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Preface

The workshop series on Model Reduction of Complex Dynamical Systems—
MODRED aims to bring together researchers and users of model order reduction
techniques with focus on time-dependent problems. This includes, in particular,

• system-theoretic methods like, e.g., balanced truncation, Hankel norm approx-
imation, rational interpolation (moment-matching, H2-optimal reduction),
proper orthogonal decomposition (POD) and generalizations, as well as reduced
basis methods;

• data-driven methods, e.g., vector fitting, Loewner matrix and pencil based
approaches, dynamic mode decomposition (DMD), and kernel-based methods;

• surrogate modeling for design and optimization, with special emphasis on
control and data assimilation;

• model reduction methods in applications, e.g., control and network systems,
computational electromagnetics, computational nanoelectronics, structural
mechanics, fluid dynamics, and digital twins, in general.

The MODRED workshop series started in 2008 at Hamburg University, then
under the name Model Reduction for Circuit Simulation. It was continued in Berlin
2010, Magdeburg 2013, and Odense 2017.1 The fifth edition took place at
Karl-Franzens-Universität Graz in Austria, August 28–30, 2019, with keynote
contributions of

• Serkan Gugercin (Virginia Tech),
• Bernard Haasdonk (University of Stuttgart),
• Laura Iapichino (TU Eindhoven),
• J. Nathan Kutz (University of Washington), and
• Utz Wever (Siemens).

This volume contains papers related to presentations given there.

1 This was supposed to be MODRED 2016, but due to certain constraints had to be moved to
January 2017.
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Methods and Techniques of Model Order Reduction

In On Bilinear Time Domain Identification and Reduction in the Loewner
Framework, D. S. Karachalios, I. V. Gosea, and A. C. Antoulas propose a two-step
procedure that learns a reduced bilinear control system based on time-domain
measurements. In a first step, a linear surrogate model is fitted which subsequently
is extended by a suitably fitted bilinear operator. The approach combines the
Loewner framework with Volterra series representations.

Large-scale linear control systems are routinely tackled with the model reduction
method of balanced truncation. Balanced truncation requires solving a pair of
Lyapunov equations for two Gramians associated with the system. The work
Balanced Truncation for Parametric Linear Systems Using Interpolation of
Gramians: a Comparison of Algebraic and Geometric Approaches by N. T. Son,
P.-Y. Gousenbourger, E. Massart, and T. Stykel addresses such linear control
systems in the presence of additional parameter dependencies. Their approach to
parametric MOR is to approximate the Gramians of the Lyapunov equations at a
given parameter via interpolation. Two methods are proposed: direct matrix inter-
polation (called the algebraic approach) and interpolation of the Gramians on the
matrix manifold of n� n positive semidefinite matrices of fixed rank (called the
geometric approach). Both methods are juxtaposed and assessed by means of
numerical examples.

Dynamic mode decomposition (DMD) is a data-driven method for learning the
dynamics of complex nonlinear systems. This information, in turn, can be exploited
to construct reduced-order models. In the contribution Toward Fitting Structured
Nonlinear Systems by Means of Dynamic Mode Decomposition of I. V. Gosea and
I. Pontes Duff, two specifications of the DMD method, namely, DMD with control
and input-output DMD are extended to the case of fitting control problems with
bilinear and quadratic-bilinear terms. The authors present the general procedure and
detail the computation of the reduced-order matrices that are required for the task at
hand. Then, the proposed approaches are demonstrated on the viscous Burgers'
equation and the coupled van der Pol oscillators.

In Clustering-based Model Order Reduction for Nonlinear Network Systems,
P. Benner, S. Grundel, and P. Mlinarić discuss model reduction of nonlinear
multi-agent systems by using a combination of a projection-based model reduction
method and a k-means clustering algorithm. An important property of this approach
is that it preserves the network structure. Numerical examples including a nonlinear
oscillator network are used to illustrate the performance of the approach.

In Adaptive Interpolatory MOR by Learning the Error Estimator in the
Parameter Domain, S. Chellappa, L. Feng, V. de la Rubia, and P. Benner present
an adaptive training technique for interpolatory model order reduction of parametric
linear systems. Their approach is based on learning the error estimator over the
parameter domain by evaluating on a coarse training parameter set only and
interpolation using radial basis functions. The training parameter set is adaptively
enlarged by new points identified by evaluating the interpolated error estimator on a
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fine training set. The efficiency of this approach is demonstrated by three numerical
examples.

The contribution A link between Gramian based model order reduction and
moment matching of C. Bertram and H. Faßbender addresses asymptotically stable,
linear time-invariant single-input single-output dynamical system. In order to
reduce such systems, a balancing-related approach is pursued that is derived from
numerical integration. More precisely, an ordinary differential equation for the
Gramians inherent to the LTI system at hand is considered and approximate
solutions are obtained via Runge-Kutta methods. This corresponds to a quadrature
framework for Lyapunov and Sylvester equations. Eventually, the work establishes
a bridge between balanced POD and moment-matching techniques.

C. Himpe provides a detailed comparison of (empirical) Gramian-based model
reduction methods in Comparing (Empirical-Gramian-Based) Model Order
Reduction Algorithms. The performance of the individual MOR frameworks is
compared to each other based on common benchmark problems and different
system norms. Additionally, with MOR score, a new performance index is intro-
duced and investigated in the empirical Gramian MOR context.

R. Ullmann, S. Sicklinger, and G. Müller discuss a parametric model order
reduction approach for the frequency-domain analysis of complex industry models
in their chapter Optimization-based Parametric Model Order Reduction for the
Application to the Frequency Domain Analysis of Complex Systems. Here, the
challenge arises from a high-dimensional input parameter space on the one hand,
but the restriction to only a few full-order model evaluations due to budget con-
straints on the other hand. This is tackled using a global basis approach for model
order reduction, in combination with an optimization-based greedy search strategy
for the model training and an a posteriori statistical error evaluation based on
Bayesian inference.

Control systems with time delay appear frequently in control engineering and
design as well as in nano- and micro-electronics. A new model order reduction
technique based on balanced truncation and relying on the solution of extended
linear matrix inequalities is discussed in the chapter On Extended Model Order
Reduction for Linear Time Delay Systems by S. Naderi Lordejani, B. Besselink,
A. Chaillet, and N. van de Wouw. The new approach guarantees stability preser-
vation and comes with an a priori error bound similar to the classical twice-the-tail-
of-Hankel-singular-values bound known to hold for balanced truncation applied to
stable linear time-invariant systems.

Applications of Model Order Reduction

A. Jungiewicz, C. Ludwig, S. Sun, U. Wever, and R. Wüchner discuss aspects of
model order reduction in the design of digital twins of electric motors/generators or
gas turbines. While thermal and mechanical parts are often available as
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mathematical models in matrix form, thus allowing classical projection-based
model order reduction, coupling terms are often not accessible when using com-
mercial software. Thus, they suggest an approach to infer a coupling model from
data in their contribution A Practical Method for the Reduction of Linear
Thermo-mechanical Dynamic Equations.

Reduced OrderMethods inMedical Imaging are investigated by S. Chaturantabut,
T. Freeze, E. S. Helou, and C. H. Lee. They study POD reduced-order modeling as a
tool for image compression and reconstruction. They demonstrate how POD can be
used very efficiently to compress large sets of medical tomography data into a much
smaller set of representativemodes that can be used to reconstruct any image in the set
with a high degree of accuracy.

In their chapter Efficient Krylov Subspace Techniques for Model Order Reduction
of Automotive Structures in Vibroacoustic Applications, H. K. Sreekumar1,
R. Ullmann, S. Sicklinger, and S. C. Langer discuss the application of Krylov
subspace methods for model order reduction of damped vibrating systems arising in
acoustics. As they consider general damping models in contrast to many other papers
that restrict themselves to particular damping structures, special emphasis is given to
the fact that the system matrices can be complex rather than real for certain damping
strategies. This requires special care when implementing Krylov subspace methods
in order to achieve sufficient efficiency in an industrial context.

G. Pascarella and M. Fossati present an adaptive reduced-order model selection
framework for the accurate reconstructions of vortex-dominated unsteady flows by
means of the reduced basis method in the chapter Model-based Adaptive MOR
Framework for Unsteady Flows Around Lifting Bodies. They illustrate the perfor-
mance of the approach for two numerical examples, utilizing a variety of common
reduced-order methods like POD, spectral POD, DMD, and recursive DMD.

Mathematical modeling of permanent magnet synchronous motors (PMSM)
through nonlinear magnetostatics equations leads to quasilinear elliptic partial
differential equations. To prepare for the model-based design of PMSM, M. Hinze
and D. Korolev propose a certified reduced basis method for parameterized
quasilinear elliptic problems in Reduced Basis Methods for Quasilinear Elliptic
PDEs with Applications to Permanent Magnet Synchronous Motors. They apply
the empirical interpolation method to reduce the non-polynomial nonlinearity, and
thus to guarantee an efficient offline-online computational procedure.

Often, dynamical models incorporate certain invariants, which are bound to be
preserved by the laws of physics, e.g., conservation of mass or energy. The classical
methods of model reduction are not designed to preserve such invariants. The
featured article Structure-preserving Reduced Order Modeling of non-traditional
Shallow Water Equation by S. Yildiz, M. Uzunca, and B. Karasözen proposes an
energy-preserving reduced-order model for the shallow water equation with full
Coriolis force. First, a non-canonical Hamiltonian form for the full-order model is
introduced that features a certain skew-gradient structure. Then, the method of
proper orthogonal decomposition is adapted such that the skew-gradient structure
also shows in the reduced-order model. The authors illustrate their approach by
means of two numerical examples of increasing sophistication.
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Benchmarks and Software for Model Order Reduction

S. Rave and J. Saak present A Non-stationary Thermal-Block Benchmark Model for
Parametric Model Order Reduction. This benchmark of a parametric heat con-
duction problem is used in the following chapters of this volume to test imple-
mentations of different model reduction approaches.

P. Mlinarić, S. Rave, and J. Saak give an overview of the free software library
pyMOR in Parametric Model Order Reduction Using pyMOR. pyMOR consists of
several system-theoretic as well as reduced basis methods. In their contribution,
they experimentally compare these approaches using the benchmark model pre-
sented in the previous chapter of this volume.

In Matrix Equations, Sparse Solvers: M-M.E.S.S.-2.0.1—Philosophy, Features
and Application for (Parametric) Model Order Reduction, P. Benner, M. Köhler,
and J. Saak describe the MATLAB toolbox M-M.E.S.S. in version 2.0.1 which
provides solvers for large-scale sparse symmetric algebraic and differential
Lyapunov and Riccati matrix equations. They also demonstrate the usage of this
toolbox for balancing-related and interpolatory model reduction of different types of
linear dynamical systems including first- and second-order systems, structured
differential-algebraic equations, and parametric systems, whereas, in the latter case,
again the parametric benchmark from the penultimate chapter is employed.

P. Benner and S. Werner present their model reduction toolbox in MORLAB—
The Model Order Reduction LABoratory. MORLAB includes a variety of
system-theoretic reduction techniques. The chapter includes a detailed introduction
into the toolbox structure, function interfaces, and its documentation. The under-
lying mathematical principles (spectral splitting) are explained for first- and
second-order linear time-invariant control systems.

Magdeburg, Germany Peter Benner
Berlin, Germany

November 2020

Tobias Breiten
Braunschweig, Germany Heike Faßbender
Koblenz, Germany Michael Hinze
Augsburg, Germany Tatjana Stykel
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On Bilinear Time-Domain Identification
and Reduction in the Loewner
Framework

D. S. Karachalios, I. V. Gosea, and A. C. Antoulas

Abstract The Loewner framework (LF) in combination with Volterra series (VS)
offers a non-intrusive approximation method that is capable of identifying bilinear
models from time-domain measurements. This method uses harmonic inputs which
establish a natural way for data acquisition. For the general class of nonlinear prob-
lemswith VS representation, the growing exponential approach allows the derivation
of the generalized kernels, namely, symmetric generalized frequency response func-
tions (GFRFs). In addition, the homogeneity of the Volterra operator determines
the accuracy in terms of how many kernels are considered. For the weakly nonlinear
setup, only a few kernels are needed to obtain a good approximation. In this direction,
the proposed adaptive scheme is able to improve the estimations of the computation-
ally nonzero kernels. The Fourier transform associates these measurements with the
derived GFRFs and the LF makes the connection with system theory. In the linear
case, the LF associates the so-called S-parameters with the linear transfer function by
interpolating in the frequency domain. The goal of the proposed method is to extend
identification to the case of bilinear systems from time-domain measurements and
to approximate other general nonlinear systems (by means of the Carleman bilin-
earizarion scheme). By identifying the linear contribution with the LF, a considerable
reduction is achieved by means of the SVD. The fitted linear system has the same
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4 D. S. Karachalios et al.

McMillan degree as the original linear system. Then, the performance of the linear
model is improved by augmenting a special nonlinear structure. In a nutshell, we
learn reduced-dimension bilinear models directly from a potentially large-scale sys-
tem that is simulated in the time domain. This is done by fitting first a linear model,
and afterward, by fitting the corresponding bilinear operator.

1 Introduction

In natural sciences, evolutionary phenomena can be modeled as dynamical systems.
An ever-increasing need for improving the approximation accuracy has motivated
includingmore involved anddetailed features in themodeling process, thus inevitably
leading to large-scale dynamical systems [3]. To overcome this problem, efficient
finite methods heavily rely on model reduction. Model reduction methods can be
classified into two broad categories, namely, SVD based and Krylov based (moment
matching).

Themost prominent among the SVD-basedmethods is balanced truncation (BT).
In general, balancing methods are based on the computation of controllability and
observability gramians and lead to the elimination of state variables which are diffi-
cult to reach and to observe. Besides having high-computational cost of solving the
associated matrix Lyapunov equations, the advantages of balancing methods include
the preservation of stability and an a priori computable error bound. For more details
on these topics as well as on other model reduction methods not treated here (e.g.,
proper orthogonal decomposition (POD)/reduced basis (RB)), we refer the reader to
the book [3] and the surveys [9, 15].

One way to perform model reduction is by employing tangential interpolation.
These methods are known as rationalKrylov methods ormoment-matchingmethods.
Krylov-based methods are numerically efficient and have lower computational cost,
but, in general, the preservation of other properties (e.g., stability or passivity) is
not automatic. For an extensive study in interpolatory model reduction, we refer
the reader to the recent book [4]. In what follows, we will consider exclusively
interpolatory model reduction methods and, in particular, the LF. For recent surveys
on the LF, see [2, 6, 29]. The sensitivity to noise in the LF was already discussed in
[19, 30].

When input-output data are offered, data-driven methods, such as the Loewner
framework (LF), dynamic mode decomposition (DMD) [37], sparse identification of
nonlinear systems (with control) (SINDYc) in [27], vector fitting (VF) [23], Hankel
[25] or subspace methods [8, 24, 26], moment-matching [36], and operator infer-
ence [13, 14, 32], remain the only feasible approaches for recovering the hidden
information.

DMD-based methods represent viable alternatives that require state-derivative
estimations.

While the underlying dynamical system acts as a black box, model identifica-
tion tools are important for the reliability of the discovered models (i.e., stability,
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Fig. 1 Mathematical formalism for evolutionary phenomena

prediction). At the same time, these discovered models might have large dimension
and hence are not suitable for fast numerical simulation and control. The LF is a
direct data-driven interpolatory method able to identify and reduce models derived
directly from measurements. For measured data in the frequency domain, the LF is
well established for linear and nonlinear systems (e.g., bilinear or quadratic-bilinear
systems) see [5, 22]. In the case of time-domain data, the LF was already applied
for approximating linear models [21, 24, 31]. As the aim of this paper is to extend
the identification and reduction procedure to the class of bilinear systems from time-
domain data, we start our analysis by introducing the mathematical description of the
input-u(t) to output-y(t) relation as depicted in Fig. 1. The differential and algebraic
operators are denoted with f and, respectively, with z. To achieve this goal, all the
important steps from nonlinear system theory and interpolatory model reduction are
summarized.

1.1 Outline of the Paper

The rest of the paper is organized as follows:

• Section 2 contains a brief description of system theory starting from the linear case
followed by extensions to the nonlinear case by means of the Volterra series repre-
sentation. The single-input and single-output case is addressed for both frequency-
and time-domain representations.

• Section 3 introduces the Loewner framework as an interpolatory tool for model
approximation; the results that are presented here actually set the foundation for
identification and reduction of linear time-invariant systems.

• Section 4 introduces a special class of nonlinear systems, e.g., bilinear systems.
The theoretical discussion for analyzing such systems starts with the growing
exponential approach and the derivation of the generalized frequency response
functions (GFRFs) up to the case where a double-tone input is assumed. In addi-
tion, the kernel separation strategy for improving the measurements and the linear
identification/reduction part is presented. A concise algorithm that summarizes
the method is presented.

• Section 5 presents the numerical experiments performed in order to illustrate the
practical applicability of the newly proposed method. This section includes both a
simple (low-dimensional) example and a large-scale example, compared to another
state-of-the-art method.

• Section 6 presents the concluding remarks and also some potential future devel-
opments of the current method.
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2 System Theory Preliminaries

In this section, we will briefly present some important material from system theory
starting from the linear case.

2.1 Linear Systems

Consider SISO linear, time-invariant systemswithn internal variables (called “states”
whenever the matrix E is non-singular).

�l :
{
E ẋ(t) = Ax(t) + bu(t),

y(t) = cx(t), t ≥ 0,
(1)

whereE, A ∈ R
n×n, b ∈ R

n×1, c ∈ R
1×n . In the sequel,wewill restrict our attention

to invertible matrix E and with zero d-term (d = 0) in the state-output equation1.
The explicit solution with the convolution integral2 notation and the time-domain
linear kernel h(t) as the impulse response of the system can be written as

y(t) = ceAtx(0) + (h ∗ u)(t), t ≥ 0, (2)

where multiplication with E−1 from the left has been performed in the differential
part of Eq. (1). Also, we keep the same notation for the remaining matrix A and
vector b. By assuming zero initial conditions and performing a Laplace transform,
we obtain the transfer function description:

H(s) = Y (s)

U (s)
= c(sI − A)−1b, s ∈ C, (3)

where Y (s),U (s) stand for the input and the output in the frequency domain.

2.2 Nonlinear Systems

A large class of nonlinear systems can be described by means of the Volterra-Wiener
approach in [35]. Other relevant works on nonlinear systems and nonlinear mod-
eling/identification include Schetzen (1980), Chen and Billings (1989), Boyd and
Chua (1985) et. al.

The aim in this study is to identify and reduce special types of nonlinear systems
(s.a., bilinear) from time-domain measurements. By knowing only the input and the

1 The state-output equation often is represented as y(t) = cx(t) + du(t).
2 (h ∗ u)(t) = ∫∞

−∞ h(τ )u(t − τ)dτ .
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Fig. 2 The input-output mapping from the data-driven perspective with the unknown system �.
Specific structures of the unknown system can be assumed/inspired by the physical problem. For
instance, if the underlying physical phenomenon is fluid flow inside a control volume, quadratic
models should be constructed, e.g., [22]

simulated or measured output in the time domain as in Fig. 2, we will identify the
hidden model. In such situations where only snapshots are available, beyond the
linear fit which is well established a nonlinear fit of a special type will be developed.

2.2.1 Approximation of Nonlinear Systems (Volterra Series)

The input-output relationship for a wide class of nonlinear systems [35] can be
approximated by a Volterra series for sufficiently high N as

y(t) =
N∑

n=1

yn(t), yn(t) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, . . . , τn)

n∏
i=1

u(t − τi )dτi , (4)

where hn(τ1, . . . , τn) is a real-valued function of τ1, . . . , τn known as the nth-order
Volterra kernel.

Definition 1 The nth-order generalized frequency response function (GFRF) is
defined as

Hn( jω1, . . . , jωn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, . . . , τn)e(

− j
∑n

i=1 ωi τi)dτ1 · · · dτn, (5)

which is the multidimensional Fourier3 transform of hn(τ1, . . . , τn).

By applying the inverse Fourier transform of the nth-order GFRF, Eq. (5) can be
written as

yn(t) = 1

(2π)n

∫ ∞

−∞
· · ·

∫ ∞

−∞
Hn( jω1, . . . , jωn)

n∏
i=1

U ( jωi )e
j (ω1+···+ωn)t dωi . (6)

The nth Volterra operator is defined as

Vn(u1, u2, ..., un) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, ..., τn)

n∏
i=1

ui (t − τi )dτi , (7)

3 With ( j2 = −1), as the frequency s = jω lies on the imaginary axis, the Laplace transform
simplifies in most cases to Fourier transform (e.g., for square-integrable functions).
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so that yn = Vn(u, u, ..., u) holds true.

•> Homogeneity of the Volterra operator

The map u(t) → yn(t) is homogeneous of degree n, that is, αu → αn yn , α ∈
C. Each Volterra kernel hn(t) determines a symmetric multi-linear operator. Small
amplitudes (e.g., |α| < ε) will allow ordering the nonlinear terms in such a way that
terms with large powers of the amplitude (αn) will be negligible. That is precisely
the sense of approximating weakly nonlinear systems with Volterra series.

2.2.2 A Single-Tone Input

Consider the excitation of a systemwith an input consisting of two complex exponen-
tials as in Eq. (8). Such inputs are typically used in chemical engineering applications
as [33].

u(t) = A cos(ωt) =
(
A

2

)
e jωt +

(
A

2

)
e− jωt . (8)

By using the above input in Eq. (4), we can derive the first Volterra term with n = 1
as

y1(t) =
∫ ∞

−∞
h1(τ1)[u(t − τ1)]dτ1

= A

2
e jωt

∫ ∞

−∞
h1(τ1)e

− jωτ1dτ1︸ ︷︷ ︸
H1( jω)

+ A

2
e− jωt

∫ ∞

−∞
h1(τ1)e

jωτ1dτ1︸ ︷︷ ︸
H1(− jω)

⇒

y1(t) = A

2

(
e jωt H1( jω) + e− jωt H1(− jω)

)
.

(9)

Similarly, for the second term, we can derive

y2(t) =
(
A

2

)2[
e2 jωH2( jω, jω) + 2e0H2( jω,− jω) + e−2 jωH2(− jω,− jω)

]
.

(10)

Remark 1 (Conjugate symmetry): H∗
2 ( jω,− jω) = H2(− jω, jω), ∀ω ∈ R.

The input amplitude is A, the angular frequency isω, the imaginary unit is j, the first-
order response function is H1( jω), and Hn( jω, ..., jω), for n ≥ 2, are the higher
order FRFs or GFRFs. Then, the nth Volterra term can be written as

yn(t) =
(
A

2

)n ∑
p+q=n

nCq H
p,q
n ( jω)e jωp,q t , ωp,q = (p − q)ω. (11)
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Fig. 3 An instance of the single-sided power spectrumwith a singleton inputwithω = 1 is depicted.
The underlying system is nonlinear and as a result higher harmonics appeared with a DC (direct
current—non-periodic) term as well

where the following notations have been used:

H p,q
n ( jω) = Hn( jω, ..., jω︸ ︷︷ ︸

p−times

; − jω, ..., − jω︸ ︷︷ ︸
q−times

), ωp,q = (p − q)ω, nCq = n!
q!(n − q)! .

