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Preface

It is our great pleasure to present the proceedings of the 2020 International Work-
shop on Computational DiffusionMRI (CDMRI’20). CDMRI’20 was held under the
auspices of the InternationalConferenceonMedical ImageComputing andComputer
Assisted Intervention (MICCAI), which took place virtually on October 8th 2020,
having originally been planned to take place in Lima, Peru.

This volume presents the latest developments in the highly active and rapidly
growing field of diffusion MRI. The reader will find numerous contributions
covering a broad range of topics, from the mathematical foundations of the diffu-
sion process and signal generation, to new computational and machine learning
methods and estimation techniques. The contributions are focused toward the in vivo
recovery of microstructural and connectivity features, as well as combined diffusion-
relaxometry acquisitions techniques. This edition includes chapters fromhigh-profile
researchers with the specific focus on four topics that are gaining momentum or
have received increasing interest within the diffusion MRI community: (i) diffusion
MRI signal acquisition, (ii) orientation processing: tractography and visualization,
(iii) microstructure modeling and representation, (iv) signal augmentation and super
resolution, and (v) diffusion MRI applications.

This volume offers the opportunity to share new perspectives on the most recent
research challenges for those currently working in the field, and a valuable starting
point for anyone interested in learning computational techniques in diffusion MRI.
The book includes rigorous mathematical derivations, a large number of rich, full-
color visualizations, and clinically relevant results. As such, it will be of interest to
researchers and practitioners in the fields of computer science, MRI physics, and
applied mathematics.

Each contribution in this volume has been peer-reviewed by multiple members
of the international Program Committee. We would like to express our gratitude to
all CDMRI’20 authors and reviewers for ensuring the quality of the presented work.
We are grateful to the MICCAI 2020 chairs for providing a platform to present and
discuss the work collected in this volume. We also would like to thank the editors
of the Springer book series Mathematics and Visualization as well as Leonie Kunz
and Martin Peters (Springer, Heidelberg) for their support to publish this collection
as part of their series.
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viii Preface

Finally, we express our sincere congratulations to the winners of the prizes that
were awarded during CDMRI’20, including:

• Prize for the best CDMRI paper: “Learning Anatomical Segmentations for
Tractography from Diffusion MRI”, Christian Ewert et al. German Center for
Neurodegenerative Diseases (DZNE), Bonn, Germany

• Prize for the best CDMRI oral presentation: “Longitudinal Parcellation of the
Infant Cortex Using Multi-Modal Connectome Harmonics”, H. Partick Taylor
et al. University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,
USA

• Prize for the best CDMRI power-pitch presentation: “Image Reconstruction
from Accelerated Slice-Interleaved Diffusion Encoding Data”, Tiantian Xu et al.
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

• Joint First Prize for the best Super-MUDI method: Kurt Schilling et al. Vanderbilt
University, Nashville, Tennessee, USA.

• Joint First Prize for the best Super-MUDI method: Haoyu Lan et al. University
of Southern California, Los Angeles California, USA.
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Diffusion MRI Signal Acquisition



Image Reconstruction from Accelerated
Slice-Interleaved Diffusion Encoding
Data

Tiantian Xu, Ye Wu, Yoonmi Hong, Khoi Minh Huynh, Weili Lin,
Wei-Tang Chang, and Pew-Thian Yap

Abstract Wepresent a reconstruction scheme for diffusionMRI data acquired using
slice-interleaved diffusion encoding (SIDE). We show that, when combined with
multi-band imaging, the method is capable of reducing the amount of data that needs
to be acquired by as much as 25 times, therefore remarkably speeding up acqui-
sition and making high angular resolution diffusion imaging much more feasible,
particularly for pediatric, elderly, and claustrophobic patients. In contrast to the con-
ventional approach of acquiring a full diffusion-weighted (DW) volume for each dif-
fusion wavevector, SIDE acquires for each repetition time (TR) a volume consisting
of interleaved slice groups, each corresponding to a different diffusion wavevector.
This allows SIDE to rapidly acquire information associated with a larger number of
wavevectorswithin a short period of time.We formulate the inverse problem involved
in recovering the full DW images as a constrained variational problem regularized
by multidimensional total variation. The problem can be solved efficiently using the
alternating direction method of multipliers (ADMM). Experiment results based on
SIDE data of adults indicate that DW images can be recovered with high fidelity
despite high undersampling for multifold acceleration.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) offers a unique probe into white
matter pathways in the living human brain in association with development and dis-
orders in a non-invasive manner [2, 9]. However, dMRI is characterized by long
acquisition time due to the need to acquire a large number of diffusion-weighted
(DW) images with different diffusion encodings for sufficient coverage of the

T. Xu · P.-T. Yap (B)
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q-space over a range of diffusion gradient directions. Speeding up dMRI acquisi-
tion is needed to reduce motion artifacts [6], patient discomfort, and imaging costs.

Acceleration of dMRI acquisition typically involves a sampling scheme and a
reconstruction strategy [5, 7]. Ning et al. [7] proposed a q-space undersampling
scheme using three sets of intersecting thick slices, each corresponding to a different
set of gradient directions. The high-resolution slices are then recovered for the full
set of gradient directions. The authors claimed to reduce the acquisition time by at
least 3 times. Gabriel et al. [8] proposed a novel method, gSlider-SR, to accelerate
high-resolution dMRI acquisition by downsampling in both radio frequency (RF)
encoding space and q-space. Reconstruction was then performed with the help of
sparse spherical-ridgelets. Sun et al. [10] proposed a method for improved recon-
struction of ensemble average propagators from highly undersampled k - space and q
- space. Hong et al. [5] proposed to accelerate dMRI acquisition via slice-interleaved
diffusion encoding (SIDE) and deep learning reconstruction. In contrast to the con-
ventional approach of acquiring a full DW volume for each diffusion wavevector,
SIDE acquires for each repetition time (TR) a volume consisting of interleaved slice
groups, each corresponding to a different diffusion wavevector. This allows SIDE to
rapidly acquire information associated with a large number of wavevectors within a
short period of time.

In this paper, we propose a reconstructionmethod for SIDE,which unlike [5], does
not rely on training data. We show that, when combined with multi-band imaging,
our method is capable of reducing the amount of data that needs to be acquired by as
much as 25 times, therefore significantly speeding up acquisition and making high
angular resolution diffusion imaging much more feasible, particularly for pediatric,
elderly, and claustrophobic patients. We formulate the inverse problem involved in
recovering the full DW images as a constrained variational problem regularized by
multidimensional total variation. The problem can be solved efficiently using the
alternating direction method of multipliers (ADMM). Experiment results based on
SIDE data of adults indicate that DW images can be recovered with high fidelity
despite high undersampling for multifold acceleration.

2 Methods

2.1 SIDE Acquisition

Slice-interleaved diffusion encoding (SIDE) accelerates acquisition of DW images.
SIDE involves simultaneous multi-slice (SMS) excitation of a slice group (SG) [1].
Let Ng denote the number of SGs in a volume and Nd the total number ofwavevectors.
In conventional acquisition schemes, all SGs in a volume share the same diffusion
encoding. In SIDE, each SG is associated with a different diffusion wavevector.
Each SIDE cycle covers every wavevector with a SG, amounting to acquiring Nd/Ng

volumes in Nd/Ng TRs. We assume Nd is a multiple of Ng for convenience. With



Image Reconstruction from Accelerated Slice-Interleaved … 5

each transition to the next cycle, the wavevector table is offset by 1. Ng cycles cover
all the slices of all diffusion wavevectors. A subset of the cycles can be selectively
acquired to achieve a certain acceleration factor R. Sorting the slice groups in the
SIDE volumes according to their associated wavevectors gives Nd volumes with
subsampled slices. We provide an illustration of SIDE acquisition in Fig. 1 for Nd =
16 and Nd/Ng = 4. When the acceleration factor is R = 2, only half of the cycles
need to be acquired. More details on SIDE are provided in [5].

2.2 Reconstruction

For convenience, we reshape the DW images into a matrixX ∈ R
Nv×Nd , where Nv is

the number of voxels in each DW image and Nv = Nx NyNz , where Nx , Ny , and Nz

are the image dimensions in the x , y, and z directions, respectively. Nd is the number
of wavevectors. Then, a set of SIDE image volumes {XS

k }Nd
k=1 can be represented as

XS
k (:, l) = HlXqkl + nkl , (1)

where XS
k (:, l) is the l-th column vector of XS

k and represents the l-th observed slice
along the z-direction, k is the volume index, and nkl is the measurement noise.Matrix
Hl is a slice selector along the z direction and vector qkl is a gradient selector. XS

k is
a partial volume that does not cover all the slices due to subsampling by a factor of
R.

Our goal is to reconstruct the full volumes X from the subsampled DW images.
The simplest way to obtain X is to solve

min
X

1

2

∑

k,l

∥∥HlXqkl − XS
k (:, l)

∥∥2

F . (2)

However, the inverse problem is ill-posed and can be regularized spatially by using
the total variation (TV) semi-norm of X, giving

min
X

1

2

∑

k,l

∥∥HlXqkl − XS
k (:, l)

∥∥2

F + λ ‖X‖TV . (3)

Parameter λ is nonnegative and controls the tradeoff between data fidelity and the
degree of regularization. For angular regularization, X is represented as real and
symmetric spherical harmonics (SH) of maximum order �max = 8 [11] via X� =
AV, where A is a matrix of the SH basis functions and V is the corresponding SH
coefficients. Therefore,

min
X

1

2

∑

k,l

∥∥HlXqkl − XS
k (:, l)

∥∥2

F + λ ‖X‖TV s.t. X� = AV. (4)
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Fig. 1 SIDE acquisition scheme. (a) SMS acquistion. (b) Multi-shell sampling with 16 diffusion
wavevectors covering 3 shells. (c) Conventional one-volume-one-encoding sampling with SMS
slice groups in each volume associated with the same diffusion encoding. (d) SIDE acquisition with
SMS slice groups in each volume associated with different wavevectors
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2.3 Optimization

We utilize the alternating direction method of multipliers (ADMM) [3, 4, 12] for
solving (4),which involves high-dimensional variables andnon-differentiable convex
optimization. To regularize the ill-posed problem, we will utilize the TV norm:

Nd∑

k=1

‖X(k)‖TV, (5)

where X(k) is the k-th row of X reshaped into a tensor of size Nx × Ny × Nz . The
TV regularization term encourages X to be spatially smooth. ‖ · ‖TV can be the
anisotropic or isotropic TV norm.

ADMM decomposes a large global problem into a series of smaller local sub-
problems, and attempts to combine the benefits of augmented Lagrangian methods
and dual decomposition for constrained optimization problems. The constrained
optimization problem (4) can be reformulated as the following unconstrained opti-
mization problem:

L(X,V,Y{1,...,Nd },Ψ {1,...,Nd },Φ) = min
X

1

2

∑

k,l

∥∥HlXqkl − XS
k (:, l)

∥∥2

F + λ

Nd∑

k=1

‖Yk‖TV

+
Nd∑

k=1

〈
Ψ k,Yk − X(k)

〉 + ρ1

2

Nd∑

k=1

∥∥Yk − X(k)

∥∥2
F + 〈Φ,X − AV〉 + ρ2

2

∥∥X� − AV
∥∥2

F ,

(6)
where 〈·, ·〉 denotes the Frobenius inner product. Applying ADMM, we carry out
the following steps to minimize L(X,V,Y{1,...,Nd },Ψ {1,...,Nd },Φ) over X, V, and
auxiliary variables Y{1,...,Nd }, and update Lagrangian multipliers Ψ {1,...,Nd } and Φ in
each iteration t :

Subproblem 1

Update V by minimizing

V(t+1) = argmin
V

ρ2

2

∥∥∥X�(t) − AV + Φ(t)
∥∥∥
2

2
. (7)

Subproblem 2

Update Y1,...,Nd by minimizing
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Y(t+1)
k = argmin

Yk

ρ1

Nd∑

k=1

∥∥∥Yk − X(t)
(k) + Ψ

(t)
k

∥∥∥
2

2
+ λ

Nd∑

k=1

‖Yk‖TV. (8)

Subproblem 3

Update X by minimizing

X(t+1) =argmin
X

1

2

∑

k,l

∥∥HlXqkl − XS
k (:, l)

∥∥2

F +

ρ1

2

Nd∑

k=1

∥∥∥Y(t+1)
k − X(k) + Ψ

(t)
k

∥∥∥
2

F
+ ρ2

2

∥∥X� − AV(t+1) + Φ(t)
∥∥2

F .

(9)

Subproblem 4

Update Ψ and Φ by

Ψ
(t+1)
k = Ψ

(t)
k + (Y(t+1)

k − X(t+1)
(k) ), (10)

Φ(t+1) = Φ(t) + (X�(t+1) − AV(t+1)). (11)

3 Experiments

3.1 Materials

We scanned seven healthy subjects using a 3T Siemens whole-body Prisma scan-
ner (Siemens Health-care, Erlangen, Germany). A monopolar diffusion-weighted
spin-echo EPI sequence was utilized with imaging parameters as follows: Reso-
lution = 1.5mm isotropic; FOV = 192 × 192 × 150mm3; image dimensions =
128 × 128 × 100; partial Fourier = 6/8; bandwidth = 1776 Hz/Px; 160 gradient
directions distributed over 4 b-value shells of b = 500, 1000, 2000 and 3000 s/mm2,
plus one b = 0 s/mm2; TR/TE = 3120/90ms; 32-channel head array coil; SMS fac-
tor is 5. The total acquisition time is 8.19 minutes for each phase-encoding direction.
No in-plane acceleration was used. The ground truth datasets were collected with 20
SIDE cycles. For R = 2, the 1st to 10th cycles from the 20 cycles were selected. For
R = 5, the 1st, 4th, 6th and 8th cycles were selected.
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3.2 Results

We compared our method with bicubic interpolation and spherical interpolation, for
three different undersampling factors and three b-shells. Spherical interpolation was
performed using spherical harmonics basis with order up to 8. Figure2 shows the
accuracy of reconstructed signal quantified by using normalized mean square error
(NMSE), peak signal-to-noise (PSNR), and structural similarity (SSIM). Figure3
shows the quantitative comparison results for GFAwhen b = 2000 s/mm2.We com-
pared reconstruction accuracy of different methods with respect to the ground truth.
The reconstructed signal and computedGFA under two acceleration factors R = 2, 5
and b = 2000 s/mm2 are shown in Fig. 4. The proposed method yields results that
are closest to the ground truth.

Evaluationwas also performed based onmicrostructure scalars computed by using
neurite orientation dispersion and density imaging (NODDI) [13]. The quantitative
results for R = 2, 5 and b = 2000 s/mm2 for intra-cellular volume fraction (ICVF)
and orientation dispersion (OD) are shown in Fig. 5. The proposed method shows
better results that are closer to the ground truth. Figure6 shows the fiber orientation
distribution functions (ODFs) in three representative regions with crossing, bifurcat-

Fig. 2 Quantitative comparison of reconstructed signal difference via NMSE, PSNR, and SSIM
for different undersampling factors and differenct b-values
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Fig. 3 Quantitative comparison of GFA maps via NMSE, PSNR, and SSIM (b = 2000 s/mm2)

Fig. 4 Predicted DW images, GFA images, and error maps (b = 2000 s/mm2)

ing and unidirectional fibers, indicating that our method yields more accurate results
with greater coherence.

4 Conclusion

We have demonstrated that dMRI acquisition can be significantly accelerated by
leveragingSIDEacquisition in combinationwith the reconstruction schemeproposed
in this paper. Experimental results show that our method can yield acceleration factor
as high as 25 folds when combinedwith SMS imaging, allowingmore than a hundred
DW images (1.5mm isotropic resolution) to be acquired within a couple of minutes.

Acknowledgements This work was supported in part by NIH grants NS093842 and EB006733.
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Fig. 5 Representative color FA, OD, and ICVF maps (b = 2000 s/mm2)

Fig. 6 Representative fiber ODFs in different regions with crossing, bifurcating, and unidirectional
fibers
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Towards Learned Optimal q-Space
Sampling in Diffusion MRI

Tomer Weiss, Sanketh Vedula, Ortal Senouf, Oleg Michailovich,
and Alex Bronstein

Abstract Fiber tractography is an important tool of computational neuroscience that
enables reconstructing the spatial connectivity and organization of white matter of
the brain. Fiber tractography takes advantage of diffusionMagnetic Resonance Imag-
ing (dMRI) which allows measuring the apparent diffusivity of cerebral water along
different spatial directions. Unfortunately, collecting such data comes at the price of
reduced spatial resolution and substantially elevated acquisition times, which limits
the clinical applicability of dMRI. This problem has been thus far addressed using
two principal strategies. Most of the efforts have been extended towards improving
the quality of signal estimation for any, yet fixed sampling scheme (defined through
the choice of diffusion-encoding gradients). On the other hand, optimization over the
sampling scheme has also proven to be effective. Inspired by the previous results, the
presentwork consolidates the above strategies into a unified estimation framework, in
which the optimization is carried out with respect to both estimation model and sam-
pling design concurrently. The proposed solution offers substantial improvements
in the quality of signal estimation as well as the accuracy of ensuing analysis by
means of fiber tractography. While proving the optimality of the learned estimation
models would probably need more extensive evaluation, we nevertheless claim that
the learned sampling schemes can be of immediate use, offering a way to improve the
dMRI analysis without the necessity of deploying the neural network used for their
estimation. We present a comprehensive comparative analysis based on the Human
Connectome Project data. Code and learned sampling designs available at https://
github.com/tomer196/Learned_dMRI.
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1 Introduction

Fiber tractography has long become a standard tool of computational neuroscience
which makes it possible to delineate the structure of neural fiber tracts within white
matter, thus facilitating quantitative assessment of its integrity and connectivity in
application to clinical diagnosis [2, 3].

The accuracy of fiber tractography, however, depends on the quality of diffu-
sion MRI (dMRI) data used for estimation of the local directions of fiber tracts at
each spatial voxel. Such data is usually available as a collection of 3D MRI vol-
umes, known as diffusion-encoded images, which represent signal attenuation due
to water diffusion along various directions and different levels of diffusion sensiti-
zation. In particular, high angular resolution diffusion imaging (HARDI) [19], were
each diffusion-encoding image representing a single sampling point on the spherical
shell. In this case, collection of a relatively large number of samples (as it is often
required by more advanced methods of diffusion data analysis) entails longer imag-
ing sessions, which tend to be avoided in clinical settings due to a number of practical
constraints. Consequently, HARDI data typically suffer from relatively poor spatial
resolution and other effects of undersampling, thus undermining the adequacy of
ensuing data analysis by means of fiber tractography.

In addition to the use of parallel imaging [4], the problem of long acquisition
times in dMRI has been addressed using a range of post-processing solutions. In
particular, most works in this direction has focused on the development of post-
processing methods capable of reconstructing the dMRI signals from their partial
measurements in either the k-space [15] or q-space. In the latter case, accelerated
imaging is achieved through the use of a deliberately smaller number of diffusion
encodings then necessary, while compensating for the effects of undersampling by
means of properly regularized inverse solvers, including the recent use of deep neural
networks: [9] reconstructed the DWI from undersampled k-space using graph CNNs,
[6] suggested to learn diffusion metrics directly from undersampled q-space. In
virtually all such cases, however, the directions of diffusion encoding gradients is
assumed to be given and fixed, being typically defined by means of the electrostatic
repulsion (Thomas) algorithm [11] or tessellation of platonic solids [18].

Recent studies in computational imaging for inverse problems have uncovered
significant benefits of simultaneously learning the forward and inverse operators,
implying a concurrent estimation of the inverse (reconstruction) model along with
the parameters of the acquisition system in use [8, 13, 22]. Lately, these ideas have
been used to accelerate structural MRI imaging through the use of convolutional
neural networks (CNNs) that are capable of learning the optimal reconstruction
model together with optimal k-space sampling, either point [7, 24, 26] or trajectory-
based [23]. Inspired by these results, the present work introduces a general estimation
framework which allows one to learn the optimal directions of diffusion-encoding
gradients for HARDI along with an optimal reconstruction model required for signal
reconstruction from under-sampled data.
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Fig. 1 The data flow pipeline of our method. Notation is explained in the text

1.1 Main Contributions

In this paper, we demonstrate that:

– using learned directions of diffusion encoding along with a learned reconstruction
model leads to substantial improvements in the quality of estimated dMRI signals;

– the proposed solution leads to improved performance of fiber tractography as an
important example of dMRI-related end-tasks;

– the learned directions of diffusion-encoding gradients generalize to dMRI datasets
other than the data used for learning the directions.

2 Method

The proposedmethod can be viewed as an end-to-end pipeline combining the forward
(acquisition) and the inverse (reconstruction) models which undergo simultaneous
optimization (see Fig. 1 for a schematic depiction). The input to the forward model,
denoted as X, is formed by a total of N 3D diffusion-encoded volumes arranged
into a 4D numerical array. The input layer is followed by a sub-sampling layer,
which only uses a subset of n � N dMRI volumes (or, equivalently, n diffusion-
encoding directions). The inverse model is represented by a CNN which learns the
inverse mapping that goes from the measurement space (of n directions) to the target
space (of N directions). All components of our end-to-end model are differentiable
with respect to the directions of diffusion encoding (represented by their spherical
coordinates θ andφ), whichmakes the latter trainablewith respect to the performance
of desired end-task (e.g. fully-sampled signal reconstruction).
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2.1 Forward Model: Sub-Sampling Layer

The principal function of the sub-sampling layer, denoted by Sφ,θ, is to emulate the
acquisition of dMRI measurements at a reduced number of diffusion encoding (i.e.,
n),which is referredbelow to as X̃. To this end, the dMRI signals used for training (and
acquired at N spherical points) were fit with a truncated basis of spherical harmonics.
In this case, it is convenient to describe the directions of diffusion encoding in terms
of their azimuth 0 ≤ φ ≤ 2π and elevation 0 ≤ θ ≤ π, which can both be collected
into vectors of length n. In what follows, we refer to the ratio N/n as the acceleration
factor (AF).

2.2 Reconstruction Model

The goal of the reconstruction model is to extract the latent imageX from the limited
set of diffusion directions X̃. The resulting approximation is henceforth denoted
as X̂ = Rψ(X̃), where R is the reconstruction model and ψ represent its learnable
parameters. Although in our implementationwe chose the off-the-shelf U-NET as the
reconstruction model architecture, architectural search of the optimal reconstruction
model is not within the scope of this work. Our proposed algorithm can be used with
any differentiable reconstruction model.

2.3 Optimization

Training of the proposed pipeline is performed by simultaneously learning the dif-
fusion gradient directions (φ, θ) and the parameters of the reconstruction model ψ.
The training is carried out by minimizing the discrepancy between the model out-
put image X̂ and the ground-truth image X, meaning, by solving the optimization
problem

min
ψ,φ,θ

∑

X

‖Rψ(Sφ,θ(X)) − X‖2 (1)

where the loss is summed over a training set comprising of 4D diffusion volumes of
the full set of diffusion directions X.
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3 Experimental Evaluation

3.1 Dataset

The experiments reported in this paper have been obtained using the dMRI data
provided by theHumanConnectome Project (HCP) [21]. TheHCP database contains
1065 brain MRI volumes acquired with 288 diffusion-encoding directions including
90 directions for each of the b values 1000, 2000, 3000 s/mm2 and the rest 18 volumes
with b value of 0. For the sake of simplicity, we choose to use only the diffusion
directions pertaining to the spherical shell defined by b = 1000 s/mm2. We used 868
volumes (102,000 slices) for training and 100 volumes (12,000 slices) for validation.
Tomaintain consistency across the dataset that was originally acquired with different
gradient directions schemes, we first resample the DWI data into N = 90 predefined
directions evenly distributed on the unit hemisphere using spherical harmonics.

3.2 Training Settings

The sub-sampling layer and the reconstruction network were trained with the Adam
optimizer [14]. The learning rate was set to 0.001 for the reconstruction model, while
the sub-sampling layer was trained with a learning rate of 0.0001. For the reconstruc-
tion model, we used a multi-resolution encoder-decoder network with symmetric
skip connections, also known as the U-Net architecture [20]. U-Net is widely-used
in medical imaging tasks with many application in structural MRI reconstruction
[25] and segmentation [10]. The reconstruction network has been trained in a slice-
wise manner, with the image slices being concatenated back to 3D volume during the
stage of inference. The input to the model is given by a slice where each of the diffu-
sion directions n is a channel and the output is the slice with N = 90 channels. We
emphasize that the scope of this work is not directed toward building the best recon-
struction method, but rather demonstrating the benefit of simultaneous optimization
of the acquisition-reconstruction pipeline. We perform experiments for the follow-
ing acceleration factors (AF): 3, 5, 10, 15, and 30 that correspond to acquisitions
performed with n = 30, 18, 9, 6, 3 diffusion directions, respectively.

3.3 Results and Discussion

Baselines. We consider the following baselines: learned directions (joint optimiza-
tion of diffusion directions and the reconstruction network, φ and θ were initialized
randomly), and fixed directions (optimizing the reconstruction network alone). For
the fixed regime, we use the electrostatic repulsion algorithm [11] to design the dif-
fusion gradient and only train the reconstruction network. In order to demonstrate
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Table 1 Quantitative results in the signal space. The presented baselines are networks trained
with fixed and learned directions across different acceleration factors (AF). Presented are the PSNR
between the reconstructed and groundtruth DWI volumes. n = number of diffusion directions

AF/n 3/30 5/18 10/9 15/6 30/3

Fixed dirs. 48.99±1.62 48.73±1.51 45.13±1.67 42.04±1.52 39.67±1.45

Learned dirs. 49.18±1.52 48.94±1.52 45.23±1.49 42.20±1.42 39.70±1.44

the robustness of the learned diffusion directions and their practical applicability in
the absence of reconstruction network, we present two additional baselines, namely,
fixed w/o reconstruction and learned w/o reconstruction. Effectively, this implies
rendering the operator Rψ to be identity.

Metrics in signal space. First, we evaluate the algorithm performance by comparing
directly X̂ the ground-truth X using the PSNR (peak signal-to-noise ratio). In Table
1, we present the results of the fixed and learned directions baselines across several
acceleration factors. As expected, we notice that the PSNR of the reconstructed
images degrade as the acceleration factor increases. Interestingly, we can notice
improvement in the case of learned directions over the fixed one demonstrating the
merit of joint optimization of diffusion directions and reconstruction network.

Metrics in tractography space. The performance of the proposed method has been
also tested in application to fiber tractography. To this end, we applied the same
tractography reconstruction to both X̂ and X (concatenate with 6 originals volumes
of b = 0) and compare their tractograms. To perform tractography, we first fit the
DWI to constant solid angle ODF model [12] and then invoke fiber tracking using
EuDX [5] using the implementation available in the dipy package. To compare the
tractograms, we used the Bhattacharyya distance [1] over bundles (a collection of
individual fibres), we compute it over 15 different bundles and compute the average
distance. Table 2 presents a comparison of the results obtained fromfixed and learned
directions baselines. We evaluate the quality of the learned directions both with and
without using the reconstruction network across few acceleration factors. Visual
results of the entire tractogram can be seen in Fig. 2 and for specific bundles in Fig. 3
(visualization for all acceleration factor are presented in the supplementary material,
see Figs. 5, 6, 7 and 8). Based on the obtained quantitative and qualitative results,
the following are the observations (Fig. 4).

– The use of supervised learning for reconstruction gave significant improvement of
0.186 − 1.346 points in Bhattacharyya distance and a clear noticeable improve-
ment in the qualitative results presented in Figs. 5, 6, 7 and 8.

– Joint optimization of the diffusion directions and the reconstruction gave a further
sizeable improvement of 0.015–0.478 points in Bhattacharyya distance.

– A particularly appealing result is that, we notice even in the absence of recon-
struction network, the learned directions yield an improvement of 0.076–0.735
points in Bhattacharyya distance when compared to the fixed directions. A possi-
ble reason for this improvement is because joint optimization of the reconstruction
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Table 2 Quantitative results in the tractography space. The presented baselines are networks
trained with fixed and learned directions across different acceleration factors (AF). Presented below
are the Bhattacharyya distance (BD) between the tractographies obtained from the groundtruth and
reconstructed DWI volumes. The distance is averaged over 15 bundles. n = number of diffusion
directions

Bhattacharyya distance

AF/n 3/30 5/18 10/9 15/6 30/3

Fixed w/o
reconst.

0.329±0.032 0.539±0.057 0.685±0.058 1.802±0.190 –

Learned w/o
reconst.

0.253±0.024 0.327±0.032 0.514±0.055 1.067±0.092 –

Fixed w/
reconst.

0.143±0.029 0.172±0.032 0.264±0.031 0.456±0.048 0.860±0.097

Learned w/
reconst.

0.128±0.022 0.151±0.027 0.205±0.029 0.335±0.035 0.382±0.036

fixed dir. learned dir. fixed dir. learned dir.
groundtruth

w/o reconst. w/o reconst. w/ reconst. w/ reconst.

Fig. 2 Qualitative evaluation of the tractogram of a test sample from the human connectome
project. Presented below are the tractograms achieved using 6 gradient directions (AF = 15) for
fixed/learned directionswith/without the reconstruction network, and the corresponding groundtruth
tractogram. Digital zoom-in is recommended. Top: side-view, bottom: top-view

network together with the diffusion directions enforces metric that is learned from
the data in the direction space. This metric is more meaningful than minimizing
the electrostatic energy. Our learned diffusion directions can be simply translated
into diffusion gradients and readily deployed onto real MRI scanners to achieve
sizeable acceleration.

Learned directions A comparison of the fixed (red) and learned directions (blue)
plotted on a hemi-sphere is visualized in the adjacent figure. The left and right figures
correspond to AF = 3 (n = 30) and AF = 10 (n = 9) respectively. We can notice
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Bundle
fixed dir. learned dir. fixed dir. learned dir.

w/o reconst. w/o reconst. w/ reconst. w/ reconst.
C
S-
L

M
C
P

Fig. 3 Visualization of CS-L and middle cerebellar peduncle bundles of a test volume in
the HCP dataset after tractography. Results depicted are obtained using fixed/learned diffusion
directions (AF = 3, n = 30), both with/without reconstruction. Colored in blue and green are the
reconstructed and groundtruth bundles respectively

that although both fixed and learned directions look similar uniformly covering the
hemisphere, our results presented above results suggest that the learned directions hit
the right spots that yield better reconstruction and tractography performance. This
implies that the joint optimization leads to an importance sampling in the diffusion
space.

Tractometer, ISMRM challenge. To further demonstrate the robustness, deploya-
bility and generalization capability of our learned diffusion directions, we test our
learned diffusion directions on the ISMRM tractography challenge DWI phantom
dataset [16]. We evaluated the results using the tractometer tool [17]. For the evalua-
tion, we first sub-sampled the original DWI volume using the fixed and learned diffu-
sion directions that we obtain from the human connectome dataset. Then, we applied
the tractography algorithms to the resulting sub-sampled DWI volumes and quantita-
tive evaluate using the tractometer tool. The results depicted in Table 3 demonstrate
that the learned directions outperform the fixed directions in most of the metrics
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Table 3 Quantitative results on the ISMRM challenge dataset using the tractometer tool.
Depicted below are the results obtained using the fixed and learned directions without the recon-
struction network across different number of gradient directions. VC: valid connections (+), IC:
invalid connections (–), NC: non-connections (–), VB: valid bundles (+), IB: invalid bundles (–),
OL: overlap (+), OR: overreach (–), F1 score (+). +/– indicate higher or lower score is better

n VC (+) IC (–) NC (–) VB (+) IB (–) OL (+) OR (–) F1(+)

30 Fixed 45.32% 54.67% 0.000% 20 71 15.74% 23.59% 22.88%

Learned 52.48% 47.51% 0.004% 23 73 23.51% 29.66% 32.46%

18 Fixed 56.01% 43.98% 0.000% 21 60 17.32% 26.83% 25.82%

Learned 60.26% 39.73% 0.000% 22 60 18.32% 24.67% 26.89%

9 Fixed. 58.86% 41.13% 0.000% 19 43 11.55% 18.39% 18.81%

Learned 61.42% 38.57% 0.000% 21 42 12.13% 17.51% 19.54%

6 Fixed 26.15% 73.84% 0.000% 8 20 1.26% 6.22% 2.35%
Learned 28.06% 71.93% 0.000% 5 17 0.76% 3.21% 1.45%

across multiple acceleration factors. Visual results of this experiments are presented
in Fig. 4 in the supplementary material.

4 Conclusion

We demonstrated, as a proof-of-concept, that the learning-based design of diffusion
gradient design in diffusionMR imaging leads to better tractographywhen compared
to the off-the-shelf designs. To the best of our knowledge, this is the first attempt
of data-driven design of diffusion gradient directions in diffusion MRI. We trained
and evaluated the performance of the learned designs and reconstruction networks
on the human connectome project dataset, both in signal and tractography domains.
We evaluated the generalization of the learned designs on the ISMRM challenge
phantom, and observed that the learned designs consistently outperform the hand-
crafted ones at different acceleration factors. Therefore, we believe that the learned
directions can be deployed standalone onto real machines without the reconstruction
network to already improve the end-task performance (full signal reconstruction,
tractography). We defer the following important aspects to future work:

– In this work, we limited our attention to only diffusion directions lying on one shell
(b = 1000). Allowing the diffusion gradient directions onmultiple shellmight lead
to further improvement in the end-task performance.

– As can be inferred from the PSNR results presented in Table 1 and the tractogram
metrics in Tables 2 and 3, the discrepancy in the DWI domain is not directly related
to the end-task performance (in our case, tractography). This leads us to assume
that optimizing directly for the end-task (or at least, closer to it) will allow for
better sampling designs that are needed for the end-task and can further push the
acceleration factor vs. performance trade-offs.
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5 Supplementary Materials

n fixed dir. no rec. learned dir. no rec. fixed dir. no rec. learned dir. no rec.
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Fig. 4 ISMRM fiber cup tractogram. Visual comparison of the learned and fixed diffusion
parameters applied on diffusion data from the ISMRM fiber cup challenge. Note that we only
use the learned directions and not the reconstruction network. Presented in figures are the side and
top views, without reconstruction. Left column depicts the number of diffusion directions used. The
first two columns and last two columns depict the side-view and top-view of the same tractogram.
Note that the above depicted figures are obtained using just the learned diffusion sampling without
the reconstruction network
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Fig. 5 Tractogram: side-view. Visual comparison of the full tractogram achieved from the
DWI volume using fixed and learned directions, with and without reconstruction. Left-most col-
umn depicts the corresponding acceleration factor and the corresponding n (number of diffusion
directions)
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Fig. 6 Tractogram top-view. Visual comparison of the full tractogram achieved from theDWI vol-
ume using fixed and learned directions, with and without reconstruction. Left-most column depicts
the corresponding acceleration factor and the corresponding n (number of diffusion directions)
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Fig. 7 Middle cerebellar peduncle bundle. Visual comparison of the bundle achieved from apply-
ing tractography on the DWI volume using fixed and learned directions with and without recon-
struction. Colored in green is the groundtruth bundle. Left-most column depicts the corresponding
acceleration factor and the corresponding n (number of diffusion directions)



26 T. Weiss et al.
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Fig. 8 CS Left bundle. Visual comparison of the bundle achieved from applying tractography on
the DWI volume using fixed and learned directions with and without reconstruction. Colored in
green is the groundtruth bundle. Left-most column depicts the corresponding acceleration factor
and the corresponding n (number of diffusion directions)



Towards Learned Optimal q-Space Sampling in Diffusion MRI 27

References

1. Bhattacharyya,A.:Onameasure of divergencebetween twomultinomial populations. Sankhyā:
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A Signal Peak Separation Index
for Axisymmetric B-Tensor Encoding

Gaëtan Rensonnet, Jonathan Rafael-Patiño, Benoît Macq,
Jean-Philippe Thiran, Gabriel Girard, and Marco Pizzolato

Abstract Diffusion-weighted MRI (DW-MRI) has recently seen a rising interest
in planar, spherical and general B-tensor encodings. Some of these sequences have
aided traditional linear encoding in the estimation of white matter microstructural
features, generally bymakingDW-MRI less sensitive to the orientation of axon fasci-
cles in a voxel. However, less is known about their potential to make the signal more
sensitive to fascicle orientation, especially in crossing-fascicle voxels. Although pla-
nar encoding has been commended for the resemblance of its signal with the voxel’s
orientation distribution function (ODF), linear encoding remains the near undisputed
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method of choice for orientation estimation. This paper presents a theoretical frame-
work to gauge the sensitivity of axisymmetric B-tensors to fascicle orientations. A
signal peak separation index (SPSI) is proposed, motivated by theoretical consider-
ations on a simple multi-tensor model of fascicle crossing. Theory and simulations
confirm the intuition that linear encoding, because it maximizes B-tensor anisotropy,
possesses an intrinsic advantage over all other axisymmetric B-tensors. At identical
SPSI however, oblate B-tensors yield higher signal and may be more robust to acqui-
sition noise than their prolate counterparts. The proposed index relates the properties
of the B-tensor to those of the tissue microstructure in a straightforward way and can
thus guide the design of diffusion sequences for improved orientation estimation and
tractography.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) is based on the appli-
cation of time-varying external magnetic-field gradients g(t) to probe water diffu-
sion [21]. In the brain white matter, it is mainly used for two purposes. One is a
necessary first step for tractography consisting in estimating the orientation of the
main fascicles of axons in a voxel, often via the orientation distribution function
(ODF), and is referred to as orientation estimation. Another is to estimate finer
microstructural properties of those fascicles such as the morphology of their axons,
generally referred to as microstructure estimation [3].

In both tasks, the focus has traditionally been on linear encoding in which
g(t) ∈ R

3 is parallel to a fixed direction û ∈ S
2 for all t , the best-known exam-

ple of which being the pulsed-gradient spin-echo (PGSE) [21]. More recently, there
has been growing interest in more general gradient waveforms living in a 2D plane,
known as planar encoding [19, 26], or the whole 3D space, referred to as general
multidimensionnal or B-tensor encoding [8, 17, 27, 28]. As the name indicates, such
sequences are often studied through their associated symmetric, positive-definite B-
tensor defined as B := γ2

∫ T
0

∫ t
0

∫ t
0 g(t1) · g(t2)� dt1 dt2 dt ∈ R

3×3, where γ is the
gyromagnetic ratio of protons and T the duration of the sequence. B-tensors with
1, 2 and 3 identical, strictly positive eigenvalues refer to linear, planar and spherical
encoding respectively [27, 28].

Those general waveforms have been mostly used for microstructure estima-
tion [12, 14, 17], especially to resolve degeneracieswherein differentmicrostructural
properties are difficult to estimate simultaneously using conventional linear encoding
only; e.g., extracting axonal microstructural properties irrespective of their orienta-
tion with 3D B-tensor encoding [2, 24]; disentangling volume or signal fractions
and diffusivities with (planar) double diffusion encoding (DDE) [5] or (spherical)
triple diffusion encoding [11]; separating microscopic anisotropy from orientation
dispersion using DDE [12, 15] or spherical encoding [6, 14, 22].
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How well these general waveforms may perform at orientation estimation is still
an open question. Linear encoding maximizes B-tensor anisotropy [9] and is thus
expected to provide high signal sensitivity to the orientation of anisotropic structures.
Spherical encoding on the other hand minimizes B-tensor anisotropy [2, 6, 9, 11,
14, 22, 24] and probably offers little benefit. Planar encoding DW-MRI data directly
reflects the ODF of the voxel without needing the post-processing or modeling typi-
cally required in linear encoding [19, 26]. It has been shown to compare to [26] and
potentially outperform [19] linear encoding.

This paper proposes a framework to assess the potential of waveforms character-
ized by an axisymmetric B-tensor for providing DW-MRI data suited to orientation
estimation. A signal peak separation index (SPSI) is proposed, motivated by theo-
retical considerations on a toy model of fascicle crossing assuming a superposition
of diffusion tensors. The index relates the properties of the B-tensors to microstruc-
tural properties such as the crossing angle, the NMR-apparent volume fraction and
the microscopic anisotropy of the fascicles, to quantify the directional information
content of the signal. Theoretical predictions are made about the respective merits
of linear, planar and intermediate encodings which are then verified in simulation
experiments.

2 Theory

In this work, a diffusion sequence is entirely characterized by an axisymmetric
tensor B with eigenvalues

{ b⊥
2 , b⊥

2 , b‖
}
. The orientation ûB of B is defined as the

eigenvector associated with b‖, which is not necessarily the largest eigenvalue, and
the b-value, a measure of diffusion weighting, as b := tr (B)=b⊥+b‖. The linear-
ity coefficient cL is defined as cL := b‖

b and characterizes B-tensor encodings as
planar (cL =0), planar-like or oblate (0<cL < 1

3 ), spherical (cL = 1
3 ), linear-like or

prolate ( 13 < cL <1) and linear (cL =1). It is related to the tensor anisotropy b� [9]
via b� = 3

2

(
cL − 1

3

) ∈ [− 1
2 , 1

]
. In this setting, the exact temporal profiles of the

physically-applied magnetic-field gradients are thus ignored.
The diffusion of water within a fascicle of bundled axons is represented by

an axisymmetric diffusion tensor D, referred to as “zeppelin”, with eigenvalues{
λ⊥,λ⊥,λ‖

}
, where λ‖ > λ⊥ is enforced, and with orientation ûD defined as its

principal eigenvector. The normalized DW-MRI signal Ssing arising from a fascicle
characterized by a zeppelin D subject to B is exp (−B : D) [18], where : denotes the
Frobenius inner product. This yields

Ssing (B; D) =

exp

(

− b⊥
2

λ⊥ − cos2 (ϕD − ϕB )

(
b⊥
2

λ⊥ + b‖λ‖
)

− sin2 (ϕD − ϕB )

(

b‖λ⊥ + b⊥
2

λ‖
))

,

(1)
showing that the signal is effectively a function of the angle |ϕD − ϕB | between ûD

and ûB , with ϕD and ϕB their azimuthal coordinates in their common plane, defined



32 G. Rensonnet et al.

from an arbitrary common reference. In the spherical case cL = 1
3 , all values of ϕB

identically lead to Ssing = exp
(− b

3

(
2λ⊥ + λ‖

))
.

2.1 A Toy Model of Fascicle Crossing Under B-Tensor
Encoding

The voxel-level signal Scros resulting from the crossing of two populations charac-
terized by D1 and D2 with NMR-apparent volume fractions, referred to as signal
fractions, ν1 and ν2 = 1 − ν1 under the diffusion-encoding tensor B is approximated
by the following superposition [20]

Scros (B; D1, D2) = ν1Ssing (B; D1) + ν2Ssing (B; D2) . (2)

Our toymodel assumes identicalmicrostructural properties (D1 andD2 have identical
eigenvalues) and Fascicle 1 as the dominant fascicle (ν1 ≥ ν2).

The in-plane signal Sip of a crossing is defined as the signal for ûB lying in the plane
spannedby û1 and û2, assumednon collinear. It is the only signal contribution relevant
to peak detection because the out-of-plane signal, definedwhen ûB · û1= ûB · û2=0,
is equal to exp

(− b⊥
2

(
λ‖ + λ⊥

) − b‖λ⊥
)
and therefore holds no information about

the fascicles’ orientations û1 and û2. Setting without loss of generalityϕ1=0,ϕ2=α
with α the crossing angle between û1 and û2, and noting ϕB the in-plane azimuthal
coordinate of ûB , Sip is computed as

Sip (ϕB ) = ν1Ssing (ϕB ) + ν2Ssing (α − ϕB )

= ν1 exp

(

− b⊥
2

λ⊥ − cos2 (ϕB )

(
b⊥
2

λ⊥ + b‖λ‖
)

− sin2 (ϕB )

(

b‖λ⊥ + b⊥
2

λ‖
))

+ ν2 exp

(

− b⊥
2

λ⊥ − cos2 (α−ϕB )

(
b⊥
2

λ⊥ + b‖λ‖
)

− sin2 (α−ϕB )

(

b‖λ⊥ + b⊥
2

λ‖
))

,

(3)

where the single argument to Ssing refers to the angle between ûD and ûB , with the
dependence on all other properties of B and D implied.

Radial plots of Sip are shown in Fig. 1 for various values of b,α and cL and
display the characteristic butterfly shape of DW-MRI signals. Signals from planar-
like (cL<1

3 ) and linear-like (cL>
1
3 ) encodings are 90

◦ out of phase, with high signal
obtained respectively in the range ϕB ∈ [0,α] and ϕB ∈[− π

2 ,α − π
2

]
. The signal

increases when magnetic-field gradients are applied perpendicular to û1 and û2,
“against” the fascicles (see Fig. 2a).

Mathematically, voxel-level fascicles are distinguishable when the high-signal
range of Sip exhibits two distinct maxima separated by one minimum. Intuitively,
the maxima of Sip (ϕB) are expected to be around 0 and α (corresponding to û1

and û2) in planar-like encoding, and around −π
2 and α− π

2 (corresponding to the
directions n̂1 and n̂2 normal to û1 and û2) in linear-like encoding. Likewise, the
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Fig. 1 Linear encoding is more sensitive to fascicle orientation than planar encoding while
intermediate cases offer little benefit. The peaks and troughs in the in-plane signal Sip of our toy
model, especially those associated with the smaller peak (here ν2 = 0.4), only become visible at
sufficiently high b, large α and extremal value of cL , which is captured by values of our proposed
SPSI staying below or exceeding 1

Fig. 2 The proposed signal peak separation index (SPSI) is a ratio of signal “against” the smaller
fascicle to signal between the fascicle. It is maximized by linear, rather than planar, encoding

minima of Sip (ϕB) are expected to lie about halfway between the maxima, along the
bisector b̂u for planar- and b̂n for linear-like encoding. In planar-like encoding for
instance, if Sip has a lower value along û2 than along b̂u , it suggests that the second
peak in the high-signal range of Sip is too small or hasn’t appeared yet (see Fig. 1 at
b = 3000s/mm2 and α = 45◦ and that the signal does not contain the orientational
information required for accurate ODF or fascicle orientation estimation. The small
fascicle (ν2<ν1) is only detectable when its associated signal maximum (if present
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at all) exceeds the signal dip (if present at all) between the fascicles, as apparent
in Fig. 1. These considerations motivate the definition of a signal index based on
(approximate) peaks and troughs of the signal, as presented in the following section.

2.2 The Signal Peak Separation Index

The signal peak separation index (SPSI) of an axisymmetric B-tensor encoding is
defined as the ratio of the signal “against” the smaller fascicle to the signal acquired
along the bisector of the fascicles in a toy model of identical intersecting zeppelins
(see Fig. 2a) and reads

SPSI :=
{ Sip(α)

Sip(α/2) for cL ≤ 1
3

Sip(α−π/2)
Sip(α/2−π/2) for cL > 1

3 .
(4)

Using Eq. (3), Eq. (4) becomes

SPSI (cL; b,α, ν1, εD) = ν1 exp

(

−3

2
sin

(α

2

)
sin

(
3α

2

) ∣
∣
∣
∣cL − 1

3

∣
∣
∣
∣ bεD

)

+ ν2 exp

(
3

2
sin2

(α

2

) ∣
∣
∣
∣cL − 1

3

∣
∣
∣
∣ bεD

)

,

(5)

where εD := (
λ‖ − λ⊥

)
represents the microscopic anisotropy of each fascicle. The

numerator in Eq. (4) is in general not equal, mathematically, to the true maximum of
the in-plane signal Sip associated with û2 and therefore underestimates the value of
the signal peak. Similarly, the denominator is in general an overestimation of the true
trough of Sip between the fascicles. The proposed SPSI is therefore a conservative
underestimate of the true peak-to-trough ratio, whichmakes SPSI > 1 a sufficient but
not always necessary condition for signal peaks to be separated, in noiseless settings.
As discussed inmore details below, the true peaks and troughs of Sip, when they exist,
are actually found along directions fairly close to those selected in Eq. (4). When
SPSI > 1, higher SPSI should indicate better orientation estimation performance;
when SPSI < 1, the fascicles are often indistinguishable in the signal and changes
in SPSI values become less interpretable.

Linear encoding maximizes signal contrast. As shown in Fig. 2b, SPSI (cL) is
symmetric around cL = 1

3 and strictly convex on either side of cL = 1
3 . It can thus only

be maximized at the boundaries of the subintervals, i.e., at cL =0, 1
3 or 1. Assuming

SPSI(0) > 1 leads to SPSI( 23 ) = SPSI(0) > 1, by symmetry. Based on the strict
convexity for cL ∈ [

1
3 , 1

]
and because SPSI( 13 ) = 1 (spherical encoding), SPSI(cL)

must then be increasing, not decreasing, for cL ≥ 2
3 . Therefore, SPSI(1)>SPSI( 23 ) =

SPSI(0) holds, i.e., in all cases where ∃cLs.t. SPSI (cL)>1, linear encoding always
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achieves a higherSPSI than planar encoding. Sincemaximizing
∣
∣cL − 1

3

∣
∣maximizes

SPSI, intermediate oblate and prolate encodings are sub-optimal.
Planar encoding provides higher signal. At equal SPSI, Eq. (3) reveals that

planar-like encoding yields higher signal than linear-like encoding with

Sip
(
ϕB; cL = 1

3 −�L
)

Sip
(
ϕB− π

2 ; cL = 1
3 +�L

) = exp

(
b

2
�LεD

)

> 1 ∀ϕB, (6)

valid for any α, ν1, for 0 < �L ≤ 1
3 (the “deviation” from spherical), which is remi-

niscent of the link between εD and a ratio of linear and spherical signal derived in [6].
The signal from fully planar (cL =0) encoding turns out to also exceed that of fully
linear (cL =1) encoding ∀ϕB , for bεD > 0 and ν2 > 0

Sip (ϕB; cL =0)

Sip
(
ϕB− π

2 ; cL =1
)

= exp

(

sin2 (ϕB)
b

2
εD

)

·
[

ν1 + ν2 exp
(
sin (α) sin (2ϕB−α) b

2εD
)

ν1 + ν2 exp (sin (α) sin (2ϕB−α) bεD)

]

> 1.

(7)

Theoretical support for SPSI. The true locations of the extrema of Sip (ϕB) are

roots of its first derivative ∂Sip
∂ϕB

, i.e. solutions of the non-linear equation

ν2 sin (2ϕB) =
ν1 sin (2 (α − ϕB)) exp

(
3

2
sin (α) sin (α − 2ϕB)

(

cL − 1

3

)

bεD

)

.
(8)

As hinted at in the previous section and shown by the circles in Fig. 3, Eq. (8) is in
general not satisfied by the values α, α

2 ,α− π
2 and α−π

2 used in our definition of SPSI
(Eq. (4)). In this section, two particular cases are studied in which Eq. (8) admits
closed-form solutions. Whether these solutions are minima or maxima of Sip is then

determined by the sign of the second derivative ∂2Sip
∂ϕ2

B
.

Equal fascicle contributions. The first special case is ν1=ν2=0.5. Equation (8)
is solved by ϕB = α

2 and ϕB = α−π
2 , yielding candidate extrema along the bisectors

b̂u and b̂n . The second derivative is computed as

∂2Sip
∂ϕ2

B

∣
∣
∣
ϕB= α

2

= 3
2 Ssing

(
α
2

) (
cL − 1

3

)
bεD

[
3
2

(
cL − 1

3

)
bεD sin2 (α) + 2 cos (α)

]

∂2Sip
∂ϕ2

B

∣
∣
∣
ϕB= α−π

2

= 3
2 Ssing

(
α−π
2

) (
cL − 1

3

)
bεD

[
3
2

(
cL − 1

3

)
bεD sin2 (α) − 2 cos (α)

]
,

which actually holds for any value of ν1. This shows that b̂u in planar-like (cL < 1
3 )

and b̂n in linear-like (cL > 1
3 ) encoding are minima, not maxima, when
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Fig. 3 Our proposed (SPSI) accurately approximates the ratio of the true signal peaks and
troughs. The in-plane signal Sip acquired “against” the smaller fascicle (see filled circles) and along
the main or normal bisector (empty circles), used to define SPSI in Eq. (4), seem very close to the
true extrema, when they exist, under the hypotheses of our toy model (ν1 = 0.6 here).

3

2

∣
∣
∣
∣cL − 1

3

∣
∣
∣
∣ bεD >

2 cos (α)

sin2 (α)
. (10)

Equation (10) is satisfied for large enough b, microscopic anisotropy εD , crossing
angle α and anisotropy

∣
∣cL − 1

3

∣
∣, giving linear encoding (with cL =1) an advantage

over planar encoding (with cL =0) as it can reach a value double that of planar
encoding ( 23 vs. 1

3 ). It can reasonably be assumed that these conclusions extend to
the general case ν1 �= ν2 unless ν1 � 0.5 and that, in general, the signal troughs
occur near the locations of the bisectors when Eq. (10) holds, thus justifying the
denominator of Eq. (4) defining SPSI.

Right-angle crossing. The second special case is α = π
2 . Using Eq. (8), the roots

of ∂Sip
∂ϕB

are found to be

sin (2ϕB) = 0 ⇔ ϕB = kπ/2 (k ∈ Z) , (11a)

or cos (2ϕB) = 2 log(ν1/ν2)
3(cL− 1

3 )bεD
. (11b)

Equation (11a) indicates candidate extrema along (ϕB = − π
2 , 0) and perpendicu-

lar (ϕB = 0, π
2 ) to the fascicles. The second derivative of Sip

∂2Sip
∂ϕ2

B

∣
∣
∣
ϕB=0

= 3
(
cL − 1

3

)
bεD

(
ν1Ssing (0) − ν2Ssing

(
π
2

))

∂2Sip
∂ϕ2

B

∣
∣
∣
ϕB=± π

2

= 3
(
cL − 1

3

)
bεD

(
ν2Ssing (0) − ν1Ssing

(
π
2

))

reveals, after using Eq. (1), that acquisitions with physical gradients against the
larger fascicle (ϕB =α in planar-like and ϕB =α− π

2 in linear-like encoding, α= π
2 )
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always correspond to signal maxima ( ∂2Sip
∂ϕ2

B
< 0) and that acquisitions against the

smaller fascicle are also signal maxima whenever

log

(
ν1

ν2

)

<
3

2

∣
∣
∣
∣cL − 1

3

∣
∣
∣
∣ bεD, (13)

which again occurs with sufficiently large b and εD , cL far enough from 1
3 and ν1

close enough to ν2. Equation (11a) and (13) likely describe general trends extending
to the case α ≤ π

2 , justifying the numerator in Eq. (4) defining SPSI.
Condition (13) also guarantees that the cosine in Eq. (11b) takes a value in the

feasible range [−1, 1]. Solving Eq. (11b) then leads to candidate extrema at

ϕB = ±1

2
arccos

(
2 log (ν1/ν2)

3
(
cL − 1

3

)
bεD

)

, (14)

corresponding to locations between the fascicles. Those extrema are minima of Sip
when ∂2Sip

∂ϕ2
B

>0, which is ensured by the sufficient (possibly too restrictive) condition

9

4

(

cL − 1

3

)2

b2εD
2 > 1, (15)

easily attained in practice. Equation (14) further reveals that those signal troughs are
obtained with ûB close to the bisectors b̂u and b̂n , in line with the conclusions of
the previous particular case ν1 = ν2 = 0.5 and justifying the denominator of Eq. (4).
For a relatively extreme case ν1 = 0.8, with 3

2

(
cL − 1

3

)
b=3000s/mm2 and εD =

2.0µm2/ms, the signal troughs are located at |ϕB | = 38.3◦ instead of 45◦, i.e. a
difference of only 14.8%.

In general, a small error on the location of an extremum of a continuously differ-
entiable function leads to a limited error on the signal value since the derivative is
almost zero, and the function thus more or less flat, in the vicinity of an extremum.

3 Methods

Verification of theoretical predictions. The proposed SPSI was computed as a
function of cL , for various values of b and α with ν1=0.6 to verify that SPSI was
systematically maximized, in so far as it ever reached the threshold value of 1,
by linear rather than planar encoding. The in-plane signal Sip was then computed
for various values of b, α, cL with ν1=0.6 to visually verify whether Sip (α) and
Sip (α−π/2) were close to true signal peaks and Sip (α/2) and Sip (α/2−π/2) close
to true signal troughs. The corresponding SPSI was computed for each scenario to
assess that (i) SPSI<1 was associated to in-plane signals that did not exhibit two
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clear, separate peaks; (ii) in regimes where SPSI>1, higher SPSI was linked to
sharper separation of signal peaks; (iii) at fixed SPSI and

∣
∣cL− 1

3

∣
∣< 1

3 , signal for
cL < 1

3 (oblate, planar-like) was higher than for cL > 1
3 (prolate, linear-like).

Robustness of SPSI beyond our toy model. The goal of this experiment was to
(i) verify that SPSI correlated with accuracy of fascicle orientation estimation even
when the assumptions of the toy model, which motivated its definition, were not
met; (ii) evaluate different types of B-tensor encoding at orientation estimation in
the presence of acquisition noise.

