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Abstract Brain age inferred from neuroimaging data could reveal important infor-
mation about the evolution of structural and functional cerebral features across the
life span. This has important implications for understanding healthy aging and for
identifying Imaging-Derived Phenotypes (IDPs) that characterise age-related neu-
rodegenerative illnesses, such as Alzheimer’s and Parkinson’s disease. The so-called
brain age delta refers to the difference between image-derived brain age and chrono-
logical age. Accelerated aging (positive delta) or resilience to aging (negative delta)
have been found to be useful correlates of factors such as disease and cognitive
decline. Multiple studies have proposed prediction models using brain IDPs as pre-
dictor variables, mostly relying on simple linear regression. However, methodolog-
ical and population heterogeneity in these studies precludes definitive conclusions
regarding the most informative modelling methodologies or predictor IDPs. To pro-
vide first hints in this respect, in this paper we propose to address three questions.
First, four different state-of-the-art models are ranked based on well-known perfor-
mance indices (e.g., mean absolute error) using the UK Biobank brain MRI data
in different single/multi-modal settings. Second, for the best model, the association
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with individual IDPs are calculated to identify those that could play a prominent role
in the aging process. Third, associations with non-brain variables are assessed as
a first step towards a holistic approach. Our findings demonstrate a prominent role
for dMRI IDPs in reducing the mean absolute error and rank high in the association
study, dominating the first ten positions and being preceded only by three structural
measures that are known to be related to the aging process. This provides evidence
of the potential of dMRI IDPs as biomarkers of aging in health and disease.

1 Introduction

Neuroimaging data have been extensively used to assess brain changes during aging,
under both healthy and disease conditions.Moreover, they can be exploited to predict
“brain age” which is the apparent biological age of an individual and depends on
several endogenous (subject-specific) as well as exogenous (environmental) factors.
Metrics derived from various brain magnetic resonance imaging (MRI) sequences
have been adopted to estimate brain age, either using raw data or handcrafted fea-
tures. Brain age delta (or relative brain age) is calculated by subtracting chronological
age from the estimated one. While a younger-appearing brain might be the result of
a healthy life style [1], having an older-appearing brain has been previously asso-
ciated with poor future outcomes [2] and with an increased likelihood to develop
neurodegenerative illnesses such as Alzheimer’s [3].

Statistical models for brain age estimation have been proven to be highly accu-
rate, with prediction performance featuring high R2 values and low mean absolute
error (MAE) in the range of 4–5 years [2]. Most of the studies have investigated this
aspect with features derived from a single brain MRI technique, most commonly,
conventional T1-weighted structural images (sMRI). Morphometric measures from
sMRI, such as volume and thickness of grey matter (GM) structures, should not
be overlooked as they provide information on the individual degree of brain atro-
phy that encodes aging-induced degeneration [4]. However, more recently, diffusion
MRI (dMRI), susceptibility weighted imaging (SWI), and resting-state fMRI have
been explored for potentially providing a richer set of IDPs bringing complementary
information [2, 5]. Thus, consideration of IDPs derived from multiple brain MRI
sequences would be the most desirable approach allowing deeper phenotyping and
more complete capturing of the different factors shaping the aging process.

Regarding modeling approaches, the performance accuracy depends on the statis-
tical method utilised, as demonstrated by several authors. In a recent paper, Jonsson
and colleagues (2019) applied deep learning as well as eight different regression
methods to sMRI-based features extracted from three well-known databases, show-
ing notable differences in the performance parameters across the differentmodels [3].
Niu et al. [1] report similar variation in model performance in their study of brain age
estimation with four regression models using several neuroimaging variables (sMRI,
dMRI, and resting-state fMRI) in healthy controls and patients with anxiety disor-



Multi-modal Brain Age Estimation: A Comparative Study Confirms … 241

ders. In addition, the authors showed the potential for superior prediction accuracy
with a multi-modal versus single-modal approach.

