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Abstract The Loewner framework (LF) in combination with Volterra series (VS)
offers a non-intrusive approximation method that is capable of identifying bilinear
models from time-domain measurements. This method uses harmonic inputs which
establish a natural way for data acquisition. For the general class of nonlinear prob-
lemswith VS representation, the growing exponential approach allows the derivation
of the generalized kernels, namely, symmetric generalized frequency response func-
tions (GFRFs). In addition, the homogeneity of the Volterra operator determines
the accuracy in terms of how many kernels are considered. For the weakly nonlinear
setup, only a few kernels are needed to obtain a good approximation. In this direction,
the proposed adaptive scheme is able to improve the estimations of the computation-
ally nonzero kernels. The Fourier transform associates these measurements with the
derived GFRFs and the LF makes the connection with system theory. In the linear
case, the LF associates the so-called S-parameters with the linear transfer function by
interpolating in the frequency domain. The goal of the proposed method is to extend
identification to the case of bilinear systems from time-domain measurements and
to approximate other general nonlinear systems (by means of the Carleman bilin-
earizarion scheme). By identifying the linear contribution with the LF, a considerable
reduction is achieved by means of the SVD. The fitted linear system has the same
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McMillan degree as the original linear system. Then, the performance of the linear
model is improved by augmenting a special nonlinear structure. In a nutshell, we
learn reduced-dimension bilinear models directly from a potentially large-scale sys-
tem that is simulated in the time domain. This is done by fitting first a linear model,
and afterward, by fitting the corresponding bilinear operator.

1 Introduction

In natural sciences, evolutionary phenomena can be modeled as dynamical systems.
An ever-increasing need for improving the approximation accuracy has motivated
includingmore involved anddetailed features in themodeling process, thus inevitably
leading to large-scale dynamical systems [3]. To overcome this problem, efficient
finite methods heavily rely on model reduction. Model reduction methods can be
classified into two broad categories, namely, SVD based and Krylov based (moment
matching).

Themost prominent among the SVD-basedmethods is balanced truncation (BT).
In general, balancing methods are based on the computation of controllability and
observability gramians and lead to the elimination of state variables which are diffi-
cult to reach and to observe. Besides having high-computational cost of solving the
associated matrix Lyapunov equations, the advantages of balancing methods include
the preservation of stability and an a priori computable error bound. For more details
on these topics as well as on other model reduction methods not treated here (e.g.,
proper orthogonal decomposition (POD)/reduced basis (RB)), we refer the reader to
the book [3] and the surveys [9, 15].

One way to perform model reduction is by employing tangential interpolation.
These methods are known as rationalKrylov methods ormoment-matchingmethods.
Krylov-based methods are numerically efficient and have lower computational cost,
but, in general, the preservation of other properties (e.g., stability or passivity) is
not automatic. For an extensive study in interpolatory model reduction, we refer
the reader to the recent book [4]. In what follows, we will consider exclusively
interpolatory model reduction methods and, in particular, the LF. For recent surveys
on the LF, see [2, 6, 29]. The sensitivity to noise in the LF was already discussed in
[19, 30].

When input-output data are offered, data-driven methods, such as the Loewner
framework (LF), dynamic mode decomposition (DMD) [37], sparse identification of
nonlinear systems (with control) (SINDYc) in [27], vector fitting (VF) [23], Hankel
[25] or subspace methods [8, 24, 26], moment-matching [36], and operator infer-
ence [13, 14, 32], remain the only feasible approaches for recovering the hidden
information.

DMD-based methods represent viable alternatives that require state-derivative
estimations.

While the underlying dynamical system acts as a black box, model identifica-
tion tools are important for the reliability of the discovered models (i.e., stability,
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Fig. 1 Mathematical formalism for evolutionary phenomena

prediction). At the same time, these discovered models might have large dimension
and hence are not suitable for fast numerical simulation and control. The LF is a
direct data-driven interpolatory method able to identify and reduce models derived
directly from measurements. For measured data in the frequency domain, the LF is
well established for linear and nonlinear systems (e.g., bilinear or quadratic-bilinear
systems) see [5, 22]. In the case of time-domain data, the LF was already applied
for approximating linear models [21, 24, 31]. As the aim of this paper is to extend
the identification and reduction procedure to the class of bilinear systems from time-
domain data, we start our analysis by introducing the mathematical description of the
input-u(t) to output-y(t) relation as depicted in Fig. 1. The differential and algebraic
operators are denoted with f and, respectively, with z. To achieve this goal, all the
important steps from nonlinear system theory and interpolatory model reduction are
summarized.

1.1 Outline of the Paper

The rest of the paper is organized as follows:

• Section 2 contains a brief description of system theory starting from the linear case
followed by extensions to the nonlinear case by means of the Volterra series repre-
sentation. The single-input and single-output case is addressed for both frequency-
and time-domain representations.

• Section 3 introduces the Loewner framework as an interpolatory tool for model
approximation; the results that are presented here actually set the foundation for
identification and reduction of linear time-invariant systems.

• Section 4 introduces a special class of nonlinear systems, e.g., bilinear systems.
The theoretical discussion for analyzing such systems starts with the growing
exponential approach and the derivation of the generalized frequency response
functions (GFRFs) up to the case where a double-tone input is assumed. In addi-
tion, the kernel separation strategy for improving the measurements and the linear
identification/reduction part is presented. A concise algorithm that summarizes
the method is presented.

• Section 5 presents the numerical experiments performed in order to illustrate the
practical applicability of the newly proposed method. This section includes both a
simple (low-dimensional) example and a large-scale example, compared to another
state-of-the-art method.

• Section 6 presents the concluding remarks and also some potential future devel-
opments of the current method.
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2 System Theory Preliminaries

In this section, we will briefly present some important material from system theory
starting from the linear case.

2.1 Linear Systems

Consider SISO linear, time-invariant systemswithn internal variables (called “states”
whenever the matrix E is non-singular).

�l :
{
E ẋ(t) = Ax(t) + bu(t),

y(t) = cx(t), t ≥ 0,
(1)

whereE, A ∈ R
n×n, b ∈ R

n×1, c ∈ R
1×n . In the sequel,wewill restrict our attention

to invertible matrix E and with zero d-term (d = 0) in the state-output equation1.
The explicit solution with the convolution integral2 notation and the time-domain
linear kernel h(t) as the impulse response of the system can be written as

y(t) = ceAtx(0) + (h ∗ u)(t), t ≥ 0, (2)

where multiplication with E−1 from the left has been performed in the differential
part of Eq. (1). Also, we keep the same notation for the remaining matrix A and
vector b. By assuming zero initial conditions and performing a Laplace transform,
we obtain the transfer function description:

H(s) = Y (s)

U (s)
= c(sI − A)−1b, s ∈ C, (3)

where Y (s),U (s) stand for the input and the output in the frequency domain.

