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Abstract The dynamic mode decomposition (DMD) is a data-driven method used
for identifying the dynamics of complex nonlinear systems. It extracts important
characteristics of the underlying dynamics using measured time-domain data pro-
duced either by means of experiments or by numerical simulations. In the original
methodology, the measurements are assumed to be approximately related by a linear
operator. Hence, a linear discrete-time system is fitted to the given data. However,
often, nonlinear systems modeling physical phenomena have a particular known
structure. In this contribution, we propose an identification and reduction method
based on the classical DMD approach allowing to fit a structured nonlinear system
to the measured data. We mainly focus on two types of nonlinearities: bilinear and
quadratic bilinear. By enforcing this additional structure, more insight into extracting
the nonlinear behavior of the original process is gained. Finally, we demonstrate the
proposed methodology for different examples, such as Burgers’ equation and the
coupled van der Pol oscillators.

1 Introduction

Mathematical models are commonly used to simulate, optimize, and control the
behavior of real dynamical processes. A common way to derive those models is to
use the first principles, generally leading to a set of ordinary or partial differential
equations. For high complex dynamics, fine discretization leads to high fidelity mod-
els, which require numerous equations and variables. In some situations, the high
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model is given as a black box setup, i.e., by solvers that allow the computation of the
full-model states for a given set of initial conditions and inputs, but does not provide
the dynamical system realization. In order to better understand such dynamics pro-
cesses, it is often beneficial to construct surrogate models using simulated data. This
justifies the development of identification or data-driven model reduction methods.
Indeed, with the ever-increasing availability of measured/simulated data in different
scientific disciplines, the need for incorporating this information in the identification
and reduction process has steadily grown. The data-driven model reduction problem
consists of determining low-order models from the provided data obtained either by
experimentation or numerical simulations. Methods such as DynamicMode Decom-
position (DMD) have drawn considerable research endeavors.

DMD is a data-driven method for analyzing complex systems. The purpose is to
learn/extract the important dynamic characteristics (such as unstable growth modes,
resonance, and spectral properties) of the underlying dynamical system by means of
measured time-domain data. These can be acquired through experiments in a practical
setup or artificially through numerical simulations (by exciting the system). It was
initially proposed in [29] in the context of analyzing numerical and experimental
fluid mechanics problems. Additionally, it is intrinsically related to the Koopman
operator analysis, see [22, 27]. Since its introduction, several extensions have been
proposed in the literature, e.g., the exact DMD [31], the extended DMD [11], and
the higher order DMD [20]. Also, in order to address control problems, DMD with
control inputs was proposed in [25], and then extended to the case where outputs
are also considered in [1, 9]. The reader is referred to [19] for a comprehensive
monograph on the topic.

Often, nonlinear systems modeling physical phenomena have a particular known
structure, such as bilinear and quadratic terms. In the present work, our primary
goal is to embed nonlinear structures in the DMD framework. To this aim, we pro-
pose an identification and data-driven reduction method based on the classical DMD
approach allowing to fit a bilinear and quadratic-bilinear structures to the measured
data. The choice to fit such terms is due to the fact most systems with analytical non-
linearities (e.g., rational, trigonometrical, polynomial) can be exactly reformulated
as quadratic-bilinear systems [15]. Our work is rooted in the two variants, DMD
with control and input-output DMD, and can be considered as an extension of those
methodologies.

There exist vast literature on learning nonlinear dynamics from data, and we
review the most relevant literature for our work. One approach is the so-called
Loewner framework, which enables to construct low-order models from frequency-
domain data. It was initially proposed in [21], and later extended to bilinear [3] and
quadratic-bilinear case [14]. Another approach is the operator inference, proposed
[24]. This approach infers polynomial low-order models as a solution of a least-
squares problem based on the initial conditions, inputs, and trajectories of the states.
This approach was recently extended to systems with non-polynomials [8]. Also, the
authors in [26] show how the use of lifting transformations can be beneficial to iden-
tify the system. Finally, the approach proposed in [23] introduces a method based on
operator inference enabling to learn exactly the reduced models that are traditionally
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constructed with model reduction. It is worth mentioning that the operator inference
approach [24] can be seen as an extension to DMD for nonlinear systems. Indeed,
in this framework, the reduced-order model is allowed to have polynomial terms on
the state and its matrices are obtained by solving a least-squares problems. The main
difference is that this optimization problem is set using the reduced trajectories as
the data (see the introduction of [24] for more details).

In this work, we aim at fitting nonlinear model structures using the DMD setup,
i.e., by using the full-model trajectories, which is the main difference from [24].
Additionally, besides the quadratic structure on the state, we also consider reduced-
order models having bilinear structure on the state and input.

The rest of the paper is organized as follows. Section 2 recalls some results on
the classical DMD, DMD with control, and the input-output DMD. In Sect. 3, we
present the main contribution of the paper, which is the incorporation of bilinear and
quadratic-bilinear terms in the DMD setup. Finally, in Sect. 4, we demonstrate the
proposed methodology for different examples, such as Burgers’ equation and the
coupled van der Pol oscillators.

