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Abstract Deep learning approaches for diffusion MRI have so far focused primar-
ily on voxel-based segmentation of lesions or white-matter fiber tracts. A drawback
of representing tracts as volumetric labels, rather than sets of streamlines, is that it
precludes point-wise analyses of microstructural or geometric features along a tract.
Traditional tractography pipelines, which do allow such analyses, can benefit from
detailed whole-brain segmentations to guide tract reconstruction. Here, we intro-
duce fast, deep learning-based segmentation of 170 anatomical regions directly on
diffusion-weighted MR images, removing the dependency of conventional segmen-
tation methods on T1-weighted images and slow pre-processing pipelines. Working
natively in diffusion space avoids non-linear distortions and registration errors across
modalities, as well as interpolation artifacts. We demonstrate consistent segmenta-
tion results between 0.70 and 0.87 Dice depending on the tissue type. We investigate
various combinations of diffusion-derived inputs and show generalization across dif-
ferent numbers of gradient directions. Finally, integrating our approach to provide
anatomical priors for tractography pipelines, such as TRACULA, removes hours
of pre-processing time and permits processing even in the absence of high-quality
T1-weighted scans, without degrading the quality of the resulting tract estimates.
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1 Introduction

Tractography has significantly advanced clinical applications [5, 6, 25] and has
enabled neuroscientists to studydevelopmental and pathological effects on the human
connectome [14]. Traditional tractography pipelines often use anatomical segmenta-
tions to obtain priors for reconstructing tracts from diffusion-weightedMRI (dMRI).
This introduces a dependency on T1-weighted (T1w) images, which are required
for anatomical segmentation by neuroimaging suites such as FreeSurfer [9]. For
dMRI microstructural analyses, accurate segmentations of the grey/white matter
(GM/WM) boundary are particularly important as different biophysical models have
been proposed for each tissue type [22]. However, segmenting in T1w, rather than
diffusion image space is problematic due to non-linear distortions between modal-
ities, as well as potential registration inaccuracies and interpolation artifacts when
mapping segmentation labels from anatomical to diffusion image space. Further-
more, enabled by acquisitions with high angular resolution and multiple b-values,
dMRI-derived cytoarchitectonic boundaries may in the future complement or super-
sede T1w-derived segmentations for morphometric analyses. Addressing this need
for fast, accurate, dMRI-based segmentation, we present a framework for segmenting
170 GM, WM, and subcortical regions in native diffusion space, without requiring
high-quality T1w images.

Methods such as SLANT and FastSurfer [11, 12] introduce deep learning for neu-
romorphometry, yet still rely on T1w images. Traditional [13, 30, 31, 35] and deep
learning-based [15, 19] methods extend segmentation to diffusion-weighted images
(DWIs) for various acquisition protocols and dMRI representations. Applications
of segmentation based on the inherently multi-channel dMRI signals include whole-
brain GM/WM/Cerebrospinal fluid [31, 35],WM regions [19, 30], nuclei (cerebellar
[15] and thalamic [13]), organs [3, 8, 26, 39], tumors [28] and stroke lesions [4, 20].
As an alternative approach to traditional tractography, neural networks can directly
segmentWM tracts based on dMRI [16, 17, 21, 23] or diffusion orientations [32, 33,
37, 38], from clinical [21] or high-quality [32] datasets. Unfortunately, segmenting
WM tracts as volumetric labels does not provide an along-the-tract parameterization
which is useful for point-wise analyses of microstructural and geometric features
of the tracts. In contrast to direct, volumetric tract segmentation approaches, the
present work aims to provide the information that guides traditional tractography
methods. No work to date has addressed whole-brain segmentation, including sub-
cortical structures, cortical regions, and WM regions underlying the cortex, directly
from DWIs.

Here,we introduce deep learning-based segmentation of 170 distinct regions (cor-
tical, subcortical, and WM) from DWIs (see Fig. 1). Thus, we provide a fast, deep
learning alternative for a critical step in dMRI pre-processing streams, which can
facilitate the use of classical tractographymethods, without limiting their outputs and
subsequent analysis options. Basing segmentations purely on dMRI data removes the
dependency on high-quality T1w images, the potentially error-prone, cross-modal
co-registration and interpolation, and avoids confounding non-linearities between
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Fig. 1 Whole-brain segmentation of 170 regions (cortical, sub-cortical and white matter) directly
from diffusion MRI (left), and probabilistic white matter tracts generated by TRACULA based on
anatomical priors from dMRI-based segmentations (right)

anatomical and diffusion spaces. To develop effective segmentation of dMRI data,
we compile a dataset of DWIs and reference segmentations generating the latter by
mapping FreeSurfer segmentations [9] to diffusion space. We adopt the anatomy-
targeted FastSurfer architecture [11], which already supports the segmentation of a
large number of regions. Moreover, expanding on the work of Li et al. [17] for WM
tract segmentation, we explore suitable dMRI data representations for learning-based
segmentation. We compare inputs consisting of images without diffusion-weighting,
diffusion tensor components, or DWIs and vary the number of DWIs from which
tensors are generated.