2.2 Nonlinear Systems

A large class of nonlinear systems can be described by means of the Volterra-Wiener
approach in [35]. Other relevant works on nonlinear systems and nonlinear mod-
eling/identification include Schetzen (1980), Chen and Billings (1989), Boyd and
Chua (1985) et. al.

The aim in this study is to identify and reduce special types of nonlinear systems
(s.a., bilinear) from time-domain measurements. By knowing only the input and the

1 The state-output equation often is represented as y(t) = cx(t) + du(t).
2 (h ∗ u)(t) = ∫∞

−∞ h(τ )u(t − τ)dτ .
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Fig. 2 The input-output mapping from the data-driven perspective with the unknown system �.
Specific structures of the unknown system can be assumed/inspired by the physical problem. For
instance, if the underlying physical phenomenon is fluid flow inside a control volume, quadratic
models should be constructed, e.g., [22]

simulated or measured output in the time domain as in Fig. 2, we will identify the
hidden model. In such situations where only snapshots are available, beyond the
linear fit which is well established a nonlinear fit of a special type will be developed.

2.2.1 Approximation of Nonlinear Systems (Volterra Series)

The input-output relationship for a wide class of nonlinear systems [35] can be
approximated by a Volterra series for sufficiently high N as

y(t) =
N∑

n=1

yn(t), yn(t) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, . . . , τn)

n∏
i=1

u(t − τi )dτi , (4)

where hn(τ1, . . . , τn) is a real-valued function of τ1, . . . , τn known as the nth-order
Volterra kernel.

Definition 1 The nth-order generalized frequency response function (GFRF) is
defined as

Hn( jω1, . . . , jωn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, . . . , τn)e(

− j
∑n

i=1 ωi τi)dτ1 · · · dτn, (5)

which is the multidimensional Fourier3 transform of hn(τ1, . . . , τn).

By applying the inverse Fourier transform of the nth-order GFRF, Eq. (5) can be
written as

yn(t) = 1

(2π)n

∫ ∞

−∞
· · ·

∫ ∞

−∞
Hn( jω1, . . . , jωn)

n∏
i=1

U ( jωi )e
j (ω1+···+ωn)t dωi . (6)

The nth Volterra operator is defined as

Vn(u1, u2, ..., un) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, ..., τn)

n∏
i=1

ui (t − τi )dτi , (7)

3 With ( j2 = −1), as the frequency s = jω lies on the imaginary axis, the Laplace transform
simplifies in most cases to Fourier transform (e.g., for square-integrable functions).
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so that yn = Vn(u, u, ..., u) holds true.

•> Homogeneity of the Volterra operator

The map u(t) → yn(t) is homogeneous of degree n, that is, αu → αn yn , α ∈
C. Each Volterra kernel hn(t) determines a symmetric multi-linear operator. Small
amplitudes (e.g., |α| < ε) will allow ordering the nonlinear terms in such a way that
terms with large powers of the amplitude (αn) will be negligible. That is precisely
the sense of approximating weakly nonlinear systems with Volterra series.

2.2.2 A Single-Tone Input

Consider the excitation of a systemwith an input consisting of two complex exponen-
tials as in Eq. (8). Such inputs are typically used in chemical engineering applications
as [33].

u(t) = A cos(ωt) =
(
A

2

)
e jωt +

(
A

2

)
e− jωt . (8)

By using the above input in Eq. (4), we can derive the first Volterra term with n = 1
as

y1(t) =
∫ ∞

−∞
h1(τ1)[u(t − τ1)]dτ1

= A

2
e jωt

∫ ∞

−∞
h1(τ1)e

− jωτ1dτ1︸ ︷︷ ︸
H1( jω)

+ A

2
e− jωt

∫ ∞

−∞
h1(τ1)e

jωτ1dτ1︸ ︷︷ ︸
H1(− jω)

⇒

y1(t) = A

2

(
e jωt H1( jω) + e− jωt H1(− jω)

)
.

(9)

Similarly, for the second term, we can derive

y2(t) =
(
A

2

)2[
e2 jωH2( jω, jω) + 2e0H2( jω,− jω) + e−2 jωH2(− jω,− jω)

]
.

(10)

Remark 1 (Conjugate symmetry): H∗
2 ( jω,− jω) = H2(− jω, jω), ∀ω ∈ R.

The input amplitude is A, the angular frequency isω, the imaginary unit is j, the first-
order response function is H1( jω), and Hn( jω, ..., jω), for n ≥ 2, are the higher
order FRFs or GFRFs. Then, the nth Volterra term can be written as

yn(t) =
(
A

2

)n ∑
p+q=n

nCq H
p,q
n ( jω)e jωp,q t , ωp,q = (p − q)ω. (11)
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Fig. 3 An instance of the single-sided power spectrumwith a singleton inputwithω = 1 is depicted.
The underlying system is nonlinear and as a result higher harmonics appeared with a DC (direct
current—non-periodic) term as well

where the following notations have been used:

H p,q
n ( jω) = Hn( jω, ..., jω︸ ︷︷ ︸

p−times

; − jω, ..., − jω︸ ︷︷ ︸
q−times

), ωp,q = (p − q)ω, nCq = n!
q!(n − q)! .

(12)

2.2.3 Time-Domain Representation of Harmonics

The mth harmonic in the time domain can be computed by collecting the identical
exponential power coefficients from Eq. (13) and by setting p − q = m, with p =
m + i − 1 and q = i − 1 in Eq. (11). Hence, it follows that

ymth (t) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−2 ( jω)e jmωt . (13)

2.2.4 Frequency-Domain Representation of Harmonics

The mth harmonic in the frequency domain by applying single-sided Fourier trans-
form in Eq. (13) is the following:

Ymth ( jmω) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−2 ( jω)δ( jmω), (14)

where δ(·) is theDirac delta distribution.When a single-tone input excites a nonlinear
dynamical system, the steady-state frequency response is characterized by a spectrum
with higher harmonics (as can be seen, for example, in Fig. 3). This behavior is not
observed in the linear case, where only one harmonic appears at the input frequency.
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3 The Loewner Framework

We start with an account of the Loewner framework (LF) in the linear case [2, 6, 29].
The LF is an interpolatorymethod that seeks reducedmodels whose transfer function
matches that of the original system at selected interpolation points. An important
attribute is that it provides a trade-off between accuracy of fit and complexity of the
model. It constructs models from given frequency data in a straightforward manner.
In the case of SISO systems, we have the rational scalar interpolation problem to
solve.

Consider a given set of complex data as

{(sk, fk(sk)) ∈ C × C : k = 1, . . . , 2n)}.

We partition the data in two disjoint sets:

S = [s1, . . . , sn︸ ︷︷ ︸
μ

, sn+1, . . . , s2n︸ ︷︷ ︸
λ

], F = [ f1, . . . , fn︸ ︷︷ ︸
V

, fn+1, . . . , f2n︸ ︷︷ ︸
W

],

where μi = si , λi = sn+i , vi = fi , wi = fn+i for i = 1, . . . , n.