In order to account for an intra- and extra-axonal compartment, each fascicle was
modeled by a “stick” (λ⊥ = 0,λ‖ = 2.2µm2/ms) aligned with a zeppelin (λ⊥ =
0.4µm2/ms,λ‖ = 1.5µm2/ms) with lower parallel λ‖ following evidence on small
animals [13], with intra-fascicle signal fractions 0.65 and 0.35 respectively. Values
of ν1=0.6 and α=60◦ were used. The signal was simulated for B-tensors with
b = 3000s/mm2, varying cL ∈ [0, 1] and 200 orientations ûB uniformly distributed
on the sphere. The signal was corrupted by Rician noise with signal-to-noise ratio
(SNR) defined for all cL as SNR = 1

σg
, with σg the standard deviation of the Gaussian

noise process in the receiver coils. For each value of SNR and cL , 90 independent
crossing-fascicle voxels were simulated.

The estimation of fascicle orientation was performed with DIPY [10] routines by
first reconstructing the ODF from the noisy signal and then extracting the maxima
from theODF. Two strategieswere considered to reconstruct theODF. In the first one,
for planar-like encoding (cL<1/3), following [19], the ODF was directly computed
as a spherical harmonics (SH) fit of the DW-MRI signal with maximum degree
l = 10 and a Laplace–Beltrami regularization factor λ = 0.001 [7] while for linear-
like encoding (cL>1/3) the constant solid angle (CSA) model [1] was used. In the
second strategy, constrained spherical deconvolution (CSD) [25] was identically
applied to all encodings. The single-fascicle response function required by CSD
was recursively calibrated in a data-driven way from an initial rotational harmonics
(RH) fit of the signal from a “fat” zeppelin [23] (FA=0.20, trace=2.2µm2/ms)
for each specific B-tensor type. To perform that calibration automatically, 10 single-
fascicle voxels using the same stick-and-zeppelin fascicle model were included. In
theory, this calibration algorithm thus had access to the ideal, although corrupted
by noise, single-fascicle response. In both cases the ODF was computed on 724
points uniformly spread on the unit sphere. An ODF value was considered a peak if
it exceeded the ODF minimum by at least 15% of the total ODF range. A minimum
angular separation of 15◦ between detected maxima was enforced and only the 3
maxima with largest ODF values were kept. The angular error θ was computed by
iterating over the true orientations ûk (k = 1, . . . , Mtrue) as [4]

θ = 1

Mtrue

Mtrue∑

k=1

min
m

{
arccos

(∣∣êm · ûk

∣
∣)} , (16)

where êm is the unit orientation of the m-th detected peak and Mtrue = 2 the true
number of fascicles. The mean angular error was then computed as the mean E [θ]
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over all noise repetitions for each type of encoding at each SNR level. Finally, SPSI
was computed for each tested value of cL using the groundtruth values for b, ν1 and
α but setting εD , which is not defined in the case of a multi-compartment fascicle
model, to a generic value of 1.8µ2ms−1.

4 Results

Verification of theoretical predictions. In Fig. 2b, all SPSI curves crossing the
SPSI = 1 threshold were systematically maximized by linear encoding at cL = 1, as
predicted by theory. SPSI was particularly sensitive toα and b. Figure3 confirms that
the signal values used in Eq. (4) for the SPSI were close to the true peaks and troughs
of Sip when those existed at all and that two distinct signal peaks became apparent
when SPSI ≈ 1. At α = 45◦ for instance, the second peak appeared at b ≈ 3000
with SPSI ≈ 1 for linear encoding (cL =1, green dashes) while for planar encoding
(cL =0, pink lines) the transition occurred between b = 5000 and b = 10 000 with
SPSI increasing from 0.93 to 1.7. In regimes where SPSI > 1, higher SPSI was
associated with sharper signal peaks. Planar encoding signal (cL =0) was higher
than signal from prolate encoding with cL = 2

3 (i.e.,
∣
∣cL− 1

3

∣
∣= 1

3 , continuous pink and
green lines), at identical SPSI.

Robustness of SPSI beyond our toy model. Even in the context of a more
complex multi-fascicle, multi-compartment signal model, lower mean angular error
(MAE) in orientation estimation was linked to higher SPSI, i.e. higher |cL − 1/3|,
as evidenced in Fig. 4. At equal SPSI or |cL − 1/3| (cL ∈ {

0, 2
3

}
and cL ∈ {

1
6 ,

1
2

}
),

oblate performed slightly better than prolate encoding. Linear encoding, which max-
imizes SPSI, consistently outperformed all other encodings across all SNR values.

5 Discussion and Conclusion

Limitations. Because different gradient waveforms g(t) (e.g., pulsed and oscillat-
ing gradients) may lead to the same B, the B-tensor is a convenient but incomplete
representation of a gradient waveform. The zeppelin is also an incomplete picture
of diffusion in a fascicle of aligned axons, ignoring among others undulation, ori-
entation dispersion and diffusion restriction. In practice, the actual physics of the
gradient waveforms and biological features of tissues likely affect the ability of a
sequence to estimate fascicle orientations. Although Fig. 4 suggested robustness to
deviations from model assumptions, our SPSI could be improved with a more real-
istic interaction between tissue and sequence via εD =(

λ‖−λ⊥
)
, by making λ‖ and

λ⊥ functions of, for instance, the sequence’s oscillating frequency, diffusion times,
gradient separation angle and of the tissue’s dispersion, undulation or density. The
proposed index is a signal ratio unaffected by the actual signal intensities, which
Eqs. (6) and (7) have shown can be different at identical SPSI. This facilitated rigor-
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Fig. 4 High SPSI and high signal correlate with better orientation estimation in multi-fascicle,
multi-compartment tissue. Top row: mean angular error (MAE) versus SNR for various types of
axisymmetric B-tensor encodings at b = 3000 s/mm2. Bottom row: example ofODF reconstruction
from noisy DW-MRI. Left: peaks extracted from the signal ODF [19] (planar-like encoding) or the
CSAODF [1] (linear-like encoding). Right: peaks extracted from the CSDODF [25] (all encodings)

ous mathematical analysis but may become problematic when the signal approaches
the noise floor (e.g., high b and low SNR). Finally, future analyses should consider
non axisymmetric B-tensors (i.e. with a non-zero asymmetry factor as in [9]), pos-
sibly via their decomposition into simpler planar, spherical and linear B-tensors, as
well as an extension to three-way fascicle crossings.

SPSI as a tool for sequence design. The proposed SPSI (Eq. (5)) allows encoding
parameters (cL , b) to be tuned to target tissue properties such as the expected crossing
angle α, fascicles’ signal fractions ν1 and microscopic anisotropy εD . Pathological
WM pathways may for instance have low volume and thus low signal contribution
(ν2 ≈ 0) or low bundle coherence (low εD), which may decrease the SPSI at given
cL , b and negatively impact fascicle orientation or ODF estimation. SPSI is a conser-
vativemetric as values less than 1may sometimes be related to in-plane signal already
exhibiting two distinct peaks. Ensuring SPSI > 1 should thus generally provide a
robust safety margin.

Linear versus planar encoding. Linear encodinguniquelymaximizes signal con-
trast via its tensor anisotropy

∣
∣cL − 1

3

∣
∣ (equivalently, |b�| [9]), as shown by Eqs. (5),

(10), (13) and (15). However, Eq. (7) shows that planar always provides higher sig-
nal intensities than linear encoding, which might make planar encoding more robust
to acquisition noise, ignoring any dependence of the SNR on the type of encod-
ing. Our experiments (Fig. 4) showed that linear systematically outperformed planar
encoding, suggesting that the benefits of signal contrast outweigh those of higher
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signal values. Consistent with Eq. (6), oblate performed better than prolate at fixed
SPSI (i.e., identical

∣
∣cL − 1

3

∣
∣), possibly owing to their increased robustness to noise.

Moderately prolate B-tensors (cL ∈[
1
3 ,

2
3

]
) therefore seem to offer little benefit for

fascicle orientation estimation.
Moreover, a practical drawback of general gradient waveforms compared to linear

encoding such as the PGSE is the long durations that they still require to achieve the
high b-values [2, 5, 6, 11, 24] needed to resolve difficult crossings with small angle
or a very dominant fascicle (Eqs. (10), (13), (15)). Longer sequences are subject
to important T2-decay, which adversely affects SNR. Hybrid protocols combining
different types of B-tensor encodings [16], possibly spread over multiple b-values,
may advantageously combine robustness to noise and high signal contrast in fascicle
crossings.
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Improving Tractography Accuracy Using
Dynamic Filtering

Matteo Battocchio, Simona Schiavi, Maxime Descoteaux,
and Alessandro Daducci

Abstract Based on diffusion-weighted magnetic resonance imaging data, tractog-
raphy allows studying the complex structure of the brain white matter. During the
last decade, different approaches showed the benefits of using microstructural infor-
mation to help tractography reconstruction. Filtering methods, in particular, exploit
this information to find the contribution of an input set of streamlines and keep only
the tracts needed to explain the diffusion signal. However, this implies that the accu-
racy of the reconstructions is bounded to the quality of the input tractogram. Here,
we introduce a novel approach able to adapt the position and the shape of the input
streamlines. Our novel approach promotes higher spatial coverage and lower num-
ber of IBs while not affecting VBs, allowing microstructure-informed filtering and
tractography techniques to overcome the limitation imposed by poorly reconstructed
input tractograms.

1 Introduction

The complex organization of the white matter (WM) in the brain can be studied in
vivo using tractography algorithms, which estimate the macroscopic trajectories of
the fibers by exploiting the information in diffusion-weighted magnetic resonance
imaging (DW-MRI) acquisitions. Early tractography algorithmswere based on inte-
gration procedures on the fiber orientations estimated in each voxel to infer fiber

M. Battocchio (B) · S. Schiavi · A. Daducci
Computer Science department, University of Verona, Verona, Italy
e-mail: matteo.battocchio@univr.it

S. Schiavi
e-mail: simona.schiavi@univr.it

A. Daducci
e-mail: alessandro.daducci@univr.it

M. Battocchio · M. Descoteaux
Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
e-mail: Maxime.Descoteaux@USherbrooke.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. Gyori et al. (eds.), Computational Diffusion MRI, Mathematics and Visualization,
https://doi.org/10.1007/978-3-030-73018-5_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73018-5_4&domain=pdf
mailto:matteo.battocchio@univr.it
mailto:simona.schiavi@univr.it
mailto:alessandro.daducci@univr.it
mailto:Maxime.Descoteaux@USherbrooke.ca
https://doi.org/10.1007/978-3-030-73018-5_4


46 M. Battocchio et al.

trajectories; these approaches are very fast but also rather sensitive to estimation
errors of the local orientations. Probabilistic algorithms cope with such local inac-
curacies by using probability distribution functions and propagating the streamlines
by sampling from these distributions. More recent approaches estimate the optimal
configuration of streamlines, i.e., tractogram, byfitting parametricmodels of their tra-
jectories to the measured DW-MRI data [11, 12] using Monte Carlo Markov Chain
(MCMC) stochastic procedures. These methods are computationally heavier but
show improved tractogram reconstruction quality compared to previous approaches
Tractography represents an invaluable tool to study in vivo a wide spectrum of neuro-
logical conditions, but suffers from some critical limitations that affect the accuracy
of the reconstructions [5, 9].

Microstructure Informed Tractography [2] has been recently proposed as a novel
paradigm to improve the quality of the reconstruction, leveraging the assumption that
the microstructural properties of the fibers remain constant along their path. These
methods follow a top-down approach and attempt to identify the optimal subset of
streamlines from an initial set of candidates reconstructed with tractography that are
more compatible with the measured DW-MRI data. For this reason, they are also
referred to as filtering techniques. The Spherical-deconvolution Informed Filtering
of Tractograms (SIFT) and its evolution (SIFT2) [15, 16] use the fiber orientation
distributions in each voxel to filter out implausible streamlines. MicroTrack [14]
proposed to use more advanced biophysical models of the neuronal tissue to charac-
terize the streamline contributions, but the complexity of the algorithm was too high
for its practical application. A big step forward to reduce the dimensionality of the
problem was represented by the Convex Optimization Modeling for Microstructure
Informed Tractography (COMMIT) [1] and the Linear Fascicle Evaluation (LiFE)
[10]. In fact, both approaches use similar formulations and formulate the problem as
a linear system. Notably, COMMIT is a very flexible framework and was recently
improved to consider also anatomical priors in the filtering, e.g., COMMIT2 [13].

These filtering procedures have shown very promising results [13, 17], but the
accuracy of the reconstructions is indissolubly bound to the quality of the input
tractogram. In fact, unlikeMCMC-basedmethods, they assume a static configuration
of streamlines throughout the filtering process, whose position and shape is assumed
to be correctly estimated by the tractography algorithm.

We propose an hybrid procedure with the aim of exploiting the advantages of
both filtering and MCMC-based approaches. Starting from an initial set of stream-
lines estimated with classical tractography , our method can adapt the configuration
of streamlines by alternating the filtering to short runs of classical MCMC-based
techniques. In this work, in particular, we present results obtained using the COM-
MIT framework. Our experiments clearly indicate that the possibility to dynamically
adapt the spatial configuration of the streamlines during the filtering allows overcom-
ing the limitations due to a static input and further improves the reconstructions. The
presented method promotes higher spatial coverage and lower number of IBs while
not affecting VBs, which is shows great potential for microstructure-informed filter-
ing and tractography techniques.
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2 Materials and Methods

Our method is inspired by the work of Lemkaddem et al. [7] and can be divided in
three main steps (see flowchart in Fig. 1):

1. Construction of the initial set of streamlines using tractography . This tractogram
is. first, pre-filtered to remove streamlines prematurely stopping inside the WM
and, then, randomly divided into two groups: the first group, called M , is the
initial set of streamlines we want to optimize and the other one, called A, is an
auxiliary set used as support in the following phase.

2. Parameterization of the streamlines using splines, in order to drastically reduce
the complexity for their representation as well as to guarantee smoothness of their
trajectories.

3. Alteration and evaluation of the streamline configuration following an MCMC-
based optimization approach.

2.1 Initial Set of Streamlines

The input tractogram for our proposed approach can be reconstructed with any arbi-
trary tracking technique. In this work, we used local deterministic SD_STREAM
tracking, implemented in the MRtrix3 toolbox [18]. As mentioned above, the first
operation is the removal of streamlines that do not reach any cortical and/or subcor-
tical structures. Practically, this is done using labeled regions of interest (ROIs).

Fig. 1 Schematic representation of the 3 main steps of the proposed approach
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2.2 Parametric Representation of the Streamlines

MCMC-based algorithms have introduced different parameterization approaches.
The most famous comprehend the adoption of small segments covering the whole
white matter volume, as in [11, 12], or the use of spin glass model as in [3]. These
approaches, however, need a large number of parameters and fine tuning to drive the
spatial optimization. Among the different parameterizations that have been proposed,
B-splines has proven to be a valuable alternative and they have been exploited in
different ways, starting from Jbabdi et al. [4] until the more recent approach of
Lemkaddem et al.

We recall that a B-spline of degree d is a piece-wise concatenation of polynomial
curves joining in correspondence of n + 1 control points, called knots, {Qi }ni=0 as
follow:

X (t) =
n∑

i=0

Ni,d(t)Qi (1)

where Ni,d(t) are B-spline basis functions computed recursively using a sequence of
scalars ti along the curve such that:

Ni,n(t) =
{

0 if t ≤ ti or t ≥ ti+n

�= 0 otherwise
. (2)

One of the main advantages of this formulation is the possibility to reduce the
number of points needed to represent the original input set of streamlines. Indeed,
instead of using all the original points, we can represent our streamlines by setting an
a-priori number of knots (equal for all the streamlines) and using Eq.1 to uniquely
determine each curve. To compute the sequence of knots for each streamline, we
employed the Douglas-Peucker reduction algorithm, which minimizes the number
of knots needed to represent the curve. In particular, this minimization is efficiently
performed by recursively checking that the distance between the original curve and
the simplified one is below a certain imposed threshold defined as “smoothing error”.
Among the variety of different streamline functions, we chose to adopt cubic B-
splines , named Catmull-Rom. This class of splines is characterized by the fact
that the knots are a subset of the points composing the original streamline and,
in particular, the first and the last knots coincide with the first and last point of
the streamline. The fact that the control points are chosen along the streamline,
combined with the use of cubic polynomial curves for the interpolation, ensures that
the corresponding spline has a similar shape of the original streamline. This, in turn,
permits to discard curves that lie outside the WM or that do not connect gray matter
(GM) regions. Besides being easy to handle, the Catmull-Rom’s splines presents
also other convenient characteristics: they are able to approximate a large variety
of smooth trajectories, making them particularly suitable to represent anatomically
plausible WM pathways and, at the same time, they are fast to compute.
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2.3 Optimization

The optimization step is driven by a Bayesian approach which allows to exploit
global information to guide the streamlines adaptation. We consider the model M
as the spatial configuration of the streamlines and the set of its control points as
the parameters of the model. According to the Bayesian theory, we can infer on the
posterior distributions of these parameters based on the observed data D and the data
generated by M . The inference, then, can be used to influence the parameters by
back-propagation. The goal of our method is to find the model that better explains
the data, i.e., the one that maximizes the posterior probability P(M |D):

P(M |D) = P(D|M)P(M)

P(D)
. (3)

In order to draw samples from the posterior distribution of the parameters, we
used MCMC as an approximate inference algorithm. Based on the expectation-
maximization approach, the idea is that by alternatively computing the expected
values of the unobserved variables while maximizing the posterior, the process con-
verges to the maximum likelihood values of the parameters. In practice, this implies
the minimization of a loss function measuring the error between the model and the
observed data. In our case, the error related to the model E(M, D) is defined as:

E(M, D) = RMSE(M, D) (4)

where

RMSE(M, D) =
√√√√

(
1

n

) n∑

i=1

(Mi − Di )2 (5)

is the voxel-wise error between the reconstructed signal obtained using the proposed
model M and the observed data D. It is worth to notice that the representation of the
streamlines using control points does not affect the computation of the voxel-wise
error because each smoothed streamline covers continuously the voxel traversed.

Finally, a configuration is accepted or rejected based on the Metropolis Hasting
criterion combined with a simulated annealing approach [6]. This implies that a
configuration Mt is automatically accepted if E(Mt , D) < E(Mt−1, D), while an
eventual increase is admitted proportionally to its magnitude and a “system temper-
ature” factor T , accordingly to the Green’s ratio:

R = exp−E(M ′,D)/T . (6)

Based on the simulated annealing approach, at the beginning, the system is char-
acterized by a high temperature (T ), which decreases as the process advances. High
values of T imply that “bad” configurations are accepted, allowing the system to
explore a wider range of configurations. In previous works, it has been shown how a
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geometric lowering schedule of the temperature ensures the convergence [8] and, at
the same time, improves the chances to sample from maxima of P(M |D). Starting
from a model M we explore the space of its parameters by altering the configuration.

Adapting Shape and Position of Streamlines

We implemented three different proposals to alter the configuration of streamlines:

1. Move streamline’s control points
2. Add a streamline to the set M from the set A
3. Remove a streamline from the set M and add it to A.

With the first proposal we randomly choose a streamline from the set M and we
alter its trajectory. This is performed in two possible ways: either by moving one
control point or by translating the whole streamline (i.e. simultaneously translate all
the control points). In the first case, to find the new spatial position of the control
point we sampled the new coordinates from a Gaussian distribution centered around
the original position of that point. To reduce the degrees of freedom of this step, we
fixed the magnitude of the movement to half of the voxel dimension.

The secondproposal consists in randomly choosing a streamline from the auxiliary
set A and append it to M . Vice versa, the third proposal removes a random streamline
from M and add it to A.

2.4 Data and Experiments

To show the effectiveness of the method, we tested its performances on two differ-
ent synthetic configurations created with Phantomas,1 an open source software that
allows manually defining 3D geometries of fiber bundles as well as generating the
corresponding DW-MRI signal. In both cases, we simulated an acquisition protocol
with 64 directions at b-value=3000s/mm2, 1mm isotropic voxel and signal-to-noise
ratio of 30.

Dataset 1. As a proof of concept, we created a simple configuration consisting of
a single straight bundle without noise. The input tractogramwas composed by 10000
streamlines, keeping only those covering the superior part of the WM volume (see
Fig. 2 left).

Dataset 2. We then assessed the performance on a more challenging bundle con-
figuration represented by the dataset provided for the IEEE International Symposium
onBiomedical Imaging (ISBI) 2013Reconstruction Challenge . This dataset consists
of 27 bundles arranged in a configuration mimicking the majority of the troublesome
scenarios that can be found in the brain. These include branching, kissing, crossing

1 http://www.emmanuelcaruyer.com/phantomas.php.

http://www.emmanuelcaruyer.com/phantomas.php
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Fig. 2 Single bundle dataset: on the left is shown the input tractogram. The tractogram is composed
by a set of packed streamlines covering only the superior part of the bundle. The underlying map
represents the RMSE computed between the corresponding reconstructed diffusion signal and the
observed one. On the right we show the resulting configuration after optimization with out method
and the corresponding RMSE map

structures with various diameters and at different angles. From the signal reconstruc-
tion point of view, the phantom reproduces both partial volume effects, given by the
presence of multiple fiber compartments within the same voxel and cerebrospinal
fluid (CSF) contamination. As for the previous dataset, the input tractogram was
reconstructed using SD_STREAMwith standard parameters, discarding streamlines
shorter than 5mm. To quantitatively evaluate the performances of our method on this
phantom, we carried out also the connectivity analysis, comparing the configurations
against the known ground-truth (GT); in particular, we assess the number of valid
bundles (VBs), i.e., bundles connecting regions known to be connected, as well as
the invalid bundles (IBs), i.e., those connecting regions known to be disconnected.
We also report the WM volume coverage based on the valid streamlines for each
input tractogram and the associated RMSE.

3 Results and Discussion

The single bundle configuration allows to highlight the potential of the method in
adapting the position of the streamlines in order to better cover the WM volume.
Starting from a set of streamlines covering only the superior part of the created
phantom (see Fig. 2 left), COMMIT finds the contributions for each one, discarding
some of the redundant that are not necessary to explain the diffusion signal. However,
this does not improve theRMSEbecause the streamline spatial configuration remains
fixed, which, in this case, implies that the bundle remains under-represented, as
shown by the underlying RMSE map. The result of the optimization performed by
our method is reported in Fig. 2 right. The output set of streamlines has been moved
and adapted to better cover the entire volume of the bundle which, in turn, decreases
the differences between the observed and the reconstructed signals shown by the
RMSE map below.

Results of the optimization on the second dataset are reported in Fig. 3. At the top
of the first column, we show the geometry of the dataset and, at the bottom, the plot
of the RMSE values across the optimization process. The descending trend of the
error shows that the streamlines adaptation leads to a configuration that better explain
the observed signal. In the second column we compare the RMSE map of the input
configuration filtered by COMMIT, with the one computed from the optimized trac-
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Fig. 3 ISBI 2013 dataset: at the top of the first column is shown the geometry of the phantom and
at the bottom the plot of the RMSE values across the optimization process. The second and the third
columns shows, respectively the RMSE maps and streamline configurations corresponding to the
input tractogram filtered by COMMIT (top) and to the optimized configuration (bottom)

togram. In the third column we report the corresponding configurations, highlighting
the impact of our approach on the framed vertical bundle in particular. Starting from
an underrepresented bundle, the method is able to better distribute the streamlines
inside the WM volume, reducing the difference between the reconstructed and the
observed diffusion signal.

Table1 shows the potential of the presented method with respect to connectivity
analysis and compared the quality of the input tractogram, after filtering it withCOM-
MIT andwith ourmethod. Our results show that ourmethod is able to simultaneously
reduce the complexity of the entire tractogram while improving the reconstruction
quality. In fact, by increasing the quality of the reconstructions, we were also able to
better discriminate between valid and invalid connections, consequently promoting
the removal of more false positives. Also, besides decreasing the fitting error, the
optimized configuration has a betterWMvolume coverage, less IBs, stable VBs with
75% less streamlines.

Finally, it is worth to notice that our formulation is completely independent on
how the signal reconstruction is performed, meaning that also other state-of-the-art
filtering approaches, e.g., SIFT, SIFT2, LiFE and COMMIT2c, may benefit from the
proposed hybrid procedure; future work will be devoted to testing this hypothesis.
Also,wewill enhance the optimization of configurations characterized by completely
unrepresented bundles which, at the moment, are more difficult to reconstruct.
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Table 1 Quantitative comparison between the input tractogram (first row), after filtering it with
COMMIT (middle) and with the proposed method (bottom row)

Tractograms VBs IBs WM coverage
(%)

# streamlines RMSE

Raw 27 94 73.4 50,205

COMMIT 27 88 72.7 20,366 0.049 ± 0.056

COMMIT +
dynamic
filtering

27 83 92.8 12,444 0.028 ± 0.031

4 Conclusions

Nowadays, the ability of state-of-the-art filtering techniques to improve the accuracy
of the tractograms heavily depends on the quality of input tractograms themselves.
In this work, we showed how the possibility of adjusting the streamlines configu-
ration during the filtering allows improving further the quality of the tractography
reconstruction, both from the qualitative and the quantitative point of view.

We believe that our method could support microstructure-informed techniques by
increasing the quality of the reconstruction and helping in the characterization of the
brain structural connectivity.
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Diffeomorphic Alignment of Along-Tract
Diffusion Profiles from Tractography

David S. Lee, Ashish Sahib, Antoni Kubicki, Katherine L. Narr,
Roger P. Woods, and Shantanu H. Joshi

Abstract Along-tract diffusion measure profiles from white matter fiber tracts have
been widely analyzed in population studies of neurodevelopment and disease. An
implicit assumption in performing inter-subject comparisons is a one-to-one corre-
spondence of the profiles across subjects. Further, the profiles may also exhibit noise
and spatial variability due to misregistration, tractography algorithms, interpolation
methods, or inter-subject differences in the population. We present an approach to
minimize the variability in the shape of along-tract diffusion profiles by perform-
ing diffeomorphic alignment across the tracts as well as across the population. The
method represents the tract profiles as configuration functions and defines an objec-
tive function to align configurations byminimizingover both global and localwarping
functions. Following alignment, we show decrease in variability using the measures
of coefficient of variability and intraclass correlation coefficients. We also introduce
a new measure of inter-tract correlation, obtained by correlation of diffusion profiles
between a pair of tracts of interest. We demonstrate our methods in a population of
healthy individuals as well as show reliability analysis in subjects scanned twice.

1 Introduction

Techniques in diffusion tractography have facilitated the quantification and analysis
of the white matter fibers and anatomical connectivity within the brain. Often, fiber
bundles are collapsed into characteristic fibers that conveniently allow representa-
tion and analysis of diffusion properties along them. Then, along-tract metrics are
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obtained by sampling the voxelwise diffusionmeasures along the length of the fibers.
These along-tract diffusion profiles have complemented both the conventional voxel-
based statistical analysis and network connectivity mapping from tractography by
offering means of investigating the local diffusion properties along anatomically rel-
evant fiber tracts. Based on a number of well-established tools for automatically seg-
menting established fiber tracts [5, 15, 17] and computing the along-tract diffusion
profiles [16], many studies have demonstrated the clinical potential of along-tract
diffusion profiles in characterizing cognition, healthy aging, and neuropsychiatric
conditions [8, 11, 13]. In order to perform inter-subject comparisons, a representa-
tive along-tract diffusion profile is computed for each tract of interest. The underlying
assumption of the inter-subject comparison of the along-tract diffusion profiles is one-
to-one correspondence among the diffusion profiles across a population of subjects.
While this is a valid approach, especially when all diffusion images are registered
to a common template, there may remain inter-subject variability in the extracted
diffusion profiles that is not accounted for with voxelwise spatial registration. This
problem of correspondence of diffusion profiles has only been recently posed by
researchers, who have proposed two methods to account for such variability. The
approach by St-Jean et al. achieves diffusion profile realignment based on maximiz-
ing the Fourier-transform based cross-correlation among along-tract profiles across
subjects [12]. Another elegant approach introduces a novel measure of Fiber-Flux
Diffusion Density that integrates the diffusion and geometric properties along the
length of the fiber, and performs alignment by minimizing the dissimilarity among
the fibers using a fast marching method [3].

Contributions

In this paperwe propose a newmethodwherewe seek invariance to the spatial param-
eterization of the diffusion profiles by aligning the along-tract diffusion profiles based
on their shapes. Our approach relies on explicit representations of diffusion profiles
and is fully invariant to the spatial parameterization of the profiles. Additionally,
we propose to represent the fiber profiles by a vector configuration function for the
entire brain. This allows both global (subject-wise) and local (tract-wise) alignment
of diffusion profiles. We summarize our contributions as follows. (1) Our method
enables a global and local joint alignment of diffusion profiles. (2) The representation
is fully invariant to translation and scale, and the diffeomorphic alignment scheme
achieves invariance to spatial parameterization. (3) The joint objective function is
solved using alternating minimization over global and local parameterizations and
uses a derivative-free coordinate-descent approach for optimization. (4)We introduce
a new measure for subjects-wise inter-tract correlations that computes spatial corre-
lations between pairs of diffusion profiles. This results in a subjects-wise correlation
matrix that reflects the relationships between pairs of white matter fiber tractsbased
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on the along-tract diffusion profiles. We present results on a population of healthy
subjects as well as show reliability analysis on a limited sample of subjects scanned
twice.

2 Alignment of Along-Tract Diffusion Measure Profiles

In this section, we describe the representation scheme of diffusion profiles and pro-
pose an objective function for their tract-wise, across-subject alignment. The fiber
bundles are collapsed to a representative characteristic path usually computed as a
minimizer of geometric information, or diffusion information or both [9, 16]. In this
paper, we use the method by Yeatman et al. [16] to compute the characteristic paths
and extract fractional anisotropy (FA) as the diffusion measure along the tracts.

2.1 Representation

For N tracts per subject and K subjects, we use a vector function to represent the
subject-wise configuration of characteristic FA profiles. Let X1, X2, . . . , XK be the
configuration functions for K subjects, where Xi ∈ L

2([0, 1],RN ). We resample all
FA profiles to unit length. Then the configuration function for N tracts is given by

Xi ≡ (xi1, x
i
2, . . . , x

i
j , . . . , x

i
N )T , (1)

such that x j (s) : [0, 1] → R,∀s ∈ [0, 1]. For the purpose of matching, we enforce
constraints on scale and translation. To achieve invariance to translation, we center
the configuration Xi as ∼

Xi= Xi − Xi , (2)

where Xi is the mean of the coordinates of Xi . To achieve invariance to scale, we

divide
∼
Xi by its norm such that

∼
Xi SC=

∼
Xi∥

∥
∥
∥

∼
Xi

∥
∥
∥
∥

, where ‖·‖ is the standard L
2 norm

given by ‖X‖ =
√

〈

X, X
〉

L2 =
√∫ 1

0

∑n
j=1 x

2
j (s)ds. With a slight abuse of notation,

we refer to the scale and translation invariant diffusion profile configurations X̃i SC

as Xi throughout the paper.
We define a smooth vector-valued function Φ ∈ L

2([0, 1],RN ) given by Φ ≡
(φ1,φ2, . . . ,φ j , . . . ,φN )T , whereφ j is a one-dimensional function.We also enforce
a differentiability constraint on the inverse of φ j . Thus φ j ∈ Diff+([0, 1]) is an
element of a set of diffeomorphisms on the unit interval. Next, we define an element-
wise composition operator (·) such that
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X · Φ ≡ (x1 ◦ φ1, x2 ◦ φ2, . . . , x j ◦ φ j , . . . , xN ◦ φN )T . (3)

The functionΦ encodes local warping functions in the form of φ j . The application of
Φ to X results in a local independent update to each of the tracts in the configuration
profile. However, if φ1 = φ2 = . . . = φN , then Φ can also be thought of as a global
warping function where all tracts are transformed in the same manner.

Finally, we introduce a smooth global warping function � ∈ Diff+([0, 1]), such
that �̇ > 0,∀s ∈ [0, 1]. This global warping function can be applied to Φ by a com-
position operator as (Φ, �) 	→ Φ ◦ �. This application of the warping function �

results in a global update of all the tracts in the configuration profile.

2.2 Objective Function for Joint Alignment

Our goal is to register the diffusion profiles across subjects both locally and globally
by aligning features corresponding to peaks and valleys along the diffusion pro-
files. Further, we prefer that this alignment be invariant to the set of diffeomorphic
transformations applied along the domain of parameterization ∀s ∈ [0, 1].

Thus given a pair of diffusion profiles for two subjects X1 and X2, we propose a
joint objective function that encodes non-linear mappings of diffusion profiles both
at the tract-level and the subject level. This objective function is defined as

E = inf
Φ,�

‖X1 − X2 · Φ ◦ �‖2 . (4)

We note that the operators · and ◦ do not commute and in general will yield different
solutions if the order of Φ and � is interchanged for the objective function E .
However, we suggest that tracts of the same type across subjects will exhibit lower
discrepancy than tracts of different types in a single subject. Thus we suppose that
the misalignment errors due to the local warping function Φ will in general be
proportionately lower than the errors due to the global warping function�. Therefore
we fix the order of the operators and the warping function as shown in Eq.4.

2.3 Alternating Minimization for Subject-Level
and Tract-Level Alignment

Instead of writing the full gradient of Eq. 4 and using gradient-descent we use
dynamic programming to obtain an approximate solution. If one assumes � in Eq.4
to be identity (� = s), then Φ can be obtained by solving
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Φ̂ = argmin
Φ

∫ 1

0

N
∑

j=1

(

x1j (s) − x2j (φ j (s))
)2
ds. (5)

Alternatively, if we assume Φ to be comprised of identity functions (φ1 = φ2 =
. . . = φN = s), then � can be obtained by solving

�̂ = argmin
�

∫ 1

0

n
∑

j=1

(

x1j (s) − x2j (�(s))
)2
ds. (6)

We discretize Eq.6 by restricting to a finite sampling of the diffusion profiles
denoted by T . We then define an uniform T × T grid with samples 0 ≤ p, q ≤
T − 1, and compute the discretized version of the cumulative energy (independently
for Eqs. 5 and 6) at each point (p, q) while enforcing a positivity constraint on the
derivatives Φ̇ > 0 and �̇ > 0 respectively. Since the cost functions given in Eqs. 5
and 6 are additive on the possible paths φ j and � over s, there are several algorithms
including recursive approaches to solve this problem. In this paper, we solve both
equations by employing a two-pass update scheme, where the first pass updates a
cumulative energy function over each node (p, q), and uses this cumulative energy
to construct the paths φ j and � by interpolating along the valleys of the cumulative
energy during the second pass. Since the cumulative energy cost can be recursively
defined at each node, we obtain a global solution for Φ̂ and �̂ from Eqs. 5 and 6
respectively.

To solveEq.4,weuse a combination of alternatingminimization over the variables
Φ and γ to solve the underlying sub-problems given by Eqs.5 and 6. Further, to
solve Eq.5, we employ a coordinate descent minimization scheme over the sub-
variables {φ1, . . . ,φN }. Both these procedures involve solving for 1−dimensional
local warping functions {φ1, . . . ,φN } at each step and combining the results with the
solutions obtained for a 1−dimensional global warping function �. The coordinate-
descent approach suitably lends itself to a derivative-free minimization as long as
we can solve for the minimizer of each coordinate function. Algorithm 1 outlines
the detailed steps for the minimization procedure. A MATLAB® implementation
of Algorithm 1 on a 3.1GHz Intel Core i7 platform for a discretization T = 100
efficiently executes in less than 15 seconds for aligning a pair of subjects.

3 Results

3.1 Data

We apply our algorithm to a subset of n = 43 healthy adult subjects (Age: 32.2 ±
11.8, Sex: 21M/22F). To demonstrate the reliability of the algorithm, we also show
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Algorithm1:AlternatingMinimization for global Subject-level and local Tract-
level Diffusion Profile Alignment
Input: X1, X2, . . . , XK as the configuration profiles for K subjects

Output: Aligned
∼
X1,

∼
X2, . . . ,

∼
XK configuration profiles for K subjects

1 X ← 1
K

∑

i Xi , s.t. x j ← 1
K

∑K
i=1 x

i
j

2 � ← s
3 for i ← 1 to K do

4
∼
Xi ← Xi

5 �e ← ∥
∥X − Xi

∥
∥

6 Φ ← (s, s, . . . , s)T ,where s : [0, 1] → [0, 1] is an identity function.
7 while �e > ε do
8 for k ← 1 to N do
9 Φ̂ ← argminφk

bigintssss10
∑n

j=1

(

x j (s) − xij (φ j (s))
)2
dt

10
∼
Xi ← Xi · Φ̂

11 �̂ ← argmin�

∫ 1

0

∑n
j=1

(

x j (s) − x̃ ij (�(s))
)2
dt

12
∼
Xi ← ∼

Xi ◦ �̂

13 end

14 �e ←
∥
∥
∥
∥
X − ∼

Xi

∥
∥
∥
∥

15 end
16 end

results on a healthy population of n = 12 adult subjects scanned at two time points
(Age: 28.9 ± 7.0, Sex: 7M/5F).

Image Acquisition and Preprocessing

We obtained diffusion-weighted and structural images using a 3T Siemens Prisma
scanner and a 32-channel head coil. Diffusion-weighted images were acquired
using a spin-echo echo planar sequence (EPI), which included 14 reference images
(b = 0 s/mm2), and multishell images (b = 1500, 3000 s/mm2) with 92 gradient
directions for each shell (repetition time (TR)/echo time (TE)=3230ms/89.2ms, voxel
size=1.5mm3), with two runs for each of anterior-posterior and posterior-anterior
gradient directions. The structural image was acquired using a T1-weighted multi-
echo magnetization prepared rapid gradient echo sequence (TR/TE=2500ms/ 1.81,
1.79, 7.18ms, inversion time (TI)=1000ms, voxel size=0.8mm3).We followed the
Human Connectome Project minimal preprocessing pipeline to process the imaging
data [6]. The diffusion weighted images were corrected for EPI susceptibility and
eddy current distortions using FSL’s topup tool, and eddy tool, respectively [1]. T1-
weighted images were first processed with Freesurfer’s recon-all pipeline, produc-
ing cortical parcellations and subcortical segmentations [4]. T1-weighted structural
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images were registered to Montreal Neurological Institute (MNI) 152 T1 standard
space for anterior commissure—posterior commissure (AC-PC) alignment, and each
subject’s diffusion weighted image was registered to the structural image [6].

Tractography and Along-Tract Diffusion Measure Extraction

Whole brain tractography was performed with MRtrix3, using multi-tissue multi-
shell anatomically-constrained spherical deconvolution from the estimated fiber ori-
entation distribution functions (step size 0.75mm, angle threshold 45◦, amplitude
threshold0.05,min/maxfiber length3/250mm), followedby spherical-deconvolution
informed filtering of tractograms to obtain more biologically relevant fibers, ulti-
mately producing 10 million fibers for each subject [7]. FA maps were obtained by
tensor construction using FSL’s DTIFIT tool [2].

Whole brain fiber tracts were segmented into 20 fiber groups; Left (L) and Right
(R) Thalamic Radiation (Th Rad), Corticospinal Tract (CST), Cingulate Cingu-
lum (CnCn), Cingulate Hippocampus (CnHp), Inferior Fronto-Occipital Fasciculus
(IFOF), Superior/Inferior Longitudinal Fasciulus (SLF/ILF), Uncinate (Unc), and
Arcuate (Arc), and Corpus Callosum Forceps Major/Minor (CC F Maj/Min) using
Automated Fiber Quantification (AFQ) [16]. Pairs of ROIs predefined on a standard
white matter atlas were warped to the subject’s native space, and the fibers that pass
through the pair of ROIs were classified into a fiber group. The spurious fibers in the
resulting fiber groups were filtered, the FA values along the fibers of each fiber group
were sampled across 100 points, and the along-tract FA profile was computed across
the length of a representative superfiber of each fiber group, based on the average of
the along-tract FA profile for all fibers in the fiber group weighted by the inverse of
each fiber’s distance from the superfiber [16]. An example of the 20 fiber groups and
their representative superfibers are shown in Fig. 1. The along-tract FA values are
overlaid in color, reflecting the local variability of the FA measure along the length
of the fibers.

Fig. 1 Example of 20
superfibers overlaid with
color-coded FA
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Fig. 2 FA profiles before and after alignment

3.2 Along-Tract FA Profiles Before and After Joint
Alignment

Figure2 shows the along-tract FAprofiles across all healthy control subjects (n = 43)
before and after alignment for the 20 fiber groups. Visually, the aligned outputs show
enhancements in prominent features along the tracts. These improved alignments
across peaks and valleys of the FA measures are increasingly visible in tracts with
very low variability such as the L/R Th Rad. It is also observed that there may be
common underlying patterns for the FA profiles along the tract, which are highlighted
after alignment.

3.3 Reduced Coefficient of Variation

To quantitatively analyze the effect of the alignment of along-tract diffusion profiles,
we computed the coefficient of variation (CV) along the length of each tract before
and after alignment (Fig. 3). CV is also equivalent to the inverse of the temporal signal
to noise ratio (tSNR) commonly used in fMRI literature to evaluate data quality.
Defined as μ

σ
, where μ and σ are the mean and standard deviation of the diffusion

profiles at each point on the fiber for each tract across the population respectively, CV
quantifies the variability of the along-tract diffusion profiles across the population.
In accordance with the alignment results in Fig. 2 with the visual inspection of the
along-tract profiles in Fig. 3, we observe lower CVs following alignment in many
locations along several of the 20 superfibers (also overlaid on the tracts in Fig. 4).
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Fig. 3 Reduction in the along-tract spatial coefficient of variation after alignment

3.4 Subject-Wise Inter-tract Correlations

Here, we introduce a new subject-wise measure of inter-tract correlation. Different
from the population-level inter-tract correlation byWahl et al. [14], which correlates
mean FAvalues of a pair of tracts at the population-level, we propose the computation
of the spatial correlation of the full along-tract FA profile between a pair of tracts for
each individual subject. This yields a subject-specific correlation matrix that could
be potentially used for investigating relationships between the fiber tracts for each
individual, and for performing statistical analyses across groups of subjects.

To evaluate the significance of the inter-tract correlations within a group of sub-
jects, we performed a one-sample t-test on the correlation value for each tract-pair
node against the null hypothesis of zero. To statistically compare the inter-tract cor-
relations between two groups of subjects, we performed a paired t-test between the
unaligned and the aligned profiles along the length of each tract. All results, shown
in Fig. 5, were corrected for multiple comparison by controlling for false discov-
ery rate (FDR) at q = 0.05. Although the within-group inter-tract correlations were
significant both in the original and the aligned data (first and second columns), we
observed an increase in the inter-tract correlations after alignment (third column).
We also noted that since the profiles of the Th Rad and the CST demonstrate mirrored
shapes, we observed a significant negative inter-tract correlation between them.
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Fig. 4 Spatial coefficient of variation overlaid on the tract profiles

Fig. 5 Inter-tract correlations for healthy subjects for original data (left) and aligned data (middle).
The right panel shows inter-tract correlation differences between the original and aligned data
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3.5 Intraclass Correlation Coefficient for Reliability Across
Time Points

To evaluate the reliability of diffusion profiles for a subset of subjects (N = 12)
scanned twice, we registered the diffusion profiles across the two time points to
the extrinsic (Euclidean mean) of the configurations and computed the intraclass
correlation coefficient (ICC) before and after alignment [10]. Figure6 shows a large
improvement in ICC in parts of fiber groups (L CST, L/R CnHp, R ILF, L Unc),
whereas only marginal improvement in other groups. We also note that several fiber
groups already showed high ICCs in the original data. Although tested on a small
sample, this finding provides additional support for the potential utility of along-tract
profiles in diffusion imaging studies of health and disease. We also computed ICC
to evaluate the reliability of inter-tract correlations across two timepoints. As seen in
Fig. 7, ICC of the inter-tract correlations significantly increases throughout the fiber
groups after alignment. The ICC for the inter-tract correlations with L IFOF remains
low across almost all fiber groups. This may be due to the presence of high variability
or noise in FA for L IFOF. This is also confirmed from Fig. 2, which shows noisy
FA profiles for L IFOF as well as Fig. 3, where its CV is the highest among all fiber
groups.

Fig. 6 Pointwise intraclass correlations along the tract profiles before and after alignment
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Fig. 7 Intraclass correlations performed on intertract correlations before and after alignment

4 Discussion

We presented a framework for the diffeomorphic alignment of along-tract diffusion
measure profiles, by tract-wise registration, followed by a global reparameterization
across all tracts between a pair of subjects. This joint alignment provides means to
reduce the variability of diffusion profiles across the population by matching the
shape of individual profiles to that of a template by minimizing over the spatial
parameterization of the domain along the fiber tract. Reduction in the coefficient of
variability (CV), and improvements in intraclass correlation coefficients (ICC) fol-
lowing alignment suggests that the consistency between the diffusion profiles across
subjects has been improved. Improvement in CV is particularly evident in regions
where fibers are passing near each other, for example, intersections between CST
and the tracts oriented anterior-posterior-wise, such as cingulum, SLF, ILF, IFOF.
This may suggest that each tract’s diffusion profiles in the vicinity of crossroads may
be affected by its neighboring fibers, and the overall variability may be reduced by
performing both tract-wise and subject-wise alignment. We further introduced the
subject-wise inter-tract correlation metric, by computing the correlation of diffusion
profiles between pairs of tracts. The correlations between fiber tracts were enhanced
after the diffeomorphic alignment, which may be attributed to improved coherence
of the tract profiles across the subjects. The increase in the ICC of inter-tract cor-
relations further supports the consistency of the diffusion profiles obtained with the
diffeomorphic alignment. Our future work will be focused on validating alignments
in noisy data and to determine whether the alignment reflects a true reduction of
biological variability.
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Direct Reconstruction of Crossing
Muscle Fibers in the Human Tongue
Using a Deep Neural Network

Muhan Shao, Aaron Carass, Arnold D. Gomez, Jiachen Zhuo, Xiao Liang,
Maureen Stone, and Jerry L. Prince

Abstract The human tongue is made entirely of muscle fibers that either group in
a single direction or cross orthogonally in pairs. Reconstructing the muscle fiber
orientations throughout the tongue can be beneficial for better understanding the
tongue’s function in speaking, swallowing, and breathing. Diffusion weighted imag-
ing (DWI) can quantify the anisotropic diffusion of water in muscle and has been
used to image tongue muscles. To resolve crossing muscle fibers in the tongue, high
angular resolution diffusion imaging (HARDI) can be used to capture the complex
fiber configuration. However, existing fiber reconstruction methods, which primarily
focus on white matter tracts in the human brain, do not account for the orthogonal
nature of the crossing muscle fibers in the tongue. In this paper, we propose a deep
convolutional neural network to directly reconstruct the crossing muscle fiber orien-
tations in the tongue from HARDI. The network takes the spherical harmonics (SH)
coefficients of the HARDI signals as input and estimates both the SH coefficients of
the fiber orientation distribution function (fODF) and the fiber orientations as out-
puts. Signals from neighboring voxels are incorporated in each estimate to encourage
spatial consistency and a novel separation loss is used to encourage orthogonality of
the crossing fibers. The network predicts the fiber orientations in a fully automatic
manner, without setting a threshold to extract peaks. The proposed method provides
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superior quantitative performance compared to two state-of-the-art methods when
evaluated on synthetic tongue data with different noise levels. Application to post-
mortem human tongue data revealed the complex muscle fibers of the human tongue
and showed qualitative improvements over the competing methods.

1 Introduction

The tongue plays an important role in multiple vital human functions including
breathing, swallowing, and speaking [17]. These functions are possible because
the tongue can produce complex deformations with its muscle architecture. This
muscle architecture consists of intrinsic muscles including the transversalis (T),
verticalis (V), superior (SL) and inferior longitudinalis (IL), and extrinsic muscles
including the genioglossus (GG), hyoglossus (HG), styloglossus (SG), and genio-
hyoid (GH). The tongue muscle fibers are extensively interdigitated and orthogonal
in three dimensions [9]. Some regions contain a single fiber orientation, but most
regions are interdigitated with two fiber orientations crossing at approximately 90◦.
Figure1 shows a T2-weightedmagnetic resonance imaging (MRI) of a human tongue
and idealized tongue muscle fiber orientations from a fiber orientation model [7].

There are compelling scientific reasons to obtain a better understanding of the
relationship between individual tongue muscles and the complex functions [21].
Diffusion weighted MRI (DWI) has been used to image tongue muscle architec-
ture and interpret its function [5, 16, 21]. To discriminate crossing fibers within the
same voxel, high angular resolution diffusion imaging (HARDI) [20] can be used.
Numerous methods have been proposed to reconstruct fibers from HARDI data
[2, 3, 18, 19], including some recently proposed deep learning based methods

Fig. 1 a Mid-sagittal slice of a T2-w MRI of a human tongue. S: superior; P: posterior. b Tongue
muscle fiber orientations generated based on a mechanical tongue model [7]. The muscle groups in
b are: verticalis (V), genioglossus (GG), geniohyoid (GH), superior longitudinalis (SL), transver-
salis (T). The fiber orientations are conventionally color-coded (red: right-left, green: anterior-
posterior, blue: inferior-superior)
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[11–14]. These methods were designed for brain tissue, and do not account for
the orthogonal nature of the crossing muscle fibers in the tongue.

In this paper, we propose a deep convolutional neural network (CNN) to directly
reconstruct the fiber orientations. Both the HARDI signal and the fiber orientation
distribution function (fODF) can be completely represented by the spherical har-
monic (SH) coefficients. Neighboring information is incorporated using convolu-
tional layers to make the fibers spatially consistent. The major contributions of this
paper can be summarized as:

– We propose an algorithm that can reconstruct both the fODF and the fiber orien-
tations from HARDI tongue data in a fully automatic manner.

– We introduce a separation loss during training to encourage orthogonality of the
predicted crossing fibers, which is critical in tonguemuscle fiber orientation recon-
struction.

2 Methods

2.1 Training Data and Ground Truth

We used data from [22] as training data for the proposed CNN. The ground truth fiber
orientations and the corresponding volume fractions were generated by applying the
multi-fiber ball-and-stick method [2] on the brain of a healthy subject. In our exper-
iments, up to two fibers per voxel were chosen to synthesize the training data, which
is consistent with the tongue anatomy. The synthetic DW images were created using
a multi-tensor model [20] with the diffusion-weighting b = 1000 s/mm2 applied in
60, 90, or 120 diffusion directions in different images. In each image, Rician noise
was added to the synthesized signal. The signal-to-noise ratio (SNR) of the synthetic
DWI was set to 9, 18, or 36 in different images. The fiber orientations and fractions
formed the fODF and can be represented as SH coefficients.

2.2 Fiber Estimation Network

Given HARDI data of a human tongue, our goal is to estimate the number of muscle
fibers and the corresponding fiber orientations at each voxel. To ensure that the
network can be applied toHARDI datawith different numbers of diffusion directions,
the input to the network is defined as the SH coefficients of the HARDI signal, which
are calculated by least-squares linear fitting to the HARDI signal, as in [18]. The
output at each voxel is divided into two parts. The first part is the SH coefficients of
the fODF. The second part contains two binary terms indicating if the 1st and 2nd
fibers exist and two vectors representing the fiber orientations.
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Fig. 2 Architecture of the proposed fiber estimation network. The first stage (solid box) of the
network predicts the SH coefficients of the fODF. The second stage (dots and dashes box) detects
if the 1st and 2nd fibers exist and predicts the orientations. The numbers indicate the shape of the
tensor and the number of features

The proposed network architecture (Fig. 2) is composed of two stages. The first
stage (solid green box) predicts the SH coefficients of the fODF, and the second
one (dots and dashes green box) predicts the fiber orientations, which simulates the
peak finding process in HARDI reconstruction methods. In our experiments, both
input HARDI signal and fODF were fitted to 8th order SH (45 SH coefficients).

In the first stage, the input 7 × 7 × 7 × 45 patch is passed through two 3 × 3 × 3
convolutional blocks and four 1 × 1 × 1 convolutional blocks with the number of
features per block being: 1024, 512, 512, 256, 512, and 45 (output). The 1 × 1 × 1
convolutional blocks are used to addmore features to the network without decreasing
the size the patches. Each convolutional block has a convolutional layer, followed
by a batch normalization layer and a rectified linear unit (ReLU) layer. ReLU is
not used in the last block, since the SH coefficients can be negative. The output is
a 3 × 3 × 3 × 45 patch representing the SH coefficients of the fODF. This patch
is passed through a 3 × 3 × 3 convolutional layer, a batch normalization layer and
becomes the input to the second stage.

The second stage consists of four parallel branches, including two classifiers
that predict the existence of the 1st and 2nd fibers in the central voxel and two
regressors that predict the fiber orientations. Each classifier consists of three 1 × 1 ×
1 convolutional layers. The final layer is activated by sigmoid function to obtain a
probability, which is used to classify the fiber as exist or not. Each regressor consists
of six 1 × 1 × 1 convolutional layers. The final layer is not activated to introduce
negativity. Non-zero output vector is normalized as a unit vector to represent fiber
orientation.
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2.3 Fiber Estimation Loss

The loss function is a combination of the mean squared error in the first stage (s1)
and the fiber orientation error (FOE) in the second stage (s2). The FOE in s2 is given
by:

ls2 = lCE(p1,11) + lFOE(d̂1, d1) + lCE(p2,12) + lFOE(d̂2, d2) + lsep(d̂1, d̂2) (1)

where lCE(pi ,1i ) is the cross entropy loss for the i th fiber between the predicted
probability map and the ground truth and is defined as: lCE(pi ,1i ) = yi log pi +
(1 − yi ) log (1 − pi ), where yi is the ground truth label indicating if the i th fiber
exists. lFOE(d̂ i , d i ) is the fiber orientation error loss between the predicted i th fiber
orientation d̂ i and the truth orientation d i , which is modified from the cosine simi-
larity loss and is defined as:

lFOE(d̂ i , d i ) = − |d̂ i · d i | + ε

‖d̂ i‖ + ‖d i‖ + ε
(2)

where ε is a small positive number to avoid a zero denominator. To minimize the
angular error loss, we enforce that d̂ i should point to the truth direction d i as close
as possible. We take the absolute value of the inner product to account for opposite
orientations being equivalent.

To encourage the orthogonality of the crossing fibers in the tongue [9], we propose
a separation loss lsep between the predicted crossing fiber orientations d̂1 and d̂2,
which is defined as:

lsep(d̂1, d̂2) = |d̂1 · d̂2| (3)

This separation loss at each voxel will be minimized when the crossing angle of the
two predicted orientations is 90◦. Therefore, the network is encouraged to predict
orthogonal crossing fibers, which is an important characteristic in tongue muscles.

2.4 Training Procedure

Thefiber estimation networkwas trained on 5 syntheticHARDI data sets. Each image
contains around 80k patches and the batch size was 1024. Another synthetic data
set was used for validation. The network was trained using the Adam optimizer [10]
with initial learning rate of 0.0001. The performance of the trained network was
evaluated at 150 epochs as the validation loss plateaued.
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3 Experiments and Results

The performance of the proposed CNNmethod was compared with two state-of-the-
art fiber reconstruction methods: constrained spherical deconvolution (CSD) [18],
and Bayesian estimation of diffusion parameters obtained using sampling tech-
niques (BEDPOSTX) [2, 3]. CSD was implemented in Dipy [6], and BEDPOSTX
was implemented in FMRIB Software Library (FSL, version 6.0) [8]. When run-
ning CSD, a response function for a single fiber bundle is required. We manually
selected the region of interest in the GG muscle in a known non-crossing area to
estimate the response function. The output of CSD is the fODF, where a peak finding
algorithm [18] was performed to identify distinct fiber orientations. A relative peak
threshold was used to filter out some small peaks introduced by noise. In this study,
we set this threshold to 0.2, as recommended in [15]. When running BEDPOSTX,
we thresholded the anisotropic volume fraction at 0.01 to remove spurious peaks.
Default threshold in FSL is 0.05. However, BEDPOSTX identified the number of
voxels contain crossing fibers as 4% in a synthetic HARDI tongue data, using the
default threshold, when the true number of crossing fiber voxels is 67%. Therefore,
we lower the volume fraction threshold to reduce the false negative results.

We also report the results of our proposed network but without the separation
loss (Eq. 3) during training. This experimentwas designed to highlight the importance
of the separation loss in improving the accuracy of the predicted fiber orientations.
We report the performance of all the algorithms on three synthetic tongue HARDI
data and one post-mortem human tongue data.