(12)

2.2.3 Time-Domain Representation of Harmonics

The mth harmonic in the time domain can be computed by collecting the identical
exponential power coefficients from Eq. (13) and by setting p − q = m, with p =
m + i − 1 and q = i − 1 in Eq. (11). Hence, it follows that

ymth (t) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−2 ( jω)e jmωt . (13)

2.2.4 Frequency-Domain Representation of Harmonics

The mth harmonic in the frequency domain by applying single-sided Fourier trans-
form in Eq. (13) is the following:

Ymth ( jmω) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−2 ( jω)δ( jmω), (14)

where δ(·) is theDirac delta distribution.When a single-tone input excites a nonlinear
dynamical system, the steady-state frequency response is characterized by a spectrum
with higher harmonics (as can be seen, for example, in Fig. 3). This behavior is not
observed in the linear case, where only one harmonic appears at the input frequency.
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3 The Loewner Framework

We start with an account of the Loewner framework (LF) in the linear case [2, 6, 29].
The LF is an interpolatorymethod that seeks reducedmodels whose transfer function
matches that of the original system at selected interpolation points. An important
attribute is that it provides a trade-off between accuracy of fit and complexity of the
model. It constructs models from given frequency data in a straightforward manner.
In the case of SISO systems, we have the rational scalar interpolation problem to
solve.

Consider a given set of complex data as

{(sk, fk(sk)) ∈ C × C : k = 1, . . . , 2n)}.

We partition the data in two disjoint sets:

S = [s1, . . . , sn︸ ︷︷ ︸
μ

, sn+1, . . . , s2n︸ ︷︷ ︸
λ

], F = [ f1, . . . , fn︸ ︷︷ ︸
V

, fn+1, . . . , f2n︸ ︷︷ ︸
W

],

where μi = si , λi = sn+i , vi = fi , wi = fn+i for i = 1, . . . , n.

The objective is to find H(s) ∈ C, such that

H(μi ) = vi , i = 1, . . . , n, and H(λ j ) = w j , j = 1, . . . , n. (15)

The left dataset is denoted as

M = [μ1, · · · , μn] ∈ C
1×n, V = [v1, · · · , vn]

T ∈ C
n×1, (16)

while the right dataset as

� = [λ1, · · · , λn]
T ∈ C

n×1, W = [w1, · · · , wn] ∈ C
1×n . (17)
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Interpolation points are determined by the problem or are selected to achieve
given model reduction goals. For ways of choosing the interpolation grids and of
partitioning the data into the left and right sets, we refer the reader to the recent
survey [29].

3.1 The Loewner Matrix

Given a row array of complex numbers (μ j , v j ), j = 1, . . . , n, and a column array,
(λi , wi ), i = 1, . . . , n, (with λi and theμ j mutually distinct) the associated Loewner
matrix L and the shifted Loewner matrix Ls are defined as

L=
⎡
⎢⎣

v1−w1
μ1−λ1

· · · v1−wn
μ1−λn

...
. . .

...
vn−w1
μn−λ1

· · · vn−wn
μn−λn

⎤
⎥⎦∈C

n×n, Ls =
⎡
⎢⎣

μ1v1−λ1w1

μ1−λ1
· · · μ1v1−λnwn

μ1−λn

...
. . .

...
μnvn−λ1w1

μn−λ1
· · · μnvn−λnwn

μn−λn

⎤
⎥⎦∈C

n×n .

Definition 2 If g is rational, i.e., g(s) = p(s)
q(s) , for appropriate polynomials p, q, the

McMillan degree or the complexity of g is deg g = max{deg(p), deg(q)}.
Now, ifwi = g(λi ) and v j = g(μ j ) are samples of a rational function g, themain

property of Loewner matrices asserts the following.

Theorem 1 [2] Let L be as above. If k, q ≥ deg g, then rank L = deg g.
In other words, the rank of L encodes the complexity of the underlying rational

function g. Furthermore, the same result holds for matrix-valued functions g.

3.2 Construction of Interpolants

If the pencil (Ls, L) is regular, then E = −L, A = −Ls, b = V, c = W, is
a minimal realization of an interpolant for the data, i.e., H(s) = W(Ls − sL)−1

V.
Otherwise, as shown in [2], the problem in Eq. (15) has a solution provided that

rank [s L − Ls] = rank [L, Ls] = rank

[
L

Ls

]
= r,

for all s ∈ {μi } ∪ {λ j }. Consider then the thin SVDs:

[L, Ls] = Y�̂r X̃∗,
[
L

Ls

]
= Ỹ�rX∗,

where �̂r , �r ∈ R
r×r , Y ∈ C

n×r , X ∈ C
n×r , Ỹ ∈ C

2n×r , X̃ ∈ C
r×2n .
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Remark 2 r can be chosen as the numerical rank (as opposed to the exact rank) of
the Loewner pencil.

Theorem 2 The quadruple (Ã, b̃, c̃, Ẽ) of size, r × r , r × 1, 1 × r , r × r , given
by

Ẽ = −YT
LX, Ã = −YT

LsX, b̃ = YT
V, c̃ = WX,

is a descriptor realization of an (approximate) interpolant of the data with McMillan
degree r = rank(L), where H̃(s) = c̃(sẼ − Ã)−1b̃.

For more details on the construction/identification of linear systems with the LF,
we refer the reader to [4, 6, 29] where both the SISO andMIMO cases are addressed
together with other more technical aspects (e.g., how to impose the construction of
real-valued models, etc.).

4 The Special Case of Bilinear Systems

In recent years, projection-based Krylov methods have extensively been applied for
model reduction of bilinear systems. We mention the following contributions [1, 5,
7, 10–12, 17, 20, 34] and the references within.

Scalar bilinear systems are described by the set of matrices; �b = (A,N,b, c,E)

and characterized by the following equations:

�b :
{
Eẋ(t) = Ax(t) + Nx(t)u(t) + bu(t),

y(t) = cx(t),
(18)

where E,A,N ∈ R
n×n , b ∈ R

n×1, c ∈ R
1×n , and x ∈ R

n×1, u, y ∈ R. In what fol-
lows, we restrict our analysis to systems with non-singular E matrices (e.g., identity
matrix).

4.1 The Growing Exponential Approach

The properties of the growing exponential approach can be adapted readily to the
problem of finding transfer functions for constant-parameter (stationary) state equa-
tions. Let us consider the bilinear model in Eq. (18) with zero initial conditions. A
single-tone input with amplitude A < 1 is considered as in Eq. (8).

u(t) = A cos(ωt) = A

2
e jωt + A

2
e− jωt = ae jωt + ae− jωt , (19)

where a = A/2 and a ∈ (0, ε) with 0 < ε < 1/2 and for all t ≥ 0. The steady-state
solution for the differential equation in Eq. (18) can be written as follows:
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x(t) =
∞∑

p,q∈N
Gp,q

n ( jω, . . . , jω︸ ︷︷ ︸
p−times

,− jω, ...,− jω︸ ︷︷ ︸
q−times

)a p+qe jω(p−q)t . (20)

The symbol4 Gp,q
n denotes the nth input to state frequency response containing p-

times the frequency ω and q-times the frequency−ω. By substituting in Eq. (18) and
collecting the terms of the same exponential (as the e jωmt ), we can derive the input
to state frequency responses Gn for every n as follows:

∞∑
p,q∈N

( jω(p − q)E − A)Gp,q
n a p+qe jω(p−q)t = b(ae jωt + ae− jωt )+

+ N

⎛
⎝ ∞∑

p,q∈N
Gp,q

n a p+q+1e jω(p+1−q)t +
∞∑

p,q∈N
Gp,q

n a p+q+1e jω(p−q−1)t

⎞
⎠ .

For the first choices of p and q up to p + q ≤ 2, (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)
and by denoting the resolvent �( jω) = ( jωE − A)−1 ∈ C

n×n , c.t. conjugate terms,
we derive the first set of terms

�( jω)−1G1,0
1 ae jωt + �(2 jω)−1G2,0

2 a2e2 jωt + �(0)−1G1,1
2 a2 + c.t. + · · · =

NG1,0
1 a2e2 jωt + NG2,0

2 a3e3 jωt + NG1,1
2 a3e jωt + c.t. + · · · + bae jωt + c.t.

Collecting the same powers in both exponential and polynomial magnitudes, we
compute the first and the second time/input-invariant GFRFs:

G1,0
1 ( jω) = �( jω)b,

G2,0
2 ( jω) = �(2 jω)NG1,0

1 = �(2 jω)N�( jω)b.
(21)

Then, the following input to state transfer functions Gn using induction are

Gn,0
n ( jω) = �(njω)N�((n − 1) jω)N · · ·N�( jω)b,

G0,n
n ( jω) = �(−njω)N�(−(n − 1) jω)N · · ·N�(− jω)b,

Gp,q
n ( jω) = �((p − q) jω)N

[
Gp,q−1

n−1 ( jω) + Gp−1,q
n−1 ( jω)

]
, p, q ≥ 1,

(22)

for n ≥ 1 and p + q = n. By multiplying with the output vector c, we can further
derive the input-output generalized frequency responses GFRFs as

4 Gp,q
n = G( jω, ..., jω︸ ︷︷ ︸

p−times

; − jω, ...,− jω︸ ︷︷ ︸
q−times

).
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Hn,0
n ( jω) = c�(njω)N�((n − 1) jω)N · · ·N�( jω)b,

H 0,n
n ( jω) = c�(−njω)N�(−(n − 1) jω)N · · ·N�(− jω)b,

H p,q
n ( jω) = c�((p − q) jω)N

[
Gp,q−1

n−1 ( jω) + Gp−1,q
n−1 ( jω)

]
, p, q ≥ 1.

(23)

At this point, we can write the Volterra series by using the above specific structure
of theGFRFs thatwere derivedwith the growing exponential approach for the bilinear
case. An important property to notice is that the nth kernel is a multivariate function
of order n. It is obvious that the identification of the nth-order FRF involves an n-
dimensional frequency space. For that reason, next, we derive the general second
symmetric kernel for the bilinear case with a double-tone input. Consider:

u(t) = A1 cos(ω1t) + A2 cos(ω2t) =
2∑

i=1

αi (e
jωi t + e− jωi t ), (24)

where α1 = A1
2 and α2 = A2

2 . In that case, with the growing exponential approach
the state solution in steady state is

x(t) =
∞∑

m1,...,m4∈N
Gm1,m2,m3,m4

n α
m1+m2
1 α

m3+m4
2 e j ((m1−m2)ω1+(m3−m4)ω2)t . (25)

We are looking for the input to state frequency responseG( jω1, jω2). By substi-
tuting to the bilinear model in Eq. (18) and collecting the appropriate terms while at
the same time using the symmetry G( jω1, jω2) = G( jω2, jω1), we conclude that

G2( jω1, jω2)=1

2
[( jω1 + jω2)E − A]−1 N

[
( jω1E − A)−1 b + ( jω2E − A)−1 b

]
,

(26)
where by using the resolvent notation and multiplying with c, we derive the second-
order symmetric generalized frequency response function as

H2( jω1, jω2) = 1

2
c�( jω1 + jω2)N [�( jω1)b + �( jω2)b] . (27)

4.2 The Kernel Separation Method

One way to deduce Volterra kernels is by means of interpolation. This problem is
equivalent to that of estimating a polynomial with noisy coefficients. This interpo-
lation scheme builds a linear system with a Vandermonde matrix which is invert-
ible since the amplitudes are distinct and nonzero. The inverse of a Vandermonde
matrix can be explicitly computed and there are stable ways to solve these equa-
tions [16]. The recently proposed method presented in [18] solves the exponentially
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ill-condition problem of the Vandermonde matrix with Arnoldi orthogonalization.
The mth harmonic in the frequency domain is derived by applying a (single-sided)
Fourier transform. More precisely, the explicit formulation is as follows:

Ymth ( jmω) =
∞∑
i=1

(
A

2

)m+2i−2
m+2i−2Ci−1︸ ︷︷ ︸

αm+2i−2

Hm+i−1,i−1
m+2i−2 ( jω)δ( jmω)

=
∞∑
i=1

αm+2i−2Hm+i−1,i−1
m+2(i−1) ( jω)δ( jmω).

(28)

We simplify the notation in order to reveal the adaptive method that will help us to
estimate the GFRFs up to a specific order. Next, write the linear system of equations
that connects the harmonic information with the higher Volterra kernels as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0(0 jω)

Y1(1 jω)

Y2(2 jω)

Y3(3 jω)

...

Ym(mjω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y(α,ω)

=
{
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α2 α4 . . .

α1 α3 α5 . . .

α2 α4 α6 . . .

α3 α5 α7 . . .

...
...

...
...

αm αm+2 αm+4 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mα

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0,0
0 H1,1

2 H2,2
4 . . .

H1,0
1 H2,1

3 H3,2
5 . . .

H2,0
2 H3,1

4 H4,2
6 . . .

H3,0
3 H4,1

5 H5,2
7 . . .

...
...

...
...

Hn,0
n Hn+1,1

n+2 Hn+2,2
n+4 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pω

}
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
en+1,1

.

(29)

By introducing the Hadamard product notation5 and by substituting the δ’s with
ones, we can compactly rewrite the above system in the following form:

Y(α,ω) = [Mα � Pω] · en+1,1. (30)

The above system offers the level of approximation we want to achieve. Note
that the frequency response Y depends on both the amplitude and the frequency,
while the right-hand side of Eq. (30) reveals the separation of the aforementioned
quantities. As we neglect higher order Volterra kernels, the measurement set tends
to be corrupted by noise.

•> Kernel separation and stage 
-approximation

For a given system, the procedure consists in exciting it with a single-tone input.
By varying the driving frequency, as well as the amplitude, we can approximate the
GFRFs by minimizing the (2-norm) of the remaining systems.

5 The Hadamard product is denoted with “�”; the matrix multiplication is performed element-wise.
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Ym+1,
( jmω, α
) = [
Mm+1,
(α
) � Pm+1,
( jmω)

] · en+1,1. (31)

Them-“direction” gives us the threshold up to the specific harmonic that wemeasure
while the 
-“direction” gives us the level of the kernel separation that we want
to achieve. For instance, for the second stage approximation, it holds 
 = 2 with
Ym ≈ 0, ∀m with 
 = 2 < m = 3, 4, ....

4.3 Identification of the Matrix N

The difference between linear and bilinear models is the presence of the product
between the input and the state that is scaled by the matrix N. As the LF is able to
identify the linear part (A,b, c,E) of the bilinear model the only thing that remains
is the identification of the matrix N. The matrix N enters linearly in the following
kernels (as E has been considered invertible, for simplicity, it is assumed E = I):

• With a single-tone input the kernel H 1,1
2 can be written as

H2( jω1,− jω1) = 1

2
c (−A)−1 N

(
( jω1I − A)−1b + (− jω1I − A)−1b

)
(32)

and the kernel H 2,0
2 as

H2( jω1, jω1) = c (2 jω1I − A)−1 N( jω1I − A)−1b. (33)

• While with a double-tone input the general kernel H2 can be written as

H2( jω1, jω2) = 1

2
c
(

( jω1 + jω2)I − A
)−1

N
(

( jω1I − A)−1b + ( jω2I − A)−1b
)

.

(34)

We introduce the following notation:

O( jω1, jω2) = 1

2
c
(
j (ω1 + jω2)I − A

)−1

∈ C
1×n,

R( jω1, jω2) =
(

( jω1I − A)−1b + ( jω2I − A)−1b
)

∈ C
n×1.

(35)

Then, Eq. (34) can be compactly rewritten as

H2( jω1, jω2) = O( jω1, jω2)NR( jω1, jω2). (36)

Assume that k measurements of the function H2 are available (measured) for k
different pairs (ω1, ω2). By vectorizing in respect to the measurement set, we have
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for the kth measurement:

H2( jω
(k)
1 , jω(k)

2 )︸ ︷︷ ︸
Y(k)

= O( jω(k)
1 , jω(k)

2 )︸ ︷︷ ︸
O(k)
1,n

N︸︷︷︸
n×n

R( jω(k)
1 , jω(k)

2 )︸ ︷︷ ︸
R(k)
n,1

,

For all k measurements → Y(1:k,1) =
(
O(k)

(1,n) ⊗ RT (k)
(1,n)

)
︸ ︷︷ ︸

(1:k,n2)

vec (N)︸ ︷︷ ︸
(1:n2,1)

. (37)

Note that Eqs. (32), (33), (34) can be equivalently rewritten as the one linear
matrix equation given in Eq. (37). By filling out the above matrix

[O ⊗ RT
]
with the

information from H2( jω1,− jω1) and from H2( jω1, jω1) as well, the solution can
be improved. Hence, we are able to solve Eq. (37) with full rank and identify the
matrix N. All the symmetry properties of the kernels are appropriately used, e.g.,
conjugate-real symmetry. For n denoting the dimension of the bilinear model and k
the number of measurements, we have the following two cases6:

1. k < n2 underdetermined→ least-squares (LS) solution (minimizing the 2-norm)
as in [28],

2. k ≥ n2 determined-rank completion → identification of N,

Proposition 1 Let �b = (A,N,b, c,E) be a bilinear system of dimension n for
which the linear subsystem �l = (A,b, c,E) is fully controllable and observable.
Then, for k ≥ n2 measurements so that ( jω(k)

1 , jω(k)
2 ) are distinct complex pairs with

(ω
(k)
1 , ω

(k)
2 ) ∈ R

2+ and ω
(k)
1 �= ω

(k)
2 , the following holds:

rank

(
⎡
⎢⎢⎢⎣
O(1) ⊗ RT (1)

O(2) ⊗ RT (2)

...

O(k) ⊗ RT (k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
(1:k≥n2,n2)

)
= n2. (38)

As the above result indicates, one would need at least n2 measurements to identify
the matrix N corresponding to bilinear system of dimension n.

4.4 A Separation Strategy for the second Kernel

To identify the nth Volterra kernel, we need an n-tone input signal. As we want
to identify the second kernel, the input signal needs to be chosen as a double-tone
Eq. (24). The propagating harmonics are e( j (m1−m2)ω1+ j (m3−m4)ω2)t or more compactly

6 The vectorization is row-wise, vec(N) = [
N(1, 1 : n) · · · N(n, 1 : n)

]T ∈ R
n2×1.
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Fig. 4 This figure shows the constrains of φ (e.g., φ = 0, 1/3, 1/2, 1, 2, 3, . . ., etc.). By choosing
φ’s within the blue dots, we construct frequency bandwidths with a unique (ω1 + ω2)

Fig. 5 Left pane: Overlapping kernels contributing to the same harmonic with invalid φ = 0.5.
Right pane: Uniquely defined harmonic at (ω1 + ω2)with valid φ = 1.5. Here, it holds (n = k + l)

e(±k jω1±l jω2)t , where k, l ∈ N. The aim is to differentiate the (ω1 + ω2)harmonic from
the others harmonics. More precisely, we want the following result to hold:

ω1 + ω2 �= kω1 + lω2, ∀(k, l) ∈ Z × Z \ {1, 1}. (39)

Suppose ω2 = φω1, φ ∈ R. The suitable φ’s where Eq. (39) holds are

ω1 + φω1 = kω1 + lφω1 ⇒ 1 + φ = k + lφ ⇒ φ = k − 1

1 − l
, k, l ∈ Z \ {1}.

(40)
By choosing φ so that the equality in Eq. (40) doesn’t hold, with harmonic mixing

indexm = k + l, it makes the harmonic (ω1 + ω2) uniquely defined in the frequency
spectrum up to the mth kernel.

To visualize this feature, we choose ω1 = 1, and ω2 = ω1φ = φ, for harmonic
mixing index m = 4. Then, the constraints of φ are depicted in Fig. 4 with blue dots.

Next, in Fig. 5 and on the left pane, one φ constraint that occurs commensurate
harmonics is depicted with the second and the third kernel to contribute at the same
harmonic. On the right pane, the harmonic is uniquely defined at (ω1 + ω2) from the
second kernel up to the mixing order m = 4.

The next result allows us to construct sweeping frequency schemes to get enough
measurements for the H2( jω1, jω2). So, for everyω1 > 0 the following should hold:
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ω2 ∈ (φi−1ω1, φiω1) , i = 1, . . . (41)

where φi are the constraints (see Fig. 4 blue dots).

Remark 3 Note that in the proposed framework, the separation of the kernels that
contribute at (ω1 + ω2) harmonic is forced only under a specific mixing order m.
We do not offer any general solution to this separation problem for multi-tone input,
although techniques have been introduced such as in [16]. Therefore, it was also
stated that the solution of the full separation of harmonics is, in general, not possible.

4.5 The Loewner-Volterra Algorithm for Time-Domain
Bilinear Identification and Reduction

We start with a set of single-tone inputs u(t) = α
 cos(ω
(i)
1 t), i = 1, ..., k, with

α
 < 1. For those k measurements, we can estimate the linear kernel H1( jω
(i)
1 ), the

H2( jω
(k)
1 , jω(k)

1 ) and the H2( jω
(k)
1 ,− jω(k)

1 ) by simply measuring the first harmonic
as Y1, the second harmonic as Y2, and the DC term as Y0, from the frequency
spectrum as shown in Fig. 3. To improve the accuracy of the estimations for the
aforementioned kernels, we could further upgrade to an 
-stage approximation by
varying the amplitude α
 as explained in Sect. 4.2. This approach is necessary when-
ever higher harmonics are considered to be numerically nonzero, hence meaningful.
The reason for this is that the first harmonic is hence corrupted by noise introduced
by the term H 2,1

3 and the rest of the terms which appears on the second row of matrix
Pω in Eq. (29).

Since the LF reveals the underlying order of the linear system denoted with r , the
value of k should be at least equal to 2r . Then, we can take the decision on what will
be the order r of the reduced system by analyzing the singular value decay. Up to
the previous step, we have identified the linear part with the LF, and we have filled
the LS problem Eq. (37) with measurements from the diagonal of the second kernel
and from the the perpendicular to the diagonal axis (ω1,−ω1). Those measurements
contribute to the problem, but with an underdetermined (rank deficient) LS problem.

We need more measurements of H2 to reach the full rank (r2) solution that will
lead to the identification ofN. So,we proceed bymeasuring the H2 out of the diagonal
(ω1 �= ω2) with a double-tone input as u(t) = α
 cos(ω

(k)
1 t) + β
 cos(ω

(k)
2 t), for a set

of frequency pairs (ω1, ω2) up to r2. The kernel separation problem for the frequency
(ω1, ω2) appears now. To deal with this problem, we follow the solution proposed
in Sect. 4.4 (up to a mixing degree). Last, we solve the real7 full-rank LS problem
described in Eq. (37) by using all the symmetric properties of these kernels (i.e., real
symmetry, conjugate symmetry, and the fact that H2( jω1, jω2) = H2( jω2, jω1)).
An algorithm that summarizes the above procedure is presented below.

7 Enforcing real-valued models has been discussed in [6, 29]; here, we follow the same approach.
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(Algorithm) The Loewner-Volterra algorithm for bilinear identification and
reduction from time-domain data.

Input/Data acquisition: Use as control input the signals: u(t) = α
 cos(ω
(k)
1 t) +

β
 cos(ω
(k)
2 t), t ≥ 0, by sweeping the small amplitudes (< 1) and a particular range

of frequencies.

Output: A bilinear system of dimension-r : �br : (Ar ,Nr ,br , cr ,Er )

1. Apply one-tone input u(t) with β
 = 0, ω
(k)
1 for k = 1, . . . , n, and collect the

snapshots y(t) in steady state.
2. Apply Fourier transform and collect the following measurements:

• DC term: YO(0 · jω(k)
1 ),

• 1st harmonic: YI (1 · jω(k)
1 ),

• 2nd harmonic: YI I (2 · jω(k)
1 ),

...