The objective is to find H(s) ∈ C, such that

H(μi ) = vi , i = 1, . . . , n, and H(λ j ) = w j , j = 1, . . . , n. (15)

The left dataset is denoted as

M = [μ1, · · · , μn] ∈ C
1×n, V = [v1, · · · , vn]

T ∈ C
n×1, (16)

while the right dataset as

� = [λ1, · · · , λn]
T ∈ C

n×1, W = [w1, · · · , wn] ∈ C
1×n . (17)
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Interpolation points are determined by the problem or are selected to achieve
given model reduction goals. For ways of choosing the interpolation grids and of
partitioning the data into the left and right sets, we refer the reader to the recent
survey [29].

3.1 The Loewner Matrix

Given a row array of complex numbers (μ j , v j ), j = 1, . . . , n, and a column array,
(λi , wi ), i = 1, . . . , n, (with λi and theμ j mutually distinct) the associated Loewner
matrix L and the shifted Loewner matrix Ls are defined as

L=
⎡
⎢⎣

v1−w1
μ1−λ1

· · · v1−wn
μ1−λn

...
. . .

...
vn−w1
μn−λ1

· · · vn−wn
μn−λn

⎤
⎥⎦∈C

n×n, Ls =
⎡
⎢⎣

μ1v1−λ1w1

μ1−λ1
· · · μ1v1−λnwn

μ1−λn

...
. . .

...
μnvn−λ1w1

μn−λ1
· · · μnvn−λnwn

μn−λn

⎤
⎥⎦∈C

n×n .

Definition 2 If g is rational, i.e., g(s) = p(s)
q(s) , for appropriate polynomials p, q, the

McMillan degree or the complexity of g is deg g = max{deg(p), deg(q)}.
Now, ifwi = g(λi ) and v j = g(μ j ) are samples of a rational function g, themain

property of Loewner matrices asserts the following.

Theorem 1 [2] Let L be as above. If k, q ≥ deg g, then rank L = deg g.
In other words, the rank of L encodes the complexity of the underlying rational

function g. Furthermore, the same result holds for matrix-valued functions g.

3.2 Construction of Interpolants

If the pencil (Ls, L) is regular, then E = −L, A = −Ls, b = V, c = W, is
a minimal realization of an interpolant for the data, i.e., H(s) = W(Ls − sL)−1

V.
Otherwise, as shown in [2], the problem in Eq. (15) has a solution provided that

rank [s L − Ls] = rank [L, Ls] = rank

[
L

Ls

]
= r,

for all s ∈ {μi } ∪ {λ j }. Consider then the thin SVDs:

[L, Ls] = Y�̂r X̃∗,
[
L

Ls

]
= Ỹ�rX∗,

where �̂r , �r ∈ R
r×r , Y ∈ C

n×r , X ∈ C
n×r , Ỹ ∈ C

2n×r , X̃ ∈ C
r×2n .
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Remark 2 r can be chosen as the numerical rank (as opposed to the exact rank) of
the Loewner pencil.

Theorem 2 The quadruple (Ã, b̃, c̃, Ẽ) of size, r × r , r × 1, 1 × r , r × r , given
by

Ẽ = −YT
LX, Ã = −YT

LsX, b̃ = YT
V, c̃ = WX,

is a descriptor realization of an (approximate) interpolant of the data with McMillan
degree r = rank(L), where H̃(s) = c̃(sẼ − Ã)−1b̃.

For more details on the construction/identification of linear systems with the LF,
we refer the reader to [4, 6, 29] where both the SISO andMIMO cases are addressed
together with other more technical aspects (e.g., how to impose the construction of
real-valued models, etc.).

4 The Special Case of Bilinear Systems

In recent years, projection-based Krylov methods have extensively been applied for
model reduction of bilinear systems. We mention the following contributions [1, 5,
7, 10–12, 17, 20, 34] and the references within.

Scalar bilinear systems are described by the set of matrices; �b = (A,N,b, c,E)

and characterized by the following equations:

�b :
{
Eẋ(t) = Ax(t) + Nx(t)u(t) + bu(t),

y(t) = cx(t),
(18)

where E,A,N ∈ R
n×n , b ∈ R

n×1, c ∈ R
1×n , and x ∈ R

n×1, u, y ∈ R. In what fol-
lows, we restrict our analysis to systems with non-singular E matrices (e.g., identity
matrix).

4.1 The Growing Exponential Approach

The properties of the growing exponential approach can be adapted readily to the
problem of finding transfer functions for constant-parameter (stationary) state equa-
tions. Let us consider the bilinear model in Eq. (18) with zero initial conditions. A
single-tone input with amplitude A < 1 is considered as in Eq. (8).

u(t) = A cos(ωt) = A

2
e jωt + A

2
e− jωt = ae jωt + ae− jωt , (19)

where a = A/2 and a ∈ (0, ε) with 0 < ε < 1/2 and for all t ≥ 0. The steady-state
solution for the differential equation in Eq. (18) can be written as follows:
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x(t) =
∞∑

p,q∈N
Gp,q

n ( jω, . . . , jω︸ ︷︷ ︸
p−times

,− jω, ...,− jω︸ ︷︷ ︸
q−times

)a p+qe jω(p−q)t . (20)

The symbol4 Gp,q
n denotes the nth input to state frequency response containing p-

times the frequency ω and q-times the frequency−ω. By substituting in Eq. (18) and
collecting the terms of the same exponential (as the e jωmt ), we can derive the input
to state frequency responses Gn for every n as follows:

∞∑
p,q∈N

( jω(p − q)E − A)Gp,q
n a p+qe jω(p−q)t = b(ae jωt + ae− jωt )+

+ N

⎛
⎝ ∞∑

p,q∈N
Gp,q

n a p+q+1e jω(p+1−q)t +
∞∑

p,q∈N
Gp,q

n a p+q+1e jω(p−q−1)t

⎞
⎠ .

For the first choices of p and q up to p + q ≤ 2, (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)
and by denoting the resolvent �( jω) = ( jωE − A)−1 ∈ C

n×n , c.t. conjugate terms,
we derive the first set of terms

�( jω)−1G1,0
1 ae jωt + �(2 jω)−1G2,0

2 a2e2 jωt + �(0)−1G1,1
2 a2 + c.t. + · · · =

NG1,0
1 a2e2 jωt + NG2,0

2 a3e3 jωt + NG1,1
2 a3e jωt + c.t. + · · · + bae jωt + c.t.

