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Abstract Fourteen districts were identified as landslide prone in Sri Lanka. These
districts fall in the wet and intermediate climatological zones where annual rain-
fall is over 2000 mm. Short term heavy rainfall and long term cumulative rainfalls
are active factors for landslide occurrences. In this study, to enhance the landslide
prediction capacity and accuracy, two indices were analyzed; Short Term Rainfall
Index—1.5 h. half period Working Rainfall and Long-Term Rainfall Index—Soil
Water Index. Also, regional critical Soil Water Index values were evaluated for the
analysis of regional geological and other parametric impact on landslides. Hydrolog-
ical Tank Model simulations were used to calculate Soil Water Index and to predict
landslides with snake curves and probability curves. In regional aspect, tank model
parametric analysis was carried in determination of suitable parameter set for each
soil conditions. Rainfall intensity acts as the main contributing factor for Soil Water
Index. With probability curves, better predictions were obtained on regional based
soil water index of greater than 100 values to identify the landslide occurrences
even though the Short-Term rainfall did not exceed 10 mm. Region-wise Critical
Soil Water Indexes were obtained by critical lines with soil parameters derived for
Sri Lankan soil conditions. Better practices on landslide early warnings could be
performed through these derived regional long-term Soil Water indexes. As a future
development, it is expected to develop warning levels based on these critical values.

1 Introduction

Quantifying the probability of landslide risk associated with heavy rainfall is neces-
sary for a mountainous country (Shuin et al., 2014) like Sri Lanka to mitigate the
damages for people and property due to landslide occurrences. Rainfall thresholds
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for slope failures are essential information for establishing early-warning systems
and for disaster risk reduction (Lin et al., 2020). National Building Research Organ-
isation uses cumulative rainfall values for predicting landslide early warnings. 24 h
cumulative rainfall is used for issuing landslide earlywarnings and categorizing them
in to levels of risk: Watch for 75 mm and above, Alert for 100 mm and above, and
Evacuation for 150 mm and above. These levels of risk were derived by previous
researches. Rainfall affects for landside events in short term precipitation and long
term precipitation. Later researches carried in finding the best long term and short
term rainfall indices. As a resultant 1.5 h. half period working rainfall (1.5WR) and
Soil water index were declared as the best short term rainfall index and the long term
rainfall index respectively (Rajapaksha et al., 2019).

For enhancing the existing landslide early warning system, the concern was given
on the soil water balance triggered by the rainfall in which represented by the soil
water index (SWI). The objective of this study is to derive regional base critical SWI
values as threshold values for issuing landside early warnings.

The Soil Water Index provides estimations on average amounts of water stored in
the soil.Application of SWIhelps to clarify the risk of landslide.Rainwater penetrates
through the ground surface and discharges into the rivers or flows into the deeper
ground. As the amount of water stored in soil increases, the risk of land slope collapse
increases (Japan Meteorological Agency, 2018). Tank model which commonly used
to estimate the relationship of rainfall and runoff is used for the SWI calculation.
Tank Model is a conceptual model which simulates the moving behavior of water
in the soil layers including runoff, infiltration and percolation (Hsu et al., 2018).
Tank model used in this study consist of three tanks (Matlan et al., 2018) downward
along the vertical soil profile namely: surface runoff, Intermediate and Ground water
outflow (Fig. 1). At different levels of soil depths, different soil textures have various
values of rates of discharges and infiltrations. In the tank model, each tank has a side
outlet representing outflow to the surrounding soil and a bottom outlet representing
outflow to deeper ground. Output from the side outlet of the first tank corresponds
to surface runoff, that of the second tank corresponds to intermediate flow, and that
of the third tank corresponds to base flow (Ground water outflow). Input to the first
tank corresponds to rainfall, and input to the second and Third tanks is output from
the bottom outlet of the upper tank (infiltration runoff) stored in soil of certain areas,
helping to clarify the risk of landslide-related incidents caused by heavy rain (Japan
Meteorological Agency, 2018).

