (2020)

22. Pereira, F.C., Shieber, S.M.: Prolog and Natural-Language Analysis. Microtome
Publishing (2002)

23. Purdom, P.: A sentence generator for testing parsers. BIT Numer. Math. 12(3),
366–375 (1972)

24. Qiao, Y., Zhong, K., Wang, H., Li, X.: Developing event-condition-action rules in
real-time active database. In: Proceedings of the 2007 ACM Symposium on Applied
Computing, pp. 511–516. ACM (2007)

25. Radanne, G., Thiemann, P.: Regenerate: a language generator for extended regular
expressions. In: Proceedings of the 17th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, pp. 202–214. ACM (2018)

26. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1677–1682. IEEE (2015)

27. Zaki-Ismail, A., Osama, M., Abdelrazek, M., Grundy, J., Ibrahim, A.: RCM-
extractor: automated extraction of a semi formal representation model from natu-
ral language requirements. In: Proceedings of the 9th International Conference on
Model-Driven Engineering and Software Development (2021)

28. Zaki-Ismail, A., Osama, M., Abdelrazek, M., Grundy, J., Ibrahim, A.: RCM:
requirement capturing model for automated requirements formalisation. In: Pro-
ceedings of the 9th International Conference on Model-Driven Engineering and
Software Development (2021)

29. Zelenov, S.V., Zelenova, S.A.: Generation of positive and negative tests for parsers.
Program. Comput. Softw. 31(6), 310–320 (2005)

30. Zheng, L., Ma, S., Wang, Y., Lin, G.: String generation for testing regular expres-
sions. Comput. J. 63, 41–65 (2019)

Automatically Classifying Non-functional
Requirements with Feature Extraction

and Supervised Machine Learning Techniques:
A Research Preview

Mahtab EzzatiKarami(B) and Nazim H. Madhavji

The University of Western Ontario, London, ON N65B7, Canada
mezzati@uwo.ca

Abstract. Context and Motivation: In large projects, extracting the relevant
NFR-information as per the stakeholder’s responsibility and needs can be time-
consuming and challenging. Question/Problem: Classification of NFRs is one
way to mitigate this problem. However, because of the size and complexity of the
SRS, the manual classification of NFRs is considered time-consuming, labour-
intensive, and error-prone. An automated solution is needed that provides a reli-
able and efficient classification of NFRs. Principal ideas/results: Using natu-
ral language processing and supervised machine learning (SML) algorithms, we
investigate feature extraction techniques (i.e., POS-tagging based, BoW, and TF-
IDF) to assess their efficacy in automated classification, in conjunction with the
SML algorithms (such as: SVM, SGD SVM, LR, DT, Bagging DT, Extra Tree,
RF, GNB,MNB, and BNB).Contribution: The proposed combinations: (i) SVM
with TF-IDF, (ii) LR with POS and BoW, and (iii) MNB with BoW, all achieve
precision and recall values greater than 0.85, and process execution time of less
than 0.1 s. Comparison with related work is favourable as is preliminary validation
using an industry dataset.

Keywords: Non-functional requirements · Classification · Supervised Machine
Learning · Feature extraction

1 Introduction

Non-functional requirements (NFRs) describe desirable quality attributes (e.g., perfor-
mance, reliability, and availability) of a software system. In a software requirements
specification (SRS) document, the functional requirements and NFRs are often mixed
together (perhaps categorised under domain or application-specific headers). In large
projects, understanding and extracting the relevant NFR-information as per the stake-
holder’s responsibility and needs can be time-consuming and challenging, due to the
size, complexity, and lack of familiarity with the SRS.

For example, in one large project [1], there were approx. 600 regulatory requirements
buried amongst 12,000 requirements spread over a thousand pages of a contract. In such

© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 71–78, 2021.
https://doi.org/10.1007/978-3-030-73128-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_5

72 M. EzzatiKarami and N. H. Madhavji

cases, manually identifying the needed NFRs for project-work is effortful and error-
prone [1]. Other researchers [2] have also shown that classifying NFRs into different
types can aid stakeholders’ project concerns [2].

In our research, we investigated how accurately we can classify NFRs automati-
cally into various types; in particular, usability, security, performance, and operational
requirements – which are the top four NFR-types in the PROMISE dataset. The goal of
our research is to provide stakeholders with a reliable and efficient solution for extract-
ing specific NFRs from SRS documents using natural language processing techniques
combined with supervised machine learning (SML) algorithms. We investigate feature
extraction techniques (i.e., POS-tagging based, BoW, and TF-IDF) to assess their effi-
cacy in automated classification, in conjunctionwith the SMLalgorithms (such as: SVM,
SGD SVM, LR, DT, Bagging DT, Extra Tree, RF, GNB, MNB, and BNB).

The resultant combinations: (i) SVM with TF-IDF, (ii) LR with POS and BoW, and
(iii)MNBwithBoW, all achieve precision and recall values greater than 0.85 and process
execution times of less than 0.1 s; meaning, the right NFRs would be rendered, and
quickly, to the stakeholder concerned. Comparison with related work [2, 4] is favourable
as is the classification of NFRs in an industry dataset.

2 Related Work

We describe and analyse several previous attempts at classifying NFRs using machine
learning techniques. In 2006, Cleland-Huang et al. [2] classified 370 NFRs from 15 SRS
documents developed by graduate students. Their used certain keywords as indicator
terms to distinguish different types of NFRs, trained these, and then classified NFRs
from given documents according to the occurrence of the indicator terms. Their model
yielded a classification recall of approx. 0.8 (considered high) and precision of 0.12
(low) due to a high rate of false positives.

In 2011, Zhang et al. [3] conducted an empirical study on classifying NFRs using
SVM and the PROMISE dataset. Three kinds of index terms, at different levels of
linguistic semantics (N-grams, individual words, and multi-word expressions (MWE))
were used in the representation ofNFRs. Their results show that index terms as individual
words with Boolean weighting outperform N-grams and MWEs; and using MWEs does
not enhance the representation of individual words significantly. Also, they observed
that automatic classification results in better performance on categories of large sizes
than of small sizes. They conclude that individual words are the best index terms in text
representation of short NFR descriptions. In comparison to the study by Cleland-Huang
et al. [2], they report higher precision but lower recall values.

In 2017, Lu et al. [4] classified app user reviews into four types of NFRs (i.e.,
reliability, usability, portability, and performance), functional requirements, and others.
Their approach combines four classification techniques (BOW, TF-IDF, CHI2 andAUR-
BOW) with three machine learning algorithms (Naïve Bayes (NB), J48, and Bagging)
to classify the reviews. The combination of AUR-BOW with Bagging achieved the
best result (precision: 0.71 and recall: 0.72). An interesting observation made was that
automatic classification using an imbalanced dataset performs poorlywhen the numeracy
of certain types of NFRs is low.

Automatically Classifying Non-functional Requirements 73

2.1 Analysis

Some opportunities motivated us to conduct our research:

• Most of the related works have used the PROMISE dataset, which has at least two
issues: (i) it is imbalanced, and (ii) the number of NFRs is not numerous (370
NFRs). For our investigation, we combined two datasets (PROMISE and PURE
(with 160 NFRs)) totalling more than 500 NFRs. In addition, we separately apply (or
preliminarily validate) our techniques on an industry dataset (of approx. 260 NFRs).

• We cover a number of techniques in combinations: three feature extraction techniques
(BOW, TF-IDF, and POS-tagging) and 10 supervised machine learning techniques
(SVM, SGD SVM, DT, Extra Tree, Bagging Tree, LR, RF, GNB, BNB, and MNB).

3 Research Investigation

As mentioned in Sect. 1, our investigation focuses on four NFR types: usability,
performance, security, and operational NFRs. The key research question we ask is:

Which combination of feature extraction techniques (BOW, TF-IDF, and POS-tagging)
and SML algorithms (SVM, SGD SVM, DT, Extra Tree, Bagging Tree, LR, RF, GNB,
BNB, and MNB) yields the highest precision and recall values?

The higher the precision value, more the proportion of the identified NFRs that are
relevant to the inquiring stakeholder. The higher the recall value, less the relevant NFRs
that are missed (or not identified) from the dataset.

In a practical setting, the best combination of feature extraction technique and the
SML algorithm could be a basis for a real-time interactive tool that serves the needs of
various kinds of stakeholders: analysts, architects, programmers, testers, product man-
agers, domain experts andmore. They all need to know the details of theNFRs relevant to
their concern, in a given project, from time to time. For example: What are the reliability
needs of the system and have I addressed them all in the design of the system’s architec-
ture? Is my choice of algorithms to code appropriate for the performance requirements
of this device? Does the envisaged core quality of the system give us a competitive
advantage?

3.1 Datasets

We use two datasets: NFR PROMISE dataset and the PURE dataset1. The PROMISE
dataset consists of 625 requirements (255 functional, 370 NFRs). There are 11 groups
of NFRs but because the number of instances of a few types is low, we chose the top four
types for classification: usability (62), performance (48), security (58), and operational
(61).We also used the PURE dataset (which focuses on public requirements documents).
It consists of 296 requirements (136 functional and 160 NFR). There are 16 groups of
NFRs in this dataset and the top three types are usability (54), performance (18), and
security (17).

1 https://zenodo.org/record/1414117#.X7wfOWhKiUk.

https://zenodo.org/record/1414117%23.X7wfOWhKiUk.

74 M. EzzatiKarami and N. H. Madhavji

We combine these two datasets in a sequence to form the training set. The effect on
precision and recall of mixing the two datasets differently (e.g., interleaved NFRs) is
not empirically tested though it seems that the SML algorithms are agnostic about the
ordering of the NFRs in the dataset.

Given a dataset of all requirements, we first identify functional requirements and,
separately, NFRs. For this, we use the distinguishing criteria from the established liter-
ature [5]. We then further classify the NFRs into the four (for PROMISE) and three (for
PURE) predominant types. By stripping off extraneous metadata, we then convert the
datasets into standard CSV files. They include the columns: “Requirement Description”,
“F/NF” for functional or NFR, and “Subtype” of NFRs. Table 1 depicts example NFRs
from the PROMISE and PURE datasets.

Table 1. Example NFRs from the PROMISE and PURE datasets

Label Requirement text Dataset

Availability “Aside from server failure the software product shall achieve 99.9%
up time”

PROMISE

Safety “The system will do periodic backups through a live internet
connection”

PURE

3.2 Research Methodology

We want to determine the best combination pair of the (i) feature extraction and (ii)
supervisedmachine learning, techniques.Weoverview this process in this Previewpaper;
for further details see (the first author’s thesis): https://ir.lib.uwo.ca.

Step 1: Data Preprocessing
In this step,wefirst parse theCSVfile into aDataFrame for the convenience of processing
with Python, with each row in the DataFrame representing a single requirement sample.
This involves: (i) parsing the given csv file, (ii) using NLTK library to remove case
distinctions, (iii) tokenization and punctuation removal, (iv) stop word removal (v) part
of speech tagging, and (vi) stemming and lemmatization.

Step 2: Feature Extraction
We now want to extract features as input to our classification algorithm:

• Requirements are converted into numeric vectors using the BoW in [6].
• TF-IDF scores associated with each term present in a given requirement is used in
this classification framework.

• We adopted a feature list proposed by Hussain et al. [7] with which they attained 95%
accuracy in the binary classification of FRs and NFRs. (However, note that they did
not classify NFRs into sub-types) Thus, adopting the NFR-characteristics from [5],
we added a number of syntactic features (e.g., # Adjectives, #Adverbs, and #Nouns)
and coded keyword features as part of speech groups.

https://ir.lib.uwo.ca

Automatically Classifying Non-functional Requirements 75

At this point, three feature sets are prepared. For each of them we have xtrain (data
frame with requirement features) and ytrain (data frame that includes target values):
(i) For the classification of functional/NFR, ytrain contains 1 (for functional) or 0 (for
NFR); and (ii) For multiclass classification of NFRs, ytrain contains 1 for usability, 2
for security, 3 for performance, and 4 for operational types. The output of this step is
the three extracted feature sets that are input to machine learning algorithms of training
classifiers.

Step 3: Training Classifiers
Here, we investigate the performance of the 10 mentioned classifiers using stratified
10-fold cross-validation technique [2]. Each time the dataset is divided into 10 subsets,
nine are used for training and the remaining one is used for testing.We repeat the process
10 times and the performance of the classification is measured as average precision and
recall of the 10 repetitions complemented by their execution time.

Step 4: Classifying Requirements
Each of the classifiers trained in Step 3 is used to predict for each requirement whether
it belongs to usability, performance, security, or operational.

4 Preliminary Evaluation

This section describes the results of the described investigations. In Sect. 4.1, we give
precision and recall to evaluate how well the model learnt to classify non-functional
requirements. Comparison with related work is also described. In Sect. 4.2, we show
the performance of the model using an industry dataset. Results of the experiments with
this dataset are shown as well.

4.1 Preliminary Analysis

Table 2 gives an overviewof the results ofmulti-class classification ofNFRs. The average
of POS, BoW, and TF-IDF shows that SVM achieved the best results with recall of 0.88
and precision of 0.89. LR, Extra Tree, MNB and SGD- SVM with recall values of 0.86,
0.85, 0.85, and 0.84 (resp.) performed well too. All classifiers achieved recall values
above 0.8 except DT, Bagging Tree, and BNB.

Among all the combinations of feature extraction techniques and machine learn-
ing algorithms, SVM with TF-IDF (recall: 0.9, precision: 0.92), LR with POS and
BOW (recall:0.90, precision: 0.87), and MNB with BOW (recall: 0.90, precision: 0.88)
achieved the best results. However, further empirical work is needed to assess the
root-causes of the 70-odd misclassified NFRs and how to improve the performance.

Comparison with related work, e.g. [2, 4], is generally favourable (except DT (0.74)
and Bagging Tree (0.75) vs. [2]: 0.76). Our best case SVM/TF-IDF vs. Related work
are depicted in Table 3.

76 M. EzzatiKarami and N. H. Madhavji

Table 2. Results of NFR classification

Algorithm POS BOW TF-IDF Averege

Precision Recall Time Precision Recall Time Precision Recall Time Precision Recall Time

SVM 0.89 0.87 0.13 0.88 0.87 0.1 0.92 0.9 0.08 0.89 0.88 0.1

SGD SVM 0.85 0.83 0.25 0.88 0.86 0.27 0.84 0.82 0.3 0.86 0.84 0.27

LR 0.9 0.87 0.09 0.90 0.87 0.9 0.9 0.85 0.09 0.9 0.86 0.09

DT 0.78 0.76 0.14 0.77 0.74 0.16 0.76 0.72 0.17 0.77 0.74 0.16

Extra tree 0.88 0.85 1.6 0.88 0.84 1.72 0.9 0.86 1.8 0.89 0.85 1.7

Bagging tree 0.81 0.76 0.87 0.8 0.76 0.94 0.81 0.74 1.03 0.81 0.75 0.94

RF 0.82 0.78 0.2 0.85 0.81 0.22 0.84 0.8 0.21 0.84 0.8 0.21

GNB 0.81 0.81 0.08 0.82 0.82 0.1 0.8 0.79 0.1 0.81 0.81 0.09

MNB 0.88 0.86 0.04 0.9 0.88 0.05 0.89 0.83 0.05 0.89 0.85 0.04

BNB 0.85 0.77 0.08 0.87 0.75 0.1 0.88 0.78 0.11 0.87 0.77 0.09

Table 3. Best case comparison with related work

Precision Recall Execution
time

Our 0.92 0.90 0.08s

Reference [2] 0.24 0.76 Not
specified

Reference [4] 0.71 0.72 Not
specified

4.2 Preliminary Validation

Table 4 shows recall values ≥0.89 and precision values ≥0.92 of the three classifiers
using an industry dataset (262NFRs): SVM, LR, andMNB, formulti-class classification
of the four mentioned NFR types. An example NFR from this dataset is:

Table 4. Multi-class NFR classification of the industry dataset

Algorithm POS BOW TF-IDF

Precision Recall Time Precision Recall Time Precision Recall Time

SVM 0.93 0.91 0.09 0.96 0.95 0.06 0.96 0.96 0.09

LR 0.93 0.92 0.03 0.96 0.94 0.04 0.93 0.90 0.04

MNB 0.92 0.90 0.02 0.94 0.9 0.03 0.92 0.89 0.02

Automatically Classifying Non-functional Requirements 77

5 Conclusion and Future Work

We used three feature extraction techniques: BoW, TF-IDF, and POS-tagging, combined
with 10 supervised machine learning algorithms SVM, SGD SVM, LR, DT, Extra Tree,
Bagging Tree, RF, GNB, MNB, and BNB for classifying four NFR types (usability, per-
formance, security, and operational NFRs). Also, we used a combination of PROMISE
and PURE datasets (see Sect. 3.1) as our training set. SVM with TF-IDF, LR with POS
and BOW, and MNB with BOW achieved the best results (see Table 2) with recall value
over 0.90 and precision value over 0.87.

Comparison with related work is favourable (see Sect. 4.1). We also preliminarily
validated our results, using an industry dataset (see Table 4), showing recall values≥0.89
and precision values≥0.92. These values suggest that the right NFRswould be rendered,
and quickly, to the stakeholders concerned.

In this research, we used a multi-class classifier for the specified NFR types. For
future work, we intend to investigate whether developing binary classifiers for each of
these NFR types could possibly improve the performance of the classification task at
hand.

Also, in our research thus far, we have considered product quality attributes such as
usability, performance, security, etc. Apart from extending the coverage of the product
quality attributes (e.g., reliability, privacy, and security), a further step in providing a
concern-based NFR classification tool for stakeholders is to consider process quality
aspects such as implementation risk, effort, and cost, which are the bedrock of software
projects in industry. For example, recognising risky requirements can help in prioritising
these requirements over less risky ones in early decision-making in the development
process using the Spiral model of development [8].

Acknowledgments. Thiswork is supported, in part, byNatural Science andEngineeringResearch
Council (NSERC) of Canada.

References

1. Nekvi, I., Madhavji, N.H.: Impediments to requirements-compliance in contractual systems
engineering projects: a case study. ACM Trans. Manage. Inf. Syst. 5(3), 15, 1–35 (2014)

2. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-functional
requirements. Requirements Eng. 12(2), 103–120 (2007). https://doi.org/10.1007/s00766-007-
0045-1

3. Zhang, W., Yang, Y., Wang, Q., Shu, F.: An empirical study on classification of non-functional
requirements. In: Proceedings of the 23rd International Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 190–195 (2011)

4. Lu, M., Liang, P.: Automatic classification of non-functional requirements from augmented
app user reviews. In: Proceedings of the 21st Int. Conference on Evaluation and Assessment
in Software Engineering, June 2017, pp. 344–353 (2017)

5. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley, New
York (1997)

6. Slankas, J., Williams, L.: Automated extraction of non-functional requirements in avail able
documentation. In: Proceedings IEEE 1st Workshop NaturaLiSE, pp. 9–16 (2013)

https://doi.org/10.1007/s00766-007-0045-1

78 M. EzzatiKarami and N. H. Madhavji

7. Hussain, I., Kosseim, L., Ormandjieva, O.: Using linguistic knowledge to classify non-
functional requirements in SRS documents. In: Kapetanios, E., Sugumaran, V., Spiliopoulou,
M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 287–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69858-6_28

8. Boehm,B.W.:A spiralmodel of software development and enhancement. IEEEComput. 21(5),
61–72 (1988)

https://doi.org/10.1007/978-3-540-69858-6_28

RE for AI-Enabled Systems

AdaptationExplore – A Process
for Elicitation, Negotiation, and

Documentation of Adaptive Requirements

Fabian Kneer1(B), Erik Kamsties1, and Klaus Schmid2

1 Dortmund University of Applied Sciences and Arts,
Emil-Figge-Str. 42, 44227 Dortmund, Germany

{fabian.kneer,erik.kamsties}@fh-dortmund.de
2 University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany

schmid@sse.uni-hildesheim.de

Abstract. [Context and motivation] Current and future systems
have to operate in complex and dynamic environments. An adaptive
system addresses these challenges as it monitors its environment and
reacts by changing its behavior. [Question/Problem] Representations
of adaptive requirements (e.g., at runtime) and strategies for decision-
making have gained a lot of interest in past and current research. Yet,
there is a lack of support for elicitation of requirements and environmen-
tal information for adaptive systems.

[Principal ideas/results] We suggest to apply creativity techniques
to elicit adaptation requirements and make use of situations to negotiate
them (a situation represents the state of the system and its environment
at a particular instance of time). [Contributions] In this paper, we
introduce AdaptationExplore, a process for the development of adaptive
systems, which supports engineers in particular during the early phases.
The results of a pilot study are reported. 37 Master students applied the
process on different cases. The study provides first positive experiences
on the effectiveness and applicability of the process.

1 Introduction

The notion of adaptive systems, i.e., systems that react to observations and
adapt their behavior accordingly has gained significant interest in the research
community, due to its wide applicability [1]. The part of the real world that is
relevant to understand a system is usually called its environment (while the term
context is used in the domain of adaptive systems as well, we stick to environment
in this paper). A proper understanding of the environment is a prerequisite to
write requirements for a system. A requirements engineer needs information and
knowledge about the environment to identify and develop possible adaptations
of a system.

An adaptation undertaken by an adaptive system is usually due to changes
in the environment. While the environment of a system always needs to be taken

c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 81–98, 2021.
https://doi.org/10.1007/978-3-030-73128-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_6

82 F. Kneer et al.

into account in engineering, in developing adaptive systems, there is a need to
provide the system itself with a formalized notion of an environment model.

In this paper we introduce AdaptationExplore – a RE process for elicitation,
negotiation, and documentation of requirements for adaptive systems. The goal
of our work is to show that creativity techniques can be beneficially used to
identify adaptation requirements. In order to do so, we introduce the notion of
situation and create a specific process to demonstrate the feasibility of this goal.
The contribution lies in the coverage of the early phases of the development of
an adaptive system. The process embodies several novel ideas:

– Creativity techniques are helpful in generating questions [2], we employ trigger
questions to explore the environment to elicit requirements. Besides the work
by Dey and Lee [3], the application of creativity techniques in the development
of adaptive systems was not described in the literature so far, to the best of
our knowledge.

– We introduce the concept of a situation, commonly understood as something
like “the set of conditions that exist at a particular time in a particular place”,
to the development of adaptive systems. Our idea is that looking at situations
slices problem and solution domain in a way that is beneficial to the develop-
ment of adaptive systems as it helps to deal with the complexity that arises
from the dynamics of the real world. In particular, situations make it easier to
uncover especially those requirements, which are adaptation-relevant, when
situations are integrated and conflicting requirements are negotiated.

– A lightweight tabular goal model is used for documenting requirements.
A goal model has its strengths in modeling hierarchies, dependencies, and
different goal realizations. We suggest a simplified goal model, which consists
only of goals, tasks, resources, and dependencies. We omit a means to model
different goal realizations (as the “mean-ends” link in i*), as a situation in
our view has a goal but only one realization. The simplifications allow us to
use a tabular representation, which makes a goal model more concise.

The remainder of the paper is structured as follows. The related work is dis-
cussed in the following section. In Sect. 3, an overview of the process is provided.
Section 4 introduces a running example that is used to describe the process. The
three phases of the process are explained in detail in Sect. 5, 6, and 7. A pilot
study on AdaptationExplore with Master students is presented in Sect. 9. Finally,
we conclude the paper and discuss the future work in Sect. 10.

2 Related Work

Adaptive systems have gained a lot of interest in RE research. The challenges
of requirements and decision making for adaptive systems have been noted fre-
quently. Different representations are proposed like goal models (KAOS, i*, etc.)
[4–9]. Decision processes based on various formalisms were suggested, for exam-
ple, rule based systems [10] and dynamic decision networks [11].

AdaptationExplore 83

Modeling and understanding the context of a system is an important part of
developing an adaptive system. The need for enhanced requirements elicitation
and a methodology that supports all stages of the development of context-aware
systems was identified by Alegre et al. [12].

Kolos-Mazuryk et al. [13] compared three goal modeling methods, i*, KAOS,
and GBRAM. The authors concluded that all three methods lack capabilities to
explicitly model the system environment. Paja et al. [14] have shown that goal
modeling techniques are a good starting point for strategic decision making due
to the global view on the problem. In their experiment, Business Intelligence
Model (BIM) performed better than i*, because of the integration of context
information, which enhance the decision making process.

Soares et al. [15] compared three goal modeling techniques - Tropos4AS,
AdaptiveRML, and Design Goal Models. They tested if the approaches are suit-
able to cover a set of 20 modeling dimensions of adaptive systems. All three
techniques performed well in modeling goals, changes, and effects of an adapta-
tion. A lack was identified in regard to mechanisms, that is the system’s reactions
towards changes in terms of e.g., scope, duration, timeliness, and triggering.

We identified three approaches in literature that propose a process for devel-
oping adaptive systems. Cheng et al. [16] use goal modeling (KAOS) and a
variation of threat modeling to identify requirements. Cheng uses a goal tree
and a conceptual domain model as a structure to follow in order to identify
uncertainties. The idea is a top-down and bottom-up analysis of the goal tree.
Top-down a goal hierarchy with sub-goals is built. Uncertainties or environment
information, which have effects on the satisfaction of the goals, are added at
the bottom of the tree. The mitigation of uncertainties take place in the bot-
tom up analysis. Here, possible problems will be solved by strategies like adding
high-level goals, sub-goals, or relaxing a requirement.

Another goal-based process was introduced by Morandini et al. [17]. They
developed Tropos4AS, an extension to the Tropos goal modeling framework to
model context, conditions, and errors. The idea is to develop a normal Tropos
goal model and then to extend it by environment information and conditions that
describe influences on the goal satisfaction. The next step is the identification of
failures. Here, possible failures and their reasons are identified. A failure model
is added, which describes how to solve the error by adapting the system.

These processes describe how to develop adaptive requirements, but it was
observed, that the elicitation phase, which is part of every traditional RE effort,
is not explicitly covered, for example by [3,18]. Instead the processes offer some
kind of systematic exploration of the environment in absence of an elicitation
phase.

Dey and Lee [3] use a cognitive technique called Repertory Grid in combi-
nation with problem and design space exploration. The idea is to identify con-
flicts between features in the different contexts in the problem space and resolve
them. After a set of problem spaces was identified the design space is explored
by adding design decisions and identify aspects that have effects on the design
space. Finally, the design space is filtered by user preferences.

84 F. Kneer et al.

Fig. 1. Overview of the AdaptationExplore process

Quite a few elicitation techniques are known in RE, but most of them are
of little help as adaptivity is related to uncertainties (“known unknowns” and
“unknown unknows”). Elicitation techniques primarily help in gathering infor-
mation to answer questions rather than help to raise the right questions.

This is the point where AdaptationExplore comes into play. One contribution
of the process is to employ creativity techniques to empower engineers to become
more innovative in the elicitation phase and discover potentially relevant aspects.

Creativity technique is a rather broad term, encompassing simple approaches
such as checklists (e.g., Osborn’s checklist) as well as complex methods like
TRIZ.1 To foster creativity, we use so called trigger questions. A simple form of
which is W5H1 (Who, Why, What, Where, When, and How). More advanced
triggers are SCAMMPERR [19] or the trigger list by Robertson and Robertson
[20]. They focus on triggering creativity via specific customer aspects or qualities,
for example “speed - what can you make faster?”, “connectivity - what new
connections can you make?”. New triggers were added for example “entertaining
- add a feature that make it fun to use the system” by Burnay et al. [21]. Our
work builds previous approaches and can be viewed as a first attempt to design
creativity triggers for the development of adaptive systems.

3 Process Overview

The AdaptationExplore process was developed following a design science app-
roach [22]. The goal is to build a continuous requirements engineering process
for the development of adaptive systems. In a first iteration, we explored the
notion of the environment. We identified different modeling approaches for the
environment, but also identified a lack of elicitation approaches for environment
information. This leads to a second iteration of AdaptationExplore, which targets
at a better understanding of the environment with the help of situations and cre-
ativity triggers to enhance the elicitation phase, in particular the identification
of adaptation scenarios.

AdaptationExplore in its current shape consists of three phases named Initial
Phase, Exploration Phase, and Integration Phase. Figure 1 shows the phases with
the artifacts they produce.

1 https://www.mycoted.com/Category:Creativity Techniques.

https://www.mycoted.com/Category:Creativity_Techniques

AdaptationExplore 85

In the Initial Phase, first information about the system is gathered with
the help of stakeholders and domain experts. The objective is to define goals,
features, and resources for the adaptive system. The results are a tabular goal
model and a context diagram.

The Exploration Phase uses the tabular goal model to identify possible sit-
uations of the system and the environment. For every situation, an information
and a behavior model is developed. During exploration, the different situations
are analyzed with the help of a questionnaire which contains 15 trigger ques-
tions (TQ). The questions guide the developer to spot missing environmental
information, to identify new situations, and to reduce the uncertainties in a sit-
uation. The exploration phase leads to new insights for the initial phase and to a
refinement of situations. The result of the exploration phase is a set of situations
(with accompanying information and behavior models).

In the Integration Phase, the different situation models are combined into
a joint information and behavioral model. The integration of models typically
leads to conflicts. A conflict is an indicator for a required adaptation between
one or more situations. The objective of the third phase is to solve all conflicts
and to specify adaptation points. The following sections present the three phases
in detail using a running example.

4 Running Example

We use an alarm clock as our running example to illustrate the details of Adap-
tationExplore. Our alarm clock is assumed to be an app running on a smart
phone. On the main screen of the app the clock displays the current time and
the alarm time. A configuration screen is used to manage the alarm time and
to turn the alarm clock on and off. The main task is to wake up the user at a
pre-defined time (alarm time). Besides the time, the user can also specify the
days of a week when the alarm clock should wake her up, e.g. only Monday to
Friday. The alarm sound can be changed by the user, she can choose between a
set of predefined sounds from the smart phone. When an alarm starts, the sound
is played, the smart phone starts to vibrate, and a stop button is shown on the
display.

A snooze function is used to stop the current alarm and shift it by a time given
by the user, e.g. 5 min. If the snooze function is activated in the configuration
view, a snooze button will be shown next to the stop button if an alarm starts.

5 Initial Phase

Figure 2 depicts the initial phase of AdaptationExplore. The goal of the initial
phase is to gather a first overview of the system and its environment by iden-
tifying goals, tasks, resources, and the relations between them. The goal mod-
eling activity results in two models: (a) a goal model that captures and refines
the goals, defines tasks, provides alternative adaptations to satisfy a goal and
resources that are needed; (b) a context diagram, which captures information

86 F. Kneer et al.

Fig. 2. Initial phase of the AdaptationExplore process

Fig. 3. Tabular goal model illustrating goals, tasks/functionalities, and resources - MI
Manual Import, CI - Calendar Import, TII - Traffic Information Import

about the environment. The benefits of goal models and context diagrams in the
early stages of development was already shown by Cheng et al. [16] and [17].

We propose a tabular goal model to establish a pragmatic starting point and
to assist later in the integration of new elements during the exploration phase.
The tabular goal model is a simplification of i∗ for the purposes of our process,
it embodies a subset of concepts and brings them into a tabular representation.
The main differences are: we do not separate between hard and soft goals, and
we left out the concept of actors and their boundaries. For the later stages of our
process, just goals, tasks (functionalities from a runtime perspective), resources,
and dependencies are relevant. Our process is not tied to tabular goal models,
any goal modeling approach would work with our process, for example KAOS
or Tropos [16,17].

An example of a tabular goal model is provided in Fig. 3. The example
contains three goals (G1–G3): the user wants to sleep as long as possible, i.e.,
maximize sleep (G1), but also wants to wake up on time (G3). Further, the alarm
clock should be easy to use (G2).

Four tasks (T1–T4) were identified. Besides the base task (T4), which was
already described in Sect. 4, these are:

(T1) Manual Input: Optionally, the user manually enters the information
needed to calculate the optimal alarm time.

AdaptationExplore 87

Fig. 4. Exploration phase of the AdaptationExplore process

(T2) Calendar Import: The user can choose a dynamic alarm clock to import
information from the calendar app to set the alarm time. The start time of the
first appointment in the morning and travel time to the its location is used to
calculate the alarm time.

(T3) Travel Information import : This task assumes a connection to a nav-
igation system to calculate the time needed to travel to the destination and
adjust the alarm time accordingly. This means, if there is a traffic jam on the
way to the office, the alarm time is shifted based on the needed time to drive to
the office. The according functionality at runtime is only available if the GPS is
active on the smart phone, the location of the first appointment is known, and
a connection to the navigation system is present.

The table shows in the upper-right matrix, formed by tasks and goals, the
positive or negative impact (--- to +++) that a particular task has on a given
goal. This resembles contribution links in the i* notation.

The Data in/out part of the table lists the relevant data items for the system
and the lower-right matrix relates those data items to the tasks. A cross in a
particular cell denotes that the task uses this data item as an input or output.

The entries R1–R4 denote the different resources that can be used by the sys-
tem. As we do not model the system boundaries or connected actors, a resource
can also represent an actor (e.g., the user), who provides or needs data. (R1)
The user is the first resource for information. As the application runs on a (R2)
smartphone, smartphone applications like (R3) a calendar or a traffic informa-
tion provider (R4) can also be used.

In this example the user is the main resource for information. Only if he is
not available the second source should be used. This is shown in the priority
matrix in the lower left part. It relates data items to resources and shows the
ranked priority between a data item and from which resource it should be taken.

6 Exploration Phase

The exploration phase aims at unfolding previously unknown features of the
environment. For this purpose specific situations of the system and the environ-
ment are modeled and analyzed to understand the behavior of the system and
the involved environmental entities. Figure 4 shows the steps and results of the
exploration phase. Core concept of this phase is a so-called situation.

88 F. Kneer et al.

6.1 Situation

The term situation is commonly understood as something like “the set of condi-
tions that exist at a particular time in a particular place”2. The term has also a
distinct meaning in philosophy and psychology. In short, it has a perspective, it
frames the real world, and it has an often implicit subject. We believe the concep-
tion behind the term is useful in developing adaptive systems as it helps to deal
with the complexity that arises from the real world. Looking at situations slices
problem and solution domain in a way that is beneficial to the development of
adaptive systems. In the remainder of this subsection, we define the term in the
context of adaptive systems and compare it to related terms such as scenario.

We define a situation as an abstraction that embodies the structure, function,
and behavior of a system and the relevant part of the environment at a particular
location over a time period of particular interest.

The concept of views and viewpoints has gained a lot of interest in the past,
inside RE e.g., [23] and in SE in general. A characterizing element of a view is a
viewpoint, for instance taken by an actor or stakeholder. Similar to a view, a sit-
uation can be incomplete. In contrast, in a situation, the notions of environment,
location, and period of time are more prevalent.

The term scenario stands for a broad range of related concepts. For example
the NASA [24] use operational scenarios to develop dynamic views of the sys-
tems operations. The idea is to analyze a function in various modes and mode
transitions. Also included in the analysis is the interaction of the system with
external interfaces and the reaction on faults and errors. Sutcliffe [25] has sum-
marized advantages and disadvantages of scenarios. A major advantage is that
scenarios capture patterns of the real world. Another advantage is the level of
detail and because of this, they are easy to understand also by non-technicians.
The disadvantages are related to the lack abstraction and their quantity. A sit-
uation is the basis for a creative process to identify potential scenarios. In other
words, a situation is a crystallization point for unfolding adaptation scenarios.
From a scenario perspective, a situation is a starting point for an adaptation
scenario sequence.

In conclusion, a situation is most closely related to context among the dis-
cussed terms and is an attempt to make it more precise in a way that furthers the
creative process. The strength of situations are their ability to slice a description
in a way that fits to adaptive systems, the quantity of possible situations is a
clear drawback.

6.2 Identification of Situations

The first step is to identify situations, the goal is to identify different realiza-
tions of a task in a given situation. By focusing on a specific situation, missing
alternatives or required resources can be identified. The first situations are iden-
tified using the goal and context model of the initial phase. The result is a set

2 https://www.macmillandictionary.com.

https://www.macmillandictionary.com

AdaptationExplore 89

of situations. Each situation is defined by a description, an information model,
and a behavior model.

Textual Description. We suggest a textual description of a situation. The
following form contains an example of a situation describing the base task. The
form helps to frame a situation that should be analyzed in more depth.

1) Situation Name: ”Wake person in bedroom (Base)”
2) Information Source: ”Martin Spencer”
3) Description: ”The user is in his bedroom using the alarm clock to wake up on time. The

alarm clock is set up to wake the user at 8 o'clock with a possible delay by the snooze
function.”

4) Task: ”Base”
5) Environment: ”Smart phone, user”
6) System: ”checkAlarm(), snooze(), alarm()”
7) Constraints:

Environmental: ”-” Non-functional: ”-”

The form gathers general information of a situation such as its name (1),
source (2), for example a stakeholder or document, and a short description
(3). The task slot (4) refers to the name of the task that is analyzed and
described in the situation (with a focus on a single realization, no adaptation),
the base task of the alarm clock in the running example. The environment slot
(5) describes when/where/what environment elements (connected devices, user,
etc.) are available. The system slot (6) contains information about the active
elements of the situation model (e.g., available methods, internal components)
used in the situation. Finally, the form captures constraints (7) in the environ-
ment or non-functional constraints that we can not influence or change. In the
example situation, we have not much information about the environment and
we need to investigate by modeling the situation and analyze it.

Situation Modeling. For the supplementary modeling of a situation we suggest
two models, an information model (e.g., UML class diagrams) and a behavior
model (e.g., UML activity, sequence, or statemachine diagram). Each aspect
that is relevant for the task/functionality and all environmental elements that
are available in a situation are to be covered by these models.

We start with the situation “Wake person in bedroom (Base)” that is used to
analyze the base task of the alarm clock. Figure 5 shows the information model
for the situation. All identified entities are modeled in the active context, which
means we need to analyze this element in the next step. The model contains
the alarm clock with the attributes and methods that are needed for the base
task. It also contains first attributes gathered for the smart phone and a class
for the user. The situation models are used next to identify tasks that are not
sufficiently understood.

90 F. Kneer et al.

Fig. 5. Information model for base task

6.3 Situation Analysis with Trigger Questions

The analysis is guided by trigger questions (TQ). We selected trigger questions
as a lightweight creativity technique. The questions were developed by using
the 5W1H (Kipling) technique as a basis. The idea was to identify questions
that could trigger new ideas for missing environment entities, tasks, alternative
realizations, situations, or data items. We started with the general question of
5WH1 and derived from them 15 trigger questions, see Table 1.

The first four questions aim at the highest abstraction level and should be
used on classes, entities, and similar high-level elements of the situation model.
The next eight questions are related to methods and the effects on the system and
its behavior, needed resources, alternative realizations. The final three questions
support the analysis of variables of a situation. They try to identify influences,
resources, or calculations for a variable. The questions should be answered for
each element in a model to identify new elements and to systematically analyze
the situation. New ideas are triggered with a question, but additional consid-
erations are needed. For example, the question “Could the method fail?” can
be answered with yes or no, but it directs the attention to an important topic,
which could lead to new ideas for adaptations or triggers for an adaptation.

When we start with the user and ask the question “What should the model
element be related to?”, we could add the structure of the environment by adding

AdaptationExplore 91

Table 1. AdaptationExplore trigger questions

(1) What should the model element be
related to?

(9) What information should the
method provide and for what could
the information be used?

(2) Does the model element have missing
restrictions?

(10) How could the method be
accessed?

(3) What information could the model
element provide for a feature and how could
the model element be used by a feature?

(11) Could the method fail?

(4) How should the model element be
accessed?

(12) Could there be any reasons
not to perform the method?

(5) On what should the success of the
method depend on?

(13) What influences the variable?

(6) What should the method be related to? (14) Where could the value(s) of
the variable come from?

(7) Does the method have missing
restrictions?

(15) What is the variable used for?

(8) Could there be any obstructions or
conflicts due to other methods?

a building, which consists of rooms. In a room we can have furniture and smart
devices. These elements are high level abstractions that represent the environ-
ment and will be added to the passive context that contains all elements, which
do not need further analysis or which are already analyzed.

When the process goes on and we analyze the smart phone and look at the
question “What should the model element be related to?”, we identify a smart
device that is connected to the smart phone that is only available in some rooms.
The element is a smart light that can be controlled by switching the intensity
of the light (see green entity in Fig. 6). The light is not relevant for the current
situation so it is modeled in the passive context. For the light we identify a new
task natural sunrise wakeup. This task is added to the goal model as well as the
resource smart light. Furthermore, a new form is added to describe the situation
“wakeup by natural sunrise in bedroom at home (light)”.

(T5) Natural sunrise: A situation was identified in which a user owns a smart
lamp that can be controlled and dimmed via the smart phone. Waking up the
user is made more pleasant by slowly dimming the lamp before the alarm starts.

The result of the situation analysis is a set of analyzed situations that repre-
sent the tasks in different situations and show the alternative realizations based
on the given environment in a situation.

92 F. Kneer et al.

Fig. 6. New environment entities for the base task

Fig. 7. Integration phase of the AdaptationExplore process

7 Integration Phase

The integration phase is shown in Fig. 7. In the integration phase the devel-
oped situations are merged to identify differences, like alternative realizations of
tasks, different resources, attributes, or attribute values. Differences are analyzed
to identify whether adaptations are needed to solve conflicts between situations.
If a need for an adaptation is identified, it is described by an adaptation point.
An adaptation point is a location in the system where we need to solve a con-
flict between different situations and the related realization of a task. A change
could be to switch between different realizations of a task, to enable/disable
functionalities, to change a resource or an attribute. The result of the phase is
an adaptation model.

7.1 Situation Integration

First, the information models are integrated into a joint model. During inte-
gration, conflicts between models may become apparent. A conflict could be a
different input source, alternative realizations of a task, or other ways to provide
the results of a task. Furthermore, if an external element was identified in a
situation that is only available in this specific situation it also indicates a need
of an adaptation and must be investigated, for example the availability of the
smart light for the task natural sunrise.

AdaptationExplore 93

Fig. 8. Example of an adaptation model for the alarm clock

A conflict can be an indicator that an adaptation is needed, but it can also
result from an ordinary inconsistency. Also, adaptations add complexity to a
system and therefore introduce additional costs. That is, a decision for one alter-
native at development time might be the preferable option. A human judgement
is required in any case.