The recent availability of large imaging databases has provided new opportunities
to exploit the importance of a multi-modal approach for brain age prediction. In
this context, the UK Biobank (UKB) represents an important resource thanks to
its comprehensive repository with genetic and phenotypic data for 500000 subjects
aged between 40 and 69 (at recruitment). The UKB imaging study includes detailed
MRI, providing high quality multi-modal neuroimaging data including sMRI, dMRI,
SWI and fMRI [6]. These data are linked to detailed clinical, biological and lifestyle
information. The availability of such a rich research resource has motivated many
researchers to focus on brain age estimation with promising results [2, 3, 5, 7].

Smith et al. [5] estimated brain age using simulated and real data by applying
simple linear regression. With regard to real data, 2641 IDPs covering sMRI, fMRI
and dMRI were used for 19000 participants. The results, among others, attained
MAE = 3.6 years.

In [2], phenotypes from six differentMRImodalitieswere chosen to estimate brain
age for 17461 subjects, running a Least Absolute Shrinkage and Selection Operator
(LASSO) regression for each modality (MAE range = 3.897–5.928 years, where
minimum e maximum were found for dMRI and task fMRI, respectively). When all
the IDPs were combined, age was more accurately predicted (MAE = 3.515 years).
Thirty-four IDPs were deemed informative for the prediction of the brain age after
bootstrapping, and were predominantly from sMRI and dMRI.

Ning et al. [7] aimed to assessing the correlation between brain age delta and
alcohol intake, smoking and genetic variations. To this end, 403 morphometric mea-
surements from sMRIwere chosen alongwith LASSO regression (MAE=3.8 years).
A significant association between brain age delta and the consumption of alcohol
and smoking could be demonstrated.

Finally in [3], sMRI data for 12395 subjects were used to estimate brain age using
transfer learning and 3-D Convolutional Neural Network (CNN). In this study, two
sequence variants were identified having a strong relation with the brain age delta.
The MAE of the model was 3.63 years.

The great variability in the number of subjects, IDPs, MRI modalities and sta-
tistical models precludes a straightforward comparison of all the studies. However,
existing work suggests that: (i) sMRI provides relevant IDPs for estimation of brain
age; (ii) dMRI-based phenotypes are similarly informative and need to be further
investigated; and (iii) a multi-modal approach can improve, in general, the esti-
mation accuracy. To the best of our knowledge, a systematic comparison among
different statistical methods has not been addressed in existing literature. Therefore,
in this paper we compared four regression methods in combination with different
IDPs for brain age prediction, aiming at providing a balanced comparison across
different single-modal and multi-modal approaches. In particular, we focused on
Simple Linear Regression (SLR), LASSO, Support Vector Regression (SVR) and
Bayesian Ridge Regression (BRR), while the handcrafted features were derived
from sMRI, dMRI and SWI with a clear numeric prevalence of dMRI. Model perfor-
mance was assessed using several parameters including MAE, R2 and adjusted R2.
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Moreover, the associations between individual IDPs and brain age delta values were
calculated for the best model. Finally, the association between brain age delta with
selected biomedical and behavioral features was extracted to assess potential clini-
cal/biological utility.

2 Data and Materials

Data were obtained from UKB. All the analyses here performed rely on the IDPs
extracted centrally by researchers involved in the project [8]. Data were available
from n = 16394 participants (age range = 40–70 years, n = 8652 females, n = 7742
males). This comprised a set of 714 IDPs for each subject, representing the summary
metrics for sMRI, SWI and dMRI. From sMRI images, morphometric measures of
brain volumes were reported as distinct IDPs, both normalised/not normalised for
overall head size, in details: total brain volume (GM +white matter [WM]); volumes
for WM, GM and cerebrospinal fluid (separately for each compartment); volume
of peripheral cortical GM. Volume measures for subcortical structures were also
calculated as further IDPs (e.g., thalamus, putamen, hippocampus), generally sepa-
rated for left/right hemispheres and not normalised for head size. From SWI data,
a T2* image was used and the median T2* value estimated as a separate IDP for
each subcortical ROI identified from sMRI. Finally, several spatially-specific IDPs
were extracted from dMRI data by following two different approaches. Indeed, nine
dMRI-based indices derived from i) the diffusion tensor imaging (DTI), such as
fractional anisotropy (FA) and mean diffusivity (MD), and ii) the neurite orienta-
tion dispersion and density imaging (NODDI) model, such as orientation dispersion
(OD) and isotropic volume fraction (ISOVF), were calculated and averaged over
specific areas/tracts. In the first approach, dMRI maps were aligned to a population-
basedWM tract skeleton and all the DTI/NODDImeasures averaged over 48 regions
defined using the Johns Hopkins University tract atlas [9]. In the second, probabilis-
tic tractography was run for each subject and all the dMRI-based measures averaged
within 27 distinct WM tracts. The final set of neuroimaging phenotypes included 25
IDPs from sMRI, 14 from SWI and 675 from dMRI. Full details on the acquisition
protocols and image processing pipelines for the UKB brain data are available at
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