3.1 Quantitative Evaluation on Synthetic Tongue HARDI
Data

In order to quantitatively evaluate the proposed method, we simulated three single-
shell HARDI data sets with the diffusion weighting of b = 1000s/mm2 and 60
diffusion directions. The ground truth of the fiber orientations were generated based
on a mechanical tongue model [7] (see Fig. 1b). In total, there were 10,888 voxels
containing fibers. In each voxel, there were at most two crossing fibers. The HARDI
data were synthesized using a multi-tensor model [20]. Each fiber’s diffusion tensor
was computed by rotating a default single tensor with the desired fiber orientation.
The default single-fiber tensor was set with diffusivities in orthogonal directions
as {λ1, λ2, λ3} = {0.002, 0.001, 0.001} s/mm2. The diffusivities were determined by
fitting a diffusion tensor model on real HARDI tongue data. Although the diffusivity
of the tonguemuscle tissue is different from that of the brain tissue, theSHcoefficients
of the tongue and brain HARDI data, which are the input to the proposed network,
have similar distributions. We thus believe that training this network with brain data
is a reasonable surrogate, in the absence of tongue data. In voxels with crossing
fibers, the fraction of the first fiber f1 was sampled from a Gaussian distribution
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with mean of 0.6 and standard deviation of 0.05, and the fraction of the second
fiber f2 = 1 − f1. We added three different levels of Rician noise to the synthesized
signal; corresponding to SNR in the synthetic DWI of 10, 15, and 20.

The performance of the different methods were compared using the following
criteria: (1) angular correlation coefficient (ACC) [1] between the predicted and truth
SHcoefficients of the fODF; (2) correct assessment of the number of fiber orientations
in each voxel; (3) angular accuracy of the predicted fiber orientations. ACC is a
similarity measure that ranges from −1 to 1, where 1 indicates a perfect match.
To assess the correctness of the fiber number estimation, we computed the success
rate (SR) [4], which is defined as the proportion of voxels where the reconstruction
algorithm correctly estimated the number of the fiber orientations within a small
angular tolerance. In this study, the tolerance was set to 20◦, as in [4]. To quantify
the incorrect assessment, we also computed the false positive rate (FP), the false
negative rate (FN), and the Dice score for the crossing fiber regions, which is an
overlap measurement between the crossing fiber regions in the ground truth and the
regions where the automatic algorithm predicted two fibers. The angular accuracy
of the estimated orientations was evaluated by calculating the angular error (AE)
between the estimated and true orientations. AE was calculated only in the voxels
where the reconstruction algorithm correctly predicted the number of muscle fibers.
In voxels with crossing fibers, the two estimated fibers were first matched to the
ground-truth to minimize the error.

The quantitative results are presented inFigs. 3, 4 and5, andTable1. InFig. 3,ACC
was not computed for BEDPOSTX since it did not output the fODF.We see that both
the proposed CNN methods (with and without the separation loss) provided higher
ACC than the CSD method, especially when the SNR is low. Table1 presents the
performance of eachmethodon the estimation of the number of fiber orientations. The
proposed CNNmethod with the separation loss outperforms all the other methods at
each noise level in terms of SR and FN. The overestimated metric FP of the proposed
method is higher than the best method, but remains at a low level. The mean Dice
scores on the crossing fiber regions for each method are 0.57, 0.23, 0.38, and 0.64,
respectively. The proposed method shows better accuracy estimating the number of
fibers in crossing fiber regions. Figure4 shows the success rate and the mean angular
error simultaneously on single and crossing fiber regions. The proposed method
shows competitive results in single fiber voxels and better results in crossing fiber
voxels.

From the AE boxplots in Fig. 5, we can observe that in single fiber regions, the
CNN methods produced slightly more accurate fiber orientation when the noise
level was high, which is closer to real tongue DWI. In crossing fiber regions, the
proposedCNNwith the separation loss shows the lowestAE compared to all the other
methods. It is worth noting that when removing the separation loss, the same network
architecture did not show much improvement compared to CSD and BEDPOSTX in
crossing fiber regions. This clearly demonstrates that the separation loss contributes
to improving the accuracy of the predicted fiber orientations.



76 M. Shao et al.

Table 1 Success rate (SR), false positive rate (FP), and false negative rate (FN) on three synthetic
HARDI tongue data with different noise levels. The total number of voxels is 10,888. Bold: best
performance among the four reconstruction algorithms

SNR=10 SNR=15 SNR=20

SR FP FN SR FP FN SR FP FN

CSD 0.451 0.036 0.513 0.616 0.007 0.376 0.715 0.001 0.284

BEDPOSTX 0.328 0.016 0.656 0.389 0.020 0.591 0.517 0.028 0.455

CNN w/o lsep 0.439 0.006 0.555 0.495 0.003 0.502 0.534 0.002 0.464

CNN w/ lsep 0.546 0.012 0.442 0.674 0.007 0.319 0.717 0.006 0.277

Fig. 3 Boxplots of the angular correlation coefficients (ACC) for the spherical harmonic (SH)
coefficients of the fiber orientation distribution function (fODF). ACC was not computed for BED-
POSTX since it did not output the fODF

Fig. 4 Success rate versus mean angular error in single (circle) and crossing (triangle) fiber regions
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Fig. 5 Angular error in voxels with single (left) and crossing (right) fibers

3.2 Qualitative Results on Post-mortem Human Tongue Data

Post-mortem human tongue data were obtained on an 86-year-old female, around
48h post death. Use of post-morten specimen was approved by the Institutional
Biosafety Committee. MRI was acquired on a Siemens Prisma scanner using a
Readout-Segmented Echo-Planar diffusion sequence with the following parameters:
readout segment size= 3, TE= 70ms, TR= 6230ms, in-plane resolution= 2.5mm,
slice thickness = 2.5mm, sampling bandwidth = 1645 Hz/Px, and Echo spac-
ing = 0.34 ms. 200 diffusion directions were acquired with b = 2000 s/mm2 along
with 14 b0 images. A tongue mask was manually drawn to restrict the processing
region. A visual comparison of the fiber orientation reconstruction results produced
by the four methods is shown in Fig. 6. The predicted fiber orientations are over-
lapped on a b0 image. We observe that all the methods provided similar results
on the first fiber orientation. However, CSD and BEDPOSTX provided more false
positive predictions on the second fiber orientation in areas where only GG mus-
cle should exist (see the yellow arrows in Fig. 6a, b). Compared to the other three
methods, CNN with the separation loss provided cleaner and more consistent fiber
predictions. Comparing Fig. 6c, d reveals the effect of the separation loss. In regions
where GG and T muscles are crossing, CNN with the separation loss produced more
accurate T muscle orientations, which are orthogonal to GG muscle and should be
perpendicular to the sagittal plane. We can also observe that in some regions where
T and V, or T and GH muscles are crossing, the T muscle orientation appeared as
the first orientation instead of the second one. The reason could be that the strength
of the T muscle is higher in these regions.
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Fig. 6 Sagittal view of the fiber orientations produced by the four fiber reconstruction methods on a
post-mortem human tongue data: aCSD;bBEDPOSTX; cCNNwithout the separation loss;dCNN
with the separation loss. S: superior; P: posterior. Left column shows the first orientation and right
column shows the second orientation. The yellow arrows in a and b point to some false positive
prediction on the second orientation. The fiber orientations are conventionally color-coded (red:
right-left, green: anterior-posterior, blue: inferior-superior)
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4 Discussion and Conclusions

In this paper, we proposed a convolutional neural network that can reconstruct the
fODF and fiber orientations directly from tongue HARDI data. A separation loss was
added to the network to encourage the predicted crossing fibers to be orthogonal,
which is an important characteristic of tongue muscles. The proposed method was
evaluated on three synthetic tongueHARDI data and one post-mortem human tongue
data, showing that our method can successfully reconstruct the complex muscle
fibers in the tongue. The proposed method outperformed two state-of-the-art fiber
reconstruction methods, CSD and BEDPOSTX. Furthermore, our method can be run
in an automatic manner.While in CSD, we need to manually select the region of non-
crossing area to create the response function.When extracting peak fiber orientations,
both CSD and BEDPOSTX require a threshold to remove suspicious fibers. We also
showed that the proposed network architecture without the separation loss produced
worse reconstruction results, demonstrating the significance of the proposed loss
function.
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Learning Anatomical Segmentations
for Tractography from Diffusion MRI

Christian Ewert, David Kügler, Anastasia Yendiki, and Martin Reuter

Abstract Deep learning approaches for diffusion MRI have so far focused primar-
ily on voxel-based segmentation of lesions or white-matter fiber tracts. A drawback
of representing tracts as volumetric labels, rather than sets of streamlines, is that it
precludes point-wise analyses of microstructural or geometric features along a tract.
Traditional tractography pipelines, which do allow such analyses, can benefit from
detailed whole-brain segmentations to guide tract reconstruction. Here, we intro-
duce fast, deep learning-based segmentation of 170 anatomical regions directly on
diffusion-weighted MR images, removing the dependency of conventional segmen-
tation methods on T1-weighted images and slow pre-processing pipelines. Working
natively in diffusion space avoids non-linear distortions and registration errors across
modalities, as well as interpolation artifacts. We demonstrate consistent segmenta-
tion results between 0.70 and 0.87 Dice depending on the tissue type. We investigate
various combinations of diffusion-derived inputs and show generalization across dif-
ferent numbers of gradient directions. Finally, integrating our approach to provide
anatomical priors for tractography pipelines, such as TRACULA, removes hours
of pre-processing time and permits processing even in the absence of high-quality
T1-weighted scans, without degrading the quality of the resulting tract estimates.
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1 Introduction

Tractography has significantly advanced clinical applications [5, 6, 25] and has
enabled neuroscientists to studydevelopmental and pathological effects on the human
connectome [14]. Traditional tractography pipelines often use anatomical segmenta-
tions to obtain priors for reconstructing tracts from diffusion-weightedMRI (dMRI).
This introduces a dependency on T1-weighted (T1w) images, which are required
for anatomical segmentation by neuroimaging suites such as FreeSurfer [9]. For
dMRI microstructural analyses, accurate segmentations of the grey/white matter
(GM/WM) boundary are particularly important as different biophysical models have
been proposed for each tissue type [22]. However, segmenting in T1w, rather than
diffusion image space is problematic due to non-linear distortions between modal-
ities, as well as potential registration inaccuracies and interpolation artifacts when
mapping segmentation labels from anatomical to diffusion image space. Further-
more, enabled by acquisitions with high angular resolution and multiple b-values,
dMRI-derived cytoarchitectonic boundaries may in the future complement or super-
sede T1w-derived segmentations for morphometric analyses. Addressing this need
for fast, accurate, dMRI-based segmentation, we present a framework for segmenting
170 GM, WM, and subcortical regions in native diffusion space, without requiring
high-quality T1w images.

Methods such as SLANT and FastSurfer [11, 12] introduce deep learning for neu-
romorphometry, yet still rely on T1w images. Traditional [13, 30, 31, 35] and deep
learning-based [15, 19] methods extend segmentation to diffusion-weighted images
(DWIs) for various acquisition protocols and dMRI representations. Applications
of segmentation based on the inherently multi-channel dMRI signals include whole-
brain GM/WM/Cerebrospinal fluid [31, 35],WM regions [19, 30], nuclei (cerebellar
[15] and thalamic [13]), organs [3, 8, 26, 39], tumors [28] and stroke lesions [4, 20].
As an alternative approach to traditional tractography, neural networks can directly
segmentWM tracts based on dMRI [16, 17, 21, 23] or diffusion orientations [32, 33,
37, 38], from clinical [21] or high-quality [32] datasets. Unfortunately, segmenting
WM tracts as volumetric labels does not provide an along-the-tract parameterization
which is useful for point-wise analyses of microstructural and geometric features
of the tracts. In contrast to direct, volumetric tract segmentation approaches, the
present work aims to provide the information that guides traditional tractography
methods. No work to date has addressed whole-brain segmentation, including sub-
cortical structures, cortical regions, and WM regions underlying the cortex, directly
from DWIs.

Here,we introduce deep learning-based segmentation of 170 distinct regions (cor-
tical, subcortical, and WM) from DWIs (see Fig. 1). Thus, we provide a fast, deep
learning alternative for a critical step in dMRI pre-processing streams, which can
facilitate the use of classical tractographymethods, without limiting their outputs and
subsequent analysis options. Basing segmentations purely on dMRI data removes the
dependency on high-quality T1w images, the potentially error-prone, cross-modal
co-registration and interpolation, and avoids confounding non-linearities between
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Fig. 1 Whole-brain segmentation of 170 regions (cortical, sub-cortical and white matter) directly
from diffusion MRI (left), and probabilistic white matter tracts generated by TRACULA based on
anatomical priors from dMRI-based segmentations (right)

anatomical and diffusion spaces. To develop effective segmentation of dMRI data,
we compile a dataset of DWIs and reference segmentations generating the latter by
mapping FreeSurfer segmentations [9] to diffusion space. We adopt the anatomy-
targeted FastSurfer architecture [11], which already supports the segmentation of a
large number of regions. Moreover, expanding on the work of Li et al. [17] for WM
tract segmentation, we explore suitable dMRI data representations for learning-based
segmentation. We compare inputs consisting of images without diffusion-weighting,
diffusion tensor components, or DWIs and vary the number of DWIs from which
tensors are generated.

When compared against FreeSurfer, our method achieves performance compara-
ble to the state-of-the-art at orders of magnitude faster processing times. As a use
case, we integrate dMRI-based segmentations into the tractography package TRAC-
ULA (TRActs Constrained by UnderLying Anatomy) [36], which performs global
probabilistic tractography with anatomical priors. Differences of TRACULA tracts
based on deep learning versus traditional anatomical initialization (see Fig. 4) are in
the order of previously reported differences between automated TRACULA recon-
structions and manual labels while reducing the TRACULA pre-processing run-time
by 4h. With our approach, the segmentation of 170 regions in dMRI space can be
achieved in 32s on a GPU.

2 Materials and Methods

The tract posterior probabilities computed by TRACULA involve anatomical priors
that are calculated from an anatomical segmentation. We perform this segmentation
directly in diffusion space and remove the requirement for T1w images by replac-
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ing the corresponding component of the TRACULA pipeline with a deep learning
network.

2.1 Data

Diffusion MRI Data

We use pre-processed DWIs from the WU-Minn Human Connectome Project
(HCP) [7, 18, 24, 27, 29, 34], which are already corrected for eddy-currents and sub-
ject motion. These images are acquired with a 3-shell protocol at b-values of 1000,
2000, and 3000s/mm2. Each shell is composed of 90 diffusion-encoding gradient
directions, approximately uniformly distributed on the sphere. In addition, 18 images
without diffusion-weighting are interleaved with the DWIs. For training, validation,
and test, we create gender-balanced non-intersecting subsets of 250, 50, and 100
subjects, respectively.

Segmentation Labels

Anatomical segmentations of T1-weighted images of the same subjects are obtained
with FreeSurfer 6.0 [9]. We project cortical parcellations from the surface mod-
els up to 2mm deep into the WM, as required by TRACULA. The registration to
the diffusion space is performed with the boundary-based rigid registration method
bbregister [10].

2.2 Data Representations

Since q-space sampling schemes may comprise anywhere from six to several hun-
dred measurements, a general segmentation approach should be independent of the
exact choice of diffusion-encoding directions and b-values. Instead, a suitable rep-
resentation has to abstract from acquisition details yet contain sufficient relevant
information. A parsimonious model that is often fitted to DWIs acquired on shells
is the diffusion tensor [1], which models local diffusion as a single (uni-modal)
Gaussian distribution. The symmetric 3 × 3 diffusion tensor can be understood as
a condensed summary of the local diffusion behavior at a given voxel and can be
reconstructed from any q-shell acquisition scheme that includes at least 6 directions.
To explore how the number of DWIs used to fit the tensor affects its performance
for the segmentation task, we extract multiple subsets of gradient directions on the
same shell (approximately uniformly distributed). For each of these subsets, the dif-
fusion tensor is fitted to the data with FSL’s dtifit function and the six unique tensor
components are stacked and used as input.
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2.3 Architecture

FastSurferCNN [11] is a U-Net-based neuroimage segmentation network validated
extensively on anatomical MRI datasets. Three fully convolutional networks are
trained independently on axial, coronal, and sagittal slices of MR images. The pre-
dictions from the three views are then combined into the final prediction volume by
means of aweighted average (view-aggregation). The network uses skip-connections
between encoder- and decoder-blocks. In the decoder-blocks, information from the
previous decoder-block and the corresponding encoder-block are combined. Instead
of simply concatenating these feature maps, FastSurferCNN employs competitive
dense blocks to reduce the number of parameters. Competitive dense blocks rely on
max-out activations to encourage the network to learn which parts of the provided
feature maps are relevant for the segmentation task.

All networks are trained with a combined loss-function containing a median fre-
quency balanced logistic loss with edge-focus and a Dice loss:

L = −
∑

x

ω(x)gc(x)log(pc(x))

︸ ︷︷ ︸
Logistic Loss

− 2
∑

x pc(x)gc(x)∑
x p

2
c (x) + ∑

x g
2
c (x)︸ ︷︷ ︸

Dice Loss

with ω(x) = ωF (x) + ωE (x), median frequency balanced weights ωF (x), edge-
weightingωE (x) at voxel x , references g, prediction p and class c. In order to provide
3D spatial context, FastSurferCNN’s input consists not only of the slice of interest
but also a sequence of neighboring slices.

2.4 Training

We train all networks with an initial learning rate of 0.01, which is reduced every 10
epochs (multiplied by 0.2). Early stopping is applied when the loss on the validation
set does not improve for 15 epochs.

2.5 Tracts

To calculate priors for tractography, TRACULAneeds registrations between anatom-
ical, diffusion and MNI spaces. Since we provide the segmentation natively in diffu-
sion space, a registration to anatomical T1w space is obsolete and a single registration
from diffusion toMNI space suffices. This mapping can easily be establishedwithout
a T1w image, yet the two different registration-methods (one includes the anatomi-
cal image whereas the other does not) introduce an additional variance that prevents
a consistent evaluation of tract similarity. We, therefore, re-use the mapping from
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diffusion to MNI space that was established to generate the reference tracts. Further-
more, to mitigate artifacts from nearest-neighbor interpolation to large voxel sizes,
we instead predict and map probability distributions over classes (soft-labels) via
tri-linear interpolation, taking the argmax over classes in the target space.

2.6 Evaluation Criteria

Segmentation Quality

We measure the similarity of the segmentation resulting from our method and the
segmentation of FreeSurfer mapped to diffusion space, with two evaluation criteria.

The Dice score Dc for region c measures the relative overlap between the binary
labels of the prediction Pc = {pic | i = 1, . . . , N } and the reference Rc = {ric | i =
1, . . . , N } segmentation:

Dc(P, R) = 2
∑N

i=1 picric∑N
i=1 pic + ∑N

i=1 ric
.

The voxel-basedmeanHausdorff distanceHc for region cmeasures the difference
between prediction Pc and reference labels Rc via

Hc(P, R) = 1

|Rc|
∑

r∈Rc

min
p∈Pc

||p − r ||2 + 1

|Pc|
∑

p∈Pc

min
r∈Rc

||p − r ||2.

Tractography

Similarly to the segmentation case, we quantify the similarity between pairs of
tracts reconstructed with anatomical priors from either segmentation via voxel-based
mean Hausdorff distance. Since TRACULA relies on a Markov-Chain Monte-Carlo
method, two different sets of tracts are not per se comparable. Thus, in accordance
with previous tract evaluations [36, 40], we threshold the tracts at 20% of their
maximum intensity.

3 Results and Discussion

To determine the impact on segmentation quality, we evaluate networks with respect
to different data subsets and input representations, keeping the network architecture
(e.g. number of filters) fixed.
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Fig. 2 Ablation of neural network input in comparison to FreeSurfer reference segmentation.
Evaluation 1: Q-Space Sampling Density (top group of blue bars): 1. Only b = 0 image,
2.–5. b = 0 + diffusion tensors fitted with varying sampling density (2.–4. only on the first shell
with b = 1000 s/mm2, 5. on three shells); Evaluation 2: dMRI data representation (bottom group
of green bars) of a fixed set of 30 DWIs on the first shell: b = 0 plus 6. an FA map, 7. the diffusion
tensor, and 8. DWIs directly

3.1 Evaluation 1: Q-Space Sampling Density

When q-space is sampled more densely, we expect the diffusion tensor to be more
accurate due to the improved signal-to-noise ratio (SNR). To explore how differ-
ent single-shell q-space samplings influence the segmentation quality, we compare
FreeSurfer segmentations against our network’s prediction for several scenarios
which are displayed in Fig. 2.

TheDice score seems to correlatewith the compactness of the shape of anatomical
regions. Scores are high for sub-cortical regions, where shapes feature large volume-
to-surface ratios, lower in the folded cortical areas, and lowest for the thin cortical
projections into the WM. The slim, 2mm projection on a coarse voxel grid with
1.25mm isotropic size could be another reason for the smaller Dice scores in WM
regions. In fact, the ratio of voxels on the region boundary is significantly higher for
white matter regions compared to cortical regions. The Hausdorff distances paint a
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very similar picture in terms of ranking methods while they are more consistent than
Dice scores across WM- and cortical regions.

As expected, the segmentation quality increases when the diffusion tensor is fit-
ted with more DWIs (1.–5.). The segmentation based solely on the image without
diffusion-weighting (b = 0) provides a strong baseline, potentially due to the higher
SNR at b = 0. Yet, the inclusion of additional diffusion information increases seg-
mentation performance further.

3.2 Evaluation 2: Input Representations

Wealso assess the effect of different input data on the segmentation quality (see Fig. 2,
second, green bar group: 6.–8.). Fractional Anisotropy (FA)measures the coherence
of water diffusion in a voxel and is frequently used in tract-based analyses. Since FA
is a scalar measure computed from the eigenvalues of the tensor, it only contains a
subset of the tensor information. As a result, the performance is worse with FA (6.)
than with the full tensor (7.). More broadly, the diffusion tensor is a simple model
that fails to accurately describe water diffusion in full detail. Thus, it is not surprising
that a segmentation directly based on the DWIs (8.) yields better results than one
based on the diffusion tensor. However, for the task of segmentation, the diffusion
tensor seems to capture most of the relevant information present in the DWIs.

3.3 Evaluation 3: Generalization

In the previous evaluation, networks were trained separately for each set of inputs.
This evaluation explores how a network trained on tensor components based on n
DWIs performs when it is evaluated on tensor components based on m DWIs (with
n �= m). This kind of generalizability is a critical property when accommodating
data with a variety of acquisition details at test time. Notably, while neither network
generalizes perfectly to the different input format, the stable results (Fig. 3) suggest
that generalizability can be asserted to a large extent.

3.4 Evaluation 4: Tract Similarity

Finally, we assess the stability of WM tract generation when switching from tradi-
tional T1w image segmentation to our dMRI-based, deep learning approach: For a
gender-balanced subset of 20 subjects from theHCP,we reconstruct 18 differentWM
tracts with TRACULA, using either the proposed, dMRI-based segmentations or the
FreeSurfer T1w-based segmentations (see Fig. 4). The deviation is within the margin
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Fig. 3 Network generalization when tensors are fitted with differently many DWIs

of the deviation of TRACULA’s tracts frommanually-annotated bundles [36], which
is around 2mm for most tracts.

We time both applications on five representative cases (Evaluation 1 and 4). Our
method takes 32 s for the anatomical segmentation in diffusion space compared to
4h with FreeSurfer (parallelization of hemispheres and 4 threads, 7h sequentially).
For the tractography pipeline, our work accelerates the total run time from 283 to
56min.

4 Conclusion

Our work presents and analyzes the application of deep learning for anatomical seg-
mentation directly on DWIs. Applied to probabilistic tractography with anatomical
priors, our method enables processing without the requirement of T1w images and
thus avoids errors from non-linear distortions, registration inaccuracies, or interpo-
lation artifacts. As a consequence, dMRI-based anatomical segmentation achieves
results similar to corresponding state-of-the-art T1w-based segmentation and speeds
up pre-processing in the TRACULA pipeline by hours. Accelerating heavy process-
ing pipelines is essential especially for large cohort studies such as HCP [29] or the
Rhineland study [2], where large diffusion datasets from thousands of participants
require efficient methods.
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Fig. 4 Similarity of tracts based on DWI segmentations versus FreeSurfer’s segmenta-
tion. L.=Left, R.=Right, sup.= superior, ant.=anterior, inf.= inferior, TE= temporal endings,
PE=parietal endings

Furthermore, we analyze how the choice of input images for the neural network
affects segmentation performance. We confirm that segmentation quality increases
as more q-space samples are included when fitting diffusion tensors—likely due to
increased SNR. Skipping the tensor fit and directly learning from DWIs increases
segmentation performance further. However, simply increasing q-space samples is
not an option due to memory limitations and reliance on the availability of the same
set of q-space samples for future input cases. Tensor-based inputs, on the other hand,
provide a widely applicable alternative [17] and yield results that remain relatively
stable and close to the direct DWI performance. In our opinion, tensors fitted to 30
DWIs, a number that is feasible in clinical studies, offer a good balance. Future work
will explore diffusion models other than the tensor as segmentation inputs and assess
generalizability across a large variety of different dMRI datasets.

While we illustrate the use of our deep learning-based segmentation in a pipeline
for probabilistic tractography with anatomical priors, it can be useful in a wide
range of other applications. These include improvedWM/GMand pallidum-putamen
segmentation, seed-based tractography, network analysis, or ROI-based analysis of
microstructural measures, to name a few.
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Diffusion MRI Fiber Orientation
Distribution Function Estimation Using
Voxel-Wise Spherical U-Net
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and Samuel Deslauriers-Gauthier

Abstract Diffusion Magnetic Resonance Imaging (dMRI) is an imaging technique
which enables analysis of the brain tissue at a microscopic scale, particularly the
analysis of white matter. Given a high enough angular resolution, a common way to
explain themeasured signal is via fiber orientation distribution function (fODF). This
function describes the orientation and volume fraction of axon bundles within each
voxel and is an essential ingredient of tractography. In this work, we have investi-
gated a deep learning approach for the fODF estimation. U-nets enable fast and high
resolution inference by combiningmulti-scale features from contracting and expand-
ing parts of the network. As dMRI signals are most commonly acquired on spheres,
we propose a spherical U-net which is adjusted to the properties of the dMRI data,
namely its real nature, antipodal symmetry, uniform sampling and axial symmetry of
the signals corresponding to individual fibers. We compared our model with another
deep learning approach based on a 3D convolutional neural network and a state-of-
the-art approach—multi-shell multi-tissue constrained spherical deconvolution, on
real data from Human Connectome Project and synthetic data generated using ball
and stick model. The methods are compared in terms of mean square error and mean
angular error for dMRI signals of different angular resolutions. Provided quantita-
tive analyses show improved performance with our approach even with significantly
reduced number of parameters and results obtained on synthetic data indicate its
robustness with respect to noise. Qualitative results illustrating the performance of
the methods are also presented.
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1 Introduction

Diffusion MRI is an imaging modality tailored to capture interactions of diffusing
water molecules with surrounding micro-structures within examined tissue. As such,
it has shown importance in neuroimaging, particularly in the analysis of white mat-
ter micro-structures. It opened the possibility to examine properties of axon bundles
such as orientation, volume fraction, dispersion, etc. Models proposed to explain the
dMRI signals have evolvedwith the improvement of the acquisition process. Initially,
in Diffusion Tensor Imaging [1], axon bundles were described via diffusion tensors
[2]. With the increase of dMRI angular resolution, more informative models have
been proposed, specifically in voxels containing crossing or kissing fibers, fiber fan-
ning or bending. A number of these models include estimation of probability density
functions (PDF) such as Ensemble Average Propagator (EAP) [3, 4] describing aver-
age relative spin displacements, diffusion Orientation Distribution Function (dODF)
[5, 6] and fiber Orientation Distribution Function (fODF) [7–9]. These voxel-wise
quantities opened the possibility of tracking white matter pathways—tractography
[10], a process of a great potential in the analysis of brain structural connectivity [11].

The fODF is a spherical PDF that reveals orientations and volumes of the under-
lying axon bundles. Traditional methods include estimation of a single fiber response
function that is deconvolved from the dMRI signal in order to obtain the fODF [7–9].

Recently, a 3D convolutional neural network (3DCNN) directly applied on spher-
ical harmonic (SH) coefficients has been proposed for the fast estimation of fODFs
[12]. In [13], for the same problem, residual CNN (ResCNN) and dense neural net-
work (ResDNN) have been investigated. In both works, potential of the models has
been demonstrated for significantly downsampled acquisition sampling schemes,
what is often a requirement in clinical applications.

U-nets have shown potential in high resolution inference from planar data by com-
biningmulti-scale features from contracting and expanding parts of the network [14].
As sampling of dMRI signals is most commonly performed on spheres, all building
blocks of U-net need to be adjusted to the properties of spherical signals. Recently,
in [15], a spherical U-net has been proposed for the cortical surface parcellation and
prediction of attribute maps, with convolutions, pooling and transposed convolutions
adjusted to the spherical space. A neural network model, similar to the planar CNN,
for the analysis of spherical data—spherical CNN (S2CNN ) has been introduced in
[16], where, contrary to [15], in order to avoid computationally expensive interpola-
tions, convolutions of signals and kernels are performed in spectral domain. Similar
approach has been developed in [17], where a significant speed up of convolutions
has been achieved with zonal kernels.

In this work, we have addressed the problem of the fODF estimation from dMRI
data acquired with significantly downsampled acquisition schemes. Exploiting the
properties of the U-net and S2CNN , we propose a voxel-wise spherical U-net,
that is tailored to the properties of dMRI signals acquired on spheres, namely real
nature, uniform distribution of samples, antipodal and axial symmetry of the signals
generated by individual fibers.
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2 Background and Method

The main operations in U-nets are convolutions, pooling, and transposed convolu-
tions.While the convolution of equidistantly discretized planar signalswith kernels is
well defined, convolution between S2 signals and kernels faces two challenges. First
of all, the operation analogue to the translation in Euclidean space during convolution
is not a rotation in S2 space, but in the SO(3)manifold. Secondly, the discretization
of signals in Euclidean space is usually done in an equidistant manner, what cannot
be achieved in S2 domain. An interpolationmust therefore be performed for each step
of convolution. These problems are addressed in the work presented in [16] where
the spherical CNN—S2CNN has been introduced. In this framework, to avoid the
computationally expensive interpolations, convolutions of S2 and SO(3) signals and
kernels are performed in spectral domain, and as in standard CNNs, activation func-
tion is applied in signal domain. Furthermore, to achieve the same effect as pooling,
in each new layer, the bandwidth of the input signal is reduced and the support of
the kernel is spread. In [17], additional speed up has been achieved by constraining
kernels to be zonal. As a consequence, the convolution can be more efficiently per-
formed in S2. In this work, we propose a spherical U-net with convolutional building
blocks from [16, 17] adjusted to the properties of dMRI data.

Given the antipodal symmetry of the dMRI signals, we use only the SH basis of
even degree for their representation. A signal s : (θ,φ) → R can be written as

s(θ,φ) =
Lmax∑

l=0

m=l∑

m=−l

ŝml Y
m
l (θ,φ), for l ∈ {0, 2, . . . , Lmax } (1)

where θ and φ are inclination and azimuth angles, Ym
l (θ,φ) are SH basis of order

m and degree l, and ŝml are the corresponding SH coefficients. Lmax is the signal’s
bandwidth determined as

N ≥ (Lmax + 1)(Lmax + 2)/2 (2)

where N is the number of sampling points. In addition, as dMRI signals are real, we
reduce computational complexity by using the real SH basis

Ylm =

⎧
⎪⎨

⎪⎩

√
2(−1)m Im[Y |m|

l ] if m < 0

Y 0
l if m = 0√
2(−1)m Re[Ym

l ] if m > 0

. (3)

Consequently, spherical kernels are also real and antipodally symmetric. Another
important property of dMRI signals is the axial symmetry of the signals coming
from individual axon bundles. This motivated us to use kernels that are axially sym-
metric around z axis—zonal kernels and in this way promote an axon bundle-wise
feature extraction. Zonal kernels have been introduced in [17] in order to decrease
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the computational complexity imposed by performing convolutions of SO(3) signals
and kernels as in [16]. Given this, kernel h : (θ) → R can be represented as a linear
combination of zonal harmonics (ZH) as

h(θ) =
Lmax∑

l=0

ĥlY
0
l (θ, 0), for l ∈ {0, 2, . . . , Lmax }. (4)

This significantly simplifies convolution between signals and kernels, as the resulting
signal is no longer in SO(3)manifold, but in S2 space. In addition, since the number
of ZHs necessary to represent such kernels is rather small—Lmax/2 + 1, we used
directly ZH coefficients as trainable parameters as it was initially introduced in
[17]. Convolution between a signal s : (θ,φ) → R and an axially symmetric kernel
h : (θ) → R, represented with ZH coefficients ĥl can be written as

c(θ,φ) =
Lmax∑

l=0

ĥl

m=l∑

m=−l

ŝml Y
m
l (θ,φ), for l ∈ {0, 2, . . . , Lmax }. (5)

As we are dealing with discrete signals, Eq.1 can be simply written as matrix-vector
product as s = Y ŝ, where Y contains SH basis Ym

l (θk,φk) in columns, sampled at
the angles (θk,φk), ŝ are corresponding SH coefficients and s is a discrete spher-
ical signal. Although the discretization of the band-limited planar signals without
information loss is well defined with Nyquist–Shannon sampling theorem and their
transformation to spectral domain is trivial, discretization of the spherical signals
and calculation/estimation of SH coefficients is a challenging task. Sampling theo-
rem for band-limited spherical signals has been introduced in the work of Driscoll
and Healy [18], where they have defined an equiangular sampling grid that guaran-
tees information preservation and calculation of SH coefficients. The total number of
required samples is N = 4(Lmax + 1)2. Given a signal sampled on Driscoll–Heally
grid, s : (θk,φk) → R and SH basis discretized in the same way in a matrix Y , cal-
culation of SH coefficients can be simply written as ŝ = WY H s, where H refers to
conjugate transpose andW are quadrature weights necessary to account for the basis
orthogonality loss due to discretization. This sampling is quite excessive and given a
real world situation where a signal is not completely band-limited and is affected by
noise, signal segments around poles that are oversampled would be more accurately
represented. Due to this, sampling on a sphere is, in general, application dependent
and dMRI signals are usually sampled uniformly over multiple shells in a way that an
optimal angular coverage is achieved [19]. As a consequence, some information can
be lost and several methods for the estimation of SH coefficients have been proposed
[20–22]. In this work, we have used Gram–Schmidt orthonormalization process to
estimate the basis Y ′ for the transformation of S2 signals into spectral domain, simi-
larly as introduced by Yeo [20]. This is performed in an iterative manner, if yi and y′

i
correspond to i − th columns of Y and Y ′, respectively, y′

i are determined as follows:
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y′
i = yi −

i−1∑

j=0

〈yi , y′
j 〉

〈y′
j , y

′
j 〉
y′
j , y′

i = y′
i

||y′
i ||2

. (6)

where y′
0 = y0. In this iterative process, as we start from basis that correspond to

lower frequencies, more importance is given to them. This is convenient as we know
that aliasing affects higher frequencies. In order to avoid bias due to ordering of
the basis, Gram–Schmidt process is repeated multiple times, each time randomly
shuffling the order of the basis of the same degree, which are at the end averaged.
SH coefficients are simply estimated as ŝ = Y ′T s.

2.1 Voxel-Wise Spherical U-Net

Figure1 depicts an illustration of the proposed spherical U-net. Input to the U-net is
composed of n3 · nshells discrete S2 channels, where n is the size of neighbourhood
and nshells is the number of dMRI shells. Output corresponds to the SH coefficients
of the estimated fODF.We refer to the results of (transposed) convolution of input S2

signals and zonal kernels, followed by activation function, as feature maps, which are
sampled at uniformly distributed points on sphere, generated using Q-sampling tool
[19]. The network is composed of contracting and expanding parts. Each layer of the
contracting part extracts feature maps that are of the same bandwidth as its input (that
is used as a part of the input to the parallel layer in the expanding part, black horizontal
arrows in Fig. 1) and corresponding featuremapswith decreased bandwidth that serve
as the input to the following layer of the contracting part (pink arrows oriented down
in Fig. 1). The decrease in bandwidth imitates pooling of the planar CNNs. Feature
maps of the same bandwidth are computed as convolution of signals/feature maps
transformed into spectral domain and kernels, represented with ZH coefficients, as in
Eq.5, followed by Rectified Linear Unit (ReLU) activation function. These feature
maps are further transformed into spectral domain with decreased bandwidth and
serves as the input to the following layer of the contracting part. Each layer of the
expanding part learns up-sampling of the feature maps which serve as the input to
the following layer in the expanding chain or as the final inference. In general, as
input, it receives the feature maps from the parallel layer of the contracting part, if
such layer exists (black horizontal arrows in Fig. 1) and the feature maps estimated
by the previous layer of the expanding part (turquoise arrows oriented up in Fig. 1).
Transposed convolution in planar CNN simply corresponds to the insertion of zeros
between points and convolution with kernels. We have implemented the transposed
convolution as follows

– Let Ni be the number of sampling points of the input feature maps of layer i with
bandwidth Li

max determined according to inequality 2.
– To up-sample the feature maps from layer i to layer i − 1 to have bandwidth

L(i−1)
max , we first generate Ni−1 sampling points using Q-space sampling tool [19]

and compute the corresponding basis Y ′ as in Eq.6.
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Fig. 1 Illustration of a spherical U-net architecture with corresponding convolutional operations
in contracting and expanding parts

– Since Q-space sampling points are generated incrementally, positions of the points
of the layer i correspond to the first Ni points of the sampling scheme of the layer
i − 1, so inserted zeros correspond to the last Ni−1 − Ni points.

– Up-sampled SHcoefficients are computed as ŝi−1 = Y ′T
:,1:Ni

si , where :, 1 : Ni refers
to the cropping of the matrix Y ′T to Ni columns.

– Convolution of the up-sampled signals and kernels is performed as in Eq.5 fol-
lowed by an activation function.

3 Dataset

We used in our experiments two types of datasets, real data from Human Con-
nectome Project (HCP) [23] (referred to as Real dataset) and synthetic data gen-
erated from the same real HCP scans using multi-fiber ball and stick biophysical
model [24] following the procedure described in [25]. Real data was acquired on
Siemens 3T Skyra system with 100mT/m gradient, over three shells with b-values
of 1000, 2000 and 3000s/mm2, each with 90 gradient directions and 18 b = 0
images at resolution 1.25 × 1.25 × 1.25mm3. To generate synthetic data, first,
up to three fiber orientations and corresponding volume fractions were estimated
per voxel using the bedpostx tool from the FSL library [26]. These parameters were
then used to generate synthetic data using the multi-fiber ball and stick model as
in [25] for each shell independently. In the generation process, the free diffusivity
coefficients are set to {0.68, 0.96, 2.25} · 10−3 s/mm2 for the white matter, gray mat-
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Table 1 Sizes of 3DCNNs and S2U -nets (MB) for Np sampling points

Model/Np 20 30 40 60 90 120

3DCNN 18.12 18.12 18.12 18.96 20.18 20.18

S2U -net1×1×1 15.65 15.65 15.65 19.30 20.52 20.52

S2U -net3×3×3
s 3.99 3.99 3.99 4.89 5.17 5.17

S2U -net3×3×3 15.80 15.80 15.80 19.42 20.60 20.60

ter and cerebrospinal fluid, respectively [25]. Single-fiber tensor’s eigenvalues are
set to {λ1,λ2,λ3} = {1.7, 0.17, 0.17} · 10−3 s/mm2 [25]. To simulate more realis-
tic dMRI data, Rician noise with SNR=18 was added to the synthesized data. In
addition, in order to investigate the robustness of the compared methods, one syn-
thetic dataset is generated with the constant diffusion single-fiber tensor eigenvalues
(Synthetic dataset 1) as in [25] and another one with the eigenvalues taken from the
uniform distribution around these values (values taken from the range of ±10%)
(Synthetic dataset 2). Experiments are conducted on Real dataset, Synthetic dataset
1 and Synthetic dataset 2 with downsampled acquisition schemes. To select relevant
white matter voxels, we used brain tissue segmentation computed from T1w images
using the FAST algorithm [27] implemented in themrtrix library [28]. Gold standard
fODFs, of SH degree 8, were estimated using themulti-shell multi-tissue constrained
spherical deconvolution (MSMT-CSD) approach [9], on signals acquired on full sam-
pling scheme, using mrtrix library [28]. In the case of synthetic data, fODFs were
estimated on the noise-less data. We used 50 subjects in total, 30 for training, 10 for
validation and 10 for testing.

4 Experiments and Implementation Details

In order to evaluate our method on data similar to those used in clinical practice,
experiments are performed on data with significantly reduced number of sampling
points Np (20, 30, 40, 60, 90 and 120 in total for the three shells). We compared
our method with another deep learning approach—3DCNN [12] and with MSMT-
CSD [9]. To investigate importance of neighbourhood information, our model is
trained with single voxel multi-shell (S2U -net1×1×1) signals and with 3 × 3 × 3
neighbourhood multi-shell input (S2U -net3×3×3), what is also the case with the
3DCNN model. In addition, to investigate potential of our approach, we trained
one model with significantly lower number of trainable parameters—S2U -net3×3×3

s .
Sizes of the deep learning networks are given in Table1.

Both deep learning approaches are implemented using the tensorflow library [29].
Models are trained over 100 epochs. In each epoch, 3 dMRI samples are randomly
selected from 30 training samples. For both models loss function is defined as mean
square error (MSE) between estimated and gold standard fODFs represented in spec-
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tral domain. Initial learning rate is 0.001 and after 50 epochs it is reduced to 0.0001.
Model weights updates are computed using the Adam optimization algorithm [30].

5 Results and Conclusions

Results are compared quantitatively in terms of MSE and mean angular error (MAE)
for single fiber voxels and voxels containing two crossing fibers. To compute peaks of
the estimated and gold standard fODFswe used themrtrix library [28] and the thresh-
old of 0.1 of the highest peak is used to eliminate spurious fibers. In Fig. 2 we can
see that our models S2U -net3×3×3 achieve significantly lower MSE compared to the
models that do not use neighbouring information and slightly, but consistently lower
MSE compared to 3DCNN . In addition, almost equal performance can be achieved
with a more compact model—S2U -net3×3×3

s . In Fig. 3 we can notice that for single
fiber voxels and real dataset, MAE is almost equal to the one achieved with MSMT-
CSD, however the results obtained on synthetic data indicate that our approach is
more robust to noise. As depicted in Fig. 3, S2U -net3×3×3 and S2U -net3×3×3

s achieve
lower MAE in voxels with crossing fibers. Qualitative comparison of MSMT-CSD,
3DCNN and S2U -net3×3×3 is provided in Fig. 4 for 60 sampling points. We can
notice that MSMT-CSD compared to the 3DCNN and S2U -net3×3×3 is more prone
to produce spurious fibers, while these deep learning approaches are more likely to
omit some.

Fig. 2 Comparison of MSE averaged over 10 testing subjects for real HCP dataset, Synthetic
dataset 1 and Synthetic dataset 2 for different number of sampling points
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Fig. 3 Comparison of MAE averaged over 10 testing subjects for real HCP dataset, Synthetic
dataset 1 and Synthetic dataset 2 for different number of sampling points for voxels containing
single fibers (upper three sub-figures) and voxels containing two crossing fibers (lower three sub-
figures)

In this work we have proposed a deep learning method that is adjusted to the
properties of dMRI signals, namely real and spherical nature of the signals, antipodal
symmetry, random distribution of the sampling points and axial symmetry of signals
coming from individual fibers. We have demonstrated that the proposed method
is suitable for high resolution inference such as the estimation of the fODFs and
can successfully incorporate neighbouring information to boost its performance.
Compared with the 3DCNN, the method is capable to produce better fODF estimates
evenwith a significantly reducednumber of parameters.Results obtainedon synthetic
data indicate a better robustness with respect to noise.
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Fig. 4 Illustration of fODF gold standard and estimates obtained using MSMT-CSD, 3DCNN and
S2U -net3×3×3 with angular resolution decreased to 60 points in total for the three shells. Sub-figures
a, e and i correspond to the gold standard fODFs for real HCP dataset, Synthetic dataset 1 and
Synthetic dataset 2, respectively. Sub-figures b, f and j correspond to the fODF estimates obtained
using MSMT-CSD; sub-figures c, g and k using 3DCNN and sub-figures d, h and l correspond to
the fODF estimation with S2U -net3×3×3



Diffusion MRI Fiber Orientation Distribution Function Estimation … 105

Acknowledgements This work was supported by the ERC under the European Union’s Horizon
2020 research and innovation program (ERC Advanced Grant agreement No 694665: CoBCoM:
Computational Brain Connectivity Mapping). This work has been partly supported by the French
government, through the 3IACôte d’Azur Investments in the Future projectmanaged by theNational
Research Agency (ANR) with the reference number ANR-19-P3IA-0002. Data were provided [in
part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David
Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that
support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University.

The authors are grateful to Inria Sophia Antipolis—Méditerranée https://wiki.inria.fr/Clusters
Sophia/Clusters_Home“Nef” computation cluster for providing resources and support.

References

1. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson.
Imaging: Off. J. Int. Soc. Magn. Reson. Med. 13(4), 534–546 (2001)

2. Basser, P.J.,Mattiello, J., LeBihan,D.:MRdiffusion tensor spectroscopy and imaging.Biophys.
J. 66(1), 259–267 (1994)

3. Van Wedeen, J., et al.: Mapping complex tissue architecture with diffusion spectrum magnetic
resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)

4. Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compres-
sive sensing in diffusion MRI. Med. Image Anal. 17(5), 556–572 (2013)

5. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 52(6),
1358–1372 (2004)

6. Descoteaux, M., et al.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson.
Med.: Off. J. Int. Soc. Magn. Reson. Med. 58(3), 497–510 (2007)

7. Tournier, J.-D., et al.: Direct estimation of the fiber orientation density function from diffusion-
weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004)

8. Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation dis-
tribution in diffusionMRI: non-negativity constrained super-resolved spherical deconvolution.
Neuroimage 35(4), 1459–1472 (2007)

9. Jeurissen, B., et al.: Multi-tissue constrained spherical deconvolution for improved analysis of
multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)

10. Basser, P.J., et al.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4),
625–632 (2000)

11. Jbabdi, S., et al.: Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18(11),
1546 (2015)

12. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using
convolutional neural network. Med. Phys. 46(7), 3101–3116 (2019)

13. Nath, V., et al.: Deep learning estimation of multi-tissue constrained spherical deconvolution
with limited single shell DW-MRI (2020). arXiv:2002.08820

14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image seg-
mentation. In: International Conference onMedical Image Computing and Computer-Assisted
Intervention. Springer, Cham (2015)

15. Zhao, F., et al.: Spherical U-Net on cortical surfaces:methods and applications. In: International
Conference on Information Processing in Medical Imaging. Springer, Cham (2019)

16. Cohen, T.S., et al.: Spherical CNNS (2018). arXiv:1801.10130
17. Esteves, C., et al.: Learning so (3) equivariant representations with spherical CNNS. In: Pro-

ceedings of the European Conference on Computer Vision (ECCV) (2018)
18. Driscoll, J.R., Healy, D.M.: Computing Fourier transforms and convolutions on the 2-sphere.

Adv. Appl. Math. 15(2), 202–250 (1994)

https://wiki.inria.fr/ClustersSophia/Clusters_Home
https://wiki.inria.fr/ClustersSophia/Clusters_Home
http://arxiv.org/abs/2002.08820
http://arxiv.org/abs/1801.10130


106 S. Sedlar et al.

19. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with
uniform coverage in diffusion MRI. Magn. Reson. Med. (Wiley) 69(6), 1534–1540 (2013).
https://doi.org/10.1002/mrm.24736

20. Yeo, B.T.T.: Computing spherical transform and convolution on the 2-sphere. Manuscript, MIT
(2005)

21. Descoteaux, M., et al.: Regularized, fast, and robust analytical Q’ball imaging. Magn. Reson.
Med.: Off. J. Int. Soc. Magn. Reson. Med. 58(3), 497–510 (2007)

22. Rauhut, H., Ward, R.: Sparse recovery for spherical harmonic expansions (2011).
arXiv:1102.4097

23. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage
80, 62–79 (2013)

24. Behrens, T.E.J., et al.: Probabilistic diffusion tractography with multiple fibre orientations:
What can we gain? Neuroimage 34(11), 144–155 (2007)

25. Wilkins, B., et al.: Fiber estimation and tractography in diffusion MRI: development of simu-
lated brain images and comparison of multi-fiber analysis methods at clinical b-values. Neu-
roimage 109, 341–356 (2015)

26. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implemen-
tation as FSL. Neuroimage 23, S208–S219 (2004)

27. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov
random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging
20(1), 45–57 (2001)

28. Tournier, J.-D., Smith, R.E., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens,
D., Jeurissen, B., Yeh, C.-H., Connelly, A.: MRtrix3: a fast, flexible and open software frame-
work for medical image processing and visualisation. NeuroImage 202, 116–37 (2019)

29. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16) (2016)

30. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980

https://doi.org/10.1002/mrm.24736
http://arxiv.org/abs/1102.4097
http://arxiv.org/abs/1412.6980


Microstructure Modeling
and Representation



Stick Stippling for Joint 3D Visualization
of Diffusion MRI Fiber Orientations
and Density

Ryan P. Cabeen, David H. Laidlaw, and Arthur W. Toga

Abstract We investigate a stick stippling approach for glyph-based visualization of
neural fiber architecture derived from diffusion magnetic resonance imaging. The
presence of subvoxel crossing fibers in the brain has prompted the development of
advanced modeling techniques; however, there remains a need for improved visual-
ization techniques tomore clearly convey their complex structure.While tractography
can illustrate large scale anatomy, visualization of diffusion models can provide a
more complete picture of local anatomy without the known limitations of tracking.
We identify challenges and evaluate techniques for visualizing multi-fiber models
and identify benefits of a stick stippling technique relative to existing methods. We
conducted experiments to compare these representations and evaluated them with in
vivo diffusion MR datasets that vary in voxel resolution and anisotropy. We found
that stick rendering as 3D tubes increased legibility of fiber orientation and that
encoding fiber density by tube radius reduced clutter and reduced dependence on
viewing orientation. Furthermore, we identified techniques to reduce the negative
perceptual effects of voxel gridding through a jittering and resampling approach to
produce a stippling effect. Looking forward, this approach provides a new way to
explore diffusion MRI datasets that may aid in the visual analysis of white matter
fiber architecture and microstructure. Our software implementation is available in
the Quantitative Imaging Toolkit (QIT).
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) provides a unique probe of water
molecule diffusion that can reveal the complex architecture of neural tissue, including
crossing, kissing, and bending fibers [1]. This complexity poses a challenge when
visualizing dMRI datasets due to the dense and overlapping nature of fiber bundles
in the brain [2, 3]. While tractography provides a powerful tool for understanding
large scale neural structures, there is high variability across tracking methods and
false positives are difficult to avoid [4] and there are limitations to its anatomical
accuracy [5]. To help provide a more complete picture of the underlying anatomy
and to understand why tracking algorithms fail, it can be useful to instead visualize
the underlying voxel models representing local diffusion properties in each voxel [3,
6, 7].

Glyph rendering is a common technique for visualizing local features of dMRI
data [8]; in this process, markers or symbols are used to visually encode the diffu-
sion or microstructure properties at various positions of a volume. Previous work has
included a variety of useful glyphs [2], including ellipsoids [6] and superquadratics
representing tensors [9, 10]. Glyphs have also been used to represent more complex
models, such as orientation distribution functions (ODFs) [11], and spherical har-
monic representations of fiber orientation distributions (FODs) [12, 13]. Other work
has focused on directly visualizing fiber organization through glyph packing [14],
and two-dimensional techniques such as line rendering [15–17] and line stippling
[18, 19]. Nevertheless, the visualization of complex fiber configurations remains a
major challenge, due to cluttering in high resolution data, dependence on viewing
orientation, and the introduction of perceptual artifacts due to the gridding of voxels.

Our primary contribution is the development of a visualization technique that
combines several of these existing approaches to better depict crossing fiber config-
urations with fixels, a term that refers to the combination of fiber orientations and
associated fiber density or volume fraction (Fig. 1) [20]. We propose methods that
build on related superquadratic and fiber stippling work by using data-modulated
3D stick glyphs and by using a stippling effect to more clearly depict crossing fiber
orientation and density. We compare these and other multi-fiber glyphs and show
how they are affected by image gridding and viewing orientation. We then evaluate
this technique by creating visualizations of in vivo neuroimaging data with varying
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Fig. 1 The proposed computational pipeline for creating stick stippling visualizations from diffu-
sion MRI data. The pipeline applies to both multi-compartment models, such as the ball-and-sticks
model, as well as FODs represented by spherical harmonics
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voxel resolution and anisotropy to show the relative benefits of this approach for
typical data exploration sessions.

2 Methods

2.1 Diffusion Modeling and the Fixel Representation

We focus here on the visualization of multi-fiber models using a fixel representation
that can summarize either FODs [21] or multi-compartment models such as the ball-
and-sticks model [22]. Each fixel consists of a fiber orientation and its associated
fiber density, which are extracted as follows. For FOD modeling, fiber orientations
are extracted by sampling the distribution on a four-fold subdivision of an spherical
icosahedral mesh. From this, fiber orientations are extracted from the local maxima
on the mesh, and fiber density is taken by the peak density. FOD fixels were further
processed to remove duplicates at antipodal points and local ridges using hierarchi-
cal clustering with a sine angle distance. For multi-compartment modeling, fixels
are directly derived from the principal direction and volume fraction of each com-
partment. While previous work has used fixels primarily for FODs [23], we more
generally use fixel density to represent either volume fraction or density, depending
on the underlying model.

More formally, the fixels of the i th voxel are given by Mi = {( fi j , vi j )}Ni
j=1, with

fixel count N , density f , and orientation v. Our approach also requires interpolation
for jittering fixels in a neighborhood around each voxel, and for this, we use a kernel
regression framework [24, 25], which estimates the fixels M̂ at an arbitrary position
p from a neighborhood of voxels N :

M̂(p) = argmin
M

∑

i∈N
K (pi , p)d

2(Mi ,M) + λN (1)

d2(M, M̂) = min
π

∑

j

f j
(
1 − (v j · v̂π( j))

2) (2)

K (pi , p) = exp
(−‖pi − p‖2/h2) (3)

given spatial bandwidth h, and regularization term λ = 0.99. While previous work
has used this with ball-and-sticks modeling, we more generally use this here with
fixels obtained from FODs [23] as well. The primary goal here is then to develop
improved glyph-based visualization techniques based on this approach, which we
describe next.
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2.2 Fixel Glyph Visualization

The design of glyph visualizations generally includes a number of technical chal-
lenges related to visual perception [26–29], and we identified three major issues
specifically related to fixels (Fig. 2). First, the complexity of multi-fiber models often
creates cluttered scenes, making it difficult to distinguish important fibers from unim-
portant ones. Second, the viewing orientation of the scene can reduce the legibility
of fixel orientation and density, particularly those parallel to the camera’s viewing
direction [15]. Third, the discretization of the voxel grid can break gestalt principles
of perceptual organization, making some bundles appear more organized than others,
even when they only differ in orientation relative to the viewing angle.

We can address these issues by using the 3D shape and layout of fibers to reduce
visual ambiguities (Fig. 1). First, we render fixels as tubes (or sticks) to provide a
clearer reading of fiber orientation, as shading from the 3D shape can provide depth
cues, unlike rendering solid lines. We also color fixels according to the widely used
RGB-directional color mapping [30]. Second, we modulate the radius of the tube
to reflect the fiber density. The advantage of modulating the radius is that it can be
appreciated from any viewing orientation, unlike tube length, which can be illegible
when parallel to the viewing direction and can be confused with orientation due to
perspective foreshortening. Finally, we render fixels using jittering of 3D glyphs to
produce a stippling effect, a process that greatly reduces the effect of gridding by
drawing glyphs at uniformly sampled points within each voxel. This approach builds
on related work on stippling and superquadratics to visualize fixels. Furthermore. In
the following section, we conduct experiments to make comparisons with previously
used multi-fiber visualizations and to understand how effectively they address the
challenges posed in fixel visualization.

a bTube + Radius Gridded JitteredTube + Length

Fig. 2 Perceptual challenges for fixel visualization shown in synthetic data. Panel A shows chal-
lenges related to viewing orientation, where length and radius encoding of fiber density are com-
pared. Red fiber density decreases from top to bottom, and green fiber density decreases left to
right. This illustrates how the density of fibers parallel to the camera view (green) is only legible
with radius encoding. Panel B shows challenges related to voxel discretization, where gridded and
jittered glyphs are compared. Three bundles were created with equal thickness but with different
orientations. This illustrates how gridding canmake axis-aligned bundles lookmore coherent, while
jittering can avoid these issues to give an equally coherent appearance to all bundles
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3 Experiments and Results

We conducted experiments with three datasets to understand the strengths and limi-
tations of various fixel rendering techniques with regard to how they represent com-
plex anatomy. These datasets were chosen to include voxels of varied resolution
and anisotropy in order to show performance across anatomical scales and imaging
parameters. In addition to techniques described in the previous section, we compared
the results to solid line rendering, tube length encoding, and spherical harmonic FOD
rendering when applicable. Our experiments were implemented using the Quantita-
tive Imaging Toolkit (QIT) [31].