When compared against FreeSurfer, our method achieves performance compara-
ble to the state-of-the-art at orders of magnitude faster processing times. As a use
case, we integrate dMRI-based segmentations into the tractography package TRAC-
ULA (TRActs Constrained by UnderLying Anatomy) [36], which performs global
probabilistic tractography with anatomical priors. Differences of TRACULA tracts
based on deep learning versus traditional anatomical initialization (see Fig. 4) are in
the order of previously reported differences between automated TRACULA recon-
structions and manual labels while reducing the TRACULA pre-processing run-time
by 4h. With our approach, the segmentation of 170 regions in dMRI space can be
achieved in 32s on a GPU.

2 Materials and Methods

The tract posterior probabilities computed by TRACULA involve anatomical priors
that are calculated from an anatomical segmentation. We perform this segmentation
directly in diffusion space and remove the requirement for T1w images by replac-
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ing the corresponding component of the TRACULA pipeline with a deep learning
network.

2.1 Data

Diffusion MRI Data

We use pre-processed DWIs from the WU-Minn Human Connectome Project
(HCP) [7, 18, 24, 27, 29, 34], which are already corrected for eddy-currents and sub-
ject motion. These images are acquired with a 3-shell protocol at b-values of 1000,
2000, and 3000s/mm2. Each shell is composed of 90 diffusion-encoding gradient
directions, approximately uniformly distributed on the sphere. In addition, 18 images
without diffusion-weighting are interleaved with the DWIs. For training, validation,
and test, we create gender-balanced non-intersecting subsets of 250, 50, and 100
subjects, respectively.

Segmentation Labels

Anatomical segmentations of T1-weighted images of the same subjects are obtained
with FreeSurfer 6.0 [9]. We project cortical parcellations from the surface mod-
els up to 2mm deep into the WM, as required by TRACULA. The registration to
the diffusion space is performed with the boundary-based rigid registration method
bbregister [10].

2.2 Data Representations

Since q-space sampling schemes may comprise anywhere from six to several hun-
dred measurements, a general segmentation approach should be independent of the
exact choice of diffusion-encoding directions and b-values. Instead, a suitable rep-
resentation has to abstract from acquisition details yet contain sufficient relevant
information. A parsimonious model that is often fitted to DWIs acquired on shells
is the diffusion tensor [1], which models local diffusion as a single (uni-modal)
Gaussian distribution. The symmetric 3 × 3 diffusion tensor can be understood as
a condensed summary of the local diffusion behavior at a given voxel and can be
reconstructed from any q-shell acquisition scheme that includes at least 6 directions.
To explore how the number of DWIs used to fit the tensor affects its performance
for the segmentation task, we extract multiple subsets of gradient directions on the
same shell (approximately uniformly distributed). For each of these subsets, the dif-
fusion tensor is fitted to the data with FSL’s dtifit function and the six unique tensor
components are stacked and used as input.
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2.3 Architecture

FastSurferCNN [11] is a U-Net-based neuroimage segmentation network validated
extensively on anatomical MRI datasets. Three fully convolutional networks are
trained independently on axial, coronal, and sagittal slices of MR images. The pre-
dictions from the three views are then combined into the final prediction volume by
means of aweighted average (view-aggregation). The network uses skip-connections
between encoder- and decoder-blocks. In the decoder-blocks, information from the
previous decoder-block and the corresponding encoder-block are combined. Instead
of simply concatenating these feature maps, FastSurferCNN employs competitive
dense blocks to reduce the number of parameters. Competitive dense blocks rely on
max-out activations to encourage the network to learn which parts of the provided
feature maps are relevant for the segmentation task.