2 Dynamic Mode Decomposition

In this section, we briefly recall the classical DMD framework [29]. To this aim,
we analyze time-invariant systems of ordinary differential equations (ODEs) written
compactly in a continuous-time setting as follows:

ẋ(t) = f (x(t)), (1)

where x(t) ∈ R
n is the state vector and f : Rn → R

n is the system nonlinearity.
By means of sampling the variable x in (1) at uniform intervals of time, we collect

a series of vectors x(tk) for sampling times t0, t1, . . . , tm . For simplicity, denote
xk := x(tk).

DMD aims at analyzing the relationship between pairs of measurements from
a dynamical system. The measurements xk and xk+1, as previously introduced, are
assumed to be approximately related by a linear operator for all k ∈ {0, 1, . . . ,m −
1}.

xk+1 ≈ Axk, (2)

where A ∈ R
n×n . This approximation is assumed to hold for all pairs of measure-

ments. Next, group together the sequence of collected snapshots of the discretized
state x(t) and use the following notations:

X = [
x0 x1 . . . xm−1

] ∈ R
n×m, Xs = [

x1 x2 . . . xm
] ∈ R

n×m . (3)

The DMD method is based on finding a best-fit solution of an operator A so that the
following relation is (approximately) satisfied
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Xs = AX, (4)

which represents the block version of Eq. (2). Moreover, the above relation does not
need to hold exactly. Previous work has theoretically justified using this approximat-
ing operator on data generated by nonlinear dynamical systems. For more details,
see [30]. A best-fit solution is explicitly given as follows:

A = XsX†, (5)

where X† ∈ R
m×n is the Moore-Penrose inverse of matrix X ∈ R

n×m . In the above
statement, by “best-fit” it is meant the solution that minimizes the least-squares error
in the Frobenius norm (see [9]). More precisely, the matrix A in (5) is the solution
of the following optimization problem:

arg min
Â∈Rn×n

(
‖Xs − ÂX‖F

)
. (6)

The so-called DMD modes are given by the eigenvectors of matrix A in (5),
collected in matrix T with A = T�T−1. These spatial modes of system (1) are
computed at a single frequency and are connected to the Koopman operator, see
[22].

In this work, we will mainly focus on the construction of the reduced-order model
rather than the evaluation of the DMD modes.

2.1 Dynamic Mode Decomposition with Control (DMDc)

Dynamic mode decomposition with control (DMDc) was introduced in [25] and it
modifies the basic framework characterizingDMD. The novelty is given by including
measurements of a control input u(t) ∈ R. It is hence assumed that the dynamics of
the original system of ODEs includes an input dependence, i.e.,

ẋ(t) = f (x(t), u(t)), (7)

which represents a directs extension of (1). In (7), it is assumed that f : Rn × R →
R

n . Then, continue as in the classical DMD case without control to collect a dis-
cretized solution x at particular time instances.

In this setup, a trio of measurements are now assumed to be connected. The goal
of DMDc is to analyze the relationship between a future state measurement xk+1

with the current measurement xk and the current control uk .
The motivation for this method is that, understanding the dynamic characteristics

of systems that have both internal dynamics and applied external control is of great
use for many applications, such as for controller design and sensor placement.
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The DMDc method is used to discover the underlying dynamics subject to a
driving control input by quantifying its effect to the time-domain measurements
corresponding to the underlying dynamical system.

A pair of linear operators represented by matricesA ∈ R
n×n andB ∈ R

n provides
the following dependence for each trio of measurement data snapshots (xk+1, xk,uk)

xk+1 = Axk + Buk, 0 ≤ k ≤ m − 1. (8)

Next, denote the sequence of control input snapshots with

U = [
u0 u1 . . . um−1

] ∈ R
1×m . (9)

The first step is to augment the matrix X with the row vector U and similarly group
together the A and B matrices by using the notations:

G = [A B] ∈ R
n×(n+1), � =

[
X
U

]
∈ R

(n+1)×m . (10)

The matrix G introduced above will be referred to as the system matrix since it
incorporates the matrices corresponding to the system to be fitted.

By letting the index k vary in the range {0, 1, . . . ,m − 1}, one can compactly
rewrite the m equations in the following matrix format:

Xs = AX + BU = [A B]
[
X
U

]
:= G�. (11)

Thus, similar to standard DMD, compute a pseudo-inverse and solve for G as

G = Xs�
† ⇒ [A B] = Xs

[
X
U

]†

. (12)

ThematrixG ∈ R
n×(n+1) in (12) is actually the solution of the following optimization

problem:

arg min
Ĝ∈Rn×(n+1)

(∥∥∥Xs − Ĝ
[
X
U

] ∥∥∥
F

)
. (13)

To explicitly compute the matrix in (12), we first find the singular value decomposi-
tion (SVD) of the augmented data matrix � as follows

� = V�WT ≈ Ṽ�̃W̃T , (14)

where the full-scale and reduced-order matrices have the following dimensions:
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{
V ∈ R

(n+1)×(n+1), � ∈ R
(n+1)×m, V ∈ R

m×m,

Ṽ ∈ R
(n+1)×p, �̃ ∈ R

p×p, Ṽ ∈ R
m×r .