Next, the behavior models are integrated. In particular the integration of
behavior models may result in an oversized joint model. In this case, a solution
is to integrate behavior models in a task-wise fashion, so that one joint model
per task results. Conflicts that can not be solved during the integration of for
example sequence diagrams could be marked by adding an additional element,
named adaptation framework, which is used to decide which behavior should be
used.

7.2 Adaptation Analysis and Documentation

First, conflicts and inconsistencies remaining from the previous step are resolved
by introducing adaptation points. The concept of adaptation points is based on
the notion of variation points of software product lines (SPL), in particular of
dynamic software product lines (DSPL) [26,27]. In a DSPL the adaptations are
described by variations points, which are organized in a variability model.

Identification of Adaptation Points. Conflicts between task realizations
could indicate an adaptation point, e.g.:

– different sampling rates of sensors,
– errors in hardware or software components that are required for performing

a functionality,
– availability of elements in the environment, e.g. connected systems or actors,

which are only available at a specific time or place,
– conflicts between goals due to different realizations of tasks.

94 F. Kneer et al.

Next, the identified adaptation points are investigated by looking at differ-
ences of the involved situation models (of two or more situations). A so-called
adaptation model (see Fig. 8) describes the necessary changes to address these
differences. It defines the model changes in the transitions among the three sit-
uations Base, Light, and Travel. The Base situation describes the base task of
the alarm clock. In the Travel situation the user has an Internet connection and
calculates the journey duration via Internet to compensate, for example, a traf-
fic jam. The main task is TII - travel information import. The Light situation
requires a smart light in the environment to enable the task ns - natural sunrise.

The Start (second column) of an adaptation is a set of situations, for example
in the first row the situations Base and Light. Start also includes information
about a change in the situation that leads to an adaptation. In this case the
connection to the traffic information provider is established.

The third column describes what changes are made in the system, this
includes activating or deactivating functionalities, internal changes to function-
alities, or changes to variables. In the first row the change is enabling the TII()
functionality, which is used in the checkAlarmTime functionality to calculate
the journey duration. In the second row, which describes the adaptation to the
situation Light, the variable alarm needs to be changed as dimming of the smart
light should start 30 min before the alarm starts.

The limitations (fourth column) help to minimize errors produced by adapta-
tion, for example to wait for a running process, or to finish before the adaptation
can take place. For the adaptation in the second row we have defined a limita-
tion, it can only happen 31 min before the alarm starts to ensure the user wakes
up on time.

Finally, an adaptation point is marked in the information and behavior model
to show the location where a specific adaptation takes place or in the form of
a list with a textual description. At these points a decision is needed and the
system may switch to another behavior. The identified criteria for the decision
process are collected in the list and linked to adaptation points.

8 Discussion

Similar to other goal-oriented approaches for adaptive systems like Cheng et
al. [16] and Morandini et al. [17], AdaptationExplore also starts with a goal
model. However, AdaptationExplore tries to cope with the complexity of iden-
tifying adaptive requirements by analyzing one situation at a time. We assume
that this will simplify the creative task. The idea is to understand a situation
and to find the best realization in this specific situation without thinking about
other situations and the adaptations relevant to them. The environment is in
the focus of analysis and investigating a single situation often leads to the iden-
tification of new aspects of the environment and also new realizations to cope
with an environmental aspect. Goal-oriented processes on the other hand deal
with the whole domain model or the goal hierarchy.

Similar to problem space exploration as suggested by Dey and Lee [3], we
want to identify the situation of the system and its environment. The difference

AdaptationExplore 95

is that we focus on the analysis of every single situation and how a task needs to
be changed regarding the realization. Dey and Lee collect situations as part of
their repertory grid of the problem space. They are focusing on rating features
based on the users’ preferences in the different situations to identify, which func-
tionalities are flexible and can be changed and which should be available all the
time.

The result of AdaptationExplore is an adaptation model, which allows the
developer to freely choose adaptation mechanisms using a preferred technique
or framework.

9 Pilot Study

We piloted AdaptationExplore in an exploratory study to explore and initially
understand how our newly developed process performs with respect to effec-
tiveness and applicability. The pilot led also to a couple of insights to outline a
follow-up empirical evaluation.

The study was carried out during the Requirements Engineering lecture at
the University of Applied Sciences and Arts Dortmund, Germany in the win-
ter term 2019/2020. As a reference for comparison we use a process inspired
by Cheng et al. [16] (referred to as base process in the following). 37 Masters
students from computer science, medical informatics, and business information
systems participated in a set of case studies. The students formed groups of
2 to 4 participants, 12 groups in total. The groups were randomly assigned to
either AdaptationExplore or the base process. Each group was asked to develop
a requirements specification of an adaptive system for a problem domain of
their own choice. The students were allowed to choose freely in order to ensure
sufficient motivation. The scope of the specification work was negotiated with
the instructors of the course. The case study took five weeks with an effort of
1.5h/week plus preparation.

With respect to the effectiveness, the groups identified between 2 and 4 adap-
tation points (except for one group G5 that did not find any adaptation point)
as Table 2 illustrates. The lack of obvious differences in the quantitative results
(between AdaptationExplore and the base process and also between the different
problem domains) is likely due to a ceiling effect as the identification of adap-
tation points took place in one of the last weeks of the semester and students
were in hurry to prepare deliverables for other courses.

We collected a number of experiences regarding the applicability : Experience
E1 : The students liked the tabular goal model identifying high level goals and

Table 2. Number of adaptation points found by groups, G1-G6: AdaptationExplore,
G7-G12: base process

Group G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

#Adaptation points 3 3 3 2 0 4 2 2 4 3 3 2

96 F. Kneer et al.

one suggestion was to add priorities to the resources. E2 : The identification of
adaptation points was reported as very easy with AdaptationExplore. During
the integration of situations, conflicts were identified and marked as adaptation
points. E3 : An issue was the choice of a suitable abstraction level for a situation.
One group identified 80+ situations and each contains only a single function On
the other side, one group identified three situations which represented the three
disjoint functionalities identified during the initial phase. Here the abstraction
level was too high.

The pilot study shows that participants need more time to complete the
processes, which was difficult to estimate upfront. We gave them 5 weeks, +2
weeks would have been required. An empirical study might need to take place
as an online study because of the ongoing COVID-19 situation. A study design
with a repeated case would be desirable to end up with comparable results for
effectiveness and applicability, yet students are used to collaborate intensively
online these days.

We plan two empirical studies for a detailed validation of AdaptationEx-
plore. The first study focuses on the exploration phase. We want to compare
the effectiveness of trigger questions to a general creativity technique used for
requirements elicitation in a controlled experiment. The goal is to show the ben-
efits of specific creativity triggers for adaptive systems. In the second study, we
compare AdaptationExplore with another development process for adaptive sys-
tems in a case study to show the advantages of using situations and to further
evaluate applicability.

10 Conclusion

This paper introduced AdaptationExplore, a novel RE process for adaptive sys-
tems with an emphasis on elicitation, negotiation, and documentation. The main
idea is to identify situations (defined as system state + environment state) and
use a specifically developed set of trigger questions, to identify missing environ-
mental information or alternative realizations to cope with a situation. Other
characteristic aspects are the use of goal models along with a new tabular nota-
tion as well as the integration of individual instances as a basis for identifying
adequate adaptation points.

A pilot study was performed as a exploratory case study with 37 Masters
students. We employed the process by Cheng et al. [16] as a baseline for compar-
ison. The results show that AdaptationExplore is effective as it helps to identify a
considerable number of adaptation points. Based on this study, we also reported
on a number of experiences for our process.

For future work, we plan to perform empirical studies to validate the pro-
cess and its parts in more detail. One study focuses on the exploration phase
and the utility of creativity techniques. A second study is planned to compare
AdaptationExplore, another creativity technique, and the process by Cheng et
al. [16].

AdaptationExplore 97

References

1. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

2. Berry, D.M.: The tenth anniversary of the CreaRE workshops: a look back and a
look forward. In: CEUR Workshop Proceedings, vol. 2584. CEUR-WS.org (2020)

3. Dey, S., Lee, S.-W.: REASSURE: requirements elicitation for adaptive sociotech-
nical systems using repertory grid. Inf. Softw. Technol. 87, 160–179 (2017)

4. Qureshi, N.A., Jureta, I.J., Perini, A.: Towards a requirements modeling language
for self-adaptive systems. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS,
vol. 7195, pp. 263–279. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28714-5 24

5. Oriol, M., Qureshi, N.A., Franch, X., Perini, A., Marco, J.: Requirements moni-
toring for adaptive service-based applications. In: Regnell, B., Damian, D. (eds.)
REFSQ 2012. LNCS, vol. 7195, pp. 280–287. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28714-5 25

6. Sawyer, P., et al.: Requirements-aware systems: a research agenda for RE for self-
adaptive systems. In: 18th IEEE International Requirements Engineering Confer-
ence (RE), pp. 95–103 (2010)

7. Bencomo, N., et al.: Requirements reflection: requirements as runtime entities. In:
32nd ACM/IEEE International Conference on Software Engineering, vol. 2, pp.
199–202. ACM (2010)

8. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In:
Second IEEE International Symposium on Requirements Engineering, pp. 140–
147 (1995)

9. Carvallo, J.P., Franch, X.: On the use of i* for architecting hybrid systems: a
method and an evaluation report. In: The Practice of Enterprise Modeling: Second
IFIP WG 8.1 Working Conference, PoEM, pp. 38–53 (2009)

10. Baresi, L., Ghezzi, C.: A journey through SMScom: self-managing situational com-
puting. Comput. Sci. Res. Dev. 28(4), 267–277 (2013)

11. Bencomo, N., Belaggoun, A.: Supporting decision-making for self-adaptive systems:
from goal models to dynamic decision networks. In: Doerr, J., Opdahl, A.L. (eds.)
REFSQ 2013. LNCS, vol. 7830, pp. 221–236. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37422-7 16

12. Alegre, U., et al.: Engineering context-aware systems and applications: a survey.
J. Syst. Softw. 117, 55–83 (2016)

13. Kolos-Mazuryk, L., et al.: A survey of requirements engineeringmethods for per-
vasive services. In: Freeband A-MUSE Deliverable D5.7 (2006)

14. Paja, E., Maté, A., Woo, C., Mylopoulos, J.: Can goal reasoning techniques be
used for strategic decision-making? In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y.,
Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 530–543. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46397-1 41

15. Soares, M., Vilela, J., Guedes, G., Silva, C., Castro, J.: Core ontology to aid the goal
oriented specification for self-adaptive systems. In: New Advances in Information
Systems and Technologies. AISC, vol. 444, pp. 609–618. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31232-3 57

https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-28714-5_24
https://doi.org/10.1007/978-3-642-28714-5_24
https://doi.org/10.1007/978-3-642-28714-5_25
https://doi.org/10.1007/978-3-642-28714-5_25
https://doi.org/10.1007/978-3-642-37422-7_16
https://doi.org/10.1007/978-3-642-37422-7_16
https://doi.org/10.1007/978-3-319-46397-1_41
https://doi.org/10.1007/978-3-319-31232-3_57

98 F. Kneer et al.

16. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling app-
roach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0 36

17. Morandini, M., et al.: Engineering requirements for adaptive systems. Require.
Eng. 22(1), 77–103 (2017)

18. Kneer, F., et al.: Environment modeling for adaptive systems: a systematic litera-
ture review. arXiv:2011.07892 (2020)

19. Michalko, M.: Thinkpak. Ten Speed Press (1994)
20. Maiden, N., et al.: Creative requirements: invention and its role in requirements

engineering. In: 28th International Conference on Software Engineering, ICSE 2006.
Association for Computing Machinery, Shanghai, pp. 1073–1074 (2006)

21. Burnay, C., et al.: Stimulating stakeholders’ imagination: new creativity triggers
for eliciting novel requirements. In: IEEE 24th International Requirements Engi-
neering Conference (RE), pp. 36–45 (2016)

22. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering, pp. 3–317. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43839-8

23. Nuseibeh, B., et al.: A framework for expressing the relationships between multiple
views in requirements specification. IEEE Trans. Software Eng. 20(10), 760–773
(1994)

24. Shea, G.: NASA Systems Engineering Handbook Revision 2 (2017)
25. Sutcliffe, A.: Scenario-based requirements engineering. IEEE Trans. Softw. Eng.

24, 320–329 (2003)
26. Hallsteinsen, S., et al.: Dynamic software product lines. Computer 41(4), 93–95

(2008)
27. Hinchey, M., et al.: Building dynamic software product lines. IEEE Comput.

10(45), 22–26 (2012)

https://doi.org/10.1007/978-3-642-04425-0_36
http://arxiv.org/abs/2011.07892
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

Trustworthy AI Services in the Public
Sector: What Are Citizens Saying About

It?

Karolina Drobotowicz(B) , Marjo Kauppinen, and Sari Kujala

Department of Computer Science, Aalto University, Espoo, Finland
{drobotowicz.karolina,marjo.kauppinen,sari.kujala}@aalto.fi

Abstract. [Motivation] Artificial intelligence (AI) creates many
opportunities for public institutions, but the unethical use of AI in pub-
lic services can reduce citizens’ trust. [Question] The aim of this study
was to identify what kind of requirements citizens have for trustworthy
AI services in the public sector. The study included 21 interviews and a
design workshop of four public AI services. [Results] The main finding
was that all the participants wanted public AI services to be transpar-
ent. This transparency requirement covers a number of questions that
trustworthy AI services must answer, such as about their purposes. The
participants also asked about the data used in AI services and from what
sources the data were collected. They pointed out that AI must provide
easy-to-understand explanations. We also distinguished two other impor-
tant requirements: controlling personal data usage and involving humans
in AI services. [Contribution] For practitioners, the paper provides a
list of questions that trustworthy public AI services should answer. For
the research community, it illuminates the transparency requirement of
AI systems from the perspective of citizens.

Keywords: Artificial intelligence · Trustworthy AI · Public sector ·
Transparency · Qualitative research

1 Introduction

Recent advances in artificial intelligence (AI) have popularized this area of
research after an “AI winter”, a period of waning public interest in AI [1]. AI
is also gaining the interest of public organizations due to the opportunities it
creates [2], such as reducing administrative burdens and taking on more complex
tasks to enable public-sector employees to focus more directly on citizens’ needs
[3]. The European Commission has also imagined that AI could be used to serve
citizens 24/7 in faster, more agile, more accessible ways [4].

However, some public AI services have already harmed society. The AI Now
Institute [5] has reported that multiple deployed AI systems have led to mis-
leading results or violations of civil rights. For example, in the United Kingdom,

c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 99–115, 2021.
https://doi.org/10.1007/978-3-030-73128-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_7&domain=pdf
http://orcid.org/0000-0002-8340-2851
http://orcid.org/0000-0001-5586-3725
https://doi.org/10.1007/978-3-030-73128-1_7

100 K. Drobotowicz et al.

thousands of immigrants had their visas cancelled due to an erroneous AI sys-
tem, and in the United States (US) in 2016, AI dramatically lowered the number
of home-care hours for people with disabilities without any explanation or pos-
sibility to contest its decisions. In 2019, the AI Now Institute published another
report [6] documenting cases of automated decision systems used in US public
administration. For citizens who were not expecting the use of AI in these cases,
they became an unpleasant surprises and decreased their trust [7].

In light of the rise of AI in society and its potentially harmful effects, mul-
tiple private and public institutions have published principles and guidelines for
ethical AI [8]. However, existing guidelines for ethical AI systems are mostly
the results of discussions with industry and academic experts, rarely including
citizens’ needs and voices.

The goal of this qualitative study is therefore to investigate what kind of
requirements citizens have for trustworthy AI services in the public sector. We
present findings from 21 interviews with Finnish residents and a design workshop
on four public AI services. The data were collected as part of the “Citizen Trust
Through AI Transparency” project [9], the goal of which was to provide ethical
guidelines for AI usage in the public sector.

The remainder of this paper is structured as follows. First, we review the
existing literature on ethical guidelines for AI systems, with a focus on public-
service cases. Next, we present our research method and its outcomes. Finally,
we discuss the results and limitations of the study and conclude with suggestions
for future research.

2 Related Work

Jobin et al. [8] reviewed 84 ethical AI guidelines proposed by industrial and
scientific institutions, ten of which targeted the public sector. They found five
principles repeated in over half the guidelines: 1) transparency, which aims to
increase system explainability, interpretability, or disclosure; 2) justice and fair-
ness, which are connected to mitigating bias and discrimination and enabling
challenge or redress; 3) nonmaleficence, which focuses on system security and
safety; 4) responsibility, which is often presented alongside accountability and
refers to legal liability and integrity; 5) privacy, which mostly relates to data
protection and data use and is presented both as a value and a user right.

Across academic guidelines, we found two that focus on interaction with AI
systems. First, Amershi et al. [10] presented a set of human–AI interaction guide-
lines based on documents from industry, scientific AI-design publications, and
tests with design practitioners. They suggested how AI systems should behave
and what options they should give users during interactions with them. They also
mentioned the importance of making systems’ functions, performance, reasons,
and biases transparent. Second, Rzepka and Berger [11] studied the literature
to understand how system and user characteristics influence interactions with
systems, finding that transparency positively influences user behavior.

Among guidelines on ethical AI in the public sector, we found two created
by research institutes. The Alan Turing Institute [12] presented an extensive

Citizen Requirements for Trustworthy Public AI Services 101

set of guidelines in three parts: 1) support, underwrite, and motivate values
for a responsible data ecosystem; 2) fairness, accountability, sustainability, and
transparency principles for designing and using services; and 3) a process-based
governance framework to operationalize these guidelines. The second document
came from the Harvard ASH center [3], and explored AI usage in citizen services,
suggesting six strategies for the government: 1) make AI part of a citizen-centric
program, 2) solicit citizen input, 3) build on existing resources, 4) be data-
prepared and tread carefully with privacy, 5) mitigate ethical risks and avoid AI
decision making, and 6) focus on augmenting employees, not replacing them.

3 Research Methods

3.1 Overview of the Qualitative Study

We carried out a qualitative exploratory study to answer our research question.
We decided to triangulate our data collection because, as suggested by Carter
et al. [13], it animated a deeper understanding of the topic and uncovered more
detailed answers to our research question. We chose in-depth interviews and a
workshop, which are complementary methods according to Kaplowitz and Hoehn
[14]. Indeed, during our interviews, the participants felt safer and more focused
to share more details, and interactions during the workshop stimulated the par-
ticipants to share thoughts and needs that did not occur to them during the
interviews. The two methods also induced different responses: in the interviews,
the participants were more reactive, and in the workshop, they were more cre-
ative. Moreover, similarly to the findings of Schlosser et al. [15], the workshop
helped uncover broader perspectives on research questions and start topics that
are difficult to cover in interviews.

3.2 Study Participants

A total of 21 participants were interviewed (11 women and 10 men). The ages
of the participants varied between 18 and 67, with an average of 35. Of the
participants, 12 had university degrees, 12 were Finnish, and 9 were immigrants
who had stayed in Finland for 3–20 years, with an average of 9 years. When
asked for self-estimations of AI knowledge and interest, six of them admitted a
poor understanding of AI, eight had a medium level of AI knowledge, three were
actively interested in AI, and four were working in the AI field.

Later, eight people participated in the workshop (four women and four men).
Six had participated previously in the interviews. Their ages were between 22
and 38, with an average of 28. All had at least bachelor’s degrees. Three were
born in Finland, and the other five had been in Finland for an average of 6.5
years. One had poor knowledge of AI, three had medium awareness of AI, two
were actively interested in AI, and two were working in the field of AI.

102 K. Drobotowicz et al.

3.3 Data Collection

In both the interviews and the design workshop, we used fictional public-service
AI examples (Table 1) to help participants understand the scope of possible AI
usage and focus their conversations. These sample AI services were generated
based on discussions with public-sector representatives in Finland to ensure that
they were realistic. The data-collection materials, such as the interview questions
and sample AI services, can be seen in the appendix to the master’s thesis of
the first author [16].

Table 1. Cases used in the data collection.

AI service Example case Id

Decision making AI service that makes a decision about whether
the applicant will receive housing

C1

Health prediction AI service that predicts the mental health
problems of citizens and informs a family about it

C2

Impact assessment Automatic assessment of education impact on
pupils, where data collected from children are
processed by AI

C3

Fraud detection AI service used in the social insurance
organization to detect financial fraud

C4

Interviews. We conducted 21 interviews between June and July 2019. Each
lasted between 45 and 60 min. We designed the interview to be semi-structured,
because this provides a good balance between deeply understanding the novel
topic and avoiding excessive time consumption, as suggested by DiCicco- Bloom
et al. [17]. To assess its validity, the interview process was checked by experienced
researchers and piloted with an external person whose answers are not included
in the results.

The interviews were divided into three parts. First, the participants were
asked general questions about their current attitudes and knowledge about AI
in the public sector. Second, they were presented 2–4 public-service AI cases
from Table 1. Cases were given in a counterbalanced order to avoid sequence
bias. The interviewees were asked to share their concerns, needs, and questions
related to each case. All the cases were deliberately information-scarce to nudge
the participants to point out what they were missing. The third part of each
interview contained a few follow-up questions on using AI in public services.

The participants were invited via physical social security offices and online
university channels. We aimed to find people with diverse educations, ages, gen-
ders, and AI knowledge. The participants had to be over 18 years old and to have
lived in Finland for at least three years. If the person was comfortable speaking
English, the interview was conducted in that language; otherwise, it was done

Citizen Requirements for Trustworthy Public AI Services 103

in Finnish. Each interview was audio-recorded and transcribed with the consent
of the interviewees. A movie ticket was given in exchange for participation.

Design Workshop. The workshop was conducted in July 2019. Its goal was
to engage citizens in determining requirements for trustworthy public AI ser-
vices. The workshop method was inspired by the focus group technique [18] and
the ideation methodology described by Michanek and Breiler [19]. The work-
shop started with a warming-up game. Later, the main task was introduced and
repeated three times. Each group found an information sheet by their work-
station with a description and example case of AI service in the public sector
(Table 1). In the groups, the participants were asked to discuss how to make
these services trustworthy. They were asked to save the results of their discus-
sions in whatever form they found useful, using any of blank A3 paper, sticky
notes, pens, printed phone mock-ups, and markers. The results of each group’s
discussion were then visible to the next group coming to the workstation so that
the participants could be inspired by previous outcomes. Each round, the partic-
ipants were put in different groups of two or three people at a new workstation.
The workshop ended with a follow-up discussion in which the participants sum-
marized all the results. The workshop was two hours long, and each participant
was offered two movie tickets for participating.

3.4 Data Analysis

All the collected data were open and axially coded according to Research Meth-
ods in Human-Computer Interaction [20]. First, we analyzed the interview and
workshop data separately. Next, we compared the results of these two analyses
and then combined them. Whenever a result would come solely from AI experts,
we recorded it and specified in the text below.

Interviews. Transcribed interviews were analyzed with the support of the qual-
itative data-analysis software Atlas.ti. The analysis started with one researcher
reading the transcripts and marking segments of texts with descriptive in vivo
codes. Three types of codes were identified: needs, concerns, and questions. We
then iteratively categorized and compared coded segments of data. First, we
grouped codes of all forms into high-level concept categories, such as “data” and
“purpose.” For example, the concept “data” included codes such as “datasource”
or “consent.” Second, for each category, we read all the included text segments
and clustered them into subcategories. For example, in “data,” we distinguished
subcategories such as “data collection” and “data bias.”

Design Workshop. Data from the workshop were saved in the forms of physical
sticky notes and an audio recording of the follow-up discussion. The analysis of
the workshop materials was similar to the interview analysis but did not employ
any digital tools. First, we reviewed sticky notes while listening to the audio
recording to clarify and add missing information. Next, we clustered sticky notes
by the high-level concepts to which they were related. We then examined the
notes inside each cluster and divided them into subcategories. Like the interview
analysis, this was also done iteratively.

104 K. Drobotowicz et al.

Axial Coding. We compared the subcategories of the interview and workshop
analyses and identified similarities, differences, and relationships between them.
As suggested by Charmaz [21], this iterative process enabled a deeper under-
standing of the concepts and thus improved the accuracy of our results.

4 Results

In this section, we present the requirements that our participants shared for
trustworthy public AI services. A significant part of the discussions with the
participants was focused on transparency, so we start by introducing this require-
ment. We continue by presenting the participants’ detailed questions and require-
ments grouped into five concepts: purpose, data, core AI process, human involve-
ment, and service overview.

4.1 Transparency

All the participants wanted to know more about the public AI services than was
presented in the materials. Regarding motivation, they referred to uncomfortable
emotions (e.g., “I fear AI if it collects something that is not said. Transparency
throughout the research process is needed, otherwise it can feel bad.”), the need
to make informed decisions (e.g., “If I’m convinced how they get the results,
[...] then I can decide”), and trust (e.g., “They don’t have to give me all the
information at all times, but [they should] be transparent on how they process
the information so that I have more trust in them.”).

4.2 Purpose

The participants asked multiple questions related to the purposes of services
(Table 2). First, many participants highlighted their need to know the topical
purposes of public AI services presented in the study. In the follow-up discussion,
one interviewee explained, “So, there should be transparency about purpose.
What is the intended purpose? What is the base reason this service exists?”
Knowledge about the purposes of the services was especially required in the
impact-assessment case (C3), where questions like the following emerged: “What
are the targets of the project?”

Table 2. Three questions describing purpose-related requirements.

Subcategory Questions

Purpose For what reason was the public service created?

Benefits What are the benefits that the public service brings?

Impact What impact on users or on society can the public service make?

Citizen Requirements for Trustworthy Public AI Services 105

Several participants asked more specifically about the potential benefits of
the public services for them and other stakeholders: “What I am expected to
benefit from this information?” (C2) and “Would the children benefit from this?
Or parents? What is the benefit of the school?” (C3). A few participants also
stated that if a service presented a clear benefit to them, they would be more
inclined to use it, even if it was not fully transparent. For example, in the health-
prediction case (C2), one interviewee said, “A grandmother’s well-being is more
important than where the data come from.”

Lastly, a few inquiries were made about the impacts of the public services in
the education-related case (C3). Participants asked, “What is the social impact
for the participants?”, “If you are part of the experiment, you would like to
know what it is for you in the future. How much does it affect your position
in society?” Two participants working actively with AI mentioned that public
AI services should increase rather than decrease social justice. They mentioned
examples of AI methods, such as scoring and grouping, that should not happen
in the public sector; for example, “If a child is from a different background and
gets results which seem bad, then they might be put in some special group for
slow people. But it could just be a misunderstanding of questions or [a] different
background. Then, you’re limiting that child’s abilities to do well in the future.”

4.3 Data

Data collection is an essential part of any AI service, and the study participants
had multiple questions about it. We categorized these questions into six subcat-
egories (Table 3). Notably, the participants focused their questions on personal
data due to the specifics of the presented cases.

Table 3. Eleven questions describing data-related requirements.

Subcategory Questions

Data source What is the source of data collected in the public AI service?

Data collection When and how were the data about the user collected?
When was the consent given for collecting this data?

Data purpose Why was this specific information needed?

Data storage Where and for how long are the data stored?

Data access Who has the access to the data?

Data bias Are the data biased? Why? How do they impact the results?

First, many interviewees started by asking about the sources of the data in
the public AI services. This was especially relevant to the case of automatically
prefilled applications for housing (C1) and fraud discovery (C4). For example,
two interviewees mentioned, “I’d like to find out where the information came
from. It’s irritating when not told here,” and, “Where do they have the data

106 K. Drobotowicz et al.

from?” Because there was no information on the data sources during the inter-
views, participants shared their own guesses and attitudes. In the first case (C1),
participants were mostly sure that it came from other public organizations. They
shared a positive attitude about that because, in their opinions, it could make
the process easier and faster: “I did it all online. And they brought all of the
data [from other institutions]. This is really cool because it saves me a lot of time
[...]. I knew exactly where they were getting the data from. So, didn’t bother
me.” However, the fourth case (C4) incited more controversy, as participants
guessed that private companies were the data sources. That case provoked more
opposing voices, such as, “Maybe they get my income and spending from my
bank? I don’t think they should do that because that’s crossing the border from
the public to the private sector.” These outnumbered the accepting voices, such
as, “It doesn’t hurt even if the information is borrowed from somewhere else.”

Several participants also wanted to know more details about the data collec-
tion. A few interviewees asked about whether and when they gave their consent
to share their data: “Where and when do I consent to this? If I didn’t consent,
then why are they collecting?” The workshop attendants were also interested
in how and from what period data were actually collected. According to them,
it was also essential to know why specific data are collected for public services.
This was especially relevant in the impact-assessment case (C3), in which data
were collected from children. One interviewee asked, “What is the justification
behind collecting this much information on my and other [people’s] children?”

When data are already collected, they must be stored somewhere; the par-
ticipants with greater AI knowledge were interested in this topic as well. They
asked where and for how long they were stored: “How and where are the data
stored, and in what kind of format?” The workshop attendants added that they
wanted to know what happened to user data after the services were finished and
what organizations or people had access to their data: “[I should] know where
the information was going.” A few interviewees also asked how they could access
their collected data.

Lastly, there was some discussion about data bias, that is, how using unrep-
resentative data can lead to discriminating results. This topic was rarely started
by interviewees, possibly due to their lack of knowledge in this area. During the
workshop, three of the eight participants who worked with AI or were interested
in it knew what AI bias was. Upon discussion, participants suggested the impor-
tance of informing users about possible biases in AI systems, why they emerge,
and how they can affect results.

Apart from their questions, many participants stated their requirements
related to data. First, they highlighted the importance of consent to share data:
“[I want to] decide whether or not I consent to some information being collected
on me.” Next, some suggested that after data are already collected, they should
be able to review them. According to interviewees, this would enable users to
notice any problems with the data, such as being too old, missing something,
or being wrong: “If they collect the data, you should have some sort of report.
You could say when something is missing.” A few participants also requested

Citizen Requirements for Trustworthy Public AI Services 107

full control over their data: “It should be possible to keep track of where the
information goes. So, even though it would mean that I won’t be favored in
certain decisions, I’d still like to control information that is given.” “We should
be more aware of what our data [are] being used for. And we should be in more
control of switching on and switching off what we do and do not share.”

Participants also shared concerns about their privacy and the security of their
data. They especially opposed too much information being collected about their
children and relatives in cases C2 and C3 and their financial status in C4: “[It]
wouldn’t be okay to see messages they send to the family example,” “knowing
that your grandma might be in danger of social exclusion just sounds like there’s
a constant surveillance on her,” and “it feels like a privacy violation.” They also
shared the requirement of storing personal data securely: “Security is really
important in a lot of these. Because [...] it can also be exploited by companies
to do targeting. Or it can be exploited by the government.” “There should be
an assurance that no one can access your information.” One interviewee with
extensive AI knowledge shared another concern: “The only thing that worries
me in the public sector is that: Do we have the best people to keep the data
protected?”.

4.4 Core AI Process

We distinguished the core AI process inside each public service responsible for
creating its results, that is, the intentional output generated by each service,
such as a decision or prediction. In this section, we describe the subcategories
that we grouped around the concept of the core AI process (Table 4).

Table 4. Seven questions describing core AI process related requirements.

Subcategory Questions

AI process reason What is the reason for using AI in the public service?

Used criteria What criteria are being used for the results creation?

Used data What data are used for results creation?

Results creation process What is the process of results creation?

Results explanation What is the reason for the results?
Which data and criteria affected the results?

Results reliability How reliable are the results?

First, the participants requested to know the reason for using each AI process,
especially in the impact-assessment case (C3): “Why this way? What is the
justification behind collecting this much information on my children and other
children? And why does it have to be [this way]?” It was also of interest to
the participants to know what criteria were used to create the results: “I would
certainly be very interested in what the parameters are that affect the decision”

108 K. Drobotowicz et al.

and “What kind of laws [do] they have for [the] particular benefit that I’m
applying for?” Next, many participants asked what data were actually used to
create the results: “What information would be utilized?” and “It would be
useful to know what information is used.” They also asked much more detailed
questions about the data, which are presented above (Sect. 4.3).

Most of the participants asked about the AI process, that is, what is actually
done with the criteria and data to create the results. For example, interviewees
asked, “How do they do [the process]? How did they use your data?” “What kind
of conclusions are they trying to get out of it?” and “[It would be] good to know
how they analyzed this case.” According to the participants, it was vital that
they at least know that AI is used in the process: “I think there’s no reason to
hide that [AI is used] because I think some people certainly would have negative
feelings if they didn’t know” and “I feel awkward; I was tricked. [...] If I know
that it’s an automated process, I will feel better.”

The participants also mentioned the need to control the process. During the
workshop, participants suggested that each service should have options, such as
always being able to quit the service or to have humans handling tasks instead
of an AI. Interviewees also shared their worries over not controlling services and
AI in general: “I don’t think I can control [what happens in the service]” and “I
don’t think I can stop or make [AI] more humane; it’s going too fast.”

When participants were given the results of the AI services presented in the
study, they often asked for explanations, especially in the decision-making case
(C1). Two responses were, “What are the exact reasons?” and “There’s a lack of
information as to why my application is rejected.” A few participants suggested
how the explanation should look: “It would need to be professional and have
clear indications what the exact reasons are and reference to certain clauses”
(C4), “Something like, we have a list of people that have been waiting for a
long time, or the refugees, some reason you can understand” (C1), and “Why is
it rejected? Like, [...] there is no free apartment. My wishes are too big” (C1).
Lastly, one participant commented on the reason for an explanation: “[I would]
have to call somebody to try to figure out why. Then they also have to try to
figure out why. So, if it is smart enough to decide immediately why I’m not going
to get the house, it should also be smart enough to tell me immediately why.”

Participants more experienced in AI also requested knowledge about result
reliability, that is, their accuracy and trustworthiness. One asked, “How confident
are the results? Like, are they 110% confident? Or is it more like it might be that
the system works, or it’s like 100% prediction, or in a hundred thousand cases
before me, this happened?” During the workshop, participants also suggested
that especially in the healthcare services it should be clearly written how much
the results could be trusted, such as by stating, “This is not a diagnosis and
does not replace medical professionals.” They affirmed that it is vital to provide
levels of confidence in results, as they might be erroneous.

Citizen Requirements for Trustworthy Public AI Services 109

4.5 Human Involvement

Human personnel are usually involved in public-service operations, but they can
also be involved in core AI processes. The need to know where actual humans
are involved in creating results was highlighted in the workshop, although few
interviewees asked for it (Table 5). However, interviewees shared multiple needs
and concerns related to the roles of humans in AI services.

Table 5. One question describing human-involvement related requirements.

Subcategory Questions

Human involvement What is the role of humans in the results creation process?

First, the interviewees shared the general need to interact with people instead
of AI, especially in personal cases, such as healthcare. One interviewee said, “We
can replace as many things as possible with machines. But at the end of the day,
we still crave human interaction in some form or another.” According to the
participants, human personnel could be responsible for introducing people to the
service or explaining its results: “If someone is telling face-to-face, it’s easier to
motivate or convince the person. But if it’s some odd papers, sometimes you just
skip the part that you didn’t need.” During the workshop, it was also mentioned
that there should be an easy way to contact someone from the service.

Second, the interviewees were concerned that AI would not be able to under-
stand a human case as well as another human, as it overgeneralizes and lacks
human intuition: “Especially in healthcare, I want humans to talk to because
there are a lot of things that are not possible to be read by the program.” In
application forms, as in C1, one person suggested such a solution: “I would hon-
estly prefer that there was an open field to describe your life situation right now.
And then there would be a human in the loop looking at the application.”

A few participants suggested that it would be better to have humans make
final decisions, especially when they are important. Such comments were given
in the follow-up discussion and on the fraud-detection case: “It is worrying if
solely AI would be taking decisions on humans’ lives” and “I would like a person
to see and decide based on this information rather than artificial intelligence”
(C4). One person highly educated in AI added, “As of now, we are still stumbling
upon training AI to the point that it does the decisions correctly [...]. I still don’t
feel comfortable [with an AI] making the decision on its own.”

Lastly, several participants suggested having human controllers monitor AI
services for possible errors, rule-breaking, and unethical actions. One interviewee
who worked with AI said, “Nothing should be [fully] automated. When it comes
to analysis and evaluation, you have to have someone who can verify that the
system is working according to rules and ethical guidelines, as demanded by
society.” The workshop participants suggested always having the option to ask
for a human review of an AI process.

110 K. Drobotowicz et al.

4.6 Service Overview

The service overview contains general, practical knowledge about each service
that participants asked about (Table 6). First, the study participants mentioned
their interest in understanding the high-level processes of the public services.
Some interviewees asked general questions: “How does this service work in prac-
tice?” Others asked more case-specific questions: “How frequently and how will
it be available?” During the workshop, participants requested basic information
about the service stages and how long they take. They also requested updates
on service statuses when results were not immediate, such as in C3. Two inter-
viewees said, “Maybe every half a year, or maybe even once a month” and “It
would be good every six months to get follow-up information.”

Table 6. Five questions describing high-level service related requirements.

Subcategory Questions

High-level process What should customers expect from the public service?
What are the stages of the service and how long do they take?

Accountability Who is accountable for the public service?

Users of the service Who are the users of the public service?

Some interviewees were also interested in knowing the other users of the ser-
vice. For example, two interviewees asked about the number of other children
whose data would be collected for the educational impact-assessment case (C3):
“Is it only my child? Is it the whole class?” and “I would like to know how many
other children are involved.” Lastly, participants asked for who or what organi-
zation was accountable for the service and its outcomes: “Who has decided?”,
“Who has developed it?” and “What is this social welfare organization?”.

5 Discussion

5.1 Transparency

The most important finding of this study is that transparency is a critical require-
ment for trustworthy AI services from the perspective of citizens. This result is
consistent with the finding of Jobin et al. [8], who report that transparency is
the most common principle across ethical AI guidelines. However, it can be a
demanding task to specify the transparency requirement systematically in prac-
tice. For example, multiple transparency definitions have been proposed in the
AI services context. In this study, we focused on the visibility of the service
information and justifiability of AI service processes and outcomes, as defined
by Leslie [12] and Turilli et al. [22]. In more detail, Turilli et al. [22] suggested
that transparency should explain the processes accomplished by the service (how,
by whom, and what was collected and done), as it enables checking whether the

Citizen Requirements for Trustworthy Public AI Services 111

service is a product of ethical processes. Hosseini et al. [23] suggested that to
reach meaningful transparency, services must be open about policy (why), pro-
cess (how), and data (what). Our study contributes to these by providing 27
detailed questions that should be answered by AI services in the public sector
for citizen trust. We discuss those questions below.

First, the participants were interested in the purposes of the services, why
they existed and what impacts they had on them and others. This was especially
important when their benefits were not clear. Second, the participants asked mul-
tiple questions about data: from what sources and how the data were collected
and whether data owners consented to give the data. They also had privacy-
related questions, such as who could access their personal data and how they
would be stored. Only a few participants raised the topics of bias and fairness,
even though it was one of the most common principles found by Jobin et al. [8],
perhaps indicating that those topics are not well known among non-specialists.

Third, the participants shared multiple questions about core AI processes.
They were interested in what data and criteria were used and how they were
processed to create results. This information was relevant for participants both
before they joined a service and as an explanation of its results. This supports
the findings of Chazette et al. [24], who found that the vast majority of their sur-
vey respondents found service-result explanations necessary. Furthermore, they
found that “what” and “why” questions were more important in explanations
than “how.” A few participants in our study also specified that explanations
must be easily understandable by non-specialists, a requirement pointed out in
the public-sector guidelines from Alan Turing Institute [12]: explanations should
be socially meaningful and devoid of technical language. Fourth, the partici-
pants asked questions about the roles of humans in creating results, and fifth,
they asked about service overviews.

The results of this study show that AI transparency is very closely related
to AI explainability, which has been studied extensively. For example, Arrieta
et al. [25] performed the literature review of approximately 400 publications
related to explainable AI and defined explainability as “the details and rea-
sons a model gives to make its functioning clear or easy to understand.” They
also presented explainable AI as a core element needed to achieve responsible
AI principles, including transparency. Similarly, Chazette et al. [26] discovered
that explainability was the means to achieving the non-functional requirement of
transparency. Our study revealed the detailed citizen requirements for explain-
able AI, such as the visibility of the criteria and data used by the AI and the
understandable explanation of results produced by AI.

5.2 Other Requirements

Apart from transparency, the participants shared other requirements. We discuss
the two most important here. First, they highlighted the need to have humans
involved in services, although participants’ views on this diverged. Some empha-
sized being able to interact with a person to discuss a service, while others only
wanted people to be involved in reviewing their data and making decisions or

112 K. Drobotowicz et al.

in monitoring the whole AI process. Second, the participants required a certain
level of control over their data. Most often, they wanted to be asked for consent
before any of their data were collected or shared. A few also requested full con-
trol over their data, to be able to choose which data are used, and to be able
to withdraw them at any point. Part of these requirements are mentioned in
the Harvard ASH Center’s strategies for government and public institutions [3],
which state that asking citizens for consent to use their data in services creates
fewer privacy concerns, discourage letting only AI make critical decisions for
citizens, and encourage human oversight.

5.3 Study Limitations

Generalizability. We interviewed only residents of the Metropolitan Area of
Finland between the ages of 18 and 67. Despite our efforts to include diverse
participants, we cannot confirm that other demographic groups would have sim-
ilar requirements. In fact, in different parts of the globe, societies have different
cultural biases and values that influence their mental models of AI [27]. Even
within Europe, cultural and social characteristics vary [28]. Finland, for instance,
enjoys greater trust in the public sector [29].

Reliability. We are also aware of the inherent weaknesses of the interview and
workshop techniques. For one, the interviewers may have passed their occupa-
tional biases into the research. Interviewees also may not have told the truth
or not understood the questions well. However, we took a few precautions to
counter these threats to reliability. First, our interview questions were reviewed
by senior researchers and were piloted. Second, the data-analysis process was
reviewed by another senior researcher. Third, the participants came voluntarily
for the interviews, they did not need to answer every question, and they were
informed that what they said would remain confidential and anonymous.

Six participants took part in both the interviews and the workshop, and
we are aware of the bias they may have brought to the workshop by changing
or emphasizing opinions they stated during their interviews. However, because
of diverse interactions during the workshop, these six participants had chances
to discuss topics not covered during the interviews. Moreover, we believe this
diversity in the topic awareness likely positively affected results of a workshop
by inducing more perspectives to the discussions.