Collecting the same powers in both exponential and polynomial magnitudes, we
compute the first and the second time/input-invariant GFRFs:

G1,0
1 ( jω) = �( jω)b,

G2,0
2 ( jω) = �(2 jω)NG1,0

1 = �(2 jω)N�( jω)b.
(21)

Then, the following input to state transfer functions Gn using induction are

Gn,0
n ( jω) = �(njω)N�((n − 1) jω)N · · ·N�( jω)b,

G0,n
n ( jω) = �(−njω)N�(−(n − 1) jω)N · · ·N�(− jω)b,

Gp,q
n ( jω) = �((p − q) jω)N

[
Gp,q−1

n−1 ( jω) + Gp−1,q
n−1 ( jω)

]
, p, q ≥ 1,

(22)

for n ≥ 1 and p + q = n. By multiplying with the output vector c, we can further
derive the input-output generalized frequency responses GFRFs as

4 Gp,q
n = G( jω, ..., jω︸ ︷︷ ︸

p−times

; − jω, ...,− jω︸ ︷︷ ︸
q−times

).
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Hn,0
n ( jω) = c�(njω)N�((n − 1) jω)N · · ·N�( jω)b,

H 0,n
n ( jω) = c�(−njω)N�(−(n − 1) jω)N · · ·N�(− jω)b,

H p,q
n ( jω) = c�((p − q) jω)N

[
Gp,q−1

n−1 ( jω) + Gp−1,q
n−1 ( jω)

]
, p, q ≥ 1.

(23)

At this point, we can write the Volterra series by using the above specific structure
of theGFRFs thatwere derivedwith the growing exponential approach for the bilinear
case. An important property to notice is that the nth kernel is a multivariate function
of order n. It is obvious that the identification of the nth-order FRF involves an n-
dimensional frequency space. For that reason, next, we derive the general second
symmetric kernel for the bilinear case with a double-tone input. Consider:

u(t) = A1 cos(ω1t) + A2 cos(ω2t) =
2∑

i=1

αi (e
jωi t + e− jωi t ), (24)

where α1 = A1
2 and α2 = A2

2 . In that case, with the growing exponential approach
the state solution in steady state is

x(t) =
∞∑

m1,...,m4∈N
Gm1,m2,m3,m4

n α
m1+m2
1 α

m3+m4
2 e j ((m1−m2)ω1+(m3−m4)ω2)t . (25)

We are looking for the input to state frequency responseG( jω1, jω2). By substi-
tuting to the bilinear model in Eq. (18) and collecting the appropriate terms while at
the same time using the symmetry G( jω1, jω2) = G( jω2, jω1), we conclude that

G2( jω1, jω2)=1

2
[( jω1 + jω2)E − A]−1 N

[
( jω1E − A)−1 b + ( jω2E − A)−1 b

]
,

(26)
where by using the resolvent notation and multiplying with c, we derive the second-
order symmetric generalized frequency response function as

H2( jω1, jω2) = 1

2
c�( jω1 + jω2)N [�( jω1)b + �( jω2)b] . (27)

4.2 The Kernel Separation Method

One way to deduce Volterra kernels is by means of interpolation. This problem is
equivalent to that of estimating a polynomial with noisy coefficients. This interpo-
lation scheme builds a linear system with a Vandermonde matrix which is invert-
ible since the amplitudes are distinct and nonzero. The inverse of a Vandermonde
matrix can be explicitly computed and there are stable ways to solve these equa-
tions [16]. The recently proposed method presented in [18] solves the exponentially
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ill-condition problem of the Vandermonde matrix with Arnoldi orthogonalization.
The mth harmonic in the frequency domain is derived by applying a (single-sided)
Fourier transform. More precisely, the explicit formulation is as follows:

Ymth ( jmω) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1︸ ︷︷ ︸

αm+2i−2

Hm+i−1,i−1
m+2i−2 ( jω)δ( jmω)

=
∞∑
i=1

αm+2i−2Hm+i−1,i−1
m+2(i−1) ( jω)δ( jmω).

(28)

We simplify the notation in order to reveal the adaptive method that will help us to
estimate the GFRFs up to a specific order. Next, write the linear system of equations
that connects the harmonic information with the higher Volterra kernels as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0(0 jω)

Y1(1 jω)

Y2(2 jω)

Y3(3 jω)

...

Ym(mjω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y(α,ω)

=
{
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α2 α4 . . .

α1 α3 α5 . . .

α2 α4 α6 . . .

α3 α5 α7 . . .

...
...

...
...

αm αm+2 αm+4 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mα

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0,0
0 H1,1

2 H2,2
4 . . .

H1,0
1 H2,1

3 H3,2
5 . . .

H2,0
2 H3,1

4 H4,2
6 . . .

H3,0
3 H4,1

5 H5,2
7 . . .

...
...

...
...

Hn,0
n Hn+1,1

n+2 Hn+2,2
n+4 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pω

}
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
en+1,1

.

(29)

By introducing the Hadamard product notation5 and by substituting the δ’s with
ones, we can compactly rewrite the above system in the following form:

Y(α,ω) = [Mα � Pω] · en+1,1. (30)

The above system offers the level of approximation we want to achieve. Note
that the frequency response Y depends on both the amplitude and the frequency,
while the right-hand side of Eq. (30) reveals the separation of the aforementioned
quantities. As we neglect higher order Volterra kernels, the measurement set tends
to be corrupted by noise.

•> Kernel separation and stage 
-approximation

For a given system, the procedure consists in exciting it with a single-tone input.
By varying the driving frequency, as well as the amplitude, we can approximate the
GFRFs by minimizing the (2-norm) of the remaining systems.

5 The Hadamard product is denoted with “�”; the matrix multiplication is performed element-wise.
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Ym+1,
( jmω, α
) = [
Mm+1,
(α
) � Pm+1,
( jmω)

] · en+1,1. (31)

Them-“direction” gives us the threshold up to the specific harmonic that wemeasure
while the 
-“direction” gives us the level of the kernel separation that we want
to achieve. For instance, for the second stage approximation, it holds 
 = 2 with
Ym ≈ 0, ∀m with 
 = 2 < m = 3, 4, ....

4.3 Identification of the Matrix N

The difference between linear and bilinear models is the presence of the product
between the input and the state that is scaled by the matrix N. As the LF is able to
identify the linear part (A,b, c,E) of the bilinear model the only thing that remains
is the identification of the matrix N. The matrix N enters linearly in the following
kernels (as E has been considered invertible, for simplicity, it is assumed E = I):

• With a single-tone input the kernel H 1,1
2 can be written as

H2( jω1,− jω1) = 1

2
c (−A)−1 N

(
( jω1I − A)−1b + (− jω1I − A)−1b

)
(32)

and the kernel H 2,0
2 as

H2( jω1, jω1) = c (2 jω1I − A)−1 N( jω1I − A)−1b. (33)

• While with a double-tone input the general kernel H2 can be written as

H2( jω1, jω2) = 1

2
c
(

( jω1 + jω2)I − A
)−1

N
(

( jω1I − A)−1b + ( jω2I − A)−1b
)

.

(34)

We introduce the following notation:

O( jω1, jω2) = 1

2
c
(
j (ω1 + jω2)I − A

)−1

∈ C
1×n,

R( jω1, jω2) =
(

( jω1I − A)−1b + ( jω2I − A)−1b
)

∈ C
n×1.