The truncation index is denoted with p, where p � n. The pseudo-inverse �† is

computed using the matrices from the SVD in (14), i.e., as �† ≈ W̃�̃
−1
ṼT .

By splitting up the matrix VT as ṼT = [ṼT
1 ṼT

2 ], recover the system matrices as

A = XsW̃�̃
−1
ṼT

1 , B = XsW̃�̃
−1
ṼT

2 . (15)

As mentioned in, there is one additional step. By performing another (short) SVD of
the matrix Xs , write

Xs ≈ V̂�̂ŴT , (16)

where V̂ ∈ R
(n+1)×r , �̂ ∈ R

r×r , V̂ ∈ R
m×r . Note that the two SVDs will likely

have different truncation values. The following reduced-order approximations of A
and B are hence computed as

Ã = V̂TAV̂ = V̂TXsW̃�̃
−1
ṼT

1 V̂ ∈ R
r×r , B̃ = V̂TB = V̂TXsW̃�̃

−1
ṼT

2 ∈ R
r .

(17)

2.2 Input-Output Dynamic Mode Decomposition

In this section, we discuss the technique proposed in [1] known as input-output
dynamic mode decomposition (ioDMD). This method constructs an input-output
reduced-order model and can be viewed as an extension of DMDc for the case
with observed outputs. As stated in the original work [1], this method represents
a combination of POD and system identification techniques. The proposed method
discussed here is similar in a sense to the algorithms for subspace state-space system
identification (N4SID) introduced in [32] and can be also applied to large-scale
systems.

We consider as given a system of ODEs whose dynamics is described by the
same equations as in (7). Additionally, assume that observations are collected in the
variable y(t) ∈ R, as function of the state variable x and of the control u, written as

y(t) = g(x(t), u(t)), (18)

where g : Rn × R → R.
As before, the next step is to collect snapshots of both variable x(t) and of the out-

put y(t) sampled at some positive time instances t0, t1, . . . tm−1. Again, for simplicity
of the exposition, denote with yk := y(tk).
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We enforce the following dependence for each trio ofmeasurement data snapshots
given by (yk, xk,uk)

yk = Cxk + Duk, 0 ≤ k ≤ m − 1. (19)

Afterward, collect the output values in a row vector as follows:

Y = [
y0 y1 . . . ym−1

] ∈ R
1×m . (20)

The ioDMDmethod aims at fitting the given set of snapshot measurements collected
in matricesXs,X and vectorsU andY to a linear discrete-time system characterized
by the following equations:

Xs = AX + BU,

Y = CX + DU,
(21)

where, as before, A ∈ R
n×n and B ∈ R

n , and also CT ∈ R
n, D ∈ R. Note that the

first equation in (21) exactly corresponds to the driving matrix equation of DMDc
presented in (12). Moreover, write the system of equations in (21) compactly as

[
Xs

Y

]
=

[
A B
C D

] [
X
U

]
. (22)

Next, we adapt the definition of the system matrix G from (10) by incorporating an
extra line as follows:

G =
[
A B
C D

]
∈ R

(n+1)×(n+1), (23)

while � =
[
X
U

]
∈ R

(n+1)×m is as before. Introduce a new notation that will become

useful also in the next sections. It represents an augmentation of the shifted state
matrix Xs with the output observation vector Y, i.e.,

� =
[
Xs

Y

]
∈ R

(n+1)×m . (24)

Again, the solution of Eq. (22) will be computed as a best-fit type of approach.
Hence, similarly to theDMDccase, recover thematricesA,B,C, andDby computing
the pseudo-inverse of matrix � and writing

G = ��† ⇒
[
A B
C D

]
=

[
Xs

Y

] [
X
U

]†

. (25)
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The matrix G ∈ R
(n+1)×(n+1) in (12) is actually the solution of the following opti-

mization problem:

arg min
Ĝ∈R(n+1)×(n+1)

(∥∥∥
[
Xs

Y

]
− Ĝ

[
X
U

] ∥∥∥
F

)
. (26)

Similar to the procedure covered in Sect. 2.1, one could further lower the dimension
of the recovered system matrices by employing an additional SVD of the matrix �,
as was done in (16).

3 The Proposed Extensions

In this section, we present the main contribution of the paper. We propose extensions
of the methods previously introduced in Sects. 2.1 and 2.2, e.g., DMDc and, respec-
tively, ioDMD to fit nonlinear structured systems.More specifically, the discrete-time
models that are fitted using these procedures will no longer be linear as in (21); the
new models will contain nonlinear (bilinear or quadratic) terms.