The present analyses were conducted under data application number 2964. All
participants provided formal consent, details on the UKB Ethics can be found at
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council.

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council
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3 Methods

3.1 Brain Age Estimation

Four different regression methods including LASSO [10], SLR [11], SVR [12] and
BRR [13] were used to estimate the apparent brain age, all having chronological age
as the dependent variable. All thesemodelswere implemented using Scikit-learn [14]
library version 0.22.2 in Python 3.6.9.

In order to examine the impact of different imaging modalities, each of the four
methods was run with single-modal and multi-modal brain IDPs, leading to seven
different combinations per method. All the imaging features (independent variables)
were normalized to zero mean and unit variance to account for the different mea-
surement scales, while the actual age was demeaned only [5]. Gender and education
were considered as confound variables and regressed out of all IDPs as in [6, 15].
Data were randomly split into training (80%, n = 13115) and testing (20%, n = 3279)
sets, respectively. The test set was used to predict brain ages on unseen data.

Hyper-parameters for BRR, LASSO and SVR were tuned on the training data
(further split on 80% for training and 20% for validation) with GridSearchCV and the
optimal model was retained. After the parameters were optimized from training data,
the optimalmodelwas applied to estimate brain age in the test set. The performance of
each model was assessed using the Coefficient of Determination (R2) and the MAE.
Adjusted R2 was also calculated to account for the different number of predictors in
each model.

Recent literature has demonstrated a proportional bias in brain age calculation,
which might be caused by dilution bias of the prediction model [16, 17]. Moreover,
this bias is also closely connected to the fact that brain age is overestimated in younger
subjects and underestimated in older ones, while is more accurately predicted for par-
ticipants whose actual ages are closer to the mean age of the training dataset [2, 5].
All these elements lead to a significant dependence of the brain age delta on chrono-
logical age, which resulted to be negatively correlated. Therefore, common practice
is to apply a statistical age-bias correction procedure to overcome these limitations
[5, 16] In this study, we adopted the procedure proposed by Beheshti et al. [16] that
relies on a linear model given by the following equation:

D = α ∗ Ω + β (1)

where D is the brain age delta (estimated from training data), Ω is the chronological
age of the training data, α and β represent the slope and the intercept. These two
measures are subsequently used to correct the brain age predictions in the test set as
described in Eq. 2:

CPBA = Predicted Brain Age − (α ∗ Ω + β) (2)

where CPBA stands for corrected predicted brain age.
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After brain age was estimated and bias corrected in the test set, brain age delta
was calculated for each subject. Pearson correlations for predicted brain age vs actual
age (CPA) and brain age delta vs actual age (CBDA) were calculated twice for each
model, before and after bias correction.