(35)

Then, Eq. (34) can be compactly rewritten as

H2( jω1, jω2) = O( jω1, jω2)NR( jω1, jω2). (36)

Assume that k measurements of the function H2 are available (measured) for k
different pairs (ω1, ω2). By vectorizing in respect to the measurement set, we have
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for the kth measurement:

H2( jω
(k)
1 , jω(k)

2 )︸ ︷︷ ︸
Y(k)

= O( jω(k)
1 , jω(k)

2 )︸ ︷︷ ︸
O(k)
1,n

N︸︷︷︸
n×n

R( jω(k)
1 , jω(k)

2 )︸ ︷︷ ︸
R(k)
n,1

,

For all k measurements → Y(1:k,1) =
(
O(k)

(1,n) ⊗ RT (k)
(1,n)

)
︸ ︷︷ ︸

(1:k,n2)

vec (N)︸ ︷︷ ︸
(1:n2,1)

. (37)

Note that Eqs. (32), (33), (34) can be equivalently rewritten as the one linear
matrix equation given in Eq. (37). By filling out the above matrix

[O ⊗ RT
]
with the

information from H2( jω1,− jω1) and from H2( jω1, jω1) as well, the solution can
be improved. Hence, we are able to solve Eq. (37) with full rank and identify the
matrix N. All the symmetry properties of the kernels are appropriately used, e.g.,
conjugate-real symmetry. For n denoting the dimension of the bilinear model and k
the number of measurements, we have the following two cases6:

1. k < n2 underdetermined→ least-squares (LS) solution (minimizing the 2-norm)
as in [28],

2. k ≥ n2 determined-rank completion → identification of N,

Proposition 1 Let �b = (A,N,b, c,E) be a bilinear system of dimension n for
which the linear subsystem �l = (A,b, c,E) is fully controllable and observable.
Then, for k ≥ n2 measurements so that ( jω(k)

1 , jω(k)
2 ) are distinct complex pairs with

(ω
(k)
1 , ω

(k)
2 ) ∈ R

2+ and ω
(k)
1 �= ω

(k)
2 , the following holds:

rank

(
⎡
⎢⎢⎢⎣
O(1) ⊗ RT (1)

O(2) ⊗ RT (2)

...

O(k) ⊗ RT (k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
(1:k≥n2,n2)

)
= n2. (38)

As the above result indicates, one would need at least n2 measurements to identify
the matrix N corresponding to bilinear system of dimension n.

4.4 A Separation Strategy for the second Kernel

To identify the nth Volterra kernel, we need an n-tone input signal. As we want
to identify the second kernel, the input signal needs to be chosen as a double-tone
Eq. (24). The propagating harmonics are e( j (m1−m2)ω1+ j (m3−m4)ω2)t or more compactly

6 The vectorization is row-wise, vec(N) = [
N(1, 1 : n) · · · N(n, 1 : n)

]T ∈ R
n2×1.
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Fig. 4 This figure shows the constrains of φ (e.g., φ = 0, 1/3, 1/2, 1, 2, 3, . . ., etc.). By choosing
φ’s within the blue dots, we construct frequency bandwidths with a unique (ω1 + ω2)

Fig. 5 Left pane: Overlapping kernels contributing to the same harmonic with invalid φ = 0.5.
Right pane: Uniquely defined harmonic at (ω1 + ω2)with valid φ = 1.5. Here, it holds (n = k + l)

e(±k jω1±l jω2)t , where k, l ∈ N. The aim is to differentiate the (ω1 + ω2)harmonic from
the others harmonics. More precisely, we want the following result to hold:

ω1 + ω2 �= kω1 + lω2, ∀(k, l) ∈ Z × Z \ {1, 1}. (39)

Suppose ω2 = φω1, φ ∈ R. The suitable φ’s where Eq. (39) holds are

ω1 + φω1 = kω1 + lφω1 ⇒ 1 + φ = k + lφ ⇒ φ = k − 1

1 − l
, k, l ∈ Z \ {1}.

(40)
By choosing φ so that the equality in Eq. (40) doesn’t hold, with harmonic mixing

indexm = k + l, it makes the harmonic (ω1 + ω2) uniquely defined in the frequency
spectrum up to the mth kernel.

To visualize this feature, we choose ω1 = 1, and ω2 = ω1φ = φ, for harmonic
mixing index m = 4. Then, the constraints of φ are depicted in Fig. 4 with blue dots.

Next, in Fig. 5 and on the left pane, one φ constraint that occurs commensurate
harmonics is depicted with the second and the third kernel to contribute at the same
harmonic. On the right pane, the harmonic is uniquely defined at (ω1 + ω2) from the
second kernel up to the mixing order m = 4.

The next result allows us to construct sweeping frequency schemes to get enough
measurements for the H2( jω1, jω2). So, for everyω1 > 0 the following should hold:
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ω2 ∈ (φi−1ω1, φiω1) , i = 1, . . . (41)

where φi are the constraints (see Fig. 4 blue dots).

Remark 3 Note that in the proposed framework, the separation of the kernels that
contribute at (ω1 + ω2) harmonic is forced only under a specific mixing order m.
We do not offer any general solution to this separation problem for multi-tone input,
although techniques have been introduced such as in [16]. Therefore, it was also
stated that the solution of the full separation of harmonics is, in general, not possible.

4.5 The Loewner-Volterra Algorithm for Time-Domain
Bilinear Identification and Reduction

We start with a set of single-tone inputs u(t) = α
 cos(ω
(i)
1 t), i = 1, ..., k, with

α
 < 1. For those k measurements, we can estimate the linear kernel H1( jω
(i)
1 ), the

H2( jω
(k)
1 , jω(k)

1 ) and the H2( jω
(k)
1 ,− jω(k)

1 ) by simply measuring the first harmonic
as Y1, the second harmonic as Y2, and the DC term as Y0, from the frequency
spectrum as shown in Fig. 3. To improve the accuracy of the estimations for the
aforementioned kernels, we could further upgrade to an 
-stage approximation by
varying the amplitude α
 as explained in Sect. 4.2. This approach is necessary when-
ever higher harmonics are considered to be numerically nonzero, hence meaningful.
The reason for this is that the first harmonic is hence corrupted by noise introduced
by the term H 2,1

3 and the rest of the terms which appears on the second row of matrix
Pω in Eq. (29).

Since the LF reveals the underlying order of the linear system denoted with r , the
value of k should be at least equal to 2r . Then, we can take the decision on what will
be the order r of the reduced system by analyzing the singular value decay. Up to
the previous step, we have identified the linear part with the LF, and we have filled
the LS problem Eq. (37) with measurements from the diagonal of the second kernel
and from the the perpendicular to the diagonal axis (ω1,−ω1). Those measurements
contribute to the problem, but with an underdetermined (rank deficient) LS problem.