Lastly, we included four AI specialists and three people actively interested in
AI in our study. To reason it, we need to share the Finnish AI context. In 2018,
Finland released the estimation that one-fifth of its population would eventually
need to obtain AI skills [30]. By now, more than 1% of Finnish citizens have
expanded their knowledge of AI by taking the freely available course “Elements
of AI,” and Finnish universities altogether offer 250 AI courses, which are taken
by about 6,300 students every year [31]. Finally, we believe those AI specialist
are citizens, whose voices are also valuable and who may actively shape future
AI in the public sector. For clarity, we also marked all the results that came from
only this group of participants.

Citizen Requirements for Trustworthy Public AI Services 113

6 Conclusions

This paper presents citizens’ requirements for trustworthy AI services in the
public sector. Based on our findings, transparency is a particularly important
requirement of public AI services. Specifically, for practitioners, this paper pro-
vides a list of 27 questions that ought to be answered by such services to achieve
trustworthiness. The results of this study also indicate that citizens have other
important requirements, such as the need to control one’s data and to have
humans involved in AI processes. We suggest that these questions and require-
ments guide public AI service design and development. For the research commu-
nity, we contribute by extending the knowledge of the transparency requirement
of AI systems from the perspective of citizens.

Reflecting on our experience, we suggest the following for future research.
The findings of this paper could be tested with citizens in the form of public
AI service prototypes to validate our results and study the depth of information
required by citizens to optimize transparency. As another direction, the study
of citizen requirements could be broadened by including the private sector. For
example, the healthcare sector may be an interesting area to study, as it includes
both private and public organizations and is proximal to citizens.

Acknowledgements. We thank the Saidot team from spring 2019 for starting the
project and assisting in the data collection of this study, J. Mattila for co-organizing and
conducting parts of the interviews, and our participants for sharing their experiences.

References

1. Fast, E., Horvitz, E.: Long-term trends in the public perception of artificial intel-
ligence. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, pp. 963–969 (2010)

2. Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., Floridi, L.: Artificial intelligence
and the ‘Good Society’: the US, EU, and UK approach. Sci. Eng. Ethics 24, 505–
528 (2017)

3. Mehr, H.: Artificial Intelligence for Citizen Services and Government. Harvard Ash
Center Technology & Democracy (2017)

4. AI HLEG, Policy and investment recommendations for trustworthy AI. European
Commission (2019)

5. AI Now Institute: AI Now Report 2018 (2018)
6. AI Now Institute: Automated Decision Systems Examples of Government Use

Cases (2019)
7. New York City’s algorithm task force is fracturing. https://www.theverge.com/

2019/4/15/18309437/new-york-city-accountability-task-force-law-algorithm-
transparency-automation. Accessed 6 Nov 2020

8. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat.
Mach. Intell. 1(2), 389–399 (2019)

9. A Consortium of Finnish organisations seeks for a shared way to proactively
inform citizens on AI use. https://www.espoo.fi/en-US/A Consortium of Finnish
organisations se(167195). Accessed 6 Nov 2020

https://www.theverge.com/2019/4/15/18309437/new-york-city-accountability-task-force-law-algorithm-transparency-automation
https://www.theverge.com/2019/4/15/18309437/new-york-city-accountability-task-force-law-algorithm-transparency-automation
https://www.theverge.com/2019/4/15/18309437/new-york-city-accountability-task-force-law-algorithm-transparency-automation
https://www.espoo.fi/en-US/A_Consortium_of_Finnish_organisations_se(167195)
https://www.espoo.fi/en-US/A_Consortium_of_Finnish_organisations_se(167195)

114 K. Drobotowicz et al.

10. Amershi, S., et al.: Guidelines for human-AI interaction. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

11. Rzepka, C., Berger, B.: User interaction with AI-enabled systems: a Systematic
review of IS research. In: Proceedings of the 39th International Conference on
Information Systems, pp. 13–16 (2018)

12. Leslie, D.: Understanding artificial intelligence ethics and safety: a guide for the
responsible design and implementation of AI systems in the public sector. Alan
Turing Institute (2019)

13. Carter, N., Bryant-Lukosius, D., Dicenso, A., Blythe, J., Neville, A.: The use of
triangulation in qualitative research. Oncol. Nurs. Forum 41(5), 545–547 (2014)

14. Kaplowitz, M., Hoehn, J.: Do focus groups and individual interviews reveal the
same information for natural resource valuation? Ecol. Econ. 36(2), 237–247 (2001)

15. Schlosser, C., Jones, S., Maiden, N.: Using a creativity workshop to generate
requirements for an event database application. In: Paech, B., Rolland, C. (eds.)
REFSQ 2008. LNCS, vol. 5025, pp. 109–122. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69062-7 10

16. Drobotowicz, K: Guidelines for designing trustworthy AI services in the public
sector. Master’s thesis, Aalto University, Department of Computer Science (2020).
http://urn.fi/URN:NBN:fi:aalto-202008235015

17. DiCicco-Bloom, B., Crabtree, B.: The qualitative research interview. Med. Educ.
4(4), 314–321 (2006)

18. Kitzinger, J.: Qualitative research: introducing focus groups. BMJ 311(7000), 299–
302 (1995)

19. Michanek, J., Breiler, A.: The Idea Agent: The Handbook on Creative Processes,
2nd edn. Routledge, Abingdon (2013)

20. Lazar, J., Feng, J., Hochheiser, H.: Research Methods in Human-Computer Inter-
action, 2nd edn. Morgan Kaufmann, Burlington (2017)

21. Charmaz, K., Hochheiser, H.: Constructing Grounded Theory: A Practical Guide
Through Qualitative Analysis, Thousand Oaks (2006)

22. Turilli, M., Floridi, L.: The ethics of information transparency. Ethics Inf. Technol.
11(2), 105–112 (2009). https://doi.org/10.1007/s10676-009-9187-9

23. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Foundations for transparency require-
ments engineering. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol.
9619, pp. 225–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30282-9 15

24. Chazette, L., Karras, O., Schneider, K.: Do End-Users want explanations? Analyz-
ing the role of explainability as an emerging aspect of non-functional requirements.
In: Proceedings of the IEEE International Conference on Requirements Engineer-
ing, pp. 223–233 (2019)

25. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020)

26. Chazette, L., Schneider, K.: Explainability as a non-functional requirement: chal-
lenges and recommendations. Requirements Eng. 25(4), 493–514 (2020). https://
doi.org/10.1007/s00766-020-00333-1

27. Schaefer, K., Chen, J., Szalma, J., Hancock, P.: A meta-analysis of factors influ-
encing the development of trust in automation: implications for understanding
autonomy in future systems. Hum. Factors 58(3), 377–400 (2016)

28. Lee, J., See, K.: Trust in automation: designing for appropriate reliance. Hum.
Factors 46(1), 50–80 (2004)

https://doi.org/10.1007/978-3-540-69062-7_10
https://doi.org/10.1007/978-3-540-69062-7_10
http://urn.fi/URN:NBN:fi:aalto-202008235015
https://doi.org/10.1007/s10676-009-9187-9
https://doi.org/10.1007/978-3-319-30282-9_15
https://doi.org/10.1007/978-3-319-30282-9_15
https://doi.org/10.1007/s00766-020-00333-1
https://doi.org/10.1007/s00766-020-00333-1

Citizen Requirements for Trustworthy Public AI Services 115

29. Leading the way into the age of artificial intelligence Final report of Finland’s
Artificial Intelligence Programme 2019. Publications of the Ministry of Economic
Affairs and Employment (2019)

30. Koski, O.: Work in the age of artificial intelligence: Four perspectives on the econ-
omy, employment, skills and ethics. Publications of the Ministry of Economic
Affairs and Employment of Finland (2018)

31. Artificial Intelligence From Finland, e-Book of Business Finland (2020). https://
www.magnetcloud1.eu/b/businessfinland/AI From Finland eBook/

https://www.magnetcloud1.eu/b/businessfinland/AI_From_Finland_eBook/
https://www.magnetcloud1.eu/b/businessfinland/AI_From_Finland_eBook/

Defining Utility Functions
for Multi-stakeholder Self-adaptive

Systems

Rebekka Wohlrab(B) and David Garlan

School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
wohlrab@cmu.edu, garlan@cs.cmu.edu

Abstract. [Context and motivation:] For realistic self-adaptive sys-
tems, multiple quality attributes need to be considered and traded off
against each other. These quality attributes are commonly encoded in
a utility function, for instance, a weighted sum of relevant objectives.
[Question/problem:] The research agenda for requirements engineer-
ing for self-adaptive systems has raised the need for decision-making
techniques that consider the trade-offs and priorities of multiple objec-
tives. Human stakeholders need to be engaged in the decision-making
process so that the relative importance of each objective can be cor-
rectly elicited. [Principal ideas/results:] This research preview paper
presents a method that supports multiple stakeholders in prioritizing
relevant quality attributes, negotiating priorities to reach an agreement,
and giving input to define utility functions for self-adaptive systems.
[Contribution:] The proposed method constitutes a lightweight solu-
tion for utility function definition. It can be applied by practitioners and
researchers who aim to develop self-adaptive systems that meet stake-
holders’ requirements. We present details of our plan to study the appli-
cation of our method using a case study.

Keywords: Self-adaptive systems · Quality attributes · Utility
functions · Analytic Hierarchy Process

1 Introduction

For self-adaptive systems, multiple quality attributes (such as performance,
availability, and security) need to be considered and traded off against each
other. These quality attributes are often encoded in a utility function, i.e., a
single aggregate function whose expected value should be maximized by the sys-
tem [4,6,8,16]. In self-adaptive systems, utility functions are typically used by
automated planning mechanisms to identify the relative costs and benefits of
alternative strategies. In related work, utility functions are often defined as the
weighted sum of relevant objectives [3,5,18]. For most approaches using utility
functions, it is simply stated that they should be manually defined, but little
guidance for this task is provided [8,18]. It is challenging to correctly identify
c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 116–122, 2021.
https://doi.org/10.1007/978-3-030-73128-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_8&domain=pdf
http://orcid.org/0000-0002-5449-7900
http://orcid.org/0000-0002-6735-8301
https://doi.org/10.1007/978-3-030-73128-1_8

Defining Utility Functions for Multi-stakeholder Self-adaptive Systems 117

the weights of each objective and consider trade-offs between multiple quality
attributes, as reported in the research agenda for requirements engineering for
self-adaptive systems [16]. Self-adaptive systems often have multiple stakehold-
ers (e.g., end users or business owners) whose preferences need to be consoli-
dated to identify the overall relative importance of each objective [15]. Decision-
making techniques are needed to help stakeholders prioritize and negotiate qual-
ity attributes and determine appropriate utility function weights [16].

In this paper, we present a lightweight tool-supported method for utility
function definition for multi-stakeholder self-adaptive systems. The proposed
method is based on the Analytic Hierarchy Process (AHP) [14] and the Delphi
technique [7]. It supports stakeholders in prioritizing quality attributes, negoti-
ating priorities to reach an agreement, recording rationales and comments, and
giving input to define utility functions. We use the weighted sum approach for
utility functions, as it is lightweight and commonly used in related work [3,5,18].
It assumes that the weighted quantity of one quality attribute can be traded off
(or “substituted” [1]) with another one. Guidelines to select utility functions,
considering risk and dependencies between decision parameters, have been pre-
viously created [1] and can be used to support other kinds of utility functions
in the future. The proposed ideas of this research preview paper will be fur-
ther refined and we plan to study the method’s application in a case study. We
expect that our method will be of use to practitioners and researchers that aim
to conceive self-adaptive systems fulfilling stakeholders’ preferences.

2 Proposed Approach

Figure 1 shows the steps of our method for utility function definition. The method
can either be used for the initial definition or the refinement of the utility func-
tion, in case stakeholders’ preferences evolve over time. The two leftmost steps
are performed individually by each stakeholder. The two guard conditions refer
to whether an AHP matrix is inconsistent and whether no agreement has been
reached. Each step is labeled with the paragraph in which it is described.

Fig. 1. Overview of our method for utility function definition

(A) Create an AHP Matrix: For the prioritization of quality attributes,
we use the AHP, which is especially useful when subjective, abstract, or non-
quantifiable criteria are relevant for a decision [14]. A central part of the AHP

118 R. Wohlrab and D. Garlan

is to elicit stakeholders’ priorities of different objectives in pairwise compari-
son matrices, which are positive and reciprocal (i.e., aij = 1/aji). For utility
functions, we are interested in the degree of preference of one quality attribute
over another, with the goal of increasing the overall utility of a system. Verbal
expressions are used for these pairwise comparisons (e.g., “I strongly prefer X
over Y ”). Table 1 shows how the verbal expressions correspond to numerical
values.

For a robot planning problem, Table 2 shows an example of an AHP matrix
with the attributes safety (expected number of collisions), speed (duration of
a mission), and energy consumption (consumed watt-hours). In the example,
safety is very strongly preferred over speed (7) and extremely preferred over
energy consumption (9). Speed and energy consumption are equally preferred.

The relative priorities of the quality attributes can then be calculated using
the principal eigenvector of the eigenvalue problem Aw = λmaxw [14]. A is the
matrix of judgments and λmax is the principal eigenvalue. For the matrix in
Table 2, the principal eigenvalue is λmax ≈ 3.01. A corresponding normalized
eigenvector to λmax is (0.8, 0.1, 0.1)T , which corresponds to the relative priori-
ties of the quality attributes. The utility function for a mission might be defined
as U(m) = 0.8 · safety(m) + 0.1 · duration(m) + 0.1 · energy(m). safety(m) indi-
cates the expected number of collisions in a mission, duration(m) the number of
timesteps, and energy(m) the consumed watt-hours. The preference of a quality
attribute can often be described with a sigmoid function defining an interval for
the quantity that is considered as good enough and an interval for the quantity
that is insufficient [12]. Appropriate methods will need to be created in the future
to elicit these thresholds and define quality attributes’ preference functions.

Table 1. AHP judgment/preference
options with numerical values [14].

Extremely preferred 9

Very strongly preferred 7

Strongly preferred 5

Moderately preferred 3

Equally preferred 1

Intermediate values 2, 4, 6, 8

Table 2. Example of an AHP matrix.

Safety Speed Energy
Consumption

Safety 1 7 9

Speed 1
7

1 1

Energy Cons 1
9

1 1

(B) Check for Consistency: AHP matrices can be checked for consistency. A
matrix is consistent if ajk = aik/aij for i, j, k = 1, . . . , n [14]. Saaty proved that a
necessary and sufficient condition for consistency is that the principal eigenvalue
of A be equal to n, the order of A [14]. He defined the consistency index CI
as (λmax − n)/(n − 1). For our example in Sect. 2, CI is 0.004. To compare
consistency values, Saaty also calculated the random consistency index RI by
calculating CI for a large number of reciprocal matrices with random entries [14].

Defining Utility Functions for Multi-stakeholder Self-adaptive Systems 119

For a 3×3 matrix, the average random consistency index was 0.58. According to
Saaty, the consistency ratio CR = CI/RI shall be less or equal to 0.10 for the
matrix to be considered consistent [14]. In our example, the consistency ratio is
0.01. If consistency is not fulfilled, stakeholders are required to refine their AHP
matrices. The matrix can be automatically analyzed to point out the triples of
quality attributes QAi, QAj , and QAk where ajk � aik/aij or ajk � aik/aij .

(C) Check for Agreement: We consider the rankings of n quality attributes
by k stakeholders (where each quality attribute’s rank is a number between 1 and
n). For QAi, the sum of ranks by all stakeholders is Ri, and the mean value of
these ranks is R̄ = 1

n

∑n
i=1 Ri. If the stakeholders’ rankings do not agree, we can

assume that the sums of ranks of several quality attributes are approximately
equal [10]. It is therefore natural to consider the sum of squared deviations from
the mean values of ranks S =

∑n
i=1(Ri − R̄)2 [10]. The maximum possible

value of S is k2(n3 −n)/12 [10]. Kendall’s concordance coefficient, describing the
agreement of rankings in a [0,1] interval, is therefore: W = 12S

k2·(n3−n) [10].

(D) Negotiate and Reprioritize: In case agreement is not reached, a tool-
supported negotiation and reprioritization phase starts. To aggregate AHP
matrices, the “most recommendable aggregation technique” is to calculate the
weighted arithmetic mean of individual priorities (AIP) [11]. A priority indicates
the importance of a quality attribute with a value between 0 and 1. Stakeholders’
priorities can be weighted differently, as their influence and stake may differ.

While the AIP can be used to quickly arrive at a solution, it is beneficial to
discuss and record underlying rationales. We adapt the Delphi technique [7] for
remote consensus building. Interactive tooling is used to support the technique
and collect data. The stakeholders anonymously provide input in several itera-
tions and receive controlled feedback. Users can declare that they do not know
or do not care about a quality attribute. It is also possible to delegate votes
to another participant (proxy voting). In the first round, open-ended questions
are used concerning participants’ rationales (e.g., “in what situation(s) do you
think safety is especially important?”). The answer is fed back to other partici-
pants to inform their rankings. The main trade-offs and conflicts between quality
attributes are elicited and discussed. While we assume an existing set of quality
attributes, participants can also suggest new quality attributes and objectives.

In the second round, the comments and rationales are presented to the partic-
ipants and the AHP matrices can be revised. The rankings that are in conflict are
indicated to increase transparency. Further comments and rationales are added
and a consensus starts to form. In the third round, participants are asked to
revise their judgments or declare why they decide to remain outside the consen-
sus [7]. The final utility function is a weighted sum of the objectives, where the
final weights are the participants’ aggregated weighted priorities (using AIP).

3 Empirical Study

We plan to perform a multiple case study [13] focusing on the phenomenon of
applying our approach in practice. The approach depends on contextual factors

120 R. Wohlrab and D. Garlan

and is therefore difficult to study in controlled settings (e.g., experiments). As
mentioned before, utility functions are a central mechanism in several approaches
for self-adaptive systems. We plan to apply the method to existing systems and
projects. As the first case, we focus on robot mission planning using a probabilis-
tic model checker, where the correct definition of the weights of multiple objec-
tives is essential. The participants operate from multiple locations and are aware
of the system’s context and a preliminary set of quality attributes. The stake-
holders have conflicting objectives (e.g., end user, business/cost, performance,
and safety concerns) and are asked to apply our method for utility definition.
We aim to use collected tool data, observations, and complementary interviews
to study the required time to build a consensus, the understandability of the
approach, as well as negotiation strategies. The empirical study is intended to
give insights into how participants typically act to reach a consensus, how ben-
eficial our proposed method is perceived for utility function definition, and how
satisfied stakeholders are with the resulting utility function.

4 Related Work

Identifying and prioritizing objectives for self-adaptive systems is a nontrivial
task. The Goal-Action-Attribute Model requires the goals, priorities, and pref-
erences of multiple stakeholders to be elicited [15]. The AHP is suggested to be
used for this task, but no concrete guidance is given. We focus on prioritiza-
tion and negotiation and develop a comprehensive AHP-based method. Rather
than focusing on creating complete goal models, we aim to create a lightweight
method for utility function definition. For security requirements, the Swing-
Weight Method has been used for prioritization and utility function definition [2].
The AHP allows a more precise elicitation of the relative priorities of objectives.

Utility functions are a common mechanism in self-adaptive systems [3–6,18].
A few approaches for utility function definition are related to our work on the
prioritization and negotiation of utility function weights. Song et al. [17] propose
to collect user feedback after every round of adaptation to adjust the weights of
constraints. Another approach relies on user feedback to switch between “vari-
ants” with associated utility function weights, depending on the current usage
context [9]. Our work focuses on eliciting priorities to define utility function
weights based on a consensus between multiple stakeholders. As part of future
work, we aim to also consider different usage contexts/scenarios in our method.

5 Discussion, Conclusion, and Future Work

In this paper, we presented a method to define utility functions for self-adaptive
systems by eliciting and negotiating the priorities of quality attributes. The
method is based on the AHP for the pairwise comparison of quality attributes
and a consensus-building approach using the Delphi technique. We plan to study
the method’s application on existing systems in a multiple case study. The
method is at an early stage of investigation and needs to be refined further.

Defining Utility Functions for Multi-stakeholder Self-adaptive Systems 121

For instance, the current method assumes that stakeholders are aware of rele-
vant and measurable quality attributes that can be expressed in functions. For
individual quality attributes, techniques are needed to define the intervals of val-
ues that are considered “good enough” or “insufficient.” Our method will also
be extended to explicitly consider hard constraints. Criteria mandated by law
(e.g., security or safety constraints) cannot be traded against other preferences.
Moreover, the utility of a system strongly depends on its context (e.g., current
tasks, security attacks, or faults), which should also be considered, so that human
input for utility function definition can be collected when needed and the utility
function can be evolved over time. Another relevant concern is to ensure that
stakeholders do not over-rate quality attributes to counter for others’ conflicting
preferences, as it is not always possible to assume non-competitive stakeholders.

We envision our method to be integrated into existing approaches, so that
multiple stakeholders’ preferences and requirements can be more easily elicited,
negotiated, and fulfilled. The presented ideas might also be beneficial for artifacts
at other levels of abstraction, e.g., the prioritization of goals or requirements.
Moreover, we plan to work on explaining utility functions by describing different
priorities’ impact on the concrete actions of a system. Our vision is to demystify
utility functions by providing human stakeholders with lightweight and under-
standable methods for the definition and refinement of utility functions.

Acknowledgments. This work is supported in part by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, by award N00014172899 from the Office of Naval Research
and by the NSA under Award No. H9823018D000. Any views, opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the Office of Naval Research or the NSA.

References

1. Abdennadher, I., Rodriguez, I.B., Jmaiel, M.: A utility-based approach for self-
adaptive systems: application to a smart building. In: AICCSA, pp. 76–82 (2018)

2. Butler, S.A., Fischbeck, P.: Multi-attribute risk assessment. In: SREIS 2002 (2002)
3. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the

presence of multiple objectives. In: SEAMS 2006 (2006)
4. Faniyi, F., Lewis, P.R., et al.: Architecting self-aware software systems. In: WICSA

2014, pp. 91–94 (2014)
5. Ghezzi, C., Molzam Sharifloo, A.: Dealing with non-functional requirements for

adaptive systems via dynamic software product-lines. In: de Lemos, R., Giese, H.,
Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II.
LNCS, vol. 7475, pp. 191–213. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35813-5 8

6. Heaven, W., Sykes, D., Magee, J., Kramer, J.: A case study in goal-driven architec-
tural adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
109–127. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-
9 6

https://doi.org/10.1007/978-3-642-35813-5_8
https://doi.org/10.1007/978-3-642-35813-5_8
https://doi.org/10.1007/978-3-642-02161-9_6
https://doi.org/10.1007/978-3-642-02161-9_6

122 R. Wohlrab and D. Garlan

7. Hsu, C.C., Sandford, B.A.: The Delphi technique: making sense of consensus. Pract.
Assess. Res. Eval. 12(1), 10 (2007)

8. Inverardi, P., Mori, M.: A software lifecycle process to support consistent evolu-
tions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engi-
neering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 239–264. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35813-5 10

9. Kakousis, K., Paspallis, N., Papadopoulos, G.A.: Optimizing the utility function-
based self-adaptive behavior of context-aware systems using user feedback. In:
Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 657–674. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0 46

10. Kendall, M.G., Smith, B.B.: The problem of m rankings. Ann. Math. Statist. 10(3),
275–287 (1939)

11. Ossadnik, W., Schinke, S., Kaspar, R.H.: Group aggregation techniques for analytic
hierarchy process and analytic network process: a comparative analysis. Group
Decis. Negot. 25(2), 421–457 (2016). https://doi.org/10.1007/s10726-015-9448-4

12. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic configuration of resource-
aware services. In: ICSE 2004 (2004)

13. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009). https://doi.
org/10.1007/s10664-008-9102-8

14. Saaty, R.: The analytic hierarchy process–what it is and how it is used. Math.
Modell. 9(3), 161–176 (1987)

15. Salehie, M., Tahvildari, L.: Towards a goal-driven approach to action selection in
self-adaptive software. Softw. Pract. Exp. 42(2), 211–233 (2012)

16. Sawyer, P., Bencomo, N., et al.: Requirements-aware systems: a research agenda
for RE for self-adaptive systems. In: RE 2010, pp. 95–103 (2010)

17. Song, H., Barrett, S., Clarke, A., Clarke, S.: Self-adaptation with end-user pref-
erences: using run-time models and constraint solving. In: Moreira, A., Schätz,
B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp.
555–571. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41533-
3 34

18. Sousa, J.P., Balan, R.K., Poladian, V., Garlan, D., Satyanarayanan, M.: User guid-
ance of resource-adaptive systems. In: ICSOFT 2008, pp. 36–44 (2008)

https://doi.org/10.1007/978-3-642-35813-5_10
https://doi.org/10.1007/978-3-540-88871-0_46
https://doi.org/10.1007/s10726-015-9448-4
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-642-41533-3_34
https://doi.org/10.1007/978-3-642-41533-3_34

Risk-Driven Compliance Assurance for
Collaborative AI Systems: A Vision Paper

Matteo Camilli1(B), Michael Felderer2, Andrea Giusti3,
Dominik Tobias Matt1,3, Anna Perini4, Barbara Russo1, and Angelo Susi4

1 Free University of Bozen-Bolzano, Bolzano, Italy
{mcamilli,dmatt,brusso}@unibz.it

2 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

3 Fraunhofer Italia Research, Bolzano, Italy
andrea.giusti@fraunhofer.it

4 Fondazione Bruno Kessler (FBK), Trento, Italy
{perini,susi}@fbk.eu

Abstract. Context and motivation. Collaborative AI systems aim at
working together with humans in a shared space. Building these sys-
tems, which comply with quality requirements, domain specific standards
and regulations is a challenging research direction. This challenge is even
more exacerbated for new generation of systems that leverage on machine
learning components rather than deductive (top-down programmed) AI.

Question/problem. How can requirements engineering, together with
software and systems engineering, contribute towards the objective of
building flexible and compliant collaborative AI with strong assurances?

Principal idea/results. In this paper, we identify three main research
directions: automated specification and management of compliance
requirements, and their alignment with assurance cases; risk manage-
ment; and risk-driven assurance methods. Each one tackles challenges
that currently hinder engineering processes in this context.

Contributions. This vision paper aims at fostering further discussion
on the challenges and research directions towards appropriate methods
and tools to engineer collaborative AI systems in compliance with exist-
ing standards, norms, and regulations.

Keywords: Compliance requirements · Compliance cases ·
Collaborative AI systems · Machine Learning · Risk management

1 Introduction

Collaborative AI systems (CAIS) are robotic systems that work with humans
in a shared physical space to reach common goals. To achieve flexibility and
accommodate changing needs, the upcoming generation of CAIS heavily rely on
Machine Learning (ML) components to mimic human perception skills (e.g.,
visual perception, speech recognition, or conversing in natural language) as
c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 123–130, 2021.
https://doi.org/10.1007/978-3-030-73128-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_9

124 M. Camilli et al.

well as learn from humans how to carry out specific tasks by demonstration.
Thus, ML-equipped CAIS yield bidirectional human-robot collaboration. For
this reason, they must satisfy quality criteria including appropriate behavior
with respect to social rules, domain specific standards and laws for certification.
Furthermore, such systems often run in dynamic and uncertain environments
that make it difficult providing strong assurances of compliance [4].

In this paper, we reflect on how research in Requirements Engineering (RE)
of software and systems can contribute to define suitable methods for building
ML-equipped CAIS (henceforth referred again to as CAIS for the sake of sim-
plicity). We believe that a RE perspective can help reasoning on the trade-off
between opportunities and risks deriving from the usage of ML-based solutions in
this context. Moreover, existing practices for trust-based human-robot interac-
tions [12] shall be evaluated and eventually revisited through novel RE methods
to deal with the assurance of learning agents, in which interactions are driven
by ML components. In this setting, we envision risk as a first class concern and
propose three research directions to investigate over risk-driven engineering pro-
cesses that leverage on continuous feedback from empirical evidence collected at
run-time, in a closed-loop setting with the surrounding environment, in order to
verify semantically meaningful properties through suitable assurance methods.

The RE community recognizes that appropriate assurance methods for com-
pliance requirements (e.g., defined on human-robot collaboration standards, such
as the ISO/TS 150661) need to be defined. More generally, research on RE for AI-
based system is considered a relevant and timely topic in recent RE conferences2

and in dedicated workshops, such as RE4AI at REFSQ3, as well as in European
initiatives (e.g., AI4EU platform4). Evidence is also provided by recent surveys
reporting the urgent need for effective RE processes [14] and verification meth-
ods [11] for “intelligent” components as well as AI systems. An analysis of the
RE characteristics for systems that include ML components are reported in [14]
whereas the work in [2] discusses challenges and desiderata for increasing their
level of assurance. This latter work emphasizes that existing assurance methods
for AI systems in general and CAIS in particular are not linked to compliance
requirements and possible risks.

The rest of the paper is organized as follows. In Sect. 2, we introduce an
illustrative example of CAIS. We discuss the key challenges in Sect. 3. Then, we
elaborate on our envisioned approach and research directions in Sect. 4. Finally,
Sect. 5 concludes the paper.

2 Illustrative Example

We introduce our vision of the problem by means of a case from the Industry
4.0 domain taken from [9] that exemplifies the high risks for human safety as
1 https://www.iso.org/standard/62996.html.
2 https://requirements-engineering.org/.
3 https://sites.google.com/view/re4ai/home.
4 http://ai4eu.eu.

https://www.iso.org/standard/62996.html
https://requirements-engineering.org/
https://sites.google.com/view/re4ai/home
http://ai4eu.eu

Risk-Driven Compliance Assurance for Collaborative AI Systems 125

Fig. 1. Illustrative CAIS example in a closed-loop with the surroundings.

well as relevant dependability concerns. Figure 1 illustrates such example, where
an automated controller of a robotic arm attempts to detect and classify objects
(e.g., by color and shape) on a conveyor belt and actuates the proper movements
to pick and move the object into the right bucket. The system includes a con-
troller, an actuated mechanical system (i.e., robotic arm), and a camera sensor
along with a visual perception ML component for classification. This ML com-
ponent learns on structured heterogeneous data sources associated with features
(e.g., shape and color of an object) and yields category labels as output. The
training and the validation is performed iteratively online by a human operator.
The operator collaborates with the robot in order to validate its own actions
through gestures.

The operator collaborates with the robot in order to supervise the correct
transfer of the desired sorting skill to the robot and can intervene through ges-
tures when corrections are required. The safety control approach of this exam-
ple is implemented by considering the speed and separation monitoring of the
standard ISO/TS 15066 for collaborative robotics. Here, a protective separation
distance between the human and the robot is checked online using safety zones.
The dimension of such zones is dynamically adapted based on the robot motion.
Fast motions of the robot can generate safety zones which may be large and
therefore negatively affect the realization of collaborative operations. Assuring a
safe and successful collaboration in cases in which the robot motions are learnt
from humans yields challenges discussed in the next section.

3 Research Challenges

By collaborating with researchers in CAIS engineering, we started to elicit major
challenges that are not fully addressed by existing approaches. In this section,
we discuss them in light of the key characteristics of CAIS, by focusing on
the objective of providing comprehensive, ideally provable, evidence that CAIS
exhibit dependable behavior within their viability (due to continuous learning).

126 M. Camilli et al.

CH1 Uncertain Environment: The environment in which CAIS operate is
often complex with substantial amount of uncertainty even in scenarios where
interacting agents (both robots and humans) are known. For instance, the human
operator in the running example (Sect. 1) is key part of the environment. Thus,
assurance methods for CAIS shall deal with inherent variability and uncertainty
in human behavior. As an example, the human operator may unpredictably move
in a forbidden area and the robotic arm must be able to react in a safe way by
enforcing the speed and separation monitoring. In addition to humans, other
environment variables can influence the perception capability of the ML compo-
nents, as shown in Fig. 1. For instance, low luminance might lead to decrease the
ability of classifying the human operator in specific locations of the shared space.
In this case, assurance could leverage on probabilistic approaches by assuming
specific distributions of the environment factors. Nonetheless, underlying distri-
butions are often only estimates and do not represent precisely the environment
behavior [5].

CH2 Adequacy of Standards: Existing standards in the domain of CAIS
pose challenges in realizing flexible automation [8]. Difficulties arise from fre-
quently changing production environments and potentially unknown a-priori
robot motions. These issues become particularly severe when robotic systems
swiftly adapt to different task demands by learning from humans using ML
components [3]. In fact, existing standards do not specifically refer to CAIS able
to learn from humans (e.g., through ML components). For instance, in program-
ming by demonstration [8], fast human motions can induce in turn fast robot
motions. Thus, to enforce speed and separation monitoring, the dimension of
the safety zones might become large and therefore negatively affect the real-
ization of a successful collaboration. Operational phases can suggest feedback
to existing norms and standards that are currently not aligned with practical
needs of humans in the context of CAIS. Without clear regulation on what the
ML component shall (or shall not) learn, we could put in production CAIS that
eventually break trust and prevail over human needs.

CH3 Partial and Evolving Specifications: Strong compliance assurances
usually rely on precise, rigorous, or even formal description of the behavior of
the target system. This is anything but trivial in the human-robot collaboration
domain and even exacerbated when the robot makes use of ML components.
In fact, the data is often the only available “ground truth” of correct behav-
ior for ML components. Available data can only partially represent the correct
behavior of CAIS. In our running example (Sect. 2), the model of the opera-
tor’s behavior built on available data might not cover an unforeseen movement
toward forbidden unsafe areas of the human agent. Furthermore, such behavior
constantly changes due to the learning skills of the system. Since CAIS learn
from new execution scenarios, design-time specifications must either account for
future changes or be incrementally refined online, as the system evolves.

CH4 Top-Down/Bottom-Up Duality: There exists a fading boundary
between the two approaches in the emerging assurance methods tailored to CAIS.

Risk-Driven Compliance Assurance for Collaborative AI Systems 127

Fig. 2. Research directions RD (Sect. 4) and related challenges CH (Sect. 3).

For instance, refinement of top-down decomposition of requirements from stan-
dards interleaved with bottom-up analysis of human needs. Another example
is top-down partial specification interleaved with bottom-up run-time assurance
evidence. Therefore, “traditional” top-down specifications of requirements shall
coexist with partial/incomplete or example-based specifications (i.e., examples
of good/bad behaviors). In our running example, a top-down safety compliance
requirement could be “no injuring behaviors with probability 99.99%” whereas
the ML visual perception component is built bottom-up on the positive and
negative examples (i.e., injured humans), which may not be available. Overall,
the top-down/bottom-up duality nature calls for revisited methods built with
awareness and endowed with the ability to interleave the two facets.

4 Research Roadmap

In this section, we introduce a research roadmap to address the challenges dis-
cussed above. Figure 2 shows the high level schema of this roadmap that outlines
the Research Directions (RD), and the challenges (CH) that they face. We are
following it in our collaboration with Fraunhofer Italia ARENA5 where we will
have the opportunity to validate results in real world CAIS in the industrial
manufacturing domain.

RD1 Semi-automated Compliance Processes: The focus of this RD is on
supporting semi-automated derivation of compliance requirements of CAIS from
norms and their embedding into proper assurance cases. Requirements elicitation
should rest on the continuous analysis of the uncertain environment (CH1) and,
as a consequence, the management of possible risks. Multi-paradigm approaches
(e.g., goal-oriented techniques [10]) could be exploited to capture different facets
of relevant standards and norms regulating CAIS. A promising approach here is
the extension of existing modelling techniques by enabling (semi)-automated cre-
ation of norm models from domain standards and rules described using natural
language (e.g., by exploiting NLP [13]). Furthermore, domain expert knowledge

5 https://www.fraunhofer.it/en/focus.html.

https://www.fraunhofer.it/en/focus.html

128 M. Camilli et al.

must be considered to support norms evolution based on the feedback and data
from the field operation (CH2). Quality criteria for CAIS and a set of compliance
requirements (e.g., coverage metrics [13]) represents another immature research
direction. Namely, the definition of techniques to automate quality assurance
processes as well as providing recommendations to engineers for improving the
compliance requirements themselves (CH4) require further investigation.

RD2 Risk Management: A successful strategy to cope with uncertainty
(CH1), while dealing with safety in particular and dependability concerns in gen-
eral, is the adoption of a risk management perspective. Uncertainty in CAIS leads
to risks that must be identified, analyzed, monitored, and mitigated. Risk models
could be adopted to quantify the risk of breaking compliance requirements. The
notion of risk is a combination of the likelihood and impact of negative events.
In our context, we see the likelihood as the probability that during execution,
specific characteristics of the environment (i.e., domain features) cause prob-
lems to the ML component (e.g., misclassifications) that might break compliance
requirements [7]. Data and domain models will be used to describe constraints,
partitions and ranges of domain features (e.g., possible positions of the robotic
arm in our running example) and constraints on the underlying data source (e.g.,
reliability of sensors), respectively. Risk analysis has the potential of quantify-
ing existing risks by integrating probability and impact functions in order to
prioritize risks and related compliance requirements that need special attention
during the compliance assurance processes. This should inform the top-down and
bottom-up compliance requirements management strategies in the learning and
operative collaborative activities (CH4). The results of the assurance methods
can be used to further bring the overall residual risk below acceptable levels, as
defined by proper thresholds associated with assurance cases. Here, there exists
the urgent need of novel adequacy criteria prescribing meaningful thresholds for
residual risk in the context of CAIS.

RD3 Risk-Driven Assurance: The risk models developed in RD2 have the
potential to drive the automated creation of semantic labels associated with
uncertain operating conditions that yield risks (CH1). Prioritized assurance cases
and testing scenarios can then be derived from such operating conditions. The
comprehensiveness of testing activities, should be then assessed by means of
appropriate coverage metrics as discussed in the context of RD1. Further assur-
ance can be provided by using incremental refinement of partial/incomplete spec-
ifications (CH3) through verification activities. Partial knowledge captured by
risk models can be used to sample execution scenarios associated with high risk.
Then run-time data can provide evidence about system compliance that can be
used in turn to update the prior knowledge as defined by the risk model. As
an example, falsification techniques [1,6] (traditionally applied in the context of
cyber-physical systems) enhanced with awareness on risks have the potential of
driving a CAIS towards compliance issues. In our running example, we could,
for instance, falsify a safety compliance property requiring a minimum distance
between the robot and the human operator.

Risk-Driven Compliance Assurance for Collaborative AI Systems 129

5 Conclusion

In this paper, we provided a reflection on how research in the discipline of RE,
and software/systems engineering can contribute towards the objective of build-
ing effective ML-equipped CAIS with strong, ideally provable compliance assur-
ances. Major challenges that hinder our ultimate goal are discussed to rise aware-
ness and call for contributions from the research community. To deal with these
challenges, we designed a research road-map towards the definition of compli-
ance processes and requirements, risk management for ML-equipped CAIS, and
risk-driven assurance.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 12(2s), 1–30 (2013)

2. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecy-
cle: desiderata, methods, and challenges (2019). https://arxiv.org/abs/1905.04223.
Accessed Nov 2020

3. Billard, A.G., Calinon, S., Dillmann, R.: Learning from humans. In: Siciliano, B.,
Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1995–2014. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32552-1 74

4. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards regulatory compliance: extract-
ing rights and obligations to align requirements with regulations. In: 14th IEEE
International Requirements Engineering Conference (RE), pp. 49–58. IEEE (2006)

5. Camilli, M., Russo, B.: Model-based testing under parametric variability of uncer-
tain beliefs. In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp.
175–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0 10

6. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

7. Foidl, H., Felderer, M.: Risk-based data validation in machine learning-based soft-
ware systems. In: Proceedings of the 3rd ACM SIGSOFT International Workshop
on Machine Learning Techniques for Software Quality Evaluation, pp. 13–18 (2019)

8. Giusti, A., et al.: Flexible automation driven by demonstration: leveraging strate-
gies that simplify robotics. IEEE Robot. Autom. Mag. 25(2), 18–27 (2018)

9. Giusti, A., et al.: Kollaborative robotik - maschinelles lernen durch imitation.
Industrie 4.0 Management, pp. 43–46 (2019)

10. Ishikawa, F., Matsuno, Y.: Evidence-driven requirements engineering for uncer-
tainty of machine learning-based systems. In: 2020 IEEE 28th International
Requirements Engineering Conference (RE), pp. 346–351. IEEE (2020)

11. Ishikawa, F., Yoshioka, N.: How do engineers perceive difficulties in engineering
of machine-learning systems? - questionnaire survey. In: 2019 IEEE/ACM Joint
7th International Workshop on Conducting Empirical Studies in Industry (CESI)
and 6th International Workshop on Software Engineering Research and Industrial
Practice (SER&IP), pp. 2–9. IEEE (2019)

https://arxiv.org/abs/1905.04223
https://doi.org/10.1007/978-3-319-32552-1_74
https://doi.org/10.1007/978-3-030-58768-0_10
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25

130 M. Camilli et al.

12. Rahman, S.M., Wang, Y., Walker, I.D., Mears, L., Pak, R., Remy, S.: Trust-based
compliant robot-human handovers of payloads in collaborative assembly in flexible
manufacturing. In: 2016 IEEE International Conference on Automation Science
and Engineering (CASE), pp. 355–360. IEEE (2016)

13. Torrea, D., et al.: An AI-assisted approach for checking the completeness of privacy
policies against GDPR. In: 28th IEEE International Requirements Engineering
Conference, RE 2020, Zurich, Swiss, 31 August–4 September 2020, pp. 136–146
(2020)

14. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspec-
tives from data scientists. In: 2019 IEEE 27th International Requirements Engi-
neering Conference Workshops (REW), pp. 245–251. IEEE (2019)

From Software to Systems and Services

Requirements Engineering in the Planning
Phase of a Software Ecosystem

Kati Saarni(B) and Marjo Kauppinen

Department of Computer Science, Aalto University, Espoo, Finland
marjo.kauppinen@aalto.fi

Abstract. [Motivation] Companies are building software ecosystems to gain
competitive advantage by developing digital services together for customers. The
planning phase of the software ecosystem can, however, be challenging. [Ques-
tion] The goal of this study was to analyze what the role of requirements engi-
neering (RE) was in the planning phase of a small-sized software ecosystem. The
case study was conducted by interviewing representatives of all six actors of the
ecosystem and analyzing material from the 12 planning workshops. [Results] The
paper describes the conceptualization process of digital services the actors used
during the planning phase. This process contained a flow of tasks from a vision and
objectives of the software ecosystem to a go/no-go decision on the development
of a Minimum Viable Product (MVP). One key characteristic of the conceptu-
alization process was to have traceability from the prioritized functionalities of
the MVP to a value proposition, target customer groups and customer paths of
digital services and further to the vision and objectives of the software ecosystem.
[Contribution] The paper provides knowledge on how actors can start building a
software ecosystem together from a business perspective. In addition, it addresses
the importance of RE to link the business view to the development of the MVP of
digital services in the software ecosystem.