3.1 Bilinear Systems

Bilinear systems are a class of mildly nonlinear systems for which the nonlinearity is
given by the product between the state variable and the control input. More exactly,
the characterizing system of ODEs is written as in (7) but for a specific choice of
mapping f , i.e., f (x,u) = Ax + Nxu + Bu. Additionally, assume that the observed
output y depends linearly on the state x. Hence, in what follows, we will make use
of the following description of bilinear systems (with a single input and a single
output):

ẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t),
(27)

where the matrix N ∈ R
n×n scales the product of the state variable x with the con-

trol input u. In practice, bilinear control systems are used to approximate nonlinear
systems with more general, analytic nonlinearities. This procedure is known as Car-
leman’s linearization; for more details see [28].

Bilinear systems are a class of nonlinear systems that received considerable atten-
tion in the last four or five decades. Contributions that range from realization theory
in [16], classical system identification in [12], or to subspace identification in [13].
In more recent years (last two decades), model order reduction of bilinear systems
(in both continuous- and discrete-time domains) was extensively studied with con-
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tributions covering balanced truncation in [33], Krylov subspace methods in [10],
interpolation-basedH2 method in [4, 6], or data-driven Loewner approach in [3, 17].

3.1.1 The General Procedure

We start by collecting snapshots of the state x for multiple time instances tk . We
enforce that the snapshot xk+1 at time tk+1 depends on the snapshot xk in the following
way:

xk+1 = Axk + Nxkuk + Buk, for 0 ≤ k ≤ m − 1. (28)

We denote the sequence of state and input snapshots as in (3) and in (9). Again, by
varying the index k in the interval {1, 2, . . . ,m − 1}, one can compactly rewrite the
m − 1 equations in the following matrix format:

Xs = AX + NXUD + BU, (29)

where UD = diag(u0, u1, . . . , um−1) ∈ R
m×m . One can hence write U = LUD, with

L = [1 1 . . . 1] ∈ R
1×m and then introduce the matrix Z ∈ R

(n+1)×m as

Z =
[
LUD

XUD

]
=

[
L
X

]
UD. (30)

The next step is to augment the matrix X with matrix Z and denote this new matrix
with � ∈ R

(2n+1)×m as an extension of the matrix previously introduced in (10), i.e.,

� =
[
X
Z

]
. (31)

For the case in which we extend the DMDc method in Sect. 2.1 to fitting bilinear
dynamics (no output observations), we propose a slightly different definition for the
matrixG. We hence append the matrix N to the originally introduced system matrix
in (10). Then, Eq. (29) can be written in a factorized way as � = G�, where the
matrices for this particular setup are as follows:

G = [
A B N

] ∈ R
n×(2n+1), � = Xs . (32)

Alternatively, for the casewhere output observations yk are also available, we enforce
a special bilinear dependence for each trio of measurement data snapshots as

yk = Cxk + Fxkuk + Duk, 0 ≤ k ≤ m − 1, (33)

where FT ∈ R
n . Note that (33) represents a natural extension of the relation imposed

in (19). Therefore, fitting a linear structure is instead enforced.
Afterward, we collect the equations in (33) for each index k and hence write
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Y = CX + FXUD + DU, (34)

with the same notations as in (30). Then, by combining (29) and (34), we can write
all snapshot matrix quantities in the following structured equalities:

Xs = AX + NXUD + BU,

Y = CX + FXUD + DU.
(35)

This system of equations can be then written in a factorized way as before, i.e.,
� = G�, where the matrices for this particular setup are given below:

G =
[
A B N
C D F

]
∈ R

(n+1)×(2n+1), � =
[
Xs

Y

]
. (36)

Finally, the last step is to recover the matrix G and split it block-wise in order
to put together a system realization. Consequently, this all boils down to solving
the equation � = G� (in either of the two cases, with or without output observa-
tions included). More precisely, the objective matrixG ∈ R

(n+1)×(2n+1) in (36) is the
solution of the following optimization problem:

arg min
Ĝ∈R(n+1)×(2n+1)

(∥∥∥
[
Xs

Y

]
− Ĝ

[
X
Z

] ∥∥∥
F

)
⇔ arg min

Ĝ∈R(n+1)×(2n+1)

(∥∥� − Ĝ�
∥∥
F

)
. (37)

As shown in the previous sections, solving for G in (37) involves computing the
pseudo-inverse of matrix � ∈ R

(2n+1)×m from (31). More precisely, we write the
solution as

G = ��†. (38)

Remark 1 Note that the observation map g corresponding to the original dynamical
system, as introduced in (18), need not have a bilinear structure as in (33). It could
include more complex nonlinearities or could even be linear. In the later case, the
recovered matrix F will typically have a low norm.

3.1.2 Computation of the Reduced-Order Matrices

In this section, we present specific/practical details for retrieving the systemmatrices
in the case of the proposed procedure in Sect. 3.1.1. We solve the equation � =
G� for which the matrices are given as in (36), i.e., the case containing output
observations. We compute an SVD of the augmented data matrix � giving

� = V�WT ≈ Ṽ�̃W̃T , (39)

where the full-scale and reduced-scale matrices derived from SVD are as follows:
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{
V ∈ R

(2n+1)×(2n+1), � ∈ R
(2n+1)×(m−1), V ∈ R

(m−1)×(m−1),

Ṽ ∈ R
(2n+1)×p, �̃ ∈ R

p×p, Ṽ ∈ R
(m−1)×p.