We need more measurements of H2 to reach the full rank (r2) solution that will
lead to the identification ofN. So,we proceed bymeasuring the H2 out of the diagonal
(ω1 �= ω2) with a double-tone input as u(t) = α
 cos(ω

(k)
1 t) + β
 cos(ω

(k)
2 t), for a set

of frequency pairs (ω1, ω2) up to r2. The kernel separation problem for the frequency
(ω1, ω2) appears now. To deal with this problem, we follow the solution proposed
in Sect. 4.4 (up to a mixing degree). Last, we solve the real7 full-rank LS problem
described in Eq. (37) by using all the symmetric properties of these kernels (i.e., real
symmetry, conjugate symmetry, and the fact that H2( jω1, jω2) = H2( jω2, jω1)).
An algorithm that summarizes the above procedure is presented below.

7 Enforcing real-valued models has been discussed in [6, 29]; here, we follow the same approach.
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(Algorithm) The Loewner-Volterra algorithm for bilinear identification and
reduction from time-domain data.

Input/Data acquisition: Use as control input the signals: u(t) = α
 cos(ω
(k)
1 t) +

β
 cos(ω
(k)
2 t), t ≥ 0, by sweeping the small amplitudes (< 1) and a particular range

of frequencies.

Output: A bilinear system of dimension-r : �br : (Ar ,Nr ,br , cr ,Er )

1. Apply one-tone input u(t) with β
 = 0, ω
(k)
1 for k = 1, . . . , n, and collect the

snapshots y(t) in steady state.
2. Apply Fourier transform and collect the following measurements:

• DC term: YO(0 · jω(k)
1 ),

• 1st harmonic: YI (1 · jω(k)
1 ),

• 2nd harmonic: YI I (2 · jω(k)
1 ),

...

• mth harmonic: Ymth (m · jω(k)
1 ) (last numerically nonzero harmonic).

3. If the second harmonic or higher harmonics are nonzero, the system is non-
linear. By sweeping the amplitude and using the adaptive scheme (stage 
-
approximation) in Eq. (30), the estimations of the first and the second kernels can
be improved. If the second and higher harmonics are equal to zero, the bilinear
matrix N remains zero and the underlying system is linear.

4. Apply the linear LF, see Algorithm 1 in [29] by using the measurements (e.g.,
H1( jω

(k)
1 ) ≈ 2YI ( jω

(k)
1 )/α
 for the second stage approximation Ym ≈ 0 for

m > 2) and get the order r linear model.

5. If the system is nonlinear, by fitting a bilinearmatrixNwill improve the accuracy.
Apply the two-tone input u(t) = α
 cos(ω

(k)
1 t) + β
 cos(ω

(k)
2 t) to get enough

measurements (≤ r2) to produce a full-rank LS problem.Measure the (ω1 + ω2)

harmonic as explained in Sect. 4.4 and get the estimations for the second kernel
as: H2( jω

(k)
1 , jω(k)

2 ) ≈ 2YI I ( jω
(k)
1 , jω(k)

2 )/(α
β
).

6. Solve the full-rank least-squares problem as described in Eq. (37) and compute
the real-valued bilinear matrix N. When the inversion is not exact due to numer-
ical issues, the least-squares solution is obtained with a thresholding SVD.
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4.6 Computational Effort of the Proposed Method

In this section, we discuss the computational effort of the proposed method by ana-
lyzing each step. We comment on the applicability of large-scale problems and the
relation with real-world scenarios.

Simulation of processes with harmonic inputs constitutes a classical technique
which is applied in many engineering applications; data acquisition in the time
domain is a common procedure. Nevertheless, using advanced electronic devices
such as vector network analyzers (VNAs), frequency-domain data can also be
obtained (directly). The Loewner framework applied in the case where frequency-
domain data that are obtained from VNAs offers an excellent identification and
reduction tool in the linear case (with many applications in electrical, mechanical,
or civil engineering). In the context of the current paper, we deal with time-domain
data for a special class of nonlinear problems.

For the purpose of identifying and reducing bilinear systems from time-domain
measurements, the most expensive procedure is that of data collection. This is done
by simulating time-domain models with Euler’s method (bilinear models such as
the ones approximating Burgers’ equation). Nevertheless, the heavy computational
cost of simulating large dimensional systems in time domain could be alleviated
using parallel processing (e.g., for multiple computational clusters). The process
of estimating transfer functions values by computing the Fourier transform hence
remains robust. In addition, the LF can adaptively detect the decay of the singular
values and hence the procedure can be terminated for a specific reduced order r � n.

In the beginning, a linear system of reduced dimension r is fitted using the LF.
For the rest of the proposed algorithm, note that we will use the lower dimension r to
our advantage, and hence the method remains robust. The next step is to compute the
matrix N that characterizes the nonlinearity of bilinear systems. As the fitted linear
system is of dimension r , we hence need to detect exactly r2 unknowns (the entries
of matrix N). As presented in Sect. 4.3, this boils down to solving a full-rank LS
problem that can be easily dealt with.

The aim of the newly proposed method is to accurately train bilinear models from
time-domain data. We offer a first step approach toward complete identification of
such systems within the Volterra series approximation approach. In many cases,
large-scale systems are sparse (due to spatial domain semi-discretization) and hence
reduction techniques can be applied. The new method deals with the inherent redun-
dancies through the linear subsystem (compression by means of SVD). Afterward, it
updates the nonlinear behavior by introducing an appropriate low-dimensional bilin-
ear matrix that improves the overall approximation. Note also that the new method
relies on the controllability/observability of the fitted linear system. Additionally,
noise values up to a particular threshold can be handled as presented in Sect. 5;
further analysis on noise-related issues is left for future research.
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5 Numerical Examples

Example 1 (Identifying a low-order bilinear toy example) The aim of this experi-
ment is to identify a simple bilinear model from time-domain measurements. Con-
sider the following controllable/observable bilinear model Eq. (18) of dimension-2
with a non-symmetric matrix N, zero initial condition and matrices as

E =
[
1 0
0 1

]
, A =

[−1 −10
10 −1

]
, N =

[
1 −2
3 −4

]
, B =

[
1
1

]
, C = [

1 1
]
. (42)

We simulate the system in the time domain with an input as: u(t) = A cos(ωt),
magnitude A = 0.01, frequency ω ∈ [

0.5 1 1.5 2
]
2π , and time step dt = 1e − 4.

Next, the second-stage approximation results for the linear kernel H̃1 in comparison
with the theoretical values of H1 are presented in Table1.

With the estimations of the linear transfer function and by using the LF as the
data-driven identification and reduction tool for linear systems, we identify the linear
system (Ã, b̃, c̃, Ẽ). We stopped at the fourth measurement due to the fact that the
underlying system is of second order (McMillan degree 2). Otherwise, more mea-
surements will be needed to have a sufficient decay of the singular values as shown
in Fig. 6. The singular value decay offers a choice of reduction. As long as the sim-
ulation of the system is done, with time step dt = 1e − 4, the singular values with
magnitude below that threshold are neglected.