3.1 Clinical Data Experiment

Our first experiment examined data from a typical clinical acquisition. Diffusion-
weighted MR image volumes were acquired from a healthy 34year old volunteer,
conducted on a GE 1.5T scanner with voxel size of 2mm3, matrix size 128 × 128,
and 72 contiguous axial slices. A total of 71 volumes were acquired, with seven T2-
weighted volumes (b-value 0 s/mm2) and 64 diffusion-weighted volumes (b-value
1000s/mm2) and distinct gradient encoding directions. Ball-and-sticks were esti-
mated using MCMC optimization procedure of Behrens et al. [22].

Eight visualizations were generated to depict a coronal slice showing complex
interactions among the corpus callosum (CC), and superior longitudinal fasciculus
(SLF), cingulum bundle, and corona radiata (Fig. 3). This figure compares grid-

Line Tube Tube + Length Tube + Radius
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Fig. 3 Eight fixel visualizations with clinically feasible data. A comparison of the first and second
columns shows how 3D tube rendering more clearly depicts fiber orientation. A comparison of the
third and fourth columns show how radius encoding can illustrate variation in fiber density, e.g. the
variation in SLF fibers shown in green (white arrows)
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ded and jittered glyph placement, line and 3D tube drawing, and length and radius
encodings of fiber density. We found that jittering effectively removed evidence of
the underlying voxel grid, and visualization representing fiber density had less clut-
ter. We found that length encoding of volume fraction was only effective in fibers
orthogonal to the viewing direction, however, the density of fibers parallel to the
view, such as the SLF and cingulum, were only appreciable with radius encoding.

3.2 HCP Experiment

Our second experiment examined state-of-the-art dataset from the Human Connec-
tome Project [32, 33],1 specifically the single subject dataset with identifier 100307.
Diffusion-weightedMR imaging was conducted on a Siemens 3T scanner with voxel
size of 1.25mm3, matrix size 145 × 145, and 174 slices. A total of 288 volumes
were acquired, with 18T2-weighted volumes (b-value 0 s/mm2) and the remainder
distributed among roughly three shells (b-values 1000, 2000, 3000s/mm2) with dis-
tinct gradient encoding directions. FODs were estimated using the compartmental
modeling approach of Tran and Shi [34] using 16 order spherical harmonics. The
FODs were discretized using a subdivided icosahedron, and fixels were created from
the peak directions and fiber density.

Four visualizations were generated to depict a coronal slice that includes a
triple crossing of the corticospinal tract, CC, and SLF (Fig. 4). These visualizations
included line rendering, spherical FOD rendering, gridding tubes, and jittered tubes.
We found that the high resolution of the data make gridded visualizations more dif-
ficult to read, due to the smaller size of fixel glyphs. The tube renderings were more
legible than either line or FOD rendering, but jittered tubes provided the greatest
legibility. In particular, the jittering more clearly showed triple crossings, density
reductions at the white-gray matter interface and the variation in density of the SLF.

3.3 RESOLVE Experiment

Our third experiment examined an advanced presurgical acquisition with highly
anisotropic voxels. Diffusion-weighted MR imaging was conducted prior to surgery
to treat temporal lobe epilepsy. The RESOLVE DWI sequence was run on a
Siemens Prisma 3T scanner with a high resolution coronal in-plane resolution of
0.6mm×0.6mm with matrix size 272 × 360. 19 contiguous slices were acquired
with thickness 2.1mm. A total of 56 volumes were acquired, with six T2-weighted
volumes (b-value 0 s/mm2) and 50 diffusion-weighted volumes (b-values 800 and
2000s/mm2) and distinct gradient encoding directions. Ball-and-sticks were esti-

1 http://www.humanconnectome.org.

http://www.humanconnectome.org
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FODLine

Jittered Line Jittered Stick + Radius

Fig. 4 Visualizations of human connectome project data. The top row shows how high spatial
resolution can impact visibility in line and ODF rendering. The bottom right shows how jittering
can avoid gridding artifacts and improve visibility

mated using MCMC optimization procedure of Behrens et al. [22] with the contin-
uous exponential model for multi-shell experiments.

Four visualizations were generated to compare fixel visualization of the coronal
high in-plane resolution data with an axial slice showing voxel anisotropy (Fig. 5).
Each slice was rendered using both gridded and jittered tubes with radius encoding.
The coronal slice was found to have fine detail in crossing fibers; however, the
axial slice showed perceptual irregularities due to the thick slices. Specifically, the
anisotropic axial slice showed greater coherence of SLF fibers than CC fibers, due
to the greater separation of endpoints of fixels representing the CC. In contrast, the
jittered glyphs showed no discrepancy between coronal and axial views, reducing
the effects of both voxel gridding and anisotropy.

4 Discussion and Conclusions

Our results indicate that when visualizing complex fiber architecture, there are lim-
itations caused by clutter, viewing orientation, and voxel gridding; however, a com-
parison of glyph visualization techniques showed that these can be mitigated. First,
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Fig. 5 Visualizations of RESOLVE DWI data. The top left shows how high in-plane resolution
can greatly reduce the size and visibility of glyphs. The bottom left shows how this introduces large
spacing between glyphs when voxels are anisotropic. By contrast, jittered glyphs were found to
greatly reduce these negative effects

rendering fixels as 3D tube-shaped sticks helped to better indicate orientation through
shading and depth cues, and modulating the radius by fiber density helped to reduce
clutter and ambiguities based on viewing direction. Second, a stippling effect, pro-
duced by glyph jittering and resampling, was found to reduce gridding artifacts,
which is perhaps similar to anti-aliasing through randomized glyph placement. Nev-
ertheless, a number of open questions remain. Many applications require the visual-
ization of other per-compartment parameters, e.g. statistical metrics, axon diameter,
ormyelination, and this requires furtherwork to understand how to effectively encode
such parameters with glyphs. Theremay also be cases where fixels are not a sufficient
representation, e.g. when there is fanning or dispersion that may be more apparent
by visualizing a complete FOD, and a stippling approach for FOD visualization may
also be advantageous, given some mechanism for suppressing peaks along the view-
ing axis. There also remain important open problems related to visualizing glyphs
in conjunction with tractography [35] and surfaces [36]. More broadly, an impor-
tant open challenge is the translation of diffusion MRI visualization tools into use by
clinical and basic neuroscience researchers, which may require further investigations
with user studies, more intuitive software interfaces, and collaborative research pro-
grams. Looking forward, the described stick stippling approach may help to interpret
imaging results and aid the development of advanced visualization systems for both
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human neuroimaging and preclinical imaging [37]. Our software implementation is
available online as part of the Quantitative Imaging Toolkit (QIT).2,3
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Q-Space Quantitative Diffusion MRI
Measures Using a Stretched-Exponential
Representation

Tomasz Pieciak , Maryam Afzali , Fabian Bogusz ,
Santiago Aja-Fernández , and Derek K. Jones

Abstract Diffusion magnetic resonance imaging (dMRI) is a relatively modern
technique used to study tissue microstructure in a non-invasive way. Non-Gaussian
diffusion representation is related to the restricted diffusion and can provide informa-
tion about the underlying tissue properties. In this paper, we analytically derive nth
order statistics of the signal considering a stretched-exponential representation of the
diffusion. Then, we retrieve the Q-space quantitative measures such as the Return-
To-the-Origin Probability (RTOP), Q-space mean square displacement (QMSD),
Q-space mean fourth-order displacement (QMFD). The stretched-exponential rep-
resentation enables the handling of the diffusion contributions from a higher b-value
regime under a non-Gaussian assumption, which can be useful in diagnosing or prog-
nosis of neurodegenerative diseases in the early stages. Numerical implementation
of the method is freely available at https://github.com/TPieciak/Stretched.

1 Introduction

Magnetic resonance imaging (MRI) is a powerful technique in clinical applications
for diagnoses or prognoses of several diseases in the central nervous system [8,
19]. Diffusion-weighted MRI (dMRI) modality is sensitive to the random motion of
water molecules in the tissue, and it is vastly used in both clinical and basic science to
characterize tissuewater behavior. In the category of dMRI studies, different imaging
techniques can extract the microstructural features of the tissue, such as size, shape,
and anisotropy. Many studies have shown a relationship between the changes in the
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diffusion properties of the tissue and the relevant alteration in the underlying tissue
microstructure [28].

One of themost important features of dMRI is its sensitivity to the anisotropy in the
tissue. Diffusion tensor imaging (DTI) [8] is the most common technique in clinical
studies. The spins displacement in DTI is assumed to be Gaussian distributed, and
some scalar anisotropy indices such as fractional anisotropy (FA), axial, and radial
diffusivity (AD, RD), and mean diffusivity (MD) were defined directly from second-
order tensor representation [7, 31]. The most common and simplest assumption in
dMRI is the Gaussian assumption [18] on the spin displacement, which results in a
mono-exponential decay of a diffusion signal versus the b-value parameter [10]. The
Gaussian assumption in DTI is valid when the media is a simple fluid, and we have
free diffusion. In more complicated structures such as tissue, there are restrictions
in water diffusion, and therefore, the decay is much slower than a mono-exponential
decay [9].

The presence of non-mono-exponential decay shows that the diffusion is restricted
by the underlying microstructure of the tissue. If the structure’s size is similar to the
diffusion length-scale, then the diffusion deviates from the Gaussian towards a non-
Gaussian displacement regime [15]. Therefore diffusionMRI can be used to probe the
microstructural properties of the underlying tissue geometry by methods such as bi-
exponential [11], stretched-exponential [9], composite hindered and restrictedmodel
of diffusion (CHARMED) [4], AxCaliber [5], ActiveAx [3] or neurite orientation
dispersion and density imaging (NODDI) [34]. All these methods can be used to
investigate tissue geometry, but they are not all equally applicable in all situations.
Other methods such as the high angular resolution diffusion imaging (HARDI) [25,
30] and diffusion kurtosis imaging (DKI) [17] were also proposed. To obtain the
non-Gaussian property of the signal higher b-values are required [20].

Alternative to model the tissue’s underlying properties is the ensemble average
propagator (EAP), which represents the probability that the water molecule moves in
a specific direction under a certain diffusion time [12, 26]. From the EAP represen-
tation, one can retrieve different Q-space quantitative measures such as the Return-
To-the-Origin Probability (RTOP), Q-space mean square displacement (QMSD), or
Q-space mean fourth-order displacement (QMFD). For instance, the RTOP measure
is shown to be a useful index for cellularity and diffusion restrictions [6], while
QMSD and QMFD are sensitive to contributions from slow or restricted diffusion
[22].

Different methods have been proposed so far to estimate the EAP and EAP-
related features such as the multiple q-shell diffusion propagator Imaging (mq-DPI)
[12], Hybrid Diffusion Imaging (HYDI) [33], Mean Apparent Propagator (MAP-
MRI) [26], Radial Basis Functions (RBFs) [22], Laplacian-regularized MAP-MRI
(MAPL) [13], and Generalized Diffusion Spectrum MRI (GDSI) [29]. These tech-
niques are typically computationally intensive or require a huge amount of densely
sampled Cartesian or multiple-shell data to estimate the EAP and its related features
correctly. Recently, a single-shell technique that can estimate micro-structure diffu-
sion scalar measures directly from the data has been proposed [2, 27]. This approach,
although it enables one to estimate the measures rapidly and directly from the data,
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assumes a Gaussian profile of the signal, thus it might be problematic to recover
higher b-value contributions to the signal.

In this paper, we analytically derive the nth order statistics of the signal consider-
ing a stretched-exponential decay to represent the Gaussian and non-Gaussian parts
of the signal. In practice, when no information about the number of compartments is
provided, the stretched exponential is a good choice [9]. Given the general formula-
tion in the Q-space domain, we obtain closed-form formulas to retrieve basic indexes
such as the RTOP, QMSD, or QMFD directly from the data in a manner analogous
to direct techniques [2, 27, 33]. However, the proposal is no longer limited by a
Gaussian assumption and can be used to retrieve the diffusion contributions under
the higher b-values regime.

2 Theory

In this section, we start with the definition of the EAP and diffusionMR signal repre-
sentation using a stretched-exponential function, and then we use this representation
to extract the Q-space scalar measures such as the RTOP, QMSD, and QMFD.

2.1 Diffusion MR Signal Representation

The ensemble average propagator (EAP) is a three-dimensional probability density
function that represents the average displacement of spins during the diffusion time.
The EAP, P(R), is related to the diffusionMR signal attenuation E(q) via the Fourier
transform [12, 26, 33]

P(R) =
∫
R3

E(q) exp(− j2πqTR)d3q, j2 = −1, (1)

with E(q) = S(q)/S(0) being the normalized diffusion signal, S(q) is the diffusion
signal acquired at wave vector q, S(0) is the baseline measured without a diffusion
sensitization.

The signal in Eq. (1) can be represented by a mono-exponential decay E(g) =
exp

(−bgTDg
)
with g being a normalized vector g = q/‖q‖ and D is a covariance

matrix of a Gaussian EAP or a more general Kohlrausch–Williams–Watts function
so-called a stretched-exponential representation given by [9, 21, 32]

E(g) = exp
(−(bD(g))α(g)) , α(g) ∈ (0, 1] (2)

with the so-called the b-value b = 4π2τ‖q‖2 [s/mm2] with τ = Δ − δ/3 [s] being
the effective diffusion time, D(g) andα(g)being the apparent diffusion and stretching
parameters at direction g, respectively. Notice here once the stretching parameter
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tends to unitary, i.e., α(g) → 1, the stretched-exponential representation (2) reduces
to a mono-exponential signal decay.

2.2 Q-Space Domain Quantitative Measures

Inwhat follows,weanalytically deriventh order statistics of the stretched-exponential
representation given by the Eq. (2). This enables to easily retrieve three quantitative
Q-space measures namely the RTOP [mm−3] being the probability in the origin,
P(0), QMSD [mm−5] and QMFD [mm−7] defined as the second- and fourth-order
statistics of the signal E(q) respectively [12, 22]

RTOP =
∫
R3
E(q)d3q, QMSD =

∫
R3

‖q‖2E(q)d3q, QMFD =
∫
R3

‖q‖4E(q)d3q,

(3)
where ‖ · ‖ is the vector norm of the wave vector q.

We specify now a more general equation in the Q-space domain related to the nth
order statistics of the signal attenuation E(q). Considering the stretched-exponential
representation of the signal (2) and a spherical coordinate system (q, θ, ϕ)with polar
θ and azimuthal ϕ angles, and a radial coordinate q = ‖q‖ [mm−1] we define the
nth order statistics of the signal attenuation E(q)

Mn =
∫
R3

‖q‖n exp (−(4π2τ‖q‖2D(g))α(g)) d3q

=
∫ 2π

0

∫ π

0

∫ ∞

0
exp

(
− (

4π2τq2D(θ, ϕ)
)α(θ,ϕ)

)
qn+2 sin θ dq dθ dϕ,

(4)

where D(θ, ϕ) and α(θ, ϕ) are the apparent diffusion coefficient and stretching
parameter both defined in the spherical coordinate system. Next, we rewrite the
integral (4) as follows (see Gradshteyn and Ryzhik [14, p. 370, Eq.3.478(1)])

Mn = Cτ
n

∫ 2π

0

∫ π

0
	

(
n + 3

2α(θ, ϕ)

)
α−1(θ, ϕ) D−(n+3)/2(θ, ϕ) sin θ dθ dϕ

= Cτ
n

∫∫
Σ

	

(
n + 3

2α(θ, ϕ)

)
α−1(θ, ϕ) D−(n+3)/2(θ, ϕ) dΣ,

(5)

where Cτ
n = 2−n−4π−n−3τ−(n+3)/2 is a diffusion time dependent constant and 	(·)

is the gamma function. Notice here that the last equation is a surface integral over
the surface with a unitary radius, i.e., q = 1.



Q-Space Quantitative Diffusion MRI Measures Using … 125

2.3 Numerical Implementation

To evaluate the surface integral (5), one can assume the surface area element, ΔΣ ,
is inversely proportional to the number of sampled data points (e.g., the number
of evenly distributed directions Ng , ΔΣ = 4π/Ng). Transforming the Eq. (2) the
diffusion becomes D(g) = 4−1π−2τ−1q−2 (− log E(q))1/α(g), and thus the Eq. (5)
can be rewritten in the following form

M (1)
n = 1

2
qn+3

〈
	

(
n + 3

2α(g)

)
α−1(g) (− log E(q))

− n+3
2α(g)

〉
q∈S2

(6)

with 〈·〉q∈S2 being a direction-averaged signal over a single acquisition shell. Notice
that the Eq. (6) can be evaluated using the samples retrieved from the resampled data
to uniformly cover the surface (e.g., the spherical harmonics [2]).

The numerical reciprocal of the negative log-diffusion function given in Eq. (6)
might be prone to instabilities, i.e., the signal attenuation E(q) → 1 the function
(− log(E(q)))−1 → ∞ [1, 27]. Alternatively, one can refine (6) to incorporate its
second-order series expansion. To this end, we define a twice differentiable function
f : R → R given by f (X) = 	

(
n+3
2α

)
α−1X−(n+3)/(2α) with n ≥ 0. The second-order

series expansionof the expectation of the function f (X) around the expectationE {X}
is given then by E { f (X)} ≈ f (E {X}) + 1

2
d2 f
d X2

∣∣∣
X=E{X}

· Var {X}. After using some

algebra we arrive at the following closed-form formula

E { f (X)} ≈ 1

8
	

(
n + 3

2α

)
α−3

E {X}− n+3
2α

(
(n + 3)(n + 3 + 2α)E

{
X2}

E {X}−2

+ 8α2 − (n + 3)(n + 3 + 2α)
)
.

Given a stretched-exponential decay again (2) and a second-order series expansion
of the expectation, we define an approximation to the measure (6)

M (2)
n = 1

2
qn+3

〈
1

8
	

(
n + 3

2α(g)

)
α−3(g)

〉
q∈S2

〈− log E(q)〉
−

〈
n+3
2α(q)

〉
q∈S2

q∈S2

×
[

(n + 3) 〈(n + 3)1 + 2α(g)〉q∈S2
〈
(− log E(q))2

〉
q∈S2

〈− log E(q)〉2q∈S2

+ 〈
8α2(g) − 2(n + 3)α(g) − (n + 3)21

〉
q∈S2

]
(7)

with 1 being the all-ones vector. Here, we have simplified our derivations in the series
expansion procedure; thus, we direction average the stretching parameter to obtain
the final formula. From Eq. (7) we can define basic Q-space domain measures such
as the RTOP (M0), QMSD (M2) or QMFD (M4; see Eq. (3)). The proposed stretched-
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exponential method requires a multiple-shell acquisition with at least two-shells at
different b-values to fit the representation given by Eq. (2). Once the representation
is fitted, a single-shell data at a fixed b-value is used to calculate the measures.
In Sect. 2.4, we define a simple optimization cost function to retrieve the stretched
representation of the diffusion signal.

2.4 Optimization of Stretched-Exponential Representation

To retrieve a stretched-exponential representation at direction g of the diffusion, we
define an optimization cost function and solve it using a non-linear least squares
procedure

(D(g), α(g)) = argmin
D′(g), α′(g)

1

2

∑
q : q‖g

[
S(q) − S(0) exp

(
−(4π2τ‖q‖2D′(g))α

′(g)
) ]2

.

We used a bound-constrained minimization via the trust-region reflective method
with a linear loss function to find the optimal parameters. Notice here the procedure
(2.4) applies for each direction g independently and might use the only a subset of
q-values employed to acquire the data.

3 Materials and Methods

In this study, we used ex vivo rat brain data as well as in vivo human brain data that
was publicly available by Hansen and Jespersen [16].

3.1 Ex Vivo rat brain data

The ex vivo data were collected using a Bruker Biospec 9.4T (Bruker Biospin, Ger-
many) with a 15mm quadrature coil. Diffusion-weighted images were acquired in 15
b-value shells ranging from 0 to 5000 s/mm2 with a step size of 200s/mm2 and 33
directions per each shell utilizing a spin echo sequence. Fifteen axial slices were col-
lected at a resolution of 100 × 100 × 500 µm3, matrix size 128 × 128, echo time of
TE = 23.3ms, repetition time of TR = 4s, and diffusion timing of δ/Δ = 4/14ms.
The data set was averaged twice to improve the signal-to-noise ratio being around
75 at the baseline.
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3.2 In Vivo Human brain data

One healthy participant was scanned in an in vivo study using a Siemens Trio 3T
equipped with a 32 channel head coil. The protocol comprised one b = 0 and 15 non-
zero shells ranging from 200s/mm2 to 3000s/mm2 with the step size of 200s/mm2

and 33 directions per shell. Nineteen axial slices with a voxel size of 2.5mm
isotropic and a 96 × 96 matrix size, TE = 116ms, TR = 7200ms, TI = 2100ms
were obtained. The diffusion timings were estimated to be δ/Δ = 29/58ms. The
SNR of the baseline signal is around 39. In our experiments we used a five-shell
acquisition with 200, 1000, 1800 2400, and 3000 s/mm2.

3.3 Comparison to the Q-Space Measures from Different
Methods

In Sect. 2.2 we introduced three measures that is the RTOP, QMSD and QMFD.
In this work, we evaluate the proposed stretched-exponential Q-space measures
and compare them to those obtained from the MAP-MRI technique [26] (positiv-
ity constraint), MAPL [13] (regularization parameter λ = 0.2), RBF [22] (l1 regu-
larization with λ = 0.00055), 3D-SHORE [24, 35] (scale factor ζ = 1/(8π2τD)),
and a single-shell approach [2, 27]. Except for the aforementioned frameworks,
we calculate also the RTOP measure directly from diffusion tensor eigenvalues (a
non-linear least squares fitting via the Levenberg-Marquardt method) as RTOP =
(4πτ)−3/2 (λ1λ2λ3)

−1/2.

4 Results and Discussion

In the first experiment, we visually evaluate the measures using ex vivo rat brain data
retrieved using different methodologies namely the DTI (at 1000 and 1400 s/mm2),
RBF, 3D-SHORE, MAP-MRI, MAPL (the EAPs in all four are fitted to a three-
shells acquisition, i.e., b = 1000, 3000 and 5000 s/mm2), single-shell technique,
and proposed stretched-exponential one (see Fig. 1). For the proposed technique,
we use three-shells for fitting the representation while a single-shell to calculate the
measure. Visually inspecting the RTOPmeasure shows that DTI based ones (Fig. 1a,
b) and single-shell technique (Fig. 1d–f) return smaller values compared to all other
methods. The RBF and 3D-SHORE have the lowest contrast between the white
matter and gray matter tissue in the measure (Fig. 1c, g). In the single-shell method
by increasing the b-value from 1000 to 5000 s/mm2, the RTOP value increases
(Fig. 1d–f, RTOP). Comparing the EAP-based techniques and stretched-exponential
representations (Fig. 1c, g–l, RTOP), 3D-SHORE and RBF provide the lowest while
MAP-MRI gives the highest intensity in white matter areas. MAPL results of RTOP
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Fig. 1 Visual inspection of the RTOP, QMSD and QMFD measures on ex vivo rat brain data:
a DTI (b = 1000 s/mm2), b DTI (b = 1400 s/mm2), c RBF, d single-shell (b = 1000 s/mm2),
e single-shell (b = 3000 s/mm2), f single-shell (b = 5000 s/mm2), g 3D-SHORE, h MAP-MRI,
i MAPL, j stretched-exponential (b = 1000 s/mm2), k stretched-exponential (b = 3000 s/mm2)
and l stretched-exponential (b = 5000 s/mm2)

are similar toMAP-MRI while the RTOP values inMAPL are slightly lower than the
MAP-MRI. Our proposed method of stretched-exponential provides similar RTOP
maps for different b-values (b = 1000, 3000, and 5000 s/mm2) and it preserves
the consistency of the measures between different b-values which is not observed
in single-shell technique (Fig. 1d–f, j–l, RTOP). Clearly, introducing the stretched-
exponential representation enabled to improve contrast and kept the RTOPmeasure’s
uniformity across the b-values. In the QMSD/QMFDmeasures, single-shell method
at b = 1000 s/mm2 has the lowest value in the both gray matter and white matter
while the b = 5000 s/mm2 has the highest and b = 3000 s/mm2 is the intermediate
between the three alternatives of the single-shell method (Fig. 1d–f, QMSD/QMFD.
Notice here that again the behavior of the QMSD/QMFD measures across the b-
values are preserved, and the proposed stretched-exponential representation keeps
the consistency of the quantities while changing the b-value used to calculate the
measure.

In the second experiment, we extrapolate the previous one and evaluate the abso-
lute changes in the measures due to the changes in the maximal b-value parameter. In
this experiment we used six different acquisitions from three-shells (i.e., b = 1000,
2000 and b = 3000 s/mm2) to eight-shells (up to b = 5000 s/mm2 with a step of
400 s/mm2). For the proposed methodology we fit the representation using k shells
(k = 3, . . . , 8; similarly to the EAP-based methods) while calculate the measures
using only one shell, i.e., b = 3000 s/mm2 or bmax. Figure2 depicts the mean abso-
lute changes of the RTOP, QMSD, and QMFDmeasures in terms of maximal b-value
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Fig. 2 The mean absolute changes of the RTOP, QMSD and QMFD measures in ex vivo rat brain
data in terms of maximal b-value (bmax) used to estimate the EAP/calculate the measure under
different techniques. For stretched-exponential representation two variants are used in measure
calculation process namely b-value at bmax and b = 3000s/mm2

Fig. 3 Visual inspection of the measures on in vivo human brain data estimated using various
approaches: a DTI (b = 1000 s/mm2), b DTI (b = 1400 s/mm2), c RBF, d single-shell (b =
3000 s/mm2), e 3D-SHORE, fMAP-MRI,gMAPLand h stretched-exponential (b = 3000 s/mm2)

(bmax) under different methodologies used to estimate the measures. For the estima-
tion of RTOP, our proposed stretched-exponential methodology has the minimum
mean absolute changes for both bmax and b = 3000 s/mm2 used to retrieve the mea-
sure once fitted the Eq. (2.4). It is worth noticing here that the single-shell technique
is heavy load due to the changes in the maximal b-value and our proposal improved
the results though the measure is still calculated from a single-shell. As for the two
other measures, our proposed method is superior to the single-shell method, while
again, the one with bmax is slightly better than that with b = 3000 s/mm2.

Figure3 is devoted to visual inspection of the RTOP and QMSD/QMFDmeasures
on in vivo human brain data estimated using various state-of-the-art approaches. The
observed trend in the in vivo maps of RTOP is similar to the one observed in ex vivo
data (Fig. 1; RTOP). Again, a comparable behavior of the QMSD/QMFD measures
can be observed, i.e., the single-shell technique generally exhibits smaller values of
the measure in white matter areas than stretched-exponential representation. Notice
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Fig. 4 Correlations between the RTOP retrieved from in vivo human brain data using the proposed
stretched-exponential and state-of-the-art methods namely MAP-MRI, MAPL, single-shell and
3D-SHORE (top), and correlations between the proposal and single-shell approach in case of
QMSD/QMFD (bottom)

Table 1 Pearson’s correlation coefficient between different methodologies used to retrieve the
RTOP measure from human brain data (see Fig. 3). Legend: Single (1), (2)—single-shell tech-
nique at b = 2400 and b = 3000 s/mm2; SE (1), (2)—stretched-exponential at b = 2400 and
b = 3000 s/mm2, respectively

DTI MAP-
MRI

MAPL Single
(1)

Single
(2)

3D-
SHORE

SE (1) SE (2)

DTI ×
MAP-
MRI

0.681 ×

MAPL 0.674 0.981 ×
Single
(1)

0.827 0.901 0.895 ×

Single
(2)

0.797 0.936 0.932 0.978 ×

3D-
SHORE

0.642 0.928 0.961 0.863 0.895 ×

SE (1) 0.739 0.951 0.965 0.944 0.954 0.931 ×
SE (2) 0.728 0.957 0.973 0.925 0.959 0.933 0.982 ×

here that the QMFD measure obtained from the single-shell technique cannot catch
heavy tails of the signal distribution properly from the data.

Lastly, we extrapolate the previous experiment using in vivo human data and
evaluate the correlation between measures both visually and numerically. Here, we
again use a five-shells acquisition to calculate the measures. Figure 4 (top row)
illustrates correlations between the RTOP retrieved using the proposed approach and
those obtained under different state-of-the-art methods, namely MAP-MRI, MAPL,
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the single-shell approach, and 3D-SHORE over the image mask (white matter, gray
matter, and cerebrospinal fluid areas). Our method shows a good correlation with
all the other four methods being characterized by Pearson’s correlation coefficient
equal to ρ = 0.925 is the worst case (see Table1). Figure 4 also shows the correlation
between our method and single-shell approach in the case of QMSD and QMFD
measures. The correlograms for QMSD/QMFD measures clearly show the outliers
generated by the single-shell technique, which are not present in the proposed one.

5 Conclusions

In this paper, we proposed a new approach based on stretched-exponentials to quan-
tify EAP features such as RTOP, QMSD, and QMFD measures. From the results,
it seems that the proposed method reduces the amount of data to be acquired, and
therefore it can be clinically feasible. We have to mention that much more thorough
validation and comparison are required to bring convincing evidence that compara-
ble results can be obtained with fewer data in our method. In our experiments, we
evaluated the method’s stability, but the accuracy remains to be investigated in future
work. Further, the convergence of the series expansion has to be verified as well.
Finally, notice that in situations where the signal cannot be accurately described by
the stretched-exponential [23], the scalar measures will be biased. Besides, the pro-
posed method can be generalized to other Q-space factors such as return-to-the-axis
or return-to-the-plane probability.
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Repeatability of Soma and Neurite
Metrics in Cortical and Subcortical Grey
Matter

Sila Genc, Maxime Chamberland, Kristin Koller, Chantal M. W. Tax,
Hui Zhang, Marco Palombo, and Derek K. Jones

Abstract Diffusion magnetic resonance imaging is a technique which has long
been used to study white matter microstructure in vivo. Recent advancements in
hardware and modelling techniques have opened up interest in disentangling tissue
compartments in the grey matter. In this study, we evaluate the repeatability of soma
and neurite density imaging in a sample of six healthy adults scanned five times
on an ultra-strong gradient magnetic resonance scanner (300 mT/m). Repeatability
was expressed as an intraclass correlation coefficient (ICC). Our findings reveal that
measures of soma density (mean ICC = 0.976), neurite density (mean ICC = 0.959)
and apparent soma size (mean ICC = 0.923) are highly reliable across multiple
cortical and subcortical networks. Overall, we demonstrate the promise of moving
advanced grey matter microstructural imaging towards applications of development,
ageing, and disease.

1 Introduction

Conventional T1-weighted magnetic resonance imaging (MRI) is a useful tool in
determining clinically relevant regional differences in grey matter volume, cortical
thickness, surface area and gyrification. However, these crudemacroscopic measures
do not provide information on which distinct cellular features (e.g. cell bodies and
neurites) and packing configurations drive differences in macroscopic measures.
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DiffusionMRI (dMRI) can enhance sensitivity tomuch smaller structures by probing
water diffusion that is modulated by the presence ofmicrometer-scale compartments.
Previous studies have applied the commonly used diffusion tensor imaging (DTI)
technique to profilemicrostructure in the greymatter (e.g. [1, 2]), however biological
interpretations are limited as DTI metrics are non-specific to the aforementioned
microstructural compartments.

Progress in acquisition and modelling methods using ultra-strong gradient and
ultra-high b-value dMRI [3, 4] hold promise for disentangling and quantifying bio-
logically meaningful cellular components in vivo [5, 6]. One recent model-based
method to study grey matter microstructure is Soma and Neurite Density Imaging
(SANDI) [5], which aims to disentangle microstructural contributions from cellular
projections (neurites: including axons, dendrites and glial processes), soma (neuronal
cell bodies and glia) density and their apparent size, and extracellular space.

The original SANDI paper demonstrated results in humans using ultra-high b-
value data (up to 10,000s/mm2) [5]. In this study, we utilise a rich repeatability
database of scan-re-scan dMRI data acquired from 6 healthy participants, each
across 5 sessions [7] on an ultra-strong gradient MR scanner [3, 4]. Our primary
aim is to establish whether SANDI metrics are repeatable at lower b-values (up to
6,000s/mm2) to establish the translatability and utility of advanced microstructural
imaging in cortical and subcortical grey matter.

2 Methods

2.1 Image Acquisition and Pre-processing

The data used for this study were previously reported by Koller et al. [7], comprising
a sample of 6 healthy adults (3 female) aged 24–30 years. This studywas approved by
a local ethics board. Each participant was scanned five times in the span of twoweeks
on a 3.0T Siemens Connectom system with ultra-strong (300 mT/m) gradients.

Structural data were acquired using a magnetization-prepared rapid acquisition
with gradient echo (MPRAGE, voxel-size = 1 × 1 × 1mm) and multi-shell dMRI
data were collected (TE/TR= 59/3000ms; voxel size= 2 × 2 × 2mm; b-values= 0
(14 vols), 200;500 (20 dirs), 1200 (30 dirs), and 2400; 4000; 6000 (60 dirs) s/mm2).
dMRI data were acquired in an anterior-posterior (AP) phase-encoding direction,
with additional b = 0s/mm2 images acquired in the PA direction. Pre-processing
involved: noise estimation using Marchenko–Pastur Principles Component Analysis
(MP-PCA) [8] and subsequent denoising in MRtrix3 [9], correction for signal drift
[10], motion, eddy, and susceptibility-induced distortions [11, 12], gradient non-
linearities [13, 14], Gibbs ringing artefacts [15], and bias field [9, 16].
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2.2 Image Processing and Analysis

The SANDI compartment model was fitted to the pre-processed dMRI dataset for
each subject using the machine learning approach described in [5], based on random
forest regression. Four parameters of interest were investigated:

(i) the intraneurite signal fraction, fintraneuri te
(ii) the intrasoma signal fraction, fintrasoma

(iii) the soma radius, Rsoma (µm)
(iv) the extracellular signal fraction, fextracellular

Additionally, an estimate of model uncertainty was obtained using the quartile devi-
ation of predictions (QD) from the ensemble of regression trees. To complement the
SANDI estimates, diffusion tensor estimation was performed on the b= 1200s/mm2

shell using an iteratively reweighted linear least squares estimator. The tensor-derived
parameters fractional anisotropy (FA) and mean diffusivity (MD) were computed.

T1 data were co-registered to an upsampled b = 0s/mm2 image (1mm isotropic)
and processed through Freesurfer [17] to obtain cortical and subcortical parcellations
using the Destrieux atlas [18]. This resulted in 74 cortical regions per hemisphere,
alongside subcortical regions. We studied seven different functionally-defined net-
works from the Yeo functional network atlas [19] (Fig. 1). The subcortical parcella-
tion was treated as a single sub network, resulting in eight total subnetworks for each
participant for further statistical analysis. Follow-up analyses of individual subcor-
tical regions were restricted to the amygdala, caudate, hippocampus, pallidum and
thalamus. Network labels (L) were resampled to each individual subject’s diffusion
space, and we computed the intersection between the cortical ribbon (R) and resam-
pled network labels (L∩R).

Statistical analyses were performed within R (v3.4.3) and RStudio (v1.2.1335).
The intra-class correlation coefficient (ICC; two-way random effects, absolute agree-
ment) was computed for assessment of test-re-test repeatability of SANDI and DTI
metrics (Table1). Summary statistics were computed using an analysis of variance

Fig. 1 A representation of the eight cortical and subcortical sub-networks [19] on a representative
participant



138 S. Genc et al.

Table 1 Statistics on test-re-test repeatability of DTI and SANDI metrics. Statistics summarise
the mean, median absolute deviation (MAD), intra-class correlation coefficient (ICC) and p-value
across all repeated measurements
Network Metric

FA MD (10−3 mm2/s)

Mean MAD ICC p-value Mean MAD ICC p-value

Visual 0.12 0.009 0.964 <0.001 0.90 0.015 0.991 <0.001

Somatomotor 0.12 0.006 0.906 <0.001 1.00 0.072 0.997 <0.001

Dorsal attention 0.12 0.010 0.975 <0.001 0.99 0.069 0.999 <0.001

Ventral attention 0.14 0.005 0.935 <0.001 0.90 0.042 0.996 <0.001

Limbic 0.16 0.006 0.520 0.11 0.83 0.020 0.949 <0.001

Fronto-parietal 0.14 0.009 0.911 <0.001 0.95 0.078 0.998 <0.001

Default 0.14 0.005 0.928 <0.001 0.94 0.065 0.996 <0.001

Subcortical 0.23 0.014 0.879 <0.001 0.73 0.010 0.850 <0.001

fextracellular fintraneuri te

Mean MAD ICC p-value Mean MAD ICC p-value

Visual 0.41 0.014 0.984 <0.001 0.14 0.008 0.950 <0.001

Somatomotor 0.45 0.031 0.995 <0.001 0.12 0.007 0.954 <0.001

Dorsal attention 0.44 0.029 0.997 <0.001 0.11 0.008 0.962 <0.001

Ventral attention 0.43 0.023 0.987 <0.001 0.11 0.010 0.965 <0.001

Limbic 0.41 0.015 0.935 <0.001 0.18 0.012 0.962 <0.001

Fronto-parietal 0.45 0.033 0.995 <0.001 0.11 0.004 0.934 <0.001

Default 0.44 0.023 0.992 <0.001 0.11 0.005 0.965 <0.001

Subcortical 0.34 0.009 0.627 0.04 0.29 0.034 0.977 <0.001

fintrasoma Rsoma (µm)

Mean MAD ICC p-value Mean MAD ICC p-value

Visual 0.46 0.017 0.985 <0.001 8.81 0.110 0.934 <0.001

Somatomotor 0.43 0.033 0.997 <0.001 8.75 0.130 0.983 <0.001

Dorsal attention 0.45 0.033 0.996 <0.001 8.81 0.130 0.985 <0.001

Ventral attention 0.46 0.018 0.991 <0.001 8.90 0.130 0.939 <0.001

Limbic 0.42 0.015 0.891 <0.001 8.68 0.040 0.656 0.04

Fronto-parietal 0.45 0.024 0.996 <0.001 8.86 0.130 0.974 <0.001

Default 0.45 0.020 0.996 <0.001 8.84 0.130 0.962 <0.001

Subcortical 0.37 0.040 0.957 <0.001 8.37 0.250 0.953 <0.001

Note Bonferroni adjusted level of significance was set to p < 0.001

(ANOVA), and lower and upper estimates of each ICC represent the bounds of the
95% confidence interval (CI). Based on the number of comparisons (8 networks × 6
metrics = 48 comparisons) we adjusted our p-value threshold of significance using
a Bonferroni correction to p < 0.001.
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3 Results

The results of the repeatability analysis and estimated values for fintraneuri te,
fintrasoma , Rsoma , and fextracellular are reported in Table1. These values were com-
parable to previously reported values estimated using ultra-high b-value data [5].
Intra-subject variability was generally very low for all metrics across all grey matter
networks (Figs. 2 and 3), reflected by high ICC values for SANDI metrics (mean
ICC = 0.95) and DTI metrics (mean ICC = 0.93). Regions and metrics with lower
repeatability and greater intra-subject variability included FA in the limbic network
(ICC = 0.52, p = 0.11), fextracellular in the subcortical grey matter (ICC = 0.63, p
= 0.04) and Rsoma in the limbic network (ICC = 0.66, p = 0.04).

Despite high repeatability across both DTI and SANDI metrics in the grey matter,
DTI metrics exhibited larger uncertainty around ICC estimates, indicated by larger
error bars (Fig. 4a). In terms of SANDI model uncertainty, ICC values in the limbic
network for all QD estimates had a wide variation indicated by larger error bars for
the bounds of each ICC estimate (Fig. 4b), and similar patterns were observed for
fintrasoma in the subcortical grey matter.
The results of the regional subcortical analysis are presented in Fig. 5.Weobserved

low repeatability of fextracellular in all regions apart from the left amygdala and left
caudate (Fig. 5a, b). For Rsoma , only the left amygdala, left pallidum, and right hip-
pocampus exhibited low repeatability (Fig. 5a, b). The distribution of QD estimates
for fintrasoma suggest potential variation in model fit between regions (Fig. 5c).

4 Discussion

Our findings reveal that estimates of grey matter microstructure using soma and neu-
rite density imaging are highly stable across repeated imaging sessions. We demon-
strate high repeatability in a number of functional networks, known to share struc-
tural covariance [19]. In addition, the soma signal fraction variation across limbic and
visual networks follows the estimated anterior to posterior gradient of cell density in
the cortex of human and other primates [20]. Overall, our findings of high repeata-
bility of dMRI metrics in the grey matter suggest the increased power to detect group
differences in applications of this technique.

The limbic network showed consistently lower repeatability and model uncer-
tainty amongst both DTI and SANDI metrics. Given the anatomical location of
these fronto-temporal structures, it is likely that susceptibility-induced distortions
may detrimentally influence the repeatability of certain diffusion MRI metrics. The
effect of gradient non-linearities and spatiotemporally varying b-values could impact
repeatability, if the subject is placed in a slightly different position in the scanner.
Despite this general observation of the SANDImetrics studied here, only soma radius
exhibited low repeatability in this network. Therefore, Rsoma estimates in fronto-
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Fig. 2 Spread of values for DTI and SANDI metrics in networks 1–4. Each subject (on the x-
axis) has 5 data points representing each scan. The y-axis represents the point estimate of each
microstructural metric: FA, MD (10−3 mm2/s), fextracellular , fintraneuri te , fintrasoma , and Rsoma
(µm)
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Fig. 3 Spread of values for DTI and SANDI metrics in networks 5–8. Each subject (on the x-
axis) has 5 data points representing each scan. The y-axis represents the point estimate of each
microstructural metric: FA, MD (10−3 mm2/s), fextracellular , fintraneuri te , fintrasoma , and Rsoma
(µm)
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Fig. 4 Intra-class correlation coefficients (two-way random effects, absolute agreement) for test-
re-test repeatability of aDTI and SANDImetrics, and b the quartile deviation of SANDImetrics, in
cortical and subcortical greymatter networks. Error bars represent the bounds of the 95% confidence
interval (CI) for each ICC estimate
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Fig. 5 Regional analysis in subcortical grey matter for the hippocampus, amygdala, pallidum,
thalamus and caudate. a Spread of fextracellular and Rsoma values in the left hemisphere;b intra-class
correlation coefficients (two-way random effects, absolute agreement) for test-re-test repeatability
of fextracellular and Rsoma ; c distribution of quartile deviation (QD) estimates for fintrasoma ; d
regions of interest used in the analysis, obtained using Freesurfer [17] and eroded by 1mm

temporal structures should be interpreted with caution, particularly in populations
where these artefacts may be exaggerated (e.g. fronto-temporal dementia).

Upon further analysis of individual subcortical regions, the repeatability of
fextracellular was generally low. Tissue properties within subcortical regions are het-
erogeneous, as sub-segments can differ in their neurite and soma composition [21,
22]. These anatomical variations may influence the estimates reported here, and as
such, even finer parcellation of individual subcomponents would be an important
avenue of future research.

Finally, we have demonstrated that SANDI estimates obtained from moderate-
to-high b-values (up to b = 6000s/mm2) are comparable in terms of magnitude to
previous estimates derived from ultra-high b-values (e.g. up to b = 10,000s/mm2).
Whilst a direct comparison between multiple sampling schemes tested on the same
participant across repeated scans would be required to confirm similar magnitudes
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of repeatability, based on our findings we are confident that the repeatability is high
enough to be acceptable for research applications using high b-values. Now that we
have established that these novel markers of grey matter microstructure are stable
across repeated sessions, the next step is to pinpoint the underlying tissue proper-
ties driving rapidly changing grey matter macrostructure, such as that observed in
neurodevelopment and neurodegeneration.
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DW-MRI Microstructure Model
of Models Captured Via Single-Shell
Bottleneck Deep Learning

Vishwesh Nath, Karthik Ramadass, Kurt G. Schilling, Colin B. Hansen,
Rutger Fick, Sudhir K. Pathak, Adam W. Anderson, and Bennett A. Landman

Abstract In the last two decades, numerous methods have been proposed to capture
biological meaning from observed diffusion-weighted magnetic resonance imag-
ing (DW-MRI) signals each addressing recovery of specific tissue properties (e.g.
pathology based, volume fraction of tissues). Generically, specific tissue properties
are recovered via a category of methods termed as tissue compartment modeling.
Many recent compartmental approaches require two or more diffusivity shells. We
hypothesize existence of a low dimension common representation for a wide variety
of commonly used microstructural measures in common use. To test this hypothesis,
we constructed 13 voxel-wisemeasurements from5 distinctmodel-based approaches
and used a multi-task deep convolutional network with a variable width bottleneck
to infer these metrics from empirical DW-MRI. This is the first study to use data-
driven exploration to map a common basis among DW-MRI modeling approaches.
We propose to capture a compact feature space in the form of a bottleneck that pre-
serves common features to all methods and retrieve information from single shell
DW-MRI.We train on 3D patches of 40 Human Connectome Project (HCP) subjects
(∼27million patches) where input is based on single shell DW-MRI and ground truth
is estimated from all three shells of HCP data. We validate on 24 subjects and test
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on 25 subjects. The error reported for 5 microstructure methods on test set: 4.0%,
2.7%, 6.3%, 4.5% and 3.6%.We find that 6 features in the bottleneck layer efficiently
capture an intrinsic feature space for the range of DW-MRI metrics explored.

1 Introduction

Currently, diffusion-weighted magnetic resonance imaging (DW-MRI) is the only
imaging modality that indirectly probes the 3-D microstructural geometries of the
tissue in a non-invasive fashion [1]. Applications in clinical research for DW-MRI
are increasing at an exponential rate [2]. An upcoming application domain for DW-
MRI is estimation of compartmental tissue properties at an intra-voxel milli-metric
scale [3]. Voxel-based compartmental models of the DW-MRI signal are in common
use to assess tissue properties and reveal associations between tissue microstruc-
ture in health and disease. Common measures include the ball and stick [4], intra-
voxel incoherent motion (IVIM) [5], neurite orientation density distribution imaging
(NODDI) [6], spherical mean technique (SMT), [7] and diffusion tensor imaging
(DTI) [8] approaches. The compartment methods estimate volume fractions, diffu-
sivities and dispersions. These measures are useful for estimating the complexity of
dendrites and axons and provide more specific markers of brain tissue when com-
pared to relatively simple anisotropic measures such as fractional anisotropy (FA)
from diffusion tensor imaging (DTI) [8]. NODDI [6] offers different kinds of volume
fractions such as intra-cellular, extra-cellular and cerebrospinal fluid compartment
measures along with a orientation dispersion index, as reviewed by [9]. A typical
caveat for a majority of these methods is that they require multiple diffusion shells
in terms of acquisitions in [3, 6, 7].

There have been multiple attempts at the recovery of tissue microstructural mea-
sures with observations at two non-zero shells of DW-MRI data [10–13].We hypoth-
esize the existence of a compact low dimensional intrinsic feature space which could
be used to understand commonalities and differences among DW-MRI modeling
approaches (Fig. 1). To test this hypothesis, we use a data-driven approach for esti-
mation of the unified feature space via a convolutional neural network. As a part of
this hypothesis, we also chose to model utilizing only a single shell DW-MRI for the
estimation of compartmental microstructural measures.

We choose to focus on data-driven single shell learning targeting metrics that are
typically estimated from multi-shell data to address the following challenges. (1)
A plethora of new DW-MRI methods requires at least a minimum of 2 diffusion
shells of information [3]. Moreover, if a method can be estimated by one shell, then
often multiple shells preferable for a more robust fit. (2) The compartmental methods
are computationally expensive on CPUs. For example, NODDI takes approximately
30 hours of computation time on a single subject with high-quality acquisitions
from the Human Connectome Project (HCP) data. Parallel computing or GPU-based
processing have been proposed for computational speed up. (3) We currently lack a
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Fig. 1 Multi-compartment models rely or prefer multi-shell DW-MRI. Here, we depict the hypoth-
esis of a compact low dimensional unified feature space that generalize to multiple compartment
microstructural measures of dispersion, diffusivities and volume fractions for different compart-
ments

unified framework where multiple methods can be computed simultaneously or in a
joint fashion.

To overcome these limitations, we propose a proof of concept for a unified frame-
work that can recover 13 different intra-voxelmicrostructural measures from 5 dif-
ferent DW-MRI modeling methods. We show that these methods rely on a common
feature space that is low dimensional and this manifold exhibits the generalizability
for multiple microstructural methods that are incorporated in this joint framework.

2 Related Work

There aremultiple priormethods that have investigated the problem for a deep learned
estimation of microstructural measures. The work of [10] operates on DW-MRI vol-
umes directly without any signal representation and shows that NODDI metrics can
be recovered with 12 DWI volumes with promising accuracy. The work was limited
in the capacity that a singlemicrostructuremethodNODDIwas being utilized to train
a data-driven version of NODDI implying that for multiple microstructure methods
multiple data-driven models would be needed. In [11], the authors propose to use a
two-stage deep learning method (MEDN) to learn the microstructural measures of
NODDI. They model three measures of intra-cellular, isotropic diffusivity and ori-
entation dispersion, but the method is limited as it utilizes two shells of information
and is specific to only a single microstructural method. The authors use training data
for five subjects and testing for five subjects. Error reported is 0.04 for vic (intra-
cellular volume fraction), 0.02 for viso (cerebrospinal fluid volume fraction) and
0.06 for vod (orientation dispersion). In [12], the authors follow a similar proposition
as [11] with improved results, but were still limited as two shells of information were
required for input. In [13], LSTM’s were incorporated for a better deep learning net-
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work architecture (MESC). The authors utilize two shells of information 1000 and
2000 s/mm2 with 30 gradient directions per shell. The method is applied indepen-
dently for NODDI, SMT and SHORE reconstructions. However, the work was still
limited by the use of two shells of information and it does not represent a joint frame-
work. The network still needs to be independently trained for each microstructure
method using 25 HCP subjects, 5 for training and validation both and 20 for testing.

3 Data Acquisition

Dataset 1: A random selection of 89 subjects from the (HCP [14] was used. The data
were split into 40 subjects for training, 24 for validation, and 25 for testing. The data
has three diffusivity shells of 1000, 2000 and 3000 s/mm2 with 90 gradient directions
per shell with an additional 18 non diffusion-weighted volumes. All diffusivity shells
with all gradient directions were used for fitting of microstructural compartment
models for ground truth. However, for the training of the unified deep model, we
only used the single shell at b-value of 1000 s/mm2 for input.

Considering in-brain voxels, there are over ≈680,000 voxels in a single brain
volume. Assuming that a cubic patch of 3 × 3 × 3 mm3 can be selected per voxel
the total number of training patches were ∼27 million across the 40 subjects in the
training dataset. We randomly sample a consistent number of patches from each
subject and similarly for validation. More detail is covered in Sect. 4.

4 Proposed Method

DW-MRI Signal Representation: We are tackling the problem of the non-linear map-
ping between the DW-MRI volumes and the microstructural scalar measures. First,
for a unified representation of the DW-MRI volumes, we need tomake it independent
of scanning acquisition parameters. For single shell DW-MRI, spherical harmonics
(SH) are well known to represent the DW-MRI signal with minimal representation
error [15]. The SH basis is formed by gradient direction table through the utilization
of Legendre polynomials. Once the basis is formedwe can use regularized linear least
squares fitting to solve for Clm in E = ClmYm

l (g). Here, E represents the normal-
ized DW-MRI signal, Ym

l (g) represent the SH basis and Clm are the SH coefficients
that represent the DW-MRI signal. l and m represents the SH order and the phase
respectively, we used even 8th order SH (45 coefficients) as HCP dataset has 90
gradient directions per single shell of DW-MRI data. The SH coefficients were fitted
independently per acquisition shell.

Microstructural Measures: The 13 microstructural measures we used are from 5
different methods: Ball and Stick [4], IVIM [5], NODDI [6], SMT [7] and diffusion
tensor imaging (DTI) [8]. All these methods estimate different microstructural scalar
measures and for the sake of generalizability, we will refer to these asMa

b hereMa
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Fig. 2 A schematic overview of the proposed method from left to right showing SH coefficient
of a 3D cubic patch as input to the deep learning model which has a bottleneck dense layer with
M-heads at output for different microstructural methods

represents a unique microstructure method a representing its index and b represent-
ing the number of microstructural measures estimated by M. As microstructural
measures for a method could have different units and scales, they were rescaled
specifically for in-brain voxels to [0, 1]. To mitigate the energy of the loss function
everything was normalized. The diffusivity measures were linearly scaled as rescal-
ing has shown to be effective as in prior work [13]. All microstructural measures
estimated have been utilized for experiments except for orientational estimates.

Bottleneck Deep Learning: We use a deep learning network architecture which is
inspired by prior work from [16]. The SHResNet was proposed as a harmonization
model and has been shown to be capable of also predicting fiber orientation distri-
butions. We adapt the network with two modifications: First, we introduce a dense
layer as a ’true’ bottleneck (Fig. 2). The number of neurons in this layer were varied
for training different models. We would also like to express clarity with the infor-
mation bottleneck line of work by Tishby et al. in [18, 19] as those methods were
developed to study informational content of deep learning layers. In this work, we
restrict the feature space as low as possible and the terms of information bottleneck
and the bottleneck here should not be confused.Second, inspired by the M-heads
network architecture [17], we attach the number of heads based on the number of
microstructural methods. Each head has a dense layer of 50 neurons, and the output
layer neurons are dependent upon the number of microstructural measures b of the
method Ma . Both layers are linearly activated.

For the input of the deep learning framework, we use a patch size of 3 × 3 × 3 ×
45 of SH coefficients. A similar patch technique has been used before in [12, 13].We
define a joint loss function L covering the terms of microstructural measures from
different heads as below:

L =
M∑

a=1

N∑

b=1

γa|M̂a
b − Ma

b| (1)
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Since each set ofmicrostructural measures is calculated per head, the gradients are
dependent upon the microstructural method. To overcome this problem, all gradients
are constrained to pass through the entire model including the bottleneck layer. γa

are loss weight hyper-parameter terms per head which can be tuned if needed. For
this experiment, all weight tuning hyper-parameters were set to 1.

Deep learning hyper-parameters: A single pass of epoch constitutes 50,000 ran-
domly sampled patches per subject for all subjects present in the training dataset.
Similarly, 50,000 patches were randomly sampled per subject for estimating valida-
tion errors across all subjects in the validation dataset. Other deep learning parame-
ters: batch size of 1000, learning rate was kept consistent at 0.0001, RMSProp [21]
was used as the optimizer and epochs were set at 30. Convergence criteria were based
on the least amount of validation error.

Inference Testing: The deep learning model was trained with an input of 8th order
SH coefficients and samewas utilized for all testing subjects withmultiple bottleneck
neurons with 90 gradient directions. For additional validation, gradient directions
were uniformly randomly sampled in sets of 15, 30, 45 and 60 per subject from the
testing set. The corresponding SH orders that were applied are: 4th order SH for 15
directions, 6th order SH for 30, 45 directions and 8th order SH for 60 directions.
For the specified set of gradient directions the bottleneck model was tested at 50 and
6 neurons. It should be noted that since the input was tied to 45 coefficients as for
training, the reduced order SH were padded with zeros to compensate as additional
input.

For implementation purposes, Dmipy was used for microstructural model fit-
ting [3]. The deep learning models were implemented with Keras module of Tensor-
flow 2.0 [20].

5 Results

Quantitatively, the number of neurons are increased in the bottleneck layer the error
decreases for all methods in a similar trend for training (Left) and validation (Right)
plots (Fig. 3). Although, the error decreases as more neurons are added however, the
differences are minimal after 6 neurons in the bottleneck layer.

In Table 1, the mean values of all metrics per method across all 25 subjects. The
mean error with 6 neurons versus 50 neurons for 90 gradient directions the change in
error is on the order of the third decimal. The highest change in error can be seen for
NODDI which is 0.006. The standard deviations for both variants are consistent. The
error from prior work where multi-shell DW-MRI were used as input [13]. These
results are comparable as they were computed on 20 HCP subjects. The individual
metric errors were reported across all 20 subjects are 0.05, 0.04 and 0.03 for vod ,vic
and viso. Relatively, we achieve competitive errors of 0.053, 0.037 and 0.033 for
vod ,vic and viso respectively with a bottleneck width of 50.

Comparing across different sets of gradient directions of 15, 30, 45 and 60, when
intra-compared for a set of gradient directions. The mean error between 6 versus
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Fig. 3 Training and validation errors across all microstructural methods per bottleneck number
individually for each method. At each bottleneck number the model with the lowest validation
error was selected. The black line represents a bottleneck number of 6 after which increasing the
bottleneck width the changes in error are minimal

50 neurons is similar as was observed for 90 gradient directions in the first 2 rows.
Mean error as the gradient directions are being decreased, the error steadily increases.
However, the incremental difference is in the 3rd order of the decimal till 30 gradient
directions for all methods. SMT shows a little larger increase in error relatively as
compared to other methods. However, at 15 gradient directions the errors go up by
a multiple of 2 indicating a huge drawback and feasibility is only indicated till 30
gradient directions.