The truncation index is denotedwith p, where p � n. The computation of the pseudo-

inverse �† is done by the SVD approach, i.e., �† ≈ W̃�̃
−1
ṼT . By splitting up the

VT matrix as ṼT = [ṼT
1 ṼT

2 ṼT
3 ], one can recover the system matrices as

A = XsW̃�̃
−1
ṼT

1 , B = XsW̃�̃
−1
ṼT

2 , N = XsW̃�̃
−1
ṼT

3 ,

C = YW̃�̃
−1
ṼT

1 , D = YW̃�̃
−1
ṼT

2 , F = YW̃�̃
−1
ṼT

3 .
(40)

By performing another (short) SVD for the matrix Xs , we can write

Xs ≈ V̂�̃ŴT , (41)

where V̂ ∈ R
(n+1)×r , �̂ ∈ R

r×r , Ŵ ∈ R
(m−1)×p.Note that the twoSVDscould have

different truncation values denoted with p and r. Using the transformation x = V̂x̃,
the following reduced-order matrices can be computed:

Ã = V̂TAV̂ ∈ R
r×r , B̃ = V̂TB ∈ R

r , Ñ = V̂TNV̂ ∈ R
r×r ,

C̃ = CV̂ ∈ R
1×r , D̃ = D ∈ R, F̃ = V̂TFV̂ ∈ R

1×r .
(42)

3.1.3 Conversions Between Discrete-Time and Continuous-Time
Representations

The DMD-type approaches available in the literature identify continuous-time sys-
tems by means of linear discrete-time models. In this contribution, we make use of
the same philosophy, in the sense that the models fitted are discrete time. We extend
the DMDc and ioDMD approaches by allowing bilinear or quadratic terms to appear
in these models as well.

As also mentioned in [9], one can compute a continuous-time model that repre-
sents a first-order approximation of the discrete-time model obtained by DMD-type
approaches.

Assume that we are in the bilinear setting presented in Sect. 3.1 and that we
already have computed a reduced-order discrete-time model given by matrices
{Ã, B̃, Ñ, C̃, D̃, F̃}, i.e., following the explicit derivations in (42). Then, a continuous-
time model {Â, B̂, N̂, Ĉ, D̂, F̂} can also be derived. By assuming that the standard
first-order Euler method was used for simulating the original system (with a small
enough time step size 0 < �t 	 1), we can write that
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xk+1 = xk + �t (Âxk + B̂uk + N̂xkuk) ⇒
Ãxk + B̃uk + Ñxkuk = xk + �t Âxk + �t B̂uk + �t N̂xkuk ⇒

{
Â = �−1

t (Ã − I), B̂ = �−1
t B̂, N̂ = �−1

t N̂,

Ĉ = C̃, D̂ = D̃, F̂ = F̃.

(43)

Observe that for the ioDMD type of approaches, the feed-through terms that appear in
the output-state equation are the same in both discrete and continuous representations.

3.2 Quadratic-Bilinear Systems

Next, we extend themethod in Sect. 2.1 for fitting another class of nonlinear systems,
i.e., quadratic-bilinear (QB) systems. Additional to the bilinear terms that enter the
differential equations, we assume that quadratic terms are also present. More pre-
cisely, the system of theODEs is written as in (7) but for a specific choice of nonlinear
mapping f , i.e.,

f (x,u) = Ax + Q(x ⊗ x) + Nxu + Bu,

where “⊗” denotes the Kronecker product, the matrixQ ∈ R
n×n2 scales the product

of the state x with itself, and N ∈ R
n×n is as shown in Sect. 3.1.

Quadratic-bilinear systems appear in many applications for which the original
system of ODEs inherently has the required quadratic structure. For example, after
semi-discretizing Burgers’ or Navier-Stokes equations in the spatial domain, one
obtains a system of differential equations with quadratic nonlinearities (and also
with bilinear terms). Moreover, many smooth analytic nonlinear systems that con-
tain combinations of nonlinearities such as exponential, trigonometric, polynomial
functions, etc. can be equivalently rewritten as QB systems. This is performed by
employing so-called lifting techniques. More exactly, one needs to introduce new
state variables in order to simplify the nonlinearities and hence derive new differen-
tial equations corresponding to these variables.Model order reduction of QB systems
was a topic of interest in the last years with contributions ranging from projection-
based approaches in [5, 15] to optimalH2-based approximation in [7], or data-driven
approaches in the Loewner framework in [2, 14].