Construction of the linear systemwith order r = 2, by using the theoretical noise-
free measurements (subscript “t”) appears next:

Ãt =
[−1.4513 −8.8181

11.363 −0.54868

]
, B̃t =

[−0.92979
1.3967

]
, C̃t = [−0.76857 0.9203

]
,

(43)
while by using the measured data with second-stage approximation results to the
following:

Ã =
[−1.458 −8.8137
11.367 −0.55162

]
, B̃ =

[−0.9342
1.4

]
, C̃ = [−0.7675 0.91611

]
. (44)

Table 1 Measurements of the first (linear) kernel

Frequency ω H̃1( jω)-second stage H1( jω)-theoretical

0.5 · 2π +0.026606 + 0.067106i +0.026574 + 0.067115i

1.0 · 2π +0.071503 + 0.189600i +0.071258 + 0.189700i

1.5 · 2π +0.752720 + 0.377300i +0.754030 + 0.380870i

2.0 · 2π +0.134070 − 0.381970i +0.133780 − 0.382520i
aWith 2nd-stage approximation H̃1( jω) ≈ 2Y1( jω)/A
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Fig. 6 The singular value decay of the LF as a fundamental characterization of theMcMillan degree
of the underlying linear system. Here, a truncation scheme of order r = 2 is recommended where
the second stage approximation gave σ3/σ1 = 4.721 · 10−5, while for the noise-free case the third
singular values have reached the machine precision

Table 2 Measurements of the H2 on the diagonal and perpendicular to the diagonal

Freq. ω H̃2( jω, jω) H2( jω, jω) H̃2( jω,− jω) H2( jω,− jω)

0.5 · 2π +0.026440 −
0.124490i

+0.026570 −
0.124440i

+0.032190 +0.032177

1.0 · 2π −0.184590 +
0.298430i

−0.184510 +
0.298910i

+0.045648 +0.045641

1.5 · 2π +0.178080 +
0.305840i

+0.178160 +
0.307170i

+0.063936 +0.064350

2.0 · 2π +0.062642 −
0.054219i

+0.062588 −
0.054423i

−0.044927 −0.044998

bThe estimations of the second kernel are given as: H̃2( jω, jω) ≈ 4Y2( jω, jω)/A2, on the diag-
onal, and H̃2( jω,− jω) ≈ 2Y2( jω,− jω)/A2, which is the DC term

•> Identified linear dynamics

Even if the coordinate system is different, one crucial qualitative result is to compute
the poles and zeros of the linear transfer function. For the identified system with the
theoretical measurements (noise free), the poles and zeros are exactly as the original:
p̃t = −1 ± 10i and the zero is: z̃t = −1 while for the second-stage approximation
to the linear system, the corresponding results are: p̃ = −1.0048 ± 9.9989i, z̃ =
−1.0042.

At this point, we have recovered the linear part of the bilinear system up to
an accuracy due to the truncation of Volterra series. The inexact simulations of
the continuous system which are done with a finite time step dt = 1e − 4, and the
Fourier accuracy led to quite accurate results with a perturbation of the order ∼
O(1e − 3) by comparing the theoretical poles and zeros. We proceed by collecting
themeasurements of the second kernel. Table2, containsmeasurements of the second
kernel with one-tone input.
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We can getN by solving the least-squares problem by just minimizing the 2-norm
as in [28]. This result was not toward the identification of the matrix N and here is
the new approach working toward the identification of bilinear systems.

•? Can we identify the matrix N?

The improvement relies on the rank deficiency problem that is produced by getting
the least-squares solution without taking under consideration measurements out of
the diagonal of the second kernel H2. By filling in the least-squares problem in
Eq. (37) with these extra equations, as Proposition 1 indicates, the problem solution
upgrades to a full-rank inversion and the answer is affirmative.

Back to our introductory example, the rank of the least-squares problem is less
than r2 = 4. So, we need to increase the rank.We takemeasurements (≤ 4) out of the
diagonal from the second kernel by using the input u(t) = A1 cos(ω1) + B1 cos(ω2).
Table3 includes the theoretical and measured results.

The full-rank least-squares solution gave for the theoretical noise-free case and
for the second-stage approximation the following results, respectively:

Ñt =
[−4.1542 −2.0998

3.236 1.1542

]
, Ñ =

[−4.1557 −2.1084
3.2284 1.1513

]
(45)

•> Coordinate transformation

By transforming all the matrices to the same coordinate system as in [26], we
conclude to the

• Noise-free case—exact identification

Ăt =
[−1.0 −10.0
10.0 −1.0

]
, N̆t =

[
1.0 −2.0
3.0 −4.0

]
, B̆t =

[
1.0
1.0

]
, C̆t =

[
1.0
1.0

]T
. (46)

• Simulated case—approximated identification

Ă =
[−1.0037 −9.9941

10.004 −1.0059

]
, N̆ =

[
0.99525 −1.997
3.006 −3.9997

]
, B̆ =

[
0.99925
1.0003

]
, C̆ =

[
1.0
1.0

]T
.

(47)

Next, in Fig. 7, evaluation results for the linear and the second-order generalized
transfer function are presented:

Finally, time-domain simulations for each system performed in Fig. 8with a larger
amplitude than the probing one.
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Table 3 Measurements of the second kernel (out of the diagonal)

Frequencies (ω1, ω2) H̃2( jω1, jω2) H2( jω1, jω2)

(0.2 · 2π, 0.3 · 2π) +0.030440 − 0.039259i +0.030429 − 0.039237i

(0.2 · 2π, 0.6 · 2π) +0.031002 − 0.080364i +0.031037 − 0.080315i

(0.4 · 2π, 0.3 · 2π) +0.030948 − 0.062869i +0.030961 − 0.062835i

(0.4 · 2π, 0.6 · 2π) +0.026417 − 0.125320i +0.026554 − 0.125260i
cThe estimation of the second kernel as H̃2( jω1, jω2) ≈ 2Y2( jω1, jω2)/(A1B1). Here we use φ =
1.5, to avoid the harmonic overlapping as explained in Sect. 4.4 and amplitudes as A1 = B1 = 0.01

Fig. 7 The identified first and second kernel with second-stage approximation in comparison with
the theoretical kernels

Fig. 8 The evaluation of the models with order r = 2 performed with input as u(t) = cos(t), t ∈
[0, 20]. The noise-free case has reached machine precision

Example 2 Time-domain reduction of the Burgers’ Equation. This example
illustrates the bilinear modeling and reduction concepts proposed in [5] for the
viscous Burgers’ equation from time-domain simulations. We simulate the sys-
tem with 40 measurements as ωk = j2π [0.1, 0.2, . . . , 4]. We present the corre-
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Fig. 9 The first and the second kernel evaluations in comparison with the originals

Fig. 10 Time-domain simulation for the Burgers’ equation example; viscosity parameter ν is
set as 1 and the dimension of the semi-discretized model is chosen to be 420. A comparison
among the identified/reduced bilinear of order r = 2 with the linear and with the frequency-
domain Loewner bilinear is depicted. The input is chosen as: u(t) = (1 + 2 cos(2π t))e−t , t ∈
[0, 2.5], u(t) = 4sawtooth(8π t), t ∈ [2.5, 3.75], u(t) = 0, t ∈ [3.75, 5]

sponding results with initial system dimension n = 420 reduced by the proposed
method to order r = 2 with the first normalized neglected singular value to be
σ3/σ1 = 4.6255 · 10−4. As the order was chosen r = 2, the reduced bilinear matrix
Ñ was introduced by using the following measurements as ω1 = j2π [0.2, 0.4] and
ω2 = j2π [0.3, 0.6]. In Fig. 9, evaluation results are presented.