• mth harmonic: Ymth (m · jω(k)
1 ) (last numerically nonzero harmonic).

3. If the second harmonic or higher harmonics are nonzero, the system is non-
linear. By sweeping the amplitude and using the adaptive scheme (stage 
-
approximation) in Eq. (30), the estimations of the first and the second kernels can
be improved. If the second and higher harmonics are equal to zero, the bilinear
matrix N remains zero and the underlying system is linear.

4. Apply the linear LF, see Algorithm 1 in [29] by using the measurements (e.g.,
H1( jω

(k)
1 ) ≈ 2YI ( jω

(k)
1 )/α
 for the second stage approximation Ym ≈ 0 for

m > 2) and get the order r linear model.

5. If the system is nonlinear, by fitting a bilinearmatrixNwill improve the accuracy.
Apply the two-tone input u(t) = α
 cos(ω

(k)
1 t) + β
 cos(ω

(k)
2 t) to get enough

measurements (≤ r2) to produce a full-rank LS problem.Measure the (ω1 + ω2)

harmonic as explained in Sect. 4.4 and get the estimations for the second kernel
as: H2( jω

(k)
1 , jω(k)

2 ) ≈ 2YI I ( jω
(k)
1 , jω(k)

2 )/(α
β
).

6. Solve the full-rank least-squares problem as described in Eq. (37) and compute
the real-valued bilinear matrix N. When the inversion is not exact due to numer-
ical issues, the least-squares solution is obtained with a thresholding SVD.
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4.6 Computational Effort of the Proposed Method

In this section, we discuss the computational effort of the proposed method by ana-
lyzing each step. We comment on the applicability of large-scale problems and the
relation with real-world scenarios.

Simulation of processes with harmonic inputs constitutes a classical technique
which is applied in many engineering applications; data acquisition in the time
domain is a common procedure. Nevertheless, using advanced electronic devices
such as vector network analyzers (VNAs), frequency-domain data can also be
obtained (directly). The Loewner framework applied in the case where frequency-
domain data that are obtained from VNAs offers an excellent identification and
reduction tool in the linear case (with many applications in electrical, mechanical,
or civil engineering). In the context of the current paper, we deal with time-domain
data for a special class of nonlinear problems.

For the purpose of identifying and reducing bilinear systems from time-domain
measurements, the most expensive procedure is that of data collection. This is done
by simulating time-domain models with Euler’s method (bilinear models such as
the ones approximating Burgers’ equation). Nevertheless, the heavy computational
cost of simulating large dimensional systems in time domain could be alleviated
using parallel processing (e.g., for multiple computational clusters). The process
of estimating transfer functions values by computing the Fourier transform hence
remains robust. In addition, the LF can adaptively detect the decay of the singular
values and hence the procedure can be terminated for a specific reduced order r � n.

In the beginning, a linear system of reduced dimension r is fitted using the LF.
For the rest of the proposed algorithm, note that we will use the lower dimension r to
our advantage, and hence the method remains robust. The next step is to compute the
matrix N that characterizes the nonlinearity of bilinear systems. As the fitted linear
system is of dimension r , we hence need to detect exactly r2 unknowns (the entries
of matrix N). As presented in Sect. 4.3, this boils down to solving a full-rank LS
problem that can be easily dealt with.

The aim of the newly proposed method is to accurately train bilinear models from
time-domain data. We offer a first step approach toward complete identification of
such systems within the Volterra series approximation approach. In many cases,
large-scale systems are sparse (due to spatial domain semi-discretization) and hence
reduction techniques can be applied. The new method deals with the inherent redun-
dancies through the linear subsystem (compression by means of SVD). Afterward, it
updates the nonlinear behavior by introducing an appropriate low-dimensional bilin-
ear matrix that improves the overall approximation. Note also that the new method
relies on the controllability/observability of the fitted linear system. Additionally,
noise values up to a particular threshold can be handled as presented in Sect. 5;
further analysis on noise-related issues is left for future research.
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5 Numerical Examples

Example 1 (Identifying a low-order bilinear toy example) The aim of this experi-
ment is to identify a simple bilinear model from time-domain measurements. Con-
sider the following controllable/observable bilinear model Eq. (18) of dimension-2
with a non-symmetric matrix N, zero initial condition and matrices as

E =
[
1 0
0 1

]
, A =

[−1 −10
10 −1

]
, N =

[
1 −2
3 −4

]
, B =

[
1
1

]
, C = [

1 1
]
. (42)

We simulate the system in the time domain with an input as: u(t) = A cos(ωt),
magnitude A = 0.01, frequency ω ∈ [

0.5 1 1.5 2
]
2π , and time step dt = 1e − 4.

Next, the second-stage approximation results for the linear kernel H̃1 in comparison
with the theoretical values of H1 are presented in Table1.

With the estimations of the linear transfer function and by using the LF as the
data-driven identification and reduction tool for linear systems, we identify the linear
system (Ã, b̃, c̃, Ẽ). We stopped at the fourth measurement due to the fact that the
underlying system is of second order (McMillan degree 2). Otherwise, more mea-
surements will be needed to have a sufficient decay of the singular values as shown
in Fig. 6. The singular value decay offers a choice of reduction. As long as the sim-
ulation of the system is done, with time step dt = 1e − 4, the singular values with
magnitude below that threshold are neglected.

Construction of the linear systemwith order r = 2, by using the theoretical noise-
free measurements (subscript “t”) appears next:

Ãt =
[−1.4513 −8.8181

11.363 −0.54868

]
, B̃t =

[−0.92979
1.3967

]
, C̃t = [−0.76857 0.9203

]
,

(43)
while by using the measured data with second-stage approximation results to the
following:

Ã =
[−1.458 −8.8137
11.367 −0.55162

]
, B̃ =

[−0.9342
1.4

]
, C̃ = [−0.7675 0.91611

]
. (44)

Table 1 Measurements of the first (linear) kernel

Frequency ω H̃1( jω)-second stage H1( jω)-theoretical

0.5 · 2π +0.026606 + 0.067106i +0.026574 + 0.067115i

1.0 · 2π +0.071503 + 0.189600i +0.071258 + 0.189700i

1.5 · 2π +0.752720 + 0.377300i +0.754030 + 0.380870i

2.0 · 2π +0.134070 − 0.381970i +0.133780 − 0.382520i
aWith 2nd-stage approximation H̃1( jω) ≈ 2Y1( jω)/A
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Fig. 6 The singular value decay of the LF as a fundamental characterization of theMcMillan degree
of the underlying linear system. Here, a truncation scheme of order r = 2 is recommended where
the second stage approximation gave σ3/σ1 = 4.721 · 10−5, while for the noise-free case the third
singular values have reached the machine precision

Table 2 Measurements of the H2 on the diagonal and perpendicular to the diagonal

Freq. ω H̃2( jω, jω) H2( jω, jω) H̃2( jω,− jω) H2( jω,− jω)

0.5 · 2π +0.026440 −
0.124490i

+0.026570 −
0.124440i

+0.032190 +0.032177

1.0 · 2π −0.184590 +
0.298430i

−0.184510 +
0.298910i

+0.045648 +0.045641

1.5 · 2π +0.178080 +
0.305840i

+0.178160 +
0.307170i

+0.063936 +0.064350

2.0 · 2π +0.062642 −
0.054219i

+0.062588 −
0.054423i

−0.044927 −0.044998

bThe estimations of the second kernel are given as: H̃2( jω, jω) ≈ 4Y2( jω, jω)/A2, on the diag-
onal, and H̃2( jω,− jω) ≈ 2Y2( jω,− jω)/A2, which is the DC term

•> Identified linear dynamics

Even if the coordinate system is different, one crucial qualitative result is to compute
the poles and zeros of the linear transfer function. For the identified system with the
theoretical measurements (noise free), the poles and zeros are exactly as the original:
p̃t = −1 ± 10i and the zero is: z̃t = −1 while for the second-stage approximation
to the linear system, the corresponding results are: p̃ = −1.0048 ± 9.9989i, z̃ =
−1.0042.

At this point, we have recovered the linear part of the bilinear system up to
an accuracy due to the truncation of Volterra series. The inexact simulations of
the continuous system which are done with a finite time step dt = 1e − 4, and the
Fourier accuracy led to quite accurate results with a perturbation of the order ∼
O(1e − 3) by comparing the theoretical poles and zeros. We proceed by collecting
themeasurements of the second kernel. Table2, containsmeasurements of the second
kernel with one-tone input.
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We can getN by solving the least-squares problem by just minimizing the 2-norm
as in [28]. This result was not toward the identification of the matrix N and here is
the new approach working toward the identification of bilinear systems.

•? Can we identify the matrix N?

The improvement relies on the rank deficiency problem that is produced by getting
the least-squares solution without taking under consideration measurements out of
the diagonal of the second kernel H2. By filling in the least-squares problem in
Eq. (37) with these extra equations, as Proposition 1 indicates, the problem solution
upgrades to a full-rank inversion and the answer is affirmative.

Back to our introductory example, the rank of the least-squares problem is less
than r2 = 4. So, we need to increase the rank.We takemeasurements (≤ 4) out of the
diagonal from the second kernel by using the input u(t) = A1 cos(ω1) + B1 cos(ω2).
Table3 includes the theoretical and measured results.

The full-rank least-squares solution gave for the theoretical noise-free case and
for the second-stage approximation the following results, respectively:

Ñt =
[−4.1542 −2.0998

3.236 1.1542

]
, Ñ =

[−4.1557 −2.1084
3.2284 1.1513

]
(45)

•> Coordinate transformation

By transforming all the matrices to the same coordinate system as in [26], we
conclude to the

• Noise-free case—exact identification

Ăt =
[−1.0 −10.0
10.0 −1.0

]
, N̆t =

[
1.0 −2.0
3.0 −4.0

]
, B̆t =

[
1.0
1.0

]
, C̆t =

[
1.0
1.0

]T
. (46)

• Simulated case—approximated identification

Ă =
[−1.0037 −9.9941

10.004 −1.0059

]
, N̆ =

[
0.99525 −1.997
3.006 −3.9997

]
, B̆ =

[
0.99925
1.0003

]
, C̆ =

[
1.0
1.0

]T
.

(47)

Next, in Fig. 7, evaluation results for the linear and the second-order generalized
transfer function are presented:

Finally, time-domain simulations for each system performed in Fig. 8with a larger
amplitude than the probing one.
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Table 3 Measurements of the second kernel (out of the diagonal)

Frequencies (ω1, ω2) H̃2( jω1, jω2) H2( jω1, jω2)

(0.2 · 2π, 0.3 · 2π) +0.030440 − 0.039259i +0.030429 − 0.039237i

(0.2 · 2π, 0.6 · 2π) +0.031002 − 0.080364i +0.031037 − 0.080315i

(0.4 · 2π, 0.3 · 2π) +0.030948 − 0.062869i +0.030961 − 0.062835i

(0.4 · 2π, 0.6 · 2π) +0.026417 − 0.125320i +0.026554 − 0.125260i
cThe estimation of the second kernel as H̃2( jω1, jω2) ≈ 2Y2( jω1, jω2)/(A1B1). Here we use φ =
1.5, to avoid the harmonic overlapping as explained in Sect. 4.4 and amplitudes as A1 = B1 = 0.01

Fig. 7 The identified first and second kernel with second-stage approximation in comparison with
the theoretical kernels

Fig. 8 The evaluation of the models with order r = 2 performed with input as u(t) = cos(t), t ∈
[0, 20]. The noise-free case has reached machine precision

Example 2 Time-domain reduction of the Burgers’ Equation. This example
illustrates the bilinear modeling and reduction concepts proposed in [5] for the
viscous Burgers’ equation from time-domain simulations. We simulate the sys-
tem with 40 measurements as ωk = j2π [0.1, 0.2, . . . , 4]. We present the corre-
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Fig. 9 The first and the second kernel evaluations in comparison with the originals

Fig. 10 Time-domain simulation for the Burgers’ equation example; viscosity parameter ν is
set as 1 and the dimension of the semi-discretized model is chosen to be 420. A comparison
among the identified/reduced bilinear of order r = 2 with the linear and with the frequency-
domain Loewner bilinear is depicted. The input is chosen as: u(t) = (1 + 2 cos(2π t))e−t , t ∈
[0, 2.5], u(t) = 4sawtooth(8π t), t ∈ [2.5, 3.75], u(t) = 0, t ∈ [3.75, 5]

sponding results with initial system dimension n = 420 reduced by the proposed
method to order r = 2 with the first normalized neglected singular value to be
σ3/σ1 = 4.6255 · 10−4. As the order was chosen r = 2, the reduced bilinear matrix
Ñ was introduced by using the following measurements as ω1 = j2π [0.2, 0.4] and
ω2 = j2π [0.3, 0.6]. In Fig. 9, evaluation results are presented.

Lastly, in Fig. 10, a time-domain simulation reveals that the proposed method can
improve the accuracy by fitting a nonlinear model. Table 4 contains approximation
results both in the frequency and, also in the time-domain. For the example pre-
sented (dimension reduction from n = 420 to r = 2), we offer a comparison of the
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Table 4 Summary of the results from the two examples with Time-LoewBil and comparison with
[5] for Burgers’ Example 2 of dimension n = 420

Error quantification Time-LoewBil
Example 1

Time-LoewBil
Example 2

Freq-LoewBil
Example 2

max
ω

‖H1( jω) − H̃1( jω)‖ 5.077 · 10−3 2.937 · 10−3 4.430 · 10−3

max
t

‖y(t) − yl (t)‖ 1.213 · 10−1 1.699 · 10−1 1.699 · 10−1

max
(ω1,ω2)

‖H2( jω1, jω2) − H̃2( jω1, jω2)‖ 2.794 · 10−2 3.077 · 10−3 2.991 · 10−3

max
t

‖y(t) − ỹb(t)‖ 2.739 · 10−4 5.032 · 10−2 5.278 · 10−2

dThe evaluations of the kernels and the outputs (yl : linear, ỹb reduced bilinear (r = 2)) took place
over the domains depicted in Figs. 7, 8, 9, 10

newly proposed method (Time-LoewBil) with another method, i.e., the frequency-
domain bilinear Loewner framework introduced in [5] (Freq-LoewBil). The com-
mon frequency grid was selected as described above while the sampling values of
the tranfser functions (in the frequency-domain) were corrupted with white-noise.
The noise magnitude of the latter was selected to match the noise values introduced
by performing time-domain simulations with a time step of dt = 1e − 4.

Remark 4 (Computational cost for the discretized Burgers’ model of dimension
420) The proposed time-domain Loewner bilinear method uses measurements cor-
responding to symmetric transfer functions. Such values can be directly inferred from
time-domain data by processing the spectral domain, i.e., by computing the FFT of
the observed output signals for oscillatory input signals. All experiments were per-
formed on a computer with 12 GB RAM and an Intel(R) Core(TM) i7-10510U CPU
running at 1.80 GHz, 2304 Mhz, 4 Cores, 8 Logical Processors. To simulate a sys-
tem of dimension 420, each measurement took ∼3min. So, the data acquisition cost
was reported in the range of 1 or 2h where the identification/reduction part was
almost direct. The proposed method seems to efficiently for moderate dimensions;
for large-scale problems, the computational issues that appear belong to the class
of “embarrassingly parallel” tasks; as the simulations are independent to each other,
one can easily speed up the whole process by using instead parallel clusters.

Remark 5 (Discussion and comparison between the two methods) In what follows,
we will state the pluses and minuses of the two methods applied for the second
numerical example.

The frequency Loewner bilinear framework (Freq-LoewBil)

• Pluses: recovers the original bilinear systemwith high accuracy, incorporates linear
and nonlinear transfer functionmeasurements in a coupled way (“all at once”), can
be easily extended to cope with higher order regular kernels, can also be viewed
as a Petrov-Galerkin projection-based moment-matching approach.



28 D. S. Karachalios et al.

• Minuses: It is not completely clear how to measure/obtain the frequency-domain
data needed for this method; it uses measurements of regular transfer functions
which cannot be (directly) inferred from time-domain simulations.

The time-Loewner bilinear framework (Time-LoewBil)

• Pluses: It uses measurements corresponding to symmetric transfer functions. Such
values can be directly inferred from time-domain data by processing the spectral
domain, i.e., by computing the FFT of the observed output signals for oscillatory
input signals.

• Minuses: The fitted bilinear model is as good as the fitted linear model (it relies on
the linear fit). As opposed to the first method, it fits the linear and nonlinear parts
separately (not “all at once”). It introduces additional errors due to conversion
from the time domain to the frequency domain. The latter disadvantage could also
occur for themethod in [5], provided that “regular transfer function”measurements
could be successfully inferred from time-domain data.

6 Conclusion

The proposed method offers approximate bilinear system identification from time-
domain measurements, since it is not possible to measure the corresponding kernels
exactly. An adaptive scheme that improves the estimation of the kernels was pre-
sented. Our proposed method uses only input-output measurements without requir-
ing state-space access. What makes this algorithm feasible is the combination of the
data-driven Loewner framework with the nonlinear Volterra series framework.

We have shown that for the noise-free case, the proposed method achieves system
identification from time-domain measurements through the symmetric kernels. Fur-
ther study is required to quantify the effects of the noise introduced by the truncation
of the Volterra series (in the 
-stage approximation). All the time-domain numerical
simulations have been implemented by means of the backward Euler approximation
scheme which certifies that this method can handle some level of numerical noise.
Multi-stepping methods, e.g., Runge-Kutta can offer a significance improvement to
the results and reduce the influence of numerical noise.

The variational approach is a theoretical method to identify regular kernels which
are appropriate for system identification purposes [35]. However, these kernels do
not have a physical meaning, i.e., cannot be directly measured from time-domain
simulations. This is not an issue for the growing exponential approach. The derived
transfer functions by means of this method can be measured from time-domain
data. The difficulty in combining both derivations, i.e., symmetric and regular is
also explained from the nth-dimensional integral that connects those through the
triangular kernels. Extensions to theMIMO case and to other nonlinearity structures,
e.g., quadratic or bilinear quadratic etc., are promising endeavors that will be the
matter of future research.
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Balanced Truncation for Parametric
Linear Systems Using Interpolation of
Gramians: A Comparison of Algebraic
and Geometric Approaches

Nguyen Thanh Son, Pierre-Yves Gousenbourger, Estelle Massart,
and Tatjana Stykel

Abstract When balanced truncation is used for model order reduction, one has to
solve a pair of Lyapunov equations for two Gramians and uses them to construct a
reduced-order model. Although advances in solving such equations have been made,
it is still the most expensive step in this reduction method. Parametric model order
reduction aims to determine reduced-ordermodels for parameter-dependent systems.
Popular techniques for parametric model order reduction rely on interpolation. Nev-
ertheless, interpolation of Gramians is rarely mentioned which motivates our work.
Here, we propose and compare two approaches for Gramian interpolation. In the first
approach, the interpolated Gramian is computed as a linear combination of the data
Gramians with positive coefficients. We show that, if the system depends affinely on
the parameters, computation time can be saved by making part of the computations
offline. The second approach aims at performing the interpolation on the manifold of
fixed-rank positive semidefinite matrices. We resort then to interpolation algorithms
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on Riemannian manifolds, and, more specifically, to curve and surface interpolation
techniques assuming that the model depends on one or two parameters, respectively.
The results of the interpolation step are then used to construct parametric reduced-
order models, which are compared numerically on two benchmark problems.

1 Introduction

The need for increasingly accurate simulations in sciences and technology results
in large-scale mathematical models. Simulation of those systems is usually time-
consuming or even infeasible, especially with limited computer resources. Model
order reduction (MOR) is a well-known tool to deal with such problems. Founded
about half a century ago, this field is still getting attraction due to the fact that many
complicated or large problems have not been considered andmany advancedmethods
have not been invoked yet.

Often, the full-order model (FOM) depends on parameters. The reduced-order
model (ROM), preferably parameter dependent as well, is therefore required to
approximate the FOM on a given parameter domain. This problem, so-called para-
metric model order reduction (PMOR), has been addressed using various approaches
such as Krylov subspace-based methods [1, 2], optimization [3], interpolation [4–7],
and reduced basis techniques [8, 9], just to name a few. The reader is referred to
the survey [10] and the contributed book [11] for more details. We focus here on
interpolation-based methods to build a ROM for the linear parametric control system

E(μ)ẋ(t, μ) = A(μ)x(t, μ) + B(μ)u(t),
y(t, μ) = C(μ)x(t, μ),

(1)

where E(μ), A(μ) ∈ R
n×n , B(μ) ∈ R

n×m , C(μ) ∈ R
p×n with p,m � n, and

μ ∈ D ⊂ R
�.Weassume that thematrix E(μ) is nonsingular and that all the eigenval-

ues of the pencil λE(μ) − A(μ) have negative real part for all μ ∈ D. This assump-
tion allows us to avoidworkingwith singular control systems and to restrict ourselves
to the use of standard balanced truncation [12, 13]. The goal of PMOR is to approx-
imate system (1) by a smaller parametric model

Ẽ(μ) ˙̃x(t, μ) = Ã(μ)x̃(t, μ) + B̃(μ)u(t),
ỹ(t, μ) = C̃(μ)x̃(t, μ),

(2)

where Ẽ(μ), Ã(μ) ∈ R
r×r , B̃(μ) ∈ R

r×m , C̃(μ) ∈ R
p×r and r � n.

Interpolation-based methods work as follows. On a given sample grid μ j ,
j = 1, . . . , q, in the parameter domain D, one computes a ROM associated with
each μ j . These ROMs can be obtained using any MOR method for non-parametric
models [14] and are characterized by either their projection subspaces, coefficient
matrices, or transfer functions. Then they are interpolated using standard methods
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such as Lagrange or spline interpolation. These approaches have been discussed
intensively in many publications, see, e.g., [6, 15, 16] for interpolating local reduced
system matrices, [4, 17] for interpolating projection subspaces, [5, 18] for interpo-
lating reduced transfer functions, and [19] for a detailed discussion on the use of
manifold interpolation for model reduction. Each of them has its own strengths and
works well in some specific applications but fails to be superior to the others in a
general setting.

When balanced truncation [20] is used, one has to solve a pair of Lyapunov
equations for two Gramians. Although advances in solving such equations have
been made, it is still the most expensive step in this reduction method. Therefore,
any interpolationmethod that can circumvent this step is of interest. Unfortunately, to
our knowledge, there has been no work addressing this issue. In this contribution, we
propose to interpolate the solutions to the Lyapunov equations, i.e., the Gramians. It
is noteworthy that in the large-scale setting, one should avoid working with full-rank
solution matrices. Fortunately, in many practical cases, the solution of the Lyapunov
equation can be well approximated by a symmetric positive semidefinite (SPSD)
matrix of considerably smaller rank [21, 22]. Such approximations can be used in
the square root balanced truncation method [23] to make the reduction procedure
more computationally efficient.

To ensure that the SPSD property is preserved during the interpolation, we pro-
pose two approaches. A key feature of these two approaches is that they allow a direct
manipulation of the low-rank factors of the SPSDmatrices instead of the full Grami-
ans, thereby reducing the computation cost (i.e., any n × n Gramian P , of rank k, is
written as P = XXT for some factor matrix X ∈ R

n×k). In the first approach, which
is the main content of Sect. 2, the target Gramians are written as a linear combination
of the data Gramians with some given (positive) weights. An issue with this first
method is that the “interpolated” low-rank factors have a considerably larger number
of columns than the ones associated with the training data, and, as a consequence,
they may contain redundant information. However, by applying the balanced trunca-
tion model reduction method, we can remove this redundancy. Moreover, assuming
the affine dependence of the matrices E, A, B,C (see (1)) on the parameters, we
can design an offline-online decomposition of the balanced truncation procedure, to
reduce the computational cost of the operations that have to be done on-the-fly. We
refer to this as the linear algebraic (or algebraic for short) approach.