3.2 Associations with IDPs and Non-IDP Variables

For the best model results, Pearson correlations between brain age delta values and
individual IDPs were calculated in order to identify the strongest associations, high-
lighting the features which contribute most to the modelling of the brain delta as
suggested in [5]. The resulting p-values were Bonferroni-corrected for multiple com-
parison testing. Of note, the fully deconfounded versions of the IDPswere used in this
step (including gender, education and age as confounds). As several studies demon-
strated a significant association between brain and heart functionality, especially
relying on brain volumetric measurements [18, 19], we also investigated whether
a correlation between brain age delta and heart measures was present. In order to
perform this analysis, five measures from Cardiac Magnetic Resonance (CMR) and
eight Cardiovascular Risk Factors (CRFs) were considered. The correlation analysis
was performed on a subgroup of the test set (n = 2730), as these measures were not
available for all the test set subjects. CMR scans were performed on 1.5 T scanners
using a standardised acquisition protocol [20]. The following indices derived for
the left ventricle were retained: end-diastolic volume (LVEDV), end-systolic vol-
ume (LVESV), stroke volume (LVSV), mass (LVM), and ejection fraction (LVEF).
Eight CRFs were also tested, covering biomedical and lifestyle measures: smoking
status, material deprivation, body mass index, alcohol intake frequency, physical
activity, diabetes diagnosis, presence of hypertension and high cholesterol. Smoking
status and alcohol intake frequency were based on self-reports. Material deprivation
was reported by UKB as the Townsend deprivation index. A continuous value for
the amount of physical activity, measured in metabolic equivalent minutes/week,
was calculated. Body mass index was derived from height and weight measures
recorded at the baseline. Diabetes, hypertension, and hypercholesterolaemia were
defined by cross-checking across self-report and blood biochemistry data. All the
cardiac variables were initially normalized to zero mean and unit variance, and the
main potential confounds (gender and age) regressed out from the data. Pearson
correlation was finally computed between each of these measures and brain age
delta values derived from the twenty-eight model combinations, and the results were
Bonferroni-corrected to account for multiple comparison problems.
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Table 1 Prediction performance of the four regression methods combined with different imaging
features. Results are reported in terms of MAE values (years), and the optimal one for each IDPs
combination is highlighted in bold

Mean absolute error

IDPs Number of
features

BRR SVM SLR LASSO

sMRI 25 4.509 4.471 4.506 4.509

SWI 14 6.026 6.0411 6.024 6.025

dMRI 675 3.733 3.758 3.761 3.738

sMRI+SWI 39 4.429 4.393 4.424 4.427

sMRI+dMRI 700 3.498 3.559 3.525 3.5

SWI+dMRI 689 3.717 3.74 3.741 3.719

All 714 3.482 3.526 3.512 3.483

4 Results

4.1 Brain Age Estimation

Results are summarised in Tables 1 and 2 reporting the overall performance of
the four regression methods combined with the different IDPs. Table 1 reports the
estimation performance for the test subjects in terms of MAE values before bias
correction, as this represents the actual model performance. Results demonstrated
that using all the 714 IDPs from the three imagingmodalities provided the best model
performance in terms of MAE for all regression methods. In particular, BRR gave
the best results (MAE = 3.482 years), closely followed by LASSO (MAE = 3.483
years), while SVR performed less accurately among the four tested methods. When
considering the different feature types, the performance of themodels using SWI only
was worst (MAE≈ 6.0 years) compared to the other single-modal approaches that is
sMRI (MAE≈4.5years) and especially dMRI (MAE≈3.7years).Whenconsidering
the multi-modal models, adding dMRI phenotypes improved the accuracy of all
methods.

These results were further confirmed by the R2 and adjusted R2 parameters
(Table 2), for which the lowest value was reached using the SWI IDPs (R2 = 0.075–
0.085). When the IDPs from sMRI and dMRI were used jointly in the model, the
performance was improved and very close to the one reached by using all the IDPs,
and this finding held for all the four regression methods. For the sake of complete-
ness, CPA and CBDA were calculated before and after bias correction, leading to
the results summarised in Table 3. When using all the 714 IDPs, the correlation
between brain age delta and actual age decreases towards zero after applying the
bias correction steps. Conversely, CPA increased after bias correction in all four
methods.
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Table 2 Prediction performance of all the tested models in terms of R2 and Adjusted R2 values

BRR LASSO SLR SVR

IDPs R2 Adj_R2 R2 Adj_R2 R2 Adj_R2 R2 Adj_R2

sMRI 0.445 0.441 0.446 0.441 0.446 0.441 0.445 0.440

SWI 0.085 0.081 0.085 0.081 0.085 0.081 0.075 0.071

dMRI 0.613 0.512 0.612 0.511 0.606 0.504 0.604 0.501

sMRI+SWI 0.464 0.458 0.464 0.458 0.465 0.458 0.468 0.462

sMRI+dMRI 0.654 0.560 0.653 0.559 0.648 0.553 0.642 0.545

SWI+dMRI 0.618 0.516 0.61 0.515 0.611 0.507 0.609 0.505

All 0.658 0.562 0.657 0.562 0.652 0.555 0.650 0.553

Table 3 Correlation values between predicted brain age vs actual age (CPA) and between brain
age delta vs actual age (CBDA), before and after bias correction