The Japanese derived parameter sets including three parameter sets (Hsu et al.,
2018) were used to study the regional characteristics of the moving behavior of
the water. The three parameter sets were calibrated using mountainous small sub
basins in Japan (Ishihara & Kobatake, 1979). One of the parameter set is utilized
to evaluate landslide risks and practically applied to issue landslide early warnings
by Japan Meteorological Agency and local governments. Therefore, applicability of
the parameter sets for landslide warnings in Sri Lanka was evaluated in this study
by validating the parameters based on Sri Lankan geological conditions. P1 is a
moderate parameter set calibrated in Granite-dominant catchments. P2 parameter set
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Fig. 1 Tank model

is for basins with gentle discharge increase and small discharge peak; P3 parameter
set is for basins with rapid discharge increase and large discharge peak (Table 1).

1.1 Study Area

In Sri Lanka, 14 districts; Badulla, Ratnapura, Kandy, Nuwara Eliya, Kegalle,
Kurunegala, Matale, Kalutara, Galle, Matara, Hambanthota, Moneragala, Colombo
and Gampaha, have been identified for being prone to landside risk. Figure 2 shows
the sub basins derived by using ArcGIS for the selected discharge gauging stations
functioning under the Department of Irrigation. From this study area, it covers almost
all the districts except Matale, Kurunegala, Colombo, Gampaha and Hambanthota.
Few of the sub basins spread over two or more districts. Some of the sub basins
consist of sub catchments (Table 2).
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Fig. 2 Study area; the
distribution of sub basins

2 Materials and Methodology

2.1 Data Collection

Secondary data were used in the process of the analysis. The data collected for the
analysis are tabulated in Table 3.

2.2 Process of Analysis

In the process of analysis, the flow of the tasks carried in this studymainly focused on
developing the existing system of issuing landside early warnings focusing on SWI
values which triggered by rainfall. Past data records of real time 30 min. rainfall data
were collected for calculating 1.5WR and the SWI for each catchment and sub basin.
ArcGIS software was utilized for deriving sub basins and catchments of sub basins
using Thiessen polygon and for the calculation of area of the sub basins which are
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Table 2 Study area; sub basins for the analysis

Sub basin Sub catchments Bordering
districts

River basin Area (km2)

Norwood – Nuwara Eliya,
Ratnapura,

Kelani river 92.47

Deraniyagala – Kegalle Kelani river 154.49

Holombuwa – Galle,
Kalutara,
Ratnapura,
Matara

Gin gaga Neluwa-171.891
Pallegama-190.727

Thawalama Neluwa Pallegama Matara,
Ratnapura

Nilwala Bengamuwa-13.59
Urubokka-35.83
Olampe-26.36

Urawa Bengamuwa
Urubokka
Olampe

Moneragala
Badulla

Kirindi Wellawaya-95.62
Bandarawela-75.17

Wellawaya Wellawaya
Bandarawela

Moneragala
Badulla

Kubukkan Oya 217.29

Nakkala – Nuwara Eliya
Ratnapura

Mahaweli 182.46

Calidoniya – Kandy,
Nuwara Eliya

Mahaweli 185.46

Nawalapitiya – Kandy, Nuwara
Eliya

Mahaweli 185.46

Table 3 Data used in the analysis

Task Tank model parameters calibration and
validation

SWI calculation (deriving critical lines and
critical SWI values)

Data Past 30 min. rainfall data records for derived
sub basins and sub catchments from year
2016 to year 2019

Past 30 min. rainfall
data records for derived sub basins and sub
catchments from year 2014 to year 2020

Observed hourly discharge data from year
2016 to year 2019

Past Landslide records from 2014 to 2020

Other related data (geology,
elevation, land use) maps

Tank model parameter data

utilized on the tank model. When deriving catchments, the sub basin was divided
into the number of sub partitions considering the consisting number of automated
rain gauge stations within the sub basin.