The second approach, given in Sect. 3, consists of mapping beforehand all the
matrices to the set of fixed-rank positive semidefinite matrices, and performing the
interpolation directly in that set. This would ensure that the rank of the interpolated
Gramians remains consistent with the ranks of the data Gramians. It was shown in
[24, 25] that the set of SPSD matrices of fixed rank can be turned into a Riemannian
manifold by equipping it with a differential structure. We can then resort to inter-
polation techniques specifically designed to work on Riemannian manifolds. Oldest
techniques are based on subdivision schemes [26] or rolling procedures [27]. In the
last decades, path fitting techniques rose up, such as least-squares smoothing [28] or
more recently by means of Bézier splines [29, 30]. The latter will be employed here
for interpolating the Gramians. The resulting PMOR method will be referred to as
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the geometric method in the sense that it strictly preserves the geometric structure
of the data.

The rest of the chapter is organized as follows. In Sect. 2,we briefly recall balanced
truncation for MOR, the square root balanced truncation procedure, and present the
algebraic interpolation method. Section 3 is devoted to the geometric interpolation
method. It first describes the geometry of the manifold of fixed-rank SPSD matrices,
and then algorithms to perform interpolation on this manifold. The two proposed
approaches are then compared numerically in Sect. 4, and the conclusion is given in
Sect. 5.

2 Balanced Truncation for Parametric Linear Systems and
Standard Interpolation

2.1 Balanced Truncation

Balanced truncation [14, 20] is a well-known method for model reduction. In this
section, we briefly review the square root procedure proposed in [23] which is more
numerically efficient than its original version. As in other projection-based methods,
a balancing projection for system (1) must be constructed. This projection helps to
balance the input and output energies on each state so that one can easily decide
which state component should be truncated. To this end, one has to solve the pair of
generalized Lyapunov equations

E(μ)P(μ)AT(μ) + A(μ)P(μ)ET(μ) = −B(μ)BT(μ), (3)

ET (μ)Q(μ)A(μ) + AT (μ)Q(μ)E(μ) = −CT (μ)C(μ), (4)

for the controllability Gramian P(μ) and the observability Gramian Q(μ). In prac-
tice, these Gramians are computed in the factorized form

P(μ) = X (μ)XT (μ), Q(μ) = Y (μ)Y T (μ),

with X (μ) ∈ R
n×kc and Y (μ) ∈ R

n×ko . One can show that the eigenvalues of the
matrix P(μ)ET (μ)Q(μ)E(μ) are real and non-negative [14]. The positive square
roots of the eigenvalues of this matrix, σ1(μ) ≥ · · · ≥ σn(μ) ≥ 0, are called the
Hankel singular values of system (1). They can also be determined from the singular
value decomposition (SVD)

Y T (μ)E(μ)X (μ) = [U1(μ) U0(μ)]
[
�1(μ) 0

0 �0(μ)

]
[V1(μ) V0(μ)]T , (5)

where [U1(μ) U0(μ)] and [V1(μ) V0(μ)] have orthonormal columns, and
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�1(μ) = diag(σ1(μ), . . . , σr (μ)), �0(μ) = diag(σr+1(μ), . . . , σkco(μ))

with kco = min(kc, ko). Then the ROM (2) is computed by projection

Ẽ(μ) = WT (μ)E(μ)T (μ), Ã(μ) = WT (μ)A(μ)T (μ),

B̃(μ) = WT (μ)B(μ), C̃(μ) = C(μ)T (μ),
(6)

where the projection matrices are given by

W (μ) = Y (μ)U1(μ)�
−1/2
1 (μ), T (μ) = X (μ)V1(μ)�

−1/2
1 (μ). (7)

The H∞-error of the approximation is shown to satisfy

‖H(·, μ) − H̃(·, μ)‖H∞ ≤ 2
(
σr+1(μ) + · · · + σkco(μ)

)
,

where the H∞-norm is defined as

‖H‖H∞ = sup
ω∈R

‖H(iω)‖2,

where i = √−1, and

H(s, μ) = C(μ)(sE(μ) − A(μ))−1B(μ),

H̃(s, μ) = C̃(μ)(s Ẽ(μ) − Ã(μ))−1 B̃(μ)

are the transfer functions of systems (1) and (2), respectively.

2.2 Interpolation of Gramians for Parametric Model Order
Reduction

Since solving Lyapunov equations is the most expensive step of the balanced trun-
cation procedure, we propose to compute the solution for only a few values of the
parameter, and then interpolate those for other values of the parameter. To this end,
on the chosen sample grid μ1, . . . , μq ∈ D, we solve the Lyapunov equations (3)
and (4) for P(μ j ) = Pj = X j X

T
j and Q(μ j ) = Q j = Y jY

T
j , j = 1, . . . , q. Note

that the ranks of the local Gramians Pj and Q j , j = 1, . . . , q, do not need to be the
same. Then we define the mappings

P : D → R
n×n, Q : D → R

n×n,

μ �→ P(μ), μ �→ Q(μ),

interpolating the data points (μ j , Pj ) and (μ j , Q j ), respectively, as
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P(μ) =
q∑
j=1

w j (μ)X j X
T
j , Q(μ) =

q∑
j=1

w j (μ)Y jY
T
j ,

wherew j (μ) are someweights thatwill be detailed in Sect. 4. To preserve the positive
semidefiniteness of the Gramians, we propose to use non-negative weights [31]. This
methodology is compatible with the factorization structure since we can write

P(μ) =
q∑
j=1

√
w j (μ)X j

√
w j (μ)XT

j (8)

= [√
w1(μ)X1 · · · √

wq(μ)Xq

] [√
w1(μ)X1 · · · √wq(μ)Xq

]T
= X (μ)XT (μ), (9)

and, similarly,

Q(μ) = Y (μ)Y T (μ) with Y (μ) = [√
w1(μ)Y1 · · · √

wq(μ)Yq
]
. (10)

Note that the computation of the parametric Gramians is not the ultimate goal. After
interpolation, we still have to proceed steps (5) and (6) to get the ROM. The compu-
tations required by these steps explicitly involve large matrices which may reduce
the efficiency of the proposed method. To overcome this difficulty, we separate the
computations into two stages. The first stage can be expensive but must be inde-
pendent of μ so that it can be precomputed. The second step, where one has to
compute the ROM at any new value μ ∈ D, must be fast. Ideally, its computational
complexity should be independent of n, the dimension of the initial problem. Such a
decomposition is often referred to as an offline-online decomposition and quite well
known in the reduced basis community [32, 33]. Details are presented in the next
subsection. Before that, we would like to drive the reader’s attention to a related
work [34], where we considered the problem of interpolating the solution of para-
metric Lyapunov equations using different interpolation techniques and compared
the obtained results.

2.3 Offline-Online Decomposition

For the offline-online decomposition, we assume that the matrices of system (1)
can be written as affine combinations of some parameter-independent matrices
{Ei }i=1,...,qE , {Ai }i=1,...,qA , {Bi }i=1,...,qB , and {Ci }i=1,...,qC as follows:
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E(μ) =
qE∑
i=1

f Ei (μ)Ei , A(μ) =
qA∑
i=1

f Ai (μ)Ai ,

B(μ) =
qB∑
i=1

f Bi (μ)Bi , C(μ) =
qC∑
i=1

f Ci (μ)Ci ,

where qE , qA, qB, qC are small and the evaluations of f Ei , f Ai , f Bi , f Ci are cheap.
This assumption is common in PMOR and often fulfilled in practice, see, e.g., [1, 8,
17, 35] and examples in Sect. 4. Once the interpolated Gramians are available, we
obtain

Y T (μ)E(μ)X (μ) =
⎡
⎣

√
w1(μ)Y T

1· · ·√
wq(μ)Y T

q

⎤
⎦ qE∑

i=1

f Ei (μ)Ei
[√

w1(μ)X1 · · · √
wq(μ)Xq

]

=
qE∑
i=1

f Ei (μ)

⎡
⎢⎣

w11(μ)Y T
1 Ei X1 · · · w1q(μ)Y T

1 Ei Xq
...

. . .
...

wq1(μ)Y T
q Ei X1 · · · wqq(μ)Y T

q Ei Xq

⎤
⎥⎦ , (11)

with wl j (μ)=√
wl(μ)w j (μ). Obviously, all qEq2 blocks Y T

l Ei X j for l, j=1, . . ., q
and i = 1, . . . , qE can be precomputed and stored since they are independent of μ.
After computing the SVD of (11), the projection matrices in (7) take the form

W (μ) = [√
w1(μ)Y1 · · · √

wq(μ)Yq
]
U1(μ)�

−1/2
1 (μ),

T (μ) = [√
w1(μ)X1 · · · √

wq(μ)Xq

]
V1(μ)�

−1/2
1 (μ).

The reduced matrices are then computed as in (6):

Ẽ(μ) = WT (μ)E(μ)T (μ) =
qE∑
i=1

f Ei (μ)�
−1/2
1 (μ)UT

1 (μ)

×
⎡
⎢⎣

w11(μ)Y T
1 Ei X1 · · · w1q(μ)Y T

1 Ei Xq
...

...
...

wq1(μ)Y T
q Ei X1 · · · wqq(μ)Y T

q Ei Xq

⎤
⎥⎦ V1(μ)�

−1/2
1 (μ), (12)

Ã(μ) = WT (μ)A(μ)T (μ) =
qA∑
i=1

f Ai (μ)�
−1/2
1 (μ)UT

1 (μ)

×
⎡
⎢⎣

w11(μ)Y T
1 Ai X1 · · · w1q(μ)Y T

1 Ai Xq
...

...
...

wq1(μ)Y T
q Ai X1 · · · wqq(μ)Y T

q Ai Xq

⎤
⎥⎦ V1(μ)�

−1/2
1 (μ), (13)
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B̃(μ) = WT (μ)B(μ) =
qB∑
i=1

f Bi (μ)�
−1/2
1 (μ)UT

1 (μ)

⎡
⎢⎣

√
w1(μ)Y T

1 Bi
...√

wq(μ)Y T
q Bi

⎤
⎥⎦ , (14)

C̃(μ) = C(μ)T (μ)

=
qC∑
i=1

f Ci (μ)
[√

w1(μ)Ci X1 · · · √
wq(μ)Ci Xq

]
V1(μ)�

−1/2
1 (μ). (15)

Again, all matrix blocks, that are independent of μ, can be computed and stored
beforehand. The offline-online procedure can thus be summarized as follows:

Offline For μ1, . . . , μq ∈ D,

• solve the Lyapunov equations (3) and (4) for Pj ≈ X j X
T
j and Q j ≈ Y jY

T
j ,

j = 1, . . . , q;
• compute and store all the parameter-independent matrix blocksmentioned in (11)–
(15).

Online Given μ ∈ D,

• assemble precomputed matrix blocks and compute the SVD of (11);
• assemble precomputedmatrix blocks and compute the reducedmatrices (12)–(15).

3 Interpolation on the Manifold S+(k, n)

Aswe have seen above, the interpolatedGramians obtained by the algebraic approach
in (9) and (10), in general, have a considerably higher rank than the approximated
local Gramians Pj and Q j , j = 1, . . . , q obtained by directly solving the Lyapunov
equations to a reasonable accuracy. This fact somewhat puts more computational
burden on the last steps of the model reduction procedure, especially when the num-
ber of grid points is large. If the Gramians can be well approximated by symmetric
positive semidefinite matrices of low rank on the whole parameter domain and this
rank does not vary significantly we can assume that all approximated local Grami-
ans Pj , j = 1, . . . , q, have a fixed rank. Numerically, this can be almost always
achieved by first setting a (very) small tolerance for the low-rank solver when solv-
ing the Lyapunov equations at the training points and then truncating all the Grami-
ans to the smallest rank obtained. Hence, with some relaxation, we can assume
that Pj ∈ S+(kP , n) for j = 1, . . . , q and Q j ∈ S+(kQ, n) for j = 1, . . . , q, where
S+(k, n) is the set of n × n positive semidefinite matrices of rank k. This set admits
a manifold structure [25, 36], and therefore our second interpolation method relies
on this geometric property.

Informally speaking, a d-dimensional manifold is a set M that can be mapped
locally through a set of bijections, called charts, to (an open subset of) the Euclidean
spaceRd . Under some additional compatibility assumptions, the collection of charts
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forms a differentiable structure and the set M endowed with this structure is called
a d-dimensional manifold. The set of charts allows rewriting locally any problem
defined onM into a problem defined on a subset of Rd . We will see that S+(k, n) is
a matrix manifold, i.e., a manifold whose points can be represented by matrices.

Many matrix manifolds are either embedded submanifolds ofRm×n , the manifold
is then seen as a subset of the Euclidean space R

m×n , or quotient manifolds of
R

m×n , each point is representing then a set of equivalent points of Rm×n , for a given
equivalence relationship. In each case, the differentiable structure of the manifold is
inherited from the differentiable structure on R

m×n .
As charts are defined locally, they are not very practical for numerical compu-

tations. Their use can be avoided by resorting to other tools specific for working
on manifolds. The most important for this work are tangent spaces, exponential,
and logarithmic maps. The tangent space TxM is the first-order approximation to
the manifold M around x ∈ M, where the point x is called the foot of the tangent
space. When the tangent spaces are endowed with a Riemannian metric (an inner
product gx : TxM × TxM → R smoothly varying with x), the manifold is called a
Riemannian manifold.

The Riemannian metric allows defining geodesics (curves with zero acceleration)
on the manifold. This in turn leads to the exponential map which allows mapping
tangent vectors to the manifold by following the geodesic starting at the foot of the
tangent vector, and whose initial velocity is given by the tangent vector itself. Its
reciprocal map is the logarithmic map mapping points from the manifold to a given
tangent space. For further details on Riemannian manifolds, we refer to [37, 38].

3.1 A Quotient Geometry of S+(k, n)

The manifold S+(k, n) is here seen as a quotient manifold R
n×k∗ /Ok , where R

n×k∗
is the set of full-rank n × k matrices endowed with the Euclidean metric and Ok is
the orthogonal group in dimension k. This geometry has been developed in [25, 36,
39] and has already been used in, e.g., [40–42] for solving different fitting problems.
It relies on the fact that any matrix A ∈ S+(k, n) can be factorized as A = YY T

with Y ∈ R
n×k∗ . As the factorization is not unique, this leads to the equivalence

relationship:

Y1 ∼ Y2 if and only if Y1 = Y2Q with Q ∈ Ok .

For any Y ∈ R
n×k∗ , the set

[Y ] := {Y Q : Q ∈ Ok}

of points equivalent to Y is called the equivalence class of Y . The quotient manifold
R

n×k∗ /Ok is the set of all equivalence classes.
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The fact that on themanifoldRn×k∗ /Ok , any point is a set of points inRn×k∗ makes it
difficult to perform computations directly on elements ofRn×k∗ /Ok . Instead ofmanip-
ulating sets of points, most algorithms on quotient manifolds are only manipulating
representatives of the equivalence classes.

The tangent space TYRn×k∗ to the manifold R
n×k∗ at some point Y is the direct

sum of two subspaces: the vertical spaceVY which is, by definition, tangent to [Y ],
and the horizontal space HY which is its orthogonal complement with respect to
the Euclidean metric in R

n×k∗ . Horizontal vectors will allow representing tangent
vectors to the quotient manifold Rn×k∗ /Ok in a “tangible way”, i.e., in a way suitable
for numerical computations. Indeed, given a point Y ∈ R

n×k∗ , any tangent vector
ξ[Y ] ∈ T[Y ]Rn×k∗ /Ok can be identified with a unique horizontal vector ξ̄Y ∈ HY (the
identificationmeans here that the two vectors act identically as differential operators),
see [43, §3.5.8]. This vector is called the horizontal lift of ξ[Y ] at Y .

The Riemannian metric is naturally inherited from the Euclidean metric in R
n×k∗

(see [25]). When defined, the associated exponential map can be written as

Exp[Y ](ξ[Y ]) = [Y + ξ̄Y ], (16)

where Y is an arbitrary element of the equivalence class [Y ] and ξ̄Y is the unique
horizontal lift of the tangent vector ξ[Y ] at Y . Accordingly, for [Y1], [Y2] ∈ R

n×k∗ /Ok ,
the logarithm of [Y2] at [Y1], denoted by Log[Y1]([Y2]), is a vector in T[Y1]Rn×k∗ /Ok

whose horizontal lift at Y1 is given by

Log[Y1]([Y2])Y1 = Y2Q
T − Y1, (17)

where Q is the orthogonal factor of the polar decomposition of Y T
1 Y2, when unique.

We refer the interested reader to [25] formore information on the domain of definition
of these mappings. In all the datasets considered here, we have never faced issues
related to ill-definitions of these tools.

3.2 Curve and Surface Interpolation on Manifolds

To interpolate the matrices Pi and Qi on S+(kP , n) and S+(kQ, n), respectively,
we consider an intrinsic interpolation technique on Riemannian manifolds. Here,
we briefly review it in the specific framework of curve and surface interpolation on
Riemannian manifolds, and refer to [30] for the related problem of curve fitting (i.e.,
relaxing the interpolation constraint).

Curves. Consider a Riemannian manifold M (here, the set of n × n positive
semidefinite matrices of rank k), and a set of data points d1 . . . , dq ∈ M (e.g., the
matrices Pi ) associated with parameter values t1 < . . . < tq ∈ R (here, the values
μi ). Curve interpolation on M is often done by encapsulating the interpolation into
an optimization problem, e.g., one seeks the curve B : [t1, tq ] → M minimizing
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min
B

∫ tq

t1

∥∥∥∥D
2B(t)

dt2

∥∥∥∥
2

B(t)

dt such that B(ti ) = di , i = 1, . . . , q, (18)

where the operator D2/dt2 is the Levi-Civita second covariant derivative (also named
acceleration vector field [43, p. 102]) of the manifold-valued function B and ‖ · ‖B(t)

is the norm (inherited from the Riemannian metric) on the tangent space atB(t) [43].
Different techniques exist to solve this problem, but nearly none of them tackle (18)
directly on M, as the computational effort would be so high that it would not bring
any advantages to most of the applications.

An efficientway to approximate the optimal solution is to transfer the interpolation
problem to a carefully chosen tangent space TxM at a point x ∈ M, such that TxM
approximates M in the area where the data points are defined. The transfer to TxM
is usually done by mapping the data points to TxM via the logarithmic map or an
accurate approximation of it. As the tangent space is a Euclidean space, solving
the Euclidean version of (18) is easy and computationally tractable since the Levi-
Civita second covariant derivative reduces to a classical second derivative. Actually,
the solution can even be written in closed form as it is the interpolating natural cubic
spline when (18) is minimized over the Sobolev space H 2(t1, tq) [45]. When an
approximated curve is computed on TxM, it is mapped back toM via the exponential
map or an appropriate retraction, see [37, 43] for a detailed exposition onRiemannian
geometry. Curves obtained in this way are noted BT S(t), where the superscript T S
comes from Tangent Space.

It should, however, be noted that the tangent space TxM is a good approximation
of M only in a close neighborhood of x , and in most of the cases, the data points
cannot all lie in this neighborhood. This is why the so-called blended curve exploits
multiple tangent spaces [30]. It is built as a C1-composite curve

B : [t1, tq ] → M
t �→ fi (t − ti ), when t ∈ [ti , ti+1], i = 1, . . . , q − 1.

Here, fi (t) is the weighted mean of two curves BT S(t) computed, respectively, on
the tangent spaces based at di and di+1. This weighted mean is what gives its name
(blended) to the technique.

Surfaces. Interpolation via surfaces is a little bit more intricate. Assume that
we have a set of data points di j ∈ M (e.g., the Gramian matrices) associated with
some parameter values (t (1)i , t (2)j ) ∈ R

2, with i = 1, . . . , q1 and j = 1, . . . , q2, i.e.,

the points are located on a grid defined by t (1)1 < · · · < t (1)q1 and t (2)1 < · · · < t (2)q2 .
To remain consistent with Sect. 2, we assume that q1q2 = q, the total number of
training points (i.e., the training points are located on a grid). We rely on Bézier
surfaces presented in [44] as a generalization of Euclidean Bézier surfaces [46],
inspired from the generalization of curves to manifolds already presented by Popiel
et al. [47].

Let us first recall the definition ofBézier curves andBézier splines in theEuclidean
setting. Consider a Euclidean spaceRr . A Euclidean Bézier curve and Bézier surface
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of degree K ∈ N are functions βK ,�, � = 1, 2, defined as

βK ,1(·; b0, . . . , bK ) : [t1, tq ] → R
r (19)

t �→
K∑
i=0

bi BiK (t),

βK ,2(·, ·; (bi j )i, j=0,...,K ) : [t (1)1 , t (1)q1 ] × [t (2)1 , t (2)q2 ] → R
r (20)

(t (1), t (2)) �→
K∑

i, j=0

bi j BiK (t (1))BjK (t (2)),

where BjK (t) = (K
j

)
t j (1 − t)K− j are the Bernstein polynomials, and bi ∈ R

r (resp.
bi j ∈ R

r ) are the control points of the curve (resp. surface). Since the Bernstein poly-
nomials form a partition of unity, the surface can be seen as a convex combination of
the control points. Hence, Eq. (20) is equivalent to computing twoBézier curves (19):
the first one in the t (1) direction and the second one in the t (2) direction, i.e.,

βK ,2(t
(1), t (2); (bi j )i, j=0,...,K ) =

K∑
j=0

(
K∑
i=0

bi j BiK (t (1))

)
BjK (t (2))

= βK ,1
(
t (2); (βK ,1(t

(1); (bi j )i=0,...,K )) j=0,...,K
)
.

This equivalence allows us to easily generalize Bézier surfaces to a manifold M
by using the generalization of Bézier curves based on the De Casteljau algorithm,
see [47] for details.

To interpolate data points di j ∈ M associated with parameter values (t (1)i , t (2)j ),
with i = 1, . . . , q1 and j = 1, . . . , q2, one seeks the C1-composite surface

B : [t (1)1 , t (1)q1 ] × [t (2)1 , t (2)q2 ] → M
(t (1), t (2)) �→ βK ,2(t (1) − t (1)k , t (2) − t (2)l ; (bkli j )i, j=0,...,K )

when t (1) ∈ [t (1)k , t (1)k+1] and t (2) ∈ [t (2)l , t (2)l+1]. Here, βK ,2(·, ·; (bkli j )i, j=0,...,K ) denotes
a Bézier surface on M, and bkli j ∈ M are the control points to be determined such
that interpolation is guaranteed and that the mean squared second derivative of the
piecewise surface isminimized. This is donewith a technique close to the one used for
curves, i.e., transferring the optimization problemon carefully chosen tangent spaces.
The only difference here is that the curve itself is not computed on the tangent space;
instead, the optimality conditions obtained on a Euclidean space are generalized to
manifolds. We refer to [44] for a detailed presentation of the optimization of the
control points, and to [29] for a complete discussion on the C1-conditions to patch
several Bézier surfaces together.