Lastly, in Fig. 10, a time-domain simulation reveals that the proposed method can
improve the accuracy by fitting a nonlinear model. Table 4 contains approximation
results both in the frequency and, also in the time-domain. For the example pre-
sented (dimension reduction from n = 420 to r = 2), we offer a comparison of the
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Table 4 Summary of the results from the two examples with Time-LoewBil and comparison with
[5] for Burgers’ Example 2 of dimension n = 420

Error quantification Time-LoewBil
Example 1

Time-LoewBil
Example 2

Freq-LoewBil
Example 2

max
ω

‖H1( jω) − H̃1( jω)‖ 5.077 · 10−3 2.937 · 10−3 4.430 · 10−3

max
t

‖y(t) − yl (t)‖ 1.213 · 10−1 1.699 · 10−1 1.699 · 10−1

max
(ω1,ω2)

‖H2( jω1, jω2) − H̃2( jω1, jω2)‖ 2.794 · 10−2 3.077 · 10−3 2.991 · 10−3

max
t

‖y(t) − ỹb(t)‖ 2.739 · 10−4 5.032 · 10−2 5.278 · 10−2

dThe evaluations of the kernels and the outputs (yl : linear, ỹb reduced bilinear (r = 2)) took place
over the domains depicted in Figs. 7, 8, 9, 10

newly proposed method (Time-LoewBil) with another method, i.e., the frequency-
domain bilinear Loewner framework introduced in [5] (Freq-LoewBil). The com-
mon frequency grid was selected as described above while the sampling values of
the tranfser functions (in the frequency-domain) were corrupted with white-noise.
The noise magnitude of the latter was selected to match the noise values introduced
by performing time-domain simulations with a time step of dt = 1e − 4.

Remark 4 (Computational cost for the discretized Burgers’ model of dimension
420) The proposed time-domain Loewner bilinear method uses measurements cor-
responding to symmetric transfer functions. Such values can be directly inferred from
time-domain data by processing the spectral domain, i.e., by computing the FFT of
the observed output signals for oscillatory input signals. All experiments were per-
formed on a computer with 12 GB RAM and an Intel(R) Core(TM) i7-10510U CPU
running at 1.80 GHz, 2304 Mhz, 4 Cores, 8 Logical Processors. To simulate a sys-
tem of dimension 420, each measurement took ∼3min. So, the data acquisition cost
was reported in the range of 1 or 2h where the identification/reduction part was
almost direct. The proposed method seems to efficiently for moderate dimensions;
for large-scale problems, the computational issues that appear belong to the class
of “embarrassingly parallel” tasks; as the simulations are independent to each other,
one can easily speed up the whole process by using instead parallel clusters.

Remark 5 (Discussion and comparison between the two methods) In what follows,
we will state the pluses and minuses of the two methods applied for the second
numerical example.

The frequency Loewner bilinear framework (Freq-LoewBil)

• Pluses: recovers the original bilinear systemwith high accuracy, incorporates linear
and nonlinear transfer functionmeasurements in a coupled way (“all at once”), can
be easily extended to cope with higher order regular kernels, can also be viewed
as a Petrov-Galerkin projection-based moment-matching approach.
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• Minuses: It is not completely clear how to measure/obtain the frequency-domain
data needed for this method; it uses measurements of regular transfer functions
which cannot be (directly) inferred from time-domain simulations.

The time-Loewner bilinear framework (Time-LoewBil)

• Pluses: It uses measurements corresponding to symmetric transfer functions. Such
values can be directly inferred from time-domain data by processing the spectral
domain, i.e., by computing the FFT of the observed output signals for oscillatory
input signals.

• Minuses: The fitted bilinear model is as good as the fitted linear model (it relies on
the linear fit). As opposed to the first method, it fits the linear and nonlinear parts
separately (not “all at once”). It introduces additional errors due to conversion
from the time domain to the frequency domain. The latter disadvantage could also
occur for themethod in [5], provided that “regular transfer function”measurements
could be successfully inferred from time-domain data.

6 Conclusion

The proposed method offers approximate bilinear system identification from time-
domain measurements, since it is not possible to measure the corresponding kernels
exactly. An adaptive scheme that improves the estimation of the kernels was pre-
sented. Our proposed method uses only input-output measurements without requir-
ing state-space access. What makes this algorithm feasible is the combination of the
data-driven Loewner framework with the nonlinear Volterra series framework.

We have shown that for the noise-free case, the proposed method achieves system
identification from time-domain measurements through the symmetric kernels. Fur-
ther study is required to quantify the effects of the noise introduced by the truncation
of the Volterra series (in the 
-stage approximation). All the time-domain numerical
simulations have been implemented by means of the backward Euler approximation
scheme which certifies that this method can handle some level of numerical noise.
Multi-stepping methods, e.g., Runge-Kutta can offer a significance improvement to
the results and reduce the influence of numerical noise.

The variational approach is a theoretical method to identify regular kernels which
are appropriate for system identification purposes [35]. However, these kernels do
not have a physical meaning, i.e., cannot be directly measured from time-domain
simulations. This is not an issue for the growing exponential approach. The derived
transfer functions by means of this method can be measured from time-domain
data. The difficulty in combining both derivations, i.e., symmetric and regular is
also explained from the nth-dimensional integral that connects those through the
triangular kernels. Extensions to theMIMO case and to other nonlinearity structures,
e.g., quadratic or bilinear quadratic etc., are promising endeavors that will be the
matter of future research.



On Bilinear Time-Domain Identification and Reduction … 29

References

1. Ahmad, M.I., Baur, U., Benner, P.: Implicit Volterra series interpolation for model reduction
of bilinear systems. J. Comput. Appl. Math. 316, 15–28 (2017). https://doi.org/10.1016/j.cam.
2016.09.048

2. Anderson,B.D.O.,Antoulas,A.C.:Rational interpolation and state-variable realizations.Linear
Algebra Appl. 137/138, 479–509 (1990)

3. Antoulas, A.C.: Approximation of large-scale dynamical systems. Advances in Design
and Control, vol. 6. SIAM Publications, Philadelphia, PA (2005). https://doi.org/10.1137/1.
9780898718713
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