All networks are trained with a combined loss-function containing a median fre-
quency balanced logistic loss with edge-focus and a Dice loss:

L = −
∑

x

ω(x)gc(x)log(pc(x))

︸ ︷︷ ︸
Logistic Loss

− 2
∑

x pc(x)gc(x)∑
x p

2
c (x) + ∑

x g
2
c (x)︸ ︷︷ ︸

Dice Loss

with ω(x) = ωF (x) + ωE (x), median frequency balanced weights ωF (x), edge-
weightingωE (x) at voxel x , references g, prediction p and class c. In order to provide
3D spatial context, FastSurferCNN’s input consists not only of the slice of interest
but also a sequence of neighboring slices.

2.4 Training

We train all networks with an initial learning rate of 0.01, which is reduced every 10
epochs (multiplied by 0.2). Early stopping is applied when the loss on the validation
set does not improve for 15 epochs.

2.5 Tracts

To calculate priors for tractography, TRACULAneeds registrations between anatom-
ical, diffusion and MNI spaces. Since we provide the segmentation natively in diffu-
sion space, a registration to anatomical T1w space is obsolete and a single registration
from diffusion toMNI space suffices. This mapping can easily be establishedwithout
a T1w image, yet the two different registration-methods (one includes the anatomi-
cal image whereas the other does not) introduce an additional variance that prevents
a consistent evaluation of tract similarity. We, therefore, re-use the mapping from
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diffusion to MNI space that was established to generate the reference tracts. Further-
more, to mitigate artifacts from nearest-neighbor interpolation to large voxel sizes,
we instead predict and map probability distributions over classes (soft-labels) via
tri-linear interpolation, taking the argmax over classes in the target space.

2.6 Evaluation Criteria

Segmentation Quality

We measure the similarity of the segmentation resulting from our method and the
segmentation of FreeSurfer mapped to diffusion space, with two evaluation criteria.

The Dice score Dc for region c measures the relative overlap between the binary
labels of the prediction Pc = {pic | i = 1, . . . , N } and the reference Rc = {ric | i =
1, . . . , N } segmentation:

Dc(P, R) = 2
∑N

i=1 picric∑N
i=1 pic + ∑N

i=1 ric
.

The voxel-basedmeanHausdorff distanceHc for region cmeasures the difference
between prediction Pc and reference labels Rc via

Hc(P, R) = 1

|Rc|
∑

r∈Rc

min
p∈Pc

||p − r ||2 + 1

|Pc|
∑

p∈Pc

min
r∈Rc

||p − r ||2.

Tractography

Similarly to the segmentation case, we quantify the similarity between pairs of
tracts reconstructed with anatomical priors from either segmentation via voxel-based
mean Hausdorff distance. Since TRACULA relies on a Markov-Chain Monte-Carlo
method, two different sets of tracts are not per se comparable. Thus, in accordance
with previous tract evaluations [36, 40], we threshold the tracts at 20% of their
maximum intensity.

3 Results and Discussion

To determine the impact on segmentation quality, we evaluate networks with respect
to different data subsets and input representations, keeping the network architecture
(e.g. number of filters) fixed.
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Fig. 2 Ablation of neural network input in comparison to FreeSurfer reference segmentation.
Evaluation 1: Q-Space Sampling Density (top group of blue bars): 1. Only b = 0 image,
2.–5. b = 0 + diffusion tensors fitted with varying sampling density (2.–4. only on the first shell
with b = 1000 s/mm2, 5. on three shells); Evaluation 2: dMRI data representation (bottom group
of green bars) of a fixed set of 30 DWIs on the first shell: b = 0 plus 6. an FA map, 7. the diffusion
tensor, and 8. DWIs directly

3.1 Evaluation 1: Q-Space Sampling Density

When q-space is sampled more densely, we expect the diffusion tensor to be more
accurate due to the improved signal-to-noise ratio (SNR). To explore how differ-
ent single-shell q-space samplings influence the segmentation quality, we compare
FreeSurfer segmentations against our network’s prediction for several scenarios
which are displayed in Fig. 2.

TheDice score seems to correlatewith the compactness of the shape of anatomical
regions. Scores are high for sub-cortical regions, where shapes feature large volume-
to-surface ratios, lower in the folded cortical areas, and lowest for the thin cortical
projections into the WM. The slim, 2mm projection on a coarse voxel grid with
1.25mm isotropic size could be another reason for the smaller Dice scores in WM
regions. In fact, the ratio of voxels on the region boundary is significantly higher for
white matter regions compared to cortical regions. The Hausdorff distances paint a
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very similar picture in terms of ranking methods while they are more consistent than
Dice scores across WM- and cortical regions.