In the following, we briefly summarize the steps for the resulting PMOR proce-
dure:
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• solve the Lyapunov equations (3) and (4) for Pj ≈ X j X
T
j and Q j ≈ Y jY

T
j ,

j = 1, . . . , q;
• interpolate the above data to get P(μ) = X (μ)XT (μ) and Q(μ) = Y (μ)Y T (μ)

at the test points using either curve or surface interpolation depending on the
dimension of the parameter domain;

• perform squaring balanced truncation at each test point by computing the SVD (5)
and the reduced system matrices (6), (7).

4 Numerical Examples

In this section, we consider two numerical examples. We first describe the general
setting of our experiments. Regarding the choice of the positive weights used in the
algebraic approach, we have initially considered two options: weights defined based
on the distance (in the parameter domain) from the test point to the training points,
and the ones used in classical linear splines. Observe that the last choice results in a
local interpolation, as instead of q matrix blocks in each factor of (9), we have only
two (resp., four) of them for models with one (resp., two) parameter(s), regardless
of the number of training points. This feature has two main advantages. The first one
is that it allows a computational cost reduction, as many columns of the matrices
X (μ) and Y (μ) defined in (9) and (10) are then zero. The second is the fact that, if
we want to improve the accuracy by increasing the number of training points, more
computation will be required in the offline stage but this makes no changes in the
online stage. In other words, the online computation cost to reconstruct the ROM
at a given parameter value does not depend on the number of training points. This
local interpolation is thus much less affected by the so-called curse of dimensionality
when the number of parameters increases compared to the conventional approach.
As our tests, moreover, revealed that the latter delivers a smaller error, we only use
linear splines here. For the geometric approach, as described in the previous section,
and based on the numerical comparisons performed in [34], we choose the blended
curves interpolation technique for the case of one parameter. When the model has
two parameters, we use piecewise Bézier surface interpolation.

To verify the accuracy of ROMs, we compute an approximate H∞-norm of the
absolute errors in the frequency response defined as

‖H(·, μ) − H̃(·, μ)‖H∞ = sup
ω∈R

‖H(iω,μ) − H̃(iω,μ)‖2
≈ sup

ω j∈[ωmin,ωmax]
‖H(iω j , μ) − H̃(iω j , μ)‖2, (21)

where H(s, μ) and H̃(s, μ) are the transfer functions of the FOM (1) and the ROM
(2).
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Regarding the efficiencymeasure, all computations are performedwithMATLAB
R2018a on a standard desktop using 64-bit OSWindows 10, equippedwith 3.20GHz
16 GB Intel Core i7-8700U CPU.

4.1 A model for heat conduction in solid material

This model is adapted from the one used in [48]. Consider the heat equation

∂ϑ

∂t
− ∇ · (σ∇ϑ) = f in � × (0, T ),

ϑ = 0 on ∂� × (0, T ),

(22)

with the heat conductivity coefficient

σ(ξ) =
{
1 + μ(i) for ξ ∈ Di , i = 1, 2,
1 for ξ ∈ �\(D1 ∪ D2),

(23)

where the subdomains Di ⊂ � = (0, 4)2, i = 1, 2, are two disks of radius 0.5 cen-
tered at (1, 1) and (3, 3), respectively, and the parameter μ = (μ(1), μ(2)) varies in
D = [1, 10] × [4, 10]. Equation (22) with the source term f ≡ 1 is discretized using
the finite element method with piecewise linear basis functions resulting in a sys-
tem (1) of dimension n = 1580 with the symmetric positive definite mass matrix
E(μ) ≡ E and the stiffness matrix

A(μ) = μ(1)A1 + μ(2)A2 + A3, (24)

where A1 and A2 are symmetric negative semidefinite, and A3 is symmetric negative
definite. The input matrix B(μ) ≡ B ∈ R

n originates from the source function f ,
and the output matrix is given by C(μ) ≡ C = [1/n . . . 1/n] ∈ R

1×n .
First, we fix a uniform grid μ1, . . . , μq ∈ D , which will be specified in the cap-

tion of the error figures. At those points, we solve (3) and (4) using the low-rank ADI
method [49] with a prescribed tolerance 10−10. We end up with local approximate
solutions whose rank varies from 25 to 27. In order to apply the geometric interpola-
tion method, we truncate them to make all the Gramians of rank 25, and we work on
the manifold S+(25, 1580). Note that for the algebraic method presented in Sect. 2,
the local solutions at training points do not necessarily have the same rank. However,
as we will compare the two methods, we also use the truncated Gramians.

The interpolated Gramians are then computed from the local Gramians, and are
used to construct the ROMs at the training points. We choose the reduced order r
in (5) by requiring σr (μ)/σ1(μ) < 10−8, which in our case gives r between 12 and
15 for the algebraic approach and 11 and 12 for the geometric approach (depending
on the test point considered). In Fig. 1, we plot the approximate H∞-norm of the
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Fig. 1 The heat conduction model: absolute errors ‖H(·, μ) − H̃(·, μ)‖H∞ at test points. Top
figures: training grid [1 : 1 : 10] × [5 : 1 : 10] and test grid [1 : 0.25 : 10] × [5 : 0.2 : 10]; bottom
figures: traininggrid [1 : 4 : 9] × [4 : 3 : 10] and test grid [1 : 0.25 : 9] × [4 : 0.2 : 10] (usingMAT-
LAB notation). The left figures present the errors for the ROMs obtained by the algebraic method
and the right figures present that computed by the geometric method

absolute errors, as defined in (21). For a better readability of the plots, we simply
choose the set of test points as regularly spaced between the training points, as
specified in the caption of the figures. It can be observed that, in the same setting, the
algebraic method delivers a slightly smaller error than the geometric one. Moreover,
the figures show that the error corresponding to a small μ1 tends to be larger. This
suggests that we should use more interpolation data in this area. To this end, we try
an adaptively finer grid for the algebraic method and obtain the result shown in Fig. 2
(left). Furthermore, to give the reader a view on the relative errors of the method, we
plot theH∞-norm of the full-order transfer function in Fig. 2 (right).

We now report the time consumed by the two proposed methods in the second
setting, i.e., corresponding to Fig. 1 (bottom). First, solving two Lyapunov equations
at 9 training points needs 2.15 s. Then, the interpolation of the low-rank solutions of
these two equations using the geometric approach at 1023 test points costs 26.88 s.
Regarding computation time, clearly this method can be a good candidate to estimate
quickly the solutions of parametric Lyapunov equations. For model reduction, once
the interpolated Gramians are available, evaluating the ROM at the prescribed test
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Fig. 2 The heat conduction model: (left) the absolute error ‖H(·, μ) − H̃(·, μ)‖H∞ with adaptive
grid [1 2 3 4 5 9] × [4 : 3 : 10]; (right) the H∞-norm of the full-order transfer function on the
parameter domain

Table 1 The heat conduction model: time consumed by the different tasks (s)

Geometric
approach

Algebraic
approach

Offline: Solving the Lyapunov equations at
training parameters

2.15 2.15

Preparation for interpolation – 0.2

Online: Interpolation 26.88 –

Computation of the ROMs 1.47 1.33

points takes 1.47 s. In comparison, for the algebraic approach, the offline stage lasts
0.2 s and the online one costs 1.33 s. We summarize these details in Table 1.

4.2 An Anemometer Model

In the second example, we verify the numerical behavior of the proposed methods
when applied to fairly large problems. To this end, we consider amodel for a thermal-
based flow sensor, see [50] and references therein. Simulation of this device requires
solving a convection-diffusion partial differential equation of the form

ρc
∂ϑ

∂t
= ∇ · (κ∇ϑ) − ρcμ∇ϑ + q̇, (25)

where ρ denotes the mass density, c is the specific heat, κ is the thermal conductivity,
μ is the fluid velocity, ϑ is the temperature, and q̇ is the heat flow into the system
caused by the heater. The considered model is restricted to the case ρ = 1, c = 1,
κ = 1 and μ ∈ [0, 1] which corresponds to the one-parameter model. The finite ele-
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Fig. 3 The anemometer
model: absolute errors
‖H(·, μ) − H̃(·, μ)‖H∞ at
test points

ment discretization of (25) leads to system (1) of order n = 29008with the symmetric
positive definite mass matrix E(μ) ≡ E and the stiffness matrix A(μ) = A1 + μA2,
where A1 is symmetric negative definite, A2 is non-symmetric negative semidefinite.
The inputmatrix B ∈ R

n and the outputmatrixC ∈ R
1×n are parameter independent.

The reader is referred to as [51] and references therein for more detailed descriptions
and numerical data.

For this model, we use the training grid [0 : 0.1 : 1] while the test grid is made
of 50 points randomly generated within the range of the parameter domain. The
tolerance for the low-rank ADI solver (used to solve the Lyapunov equations) is
10−9, which results in local Gramians of rank ranging from 25 to 39. For balanced
truncation, we take the tolerance 10−7. The resulting ROMs have different reduced
orders at test points: the ROMs produced by the algebraic approach have orders
between 16 and 17 while those obtained by the geometric approach are between 9
and 17. The absolute errors are represented in Fig. 3. One can see that at themiddle of
the parameter domain, the geometric approach provides a better approximation than
the one computed by the algebraic method, while near the two ends, we observe the
reverse result.Wewould like to note that cubic spline interpolationmight have a larger
error near the ends because at those two ends, we have to impose endpoint conditions
that may not match with the nature of the data. This phenomenon is also observed
in, e.g., [7, Sect. 4.1] where a cubic spline is used to interpolate the transfer function.
As our geometric approach uses cubic spline interpolation on tangent spaces, this
would be a possible explanation for the behavior observed in Fig. 3.

The time consumed by different tasks is summarized in Table 2.

5 Conclusion

We presented two methods for interpolating the Gramians of parameter-dependent
linear dynamical systems in the framework of parametric balanced truncation model
reduction. The first method is merely based on linear algebra which takes no geo-
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Table 2 The heat anemometer model: time consumed by different tasks (s)

Geometric
approach

Algebraic
approach

Offline: Solving the Lyapunov equations at
training parameters

199.18 199.18

Preparation for interpolation – 25.55

Online: Interpolation 18.40 –

Computation of the ROMs 0.81 0.06

metric structure of the data into account. When the matrices of the system depend
affinely on the parameters, it can be combined with the reduction process which
enables an offline-online decomposition, reducing the amount of online computa-
tions. The secondmethod exploits the positive semidefiniteness of the data and recent
developments in matrix manifold theory. It reformulates the problem as an interpola-
tion problemon the underlyingmanifold and relies on recent interpolation techniques
blending interpolating curves computed on different tangent spaces. This method is
expected to work well if the rank of the training data does not change much from one
training point to another. While the error obtained using the geometric approach is
seemingly a bit larger, it results in lower reduced orders than the algebraic approach.
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Toward Fitting Structured Nonlinear
Systems by Means of Dynamic Mode
Decomposition

Ion Victor Gosea and Igor Pontes Duff

Abstract The dynamic mode decomposition (DMD) is a data-driven method used
for identifying the dynamics of complex nonlinear systems. It extracts important
characteristics of the underlying dynamics using measured time-domain data pro-
duced either by means of experiments or by numerical simulations. In the original
methodology, the measurements are assumed to be approximately related by a linear
operator. Hence, a linear discrete-time system is fitted to the given data. However,
often, nonlinear systems modeling physical phenomena have a particular known
structure. In this contribution, we propose an identification and reduction method
based on the classical DMD approach allowing to fit a structured nonlinear system
to the measured data. We mainly focus on two types of nonlinearities: bilinear and
quadratic bilinear. By enforcing this additional structure, more insight into extracting
the nonlinear behavior of the original process is gained. Finally, we demonstrate the
proposed methodology for different examples, such as Burgers’ equation and the
coupled van der Pol oscillators.

1 Introduction

Mathematical models are commonly used to simulate, optimize, and control the
behavior of real dynamical processes. A common way to derive those models is to
use the first principles, generally leading to a set of ordinary or partial differential
equations. For high complex dynamics, fine discretization leads to high fidelity mod-
els, which require numerous equations and variables. In some situations, the high
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model is given as a black box setup, i.e., by solvers that allow the computation of the
full-model states for a given set of initial conditions and inputs, but does not provide
the dynamical system realization. In order to better understand such dynamics pro-
cesses, it is often beneficial to construct surrogate models using simulated data. This
justifies the development of identification or data-driven model reduction methods.
Indeed, with the ever-increasing availability of measured/simulated data in different
scientific disciplines, the need for incorporating this information in the identification
and reduction process has steadily grown. The data-driven model reduction problem
consists of determining low-order models from the provided data obtained either by
experimentation or numerical simulations. Methods such as DynamicMode Decom-
position (DMD) have drawn considerable research endeavors.

DMD is a data-driven method for analyzing complex systems. The purpose is to
learn/extract the important dynamic characteristics (such as unstable growth modes,
resonance, and spectral properties) of the underlying dynamical system by means of
measured time-domain data. These can be acquired through experiments in a practical
setup or artificially through numerical simulations (by exciting the system). It was
initially proposed in [29] in the context of analyzing numerical and experimental
fluid mechanics problems. Additionally, it is intrinsically related to the Koopman
operator analysis, see [22, 27]. Since its introduction, several extensions have been
proposed in the literature, e.g., the exact DMD [31], the extended DMD [11], and
the higher order DMD [20]. Also, in order to address control problems, DMD with
control inputs was proposed in [25], and then extended to the case where outputs
are also considered in [1, 9]. The reader is referred to [19] for a comprehensive
monograph on the topic.

Often, nonlinear systems modeling physical phenomena have a particular known
structure, such as bilinear and quadratic terms. In the present work, our primary
goal is to embed nonlinear structures in the DMD framework. To this aim, we pro-
pose an identification and data-driven reduction method based on the classical DMD
approach allowing to fit a bilinear and quadratic-bilinear structures to the measured
data. The choice to fit such terms is due to the fact most systems with analytical non-
linearities (e.g., rational, trigonometrical, polynomial) can be exactly reformulated
as quadratic-bilinear systems [15]. Our work is rooted in the two variants, DMD
with control and input-output DMD, and can be considered as an extension of those
methodologies.

There exist vast literature on learning nonlinear dynamics from data, and we
review the most relevant literature for our work. One approach is the so-called
Loewner framework, which enables to construct low-order models from frequency-
domain data. It was initially proposed in [21], and later extended to bilinear [3] and
quadratic-bilinear case [14]. Another approach is the operator inference, proposed
[24]. This approach infers polynomial low-order models as a solution of a least-
squares problem based on the initial conditions, inputs, and trajectories of the states.
This approach was recently extended to systems with non-polynomials [8]. Also, the
authors in [26] show how the use of lifting transformations can be beneficial to iden-
tify the system. Finally, the approach proposed in [23] introduces a method based on
operator inference enabling to learn exactly the reduced models that are traditionally
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constructed with model reduction. It is worth mentioning that the operator inference
approach [24] can be seen as an extension to DMD for nonlinear systems. Indeed,
in this framework, the reduced-order model is allowed to have polynomial terms on
the state and its matrices are obtained by solving a least-squares problems. The main
difference is that this optimization problem is set using the reduced trajectories as
the data (see the introduction of [24] for more details).

In this work, we aim at fitting nonlinear model structures using the DMD setup,
i.e., by using the full-model trajectories, which is the main difference from [24].
Additionally, besides the quadratic structure on the state, we also consider reduced-
order models having bilinear structure on the state and input.

The rest of the paper is organized as follows. Section 2 recalls some results on
the classical DMD, DMD with control, and the input-output DMD. In Sect. 3, we
present the main contribution of the paper, which is the incorporation of bilinear and
quadratic-bilinear terms in the DMD setup. Finally, in Sect. 4, we demonstrate the
proposed methodology for different examples, such as Burgers’ equation and the
coupled van der Pol oscillators.

2 Dynamic Mode Decomposition

In this section, we briefly recall the classical DMD framework [29]. To this aim,
we analyze time-invariant systems of ordinary differential equations (ODEs) written
compactly in a continuous-time setting as follows:

ẋ(t) = f (x(t)), (1)

where x(t) ∈ R
n is the state vector and f : Rn → R

n is the system nonlinearity.
By means of sampling the variable x in (1) at uniform intervals of time, we collect

a series of vectors x(tk) for sampling times t0, t1, . . . , tm . For simplicity, denote
xk := x(tk).

DMD aims at analyzing the relationship between pairs of measurements from
a dynamical system. The measurements xk and xk+1, as previously introduced, are
assumed to be approximately related by a linear operator for all k ∈ {0, 1, . . . ,m −
1}.

xk+1 ≈ Axk, (2)

where A ∈ R
n×n . This approximation is assumed to hold for all pairs of measure-

ments. Next, group together the sequence of collected snapshots of the discretized
state x(t) and use the following notations:

X = [
x0 x1 . . . xm−1

] ∈ R
n×m, Xs = [

x1 x2 . . . xm
] ∈ R

n×m . (3)

The DMD method is based on finding a best-fit solution of an operator A so that the
following relation is (approximately) satisfied
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Xs = AX, (4)

which represents the block version of Eq. (2). Moreover, the above relation does not
need to hold exactly. Previous work has theoretically justified using this approximat-
ing operator on data generated by nonlinear dynamical systems. For more details,
see [30]. A best-fit solution is explicitly given as follows:

A = XsX†, (5)

where X† ∈ R
m×n is the Moore-Penrose inverse of matrix X ∈ R

n×m . In the above
statement, by “best-fit” it is meant the solution that minimizes the least-squares error
in the Frobenius norm (see [9]). More precisely, the matrix A in (5) is the solution
of the following optimization problem:

arg min
Â∈Rn×n

(
‖Xs − ÂX‖F

)
. (6)

The so-called DMD modes are given by the eigenvectors of matrix A in (5),
collected in matrix T with A = T�T−1. These spatial modes of system (1) are
computed at a single frequency and are connected to the Koopman operator, see
[22].

In this work, we will mainly focus on the construction of the reduced-order model
rather than the evaluation of the DMD modes.

2.1 Dynamic Mode Decomposition with Control (DMDc)

Dynamic mode decomposition with control (DMDc) was introduced in [25] and it
modifies the basic framework characterizingDMD. The novelty is given by including
measurements of a control input u(t) ∈ R. It is hence assumed that the dynamics of
the original system of ODEs includes an input dependence, i.e.,

ẋ(t) = f (x(t), u(t)), (7)

which represents a directs extension of (1). In (7), it is assumed that f : Rn × R →
R

n . Then, continue as in the classical DMD case without control to collect a dis-
cretized solution x at particular time instances.

In this setup, a trio of measurements are now assumed to be connected. The goal
of DMDc is to analyze the relationship between a future state measurement xk+1

with the current measurement xk and the current control uk .
The motivation for this method is that, understanding the dynamic characteristics

of systems that have both internal dynamics and applied external control is of great
use for many applications, such as for controller design and sensor placement.
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The DMDc method is used to discover the underlying dynamics subject to a
driving control input by quantifying its effect to the time-domain measurements
corresponding to the underlying dynamical system.

A pair of linear operators represented by matricesA ∈ R
n×n andB ∈ R

n provides
the following dependence for each trio of measurement data snapshots (xk+1, xk,uk)

xk+1 = Axk + Buk, 0 ≤ k ≤ m − 1. (8)

Next, denote the sequence of control input snapshots with

U = [
u0 u1 . . . um−1

] ∈ R
1×m . (9)

The first step is to augment the matrix X with the row vector U and similarly group
together the A and B matrices by using the notations:

G = [A B] ∈ R
n×(n+1), � =

[
X
U

]
∈ R

(n+1)×m . (10)

The matrix G introduced above will be referred to as the system matrix since it
incorporates the matrices corresponding to the system to be fitted.

By letting the index k vary in the range {0, 1, . . . ,m − 1}, one can compactly
rewrite the m equations in the following matrix format:

Xs = AX + BU = [A B]
[
X
U

]
:= G�. (11)

Thus, similar to standard DMD, compute a pseudo-inverse and solve for G as

G = Xs�
† ⇒ [A B] = Xs

[
X
U

]†

. (12)

ThematrixG ∈ R
n×(n+1) in (12) is actually the solution of the following optimization

problem:

arg min
Ĝ∈Rn×(n+1)

(∥∥∥Xs − Ĝ
[
X
U

] ∥∥∥
F

)
. (13)

To explicitly compute the matrix in (12), we first find the singular value decomposi-
tion (SVD) of the augmented data matrix � as follows

� = V�WT ≈ Ṽ�̃W̃T , (14)

where the full-scale and reduced-order matrices have the following dimensions:
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{
V ∈ R

(n+1)×(n+1), � ∈ R
(n+1)×m, V ∈ R

m×m,

Ṽ ∈ R
(n+1)×p, �̃ ∈ R

p×p, Ṽ ∈ R
m×r .

The truncation index is denoted with p, where p � n. The pseudo-inverse �† is

computed using the matrices from the SVD in (14), i.e., as �† ≈ W̃�̃
−1
ṼT .

By splitting up the matrix VT as ṼT = [ṼT
1 ṼT

2 ], recover the system matrices as

A = XsW̃�̃
−1
ṼT

1 , B = XsW̃�̃
−1
ṼT

2 . (15)

As mentioned in, there is one additional step. By performing another (short) SVD of
the matrix Xs , write

Xs ≈ V̂�̂ŴT , (16)

where V̂ ∈ R
(n+1)×r , �̂ ∈ R

r×r , V̂ ∈ R
m×r . Note that the two SVDs will likely

have different truncation values. The following reduced-order approximations of A
and B are hence computed as

Ã = V̂TAV̂ = V̂TXsW̃�̃
−1
ṼT

1 V̂ ∈ R
r×r , B̃ = V̂TB = V̂TXsW̃�̃

−1
ṼT

2 ∈ R
r .

(17)

2.2 Input-Output Dynamic Mode Decomposition

In this section, we discuss the technique proposed in [1] known as input-output
dynamic mode decomposition (ioDMD). This method constructs an input-output
reduced-order model and can be viewed as an extension of DMDc for the case
with observed outputs. As stated in the original work [1], this method represents
a combination of POD and system identification techniques. The proposed method
discussed here is similar in a sense to the algorithms for subspace state-space system
identification (N4SID) introduced in [32] and can be also applied to large-scale
systems.

We consider as given a system of ODEs whose dynamics is described by the
same equations as in (7). Additionally, assume that observations are collected in the
variable y(t) ∈ R, as function of the state variable x and of the control u, written as

y(t) = g(x(t), u(t)), (18)

where g : Rn × R → R.
As before, the next step is to collect snapshots of both variable x(t) and of the out-

put y(t) sampled at some positive time instances t0, t1, . . . tm−1. Again, for simplicity
of the exposition, denote with yk := y(tk).
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We enforce the following dependence for each trio ofmeasurement data snapshots
given by (yk, xk,uk)

yk = Cxk + Duk, 0 ≤ k ≤ m − 1. (19)

Afterward, collect the output values in a row vector as follows:

Y = [
y0 y1 . . . ym−1

] ∈ R
1×m . (20)

The ioDMDmethod aims at fitting the given set of snapshot measurements collected
in matricesXs,X and vectorsU andY to a linear discrete-time system characterized
by the following equations:

Xs = AX + BU,

Y = CX + DU,
(21)

where, as before, A ∈ R
n×n and B ∈ R

n , and also CT ∈ R
n, D ∈ R. Note that the

first equation in (21) exactly corresponds to the driving matrix equation of DMDc
presented in (12). Moreover, write the system of equations in (21) compactly as

[
Xs

Y

]
=

[
A B
C D

] [
X
U

]
. (22)

Next, we adapt the definition of the system matrix G from (10) by incorporating an
extra line as follows:

G =
[
A B
C D

]
∈ R

(n+1)×(n+1), (23)

while � =
[
X
U

]
∈ R

(n+1)×m is as before. Introduce a new notation that will become

useful also in the next sections. It represents an augmentation of the shifted state
matrix Xs with the output observation vector Y, i.e.,

� =
[
Xs

Y

]
∈ R

(n+1)×m . (24)

Again, the solution of Eq. (22) will be computed as a best-fit type of approach.
Hence, similarly to theDMDccase, recover thematricesA,B,C, andDby computing
the pseudo-inverse of matrix � and writing

G = ��† ⇒
[
A B
C D

]
=

[
Xs

Y

] [
X
U

]†

. (25)
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The matrix G ∈ R
(n+1)×(n+1) in (12) is actually the solution of the following opti-

mization problem:

arg min
Ĝ∈R(n+1)×(n+1)

(∥∥∥
[
Xs

Y

]
− Ĝ

[
X
U

] ∥∥∥
F

)
. (26)

Similar to the procedure covered in Sect. 2.1, one could further lower the dimension
of the recovered system matrices by employing an additional SVD of the matrix �,
as was done in (16).