The ground truth of onemetric permethod using all DW-MRI shells in the first row
(Fig. 4). The second row and fourth row depict the predictions with 50 and 6 neurons
in the bottleneck layer, qualitatively the predictions are quite similar for both variants.
The spatial absolute error for the variants of 50 and 6 neurons can be observed in the
third and the fifth row respectively. Comparing between the variants for DTI (FA),
Ball and Stick (intra-axonal fraction) and IVIM (diffusivity), the change in error
is negligible. However, for SMT (intra-neurite fraction) and NODDI (orientation
dispersion), there is a slight increase in error towards the frontal lobe (SMT) and the
ventricles (NODDI).

Qualitatively, Fig. 5 visualizes the intrinsic features captured by the bottleneck
layer (in this case, a layer with 6 features). These features are visually representative
of contrasts that micro-structural models aim to represent. For example, parallels
can be drawn between the contrast seen in Feature #4 and traditional anisotropy
maps. Feature #1 shows contrast that may be typical of a mean or overall diffusivity,
while #5 shows trends expected in neurite dispersion maps. Importantly, this space
of 6 features captures the trends and variations of the diffusion signal (i.e., enough
to decode to the individual metrics captured in the studied models) and shows the
ability to distinguish contrast both between and within tissue types. Thus, we posit
that this compact representation of the multi-orientation multi-diffusion weighted
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Table 1 Mean absolute error for all metrics between ground truth and predictions per method for
bottleneck variants of 6 and 50 neurons (N). The different bottleneck variants are testedwith reduced
set of gradient directions (G) of 60, 45, 30 and 15. The mean and standard deviation reported here
are across all 25 subjects from the test split of the data

Mean Abs error across 25 test subjects

Bottleneck
Variant

Ball & Stick IVIM SMT NODDI DTI

90G and 6N 0.040 ± 0.001 0.024 ± 0.001 0.068 ± 0.003 0.051 ± 0.001 0.040 ± 0.001

90G and 50N 0.035 ± 0.001 0.027 ± 0.001 0.063 ± 0.002 0.045 ± 0.001 0.036 ± 0.001

60G and 6N 0.041 ± 0.001 0.029 ± 0.002 0.072 ± 0.004 0.055 ± 0.002 0.043 ± 0.001

60G and 50N 0.037 ± 0.001 0.030 ± 0.001 0.068 ± 0.002 0.049 ± 0.002 0.038 ± 0.001

45G and 6N 0.044 ± 0.002 0.032 ± 0.003 0.082 ± 0.006 0.059 ± 0.003 0.044 ± 0.001

45G and 50N 0.040 ± 0.002 0.031 ± 0.002 0.074 ± 0.004 0.053 ± 0.003 0.040 ± 0.002

30G and 6N 0.049 ± 0.007 0.037 ± 0.008 0.085 ± 0.010 0.063 ± 0.008 0.047 ± 0.005

30G and 50N 0.043 ± 0.004 0.035 ± 0.005 0.082 ± 0.007 0.056 ± 0.006 0.043 ± 0.003

15G and 6N 0.092 ± 0.007 0.052 ± 0.005 0.187 ± 0.016 0.115 ± 0.009 0.064 ± 0.003

15G & 50N 0.103 ± 0.008 0.056 ± 0.003 0.213 ± 0.014 0.127 ± 0.008 0.064 ± 0.003

signal contains the principal features (or some combination of features) which are
shared by standard modeling approaches.

6 Discussion

We showed a unified framework that can recover microstructural measures with rel-
atively low error. The errors are comparable to prior deep learning approaches where
multiple shells of information have been used [12, 13]. The results lend support to
our hypothesis that shows these methods can be computed from a common (latent)
representation. A deeper consideration is required on the intrinsic representation as
they resemble the computed microstructural measures closely in terms of diffusivity,
anisotropic and fractional components. This consideration leads us to the question
of the existence of a unified biophysical model that can capture the essence of vari-
ous microstructure models. On a parallel, data-driven strategies can show utility of
compressed SH coefficients and this has been mathematically shown in [22]. The
microstructure methods can be recovered from relatively sparse or low number of
gradient directions, e.g as low as 30 (Table 1).

There are quite a few limitations to be addressed in future work. The model used
in our approach for scalar microstructure metrics applied a straight forward mean
absolute error loss function. This loss function would not be appropriate for orien-
tation estimates because it does not consider the symmetric nature of diffusion and
ambiguity of the sign of orientations estimated with DW-MRI data. A full considera-
tion of these metrics requires incorporation of symmetry invariant loss functions. To
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Fig. 4 Middle axial slice from a randomly selected subject. The ground truth estimates of a
microstructural measure per method from all diffusion shells of data are in first row. The sec-
ond row shows the predictions of the corresponding metric with a bottleneck width of 50. Third
row depicts absolute error spatial maps for predictions with bottleneck width of 50. Fourth row
shows predictions of corresponding metric with a bottleneck width of 6. The last row shows spatial
absolute error for predictions with bottleneck width of 6

our best knowledge, the compartment based orientation estimates have not yet been
recovered with low error from deep learning based approaches to date and would
be a promising area of exploration. While we show the utility of the spatial neigh-
borhood information for recovery of multi-shell information, additional validation is
necessary to determine optimal patch sizes. An alternative perspective would be to
observe that errors are relatively higher for microstructural measures when compared
to their corresponding ground truths. There are multiple future directions that could
be pursued such as improving network architectures, utilization of a better signal
representation technique to mitigate such errors.
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Fig. 5 Middle axial slice from a randomly selected subject. The 6 components of the bottleneck
layer depicting latent representations/features that are common for the different learned microstruc-
tural measures

Conclusion: We show the evidence of a data-driven latent biophysical model that
connects existingDW-MRImicro-structural metrics. Our approach captures intrinsic
features specific to compartmental microstructural measures and reveals contrasts
that are similar to those in parametric models. Additionally, we showed the recovery
of multi-shell based microstructural measures from a single DW-MRI shell with
comparable error to prior approaches that have usedmore data and been task-specific.
This work is the first unified deep learning architecture for multiple microstructural
measures from different methods and should not be considered the last.
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Abstract Quantitative Magnetic Resonance Imaging (qMRI) signal model fitting
is traditionally performed via non-linear least square (NLLS) estimation. NLLS is
slow and its performance can be affected by the presence of different local minima
in the fitting objective function. Recently, machine learning techniques, including
deep neural networks (DNNs), have been proposed as robust alternatives to NLLS.
Here we present a deep learning implementation of qMRI model fitting, which uses
DNNs to perform the inversion of the forward signal model. We compare two DNN
training strategies, based on two alternative definitions of the loss function, since
at present it is not known which definition leads to the most accurate, precise and
robust parameter estimation. In strategy 1 we define the loss as the l2-norm of tissue
parameter prediction errors, while in strategy 2 as the l2-norm of MRI signal predic-
tion errors. We compare the two approaches on synthetic and 3T in vivo saturation
inversion recovery (SIR) diffusion-weighted (DW)MRI data, using a model for joint
diffusion-T1 mapping. Strategy 1 leads to lower tissue parameter root mean squared
errors (RMSEs) when realistic noise distributions are considered (e.g. Rician ver-
sus Gaussian). However, strategy 2 offers lower signal reconstruction RMSE, and
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allows training to be performed on both synthetic and actual in vivo MRI measure-
ments. In conclusion, for the qMRI model considered here both strategies are valid
choices for DNN-based fitting. Strategy 2 is more practical, as it does not require
pre-computation of reference tissue parameters, but may lead to worse parameter
estimation.

1 Introduction

Quantitative Magnetic Resonance Imaging (qMRI) techniques estimate biophysical
properties of tissues in each voxel of an MR image [1]. qMRI aims to overcome the
limitations of routine clinical imaging, i.e. its lack of sensitivity and specificity to
early, widespread pathology that precedes focal lesions. To this end, in qMRI sets of
multi-contrast images are acquired by varying the MRI pulse sequence parameters
u in a controlled fashion. Images are then analysed voxel-by-voxel to estimate p, a
set of tissue parameters (e.g. diffusion or relaxation properties), via non-linear least
square (NLLS) fitting [2]. The estimation effectively inverts the forward model

m = s(p,u) (1)

predicting MRI measurements m when sequence u is used to image tissue with
properties p. The inversion of the forward model is achieved by minimising an
objective function f (m, s(p,u)) with respect to p, where f quantifies how close
signal predictions are to the actual measurements. Maximum-likelihood estimation
is achieved if f ∝ ∑N

i=1 (mi − s(p,ui ) )2 over a set of N measurements under the
hypothesis of additive Gaussian noise. Alternative definitions of f are also in use to
account for non-Gaussian noise or inmaximum a posteriori estimation [3]. Finally, f
can also include regularisers to stabilise the forward model inversion, as for example
‖p‖2 or ‖p‖1 (Tikhonov or l1 regularisation) [4].

The minimisation of the objective function f is typically performed with either
Jacobian-based methods, such as Gauss-Newton or Levenberg-Marquardt algo-
rithms, or derivative-free approaches, as for example the Nelder-Mead algorithm
[5], which are conveniently available in several computational packages. However,
these are inherently slow and often can only find sub-optimal solutions corresponding
to local mininima of f . Moreover, fitting initialisation also plays a crucial role, and
degenerate solutions can be obtained when this is not done accurately [2]. Machine
learning has been proposed as an alternative to conventional NLLS to perform qMRI
model fitting in qMRI and overcome its limitations. Notable examples include per-
meability [6] and soma [8] diffusion-weighted (DW) imaging via random forest
regression trees, or q-space DW imaging [9] and myelin mapping [4] with deep neu-
ral networks (DNNs). Machine learning approaches can be trained off-line and then
deployed almost instantaneously when new data come in [4], and offer more stable
solutionswhen trained accurately [6, 7], given their excellent function approximation
properties [10].



Deep Learning Model Fitting for Diffusion-Relaxometry: A Comparative Study 161

In this work we introduce an implementation of qMRI fitting based on fully-
connected DNNs and use it to compare systematically different training strategies,
since at present it is not known which strategy leads to the most accurate, precise
and robust parameter estimation. Specifically, we trained DNNs by optimising loss
functions defined either (i) as the l2-norm of tissue parameter estimation errors [4,
6, 8], or (ii) the l2-norm of MRI signal estimation errors [7]. We compared the two
learning approaches using saturation inversion recovery (SIR) DW data obtained at
3T for joint diffusion and T1 mapping, and performed computational experiments
both in silico and in vivo.

2 Methods

In this sectionwepresent our implementation ofDNNqMRIfitting,which is based on
PyTorch and made freely available online (permanent web page:
https://github.com/fragrussu/qMRINet). We then introduce two training strategies,
and describe experiments performed to compare them in silico and in vivo.

2.1 qMRI Model Fitting with DNNs

Let us consider a qMRIexperimentwhose aim is the estimationof P tissueparameters
p = [ p1 ... pP ]T in a voxel according to the generic qMRI model s(p,u), given a
set of N ≥ P measurementsm = [m1 ... mN ]T performed at sequence parameters
U = {u1, ..., uN }.We use a fully-connectedDNN to approximate the inversemodel
p ≈ s−1(m,U), obtaining an estimator of p from the set of input measurements m.
The DNN input layer is made of N neurons, processing the N -dimensional arraym,
while the output layer is made of P neurons, mapping tissue parameters. Each hidden
layer consists of standard linear operators followed by rectified non-linear units
(ReLU(x) = max(0, x)). The number of hidden neurons decreases linearly from N
to P , but other architectures are also possible [4, 7]. TheDNN is trainedwith standard
back-propagation on synthetic or in vivoMRI data.We explore two different training
strategies, based on alternative definitions of the training loss function L (Fig. 1).
Strategy 1 is the most commonly employed training approach for DNN-based fitting
[9], and relies on a loss defined on tissue parameters. Strategy 2 was instead recently
proposed as a powerful alternative to strategy 1 [7], and relies on a loss defined on
MRI signals. Interestingly, strategy 2 is inspired by a decoder-encoder architecture,
since MRI measurements are effectively decoded to obtain tissue parameters, and
then encoded back to an MRI signal. Here for the first time we compare the two
approaches systematically for model fitting in joint diffusion-relaxation imaging
(DRI).

https://pytorch.org
https://github.com/fragrussu/qMRINet
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Fig. 1 Illustration of our DNN for qMRI model fitting and of its training strategies. Strategy 1:
loss defined on tissue parameters. Strategy 2: loss defined on MRI signals

Training strategy 1: loss defined on tissue parameters The loss L is defined as
the squared l2-norm of tissue parameter estimation errors:

L = ‖W (pnet − p) ‖22 . (2)

Above, pnet ≈ s−1(m,U) is the DNN output, p are ground truth tissue parameters

andW = diag
(

1
pmax
1 −pmin

1
, ..., 1

pmax
P −pmin

P

)
is a normalisationmatrix controlling for the

fact that parameters can be defined over different numerical ranges (pmax
i and pmin

i
are the upper and lower bound of the i-th parameter for i = 1, ..., P). Examples of
paired measurements/parameters training examples can be synthesised with model
s(p,u), or gathered from previous NLLS fitting.

Training strategy 2: loss defined on signals The loss L is defined as the squared
l2-norm of signal prediction errors, similarly to routine NLLS methods:

L = ‖mnet − m ‖22 . (3)

In Eq. 3, m is the N -dimensional array of input qMRI measurements, while mnet is
an estimate of m obtained by re-applying the forward model s to the DNN output
pnet ≈ s−1(m,U), i.e.

mnet = [
s
(
pnet,u1

)
... s

(
pnet,uN

)]T
. (4)

In practice, an additional normalisation is performed tomap the the i-th output neuron
activation vi to tissue parameter pi before computing Eq. 4, i.e.

pi = pmin
i + (pmax

i − pmin
i ) h(vi ). (5)
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Above, pmin
i and pmax

i are again the lower/upper bounds of pi , while h(vi ) is

h(vi ) = 2

1 + e
−αi

(
log

(
softplus(vi )

)
−log

(
log(2)

)) − 1, (6)

where softplus(x) = log(1 + ex ) and where αi is an actual network parameter that is
learnt during training, similarly to all linear layer weights and biases. The mapping
in Eq. 5 prevents infinite or not-a-number values to occur when computing Eq. 4.
Training is performed on synthetic or actual qMRI measurements and no knowledge
of ground truth tissue parameters is required.

2.2 In Silico Study

Signal synthesis We performed numerical simulations to compare DNN fitting
implemented according to strategies 1 and 2. To this end, we consider one among
several potential qMRI signal models and focus on increasingly popular DRI, which
exploits the complementary information from different qMRI contrasts in a unified
acquisition [11, 12]. Specifically, we consider the case of joint diffusion and T1
mapping in the brain, as achievable in inversion recovery (IR) [13] or saturation IR
(SIR) [14] DWI. We borrow a previously proposed tensor approach [13] and adapt
it to directionally-averaged (i.e. spherical mean) DW signals, as this removes the
dependence on the underlying fibre orientation distribution [15]. The forward model
s(p,u) is

s =
√

π

2
s0

∣
∣
∣1 − e− TI

T1 − (
1 − e− TS

T1
)
e− TI

T1

∣
∣
∣ e−b k d|| erf

(√
b (d|| − k d||)

)

√
b (d|| − k d||)

, (7)

with tissue parameters p = [
d|| k T1 s0

]T
(parallel diffusivity d||, defined in

[0.01; 3.2]µm2ms−1; anisotropy parameter k, defined in [0; 1] and such that the per-
pendicular diffusivity d⊥ is d⊥ = k d|| (anisotropy ∝ 1/k); longitudinal relaxation
time T1, defined [100; 4000]ms; apparent proton density s0, defined in [0.5; 5])
and sequence parameters u = [

TS TI b
]T

(saturation-inversion delay TS; inversion-
excitation delay, i.e. inversion time TI; b-value b). Tissue parameters are defined
within biologically plausible ranges at 3T.

We generated synthetic SIR DWI signals with Eq. 7 (160,000 as training set;
40,000 as validation set; 16,000 as test set). For this, we used tissue parameters drawn
from uniform distributions, using the same parameter bounds reported above. A pro-
tocol made of N = 32 measurements was used, replicating acquisitions performed
in vivo and described in Sect. 2.3. These were: (b,TI) = {0, 1000, 2000, 3000}
smm−2 × {70, 320, 570, 820, 1070, 1320, 1570, 1820}ms, with TS fixed to TS =
300ms. Signals were corrupted with both Gaussian and Rician noise, varying the
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signal-to-noise ratio (SNR) across voxels uniformly within the range SNR = s0
σ

∈
[40; 100].
DNNfitting qMRImeasurementsm = [m1(b1,TI1) ... m32(b32,TI32) ]

T from each
synthetic voxel were normalised as m

max
n

(mn)
, and then used to train DNNs according

to both strategy 1 and 2. DNNs consisted of 7 hidden layers with input/output sizes
of (32 × 28), (28 × 24), (24 × 20), (20 × 16), (16 × 12), (12 × 8), (8 × 4), and
were trainedwithADAM[16] for 250 epochs (learning rate: 0.0005) grouping voxels
inmini-batches (oneDNNupdate permini-batch of 100 voxels).We repeated training
8 times, each time with a different randomDNN initialisation, to minimise the risk of
incurring in local minimina. The DNN providing the lowest validation loss was used
to predict tissue parameters and signals on the test data. Root mean squared error
(RMSE) with respect to synthetic noisy signals and ground truth tissue parameters
were computed.

2.3 In Vivo study

MRI acquisition We performed brain DRI on a 3T Philips Ingenia CX system.
Scans were performed after obtaining informed written consent, and were approved
by a local Research Ethics Board. We recruited 3 healthy volunteers (2 females)
and used a multi-slice SIR [14] DW EPI sequence, with a 32-channel head coil for
signal detection. Sequence parameters were: 48 axial slices, 2.4mm-thick; field-of-
view: 230 × 230mm2; in plane resolution: 2.4 × 2.4mm2; TR = 2563ms; TE =
90ms; TS = 300ms; SENSE = 2; MB = 3; BW = 2.51 KHz

pixel . 528 images were

acquired with 32 unique (b,TI) values ((b,TI) = {0, 1000, 2000, 3000} smm−2 ×
{70, 320, 570, 820, 1070, 1320, 1570, 1820}ms, 21 directions for non-zero b, 3
images for each b = 0) in 46 minutes, which included an image with reversed phase
encoding for EPI distortion mitigation.

MRI post-processing We denoised scans with the MP-PCA technique [17], subse-
quently mitigating noise floor [18] and Gibbs ringing [19]. We corrected for motion
and eddy current via affine co-registration based on NiftyReg [20] and EPI distor-
tions with FSL [21], and obtained a brain mask [22]. Finally, we averaged images
corresponding to different gradient directions at fixed (b,TI), obtaining a data set
made of N = 32 unique (b,TI) measurements.

DNN fitting The DNNs trained for in silico experiments with Rician noise were also
used for fitting Eq. 7 on in vivo data.Moreover, for training strategy 2, we also trained
a DNN on actual in vivo measurements extracted from within the brain mask (which
included cerebrospinal fluid (CSF)), using the same learning settings described in
Sect. 2.2. We followed a leave-one-out strategy, training on 2 subjects and using
the DNN for model fitting on the other (number of training voxels comparable to in
silico training). Fitting provided voxel-wise tissue parameter maps and MRI signal
estimates, from which RMSEs with respect to actual in vivo MRI measurements
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were computed. Differences between parametric maps obtained with strategy 2 with
respect to those obtainedwith strategy 1were evaluated.Moreover,we also calculated
the difference between DNN signal prediction and actual MRI measurements (i.e.
signal residuals).

3 Results

Figure 2 shows predictions of MRI signals and of tissue parameters for simulations
conducted with Gaussian noise. Inspection of the plots suggests that strategy 1 and
2 perform similarly. However, when Rician noise is considered (Fig. 3), strategy
1 enables more accurate tissue parameter estimation. Nonetheless, strategy 2 still
provides a better estimation of the MRI signal as compared to strategy 1, which
underestimates slightly the signal level.

Fig. 2 Scatter plots of simulation results obtained on the test set whenGaussian noise is considered.
Panels A and F show predicted signal (y-axis) against input measurements (x-axis). Panels B–E and
G–J show fitted parameters (y-axis) against ground truth tissue parameters (x-axis) (d|| in B, G; k
in C, H; T1 in D, I; s0 in E, J). Top (A–E): training strategy 1. Bottom (F–J): training strategy 2

Fig. 3 Scatter plots of simulation results obtained on the test set when Rician noise is considered.
As in Fig. 2, panels A and F show predicted signal against input measurements, while panels B–E
and G–J fitted against ground truth tissue parameters
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Table 1 Rootmean squared errors (RMSEs) from simulations. RMSEbetweenMRImeasurements
and signal predictions as well as between ground truth and fitted parameters. Median and 2.5–97.5
percentiles (in brackets) over the test set are reported (lowest median RMSE highlighted). Both
Gaussian/Rician noise cases are reported

Signal (a.u.) d||
(µm2ms−1)

k (n.u.) T1 (ms) s0 (a.u.)

Strategy 1 0.043 0.192 0.125 155.7 0.126

(Gauss. noise) (0.009; 0.129) (0.008; 0.862) (0.005; 0.445) (4.1; 958.0) (0.004; 1.05)

Strategy 2 0.038 0.205 0.120 134.0 0.125
(Gauss. noise) (0.008; 0.104) (0.009; 1.109) (0.003; 0.647) (1.5; 1329) (0.004; 1.25)

Strategy 1 0.048 0.194 0.131 155.6 0.124
(Rician noise) (0.010; 0.144) (0.008; 0.859) (0.004; 0.441) (4.3; 976.7) (0.004; 1.05)

Strategy 2 0.039 0.266 0.176 150.5 0.135

(Rician noise) (0.008; 0.107) (0.009; 1.543) (0.004; 0.704) (1.7; 1696) (0.003; 1.38)

Table 1 reports statistics of signal and tissue parameter RMSE distributions
obtained on the test set with both Gaussian and Rician noise. Strategy 2 provides
lower median RMSE for almost all tissue parameters as well as for the signal esti-
mation than strategy 1 when Gaussian noise is considered. However, it also provides
wider RMSE distributions. With Rician noise instead, strategy 1 provides overall
lower RMSE figures for tissue parameter estimates, while strategy 2 still provides
lower RMSE for MRI signal predictions. For both strategies, Rician noise leads to
worse performances compared to Gaussian noise.

Figure 4 shows examples of voxel-wise tissue parameter maps obtained in vivo.
The two training strategies provide metrics that are qualitatively similar and that
exhibit similar between-tissue contrasts. However, some differences between the
approaches are seen (e.g. slightly higher d|| and lower k in strategy 2 compared to
strategy 1), especially in areas with strong CSF partial volume. For training strategy
2, training the DNN on synthetic signals or actual in vivo measurements essentially
provides the same results.

Figure 5 shows examples of voxel-wise differences between parametric maps
obtained with strategy 2 with respect to those obtained from strategy 1. The strongest
differences are observed in areas with strong CSF contamination (e.g. cortical grey
matter and above all ventricles), and are the most intense for parameters d|| and k.

Figure 6 shows examples of images acquired in vivo as well as DNN predictions
(leave-one-out experiment). All training strategies enable learning of a variety of
diffusion and T1 contrasts, as predictions are qualitatively similar to the acquired
images. On visual inspection, predictions from strategy 2 more closely resemble in
vivo images as compared to strategy 1. This latter observation is confirmed by Fig. 7,
which shows examples of voxel-wise differences between DNN signal prediction
and acquired MR images (i.e. signal residuals). The figure confirms that strategy 2
provides signal predictions that are closer to the acquired images than strategy 1.
Moreover, the figure also highlights that both signal underestimation and overesti-
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Fig. 4 Examples of in vivo parametric maps. From left to right: d||, k, T1 and s0. Top row: strategy
1. Central row: strategy 2, with DNN trained on synthetic MRI signals. Bottom row: strategy 2,
with DNN trained on actual in vivo MRI measurements

mation are possible. These occur mainly in areas with strong CSF partial volume,
especially in the ventricles.

Finally, Table 2 reports signal prediction RMSE as measured on in vivo data.
Results are in line with RMSE figures from simulations. In all cases, training strategy
2 has slightly lowerRMSEcompared to training strategy 1. For training strategy 2, the
lowest RMSEfigures are obtainedwhen training on synthetic data. However, training
on actual in vivo measurements yields almost identical performances (difference of
median RMSE less than 1%).
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Fig. 5 Examples of differences of in vivo parametric maps as obtained from strategy 2 and strategy
1. From left to right: Δd||, Δk, ΔT1 and Δs0 (i.e. difference of a metric from strategy 2 minus the
corresponding metric from strategy 1). Top row: strategy 2, with DNN trained on synthetic MRI
signals. Bottom row: strategy 2, with DNN trained on actual in vivo MRI measurements

4 Discussion

In this work we studied DNN-based qMRI signal model fitting. We used DNNs to
implement an estimator of tissue parameters from input MRI measurements, and
ran experiments on synthetic and in vivo DRI data. Specifically, we considered a
model describing directionally-averaged SIR DWI data for joint diffusion and T1
mapping. We performed computational experiments on synthetic and in vivo scans,
which were acquired at 3T on 3 healthy volunteers. Both in silico and in vivo data
were used to explore two alternative training strategies: in strategy 1, the training
loss is defined as the l2-norm of tissue parameter estimation errors; in strategy 2, as
the l2-norm of MRI signal reconstruction errors.

Our results suggest that both strategies are viable options for DNN-based fitting.
When Gaussian noise is considered, the performances of the two strategies are com-
parable: strategy 2 provides higher accuracy than strategy 1 in parameter estimation,
at the expenses of lower precision. However, when more realistic noise distributions
(i.e. Rician) are considered, the accuracy of strategy 1 is superior to strategy 2. We
speculate that such a reduction in accuracy for strategy 2 results from the fact that
DNNs end up learning features that originate from the noise floor, and adjust tissue
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Fig. 6 Examples of images acquired in vivo and DNN predictions. Left to right: different contrasts
(spherical mean images; sequence parameters reported on top). Top to bottom: acquired images;
images predicted by DNN trained with strategy 1; images predicted by DNN trained with strategy
2 on synthetic signals; images predicted by DNN trained with strategy 2 on in vivo signals

parameter accordingly to accommodate for this.Moreover, noise floor bias could also
explain the fact that the MRI signal is slightly underestimated in strategy 1 when
Rician noise is considered.

Importantly, it should be noted that unlike in simulations, one does not have
access to ground truth tissue parameters in vivo. Therefore, care is needed when
extrapolating the better parameter estimation obtained in strategy 1 from simulations
to the in vivo case.

Another key observation relates to the fact that strategy 1 requires paired examples
of MRI measurements and corresponding tissue parameters. Such examples could
be gathered from previous NLLS fitting, or synthesised in silico, as done here. The
former is anything but convenient, while the latter would lead to assumptions on the
underlying noise level and distribution. Such assumptions can instead be avoided
in strategy 2, as demonstrated here when training is performed on actual in vivo
measurements, obtaining robust fitting results.

Finally, we acknowledge a number of potential limitations. Firstly, we considered
only one qMRI signal model. In future, we will assess the generalisability of our
findings by considering additional models. Secondly, we did not compare our fit-
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Fig. 7 Examples of differences between DNN signal predictions and images acquired in vivo (i.e.
signal residuals of spherical mean images). Left to right: different contrasts (sequence parameters
reported on top). Top to bottom: difference between images predicted by DNN trained with strategy
1 minus acquired images; images predicted by DNN trained with strategy 2 on synthetic signals
minus acquired images; images predicted by DNN trained with strategy 2 on in vivo signals minus
acquired images

Table 2 In vivo root mean squared error (RMSEs) between MRI measurements and signal pre-
dictions. Median and 2.5–97.5 percentiles (in brackets) obtained within the brain are reported,
highlighting the approach providing the lowest median RMSE

Signal RMSE (a.u.) Strategy 1 (synthetic
training)

Strategy 2 (synthetic
training)

Strategy 2 (in vivo
training)

Subject 1 0.208 0.142 0.143

(0.078; 0.674) (0.061; 0.626) (0.060; 0.640)

Subject 2 0.191 0.125 0.126

(0.070; 0.589) (0.056; 0.519) (0.054; 0.524)

Subject 3 0.233 0.164 0.165

(0.086; 0.742) (0.068; 0.665) (0.067; 0.675)

ting to non-DNN-based alternatives, e.g. standard NLLS. While this would certainly
be interesting to put DNN performance in context, previous literature has focussed
extensively on comparisons between NLLS and DNN fitting [7, 9], demonstrating
that DNN fitting is a valid alternative to NLLS. Here we focus on specific design
choices of DNN-based fitting for DRI, since this has not been investigated so far.
Thirdly, we acknowledge that residual noise floor bias may still affect in vivo MRI
measurements even after Rician bias mitigation. In future, we will explore more
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effective noise floor correction techniques. Furthermore, in our comparative study
some tissue parameters (e.g. s0) were estimated better than others (e.g. k). This
may be a result of the intrinsic poor sensitivity of the MRI protocol used here with
respect to certain parameters. In futurewewill overcome this limitation by optimising
the (b,TI) sampling scheme. Finally, we acknowledge that it cannot be concluded
whether our results hold in pathology, e.g. in small focal lesions affecting only a
small percentage of the voxels in the image, since here we only consider healthy
subjects. We speculate that in those cases strategy 1 may provide additional advan-
tages as compared to strategy 2 in the under-represented lesion, especially if training
is performed on actual in vivo measurements. Future work will address this question,
and also consider the performance of these strategies with more complex models or
larger in vivo data sets, and clarify whether an hybrid of the two strategies can be
advantageous.

5 Conclusion

DNN-based fitting is a viable approach for brain DRImodelling. For the specific DRI
model considered in this study, training by minimising parameter estimation errors
or signal reconstruction errors are both valid choices. The latter is more practical as
it does not require pre-calculation or synthesis of tissue parameters, but may provide
worse parameter estimation.
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Pretraining Improves Deep Learning
Based Tissue Microstructure Estimation

Yuxing Li, Yu Qin, Zhiwen Liu, and Chuyang Ye

Abstract Diffusion magnetic resonance imaging (dMRI) is commonly used to non-
invasively estimate brain tissuemicrostructure, which provides important biomarkers
for studying the structural changes of the brain. Due to the constraint of imaging time,
the quality of dMRI scans can be limited by the number of diffusion gradients and
the spatial resolution, and deep learning based approaches have been developed to
provide high-quality estimation of tissue microstructure from the low-quality dif-
fusion signals. In existing deep learning based methods, the estimation models are
trained from scratch. However, it has been shown in various tasks that pretraining can
improve the performance of deep networks, and it may also be used to improve deep
learning based tissue microstructure estimation because there are abundant publicly
available high-quality dMRI datasets. Moreover, for many datasets where acquisi-
tions of a large number of high-quality training dMRI scans are not convenient,
pretraining may also allow deep learning based methods to be applied with only
a small number of training samples. Motivated by these potential benefits of pre-
training, in this work, we explore whether pretraining improves deep learning based
tissue microstructure estimation and how to achieve such improvement. Suppose we
are given an auxiliary dataset with high-quality dMRI scans for pretraining and a
target dMRI dataset of interest with a certain amount of high-quality training data. To
generate inputs for pretraining, the diffusion signals of the auxiliary dataset are first
downsampled in the spatial domain. Then, since the acquisition scheme is usually
different between the two datasets, we interpolate the downsampled signals in the
q-space using a dictionary-based signal representation. Finally, the downsampled
and interpolated diffusion signals are used for pretraining the estimation network
and the pretrained model is fine-tuned with the training data of the target dataset.
Experiments were performed on brain dMRI scans, where we show that pretrain-
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ing leads to improved accuracy of tissue microstructure estimation under different
settings and may reduce the burden of training data acquisition.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is an image modality that is widely
used to noninvasively probe brain tissue microstructure, which can reveal struc-
tural changes of brain tissue [10]. However, due to the constraint of imaging time
in clinical settings, typically low-quality dMRI scans are acquired with a limited
number of diffusion gradients and a relatively low spatial resolution. High-quality
tissue microstructure estimation, for example, for the neurite orientation dispersion
and density imaging (NODDI) model [25], from low-quality dMRI scans can be
challenging using conventional model-based approaches [3, 25].

To improve the quality of tissuemicrostructure estimation from low-quality dMRI
scans, deep learning based approaches have been developed, where low-quality dif-
fusion signals are mapped to high-quality tissue microstructure. For example, deep
networks have been developed to map diffusion signals undersampled in the q-space
to high-quality tissue microstructure [7, 21–23]. These works are then extended to
estimate high resolution (HR) tissue microstructure from low resolution (LR) dif-
fusion signals acquired with a reduced number of diffusion gradients, where the
network is improved to allow resolution enhancement [24].

In existing deep learning based methods of tissue microstructure estimation,
the network is trained from scratch using high-quality—HR, densely sampled in
the q-space—training dMRI data acquired for the dataset of interest [24]. It has
been observed in various tasks that pretraining using a different dataset can lead to
improved performance of deep networks [9], yet this has not been explored for tissue
microstructure estimation.

The benefit of such pretraining may be two-fold. First, pretraining allows better
initialization of deep networks so that the network parameters are better learned,
which may improve the accuracy of tissue microstructure estimation. Second, pre-
training may also alleviate the need to acquire a large number of training scans for
the dataset of interest, which can be inconvenient in clinical settings. Such reduction
of training data acquisitions can widen the applicability of deep learning based tissue
microstructure estimation to different datasets and increase its impact. Since there
are abundant publicly available high-quality dMRI datasets [20], it is possible to
explore pretraining for deep learning based tissue microstructure estimation.

Motivated by the potential benefits of pretraining, in thiswork,we explorewhether
pretraining improves deep learning based tissue microstructure estimation and how
to achieve such improvement. In particular, we focus on HR tissue microstructure
estimation from LR diffusion signals undersampled in the q-space. Suppose we
have an auxiliary dataset, for example, the publicly available Human Connectome
Project (HCP) dataset [20], where high-quality dMRI data is acquired, and this
dataset is used to pretrain a model for the target dataset of interest. To generate
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inputs for pretraining, the diffusion signals of the auxiliary dataset are first down-
sampled in the spatial domain. Since the set of diffusion gradients of the target
dataset is usually not a subset of that of the auxiliary dataset, the downsampled diffu-
sion signals of the auxiliary dataset cannot be directly used for network pretraining.
Therefore, it is important to interpolate the LR diffusion signals in the q-space to
produce LR undersampled diffusion signals that match the acquisition scheme of
the target dataset. Specifically, a dictionary-based representation of diffusion sig-
nals with the SHORE basis [13] is used to perform the interpolation [17]. Training
inputs are then extracted from the interpolated LR diffusion signals, and they are
used for pretraining together with the high-quality tissue microstructure computed
from the original auxiliary dataset. Finally, the pretrained model is fine-tuned with
the high-quality training samples acquired for the target dataset. For demonstration,
we applied the pretraining strategy to the network developed in [24], which is later
described with more details in Sect. 2.3, and estimated tissue microstructure for the
widely used NODDI model [1, 6, 14, 15]. The results show that pretraining leads to
improved accuracy of tissue microstructure estimation under different settings and
allows accurate tissue microstructure estimation given a reduced number of training
samples.

2 Methods

2.1 Problem Formulation

In this work, we aim to investigate whether and how pretraining with an auxiliary
dataset can improve deep learning based tissue microstructure estimation for a target
dataset of interest. In particular, we focus on the estimation of HR tissue microstruc-
ture from low-quality diffusion signals acquired with a reduced number of diffusion
gradients and a low spatial resolution [24]. For convenience, we denote the target
dataset by D and the auxiliary dataset by Da.

In the auxiliary datasetDa, diffusion signals are acquired with a set Ga of diffusion
gradients densely sampling the q-space and a high spatial resolution. In the target
dataset D the diffusion signals are acquired with a set G of diffusion gradients that
undersample the q-space and a relatively low spatial resolution. In addition, high-
quality dMRI scans are also acquired for the training subjects in D with a set Gt

(Gt ⊃ G) of diffusion gradients densely sampling the q-space and a high spatial
resolution. Generally, Gt and Ga are not the same. If the auxiliary dataset is not used,
like in [24], the network is trainedwith the low-quality diffusion signals of the training
subjects and the corresponding high-quality tissue microstructure computed from
the high-quality dMRI scans, which are the network inputs and outputs, respectively.
With the auxiliary dataset Da, our goal is to pretrain an estimation network, so that
better initialization can be achieved when the network is trained with the training
data for D.
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2.2 Signal Generation for Pretraining

Since we estimate HR tissue microstructure for LR undersampled diffusion signals,
to pretrain the estimation network with the auxiliary dataset, we need to downsample
the diffusion signals of Da in the spatial domain. Here, the block-wise mean [18] is
used to downsample the HR diffusion signals to generate LR diffusion signals. The
size of the block is set according to the desired upsampling rate γ (an integer). Note
that generally G is not a subset of Gt . Thus, the downsampled diffusion signals inDa

cannot be directly used to pretrain a network that is compatible with the diffusion
signals of the target dataset.

To allow network pretraining using the auxiliary dataset, we interpolate the down-
sampled diffusion signals of Da so that they match the acquisition scheme of the
undersampled diffusion signals in the target dataset D. Specifically, we follow the
interpolation strategy proposed in [17], and its detailed description is given below.

The interpolation is based on the representation of diffusion signals using the
SHOREbasis [13], which has been shown to effectively reconstruct diffusion signals.
Specifically, a set of SHORE basis functions can be used to represent the diffusion
signal vector ya at each voxel for Da. Mathematically the representation can be
expressed as follows

ya = �aca, (1)

where �a represents the dictionary computed from the SHORE basis functions
according to Ga, and the corresponding vector of coefficients is ca. If ca is known,
we can then use the dictionary� computed from the SHORE basis according to G to
interpolate the diffusion signals in the q-space, so that the interpolated signals cor-
respond to the undersampled diffusion signals in the target dataset. Like in Eq. (1),
the interpolated diffusion signal vector y is computed as

y = �ca. (2)

ca can be estimated from ya via a regularized least squares problem [13]. Here, we
use the implementation given by Dipy [5] with the default parameters.

2.3 Backbone Deep Network

Before we introduce the specific pretraining and fine-tuning strategy using the aux-
iliary dataset, we first describe the backbone network for tissue microstructure esti-
mation and how it is conventionally trained.

Here, we select the network proposed in [24], which estimates HR tissue
microstructure from LR dMRI scans acquired with a reduced number of diffusion
gradients and outperforms competing networks. The network in [24] is patch-based
and comprises two functional components. The first component computes the sparse
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representation of diffusion signals for each voxel in the LR input patch, and it is
constructed by unfolding the iterative hard thresholding strategy [2]. The second
component computes HR tissue microstructure from the LR sparse representation
obtained by the first component with the 3D-ESPCN architecture [18]. The HR out-
put patches are finally concatenated to obtain the complete HR tissue microstructure
map.

In [24], the deep network is trained from scratch for the target dataset D using
the training scans acquired with diffusion gradients Gt and a high spatial resolution.
Specifically, high-quality tissue microstructure maps are computed from the training
scans using conventionalmodel-based approaches [3]. Then, nonoverlapping patches
of the high-quality tissue microstructure are used together with the corresponding
patches of low-quality diffusion signals for training.

2.4 Pretraining with the Auxiliary Dataset and Fine-Tuning

To improve network training with the auxiliary dataset, we extract training samples
from the interpolated and spatially downsampled diffusion signals and high-quality
tissue microstructure maps of Da similarly to the way that training samples are
extracted from the target dataset. First, a set of training patch samples centering
on the voxels in the brain mask is extracted from Da, and this set is denoted by
A = {Y(i)

a ,X(i)
a }Na

i=1 , where Na is the number of training samples, Y(i)
a is the LR

input patch for the i th training sample, andX(i)
a is the output HR tissuemicrostructure

patch for the i th training sample. Y(i)
a has a larger spatial extent than X(i)

a , and X(i)
a

corresponds to the center region of Y(i)
a . In this way, redundant information can be

exploited for resolution enhancement [24]. Then, the set A is used for pretraining
the deep network.

The pretrained network weights are used to initialize the deep network that esti-
mates tissue microstructure for the target dataset. For fine-tuning, we extract training
samples from D and the set of training samples is denoted by T = {Y(i),X(i)}Ni=1,
where N is the number of training samples in T , Y(i) stands for the input patches
of low-quality diffusion signals for the i th training sample, and X(i) represents the
output patch of high-quality tissue microstructure for the i th training sample. The
network initialized by the pretrained weights is then fine-tuned with the training
set T , and the resulting network estimates high-quality tissue microstructure for D.
Note that the number N can be small if a large number of training scans for D can-
not be achieved. In that case, if the network is trained from scratch, the estimation
performance can be poor.

2.5 Implementation Details

Following the settings in [24], we consider the case where the upsampling rate is two
(γ = 2) and set the sizes of the input patch (Y(i)

a and Y(i)) and output patch (X(i)
a and
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X(i)) to 53 and 23, respectively; also, we select the tissue microstructure measures
in the NODDI model for evaluation, which is a popular compartment-based model
for brain analysis based on dMRI [25]. The NODDI model provides compartment-
specific measures of microstructural properties, such as the intra-cellular volume
fraction vic, cerebrospinal fluid (CSF) volume fraction viso, and orientation disper-
sion (OD).

The high-quality NODDI tissue microstructure used for pretraining and fine-
tuning is computed from the high-quality diffusion signals in Da and D using the
AMICO algorithm [3]. Also, for quantitative evaluation, HR diffusion signals which
densely sample the q-space are acquired for test scans, and the gold standard tis-
sue microstructure for D is computed from the high-quality diffusion signals using
AMICO. The estimation error is measured by the absolute difference between the
final estimated tissue microstructure map and the gold standard map.

For both pretraining and fine-tuning, the Adam algorithm [12] was used for the
optimization with a learning rate of 0.0001 and a batch size of 128 [24]. The imple-
mentation is based on Keras with a TensorFlow backend.

3 Results

For evaluation, we selected the HCP-MGH dataset [4] as the target dataset, where
dMRI scans of 32 subjects were used. The dMRI scans were acquired with an
isotropic spatial resolution of 1.5 mm and 512 diffusion gradients (b = 1000, 3000,
5000, 10000 s/mm2). Five subjectswere used as the training set, and the other 27 sub-
jects were used as the test set. To evaluate the performance of HR tissue microstruc-
ture estimation from LR undersampled diffusion signals, we generated LR dMRI
scans with a reduced number of diffusion gradients. In particular, we considered
different cases, where we respectively selected 24, 36, and 60 diffusion gradients
as G and then downsampled them in the spatial domain by a factor γ = 2. Deep
networks were trained to estimate HR tissue microstructure from these low-quality
diffusion signals. The training samples were extracted from the scans of the training
subjects as described in Sects. 2.4 and 2.5, and they were used for fine-tuning a
pretrained model or training from scratch. The gold standard tissue microstructure
maps were computed from the original high-quality dMRI scans for the test subjects
for measuring estimation errors.1

For the auxiliary dataset, we selected five dMRI scans from the HCP-Minn
dataset [19]. The dMRI scanswere acquiredwith a high spatial resolution of 1.25mm
isotropic and 270 diffusion gradients (b = 1000, 2000, 3000 s/mm2). From these
scans, we generated training samples for network pretraining. Specifically, we first
downsampled the diffusion signals in the spatial domain with the factor γ = 2. Then,
we performed q-space interpolation as described in Sect. 2.2 for the three cases of

1 Note that the diffusion signals associated with b = 10000 s/mm2 were not used for computing
the training or gold standard tissue microstructure [17].
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diffusion gradients, so that the interpolated signals match the acquisition scheme of
the generated low-quality dMRI scans in the target dataset. Then, training samples
were extracted as described in Sects. 2.4 and 2.5.

To thoroughly investigate the impact of pretraining and fine-tuning, for each case
of diffusion gradients, we considered different numbers of training subjects for fine-
tuning. For convenience, when j ( j ∈ {1, 2, 3, 4, 5}) subjects were used for fine-
tuning, the case is referred to as Sj . For reference we also considered the case where
the network was trained from scratch. Two cases were considered. First, the five
training subjects of the target dataset were all used to train the network from scratch,
which is the training setting used by [24]. This case is referred to as T5. Second, only
one training subject of the target dataset was used, which represents the case where
only limited training data can be acquired, and this case is referred to as T1.

We first qualitatively compared the results obtained with the most and least infor-
mation. Specifically, the results corresponding to T1 and S5 were compared, where S5
used all information in the auxiliary and target datasets that is available for training
and T1 only used one training subject in the target dataset. Cross-sectional views of
the estimated tissue microstructure maps on a representative test subject are shown
in Figs. 1, 2 and 3, together with the gold standard. We can see that when more
information was used for training, better estimation quality can be achieved. For
example, in the vic map in Fig. 1, S5 achieves less noisy results and better restores
the anatomical details than T1.

Then, we quantitatively compared the estimation results under all the different
training settings. The average estimation errors in the brain (excluding CSF [22])
of each test subject were computed for each setting, and the means and standard
deviations of the average errors were computed for the test subjects. The results are
shown in the barplots in Fig. 4. We can observe that pretraining on the auxiliary
dataset improves the estimation performance on the target dataset for all the cases
of numbers of diffusion gradients. Furthermore, when the auxiliary dataset is used
for pretraining, with only two training scans acquired for the target dataset, the
estimation performance is comparable to the performance of the model trained from
scratch with five training scans acquired for the target dataset, which is the training
setting in [24]. This indicates that pretraining with the auxiliary dataset could also
be used to reduce the burden of training data acquisition.

4 Discussion

We have shown that pretraining on an auxiliary dataset can improve the estimation
performance on the target datatset and reduce the burden of training data acquisi-
tion for deep learning based tissue microstructure estimation. In addition to tissue
microstructure estimation, the idea of pretraining could also be useful for a number
of dMRI processing tasks where deep learning based methods can be applied, such
as harmonization [11], tractography [16], and artifact reduction [26].
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Fig. 1 A representative axial view of the vic map estimated under different settings. The gold
standard is shown for reference

A more comprehensive evaluation of the benefit of pretraining for tissue
microstructure estimation can be performed in future works. For example, statis-
tical significance and effect sizes can be computed for the comparison of results,
and a more detailed analysis of the areas with improved estimation quality can be
performed. Also, in addition to estimation accuracy, the reproducibility of the estima-
tion results can be investigated using test-retest scans. Finally, the original NODDI
model uses a fixed parallel diffusivity for all voxels, which could be a limitation
of the method, and it would be interesting to explore the benefit of pretraining for
revised NODDI models [8] with optimized parallel diffusivity values.
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Fig. 2 A representative axial view of the viso map estimated under different settings. The gold
standard is shown for reference

5 Conclusion

We have explored whether and how pretraining with an auxiliary dataset can improve
deep learning based tissue microstructure estimation for a target dataset of interest.
The high-quality diffusion signals of the auxiliary dataset are downsampled in the
spatial domain and interpolated in the q-space to pretrain the deep network. Then, the
pretrained deep network is fine-tuned with the training scans acquired for the target
dataset, and the fine-tuned network estimates high-quality tissue microstructure for
the target dataset. Although this approach is simple, results on brain dMRI scans
show that it can achieve more accurate HR tissue microstructure estimation under
different settings. In addition, the strategy may also be used to reduce the burden of
training data acquisition, which could widen the applicability of deep learning based
tissue microstructure estimation.
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Fig. 3 A representative axial view of the OD map estimated under different settings. The gold
standard is shown for reference
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Fig. 4 Means and standard deviations of the average estimation errors in the brains of test subjects
under different settings
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Enhancing Diffusion Signal
Augmentation Using Spherical
Convolutions

Simon Koppers and Dorit Merhof

Abstract The application of deep learning in the field of diffusion imaging is becom-
ing increasingly popular. However, correlations of acquired adjacent gradient direc-
tions are often ignored. To make use of this information in a neural network, a spher-
ical convolution is necessary. This work evaluates three different ways to include
spherical information: 2D projection, local spherical convolution and Fourier space
transform. For comparison, all models are designed to have a similar amount of
trainable parameters as well as the same network architecture, and are evaluated
by considering the example of signal augmentation. Overall, all models achieved
comparable good results, improving the reconstruction performance, compared to a
reconstruction without augmentation, by ≈30% for the fractional anisotropy, ≈50%
for the mean diffusivity, ≈70% for the mean signal kurtosis and ≈5% for the diffu-
sion signal itself. Particularly, in comparison to a regular neural network that does
not implement a spherical convolution, the average performance for all models that
implement a sperical convolution increases slightly for all evaluatedmeasures, where
the local spherical convolution shows the most favorable results.

1 Introduction

Current trends in deep learning show that a reasonable integration of available addi-
tional information has a positive effect on the results of the respective DLmethod [3,
19]. In spite of major advancements in the field of novel network designs (such as
UNet [24], ResNet [10], DenseNet [12]), the consensus remains that the primary goal
is to develope meaningful training strategies and individual layers. Here, appropriate
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pre-processing, individualized loss functions and individual layers are among the
most influential factors [13].

In the field of diffusion imaging, most deep learning methods are still based
on regular convolutional neural networks and/or ordinary neural networks, if no
spatial neighborhood information shall be included. At the same time, however, a
3D diffusion signal within a voxel consists of a large number of individual signals
that have been sampled using different gradient directions and different gradient field
strengths (b-values). If every individual signal is acquired using a single b-value, this
is referred to as single-shell acquisition, while a measurement based on different
b-values is called multi-shell acquisition. Due to the fact that a spherical diffusion
signal on a single shell is assumed to be continous, gradient direction signals based
on adjacent gradient directions show a higher correlation than those which are further
away from each other.

If a conventional neural network is employed to process such diffusion signals,
gradient specific neighborhood information is usually remains unused. Therefore,
novel deep learning methods are required to exploit this additional spherical infor-
mation, in order to maintain the spherical character of the input 3D diffusion signal
while only slightly altering it. This is highly relevant for applications such as signal
augmentation, signal denoising or signal harmonization.

In this work, three different approaches to realize spherical convolutions are inves-
tigated, exemplified using signal augmentation: The most straightforward approach
projects the sphere onto a 2D plane, while afterwards regular 2D convolutions can be
utilized to augment the spherical diffusion signal. The second approach is called local
spherical convolution [16], which applies a convolution kernel directly to the sphere’s
surface. Finaly, the third approach transforms the diffusion signal into the Fourier
space, which is why a convolution can be performed using a simple multiplication.

2 Signal Augmentation

Signal Augmentation attempts to accelerate acquisition sequences, by reducing the
number of acquired gradient directions, or is employed to replace noisy signals by
interpolating outliers. For this purpose the diffusion signal is usally modeled using
either a tissue model or a data driven approach [7]. In this work we focus on the data
driven approaches.

Currently, there are two strategies to augment a diffusion signal: The first employs
a predefinedmodel [5, 22, 23] to copewith the reduced number of gradient directions.
In addition, a strong regularization [6] or useful constraints, such as the positivity of
diffusion [25], are usually utilized.However, due to intravoxel incoherentmotion [18]
and kurtosis effects [14], the relationship between different gradient directions and
different b-values shows a highly non-linear behavior.

Alternatively, data-driven methods based on deep learning can be used. These
methods are ideally suited to detect highly non-linear relationships in a diffusion
signal and to interpolate non-measured gradient direction signals based on training
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data [17]. Furthermore, deep learning is not constrained to rigid models, which is
why they are able to reconstruct even very complex diffusion signals.

To train a diffusion signal augmentation model that is able to predict a different
shell or refine an existing ones, a high-resolution diffusion dataset is required. While
this high-resolution dataset forms the target that has to be predicted during training,
a subsampled version of the same dataset is used as input.

To represent an individual diffusion signal, each shell is substituted using Spheri-
cal Harmonic (SH) coefficients, where the SH order was selected based on the num-
ber of gradient directions to ensured that there are less SH coefficients than number
of sampled gradient directions. In addition, a Laplace-Beltrami regularization of
λ = 0.006 is employed to be robust against strong noise. This is very important as
the trained neural network would be bound to the input gradient directions it was
trained on, which would limit its usabillity.

2.1 Deep Learning Models

All deep learning networks investigated in this work are based on the neural network
presented in [9], which is also utilized as baseline model for comparison. This uti-
lizes four fully connected (FC) layers and rectified linear units (ReLU) as activation
function. An overview over the utilized base network is given in Table 1. Every fully
connected layer is replaced with the respective spherical convolution layer, presented
in the following subsections, resulting in three different networks. The activation
function of these networks is chosen individually such that the spherical character is
maintained within the network. If the diffusion signal is in the Fourier domain after
applying a spherical convolution, the tangent hyperbolic function (TanH) is used as
activation function (resulting in values between −1 and 1), while a diffusion signal
within the signal domain is activated utilizing a ReLU (resulting in values between
0 and Inf).

Training: Every network is trained using a high-resolution dataset as target data,
while the same, but subsampled, dataset is employed as input data. Training is per-
formed by randomly looping over each subsampled voxel of all training subjects,
attempting to predict its original high-resolution data. Here, the RAdam [20] opti-
mizer (learning rate 0.001, batch size: 128 single voxels) is utilized to reduce the

Table 1 Topology of the neural network presented in [9]. It contains 27845 trainable parameters

# Type Parameters Activation

0 FC 100 nodes ReLU

1 FC 100 nodes ReLU

2 FC 100 nodes ReLU

3 FC #SHCoefficients×#OutputShells –
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mean squared error between target and predicted diffusion signal. This loss is cal-
culated in diffusion signal space to reduce the effect of higher frequencies, which
often occur due to noise. Furthermore, the learning rate decreases by ten percent if
the validation performance does not improve over ten epochs. In the end, training is
stopped if the learning rate drops below 10−6 or if the optimizer reaches 50 epochs.

2.2 Spherical Deep Learning Models

Projective convolution in signal space: Assuming a symmetrical spherical signal,
the most straightforward approach to include spherical neighboring information into
a neural network is to project the 3D spherical signal onto a 2D plane. Afterwards, an
ordinary 2D convolution can be employed to include neighboring information, while
the spherical signal can be recorved by backprojecting the resulting 2D plane onto
the symmetric sphere. An example is given in Fig. 1, which shows an exemplified
stereographic projection of a circle onto a line. Taking a closer look at the borders
of the resulting projection, a strong distortion will occur, resulting in an imperfect
projection. This is also the reason why backprojecting the spherical signal cannot
be performed in a lossless way. To address this issue, the size of the 2D projection
plane has to be chosen, such that the angular resolution is not limited.

In this work, the size of the projective plane is chosen to be 20 × 20 pixels, while
ReLU functions are utilized as activation function. A full overview over the utilized
network is given in Table 2.

Spherical Convolution in Fourier space: To overcome the problem of distortions,
the Fourier space can be utilized, as no projection is required for convolution. In
case of diffusion signals, this Fourier space corresponds to the SH Space. However,
this type of convolution is also limited due to singularities, which is why only zonal
kernels can be used for convolution [21]. Zonal kernels have only one non-zero coef-

Fig. 1 Projection of an
exemplaric signal onto a 1D
plane based on a
stereographic projection

2D plane
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Table 2 Adapted topology of the neural network utilizing a stereographic projection as input layer.
Afterwards, basic 2D convolutional layers are employed. It contains 25059 trainable parameters

# Type Parameters Activation

0 Sphere2Plane Dim: 20 × 20 pixels

1 2D Convolution 36 kernels, kernel size:
3 × 3

ReLU

2 2D Convolution 36 kernels, kernel size:
3 × 3

ReLU

3 2D Convolution 36 kernels, kernel size:
3 × 3

ReLU

4 2D Convolution #OutputShells kernels,
kernel size: 3 × 3

–

5 Plane2Sphere Dim: 12 × 12 pixels –

Table 3 Adapted topology of the neural network utilizing Fourier space convolutions. It contains
24951 trainable parameters

# Type Parameters Activation

0 FSC 63 kernels, SH order: 4 TanH

1 FSC 63 kernels, SH order: 4 TanH

2 FSC 63 kernels, SH order: 4 TanH

3 FSC #OutputShells kernels,
SH order: 4

–

ficient for each SH order l. Based on these kernels, the full Fourier space convolution
(FSC) is defined by

(h ∗ f )ml =
√

4π

2l + 1
· h0l · f ml , (1)

where h defines the zonal kernel and f the spherical signal.
On the one hand, zonal kernels seem to be advantageous for deep learning in

diffusion imaging, since only few parameters have to be optimized, while at the same
time no rotation can occur. However, this convolution is limited by its harmonic order,
which makes it difficult to refine or increase the angular resolution of the spherical
signal.

A full overview over the utilized network is given in Table 3.