Similar to the procedure described in Sect. 3.1, we enforce that the snapshot xk+1

at time tk+1 depends on the snapshot xk in the following way:

xk+1 = Axk + Q(xk ⊗ xk) + Nxkuk + Buk, for 0 ≤ k ≤ m − 1. (44)

Next, by varying the k in the range {1, 2, . . . ,m − 1}, compactly rewrite the m
equations in (44) in the following matrix format:

Xs = AX + Q(X ⊗ X)H + NXUD + BU, (45)
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withUD = diag(u0, u1, . . . , um−1) ∈ R
m×m andH = [

e1 ⊗ e1 e2 ⊗ e2 . . . em ⊗ em
]

∈ R
m2×m . Here, ek is the unit vector of length n that contains the 1 on position k.

Additionally, we introduce the matrix T that depends on the state matrix X as

T = [
X1 ⊗ X1 X2 ⊗ X2 . . . Xm ⊗ Xm

] ∈ R
n2×m .

Note that the equality holds as followsT = (X ⊗ X)H. Next, we augment the matrix
X with both matrices Z and T and group together the matrices A, Q, N and B by
using the notations:

G = [A B N Q] ∈ R
n×(n2+2n+1), � =

⎡

⎣
X
Z
T

⎤

⎦ ∈ R
(n2+2n+1)×m, � = Xs . (46)

Hence, by using the above notations, rewrite Eq. (45) as follows: � = G�.

More precisely, the objective matrix G ∈ R
n×(n2+2n+1) in (46) is the solution of

the following optimization problem:

arg min
Ĝ∈Rn×(n2+2n+1)

(∥
∥� − Ĝ�

∥
∥
F

)
. (47)

Thus, one can recover the matrixG by solving an optimization problem, e.g., the one
given in (47). This is explicitly done by computing theMoore-Pseudo pseudo-inverse
of matrix � ∈ R

(n2+2n+1)×m , and then writing G = ��†.
As previously shown in Sect. 3.1, we can again adapt the procedure for fitting

QB systems in the ioDMD format by involving output observation measurements yk .
The procedure for quadratic-bilinear systems is similar to that for bilinear systems
and we prefer to skip the exact description to avoid duplication. For more details,
see the derivation in Sect. 6.1.

Remark 2 Note that the Kronecker product of the vector x ∈ Rn with itself, i.e.,
x(2) = x ⊗ x has indeed duplicate components. For n = 2, one can write

x(2) = [
x21 x1x2 x2x1 x22

]T
.

Thus, since matrix G is explicitly written in terms of Q as in (46), the linear system
of equations� = G� does not have an unique solution. By using theMoore-Penrose
inverse, one implicitly regularizes the least-squares problem in (47). Additionally,
note that using a different least-squares solver (with or without regularization) could
indeed produce a different result.

Remark 3 It is to be noted that the operator inference procedure avoids the non-
uniqueness by accounting for duplicates in the vector x ⊗ x. This is done by intro-
ducing a special Kronecker product for which the duplicate terms are removed. For
more details, we refer the reader to Sect. 2.3 from [8].
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4 Numerical Experiments

4.1 The Viscous Burgers’ Equation

Consider the partial differential viscous Burgers’ equation:

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
= ν

∂2v(x, t)

∂x2
, (x, t) ∈ (0, L) × (0, T ) ,

with i.c. v(x, 0) = 0, x ∈ [0, L], v(0, t) = u(t), v(L , t) = 0, t � 0. The viscosity
parameter is denoted with ν.

Burgers’ equation has a convective term, an unsteady term and a viscous term; it
can be viewed as a simplification of the Navier-Stokes equations.

Bymeans of semi-discretization in the space domain, one can obtain the following
nonlinear (quadratic) model (see [5]) described by the following system of ODEs:

v̇k =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
2h v1v2 + ν

h2 (v2 − 2v1) + ( v1
2h + ν

h2 )u, k = 1,

− vk
2h (vk+1 − vk−1) + ν

h2 (vk+1 − 2vk + vk−1), 2 � k � n0 − 1,

− 1
2h vnvn−1 + ν

h2 (−2vn + 2vn−1), k = n0.

(48)

Next, bymeans of the Carleman linearization procedure in [28], one can approximate
the above nonlinear system of order n0 with a bilinear system of order n = n20 + n0.
The procedure is as follows: let v = [v1 v2 . . . vn]T be the original state variable

in (48). Then, introduce the augmented state variable x =
[

v
v ⊗ v

]
∈ R

n20+n0 corre-

sponding to the system described by the following equations:

ẋ = Ax + Nxu + Bu,

y = Cx.
(49)

The continuous-time bilinear model in (49) is going to be used in following the
numerical experiments.

Start by choosing the viscosity parameter to be ν = 0.01. Then, choose n0 = 40
as the dimension of the original discretization, and hence the bilinear system in
(49) is of order n = 1640. Perform a time-domain simulation of this system by
approximating the derivative as follows ẋ(tk) ≈ x(tk+1)−x(tk )

tk+1−tk
= xk+1−xk

�t
. We use as

time step δt = 10−3 and the time horizon to be [0, 10]s. The control input is chosen
to be u(t) = 0.5 cos(10t)e−0.3t .