3 The Proposed Extensions

In this section, we present the main contribution of the paper. We propose extensions
of the methods previously introduced in Sects. 2.1 and 2.2, e.g., DMDc and, respec-
tively, ioDMD to fit nonlinear structured systems.More specifically, the discrete-time
models that are fitted using these procedures will no longer be linear as in (21); the
new models will contain nonlinear (bilinear or quadratic) terms.

3.1 Bilinear Systems

Bilinear systems are a class of mildly nonlinear systems for which the nonlinearity is
given by the product between the state variable and the control input. More exactly,
the characterizing system of ODEs is written as in (7) but for a specific choice of
mapping f , i.e., f (x,u) = Ax + Nxu + Bu. Additionally, assume that the observed
output y depends linearly on the state x. Hence, in what follows, we will make use
of the following description of bilinear systems (with a single input and a single
output):

ẋ(t) = Ax(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t),
(27)

where the matrix N ∈ R
n×n scales the product of the state variable x with the con-

trol input u. In practice, bilinear control systems are used to approximate nonlinear
systems with more general, analytic nonlinearities. This procedure is known as Car-
leman’s linearization; for more details see [28].

Bilinear systems are a class of nonlinear systems that received considerable atten-
tion in the last four or five decades. Contributions that range from realization theory
in [16], classical system identification in [12], or to subspace identification in [13].
In more recent years (last two decades), model order reduction of bilinear systems
(in both continuous- and discrete-time domains) was extensively studied with con-
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tributions covering balanced truncation in [33], Krylov subspace methods in [10],
interpolation-basedH2 method in [4, 6], or data-driven Loewner approach in [3, 17].

3.1.1 The General Procedure

We start by collecting snapshots of the state x for multiple time instances tk . We
enforce that the snapshot xk+1 at time tk+1 depends on the snapshot xk in the following
way:

xk+1 = Axk + Nxkuk + Buk, for 0 ≤ k ≤ m − 1. (28)

We denote the sequence of state and input snapshots as in (3) and in (9). Again, by
varying the index k in the interval {1, 2, . . . ,m − 1}, one can compactly rewrite the
m − 1 equations in the following matrix format:

Xs = AX + NXUD + BU, (29)

where UD = diag(u0, u1, . . . , um−1) ∈ R
m×m . One can hence write U = LUD, with

L = [1 1 . . . 1] ∈ R
1×m and then introduce the matrix Z ∈ R

(n+1)×m as

Z =
[
LUD

XUD

]
=

[
L
X

]
UD. (30)

The next step is to augment the matrix X with matrix Z and denote this new matrix
with � ∈ R

(2n+1)×m as an extension of the matrix previously introduced in (10), i.e.,

� =
[
X
Z

]
. (31)

For the case in which we extend the DMDc method in Sect. 2.1 to fitting bilinear
dynamics (no output observations), we propose a slightly different definition for the
matrixG. We hence append the matrix N to the originally introduced system matrix
in (10). Then, Eq. (29) can be written in a factorized way as � = G�, where the
matrices for this particular setup are as follows:

G = [
A B N

] ∈ R
n×(2n+1), � = Xs . (32)

Alternatively, for the casewhere output observations yk are also available, we enforce
a special bilinear dependence for each trio of measurement data snapshots as

yk = Cxk + Fxkuk + Duk, 0 ≤ k ≤ m − 1, (33)

where FT ∈ R
n . Note that (33) represents a natural extension of the relation imposed

in (19). Therefore, fitting a linear structure is instead enforced.
Afterward, we collect the equations in (33) for each index k and hence write
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Y = CX + FXUD + DU, (34)

with the same notations as in (30). Then, by combining (29) and (34), we can write
all snapshot matrix quantities in the following structured equalities:

Xs = AX + NXUD + BU,

Y = CX + FXUD + DU.
(35)

This system of equations can be then written in a factorized way as before, i.e.,
� = G�, where the matrices for this particular setup are given below:

G =
[
A B N
C D F

]
∈ R

(n+1)×(2n+1), � =
[
Xs

Y

]
. (36)

Finally, the last step is to recover the matrix G and split it block-wise in order
to put together a system realization. Consequently, this all boils down to solving
the equation � = G� (in either of the two cases, with or without output observa-
tions included). More precisely, the objective matrixG ∈ R

(n+1)×(2n+1) in (36) is the
solution of the following optimization problem:

arg min
Ĝ∈R(n+1)×(2n+1)

(∥∥∥
[
Xs

Y

]
− Ĝ

[
X
Z

] ∥∥∥
F

)
⇔ arg min

Ĝ∈R(n+1)×(2n+1)

(∥∥� − Ĝ�
∥∥
F

)
. (37)

As shown in the previous sections, solving for G in (37) involves computing the
pseudo-inverse of matrix � ∈ R

(2n+1)×m from (31). More precisely, we write the
solution as

G = ��†. (38)

Remark 1 Note that the observation map g corresponding to the original dynamical
system, as introduced in (18), need not have a bilinear structure as in (33). It could
include more complex nonlinearities or could even be linear. In the later case, the
recovered matrix F will typically have a low norm.

3.1.2 Computation of the Reduced-Order Matrices

In this section, we present specific/practical details for retrieving the systemmatrices
in the case of the proposed procedure in Sect. 3.1.1. We solve the equation � =
G� for which the matrices are given as in (36), i.e., the case containing output
observations. We compute an SVD of the augmented data matrix � giving

� = V�WT ≈ Ṽ�̃W̃T , (39)

where the full-scale and reduced-scale matrices derived from SVD are as follows:
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{
V ∈ R

(2n+1)×(2n+1), � ∈ R
(2n+1)×(m−1), V ∈ R

(m−1)×(m−1),

Ṽ ∈ R
(2n+1)×p, �̃ ∈ R

p×p, Ṽ ∈ R
(m−1)×p.

The truncation index is denotedwith p, where p � n. The computation of the pseudo-

inverse �† is done by the SVD approach, i.e., �† ≈ W̃�̃
−1
ṼT . By splitting up the

VT matrix as ṼT = [ṼT
1 ṼT

2 ṼT
3 ], one can recover the system matrices as

A = XsW̃�̃
−1
ṼT

1 , B = XsW̃�̃
−1
ṼT

2 , N = XsW̃�̃
−1
ṼT

3 ,

C = YW̃�̃
−1
ṼT

1 , D = YW̃�̃
−1
ṼT

2 , F = YW̃�̃
−1
ṼT

3 .
(40)

By performing another (short) SVD for the matrix Xs , we can write

Xs ≈ V̂�̃ŴT , (41)

where V̂ ∈ R
(n+1)×r , �̂ ∈ R

r×r , Ŵ ∈ R
(m−1)×p.Note that the twoSVDscould have

different truncation values denoted with p and r. Using the transformation x = V̂x̃,
the following reduced-order matrices can be computed:

Ã = V̂TAV̂ ∈ R
r×r , B̃ = V̂TB ∈ R

r , Ñ = V̂TNV̂ ∈ R
r×r ,

C̃ = CV̂ ∈ R
1×r , D̃ = D ∈ R, F̃ = V̂TFV̂ ∈ R

1×r .
(42)

3.1.3 Conversions Between Discrete-Time and Continuous-Time
Representations

The DMD-type approaches available in the literature identify continuous-time sys-
tems by means of linear discrete-time models. In this contribution, we make use of
the same philosophy, in the sense that the models fitted are discrete time. We extend
the DMDc and ioDMD approaches by allowing bilinear or quadratic terms to appear
in these models as well.

As also mentioned in [9], one can compute a continuous-time model that repre-
sents a first-order approximation of the discrete-time model obtained by DMD-type
approaches.

Assume that we are in the bilinear setting presented in Sect. 3.1 and that we
already have computed a reduced-order discrete-time model given by matrices
{Ã, B̃, Ñ, C̃, D̃, F̃}, i.e., following the explicit derivations in (42). Then, a continuous-
time model {Â, B̂, N̂, Ĉ, D̂, F̂} can also be derived. By assuming that the standard
first-order Euler method was used for simulating the original system (with a small
enough time step size 0 < �t 	 1), we can write that
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xk+1 = xk + �t (Âxk + B̂uk + N̂xkuk) ⇒
Ãxk + B̃uk + Ñxkuk = xk + �t Âxk + �t B̂uk + �t N̂xkuk ⇒

{
Â = �−1

t (Ã − I), B̂ = �−1
t B̂, N̂ = �−1

t N̂,

Ĉ = C̃, D̂ = D̃, F̂ = F̃.

(43)

Observe that for the ioDMD type of approaches, the feed-through terms that appear in
the output-state equation are the same in both discrete and continuous representations.

3.2 Quadratic-Bilinear Systems

Next, we extend themethod in Sect. 2.1 for fitting another class of nonlinear systems,
i.e., quadratic-bilinear (QB) systems. Additional to the bilinear terms that enter the
differential equations, we assume that quadratic terms are also present. More pre-
cisely, the system of theODEs is written as in (7) but for a specific choice of nonlinear
mapping f , i.e.,

f (x,u) = Ax + Q(x ⊗ x) + Nxu + Bu,

where “⊗” denotes the Kronecker product, the matrixQ ∈ R
n×n2 scales the product

of the state x with itself, and N ∈ R
n×n is as shown in Sect. 3.1.

Quadratic-bilinear systems appear in many applications for which the original
system of ODEs inherently has the required quadratic structure. For example, after
semi-discretizing Burgers’ or Navier-Stokes equations in the spatial domain, one
obtains a system of differential equations with quadratic nonlinearities (and also
with bilinear terms). Moreover, many smooth analytic nonlinear systems that con-
tain combinations of nonlinearities such as exponential, trigonometric, polynomial
functions, etc. can be equivalently rewritten as QB systems. This is performed by
employing so-called lifting techniques. More exactly, one needs to introduce new
state variables in order to simplify the nonlinearities and hence derive new differen-
tial equations corresponding to these variables.Model order reduction of QB systems
was a topic of interest in the last years with contributions ranging from projection-
based approaches in [5, 15] to optimalH2-based approximation in [7], or data-driven
approaches in the Loewner framework in [2, 14].

Similar to the procedure described in Sect. 3.1, we enforce that the snapshot xk+1

at time tk+1 depends on the snapshot xk in the following way:

xk+1 = Axk + Q(xk ⊗ xk) + Nxkuk + Buk, for 0 ≤ k ≤ m − 1. (44)

Next, by varying the k in the range {1, 2, . . . ,m − 1}, compactly rewrite the m
equations in (44) in the following matrix format:

Xs = AX + Q(X ⊗ X)H + NXUD + BU, (45)
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withUD = diag(u0, u1, . . . , um−1) ∈ R
m×m andH = [

e1 ⊗ e1 e2 ⊗ e2 . . . em ⊗ em
]

∈ R
m2×m . Here, ek is the unit vector of length n that contains the 1 on position k.

Additionally, we introduce the matrix T that depends on the state matrix X as

T = [
X1 ⊗ X1 X2 ⊗ X2 . . . Xm ⊗ Xm

] ∈ R
n2×m .

Note that the equality holds as followsT = (X ⊗ X)H. Next, we augment the matrix
X with both matrices Z and T and group together the matrices A, Q, N and B by
using the notations:

G = [A B N Q] ∈ R
n×(n2+2n+1), � =

⎡

⎣
X
Z
T

⎤

⎦ ∈ R
(n2+2n+1)×m, � = Xs . (46)

Hence, by using the above notations, rewrite Eq. (45) as follows: � = G�.

More precisely, the objective matrix G ∈ R
n×(n2+2n+1) in (46) is the solution of

the following optimization problem:

arg min
Ĝ∈Rn×(n2+2n+1)

(∥
∥� − Ĝ�

∥
∥
F

)
. (47)

Thus, one can recover the matrixG by solving an optimization problem, e.g., the one
given in (47). This is explicitly done by computing theMoore-Pseudo pseudo-inverse
of matrix � ∈ R

(n2+2n+1)×m , and then writing G = ��†.
As previously shown in Sect. 3.1, we can again adapt the procedure for fitting

QB systems in the ioDMD format by involving output observation measurements yk .
The procedure for quadratic-bilinear systems is similar to that for bilinear systems
and we prefer to skip the exact description to avoid duplication. For more details,
see the derivation in Sect. 6.1.

Remark 2 Note that the Kronecker product of the vector x ∈ Rn with itself, i.e.,
x(2) = x ⊗ x has indeed duplicate components. For n = 2, one can write

x(2) = [
x21 x1x2 x2x1 x22

]T
.

Thus, since matrix G is explicitly written in terms of Q as in (46), the linear system
of equations� = G� does not have an unique solution. By using theMoore-Penrose
inverse, one implicitly regularizes the least-squares problem in (47). Additionally,
note that using a different least-squares solver (with or without regularization) could
indeed produce a different result.

Remark 3 It is to be noted that the operator inference procedure avoids the non-
uniqueness by accounting for duplicates in the vector x ⊗ x. This is done by intro-
ducing a special Kronecker product for which the duplicate terms are removed. For
more details, we refer the reader to Sect. 2.3 from [8].
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4 Numerical Experiments

4.1 The Viscous Burgers’ Equation

Consider the partial differential viscous Burgers’ equation:

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
= ν

∂2v(x, t)

∂x2
, (x, t) ∈ (0, L) × (0, T ) ,

with i.c. v(x, 0) = 0, x ∈ [0, L], v(0, t) = u(t), v(L , t) = 0, t � 0. The viscosity
parameter is denoted with ν.

Burgers’ equation has a convective term, an unsteady term and a viscous term; it
can be viewed as a simplification of the Navier-Stokes equations.

Bymeans of semi-discretization in the space domain, one can obtain the following
nonlinear (quadratic) model (see [5]) described by the following system of ODEs:

v̇k =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
2h v1v2 + ν

h2 (v2 − 2v1) + ( v1
2h + ν

h2 )u, k = 1,

− vk
2h (vk+1 − vk−1) + ν

h2 (vk+1 − 2vk + vk−1), 2 � k � n0 − 1,

− 1
2h vnvn−1 + ν

h2 (−2vn + 2vn−1), k = n0.

(48)

Next, bymeans of the Carleman linearization procedure in [28], one can approximate
the above nonlinear system of order n0 with a bilinear system of order n = n20 + n0.
The procedure is as follows: let v = [v1 v2 . . . vn]T be the original state variable

in (48). Then, introduce the augmented state variable x =
[

v
v ⊗ v

]
∈ R

n20+n0 corre-

sponding to the system described by the following equations:

ẋ = Ax + Nxu + Bu,

y = Cx.
(49)

The continuous-time bilinear model in (49) is going to be used in following the
numerical experiments.

Start by choosing the viscosity parameter to be ν = 0.01. Then, choose n0 = 40
as the dimension of the original discretization, and hence the bilinear system in
(49) is of order n = 1640. Perform a time-domain simulation of this system by
approximating the derivative as follows ẋ(tk) ≈ x(tk+1)−x(tk )

tk+1−tk
= xk+1−xk

�t
. We use as

time step δt = 10−3 and the time horizon to be [0, 10]s. The control input is chosen
to be u(t) = 0.5 cos(10t)e−0.3t .

Hence, collect 104 snapshots of the trio (xk, uk, yk) that are arranged in the required
matrix format as presented in the previous sections. Thefirst step is to performanSVD
for the matrix � ∈ R

3281×104 . The first 200 normalized singular values are presented
in Fig. 1. Choose the tolerance value τp = 10−10 which corresponds to a truncation
order of p = 86 (for computing the pseudo-inverse of matrix �). On the same plot
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Fig. 1 The normalized first
200 singular values of
matrices � (with cyan) and
� (with magenta). The three
dotted black lines correspond
to the three tolerance levels
chosen for τr

20 40 60 80 100 120 140 160 180 200

10-15
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10-5

100
Singular value decay of the data matrices

in Fig. 1, we also display the normalized singular values of matrix � ∈ R
1641×104 .

Note that machine precision is reached at the 112th singular value. We select three
tolerance values τr ∈ {10−4, 10−5, 10−6} for truncating matrices obtained from the
SVD of �.

Inwhat follows,we compute reduced-order discrete-timemodels that have dimen-
sion r , as in (42). Next, these models are converted using (43) into a continuous-time
model.

4.1.1 Experiment 1—Validating the Trained Models

In this first setup, we perform time-domain simulations of the reduced-order models
for the same conditions as in the training stage, i.e., in the time horizon [0, 10]s and
by using the control input u(t) = 0.5 cos(10t)e−0.3t . Hence, we are validating the
trained models on the training data.

Start by choosing the first tolerance value, e.g., τr = 10−4. This corresponds to a
truncation value of r = 25. We compute term D̂ = 1.1744e − 14 and a also bilinear
feed-through term with ‖F̂‖2 = 6.7734e − 04. We simulate both the original large-
scale bilinear systemand the reduced-order system.The results are presented inFig. 2.
Note that the observed output curves deviate substantially. One way to improve this
behavior is to decrease the tolerance value.

For the next experiment, choose the tolerance value to be τr = 10−5. This cor-
responds to a truncation value of r = 32. After computing the required matrices,
notice that the D term is again numerically 0, while the norm of the matrix F̂ slightly
decreases to the value 6.9597e − 04. Perform numerical simulations and depict the
two outputs and the approximation error in Fig. 3. Observe that the approximation
quality significantly improved, but there is still room for improvement.

Finally, the tolerance value is chosen as τr = 10−6. For this particular choice, it
follows that the truncation value is r = 40. In this case, the output of the reduced-
order model faithfully reproduces the original output, as it can be observed in Fig. 4.
Note also that the approximation error stabilizes within the range (10−4, 10−5).
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Fig. 2 Left plot: the observed outputs; right plot: the corresponding approximation error

0 5 10
Time(s)

-0.01

0

0.01

0.02
The observed output

Original system n = 1640
Reduced system r = 32

0 5 10
Time(s)

10-6

10-4

10-2
The approximation error

Fig. 3 Left plot: the observed outputs; right plot: the corresponding approximation error
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Fig. 4 Left plot: the observed outputs; right plot: the corresponding approximation error
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Fig. 5 Left plot: the observed outputs; right plot: the corresponding approximation error

4.1.2 Experiment 2—Testing the Trained Models

In the second setup, we perform time-domain simulations of the reduced-order mod-
els for different conditions than those used in the training stage, i.e., the time horizon
is extended to [0, 15]s and two other control inputs are used. Moreover, we keep the
truncation value to be r = 40 (corresponding to tolerance τr = 10−6).

First, choose the testing control input to be u1(t) = sin(4t)/4 − cos(5t)/5. The
time-domain simulations showing the observed outputs are depicted in Fig. 5. More-
over, on the samefigure, themagnitude of the approximation is presented.Weobserve
that the output of the learned reduced model accurately approximates the output of
the original system.

Afterward, choose the testing control input to be u2(t) = square(2t)
5(t+1) . Note that

square(2t) is a square wavewith periodπ . The time-domain simulations showing the
observed outputs are depicted in Fig. 6. Moreover, on the same figure, the magnitude
of the approximation is presented. We observe that the output of the learned reduced
model does not approximate the output of the original system as well as in the
previous experiments.

4.2 Coupled van der Pol Oscillators

Consider the coupled van der Pol oscillators along a limit cycle example given in
[18]. The dynamics are characterized by the following six differential equations with
linear and nonlinear (cubic) terms:
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Fig. 6 Left plot: the observed outputs; right plot: the corresponding approximation error

ẋ1 = x2,

ẋ2 = −x1 − μ(x21 − 1)x2 + a(x3 − x1) + b(x4 − x2),

ẋ3 = x4,

ẋ4 = −x3 − μ(x23 − 1)x4 + a(x1 − x3) + b(x2 − x4),

+ a(x5 − x3) + b(x6 − x4) + u,

ẋ5 = x6,

ẋ6 = −x5 − μ(x25 − 1)x6 + a(x3 − x5) + b(x4 − x6).

(50)

Choose the output to be y = x3. Hence, the state-output equation iswritten as y = Cx
with C = [

0 0 1 0 0 0
]
and x = [

x1 x2 x3 x4 x5 x6
]T
. Choose the parameters in

(50) as follows: μ = 0.5, a = 0.5 and b = 0.2.
Note that by introducing three additional surrogate states, e.g., x7 = x21 , x8 = x22 ,

and x9 = x23 , one can rewrite the cubic nonlinear system in (50) of order n = 6 as an
order nq = 9 quadratic-bilinear system.

Perform time-domain simulations of the cubic system of order n = 6 and collect
data from 500 snapshots using the explicit Euler method with step size �t = 0.01.
The chosen time horizon is hence [0,5]s. The control input is a square wave with
period π/5 and amplitude 30, i.e., u(t) = 30 square(10t).

Compute the pseudo-inverse of matrix� ∈ R
49×500 and select as truncation value

p = 19 (the 20th normalized singular value drops below machine precision).
We compute a reduced-order quadratic-bilinear model of order r = 5. We made

this choice since the fifth normalized singular value of matrix� ∈ R
7×500 is 5.8651e-

04 while the sixth is numerically 0, i.e., 3.5574e-16. We hence fit an order r = 5
quadratic-bilinear system that approximates the original order n = 6 cubic polyno-
mial system. Note that the only nonzero feed-through quantity in the recovered state-
output equation is given by Ĉ = [−0.1067 0.5580 0.0797 −0.4145 −0.7065

]
.
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Fig. 7 Left plot: the observed outputs; Right plot: the corresponding approximation error

Next, we perform time-domain simulations in the same manner as in Sect. 4.1.1,
i.e., by validating the reduced models on the training data. The results are depicted
in Fig. 5. One can observe that the two outputs match well. In this particular setup,
it follows that the response of the sixth-order cubic system (that can be equivalently
written as a ninth-orderQBsystem) canbe accurately approximatedwith the response
of a fifth-order QB system. The approximation error is presented in Fig. 7.

5 Conclusion

In this paper, we have proposed extensions of the DMDc and ioDMD recently pro-
posed methods. The philosophy is similar to that of the original methods, but instead
of fitting discrete-time linear systems, we impose a more complex structure to the fit-
ted models. More precisely, we fit bilinear or quadratic terms to augment the existing
linear quantities (both in the differential and in the output equations). The numerical
results presented were promising, and they have shown the strength of the method.
Indeed, there is a clear trade-off to be made between approximation quality and the
dimension of the fitted model.