Keywords: Software ecosystem · Requirements engineering · Business view ·
Conceptualization process · Planning

1 Introduction

Companies are building business ecosystems together to reach competitive advantage
in the markets. The business ecosystem concept was proposed by Moore [18] in the
1990s. The business ecosystem where digital services are developed and provided can
be considered as a software ecosystem (SECO) [11]. It can be defined thus: “a set of
actors interact with a sharedmarket, develop software and services together and operate
through the exchange of information, resources and artifacts” [11]. The creation of the
ecosystem starts from a planning phase, where a basic paradigm of the ecosystem and
howvaluewill be created and shared need to be determined [18]. The software ecosystem
enables the actors to build a broader set of services than one actor can do by its own
[10]. In addition, it allows the actors to better address customer needs, as it can bring a

© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 133–148, 2021.
https://doi.org/10.1007/978-3-030-73128-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_10

134 K. Saarni and M. Kauppinen

diverse set of capabilities and innovation to the solution quickly [5]. It is also possible
to tolerate risk through cost-sharing [10].

Manikas and Hansen [15] point out the importance of studying existing and real
software ecosystems. Understanding different perspectives of specific types of software
ecosystems can provide results which can then be applied to other software ecosystems
[16]. This will enable repeatability and theory confirmation [16].

Earlier studies have examined requirements engineering (RE) in software ecosystems
[e.g. 16, 24, 25]. The focus of these studies has varied across RE activities [24] or
ecosystem lifecycles in small- to large-sized software ecosystems [16, 24]. RE-related
research concentrating on the planning phase of small- and medium-sized software
ecosystems has had only little attention in recent studies [16, 24].

In our previous paper, we identified themain activities and challenges in the planning
phase of a software ecosystem [21]. However, we are interested in gaining a deep under-
standing of RE when actors are building digital services together in the planning phase
of the software ecosystem. Therefore, we extended the quality analysis of the collected
data to answer the following research question: What is the role of RE in the planning
phase of a software ecosystem? The main contribution of this study is that it provides
information for practitioners on how they can start building a software ecosystem. In
addition, the paper addresses the importance of RE in linking the business view to the
development of the MVP of the digital services in the software ecosystem.

The rest of the paper is organized as follows. Section 2 summarizes themain concepts
of software ecosystems and gives an overview of existing RE research on software
ecosystems. The qualitative research method of the study is described in Sect. 3. The
conceptualization process of digital services is described in detail in Sect. 4. The results
are discussed and the answer to the research question presented in Sect. 5. Finally, the
paper concludes and points to future research.

2 Related Work

2.1 Overview of Software Ecosystems

In the 1990s, Moore [18] proposed the concept of the business ecosystem, concentrating
on how the economic community worked and the interactions between companies, their
business environments and business opportunities. A software ecosystem is a subset of
a business ecosystem and the literature contains many definitions of the SECO [e.g. 1,
9, 11, 12]. The main common characteristic of all these definitions of the SECO is the
use of software, which differentiates SECOs from other ecosystem types. In this paper,
we use the definition by Jansen et al. [11] of a SECO: “a set of actors functioning as a
unit and interacting with a shared market for software and services, together with the
relationships among them. These relationships are frequently underpinned by a common
technological platform or market and operate through the exchange of information,
resources and artifacts”.

Software ecosystems can be classified through four factors: base technology, coordi-
nators, market extensions and accessibility [12]. This means that a software ecosystem
is always underpinned by a software platform, a software service platform, or a software
standard, and it can be a privately owned or owned by a community [12]. In addition,

Requirements Engineering in the Planning Phase of a Software Ecosystem 135

there are several scenarios for how the software ecosystems can be available in the mar-
kets e.g. commercial market extensions mean the owner(s) will take all profits [12]. The
accessibility possibilities can be open source, screened but free, and paid [12].

Participants in software ecosystems can be called actors and can have different roles
e.g. keystone actors, dominators, hub landlords and niche players [10]. The software
ecosystem is usually governed [12] and the digital service development is often led by
one or more keystone actors [10]. An actor may have one or more roles in the software
ecosystem [13], and their role may also change during the ecosystem’s life cycle [17].
The lifecycle of an ecosystem consists of phases [10, 18], where an early phase of the
ecosystem is for example referred to as its birth [18] or emerging [10] phase. We call
the first phase of building software ecosystems the planning phase [21].

Software ecosystems can be characterized in several ways, for example informa-
tion about the owning companies, number of participants, main customers as well as
how much business has been created through the software ecosystem [11]. Campbell
and Ahmed [4] proposed a three-dimensional view of the development of software
ecosystems, consisting of the business, architecture and social views. The business view
includes activities where customer expectations and competitive advantage are reached
by a business vision, innovation and strategic planning [4]. The architecture view focuses,
for example, on software architecture solutions for software ecosystems [1] whereas the
social view looks at, for example, how the actors negotiate during the planning of the
digital services development to achieve the goals [8].

In addition, we have identified in our previous study five activities in the planning
phase of the software ecosystem: 1) definition of a vision and objectives, 2) selection
of actors, 3) definition of a governance model, 4) conceptualization of digital services,
and 5) definition of a business model [21]. Other studies also pointed out that definition
of a vision and objectives [10, 18, 20] and definition of the roles of actors [7, 10] are
important activities in the planning phase.

2.2 Requirements Engineering in Software Ecosystems

Earlier studies have considered requirements engineering (RE) from different perspec-
tives in software ecosystems [e.g. 8, 16, 23–25]. Vegendla et al. [24] map previous
studies to RE activities. The previous studies have also been directed toward different
phases during the lifecycle of a software ecosystem [16, 24]. In addition, the size of
the software ecosystems varied from small- and medium-sized [e.g. 23] to large-scale
ecosystems [e.g. 8, 27].

Goal modeling [27] and a definition of a common value proposition [19] as well
as requirement negotiation [8] and prioritization [23] are activities which occur in the
planningphase of a software ecosystem.YuandDeng [27] proposed amodeling approach
for achieving the strategic goals of each actor in a large-scale software ecosystem. Pichlis
et al. [19] studied small software ecosystems and emphasized a need for a common value
proposition. Fricker [8] proposed a model based on negotiation and network theory
for analyzing and designing the flow of requirements through a large-scale software
ecosystem. Valenca et al. [23] studied small- to medium-sized companies during the
planning of a software ecosystem. They identified a need for strong strategic alignment
and difficulties in prioritizing the most valuable features.

136 K. Saarni and M. Kauppinen

Villeda et al. [25] identified an iterative process to achieve a first version of the digital
services in the software ecosystem. The first step in this process is the definition of a
preliminary software ecosystem concept. End-user roles, business strategy and needed
software services from actors to accomplish the strategy are included to the concept [25].

Bosch and Sijtsema [1] reported a lack of connection between business and engineer-
ing process in a large-scale software ecosystem. Schultis et al. [22] reported challenges
where the actors have different requirements based on their business objectives, and if all
the actors are involved in the architectural decision-making, it takes time to reach a com-
mon agreement on the architecture. These results have occurredmore in the development
phase, but relationships to the planning phase exist.

3 Research Methods

3.1 Research Question

The goal of this study was to understand the role of the requirements engineering when
the actors were building digital services together in the planning phase of a software
ecosystem. The research question of the study is defined as follows: What is the role
of requirements engineering in the planning phase of a software ecosystem?

3.2 Description of Case SECO

The role of requirements engineering in the planning phase of one Finnish software
ecosystem (called Case SECO in this paper) was investigated in this study. The aim
of Case SECO was to provide digital services for new entrepreneurs. Before the actual
planning phase of Case SECO, three cooperating actors had recognized that there was a
need in the market for comprehensive digital services. Therefore, they were interested
in co-creating a targeted offering for them. They recognized that creating this kind of
digital service offering requires a set of companies developing it together. A software
ecosystem was recognized as a suitable model for this kind of cooperation. The actors
started to gather appropriate companies. Based on the preliminary discussionswith them,
potential companies were selected.

The planning of the software ecosystem took place from February to June 2018 and
was performed through 12 workshops. In the beginning, there were five actors, and the
sixth actor joined the planning phase in the eighth workshop. The actors represented
five different business sectors: two actors were categorized as small- and medium-sized
companies and four were large companies. One to three people from each actor attended
theworkshops and all members actively participated in defining the vision and objectives
of the software ecosystem and a set of digital services to be developed during the work-
shops. One actor took the role of facilitating the planning phase because it had previous
experience of ecosystem creation and knowledge of digital services development. The
planning was done in an iterative manner.

During the planning phase, the actors agreed that all of them had a keystone player’s
role andwere in an equal positionwith each other in decision-making. An advisory board
was set up consisting of one member of each of the actors of this planning phase. The

Requirements Engineering in the Planning Phase of a Software Ecosystem 137

advisory board in the was the highest decision-making governance body, to enable the
planning of the ecosystem and steer the planning of the digital services. The roles and
responsibilities, limitations, cost-sharing principles, rules for co-operation and business
model were described in the rule book, which was the main guiding document for the
governance of Case SECO.

Case SECO can be classified to be a closed and privately-owned software ecosystem.
All six actors owned equal parts of the software ecosystem. In addition, they decided to
share the costs of the planning and development of the software ecosystem equally. They
also agreed that each actor would get the profit that came from their own offering through
the digital services. The actors decided to keep Case SECO closed during the planning
phase and not to take on new members. However, they agreed that new members would
be welcome later if their offering is suitable for the end-users of the digital services. The
actors included rules for joining and possible roles for new actors in the rule book. The
digital services fulfilled the vision and objectives of Case SECO,which the actors defined
together. The digital services were executed through one software platform, which was
developed by a one external development team. Each actor’s offering showed up as solid
digital services for the end-users.

The development phase of the digital services started in July 2018 and the first
version was launched in July 2019. Currently the digital services are in the continuous
development phase.

3.3 Research Process

This qualitative research was performed using a case study research method [26]. A
descriptive approach for the case study was used to describe a single case in depth.
We applied the coding and code comparison guidelines of grounded theory to analyze
the data [6]. The grounded theory method was selected for the analysis because it offers
systematic and flexible guidelines for analyzing qualitative data [6]. The research process
was first presented in our publication [21], where open coding was used to analyze the
data. In this paper, we further analyzed the data by applying axial coding [6]. Figure 1
shows a timeline of the phases of Case SECO and the main research activities of this
study.

Fig. 1. Timeline of the phases of Case SECO and the main research activities.

The answers to the research question of this study were based on the workshopmate-
rials from the planning phase and the results of semi-structured interviews performed
in January and March 2019. The workshops had a predefined agenda, but other topics
were also covered. The length of the workshops varied from 1 to 4.5 h. The workshop

138 K. Saarni and M. Kauppinen

materials included presentations, notes and all additional material which was delivered
to the actors during the planning. The actors prepared the workshops together with pre-
agreed responsibilities. The facilitator took care of the notes, which included decisions
and work items with responsibilities in each workshop.

The interviews were designed following the guidelines from Boyce and Neale [2].
The themes of the interviews coveredmain topics related to software ecosystem creation.
All the six actors, that had a keystone role in Case SECO and were participants on the
advisory board in the planning phase, were interviewed. All the interviewees had over
15 years of work experience and had extensive knowledge of their company’s business
and its development. Only one had previous experience of planning ecosystems together
with other actors. Table 1 summarizes the interviewed actors.

Table 1. Summary of the interviewees.

Business sector Company size Role in the company Ecosystem experience

Insurance Large Business development
director

No

Pension insurance Large Business development
director

No

Telecommunication Large Business director No

Financial and
accounting

Medium Chief executive officer No

Financial and
accounting

Medium Business development
director

No

Information and
communication

Large Principal consultant Yes

The interviewswere conducted in Finnish, because Finnish was themother tongue of
all the interviewees, and we wanted to collect as rich data as possible. The length of each
interview varied from 25 min to 55 min. The interviews were recorded and transcribed
by a professional external organization.

Open coding [6] was used to analyze the data and define the main activities and
challenges in the planning phase of a software ecosystem. The results of this analysis
are reported in our already published paper [21]. In this paper, we further analyzed the
tasks and challenges of the conceptualization activity of digital services by applying
axial coding from the grounded theory method [6]. Axial coding was used to identify
the relationships between the tasks of the conceptualization activity. The outcome of this
analysis is the visualization and description of the conceptualization process that was
used in Case SECO. This process was further analyzed from the RE perspective. First,
we identified important RE activities the actors applied during the conceptualization
process of the digital services. After this, we analyzed the benefits and relationships of
the identified RE activities. Finally, we categorized the important RE activities of the
conceptualization process according to requirements elicitation, analysis, representation

Requirements Engineering in the Planning Phase of a Software Ecosystem 139

and validation. This led us to understand the role ofRE in the planning phase of a software
ecosystem.

4 Results

4.1 Overview of the Conceptualization Process of Digital Services

Figure 2 summarizes the conceptualization process of digital services in the planning
phase of Case SECO. The six actors of the software ecosystem defined a shared vision
and main objectives of Case SECO in the first planning workshop before the conceptual-
ization process started. The shared vision and main objectives provided important infor-
mation for the conceptualization process and they were also adjusted during the concep-
tualization. The process consisted of two sub-processes: a high-level conceptualization
and a detailed conceptualization.

The first sub-process, the high-level conceptualization of digital services, included
three tasks: benchmarking existing similar digital services, definition of a value propo-
sition and definition of target customer groups and customer paths. The actors of the
software ecosystem did these three tasks in parallel and in an iterative manner in the first
three workshops.

Fig. 2. The conceptualization process of digital services in the planning phase.

The second sub-process, the detailed conceptualization of digital services, consisted
of four tasks: definition and prioritization of functionalities, creation of a Proof-of-
Concept, determination of a Minimum Viable Product (MVP) and determination of the

140 K. Saarni and M. Kauppinen

costs and schedule of the MVP. The actors executed the first three tasks in an iterative
manner and in parallel in the third to seventh workshops. In addition, minor iterations
were also done in the ninth and eleventh workshops. These three tasks provided enough
information to define the costs and schedule for the MVP.

After the conceptualization process, the actors saw that they had enough information
tomake a go/no-go decision on continuing to the development phase.Although the actors
understood that the estimated costs and the schedulemight change after the requirements
had been defined inmore detail, the actors decided to continue to the development phase.

4.2 High-Level Conceptualization of Digital Services

The high-level conceptualization contained three very closely related tasks: benchmark-
ing existing similar digital services, definition of a value proposition and definition of
target customer groups and customer paths.

The benchmarking of existing digital services included a market review and
reviewing five existing similar digital services. The market review included statistics
about companies already established in Finland, for example, quantity, sizes, forms,
industry and business areas. In addition, the gender, age and geographical location of
new entrepreneurs were analyzed. This information was gathered from different statis-
tics services. The market review provided information about the market potential, and it
helped to understand potential target customer groups and customer paths.

The three main findings from the review of existing similar digital services were: 1)
there was not much automation on processes, 2) a lot of information about establishing
a company and entrepreneurship was available, but the language was quite bureaucratic
and difficult to understand, and 3) the existing digital services were quite expensive.
In addition, the actors realized that each existing digital service provided services at
some specific point of the entrepreneur’s lifecycle and solutions that support the whole
lifecycle from the beginning seemed to be missing. The benchmarking of existing digital
services provided important information for the definition of a value proposition, target
customer groups and customer paths.

When the actors were proceeding with the tasks of the high-level conceptualization,
they were also expanding the benchmarking to gain more information. For example,
they studied the functionalities of the existing digital services to see if they provided
learning materials for entrepreneurs or templates for the most-used business contracts.

Twenty potential end-users were interviewed to understand customer behavior and
discover the main pain points they face when establishing a company and starting to
be an entrepreneur. The results of the interviews were visualized. An example of the
visualization is given in Fig. 3. The results of the interviews impacted on the definition
of the value proposition and the definition of the customer paths.

The analysis of existing digital services and, especially, the main pain points of
potential end-users provided valuable information for the definition of a value propo-
sition. The value proposition of Case SECO was defined to be “providing believable
digital services for end-users, removing uncertainty and enabling carefreeness of end-
users through the entrepreneur’s lifecycle”. The value proposition was meant for both
defined target customer groups. In addition, the actors saw that it is important that the
defined value proposition does not conflict with their company’s own values so that they

Requirements Engineering in the Planning Phase of a Software Ecosystem 141

Fig. 3. Visualization of customer behavior and the main pain points of end-users.

can all stand behind it. The value proposition also had an important effect on how the
digital services were communicated and marketed to stakeholders.

The benchmarking of existing similar digital services and end-user interviews
addressed the need to provide digital services for people who are aiming to be
entrepreneurs and those who have recently set up a company and are already
entrepreneurs. These two groups were selected to be the target customer groups of
the digital services. The two target customer groups already represented important cus-
tomers for each participating actor, and they had good experience of the behavior and
needs of these customers.

The main idea when defining the customer paths was to support the recognized
behavior and remove the main pain points the end-users are currently facing. These were
gathered in the potential end-user interviews. The visualization of end-user behaviors
was analyzed and further refined to form the customer paths. All of the actors needed to
recognize their interests in the defined customer paths even though the actors’ specific
offering was pointing to only one specific customer path.

Figure 4 shows the relationship between the defined target customer groups and
customer paths. The first two customer pathswere addressed to personswho are planning
to be entrepreneurs: the digital services provide information about available company
formats and recommend themost appropriate for the new entrepreneur. They can also set
up a companyby selecting the company format and receive the needed informationduring
the setting-up process. In addition, the end-users can clearly see where to commit and
what the upcoming costs will be. The third customer path serves both target customer
groups. The entrepreneur can order tools, services and insurances for operating the
company. The ordering process is smooth, and the status and costs are visible to the
end-user.

Fig. 4. Relationships between target customer groups and customer paths.

142 K. Saarni and M. Kauppinen

4.3 Detailed Conceptualization of Digital Services

The starting point for the detailed conceptualization of digital services was the defined
value proposition, target customer groups and customer paths, which the actors of the
software ecosystem did together during the first sub-process. The second sub-process
consisted of defining and prioritizing functionalities, creating the Proof-of-Concept
(PoC), determining the Minimum Viable Product (MVP) and determining the costs
and schedule of the MVP. The actors also had a possibility to shape the results of the
high-level conceptualization during the detailed conceptualization process.

The main customer paths were further refined by defining main functionalities of
the digital services, which can be seen in Fig. 5. In addition, the first prioritization
for the main functionalities was also done. The defined value proposition guided the
definition and prioritization of the main functionalities.

Fig. 5. Relationships between the customer paths and the main functionalities.

The Proof-of-Conceptwas a user interface prototype where the top prioritized func-
tionalities for the main customer paths were drafted and the layout and main interactions
defined. The PoC enabled the concrete look and feel of the planned digital services.
Potential end-users and the actors tested the PoC and feedback was gathered and dis-
cussed in theworkshops. ThePoChelped the actors to consider the prioritized functional-
ities, define them in more detail and determine theMVP. During the second sub-process,
the PoC was further modified to correspond to the desired set of functionalities and the
MVP.

TheMinimum Viable Product was defined based on the information the PoC pro-
vided. The actors agreed that a winning end-user experience should be already in place
in the MVP. This meant that everything the end-user sees and how the functionalities
work for them should be in place already at the first launch and should not change during
the next versions. In this Case SECO, the definition of the MVP on that level was done
without disagreements.

After the scope of the MVP was defined, the functionalities were further divided
into more detailed requirements. In addition, the main quality requirements were also
determined. The first version of a high-level product backlog of theMVPwas composed,
where all the detailed functional and quality requirements were listed. The actors went

Requirements Engineering in the Planning Phase of a Software Ecosystem 143

through the backlog and considered it against the defined value proposition, target cus-
tomer groups and customer paths and made some further changes to the prioritization.
The result was a prioritized high-level product backlog.

After the MVP had been defined, an overall view of costs and a development sched-
ule of the MVP were preliminarily determined. The costs included costs for the work
needed during the development as well as costs for the technologies and services used.
In addition, preliminary costs for continuous services were also estimated. The schedule
was based on the estimated work effort for the development and a full time equivalent
(FTE) development team. The overall estimation of the costs and the schedule at this
point worked as information for decision-making on proceeding. The actors understood
that it was an estimation and might change after the definitions of the requirements had
become more accurate and the actual development work had started.

4.4 RE Activities of the Conceptualization Process of Digital Services

Table 2 summarizes the set of RE activities that we recommend based on the analysis
of the conceptualization process of Case SECO. These RE activities had an important
role in the iterative conceptualization process. We categorize the first four (1–4) RE
activities to be important requirements elicitation and analysis practices that provide
valuable information about the market potential, existing digital services, and especially
needs of potential end-users.

The following four RE activities (5–8) can be categorized to be modelling and doc-
umentation practices. Before the definition of functionalities of digital services, it was
important to define clearly the most relevant target customer groups for whom the digital
services will be developed and their customer paths the digital services will support. The
starting point for all these modelling practices was to define a value proposition that sets
the most important objectives of digital services from the perspective of end-users.

The traceability activity (Activity 9) can be classified to be a very important require-
ments management practice. Its purpose is to ensure the traceability from the defined
functionalities to the value proposition, target customer groups and customer paths of
digital services and further to the vision and objectives of the software ecosystem. This
traceability activity helped the actors of Case SECO to prioritize functionalities as a
team (Activity 10) and define the scope of the MVP (Activity 12).

Prototyping (Activity 11) was one important activity that was used to validate the pri-
oritized functionalities and the definition of theMVP. Organizing workshops throughout
the conceptualization process and conducting the RE activities iteratively also supported
the validation of the important outcomes of the conceptualization.

4.5 Challenges in the Conceptualization Process

The actors did not face any remarkable challenges during the high-level conceptual-
ization. The main reasons were that the tasks in the high-level conceptualization were
executed based on the shared vision and objectives,which the actors had defined together,
and the participating actors were very familiar with the substance of the tasks. In addi-
tion, the actors did not need to think about costs and schedules yet during the high-level
conceptualization.

144 K. Saarni and M. Kauppinen

Table 2. Important RE activities of the conceptualization process of Case SECO.

ID RE activity Benefits

1 Conducting a market review Getting information about the market potential

2 Benchmarking existing services Understanding the functionalities and weaknesses of the
existing digital services

3 Interviewing potential end-users Gaining a deep understanding of user needs such as their
current processes, behavior, and pain points

4 Visualizing customer behavior Clarifying the current tasks and pain points of potential
end-users

5 Defining a value proposition Deciding the most important objectives of digital services
from the perspective of end-users

6 Defining target customer groups Selecting the most relevant customer groups for whom the
digital services will be developed

7 Defining customer paths Determining targeted customer paths for the defined target
customer groups

8 Defining main functionalities Describing the digital services in more detail and enabling
a definition of costs and a schedule for the development of
the digital services

9 Ensuring traceability from the vision to functionalities Helping actors to make compromises and prioritize
functionalities and commit to the digital services

10 Prioritizing functionalities as a team Ensuring that digital services fulfill the defined vision and
objectives of the software ecosystem

11 Building a user-interface prototype Validating the prioritized functionalities and the definition
of the MVP

12 Defining the Minimum Viable Product (MVP) Enabling the launch of a first useful version of the digital
service as soon as possible

13 Organizing workshops with all actors Building trust between all actors and commitment to the
created software ecosystem

14 Conducting RE practices iteratively Enabling enhancements to the outcomes of the
conceptualization process

During the detailed conceptualization, the actors faced three main challenges: 1) it
was difficult to define the MVP and prioritize functionalities, 2) they had difficulties
understanding the needed definition level of the digital services, and 3) they did not have
enough substantive knowledge to define common functionalities of the digital services.

The definition of the MVP and prioritization of functionalities was challenging
because it required some compromises from the actors. The actors accepted this and
understood that the prioritization and thereby the MVP was based on the tasks that
they defined very carefully together in the high-level conceptualization and which were
strongly based on the shared vision and objectives.

The actors were not sure how detailed the definitions of the requirements should be
to gain enough information about the costs and schedule in order to ensure that their
go/no-go decision for the proceeding was correct. In addition, the actors considered that
they did not have enough substantive knowledge to define the common functionalities
(e.g. registering, interactions, security and layout) of the digital services. The detailed
conceptualization was an important sub-process and ensured the needed information for

Requirements Engineering in the Planning Phase of a Software Ecosystem 145

the decision-making. Thus, the second sub-process should have included participants
who were experts in detailed conceptualization.

5 Discussion

5.1 Requirement Engineering in the Planning Phase of a Software Ecosystem

In this study, we identified the conceptualization process of digital services that was used
by the actors in the planning phase of the software ecosystem. One important character-
istic of the conceptualization process was that the actors defined the value proposition,
the target customer groups and the customer paths of digital services together. It was also
important that the value proposition, target customer groups and customer paths were
defined based on the vision and objectives of the software ecosystem. This high-level
conceptualization ensured that the business view was considered systematically during
the planning of the digital services.

Previous research has also highlighted the importance of a business perspective in
software ecosystem creation. For example, Yu and Deng [27] stressed the importance
of strategic goal definition and Valenca et al. [23] also reported the need for strategic
alliances in small- andmedium-sized software ecosystems. In addition, Villeda et al. [25]
recognized the need for the software ecosystem concept, which included a definition of
the business strategy and needed software services fromactors to accomplish the strategy.

Our findings support the results of Pichlis et al. [19]. They have reported the need of
the common value proposition when developing a software ecosystem. Defining value
propositions, target customer groups and customer processes of digital services can
also be considered an important part of RE especially when connecting RE to business
planning [14].

The analysis of the current pain points of customer processes was one of the critical
tasks of the conceptualization process. The purpose of the software ecosystem was to
remove these pain points. Gaining a deep understanding of customers’ current processes
and their problems is also an essential part of requirements elicitation.

During the detailed conceptualization, the actors felt it was challenging to define the
MVP and prioritize functionalities. Valenca et al. [23] have also pointed out the chal-
lenges in prioritizing product features in a software ecosystem. Requirements prioritiza-
tion is a challenging RE activity that has been investigated for decades, and researchers
have proposed a large number of prioritization methods [3].

The actors needed to make compromises when they prioritized functionalities and
defined the MVP during the planning phase of the software ecosystem. Even though the
actors found requirements prioritization challenging, they accepted the compromises,
because it was very transparent how the MVP was derived from the together defined
value proposition, target customer groups and customer paths. Therefore, the actors
knew that the MVP fulfilled the vision and objectives of their software ecosystem. This
is an example how the actors of the software ecosystem were able to prioritize the
requirements of the MVP together without using requirements prioritization methods.

The social view and collaboration were emphasized in the planning phase of this
software ecosystem. It was essential that the actors worked coequally and iteratively

146 K. Saarni and M. Kauppinen

together during the planning phase. They made decisions together and committed to the
results of the conceptualization process. Previous studies have also pointed out the social
view of software ecosystems [e.g. 8]. Fricker [8] highlighted negotiation issues. Our case
study indicates that negotiation issues are easier to avoid if the conceptualization process
is done carefully together and the dependencies between tasks in the conceptualization
process are clear and visible. The small number of actors also impacted on the ease of
negotiation compared to large-scale software ecosystems with a correspondingly large
number of actors.

Our paper presents how the business and social views were considered during the
planning of the real-life software ecosystem. For practitioners, the paper provides knowl-
edge on how actors can start building a software ecosystem together from a business
perspective. In addition, our study points out the important role of RE activities to link
the business view to the development of the MVP of digital services in the software
ecosystem.

5.2 Threats to Validity

Here, we discuss four potential threats to the validity of the results. First, the interviews
were conducted six months after the planning phase had ended. This might lead to
deviations in the answers of the interviewees. This threat was mitigated by the researcher
encouraging the interviewees to try to answer as they felt during the planning phase.
In addition, the objectives of the study and the interviewee’s rights and responsibilities
were presented to them. The interviewees knew that the interviews were anonymous,
and the material would be kept confidential. Therefore, it could be assumed that the
interviewees gave honest answers.

Secondly, one of the limitations of this study is that only one representative from
each actor was interviewed. Triangulation of the data sources was used to reduce this
validity threat. The detailed material from the workshops was another source of data.

The third validity issue concerns investigator triangulation, which we were able
to use in a restricted way. The first author of the paper was responsible for the design,
execution, analysis and reporting of the study, and the second author reviewed the results
of the study. The first author started to work at Case SECO after the planning phase,
which enabled them to consider the planning phase neutrally. In addition, participation
in Case SECO after the planning phase enabled her to understand the context and actors
in detail.

The fourth limitation is that the findings of this study are derived from a single
case study, where the case software ecosystem was quite small. It could be assumed
that similar findings are achievable by conducting the same research, investigating the
planning phase of another software ecosystem or repeating the same research for this
case software ecosystem.

6 Conclusions

The results of this study give detailed information for practitioners on how to concep-
tualize digital services in the planning phase of a software ecosystem. The results show

Requirements Engineering in the Planning Phase of a Software Ecosystem 147

how the business view can be incorporated systematically into the conceptualization of
digital services and how actors can work together during the planning phase. If actors
create the vision and objectives of the software ecosystem carefully together, it supports
them in defining the MVP and prioritizing the functionalities of digital services. The
results of the study also show that RE has a critical role in the planning phase of the soft-
ware ecosystem. RE ensures traceability from the prioritized functionalities of the MVP
to a value proposition, target customer groups and customer paths of digital services and
further to the vision and objectives of the software ecosystem.

Our future research goal is to gain more detailed knowledge of how actors can
conceptualize and develop digital services together in a software ecosystem. We also
plan to conduct case studies and gather data from other software ecosystems in order to
validate the findings of this study especially from the perspective of RE.

References

1. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of software
product lines, global development and ecosystems. J. Syst. Softw. 83(1), 67–76 (2010)

2. Boyce, C., Neale P.: Conducting in-depth interviews: a guide for designing and conducting
in-depth interviews for evaluation input. In: Pathfinder International Tool Series, Monitoring
and Evaluation, vol. 2 (2006)

3. Bukhsh, F.A., Bukhsh, Z.A., Daneva, M.: A systematic literature review on requirement
prioritization techniques and their empirical evaluation. Comput. Stand. Interfaces 69, 103389
(2020)

4. Campbell, P.R.J., Ahmed, F.: A three-dimensional view of software ecosystems. In: 4th
European Conference on Software Architecture, pp. 81–84 (2010)

5. Carbone, P.: The emerging promise of business ecosystems. Technol. Innov. Manage. Rev.
11–16 (2009)

6. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Qualitative
Analysis, p. 208. Sage Publications (2006)

7. Dedehayir, O., Mäkinen, S., Ortt, R.: Roles during innovation ecosystem genesis: a literature
review. Technol. Forecast. Soc. Change 136, 18–29 (2018)

8. Fricker, S.: Specification and analysis of requirements negotiation strategy in software
ecosystems. In: 1st International Workshop on Software Ecosystems, pp. 19–33 (2009)

9. Hanssen, G.K.A.: Longitudinal case study of an emerging software ecosystem: implications
for practice and theory. J. Syst. Softw. 85(7), 1455–1466 (2012)

10. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of Business
Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard Business Press,
Brighton (2004)

11. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a survival
strategy: a tale of two software ecosystems. In: 1st International Workshop on Software
Ecosystems, pp. 34–48 (2009)

12. Jansen, S., Cusumano, M.A.: Defining software ecosystems: a survey of software platforms
and business network governance. In: 4th International Workshop on Software Ecosystems,
pp. 40–58 (2012)

13. Knodel, J., Manikas, K.: Towards a typification of software ecosystems. In: Fernandes, J.M.,
Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 60–65. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19593-3_5

https://doi.org/10.1007/978-3-319-19593-3_5

148 K. Saarni and M. Kauppinen

14. Lehtola, L., Kauppinen, M., Vähäniitty, J., Komssi, M.: Linking business and requirements
engineering: is solution planning a missing activity in software product companies? Require.
Eng. 14(2), 113–128 (2009)

15. Manikas, K., Hansen, K.M.: Software ecosystems - a systematic literature review. J. Syst.
Softw. 86(5), 1294–1306 (2013)

16. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature study. J. Syst.
Softw. 117, 84–103 (2016)

17. Markham, S.K., Ward, S.J., Aiman-Smith, L., Kingon, A.I.: The valley of death as context
for role theory in product innovation. J. Prod. Innov. Manage. 27(3), 402–417 (2010)

18. Moore, J.F.: The Death of Competition: Leadership and Strategy in the Age of Business
Ecosystems. HarperBusiness (1996)

19. Pichlis, D., Raatikainen, M., Sevón, P., Hofemann, S., Myllärniemi, V., Komssi, M.: The
challenges of joint solution planning: three software ecosystem cases. In: Jedlitschka, A.,
Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014.
LNCS, vol. 8892, pp. 310–313. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13835-0_29

20. Rong, K., Shi, Y.: Business Ecosystems - Constructs, Configurations and the Nurturing
Process. Palgrave Macmillan (2014)

21. Saarni, K., Kauppinen, M.: Activities and challenges in the planning phase of a software
ecosystem. In: Hyrynsalmi, S., Suoranta, M., Nguyen-Duc, A., Tyrväinen, P., Abrahamsson,
P. (eds.) ICSOB 2019. LNBIP, vol. 370, pp. 71–85. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-33742-1_7

22. Schultis,K.-B., Elsner, C., Lohmann,D.:Architecture challenges for internal software ecosys-
tems: a large-scale industry case study. In: 22nd International Symposium on Foundations of
Software Engineering, pp. 542–552 (2014)

23. Valenca, G., Alves, C., Heimann, V., Jansen, S., Brinkkemper, S.: Competition and collabo-
ration in requirements engineering: a case study of an emerging software ecosystem. In: 22nd
International Requirements Engineering Conference, pp. 384–393 (2014)

24. Vegendla, A., Duc, A.N., Gao, S., Sindre, G.: A systematic mapping study on requirements
engineering in software ecosystems. J. Inf. Technol. Res. 11(1), 49–69 (2018)

25. Villela, K., Kedlaya, S., Doerr, J.: Requirements engineering for innovative software ecosys-
tems: a research preview. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol.
11412, pp. 117–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_8

26. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research Methods, 3
edn. Sage Publications (2003)

27. Yu, E., Deng, S.: Understanding software ecosystems: a strategic modeling approach. In: 3rd
International Workshop on Software Ecosystems, pp. 65–76 (2011)

https://doi.org/10.1007/978-3-319-13835-0_29
https://doi.org/10.1007/978-3-030-33742-1_7
https://doi.org/10.1007/978-3-030-15538-4_8

Power and Privacy in Software
Ecosystems: A Study on Data Breach

Impact on Tech Giants

Maria Eduarda Rebelo, George Valença(B), and Fernando Lins

Departamento de Computação, Universidade Federal Rural de Pernambuco,
Recife, Pernambuco, Brazil

{eduarda.rebelo,george.valenca,fernandoaires}@ufrpe.br

Abstract. [Context and motivation] Concerns about data privacy
and protection in companies from various fields and sizes are not only a
reality, but a requirement at this day and age. The need to comply with
governmental laws and other rules became a driving force in handling
personal data. [Question/problem] For major IT companies, especially
those in charge of a software ecosystem, such concerns grow tenfold: cases
of privacy breach can extend over and affect their platforms, software
solutions and relationships with partners and users. [Principal results]
This research investigates data breach cases in GAFA (Google, Amazon,
Facebook, Apple) ecosystems through the perspective of power, which
is a lens of analysis of a network of multiple interdependent actors. We
create power models to describe the power relationships among ecosys-
tem players during a privacy issue. [Contribution] Our descriptive case
study reveals the actors involved in a data breach scandal, the ecosystem
elements that grant them privileges or lack thereof, and consequences
that reverberate positively or negatively towards them. We contribute
towards stakeholder analysis activities by presenting our power relation-
ships framework, which can be integrated into the requirements process
as a technique for security and privacy requirements definition.

Keywords: Power · Privacy · Data protection · Ecosystem · Platform

1 Introduction

The consolidation of software ecosystems in the last decade represents a
paradigm shift in the IT industry, in terms of both business models and software
development. In this setting, varied actors adopt a platformisation approach to
co-create value to a common pool of users, in a shared market for software and
services. A keystone (e.g. Apple, Amazon) structures, releases, and controls a
platform (e.g. iOS, Alexa), which is used by partners to complement or extend
(e.g. creating or adapting a feature to a specific customer segment), or simply
promote a software product (e.g. including it in an app store).

c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 149–164, 2021.
https://doi.org/10.1007/978-3-030-73128-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-73128-1_11

150 M. E. Rebelo et al.

Ecosystems require software development to be oriented towards an architec-
ture model that promotes secure software sourcing, integration, deployment, and
evolution throughout a supply chain of different producers [17]. Otherwise, we
may perceive events such as data breaches, which reveal the fragility of a software
platform and related solutions. In 2017, a security researcher identified a data
protection incident in the iOS ecosystem. The third-party solution AccuWeather
from Apple’s marketplace continued sending private location data to a backend
monetisation service called RevealMobile, even with the location sharing turned
off by the user [9]. A few years later, Amazon was accused of analysing snippets
of conversations from Alexa-powered devices, which were secretly recorded and
uploaded to the cloud without the user’s consent [19]. In the Facebook ecosystem,
a loose app review process combined with configuration errors allowed Instagram
advertising partners to misappropriate a vast set of sensitive user data, including
physical location and photos [16].

These examples highlight the need to ensure the privacy of user data, which
is essential for software solutions to properly operate in the ecosystem. Further-
more, the success or failure of these solutions may affect the platform owner,
innumerous complementors and, more importantly, the user base. Such impact
is not perceived in isolation but rather in a systemic form, as the evolution of
the ecosystem depends on the coopetition of its members. These actors share
business, technical and social assets, e.g. the resources a keystone offers to the
network, the expertise of a developer community; or the image of a respectable
reseller, respectively [21]. Such assets are sources of power as they enable one
party to increase another party’s dependence by controlling what it values in
the ecosystem [4]. Hence, power distribution becomes a useful lens of analysis of
this network of multiple interfirm relationships and interdependent parties.

In this research, we investigate how actors in a software ecosystem exercise
power in the occurrence of a data protection issue. To address this goal, we per-
formed a descriptive case study of GAFA (Google, Amazon, Facebook, Apple)
ecosystems, considering their relevance in the software industry and ubiquity in
our daily routine. This study interpreted four critical privacy cases by creating
power models to represent varied power relationships in these ecosystems. Such
power framework can support stakeholder analysis activities in the early require-
ments phase, since understanding the social complexity around privacy breaches
is paramount to define or assess data protection and security requirements [10],
which is especially critical in complex settings like software ecosystems [24].

The rest of the paper is structured as follows. Section 2 describes the con-
ceptual framework of this research, over which we present our findings. Section 3
describes our methodology. In Sect. 4, we detail privacy breach cases in GAFA
ecosystems in terms of power relationships. Finally, in Sect. 5 we discuss the
implications or our contribution, compare our results with other works, and
present threats to validity as well as future work.

Power and Privacy in Software Ecosystems 151

2 Theoretical Foundation

2.1 Software Ecosystems

Software ecosystems can be described as a set of businesses functioning collec-
tively as a unit and interacting with a shared market for software and services,
forging relationships among themselves. They gather actors investing in innova-
tive business models, who aim to co-create value for the ecosystem. In a platform
business model, companies open their platforms for third parties/potential part-
ners to integrate their specific solutions and/or develop new ones, in a movement
from single to multiple products in a platform approach [15]. Well-known exam-
ples of ecosystems include Microsoft’s Dynamics CRM and Apple’s iOS.

It is possible to comprehend how software ecosystems operate by describing
its three different dimensions [21]. The social dimension encompasses the actors
participating in the ecosystem with their respective roles, relationships, skills and
motivations, among other factors that regulate the interactions within the net-
work. The technical dimension is primarily concerned with the software platform
itself and its software-based system that provides core features shared by a port-
folio of products or services that interoperate with each other, with extended
solutions via boundary resources, such as application programming interfaces
(APIs) and software development toolkits (SDKs) [15]. Within this dimension,
product management and development processes that shape how solutions are
collaboratively planned, evolved and released to customers can also be found.
Lastly, the business dimension deals with the strategies to obtain value and gen-
erate revenue for all ecosystem participants by involving the platform business
model and its definitions about entry barriers and intellectual property rights,
as well as overall innovation directions [21].

Broadly speaking, three main groups of actors form an ecosystem. Those
in charge of controlling and those subsumed to the current rules. A firm called
keystone leads the evolution of the ecosystem by defining rules of access to a
platform and orchestrating the creation of new solutions. In parallel, several
complementors co-create value on top of the platform by combining their solu-
tions to address the needs for features/services from a wide pool of users [13].

Ecosystems emerge from a software platform whose architecture enable an
ease extension of its functionality via APIs, for instance. However, such platform
may face serious security risks, such as malicious code spread from solutions
developed by ecosystem partners, which may expose user data or ultimately
disable the overall system. Hence, security and privacy requirements are
relevant parameters to design and evaluate the architecture of a platform [24].

Data protection laws such as the EU’s General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act recently introduced a hard
challenge for ecosystems. Keystone companies such as Google and Amazon must
ensure that their platform and derived software solutions from niche players meet
the requirements at the core of such regulations to protect users’ personal data
and privacy. Any deviance from the prescribed rules can be easily noticed due
to the large customer base around these ecosystems.