Hence, collect 104 snapshots of the trio (xk, uk, yk) that are arranged in the required
matrix format as presented in the previous sections. Thefirst step is to performanSVD
for the matrix � ∈ R

3281×104 . The first 200 normalized singular values are presented
in Fig. 1. Choose the tolerance value τp = 10−10 which corresponds to a truncation
order of p = 86 (for computing the pseudo-inverse of matrix �). On the same plot
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Fig. 1 The normalized first
200 singular values of
matrices � (with cyan) and
� (with magenta). The three
dotted black lines correspond
to the three tolerance levels
chosen for τr

20 40 60 80 100 120 140 160 180 200

10-15

10-10

10-5

100
Singular value decay of the data matrices

in Fig. 1, we also display the normalized singular values of matrix � ∈ R
1641×104 .

Note that machine precision is reached at the 112th singular value. We select three
tolerance values τr ∈ {10−4, 10−5, 10−6} for truncating matrices obtained from the
SVD of �.

Inwhat follows,we compute reduced-order discrete-timemodels that have dimen-
sion r , as in (42). Next, these models are converted using (43) into a continuous-time
model.

4.1.1 Experiment 1—Validating the Trained Models

In this first setup, we perform time-domain simulations of the reduced-order models
for the same conditions as in the training stage, i.e., in the time horizon [0, 10]s and
by using the control input u(t) = 0.5 cos(10t)e−0.3t . Hence, we are validating the
trained models on the training data.

Start by choosing the first tolerance value, e.g., τr = 10−4. This corresponds to a
truncation value of r = 25. We compute term D̂ = 1.1744e − 14 and a also bilinear
feed-through term with ‖F̂‖2 = 6.7734e − 04. We simulate both the original large-
scale bilinear systemand the reduced-order system.The results are presented inFig. 2.
Note that the observed output curves deviate substantially. One way to improve this
behavior is to decrease the tolerance value.

For the next experiment, choose the tolerance value to be τr = 10−5. This cor-
responds to a truncation value of r = 32. After computing the required matrices,
notice that the D term is again numerically 0, while the norm of the matrix F̂ slightly
decreases to the value 6.9597e − 04. Perform numerical simulations and depict the
two outputs and the approximation error in Fig. 3. Observe that the approximation
quality significantly improved, but there is still room for improvement.

Finally, the tolerance value is chosen as τr = 10−6. For this particular choice, it
follows that the truncation value is r = 40. In this case, the output of the reduced-
order model faithfully reproduces the original output, as it can be observed in Fig. 4.
Note also that the approximation error stabilizes within the range (10−4, 10−5).
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Fig. 2 Left plot: the observed outputs; right plot: the corresponding approximation error
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Fig. 3 Left plot: the observed outputs; right plot: the corresponding approximation error
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Fig. 4 Left plot: the observed outputs; right plot: the corresponding approximation error
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Fig. 5 Left plot: the observed outputs; right plot: the corresponding approximation error

4.1.2 Experiment 2—Testing the Trained Models

In the second setup, we perform time-domain simulations of the reduced-order mod-
els for different conditions than those used in the training stage, i.e., the time horizon
is extended to [0, 15]s and two other control inputs are used. Moreover, we keep the
truncation value to be r = 40 (corresponding to tolerance τr = 10−6).

First, choose the testing control input to be u1(t) = sin(4t)/4 − cos(5t)/5. The
time-domain simulations showing the observed outputs are depicted in Fig. 5. More-
over, on the samefigure, themagnitude of the approximation is presented.Weobserve
that the output of the learned reduced model accurately approximates the output of
the original system.

Afterward, choose the testing control input to be u2(t) = square(2t)
5(t+1) . Note that

square(2t) is a square wavewith periodπ . The time-domain simulations showing the
observed outputs are depicted in Fig. 6. Moreover, on the same figure, the magnitude
of the approximation is presented. We observe that the output of the learned reduced
model does not approximate the output of the original system as well as in the
previous experiments.

4.2 Coupled van der Pol Oscillators

Consider the coupled van der Pol oscillators along a limit cycle example given in
[18]. The dynamics are characterized by the following six differential equations with
linear and nonlinear (cubic) terms:
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Fig. 6 Left plot: the observed outputs; right plot: the corresponding approximation error

ẋ1 = x2,

ẋ2 = −x1 − μ(x21 − 1)x2 + a(x3 − x1) + b(x4 − x2),

ẋ3 = x4,

ẋ4 = −x3 − μ(x23 − 1)x4 + a(x1 − x3) + b(x2 − x4),

+ a(x5 − x3) + b(x6 − x4) + u,

ẋ5 = x6,

ẋ6 = −x5 − μ(x25 − 1)x6 + a(x3 − x5) + b(x4 − x6).

(50)

Choose the output to be y = x3. Hence, the state-output equation iswritten as y = Cx
with C = [

0 0 1 0 0 0
]
and x = [

x1 x2 x3 x4 x5 x6
]T
. Choose the parameters in

(50) as follows: μ = 0.5, a = 0.5 and b = 0.2.
Note that by introducing three additional surrogate states, e.g., x7 = x21 , x8 = x22 ,

and x9 = x23 , one can rewrite the cubic nonlinear system in (50) of order n = 6 as an
order nq = 9 quadratic-bilinear system.