Spherical Convolution in signal space: In order to avoid problems caused by pro-
jection distortions or low SH orders, [16] presents a method to apply a convolutional
kernel directly on the surface of a sphere. An exemplified scheme of this local spher-
ical convolution (LSC) is shown in Fig. 2. Here, a circular kernel (marked as green
circles) is folded along the longitudinal lines (marked as black lines) of the spherical
surface. This circular kernel is defined by the number of support points (marked as red
crosses) per circle, while it also can be extended by additional circles. The distance
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Fig. 2 Exemplary
visualization of a local
spherical convolution. Real
aquired gradient directions
are marked in blue, while
interpolated gradient
directions are marked in red.
Furthermore, convolution
trajectories are marked in
black dotted lines that go
from top to bottom

Table 4 Adapted topology of the neural network utilizing Local Spherical Convolutions. It contains
23923 trainable parameters

# Type Parameters Activation

0 LSC 40 kernels, SH order:
4, kernel size: 3, 3

TanH

1 LSC 40 kernels, SH order:
4, kernel size: 3, 3

TanH

2 LSC 40 kernels, SH order:
4, kernel size: 3, 3

TanH

3 LSC #OutputShells kernels,
SH order: 4, kernel
size: 3, 3

–

between adjacent circles is chosen to be the average distance between neighboring
gradient directions. Since not all support points have been acquired during the scan,
missing gradient directions are interpolated using spherical harmonics.

However, this kind of convolution is also not flawless, as it exhibits two sin-
gularities at the poles of the sphere. The behavior at these poles is defined by its
implementation, which is why it is important to employ the same implementation
for inference that was used during training.

A full overview over the utilized network is given in Table 4.
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2.3 Material

Within this work, the publicly available Human Connectome Project database is
utilized,which consists of very high resolution datasets, including a very high number
of gradient directions, to investigate the human connectome [26]. Since evaluating
all available HCP subjects would be too time-consuming, a subgroup of 20 female
subjects was randomly selected for the evaluation of all methods. Male subjects were
excluded to remove possible gender bias.

Every subject was scanned using three different b-values (b = 1000 s
mm2 , b =

2000 s
mm2 , b = 3000 s

mm2 ) with 90 gradients directions each and 18 non-weighted
measurements (b = 0 s

mm2 ). All voxels have an isotropic resolution of 1.25 mm3.
All acquisitions were corrected for eddy current and susceptibility distortions [1].
To train only on relevant diffusion signals, only white matter voxels were extracted
for training and testing using FAST [27].

3 Evaluation

In order to evaluate the augmentation performance of each network, we reduced
the number of sampled gradients direction artifically to n = 15 for each shell. This
subset is chosen such that the 15 gradient directions are well distributed over the
hemisphere [15]; each gradient direction itself remains unchanged. In addition, the
third shell (b = 3000 s

mm2 ) is removed from the input diffusion signal to investigate
if a neural network is able to identify and enhance the remaining kurtosis part of the
diffusion signal, which increases for higher b-values. With this evaluation setup, a
clinical scenario is imitated, which is usually limited in terms of acquisition time and
higher b-values. Furthermore, clincal trials often show a high level of motion noise
within their acquisitions, which is why many gradient directions have to be removed
from the diffusion signal after acquisition.

All computations are carried out on a PC with 3.4 GHz Intel i5-4670 processor,
64GB RAM and NVIDIAGeForce RTX 2080 Ti. Furthermore, all models are evalu-
ated using a five-fold cross-validation, always using twelve subjects to train and four
subjects to validate the network. After training, the remaining four unseen subjects
are evaluated for testing to asses the quality of the diffusion signal augmentation for
this fold. This is repeated for each fold, e.g. all subjects have been in testing at least
once.

For the purpose of comparison, we investigate the difference in fractional
anisotropy (FA) and mean diffusivity (MD) based on regular diffusion tensor imag-
ing [2], but also the mean kurtosis (MK) of the resulting diffusion signals. For com-
pletness, we also evaluate the difference of the diffusion signal itself. Here, however,
only the firth two shells (b = 1000 s

mm2 and b = 2000 s
mm2 ) and compared, since there

is no third shell inside the input signal to compare against.
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While standard diffusion kurtosis imaging is often affected by microstructural
properties (e.g. crossing fibers within a voxel), it also depends on mesoscopic prop-
erties (e.g. fiber dispersion or crossing angles) [11]. We therefore utilize the mean
signal diffusion kurtosis reconstruction [11] implemented in dipy [8], which shows
a high degree of robustness when reconstructing the MK of a diffusion signal, even
in situations of crossing fibers.

For evaluation, the mean absolute error (MAE), defined by

MAE = 1

N
·
∑
i

∣∣∣Xi − X̂i

∣∣∣ , (2)

is utilized. Here, Xi defines the reconstruction for the high-resolution target and X̂i

reconstruction for the low-resolution dataset with or without employing an augmen-
tation for every voxel i , divided by the number of all voxels N .

3.1 Results

Figure 3 shows the MAE for FA (see Fig. 3a), for MD (see Fig. 3b) and MSK (see
Fig. 3c), but also for the diffusion signal (see Fig. 3d) itself, comparing all models
as well as the MAE if no augmentation is applied. The resulting MAE if no aug-
mentation is utilized is marked in red and the basic neural network without spherical
convolutional layers ismarked in blue, respectively. In addition, the FSCbasedmodel
is marked in green, the LSC based model marked in purple, while the 2D projection
basedmodel (2DP) is marked in orange. Evaluating all three markers diffusionmark-
ers shows that any of the presented models achieves a very good result in comparison
to no augmentation. At the same time, it can be seen that the difference in diffusion
signal is reduced by a smaller fraction in comparison to the diffusion markers. On
average, theMAE for FA is reduced by≈30%, forMD by≈50%, forMSK by≈70%
and for the diffusion signal by ≈5%. In addition, the baseline neural network shows
a higher variance in comparison to the FSC, the LSC and the 2DP model. For FA
and the MSK, the lowest values are achieved using the LSC model (average MAE
for FA: 0.049 and the average MAE for MSK: 3 × 10−5), while for MD and the
diffusion signal, the LSC and 2DP model achieve the best results (average MAE
for MD with LSC: 3.05 × 10−5 and average MAE for the diffusion signal: 0.042,
while the 2DP achieves an average MAE for MD of 3.04 × 10−5 and 0.042 for the
diffusion signal.).
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(d) Resulting MAE for the diffusion sig-
nal.

Fig. 3 Resulting MAE for FA, MD, MSK and the diffusion signal before and after augmentation
using four different deep learning models (baseline model without spherical convolution, as well
as three different models that implement spherical convolutions, namely FSC, LSC and 2DP). For
the diffusion signal, only the first two shells have been evaluated, since the third shell was removed
from the input signal

4 Discussion

Comparing the results reveals that all methods are very effective in predicting diffu-
sion signals and clearly improve a subsequent reconstruction. Here, it is also visible
that all models are able to identify and enhance the remaining kurtosis part of the dif-
fusion signal aswe see a huge improvement comparing the initialMSK in comparison
to all models. Additionally, taking a closer look at the baselinemodel in comparion to
the LSC or projective approach, including spherical information results in a positive
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effect on the reconstruction. However, no distinctly superior spherical convolution
can be defined on the basis of these results. Interestingly, the difference in the first two
shells of the diffusion signal is reduced for all models. However, the MAE reduces
only by ≈6% on average, leading to the assumption that predicting the third shell
might be the major component for improving the subsequent markers.

It can be seen that the FSC performed slightly worse than other spherical con-
volutions. This is probably caused by strong limitation based on the utilized zonal
kernels. In order to improve this convolution, higher SH Orders could be employed.
To ensure that this also applies to diffusion signals based on few gradient directions,
additional constraints could be employed (similar to constraints introduced in [25]).

On the other hand, it should be noted that only very small neural networks
(≈25000 trainable parameters) are evaluated to be comparable against the baseline
network. Small models are beneficial if only a small dataset is available for training.
In addition, small models are optimal to show the effect of addition constrains. If,
however, more training data is available the effect of constrains might be lost, as this
would allow bigger networks, which don’t have to focus on specified information.

In general, it is also important to note that information that is not available in the
input signal,will not be available after augmentation.Due to this, signal augmentation
across multiple b-values is only applicable, if enough b-values have been acquired
initially. If, for example, only small b-values are acquired, no Kurtosis effect would
be introduced into the diffusion signal, which is why neural networks will not be able
to predict this part of the signal. The same effect might occur for a clinical study,
where the clinical subjects show alterations of the diffusion signal that have not been
in the training dataset. In this case, further inverstigations have to show if these neural
networks are able to generalize and predict all occuring diffusion signals.

In order to investigate the remaining questions, a more in-depth evaluation of
different scenarios (e.g. the effect of signal augmentation on the resulting diffusion
orientations) is required. In this context, the Grouped Convolution (presented in [4])
should also be evaluated, as it appears to be particularly useful for classification
or prediction of single markers. Subsequently, every spherical convolution can also
be combined with conventional convolutional neural networks to include additional
spatial neighborhood information.

5 Conclusion

Overall, this work demonstrates that simple neural networks based on spherical con-
volutions can effectively augment a diffusion signal. Thus, the difference between a
low-resolution and a high-resolution diffusion signal in terms of number of aquired
gradient directions can be drastically reduced. According to our, currently still very
limited, experiments on signal augmentation, the benefit of including spherical infor-
mation is clearly visible. In this context, we see that the LSC model provides the
most favorable results.
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Hybrid Graph Convolutional Neural
Networks for Super Resolution of DW
Images

Jiquan Ma and Hui Cui

Abstract Deep learning based super-resolution has been proved as a promising
technique in increasing the resolution of Diffusion-weighted (DW) images, which
is widely used in brain white matter analyses. Existing models using single type of
convolutional neural networks (CNN) cannot support effective learning in heteroge-
neous data space composed of grid structure and wavevector domain. We propose a
novel technique that employs a graph model in a deep network to improve the spatial
resolution of DW image. The model is composed of a residual CNN to learn from
spatial information in 3D grid structural domain and graph CNN (GCNN) to empha-
size diffusion angular information in non-Euclidean domain. Given a low resolution
DW image, for each direction of diffusion gradients, 3D convolutions and residual
CNN are firstly performed to generate coarse-level super resolution image. Then the
learning outputs from grid structure space are stacked and refined by the features
in diffusion gradient space modelled by GCNN. We evaluate the proposed hybrid
graph CNNmodel using real brain data fromHuman Connectome Project. Extensive
experiments demonstrate improved results with richer fiber tracts that are closest to
the ground truth. Our hybrid graph CNN model benefits the learning of spatial and
angular features in complex or heterogeneous spaces of DWI.
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1 Introduction

As a non-invasive technique for characterizing water molecule mobility in vivo,
DW imaging (DWI) plays an important role in studying brain white matter [1–3].
However, DWImay suffer from the trade-off of resolution, SNR and acquisition time
[4]. For instance, low resolution (LR) DWIs introduce a series of artifacts, such as
partial volume effect (PVE), which may affect the sensitivity of downstream analysis
including fiber orientation distribution function (ODF), fiber tractography , etc.

Super resolution (SR) techniques play an important role in increasing the resolu-
tion of DW images [5–7]. SR aims to establish a mapping from LR-DWI to its high
resolution (HR) counterpart. Recovering HR from LR, however, is an inverse pro-
cess and challenging problem. Single-image based SR (SISR) uses single LR image
to restore the HR counterpart which is suitable for clinical practice. Recently, deep
learningbasedSISRattracted extensive research interests andhave shown remarkable
performances [8]. For instance, CNN and recurrent neural networks (RNN) yielded
state-of-the-art results in computer vision and speech recognition tasks. CNN mod-
els, however, are designed for 2D/3D data in Euclidean domain. It is difficult to be
applied to the non-Euclidean domain or heterogeneous feature spaces, such as cita-
tion network, social network, and protein interaction network. This is also the case
with DWI which is acquired from a combined 6D domain. For the applications on
DW images, CNN based approaches are mostly constructed on the grid structural
spatial domain. These methods, however, fail to incorporate the effect of diffusion
wavevector domain.

Graph CNN (GCNN) extends the properties of CNN to graph-structured data,
which provides possibilities to enhance the resolution of DWI by using deep neural
networks. GCNN is a more general learning framework and can be applied in many
fields,where data is organized by a graph directly or indirectly.GCNNwasfirstly pro-
posed by [9] which was further improved by localized convolution operation [10]. To
some extent, grid structure data can be considered as a unique graph with uniformed
edge fields. A few applications have verified the capacity of CNN in classification and
segmentation [11–13]. For DWI, the unified graph convolutional architecture, how-
ever, fails to take advantages of the grid structure in the spatial domain. In addition,
spatial and angular information are not differentiated and adaptively fused.

To tackle this challenge, we propose a novel technique that employs graph-based
operations in a deep CNN model to learn from heterogeneous data with both spatial
and angular information. The first contribution is the new idea to employ a graph
model, GCNN, to learn the similarity between voxels in diffusion gradient direction
domain (q-space). In our model, q-space means the normalized version by q/|q|.
We also construct a reference graph to fill in the gap between CNN and GCNN. The
experimental results using the Human Connectome Project (HCP) dataset shows that
GCNN further improved the learning outcome of global residual CNN in grid struc-
tural domain. Secondly, as a post-acquisition approach, our model is independent
of imaging protocols which can be extended to other images. Besides, our research
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reveals the potential applications on the field of learning information from heteroge-
neous data domain.

2 Dataset

We collect DW images from HCP [14–16]. The images have voxel size of 1.25 ×
1.25 × 1.25mm3, 90 gradient directions per shell, b = 1000, 2000, 3000 s/mm2. The
DW images with b = 1000 s/mm2 were used for experiments. Since DW images
are corrupted with heavy noise [17, 18], we use the LPCA filter [19] to remove
noise before experiments. In total, there are 25 subjects where 8 of them are used
for training, 2 of them are used for validation, and the rest 15 are used for testing.
During the training process, 3D patches of sizes 11 × 11 × 11 are extracted from
each subject, generating around 30000 samples for each subject. LR DW images
(75 × 90 × 75) were generated from the HR images (150 × 180 × 150) using a 3D
mean filter with a reduction scale factor = 2 and voxel size of 2.5 × 2.5 × 2.5 mm3.

3 Methods

We formulate the SR process as an end to end learning process to learn the mapping
from LR DW to HR DW images. The two major components in our model include
CNN based coarse-level SR prediction in 3D grid structure space and GCNNmodule
for refinement in diffusion gradient space. Overview of the proposed model is given
in Fig. 1. Given an input LR DW image, for each direction of diffusion gradients,
3D convolutions and residual CNN are firstly performed in grid structure space to
generate coarse SR. Then the learning output is refined by the features in diffusion
gradient space modelled by GCNN. To fill the gap between CNN and GCNN, a
reference graph is constructed. The predicted HR DW image is finally obtained by
the output layer of convolutions.

3.1 Coarse SR Prediction in 3D Grid Structure Space

CNN has been proved of its superior performance over classical approaches espe-
cially using grid structure data. Because in each direction of diffusion gradients, DWI
can be considered as a 3D grid structure in spatial domain, we exploit 3D CNN to
predict coarse level SR from LR DWI.

For each direction of diffusion gradients, convolution operation is firstly per-
formed to reduce the effects of low-resolution interpolation. The convolution mod-
ule is composed of three 3D convolution layers, including two 3D filters with size
1 × 1 × 1 at the first layer and last layer and one 3D filter with size 3 × 3 × 3 at
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Fig. 1 Architecture of the proposed hybrid GCNN and CNN model. Firstly, residual CNN is used
to generate coarse SR DW images. A Graph CNN is then used to refine the coarse-level predictions
using the features learnt from diffusion space

the middle layer. After that, a global residual CNN based model, very deep super
resolution (VDSR) [20] is exploited to predict coarse level SR. To extract the spatial
information in LR DWI volumes, we change the 2D operations to 3D.

3.2 Refinement by GCNN in Diffusion Gradient Space

Generally, imaged voxels exhibit different signal intensities at different gradient
directions, which means that rich information related to micro-structures in the brain
could be encoded. We aim to improve the prediction performance by incorporating
such information in diffusion gradient domain. In order to utilize the correlations
across different diffusion gradient directions, GCNN is used to refine the quality of
coarse-level prediction. Given I CSR

X×Y×Z ,n denoting a predicted coarse-level SR 3D
patch of size X × Y × Z from one diffusion direction, a 4D volume RCSR

X×Y×Z×N can
be obtained by stacking all the 3D patches from N directions. Then a reference graph
G is constructed according to the correlation between diffusion gradients to project
4D features to graph structure.

Reference Graph Construction Given RCSR
X×Y×Z×N , the reference graph

G = (V, E,W ) is constructed with nodes V corresponding to the voxels in the
volume with size X = Y = Z = 64, N = 90. Wi j is edge weight connecting nodes
Vi and Vj , which is computed by the distance along gradient directions as

Wi j = Dists × Dista (1)
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where Dists and Dista represent the distance between two voxels in terms of spatial
domain and diffusion gradient direction domain. Respectively, Dists is defined as:

Dists = e
(
|vi ,v j |
max )2

−σ1 , i ∈ [1, ..., 64], j ∈ [1, ..., 64] (2)

where i and j are indices of the position of nodes, |vi , v j | denotes the Euclidean
distance between voxels vi and v j in I CSR

X×Y×Z ,n , max is the maximum distance.
Dista is defined as

Dista = e
1.0−(gm ·gn )2

−σ2 ,m ∈ [1, ..., 90], n ∈ [1, ..., 90] (3)

were m and n are indices of diffusion gradient direction, (gm · gn) is the dot product
of diffusion gradient directions gm and gn . σ1 and σ2 are kernel size for spatial
domain and diffusion gradient direction domain. By adjusting kernel size σ1 and
σ2, the reference graph G can be built with attention to a specific domain. σ1 and
σ2 are fixed empirical parameters, which are used to control the bandwidths of two
Gaussian kernels for x-space and q-space. For instance, when kernel size σ1 is greater
than σ2, the graph edge weight will be dominated by spatial domain, otherwise by
diffusion gradient direction domain.

An illustration is given in Fig. 2. For spatial domain (x-space), the edge weight is
determined by the distance between voxels in the 3D patch. For diffusion gradient
domain (q-space) , edge weight is related with the intersection angle between dif-
fusion gradients. In xq-space, edge weight is co-determined by spatial domain and
diffusion gradient domain. In order to make a clear instance, the illustration of graph
construction is presented using a smaller 3D patch size.

GCNN and Optimization Given the constructed graph, we define the graph filter
Following [21], as:

gθ (Λ) =
K−1∑

k=0

θkTk(Λ̃) (4)

where the parameter θ ∈ R
k , Tk(Λ̃) ∈ R

n×n and Λ̃ = 2Λ/λmax − In . Where In is
a vector of polynomial coefficients, Λ = diag([λ0, . . . , λn−1]) ∈ R

n×n , {λl}n−1
l=0 are

ordered real non-negative eigenvalues associated with graph Laplacian. Λ̃ is a diag-
onal matrix of scaled eigenvalues that lie in [1, 1]. The jth output feature map of the
sample s is given by

ys, j =
Fin∑

i=1

gθi, j (L)xs,i ∈ R
n, (5)

and then error gradients for back propagation can be calculated as:
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Fig. 2 Illustration of graph construction. 3D voxel patch size is 4 * 4 * 4 and the number of diffusion
gradients is 90. Adjacency matrix (AM) of reference graph is visualized at the bottom. In order to
make it clear, we just zoom in partial AM corresponding to the top five voxels (5 * 90 = 450)

∂E

∂θi, j
=

S∑

s=1

[x̄s,i,0,..., x̄s,i,K−1]T ∂E

∂ys, j
(6)

3.3 Loss Function

For effective back forward propagation, we propose a combined loss function
Losstotal with voxel value deviation Lossv , spectral graph deviation Lossg . to eval-
uate the deviation in graph structure, and L2 regulate item to avoid over-fitting.
Losstotal is defined as

Losstotal = α · Lossv + β · Lossg + λ · 1
2

∑
ωi, j

2 (7)

where Lossv is defined as
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Table 1 Comparison results in terms of PSNR and SSIM

Linear CNN GCNN PM

DWI 29.69, 0.90 30.49, 0.95 28.29, 0.94 32.65, 0.96

FA 30.11, 0.92 32.46, 0.96 30.35, 0.93 33.64, 0.98

Linear CNN GCNN PM GT

Fig. 3 Comparison of predicted HR-DWI and FA mapping using different models at axial view.
The last column is the ground truth (GT)

Lossv =
∑n

i=1|Voi − Vli |
n

(8)

where n is the total number of the voxels in the sampled 3D patch, i is the ith voxel.
According to the spectral graph theory, a graph can be represented by the Laplacian
matrix. Thus, Lossg is measured by Laplacian loss as

Lossg =
∑

(L × Vp − L × Vg)
2

si ze(V )
(9)

where Vp is the predicted graph, Vg is ground truth, L is Laplacian matrix of the
reference graph, si ze(V ) is the total number of nodes in the graph, λ is the regulation
coefficient. In our experiments, α + β = 1.0, λ = 0.0001.
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Linear CNN GCNN PM GT

Fig. 4 Comparison of colored FA using different models at axial view

Linear CNN GCNN PM GT

Fig. 5 Comparison of orientation distribution function (ODF)

4 Experiments

ComparisonMethods andParameterSettingsWedemonstrate the effectiveness of
our network by comparison with linear interpolation, residual CNN, and graph CNN
in terms of peak signal to noise ratio (PSNR) and structural similarity index (SSIM).
It is noted that all the deep learning baseline methods share the same training settings
with our proposedmodel.We also evaluate the quality of derived diffusion quantities,
including fractional anisotropy (FA) images, colored FA and fiber tracts [22].

Our model was trained using an Adam optimizer with an initial learning rate
of 10−4 and gradual decay every 5000 iterations. Other training settings included
random sample step as 300 to control the number of training samples fed into the
network in each iteration, batch size as 20, α = 0.5, β = 0.5, max epoch=300. In
order to crop the 3D voxel patch which has too many zero values, non-zero-ratio is
set as 0.6. Our network was implemented using TensorFlow 1.4. It took about 12
hours for training using GPU GTX 1070oc.

Experimental Results and Discussion The quantitative results are given in Table 1.
As shown, the proposed method (PM) achieved the best performance in terms of
PSNR and SSIM.

The results in Fig. 3 indicate that PM improves the quality of reconstructed HR
DWimages and associated FA images significantly.Ourmodel generatedDWandFA
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Linear CNN GCNN PM GT

Fig. 6 Comparison of fiber tractography using different models at axial view

LR Linear CNN GCNN PM GT

Fig. 7 Comparison of local zoom in views of DW images
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linear ours GT

Fig. 8 Results of DWI SR on Phantomas data set from 32*32*32 to 64×64×64

images that are closest to ground truth. All the DWI and FA mappings are displayed
using Mango Toolbox developed by Research Imaging Institute, UTHSCSA. The
comparison of coloured FA in axial view is given in Fig. 4. Figure 5 shows the
results of ODF fitting. Figure 6 is comparison of fiber tractography using different
methods.Details of reconstructedDWI are compared in Fig. 7. In order to validate our
model over cross phantom data sets, synthetic dMRI data are generated by Phantoms
[23]. The comparison over Phantoms data is given in the Fig. 8. As demonstrated
by the results, our hybrid model achieved the best SR results when compared with
linear, CNN, and GCNNmodels. As can be observed, our model gives the best visual
results with more structure details.

Experiments shown that low order Chebyshev polynomial is helpful to make an
effective learning in graph. In this task, the best performance is obtained when the
order of Chebyshev polynomial is 2.

5 Conclusion

We propose a domain directed hybrid graph based convolutional learning model for
SR of low resolution DW images. Extensive experiments on HCP data demonstrated
the improved performance in both qualitative and quantitative evaluations.Ourmodel
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has the potential to be applied to other research where there is necessity to learning
from heterogeneous data domains.
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Manifold-Aware CycleGAN
for High-Resolution Structural-to-DTI
Synthesis

Benoit Anctil-Robitaille, Christian Desrosiers, and Herve Lombaert

Abstract Unpaired image-to-image translation has been applied successfully to nat-
ural images but has received very little attention for manifold-valued data such as in
diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current
generative adversarial networks (GANs) from generating plausible images and has
mainly limited their application to diffusion MRI scalar maps, such as fractional
anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically
useful, they mostly ignore fiber orientations and therefore have limited applications
for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns
the generation of high-resolution DTI from unpaired T1w images. We formulate the
objective as a Wasserstein distance minimization problem of data distributions on a
Riemannian manifold of symmetric positive definite 3 × 3 matrices SPD(3), using
adversarial and cycle-consistency losses. To ensure that the generated diffusion ten-
sors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponen-
tial and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike
standard GANs, our method is able to generate realistic high-resolution DTI that can
be used to compute diffusion-based metrics and potentially run fiber tractography
algorithms. To evaluate our model’s performance, we compute the cosine similarity
between the generated tensors principal orientation and their ground-truth orienta-
tion, the mean squared error (MSE) of their derived FA values and the Log-Euclidean
distance between the tensors. We demonstrate that our method produces 2.5 times
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better FAMSE than a standardCycleGANand up to 30%better cosine similarity than
a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.

1 Introduction

Unpaired image-to-image translation and image synthesis have been widely used in
medical imaging [21]. Whether they are employed to generate missing modalities,
normalize images or enhance images quality and resolution, generative adversar-
ial networks (GANs) [4] have been proven effective in multiple challenging medical
image analysis tasks. However, they have beenmainly studied on real-valued images,
thus impeding the development of applications for manifold-valued data such as dif-
fusion tensor images (DTI). Despite the growing interest in the brain’s structural
connectivity, applications of GANs to DTI have been mostly limited to generat-
ing derived scalar maps like fractional anisotropy (FA) and mean diffusivity (MD),
which ignore the fibers’ orientation and provide limited insights on their structural
organization.

Among the literature, [5] investigates the generation of diffusionMRI scalar maps
from T1w images using a CycleGAN [23]. The authors show that the structural and
diffusion spaces share a sufficient amount of information to be able to synthesize
realistic FA and MD maps from downsampled T1w images. In [22], dual GANs
and Markovian discriminators are used to harmonize multi-site FA and MD maps
of neonatal brains. They demonstrate that using a GAN-like architecture can better
capture the complex non-linear relations between multiple domains than standard
normalization methods.

While the previously mentioned works present applications of GANs on DTI-
derived metrics, they do not tackle the challenge of generating DTI. Being able
to synthesize such images would unlock a vast amount of useful methods that are
already well studied on real-valued modalities, while preserving all the geometrical
information encoded in the diffusion tensors. However, DTI data is manifold-valued:
the data of each voxel lies on a Riemannian manifold of symmetric positive defi-
nite 3 × 3 matrices, i.e., the SPD(3) manifold. The non-Euclidean nature of DTI
prevents standard GANs from generating plausible images as there is no guarantee
that the generated diffusion tensors lie on the SPD(3) manifold. A solution pre-
sented in [2] is to employ the Log-Euclidean metric to accurately process data on
the SPD(n) manifold. By using the log and exp projections proposed in [2], one can
apply Euclidean operations on tensors and guarantee that the resulting tensors will
lie on such manifold. Those computationally efficient mapping operations form an
interesting framework for manifold-valued data learning, and have been used in [7]
to develop a deep neural network called SPDNet which learns discriminative SPD
matrices. With the help of the matrix backpropagation of spectral layers defined
in [9], they designed a network that learns data on SPD(n). Nonetheless, SPDNet
[7] is limited to single SPD matrix learning and cannot help in learning multiple
spatially-organized SPD matrices as it is the case with DTI.
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Related to our work, [8] proposes a manifold-aware Wasserstein GAN for
manifold-valued data generation, which leverages the aforementioned log and exp
mappings. In their work, they generate plausible slices of DTI from noise vectors. By
comparing the produced images of their network with those produced by a regular
GAN, one can clearly see that the manifold mappings are necessary to produce credi-
ble diffusion tensors. However, the proposedmanifold-awareGAN could not provide
any additional clinical insights, nor help in understanding the brain’s connectivity as
the generated images are not conditioned by any real contextual information such as
T1w images. Furthermore, [8] only focuses on the generation of 2D DTIs, which is
of limited application for the assessment of the structural organization of the brain’s
fibers.

This paper presents a novel manifold-aware Wasserstein CycleGAN that gener-
ates high-resolution (HR) DTI from unpaired T1w images. Our method leverages
the detailed structural information provided by T1w images while constraining the
synthesized diffusion tensors to lie on the SPD(3) manifold using the Log-Euclidean
metric. Specifically, the contributions of this work are as follows:

• We present the first CycleGAN model for the unpaired mapping between images
and SPD(3) manifold-valued data.

• This is also the first deep learningmodel to generate DTI data from structuralMRI.
As mentioned before, previous approaches have focused on generating diffusion
scalar maps like FA or MD, and not diffusion tensors as in this work.

Our proposed manifold-aware CycleGAN method is presented in the next section.

2 Method

Let XHR be the domain of high-resolution structural images and YHR be the domain
of high-resolution diffusion tensor images. Our goal is to learn mapping functions
GY : XHR �→ YHR and GX : YHR �→ XHR that translate the real-valued domain XHR

into the manifold-valued domain YHR and the other way around. However, as it is
often the case, we do not have access to high-resolution DTI. Thus, we train our
model with unpaired training samples {xi }Ni=1 where xi ∈ XHR is a 3D structural
image (e.g., T1w), and {y j }Mj=1 where y j ∈ YLR is a DT image with lower resolu-
tion. We employ the logId and expId mapping to project the generated and the real
DTI on the tangent plane at the 3 × 3 identity matrix, to ensure that GY (x) lies
on the SPD(3) manifold and to compare the manifold-valued data distributions as
in [8]. Two discriminators, DX and DY , assess the quality of the generated images
GX (y) and downsampled generated DTI ↓GY (x) with respect to their real data dis-
tributions GX (y) ∼ PXHR and ↓GY (x) ∼ PlogId(YLR). We formulate the objective as a
Wasserstein distanceminimization problem on the SPD(3) manifold with adversarial
and cycle-consistent losses. The adversarial portion of the objective helps GX and
GY generate images that match the target distribution. On the other hand, the cycle-
consistent losses provide high-resolution gradients that are necessary to generate
high-resolution DTI with a proper structure (Figs. 1 and 2).
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Fig. 1 The forward cycle of ourmanifold-awareCycleGAN:GY generates high-resolutionDTIs on
the SPD(3) manifold by projecting its prediction using the expId and logId mappings consecutively.
DY assesses the downsampled generated images and provides adversarial feedback to GY . GX
tries to reconstruct the original T1w images from GY (x) and supplies high-resolution gradient
information to GY

Fig. 2 (top row) Real high-resolution T1w patches and (bottom row) recovered T1w patches

2.1 Log-Euclidean Metric

Diffusion tensor matrices are well defined in the Log-Euclidean metric, where a
matrix logarithm and exponential can be conveniently processed in one metric and
always be mapped back to valid symmetric diffusion tensors [2]. LetM = UΣU� be
the eigendecomposition of a symmetric matrixM. The computation of the logarithm
and the exponential of a tensor noted as logId and expId are defined as follows:
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∀P ∈ S∗
++, logId(P) = U log(Σ)U� ∈ TId (1)

∀S ∈ TId, expId(S) = U exp(Σ)U� ∈ S∗
++ (2)

We use these maps throughout our work to project the generated and real DTI on the
SPD(3) manifold and on the tangent plane at the 3×3 identity matrix TId. Moreover,
the Log-Euclidean distance between two tensors P1 and P2 is defined as:

dist (P1,P2) = ∥
∥ logId(P1) − logId(P2)

∥
∥
2. (3)

In our framework, we use this distance to measure the similarity between predicted
and real DTI in the tangent plane.

2.2 Adversarial Loss

In a traditional GAN setup [4], a generator G and a discriminator D compete in
a minimax game where G tries to generate data close to a true data distribution
so that D cannot identify if the generated data is real or not. In [1], D is replaced
by a discriminator that leverages the Wasserstein distance to estimate the similarity
between the real and generated data distributions. The Wasserstein GAN (WGAN)
architecture tends to stabilize the training as theWasserstein distance never saturates,
and thus always provides relevant gradients toG. The adversarial part of our objective
follows the WGAN framework and is divided in two separate loss terms, LGANX and
LGANY , respectively for structural images and DTI:

LGANX (GX , DX ,YLR, XHR)

= Ex∼PXHR

[

DX (x)
] − Ey∼PYLR

[

DX
(

GX (↑ logId(y))
)]

(4)

LGANY (GY , DY , XHR,YLR)

= Ey∼PYLR

[

DY (logId(y))
] − Ex∼PXHR

[

DY
(↓GY (x)

)]

(5)

where ↑and↓indicates trilinear up and downsampling.
InLGANX ,GX generates 3D structural images from high-resolution DTI projected

on the identity-based tangent plane using the logId mapping. Since we only have
samples from the low-resolution data distribution y ∼ PYLR , the real DTI data is
upsampled via trilinear interpolation before being fed to GX . In the same loss, DX

measures the Wasserstein distance between the data distribution of generated and
real structural images. Likewise, in LGANY , DY computes the Wasserstein distance
between the distribution of downsampled generated DTI and real low-resolution DTI
in the tangent plane, using the Log-Euclidean metric [2].
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Fig. 3 On the left, our forward cycle: (1) A T1w image is translated into a high-resolution DTI
where each voxel belongs to the SPD(3) manifold, (2) the tensors are projected to TId using the
logId map and (3) the image is translated back to the T1w domain where Lcyc is computed. On the
right, our backward cycle: (1) An upsampled DTI on TId is translated to the T1w domain, (2) the
generated T1w image is translated back to DTI and (3) the recovered DTI is projected to TId where
Lcyc is computed

2.3 Cycle Consistency Loss

The adversarial loss alone is not sufficient to drive the generation of high-resolution
DTIs. Indeed, the discriminator DY only assesses downsampled DT images so its
feedback cannot help GY improve beyond a certain level of detail. To mitigate this
problem, we introduce a second loss that enforces the forward and backward cycle
consistency of the network [23], and provides high-resolution gradient informa-
tion. In our case, the forward cycle consistency ensures that, from the translated
DTI GY (x), we are able to reconstruct the corresponding original structural images
x ∼ PXHR which are originally in high resolution. The backward cycle consistency
ensures that we are able to reconstruct the original upsampled DTI y ∼ PlogId(YLR)

from the translated structural images GX (↑ logId(y)). The total cycle consistency
loss is defined as

Lcyc(GY ,GX ) = λcycXEx∼PXHR

[ ‖GX (GY (x)) − x‖1
]

+ λcycYEy∼PYLR

[ ∥
∥GY (GX (↑ logId(y))

) − ↑ logId(y)
∥
∥
1

]

(6)

Here, λcycX and λcycY balance the contribution of the forward and backward cycles
respectively and have been empirically set to a value of 3 and 1. Note that �1 norm is
employed instead of �2 to make the loss less sensitive to large reconstruction errors
(Fig. 3).

2.4 Manifold-Aware Wasserstein CycleGAN

Our full objective is

L(GX ,GY , DX , DY ) = λGANXLGANX (GX , DX ,YLR, XHR)

+ λGANYLGANY (GY , DY , XHR,YLR) + Lcyc(GY ,GX ) (7)
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The adversarial parts LGAN(GX , DX ,YLR, XHR) and LGAN(GY , DY , XHR,YLR) of
our full objective guide the generators GX and GY towards the synthesis of images
close to their real data distributions using a Wasserstein distance on the SPD(3)
manifold. The cycle consistency denoted as Lcyc(GY ,GX ) gives fine-grained retro-
action that helps generate HR DTI while preventing mode collapse. Once training
is done, the high-resolution DTI yHR of a structural image x can be obtained by
applying the exponential map to the DTI generator output: yHR = expId(GY (x)).

3 Experiments

Data We employ the pre-processed T1-weighted (T1w) and diffusion MRI (dMRI)
data of 1,065 patients from the HCP1200 release of the Human Connectome Project
[20] to evaluate our manifold-aware CycleGAN. The T1w (0.7 mm isotropic, FOV =
224mm, matrix = 320, 256 sagittal slices in a single slab) and diffusion (sequence =
Spin-echo EPI, repetition time (TR) = 5520ms, echo time (TE) = 89.5 ms, resolution
= 1.25×1.25×1.25 mm3 voxels) data acquisition was done using a Siemens Skyra
3T scanner [18] and pre-processed following [3]. The diffusion tensors were fitted
using DSI Studio toolbox [13]. Both T1w and DTI were decomposed in overlapping
patches of 323 voxels centered on the foreground.

Experiments Setup We used 50,000 unpaired T1w and DTI patches randomly
selected among 1,055 subjects as our training set. For the validation set and the
test set, we took paired T1w and DTI patches covering the full brain of respectively
3 and 2 randomly chosen subjects. We compared our manifold-aware CycleGAN
(MA-CycleGAN) method with two baselines: a manifold-aware Wasserstein GAN
without cycle (MA-GAN) and a Wasserstein CycleGAN without the logId and expId
mappings. These baseline methods allow us to assess the impact of both the cycle
consistency and the manifold mapping. We measure the quality of the generated HR
DTI by computing threemetrics: (1) themean cosine similarity between the principal
eigenvectors of the generated images and their ground-truth, (2) the mean squared
error between the FA of the generated images and their ground-truth, and (3) the
mean Log-Euclidean distance between the generated tensors and their ground-truth
following Equation (3). Because the principal eigenvector’s direction is more rele-
vant at voxels with higher anisotropy, cosine similarity is measured at three different
FA thresholds taken on the ground-truth images: FA ≥ 0 (all voxels), only voxels
with FA≥ 0.2, and only voxels with FA≥ 0.5. An FA threshold near 0.2 is commonly
used for tract-based analysis of white matter [19].

While the cosine similarity allows us to evaluate the precision of the predicted ori-
entation of the generated tensors, themean squared error on the derived FA highlights
the network’s ability to estimate local diffusion anisotropy. As for the Log-Euclidean
distance, it takes into account both the orientation and the anisotropy of the tensors.
Furthermore, a qualitative inspection of the generated tensors and FA is performed
in Fig. 4.
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Fig. 4 (top row) Real low-resolution FA, (second row) generated high-resolution FA, (third row)
real low-resolution color orientation tensors, and (bottom row) generated high-resolution color
orientation tensors. Best viewed in color

Implementation Details Both generators are based on the Unet implementation
from [16] where the convolutions have been changed to 3D convolutions. In addi-
tion, we changed the last activation layers to fit the scale of the generated data and
the number of channels with respect to our inputs and outputs. For GX , we use a
sigmoid as the final activation function to generate values in the range [0,1]. In the
case of GY , we use a hard hyperbolic tangent activation function. Furthermore, to
guarantee that the synthesized tensors can be decomposed following Eqs. (1) and
(2), we convert the 9-channels output of GY into a 3×3 matrix Y and make this
matrix symmetric as follows: Y′ = 1

2 (Y + Y�). For our discriminators, we employ
a Resnet-18 architecture [6] where all convolutions have been changed to 3D con-
volutions. Both the generators and discriminators were trained for 30 epochs with
the Adam optimizer [14] and a batch size of 8. A starting learning rate of 1 × 10−4

was used jointly with a reduce-on-plateau strategy. To stabilize the training of our
network, we pre-trained the generators independently with 25,000 paired patches
randomly sampled from 5 subjects during 10 epochs. The paired patches have been
computed from aligned high-resolution structural T1w images and upsampled DTIs.
The alignment was performed using FLIRT [10, 12] from FSL [11].
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Table 1 Fractional anisotropy mean squared error (FA MSE), Log-Euclidean distance, and cosine
similarity between principal eigenvectors of compared methods: manifold-awareWasserstein GAN
(MA-GAN), Wasserstein CycleGAN without the logId and expId mappings (CycleGAN), and our
manifold-aware Wasserstein CycleGAN (MA-CycleGAN). A smaller FAMSE and Log-Euclidean
distance corresponds to a superior performance while a higher cosine similarity is better. Since the
principal eigenvector’s direction is more relevant at voxels with higher diffusivity, we report cosine
similarity at increasing FA thresholds of 0, 0.2 and 0.5

Cosine similarity

Models FA MSE Log distance FA ≥ 0 FA ≥ 0.2 FA ≥ 0.5

MA-GAN 0.0277 0.6067 0.4512 0.6369 0.6700

CycleGAN 0.0431 0.5699 0.5371 0.6717 0.7064

MA-
CycleGAN
(ours)

0.0172 0.5515 0.5846 0.7217 0.8041

Fibers Orientation Analysis To evaluate the predicted tensor orientation, we com-
pute the cosine similarity between the principal orientation of each generated tensor
and its ground-truth, for FA threshold 0.0, 0.2 and 0.5. Results in Table 1 show that
our method performs better than the two baselines, yielding average improvements
in cosine similarity (for FA ≥ 0.0, 0.2, 0.5) of 0.133, 0.085, 0.134 compared to the
manifold-aware GAN without cycle and 0.048, 0.050, 0.100 compared to the Cycle-
GAN without manifold mapping. As mentioned before, a good estimation of main
diffusion orientation is generally more important at voxels with greater diffusivity.
Hence, the cosine similarity for FA ≥ 0.2 and FA ≥ 0.5 is a better indicator of per-
formance than for FA ≥ 0.0. We see in Table 1 that our model’s estimation of fiber
orientation improves with a higher FA threshold, reaching a similarity of 0.804 for
voxels with FA≥ 0.5. This can be observed in Fig. 6, which gives the FAMSE, Log-
Euclidean distance and cosine similarity at each voxel of sagittal, coronal and axial
slices from the same subject. As can be seen, orientations in regions with typically
high FA, like the corpus callosum, are better predicted by our model than those in
regions with lower FA.

FA Analysis Next, we evaluate the fractional anisotropy (FA) of generated HR DTI.
FA is one of themost commonly usedDT-derivedmetrics, thus an accurate prediction
of this metric is critical. Table 1 shows the mean squared error (FA MSE) obtained
by our method and the two baselines. Once more, our manifold-aware CycleGAN
outperforms the manifold-aware GAN and the standard CycleGAN with an MSE
of 0.172 compared to 0.0277 and 0.0431. Furthermore, we observe that the two
methods using manifold mapping perform better than the standard CycleGAN. This
performance gap is due to the fact that, without projecting the generated data on
the SPD(3) manifold using the Log-Euclidean metric, there is no guarantee that the
generated tensors lie on such manifold. Consequently, the tensors eigenvalues used
in the computation of FA are not strictly positive, which increases the differences
between the generated FA and the ground-truth. In addition, as seen in Figs. 4 and 5,
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Fig. 5 Pairs of derived high-resolution FA and their low-resolution ground-truth. TheHRFA shows
sharper edges and lower partial volume effect

Fig. 6 Metrics on the sagittal, coronal and axial slices between the generated HR DTI of a ran-
dom evaluation subject and its interpolated ground-truth. (top row) FA MSE, (middle row) Log-
Euclidean distance and (bottom row) cosine similarity
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generating high-resolution DTI helps reducing partial volume effect which is known
to impact subsequent analysis [15]. However, as shown in Fig. 6, our model tends to
underestimate the FA in white matter regions where the FA is further away from the
mean value, despite the good estimation of fiber orientation.

4 Discussion and Conclusion

In this paper we proposed a novelmanifold-aware CycleGAN that successfully lever-
ages the Log-Euclidean metric and the structural information of T1w images to gen-
erate realistic high-resolution DTI. Our method outperformed the manifold-aware
GANand the standardCycleGANarchitecture in terms of tensor principal orientation
estimation, Log-Euclidean distance and MSE of derived FA. These results not only
confirm that projecting the generated DTI on the SPD(3) manifold helps producing
plausible diffusion tensors but also that the extra structural information provided by
the T1w data is necessary to synthesize high-resolution DTI. Although physiological
evidence remains limited, it is shown in [17] that fiber orientations have an impact
on T1w image intensities. Our results further suggest that T1w images may con-
tain information on the high-level geometry of fiber tracts, which can be learned by
the network to estimate the diffusion properties and orientation. However, a deeper
investigation is required to validate this hypothesis.

We believe that our method is an important contribution to medical image com-
puting as it unlocks a vast number of applications on manifold-valued data. As future
work, we plan on extending our method to other Riemannian manifolds such as the
statistical manifold for orientation distribution function estimation. Furthermore we
will investigate the integrity of our generated data with common downstream tasks
such as tractography and fiber bundles segmentation.
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Beyond Lesion-Load: Tractometry-Based
Metrics for Characterizing White Matter
Lesions within Fibre Pathways

Maxime Chamberland, Mia Winter, Thomas A. W. Brice, Derek K. Jones,
and Emma C. Tallantyre

Abstract In multiple sclerosis studies, lesion volume (or lesion load) derived from
conventional T2 imaging correlates modestly with clinical assessment. Determining
which specificwhitematter pathways are impacted by lesionsmay provide additional
insights regarding task-specific clinical impairment. Using diffusion MRI, we intro-
duce a set of tract-based metrics that go beyond traditional lesion load approaches
and show how they relate to task performance (i.e., working memory, information
processing and verbal fluency) in a cohort of 40 patients with multiple sclerosis.

1 Introduction

Lesion load (LL) is a volumetric index derived from structural MRI often used in
clinical practice to characterise the degree of damage in the brains of patients with
multiple sclerosis (MS). Focal lesions on T2-weighted brain imaging in MS reflect
the permanent footprint of previous episodes of inflammation [1]. Although widely
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used in the diagnosis, prognosis andmonitoring of people withMS [2], LL correlates
only modestly with clinical measures of disability; resulting in the so-called clinical-
radiological paradox [3, 4]. There are likely to be several explanations, including the
occurrence of focal lesions in critical vs non-critical white matter (WM) pathways
for a given cognitive function, and the presence of diffuse WM micro-structural
damage that is not easily seen on conventional MRI. While LL is a convenient
outcome measure in clinical studies of MS, there is a need for more advanced, and
anatomically- and microstructurally-specific imaging metrics to allow clinicians and
neuroscientists to disentangle the relationship between focal and diffuse pathology
with clinical disability in MS [5].

A variety of MRI–based approaches that probe various physical properties of
brain tissue have been shown to be sensitive to demyelination and axonal loss in
MS [6, 7] (for review, see [8]). Diffusion MRI (dMRI) allows information about
the structural architecture and tissue micro-structure to be obtained by probing the
randommotion ofwatermolecules [9]. The ability to derive quantitative features such
as fractional anisotropy (FA) ormean diffusivity (MD) from diffusion tensor imaging
(DTI) [10] and to virtually reconstruct pathways with tractography [11] has led to an
exponential growth of dMRI clinico-research studies. In MS, multiple groups have
examined the relationship of DTI measures within the normal-appearing WM and
cognitive function [12–15]. Most studies report significant associations, although
these were not always stronger than the relationship between cognitive performance
and LL [3, 4], potentially due to inconsistencies and limitations in tractography and
associated microstructural metrics at the time.

Indeed, applying tractography to MS data can be problematic due to prema-
ture termination of streamlines within lesions [16, 17]. However, recent advances
in local modeling and tractography such as multi-tissue multi-shell constrained
spherical deconvolution (MSMT-CSD, [18]) and anatomically-based tractography
[19, 20] allow the propagation of streamlines through lesions more reliably [21–27].
Furthermore, although tractography still faces significant challenges in the field in
general [28–30], recent machine learning based approaches have shown promise in
reproducible tract segmentation across subjects [31]. Based on these recent method-
ological breakthroughs, we propose a set of tract-based metrics to improve the link
between WM lesions and clinical correlates. We demonstrate the utility of the pro-
posed metrics in a cohort of 40 MS patients.

2 Theory and Methods

2.1 Clinical Assessment

40 subjects (27women,mean age: 58 years, range: 44–78)with longstanding relapse-
onsetMSwere recruited to this study (mean disease duration: 27 years, range: 15–47;
median Expanded Disability Status Scale (EDSS) at clinical assessment: 2.5, range
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0–6.0). The participants were cognitively assessed (see [32]) and the MS functional
composite (MSFC, [33]) scorewas derived as a composite ofwalking speed, dexterity
and information processing. Additionally, performance was assessed on three tasks
involving (1) workingmemory (Letter-Number Sequencing, LNS [34]); (2) informa-
tion processing speed (Speed of Information Processing adjusted for motor speed,
SoIP [35]); and (3) verbal fluency (category switching, CF-Switching [36]). Perfor-
mance on these type of tasks has been associated with compromise of widespread
brain networks including fronto-temporo-parietal regions. This study was approved
by the local ethics committee and all participants gave written informed consent.

2.2 Acquisition

Patients were scanned using dMRI within 12 months of their clinical assessment
using a Siemens PRISMA 3T system using a 32-channel receive-only RF head
coil. All participants underwent the following sequences: (1) 3D T2-weighted spin
echo sequence (TR/TE: 3200/1408 ms; voxel size: 1 × 1 × 1 mm3), (2) 3D T2-
FLAIR sequence (TR/TE: 5000/388 ms, TI: 1800 ms, voxel size = 0.5 × 0.5 ×
0.5 mm3), (3) 3D T1 MPRAGE (TR/TE: 2300/3 ms; flip angle: 9◦; voxel size:
1.0×1.0×1.0 mm3), (4) Diffusion-weighted spin-echo EPI with 14 b0 images, 30
directions at b = 1200 s/mm2, 60 directions at b = 2400 s/mm2 and 2 × 2 × 2 mm3

voxels.

2.3 Processing

Diffusion data were denoised [37] and corrected for subject motion and distortion
[38, 39]. Next, apparent fibre density (AFD)mapswere derived fromfiber orientation
distribution functions (fODFs) obtained fromMSMT-CSD [18] using a single group
response function. WM lesion masks were semi-automatically delineated using 3D
T2 and FLAIR images by a trained technician (co-author TB, blinded to the purpose
of the study) using NeuROI.1

For each dataset, automated WM tract segmentation was performed using Tract-
Seg [31] to obtain the following task-relevant bundles of interest (identified by co-
author MW): genu and splenium of the corpus callosum, cingulum (CG), inferior
longitudinal fasciculus (ILF) and uncinate fasciculus (UF). For each bundle, 2000
streamlines were generated. The AFDwas then averaged within each bundle of inter-
est. A whole brain set of streamlines was also derived by concatenating all TractSeg
outputs in each subject.

1 www.nottingham.ac.uk/research/groups/clinicalneurology/neuroi.aspx.

www.nottingham.ac.uk/research/groups/clinicalneurology/neuroi.aspx
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Fig. 1 Graphical overview of various lesion load metrics for an example subject. a Conventional
voxel-based lesion load (normalized by head size). b Whole-brain tractogram load. c Topology-
based bundle load (example bundle: arcuate fasciculus). d Lesion-based Tractometry (example
bundle: arcuate fasciculus)

2.4 Proposed Metrics

LL (Fig. 1a) is typically defined as the total volume (mm3) of the lesions (Vles), or
its normalized variation:

LL = Vles

Vbrain
, (1)

where Vbrain is the intracranial brain volume (mm3). A meta-analysis recently
reported that only 5% of studies who calculate LL account for intracranial volume
[4]. A simple extension of LL is the tractogram load (TL) metric (Fig. 1b), defined
as the following ratio:

TL = Tles
T

, (2)

where Tles is the volume of all streamlines (voxelized) passing through all segmented
lesions (i.e., the subset of streamlines) and T is the total volume of the whole-brain
tractogram. Note that this metric implicitly integrates distal information about the
entire streamlines as opposed to local lesion information only (Vles). Similarly, the
bundle load (BL) metric (Fig. 1c) is a refined sub-case of TL and can be defined as
the following ratio:

BL = Bles

B
, (3)

where, for a given bundle, Bles is the total volume of the subset of streamlines that
traverse the lesion (i.e., not to be confounded with Vles which is the volume of the
lesion alone) and B is the total volume of the current bundle-of-interest.

Finally, we also present a lesion-informed Tractometry approach termed here
lesionometry (Fig. 1d) defined as:
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Fig. 2 Density map of all white matter lesions across 40 subjects. The group-average map shows
voxels where a lesion was present in at least one of the patients (left). The lesion rate was also
derived for the extracted bundles of interests (right)

Lesionometry = 1

nm

m∑

i=1

n∑

j=1

M(si j ), (4)

where dMRI measures (e.g., M = [FA, MD, AFD, ...]) are sampled at each vertex
j forming the streamline si that is traversing a lesion (Bles). If no lesion were present
within a bundle, then conventional tract-average was used.

We hypothesize that having a more focused approach around lesions may result
in stronger relationships between the metrics and their associated clinical scores.
The anticipated directions were as follows: an increase in lesion load (LL, TL, BL)
is associated with poorer task performance, and increased AFD is associated with
better performance. Pearson correlations were used to assess correlation between
the proposed metrics and clinical scores, after correcting for age and gender. Data
visualization was done using FiberNavigator [40].

3 Results

3.1 Lesion Mapping

Figure 2 (left) shows that most of the lesions were located in deep WM and periven-
tricular areas. Amongst theWMbundles that were extracted, 90% of the subjects had
at least one lesion in the corpus callosum region (Fig. 2, right). Figure 3 qualitatively
illustrates the complete reconstruction of the ILF in a single subject where a lesion
occurred in the inferior occipital lobe (Fig. 3, green arrow). Streamlines traversing
the lesion are color-coded using the anatomical FLAIR image.
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Fig. 3 Tractography of the inferior longitudinal fasciculus (green) in an individual with an MS
lesion (green arrow). Streamlines successfully traversing the lesion (right, axial view) are indicated
in blue. Color overlay: Intensity normalized FLAIR image

Fig. 4 Global correlations betweenMSFC and the 3whole-brainmeasures (LesionVolume, Lesion
Load and Tractogram Load). As the load increases, the MSFC performance decreases. The corre-
lation between Tracogram Load and MSFC appears to be less driven by outliers

3.2 Volumetric Metrics

At the whole-brain level, lesion volume (LV), lesion load (LL) and tractogram load
(TL) showed similar negative correlations withMSFC (Fig. 4). Although TL exhibits
a slightly lower correlation, the error margin appears less spread than in LV and LL.
This could potentially be explained by the presence of outliers in the latter cases. TL
also shows that on average, 42% of the underlyingWM architecture can be indirectly
affect by lesions. On the other hand, lesion load only affects 0.4% of the brain.

At the local level, bundle-specific loads (BL) showed stronger associations with
tasks than the aforementioned global measures (Fig. 5). For example, the splenium
showed stronger association with SoIP (Pearson’s r= −0.50, p= 0.001) than typical
LV (Pearson’s r = −0.35, p = 0.03). In addition, the bilateral ILF showed greater
association with CF-switching (Pearson’s r = −0.35, p = 0.01) than conventional
LL (Pearson’s r = −0.30, p = 0.05).
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Fig. 5 Bundle load correlations across 3 cognitive tasks show dissociating patterns across bundles.
For example, the ILF correlatedwith CF-switching but not asmuchwith SoIP, whereas the splenium
shows correlation with SoIP but not so strongly with LNS

Fig. 6 Lesionometry comparison between whole-bundle (WB, blue) and lesioned-bundle (LB,
orange) AFD averages. In general, the LB approach shows greater correlations with task than the
conventional WB average. The overlapping bar alpha value was set to 0.5 (i.e., red color)

3.3 Tractometry-Based Metrics

Figure 6 shows results for the lesionometry approach across three tasks. In most
cases, the lesion-based tract-averaging (orange) showed greater correlations than
typical whole-tract averages (blue). In particular, the link between the left and right
CG and LNS (Fig. 6, middle) almost doubled (e.g., from r = 0.18 to r = 0.32 and
r = 0.17 to r = 0.31, respectively). As anticipated, AFD was positively associated
with task performance.

4 Discussion and Conclusion

Focal WM lesions are the hallmark of MS, but inadequately explain disability, creat-
ing a clinico-radiological paradox [3, 4]. Neuropathology shows that axonal pathol-
ogy is widespread in the brain in MS. The diffuse axonal damage in MS may be an
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independent process, or may be driven by anterograde and retrograde degeneration
originating at the site of focal lesions [41]. Imaging techniques capable of unravel-
ling the relationship between focal and diffuse pathology, and the correlates of MS
disability, remain an unmet need. Diffusion MRI provides quantitative information
about WM microstructure. Tractography in MS could provide valuable informa-
tion about how lesion location relates to key WM bundles, and also inform on the
microstructure within lesions and at distant but related sites. However, tractogra-
phy has been relatively underutilised in MS, perhaps because of technical challenges
[16, 17]. Here we demonstrate how dMRI and tractography can generate meaningful
metrics relating to the burden of lesions, but also their interaction with the structural
WM network.

Using lesion mapping, we were able to recreate the known predisposition of WM
lesion location [42]. However, we also developed a novel metric by demonstrating
the relationship between lesions and WM tracts, which reflected the proportion of
the WM tracts that interacted with lesions (TL). Although TL did not improve the
strength of correlations beyond LL with a composite measure of disability in people
with MS, a reduction in the error margins suggests that this metric may be worthy
of further investigation. Nonetheless, it provides a convenient way of visualising
the structural network affected by lesions (see Fig. 1b) and also illustrates the high
proportion of the WM fibres that interact with a lesion beyond conventional 2D
slice-based visualizations.

At the local level, we were able to demonstrate that BL could provide valuable
information beyond global metrics to explain task-specific performance. Such a tar-
geted approach may therefore be preferred when trying to relate task performance to
specific WM bundles. From a tractometry point-of-view, the lesionometry approach
showed stronger association with task performance than typical whole-bundle aver-
ages of dMRI measures. Given that focal damage is suspected to extend beyond
the visible site of the lesions (i.e., along WM tracts traversing the lesion), sampling
dMRI measures selectively within the damaged portion of the bundle may allow
more sensitivity to underlying changes in tissue microstructure.