152 M. E. Rebelo et al.

2.2 Power

Social scientists have studied power in interpersonal relationships for decades.
Behavioral scientists and management professionals later introduced this concept
in a business environment to analyse interfirm relationships, when a company
can hold and exercise power while interacting with another company. Based
on a previous theoretical interpretation of power in software ecosystems [21],
we define the power of A as its ability to exert some sort of influence in its
relationship with B. The resulting power relationships are often based on an
underlying idea of dependence, e.g. an actor A can exercise power over an actor
B if this player somehow depends on A [4]. Such power may occur in five different
forms, according to the well-known taxonomy from French and Raven [6]:

– Coercive power is B’s perception that A can punish it (e.g. a keystone dis-
qualifies partners whose products do not live up to quality standards).

– Reward power is B’s perception that A can provide it with rewards (e.g. a
company offers financial benefits to ecosystem partners).

– Expert power is B’s perception that A has special knowledge or expertise (e.g.
a company masters innovative technologies).

– Legitimate power is B’s perception that A has the right to impose behavior
for it (e.g. a company can set ecosystem goals due to its superior position).

– Referent power is B’s feeling of respect, admiration and identification toward
A (e.g. partners recognise the status of the keystone).

A power capability is a given asset that denotes a company’s power, such
as developing features for a specific market segment, providing partners with
key information about customers, or establishing the roles of partners in the
ecosystem. Each power capability derives from power sources, which are tangible
or intangible resources that an actor can use to affect the behaviour of others.
Thereby, a company can exercise some form of power by cultivating such sources.
Any change in the availability or demand for power sources may affect the power
distribution in a partnership, since it causes an player to gain or lose power [21].

3 Research Method

This research reports on a descriptive case study of privacy breaches in the
well-established GAFA software ecosystems. We considered that all the actors
involved in such scandals hold a certain level of power, which reflects upon
countless business and technical decisions on the companies’ end in an attempt
to repair the damage caused to the users. By combining web and literature-
based information, we analysed how privacy issues affected power relationships
established around influential players. Figure 1 presents the main phases of the
study (data collection, analysis and synthesis), which we describe as follows.

Our data collection aimed at mapping articles reporting data leak cases
in software ecosystems. Accordingly, we defined and calibrated a search string,
whose final structure involved the notions of privacy, breach and ecosystems

Power and Privacy in Software Ecosystems 153

Fig. 1. Phases and respective activities of our descriptive case study.

(in the scope of GAFA): privacy AND (scandal OR breach OR data leak) AND
(Google OR Amazon OR Facebook OR Facebook). This query was applied in
Google’s search engine considering a timeframe of five years1. To guarantee the
quality of web-based data, our selection criteria was based on two indicators: the
“Media Bias Rating” scale2, which rates news and editorial/opinion content for
a number of outlets, and the “Fact Check”3 list, which rates news media sources
based on factual accuracy and political bias. Hence, we could assess the reputa-
tion of the sources behind each article, which restricted our results to relevant
IT news websites and large-circulation outlets (e.g. Forbes, The Guardian).

Then, we performed a literature review to retrieve additional data about
privacy breaches in ecosystems. This step provided us with works such as [9],
which reports privacy issues in Facebook and Apple/iOS ecosystems. In total,
we selected 20 articles across 14 different web and literature publications for
further analysis. Altogether, we identified 5 cases per ecosystem within the total
of articles, which included peer-reviewed papers and newspapers texts.

To structure our dataset, we extracted the following information (which we
illustrate with an example from iOS ecosystem) about the selected breach cases:

– Publication reporting the case (e.g. article - Forbes; or event - 52nd HICSS)
– Data breach description (e.g. app AccuWeather disclosing user device data

with backend services such as RevealMobile in iOS platform)
– Internal/external actors involved in the case (e.g. Apple, AccuWeather)
– Products and platform (e.g. AccuWeather, iOS)
– Actor who caused the data breach (e.g. AccuWeather)
1 We date back to 2016 since that year is the start of a time period encompassing

multiple security breach scandals, such as the Facebook-Cambridge Analytica.
2 Media Bias Ratings - https://www.allsides.com/media-bias/media-bias-ratings.
3 Media Bias/Fact Check - https://mediabiasfactcheck.com.

https://www.allsides.com/media-bias/media-bias-ratings
https://mediabiasfactcheck.com

154 M. E. Rebelo et al.

– Relevance and impact of the data breach (e.g. a virulence was present and
brought to public attention)

– Actions taken (e.g. media pressure made AccuWeather remove RevealMobile
SDK from its app until it fully complied with the appropriate requirements).

We extracted data from these cases in a spreadsheet that acted as a form of
breakdown sheet for further analysis4. Then, we considered the following criteria
to prioritise and select a critical case from each ecosystem: (i) relevance of the
scandal (e.g. social and media repercussion, evidence that alluded to the breach
having negative implications on the keystone at play); (ii) level of detail (e.g.
amount of information regarding post-scandal actions taken by the company,
which would allow a proper analysis of the elements involved); and (iii) direct
quotations of responses from the keystone’s representatives.

In data analysis, we adopted Thematic Analysis guidelines [3] to categorise
the evidence related to the four cases. This coding process allowed us to describe
the scenario around each case by using themes related to software ecosystem and
power. Initially, we mapped key elements from each case (actors, affected soft-
ware product or platform, consequences) to software ecosystem nomenclature
[21]. For instance, an article excerpt such as “regulators said that YouTube, which
is owned by Google, had illegally gathered children’s data” provided us with infor-
mation about the actors (keystone - Google; users - children; third party/external
entity - legal representatives) and software platform/product (Youtube). Then,
we identified and interpreted evidence of power exercise within cases description
based on the substantive theory of power and dependence in ecosystem partner-
ships [21], which presents an approach for examining the exercise of power in
ecosystems together with illustrative power models. For instance, in the excerpt
“users will be able to opt-in to help Siri improve by learning from the audio sam-
ples of their requests”, we identified a right or prerogative from users in the case
when Apple was caught sending Siri recordings to contractors worldwide. Hence,
we labeled it as an occurrence of legitimate power.

Finally, the data synthesis phase was dedicated to thoroughly interpret the
power relationships among ecosystem actors. Our goal was twofold: (i) create a
comprehensive narrative of the data breach event; and (ii) describe what and
how power capabilities were used by ecosystem players in each event5. After
creating an overview of each case, we identified evidence of power exercise and
associated power sources. For example, in Google case, we perceived that attor-
neys and trade commission officers penalised Google financially and demanded
privacy changes under legal settlement. We understood this fact as a coercive
power capability of legal entities to notify legal authorities about YouTube’s
law violations on software product, whose source lied in the legal permissions
to investigate disobedience through knowledge of established laws. By relating
power capabilities to each involved actor, we represented their power relation-
ships in power models (e.g. such coercive power is represented as a box related
to the actor “legal entities” with an arrow directed to the actor “keystone”, over
4 Analysis spreadsheet - https://bit.ly/3pHMx13.
5 Detailed power capabilities of actors involved in the cases - https://bit.ly/35CEydA.

https://bit.ly/3pHMx13
https://bit.ly/35CEydA

Power and Privacy in Software Ecosystems 155

who power is exercised). Besides, we examined the actions taken once the breach
was exposed, considering aspects such as privacy policy changes, redefinition of
products’ requirements, and financially prohibitive measures.

4 Results

4.1 Case 1 – YouTube (Google Ecosystem)

In a case reported by New York Times, YouTube (which is owned by Google)
illegally gathered children’s data (including identification codes used to track
web browsing over time) without their parents’ consent [18]. According to the
accusations, Youtube marketed itself to advertisers as a top destination for young
children, despite informing these firms that they did not have to comply with
the children’s privacy law because YouTube did not have viewers under the age
of thirteen. Youtube then proceeded to make millions of dollars by using the
information harvested from these children to redirect specific ads their way.

This investigation caused Google to repair the damage by paying a record
$170 million fine and to make needed changes to secure children’s privacy on
their YouTube platform. Such move resulted from an enforcement action taken
by U.S. regulators against technology companies for violating users’ privacy.
Claims suggested that Youtube had knowingly and illegally harvested personal
data from children and used it to profit by targeting them with ads. As part of
the settlement, YouTube also agreed to create a system that asks video channel
owners to identify the children’s content they post so that targeted ads are not
placed in such videos. The regulators stipulated that YouTube must also obtain
consent from parents before dealing with personal details like a child’s name
or photos. Despite the significant settlement, regulators and other legal entities
were critical of how the case was conducted (a U.S. Senator described the penalty
as “a slap on the wrist for one of the world’s richest companies” [18]).

For the past few years, YouTube has redirected its efforts to accommodate
underage users on its platform and service. The exercise of expert power can
be identified in how YouTube has orchestrated its marketing strategies to make
advertisers recognise its platform as a top destination for young children, despite
telling them it would not require any compliance with children’s privacy laws as
YouTube “did not have users under 13” [PC EXYT01] [18]. The expert power
exercised by YouTube is such that users are not necessarily suspicious of any
malicious activity, with factors such as reputation and trust coming to play in
the relationship between the keystone and customer base. This comfort zone
generated by the exercise of expert power granted YouTube a silent permission
to illegally gather, monitor, and track children’s data without their parents’
consent, as well as to serve targeted ads to young children [18].

New York’s Attorney General Letitia James, responsible for enforcing the
federal children’s privacy law in the state, notified the trade commission of
apparent violations of the law on the site [18], which resulted in the penalty
and changes encompassed in the settlement along with the Federal Trade Com-
mission [PC COYT01]. The accusations against YouTube pointed to a direct

156 M. E. Rebelo et al.

Fig. 2. Power model for YouTube/Google case.

violation of the federal Children’s Online Privacy Protection Act. Google sought
to make amends for requirements they should have been complying with in
the first place. It began by offering financial compensation to repair damage
under the legal settlement, reinforcing its ability to exercise reward power
[PC RWYT01].

The scandal cornered YouTube into taking firmer and visible actions that
reach beyond the users alone, proving its ability to exercise coercive power
upon third-party entities involved. It agreed to not only stop placing targeted ads
on children’s videos, but also prevented complementors from gathering personal
data about anyone who watched such videos, even if the viewer could be an adult
[18]. Hence, Youtube limited how much video makers earn on the platform, as
they will no longer be able to profit from ads targeted at children [PC COYT02].

Another action on YouTube’s end can be understood as reward power upon
users and third-party entities involved. These actions involved funneling $100
million to creators of children’s content over the next three years after 2019.
[18] [PC RFYT01]. Additionally, YouTube claimed it would “heavily promote
YouTube Kids, its child-focused app, to shift parents away from using the main
YouTube app when allowing their children to watch videos” [18]. In Fig. 2, we
represent the use of such power capabilities by actors involved in this case.

4.2 Case 2 – Alexa (Amazon Ecosystem)

To illustrate this particular case, three different reports regarding the same sub-
ject matter were concatenated for further analysis. The core of the these privacy
breach events from Amazon concern Alexa, the popular and well-established
voice assistant built in certain Amazon devices, such as the Echo speakers. Both
Amazon Echo and Alexa voice assistant have had widely publicised issues with
privacy [2] and it branches into many problematic topics that have been exposed

Power and Privacy in Software Ecosystems 157

by the media on multiple occasions. Amazon attributed the error to Echo mis-
hearing the “wake” word, which led to a request to send a message; then, mis-
hearing a name in contacts list and a confirmation to send the message. By
analysing Alexa’s transcripts, Bloomberg identified that it did wake up acciden-
tally in more than one out of 10 transcripts. These dangerous slips on Amazon’s
end raised major concerns on the way Alexa devices interact with other services,
directly “risking a dystopian spiral of increasing surveillance and control” [2].

An article from the Washington Post highlighted problems related to Alexa’s
data capture with a report on users being unable to take any actions to pre-
vent Amazon from collecting data other than muting the device’s microphone
altogether [5]. This issue is also linked to another practice implemented by the
company where recordings are listened and reviewed by human contractors under
the argument of “[listening] to recordings to train its artificial intelligence” and
admittedly reported that “some of those employees also have access to location
information for the devices that made the recordings” [5].

The most concerning factor is that Amazon is disturbingly quiet, evasive,
and reluctant to act when it comes to tackling the privacy implications of their
practices, many of which are buried deep within their terms and conditions or
hard-to-find settings [2]. Whether it is the amount of data Amazon collects or
the fact it reportedly pay employees (and, at times, external contractors glob-
ally to listen to recordings to improve accuracy), the potential exists for sensitive
personal information to be leaked through these devices. Criticism towards the
way this player handles personal data and its practices is also questioned, accom-
panied by actions that should be required in order to respect these boundaries.

Amazon’s biggest advantage lies in the exercise of expert power over its
customers. By “accurately interpreting voice commands by taking account of
different languages, accents, tones, contexts and degrees of ambient clutter” [11],
Amazon improves its services. As these solutions become practical, they bring a
sense of trust and convenience that retain users in the ecosystem [PC RFAZ01].

Such expert power is nurtured by Amazon’s legitimate power of analysing
user data to provide services that are painstakingly designed for the customers.
Amazon uses this legitimate power by exploring its knowledge of what users are
searching for, listening to, or sending in personal messages [PC LGAZ01]. This
gives Amazon a large control over the customer base’s data [2]. However, there
are concerns about such power capability as it is enabled by Amazon’s invasive
and even obscure practices, since users are not aware of the extent and nature
of the data harvesting. For instance, Amazon signed a deal with UK’s National
Health Service for medical advice provided by the Echo assistant, which could
lead to users’ health data getting linked to online shopping suggestions and even
third-party ads causing some sort of oversharing with the company [2].

It is also possible to identify its legitimate power of using third-party ser-
vices as a pool of data from which Amazon services and products can collect
information [PC LGAZ02] – raising concerns regarding how Alexa devices inter-
act with other services [2]. Nonetheless, Amazon acknowledges it collects data
about third-party devices even when users do not utilise Alexa to operate them.

158 M. E. Rebelo et al.

Fig. 3. Power model for Alexa/Amazon case.

It also mentions Alexa needs to know the “state” of users’ devices “to enable
a great smart home experience” [5], while it is fairly unlikely that customers
are aware of this practice among other powerful ecosystems as a whole. Figure 3
shows the use of such power capabilities in light of the data protection issue
described.

4.3 Case 3 – Instagram (Facebook Ecosystem)

In August 2019, Business Insider reported on a combination of configuration
errors and lax oversight by Instagram that allowed Hyp3r, a vetted advertising
partner from the social network, to misappropriate vast amounts of public user
data. Hyp3r created detailed records of users’ physical whereabouts, personal
bios, and photos that were intended to vanish after 24 h [16]. This partner devel-
oped a tool to “geofence” specific locations and then harvest every public post
tagged with that location on Instagram.

Hyp3r scraped and stitched users’ profiles together, which constituted a clear
violation of Instagram’s rules. However, it all occurred on Instagram’s watch
throughout 2019. In particular, Hyp3r was considered by Instagram as one of its
preferred “Facebook Marketing Partners” [16]. Stories (supposed to disappear
after 24 h) from ordinary users of Instagram have never been available through
Instagram’s API. Hyp3r orchestrated a way to also collect this type of data,
saving the temporary images indefinitely, despite Instagram’s requirement to
store content only “for the period necessary to provide your app’s service”.

The unauthorised use of Instagram data by Hyp3r involved “[taking] advan-
tage of an Instagram security lapse, allowing it to zero in on specific locations,
like hotels and gyms”. Besides, it collected user bios and followers, which were
then combined other sources, such as user location [16].

Hyp3r also neglected the prohibition on “reverse engineer[ing] the Insta-
gram’s APIs”. It deliberately rebuilt its own version of an API that Instagram

Power and Privacy in Software Ecosystems 159

shuttered after Cambridge Analytica [16]. The result included a database of
thousands of locations. Additional information also revealed a publicly available
JSON package that bundles up various bits of data in an easy-to-access for-
mat, when users access Instagram through their web browsers. No logging in is
required to gain approval or to authenticate one’s identity in any way to access
it, which denotes an unexpected breach on Instagram’s end [16].

The issue regarding Instagram and Hyp3r demonstrates one of Facebook’s
biggest struggles when it comes to restricting users’ personal information and
the way it extends beyond the core of their main Facebook app. Instagram is
certainly the only service affected over the years, but Hyp3r is probably not
the only business scraping its data [16]. Hence, Hyp3r’s activity raises questions
about the extent of the due diligence that Facebook conducts on partners using
its ecosystem, as well as on its procedures to safeguard user data.

Despite these facts, Hyp3r denied breaking Instagram’s requirements. This
partner argued that it accesses public data on Instagram. The result of the
public information it gleaned was a sophisticated database about Instagram
users’ interests and movements. Hyp3r openly touted such database to customers
as one of its key selling points, despite the fact that Instagram’s policies were
structured so that such a thing would not be possible.

Instagram responded the scandal by sending Hyp3r a cease-and-desist let-
ter confirming this ecosystem partner broke the rules of the social network [16].
Hyp3r then claimed to process public data, whose harvest does not require con-
sent from Instagram users. It also added that companies have legitimate business
needs that justify knowing what is being shared from their properties [16].

Naturally, an exercise of expert power is immediately identified from Insta-
gram over Hyp3r, since the keystone is a source of crucial information for the
advertiser solution to become what it is [PC EXFB01]. Through such relevant
user data, Hyp3r orchestrated its marketing strategies to attract customers [16].

Despite the controversy surrounding Hyp3r’s practices to successfully collect
data from Instagram, this partner reinforced such database was accessed through
legit means. Hence, Hyp3r was exercising legitimate power over Instagram
with a retort that argues how “accessing public data on Instagram in this way
is legitimate and justifiable” [16] [PC LGFB01]. Through the partnership with
Facebook ecosystem, Hyp3r can also exercise reward power over its customers.
Its groundbreaking services rely heavily on exploring data from Instagram users
to package and sell a customised marketing strategy to customers [PC RWFB01].

Hyp3r’s claimed to follow the rules from Instagram in the partnership with
Facebook. However, its data scraping appeared to violate multiple requirements,
such as “to store or cache content only for as long as necessary to provide a
required service” [16]. Hence, the company stored user data indefinitely. By pro-
hibiting the practice of the so-called “reverse engineer[ing]” of Instagram’s APIs,
Facebook’s exercise of coercive power over Hyp3r (a power it maintains over its
partners in general). The keystone stepped in and “completely revoked Hyp3r’s
access to its APIs, removed it from the list of Facebook Marketing Partners” [16],
despite initially including Hyp3r on an exclusive list of partners [PC COFB01],
[PC COFB02]. Additionally, an exercise of coercive power of media outlets

160 M. E. Rebelo et al.

Fig. 4. Power model for Instagram/Facebook case.

over Facebook is identified through the published report of this scandal, which
eventually led to Instagram sending Hyp3r “a cease-and-desist letter after being
presented with Business Insider’s findings and confirmed that the startup broke
its rules” [16], illustrating a chain reaction of power exercising [PC COFB03].
The use of such power capabilities by ecosystem actors is presented in Fig. 4.

4.4 Case 4 – Siri (Apple Ecosystem)

For this case, we considered two complementary articles published by Forbes.
They illustrate the scandal scenario concerning Apple’s voice assistant Siri,
whose actors and power capabilities we represent in Fig. 5 and describe as fol-
lows. These reports highlight that “a small proportion of Siri recordings are
passed on to contractors working for the company around the world” [20]. This
practice was described as a means to improve Siri after its accidental activation,
either through [Apple’s] smartwatch, the HomePod wireless speaker or one of the
other Apple mobile devices including the iPhone, the iPad, or the iPod touch
[20]. This situation was labeled as a concerning privacy gaffe and raised questions
regarding Apple’s practices when it comes to handling private data from cus-
tomers. Moreover, customers may doubt whether or not Apple practices what it
preaches: there is “a false sense of privacy that Apple has communicated through
its marketing strategy to distinguish itself from Amazon and Google” [20].

Another report from the Guardian revealed that Apple contractors were regu-
larly hearing confidential details on customers’ Siri recordings[12]. This evidence
led the company to (i) promptly review its process of handling the recordings
of Siri queries, and (ii) announce it would turn off recordings by default and
bring the human evaluation process in-house [19]. In particular, Apple clearly
stipulates in its privacy policy that it does send to its servers data such as “your
name, contacts [...] and searches to help Siri [...] provide better responses” [20].

Power and Privacy in Software Ecosystems 161

Fig. 5. Power model for Siri/Apple case.

Apple is known for its strong reputation, which derives from the kind of
experience it offers and the convenience of using its integrated services. This
reinforces its referent power over its customers. However, such power capa-
bility causes the mishandling of data to be rarely considered until a critical
data breach comes to light [PC RFAP01]. Apple seems to not only collect an
overwhelming amount of data, but also transfer these scraps of data, which
are “carefully assembled, synthesized, traded, and sold” [20] to third-party solu-
tions in its ecosystem. Unlike other key players such as Amazon (Alexa) and
Google (Google Assistant), Apple does not provide means to opt-out having
audio recordings sent to servers.

However, it is possible to identify the exercise of coercive power by media
outlets and the press (and, consequently, users once they get to read these arti-
cles) as entities capable of exposing these negative practices. Once these publi-
cations revealed the case, Apple decided to thoroughly review the process that
it uses to handle the recordings of Siri queries [19] [PC COAP01]. This situation
caused Apple to announce that it would turn off recordings by default, as well
as “bring the human evaluation process in-house” [19].

The core of the problem lies in Apple privacy policy stipulating that certain
personal information is sent to its servers (e.g. users’ names and list of contacts to
enable Siri to provide precise responses, enhancing this software solution). This
creates “a false sense of privacy with their marketing messaging” [20], which
paves the way for Apple to exercise reward power over the customer base: as
users overshare their data, Apple offers better curated personal service. The tech
giant argues such data is needed because “[the] goal with Siri, the pioneering
intelligent assistant, is to provide the best experience for our customers while
vigilantly protecting their privacy” [19] [PC RWAP01].

162 M. E. Rebelo et al.

5 Discussion and Conclusion

5.1 Implications for Research and Practice

We investigated data protection issues in the widespread software ecosystem set-
ting through the lenses of power. Since security and privacy issues stem from
intentions and concerns of actors (e.g. company, users, suppliers) [10], we cre-
ated power models that illustrate the ecosystem players and interactions during
events of data breach and threats to user privacy. Our analysis of power exercise
is related to the core area of stakeholder analysis in the requirements engineering
process. We believe business analysts can benefit from identifying power capa-
bilities and their respective use by actors forming the operational environment
of ecosystem solutions. Similarly to other actor-oriented techniques such as i*,
the resulting power models can act as a decision support technique at the early
requirements stage to represent how actors behave and influence each other [7].

Based on the power models, we can start mapping conflicts and synergies
among ecosystem actors, as well as implications of privacy issues for their rela-
tionships. Such blueprint of the context around the platform enables a team
to further derive quality and functional requirements for data protection. For
instance, through the power model in Fig. 2, one can perceive Google using coer-
cive power to prevent complementors from gathering personal data about anyone
who watched videos target at children. To avoid the use of such negative form
of power, which weakens partnerships and the migration of third parties [22],
the keystone could arrive at business rules such as “ensuring that only data gen-
uinely needed are collected by complementors” or “ensuring that complementors
only get access to data they are (legally) entitled to” [23].

Concerns with data and privacy protection are growing in the software indus-
try, and more so regarding big influential tech companies such as the ones leading
the relevant software ecosystems we described. With the implementation of data
protection regulations and the need to consider privacy by design, we suggest the
analysis of power relationships at the earliest stages of requirements engineer-
ing. The current power models can be evolved by the requirements community
to represent the elements of the ecosystem used as sources of power.

5.2 Threats to Validity

Information regarding the privacy breaches were primarily collected through the
articles reported by selected publications along with their presented evidence.
Despite the careful analysis of our sources (via Fact Check tool) and regardless of
how informative the reports were, the selected journalistic pieces were susceptible
to personal impressions of the publication author’s, which may have have affected
the internal validity of this study. Hence, additional undisclosed factors could
also influence the analysis. Our findings derived from a qualitative process, with
the analysis of subjective information. To avoid threats to conclusion validity, i.e.
an inappropriate interpretation of the scenarios, we selected cases with a great
amount of information, which we concentrated in one dataset. Besides, during
three cycles, the researchers analysed the evidence and discussed its classification
to refine the interpretation of privacy and power in GAFA ecosystems.

Power and Privacy in Software Ecosystems 163

5.3 Related Work

The work from Milne and Maiden [14] also adopted French and Raven’s power
taxonomy [6] to explore the role of power and politics, which they consider
critical factors in the requirements engineering process. Our representation of
power relationships among ecosystem actors (interfirm interactions) was inspired
by their structure of power forces in social networks (social interactions). In their
turn, Hurni and Huber (2014) [8] studied the interplay of power and trust on
relationships among actors in big platform ecosystems, but did not approach
requirements nor data protection issues.

5.4 Future Work

In terms of research method, we plan to collect complementary data about data
protection issues in ecosystems. By conducting interviews with relevant stake-
holders from each of these ecosystems (e.g. developers, users) and considering
other media outlets (e.g. videos) reporting information on the cases and overall
situation surrounding the scandals, we will be able to clarify and enhance the
veracity of the facts. The studied and additional cases can also enable the iden-
tification of recurrent patterns of power exercise during data breach scandals.

To enhance our contribution, we aim to specify a power relationships analysis
within privacy-oriented processes such as GuideMe [1], a systematic approach
to elicit solution requirements in light of data protection regulations and stake-
holder scenario. Hence, we can better situate our power framework as a technique
for RE and ecosystem practitioners to perform a contextual analysis of privacy.
Moreover, we aim to define privacy requirements for ecosystems by interpreting
data protection laws such as GDPR, based on privacy challenges we previously
mapped [23]. Such requirements can guide keystones towards compliance with
data protection laws and prevent other breach scandals.

References

1. Ayala-Rivera, V., Pasquale, L.: The grace period has ended: an approach to opera-
tionalize GDPR requirements. In: 26th International RE Conference, pp. 136–146
(2018)

2. Benjamin, G.: Amazon echo’s privacy issues go way beyond voice recordings,
January 2020. https://theconversation.com/amazon-echos-privacy-issues-go-way-
beyond-voice-recordings-130016. Accessed 29 July 2020

3. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 5th ESEM, pp. 275–284. IEEE (2011)

4. Emerson, R.M.: Power-dependence relations. Am. Sociol. Rev. 27(1), 31–41 (1962).
http://www.jstor.org/stable/2089716

5. Fowler, G.: Alexa has been eavesdropping on you this whole time, May
2019. https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-
eavesdropping-you-this-whole-time/. Accessed 02 Aug 2020

6. French, J., Raven, B.: The bases of social power, vol. 6, January 1959

https://theconversation.com/amazon-echos-privacy-issues-go-way-beyond-voice-recordings-130016
https://theconversation.com/amazon-echos-privacy-issues-go-way-beyond-voice-recordings-130016
http://www.jstor.org/stable/2089716
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/

164 M. E. Rebelo et al.

7. Horkoff, J., Yu, E.: Interactive goal model analysis for early requirements engineer-
ing. Requirements Eng. 21(1), 29–61 (2014). https://doi.org/10.1007/s00766-014-
0209-8

8. Hurni, T., Huber, T.: The interplay of power and trust in platform ecosystems of
the enterprise application software industry (2014)

9. Kurtz, C., Wittner, F., Semmann, M., Schulz, W., Böhmann, T.: The unlikely
siblings in the GDPR family: a techno-legal analysis of major platforms in the
diffusion of personal data in service ecosystems, January 2019

10. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a
social setting. In: 11th IEEE International Requirements Engineering Conference,
pp. 151–161 (2003)

11. Lynskey, D.: Alexa, are you invading my privacy?, October 2019. https://www.
theguardian.com/technology/2019/oct/09/alexa-are-you-invading-my-privacy-the
-dark-side-of-our-voice-assistants. Accessed 29 July 2020

12. Lynskey, D.: Apple contractors regularly hear confidential details on Siri
recordings, July 2019. https://www.theguardian.com/technology/2019/jul/26/
apple-contractors-regularly-hear-confidential-details-on-siri-recordings. Accessed
29 July 2020

13. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

14. Milne, A., Maiden, N.: Power and politics in requirements engineering: a proposed
research agenda. In: 19th RE Conference, pp. 187–196. IEEE (2011)

15. Nambisan, S., Siegel, D., Kenney, M.: On open innovation, platforms, and
entrepreneurship. Strateg. Entrep. J. 12(3), 354–368 (2018)

16. Price, R.: Instagram’s lax privacy practices let a trusted partner track mil-
lions of users’ physical locations, secretly save their stories, and flout its rules,
August 2019. https://www.businessinsider.com/startup-hyp3r-saving-instagram-
users-stories-tracking-locations-2019-8. Accessed 29 July 2020

17. Scacchi, W., Alspaugh, T.A.: Securing software ecosystem architectures: challenges
and opportunities. IEEE Softw. 36(3), 33–38 (2018)

18. Singer, N., Conger, K.: Google is fined $170 million for violating children’s privacy
on youtube, September 2019. https://www.nytimes.com/2019/09/04/technology/
google-youtube-fine-ftc.html. Accessed 10 Aug 2020

19. Su, J.: Apple apologizes for eavesdropping on customers, August 2019. https://
www.forbes.com/sites/jeanbaptiste/2019/08/28/apple-apologizes-for-eavesdroppi
ng-on-customers-keeping-siri-recordings-without-permission/. Accessed 05 Aug
2020

20. Su, J.: Confirmed: apple caught in Siri privacy scandal, July 2019. https://
www.forbes.com/sites/jeanbaptiste/2019/07/30/confirmed-apple-caught-in-siri-pr
ivacy-scandal-let-contractors-listen-to-private-voice-recordings/. Accessed 25 July
2020

21. Valença, G., Alves, C.: A theory of power in emerging software ecosystems formed
by small-to-medium enterprises. J. Syst. Softw. 134, 76–104 (2017)

22. Valença, G., Alves, C., Jansen, S.: Strategies for managing power relationships in
software ecosystems. J. Syst. Softw. 144, 478–500 (2018)

23. Valença, G., Kneuper, R., Rebelo, M.E.: Privacy in software ecosystems-an initial
analysis of data protection roles and challenges. In: 46th Euromicro Conference on
Software Engineering and Advanced Applications, pp. 120–123 (2020)

24. Vegendla, A., Duc, A.N., Gao, S., Sindre, G.: A systematic mapping study on
requirements engineering in software ecosystems. J. IT Res. 11, 49–69 (2018)

https://doi.org/10.1007/s00766-014-0209-8
https://doi.org/10.1007/s00766-014-0209-8
https://www.theguardian.com/technology/2019/oct/09/alexa-are-you-invading-my-privacy-the-dark-side-of-our-voice-assistants
https://www.theguardian.com/technology/2019/oct/09/alexa-are-you-invading-my-privacy-the-dark-side-of-our-voice-assistants
https://www.theguardian.com/technology/2019/oct/09/alexa-are-you-invading-my-privacy-the-dark-side-of-our-voice-assistants
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://www.businessinsider.com/startup-hyp3r-saving-instagram-users-stories-tracking-locations-2019-8
https://www.businessinsider.com/startup-hyp3r-saving-instagram-users-stories-tracking-locations-2019-8
https://www.nytimes.com/2019/09/04/technology/google-youtube-fine-ftc.html
https://www.nytimes.com/2019/09/04/technology/google-youtube-fine-ftc.html
https://www.forbes.com/sites/jeanbaptiste/2019/08/28/apple-apologizes-for-eavesdropping-on-customers-keeping-siri-recordings-without-permission/
https://www.forbes.com/sites/jeanbaptiste/2019/08/28/apple-apologizes-for-eavesdropping-on-customers-keeping-siri-recordings-without-permission/
https://www.forbes.com/sites/jeanbaptiste/2019/08/28/apple-apologizes-for-eavesdropping-on-customers-keeping-siri-recordings-without-permission/
https://www.forbes.com/sites/jeanbaptiste/2019/07/30/confirmed-apple-caught-in-siri-privacy-scandal-let-contractors-listen-to-private-voice-recordings/
https://www.forbes.com/sites/jeanbaptiste/2019/07/30/confirmed-apple-caught-in-siri-privacy-scandal-let-contractors-listen-to-private-voice-recordings/
https://www.forbes.com/sites/jeanbaptiste/2019/07/30/confirmed-apple-caught-in-siri-privacy-scandal-let-contractors-listen-to-private-voice-recordings/

Iterative and Scenario-Based
Requirements Specification in a System

of Systems Context

Carsten Wiecher1(B) , Joel Greenyer2 , Carsten Wolff1 , Harald Anacker3,
and Roman Dumitrescu3

1 Dortmund University of Applied Sciences and Arts, 44139 Dortmund, Germany
{carsten.wiecher,carsten.wolff}@fh-dortmund.de

2 FHDW Hannover, 30173 Hannover, Germany
joel.greenyer@fhdw.de

3 Fraunhofer IEM, 33102 Paderborn, Germany
{harald.anacker,roman.dumitrescu}@iem.fraunhofer.de

Abstract. [Context & Motivation] Due to the managerial, operational
and evolutionary independence of constituent systems (CSs) in a Sys-
tem of Systems (SoS) context, top-down and linear requirements engi-
neering (RE) approaches are insufficient. RE techniques for SoS must
support iterating, changing, synchronizing, and communicating require-
ments across different abstraction and hierarchy levels as well as scopes
of responsibility. [Question/Problem] We address the challenge of SoS
requirements specification, where requirements can describe the SoS
behavior, but also the behavior of CSs that are developed indepen-
dently. [Principal Ideas] To support the requirements specification in an
SoS environment, we propose a scenario-based and iterative specification
technique. This allows requirements engineers to continuously model and
jointly execute and test the system behavior for the SoS and the CS in
order to detect contradictions in the requirement specifications at an
early stage. [Contribution] In this paper, we describe an extension for
the scenario-modeling language for Kotlin (SMLK) to continuously and
formally model requirements on SoS and CS level. To support the iter-
ative requirements specification and modeling we combine SMLK with
agile development techniques. We demonstrate the applicability of our
approach with the help of an example from the field of e-mobility.

Keywords: System of systems engineering · Requirements analysis ·
Requirements specification · Scenario-based requirements modeling

1 Introduction

New methods and tools are needed to meet the challenges in the development
of complex socio-technical systems, such as sustainable mobility solutions in
metropolitan regions [25]. Systems of connected electrified vehicles can be char-
acterised as a system of systems (SoS), where the vehicle can be seen as a
c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 165–181, 2021.
https://doi.org/10.1007/978-3-030-73128-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_12&domain=pdf
http://orcid.org/0000-0002-3280-4471
http://orcid.org/0000-0003-0347-0158
http://orcid.org/0000-0003-3646-5240
https://doi.org/10.1007/978-3-030-73128-1_12

166 C. Wiecher et al.

constituent system (CS) that interacts with changing other CSs to provide an
SoS functionality [17].

An interdisciplinary approach for the realization of these systems is system
of systems engineering (SoSE). The definition of stakeholder needs and required
functionalities are key elements of SoSE [20]; the precise specification of require-
ments is a basis for the system decomposition and implementation, or the selec-
tion of suitable CSs that form an SoS [27]. However, in SoSE, there are different
requirements engineering (RE) challenges compared to RE in established sys-
tems engineering (SE) processes [26].

According to Maier et al. [23], the operational, managerial, and evolutionary
independence are the essential characteristics of an SoS. These characteristics
have a significant influence on the applicability of existing RE techniques [24–
26]. In contrast to monolithic systems, SoS consist of individual systems that can
operate independently and perform a meaningful task, even when not part of an
SoS. The development and operation of the CSs is managed independently, in
different organizations with different development- and product life cycles. Also,
requirements on the CS- and SoS level change frequently and independently,
leading to an evolutionary development [23,26].

Based on these SoS characteristics, Ncube and Lim [24] describe challenges for
the SoS RE process: Due to the different systems in an SoS, requirements cover
many different disciplines, can be contradictory, unknown or possibly not fully
defined. These difficulties overlap with the fundamental problems in RE [7], but,
according to Ncube and Lim [24], requirements in an SoS additionally must be
considered as requirements for the SoS, which describe the properties of the over-
all system, or requirements for a CS that describe capabilities of a single system.
Since requirements on both levels can change continuously and independently,
traditional, linear and top-down requirements specification and decomposition
techniques can not be used [24–26].

To address this problem we propose an iterative and scenario-based require-
ments specification technique. Based on previous work [30,32,33] we integrate
the Scenario Modeling Language for Kotlin (SMLK) with agile development
techniques to support the requirements engineer in the continuous and iterative
specification, formalization, and validation of requirements on different levels of
abstraction.

This paper makes the following two contributions: First (1), we extend SMLK
to enable requirements engineers to intuitively, but formally model the require-
ments on the SoS-level as well as the interaction between the CSs (CS-level).
With these extensions, requirements can be specified and validated indepen-
dently, which addresses the managerial and operational independence of systems.
Nevertheless, both levels of abstraction are connected to allow for the joint exe-
cution and testing of the specified behavior on the SoS- and CS-level, in order
to detect and resolve contradictions in the requirements on both these levels.

Second (2), we propose a specification method where we combine behavior-
driven development (BDD) and test-driven development (TDD) with the
scenario-based modeling technique. This enables the iterative specification of

Iterative and Scenario-Based Requirements Specification 167

system features and usage scenarios to document stakeholder expectations and
generate tests steps, which subsequently drive the scenario-based modeling of
the system specification.

While numerous approaches exist that suggest using formal scenario mod-
els to bridge the gap from informal requirements to the implementation of
software-intensive systems [5,13,28,29], the particular contribution of this paper
is the extension of scenario-based modeling and programming techniques based
on LSC Play-Out [13] and behavioral programming (BP) [15] with BDD and
TDD. Enabling this combination of agile development techniques with scenario-
based requirements modeling addresses the coverage and sampling concerns in
scenario-based requirements engineering [28]: by connecting features with tests
(BDD), and tests with the scenario-based requirements model (TDD), we can
ensure that every feature is modeled by an appropriate set of scenarios, and that
these scenarios are validated by an appropriate set of tests.

We asses the applicability with a proof-of-concept e-mobility application and
provide a demonstration tool1, 2 to enable others to use, evolve, and evaluate
our approach.

Structure: We describe background in Sect. 2, the scenario-based require-
ments specification method in Sect. 3, and the proof-of-concept application in
Sect. 4. We report related work in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 System of Systems Engineering (SoSE)

For the description of System of Systems (SoS) no generally valid definition
yet exists [1,26]. Hence, a distinction between complex monolithic systems and
SoS is often made by the system characteristics. Therefore Maier describes five
key characteristics of SoS [23]: (1) Operational Independence: Each system that
is part of the SoS is independent and can perform a meaningful task, even if
it is not integrated into the SoS. (2) Managerial Independence: The individual
systems are self-administered and individually managed. Consequently they col-
laborate with the other systems of the SoS, but they operate independently. (3)
Geographic Distribution: The individual systems of the SoS are distributed over
large spatial distances, which means that the exchange of information between
the individual systems is of primary importance for collaboration. (4) Evolu-
tionary Development : The objectives and functionality of an SoS can change
constantly, as they can be added, modified or removed based on experience.
Therefore an SoS never appears to be fully completed. (5) Emergent Behavior :
By the collaboration of the individual systems, a synergism is achieved in which
the SoS fulfils a purpose that cannot be achieved by or attributed to any of the
individual systems.

1 https://bitbucket.org/crstnwchr/besos (includes the proof-of-concept example).
2 https://bitbucket.org/jgreenyer/smlk/ (required to build the example project).

https://bitbucket.org/crstnwchr/besos
https://bitbucket.org/jgreenyer/smlk/

168 C. Wiecher et al.

These characteristics have a strong influence on the SoS development. To sup-
port a structured SoS development Dahmann et al. [4] describe the differences
between systems engineering (SE) and SoS engineering (SoSE). Accordingly, SE
and SoSE both start with identifying and understanding user capability objec-
tives in order to derive technical requirements for the system to be developed. In
SE we subsequently continue with a top-down requirements decomposition and
system design, with clear responsibilities in the management and engineering of
the system [11]. In SoSE, by contrast, the identified objectives and requirements
serve as a basis for the development of new systems or the integration of existing
systems to build the SoS. Particularly the operational and managerial indepen-
dence of individual systems is challenging: the existing systems may also fulfill
other purposes that may conflict with the SoS objectives and those of its CS.
Therefore it is important to understand how the individual systems behave and
how this behavior contributes to the overall SoS behavior.

Directed

A
B

C A
B

C

A

B

C A

B

C

Acknowledged

Collaborative Virtual

SoSE Team SoSE Team

Fig. 1. Different types of SoS [4,23]

When starting the SoS development it is important to categorize the SoS to
be developed at an early stage because this has a significant influence on the RE
approach that can be applied [4,25,26]. Figure 1 shows four different SoS types,
initially introduced by Maier [23] and extended by Dahmann and Baldwin [4]: A
directed SoS is designed for specific purposes. The individual systems have the
ability to operate independently but are managed by a SoSE Team in a way that
they fulfill a specific purpose. In an acknowledged SoS the SoSE Team recognises
and defines a common purpose and goal, but the CSs retain independent control
and goals. The continuous and evolutionary development of the common purpose
is based on collaboration between the SoS and the CSs. In a collaborative SoS the
individual systems are not bound to follow a central management, but voluntarily
participate in a collaboration in order to achieve the SoS goal. A virtual SoS
has neither a leading control nor a common goal. This leads to a high degree
of emergent behavior where the exact means and structures that produce the
functionality of the system are difficult to recognize and distinguish [26,27].

This paper focuses on acknowledged SoS and we introduce an example next.

Iterative and Scenario-Based Requirements Specification 169

2.2 Example of Application

To illustrate our approach, we introduce an e-mobility system of systems. In [21]
Kirpes et al. introduce an architecture model that provides an integrative view
on former separated areas of electricity, individual mobility, and information and
communication technologies to realize future e-mobility SoS.

CSOS: Charging Station Operator System
EIS: Energy-information Service
CSMS: Charging Station Management System
BHS: Battery-health Service
CSC: Charging Station Controller
SC: Sensors and Controllers
App: Smartphone App
RPS: Route-planning Service

O1

O2 O4 O5

SoS Level (organizational)

Constituent System Level (organizational)

ownsowns

Contractual
relationship

Contractual
relationship

SoS Level (technical)

O1: SoSE Team
O2: OEM
O3: Map Service Provider
O3: Charging Operator
O4: Energy Provider

owns

Directs
operation

RPS

APP

SC

BHS
CSOS

CSMS

CSC

EVSEC EIS

O3

owns

Contractual
relationship

Fig. 2. Smart charging as an acknowledged SoS. Based on [25] and [21].