The model Before correction After correction

CPA CBDA CPA CBDA

BRR 0.811 −0.592 0.903 −0.014

LASSO 0.810 −0.576 0.900 −0.018

SLR 0.807 −0.559 0.896 −0.026

SVR 0.806 −0.597 0.902 −0.015

4.2 Association with Brain IDPs

Considering that the BRR method combined with all the IDPs reached the lowest
MAE and highest R2/adjusted R2r, here we report associations between individual
IDPs and brain age delta values estimated from this model. In particular, Table 4
shows the first ten significant correlations (after correction formultiple comparisons),
revealing a strong and significant association between these IDPs and the brain age
delta. As further note, the association between brain age delta values and individuals
IDPswere largely overlapped for the other regressionmethods, especially concerning
the features in the top 10 positions. The order of the most significant features that
are associated with the brain age delta is similar in the four methods, although the
correlation values changed across them.

As it can be appreciated, the volumetric measurements from sMRI such as GM
volume and volume of peripheral cortical GM (both normalised for head size) were
negatively correlated with the brain age delta. Diffusion measures from DTI (such
as MD, L1, L2 and L3) and from NODDI (such as ISOVF) in fornix were positively
correlated with the brain age delta, while FA revealed an opposite pattern.
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Table 4 Strongest associations between brain age delta values estimated from the winning model
(BRR with all IDPs) and individual IDPs for test set subjects

IDPs Correlation

Volume of grey matter (normalised for head size) −0.5113

Volume of peripheral cortical grey matter (normalised for head size) −0.4965

Volume of brain, grey+white matter (normalised for head size) −0.4432

Mean ISOVF in fornix on FA skeleton 0.4092

Mean L1 in fornix on FA skeleton 0.4034

Mean MD in fornix on FA skeleton 0.4022

Mean L3 in fornix on FA skeleton 0.3969

Mean L2 in fornix on FA skeleton 0.3891

Mean FA in fornix on FA skeleton −0.3887

Mean L2 in fornix cres+stria terminalis on FA skeleton (left) 0.3712

Table 5 Correlation between CMR, CRFs and brain age delta
Cardiovascular risk factors Cardiac magnetic resonance

Measure Correlation p-value pFDR Measure Correlation p-value pFDR

Smoking 0.056 0.003 0.024 LVEDV 0.006 0.725 1

Deprivation 0.067 0 0.003

Body Mass
Index

0.053 0.005 0.040 LVESV −0.004 0.795 1

Alcohol 0.038 0.046 0.369

Exercises 0.001 0.920 1 LVSV 0.015 0.420 1

Diabetes 0.087 0 0

Hypertension 0.066 0 0.004 LVM 0.044 0.021 0.107

High
Cholesterol

0.056 0.003 0.025 LVEF 0.024 0.209 1

4.3 Association with Cardiac Variables

Table 5 reports Pearson correlations between brain age delta derived from the win-
ning model (BRR with all IDPs) and CMR/CRFs measures (test set). For CMR, no
significant associations were found after multiple comparison correction (pFDR >

0.05), and only the correlation with the left ventricular mass (LVM) was significant
before correction (p = 0.021). Regarding CRFs, all parameters except exercise and
alcohol were significantly associated with the brain age delta (pFDR < 0.05) .
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5 Discussion

In this study,we investigatedwhether chronological age could be accurately predicted
using brain MRI IDPs as predictor variables in various statistical models using data
in the UKB. In particular, we focused on four well-known regression methods (SLR,
SVR, LASSO and BRR) and considered measures from sMRI, SWI and dMRI as
IDPs, either alone or in combination. Regarding the regression methods, overall,
BRR achieved the highest accuracy as measured by MAE, R2 and adjusted R2
values. In particular, when dealing with a relatively small number of IDPs (< 50),
for example in models with sMRI/SWI features only, better results were obtained
using SVR and SLR. Conversely, in cases where a greater number of features was
included, BRR reached the best performance, possibly because of its ability to handle
multicollinearity between IDPs [21, 22].