It is already known that the location of the lesions is relevant to clinical disabil-
ity [43–46]. Furthermore, profiling dMRI measures along WM bundles using the
lesionometry approach introduced in this paper, will in theory result in tract profiles
that are more sensitive to the underlying lesions. Finally, the metrics introduced in
this paper were assessed using an exploratory approach to provide interested readers
with an immediate application; undoubtedly, these features could be leveraged in a
more advanced context using machine learning. In summary, we introduced a set of
easy-to-use tract-based metrics to complement existing LL approaches to quantify
the extent of brain damage associated with WM lesions in clinical applications.



Beyond Lesion-Load: Tractometry-Based Metrics for Characterizing White Matter … 235

References

1. Thompson, A.J., Banwell, B.L., Barkhof, F., Carroll, W.M., Coetzee, T., Comi, G., Correale, J.,
Fazekas, F., Filippi, M., Freedman, M.S., et al.: Diagnosis of multiple sclerosis: 2017 revisions
of the McDonald criteria. Lancet Neurol. 17(2), 162–173 (2018)

2. Vellinga, M., Geurts, J., Rostrup, E., Uitdehaag, B., Polman, C., Barkhof, F., Vrenken, H.:
Clinical correlations of brain lesion distribution in multiple sclerosis. J. Mag. Reson. Imaging
Official J. Int. Soc. Mag. Reson. Med. 29(4), 768–773 (2009)

3. Barkhof, F.: The clinico-radiological paradox inmultiple sclerosis revisited.Curr.Opin.Neurol.
15(3), 239–245 (2002)

4. Mollison, D., Sellar, R., Bastin, M., Mollison, D., Chandran, S., Wardlaw, J., Connick, P.: The
clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in
people with multiple sclerosis: A systematic review and meta-analysis. PloS One 12(5), (2017)

5. Filippi, M.: Linking structural, metabolic and functional changes in multiple sclerosis. Eur. J.
Neurol. 8(4), 291–297 (2001)

6. Mallik, S., Samson, R.S., Wheeler-Kingshott, C.A., Miller, D.H.: Imaging outcomes for trials
of remyelination in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 85(12), 1396–1404
(2014)

7. Filippi, M., Preziosa, P., Rocca, M.A.: Microstructural MR imaging techniques in multiple
sclerosis. Neuroimaging Clinics 27(2), 313–333 (2017)

8. Rocca, M.A., Amato, M.P., De Stefano, N., Enzinger, C., Geurts, J.J., Penner, I.K., Rovira, A.,
Sumowski, J.F., Valsasina, P., Filippi, M., et al.: Clinical and imaging assessment of cognitive
dysfunction in multiple sclerosis. Lancet Neurol. 14(3), 302–317 (2015)

9. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a
time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

10. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the Effective Self-Diffusion Tensor from
the NMR Spin Echo (1994)

11. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry,
R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain.
Proc. Natl. Acad. Sci. 96(18), 10422–10427 (1999)

12. Rovaris, M., Iannucci, G., Falautano, M., Possa, F., Martinelli, V., Comi, G., Filippi, M.:
Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis:
an exploratory study with diffusion tensorMR imaging. J. Neurol. Sci. 195(2), 103–109 (2002)

13. Rovaris, M., Riccitelli, G., Judica, E., Possa, F., Caputo, D., Ghezzi, A., Bertolotto, A., Capra,
R., Falautano, M., Mattioli, F., et al.: Cognitive impairment and structural brain damage in
benign multiple sclerosis. Neurology 71(19), 1521–1526 (2008)

14. Akbar, N., Lobaugh, N.J., O’Connor, P., Moradzadeh, L., Scott, C.J., Feinstein, A.: Diffusion
tensor imaging abnormalities in cognitively impaired multiple sclerosis patients. Canadian J.
Neurol. Sci. 37(5), 608–614 (2010)

15. Mesaros, S., Rocca, M., Kacar, K., Kostic, J., Copetti, M., Stosic-Opincal, T., Preziosa, P.,
Sala, S., Riccitelli, G., Horsfield, M., et al.: Diffusion tensor mri tractography and cognitive
impairment in multiple sclerosis. Neurology 78(13), 969–975 (2012)

16. Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based trac-
tography in neurological disorders: concepts, applications, and future developments. Lancet
Neurol. 7(8), 715–727 (2008)

17. Lipp, I., Parker, G.D., Tallantyre, E.C., Goodall, A., Grama, S., Patitucci, E., Heveron, P.,
Tomassini, V., Jones, D.K.: Tractography in the presence of multiple sclerosis lesions. Neu-
roImage 209, (2020)

18. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained
spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage
103, 411–426 (2014)

19. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: Anatomically-constrained tractog-
raphy: improved diffusion mri streamlines tractography through effective use of anatomical
information. NeuroImage 62(3), 1924–1938 (2012)



236 M. Chamberland et al.

20. Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M.: Towards quantitative connectivity
analysis: reducing tractography biases. NeuroImage 98, 266–278 (2014)

21. Gajamange, S., Raffelt, D., Dhollander, T., Lui, E., van der Walt, A., Kilpatrick, T., Fielding,
J., Connelly, A., Kolbe, S.: Fibre-specific white matter changes in multiple sclerosis patients
with optic neuritis. NeuroImage: Clinical 17 (2018) 60–68

22. Mito, R., Raffelt, D., Dhollander, T., Vaughan, D.N., Tournier, J.D., Salvado, O., Brodtmann,
A., Rowe, C.C., Villemagne, V.L., Connelly, A.: Fibre-specific white matter reductions in
alzheimer’s disease and mild cognitive impairment. Brain 141(3), 888–902 (2018)

23. Tur, C., Grussu, F., Prados, F., Charalambous, T., Collorone, S., Kanber, B., Cawley, N., Alt-
mann, D.R., Ourselin, S., Barkhof, F., et al.: A multi-shell multi-tissue diffusion study of brain
connectivity in early multiple sclerosis. Multi. Sclerosis J. 1352458519845105 (2019)

24. Charalambous, T., Tur, C., Prados, F., Kanber, B., Chard, D.T., Ourselin, S., Clayden, J.D.,
Wheeler-Kingshott, C.A.G., Thompson, A.J., Toosy, A.T.: Structural network disruptionmark-
ers explain disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 90(2), 219–226
(2019)

25. Dumont, M., Roy, M., Jodoin, P.M., Morency, F.C., Houde, J.C., Xie, Z., Bauer, C., Samad,
T.A., Van Dijk, K.R., Goodman, J., et al.: Free water in white matter differentiates mci and ad
from control subjects. Frontiers Aging Neurosci. 11, 270 (2019)

26. Beaudoin, A.M., Rheault, F., Theaud, G., Whittingstall, K., Lamontagne, A., Descoteaux, M.:
Whitematter tractometry correlateswith fatigue severity in young adultswithmultiple sclerosis
(1322). Neurology 94(15 Supplement) (2020)

27. Storelli, L., Pagani, E., Preziosa, P., Filippi, M., Rocca, M.A.: Measurement of white mat-
ter fiber-bundle cross-section in multiple sclerosis using diffusion-weighted imaging. Multi.
Sclerosis J. 1352458520938999 (2020)

28. Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côté, M.A., Garyfallidis, E., Zhong, J., Chamber-
land, M., Yeh, F.C., Lin, Y.C., Ji, Q.: Others: The challenge of mapping the human connectome
based on diffusion tractography. Nat. Commun. 8, 1349 (2017)

29. Jones, D.K., Knösche, T.R., Turner, R.: White matter integrity, fiber count, and other fallacies:
The do’s and don’ts of diffusion MRI. NeuroImage 73, 239–254 (2013)

30. Schilling, K.G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., Neher, P., Aydogan,
D.B., Shi, Y., Ocampo-Pineda, M., et al.: Limits to anatomical accuracy of diffusion tractog-
raphy using modern approaches. NeuroImage 185, 1–11 (2019)

31. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg—fast and accurate white matter tract
segmentation. NeuroImage 183, 239–253 (2018)

32. Tallantyre, E.C., Major, P.C., Atherton, M.J., Davies, W.A., Joseph, F., Tomassini, V., Pickers-
gill, T.P., Harding, K.E., Willis, M.D., Winter, M., et al.: How common is truly benign ms in a
uk population? J. Neurol. Neurosurg. Psychiatry 90(5), 522–528 (2019)

33. Fischer, J., Rudick, R., Cutter, G., Reingold, S., Force, N.M.S.C.O.A.T.: The multiple scle-
rosis functional composite measure (MSFC): an integrated approach to ms clinical outcome
assessment. Multi. Sclerosis J. 5(4) 244–250 (1999)

34. Weiss, L.G., Saklofske, D.H., Coalson, D., Raiford, S.E.: WAIS-IV Clinical Use and Interpre-
tation: Scientist-Practitioner Perspectives. Academic (2010)

35. Coughlan, A., Oddy, M., Crawford, J.: Birt Memory and Information Processing Battery
(bmipb). Brain Injury Rehabilitation Trust, London (2007)

36. Delis, D.C., Kaplan, E., Kramer, J.H.: Delis-Kaplan Executive Function System (2001)
37. Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E.: Denoising

of diffusion MRI using random matrix theory. NeuroImage 142, 394–406 (2016)
38. Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance

effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016)
39. Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-

echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888
(2003)

40. Chamberland, M., Whittingstall, K., Fortin, D., Mathieu, D., Descoteaux, M.: Real-time multi-
peak tractography for instantaneous connectivity display. Frontiers Neuroinf. 8, 59 (2014)



Beyond Lesion-Load: Tractometry-Based Metrics for Characterizing White Matter … 237

41. Filippi, M., Brück, W., Chard, D., Fazekas, F., Geurts, J.J., Enzinger, C., Hametner, S.,
Kuhlmann, T., Preziosa, P., Rovira,À., et al.: Association between pathological andmri findings
in multiple sclerosis. Lancet Neurol. 18(2), 198–210 (2019)

42. Holland, C.M., Charil, A., Csapo, I., Liptak, Z., Ichise, M., Khoury, S.J., Bakshi, R., Weiner,
H.L., Guttmann, C.R.: The relationship between normal cerebral perfusion patterns and white
matter lesion distribution in 1,249 patients with multiple sclerosis. J. Neuroimaging 22(2),
129–136 (2012)

43. Filippi, M., Rocca, M.A., Martino, G., Horsfield, M.A., Comi, G.: Magnetization transfer
changes in the normal appering white matter precede the appearance of enhancing lesions in
patients with multiple sclerosis. Ann. Neurol. 43(6), 809–814 (1998)

44. Thiebaut de Schotten, M., Dell’Acqua, F., Ratiu, P., Leslie, A., Howells, H., Cabanis, E.,
Iba-Zizen, M., Plaisant, O., Simmons, A., Dronkers, N., et al.: From phineas gage and mon-
sieur leborgne to hm: revisiting disconnection syndromes. Cerebral Cortex 25(12), 4812–4827
(2015)

45. Foulon, C., Cerliani, L., Kinkingnehun, S., Levy, R., Rosso, C., Urbanski, M., Volle, E.,
Thiebaut de Schotten, M.: Advanced lesion symptom mapping analyses and implementation
as bcbtoolkit. Gigascience 7(3), giy004 (2018)

46. Fox, M.D.: Mapping symptoms to brain networks with the human connectome. New England
J. Med. 379(23), 2237–2245 (2018)



Multi-modal Brain Age Estimation:
A Comparative Study Confirms the
Importance of Microstructure

Ahmed Salih, Ilaria Boscolo Galazzo, Akshay Jaggi, Zahra Raisi Estabragh,
Steffen E Petersen, Karim Lekadir, Petia Radeva, and Gloria Menegaz

Abstract Brain age inferred from neuroimaging data could reveal important infor-
mation about the evolution of structural and functional cerebral features across the
life span. This has important implications for understanding healthy aging and for
identifying Imaging-Derived Phenotypes (IDPs) that characterise age-related neu-
rodegenerative illnesses, such as Alzheimer’s and Parkinson’s disease. The so-called
brain age delta refers to the difference between image-derived brain age and chrono-
logical age. Accelerated aging (positive delta) or resilience to aging (negative delta)
have been found to be useful correlates of factors such as disease and cognitive
decline. Multiple studies have proposed prediction models using brain IDPs as pre-
dictor variables, mostly relying on simple linear regression. However, methodolog-
ical and population heterogeneity in these studies precludes definitive conclusions
regarding the most informative modelling methodologies or predictor IDPs. To pro-
vide first hints in this respect, in this paper we propose to address three questions.
First, four different state-of-the-art models are ranked based on well-known perfor-
mance indices (e.g., mean absolute error) using the UK Biobank brain MRI data
in different single/multi-modal settings. Second, for the best model, the association
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with individual IDPs are calculated to identify those that could play a prominent role
in the aging process. Third, associations with non-brain variables are assessed as
a first step towards a holistic approach. Our findings demonstrate a prominent role
for dMRI IDPs in reducing the mean absolute error and rank high in the association
study, dominating the first ten positions and being preceded only by three structural
measures that are known to be related to the aging process. This provides evidence
of the potential of dMRI IDPs as biomarkers of aging in health and disease.

1 Introduction

Neuroimaging data have been extensively used to assess brain changes during aging,
under both healthy and disease conditions.Moreover, they can be exploited to predict
“brain age” which is the apparent biological age of an individual and depends on
several endogenous (subject-specific) as well as exogenous (environmental) factors.
Metrics derived from various brain magnetic resonance imaging (MRI) sequences
have been adopted to estimate brain age, either using raw data or handcrafted fea-
tures. Brain age delta (or relative brain age) is calculated by subtracting chronological
age from the estimated one. While a younger-appearing brain might be the result of
a healthy life style [1], having an older-appearing brain has been previously asso-
ciated with poor future outcomes [2] and with an increased likelihood to develop
neurodegenerative illnesses such as Alzheimer’s [3].

Statistical models for brain age estimation have been proven to be highly accu-
rate, with prediction performance featuring high R2 values and low mean absolute
error (MAE) in the range of 4–5 years [2]. Most of the studies have investigated this
aspect with features derived from a single brain MRI technique, most commonly,
conventional T1-weighted structural images (sMRI). Morphometric measures from
sMRI, such as volume and thickness of grey matter (GM) structures, should not
be overlooked as they provide information on the individual degree of brain atro-
phy that encodes aging-induced degeneration [4]. However, more recently, diffusion
MRI (dMRI), susceptibility weighted imaging (SWI), and resting-state fMRI have
been explored for potentially providing a richer set of IDPs bringing complementary
information [2, 5]. Thus, consideration of IDPs derived from multiple brain MRI
sequences would be the most desirable approach allowing deeper phenotyping and
more complete capturing of the different factors shaping the aging process.

Regarding modeling approaches, the performance accuracy depends on the statis-
tical method utilised, as demonstrated by several authors. In a recent paper, Jonsson
and colleagues (2019) applied deep learning as well as eight different regression
methods to sMRI-based features extracted from three well-known databases, show-
ing notable differences in the performance parameters across the differentmodels [3].
Niu et al. [1] report similar variation in model performance in their study of brain age
estimation with four regression models using several neuroimaging variables (sMRI,
dMRI, and resting-state fMRI) in healthy controls and patients with anxiety disor-
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ders. In addition, the authors showed the potential for superior prediction accuracy
with a multi-modal versus single-modal approach.

The recent availability of large imaging databases has provided new opportunities
to exploit the importance of a multi-modal approach for brain age prediction. In
this context, the UK Biobank (UKB) represents an important resource thanks to
its comprehensive repository with genetic and phenotypic data for 500000 subjects
aged between 40 and 69 (at recruitment). The UKB imaging study includes detailed
MRI, providing high quality multi-modal neuroimaging data including sMRI, dMRI,
SWI and fMRI [6]. These data are linked to detailed clinical, biological and lifestyle
information. The availability of such a rich research resource has motivated many
researchers to focus on brain age estimation with promising results [2, 3, 5, 7].

Smith et al. [5] estimated brain age using simulated and real data by applying
simple linear regression. With regard to real data, 2641 IDPs covering sMRI, fMRI
and dMRI were used for 19000 participants. The results, among others, attained
MAE = 3.6 years.

In [2], phenotypes from six differentMRImodalitieswere chosen to estimate brain
age for 17461 subjects, running a Least Absolute Shrinkage and Selection Operator
(LASSO) regression for each modality (MAE range = 3.897–5.928 years, where
minimum e maximum were found for dMRI and task fMRI, respectively). When all
the IDPs were combined, age was more accurately predicted (MAE = 3.515 years).
Thirty-four IDPs were deemed informative for the prediction of the brain age after
bootstrapping, and were predominantly from sMRI and dMRI.

Ning et al. [7] aimed to assessing the correlation between brain age delta and
alcohol intake, smoking and genetic variations. To this end, 403 morphometric mea-
surements from sMRIwere chosen alongwith LASSO regression (MAE=3.8 years).
A significant association between brain age delta and the consumption of alcohol
and smoking could be demonstrated.

Finally in [3], sMRI data for 12395 subjects were used to estimate brain age using
transfer learning and 3-D Convolutional Neural Network (CNN). In this study, two
sequence variants were identified having a strong relation with the brain age delta.
The MAE of the model was 3.63 years.

The great variability in the number of subjects, IDPs, MRI modalities and sta-
tistical models precludes a straightforward comparison of all the studies. However,
existing work suggests that: (i) sMRI provides relevant IDPs for estimation of brain
age; (ii) dMRI-based phenotypes are similarly informative and need to be further
investigated; and (iii) a multi-modal approach can improve, in general, the esti-
mation accuracy. To the best of our knowledge, a systematic comparison among
different statistical methods has not been addressed in existing literature. Therefore,
in this paper we compared four regression methods in combination with different
IDPs for brain age prediction, aiming at providing a balanced comparison across
different single-modal and multi-modal approaches. In particular, we focused on
Simple Linear Regression (SLR), LASSO, Support Vector Regression (SVR) and
Bayesian Ridge Regression (BRR), while the handcrafted features were derived
from sMRI, dMRI and SWI with a clear numeric prevalence of dMRI. Model perfor-
mance was assessed using several parameters including MAE, R2 and adjusted R2.
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Moreover, the associations between individual IDPs and brain age delta values were
calculated for the best model. Finally, the association between brain age delta with
selected biomedical and behavioral features was extracted to assess potential clini-
cal/biological utility.

2 Data and Materials

Data were obtained from UKB. All the analyses here performed rely on the IDPs
extracted centrally by researchers involved in the project [8]. Data were available
from n = 16394 participants (age range = 40–70 years, n = 8652 females, n = 7742
males). This comprised a set of 714 IDPs for each subject, representing the summary
metrics for sMRI, SWI and dMRI. From sMRI images, morphometric measures of
brain volumes were reported as distinct IDPs, both normalised/not normalised for
overall head size, in details: total brain volume (GM +white matter [WM]); volumes
for WM, GM and cerebrospinal fluid (separately for each compartment); volume
of peripheral cortical GM. Volume measures for subcortical structures were also
calculated as further IDPs (e.g., thalamus, putamen, hippocampus), generally sepa-
rated for left/right hemispheres and not normalised for head size. From SWI data,
a T2* image was used and the median T2* value estimated as a separate IDP for
each subcortical ROI identified from sMRI. Finally, several spatially-specific IDPs
were extracted from dMRI data by following two different approaches. Indeed, nine
dMRI-based indices derived from i) the diffusion tensor imaging (DTI), such as
fractional anisotropy (FA) and mean diffusivity (MD), and ii) the neurite orienta-
tion dispersion and density imaging (NODDI) model, such as orientation dispersion
(OD) and isotropic volume fraction (ISOVF), were calculated and averaged over
specific areas/tracts. In the first approach, dMRI maps were aligned to a population-
basedWM tract skeleton and all the DTI/NODDImeasures averaged over 48 regions
defined using the Johns Hopkins University tract atlas [9]. In the second, probabilis-
tic tractography was run for each subject and all the dMRI-based measures averaged
within 27 distinct WM tracts. The final set of neuroimaging phenotypes included 25
IDPs from sMRI, 14 from SWI and 675 from dMRI. Full details on the acquisition
protocols and image processing pipelines for the UKB brain data are available at
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

The present analyses were conducted under data application number 2964. All
participants provided formal consent, details on the UKB Ethics can be found at
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council.

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council
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3 Methods

3.1 Brain Age Estimation

Four different regression methods including LASSO [10], SLR [11], SVR [12] and
BRR [13] were used to estimate the apparent brain age, all having chronological age
as the dependent variable. All thesemodelswere implemented using Scikit-learn [14]
library version 0.22.2 in Python 3.6.9.

In order to examine the impact of different imaging modalities, each of the four
methods was run with single-modal and multi-modal brain IDPs, leading to seven
different combinations per method. All the imaging features (independent variables)
were normalized to zero mean and unit variance to account for the different mea-
surement scales, while the actual age was demeaned only [5]. Gender and education
were considered as confound variables and regressed out of all IDPs as in [6, 15].
Data were randomly split into training (80%, n = 13115) and testing (20%, n = 3279)
sets, respectively. The test set was used to predict brain ages on unseen data.

Hyper-parameters for BRR, LASSO and SVR were tuned on the training data
(further split on 80% for training and 20% for validation) with GridSearchCV and the
optimal model was retained. After the parameters were optimized from training data,
the optimalmodelwas applied to estimate brain age in the test set. The performance of
each model was assessed using the Coefficient of Determination (R2) and the MAE.
Adjusted R2 was also calculated to account for the different number of predictors in
each model.

Recent literature has demonstrated a proportional bias in brain age calculation,
which might be caused by dilution bias of the prediction model [16, 17]. Moreover,
this bias is also closely connected to the fact that brain age is overestimated in younger
subjects and underestimated in older ones, while is more accurately predicted for par-
ticipants whose actual ages are closer to the mean age of the training dataset [2, 5].
All these elements lead to a significant dependence of the brain age delta on chrono-
logical age, which resulted to be negatively correlated. Therefore, common practice
is to apply a statistical age-bias correction procedure to overcome these limitations
[5, 16] In this study, we adopted the procedure proposed by Beheshti et al. [16] that
relies on a linear model given by the following equation:

D = α ∗ Ω + β (1)

where D is the brain age delta (estimated from training data), Ω is the chronological
age of the training data, α and β represent the slope and the intercept. These two
measures are subsequently used to correct the brain age predictions in the test set as
described in Eq. 2:

CPBA = Predicted Brain Age − (α ∗ Ω + β) (2)

where CPBA stands for corrected predicted brain age.
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After brain age was estimated and bias corrected in the test set, brain age delta
was calculated for each subject. Pearson correlations for predicted brain age vs actual
age (CPA) and brain age delta vs actual age (CBDA) were calculated twice for each
model, before and after bias correction.

3.2 Associations with IDPs and Non-IDP Variables

For the best model results, Pearson correlations between brain age delta values and
individual IDPs were calculated in order to identify the strongest associations, high-
lighting the features which contribute most to the modelling of the brain delta as
suggested in [5]. The resulting p-values were Bonferroni-corrected for multiple com-
parison testing. Of note, the fully deconfounded versions of the IDPswere used in this
step (including gender, education and age as confounds). As several studies demon-
strated a significant association between brain and heart functionality, especially
relying on brain volumetric measurements [18, 19], we also investigated whether
a correlation between brain age delta and heart measures was present. In order to
perform this analysis, five measures from Cardiac Magnetic Resonance (CMR) and
eight Cardiovascular Risk Factors (CRFs) were considered. The correlation analysis
was performed on a subgroup of the test set (n = 2730), as these measures were not
available for all the test set subjects. CMR scans were performed on 1.5 T scanners
using a standardised acquisition protocol [20]. The following indices derived for
the left ventricle were retained: end-diastolic volume (LVEDV), end-systolic vol-
ume (LVESV), stroke volume (LVSV), mass (LVM), and ejection fraction (LVEF).
Eight CRFs were also tested, covering biomedical and lifestyle measures: smoking
status, material deprivation, body mass index, alcohol intake frequency, physical
activity, diabetes diagnosis, presence of hypertension and high cholesterol. Smoking
status and alcohol intake frequency were based on self-reports. Material deprivation
was reported by UKB as the Townsend deprivation index. A continuous value for
the amount of physical activity, measured in metabolic equivalent minutes/week,
was calculated. Body mass index was derived from height and weight measures
recorded at the baseline. Diabetes, hypertension, and hypercholesterolaemia were
defined by cross-checking across self-report and blood biochemistry data. All the
cardiac variables were initially normalized to zero mean and unit variance, and the
main potential confounds (gender and age) regressed out from the data. Pearson
correlation was finally computed between each of these measures and brain age
delta values derived from the twenty-eight model combinations, and the results were
Bonferroni-corrected to account for multiple comparison problems.
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Table 1 Prediction performance of the four regression methods combined with different imaging
features. Results are reported in terms of MAE values (years), and the optimal one for each IDPs
combination is highlighted in bold

Mean absolute error

IDPs Number of
features

BRR SVM SLR LASSO

sMRI 25 4.509 4.471 4.506 4.509

SWI 14 6.026 6.0411 6.024 6.025

dMRI 675 3.733 3.758 3.761 3.738

sMRI+SWI 39 4.429 4.393 4.424 4.427

sMRI+dMRI 700 3.498 3.559 3.525 3.5

SWI+dMRI 689 3.717 3.74 3.741 3.719

All 714 3.482 3.526 3.512 3.483

4 Results

4.1 Brain Age Estimation

Results are summarised in Tables 1 and 2 reporting the overall performance of
the four regression methods combined with the different IDPs. Table 1 reports the
estimation performance for the test subjects in terms of MAE values before bias
correction, as this represents the actual model performance. Results demonstrated
that using all the 714 IDPs from the three imagingmodalities provided the best model
performance in terms of MAE for all regression methods. In particular, BRR gave
the best results (MAE = 3.482 years), closely followed by LASSO (MAE = 3.483
years), while SVR performed less accurately among the four tested methods. When
considering the different feature types, the performance of themodels using SWI only
was worst (MAE≈ 6.0 years) compared to the other single-modal approaches that is
sMRI (MAE≈4.5years) and especially dMRI (MAE≈3.7years).Whenconsidering
the multi-modal models, adding dMRI phenotypes improved the accuracy of all
methods.

These results were further confirmed by the R2 and adjusted R2 parameters
(Table 2), for which the lowest value was reached using the SWI IDPs (R2 = 0.075–
0.085). When the IDPs from sMRI and dMRI were used jointly in the model, the
performance was improved and very close to the one reached by using all the IDPs,
and this finding held for all the four regression methods. For the sake of complete-
ness, CPA and CBDA were calculated before and after bias correction, leading to
the results summarised in Table 3. When using all the 714 IDPs, the correlation
between brain age delta and actual age decreases towards zero after applying the
bias correction steps. Conversely, CPA increased after bias correction in all four
methods.
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Table 2 Prediction performance of all the tested models in terms of R2 and Adjusted R2 values

BRR LASSO SLR SVR

IDPs R2 Adj_R2 R2 Adj_R2 R2 Adj_R2 R2 Adj_R2

sMRI 0.445 0.441 0.446 0.441 0.446 0.441 0.445 0.440

SWI 0.085 0.081 0.085 0.081 0.085 0.081 0.075 0.071

dMRI 0.613 0.512 0.612 0.511 0.606 0.504 0.604 0.501

sMRI+SWI 0.464 0.458 0.464 0.458 0.465 0.458 0.468 0.462

sMRI+dMRI 0.654 0.560 0.653 0.559 0.648 0.553 0.642 0.545

SWI+dMRI 0.618 0.516 0.61 0.515 0.611 0.507 0.609 0.505

All 0.658 0.562 0.657 0.562 0.652 0.555 0.650 0.553

Table 3 Correlation values between predicted brain age vs actual age (CPA) and between brain
age delta vs actual age (CBDA), before and after bias correction

The model Before correction After correction

CPA CBDA CPA CBDA

BRR 0.811 −0.592 0.903 −0.014

LASSO 0.810 −0.576 0.900 −0.018

SLR 0.807 −0.559 0.896 −0.026

SVR 0.806 −0.597 0.902 −0.015

4.2 Association with Brain IDPs

Considering that the BRR method combined with all the IDPs reached the lowest
MAE and highest R2/adjusted R2r, here we report associations between individual
IDPs and brain age delta values estimated from this model. In particular, Table 4
shows the first ten significant correlations (after correction formultiple comparisons),
revealing a strong and significant association between these IDPs and the brain age
delta. As further note, the association between brain age delta values and individuals
IDPswere largely overlapped for the other regressionmethods, especially concerning
the features in the top 10 positions. The order of the most significant features that
are associated with the brain age delta is similar in the four methods, although the
correlation values changed across them.

As it can be appreciated, the volumetric measurements from sMRI such as GM
volume and volume of peripheral cortical GM (both normalised for head size) were
negatively correlated with the brain age delta. Diffusion measures from DTI (such
as MD, L1, L2 and L3) and from NODDI (such as ISOVF) in fornix were positively
correlated with the brain age delta, while FA revealed an opposite pattern.
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Table 4 Strongest associations between brain age delta values estimated from the winning model
(BRR with all IDPs) and individual IDPs for test set subjects

IDPs Correlation

Volume of grey matter (normalised for head size) −0.5113

Volume of peripheral cortical grey matter (normalised for head size) −0.4965

Volume of brain, grey+white matter (normalised for head size) −0.4432

Mean ISOVF in fornix on FA skeleton 0.4092

Mean L1 in fornix on FA skeleton 0.4034

Mean MD in fornix on FA skeleton 0.4022

Mean L3 in fornix on FA skeleton 0.3969

Mean L2 in fornix on FA skeleton 0.3891

Mean FA in fornix on FA skeleton −0.3887

Mean L2 in fornix cres+stria terminalis on FA skeleton (left) 0.3712

Table 5 Correlation between CMR, CRFs and brain age delta
Cardiovascular risk factors Cardiac magnetic resonance

Measure Correlation p-value pFDR Measure Correlation p-value pFDR

Smoking 0.056 0.003 0.024 LVEDV 0.006 0.725 1

Deprivation 0.067 0 0.003

Body Mass
Index

0.053 0.005 0.040 LVESV −0.004 0.795 1

Alcohol 0.038 0.046 0.369

Exercises 0.001 0.920 1 LVSV 0.015 0.420 1

Diabetes 0.087 0 0

Hypertension 0.066 0 0.004 LVM 0.044 0.021 0.107

High
Cholesterol

0.056 0.003 0.025 LVEF 0.024 0.209 1

4.3 Association with Cardiac Variables

Table 5 reports Pearson correlations between brain age delta derived from the win-
ning model (BRR with all IDPs) and CMR/CRFs measures (test set). For CMR, no
significant associations were found after multiple comparison correction (pFDR >

0.05), and only the correlation with the left ventricular mass (LVM) was significant
before correction (p = 0.021). Regarding CRFs, all parameters except exercise and
alcohol were significantly associated with the brain age delta (pFDR < 0.05) .
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5 Discussion

In this study,we investigatedwhether chronological age could be accurately predicted
using brain MRI IDPs as predictor variables in various statistical models using data
in the UKB. In particular, we focused on four well-known regression methods (SLR,
SVR, LASSO and BRR) and considered measures from sMRI, SWI and dMRI as
IDPs, either alone or in combination. Regarding the regression methods, overall,
BRR achieved the highest accuracy as measured by MAE, R2 and adjusted R2
values. In particular, when dealing with a relatively small number of IDPs (< 50),
for example in models with sMRI/SWI features only, better results were obtained
using SVR and SLR. Conversely, in cases where a greater number of features was
included, BRR reached the best performance, possibly because of its ability to handle
multicollinearity between IDPs [21, 22].

Previous studies addressing modelling brain age using UKB data report MAE
values between 3.5–3.8 years. Of note, Peng et al. [23] achieved the lowest MAE
(2.14 years) although leveraging from deep CNNmodel, Simple Fully Convolutional
Network, using sMRI from UKB for 14503 participants. In our study, the accuracy
reached by BRR model in the different conditions was comparable (and even better
in some cases) to such benchmarks, despite the generally lower number of subjects
and MRI features.

Regarding the imaging predictors, models including all the 714 IDPs from the
three brain MRI sequences had the best performance. However, when considering
modelswith single-modal IDPs, dMRI reached the highest accuracy in terms ofMAE
values (MAE≈ 3.7 years) compared to sMRI (MAE≈ 4.5 years) and especially SWI
(MAE ≈ 6.02 years), and this was further confirmed by the R2/adjusted R2 values.
This might indicate that age-related alteration of brain can be better detected by
dMRI, in agreement with literature findings [24]. A previous study also found similar
results and further confirm that dMRI phenotypes are more informative than SWI
IDPs in predicting brain age [2]. Phenotypes from sMRI and dMRIwere generally the
most informative for age prediction, as further supported by the correlation analysis
between delta values and IDPs. Indeed, the strongest associations were found for
features based on these modalities. In particular, our study revealed that brain age
delta was negatively correlatedwith volumetricmeasures, while positively correlated
with both ISOVF and diffusivities in the fornix.

GM volume was the most informative phenotype, in line with previous studies
[2, 5]. This might be related to the fact that brain volume changes considerably over
time and decreases during the aging process, causing atrophy [25] and macroscopic
variations. Our analysis highlighted a prominent role of dMRI IDPs. Differences in
diffusion properties across the life span have been demonstrated along specific WM
tracts [24]. Diffusivity and FA values across the fornix spanned the first 10 ranking
position, preceded only by atrophymeasures in GM andWM.Noteworthy, the fornix
is among those tracts that mature very early [26]. The IDPs that are present in the
top 10 association ranking are, besides FA and MD, ISOVF, that is the isotropic
volume fraction as estimated by the NODDI model, and the three tensor eigenvalues
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L1, L2 and L3 that represent the axial (L1) and transversal (L2, L3) diffusivities. A
reduction in the FAand an increase in diffusivity, as indicated by a positive correlation
of ISOVF, MD, L1, L2 and L3 with delta age, could indicate impairedWM integrity.
Moreover, myelin breakdown might be measured by radial diffusivity (L2 and L3)
alterations, while increasing in apparent diffusivity value might be a sign of axonal
disruptions [27]. Furthermore, AD (L1) and RD (L2 and L3) have been observed
to increase in elderly people which may be a signal of deterioration of the WM
fibers [28]. Noteworthy, ISOVF has been observed to increase in older people in
most of the major tracts, pointing to a disrupted integrity [29]. Our results are in
agreement with such findings reporting a negative association of FA and a positive
association of L1 , L2, L3 and MD in fornix with brain delta age. Fornix tracts
have a vital role in memory tasks, specially episodic memory. Alteration in diffusion
measures during aging process might be good biomarkers for neurological diseases
that are related to memory impairments [26]. This could indicate that such IDPs are
more prone to alteration over the life span of an individual at least over specific WM
tracts, making them potential biomarkers for the aging process in health and disease.

Regarding the associations with CMR measures, our study revealed a significant
association with LVM, however there was loss of statistical significance after multi-
ple comparison correction. A previous study reported association of increase in LVM
with alterations inWMmicrostructure in elderly people [30]. In our study, the limited
age range in the UKB did not permit consideration of relationship in very old individ-
uals. Among the CRFs, all measures except exercise and alcohol were significantly
correlated with brain age delta (pFDR < 0.05), inline with what described by Cole
et al [7, 31], despite using a different number of IDPs and subjects for estimating
brain delta. In conclusion, results suggest that dMRI IDPs play a prominent role in
reducing the MAE and rank high in the association study, providing evidence of the
potential of dMRI IDPs as biomarkers of aging in health and disease. Future work
will investigate the integration of other IDPs such as functional MRI, graph-based
measures from brain connectomes as well as the genetic information to pursue the
holistic path.
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Abstract Functional segregation and specialization of cortical regions is central to
the significant changes that take place during early brain development. We present
an automated scheme that harnesses local and long-range connectivity features of
the cortex—derived from multiple imaging modalities—for longitudinal parcella-
tion of the early developing human cortex. This is realized by using multi-modal
connectome harmonics in a hierarchical agglomerative clustering (HAC) framework
to produce group correspondent, individual-specific, and age-dependent parcellation
maps for the first two years of development. We observed decreased regularity in
cluster size and shape with increasing time, reflecting cortical specialization known
to emerge during early development. Investigation of the modularity of structural
connectivity defined by our parcellations suggests convergence toward adult resting-
state networks as the brain develops.

1 Introduction

Dramatic, widespread, and highly impactful changes in cortical connectivity, myeli-
nation, and organization take place during the first two years of human brain devel-
opment. These changes in large part lead to the remarkably consistent trends in
the function and connectivity of cortical regions and the networks they comprise in
healthy adults. Although the behavioral milestones that occur during the first two
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years of development arewell documented, the underlying development of functional
segregation of the cortex has remained opaque despite rapid advancements in in-vivo
imaging technology and analytic techniques seen in recent decades. The Baby Con-
nectome Project [1] provides an opportunity to elucidate these gaps in understanding;
longitudinal high-resolution anatomical, functional, and diffusion MR images of a
large cohort of infants are made available for the first time. Simultaneously, novel
complex network analysis techniques and multi-layer clustering routines detailed in
[2] allow for utilization of this unique dataset to produce the first ever temporally
dense, individually-specific, and group correspondent corticalmaps, or parcellations,
for infants in the first two years of development.

Previous work [2] demonstrates that the low-frequency harmonics of multi-layer
vertex-wise structural connectivity graphs constructed using anatomical and dif-
fusion MR images can be used to produce subject specific, group correspondent
parcellation maps using hierarchical agglomerative clustering (HAC) that qualita-
tively agree with functionally-derived parcellations in the literature. Here, we extend
the method detailed in [2] by utilizing multiple connectivity types: structural, func-
tional, and local myelination similarity in order to obtain the multi-modal spectral
coordinates. Further, we devise an iterative relaxation method that optimizes the
contribution of each modality and subject to the group-level parcellation. Finally, we
devise a method for determination of the optimal number of distinct cortical regions
represented by the underlying connectivity data.

The present work achieves several advantageous features in cortical parcellation.
First, it utilizes three separate imaging modalities: dMRI, fMRI, and T1/T2 MRI.
Multi-modal parcellation schemes are highly advantageous as they are less suscepti-
ble to noise and provide more robust local and global connectivity information than
single-modality schemes. Secondly, ourmulti-layer formulation and individual back-
propagation ensure that for each cohort or time window, there is a one-to-one corre-
spondence between group-consensus parcellations and individually back-propagated
parcellations, which are computed based on each subject’s multi-modal connectivity
data. Third, our parcellation method includes a data-driven approach to the deter-
mination of the optimal number of parcels for a given cohort. This is particularly
significant as it is often challenging to justify the choice for number of clusters in a
parcellation routine. Finally, our approach provides a succinct and flexible solution
to the ‘missing data problem’. Often in staggered-cohort longitudinal studies such as
the BCP, the number of subjects in equally-spaced time intervals is not constant, and
there are often incomplete scans for one or more modalities for a given subject. Our
approach accommodates for this, allowing for any number of modalities for each
subject in each window, as well as allowing for variable number of subjects in each
window.
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2 Methods

Our multi-modal parcellation workflow has three major steps. First, modality and
subject-specific connectivitymatrices, Am

x , are constructed for eachmodality (m) and
each subject x (Fig. 1a, b). Second, temporally-weighted and degree-correctedmulti-
layer modality-specific adjacency matrices, Am

ML, are constructed for each of seven
100-day windows from 0 to 700 days (Fig. 1c), and the first Nharm = 99 non-trivial
eigenvectors of the normalized Laplacian matrix of Am

ML are computed (Fig. 1d),
yielding the modality-specific multi-layer connectome harmonics, ψm

k . Third, these
connectome harmonics are then inputted to our unique iterative multi-modal parcel-
lation routine (Fig. 1e–i), which yields multi-modal group-consensus parcellations
and individually back-propagatedmulti-modal parcellations, which share one-to-one
correspondence of parcels.

2.1 Data and Preprocessing

Weused diffusion, functional, T1w, andT2wMRI data of 131 infant subjects enrolled
as part of the UNC/UMN baby connectome project (BCP) [1], with subject ages

Fig. 1 a Structural connectivity, functional connectivity, and myelin content are computed from
dMRI, fMRI, and T1/T2 data for each subject; b modality and subject specific connectome adja-
cency matrices are constructed; c temporal multilayer adjacency matrices are constructed for each
modality; d eigendecomposition of (c) yields modality specific spectral coordinates; e averaging
across subjects and concatenation across modalities yields consensus multi-modal spectral coordi-
nates; f hierarchical agglomerative clustering followed by single-round k-means yieldsmulti-modal
consensus parcellation; g individual and modality-specific centroids of consensus parcels are used
to initialize single round modality and individual k-means; h individual spectral coordinates are
modulated via convex combination with spectral centroids of (g); i newly modulated modality
and subject-specific spectral coordinates are re-averaged across subjects and concatenated across
modalities, yielding the new consensus multi-modal spectral coordinates. e and f are iterated until
the multi-modal consensus parcellations from consecutive iterations have normalized mutual infor-
mation greater than 0.95
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ranging from 16 and 700 days. Whole brain tractography specialized for infants
was performed for each subject’s 6-shell, 1.5mm3 isotropic dMRI data using the
method described in [3]. Cortical surfaces were reconstructed using UNC infant
preprocessing pipeline [4, 5]. The reconstructed white-matter surfaces (left/right)
were mapped onto the unit sphere, and then registered using Spherical Demons
[6]. The corresponding structural connectome adjacency matrix was constructed as
described in [2]. Functional timeseries (TR= 0.8 s, 2mm3 isotropic) weremapped to
the cortical surface vertices using the ribbon constrained volume-to-surface-mapping
command from connectome workbench [7]. Correlations of timeseries of adjacent
surface vertices and vertices connected via the structural connectome adjacency
matrix were used to populate the functional connectome adjacency matrix. Myelin
content was computed as the T1w/T2w ratio [8] andmapped onto the cortical surface.
Each element of the myelin content adjacency matrix was computed as the inverse of
the Euclidean distance between myelin content values of a pair of adjacent vertices.

2.2 Connectivity Matrices

In order to encode the information contained in the dMRI, fMRI, andT1/T2MRIdata,
we formulate a connectome graph adjacency matrix for each modality and for each
subject. It is important to note that all white matter surfaces contain an equal number
of vertices (Nvert = 81, 924), and are indexed the same. Thus, the surface adjacency
matrix of subject x , Asurf

x , is identical to the surface matrix of all other subjects. For
subject x , the structural connectivitymatrix, Astruc

x , is constructed by the samemethod
as described in [2]. The functional connectome adjacencymatrix, Afunc

x is constructed
by computing the Pearson correlation coefficient of each vertex pair that share a
connection in Astruc

x , as well as all vertex pairs who share a direct or once-removed
connection in the polygonal connections that define the white matter surface. In other
words, the nonzero elements of Afunc

x are the correlations between the functional
timeseries of vertices corresponding to nonzero elements of Astruc

x + (Asurf
x )2, where

Asurf
x is the surface adjacency matrix. This approach was utilized in order to constrain

functional connectivity using structural connectivity, aswell as to reducememory and
computation costs. Nonzero elements of the myelin connectivity matrix of subject
x , Amy

x , are given by

Amy
x (i, j) = 1

|Mi − Mj | , (1)

where Mi and Mj are the myelin values at vertex i and j . Myelin connectivity is
computed for all nonzero index pairs of (Asurf

x )2, which correspond to all adjacent
and once-removed adjacent vertex pairs.
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2.3 Iterative Multi-modal Parcellation Via Connectome
Harmonics

Parcellation was performed for each of seven 100-day windows in the first 2 years of
life. For each window and each modality, a multi-layer graph adjacency matrix[9],
Am
ML, is constructed, linking the modality-specific adjacency matrices of subjects x

and y, Am
x and Am

y , within the window using interlayer identity arcs, I interxy withweight

wxy , such that I interxy = Îwxy given by

wxy = c exp−|tx − ty|2
2σ

, (2)

where tx and ty are the scan times (in days) for subjects x and y respectively, σ = 50
days, and Î is the square identitymatrix of size Nvert × Nvert. Additionally, c is propor-
tional to Nintra

Ninter
in order to normalize the degree of interlayer connections with respect

to the degree of intra-subject connections. Note that this multi-layer formulation
provides strong interlayer connections between subjects scanned at similar times
and weak connection between subjects at disparate times within a given window.
Eigenvectors of the normalized Laplacian matrix Lm

ML = L(Am
ML) = D1/2Am

MLD
1/2

of each modality are computed, yielding modality-specific connectome harmonics,
ψm

k , such that L
m
MLψ

m
k = λkψ

m
k , k ∈ {0, ..., Nharm}. These Nvert × Nsubjects eigenvec-

tors are then partitioned into Nsubjects length Nvert subject-specific modality specific
connectomeharmonics, averaged across subjects for eachmodality, and concatenated
across modalities, yielding the multi-modal cohort-average connectome harmonics,
ψ̄k k ∈ {0, ..., NharmNmodalities}. Here, Nharm = 99 and Nmodalities = 3. Note that the
multi-layer formulation enforces similarity in subject-specific modality specific con-
nectome harmonics for subjects scanned at nearby timepoints. An initial multimodal
consensus parcellation is computed via HAC [10] on themulti-modal cohort-average
connectome harmonics. The number of clusters outputted by HAC is determined by
identifying the most costly cluster-merging step (Sect. 2.4) [11]. Next, the modality
and subject-specific parcel-mean spectral coordinates are computed by averaging
spectral coordinates in each parcel defined by the multi-modal consensus parcels
and are used to initialize the k-means algorithm for parcellation based on the indi-
vidual modalities using their eigenspectra. To achieve agreement across modalities,
the modality-specific spectral coordinates are then smoothed by convex combination
with the spectral centroid of the parcel. These smoothed modality-specific spectral
coordinates are then used to produce a new multimodal parcellation for each sub-
ject, and re-averaged and concatenated to produce a new group-modality-consensus
parcellation. This process is iterated until the multimodal consensus parcellation
stabilizes. Fig. 1 graphically illustrates the pipeline. The goal of this iterative refine-
ment of the multi-modal consensus parcellation is to achieve balance between the
contribution from each modality to the overall multi-modal parcellation. Further,
the strategy of concatenation of the modality-specific group-average connectome
harmonics allows for variable number of subjects in each window with each scan
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type, i.e., for many subjects in this study, only one or two imaging modalities were
present, however the group consensus multi-modal data still shaped the resultant
individually-specific parcellation for those subjects.

2.4 Optimal Cluster Number Determination

In clustering or parcellation tasks, the number of clusters is often arbitrarily selected
prior to clustering. A better solution is obtained by determining the optimal number
of clusters based on the underlying connectivity data. For each time window, we
compute the cluster merging cost (the ward metric) of each merging step of the HAC
dendrogram of the cohort-average multi-modal spectral coordinates and the surface
adjacency matrix as a connectivity constraint. This ensures that cluster mergers can
only occur between adjacent surface vertices. The optimal number of clusters for a
given window is then taken by identifying the knee point of the plot of merging cost
versus cluster number.

3 Results

3.1 Homogeneity

In order to evaluate the degree to which our identified parcels exhibit similar connec-
tivity profiles, we formulate a unique method of computing the parcel-wise homo-
geneity of connectivity based on the method presented in [12]. For each parcel,
full principal component analysis of the size Nparcelvert × Nvert connectivity profile
is conducted. The explained variance ratio of the first principal component is taken
as the homogeneity score for that parcel. We apply this process to the structural
connectivity matrices of each subject and average across subjects in each time win-
dow using the multi-modal, multi-layer iterative consensus parcellation outputted by
our method as well as a parcellation constructed via spectral clustering of the con-
catenated multi-modal spectral coordinates of the full-group (0–700 days) average
connectivity matrices. We display this result in Fig. 3.

3.2 Community Detection

A relevant application of connectivity-based parcellation is to investigate modularity
and network-structure of parcels with respect to the underlying connectivity data. To
demonstrate this, we first construct the parcel-wise weighted structural connectivity
matrix for each subject using the individually back-propagated multi-modal parcel-
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Fig. 2 Consensus parcellations for each time window (in days), color-mapped onto the group-
average white matter surface from medial and lateral views. Regions are colored according to their
relative distance to the frontal (red), visual (blue), and parietal (green) cortices. As age increases,
regularity of cluster shapes and sizes decreases, particularly in the lateral/temporal lobes. Parcels
in sensorimotor regions show convergence toward their shape and location in adult parcellations

lation labels. We then average the subject-specific parcel-wise weighted structural
connectivity matrices—which is possible by virtue of the one-to-one correspon-
dence between the subject-specific and group-consensus parcellations of each time
window—and apply the Gen-Louvain community detection algorithm [13] to this
average connectivity matrix. This algorithm identifies the community partition of
parcels such that the within-community modularity is maximized. This result is dis-
played in Fig. 4. This represents just one possible application of our parcellation
results.

4 Discussion

Figures 3 and 5 demonstrate that our iterative, multi-modal, multi-layer parcella-
tion method achieves higher average parcel homogeneity than a simpler averaging
approach, and that our individually back-propagated parcellations exhibit higher
average structural connectivity homogeneity than both the other tested methods.
Connectivity-based parcellations should identify regions with homogeneous con-
nectivity, and therefore this underscores an important advantage of our method. Our
multi-layer approach allows for one-to-one correspondence between parcels across
all subjects, while allowing for variation in parcel boundaries across subjects, result-
ing in individually tailored, more highly homogeneous parcellations than simpler
approaches.

Our temporally-weighted multi-layer multi-modal approach allows for arbitrarily
many imaging modalities as long as a vertex-wise connectivity matrix can be con-
structed from each modality. Further, for a given temporal window for which a group
multi-modal parcellation is carried out, it need not be the case that every subject in
that window possesses data for each imaging modality in order for every subject to
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Fig. 3 Time-window average homogeneity of structural connectivity for Top: Multi-modal, multi-
layer, iterative parcellation method and Bottom: Full-cohort (0–700 days) subject-average multi-
modal parcellation
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Fig. 4 Large-scale parcel modules identified using the Gen-Louvain community detection algo-
rithm for four separate time windows (listed in days)
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Fig. 5 Window and parcel-average homogeneity for 2-year average ‘reference’ parcellation
from Fig. 3 (bottom), cohort consensus multi-modal iterative parcellation, and individually back-
propagated multi-modal iterative parcellation

benefit from the group’s multi-modal data. This is a simple solution to the common
‘missing data problem’ in longitudinal staggered cohort study designs.

All homogeneity results show a significant decrease in homogeneity between
0 and 100 days and 100–200 days, with relatively constant homogeneity between
100–700 days. This is aligned well with expectation, as we do not expect a high
degree of regional specialization to occur until after at least 100 days. One possible
explanation for the relatively constant average homogeneity after 100 days is that
the specialization and segregation of function that occurs in this period takes place
on a very small scale and does not involve major changes in structural connectivity.

Figure 3 also shows that the posterior temporal and parietal lobes are among
regions that undergo the largest decrease in homogeneity. This is aligned with our
expectation, as we know that many functions involving these regions develop dur-
ing the first two years of life [14]. Interestingly, the primary motor, auditory, and
visual cortices do not demonstrate higher average homogeneity than other high-level
cognitive regions. This suggests that the parcel size in these regions may be dispro-
portionately large in comparison to other regions, or that the structural connectivity
estimates in these regions are more noisy.

Figure 2 displays the group-consensus results of our novel parcellation routine for
each of seven 100 day windows in the first two years of development. These parcel-
lations show large-scale qualitative similarity to one another, but develop in several
important ways. As age increases, regularity of cluster size and shape decreases,
reflecting regional specialization of cortical function. In particular, the lateral and
temporal lobes demonstrate uniform clusters for 0–100 days, small clusters for 100–
600 days, and eventual stabilization for 600–700 days. Several parcels also show
distinct evolution toward their shape and position in adult parcellations such as the
parcels in the sensorimotor cortices around the central sulcus, which become increas-
ingly elongated and confined to specific strips.

Figure 4 demonstrates a convergence toward adult resting-state networks as time
increases [15]. This is of particular note as the community detection was carried
out using only structural connectivity information on the reduced parcel-wise graph
using the multi-modal consensus parcellations. This result demonstrates that our
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parcellation defines a physiologically meaningful division of the cortex for network-
level analysis of structural connectivity.

5 Conclusion

Our parcellation results confirm expected trends for cortical organization in early
development. We demonstrate that our multi-modal parcellation routine can be used
to produce biologically relevant parcellations. Further, our routine presents a flexible
solution to the common ‘missing data problem’ in longitudinal neuroimaging studies,
allowing for individualized resultswhilemaintaininggroup-correspondenceof parcel
labels, and successfully synthesizes data from multiple imaging modalities.
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Automatic Segmentation of Dentate
Nuclei for Microstructure Assessment:
Example of Application to Temporal
Lobe Epilepsy Patients

Marta Gaviraghi , Giovanni Savini , Gloria Castellazzi , Fulvia Palesi ,
Nicolò Rolandi, Simone Sacco , Anna Pichiecchio , Valeria Mariani ,
Elena Tartara , Laura Tassi , Paolo Vitali , Egidio D’Angelo ,
and Claudia A. M. Gandini Wheeler-Kingshott

Abstract Dentate nuclei (DNs) segmentation is helpful for assessing their potential
involvement in neurological diseases. Once DNs have been segmented, it becomes
possible to investigate whether DNs are microstructurally affected, through analysis
of quantitativeMRI parameters, such as those derived from diffusion weighted imag-
ing (DWI). This study developed a fully automated segmentation method using the
non-DWI (b0) images from a DWI dataset to obtain DN masks inherently registered
with parameter maps. Three different automatic methods were applied to healthy
subjects: registration to SUIT (a spatially unbiased atlas template of the cerebellum
and brainstem), OPAL (Optimized Patch Match for Label fusion) and CNN (Con-
volutional Neural Network). DNs manual segmentation was considered the gold
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standard. Results show that SUIT results have a Dice Similarity Coefficient (DSC)
of 0.4907±0.0793 between automatic and gold standard masks. Comparing OPAL
(DSC = 0.7624±0.1786) and CNN (DSC = 0.8658±0.0255), showed that a better
performance was obtained with CNN. OPAL and CNN were optimised on high spa-
tial resolution data from the Human Connectome Project. The three methods were
then used to segment DNs of subjects with Temporal Lobe Epilepsy (TLE) from a
3T MRI research study with DWI data acquired with a coarser resolution. In TLE,
SUIT performed similarly, with a DSC = 0.4145±0.1023. OPAL performed worse
than using HCP data with a DSC of 0.4522±0.1178. CNN was able to extract the
DNs without need for retraining and with a DSC = 0.7368±0.0799. Statistical com-
parison of quantitative parameters from DWI analysis, as well as volumes, revealed
altered and lateralised changes in TLE patients compared to healthy controls. The
proposed CNN is a viable option for accurate extraction of DNs from b0 images of
DWI data with different resolutions and acquired at different sites.

1 Introduction

Cerebellar nuclei (CNs) have a fundamental role in the central nervous system; they
are the main output channels of the cerebellum towards the supratentorial brain and
the spinal cord [1]. The dentate nuclei (DNs) are the CNs with the largest volume
(measuring about 2 cm in the anterior-posterior direction and 1 cm in transverse
plane and coronal plane) [2]. Histologically, the DNs have the shape of an irregularly
pleated grey foil, very thin and with a longitudinal section appearing as a curved line
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that contains white matter inside. The DNs are known mainly for their involvement
with the sensorimotor system, although recently studies are suggesting a role in
procedural memory, emotional and cognitive functions [3].

Several studies have shown that DN morphological properties can be altered
in different neurological pathologies [4, 5]. In human, there are general reports
of cerebellar atrophy in Temporal Lobe Epilepsy (TLE) patients [6], while animal
models have shown a direct involvement of the DNs: in particular, experimental
studies have shown that electrical stimulation of the DNs shortened and inhibited the
onset of seizures [7–9].

T1-weithed (T1-w) images are structural scans generally used for segmenting
brain regions. The DNs, unfortunately, do not show contrast on T1-w scans, while
they are visible on T2-weighted (T2-w) images [10]. Currently, DNs manual seg-
mentation is still considered the gold standard [11–13], but it is time-consuming
and suffers from inter- and intra-rater variability. A fully automatic segmentation is
therefore desirable.

A recently published pilot study [14] proposes a fully automatic method using
DWI, requiring time-consuming information from tractography. Another piece of
work [15], proposes a deep learning approach using as input multiple data including
T1-w, T2-w images and Fractional Anisotropy (FA) maps. Using quantitative maps
such as FA, though, introduces a circular bias and should be avoided.

In reference [16] the authors propose a fusion technique based on explicit shape
modelling, starting from high-resolution 7T quantitative susceptibility mapping
(QSM) of the cerebellum. In a recent piece of work [17] a multi-atlas method was
developed to segment iron-rich deep grey matter nuclei (including the DNs). How-
ever, QSM is not standard acquired in clinical settings.