Nevertheless, this represents a first step toward extendingDMD-typemethods, and
a more involved analysis of the method’s advantages and disadvantages could repre-
sent an appealing future endeavor. Moreover, another contribution could be made by
comparing the proposed methods in this work with the recently introduced operator
inference-type methods. For the quadratic-bilinear case, additional challenges arise
when storing the large-scalematrices involved and alsowhen computing the classical
SVD for such big non-sparse matrices.
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6 Appendix

6.1 Computation of the Reduced-Order Matrices for the
Quadratic-Bilinear Case

In this section, we present practical details for retrieving the system matrices in the
case of the proposed procedure in Sect. 3.2. We solve the equation � = G� for
which the matrices are given as in (46), i.e., the case without output observations.
We again utilize an SVD, now performed on the matrix �, i.e.,

� = V�WT ≈ Ṽ�̃W̃T , (51)

where the full-scale and reduced-order SVDmatrices have the following dimensions:

{
V ∈ R

(n2+2n+1)×(n2+2n+1), � ∈ R
(n2+2n+1)×(m−1), W ∈ R

(m−1)×(m−1),

Ṽ ∈ R
(n2+2n+1)×p, �̃ ∈ R

p×p, W̃ ∈ R
(m−1)×p.

The truncation index is denoted with r , and written as before �† ≈ W̃�̃
−1
ṼT .

By splitting up the matrix VT as ṼT = [ṼT
1 ṼT

2 ṼT
3 ṼT

4 ], with

Ṽ1, Ṽ3 ∈ R
n×r , Ṽ2 ∈ R

1×r , Ṽ4 ∈ R
n2×r ,

recover the matrices

A = XsW̃�̃
−1
ṼT

1 , B = XsW̃�̃
−1
ṼT

2 , N = XsW̃�̃
−1
ṼT

3 , Q = XsW̃�̃
−1
ṼT

4 .

(52)

Again, perform an additional SVD, e.g., Xs ≈ V̂�̃ŴT , where V̂ ∈ R
(n+1)×r , �̂ ∈

R
r×r , V̂ ∈ R

(m−1)×r . Using the transformation x = V̂x̃, the following reduced-order
approximations are computed:

Ã = V̂TAV̂ = V̂TXsW̃�̃
−1
ṼT

1 V̂ ∈ R
r×r ,

B̃ = V̂TB = V̂TXsW̃�̃
−1
ṼT

2 ∈ R
r ,

Ñ = V̂TAV̂ = V̂TXsW̃�̃
−1
ṼT

3 V̂ ∈ R
r×r ,

Q̃ = V̂TQ(V̂ ⊗ V̂) = V̂TXsW̃�̃
−1
ṼT

2 (V̂ ⊗ V̂) ∈ R
r×r2 .
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Clustering-Based Model Order
Reduction for Nonlinear Network
Systems

Peter Benner, Sara Grundel, and Petar Mlinarić

Abstract Clustering by projection has been proposed as a way to preserve network
structure in linear multi-agent systems. Here, we extend this approach to a class
of nonlinear network systems. Additionally, we generalize our clustering method
which restores the network structure in an arbitrary reduced-order model obtained
by projection. We demonstrate this method on a number of examples.

1 Introduction

Nonlinear network systems appear in various application areas, including energy
distribution networks, water networks, multi-robot networks, and chemical reaction
networks. Model order reduction (MOR) enables faster simulation, optimization,
and control of large-scale network systems. However, standard methods generally
do not preserve the network structure. Preserving the network structure is necessary,
e.g., if an optimization method assumes this structure.

Clustering was proposed in the literature as a way to preserve the multi-agent
structure. Methods based on equitable partitions were described in [4, 16, 24] with
an extension to almost equitable partitions in [17]. Based on this, a priori error
expressions were developed in [23] with generalizations in [14]. Ishizaki et al. [12]
developed a clustering-basedH∞-MORmethod based on positive tridiagonalization
and reducible clusters, applicable to linear time-invariant systems with asymptoti-
cally stable and symmetric dynamics matrices. In [11], they presented an efficient
clustering-based method also based on reducible clusters for H2-MOR of linear
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positive networks, which include systems with Laplacian-based dynamics. Cheng et
al. [5, 6] developed amethod based on agent dissimilarity. Besselink et al. [3] studied
networks of identical passive systems over weighted and directed graphs with tree
structures.

In this work, we extend the clustering-based approach for linear time-invariant
multi-agent systems from [20, 21]. There we proposed a method combining the
iterative rational Krylov algorithm (IRKA) [1] and QR decomposition-based clus-
tering [26]. We generalize this approach to be able to combine any projection-based
MOR method and clustering algorithm. Extending to arbitrary projection-based
MOR methods allows applying the method to nonlinear network systems. For the
clustering algorithm, we motivate the use of the k-means algorithm [9]. We show
that for a class of nonlinear multi-agent systems, clustering by Galerkin projection
preserves network structure, which additionally avoids the need for hyper-reduction
to simplify the nonlinear part.

The outline of this paper is as follows. First,we provide somebackground informa-
tion on linearmulti-agent systems in Sect. 2. In Sect. 3, we recall our clustering-based
MOR method for linear multi-agent systems and generalize it to a framework which
allows combining any projection-based MOR method and clustering algorithm. In
Sect. 4, we extend clustering by projection to a class of nonlinear multi-agent sys-
tems, which also permits the applicability of our framework. We demonstrate the
approach numerically in Sect. 5 and conclude with Sect. 6.

We use i to denote the imaginary unit (i2 = −1), C− as the open left complex
half-plane, and C+ as the right. Furthermore, we use diag(v) to denote the diag-
onal matrix with the vector v as its diagonal and col(v1, v2, . . . , vk) as the vector
obtained by concatenating v1, v2, . . . , vk . We call a square matrix A Hurwitz if all
its eigenvalues have negative real parts. Similarly, for square matrices A and B,
with B invertible, we call the matrix pair (A, B) Hurwitz if B−1A is Hurwitz. For a
rectangular matrix A, im(A) denotes the subspace generated by the columns of A.
For a rational matrix function H : C → C

p×m , i.e., a matrix-valued function whose
components are rational functions, the H2 and H∞ norms are

‖H‖H2 =
(∫ ∞

−∞
‖H(iω)‖F2 dω

)1/2

,

‖H‖H∞ = sup
ω∈R

‖H(iω)‖2,

if all the poles of H have negative real parts and undefined otherwise.

2 Preliminaries

We present some basic concepts from graph theory in Sect. 2.1, graph partitions
in Sect. 2.2, before moving on to linear multi-agent systems in Sect. 2.3, and



Clustering-Based Model Order Reduction for Nonlinear Network Systems 77

clustering-based MOR in Sect. 2.4. Additionally, we give remarks on MOR for
non-asymptotically stable linear multi-agent systems in Sect. 2.5.

2.1 Graph Theory

The notation in this section is based on [7, 19].
A graph G consists of a vertex set V and an edge set E encoding the relation

between vertices. Undirected graphs are those for which the edge set is a subset
of the set of all unordered pairs of vertices, i.e., E ⊆ {{i, j} : i, j ∈ V, i �= j}. On
the other hand, a graph is directed if E ⊆ {(i, j) : i, j ∈ V, i �= j}. We think of an
edge (i, j) as an arrow starting from vertex i and ending at j . We only consider
simple graphs, i.e., graphs without self-loops or multiple copies of the same edge.
Additionally, we only consider finite graphs, i.e., graphs with a finite number of
vertices n := |V|. Without loss of generality, let V = {1, 2, . . . , n}.

For an undirected graph, a path of length � is a sequence of distinct vertices
i0, i1, . . . , i� such that {ik, ik+1} ∈ E for k = 0, 1, . . . , � − 1. For a directed graph,
a directed path of length � is a sequence of distinct vertices i0, i1, . . . , i� such that
(ik, ik+1) ∈ E for k = 0, 1, . . . , � − 1. An undirected graph is connected if there
is a path between any two distinct vertices i, j ∈ V. A directed graph is strongly
connected if there is a directed path between any two distinct vertices i, j ∈ V.

We can associate weights to edges of a graph by a weight function w : E → R. If
w(e) > 0 for all e ∈ E, the tuple G = (V, E, w) is called a weighted graph. In the
following,wewill focus onweighted graphs. In particular, wewill directly generalize
concepts for unweighted graphs from [7, 19], as was done in [23].

The adjacency matrix A = [ai j ]i, j∈V ∈ R
n×n of an undirected weighted graph is

defined component-wise by

ai j :=
{

w({i, j}), if {i, j} ∈ E,

0, otherwise,

and for a directed weighted graph as

ai j :=
{

w(( j, i)), if ( j, i) ∈ E,

0, otherwise.

For every vertex i ∈ V, its in-degree is di :=∑n
j=1 ai j . The diagonal matrix D :=

diag(d1, d2, . . . , dn) is called the in-degree matrix. Notice thatD = diag(A1), where
1 is the vector of all ones.

Let e1, e2, . . . , e|E| be all the edges of G in some order. The incidence matrix
R ∈ R

n×|E| of a directed graph G is defined component-wise
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[R]ik :=

⎧⎪⎨
⎪⎩

−1, if ek = (i, j) for some j ∈ V,

1, if ek = ( j, i) for some j ∈ V,

0, otherwise.

If G is undirected, we assign some orientation to every edge to define a directed
graph Go, and define the incidence matrix of G to be the incidence matrix of Go.
The weight matrix is defined as W := diag(w(e1), w(e2), . . . , w(e|E|)).

The (in-degree) Laplacian matrix L is defined by L := D − A. For undirected
graphs, it can be checked that L = RWRT, using

RWRT =
∑

{i, j}∈E

ai j (ei − e j )(ei − e j )
T,

which is independent of the order of edges defining R and W or the orientation of
edges in Go. From the definition of L, it directly follows that the sum of each row in
L is zero, i.e., L1 = 0. From L = RWRT, we immediately see that, for undirected
weighted graphs, the Laplacian matrix L is symmetric positive semidefinite.

The following theorem, based on Theorem 2.8 in [19], states how connectedness
of a graph is related to the spectral properties of L.

Theorem 1 Let G = (V, E, w) be an undirected weighted graph, L its Laplacian
matrix, and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of L. Then the following state-
ments are equivalent:

1. G is connected,
2. λ2 > 0,
3. ker(L) = im(1).

2.2 Graph Partitions

A nonempty subset C ⊆ V is called a cluster of V. A graph partition π of the graph
G is a partition of its vertex set V. The characteristic vector of a cluster C ⊆ V is
the vector p(C) ∈ R

n defined with

[p(C)]i :=
{
1 if i ∈ C,

0 otherwise.

The characteristicmatrix of a partitionπ = {C1, C2, . . . , Cr} is thematrixP ∈ R
n×r

defined by
P := [p(C1) p(C2) · · · p(Cr)

]
.

Note that PTP = diag(|C1|, |C2|, . . . , |Cr|).
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2.3 Linear Multi-agent Systems

Here, we focus on linear time-invariant multi-agent systems (cf. [3, 5, 6, 11–13,
22, 23]). Additionally, we restrict ourselves to multi-agent systems defined over an
undirected, weighted, and connected graph G = (V, E, w).

The dynamics of the i th agent, for i ∈ V = {1, 2, . . . , n}, is

Eẋi (t) = Axi (t) + Bvi (t),

zi (t) = Cxi (t),

with system matrices E, A ∈ R
n×n , input matrix B ∈ R

n×m , output matrix C ∈
R

p×n , state xi (t) ∈ R
n , input vi (t) ∈ R

m , and output zi (t) ∈ R
p. We assume the

matrix E to be invertible. The interconnections are

mivi (t) =
n∑
j=1

ai j K
(
z j (t) − zi (t)

)+
m∑
k=1

bikuk(t),

for i = 1, 2, . . . , n, with inertiasmi > 0, couplingmatrix K ∈ R
m×p, external inputs

uk(t) ∈ R
m , k = 1, 2, . . . , m, where A = [ai j ] is the adjacency matrix of the graph

G. The outputs are

y�(t) =
n∑
j=1

c�j z j (t)

for � = 1, 2, . . . , p. Define

M := diag(mi ) ∈ R
n×n, B := [bik] ∈ R

n×m, C := [c�j ] ∈ R
p×n,

x(t) := col(xi (t)) ∈ R
nn, v(t) := col(vi (t)) ∈ R

nm, z(t) := col(zi (t)) ∈ R
np,

u(t) := col(uk(t)) ∈ R
mm, and y(t) := col(y�(t)) ∈ R

pp.

Then the agent dynamics can be rewritten as

(In ⊗ E)ẋ(t) = (In ⊗ A)x(t) + (In ⊗ B)v(t),

z(t) = (In ⊗ C)x(t),

interconnection as

(M ⊗ In)v(t) = (−L ⊗ K )z(t) + (B ⊗ Im)u(t),

and output as

y(t) = (C ⊗ Ip)z(t).
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Therefore, we have

(M ⊗ E)ẋ(t) = (M ⊗ A − L ⊗ BKC)x(t) + (B ⊗ B)u(t),

y(t) = (C ⊗ C)x(t).
(1)

Of particular interest are leader-follower multi-agent systems where only some
agents (leaders) receive external input, while other agents (followers) receive no
inputs. Let m ∈ {1, 2, . . . , n} be the number of leaders, VL = {v1, v2, . . . , vm} ⊆ V
the set of leaders, and VF = V \ VL the set of followers. Then, with B defined by

bik :=
{
1, if i = vk,
0, otherwise,

the system (1) becomes a leader-follower multi-agent system. One important class
is multi-agent systems with single-integrator agents, i.e., with n = 1, A = 0, and
B = C = K = E = 1. Thus, system (1) becomes

Mẋ(t) = −Lx(t) + Bu(t),

y(t) = Cx(t).
(2)

The property of interest for multi-agent systems is synchronization.

Definition 1 The system (1) is synchronized if

lim
t→∞ (xi (t) − x j (t)) = 0,

for all i, j ∈ V and all initial conditions x(0) = x0 and u ≡ 0.

In words, this means that the agents’ states converge to the same trajectory for zero
input and arbitrary initial condition. The following results give a characterization
([15, Theorem 1], [22, Lemma 4.2]).

Proposition 1 Let a system (1) be given, where L is the Laplacian matrix of an
undirected, weighted, and connected graph. Then the system (1) is synchronized if
and only if (A − λBKC, E) is Hurwitz for all nonzero eigenvalues λ of (L, M).

Note that linear multi-agent systems with single-integrator agents, as in (2), are
always synchronized since (A − λBKC, E) = (−λ, 1).

2.4 Clustering-Based Model Order Reduction

By choosing some matrices V,W ∈ R
nn×rn , we get the reduced model for (2)
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WTMV ˙̂x(t) = −WTLV x̂(t) + WTBu(t),

ŷ(t) = CV x̂(t),
(3)

or, for (1),

WT(M ⊗ E)V ˙̂x(t) = WT(M ⊗ A − L ⊗ BKC)V x̂(t) + WT(B ⊗ B)u(t),

ŷ(t) = (C ⊗ C)V x̂(t),
(4)

which is not necessarily a multi-agent system. As suggested in [5] (similar to [12,
23]), using

V = W = P, (5)

in (3), or in general
V = W = P ⊗ In, (6)

in (4), preserves the structure, where P is a characteristic matrix of a partition π of
the vertex set V. In particular, PTMP is a positive definite diagonal matrix and PTLP
is the Laplacian matrix of the reduced graph.

2.5 Model Reduction for Non-asymptotically Stable Systems

Note that the system (2) is not (internally) asymptotically stable since L has a zero
eigenvalue. Similarly, the system (1) is not asymptotically stable if A is not Hurwitz.
First, we discuss a decomposition into the asymptotically and the non-asymptotically
stable part. This allows an extension ofMORmethods and the computation of system
norms. Next, we analyze stability of clustering-based reduced models.

For an arbitrary linear time-invariant system

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

with invertible E, let T = [T− T+
]
and S = [S− S+

]
be invertible matrices such

that

STET =
[E− 0
0 E+

]
, STAT =

[A− 0
0 A+

]
,

with σ(A−,E−) ⊂ C− and σ(A+,E+) ⊂ C+. In particular, this means that im(T−)

is a direct sum of generalized (right) eigenspaces corresponding to the eigenvalues
of (A,E) with negative real parts and analogously for im(T+), im(S−), im(S+). If
we denote
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STB =
[B−
B+

]
, CT = [C− C+

]
,

this gives us that H = H− + H+, where

H(s) = C(sE − A)−1B,

H−(s) = C−
(
sE− − A−

)−1B−,

H+(s) = C+
(
sE+ − A+

)−1B+.

Note thatH− andH+ have poles inC− andC+, respectively. For the transfer function
Ĥ of a reduced model to be such that ‖H − Ĥ‖H2 and ‖H − Ĥ‖H∞ are defined, it
is necessary thatH and Ĥ have the same non-asymptotically stable part. This means
that Ĥ = Ĥ− + H+ for some Ĥ−, Ĥ−(s) = Ĉ−

(
sÊ− − Â−

)−1B̂−, with poles in

C−, i.e., Ĥ− is a reduced model forH−. If we use a projection-based MOR method
with matrices V−,W− to get

Ê− = WT
−E−V−, Â− = WT

−A−V−, B̂− = WT
−B−, Ĉ− = C−V−,

then the overall basis matrices are

V = [T−V− T+
]

and W = [S−W− S+
]
. (7)

Then we can compute the norm of H − Ĥ by computing the norm of H− − Ĥ−.
To analyze linear multi-agent systems, we want to find an invertible matrix T such

that

TTMT =
[
M− 0
0 m+

]
and TTLT =

[
L− 0
0 0

]
,

where σ(−L−, M−) ⊂ C−. We see that if

T = [T− 1n
]
,

then

TTMT =
[
TT−MT− TT−M1n

1T
nMT− 1T

nM1n

]
and TTLT =

[
TT−LT− 0

0 0

]
.

To have TT−M1n = 0, we need for the columns of T− to be orthogonal to M1n. This
will also ensure that σ(−L−, M−) = σ(−TT−LT−, TT−MT−) ⊂ C−. Additionally, T−
should be such that both TT−MT− and TT−LT− are sparse. We chose the form
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T− =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1

−β1 α2

−β2
. . .

. . . αn−1

−βn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

with some αi , βi>0, i=1, 2, . . . , n−1, which we determine next. From eTi TT−M1n =
0, we find αimi = βimi+1. If we additionally set α2

i + β2
i = 1, we get

αi = mi+1√
m2

i + m2
i+1

and βi = mi√
m2

i + m2
i+1

.

Therefore, the decomposition of a multi-agent system (2) is

H(s) = CT−
(
sM− − L−

)−1
TT

−B + 1

sm+
C1n1n.

TB

Similarly, for the reduced model (3) with (5), we get that the non-asymptotically
stable part is

1

s1T
r PTMP1r

CP1r1
T
r PTB,

which is equal to the non-asymptotically stable part of the original model since
P1r = 1n. Therefore, the transfer function of the error system has only poles with
negative real parts.

Next, to analyze system (1), let T and S be invertible matrices such that

STET =
[
E− 0
0 E+

]
and STAT =

[
A− 0
0 A+

]
,

where σ(A−, E−) ⊂ C− and σ(A+, E+) ⊂ C+. Then

[
I(n−1)n 0

0 S

]T
(T ⊗ In)

T(M ⊗ E)(T ⊗ In)

[
I(n−1)n 0

0 T

]

=
[
I(n−1)n 0

0 S

]T [M− ⊗ E 0
0 m+E

] [
I(n−1)n 0

0 T

]

=
⎡
⎣M− ⊗ E 0 0

0 m+E− 0
0 0 m+E+

⎤
⎦

and
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[
I(n−1)n 0

0 S

]T
(T ⊗ In)

T(M ⊗ A − L ⊗ BKC)(T ⊗ In)

[
I(n−1)n 0

0 T

]

=
[
I(n−1)n 0

0 S

]T [M− ⊗ A − L− ⊗ BKC 0
0 m+A

] [
I(n−1)n 0

0 T

]

=
⎡
⎣M− ⊗ A − L− ⊗ BKC 0 0

0 m+A− 0
0 0 m+A+

⎤
⎦ .

Since the original system is assumed to be synchronized, we have that
σ(M− ⊗ A − L− ⊗ BKC, M− ⊗ E) ⊂ C−. Note that the overall transformation
matrices are

T = (T ⊗ In)

[
I(n−1)n 0

0 T

]
= ([T− 1n

]⊗ In
) [I(n−1)n 0

0 T

]

= [T− ⊗ In 1n ⊗ In
] [I(n−1)n 0

0 T

]
= [T− ⊗ In (1n ⊗ In)T

]

= [T− ⊗ In 1n ⊗ T
] = [T− ⊗ In 1n ⊗ T− 1n ⊗ T+

]
,

S = [T− ⊗ In 1n ⊗ S− 1n ⊗ S+
]
.

Therefore, the non-asymptotically stable part is

(C ⊗ C)(1n ⊗ T+)
(
sm+E+ − m+A+

)−1
(1n ⊗ S+)T(B ⊗ B)

= (C1n ⊗ CT+
)(
sm+E+ − m+A+

)−1(
1T

nB ⊗ ST+B
)
.

Assuming that a clustering-based reduced model is synchronized, we see that it has
the same non-asymptotically stable part as the original model.

It remains to consider synchronization preservation. In the single-integrator case,
clustering using any partition preserves synchronization. In the general case, using
Theorem 1, we need that (A − λ̂BKC, E) is Hurwitz for all nonzero eigenvalues λ̂

of (L̂, M̂). Since, in general, σ(L̂, M̂) is not a subset of σ(L, M), we need an addi-
tional assumption. Based on the interlacing property [8], we know that all nonzero
eigenvalues (L̂, M̂) are in [λ2, λn], where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenval-
ues of (L, M). Therefore, if (A − λBKC, E) is Hurwitz for all λ ∈ [λ2, λn], we get
that every partition preserves synchronization.

3 Clustering for Linear Multi-agent Systems

In this section, we motivate our general approach for clustering-based linear multi-
agent systems. Since clustering is generally a difficult combinatorial problem (see,
e.g., [25]), we propose a heuristic approach for finding suboptimal partitions.
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For simplicity, we first consider multi-agent systems with single-integrator agents
as in (2). Let

H(s) = C(sM + L)
−1B,

Ĥ(s) = CV
(
sWTMV + WTLV

)−1
WTB

be the transfer functions of systems (2) and (3), respectively, where V,W ∈ R
n×rP

are obtained using a projection-based method such as balanced truncation or IRKA
and the construction in (7).

In [20], motivated by (5) and the properties of clustering using QR decomposition
with column pivoting (see [26, Sect. 3], [20, Lemma 1]), we proposed applying it
to the set of rows of V or W to recover the partition. Here, we want to emphasize
that the approach is not restricted to this choice of clustering algorithm. In partic-
ular, the following result on the forward error in the Petrov-Galerkin projection [2,
Theorem 3.3] motivates using the k-means clustering [9].