A calibration process was carried out with a final validation process to certify the
regional wise changes in tank model parameters. These confirmed, tested parameters
were used for deriving the regional SWI critical values useful for issuing landside
early-warnings. In testing the parameters, the patterns of the observed discharges and
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calculated discharges were graphically compared and analyzed statistically. RMSE
(Root Mean Square Error) and NSE (Nash–Sutcliffe model efficiency coefficient)
(Vasconcellos et al., 2020) were used as the statistical analyzing methods. RMSE
(RootMean Square Error) is used to express how close the observed data points are to
the model’s predicted values. The Nash–Sutcliffe efficiency (NSE) is a normalized
statistic that determines the relative magnitude of the model’s simulated variance
compared to the measured data variance.

2.2.1 Calibration of the Tank Model Parameters

A developed macro program was used to analyze the hydro graphs of simulated and
observed discharges in each basin to identify the best matching parameter-set.

Tank model parameters were calibrated with the observed and calculated
discharges of the sub basins. In calculating the sub basin discharges, the average
rainfall time series in the sub catchments were inputted to the tank model. Calcu-
lated discharges of the sub catchments were added together to obtain total discharges
of the sub basins which consist of sub catchments.

The patterns of the simulated discharges and observed discharges were compared
by plotting hydro graphs for the selected periods which had heavy rainfall.

The values of simulated and observed were statistically tested using RMSE and
NSE for the selection of the identical parameter set which RMSE is closer to zero
and NSE is closer to 1 (Vasconcellos et al., 2020).

2.2.2 Rainfall-Landslide Correlation Analysis Using SWI Calculations

A developed macro program was run to calculate SWI values and deriving critical
lines and to define critical SWI values. The function of SWI was used to give an
indication on the level of soil moisture in the area of landslide. The balance water
quantity along the vertical soil profile was assumed as SWI value in the calcula-
tion. The outputs of SWI calculation were graphically represented via snake curves.
The SWI equals to the total storage volume of three tanks laid vertically in series.
The storage volume on each tank can be calculated using the following equations:
(Sugawara, 1972).

I1(t) = β1 ×
(
H1(t) − (L1 + L2)(t)

); (I1, I2, I3 : Infiltration rates of Tank 1, Tank 2 and Tank 3)

I2(t) = β2 ×
(
H2(t) − L3(t)

)

I3(t) = β3 ×
(
H3(t) − L4(t)

)

�S1 = RF(t) − Q1(t) + Q2(t)− I1(t); (�S1, �S2, �S3 : Water retention in Tank 1, Tank 2 and Tank 3)

�S2 = I1(t)− Q3(t)− I2(t)

�S2 = I2(t)− Q4(t)− I3(t)

SWI = �S1 + �S2 + �S3.
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The calculated 1.5 WR and SWI time series and points of landslide occurrence
were plotted together on snake curve charts to identify correlations between the
landslide occurrence and triggering rainfall. Snake curve charts are scatter line charts
consisting of short term rainfall index axis (Y axis) and long term rainfall index
axis (X axis). Finally, CL was defined on a boundary of landslide occurrence and
non-occurrence using Gaussian distributions.

3 Results and Discussion

3.1 Parameter Calibration and Validation

Based on the hydrographs as illustrated in Fig. 3a–e fittingness of parameter sets
analyzed were tabulated in the Table 4. The regional parameter sets were certified
depending on the RMSE values and NSE values. The parameter calibration was done
by using the time series of the largest rainfall events from 2016 to 2019; moreover,

a. Nakkala Basin b. Thawalama Basin

c. Calidoniya Basin (Calibrated results) d.Urawa Basin

e. Calidoniya Basin (Validated results)

Fig. 3 Graphical representation of simulated discharges (Orange color) and observed discharges
(blue color) with the real time observed rainfall (grey color)
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Table 4 Analysis of tank model parameters