The purpose of this study is to segment the DNs for microstructure quantification
of metrics acquired using the EPI readout as for DWI data. Segmentation masks of
the DNs can be used to extract average values of quantitative metrics to be com-
pared between populations of subjects, to assess correlations with clinical scores or
to monitor disease progression over time. Among the most interesting metrics there
are parameters derived from clinically feasible Diffusion Tensor Imaging (DTI) or
from advanced methods including Diffusion Kurtosis Imaging (DKI) [18] and Neu-
rite Density and Orientation Dispersion Imaging (NODDI) [19]. Given the typical
resolution of DWI scans at 3T (2 × 2 × 2 mm3) and the low number of voxels
included in segmentation masks of small structures such as the DNs, it is highly
desirable to reduce the data manipulation due to post-processing steps (e.g. regis-
tration) and to have region segmented directly in DWI-space. It is essential that any
automatic method is applicable with good performance to images of different quality
and acquired with different scanners.

Here we developed a method to automatically segment DNs from non-diffusion
weighted (b0) images, acquired as part of DWI scans. We specifically investigated
three different approaches using high-resolution data derived from the Human Con-
nectome Project [20]: (1) atlas registration; (2) patch-matching; (3) a deep learning
network-based method. Masks obtained with each of these methods were compared
to the gold standard manual segmentation of DNs. The methods were tested in a sec-
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ond dataset of subjects from a TLE study. The resulting best approach was employed
to compare DN volumes and average DWI metrics between patients and healthy
controls (HC), in view of future clinical studies.

2 Methods

2.1 Subjects

HCP dataset Pre-processed images of 100 healthy subjects scanned for the Human
Connectome Project (HCP) were downloaded [20]. 24 subjects were discarded for
cerebellar artefacts. The 76 remaining subjects (43 Females, 29.41±3.62 years) were
used to develop the automatic DNs segmentation.

TLE dataset A second dataset of 84 subjects, recruited for an Italian multi-centre
research project on TLE, were selected as clinical test data: 34 HC (16 Females,
31.97±7.73 years), 21 patients with left TLE (LTLE; 13 Females, 33.294±11.68
years) and 29 with right TLE (RTLE; 17 Females, 37.97±9.86 years).

2.2 MRI Protocol

HCP dataset MR images were acquired on a Siemens 3T Connectome Skyra scan-
ner (diffusion: Gmax = 100 mT/m), a 32-channel receive head coil and standard
shim coils. DWI data had minimal pre-processing, co-registered with T1-w data at
a resolution of 1.25 × 1.25 × 1.25 mm3 and matrix size of 145 × 174 × 145 [21].
Data included 18 volumes with b = 0 s/mm2.

TLE dataset MR images were acquired using a Siemens 3T MAGNETOM Skyra
scanner with standard gradients and a 32-channel receive coil.

DWI: spin-echo EPI, 90 volumes with b-value = 1000/2000 s/mm2 (45 DW gra-
dient directions per b-value) and 9 volumes with b = 0 s/mm2; spatial resolution =
2.24 × 2.24 × 2 mm3 and matrix size of 100 × 100 × 66.

T1-w: high-resolution 3DT1-w (T1w) volume with spatial resolution = 1 × 1 ×
1 mm3.

2.3 DWI Processing

For each subject, the mean of the b0 volumes was calculated (b0). For TLE subjects,
quantitative metrics were extracted using DESIGNER (https://github.com/NYU-
DiffusionMRI/DESIGNER): Axial Diffusivity (AD), Radial Diffusivity (RD),Mean

https://github.com/NYU-DiffusionMRI/DESIGNER
https://github.com/NYU-DiffusionMRI/DESIGNER
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Diffusivity (MD) and FA from DTI fitting [22] and Axial Kurtosis (AK), Radial
Kurtosis (RK) and Mean Kurtosis (MK) from DKI fitting [18].

2.4 DNs Segmentation

b0 images of HCP subjects were used for developing the DN segmentation method.
Manual segmentation was used as ground truth (GT). Automatic DN masks, from
three different automatic segmentation methods, were compared to the GT masks
and applied to the TLE dataset. Performance against GT was assessed by calculat-
ing three scores: Dice Similarity Coefficient (DSC), True Positive Rate (TPR) and
Positive Predictive Value (PPV) (see paragraph 2.6).

GroundTruth (GT)—manual segmentation b0 images ofHCP subjectswereman-
ually segmented by rater 1 usingMango (http://ric.uthscsa.edu/mango/mango.html).
In order to assess the automaticmethods’ performance against inter-raters variability,
a second rater, rater 2, segmented the same data using Jim (http://www.xinapse.com/
j-im-8-software). DSC scores were calculated first between manual segmentation
masks from raters 1 and 2 for each HCP subject and then averaged over all 76 HCP
subjects. 6 subjects were also segmented twice rater 1 on different days to calculate
the intra-rater variability. For the TLE dataset, rater 1 manually segmented the b0 of
18 subjects (6 for each group) to have a GT (GTT LE ) for this independent dataset.

Atlas-based method: SUIT The toolbox SUIT (A spatially unbiased atlas template
of the cerebellum and brainstem) is an open source extension of SPM (Statistical
Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/) available for Matlab (The
MathWorks, Inc., Natick, MA, United States of America).

SUIT [10] is an atlas-based method for cerebellar segmentation that performs a
non-linear registration between a template (standard space) and the image to segment.
The resulting transformation is then applied to an atlas defined in standard space and
its labels are warped into the subject space. One of the labels is for the DNs. SUIT
requires registering T1w images of each subject to the template; the inverse transfor-
mation is then used to warp DN labels from standard-space to subject-space. As the
T1w images of the HCP dataset are already co-registered with the respective DWI,
the DN segmentations obtained with SUIT are already in DWI space.

Pre-processing (OPAL and CNN) In order to segment DNs with OPAL and CNN
we applied two pre-processing steps: (1) Intensity normalization: mean signal inten-
sity and standard deviationwere calculated for each subject’s b0 volume, considering
only brain voxels, to obtain zero mean and standard deviation equal to 1 for all sub-
jects; (2) Cropping: to reduce the computational time, images were cropped around
the cerebellum reducing axial slices to 86x71 voxels.

http://ric.uthscsa.edu/mango/mango.html
http://www.xinapse.com/j-im-8-software
http://www.xinapse.com/j-im-8-software
https://www.fil.ion.ucl.ac.uk/spm/
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Patch-matching method: OPAL OPAL (Optimized Patch Match for Label fusion)
[23] joins information from different templates to obtain the desired segmentation.
OPAL is an evolutionof thePatchMatch algorithm [24], implemented inC++ (https://
github.com/KCL-BMEIS/NiftySeg/).

We built up a database of 46 subjects providing: b0 images, the corresponding
masks of the cerebellum and the DNGTs. This database was intended as a collection
of reference templates. TheDNs segmentation of each new subject was performed by
dividing images into patches and comparing each patchwith those from the reference
templates, looking for the most locally similar match. The output is a probabilistic
map of the DNs. We divided the remaining 30 subjects into validation and testing
sets. We used the validation set to select the probability threshold (0.1, 0.2, 0.3, 0.4,
0.5) for binarizing the DN masks, where a lower threshold corresponds to larger DN
masks. For each threshold and for each validation subject we calculated the DSC
between the DN masks and the GTs. We selected the threshold that maximised the
mean DSC and we assessed the performance of OPAL on the remaining 15 test sub-
jects for an unbiased performance estimate.

Deep-learning method: CNN A CNN (Convolutional Neural Network) was imple-
mented with Matlab19a using the Deep Learning Toolbox.

CNN architecture—The architecture used here was inspired to the one used for
segmenting the spinal cord grey matter [25]. This architecture was based on dilated
convolutions and on removal of pooling layers, responsible for information loss.
This type of convolution expanded receptive fields without increasing the number of
parameters [26]. The network implemented required as input a two-dimensional (2D)
image, oriented in the axial plane. The architecture is shown in Fig. 1. All convolu-
tional layers have a zero-padding of type “same” [26]. Therefore, the dimensions of

Fig. 1 Scheme of the CNN architecture adopted here

https://github.com/KCL-BMEIS/NiftySeg/
https://github.com/KCL-BMEIS/NiftySeg/
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Table 1 Range of parameters used for the transformations of data augmentation step. For each
slice, with 0.5 probability, a random number within this range was assigned to each transformation.
For elastic deformation: α represents the scale factor and σ the standard deviation of the Gaussian
filter

Transformation Parameter range

Rotation [−4.6◦, 4.6◦]
Shift [−3, 3] in x and y direction

Scaling [0.98, 1.02] with bicubic interpolation

Elastic deformation α = 4 and σ = 30

each layer’s output do not differ from those of the layer’s input. For each layer the
neurons are activated by the ReLU (Rectifier Linear Unit) function [27].

The architecture of the CNN is the following: Input layer (INPUT) treating each
voxel of input images as a neuron; two layers of standard convolution (layers 1); two
layers of dilated convolution with dilatation factor d = 2 (layers 2); five branches
in parallel, each branch with two convolution layers. In the first branch there is a
standard convolution for the first layer the kernel dimension is 3 × 3 while for the
second it is 1 × 1 (layers 3); the remaining four branches have dilated convolution
respectively with d = 6, 12, 18, 24 (layers 4, 5, 6, 7).

Each output of these parallel branches is concatenated in the third dimension and
followed to: a convolution layer that uses 64 filters of dimensions 1× 1; a convolution
layer that uses 2 filters of dimensions 1 × 1; a Softmax layer [28] that represents the
activation function for classification; a Loss layer.

The convolutional layers have 32 filters with dimension 3 × 3 except for the
second layer of layers 3, which is 1 × 1, and the last two layers. Except for the last
1 × 1 convolution, each convolution layer is followed by batch normalization [28]
and dropout [26]. Due to the imbalance between the class of belonging to the DN
and the non belonging class (i.e. background), we decided to use the Dice Loss as
loss function, based on the DSC and robust to class imbalance [29]. We used the
Adam optimizer [30] with a small learning rate of η = 0.001 for setting the weights
of the CNN.

Training—To reduce overfitting, data augmentation was applied. Four different
transformations were considered: rotation, translation, scaling and elastic deforma-
tion. These transformations were applied to input (b0)—desired output (GT) pairs.
Data augmentation was applied independently on each slice with a probability of
0.5 for each transformation. The parameters used are reported in Table 1. The origi-
nal b0 images plus those from data augmentation and the corresponding GT masks
were provided as input to the CNN for training. To speed up training, however, only
slices containing the DN (on average 8 per subject) were automatically included as
selected from theGTmasks. The hyperparameters that must be chosen a priori before
training were the batch size, the dropout and the number of epochs. For tuning these
hyperparameters we tried a number of combinations (45 in total), using batch size
(8, 16, 24, 32, 64), dropout (0.2, 0.3, 0.4) and epochs (30, 50, 100).
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Fig. 2 Steps followed for hyperparameters optimization and CNN training

For each combination of hyperparameters, aMonteCarlo 10-folds cross validation
was performed: firstly, we randomly extracted 6 of the 76 subjects as test set. Then,
the remaining 70 subjects were randomly split into 60 subjects for training and 10
subjects for validation; this step was repeated for each of the 10 folds. The Monte
Carlo 10-folds cross validation randomly selects subjects for the training and the
validation set, therefore it is possible that a subject is never included or can be used
more than once in the validation set. Steps used for CNN training are shown in Fig. 2:
(1) for each fold of each combination of hyperparameters we calculated the DSC for
the subjects included in the validation set (10 subjects); (2) we calculated the mean
DSC for each hyperparameters combination by averaging the DSCs of the 10 folds;
(3) we chose the combination of hyperparameters that maximized the average DSC;
(4) among the 10 CNN that were trained with the best hyperparameters combination,
we chose the one with the maximum DSC. Set the hyperparameters, we used the 6
test subjects for an unbiased estimate of the CNN performance. Subsequently, to
check that the network did not overfit on the GTs of rater 1 used for training the
scores for the 6 test subjects were calculated comparing the segmentations obtained
with CNN and the masks from rater 2.
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2.5 Post Processing for OPAL and CNN

Both OPAL and CNN labeling identified a number of false positive (FP) voxels
as belonging to the DNs located in different brain regions, sometimes very distant
from the DNs themselves. In order to remove these FP voxels, an automated post
processing step was implemented: the DN masks obtained with SUIT were dilated
twice and used to mask the DN masks generated by OPAL and CNN.

2.6 Quantitative Evaluation

For each method, performance was tested by comparing automatic DNs against GT
masks using three scores [31].

DSC i.e. the overlap between two binary masks:

DSC = 2 T P

2 T P + FP + FN
(1)

where TP indicates True Positive and FN False Negative. DSC ranges [0–1].
Sensitivity or TPR:

T PR = 100 x
T P

T P + FN
(2)

TPR ranges [0–100] with low TPR indicating a bias towards under-segmentation.
Precision or PPV:

PPV = 100 x
T P

T P + FP
(3)

PPV ranges [0–100] with low PPV indicating a bias towards over-segmentation.
Specificity or True Negative Rate (TNR) was not considered because the two

classes (DN and background) are unbalanced, causing high and non-informative
TNR values.

2.7 Comparison of Automatic Methods

We calculated DSC, TPR and PPV for each automated method. For OPAL and
CNN we calculated these scores, on the validation and test sets, before and after
post processing. Since SUIT is an atlas-based method we calculated these scores on
the whole dataset, while for OPAL we exclueded the 46 subjects used as template.
Regarding CNN, the scores were calculated for the validation (10 subjects) and
test (6 subjects) sets for each of the 10 folds corresponding to the optimal set of
hyperparameters. For each method we calculated the group average of these scores.
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For the CNN we calculated two average values: the first one by averaging between
the 10 folds corresponding to the best combination of hyperparameters, while the
second one by averaging only results obtained with the network chosen as the final
CNN (the one with the best perfomance) among the 10 networks.

2.8 Clinical Application to TLE Data

TLEdata pre-processing andDNs segmentation The spatial resolution of the TLE
b0 images was lower than that of the HCP dataset, so TLE b0 images were resampled
to match the HCP resolution using FSL FLIRT (FMRIB’s Linear Image Registra-
tion Tool) before applying each segmentation method. In order to remove the FPs
we exploited the segmentation masks resulting from SUIT, which were moved from
T1w space to b0 space using a rigid registration computed with SPM. Resulting DN
masks were resampled to their original spatial resolution for quantitative analysis
of parameter maps by applying the inverse of the roto-translation matrix. (GTT LE )

segmentations were used to assess performance of the three methods. We selected
the best automatic DNs segmentation method based on the performance on both
datasets (HCP and TLE). The best method was then applied to all TLE subjects to
extract quantitative DNs parameters from DWI.

DN structural and microstructural characteristics in TLE patients For each
DN (right and left DN independently), thew following quantitative measures were
extracted: (1) volume; (2) average value of DTI metrics (AD, RD, MD and FA);
(3) average value of DKI metrics (AK, RK and MK). Lateralization of volumes and
metrics values was investigated using an Asymmetry Index (AI), with range [−2; 2]
where 0 indicates perfect symmetry [32]:

AI = mean(DN le f t) − mean(DN rigth)
mean(DN le f t)+mean(DN rigth)

2

(4)

We considered a total of 24 measures for each subjects. Statistically significant
differences between HC, RTLE and LTLE were investigated using SPSS (IBM,
Armonk, NY, United States of America) as exploratory work.

Age and gender were compared and included in the statistical comparison. A
general linearmodel (GLM) univariate analysis was implemented using as covariates
those variables not homogeneous between groups. 24 GLM univariate comparisons,
with=5%,were performed to explorewhichvariables could significantly differentiate
the three groups. SubsequentlyGLMunivariate analysis was repeated for eachmetric
in pairwise group comparisons.
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Fig. 3 Segmentationmasks obtainedwith the threemethods for a randomly selected subject (SUIT,
OPAL and CNN). Each image shows the overlap of the segmentation obtained with the respective
automated method (red) overlaid with the GT (yellow)

3 Results

The inter-rater variability of the manual segmentations resulted in a
DSC = 0.8066±0.0575. Intra-rater variability produced a DSC = 0.7927±0.0369.
In Fig. 3 DN masks of a randomly selected subject are displayed. OPAL probability
threshold was set to 0.4. The Monte Carlo 10-folds cross validation of the CNN
provided the best results with hyperparameters: batch size = 24, dropout = 0.2 and
number of epochs = 100.

3.1 Comparison of the Three Automatic Methods

Table 2 reports DSC, TPR and PPV scores (mean±standard deviation) for the three
methods.The best performance was achieved by CNN (DSC = 0.8658±0.0255) fol-
lowed by OPAL (DSC = 0.7624±0.1786). SUIT performed worst, with the lowest
scores (DSC = 0.4907±0.0793).

The scores between the segmentations obtained with CNN and rater 2 were: DSC
= 0.8208±0.0371, TPR = 74.3759±5.6519, PPV = 91.7158±4.9100.

3.2 Application to TLE Dataset

Table 3 reports DSC, TPR and PPV scores between (GTT LE ) and the segmentation
obtained with each automatic method. For OPAL it was necessary to reset the proba-
bility threshold to 0 as 0.4 (set for the HCP data) eliminated TP. Overall scores were:
DSC = 0.1322±0.1512, TPR = 7.7931±9.2878 and PPV = 55.2716±50.8794. CNN
outperformed the other methods with a DSC = 0.7368±0.0799.

Statistical comparisons showed that age was not homogeneous between the three
groups of the TLE study (p-value = 0.017) while gender was matched (p-value =
0.491). Therefore, we included age as a GLM covariate in the DWI metric analysis.
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Table 2 SUIT, OPAL and CNN performances. For CNN, two sets of scores are reported: (1)
average scores from the 10 networks with the chosen hyperparameters; (2) metrics from results
obtained with the CNN network chosen as the best performer. For DSC, in bracket we reported the
values before the post processing step to remove false positives. For each score the best value is
indicated in boldface

DSC TPR PPV

SUIT 0.4907±0.0793 86.3444±6.6154 34.9475±7.6264

OPAL—validation set 0.7434 ± 0.2168
(0.7427 ± 0.2164)

73.4617 ± 24.0014 76.9896± 22.3599

OPAL—test set 0.7624 ± 0.1786
(0.7602 ± 0.1780)

76.3791 ± 23.1454 83.2686 ± 9.3198

CNN—validation set
(10 networks)

0.8519±0.0144
(0.7607±0.0311)

86.7444±2.7735 84.5275±1.0535

CNN—validation set
(1 network)

0.8366±0.0579
(0.7916±0.0602)

83.8757±9.9464 84.4935±8.0567

CNN—test set (10
networks)

0.8650±0.0067
(0.7943±0.0323)

84.6590±1.2522 88.6746±0.8117

CNN—test set (1
network)

0.8658±0.0255
(0.8440±0.0270)

84.5150±4.0032 88.9238±3.8065

Table 3 Comparison of SUIT, OPAL and CNN against GT on 18 TLE subjects

DSC TPR PPV

SUIT 0.4145±0.1023 84.3647±8.4051 27.9597±8.6905

OPAL 0.4522±0.1178 84.3277±16.0649 28.6451±12.1937

CNN 0.7368±0.0799 88.6787±4.5745 65.7410±10.6841

We found significant differences between the three groups: AD of the left DN (p-
value = 0.024), MD of the left DN (p-value = 0.039) and volume of the right DN
(p-value = 0.014). The first row of Fig. 4 shows boxplots of these metrics for each
group. Pairwise comparisons between two of the three groups showed that: AD of
the left DN is significantly different between LTLE and RTLE patients (p-value =
0.004),MD of the left DN is significantly different between LTLE and RTLE patients
(p-value = 0.016), the volume of the right DN is significantly different between HC
and LTLE patients (p-value = 0.049) and between HC and RTLE patients (p-value
= 0.010). Moreover from pairwise comparisons other metrics resulted significantly
different: volume of the left DN between HC and RTLE patients (p-value = 0.027)
and RD of the left DN between HC and LTLE patients (p-value = 0.044) (second
row of Fig. 4).
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Fig. 4 In thefirst row: boxplots of themeasures that resulted statistically different (p<0.05) between
the three groups: AD of the left DN,MD of the left DN and volume of right DN. Significant pairwise
comparisons are highlightedwith asterisks. In the second row: boxplots of themeasures that resulted
statistically different (p<0.05) from pairwise comparisons (highlighted with an asterisk): volume
of the left DN and RD of the left DN

4 Discussion

In this work we proposed an automatic DNs segmentation method that uses b0
images from a DWI dataset. Specifically, analysis of DSC scores highlighted perfor-
mances comparable with inter- and intra-raters segmentation (DSC>0.7). The use
of b0 images, inherently co-registered with DWI data, instead of high resolution
T1w structural scans, allows the user to apply the masks directly to microstructural
parameter maps obtained for clinical research studies.

On HCP data, segmentation masks obtained with OPAL and CNN were more
accurate than the over-segmented DNs obtained with SUIT. Furthermore, the scores
average values were superior for segmentations using CNN compared to OPAL.

OPALapplied toTLEdata hadworse performance (even after changing the thresh-
old). This indicates that OPAL, which here used a reference database constructed on
HCP data, cannot segment images acquired on a different scanner and with a worse
resolution. Possibly, to improve the performance of OPAL, one would need to build
a more appropriate database of reference templates.

Therefore, the implemented CNN outperforms OPAL and can be considered the
best automated segmentation method of DWI images among the ones tested here
(the code for the CNN is publicly available at https://github.com/marta-gaviraghi/
segmentDN).

One further major advantage of CNN over OPAL lies in its greater transferability
across sites and users. Indeed, OPAL requires that the database of b0s and associated
GTs is available to segment the DNs of new subjects. Conversely, CNN needs a

https://github.com/marta-gaviraghi/segmentDN
https://github.com/marta-gaviraghi/segmentDN
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database of images and GTs only for training, but after the network has learnt the
association between images and segmentations, the reference images are no longer
needed. One could question also the dependency of the method on the geometri-
cal acquisition parameters, but here we demonstrated that the method worked well
(DSC>0.73) also on a completely different dataset, acquired on a standard clinical
3T scanner and with a much coarser voxel resolution.

The CNN was applied to the b0 data of the TLE dataset to segment the DNs and
study their microstructural properties. While understanding the DNs involvement in
TLE requires a dedicated study comparing regions from the entire brain, it was very
interesting to see that the DN masks obtained from the b0 images could be easily
applied to DTI and DKI metrics and be used for some very preliminary assessment.
The statistical comparison showed that the right DN volume is reduced in both RTLE
and LTLE with respect to HC. The volume reduction of the right DN in TLE patients
could indicate atrophy of this cerebellar nucleus, but to understand the source of such
alteration one should also consider what happens to the underlying microstructure
and hence assess parameters from, for example, DTI or DKI fitting of the data as
it was performed here. From our exploratory comparisons, AD and MD seem to
be the most affected metrics, which might simply relate to a different proportion of
white and grey matter structures captured by the masks in different groups. To disen-
tangle the source of such changes, though, future studies should consider advanced
microstructural models that probe more specific biophysical properties such as neu-
ronal density, orientation dispersion and soma compartments [19]. These preliminary
results support the hypothesis that DNs might be involved in TLE, consistently with
previous studies in animal models of epilepsy [7–9]. The extent of such involvement
must be explored further within a dedicated clinical study that correlates DN alter-
ations with that of other brain regions, considering also clinical/anamnestic data such
as comorbidities and treatment [33].

Methodologically, given the coarse resolution of DWI data, a potential limita-
tion of using b0 images is that it is not possible to extract the convoluted surface of
the DNs and to specifically extract their grey matter. Current structural scans used
for the segmentation of small regions (T1w scans) do not show contrast in the CN
areas. If a detailed reconstruction of the DNs shape and size is considered a fun-
damental aspect for a specific study, a dedicated sequence with optimized contrast
(e.g. based on T2 or T2* properties or QSM) and image resolution (e.g. to achieve
sub-millimetre voxel size) should be considered, at the expense of longer acquisition
times. For the purpose of our study, b0 images served the purpose of achieving a
significant improvement over the SUIT segmentation without resorting to additional
MR sequences and longer acquisition time. Furthermore, the demonstrated transla-
tion of the CNN from the HCP to a clinical scanner DWI data is very encouraging
and makes this CNN possibly viable for other applications that use EPI-readouts;
future work could therefore investigate transferability of the proposed CNN to study
functional MRI activations of the DNs in relation to their microstructure character-
istics. Future work could explore other architectures (such as U-Net) in order to find
the best one for this application. In order to remove FPs, morphological operations
could be implemented as an alternative post-processing step to SUIT masking.
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5 Conclusion

Weproposed an automatic segmentation of the DNs using an automatedmethod. The
CNN implemented here can segment images with a spatial resolution and acquisition
protocol different from the training set. By using the proposed CNN on a cohort of
subjects affected by TLEwe detected asymmetric microstructural changes within the
DNs, which should be further investigated in dedicated studies. Future work could
consider multimodal datasets including as input images with different MRI contrasts
and an expanded GT database for training.
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Two Parallel Stages Deep Learning
Network for Anterior Visual Pathway
Segmentation

Siqi Li, Zan Chen, Wenlong Guo, Qingrun Zeng, and Yuanjing Feng

Abstract The segmentation of the anterior visual pathway(AVP) from MRI
sequences is challenging because of the thin long architecture, structural variations
along the path, and poor contrast with adjacent anatomic structures. The AVP plays
a critical role in many devastating pathological conditions (e.g., pituitary tumors
and craniopharyngiomas). However, most of the existing methods segment AVP on
T1w images merely and often fail to achieve good results that cannot meet clin-
ical needs. In this work, we introduced fractional anisotropy(FA) images into the
training data set and proposed a deep learning network with two parallel stages for
AVP segmentation. On an MRI dataset consisting of 102 subjects selected from the
Human Connectome Project (HCP), we demonstrate that the proposed framework
consistently improves the accuracy of AVP segmentation.

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive technology, which widely is
used for studying and characterizing diseases of AVP such as optic neuritis, optic
nerve hypoplasia, and optic pathway glioma [1]. Generally, the tiny structure of
AVP requires an experienced neurosurgeon to accurately mark on the MRI from
the scanned patients. Furtherly, due to the different judgment standards between
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neurosurgeons, the performance ofmarked results is unstable, which seriously affects
the repeatability of the treatment plan. The manual segmentation of AVP is a time-
consuming and labor-intensive process along with unstable factors. Automated AVP
segmentation will allow the extraction of quantitative features associated with optic
pathway morphology from medical image slices. Therefore, the rapid and high-
precision automatic segmentation of the AVP is of clinical and guiding significance
for the formulation of neurosurgery planning.

TheAVPconsists of a pair of optic nerves also knownas the cranial nerve II (CNII),
transmitting visual signals from the retina to lateral geniculate nucleus(LGN). Due
to its thin long architecture, poor contrast, and lack of obvious boundary with the
surrounding tissues, the AVP is challenging to be segmented automatically [2]. For
the segmentation of the AVP, many methods based on atlas and shape models have
been proposed, which emphasize the use of statistical shape or statistical appearance
because of the tortuous and slender structure. Bekes et al. [3] proposed a geometric
model-based method for semi-automatic segmentation of the eyeballs, lenses, optic
nerves, and chiasmwithminimal user interaction. Noble et al. [4] presented amethod
based on atlas-navigated optimal medial axis and deformable model. Dolz et al. [5]
proposed a method using a support vector machine for optic nerves.

Some machine learning-based methods have been proposed to segment visual
structures since the increasing artificial intelligence application. Dolz et al. [6] pro-
posed a deep learning classification scheme based on augmented enhanced features
to segment organs at risk on the optic region in patients with brain cancer. Man-
soor et al. [7] proposed an AVP segmentation method that uses deep learning to
quickly locate the optic nerve shape model while combining T1-weighted(T1w),
T2-weighted, and FLAIR MRI sequences. Ren et al. [8] introduced 3D Convolu-
tional Neural Networks (3D-CNNs) to segment small tissues, including the optic
nerve and chiasm automatically. Most previous works segmented the AVP on single
modal data with one exception byMansoor et al. [7]. They proposed anAVP segmen-
tationmechanism steered by deep learning features andmultipleMRI sequences (i.e.,
T1-weighted (T1w), T2-weighted (T2w), and FLAIR), reporting a DSC of 0.78 ±
0.12 on 165 AVP cases. However, these MRI sequences belong to structural imaging
and more information ought to be obtained by using other modal data.

Clinically, T1w images are better for depicting normal anatomy and fractional
anisotropy (FA) images are employed to characterize the structural anisotropy in the
brain. Figure 1 shows the T1w images and FA images of No.100206 subject in HCP
data. Figure 1a, d show the region of eyeballs to the chiasm (EC) on the T1w image
and FA image respectively in the 34th slice. Figure 1b, e show the region of chiasm
on the T1w image and FA image respectively in the 42nd slice. Figure 1c, f show the
region of chiasm to the LGN (CL) on the T1w image and FA image respectively in
the 50th slice. All the above slices are obtained from axial. As Fig. 1a, d shown, the
edge of the EC on the T1w image can be easily obtained while the edge is missing
on the FA image. On the contrary, the edge of the CL can be easily obtained on
the FA image while the edge is blurred on the T1w image in Fig. 1c, f. In Fig. 1b,
we can obtain the edge of chiasm easily both on T1w images and FA images. In
conclusion, we can easily obtain the EC structure on T1w images and easily obtain
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Fig. 1 A typical axial slice view of the T1w image and FA image from the No.100206 subject
displays three parts of the AVP. a and d show respectively the region of EC on T1w and FA image
in the 34th slice; b and e show respectively the region of chiasm on T1w and FA image in the 42nd
slice; c and f show respectively the region of CL on T1w and FA image in the 50th slice

the CL structure on FA images. So we incorporate FA images and segment the AVP
structure by combining T1w and FA images.

In this work, we propose a two parallel stages network (TPSN) for AVP segmen-
tation. The main contributions of this work are as follows. First, we introduce FA
images to extract the structural anisotropy in the brain for AVP segmentation. Sec-
ond, we propose a two parallel stages network for the EC and CL feature extraction to
form theAVP feature. Third, we propose a data fusionmodel to segment the complete
AVP structure. Extensive experiments with our TPSN have been conducted, and the
results demonstrate that our method provides consistent and noticeable performance
improvement attributing to the fusion training of T1w images and FA images.

2 Methods

2.1 Data Preprocessing

Cropping: The overview of our architecture is shown in Fig. 2. We crop the HCP
data with a spatial resolution of 145 × 174 × 145 voxels to 128 × 160 × 128 by
removing as many zero background as possible to make them fit our network input
size. This processing not only can effectively improve the calculation efficiency,
but also retain the original image information as much as possible. In the end, we
normalize the T1w images from 0 to 1.

Data Enhancement: To enlarge the training dataset, multiple data augmentation
strategies have been utilized, including flipping and changing the color property
randomly (i.e., brightness, contrast, and hue). We flip the input image horizontally
according to probability 0.5. The following transformations were applied to each
training sample and the intensity of each transformation was varied uniformly.

1. Contrast augmentation Xaugmented = X ∗ γ with γ ∼ U [0.7, 1.3].
2. Brightness augmentation Xaugmented = X ∗ γ with γ ∼ U [0.5, 1.5].
3. Hue augmentation Xaugmented = X ∗ γ with γ ∼ U [−0.5, 0.5].
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FA Image Generation: In this work, we introduce the FA images to form a new
blended feature extraction approach for the localization of AVP. The FA index is
a widely used parameter of diffusion tensor imaging (DTI) for representing the
motional anisotropy of water molecules, being sensitive to the presence and integrity
of white matter fibers [9]. In DTI, a set of orthogonal vectors known as eigenvectors,
which define the orientation of the principal axes of a diffusion ellipsoid in space,
are calculated from the diffusion tensor. The length of each vector is represented by
corresponding eigenvalues. An FA value is calculated using the following formula,
based on eigenvalues in the diffusion tensor [10, 11]:

FA=
√
3[(λ1−λ)2+(λ2−λ)2+(λ3−λ)2]

2(λ1
2 + λ2

2 + λ3
2)

, (1)

where λ is the average of λ1, λ2, and λ3. For each volume, the FA images are
registered to the T1w images using FLIRT (FMRIB’s linear registration tool) in FSL
(version 5.0.8) [12].

ROI Extraction: To solve the imbalance of AVP classes, we have delineated an ROI
to extract training data. The distribution of AVP within a subject data is skewed as
only 16% of brain slices involve AVP. To solve this problem, we first calculate the
number of the AVP ground truth label slices for each training sample and then expend
half of the number slices up and down respectively. The operation is performed on
the axial slices. We extract the whole brain ROI by the following four steps. First, we
extract images slice by slice for each volume. Second, we process the median filter
on the images. Third, we binarize the images using threshold processing. Finally,
we fill the holes for each image to find the whole brain ROI. To filter out unwanted
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information, we only deal with the data within the ROI. Noted that the whole brain
will be set as our ROI during the testing phase.

2.2 Two Parallel Stages Network Architecture

As shown in Fig. 1d, the FA image has a poor contrast of ECwith a lot of interference
noise, which makes our fitting network worse. Based on the observation that the CL
region in FA images generally has higher contrast than the CL region in T1w images
as shown in Fig. 1c, f, we propose a two parallel stages network (TPSN) for AVP
segmentation. In this work, T1w images are used to train for EC segmentation, while
T1w and FA images are used to train for CL segmentation. The designed architecture
is built upon the U-Net architecture [13], which has shown outstanding performance
in various medical segmentation tasks [14, 15]. The details of our architecture are
shown in Fig. 3.

We adopt the U-Net model as the base model, which consists of an encoding
and a decoding part. The encoding part repeatedly applies two 3 × 3 convolutional
layers with stride 1, each followed by a batch normalization (BN), a rectified linear
unit (ReLU), and a 2 × 2 max-pooling operation with stride 2 on 4 levels. At each
down-sampling step, the dimensions of the input image are reduced by half and
the number of feature channels is doubled. The bottom level includes two 3 × 3
convolutional layers, each followed by a BN without pooling layer. The decoding
part recovers the original dimensions of the input images by up-sampling the feature
map, a concatenation with the corresponding feature channels from the contractive
path and two 3 × 3 convolutional layers, each followed by a BN and a ReLU. The
final layer is a 1 × 1 convolution followed by a sigmoid operation for mapping the
feature vector to the binary prediction (i.e., AVP vs. non-AVP). Last but not least,
the binary predictions of EC-T1w, CL-T1w, and CL-FA were generated through the
base model.

In Fig. 3, our framework mainly consists of two stages: EC segmentation and CL
segmentation. In the first stage, we set the axial slices of the T1w images as training
data and use the U-Net model to extract the prediction PEC from the input IEC, which
is defined as follows:

FEC = HU (IEC), (2)

where HU (·) denotes the U-Net model, IEC denotes the T1w images of EC, and
FEC denotes the feature of EC on T1w images, which is then used for the extraction
of EC prediction.

In the second stage, CL Segmentation is responsible for the prediction of the CL
structure on T1w and FA data. In this stage, axial slices of the T1 and FA images
are respectively used as the input of U-Net, and two outputs are obtained. Inspired
by [16], we perform a data fusion module, which fuses the AVP features of different
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Fig. 3 The designed architecture of our two parallel stages network (TPSN). Blue boxes represent
multi-channel feature maps.White boxes show copied feature maps. The number on top of each box
gives the number of channels. Network operations are represented by differently colored arrows

modal data (i.e., T1w and FA). Then the two outputs are concatenated and used as
the input of the data fusion module to get the final CL prediction.

Specifically, the second stage can be divided into two steps. First, we set the T1w
and FA images of CL as training data separately and perform the same operation as
the Eq. 2 shown. So we have FCL1 = HU (ICL1) and FCL2 = HU (ICL2), where ICL1
and ICL2 denote respectively the T1w and FA images of CL versus FCL1 and FCL2

denote respectively the CL features of T1w and FA images. Second, we concatenate
the FCL1 feature and the FCL2 feature to form the fusion feature ICL, which is then
used to obtain the prediction of CL structure (i.e., FCL). So we can further have

FCL = HF (ICL) , (3)

where HF (·) denotes the data fusion net module. In this second stage, we can also
combine the T1 and FA images as the input to the base model, but the combined
data of this simple front-end fusion usually contains a lot of redundant information.
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Therefore, we choose the back-end fusion method here to extract CL features. The
advantage of this is that the errors of the fusionmodel come from different classifiers,
and the errors from different classifiers are often uncorrelated and do not affect each
other, and will not cause further accumulation of errors.

Finally, we obtain the EC prediction from EC and CL features, i.e., PEC =
HM(FEC) and PCL = HM(FCL), where PEC and PCL denote the prediction of EC
and CL structure; HM (·) denotes the torch.max function in PyTorch. The EC and
CL prediction are followed by a combination operation to form the complete AVP
prediction,

PAVP = HC(PEC, PCL) , (4)

where HC (·) denotes the combination operation and PAVP denotes the prediction of
complete AVP structure. The specific step of the combination operation is to input
each axial slice of the test data into the trained model in sequence, and then combine
the outputs from the axial slice into a complete volume according to the sequence.

3 Experiments

3.1 Dataset

In this work, we used the T1-weighted structural MRI and pre-processed diffu-
sion MRI (dMRI) data of 102 unrelated subjects (age 22–35) from the HCP 1200
Subject Release of the Human Connectome Project (HCP). HCP subjects were
scanned at Washington University in St. Louis on a customized Siemens Skyra 3T
scanner (Siemens AG, Erlangen, Germany). The corresponding dMRI data, which
was multi-shell data with 18 b = 0 and 270 gradient directions distributed equally
over 3 shells with b-values of 1000, 2000, and 3000 s/mm2, was acquired using a
spin-echo planar imaging (EPI) sequence (repetition time (TR) = 5520ms, echo time
(TE) = 89.5ms,matrix size = 145× 174× 145, resolution = 1.25× 1.25× 1.25mm3

voxels). The spatial resolution of T1w data was the same as that of dMRI data. We
used the dMRI data that had already been processed by the minimal preprocessing
pipeline (e.g. distortion correction, motion correction, registration to MNI space and
brain extraction had already been completed) [17]. We divide them into the training
set, validation set, and testing set according to the ratio of 8:1:1. Accuracies were
measured on the validation set in all experiments.

The AVP ground truths of the 102 subjects HCP dataset were well described man-
ually by experienced neurosurgeons. On the selected subjects, two neurosurgeons
used 3D Slicer [18] to mark the AVP ground truths on T1 structural images. Each
of the neurosurgeons labeled 51 volumes. Boundary definitions for the AVP ground
truths were obtained according to the signal intensity differences in the T1w images.
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3.2 Implementation Details

Our method had been implemented in PyTorch for network building. The system
was running on Windows 10 with Cuda 10.1. We performed our experiment on an
NVIDIA TitanXGPU and it took approximately 24 hours to complete all the training
models upon all patches with 200 epochs. For each model, we set the training with a
batch size of 64, and theweightswere updated byAdamoptimizer [19]with a learning
rate of 0.002. The loss function used by the network was dice. To prevent over-fitting,
an early stopping strategy was likewise utilized in the work if no improvement arose
in the validation loss of the validation set after 10 epochs.

3.3 Results

To evaluate the segmentation performance, three metrics are used to evaluate the
proposed method: Dice similarity coefficient (DSC) [20], Hausdorff distance (HD)
[21], and average symmetric surface distance (ASD). TheDSCalso called the overlap
index or F1 score, is the most used metric in the evaluation of medical volume
segmentation,which compares volumes based on their overlap between segmentation
and the ground truth. The HD and ASD are computed to measure the accuracy of
the segmentation boundary. DSC is defined as follows:

DSC
(
Vgt, Vseg

) = 2|Vgt ∩ Vseg|
|Vgt| + |Vseg| , (5)

where Vgt and Vseg represent the ground truth and the automatic segmentation result,
respectively. The HD and ASD between two volumes are defined by:

HD = max(h(A, B), h(B, A)), (6)

ASD = mean(h(A, B), h(B, A)), (7)

where A and B denote two finite point sets and h(A, B) is called the directed HD
and given by:

h(A, B) = max
a∈A

min
b∈B ‖ a − b ‖, (8)

where ‖ · ‖ denotes the euclidean distance. Finally, the performance is assessed as
an average of the measures of all AVP segmentation in the test-set. The value of DSC
refers to the same measurement as Dice per volume in the testing set. For the HD and
ASD evaluation metrics, the smaller the value is, the better the segmentation result.
The quantitative and qualitative results of our method are as follows.

Quantitative results byTPSN: Figure 4 andTable 1 show the quantitative evaluation
metrics of our designed architecture in comparison with the U-Net and U-Net++ [22]
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Table 1 Summary of DSC, HD, and ASD metrics evaluated on 10 testing subjects for AVP seg-
mentation

Methods Input DSC HD(mm) ASD(mm)

U-Net T1 0.822 2.963 0.200

U-Net FA 0.679 5.912 0.422

U-Net T1, FA 0.833 2.913 0.197

U-Net++ T1 0.827 2.970 0.193

U-Net++ FA 0.691 5.545 0.420

U-Net++ T1, FA 0.843 3.066 0.168

TPSN(ours) T1, FA 0.855 2.330 0.162

Fig. 4 Quantitative results comparing our proposed method with the other methods

framework. From Table 1, An average DSC of 0.855 for TPSN is obtained, showing
a significantly improved performance by TPSN over the other methods (p < 0.05,
paired t-test). Additionally, our method segment the AVPwith 2.330mm average HD
and 0.162 mm average ASD which are less than the other methods, showing a better
performance. Figure 4 shows the box plot of the metrics proving the effectiveness
of our method. Although it was not possible in this work to use the same datasets
as those used in previous studies, the higher DSC we achieved as indicated by the
summary in Table 2 suggested that our method outperformed previously approaches
for optic pathway segmentation.

Qualitative results by TPSN: Figure 5 shows some qualitative examples generated
by different networks. We can see that the region from the chiasm to LGN of our
segmentation results have less red and label versus larger blue label demonstrating
the superior performance of TPSN over the other two networks. Our method mainly
improved the segmentation performance of the region from the chiasm to LGN by
introducing FA images and performing fusion training. Time-wise, our method can
obtain the AVP segmentation of 10 test sets in 42 s on the premise that FA images
have been generated.
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Fig. 5 Qualitative comparison of two representative testing set. The Blue label shows the overlap
area of manual and automated segmentation, the red label shows the manual label, and the green
label shows the automated segmentation
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Table 2 Comparison of our method with the methods reported in the literature for visual pathway
related segmentation

Method Region of
segmentation

Number of subject DSC

Noble et al. [4] Nerve+chiasm 10 0.80

Asman et al. [23] Nerve 31 [0.48, 0.88]

Harrigana et al. [24] Nerve 30 0.77

Yang et al. [25] AVP 17 0.73±0.04

Dolz et al. [5] Nerve 10 0.76

Mansoor et al. [7] AVP 165 0.78±0.12

Ren et al. [8] Nerve 48 0.71±0.08

Our method AVP 102 0.85±0.02

4 Conclusion

Automated anterior visual pathway (AVP) segmentation is difficult due to its thin size,
structural variation along the path, and non-discriminative contrast to the adjacent
anatomic structures. The AVP is a white matter bundle composed of medullated
fibers. For providing the fiber anatomical connectivity information in the brain, we
generate the fractional anisotropy (FA) images from DWI data and introduce them
into our framework. In this work, we designed a partitioned training framework
with two parallel stages for the AVP automatic segmentation of MRI data, which
is formed by two parallel stages, i.e., EC segmentation and CL segmentation. Our
two parallel stages network (TPSN) improves the performance of AVP segmentation
and we achieve an average DSC of 0.855 in the experiment conducted on HCP data,
which demonstrates the effectiveness of our approach.
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Exploring DTI Benchmark Databases
Through Visual Analytics

William A. Romero R., Daniel Althviz Moré, Irvin Teh, Jürgen E. Schneider,
Magalie Viallon, and Pierre Croisille

Abstract Diffusion MRI studies include tests on standardised phantoms and mea-
surements on the output images to assess and benchmark the imaging system. These
tests are an essential methodological step to guarantee the reproducibility of mea-
surement outcomes. However, in longitudinal andmulti-centre studies, analysis tasks
become more complex with the increase in the sources and volume of data, as well
as the parameters of interest. To manage this complexity, Visual Analytics (VA)
allows researchers to explore large amounts of data easily and quickly by providing
key information in a readily interpretable format and reducing the cognitive load of
information. This paper presents CMRDiffMonitor, a VA tool for monitoring and
benchmarking Diffusion Tensor Imaging (DTI) databases developed in the context
of a multi-centre MRI project. Through an interactive dashboard, CMRDiffMonitor
enables users to capture a snapshot of the study which includes: a temporal overview
of the data sets (monitoring of the system stability across sites) and statistical mea-
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surements in Regions of Interest on Diffusion Anisotropy Indices (benchmarking of
the different imaging sequences and systems).

1 Introduction

Clinical research involves multi-centre studies with the objective to evaluate MRI
protocols on a large number of patients and imaging systems, and consequently
demonstrate the utility of the developed tools. Therefore, ensuring the stability of
the systems involved [14] enables the evaluation (intra- and inter-centre) of reliable
and reproducible results. Moreover, Quality Assurance (QA) protocols include tests
on a standardised phantom and measurements on the output images to identify the
causes of failure and the potential corrective actions [7, 22].

The scenario of a multi-centre study relies on the capacity to manage and process
data. As it is well-discussed by Burmeister et al., data collection and processing are
the first stages of the workflow [6]. Research scientists need to extract meaningful
information, find interesting insights and make correlations; in this direction, data
analysis tools must not only extract parameters, but also ease the way to explore,
report and share results. In this scenario, Visual Analytics (VA) techniques have
the potential to enhance data exploration based on interactive visualisation. Con-
sequently, research scientists may benefit from having a graphical representation
to verify protocol compliance, identify anomalies, and validate imaging sequence
outcomes across different systems and time-points in a concise and accessible way.

This paper describes CMRDiffMonitor, a VA tool for monitoring and benchmark-
ing in vitro Diffusion MRI databases in order to enhance the ability to track, review
and assess image acquisition sequences in longitudinal and multi-centre studies.
CMRDiffMonitor is the result of an incremental development cycle in the context
of a multi-centre study of cardiac diffusion MR sequences in an isotropic phantom.
The tool has enabled participant researchers to streamline the analysis task as well
as to report partial results of the research project as presented in [26, 27]

The next section gives an overview of the technological context and similar
approaches. The subsequent sections describe in detail the problem domain and
the system architecture in which the tool has been deployed. The paper concludes
with a description of how the tool supports analysis tasks on in vitro DTI databases.

2 Related Work

The advent of data management solutions, workflow engines, and online interactive
visualisation applications has led to the implementation of specialised databases and
platforms such as the Cardiac Atlas Project [12], OpenNeuro [21], and Brainlife.io
[5], to mention but a few. Bearing in mind the idea of reproducible computational
research [11], research communities in Biomedical Sciences and Engineering have
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been contributing with exemplar infrastructures and technologies [4, 8, 10] in order
to:

– collect, standardise and share data,
– execute complex computational methods (workflows) on different computing
resources (grid, supercomputer, GPU-based cluster, etc.),

– manage workflows outputs or data formating (new utilisable data), and
– provide online data visualisation.

Following these ideas, the Human Heart Project [1] has been implemented to
provide access to medical databases and computer-based tools in order to share
data easily, test computational methods and enhance collaboration in the research
community of cardiovascular imaging. The back-end infrastructure of this solution
is based on Girder [18], a web-based data management platform, and the Virtual
Imaging Platform (VIP) [3, 13], a scientific gateway for medical simulation and
image data analysis.

DTI benchmark databases are used in the context of the harmonisation of imag-
ing sequences [25–27]; a standard reference object (phantom) is used to assess and
benchmark the performance of an MRI scanner. Understanding how images are pro-
duced by a set of parameters and conditions enables MRI and medical researchers
to calibrate the imaging system as well as identify sources of variability and cor-
rective actions. In the case of a multi-centre evaluation [25–27], the benchmark
database allows the assessment of imaging sequences (product and custom-made)
and scanner’s stability (acquisitions over time, intra-scanner analysis), and highlight
the factors that may influence reliable and predictable results across the different
imaging systems (inter-scanner analysis).

Several approaches to automatic data processing and visualisation are presented
by every single platform publication [4, 8, 10]. The work presented by Davids et
al. [9] provides insights into automatic processing of phantom measurements, based
on the quality parameters recommended by the American College of Radiology
accreditation [22]. However, there is no discussion about interactive visualisation
tools for the interpretation of the results or traceability of data. One such solution,
outlined by Burmeister et al. [6], describes in detail the design guidelines in the
development of a platform for data preprocessing, cohort exploration and result
reporting. In spite of the cohort-driven nature of the solution, there are valuable
and practical lessons about the implementation of VA tools for data stratification,
hypothesis testing and data analysis.

In addition, a Quality Control (QC) system of neuroimaging data can be found
in [17]. This solution has been implemented to calculate QC metrics for various
modality images (sMRI, fMRI, DTI or CT), report image QC rating and visual
assessment performed by users. A general overview of the user interaction follows:
data selection (project, modality, data set, image, status, etc), QC Settings (i.e. metric
threshold) and visual inspection. To this extent, the system provides an evaluation
of data sets to users. Therefore, users know the quality of the data they are using
for analysing or as input in image processing workflows. In contrast to this work,
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CMRDiffMonitor is a domain and data specific tool focused on a multi-centre study
of cardiac DTI sequences in an isotropic phantom. There is no data quality ranking
or visual assessment by users.

3 Use Case

The main motivation to implement CMRDiffMonitor comes from a multi-centre
study (11 geographically dispersed research sites) to investigate intra- and inter-site
variation in DTI parameters in an isotropic phantom [2].

The experimental protocol is set up to scan a standardised phantom (7 tubes
filled with 0–20% polyvinylpyrrolidone [20], Fig. 1) using product and custom DTI
acquisition sequences with parameters matching typical cardiac DTI protocols: TR
= 3000 ms, TE = 85 ms, in-plane resolution = 2.5 mm, slices = 3, thickness = gap = 8
mm, blow= 100 s

mm2 , bhigh= 450 s
mm2 , number of diffusion directions = 6, bandwidth

∼ 3000 Hz, parallel imaging = 2x, and triggered with simulated ECG = 60 bpm. The
phantoms are chilled in icewater and imaged at 0 ◦C. Subsequent scans are performed
under the same conditions in a time lapse between 1 and 30 days.

MRI researchers have become increasingly interested in the utilisation of inter-
active visualisation tools to accelerate data analysis and enhance collaborative work.
This research project brought attention to Visual Analytics as a tool to track and
review the variability of Diffusion Anisotropy Indices (DAI) from different image
acquisition sequences across participant sites in time. The goal was to explore simple
VA techniques to provide the full picture of the multi-centre study. Therefore, the
project established the following requirements:

R1. Collect and organise DICOM data sets from each site.

R2. Process data sets to calculate DAI maps: Mean Diffusivity (MD) and Fractional
anisotropy (FA).

R3. Segment DAI maps and calculate statistics (minimum, maximum, mean, standard devi-
ation, etc.) in the Regions of Interest (ROI).

R4. Export DAI/ROI statistics in CSV format.

R5. Display a timeline of the data set uploads of each site.

R6. Display statistical results by filtering sites, DAI, ROI, acquisition sequence and param-
eters.

The baseline of the solution is the Human Heart Project infrastructure. Require-
ment R1 is managed by the Girder platform [18] which provides user authentication
and data management functionalities. Requirements R2, R3 and R4 are managed
by CMRDiffTools [23]. Figure 2 outlines the main components, workload pro-
cess and data flow. Figure 3 presents the image processing workflow performed
by CMRDiffTools.

Dynamic graphics (requirements R5 and R6) were requested in order to basically
provide two points of view of the original data (series of 2D MR images): first, the
temporal dimension of data sets; and second, the statistical measurements on the DAI
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Fig. 1 Isotropic Phantom, ROI and DAI maps. Photograph of phantom before filling with ice and
water (top left); layout of tubes and Regions of Interest (green circles, bottom left); MD and FA
maps (top right and bottom right respectively). Background image texture in the MD and FA maps
is caused by the ice

maps. The temporal dimension would give researchers the capacity to evaluate the
imaging system stability (monitor), while statistical measurements would quantita-
tively assess the reproducibility across the different scanners (benchmarking). The
next section presents the VA tool developed to address requirements R5 and R6.

4 Implementation

To fulfil requirements R5 and R6, a plug-in for the Girder platform [18] has been
developed using Plotly [15], and open-source graphing library. The plug-in is fed
with the statistical reports (CSV files, R4) in order to display a dashboard composed
of 4 interactive areas (Fig. 4):



296 W. A. Romero R. et al.

Fig. 2 Sequence diagram: main components and data flow

1. The filters panel is a dynamic interface where the user can select filter condi-
tions: DAI measure, ROI, acquisition sequence, acquisition parameters and field
strength.

2. Timeline view shows the performed acquisitions (per acquisition sequence) over
the course of time.

3. Sites panel lists all the sites in the study. The user can select the sites of interest.
4. Measure view displays the DAI value across the different sites for a selected ROI.

The Measure view is interactively updated according to the user selection on the
filters panel, timeline view and sites panel. The user interaction follows the “Visual
InformationSeekingMantra: overviewfirst, zoomandfilter, thendetails-on-demand”
[24] in order to provide an effortless pathway to extract information. As an example
of details-on-demand features, the mouse over action displays details of the data
according to the view. For instance, the mouse pointer over a bar on the measure
view will display: centre, sequence name, sequence parameters, acquisition date,
mean value, and standard deviation.
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Fig. 3 Image processing workflow

Fig. 4 Graphical User Interface (GUI) of the Girder plug-in. Components: 1 data filters, 2 timeline
view, 3 list of sites, and 4 measure view
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5 Discussion

According to Keim et al. [16], “Visual analytics combines automated analysis tech-
niques with interactive visualisations for an effective understanding, reasoning and
decisionmaking on the basis of very large and complex data sets”. The developed VA
tool, CMRDiffMonitor, allows MRI researchers to see, in a concise and accessible
way, the current status of the experiment. In a single eye glance, research scientists
can:

– Verify protocol compliance by checking time gaps on the timeline view.
– Identify anomalies by looking for unusual values on the measure view, using the
historical registry timeline view.

– Compare the outcomes with similar imaging systems from different sites by using
the filters panel to select: the type of sequence, the b values used to calculate DAI
maps (i.e. b0b450, b100b450, b300b450, etc.) and the field strength (1.5T, 3T or
7T).

– Verify and validate a hypothesis. The dashboard summarises the results for all
sites.

– Export experiment-specific figures for reporting.

The plug-in integrates simple visualisation techniques to empower research sci-
entists to explore data, analyse and share results. Moreover, the GUI reduces the
cognitive load of information, all the image post-processing settings are managed by
the back-end components (Girder, CMRDiffTools, etc.) as well as data sets details,
driving the user attention to one task: analyse the outcomes from different imaging
systems and cardiac DTI sequences.

As an example of reporting, representative MD across tubes between 2 dif-
ferent scans (time delay within 30 days) are shown in Fig. 5. At 0% PVP, the
average MD (mean ± standard deviation across scanners) between scans were
(1.149 ± 0.032) × 10−3 mm2

s and (1.159 ± 0.049) × 10−3 mm2

s respectively,while the
coefficient of variation at Scan 1 was 1.9 ± 1.4%. Ground truth diffusivity Dref

(H2O), corresponding to 0% PVP, extrapolated from [19] was 1.113 × 10−3 mm2

s .
Partial results of the analysis of product DTI sequences have been reported in [26,

27].
The current plug-in version is the result of a first development cycle. Indeed,

improvements and new functionalities will be implemented according to the devel-
opment of the project. Nonetheless, lessons learnt may help towards future projects
supported by the Human Heart Project.
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Fig. 5 MD across sites and tubes between two different scans (mean ± standard deviation across
ROI). Figure reproduced from [27]

6 Conclusions and Future Work

DTI benchmark databases are used in the context of the imaging sequence harmonisa-
tion as well as QA protocols. A standard reference object (phantom) is used to assess
and benchmark the performance of an MRI scanner. Understanding how images are
produced by a set of parameters and conditions enablesMRI andmedical researchers
to calibrate the imaging system as well as identify sources of variability. VA tools
can streamline the analysis of extensive data sets of in vitro MR images through
interactive data exploration in order to filter and display parameters of interest in an
easily interpretable format.

In the context of amulti-centre study to investigate the inter- and intra-site variation
of cardiac DTI sequences, CMRDiffMonitor, VA tool has been developed. This
solution enables MRI researchers to track and review the variability of DAI from
different image acquisition sequences. The CMRDiffMonitor’s dashboard displays
a temporal overview of the data sets (monitoring of the system stability) and the
statistical measurements in ROIs on a DAI map (benchmarking of the different
imaging sequences and systems). Future work will focus on the visualisation of the
source image (DAI map) based on the user selection over a statistical measurement.
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