Based on the example defined in [21], Fig. 2 shows an SoS user who is inter-
acting with an e-mobility SoS. The main interest of the user is to improve the
e-mobility experience and to reduce its costs. These user interests are targeted
by a high-level use case that describes how to create an optimized travel plan. At
the beginning the user enters travel preferences like start and destination into the
smartphone app (APP). The APP then requests further data from other systems
that are necessary for the calculation of an optimized route. For example, GPS
data of possible routes are requested from a route-planning service (RPS). Usage
data of available charging points along the routes are provided by a charging sta-
tion operation service (CSOS). Recommendations for a battery-saving charging
process are provided by a battery-health service (BHS). And information on cur-
rent electricity prices in the region is provided by the energy-information service
(EIS).

These different systems, which are required to provide information to calcu-
late an optimal route based on user preferences, are developed and managed by
four different system owners (OEM, Map Service Provider, Charging Operator,
and Energy Provider). We also see one SoSE Team which defines the overall SoS
functionality, directs the operations, and has a contractual relationship with the
owners of the CSs. According to [23] and [4] this example has the characteristics
of an acknowledged SoS: we have recognised requirements, objectives and respon-
sibilities on the SoS level and a contractual relationship between the SoSE Team

170 C. Wiecher et al.

and the individual constituent systems owner. However, the constituent systems
keep their own management, funding and development approaches (cf. [25]).

2.3 Scenario Modeling Language for Kotlin (SMLK)

SMLK is a Kotlin-based implementation of the Behavioral Programming (BP)
paradigm [15]. In BP, a program consists of a number of behavioral threads,
which we also call scenarios. Scenarios are loosely coupled via shared events
and can model individual behavioral aspects or functional requirements of a
system. Scenarios can request events that shall happen, be triggered by or wait for
events requested by other scenarios, or (temporarily) forbid/block events. During
execution, the scenarios are interwoven to yield a coherent system behavior that
satisfies the requirements of all scenarios.

Listing 1.1 shows two SMLK scenarios that can be represented graphically
as shown in Fig. 3. Both scenarios are triggered by the event of a user entering
the travel preferences in the app. This event is modeled as an interaction event
of the object user sending the object app a message addTravel
Preferences. In the first scenario, the parameters fromLoc and toLoc are
variables bound to the parameter values carried by the triggering event when
the scenario is triggered and initialized. The SMLK code in the listing shows this
binding of the parameter values explicitly (lines 2 and 3). The second scenario is
triggered by the same event, but does not use the parameter values; the sequence
diagram expresses this by using asterisks.

After the trigger event, the first scenario requests that the app sends
the Route Planning Service (rps) a message to calculate the route between
fromLoc and toLoc , and then requests that the rps shall respond with a
route. Then the app shall optimize the route and show it to the user.

The second scenario describes the interaction of the app and the Charging
Station Operating System (csos) . After the triggering event, the scenario
requests that the app sends the csos a request to send GPS position data
of available charging stations. The scenario then requests that the csos shall
respond with such a list. This interaction must happen before the app optimizes
the route, i.e., the event app.optimizeRoute() is blocked until the second
scenario terminates; only then can be first scenario proceed.

In these example scenarios, the route details and charging location list con-
tents are not relevant, so mock instances are created by helper functions. When
at a later point the behavior is refined, these parameter values may be replaced
by other values, e.g., a detailed and correct route may be calculated elsewhere.
The scenario method requestParamValuesMightVary allows us to request
events with supplied default parameter values, but it will accept also events
sent between the same objects, and with the same signature, but with different
parameter values.

Iterative and Scenario-Based Requirements Specification 171

Fig. 3. Graphical representation of the SMLK scenario in Listing 1.1

1 scenario(user sends (app receives App::addTravelPreferences)){
2 val fromLoc = it.parameters[0] as String
3 val toLoc = it.parameters[1] as String
4 request(app sends rps.calculateRoute(fromLoc, toLoc))
5 val route = createMockRoute()
6 requestParamValuesMightVary(rps sends app.calculateRouteResponse(route)
7 request(app.optimizeRoute())
8 request(app sends user.showMapWithOptimizedRoute())
9 },

10 scenario(user sends (app receives App::addTravelPreferences)){
11 scenario {
12 request(app sends csos.chargingStationGpsDataRequest())
13 val chargingStationsList = createMockChargingStationsList()
14 requestParamValuesMightVary(csos sends app.considerChargingStationLocations(

chargingStationsList))
15 }.before(app.optimizeRoute())
16 }

Listing 1.1. Example scenario from the e-mobility system specification

3 Scenario-Based Requirements Specification in a System
of Systems Context

To develop an SoS, usually existing systems are integrated by new systems to
comprise a new SoS. While the new systems may be under a direct managerial
and operational control, existing systems may be under the managerial and
operational control of another organization. Over time, systems that are under
external control may change, which leads to the necessity to continuously (1)
analyze how the changes in one system impact the SoS functionality, and (2)
how other systems may have to be adapted to ensure that the SoS functionality
can still be provided. This requires the SoSE team to continuously analyze,
specify, and align requirements across different hierarchy levels.

Our scenario-based requirements specification approach supports an iterative
and integrated behavior modeling and analysis on the SoS and CS level.

Based on the definitions in [14] we introduce the term inter-system scenarios
to model the behavior on the SoS level and intra-system scenarios to model the
CS behavior. Also we show how both views can be integrated to allow for the
joint execution and testing of the integrated SoS and CS behavior.

172 C. Wiecher et al.

3.1 Inter-system Scenarios

The goal of modeling inter-system scenarios is to conceive an validate how SoS
use cases can be realized by the interaction of users, existing systems, and new
systems to be developed. The inter-system scenario modeling process starts by
defining the use cases, the structural SoS architecture, and then detailing and
validating the use cases using scenarios and repeated simulation.

When modeling this behavior, certain assumptions are made about the
behavior of the existing systems, possibly based on available documentation
or communication with experts from the respective organizations.

Two exemplary inter-system scenarios are already introduced in Listing 1.1,
where we first modeled the interaction between the app, rps and the SoS user,
and in the second scenario, between the user, app and csos. In this example, we
see that we are able to model the interaction between selected systems, where
new requirements can be considered by iteratively adding new scenarios to the
SoS scenario specification. By adding these inter-system scenarios the introduced
modeling concepts allow to focus on a high level system interaction; Although
we are able to partly ignore specification details (e.g. exact route information in
Listing 1.1 line 14), we are able to execute and validate the interaction between
the CS. This supports on the SoSE team to get a better understanding of the
overall system behavior.

3.2 Intra-system Scenarios

Once a satisfactory concept of the inter-system behavior is established, the inter-
system specification must be supplemented and refined in two ways: First (1),
it is necessary to specify the behavior of the existing systems in more detail in
order to validate whether the inter-system interaction behavior is indeed aligned
with the behavior of the existing systems. Second (2), the behavior of the new
systems to be developed must be detailed, possibly detailing their component
structure and internal interactions, in order to provide a thorough basis for their
development.

Our approach supports modeling the behavior on this more detailed hierarchy
level with scenarios as well, and even to integrate their execution in order to
simulate and validate behavioral requirements consistency across the different
hierarchy levels.

To better distinguish between these two hierarchy levels, we distinguish the
inter-system level and intra-system level as outlined in Fig. 4. The SoS scenario
specification is located in the inter-system view, and individual CS scenario
specifications are located in the intra-system view. When defining the internal
behavior of a selected CS, we switch the perspective from the SoSE Team to a
systems owner who is responsible for the development of a system. This can be
e.g. the map service provider who is responsible for the development of the rps
(see Fig. 2).

Iterative and Scenario-Based Requirements Specification 173

CSOS: Charging Station Operator System
EIS: Energy-information Service
BHS: Battery-health Service
App: Smartphone App
RPS: Route-planning Service

Inter-system view

APP

EIS

RPS

Intra-system view

System of Systems
Scenario

Environment
Events

Inter-System
Events

Test
Scenario

SoS user

Test
Scenario

CS

CSOS

Constituent System
Scenario

BHS

Intra-System
Events

Route
Receiver

Fig. 4. Inter- and intra-system view to continuously concretise requirements on CS
level, while also considering the overall SoS behavior.

The intra-system scenarios are added to an individual CS scenario specifica-
tion, with the goal to model requirements which are needed to build the CS and
its subsystems. One example intra-system scenario is shown in Listing 1.2.

1 scenario(routeRequester sends(rps receives Rps::calculateRoute)){
2 val fromLocString = it.parameters[0] as String
3 val toLocString = it.parameters[1] as String
4 request(rpsController sends gpsService.getLocations(fromLocString, toLocString))
5 val fromLoc = getLocation(fromLocString)
6 val toLoc = getLocation(toLocString)
7 request(gpsService sends rpsController.locations(fromLoc, toLoc))
8 request(rpsController sends routePlaner.calculateRoute(fromLoc, toLoc))
9 val route = calculateRoute(fromLoc, toLoc)

10 request(routePlaner sends rpsController.calculatedRoute(route))
11 request(rpsController sends routeRequester.calculateRouteResponse(route))
12 }

Listing 1.2. CS scenario specification of the RPS

The scenario specifies how the internal components of the rps (rpsController,
gspService, and routePlanner) interact when receiving a request to calculate a
route. Eventually (line 11), the calculated route will be returned to the requesting
object.

When looking at the scenario in more detail, we see that the scenario is
triggered when a routeRequester sends the rps the message calculate
Route. This event is requested on the inter-system level, see the first scenario
in Listing 1.1 (line 4).

One difference is, however, that in the intra-system scenario, we abstract
from the app as being the source of the calculateRoute request (and
the recipient of the route as a reposonse, see line 11). Instead, we assume that
there is an abstract external route-requesting entity that requests a route to be
calculated by the rps. We do this to separate the intra-system specification of a

174 C. Wiecher et al.

system from the particular SoS context defined on the inter-system level, as the
system may also be used in other contexts.

The inter-system and intra-system level scenario execution can nevertheless
be integrated, because the type of routeRequester is an interface that
is also implemented by app (without showing the code in more detail for
brevity). Hence it is possible that the event of the app requesting to calculate a
route triggers the scenario shown here, and indeed the app would then receive
the calculated route as a response.

The event parameters on the intra-system level may vary or be more detailed
than the values assumed on the inter-system level where, for example, we used
simple mock values (see Listing 1.1, lines 5 and 13). It is possible for intra-system
scenarios to provide more detailed parameter values where the inter-system level
scenarios request events by using the requestParamValuesMightVary
command. (see Listing 1.1 line 14).

3.3 Specification Method

To support the requirements engineer in modeling system requirements with
SMLK, we propose an iterative method based on agile techniques. Figure 5 shows
an overview of the single steps. We start with the specification of the inter-system
behavior by applying the BDD approach. Here we first define the expected sys-
tem behavior from the SoS user perspective. Therefor we create a SoS feature
specification where each feature is defined by one or more usage scenarios writ-
ten in the gherkin syntax3. Listing 1.3 shows a first feature specification that
describes a user interaction with the app. On this hierarchy level, the SoS feature
specification allows the SoSE team to define what is expected from the SoS and
to document this expectations in a comprehensible form.

1 Feature: Retrieve travel preferences and display optimized route
2
3 Scenario: Add travel preferences to the app
4 When the SoS user adds travel preferences to the app
5 Then the app displays a set of optimized routes

Listing 1.3. Initial feature specification including a usage scenario to describe the user
interaction with the SoS.

Based on this SoS feature specification we generate test skeletons as shown
in Listing 1.4. These test skeletons are then used to drive the modeling of the
inter-system behavior. To support a structured and iterative modeling of system
requirements, we embed the Test-Driven Scenario Specification (TDSS) [32] into
the BDD approach. In this way, we combine the comprehensible specification of
expected system behavior with the formal and scenario-based modeling of system
requirements.

3 https://cucumber.io/docs/gherkin/.

https://cucumber.io/docs/gherkin/

Iterative and Scenario-Based Requirements Specification 175

Inter-System Behavior

Behavior Driven Development

Test-Driven Scenario

Specify SoS
Feature

Generate Test
Skeletons

Intra-System Behavior

Behavior Driven Development

Test-Driven Scenario

Specify
Constituent

System Feature

Generate Test
Skeletons

Fig. 5. Continuous and iterative scenario specification

1 When("ˆthe EV user adds travel preferences to the App$") {
2 //implement here
3 }
4 Then("ˆthe App displays a set of optimized routes$") {
5 //implement here
6 }

Listing 1.4. Generated test steps.

The TDSS approach includes the steps outlined in Fig. 6. In the first step
we extend the generated test skeletons (1). Here, we e.g. model that the user
adds travel preferences to the app (Listing 1.5 line 2) and eventually receives a
map with optimized routes (line 5). After we added these functions we execute
the SoS feature specification (2) whereupon the single test steps and finally the
events within the test steps are executed. At this point in time we did not model
the inter-system behavior and consequently the test fails, because the app will
not send the optimized route to the SoS user as expected in line 5.

Extend
or adapt

test model

Execute newly
added test
behavior

Extend
or adapt

model

Execute
all tests

Test passed

Test
failed

Tests failed

Requirements remain to be modeled

Clean up

All tests
passed

All req.
modeled

1 2 3 4 5

Fig. 6. Test-driven scenario specification (TDSS) [32]

1 When("ˆthe EV user adds travel preferences to the App$") {
2 trigger(user sends app.addTravelPreferences("Dortmund", "Paderborn"))
3 }
4 Then("ˆthe App displays a set of optimized routes$") {
5 eventually(app sends user.mapWithOptimizedRoutes())
6 }

Listing 1.5. Generated test steps.

176 C. Wiecher et al.

Therefore we extend our SoS scenario specification with the inter-system scenar-
ios (3) which we already introduced in Listing 1.1. We then run the test again
to ensure that the modelled system requirements meet the expectations (4). If
we have modeled additional tests in previous iterations, we now run them as
well to ensure that there are no unexpected interactions between the individual
tests and system requirements. If there are more requirements that need to be
modeled, we perform further iterations. When all requirements on the SoS level
known at this time have been modeled and tested, the SoS feature specifica-
tion can be cleaned up. Afterwards the detailed specification of selected systems
under development follows.

This iterative approach supports the modeling of the interaction of all CSs
within the SoS. In this way we are able to iteratively document the expectations
from an SoS user perspective and model and test the interaction between the
CSs. Thereby new systems and behavior can be added as needed to realize the
expected behavior. When we have gone through several iterations, the SoSE team
gets a better understanding of which systems are needed and what information
these systems have to exchange with each other. Subsequently we can switch to
the intra-system level and focus on the requirements specification for a selected
CS within the SoS. Based on our example outlined in Fig. 2 we now switch from
the SoSE team perspective to e.g. the perspective of the map service provider,
who is responsible for the development of the rps. As shown in Fig. 5 we execute
the same specification method, but we create an independent CS feature specifi-
cation, generate independent test steps and create an CS scenario specification.
This allows the independent specification and modeling of the requirements for
the CS, which addresses the managerial, operational and evolutionary indepen-
dence of systems in an SoS. In this way, system requirements can be specified
without seeing the system in an SoS context. But, at the same time, both views
can be integrated (as described in Sect. 3.2), which allows the joint execution of
the SoS behavior and the internal behavior of single already specified systems.
In this way it’s possible to detect contradictions between requirements on both
levels. For example, if requirements have been specified at CS level that appear
to have nothing to do with the SoS behavior but still influence the expected SoS
behavior, the joint execution of the scenario specifications can be used to detect
and resolve these dependencies.

4 Proof of Concept

To assess the applicability of our approach we integrated SMLK with the BDD
tool Cucumber and executed the previously described specification method based
on the example introduced in Sect. 2.2.

On SoS level we started with the feature specification as already shown in
Listing 1.3. Subsequently we generated the test skeletons and added the SMLK
events as shown in Listing 1.5. Following the TDSS approach we executed the
SoS feature specification (Step 1 in Fig. 6) and got a failed test result as shown
in Fig. 7. Subsequently we extended the SoS scenario specification as shown

Iterative and Scenario-Based Requirements Specification 177

Fig. 7. First TDSS run on SoS level

Fig. 8. Execute tests after adapting the SoS scenario specification

in Listing 1.1 to specify the SoS behavior. After we added these scenarios we
executed the test again and finally received the expected event, resulting in a
positive test result as shown in Fig. 8.

After we successfully defined a first interaction on inter-system level, we
switched to the intra-system level and added a CS scenario specification to model
the internal behavior of the rps as shown in Listing 1.2.

Now we executed the same SoS feature again resulting in a negative result,
because the rps internal behavior was not yet specified and hence the CS scenario
program didn’t send the calculateRouteResponse(route) message to
the app.

To fix this we executed the TDSS process within the intra-system view, based
on the CS feature specification shown in Listing 1.6.

1 Feature: Calculate route - RPS
2
3 @RpsSystem
4 Scenario: Calculate route based on user travel preferences
5 When the app sends travel preferences to the rps
6 Then the rps responds route information including gps data

Listing 1.6. Feature on CS level

Finally we got passed test results again, but now we also considered the rps
internal behavior specification. And, by using tags within the different feature
specifications (e.g. @RpsSystem) and by applying the concepts described in
Sect. 3.2, we were not only able to validate the integrated SoS and CS behavior,
but we also could independently test the requirements of single CS.

To allow others to use, validate and evolve our approach, we describe the
architecture and functional principles of the developed tool in [31] as a compan-
ion to this paper. Here, we also describe the method we outline in Fig. 5 in more
detail. And we provide information about the necessary resources4,5,6,7 to build
and execute the example we use in this paper.

4 https://bitbucket.org/crstnwchr/besos/.
5 https://bitbucket.org/jgreenyer/smlk/.
6 https://cucumber.io.
7 https://www.jetbrains.com/idea/.

https://bitbucket.org/crstnwchr/besos/
https://bitbucket.org/jgreenyer/smlk/
https://cucumber.io
https://www.jetbrains.com/idea/

178 C. Wiecher et al.

5 Related Work

In this paper we use SMLK, which was extended to support an iterative and con-
tinuous modeling of system behavior in an SoS context. This modeling language
is based on Live Sequence Charts (LSCs) [6]. A recent LSC variant are Modal
Sequence Diagrams (MSDs) [12]. By modeling behavioral requirements with the
help of MSDs, different works argue that this formal requirements modeling can
increase the requirements quality (e.g. [10,19]), but these approaches are based
on traditional SE and do not consider the SoS characteristics and their impact
on the requirements specification.

Harel et al. describe an extension to behavioral programming that allows the
integration of behavioral programs that operate on different hierarchy levels and
time scales [16]. Indeed, we also use this approach to integrate different SMLK
scenario programs that execute the behavior on the inter- and intra-system level.

Simulation-based analysis and design is commonplace in cyber-physical sys-
tems of systems, e.g. using actor-oriented frameworks or co-simulation [9,22].
We aim to provide similar means for the thorough specification and analysis of
requirements of systems of systems. To the best of our knowledge, this is a new
approach.

Other works address model-based RE in the SoS context. Holt et al. describes
an ontology for model-based SoS requirements engineering [18]. Albers et al.
show how SoS requirements can be specified based on use-cases and sequence
diagrams within SysML [2]. However, an early, iterative and formal specification
of requirements, with the goal to execute and test these requirements specifica-
tions is not considered in these approaches.

6 Summary and Outlook

In this paper, we propose a technology to continuously model behavior require-
ments in an SoS context. Our approach supports requirements engineers in the
iterative specification, modeling and testing of requirements. With the use of
SMLK, the system behavior can be modeled textually through scenarios. This
scenario-based modeling is close to how engineers communicate system behavior
and hence enables a feasible formalization of requirements. To further support
and structure the formalization process, we integrated SMLK with agile tech-
niques and appropriate tooling. This fosters the iterative formalization, and by
testing the formalized requirements specifications, we get early feedback about
the expected system behavior and possible contradictions in requirements. Due
to the proposed coupling of inter- and intra- system scenarios, we are also able
to execute and test the system behavior on different hierarchy levels. And by
integrating the BDD tool cucumber, we are able to specify the expected sys-
tem behavior with the help of features and usage scenarios written in natural
language, which supports the communication of expected system behavior in a
multi-disciplinary development team.

For future work, we plan to integrate our previous work [32] and the model-
ing concepts shown in this paper with an automated test case creation proposed

Iterative and Scenario-Based Requirements Specification 179

in [8] to further reduce the modeling effort. Also, as already started in previous
work [33], we plan to integrate the results of this paper in an automotive develop-
ment process and validate the applicability within an ongoing research project.
As shown in [32], we are able to find contradictions in automotive requirements
specifications, but the open questions are if the approach is scalable and whether
the effort for the requirements modeling is justified.

Another possible direction for future work is focusing on stakeholder needs
in a SoS context. In this paper we already integrated the BDD approach to
validate requirements and align stakeholder expectations. This could be done
more systematically by integrating goal modeling approaches [3].

References

1. Albers, A., Mandel, C., Yan, S., Behrendt, M.: System of systems approach for
the description and characterization of validation environments. In: Proceedings of
International Design Conference, DESIGN, vol. 6, pp. 2799–2810 (2018). https://
doi.org/10.21278/idc.2018.0460

2. Albers, A., Kurrle, A., Moeser, G.: Modellbasiertes Anforderungsmanagement von
Systems-of-Systems am Beispiel des vernetzten Fahrzeugs. In: Tag des Systems
Engineering (TdSE), Bremen, 4–12 November 2014. Hrsg.: M. Maurer, pp. 373–
382. Hanser, München (2015)

3. Aydemir, F.B., Dalpiaz, F., Brinkkemper, S., Giorgini, P., Mylopoulos, J.: The
next release problem revisited: a new avenue for goal models (2018). https://doi.
org/10.1109/RE.2018.00-56

4. Dahmann, J.S., Baldwin, K.J.: Understanding the current state of US defense
systems of systems and the implications for systems engineering. In: 2008 2nd
Annual IEEE Systems Conference, pp. 1–7 (2008)

5. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, goals, and state
machines: a win-win partnership for model synthesis. In: Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, SIGSOFT 2006/FSE-14, pp. 197–207. Association for Computing Machinery,
New York (2006). https://doi.org/10.1145/1181775.1181800

6. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal
Methods Syst. Des. 19, 45–80 (2001). https://doi.org/10.1023/A:1011227529550

7. Fernández, D.M., Wagner, S.: Naming the pain in requirements engineering. Empir-
ical Softw. Eng. 183 (2013). https://doi.org/10.1145/2460999.2461027

8. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.:
SPECMATE: automated creation of test cases from acceptance criteria. In: Pro-
ceedings - 2020 IEEE 13th International Conference on Software Testing, Verifi-
cation and Validation, ICST 2020, pp. 321–331 (2020). https://doi.org/10.1109/
ICST46399.2020.00040

9. Fitzgerald, J., Pierce, K., Larsen, P.G.: Co-modelling and co-simulation in the
engineering of systems of cyber-physical systems. In: 2014 9th International Con-
ference on System of Systems Engineering (SOSE), pp. 67–72 (2014). https://doi.
org/10.1109/SYSOSE.2014.6892465

10. Fockel, M., Holtmann, J., Koch, T., Schmelter, D.: Formal, model- and
scenario-based requirement patterns. In: 6th International Conference on Model-
Driven Engineering and Software Development (2016). https://doi.org/10.5220/
0006554103110318

https://doi.org/10.21278/idc.2018.0460
https://doi.org/10.21278/idc.2018.0460
https://doi.org/10.1109/RE.2018.00-56
https://doi.org/10.1109/RE.2018.00-56
https://doi.org/10.1145/1181775.1181800
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1145/2460999.2461027
https://doi.org/10.1109/ICST46399.2020.00040
https://doi.org/10.1109/ICST46399.2020.00040
https://doi.org/10.1109/SYSOSE.2014.6892465
https://doi.org/10.1109/SYSOSE.2014.6892465
https://doi.org/10.5220/0006554103110318
https://doi.org/10.5220/0006554103110318

180 C. Wiecher et al.

11. Gausemeier, J., Moehringer, S.: VDI 2206- a new guideline for the design of
mechatronic systems. In: IFAC Proceedings Volumes, pp. 785–790. Elsevier (2002).
https://doi.org/10.1016/s1474-6670(17)34035-1

12. Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for UML
sequence diagrams. In: Proceedings of the 2006 International Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools, SCESM 2006,
pp. 13–20. ACM, New York (2006). https://doi.org/10.1145/1138953.1138958.
http://doi.acm.org/10.1145/1138953.1138958

13. Harel, D., Marelly, R.: Specifying and executing behavioral requirements: the play-
in/play-out approach. SoSyM 2, 82–107 (2003)

14. Harel, D., Marelly, R., Marron, A., Szekely, S.: Integrating inter-object scenarios
with intra-object statecharts for developing reactive systems. IEEE Des. Test 1–19
(2020). https://doi.org/10.1109/MDAT.2020.3006805

15. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Comm. ACM 55(7),
90–100 (2012). https://doi.org/10.1145/2209249.2209270

16. Harel, D., Marron, A., Wiener, G., Weiss, G.: Behavioral programming, decentral-
ized control, and multiple time scales. In: Proceedings of the Compilation of the
Co-Located Workshops on DSM 2011, TMC 2011, AGERE! 2011, AOOPES 2011,
NEAT 2011, & VMIL 2011, SPLASH 2011 Workshops, pp. 171–182. Association
for Computing Machinery, New York (2011). https://doi.org/10.1145/2095050.
2095079

17. Hoehne, O.M., Rushton, G.: A System of Systems Approach to Automotive Chal-
lenges. SAE Technical Paper. SAE International (2018). https://doi.org/10.4271/
2018-01-0752

18. Holt, J., Perry, S., Brownsword, M., Cancila, D., Hallerstede, S., Hansen, F.O.:
Model-based requirements engineering for system of systems. In: Proceedings -
2012 7th International Conference on System of Systems Engineering, SoSE 2012,
pp. 561–566 (2012). https://doi.org/10.1109/SYSoSE.2012.6384145

19. Holtmann, J., Bernijazov, R., Meyer, M., Schmelter, D., Tschirner, C.: Integrated
and iterative systems engineering and software requirements engineering for tech-
nical systems. J. Softw.: Evol. Process 28(9), 722–743 (2016). https://doi.org/10.
1002/smr.1780. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1780

20. INCOSE: INCOSE Systems Engineering Handbook: A Guide for System Life Cycle
Processes and Activities. John Wiley (2015)

21. Kirpes, B., Danner, P., Basmadjian, R., Meer, H., Becker, C.: E-mobility systems
architecture: a model-based framework for managing complexity and interoperabil-
ity. Energy Inform. 2(1), 1–31 (2019). https://doi.org/10.1186/s42162-019-0072-
4

22. Lee, K., Hong, J.H., Kim, T.: System of systems approach to formal modeling of
CPS for simulation-based analysis. ETRI J. 37, 175–185 (2015). https://doi.org/
10.4218/etrij.15.0114.0863

23. Maier, M.W.: Architecting principles for systems-of-systems. In: INCOSE Inter-
national Symposium, vol. 6, no. 1, pp. 565–573 (1996). https://doi.org/10.1002/j.
2334-5837.1996.tb02054.x

24. Ncube, C.: On the engineering of systems of systems: key challenges for the require-
ments engineering community. In: 2011 Workshop on Requirements Engineering
for Systems, Services and Systems-of-Systems, RESS 2011 - Workshop Co-located
with the 19th IEEE International Requirements Engineering Conference, pp. 70–
73. IEEE (2011). https://doi.org/10.1109/RESS.2011.6043923

https://doi.org/10.1016/s1474-6670(17)34035-1
https://doi.org/10.1145/1138953.1138958
http://doi.acm.org/10.1145/1138953.1138958
https://doi.org/10.1109/MDAT.2020.3006805
https://doi.org/10.1145/2209249.2209270
https://doi.org/10.1145/2095050.2095079
https://doi.org/10.1145/2095050.2095079
https://doi.org/10.4271/2018-01-0752
https://doi.org/10.4271/2018-01-0752
https://doi.org/10.1109/SYSoSE.2012.6384145
https://doi.org/10.1002/smr.1780
https://doi.org/10.1002/smr.1780
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1780
https://doi.org/10.1186/s42162-019-0072-4
https://doi.org/10.1186/s42162-019-0072-4
https://doi.org/10.4218/etrij.15.0114.0863
https://doi.org/10.4218/etrij.15.0114.0863
https://doi.org/10.1002/j.2334-5837.1996.tb02054.x
https://doi.org/10.1002/j.2334-5837.1996.tb02054.x
https://doi.org/10.1109/RESS.2011.6043923

Iterative and Scenario-Based Requirements Specification 181

25. Ncube, C., Lim, S.L.: On systems of systems engineering: a requirements engineer-
ing perspective and research agenda. In: Proceedings - 2018 IEEE 26th Inter-
national Requirements Engineering Conference, RE 2018, pp. 112–123 (2018).
https://doi.org/10.1109/RE.2018.00021

26. Nielsen, C., Larsen, P., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of sys-
tems engineering. ACM Comput. Surv. 48, 1–41 (2015). https://doi.org/10.1145/
2794381

27. Odusd, A., Sse, T.: Systems Engineering Guide for Systems of Systems. Technical
Report August, Office of the Under Secretary of Defense (2008). https://doi.org/
10.1109/EMR.2008.4778760

28. Sutcliffe, A.: Scenario-based requirements engineering. In: Proceedings of the
IEEE International Conference on Requirements Engineering, pp. 320–329 (2003).
https://doi.org/10.1109/ICRE.2003.1232776

29. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: Pro-
ceedings of the 22nd International Conference on Software Engineering, ICSE 2000,
pp. 314–323. Association for Computing Machinery, New York (2000). https://doi.
org/10.1145/337180.337217

30. Wiecher, C.: A Feature-oriented approach: from usage scenarios to automated sys-
tem of systems validation in the automotive domain. In: ACM/IEEE 23rd Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2020 Companion), Virtual Event, Canada (2020). https://doi.org/10.1145/
3417990.3419485

31. Wiecher, C., Greenyer, J.: Besos: a tool for behavior-driven and scenario-based
requirements modeling for systems of systems, preprint (2021)

32. Wiecher, C., Greenyer, J., Korte, J.: Test-driven scenario specification of auto-
motive software components. In: 2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C),
Munich, Germany, pp. 12–17 (2019). https://doi.org/10.1109/MODELS-C.2019.
00009

33. Wiecher, C., Japs, S., Kaiser, L., Greenyer, J., Dumitrescu, R., Wolff, C.: Scenarios
in the loop : integrated requirements analysis and automotive system validation.
In: ACM/IEEE 23rd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2020 Companion) (2020). https://doi.org/10.1145/
3417990.3421264

https://doi.org/10.1109/RE.2018.00021
https://doi.org/10.1145/2794381
https://doi.org/10.1145/2794381
https://doi.org/10.1109/EMR.2008.4778760
https://doi.org/10.1109/EMR.2008.4778760
https://doi.org/10.1109/ICRE.2003.1232776
https://doi.org/10.1145/337180.337217
https://doi.org/10.1145/337180.337217
https://doi.org/10.1145/3417990.3419485
https://doi.org/10.1145/3417990.3419485
https://doi.org/10.1109/MODELS-C.2019.00009
https://doi.org/10.1109/MODELS-C.2019.00009
https://doi.org/10.1145/3417990.3421264
https://doi.org/10.1145/3417990.3421264

Specifying Requirements for Data
Collection and Analysis in Data-Driven

RE. A Research Preview

Maurizio Astegher1, Paolo Busetta1, Anna Perini2(B) , and Angelo Susi2

1 Delta Informatica SpA, Trento, Italy
{maurizio.astegher,paolo.busetta}@deltainformatica.eu

2 Fondazione Bruno Kessler, Trento, Italy
{perini,susi}@fbk.eu

Abstract. [Context and motivation] According to Data-Driven
Requirements Engineering (RE), explicit and implicit user feedback can
be considered a relevant source of requirements, thus supporting require-
ments elicitation. [Question/problem] Less attention has been paid so
far to the role of implicit feedback in RE tasks, such as requirements vali-
dation, and on how to specify what implicit feedback to collect and anal-
yse. [Principal idea/results] We propose an approach that leverages
on goal-oriented requirements modelling combined with Goal-Question-
Metric. We explore the applicability of the approach on an industrial
project in which a platform for online training has been adapted to
realise a citizen information service that has been used by hundreds
of people during the COVID-19 pandemic. [Contributions] Our con-
tribution is twofold: (i) we present our approach towards a systematic
definition of requirements for data collection and analysis, at support of
software requirements validation and evolution; (ii) we discuss our ideas
using concrete examples from an industrial case study and formulate a
research question that will be addressed by conducting experiments as
part of our research.

Keywords: Data-Driven Requirements Engineering · User feedback ·
Goal-Question-Metric · Goal-Oriented Requirements Analysis

1 Introduction

Data-driven Requirements Engineering (DDRE) provides methods and tech-
niques at support of software developers and analysts willing to exploit user
feedback for eliciting, prioritising, and managing requirements for their software
products [9]. RE research has devoted huge attention to automating DDRE, but
several challenges remain to be addressed in order to better integrate DDRE
into a continuous software development process, as discussed, for instance,
in [6,7,11]. Exploiting user feedback in other stages of the software requirements
lifecycle, beyond requirements elicitation, and enacting traceability of feedback
c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 182–188, 2021.
https://doi.org/10.1007/978-3-030-73128-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_13&domain=pdf
http://orcid.org/0000-0001-8818-6476
http://orcid.org/0000-0002-5026-7462
https://doi.org/10.1007/978-3-030-73128-1_13

Requirements for Data Collection and Analysis 183

to software design artefacts are discussed in [6] as two aspects among others that
need more attention by the research community. In our research, we focus on
implicit user feedback, that is data generated during a usage session, and col-
lected via dedicated monitoring mechanism [10]. While explicit user feedback,
e.g. user reviews, is collected on dedicated channels or social media and, usually,
can be requested after and independently of a system design, the collection of
implicit feedback cannot be designed after that the system has been deployed.
Indeed, developers and analysts risk to struggle to interpret what is available,
or even worse miss opportunities of collecting the right data that would help
validating to what extent the system they built meets its stakeholder’s goals.

Our research objective is manyfold. At first, we aim at understanding what
usage data should be collected and analysed for the purpose of system require-
ments validation and evolution in a DDRE approach. We then aim at defining a
method for systematically specifying requirements for such data collection and
analysis, which we call also requirements for implicit user feedback management.
These requirements should be specified at design-time, linking to stakeholders’
goals, and guide requirements validation and evolution once the software appli-
cation has been deployed on an instrumented platform and accessed by its users,
thus generating usage logs.

Motivations for this work derive from an industrial project in which a plat-
form for online training was adapted as a citizen information service during the
COVID-19 pandemic. Towards achieving our research objective, we first analyse
examples from this project’s case study. Moreover, we take inspiration from goal-
oriented approaches for Business Intelligence, e.g. [2,8], and investigate whether
concepts from Goal-Question-Metric (GQM) [3] can be exploited. We derive
then a research question about the effectiveness of the proposed method that we
aim at assessing with dedicated experiments in future work.

The rest of this short paper is organised as follows. We shortly recall back-
ground concepts of GQM and discuss related work in Sect. 2. We present the
case study in Sect. 3, together with a discussion of examples of missing data
collection and analysis. To tackle our research questions, we elaborate on our
proposed approach in Sect. 4. Then, Sect. 5 concludes the paper highlighting
ongoing and future steps in our research.

2 Background and Related Work

Goal-Question-Metric (GQM) is a top-down method for deriving and selecting
a set of metrics to assess the achievement of high level goals [3]. A high level
goal is decomposed into sub-goals. Questions referring to what could help stating
that those goals are achieved are then identified. Metrics are derived, which indi-
vidually or in an aggregated form can help answering each question. A simple
example is depicted in Fig. 2 (left side). GQM has been introduced first in soft-
ware engineering but it has been widely applied in different contexts, including
business strategies assessment [4]. Our research applies GQM to functional and
quality goals that represents users’ requirements for a software application, with

184 M. Astegher et al.

the aim of defining, in a top down breakdown, what data to collect and how to
analyse them in order to get evidences about user’s requirements satisfaction.

Implicit user feedback, as defined in [9,10], is related to business process
analysis and process mining. While the objective of process mining is to extract
knowledge about processes from transaction logs, aiming at detecting or pre-
venting misbehaviour and monitoring process quality, in DDRE the analysis of
implicit user feedback aims at eliciting new requirements and, in our research, at
supporting requirements validation and evolution. In process mining, three main
data analysis perspectives have been proposed, namely the process perspective,
the organisation perspective and the case perspective [12]. In [1], a literature
based meta-model is presented, which captures the most relevant knowledge
elements that have been considered in process mining literature so far, includ-
ing the notion of actor’s goal. By contrast, this work considers the user’s goals
perspective as part of the software system requirements specification.

3 Case Study

During the state of emergency for the first wave of the COVID-19 pandemic, the
local government of the Provincia Autonoma di Trento, Italy (PAT for short)
needed a way to regularly update citizens (more than half a million inhabitants)
about the prudent and legally permitted behaviours to follow and those that
did not comply with health advice and norms. Browsing through cryptic and
lengthy regulations looking for clues concerning a specific topic can be a tedious
and difficult process, and people often preferred to interact directly with a PAT
operator via telephone even for the simplest questions.

To lighten the workload of call centre operators, a Web system was created
to present information, organised in guidelines, in an immediate and interactive
way. For each guideline, a detailed description of the allowed behaviours was pro-
duced; each of the latter was then associated to a reference category (e.g. Sports
and outdoor activities) and to additional keywords. Web users could search by
category or by keywords, similar to what happens in search engines. In many
cases, text-based guidelines were accompanied by infographics and exercises car-
ried out with the ELEVATE platform [5]. Here, we focus on the latter.

ELEVATE is primarily used for creating interactive, multi-medial exercises
to be embedded into online training courses. However, an exercise can be used
also as a communication tool that allows its user to explore answers to ques-
tions. The COVID-19 exercises ask simple questions such as Do you have to use
public transport to reach your destination? and show a set of predefined answers
to choose from. The exercises then unfold by proposing alternative scenarios
depending on which choices are taken, ending when these lead to situations of
either correct or discouraged (if not prohibited) behaviours. The user is free
to repeat any exercise and explore different scenarios. Intuitively, a ELEVATE
exercise allowed to organise information so that only the relevant sections of the
COVID-19 directives were progressively offered to the user, leading to simplic-
ity and greater engagement when compared to the sequential reading of norms

Requirements for Data Collection and Analysis 185

written in legal language. Indeed, positive feedback on the exercises was infor-
mally collected both from users and from the press office of the local government.
Months after their release, we tried to check if this positive feedback was con-
firmed by the data made available directly from ELEVATE.

The platform collects data on the user behaviour, such as the speed of exe-
cution or the ability to follow the correct paths of an exercise, thus achieving
predefined educational objectives. In training, this data is used to evaluate the
performance of individual and groups of students, and allows to tune the exercises
e.g. by making situations harder or easier to interpret and offering alternatives
to follow. Unfortunately, while these data gives us a very precise picture of the
interests of the COVID-19 users (for instance, how many took a certain path
within an exercise, i.e. how many were interested to specific situations), they
do not allow to answer a few basic questions: (i) Did users find the information
they were looking for? (ii) Overall, was using the exercise a positive or a negative
experience? (iii) Are there extensions or improvements of the system we should
consider after looking at the users’ behaviours?

4 User Feedback Requirements and Related Tasks

An overview of the role of the requirements specification and validation tasks
we propose to explicit when integrating DDRE into software development is
sketched in Fig. 1. We distinguish between design-time, and post-deployment
(run-time) tasks. At design-time, once key stakeholders have been identified
together with their main goals, in parallel to the specification of functional and
quality requirements of the intended software application or service, GQM anal-
ysis should be performed with the aim to define metrics, and corresponding
range of values, which will help assess to what extent the running application
achieve the stakeholders’ goals. At run-time, i.e. once the software application
has been deployed on a platform instrumented with data collection and analysis
mechanisms, and it is accessed by its intended users, two tasks can be per-
formed, namely Requirements validation and Requirements evolution. Concern-
ing Requirements validation, the implemented mechanisms for data collection

Fig. 1. The envisioned process with new tasks and artifacts highlighted in red. (Color
figure online)

186 M. Astegher et al.

and analysis can help requirements engineers to evaluate if (and to what extent)
the software application meets the stakeholders goals, and in addition to validate
knowledge used to define the data collection and analysis requirements, as for
instance value ranges of the indicators used in the metrics for goal assessment.
As for Requirements evolution, apart from feature change requests that can be
collected through explicit user feedback, and ideas for new requirements that can
be suggested via analysing session logs, we foresee the possibility to elicit from
implicit user feedback also ideas for new metrics, e.g. by aggregating indicators,
by leveraging on process mining techniques.

In the rest of this section, we present some illustrative examples taken from
our case study on how GQM analysis can help specifying user-feedback require-
ments, which can guide requirements validation.

Specification of Requirements for Data Collection and Analysis. As
an example of use of GQM for specifying requirements for data collection and
analysis we consider a key stakeholder in our case study, namely PAT, and its
main goal G1: Communicate Citizens new rules, with ELEVATE exercises.

An example of GQM for goal G1 is summarised in Fig. 2, left side. The
questions Q1: Did Citizen access the ELEVATE exercises? and Q2: Did Citi-
zen completed successfully the exercises? have been associated to the goal G1.
Corresponding identified metrics are M1: Number of Citizens who accesses to an
exercise in a time-period, M2: Average time spent by Citizens on an exercise in
a time-period, M3: Percentage of Citizens who completed successfully an exer-
cise in a time-period. Figure 2, right side gives an example of how these metrics
can be modelled using the approach proposed in [2], which would be partic-
ularly convenient when requirements analysis is performed using goal models.
The example focus on the metric M3. A value of M3 above a given threshold
(e.g. 70%) is an evidence for G1 satisfaction. Note that the threshold value is
part of these requirements definition and can depend on the specific application
domain.