Basin District Parameter sets
obtained by calibration with
major rainfall events

Parameter sets
obtained by
validation with minor
rainfall events

Defined
parameter
set for
each basin

Parameter NSE Parameter NSE

Holombuwa Kegalle P3 0.63 P1
P3

0.71
0.63

P3

Nawalapitiya Kandy,
Nuwara
Eliya

P3 0.60 P3 0.30 P3

Nakkala Moneragala P3 0.85 P1
P3

0.44
0.40

P3

Wellawaya Moneragala P3 0.71 NA/(P1) (−0.88) P3

Deraniyagala Kegalle P1
P2
P3

0.61
0.66
0.56

P2
P3

0.29
0.35

P2

Norwood Nuwara
Eliya

P2 0.60 P2 0.32 P2

Thawalama Galle,
Kalutara,
Rathnapura,
Matara

P2 0.83 P2 0.28 P2

Urawa Matara,
Ratnapura

N/A(P2) (−0.24) N/A(P2) (−0.69) P2

Caildoniya Nuwara
Eliya

N/A (P1) (−0.18) P1 0.45 P1

the parameter validation was done by using minor rainfall event data in 2019. The
parameters in 7 basins of the total 9 basins showed reasonable reproducibility of the
river discharge in the calibration periods (Table 4, NSE: 0.60–0.85). On the other
hand, the NSE values in the validation periods were relatively low. It suggests that
the tank model simulation is reasonable for major rainfall events in the calibration
periods, but is relatively imprecise for minor rainfall events in the validation periods.
The purpose of this analysis is to utilize the tank model for landslide early warnings.
Therefore, accuracy during major rainfall events is critical for the purpose. NSE
values of the 2 basins were negative even during major rainfall events in the calibra-
tion periods. However, it seems to be caused by overestimation of rainfall amount.
Figure 3d, e shows the hydrographs of Urawa and Calidoniya in the calibration
periods. The exceeding of simulated discharge was generated by the high observed
rainfall. This observed rainfall values are assumed as overestimations, because total
rainfall amounts were much higher than the amount of observed discharge. It seems
that the rainfall gauging stations in the basins observed severe rainfall which occurred
in a limited narrow area in a short period. Focusing on the increase and decrease rate
of discharge except the peaks of rainfall, the trends of discharge increasing and
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decreasing have similar gradient in both simulated and observed discharge (Fig. 3d,
e). Hence, it was concluded that the parameter sets of the tank model are reasonable
to be applied for landslide early warnings during major rainfall events in Sri Lankan
basin.

Hygrograph of discharges of Nawalapitiya basin (Fig. 3a) represents the char-
acteristics of P3 parameter set. This parameter set create a sharp peak at a highest
discharge. At the same time, hydrograph of discharges of Thawalama basin (Fig. 3b)
represents the characteristics of P2 parameter set which give gentle peak discharges
while the hydrograph of discharges of Caledonia basin (Fig. 3c) represents the
characteristics of P1 parameter set which generate moderate peak discharges.

Figure 3a–e represent the time series hydrographs of discharges; y axis Left- side
discharge (cumecs), y-axis Right-side Rainfall (mm)) at Nakkala Basin, Thawalama
Basin, Calidoniya Basin (calibrated results), Nakkala Basin and Calidoniya Basin
(validated results).

These parameters depend the on the geology, slope, land use, land cover and etc.
In the analysis of geology in the sub basins, as an overall, the gneiss is the popular
geology in the study area. With few differences, a similar geology distribution is
seen in the respective basins. Therefore, the difference of tank model parameters in
the basin is seemingly caused by other factors. The basins located in the southern
area is the P2-gentle peak area; whereas, the basins in northern area is P3-sharp
peak area. The mean slope in the P2 basins (15.4°) is steeper than P3 (13.7°) even
though the discharge peaks in P3 are sharp. Thus, it seems that land cover and
rainfall pattern affect the difference of runoff characteristics. Large amount and long
period rainfall in the southwest slopes of Sri Lanka is usually caused by southwest
monsoon. The rainfall causes dense forest and high infiltration; eventually, relatively
gentle discharge peaks are seemingly generated in the southern area.

The clarified parameters mentioned above in Table 4 were used to calculate SWI
and determine Critical Lines.

3.2 Rainfall-Landslide Correlation Analysis

The calculated 1.5 WR and SWI time series and points of landslide occurrence were
plotted together on snake curve charts and time series charts to identify the rainfall-
landslide correlation trigged by rainfall.