Perform time-domain simulations of the cubic system of order n = 6 and collect
data from 500 snapshots using the explicit Euler method with step size �t = 0.01.
The chosen time horizon is hence [0,5]s. The control input is a square wave with
period π/5 and amplitude 30, i.e., u(t) = 30 square(10t).

Compute the pseudo-inverse of matrix� ∈ R
49×500 and select as truncation value

p = 19 (the 20th normalized singular value drops below machine precision).
We compute a reduced-order quadratic-bilinear model of order r = 5. We made

this choice since the fifth normalized singular value of matrix� ∈ R
7×500 is 5.8651e-

04 while the sixth is numerically 0, i.e., 3.5574e-16. We hence fit an order r = 5
quadratic-bilinear system that approximates the original order n = 6 cubic polyno-
mial system. Note that the only nonzero feed-through quantity in the recovered state-
output equation is given by Ĉ = [−0.1067 0.5580 0.0797 −0.4145 −0.7065

]
.
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Fig. 7 Left plot: the observed outputs; Right plot: the corresponding approximation error

Next, we perform time-domain simulations in the same manner as in Sect. 4.1.1,
i.e., by validating the reduced models on the training data. The results are depicted
in Fig. 5. One can observe that the two outputs match well. In this particular setup,
it follows that the response of the sixth-order cubic system (that can be equivalently
written as a ninth-orderQBsystem) canbe accurately approximatedwith the response
of a fifth-order QB system. The approximation error is presented in Fig. 7.

5 Conclusion

In this paper, we have proposed extensions of the DMDc and ioDMD recently pro-
posed methods. The philosophy is similar to that of the original methods, but instead
of fitting discrete-time linear systems, we impose a more complex structure to the fit-
ted models. More precisely, we fit bilinear or quadratic terms to augment the existing
linear quantities (both in the differential and in the output equations). The numerical
results presented were promising, and they have shown the strength of the method.
Indeed, there is a clear trade-off to be made between approximation quality and the
dimension of the fitted model.

Nevertheless, this represents a first step toward extendingDMD-typemethods, and
a more involved analysis of the method’s advantages and disadvantages could repre-
sent an appealing future endeavor. Moreover, another contribution could be made by
comparing the proposed methods in this work with the recently introduced operator
inference-type methods. For the quadratic-bilinear case, additional challenges arise
when storing the large-scalematrices involved and alsowhen computing the classical
SVD for such big non-sparse matrices.
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6 Appendix

6.1 Computation of the Reduced-Order Matrices for the
Quadratic-Bilinear Case

In this section, we present practical details for retrieving the system matrices in the
case of the proposed procedure in Sect. 3.2. We solve the equation � = G� for
which the matrices are given as in (46), i.e., the case without output observations.
We again utilize an SVD, now performed on the matrix �, i.e.,

� = V�WT ≈ Ṽ�̃W̃T , (51)

where the full-scale and reduced-order SVDmatrices have the following dimensions:

{
V ∈ R

(n2+2n+1)×(n2+2n+1), � ∈ R
(n2+2n+1)×(m−1), W ∈ R

(m−1)×(m−1),

Ṽ ∈ R
(n2+2n+1)×p, �̃ ∈ R

p×p, W̃ ∈ R
(m−1)×p.

The truncation index is denoted with r , and written as before �† ≈ W̃�̃
−1
ṼT .

By splitting up the matrix VT as ṼT = [ṼT
1 ṼT

2 ṼT
3 ṼT

4 ], with

Ṽ1, Ṽ3 ∈ R
n×r , Ṽ2 ∈ R

1×r , Ṽ4 ∈ R
n2×r ,

recover the matrices

A = XsW̃�̃
−1
ṼT

1 , B = XsW̃�̃
−1
ṼT

2 , N = XsW̃�̃
−1
ṼT

3 , Q = XsW̃�̃
−1
ṼT

4 .

(52)

Again, perform an additional SVD, e.g., Xs ≈ V̂�̃ŴT , where V̂ ∈ R
(n+1)×r , �̂ ∈

R
r×r , V̂ ∈ R

(m−1)×r . Using the transformation x = V̂x̃, the following reduced-order
approximations are computed:

Ã = V̂TAV̂ = V̂TXsW̃�̃
−1
ṼT

1 V̂ ∈ R
r×r ,

B̃ = V̂TB = V̂TXsW̃�̃
−1
ṼT

2 ∈ R
r ,

Ñ = V̂TAV̂ = V̂TXsW̃�̃
−1
ṼT

3 V̂ ∈ R
r×r ,

Q̃ = V̂TQ(V̂ ⊗ V̂) = V̂TXsW̃�̃
−1
ṼT

2 (V̂ ⊗ V̂) ∈ R
r×r2 .
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