Requirements Validation. For the purposes of this paper, we focus on three
ELEVATE exercises that were created at the end of the national lockdown period
and advertised by means of press releases to local media. Topics and key con-
cepts of the exercises were extrapolated from an ordinance, issued by the local
government, which came into force on May 4, 2020: Sports and outdoor activities
(in short, sports can only be carried out individually and, for non-professional
athletes, only outdoors); Use of protection equipment (mandatory use of the
mask throughout the region both outdoors and in closed places accessible to the
public); Travelling (travel within the region is only allowed for reasons of health,
work, necessity or visits to relatives). Usage data were collected up to May 18,
the day on which a further ordinance entered into force which led to a substan-
tial easing of the restrictions in place up to that moment. Table 1 shows (i) the
number of citizens who have accessed each exercise; (ii) the number of citizens
who have completed it; (iii) the number of citizens who have completed it with
a positive outcome; (iv) the percentage of successfully completed exercises.

Requirements for Data Collection and Analysis 187

Fig. 2. Requirements expressed as GQM [3] and GO models [2].

Table 1. Values of indicators considered for the G1 validation example

Exercise name Time window Citizens Completed Compl. with
success

Success%

Sports and outdoor activities 07/05–18/05 608 412 340 83%

Use of protection equipment 07/05–18/05 243 151 118 78%

Travelling (first version) 07/05–13/05 2139 1291 1228 95%

Travelling (second version) 13/05–15/05 254 159 145 91%

Travelling (third version) 15/05–18/05 356 249 211 85%

According to the chosen metric (indicator), the goal of Communicating citi-
zens new rules (G1) of our stakeholder PAT seems to be well satisfied. Of course
other goals, such as Citizen’s goal of acquiring information on new, updated
rules in an easy and effective ways would need the definition of appropriate met-
rics to be operationalised into corresponding data collection mechanism. Finally,
from the point of view of the developers, such collected data would need to be
automatically analysed and displayed in a corresponding suitable dashboard.

5 Conclusion

In this research preview, we have introduced our research on exploiting implicit
user feedback in DDRE for requirements validation and evolution. We have pre-
sented our twofold research objective, which concerns the identification of tasks
and artefacts in a DDRE process where implicit user feedback is exploited, and
the definition of a method for the specification of requirements for implicit user
feedback management based on GQM.

Guided by this research goal, we envisioned a design-time task dedicated to
the specification of requirements for data collection and analysis, and propose
a method that builds on GQM. At run-time, a task devoted to requirements
validation is proposed, as well as the analysis of data that could support identi-
fying new GQM. We illustrated our ideas on a case study concerning a citizen
information service for the COVID-19 pandemic regulations in an Italian region.

As future work, we will assess the proposed specification method considering
the following research question: RQ: Is the proposed method (based on GQM

188 M. Astegher et al.

combined with goal-oriented requirements models) an effective method for speci-
fying requirements for implicit user feedback management, at support of software
validation, and requirements evolution?

We plan to perform an experiment involving developers who will be asked
to specify implicit user feedback management requirements with our approach.
Among the metrics for this experiment we will consider perceived usefulness, as
well as objective metrics, such as the number of requirements specified in a given
time frame. The experiment will be conducted on the ELEVATE project first,
and possibly on other project for generalisation purposes.

Acknowledgements. This work is part of the ELEVATE research project, which is
funded by Provincia Autonoma di Trento, L.P. 6/1999.

References

1. Adamo, G., Di Francescomarino, C., Ghidini, C.: Digging into business process
meta-models: a first ontological analysis. In: Dustdar, S., Yu, E., Salinesi, C., Rieu,
D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 384–400. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49435-3 24

2. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Reasoning with key perfor-
mance indicators. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM
2011. LNBIP, vol. 92, pp. 82–96. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24849-8 7

3. Basili, V.R.: Goal question metric paradigm. Encycl. Softw. Eng. 1, 528–532 (1994)
4. Basili, V., et al.: Aligning Organizations Through Measurement. TFISSSE.

Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05047-8
5. Dellagiacoma, D., Busetta, P., Gabbasov, A., Perini, A., Susi, A.: Authoring inter-

active videos for e-learning: The ELEVATE tool suite. In: Vittorini, P., Di Mascio,
T., Tarantino, L., Temperini, M., Gennari, R., De la Prieta, F. (eds.) MIS4TEL
2020. AISC, vol. 1241, pp. 127–136. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-52538-5 14

6. Franch, X., et al.: Towards integrating data-driven requirements engineering into
the software development process: a vision paper. In: Madhavji, N., Pasquale, L.,
Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 135–142. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 10

7. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and
challenges. IEEE Softw. 34(2), 44–52 (2017)

8. Horkoff, J., et al.: Strategic business modeling: representation and reasoning.
Softw. Syst. Modeling 13(3), 1015–1041 (2012). https://doi.org/10.1007/s10270-
012-0290-8

9. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2015)

10. Morales-Ramirez, I., Perini, A., Guizzardi, R.S.S.: An ontology of online user feed-
back in software engineering. Appl. Ontol. 10(3–4), 297–330 (2015)

11. Perini, A.: Data-driven requirements engineering. the SUPERSEDE way. In:
Lossio-Ventura, J.A., Muñante, D., Alatrista-Salas, H. (eds.) SIMBig 2018. CCIS,
vol. 898, pp. 13–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11680-4 3

12. Van Der Aalst, W.M., et al.: Business process mining: an industrial application.
Inf. Syst. 32(5), 713–732 (2007)

https://doi.org/10.1007/978-3-030-49435-3_24
https://doi.org/10.1007/978-3-642-24849-8_7
https://doi.org/10.1007/978-3-642-24849-8_7
https://doi.org/10.1007/978-3-319-05047-8
https://doi.org/10.1007/978-3-030-52538-5_14
https://doi.org/10.1007/978-3-030-52538-5_14
https://doi.org/10.1007/978-3-030-44429-7_10
https://doi.org/10.1007/s10270-012-0290-8
https://doi.org/10.1007/s10270-012-0290-8
https://doi.org/10.1007/978-3-030-11680-4_3
https://doi.org/10.1007/978-3-030-11680-4_3

Analysts’ Competence and Training

SaPeer Approach for Training
Requirements Analysts: An Application

Tailored to a Low-resource Context

Jéssyka Vilela1(B) and Alessio Ferrari2

1 Universidade Federal de Pernambuco (UFPE), Recife, Brazil
jffv@cin.ufpe.br

2 CNR-ISTI, Pisa, Italy
alessio.ferrari@isti.cnr.it

Abstract. [Context and Motivation] Role-playing is a typical ped-
agogical strategy frequently applied in requirements engineering educa-
tion and training (REET). The technique was proven to be successful
for teaching different requirements engineering (RE) activities, and the
SaPeer role-playing approach was recently proposed to train students
in requirements elicitation interviews. SaPeer was shown to be effective
and useful in the context of a high-resource RE module involving seven
tutors, and a three-weeks individual assignment. [Question/Problem]
RE lectures are frequently conducted as part of software engineering
courses, or in short RE modules, and there is often limited time to teach
RE in general, and interviews in particular. Therefore, SaPeer needs
to be adapted to these constrained contexts, and adequately assessed.
[Principal idea/Results] In this paper, we present the application of
SaPeer to a low-resource context. We tailor the approach to a one-week
group assignment, involving one tutor only, and we apply it to a class of
24 students. By comparing our results with the original study, we find
that students struggle in similar areas, and especially in question omis-
sion and planning. A qualitative analysis of the feedback of the students
shows the appreciation for the interview experience, and offers specific
recommendations for improving the educational material. [Contribu-
tion] We contribute to the literature in REET with the first tailored
application of SaPeer. Our study extends the scope of SaPeer and offers
the possibility of adopting it in other constrained contexts.

Keywords: Requirements engineering · RE education and training ·
SaPeer Approach · Requirements Elicitation · Interviews

1 Introduction

In requirements engineering education and training (REET), it is common to
use the role-playing technique for teaching students how to conduct require-
ments engineering (RE) activities [24,25,28,31,35]. With role-playing, students
are normally asked to play the role of the requirements analyst in a fictional
c© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 191–207, 2021.
https://doi.org/10.1007/978-3-030-73128-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_14&domain=pdf
http://orcid.org/0000-0002-0636-5663
https://doi.org/10.1007/978-3-030-73128-1_14

192 J. Vilela and A. Ferrari

project, so to have a hands-on experience of the difficulties of the profession,
which requires a complex combination of rigorous planning, flexible execution,
technical competence, communication abilities, and soft-skills. Role-playing has
been demonstrated to be successful for training students in different RE phases,
such as elicitation [4,10,12], analysis [1,23], and validation [3,21]. In the last
years, requirements elicitation interviews received particular attention, given
their prominence in the RE practice [7–9,11,14,19], and novel approaches for
interview training were developed [5,12]. In particular, the SaPeer approach was
proposed for training students in interviews with role-playing, self-assessment,
and peer-review [12,13], and the authors shared the material to replicate and
adapt the study [15]. Indeed, each educational context has its own peculiarities,
characterized by the students’ background, the educational goals prioritized by
the teacher, and the availability of educational resources, such as number of
tutors and amount of time. Therefore, staging an effective role-playing RE activ-
ity needs to account for the specific educational context. In particular, extensive
training sessions in RE are often not possible, as RE modules are normally made
of a limited amount of lectures, frequently included within larger software engi-
neering courses [16,20].

In this paper, we propose an adaptation of the SaPeer approach. SaPeer was
originally experimented in a high-resource RE course, with seven tutors play-
ing the role of customer, and a three-weeks individual assignment. Here, we
apply SaPeer to a low-resource context, which required tailoring the approach
to the needs of the course. An application with some changes to adapt to dif-
ferent conditions may be classified as an external differentiated replication [2].
It is external since it was performed by an independent researcher, i.e., the first
author. Besides, the second author, who is one of the SaPeer proponents, was
only contacted after the execution of the study. It can be called differentiated
replication since changes were performed in relation to the original study: design,
hypothesis, and context. To avoid confusion, we use the term application instead
of differentiated replication to refer to this study.

The main changes with respect to the original study are: the students work
in groups instead of performing individual activities; the assignment lasts one-
week; only one tutor (the professor) plays role of customer. The study involves
24 Brazilian students from a RE class in a Postgraduate Course about Software
Testing.

We analyze the outcome of the work from a quantitative and qualitative point
of view, and we compare the results with the original study. Our results show that
both groups of students struggle in the areas of question omission and planning
and tend to forget to ask about additional stakeholders and feature prioritization.
Furthermore, time management and listening skills are particularly poor. On
the other hand, the simple suggestion of asking a summary at the end of the
interview—given as advice already before the first interview—allows students to
correct this typical mistake beforehand. Our main contributions are as follows:
(1) we provide one of the few cases of external application in REET and RE in
general; (2) we show how SaPeer can be successfully adapted to a low-resource

An Application of SaPeer Approach 193

context, which is typical in REET [16,20]; (3) we confirm most of the results of
the original study in terms of easiness and usefulness of SaPeer.

The paper is organized as follows. Related works are discussed in Sect. 2. A
brief description of SaPeer, the rationale for tailoring it and how the tailoring was
performed are described in Sect. 3. The research design is presented in Sect. 4.
The results are described in Sect. 5 and Sect. 6 concludes the paper.

2 Related Work and Background

Requirements Engineering Education and Training (REET) is a lively area of
research, with several relevant contributions addressing multiple phases of the
RE process [1,3,4,10,12,21,23]. A systematic mapping study on the topic [26]
identifies 79 high-quality research papers in the field already in 2015. The study
highlights that requirements elicitation, which is the focus of our study, is
addressed solely by 11% of the contributions and that the majority of the studies
are either solution proposal or experience papers, including 34% of non-empirical
studies. This suggests that the empirical maturity of the field is limited and calls
for further contributions with a stronger experimental facet, especially consider-
ing replications or tailored applications, which are well-known pain points in RE
research [6,22]. We are aware of a few replications in REET, such as: the work
of Walia and Carver [33], with four experiments on requirements inspection; the
one by Hadar et al. [18], concerned with the evaluation of requirements model
comprehensibility; and the one of Spoletini et al. [30], about two experiments on
interview review. Finally, the recent work of Rueda et al. [29] compares different
requirements elicitation methods in a family of experiments involving the same
instructor.

Role-Playing in REET. Many solution proposals in REET typically use role-
playing as a pedagogical strategy for training students [17,27]. The seminal
contributions by Zowghi and Parjani [35] are one of the first works that pro-
pose to apply role-playing to REET, and discusses lessons learned, covering
aspect related to student engagement and corrective feedback. Svensson and
Regnell [31] make a step forward, empirically showing the effectiveness of the
role-playing pedagogical strategy. Similarly, Nkamaura and Tachikawa [24] con-
firm that requirements modeling skills can be improved through role-playing,
while Vilela and Lopes [32] show improvements in requirements elicitation and
communication abilities. Finally, the results of Ouhbi [25] show the adequacy of
role-playing as a tool for teaching RE even with limited time resources, as in our
case.

Mistakes of Student Analysts. The investigation of common mistakes of students
acting as analysts in role-playing interviews is presented in previous works by the
authors of the SaPeer approach [4,5,10]. Specifically, Donati et al. [10] identify
nine main communication mistakes of 36 student requirements analysts in a case
study. Bano et al. [4,5] present a list of 34 detailed mistakes that novices perform
in requirements elicitation interviews classified into seven high-level categories
(order of interview, planning, communication skills, etc.).

194 J. Vilela and A. Ferrari

Based on that work, Ferrari et al. [12] introduce the SaPeer approach for
training student analysts and correct typical mistakes. The work shows that the
proposed method is effective in reducing students’ mistakes and is considered
useful.

Our paper replicates the study of Ferrari et al. [12], to investigate the appli-
cability of the SaPeer approach in a low-resource context. With respect to other
works in REET, we contribute with one external application in the field, led by
an independent author that was not involved in the initial study, and with a
focus on elicitation. As an application of an existing study, our work reinforces
the empirical grounding of REET, extends the scope of applicability of SaPeer,
and suggests useful improvements for the educational material provided.

3 Tailored SaPeer

In this section, we provide a brief description of SaPeer, the rationale for tailoring
it and how the tailoring was performed.

3.1 The SaPeer Approach

The SaPeer pedagogical approach aims to foster experiential learning by letting
students perform a role-playing interview with a fictional customer. Then, learn-
ing is further stimulated through reflection, by asking students to find mistakes
in their own interview and in the interview of their peers [12]. The acquired
ability is then practiced in a second interview.

The main steps of the approach are: (1) Preliminary Training: the stu-
dents watch a video on how to conduct interviews; (2) 1st Interview: the stu-
dents act as analysts and a tutor plays the role of customer; (3) Mistake-based
Training: the students watch a second video in which the common mistakes pre-
sented by Bano et al. [4] are explained, and examples of erroneous behavior are
given; (4) Self-assessment: the students listen to their interview, and answer
a questionnaire with 32 statements concerning the occurrence of mistakes; (5)
Peer-review: the students assess another student’s interview; (6) 2nd Inter-
view: a second interview is carried out for further practice; (7) Self-reflection:
the students answer a feedback questionnaire about the usefulness and easiness
of the SaPeer approach. The videos, slides and questionnaires of the SaPeer
approach can be found at [15].

3.2 Rationale for Tailoring the SaPeer Approach

The context in which SaPeer would be applied was an online RE class with 24
students in a graduate course about software testing. The classes had a duration
of 15 h (total) distributed in five days with three hours each.

Besides having a reduced time schedule, no additional tutor was available,
and all classes and assignments would be taught and graded by only the pro-
fessor. Hence, there was a need of performing the first adaptation, which was

An Application of SaPeer Approach 195

conducting the interviews in teams considering that time was a major issue in
this class. Accordingly, the students were divided into six groups of four mem-
bers. The original study also foresees the possibility of conducting the interviews
in groups if the scale is an issue in applying the approach. Furthermore, it was
an opportunity for students to handle communication flaws between the project
team and the customer, avoiding typical problems arising from the presence of
one team member only interacting with the customer [11].

The reduced available time was also the reason for choosing reducing the
time of interviews from 15 min as adopted in the original study to the 10 min
adopted in this application.

The professor selected three projects, instead of the original two, to reduce
the possibility of cheating. The projects are listed in Table 1. Similarly to Bano
et al. [12], the task was collaborative. The students were expected to plan for
the interview as a group and assigning among them the different tasks such as
preparing questions, asking questions, taking notes, audio recording interviews,
preparing minutes of meeting. It is important to highlight that self-assessment
and peer-review questionnaires were filled only after the first interview. Since
the class had a duration of one week only, it was not possible to quantitatively
evaluate the actual improvement of the students. We mitigated this issue by
evaluating their qualitative feedback.

Also, while in the original study the two interviews were about different
products, in this study, the second interview was a clarification interview, and,
therefore, the questionnaire may not be adequate to identify mistakes in this
phase, as also noticed by Bano et al. [5].

Finally, another adaptation was the type of artifacts produced by the stu-
dents. In our application, it was necessary that students train several artifacts.
Hence, they produced other artifacts beyond user stories requested by the orig-
inal study.

3.3 The Tailored SaPeer Approach

This work presents an external tailored application [2] of the study of Ferrari
et al. [12]. The differences between the original study and this application are
presented in Table 1.

We adapted the suggested timeline to apply the approach to the course dura-
tion (five days). The timeline was the following:

[Day 1]: A class about Introduction to RE. Students watched the “Preliminary
Training” video on interviews. Students planned the interview and sent the script
they intend to follow during the interview. Students executed the 1st interview.
Students sent the meeting notes immediately after the completion.
[Day 2]: A class about Requirements Analysis and Specification. Students
watched the “Mistake-based Training” video. Students answered the self-eva-
luation questionnaire. Students listened to other team interview (team with a
different project than theirs) and answered the peer-review questionnaire.

196 J. Vilela and A. Ferrari

Table 1. Comparison between the original study and this application.

Setting Original study [12] This application

Study goal Evaluate the learning effect of
the proposed approach and to
acquire feedback on its
usefulness and easiness

Replicate the activities
performed by the experimental
group to acquire feedback on
usefulness and easiness of the
approach

Research Method Quasi-experiment with two
treatments: SaPeer and
practice-only

Application without performing
a controlled experiment

Country United States Brazil

Type of class Physical Online RE class

Participants 16 in experimental group and
22 in the control group

24

Students’ profile Graduate students where
around 50% had previous
experience in RE

Graduate students where only
8% had experience in RE

Time available to
perform the
activities

Three weeks One week

#interviews 2 2

Duration of
interviews

15 min 10 min

Team involved in
the role of
customer for the
role-playing
activity

Seven tutors One professor

Type of interview Individual Groups of four students

Language of the
classes

English Portuguese

Projects Cool Ski Resorts: an
information system to manage a
chain of three Ski resorts [15],
Nancy/Jim’s Salon: an
information system to manage a
hair dressing shop [15]

Cool Ski Resorts, Nancy/Jim’s
Salon and Emergency medical
response system: an application
of smart items in the field of
sensors network (designed by
the instructor)

Artifacts produced
by the students

User stories Problem and business
description, user stories,
specification of requirements
(functional with priority
suggestion, non-functional and
business rules), use case
diagram, specification of 3 use
cases, and one test case for a
use case as long as it has at
least one alternate flow

An Application of SaPeer Approach 197

[Day 3]: A class about requirements types: functional, non-functional, and busi-
ness rules. Production and submission of the requirements in the form of user
stories.
[Day 4]: A Class about validation and requirements management. Students exe-
cuted the 2nd interview on the same project. Production and submission of a
list containing Functional requirements with priority suggestion, Non-Functional
Requirements, and Business Rules.
[Day 5]: Students sent the requirements document containing the artifacts listed
in Table 1 and they filled out the feedback questionnaire. Students presented the
results of the elicitation to the professor and the class.

4 Research Design

In this work, we applied SaPeer to a low-resource context, and compared the
obtained results with the original study. In the following, we outline research
questions, data collection and data analysis procedures.

4.1 Research Questions

The following research questions motivated the conduction of this work:

RQ1: What are the most frequent mistakes performed by the students? We ana-
lyze the most common errors performed by the students considering the mistakes
categories provided by the SaPeer approach and we compare the results of this
study with the results of the original study, considering the average between
self- and peer-reviews scores obtained for the first interview. This allows under-
standing whether mistakes are similar for students with different backgrounds
and culture.
RQ2: What is the degree of easiness and usefulness of the approach from the
viewpoint of the students? We collect students feedback regarding their opinion
about easy of use and their perception of the utility of the SaPeer approach and
we compare the results of both studies obtained from the feedback questionnaire.
RQ3: What are the benefits and challenges of SaPeer from the viewpoint of
the students? To answer this question, we present a thematic analysis of the
feedback questionnaire to qualitatively understand to which extent the students
considered the approach effective.

4.2 Data Collection and Analysis Procedures

To collect the data to answer our research questions, we asked the students to
fill the following questionnaires:

– self-assessment (RQ1): this questionnaire contains 32 statements, one for
each mistake type described in the mistake-based training. For each state-
ment, the student was required to provide a degree of agreement in a 5-point
Likert Scale: Strongly Agree (5), Agree (4), Neutral (3), Disagree (2), Strongly
Disagree (1).

198 J. Vilela and A. Ferrari

– peer-review (RQ1): this questionnaire is similar to the self-assessment one,
except for the formulation of the statements, which in this case are in third
person.

– feedback (RQ2, RQ3): with this questionnaire, the students evaluate the
usefulness and easiness of the approach, and provide comments on their expe-
rience. The students are asked to evaluate their usefulness on a 5-point Likert
Scale: Extremely useful (5), Very useful (4), Moderately useful (3), Slightly
useful (2), Not at all useful (1). Similarly for easiness: Very easy (5) to Very
difficult (1). In addition, the students were required to comment on the effec-
tiveness of their experience and recommend improvements.

To answer RQ1, we quantitatively analyze the answers to the self-assessment
and peer-review questionnaires, and we compute their average for each mistake.
This is compared with the average score obtained in the original study.

To answer RQ2, we analyze the answers to the feedback questionnaire about
easiness/difficulty, and for each task, we compare the average scores with the
original study. RQ3 was answered by performing a thematic analysis similar to
the one presented in the paper of Ferrari et al. [13]. The themes were grouped
into three categories: Challenges, Benefits, and Improvements.

4.3 Threats to Validity

As we performed an external application of the study of [4], we also inherit some
of the threats to validity reported in their paper. Below, we analyze the threats to
validity considering the classification of Wohlin et al. [34]. Considering construct
validity, we mitigate threats related to the amount of mistakes by calculating the
average between self-assessment and peer-review scores to reduce possible stu-
dents’ bias in assigning their scores. Since students performed group interviews,
while they answered individual questionnaires, the actual self-assessment scores
actually reflect a group score. By considering solely average values, we mitigate
this issue.

To reduce threats to internal validity, a single tutor played the role of cus-
tomer in all interviews. Hence, it was possible to provide similar answers to all
groups. Besides ethical issues discussed below, a possible source of bias is the
fact that the leader of the study, the course instructor, and the first author of
the paper are the same person. However, we argue this threat is limited because
SaPeer was proposed by other researchers, and so as all the material used in this
study (training videos, slides, questionnaires, projects descriptions). Moreover,
this bias is reduced since SaPeer and its artifacts were extensively validated by
its proponents in previous works. To mitigate ethical issues, during the classes,
it was reinforced that students were providing feedback regarding an approach
available in the literature that was not developed by the professor. Besides, it
is not possible to relate students’ opinions and their names, all information was
analyzed anonymously, and students were not graded based on the content of
their feedback, their answers to the questionnaires and interviews, but only on
the final documents produced.

An Application of SaPeer Approach 199

Regarding external validity, we believe that our results are applicable in sim-
ilar educational contexts. We compared our results with the original study, but
we could not quantitatively compare effectiveness due to our different design. As
mentioned, this is mitigated by qualitatively analyzing the students’ feedback.

5 Results

RQ1: What are the most frequent mistakes performed by the students
with respect to the original study?

We compare the results with the original study, considering the average
between self- and peer- reviews for the first interview. This comparison is pre-
sented in Fig. 1.

Fig. 1. Comparison between the results of the application and the original study.

We observe a similar behaviour between this work and the original one regard-
ing the mistakes—the plot lines tend to overlap—although the students of this
application committed slightly more errors. Common frequent mistakes in both
groups are: not asking for additional stakeholders, not asking for prioritization,
not asking about success criteria, limited rapport, and poor time management.

200 J. Vilela and A. Ferrari

The categories that present more differences are communication skills, order of
interview, and planning. In particular, our students performed worse in terms
of listening skills and time management. This may be linked to the limited time
they were given in the interview (10 vs 15 min), suggesting that the time con-
straint given is probably too limited. More time should be allocated to reduce
the hurry that may lead to asking one question after the other without listening
for the answer. On the other hand, our students remembered to perform a sum-
mary at the end of the interview. Different from the original study, the tutor
provided this suggestion already before the first interview. This suggests that
some mistakes can be actually corrected easily when the students know them,
and this can be particularly useful to address the relevant mistakes in question
omission mentioned above.

Fig. 2. Comparison between the students’ feedback of application and original study.

RQ2: What is the degree of easiness and usefulness of the approach
from the viewpoint of the students?

In Fig. 2, we present the results about usefulness and easiness compared with
the original study. Values are in general, very close, but some nuanced differences
can be noticed. We observe that the students of this application considered the
activities of interviews, self-assessment, and especially peer-review more useful
than the students from the original study. We believe that these results may be
related to the novelty of this experience by the students. The training, instead,
were considered less useful, probably due to some concerns about the quality of
the videos (see RQ3). Concerning easiness, we notice that the averages of the
original study are higher than this application in terms of easiness. The limited
time given for each task and the quality of the training may have played a role.
As in the original study, the activity the students found most difficult was the
interviews.

An Application of SaPeer Approach 201

In the feedback questionnaire, some students highlighted the usefulness of
the interviews:

“All tasks were very useful, well thought out, and had clear and relevant
objectives. But I especially liked the interviews: we were responsible for obtaining
all the necessary information for the rest of the project in a few minutes of
contact with the client, and for that, we had to use the techniques and tips shown
in class to help us to plan.”

“All of them were very useful, but in my opinion, the task related to the
interview was fundamental, as it was something I had no idea of the importance
of this moment for the development of a quality project. In short: aligning our
thoughts with the customer is essential.”

RQ3: What are the benefits and challenges of SaPeer from the
viewpoint of the students?

We organize our discussion by highlighting our observations from apply-
ing the approach considering the following categories: challenges, benefits, and
improvements as presented in Fig. 3.

Fig. 3. Results of thematic analysis.

Challenges. Many students reported challenges about the Quality of the train-
ing videos, and stated that the quality of audio of the videos provided by SaPeer
approach should improve. Students performed comments about this: “The videos
have a very bad audio”; “I felt a little difficult to understand some parts of the
first video (interview tips) due to the audio quality and the absence of subtitles”;
and “The accent of the person in the videos makes it difficult to understand.”

202 J. Vilela and A. Ferrari

Some students also highlighted the difficulty in Conducting the Interviews:
“The interviews, especially the second, where you must control yourself so as
not to repeat the mistakes made in the first. On how to express yourself and
what questions to ask in that reduced time frame, in order to extract as much
information from the stakeholder”. Difficulties in Planning an appropriate
interview observed in RQ1 are also confirmed by the students: “An error
was the lack of elaboration of a plan with other questions depending
on the direction of the interview”. Other themes are concerned with diffi-
culties encountered in the other activities, namely assessment and requirements
specification. Finally, the Lack of prior knowledge, both about the specific
interview context and about the discipline and the software engineering process
in general, was regarded as a relevant pain point: “I believe it would be interesting
to present some information about the profile of the person interviewed”; “The
little knowledge about software engineering is one of the most difficult parts”.

Benefits. The students reported some benefits and contributions regarding the
course in general, the training as well as about the application of SaPeer as pre-
sented in Fig. 3. The students observed that the Training provided a lot of
learning and an enriching experience. Some comments are: “Training was
carried out satisfactorily”, “It improves the proximity between teacher and stu-
dents”; “I really liked the video about common mistakes when doing interviews
with stakeholders, I think that more than self-assessment, the video made me
reflect what was missing, what I got right and what I need to learn for an elici-
tation interview”; “I see Interviews as the most useful task, as we experience in
a practical way the difficulties that go from planning to understanding the points
covered in the interview, in addition to leaving us much better prepared for any
future interviews”.

Another positive feedback was that Adopting corrective feedback learn-
ing approach and asking students to deliver small artifacts contributes
to better learning. A Student pointed out the benefit of such choice: “I would
like to highlight that the partial delivery methodology of the requirements docu-
ment promoted organization, agility and team spirit in the development of the
requirements document”. Benefits experienced are also concerned with the under-
standing of the Relevance of oral communication: “Self-assessment of the
interview made me face my own mistakes when making a presentation, high-
lighting the need to prepare myself better for other similar situations, especially
considering the importance of good performance in moments of oral communica-
tion”. Also, Relevance of adaptation was recognized as something that was
learned thanks to the followed approach, as the need for introducing and invent-
ing questions that would go beyond the script was triggered by the improvised
interviews: “It would be interesting for the group to rethink itself during the
interview, reserving a period of unplanned questions to avoid addressing ques-
tions already answered”; “I believe that trying to deal with the path that the
interview took because in some moments it leaves the script that we planned”.

An Application of SaPeer Approach 203

Improvements. The students also provided some suggestions to improve the
course. The most reported improvement was that More time is necessary.
In this work, the course was distributed in five days in an intensive week where
each class had three hours of duration per day. Although SaPeer recommends
that students should be given around 3 weeks to work on all the activities of
the module [15], we did not have this time available for the training. This short
time was pointed out by the students: “In the end, the project’s task was a little
complex with respect to time. But I think we did a good job, even with a lit-
tle pressure”; “Recommendation would be to give more time for delivery of the
requirements document, I found the delivery time a little tight”; “The scarcity of
time in planning and consequently the short time to execute something unplanned
compromises a better performance”. Other recommendations are concerned with
the organization of the interview, as students missed the opportunity of inter-
viewing more than one stakeholder: “A suggestion would be to have one more
stakeholder (if possible), so that students have access to another opinion about
the problem”.

Students also had some concerns about the tutor and noticed that The
person playing the role of customer needs to better prepare him-
self/herself to the interviews: “The customer should provide the same infor-
mation for all groups in the same project”. We actually observed that sometimes
we forgot what was said to one group, and this was noticed by the students thanks
to the peer-review questionnaire. This is not a major issue, as small imbalances
in information should not affect the learning outcomes. However, it may decrease
the trust of the students towards the preparation of the teacher. To mitigate this
problem, the professor started to take notes of the answers provided. Maybe hav-
ing other tutors might help. However, this should be done carefully in order to
maintain consistency between information shared by all tutors.

Other students suggested that The role of the client should be played
by someone different than the instructor: “The students themselves could
play the role of customer”; “The customer could be from the other group”. We
recommend that someone else plays this role, such as a tutor, since having the
same person conducting the classes, playing the role of customer and assigning
grades may confuse or inhibits some students because of the feeling of evaluation.
This was not possible in our work because there were no tutors available for the
classes, and the instructor had to perform all tasks himself/herself. The students
suggested that other students may play the role of customer. Although this also
the approach adopted by previous works [4,5], and we considered adopting this
practice during the classes preparation, it requires a great effort of coordination
planning, monitoring and training the students to behave as clients. Hence, it
would be a huge effort to be done in a discipline that lasts only one week.

A final common recommendation is Show videos of interview tips and
common mistakes before the interview: “I think the first interview would
be more complete if we knew what the best practices for interviews are and what
mistakes we should avoid making”. As we noticed, the recommendations con-
cerning the need to perform a summary were actually provided beforehand, and

204 J. Vilela and A. Ferrari

this error was generally avoided. Although in principle SaPeer suggests learning
from committed mistakes, we argue that in case of limited time the training
could be performed before the first interview.

6 Conclusions and Further Research

In this paper, we present an external application of the evaluation of the SaPeer
approach [12]. We provide the following take-away messages: 1) students tend
to commit the same mistakes, especially in the areas of question formulation,
behaviour, and customer interaction; 2) students struggle more in the areas of
question omission and planning; 3) significant differences are observed for the
mistake “no summary” (at the end of the interview), quite common in the orig-
inal study, and less common here, thanks to a simple recommendation provided
at the beginning of the lectures; 4) the steps of SaPeer are confirmed to be use-
ful; 5) interviews are confirmed to be among the most useful steps, but also the
most difficult 6) time is a relevant issue, and a training that gives more time for
interviews, while sacrificing aspects that are considered less useful (e.g., prelim-
inary training or peer-review), can be an appropriate direction in contexts with
limited resources. The contributions of this work are:

– We confirmed and provided evidence that the material of the approach is
reusable, it is possible to adapt and replicate it.

– We provide an external application in a lower resources context (one professor
to do all interviews and restrictions of time—one week only), supporting the
empirical grounding of REET research.

– We had qualitative indications that, in this study, we obtained learning out-
comes similar to the original. We observed that the ability of the students
to conduct requirements elicitation interviews was improved, as well as their
ability to analyze the execution and the content of requirements elicitation
interviews. We conclude this by analyzing students’ feedback (Sect. 5, RQ3),
and taking into account their overall performance (meeting notes and require-
ments specification documents produced).

– We provide additional information through observations, lessons learned and
suggestions for improvements, especially: improve video lectures, possibly
adapting to the language of the students; have a tutor in the role of customer,
instead of the instructor; have different stakeholders in different interviews.

As future works, we expect to join forces with the SaPeer team to carry
our further applications of the approach, also including role reversal [13], and
especially allowing more time for interviews. The SaPeer team involves tutors
from the US and Australia, and the integration of a Brazilian viewpoint can
allow the REET community to better understand the cultural differences that
can emerge in applying the approach. These differences may not be clearly iden-
tifiable with an external application, such as the current one, in which culture
is not considered a primary viewpoint for comparison.

An Application of SaPeer Approach 205

Acknowledgements. Authors would like to thank all the students who participated
in this study.

References

1. Abrahão, S., Insfran, E., Carśı, J.A., Genero, M.: Evaluating requirements model-
ing methods based on user perceptions: a family of experiments. Inf. Sci. 181(16),
3356–3378 (2011)

2. Baldassarre, M.T., Carver, J., Dieste, O., Juristo, N.: Replication types: towards
a shared taxonomy. In: EASE 2014, pp. 1–4 (2014)

3. Bano, M., Zowghi, D., Ferrari, A., Spoletini, P.: Inspectors academy: pedagogical
design for requirements inspection training. In: IEEE RE 2020, pp. 215–226. IEEE
(2020)

4. Bano, M., Zowghi, D., Ferrari, A., Spoletini, P., Donati, B.: Learning from mistakes:
an empirical study of elicitation interviews performed by novices. In: IEEE RE
2018, pp. 182–193. IEEE (2018)

5. Bano, M., Zowghi, D., Ferrari, A., Spoletini, P., Donati, B.: Teaching requirements
elicitation interviews: an empirical study of learning from mistakes. Requirements
Eng. 24(3), 259–289 (2019). https://doi.org/10.1007/s00766-019-00313-0

6. Carver, J.C., Juristo, N., Baldassarre, M.T., Vegas, S.: Replications of software
engineering experiments. EMSE 19, 267–276 (2014). https://doi.org/10.1007/
s10664-013-9290-8

7. Coughlan, J., Macredie, R.D.: Effective communication in requirements elicitation:
a comparison of methodologies. Requirements Eng. 7(2), 47–60 (2002). https://doi.
org/10.1007/s007660200004

8. Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.M.: Effectiveness of
requirements elicitation techniques: empirical results derived from a systematic
review. In: IEEE RE 2006, pp. 179–188. IEEE (2006)

9. De Ascaniis, S., Cantoni, L., Sutinen, E., Talling, R.: A lifelike experience to train
user requirements elicitation skills. In: Marcus, A., Wang, W. (eds.) DUXU 2017.
LNCS, vol. 10290, pp. 219–237. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58640-3 16

10. Donati, B., Ferrari, A., Spoletini, P., Gnesi, S.: Common mistakes of student ana-
lysts in requirements elicitation interviews. In: Grünbacher, P., Perini, A. (eds.)
REFSQ 2017. LNCS, vol. 10153, pp. 148–164. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54045-0 11

11. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empir.
Softw. Eng. 22(5), 2298–2338 (2016). https://doi.org/10.1007/s10664-016-9451-7

12. Ferrari, A., Spoletini, P., Bano, M., Zowghi, D.: Learning requirements elicitation
interviews with role-playing, self-assessment and peer-review. In: IEEE RE 2019,
pp. 28–39. IEEE (2019)

13. Ferrari, A., Spoletini, P., Bano, M., Zowghi, D.: Sapeer and reversesapeer: teach-
ing requirements elicitation interviews with role-playing and role reversal. Require-
ments Eng. 25, 1–22 (2020). https://doi.org/10.1007/s00766-020-00334-0

14. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements
elicitation interviews. Requirements Eng. 21(3), 333–355 (2016). https://doi.org/
10.1007/s00766-016-0249-3

15. Ferrari, A., Spoletini, P., Bano, M., Zowghi, D.: Sapeer approach for training stu-
dents in requirements elicitation interviews–educational material (2020). https://
zenodo.org/record/3765214

https://doi.org/10.1007/s00766-019-00313-0
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1007/s007660200004
https://doi.org/10.1007/s007660200004
https://doi.org/10.1007/978-3-319-58640-3_16
https://doi.org/10.1007/978-3-319-58640-3_16
https://doi.org/10.1007/978-3-319-54045-0_11
https://doi.org/10.1007/978-3-319-54045-0_11
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1007/s00766-020-00334-0
https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1007/s00766-016-0249-3
https://zenodo.org/record/3765214
https://zenodo.org/record/3765214

206 J. Vilela and A. Ferrari

16. Gabrysiak, G., Giese, H., Seibel, A., Neumann, S.: Teaching requirements engineer-
ing with virtual stakeholders without software engineering knowledge. In: REET
2010, pp. 36–45. IEEE (2010)

17. Garcia, I., Pacheco, C., Méndez, F., Calvo-Manzano, J.A.: The effects of game-
based learning in the acquisition of “soft skills” on undergraduate software engi-
neering courses: a systematic literature review. Comput. Appl. Eng. Educ. 28(5),
1327–1354 (2020)

18. Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F., Susi, A.: Compar-
ing the comprehensibility of requirements models expressed in use case and tropos:
results from a family of experiments. Inf. Softw. Technol. 55(10), 1823–1843 (2013)

19. Hadar, I., Soffer, P., Kenzi, K.: The role of domain knowledge in requirements
elicitation via interviews: an exploratory study. Requirements Eng. 19(2), 143–159
(2012). https://doi.org/10.1007/s00766-012-0163-2

20. Hertz, K., Spoletini, P.: Are requirements engineering courses covering what indus-
try needs? a preliminary analysis of the United States situation. In: REET 2018,
pp. 20–23. IEEE (2018)

21. Hu, W., Carver, J.C., Anu, V., Walia, G.S., Bradshaw, G.L.: Using human error
information for error prevention. Empir. Softw. Eng. 23(6), 3768–3800 (2018).
https://doi.org/10.1007/s10664-018-9623-8

22. Khatwani, C., Jin, X., Niu, N., Koshoffer, A., Newman, L., Savolainen, J.: Advanc-
ing viewpoint merging in requirements engineering: a theoretical replication and
explanatory study. Requirements Eng. 22(3), 317–338 (2017). https://doi.org/10.
1007/s00766-017-0271-0

23. Nakamura, T., Kai, U., Tachikawa, Y.: Requirements engineering education using
expert system and role-play training. In: IEEE TALE 2014, pp. 375–382. IEEE
(2014)

24. Nkamaura, T., Tachikawa, Y.: Requirements engineering education using role-play
training. In: IEEE TALE 2016, pp. 231–238. IEEE (2016)

25. Ouhbi, S.: Evaluating role playing efficiency to teach requirements engineering. In:
2019 IEEE Global Engineering Education Conference (EDUCON), pp. 1007–1010.
IEEE (2019)

26. Ouhbi, S., Idri, A., Fernández-Alemán, J.L., Toval, A.: Requirements engineering
education: a systematic mapping study. Requirements Eng. 20(2), 119–138 (2013).
https://doi.org/10.1007/s00766-013-0192-5

27. Ouhbi, S., Pombo, N.: Software engineering education: challenges and perspectives.
In: 2020 IEEE Global Engineering Education Conference (EDUCON), pp. 202–209.
IEEE (2020)

28. Regev, G., Gause, D.C., Wegmann, A.: Requirements engineering education in the
21st century, an experiential learning approach. In: IEEE RE 2008, pp. 85–94.
IEEE (2008)

29. Rueda, S., Panach, J.I., Distante, D.: Requirements elicitation methods based on
interviews in comparison: a family of experiments. Inf. Softw. Technol. 126, 106361
(2020)

30. Spoletini, P., Ferrari, A., Bano, M., Zowghi, D., Gnesi, S.: Interview review: an
empirical study on detecting ambiguities in requirements elicitation interviews. In:
Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS, vol. 10753, pp.
101–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1 7

31. Svensson, R.B., Regnell, B.: Is role playing in requirements engineering education
increasing learning outcome? Requirements Eng. 22(4), 475–489 (2017). https://
doi.org/10.1007/s00766-016-0248-4

https://doi.org/10.1007/s00766-012-0163-2
https://doi.org/10.1007/s10664-018-9623-8
https://doi.org/10.1007/s00766-017-0271-0
https://doi.org/10.1007/s00766-017-0271-0
https://doi.org/10.1007/s00766-013-0192-5
https://doi.org/10.1007/978-3-319-77243-1_7
https://doi.org/10.1007/s00766-016-0248-4
https://doi.org/10.1007/s00766-016-0248-4

An Application of SaPeer Approach 207

32. Vilela, J., Lopes, J.: Evaluating the students’ experience with a requirements elici-
tation and communication game. In: Conferencia Iberoamericana de Software Engi-
neering (CIBSE). CIBSE (2020)

33. Walia, G.S., Carver, J.C.: Using error abstraction and classification to improve
requirement quality: conclusions from a family of four empirical studies. Empir.
Softw. Eng. 18(4), 625–658 (2013). https://doi.org/10.1007/s10664-012-9202-3

34. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

35. Zowghi, D., Paryani, S.: Teaching requirements engineering through role playing:
Lessons learnt. In: IEEE RE 2003, pp. 233–241. IEEE (2003)

https://doi.org/10.1007/s10664-012-9202-3
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

On Understanding the Relation of Knowledge
and Confidence to Requirements Quality

Razieh Dehghani1 , Krzysztof Wnuk2 , Daniel Mendez2,3 , Tony Gorschek2 ,
and Raman Ramsin1(B)

1 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
rdehghani@ce.sharif.edu, ramsin@sharif.edu

2 Department of Software Engineering, SERL Sweden/Blekinge Institute of Technology,
Karlskrona, Sweden

{Krzysztof.wnuk,daniel.mendez,tony.gorschek}@bth.se
3 Fortiss GmbH, Munich, Germany

Abstract. [Context and Motivation] Software requirements are affected by
the knowledge and confidence of software engineers. Analyzing the interrelated
impact of these factors is difficult because of the challenges of assessing knowl-
edge and confidence. [Question/Problem] This research aims to draw attention
to the need for considering the interrelated effects of confidence and knowledge
on requirements quality, which has not been addressed by previous publications.
[Principal ideas/results] For this purpose, the following steps have been taken:
1) requirements quality was defined based on the instructions provided by the
ISO29148:2011 standard, 2) we selected the symptoms of low qualified require-
ments based on ISO29148:2011, 3)we analyzedfiveSoftwareRequirements Spec-
ification (SRS) documents to find these symptoms, 3) people who have prepared
the documents were categorized in four classes to specify themore/less knowledge
and confidence they have regarding the symptoms, and 4) finally, the relation of
lack of enough knowledge and confidence to symptoms of low quality was inves-
tigated. The results revealed that the simultaneous deficiency of confidence and
knowledgehasmore negative effects in comparisonwith a deficiencyof knowledge
or confidence. [Contribution] In brief, this study has achieved these results: 1) the
realization that a combined lack of knowledge and confidence has a larger effect
on requirements quality than only one of the two factors, 2) the relation between
low qualified requirements and requirements engineers’ needs for knowledge and
confidence, and 3) variety of requirements engineers’ needs for knowledge based
on their abilities to make discriminative and consistent decisions.