The calculated results of 1.5WR, SWI, equal rainfall probability lines and disaster
records at nine representative sub basins of river basins are shown on the snake curve
charts of automated rainfall gauging stations within or closer to the derived sub
basins operated by National Building Research Organization of Sri Lanka which
are respectively located in the central hills, southeastern, northwestern, southern and
southwestern sub-area of the study area. Calculated equal probability lines were also
plotted together on the snake curve charts (Fig. 4).
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Fig. 4 Regional critical Lines derived by probability curves Gaussian distribution and determined
CSWI values x axis-SWI values y axis
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Table 5 Soil Water index values with probability lines determined by Gaussian distribution

Basin Boundary districts Probability of critical line using
Gaussian Distribution (p value)

Critical SWI

Calidoniya Nuwara Eliya, Ratnapura 0.005 132

Norwood Nuwara Eliya, Ratnapura 0.04 117

Holombuwa Kegalle 0.04 134

Deraniyagala Kegalle 0.02 154

Nawalapitiya Kandy, Nuwara Eliya 0.005 117

Nakkala Badulla, Moneragala 0.04 114

Wellawaya Badulla, Moneragala 0.005 101

Thawalama Galle, Matara, Ratnapura,
Kalutara

0.005 128

Urawa Matara, Rathnapura 0.005 127

As illustrated in Fig. 4a–i represent the SWI snake curve charts of Deraniya-
gala basin, Calidoniya basin, Holombuwa basin, Nakkala basin, Nawalapitiya basin,
Norwood basin, Thawalama basin, Urawa basin and Wellawaya basin, respectively.

Critical lines (represent in blue dashed lines in Fig. 4.) were determined by
selecting the probability lines on a boundary of landslide occurrence and non-
occurrence using Gaussian distributions. For some basins, the critical line was deter-
mined on boundary of landside less occurrence and high frequent occurrence where
the minimal occurrences take place below probability lines.

Table 5 shows the estimated critical value of SWI and p values of equal probability
lines of estimated critical lines. The critical SWI ranged from 101 to 154. Even if
the 1.5 WR is lower than 10 mm, the past landslides were caused by the high SWI
condition. The equal probability line of 0.005 p value was determined as a critical
line at 5 basins out of 9 basins.

Heavy rainfalls experienced at SouthWestMonsoon (May–September) andNorth
East Monsoon (December–February). Generally, in these periods, the heavy rainfall
events continue for more than 10 days. Hence the cumulative rainfall is higher in
the regions which affected by heavy rainfall, water retention in the soil increases
and reaches to saturated level. After the saturation of soil water, the excess rainfall
directly impacts on the slope stability. High values of SWI have a significant impact
on destabilizing the slope. As an overall, the determined Critical Soil Water Indexes
(CSWI) are above 100. Therefore, at a heavy rainfall event, if the SWI exceeds the
limit of hundred, a certain landside occurrence risk could be expected in the landside
prone regions.
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4 Conclusion

Destabilization of slope depends on rainfall intensity, steepness of terrain and soil
water content. Both the Short-term rainfall index (1.5 h. half periodWorkingRainfall)
and the Long-term rainfall index (SWI) are useful for measuring the impact of short
term and long-term rainfall intensities for the occurrence of landsides. Monsoonal
activities directly impact on increasing the soil water storage due to the continuous
heavy rainfall. A reasonable estimation of soil water amount could be obtained by
SWI within the rainy season. The minimum regional threshold value of SWI for the
occurrence of landslides is hundred. The range of regional SWI threshold values
varies in between 100 and 160 for Sri Lankan soil texture for destabilizing the
slopes. The threshold values of regional SWI can thus contribute to the development
of effective early warning and evacuation system of Sri Lanka. In the periods of
application, these findings revealed that the good prediction practices for landslide
predictions for real cases taken place. It is expected to continue the collection of
rainfall data and landslide records to improve early warnings by deriving warning
levels based on these SWI values and evaluating SWI index values for predicting
cutting failures which unstable the slope stability as future developments.
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