Previous studies addressing modelling brain age using UKB data report MAE
values between 3.5–3.8 years. Of note, Peng et al. [23] achieved the lowest MAE
(2.14 years) although leveraging from deep CNNmodel, Simple Fully Convolutional
Network, using sMRI from UKB for 14503 participants. In our study, the accuracy
reached by BRR model in the different conditions was comparable (and even better
in some cases) to such benchmarks, despite the generally lower number of subjects
and MRI features.

Regarding the imaging predictors, models including all the 714 IDPs from the
three brain MRI sequences had the best performance. However, when considering
modelswith single-modal IDPs, dMRI reached the highest accuracy in terms ofMAE
values (MAE≈ 3.7 years) compared to sMRI (MAE≈ 4.5 years) and especially SWI
(MAE ≈ 6.02 years), and this was further confirmed by the R2/adjusted R2 values.
This might indicate that age-related alteration of brain can be better detected by
dMRI, in agreement with literature findings [24]. A previous study also found similar
results and further confirm that dMRI phenotypes are more informative than SWI
IDPs in predicting brain age [2]. Phenotypes from sMRI and dMRIwere generally the
most informative for age prediction, as further supported by the correlation analysis
between delta values and IDPs. Indeed, the strongest associations were found for
features based on these modalities. In particular, our study revealed that brain age
delta was negatively correlatedwith volumetricmeasures, while positively correlated
with both ISOVF and diffusivities in the fornix.

GM volume was the most informative phenotype, in line with previous studies
[2, 5]. This might be related to the fact that brain volume changes considerably over
time and decreases during the aging process, causing atrophy [25] and macroscopic
variations. Our analysis highlighted a prominent role of dMRI IDPs. Differences in
diffusion properties across the life span have been demonstrated along specific WM
tracts [24]. Diffusivity and FA values across the fornix spanned the first 10 ranking
position, preceded only by atrophymeasures in GM andWM.Noteworthy, the fornix
is among those tracts that mature very early [26]. The IDPs that are present in the
top 10 association ranking are, besides FA and MD, ISOVF, that is the isotropic
volume fraction as estimated by the NODDI model, and the three tensor eigenvalues
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L1, L2 and L3 that represent the axial (L1) and transversal (L2, L3) diffusivities. A
reduction in the FAand an increase in diffusivity, as indicated by a positive correlation
of ISOVF, MD, L1, L2 and L3 with delta age, could indicate impairedWM integrity.
Moreover, myelin breakdown might be measured by radial diffusivity (L2 and L3)
alterations, while increasing in apparent diffusivity value might be a sign of axonal
disruptions [27]. Furthermore, AD (L1) and RD (L2 and L3) have been observed
to increase in elderly people which may be a signal of deterioration of the WM
fibers [28]. Noteworthy, ISOVF has been observed to increase in older people in
most of the major tracts, pointing to a disrupted integrity [29]. Our results are in
agreement with such findings reporting a negative association of FA and a positive
association of L1 , L2, L3 and MD in fornix with brain delta age. Fornix tracts
have a vital role in memory tasks, specially episodic memory. Alteration in diffusion
measures during aging process might be good biomarkers for neurological diseases
that are related to memory impairments [26]. This could indicate that such IDPs are
more prone to alteration over the life span of an individual at least over specific WM
tracts, making them potential biomarkers for the aging process in health and disease.

Regarding the associations with CMR measures, our study revealed a significant
association with LVM, however there was loss of statistical significance after multi-
ple comparison correction. A previous study reported association of increase in LVM
with alterations inWMmicrostructure in elderly people [30]. In our study, the limited
age range in the UKB did not permit consideration of relationship in very old individ-
uals. Among the CRFs, all measures except exercise and alcohol were significantly
correlated with brain age delta (pFDR < 0.05), inline with what described by Cole
et al [7, 31], despite using a different number of IDPs and subjects for estimating
brain delta. In conclusion, results suggest that dMRI IDPs play a prominent role in
reducing the MAE and rank high in the association study, providing evidence of the
potential of dMRI IDPs as biomarkers of aging in health and disease. Future work
will investigate the integration of other IDPs such as functional MRI, graph-based
measures from brain connectomes as well as the genetic information to pursue the
holistic path.
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