Keywords: Requirements quality · Requirements engineers’ confidence ·
Requirements engineering · Requirements engineering knowledge

1 Introduction

Building software solutions requires achieving sufficient requirements quality. Require-
ments quality is affected by humans, processes and tools [1]. Requirements engineers’

© Springer Nature Switzerland AG 2021
F. Dalpiaz and P. Spoletini (Eds.): REFSQ 2021, LNCS 12685, pp. 208–224, 2021.
https://doi.org/10.1007/978-3-030-73128-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73128-1_15&domain=pdf
http://orcid.org/0000-0003-4619-0914
http://orcid.org/0000-0003-3567-9300
http://orcid.org/0000-0001-6300-6635
http://orcid.org/0000-0002-3646-235X
http://orcid.org/0000-0003-1996-9906
https://doi.org/10.1007/978-3-030-73128-1_15

On Understanding the Relation of Knowledge and Confidence 209

knowledge and their confidence are the two human-related factors that affect require-
ments quality. Researchers have previously assessed the effect of these factors separately.
For example, it has been found that the effectiveness of interviews is affected by domain
knowledge [2, 3]. Also, the relation between engineers’ confidence and some specific
types of requirements, such as safety, has been investigated [4].

Figure 1 shows the research model used in this study. Hypotheses H4 and H5 refer
to the effects of requirements engineers’ knowledge and confidence on requirements
quality. Since knowledge and confidence are interrelated [5], this research has focused
on assessing the effects of knowledge deficit and a lack of confidence (hypotheses H6
and H7). Other relations, shown in Fig. 1, refer to the methods that have been used for
assessing quality, knowledge, and confidence, as follows:

Fig. 1. Research model

1) Requirements Quality: The ISO29148:2011 standard has provided a set of detailed
principles for producing qualified SRS documents [6]. On this basis, Femmer et al.
have defined the term Requirements Smell to assess quality [7]. Requirements smell
is “an indicator of a quality violation, which may lead to a defect, with a concrete
location and a concrete detection mechanism” [7]. Smells help find the location
for low-qualified requirements. The location refers to the word/sentence, which
violates the quality. For example, a vague adjective is a location for a low-qualified
requirement because it might result in a misunderstanding about the requirement.
It should be noted that the location might vary based on the product in which the
requirements are stored. We have focused on SRS documents and used smells for
assessing the quality of requirements (H1 in Fig. 1).

2) Requirements Engineers’ Knowledge: This term is defined from a capability-based
perspective. From this point of view, knowledge is “the potential to influence action”
[8]. On this basis, requirements engineers’ knowledge has the potential to influence
the process of preparing SRS documents. Assessing the time that an individual
spends in requirements engineering, namely experience, is a method for assessing
knowledge. Besides, defects in decisions made by requirements engineers are symp-
toms of their level of expertise. In this research, low experience and inability to make
discriminative and consistent decisions are considered as the symptoms of lack of
enough knowledge [9, 10]. Discrimination and consistency have been defined from
a comparative point of view [9]. On this basis, compared to novices, experts make

210 R. Dehghani et al.

more consistent and discriminative decisions throughout the requirements engineer-
ing process. Thus, H2 shows that inability in making discriminative and consistent
decisions was used as the symptom for lack of enough knowledge.

3) Requirements Engineers’ Confidence: This term refers to the feeling of trust about the
SRS document that is prepared/reviewed/used. On this basis, uncertainty in making
requirements engineering decisions was chosen as the symptom for low confidence
(H3 in Fig. 1). This has been inspired by the results of Boness et al.’s research [11].
They have defined this term by proposing four criteria for refuting/warranting a
claim about requirements engineers’ confidence in goal-oriented requirements anal-
ysis. On this basis, we have proposed the following measures to assess confidence
regarding various dimensions of requirements smells: depth of coverage, breadth of
coverage, correctness, achievability, assumption, and accuracy. Analyzing the data
about these criteria helps refute/warrant our claim about requirements engineers’
certainty. It should be noted that uncertainty might occur regarding various features
of requirements. We cannot claim that our research covers all these dimensions.
However, by studying the research that has previously been conducted, we have
tried to choose some specific dimensions of uncertainty regarding each dimension
of requirements smells.

It should be noted that the methods we have used for assessing knowledge, confi-
dence, and quality are context-independent [1, 9, 11]. However, some factorsmight affect
the assessment. For example, the cultural features might affect requirements engineers’
decisions [12].

The novelty of this research comes by addressing three issues: (1) in previous related
work, requirements smells have not been traced so far to requirements engineers’ knowl-
edge and confidence, (2) abilities in making decisions have not been considered as
symptoms of lack of requirements engineers’ knowledge, and (3) interrelations between
knowledge and confidence have not yet been considered.

Addressing these issues is important because: (1) requirements smells help trace the
effect of low confidence and/or knowledge to a specific location(s) for low qualified
requirements, (2) experience in requirements engineering, which refers to the time spent
in academia and industry for requirements engineering, is not the only factor which
affects individuals’ knowledge; thus this research considers the skills in making require-
ments engineering decisions as well, and (3) ignoring the effect of low confidence or
low knowledge yields wrong results and thus leads to inability to eliminate the causes
for low quality.

The rest of this paper is organized as follows: next section provides an overview of
the work related to this research; then, the method for conducting research and collecting
data is explained; thereafter, results of analyzing the data are provided; and finally, the
paper is ended by providing the conclusions and also suggesting some ways to further
this research.

2 Background and Related Work

This work focuses on the intersection of three concepts: requirements quality, require-
ments engineers’ knowledge and confidence. Femmer et al. have introduced require-
ments smells to assess the quality of SRS documents [7]. Similarly, Shanteau et al. and

On Understanding the Relation of Knowledge and Confidence 211

Boness et al. have respectively analyzed the individuals’ knowledge and confidence by
scrutinizing the decisions they make [9, 11]. Figure 2 shows the terminologies and the
relationships between the main concepts used in this work.

Fig. 2. Terminology of the concepts used in this research

The left part of Fig. 2 is derived from Femmer et al.’s study [7] and presents the
terminology for requirements smells. As explained in the first section, the requirements
that do not follow the instructions provided by ISO29148:2011 standard [6], namely
requirements smells, are low qualified [7]. We have categorized the research in the area
of effects of smells as follows [13]:

• Effects of smells on artifacts: This category is concerned about the effects of smells on
artifacts produced throughout the software development process. SRS is an example
of an artifact affected by defects of natural languages [7].

• Effects of smells on processes: Research in this area addresses the effects of smells
on development processes. As an example, the effect of requirements smells on test
case design has been discussed in [14].

• Effects of smells on people: This area of research has been addressed indirectly. For
example, Bjarnason et al. have provided a schema of requirements flow to depict the
effect of requirements change on developers and customers [15].

Table 1 provides a high-level overview of various categories of smells. The source of
the smells is provided in the third column. The smells might be related to requirements,
the requirements process, or the time/place/logic/people-dependent conditions and con-
straints. It should be noted that the measures have been proposed based on the issue
that is emphasized within the reference from which it has been elicited. More measures
might also be elicited by other researchers.

212 R. Dehghani et al.

Table 1. Categories of requirements smells

Smell dimension Smell category Measure [reference] (ID-S#)

Requirement Ambiguity Probability of various interpretations regarding
the meaning of requirement [7] (ID-S1)

Incompleteness Probability of having non-elicited requirements
[16] (ID-S2)

Inconsistency Probability of having inconsistent requirements
[16] (ID-S3)

Redundancy Probability of having redundant requirements
[16] (ID-S4)

Incorrectness Probability of having semantically incorrect
requirements [16] (ID-S5)

Size Probability of having compound requirements
[16] (ID-S6)

Probability of having large SRS documents
[16] (ID-S7)

RE process Analysis Probability of having an inappropriate data
collection method [16] (ID-S8)

Probability of having non-identified
stakeholders [6] (ID-S9)

Probability of wrong judgment about criticality
and risks [6] (ID-S10)

Documentation Probability of lack of explanation about
“domain-specific and frequently occurring
concepts” [16] (ID-S11)

Probability of having an incomplete glossary
[16] (ID-S12)

Verification Probability of having inappropriate
requirements verification method [16] (ID-S15)

Validation Probability of having requirements,
non-traceable to stakeholders [16] (ID-S14)

Probability of having non-defined “stakeholder
requirements for validation” [16] (ID-S13)

Management Probability of having products non-traceable to
requirements [6] (ID-S16)

Probability of having quality requirements
without measures [6] (ID-S17)

(continued)

On Understanding the Relation of Knowledge and Confidence 213

Table 1. (continued)

Smell dimension Smell category Measure [reference] (ID-S#)

Time-dependent
conditions and
constraints

Ambiguity Probability of uncertainty about the order for
satisfying the requirements [16] (ID-S18)

Probability of uncertainty about time for
verification [6] (ID-S19)

Incompleteness Probability of having missing time-dependent
conditions and constraints [16] (ID-S20)

Place-dependent
conditions and
constraints

Ambiguity Probability of having functionalities outside the
boundaries of software architecture [6]
(ID-S21)

Probability of making mistakes regarding
system boundary [6] (ID-S22)

Probability of misalignment between
stakeholder, system, and software requirements
[6] (ID-S23)

Probability of having ambiguous “venue and
environment for verification” [6] (ID-S24)

Incompleteness Probability of having unrecognized external
elements (including regulations, culture, etc.)
[6] (ID-S25)

Probability of having an incomplete
configuration baseline [6] (ID-S26)

Probability of missing the constraints that
affect the architecture [6] (ID-S27)

Unavailability Probability of inability in obtaining “items of
information” [6] (ID-S28)

People-dependent
conditions and
constraints

Ambiguity Probability of uncertainty about stakeholders’
preferences [16] (ID-S37)

Probability of uncertainty about interactions
between users and systems [16] (ID-S38)

Inconsistency Probability of having wrong priorities
regarding inconsistent stakeholders’
requirements [16] (ID-S39)

Incompleteness Probability of specifying wrong individuals for
conducting verification [16] (ID-S40)

Probability of having wrong supportive
information about stakeholders [6] (ID-S41)

(continued)

214 R. Dehghani et al.

Table 1. (continued)

Smell dimension Smell category Measure [reference] (ID-S#)

Logic-dependent
conditions and
constraints

Ambiguity Probability of unavailability of metadata
regarding requirements [16] (ID-S29)

Probability of having open-ended sentences
[16] (ID-S30)

Probability of having vague dependencies
between requirements [16] (ID-S31)

Probability of having wrong overall integrity of
requirements [6] (ID-S32)

Probability of having wrong estimations
regarding goal satisfaction [16] (ID-S33)

Probability of having vague control flows [16]
(ID-S34)

Probability of having vague logic behind
optional requirements [16] (ID-S35)

Incompleteness Probability of having non-maintained rationale
and assumptions [6] (ID-S36)

The right part of Fig. 2 presents the terminology for decision symptoms. The “pos-
sessed by” arrow shows that each requirements engineer has some capabilities. Defects
in making requirements engineering decisions are considered as symptoms of a lack of
knowledge (including experience) or confidence. The defects can be classified as follows:
1) inappropriate assumptions are symptoms of ignorance because of low knowledge and
confidence, 2) appropriate requirements indicate mastery in RE due to a high level of
knowledge and confidence, 3) inappropriate requirements are symptoms of making mis-
takes because of low knowledge and high confidence, and 4) appropriate assumptions
indicate doubt in RE due to high knowledge and low confidence.

It should be noted that the decisions might be inappropriate due to various reasons.
That is why we have added a “decision classes” component in Fig. 2. As mentioned, we
have selected three instances of defects, which are symptoms of inappropriateness, as
follows:

1) Uncertainty is an indicator of the need for more confidence. Figure 3 shows the
model for assessing confidence. This is inspired by the procedures used in courts
to refute/warrant a claim [17]. This method has previously been used for assessing
confidence in requirements analysis, as well [11]. As shown, we first claim that the
requirements engineer is not confident. Then, we look for the reasons through which
we can warrant or refute our claim. To find the warranting and violating reasons,
we have used the results of Boness et al.’s research (Table 2). As shown in Table
2, some measures have been proposed for assessing confidence regarding various

On Understanding the Relation of Knowledge and Confidence 215

dimensions of smells. It should be noted that these measures are not the complete
set, and more measures might be added by researchers.

2) Inability to make consistent and discriminative decisions is the symptom of a lack of
knowledge. It should be noted that experience is also a helpful factor for providing
some assumptions about someone’s knowledge, though it is not an accuratemeasure.
We thus judged these assumptions by analyzing the decisions by using the CWS ratio
[9, 10].

Table 2. Confidence factors (Inspired by [11])

Smell dimension
(Smell in)

Confidence
dimension

Measure (Confidence Factor) (ID-C#)

Requirement What Depth of Coverage: Confidence that the
requirements have been adequately scrutinized
in-depth (similar to refinement [11]) (ID-C1)

Breadth of Coverage: Confidence that the
requirements have been adequately scrutinized in
breadth (similar to engagement [11]) (ID-C2)

Correctness: Confidence that the requirements are
correct (ID-C3)

Achievability [11]: Confidence that the
requirements are achievable (ID-C4)

RE process How Depth of Coverage: Confidence that the RE process
has adequately covered the fine-grained RE tasks
(ID-C5)

Breadth of Coverage: Confidence that the RE
process has adequately covered the general RE
process (ID-C6)

Correctness: Confidence that the RE process has
been performed in the right way (ID-C7)

Time-dependent
conditions and
constraints

When Achievability: Confidence that the time-dependent
conditions are achievable [11] (ID-C8)

Assumption: Confidence that the time-dependent
constraints are sound [11] (ID-C9)

Accuracy: Confidence that the time-dependent
conditions are specified (ID-C16)

Place-dependent
conditions and
constraints

Where Achievability: Confidence that the place-dependent
conditions are achievable [11] (ID-C10)

Assumption: Confidence that the place-dependent
constraints are sound [11] (ID-C11)

Accuracy: Confidence that the place-dependent
conditions are specified (ID-17)

(continued)

216 R. Dehghani et al.

Table 2. (continued)

Smell dimension
(Smell in)

Confidence
dimension

Measure (Confidence Factor) (ID-C#)

Logic-dependent
conditions and
constraints

Why Achievability: Confidence that the logic-dependent
conditions are achievable [11] (ID-C12)

Assumption: Confidence that the logic-dependent
constraints are sound [11] (ID-C13)

Accuracy: Confidence that the logic-dependent
conditions are specified (ID-C18)

People-dependent
conditions and
constraints

Who Achievability: Confidence that the
people-dependent conditions are achievable [11]
(ID-C14)

Assumption: Confidence that the people-dependent
constraints are sound [11] (ID-C15)

Accuracy: Confidence that the people-dependent
conditions are specified (ID-C19)

Fig. 3. Model for confidence assessment (Derived from [17])

3 Research Methodology and Data Collection

Figure 4 presents the research steps followed in this work. First, we analyzed five SRS
documents prepared by graduate students at the Blekinge Institute of Technology (BTH)
in the course of their project work in Requirements Engineering and identified require-
ments smells in these documents. “The database should be reliable” is an example of
a vague sentence (requirements smell). Next, we analyzed the project grading crite-
ria to get aware of the requirements necessary for preparing the SRS documents and,
thus, could not be considered as smells. Next, we designed the questionnaires to ana-
lyze students’ knowledge and confidence, inspired by the Smith et al.’s four quadrants
based on the level of human knowledge and confidence [5]: “Ignorance” (low knowledge
and low confidence), “Doubt” (low confidence and high knowledge), “Mistakes” (high
confidence and low knowledge), and “Mastery” (high confidence and high knowledge).

On Understanding the Relation of Knowledge and Confidence 217

Fig. 4. Research steps

The questions were answered by students who have prepared the SRS documents.
Thus, the questionnaires encompass questions regarding certainty about specific smells
found in theSRSdocuments, and students’ abilities tomakediscriminative and consistent
decisions. Examples of the questions are provided at the end of the paper, in theAppendix
section. As an example, the students who have elicited the requirement about reliability
doubt about the criteria by which reliability would be assessed. It should be noted that
with the aim of alleviating the effect of environmental factors that might affect students’
responses, the professors assured the students that the responses would not affect the
grades.

Thus, as explained we have collected data in two steps:

1) Analyzing SRS documents: To find the smells, documents were analyzed by using
the measures provided in Table 1. The results revealed a list of specific smells within
each SRS document.

2) Analyzing knowledge and confidence: To assess students’ confidence and knowledge
regarding requirements, specific questions were designed for each group of students
who have prepared the SRS documents. An instance of the instrument (question-
naire) we have designed is provided in the appendix section of this paper. After
analyzing the data about students’ knowledge and confidence, we could categorize
the responseswithin the fourmentioned quadrants. Themethod for analyzing knowl-
edge and confidence is explained in the following paragraphs. First, we categorized
the students based on their knowledge, and thenwe categorized their responses based
on the response that shows the students’ certainty/uncertainty.

To warrant or refute our claim about students’ confidence, respondents were sug-
gested to apply some changes to their documents, and they could “Agree” or “Disagree”
with our suggestions. The changes were suggested in relation to the smells we have
found in the first step. As shown in Fig. 3, agreeing with applying the changes was

218 R. Dehghani et al.

considered as a reason for warranting our claim about the lack of confidence. On the
contrary, disagreeing with applying changes was a reason for rebutting our claim.

CWS ratio (Formula 1) was used [9, 10] for assessing the knowledge level. The
abbreviation “CWS” comes from the names of individuals who have proposed it. This
abbreviation “is used to establish that someone behaves more (high value) or less (low
value) as an expert” [9]. In other words, this metric claims that judgments made by
experts, in comparison with judgments made by novices, are more discriminating and
consistent. According to [9], as shown in Table 3, for diagnostic decisions, there is
a greater difference between decisions made by experts and novices, while for non-
diagnostic ones, decisions are more similar.

“CWS=Discrimination/Inconsistency” [9] (1)

Table 3. Difference between CWS ratios (Derived from [9])

Important
(Diagnostic)

Partially important
(partially-diagnostic)

Non-important
(non-diagnostic)

Experts A B C

Novices D E F

Difference between CWS ratio for experts and novices: A-D > B-E > C-F

We have calculated the discrimination and inconsistency factors, provided in For-
mula 1, as follows: 1) first, we have investigated the number of years that respondents
have experienced RE, and thus conducted a preliminary categorization regarding the
respondents’ expertise; 2) then, we have provided three categories of sentences, and
respondents were asked to categorize them within the following classes: “Diagnostic”
(important for eliciting the requirements), “Partially-diagnostic” (partially important for
eliciting the requirements), and “Non-diagnostic” (not important for eliciting the require-
ments); 3) after that, we have measured the “Inconsistency” metric by calculating the
“average of within-cell variances” (“low variance implies high consistency”) [9]; 4)
thereafter, the “Discrimination” metric was obtained by calculating mean square values
(“High variance implies high discrimination”) [9]; 5) after that, to calculate the CWS
ratio (Formula 1), the discriminationmetric was divided by the inconsistencymetric; and
6) finally, we have reassessed our judgments about respondents’ expertise by moving
the students within categorizations so that we could make sure that experts are better in
making consistent and discriminative decisions.

4 Results of Data Analysis

Eight groups of students (thirty-three individuals) participated in this study; however,
we had to ignore the responses provided by three groups because more than half of the
members of these groups did not fill in the questionnaires. The following paragraphs
respectively discuss the results of analyzing the data collected for finding the relation of
smells to confidence, knowledge, and both knowledge and confidence.

On Understanding the Relation of Knowledge and Confidence 219

1) Analyzing data about confidence: Table 4 provides an example of the responses we
have received to assess confidence; rows represent question numbers, and columns
represent respondent numbers. As shown, the changes suggested for four questions
were agreed upon by at least half of the group members. Table 5 shows the number
of respondents who agreed with making the changes suggested for each group; rows
represent question numbers, and columns represent group numbers. As shown, we
found that except for eight changes, all other ones were agreed to be applied by at
least half of the respondents. Thus, it is concluded that the students have confirmed
that they are not confident regarding the requirements smells we have found.

Table 4. Example of responses to questions for
assessing confidence (Group 1)

R1 R2 R3 R4 TNA

Q1 “0” “0” “1” “1” 2

Q2 “0” “0” “0” “0” 0

Q3 “1” “1” “1” “1” 4

Q4 “1” “1” “1” “1” 4

Q5 “1” “1” “0” “0” 2

Legend: “1” refers to agreeing
with applying the change, and
“0” refers to disagreeing with
applying the change
TNA stands for Total Number of
Agreements

Table 5. Number of respondents who
agreed with making the changes (Groups
1–5)

G1 G2 G3 G4 G5

Q1 2 5 6 5 6

Q2 0 4 5 3 3

Q3 4 1 4 4 5

Q4 4 4 3 5 5

Q5 2 4 5 5 4

Q6 3 5 4 4 3

Q7 1 5 4 3 4

Q8 4 5 6 5 6

Q9 3 5 6 4 5

Q10 3 3 5 5 5

Q11 1 3 3 3 4

Q12 2 2 5 3 4

Q13 4 1 6 3 4

Q14 1 3 3 3 2

Legend: Bold underlined
numbers indicate that less
than half of the respondents
agreedwithmaking the change

2) Analyzing data about knowledge: Table 6 provides the results of calculating the
CWS ratio. It should be noted that we have calculated this metric by using three
pre-classification methods as follows: 1) timespan of experience in academy envi-
ronments, 2) timespan of experience in non-academy environments, and 3) the total
timespan of experience in both academic and non-academic environments. What we
found was that for the third type of pre-classification, in comparison with the other
two pre-classification methods, the decisions made by experts and novices are more
clearly discriminated (as specified in Table 3).

220 R. Dehghani et al.

Table 6. CWS Ratio (Pre-classification was made based on the total timespan of experience in
both academic and non-academic environments)

Category Important
(Diagnostic)

Partially important
(Partially-Diagnostic)

Non-important
(Non-Diagnostic)

Group 1

Experts 4 0.25 0

Novices 0.8 0.13 0

Result: 4–0.8 > 0.25–0.13 > 0–0

Group 2

Experts 5 0.34 0

Novices 0.7 0.21 0

Result: 5–0.7 > 0.34–0.21 > 0–0

Group 3

Experts 2.5 0.45 0.1

Novices 0.4 0.10 0

Result: 2.5–0.4 > 0.45–0.10 > 0.1–0

Group 4

Experts 3 0.24 0.03

Novices 0.7 0.10 0

Result: 3–0.7 > 0.24–0.10 > 0.03–0

Group 5

Experts 4.3 0.38 0

Novices 0.6 0.19 0

Result: 4.3–0.6 > 0.38–0.19 > 0–0

3) Analyzing data about both knowledge and confidence: In total, 33 respondents have
specified their opinion regarding 14 smells. Thus, we have received 462 (33 multi-
plied by 14) responses regarding smells. Each of these responses falls into one of
the knowledge-confidence quadrants, based on the evaluation made regarding the
respondents. As shown in Fig. 5, the “Ignorance” quadrant encompasses the most
responses, which means that a combined lack of knowledge and confidence has the
most negative effect on requirements smells, and thus requirements quality.

Looking at the results, we draw attention to the following issues:

1) Uncertainty about requirements is an indicator of low-qualified requirements. Prac-
titioners can check requirements engineers’ confidence to find requirements that are

On Understanding the Relation of Knowledge and Confidence 221

Fig. 5. Number of responses in knowledge-confidence quadrants

potentially low-qualified. Besides, finding and classifying the reasons for uncertainty
is an area of research which is needed to be addressed by researchers.

2) Various requirements engineers might elicit different requirements for a unique
software system. This is due to the difference in their knowledge. The CWS ratio
helps find the differences. Project managers can use this metric to categorize the
employee and plan to improve their skills in RE. Besides, researchers should identify
the determinative decisions which should be consistent and discriminative.

3) Requirements quality is affected by a collection of factors. Not only the factors
but also their relations affect quality. Due to the interrelation between knowledge
and confidence, a lack of confidence simultaneously with a lack of knowledge
increases the probability of low quality. Researchers should explore such relations,
and practitioners should beware of the simultaneous effects of interrelated factors.

5 Conclusions and Future Work

In this research, we explored the relationship between knowledge and confidence, and
requirements quality. For this purpose, we have first analyzed five SRS documents devel-
oped by the students of Blekinge Institute of Technology. The analysis aimed to find the
low qualified requirements, which was done using a set of criteria named requirements
smells. In the next step, students’ knowledge and confidence were assessed by analyzing
their abilities to make discriminative, consistent, and certain decisions. Finally, we have
classified smells based on individuals’ knowledge and confidence. We found that most
smells fall into the class with a lack of confidence and knowledge.

Thus, requirements for smells might be considered as symptoms of a lack of knowl-
edge and/or confidence. Project managers can use this information (the relation between
requirements smells, knowledge, and confidence) to find the areas inwhich some training
mechanisms should be used to improve requirements engineers’ skills. As an example,
they might decide to hold some workshops to improve requirements engineers’ skills.
The training materials used within these workshops can be decided on this basis.

This research is novel mainly due to considering the interrelation between knowl-
edge and confidence, using a decision-based comparative method for analyzing knowl-
edge, and analyzing requirements quality based on specific symptoms for low quality.
However, conducting one experiment in one academic environment is not enough for

222 R. Dehghani et al.

approving the relations, and more cases should be investigated to approve the results in
general. We aim to further this research by conducting more experiments through which
we can collect more data.

Acknowledgement. We would like to acknowledge that this work was supported by the KKS
foundation through the S.E.R.T. Research Profile project at Blekinge Institute of Technology and
the SERL Lab.

Appendix

Someexamples of the questions thatwehave designed are provided herein. The questions
in the following three sections are respectively aimed at assessing confidence, analyzing
domain knowledge, and investigating knowledge in RE.

Section A: Imagine that a company manager has studied the SRS document that
you have prepared for this project, and you are invited to join a team to help develop
the system for which you have elicited the requirements. For the first step, the manager
provides the following claims about your document and asks you to address them. Please
indicate if you agree/disagree?

1) Regarding the following requirement,muchmore detail is required and still, it should
be refined. DL1: “The information shall be presented using HTML5.2 and CSS3
languages.” Agree � Disagree �

2) More detail about time-dependent conditions and constraints are required for these
requirements: PR5: “The web application shall offer the functionality of registration
in the web-app.”, and PR4: “The web application shall offer the functionality of
login in the web-app.” Agree � Disagree �

3) You are not sure about the appropriate time for verifying the requirements. Agree �
Disagree �

4) Policy and regulations have been provided. The effects of cultural elements should
also be discussed. Agree � Disagree �

5) You are not sure about the dependency between some requirements. For example,
it seems that some issues regarding the dependency between the following require-
ments are not explained: PR1: “The web application shall offer the functionality
of adding a new movie review.”, and PR2: “The web application shall offer the
functionality of rating a movie.” Agree � Disagree �

Section B: Please answer the following questions:

• How many industrial (non- academic) projects have you been engaged in to develop
a software system, the same as the system you have engineered requirements for (in
the role of a project manager, programmer, etc.)?

• Howmany academic projects have you been engaged in to develop a software system,
the same as the system you have engineered requirements for (in the role of a project
manager, programmer, etc.)?

On Understanding the Relation of Knowledge and Confidence 223

Please categorize the following issues as important, partially-important, and non-
important in selecting the most suitable requirements prioritization techniques.

• Type of requirement (functional/non-functional)
• Support for evaluating requirements
• Caring about requirements dependencies
• Support for coordinating various stakeholders’ requirements
• The number of requirements that should be prioritized

Section C: Please answer the following questions:

• Howmany industrial (non- academic) projects have you been engaged in for eliciting
requirements?

• How many academic projects have you been engaged in for eliciting requirements?

Please categorize the following issues as important, partially-important, and non-
important for selecting the most suitable requirements elicitation techniques.

• Complementary requirements elicitation techniques that are required to be applied.
• Number of requirements that would be elicited by the technique(s) chosen.
• People-dependent factors (such as culture).
• The time that it would take to elicit the requirements.

References

1. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Softw. 36(3), 83–91
(2018)

2. Aranda, A.M., Dieste, O., Juristo, N.: Effect of domain knowledge on elicitation effectiveness:
an internally replicated controlled experiment. IEEETrans. Softw.Eng.42(5), 427–451 (2015)

3. Hadar, I., Soffer, P., Kenzi, K.: The role of domain knowledge in requirements elicitation via
interviews: an exploratory study. Requirements Eng. 19(2), 143–159 (2012). https://doi.org/
10.1007/s00766-012-0163-2

4. Ayoub, A., Kim, B., Lee, I., Sokolsky, O.: A systematic approach to justifying sufficient
confidence in software safety arguments. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
2012. LNCS, vol. 7612, pp. 305–316. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33678-2_26

5. Smith, C.J., Adams, T.M., Engstrom, P.G., Cushman, M.J., Bruno, J.E.: U.S. Patent No.
8,165,518. Washington, DC: U.S. Patent and Trademark Office (2012)

6. ISO, IEC, IEEE. ISO/IEC/IEEE 29148:2011. https://standards.ieee.org/standard/29148-
2011.html. Accessed 06 Nov 2020

7. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with require-
ments smells. J. Syst. Softw. 123, 190–213 (2017)

8. Alavi, M., Leidner, D.E.: Knowledge management and knowledge management systems:
conceptual foundations and research issues. MIS Q. 25(1), 107–136 (2001)

9. Shanteau, J.,Weiss,D.J., Thomas,R.P., Pounds, J.C.: Performance-based assessment of exper-
tise: How to decide if someone is an expert or not. Eur. J. Oper. Res. 136(2), 253–263
(2002)

https://doi.org/10.1007/s00766-012-0163-2
https://doi.org/10.1007/978-3-642-33678-2_26
https://standards.ieee.org/standard/29148-2011.html

224 R. Dehghani et al.

10. Hemming, V., Burgman, M.A., Hanea, A.M., McBride, M.F., Wintle, B.C.: A practical guide
to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9(1), 169–180
(2018)

11. Boness, K., Finkelstein, A., Harrison, R.: A method for assessing confidence in requirements
analysis. Inf. Softw. Technol. 53(10), 1084–1096 (2011)

12. Alsanoosy, T., Spichkova, M., Harland, J.: Cultural influence on requirements engineering
activities: a systematic literature review and analysis. Requirements Eng. 25(3), 339–362
(2019). https://doi.org/10.1007/s00766-019-00326-9

13. Sharma, T., Spinellis, D.: A survey on software smells. J. Syst. Softw. 138, 158–173 (2018)
14. Beer, A., Junker, M., Femmer, H., Felderer, M.: Initial investigations on the influence of

requirement smells on test-case design. In: 25th IEEE InternationalRequirementsEngineering
Conference Workshops (REW), pp. 323–326. IEEE, Portugal (2017)

15. Bjarnason, E., Unterkalmsteiner, M., Borg, M., Engström, E.: A multi-case study of agile
requirements engineering and the use of test cases as requirements. Inf. Softw. Technol. 77,
61–79 (2016)

16. Mund, J.M.: Measurement-based quality assessment of requirements specifications for
software-intensive systems. Doctoral dissertation, Technische Universität München (2017).

17. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, UK (2003)

https://doi.org/10.1007/s00766-019-00326-9

Author Index

Abbas, Muhammad 3
Abdelrazek, Mohamed 54
Anacker, Harald 165
Astegher, Maurizio 182

Busetta, Paolo 182

Camilli, Matteo 123

Dehghani, Razieh 208
Drobotowicz, Karolina 99
Dumitrescu, Roman 165

Enoiu, Eduard Paul 3
EzzatiKarami, Mahtab 71

Felderer, Michael 123
Ferrari, Alessio 3, 191
Fischbach, Jannik 19
Frattini, Julian 19

Garlan, David 116
Giusti, Andrea 123
Gorschek, Tony 208
Greenyer, Joel 165
Grundy, John 54

Ibrahim, Amani 54

Kamsties, Erik 81
Kauppinen, Marjo 99, 133
Kneer, Fabian 81
Kujala, Sari 99
Kummeth, Maximilian 19

Lins, Fernando 149

Madhavji, Nazim H. 71
Matt, Dominik Tobias 123
Mendez, Daniel 19, 208

Osama, Mohamed 54

Perini, Anna 123, 182

Ramsin, Raman 208
Rebelo, Maria Eduarda 149
Russo, Barbara 123

Saadatmand, Mehrdad 3
Saarni, Kati 133
Schlutter, Aaron 37
Schmid, Klaus 81
Shatnawi, Anas 3
Spaans, Arjen 19
Susi, Angelo 123, 182

Unterkalmsteiner, Michael 19

Valença, George 149
Vilela, Jéssyka 191
Vogelsang, Andreas 19, 37

Wiecher, Carsten 165
Wnuk, Krzysztof 208
Wohlrab, Rebekka 116
Wolff, Carsten 165

Zaki-Ismail, Aya 54

	Preface
	Organization
	Keynotes
	Practicing (Whose?) Values: Requirements Engineering as a Catalyst for Technology Justice
	The Challenge(s) of Teaching Requirements Engineering
	What Makes Intelligent Visual Analytics Tools Really Intelligent?
	Contents
	Natural Language Processing and Machine Learning
	Is Requirements Similarity a Good Proxy for Software Similarity? An Empirical Investigation in Industry
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Study Context
	3.2 Objective and Research Questions
	3.3 Data Collection
	3.4 Language Models for Requirements Similarity
	3.5 Software Similarity Pipeline
	3.6 Execution
	3.7 Data Analysis

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Automatic Detection of Causality in Requirement Artifacts: The CiRA Approach
	1 Introduction
	2 Terminology
	3 Case Study: Causality in Requirement Documents
	3.1 Research Questions
	3.2 Study Objects
	3.3 Study Design
	3.4 Study Results
	3.5 Implications for Causality Detection and Extraction
	3.6 Threats to Validity

	4 Approach: Detecting Causal Requirements
	4.1 Methods
	4.2 Evaluation Procedure
	4.3 Experimental Results

	5 Related Work
	6 Conclusion and Next Steps
	References

	Improving Trace Link Recovery Using Semantic Relation Graphs and Spreading Activation
	1 Introduction
	2 Background
	2.1 Trace Link Recovery
	2.2 Knowledge Representation
	2.3 Existing Approach

	3 Datasets: Characteristics of Requirements
	4 Approach Revisions
	4.1 Knowledge Base Construction
	4.2 Semantic Search

	5 Evaluation
	5.1 Metrics
	5.2 Results for Datasets
	5.3 Limitations

	6 Discussion
	7 Conclusion
	References

	CORG: A Component-Oriented Synthetic Textual Requirements Generator
	1 Introduction
	2 Background
	3 CORG Formal Grammar
	4 CORG
	4.1 Content Determination
	4.2 Textual Structuring
	4.3 Sentence Aggregation
	4.4 Lexicalisation
	4.5 Realisation
	4.6 Requirements Checking

	5 Evaluation
	5.1 Generation Coverage
	5.2 Time Performance
	5.3 Diversity Evaluation
	5.4 Correctness Evaluation
	5.5 Realisticness Evaluation
	5.6 Strengths and Limitations

	6 Related Work
	7 Conclusion
	References

	Automatically Classifying Non-functional Requirements with Feature Extraction and Supervised Machine Learning Techniques: A Research Preview
	1 Introduction
	2 Related Work
	2.1 Analysis

	3 Research Investigation
	3.1 Datasets
	3.2 Research Methodology

	4 Preliminary Evaluation
	4.1 Preliminary Analysis
	4.2 Preliminary Validation

	5 Conclusion and Future Work
	References

	RE for AI-Enabled Systems
	AdaptationExplore – A Process for Elicitation, Negotiation, and Documentation of Adaptive Requirements
	1 Introduction
	2 Related Work
	3 Process Overview
	4 Running Example
	5 Initial Phase
	6 Exploration Phase
	6.1 Situation
	6.2 Identification of Situations
	6.3 Situation Analysis with Trigger Questions

	7 Integration Phase
	7.1 Situation Integration
	7.2 Adaptation Analysis and Documentation

	8 Discussion
	9 Pilot Study
	10 Conclusion
	References

	Trustworthy AI Services in the Public Sector: What Are Citizens Saying About It?
	1 Introduction
	2 Related Work
	3 Research Methods
	3.1 Overview of the Qualitative Study
	3.2 Study Participants
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	4.1 Transparency
	4.2 Purpose
	4.3 Data
	4.4 Core AI Process
	4.5 Human Involvement
	4.6 Service Overview

	5 Discussion
	5.1 Transparency
	5.2 Other Requirements
	5.3 Study Limitations

	6 Conclusions
	References

	Defining Utility Functions for Multi-stakeholder Self-adaptive Systems
	1 Introduction
	2 Proposed Approach
	3 Empirical Study
	4 Related Work
	5 Discussion, Conclusion, and Future Work
	References

	Risk-Driven Compliance Assurance for Collaborative AI Systems: A Vision Paper
	1 Introduction
	2 Illustrative Example
	3 Research Challenges
	4 Research Roadmap
	5 Conclusion
	References

	From Software to Systems and Services
	Requirements Engineering in the Planning Phase of a Software Ecosystem
	1 Introduction
	2 Related Work
	2.1 Overview of Software Ecosystems
	2.2 Requirements Engineering in Software Ecosystems

	3 Research Methods
	3.1 Research Question
	3.2 Description of Case SECO
	3.3 Research Process

	4 Results
	4.1 Overview of the Conceptualization Process of Digital Services
	4.2 High-Level Conceptualization of Digital Services
	4.3 Detailed Conceptualization of Digital Services
	4.4 RE Activities of the Conceptualization Process of Digital Services
	4.5 Challenges in the Conceptualization Process

	5 Discussion
	5.1 Requirement Engineering in the Planning Phase of a Software Ecosystem
	5.2 Threats to Validity

	6 Conclusions
	References

	Power and Privacy in Software Ecosystems: A Study on Data Breach Impact on Tech Giants
	1 Introduction
	2 Theoretical Foundation
	2.1 Software Ecosystems
	2.2 Power

	3 Research Method
	4 Results
	4.1 Case 1 – YouTube (Google Ecosystem)
	4.2 Case 2 – Alexa (Amazon Ecosystem)
	4.3 Case 3 – Instagram (Facebook Ecosystem)
	4.4 Case 4 – Siri (Apple Ecosystem)

	5 Discussion and Conclusion
	5.1 Implications for Research and Practice
	5.2 Threats to Validity
	5.3 Related Work
	5.4 Future Work

	References

	Iterative and Scenario-Based Requirements Specification in a System of Systems Context
	1 Introduction
	2 Background
	2.1 System of Systems Engineering (SoSE)
	2.2 Example of Application
	2.3 Scenario Modeling Language for Kotlin (SMLK)

	3 Scenario-Based Requirements Specification in a System of Systems Context
	3.1 Inter-system Scenarios
	3.2 Intra-system Scenarios
	3.3 Specification Method

	4 Proof of Concept
	5 Related Work
	6 Summary and Outlook
	References

	Specifying Requirements for Data Collection and Analysis in Data-Driven RE. A Research Preview
	1 Introduction
	2 Background and Related Work
	3 Case Study
	4 User Feedback Requirements and Related Tasks
	5 Conclusion
	References

	Analysts' Competence and Training
	SaPeer Approach for Training Requirements Analysts: An Application Tailored to a Low-resource Context
	1 Introduction
	2 Related Work and Background
	3 Tailored SaPeer
	3.1 The SaPeer Approach
	3.2 Rationale for Tailoring the SaPeer Approach
	3.3 The Tailored SaPeer Approach

	4 Research Design
	4.1 Research Questions
	4.2 Data Collection and Analysis Procedures
	4.3 Threats to Validity

	5 Results
	6 Conclusions and Further Research
	References

	On Understanding the Relation of Knowledge and Confidence to Requirements Quality
	1 Introduction
	2 Background and Related Work
	3 Research Methodology and Data Collection
	4 Results of Data Analysis
	5 Conclusions and Future Work
	Appendix
	References

	Author Index