As expected, the segmentation quality increases when the diffusion tensor is fit-
ted with more DWIs (1.–5.). The segmentation based solely on the image without
diffusion-weighting (b = 0) provides a strong baseline, potentially due to the higher
SNR at b = 0. Yet, the inclusion of additional diffusion information increases seg-
mentation performance further.

3.2 Evaluation 2: Input Representations

Wealso assess the effect of different input data on the segmentation quality (see Fig. 2,
second, green bar group: 6.–8.). Fractional Anisotropy (FA)measures the coherence
of water diffusion in a voxel and is frequently used in tract-based analyses. Since FA
is a scalar measure computed from the eigenvalues of the tensor, it only contains a
subset of the tensor information. As a result, the performance is worse with FA (6.)
than with the full tensor (7.). More broadly, the diffusion tensor is a simple model
that fails to accurately describe water diffusion in full detail. Thus, it is not surprising
that a segmentation directly based on the DWIs (8.) yields better results than one
based on the diffusion tensor. However, for the task of segmentation, the diffusion
tensor seems to capture most of the relevant information present in the DWIs.

3.3 Evaluation 3: Generalization

In the previous evaluation, networks were trained separately for each set of inputs.
This evaluation explores how a network trained on tensor components based on n
DWIs performs when it is evaluated on tensor components based on m DWIs (with
n �= m). This kind of generalizability is a critical property when accommodating
data with a variety of acquisition details at test time. Notably, while neither network
generalizes perfectly to the different input format, the stable results (Fig. 3) suggest
that generalizability can be asserted to a large extent.

3.4 Evaluation 4: Tract Similarity

Finally, we assess the stability of WM tract generation when switching from tradi-
tional T1w image segmentation to our dMRI-based, deep learning approach: For a
gender-balanced subset of 20 subjects from theHCP,we reconstruct 18 differentWM
tracts with TRACULA, using either the proposed, dMRI-based segmentations or the
FreeSurfer T1w-based segmentations (see Fig. 4). The deviation is within the margin
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Fig. 3 Network generalization when tensors are fitted with differently many DWIs

of the deviation of TRACULA’s tracts frommanually-annotated bundles [36], which
is around 2mm for most tracts.

We time both applications on five representative cases (Evaluation 1 and 4). Our
method takes 32 s for the anatomical segmentation in diffusion space compared to
4h with FreeSurfer (parallelization of hemispheres and 4 threads, 7h sequentially).
For the tractography pipeline, our work accelerates the total run time from 283 to
56min.

4 Conclusion

Our work presents and analyzes the application of deep learning for anatomical seg-
mentation directly on DWIs. Applied to probabilistic tractography with anatomical
priors, our method enables processing without the requirement of T1w images and
thus avoids errors from non-linear distortions, registration inaccuracies, or interpo-
lation artifacts. As a consequence, dMRI-based anatomical segmentation achieves
results similar to corresponding state-of-the-art T1w-based segmentation and speeds
up pre-processing in the TRACULA pipeline by hours. Accelerating heavy process-
ing pipelines is essential especially for large cohort studies such as HCP [29] or the
Rhineland study [2], where large diffusion datasets from thousands of participants
require efficient methods.
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Fig. 4 Similarity of tracts based on DWI segmentations versus FreeSurfer’s segmenta-
tion. L.=Left, R.=Right, sup.= superior, ant.=anterior, inf.= inferior, TE= temporal endings,
PE=parietal endings

Furthermore, we analyze how the choice of input images for the neural network
affects segmentation performance. We confirm that segmentation quality increases
as more q-space samples are included when fitting diffusion tensors—likely due to
increased SNR. Skipping the tensor fit and directly learning from DWIs increases
segmentation performance further. However, simply increasing q-space samples is
not an option due to memory limitations and reliance on the availability of the same
set of q-space samples for future input cases. Tensor-based inputs, on the other hand,
provide a widely applicable alternative [17] and yield results that remain relatively
stable and close to the direct DWI performance. In our opinion, tensors fitted to 30
DWIs, a number that is feasible in clinical studies, offer a good balance. Future work
will explore diffusion models other than the tensor as segmentation inputs and assess
generalizability across a large variety of different dMRI datasets.

While we illustrate the use of our deep learning-based segmentation in a pipeline
for probabilistic tractography with anatomical priors, it can be useful in a wide
range of other applications. These include improvedWM/GMand pallidum-putamen
segmentation, seed-based tractography, network analysis, or ROI-based analysis of
microstructural measures, to name a few.
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