Theorem 2 Let V1, V2,W1,W2 ∈ R
n×rP be full-rank matrices and

Vi = im(Vi ), Wi = im(Wi ), Ĥi (s) = CVi
(
sWT

i EVi − WT
i AVi

)−1
WT

i B,

for i = 1, 2. Then

∥∥Ĥ1 − Ĥ2

∥∥H∞

1
2

(∥∥Ĥ1

∥∥H∞ + ∥∥Ĥ2

∥∥H∞

) ≤ M max(sin	(V1,V2), sin	(W1,W2)),

where

M = 2max(M1, M2),

M1 =
maxω∈R ‖C‖2

∥∥∥V1(iωWT
1 EV1 − WT

1 AV1)
−1WT

1 B
∥∥∥
2

∥∥Ĥ1(iω)
∥∥−1

2

minω∈R cos	
(
ker
(
WT

2 (iωE − A)−1
)⊥

,V2

) ,

M2 =
maxω∈R

∥∥∥CV2(iωWT
2 EV2 − WT

2 AV2)
−1
WT

2

∥∥∥
2
‖B‖2

∥∥Ĥ2(iω)
∥∥−1

2

minω∈R cos	
(
im
(
(iωE − A)−1V1

)
,W1

) ,

and 	(M,N) is the largest principal angle between subspaces M,N ⊆ R
n.

The motivation for looking at this bound is, if we take Ĥ1 to be a projection-based
reduced-order model that is very close to the original model, i.e., ‖H − Ĥ1‖H∞ is
small, then we could look for a clustering-based reduced-order model Ĥ2 by finding
a characteristic matrix of a partition P such that im(P) is close toV1 and W1.

Note that, to use Theorem 2, we need to use the asymptotically stable parts of Ĥ1

and Ĥ2 such that ‖Ĥ1‖H∞ and ‖Ĥ2‖H∞ are defined. As discussed in Sect. 2.5, Ĥ1
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and Ĥ2 need to have the same non-asymptotically stable part as H for the H2 and
H∞ errors to be defined.

Next, we show how the bounds motivate the use of k-means clustering. The sine
of the largest principal angle between two subspaces V1,V2 ⊆ R

n is defined by
(see [2, Sect. 3.1])

sin	(V1,V2) := sup
v1∈V1

inf
v2∈V2

‖v2 − v1‖2
‖v1‖2 .

Furthermore, if 
1 and 
2 are orthogonal projectors onto V1 and V2, then
sin	(V1,V2) = ‖(I − 
2)
1‖2. Therefore, we have

sin	(V1,V2) =
∥∥∥(I − V2V

T
2

)
V1

∥∥∥
2
,

for any V1 and V2 with orthonormal columns such thatV1 = im(V1),V2 = im(V2).
If additionally V1 is the V ∈ R

n×rP from the projection-based method and V2 =
P(PTP)−1/2 ∈ R

n×r, then

( sin	(V1,V2))
2 ≤

∥∥∥(I − P
(
PTP

)−1PT
)
V
∥∥∥2
F

=

∥∥∥∥∥∥∥

⎛
⎜⎝I − [p(C1) · · · p(Cr)

]
⎡
⎢⎣

|C1|−1

. . .

|Cr|−1

⎤
⎥⎦
⎡
⎢⎣
p(C1)

T

...

p(Cr)
T

⎤
⎥⎦
⎞
⎟⎠V

∥∥∥∥∥∥∥

2

F

=
∥∥∥∥∥∥
⎛
⎝I −

r∑
i=1

1

|Ci | p(Ci )p(Ci )
T

⎞
⎠V

∥∥∥∥∥∥
2

F

=
∥∥∥∥∥∥

r∑
i=1

∑
p∈Ci

(
epe

T
p − 1

|Ci |ep p(Ci )
T
)
V

∥∥∥∥∥∥
2

F

=
r∑

i=1

∑
p∈Ci

∥∥∥∥∥∥Vp,: − 1

|Ci |
∑
q∈Ci

Vq,:

∥∥∥∥∥∥
2

2

,

which is equal to the k-means cost functional for the set of rows of V , where Vp,: is
the pth row of V (and similarly for Vq,:). Therefore, applying the k-means algorithm
to the rows of V will minimize an upper bound on the largest principal angle between
im(V ) and im(P).

The advantage of using k-means compared to QR decomposition-based clustering
is in that the latter can only, given V ∈ R

n×rP , return a partition with rP clusters. On
the other hand, k-means clustering can return a partition with any number of clusters
r. This makes it more efficient when rP  r and projection-based MOR method
already generate a good subspace im(V ).
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For multi-agent systems (1) with agents of order n, we have the matrices V andW
as in (6). QR decomposition-based clustering can then be extended as in Algorithm 2
from [21] by clustering the block columns of V T (orWT). For the k-means algorithm,
we can show in a similar way as in the single-integrator case that clustering the block
rows leads to minimizing an upper bound of the largest principal angle. Therefore,
k-means can be directly applied to the set of block rows of V or W .

Note that the approach is not limited to the two clustering algorithms mentioned
here. Any clustering algorithm over the set of (block-)rows of V orW can be used. In
particular, if only partitions with certain properties are wanted (e.g., those that only
cluster neighboring agents), then special clustering algorithms could be used (e.g.,
agglomerative clustering taking into account the connectivity of the graph).

4 Clustering for Nonlinear Multi-agent Systems

In this section, we extend the approach from the previous section to a class of nonlin-
ear multi-agent systems. We describe the class of multi-agent systems in Sect. 4.1.
Next, in Sect. 4.2, we show that clustering by projection preserves structure for this
class of systems.

4.1 Nonlinear Multi-agent Systems

Here, we consider a class of nonlinear multi-agent systems. In particular, let the
dynamics of the i th agent, for i = 1, 2, . . . , n, be defined by the control-affine system

ẋi (t) = A(xi (t)) + B(xi (t))vi (t), (8a)

zi (t) = C(xi (t)), (8b)

with functions A : Rn → R
n , B : Rn → R

n×m ,C : Rn → R
p, state xi (t) ∈ R

n , input
vi (t) ∈ R

m , and output zi (t) ∈ R
p. Furthermore, let the interconnections be

mivi (t) =
n∑
j=1

ai j K (zi (t), z j (t)) +
m∑
k=1

bikuk(t), (8c)

for i=1, 2, . . . , n, with inertias mi>0 and M=diag(mi ), coupling K : Rp × R
p →

R
m , external input uk(t) ∈ R

m , k = 1, 2, . . . , m, where A = [ai j ] is the adjacency
matrix of the graph G, and B = [bik]. Additionally, let the external output be

y�(t) =
n∑
j=1

c�j z j (t), (8d)
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with C = [c�j ]. We assume functions A, B,C, K are continuous and that there is a
unique global solution x(t) = col(x1(t), x2(t), . . . , xn(t)) for any admissible u(t).

4.2 Clustering by Projection

We want to find the form of the reduced-order model obtained from Galerkin pro-
jection with V = P ⊗ In . We can rewrite (8) to

(M ⊗ In)ẋ(t) = f (x(t), u(t)),

y(t) = g(x(t)),

for some functions f and g. The reduced model is

(
PTMP ⊗ In

) ˙̂x(t) = (PT ⊗ In
)
f
(
(P ⊗ In)x̂(t), u(t)

)
, (9)

ŷ(t) = g
(
(P ⊗ In)x̂(t)

)
,

with x̂(t) = col(x̂1(t), x̂2(t), . . . , x̂r(t)) and x̂i (t) ∈ R
n . Let π( j) ∈ {1, 2, . . . , r} be

such that j ∈ Cπ( j), for j ∈ {1, 2, . . . , n}. Premultiplying (9) with eTı ⊗ In for some
ı ∈ {1, 2, . . . , r}, we find

m̂ı ˙̂xı (t)

=
∑
i∈Cı

⎛
⎝mi A

(
x̂ı (t)

)+ B
(
x̂ı (t)

)
⎛
⎝ n∑

j=1

ai j K
(
C
(
x̂ı (t)

)
,C
(
x̂π( j)(t)

))+
m∑
k=1

bikuk(t)

⎞
⎠
⎞
⎠

= m̂ı A
(
x̂ı (t)

)

+ B
(
x̂ı (t)

)⎛⎝∑
i∈Cı

n∑
j=1

ai j K
(
C
(
x̂ı (t)

)
,C
(
x̂π( j)(t)

))+
∑
i∈Cı

m∑
k=1

bikuk(t)

⎞
⎠

= m̂ı A
(
x̂ı (t)

)

+ B
(
x̂ı (t)

)
⎛
⎝ r∑

j=1

∑
i∈Cı

∑
j∈Cj

ai j K
(
C
(
x̂ı (t)

)
,C
(
x̂j (t)

))+
m∑
k=1

∑
i∈Cı

bikuk(t)

⎞
⎠

= m̂ı A
(
x̂ı (t)

)+ B
(
x̂ı (t)

)⎛⎝ r∑
j=1

âıj K
(
C
(
x̂ı (t)

)
,C
(
x̂j (t)

))+
m∑
k=1

b̂ıkuk(t)

⎞
⎠,

for

m̂ı =
∑
i∈Cı

mi , âıj =
∑
i∈Cı

∑
j∈Cj

ai j , b̂ık =
∑
i∈Cı

bik .
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Defining M̂ := diag(m̂ı ), Â := [âıj ], and B̂ := [b̂ık ], we see that M̂ = PTMP, Â = PTAP,
and B̂ = PTB. For the output, we have

ŷ�(t) =
n∑
j=1

c�jC
(
x̂π( j)(t)

) =
r∑

j=1

∑
j∈Cj

c�jC
(
x̂j (t)

) =
r∑

j=1

ĉ�jC
(
x̂j (t)

)
,

where

ĉ�j =
∑
j∈Cj

c�j .

Thus, for Ĉ := [ĉ�j ], we have Ĉ = CP. Therefore, we showed how to construct a reduced
model of the same structure as the original multi-agent system. Based on this, to find a good
partition, we can apply any projection-based MORmethod for nonlinear systems (e.g., proper
orthogonal decomposition [10]) and cluster the block rows of the matrix used to project the
system.

5 Numerical Examples

Here, we demonstrate our approach for different network examples, beginning with a small
linear multi-agent system in Sect. 5.1. Next, in Sect. 5.2, we use the van der Pol oscillator
network.

The source code of the implementations used to compute the presented results can be
obtained from

https://doi.org/10.5281/zenodo.3924653

and is authored by Petar Mlinarić.

5.1 Small Network Example

To illustrate distance to optimality, we use the leader-follower multi-agents system example
from [23] with 10 single-integrator agents shown in Fig. 1, where we can compute theH2 and
H∞ errors for all possible partitions. The Laplacian and input matrices are

https://doi.org/10.5281/zenodo.3924653
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Fig. 1 Undirected weighted
graph with 10 vertices
from [23]
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 −5 0 0 0 0
0 5 0 0 −3 −2 0 0 0 0
0 0 6 −1 −2 −3 0 0 0 0
0 0 −1 6 −5 0 0 0 0 0
0 −3 −2 −5 25 −2 −6 −7 0 0

−5 −2 −3 0 −2 25 −6 −7 0 0
0 0 0 0 −6 −6 15 −1 −1 −1
0 0 0 0 −7 −7 −1 15 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and we chose the edge ordering and orientation such that the incidence and edge-weights
matrices are

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 −1 −1 −1 0 0 0 0 0
1 0 1 0 0 1 0 1 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and W = diag(5, 3, 2, 1, 2, 3, 5, 2, 6, 7, 6, 7, 1, 1, 1), respectively. The output matrix is C =
W1/2RT.
For this example, we focus on partitions with five clusters. There are in total 42 525 such
partitions. Table 1 shows the 15 best partitions with respect to theH2 and H∞ errors.

First, we used IRKA to find a reduced model of order r = 5. It found a reduced model with
relative H2 error of 3.30412 × 10−2, which is 3.88 times better than the best partition. The
partition resulting from QR decomposition-based clustering applied to IRKA’s V matrix is

{{1, 3}, {2, 4, 9, 10}, {5, 8}, {6}, {7}},

with the associated relativeH2 error of 0.150654. It is more than four times worse than using
IRKA, but note that this partition is the 14th best partition and that the best partition produces
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Table 1 Top 15 partitions with 5 clusters by H2 error and H∞ error for reducing the multi-agent
system in Sect. 5.1

about 1.18 times better error. Using k-means clustering gives

{{1, 2, 3}, {4, 9, 10}, {5, 8}, {6}, {7}},

with relative H2 error of 0.1459 and taking the sixth place.
We notice by (5) that W can also be used to find a good partition. In this example, QR

decomposition-based clustering returns the partition

{{1, 2, 3, 9, 10}, {4, 8}, {5}, {6}, {7}},
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with the relative H2 error 0.179746, which is worse than using only V from IRKA. Using
k-means clustering returns

{{1, 2, 3, 4, 8}, {5}, {6}, {7}, {9, 10}}

with the relative H2 error 0.156788.
Using the first five left singular vectors of

[
V W

]
to take into account both V andW , using

QR decomposition-based clustering produces

{{1, 2, 3, 4, 8}, {5}, {6}, {7}, {9, 10}}

with the relative H2 error 0.189487, which further increases the error. On the other hand,
k-means clustering gives us

{{1, 2, 3, 4}, {5, 8}, {6}, {7}, {9, 10}},

which is the second best partition in terms of theH2 error and sixth best in terms of theH∞
error. Furthermore, using balanced truncation instead of IRKA produces the same partition,
using either of the two clustering algorithms and the three choices of matrices.

Therefore, at least in this example, clustering the rows of V and/orW gives close to optimal
partitions. Additionally, k-means clustering performs better than QR decomposition-based
clustering.

5.2 van der Pol Oscillators

Here, we use the van der Pol oscillator network example from [18], where the agents are given
by

ẋi,1(t) = xi,2(t) + σvi (t), (10a)

ẋi,2(t) = μ
(
1 − xi,1(t)

2)xi,2(t) − xi,1(t) − cvi (t), (10b)

Fig. 2 State trajectory of the
van der Pol oscillator
network (10) for zero initial
condition and input
u(t) = e−t
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Fig. 3 POD singular values based on snapshots from Fig. 2

Fig. 4 van der Pol oscillator state trajectory for zero initial condition and input u(t) = e−t/10 sin t

and interconnections by

vi (t) =
n∑
j=1

ai j
((
xi,1(t) − x j,1(t)

)+ (xi,2(t) − x j,2(t)
))+

m∑
k=1

bikuk(t), (10c)

with μ = 0.5 and σ = 0.1. Additionally, we chose a larger 10 × 10 grid graph (n = 100), set
the input matrix to be B = e1 (i.e., one of the corner agents receives external input), and used
c = 100 to have synchronization.

Figure 2 shows the state trajectory of the system for zero initial condition and input u(t) =
e−t , using an adaptive BDF integrator producing 987 snapshots. We used these snapshots to
find the POD modes, with associated singular values shown in Fig. 3.

Changing the input to u(t) = e−t/10 sin t gives the trajectory in Fig. 4. Applying k-means
clustering to the first two POD modes to generate 10 clusters produces a reduced model with
the error trajectory in Fig. 5. We computed the relative L2 error for k-means clustering using
the first two POD modes with different number of clustering, which can be seen in Fig. 6. For
this example, we see that the error decays exponentially with the order of the reduced model.
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Fig. 5 van der Pol oscillator error when using k-means with the first two POD modes for zero
initial condition and input u(t) = e−t/10 sin t

Fig. 6 Relative L2 error for zero initial condition and test input u(t) = e−t/10 sin t for k-means
clustering using the first two POD modes

6 Conclusions

We extended clustering by projection to a class of nonlinear multi-agent systems and presented
our clustering-based MOR method, combining any projection-based MOR method and a
clustering algorithm, for reduction of multi-agent systems using graph partitions. In particular,
we motivated the use of the k-means algorithm.

Our numerical test for a small network shows that our algorithm finds close to optimal
partitions. We also illustrated our method for a larger nonlinear oscillator network.
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Adaptive Interpolatory MOR by
Learning the Error Estimator in the
Parameter Domain

Sridhar Chellappa, Lihong Feng, Valentín de la Rubia, and Peter Benner

Abstract Interpolatorymethods offer a powerful framework for generating reduced-
order models (ROMs) for non-parametric or parametric systems with time-varying
inputs. Choosing the interpolation points adaptively remains an area of active interest.
A greedy framework has been introduced in [12, 14] to choose interpolation points
automatically using a posteriori error estimators. Nevertheless, when the parameter
range is large or if the parameter space dimension is larger than two, the greedy
algorithm may take considerable time, since the training set needs to include a con-
siderable number of parameters. As a remedy, we introduce an adaptive training
technique by learning an efficient a posteriori error estimator over the parameter
domain. A fast learning process is created by interpolating the error estimator using
radial basis functions (RBF) over a fine parameter training set, representing the
whole parameter domain. The error estimator is evaluated only on a coarse training
set including a few parameter samples. The algorithm is an extension of the work
in [9] to interpolatory model order reduction (MOR) in frequency domain. Beyond
the work in [9], we use a newly proposed inf-sup-constant-free error estimator in the
frequency domain [14], which is often much tighter than the error estimator using the
inf-sup constant. Three numerical examples demonstrate the efficiency and validity
of the proposed approach.
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1 Introduction

MORbased on system theory and interpolation [3, 12, 13, 16, 17] has been developed
as a class of efficient MOR methods among others. Detailed summary of those
methods and comparison of them with other classes of MOR methods can be found
in some survey papers and books [1, 2, 4, 7, 8, 18, 30]. A major advantage of the
interpolatorymethods is their flexibility in reducing systemswith time- or parameter-
varying inputs, since they are based on the transfer function or the input-output
relation of the systems, which is independent of the input signal. On the contrary,
the snapshot MOR methods, such as proper orthogonal decomposition (POD) and
the reduced basis methods (RBM) are input dependent, and are often less efficient
in reducing systems with varying inputs as compared with the interpolatory MOR
methods [7].

A major topic of interest in interpolatory MOR methods is how to determine the
interpolation points, so as to adaptively construct the ROM. Many methods have
appeared in the last 10 years, some are heuristic [5, 15, 21, 23], some entail high
computational complexity [12, 33], and some are inefficient for systems with more
than one parameter [17, 22]. Random interpolation points are used in [6].

Recently, a new error estimator for the reduced transfer function error and an algo-
rithm for iteratively choosing the interpolation points are proposed in [14], which
overcomesmany difficulties being faced by the above-mentioned interpolatorymeth-
ods. It is neither heuristic nor needs a high computational cost. Moreover, it is a
parametric MOR method and applicable to systems with more than two parameters.
One shortcoming of the method is that the interpolation points are selected from a
given training set, which must be decided a priori and becomes larger and larger
with the increase of the parameter range or the parameter space dimension. Such a
technique is standard also for the RBM, where a training set must be given before a
greedy algorithm starts. This makes the greedy algorithm slow down when there is a
large number of samples in the training set due to the large dimension or large range
of the parameter domain. This is due to the fact that at each iteration of the greedy
algorithm, an error estimator needs to be repeatedly computed for all the samples in
the training set. Many adaptive training techniques have been proposed recently for
RBM [9, 19, 20, 24]. In contrast, no efficient training techniques are proposed for the
interpolatory MOR methods, though similar greedy algorithms using fixed training
sets are proposed in [12, 14]. In this work, we extend the adaptive training technique
in [9] for RBM to an adaptive training technique for the interpolatory MORmethods
in [12, 14].

The main contribution of this work is an efficient algorithm to adaptively choose
interpolation points for parametric, linear time-invariant (LTI) systems having a wide
range of parameter values or with a large parameter space dimension. Comparedwith
the greedy algorithms proposed in [12, 14], we have added two new ingredients to
the greedy algorithms: (i) a surrogate for the error estimator, which can be cheaply
computed and (ii) an adaptive sampling approach using the surrogate estimator.
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The aim is that instead of computing the error estimator over the whole parameter
domain for the ROM construction, a surrogate estimator is computed. In this way,
the error estimator is computed only on a coarse training set at each iteration of
the greedy algorithm, and for parameters outside the coarse training, the surrogate
estimator is computed. Finally, the training set needs to be initialized by including
only a few parameter samples, and can be iteratively updated using the surrogate
estimator instead of the error estimator itself. As a consequence, a significant amount
of computational cost can be saved for such systems.

The idea is similar to the one in [9] for the RBM. However, in [9], an error
estimator in time domain is used, where the inf-sup constant needs to be computed
for each parameter in the training set, which is computationally inefficient for large-
scale systems. In this work, we use an inf-sup-constant-free error estimator newly
proposed in [14]. It is suitable for interpolatory MORmethods, since it estimates the
transfer function error in the frequency domain.

The paper is organized as follows. In Sect. 2, we briefly review interpolatory
MOR methods based on projection. The greedy interpolatory methods [12, 14] for
parametric systems are reviewed in Sect. 3. In Sect. 4, we introduce the basic idea of
RBF interpolation and elaborate on the process of learning the error estimator using
a surrogate estimator constructed by RBF interpolation. Based on this surrogate
estimator, we propose the greedy algorithm IPSUE with adaptive training technique
for adaptively choosing the interpolation points in a more efficient and fully adaptive
way. We present numerical results on three real-word examples in Sect. 5 to show
the robustness of IPSUE and conclude the work in the end.

2 Interpolatory MOR

In this work, we are interested in MOR of parametric LTI systems in the state-space
representation given by

�(µ) :
{
Eẋ(t,µ) = A(µ)x(t,µ) + B(µ)u(t),

y(t,µ) = C(µ)x(t,µ), x(0,µ) = 0.
(1)

Here, µ := [
μ1, μ2, . . . , μd

]T ∈ R
d is the vector of parameters (geometric or phys-

ical). x(t,µ) ∈ R
n is the state vector and n is typically very large. u(t) ∈ R

m is the
input vector and y(t,µ) ∈ R

p is the output vector. A(µ) ∈ R
n×n is the state matrix,

B(µ) ∈ R
n×m is the input matrix, and C(µ) ∈ R

p×n is the output matrix. For the
case when m = p = 1, Eq. (1) is referred to as a single-input, single-output (SISO)
system. Otherwise, it is known as multi-input, multi-output (MIMO) system.

The ROM we seek should preserve the same structure of the FOM but have a
much smaller dimension. We assume that the state vector lies (approximately) in the
span of a low-dimensional linear subspace V ⊂ R

n×r , r � n, such that x(t,µ) ≈



100 S. Chellappa et al.

Vx̂(t,µ). Column vectors in the matrix V ∈ R
n×r constitute an orthogonal basis of

V. Replacing x(t,µ) in Eq. (1) with its approximationVx̂(t,µ) and further imposing
Petrov-Galerkin projection on the residual introduced by the approximation in a test
subspace W ⊂ R

n×r leads to

WT
(
V ˙̂x(t,µ) − A(µ)Vx̂(t,µ) − B(µ)u(t)

)
≡ 0,

where the column vectors in the matrixW ∈ R
n×r correspond to an orthogonal basis

of W. The resulting ROM is given as

�̂(µ) :
{
Ê ˙̂x(t,µ) = Â(µ)x̂(t,µ) + B̂(µ)u(t),

ŷ(t,µ) = Ĉ(µ)x̂(t,µ), x̂(0,µ) = 0.
(2)

Here, x̂(t,µ)∈Rr is the reduced state vector, Ê(µ)=WTE(µ)V ∈ R
r×r , Â(µ) =

WTA(µ)V ∈ R
r×r , B̂(µ) = WTB(µ) ∈ R

r×m, Ĉ(µ) = C(µ)V ∈ R
p×r are the

reduced system matrices, and ŷ(t,µ) is the reduced output vector. The goal of MOR
is to find the two subspaces V,W ∈ R

n×r . Different MOR methods vary in how
they generate the matrices W,V.

Interpolatory MOR methods construct V,W ∈ R
n×r based on the transfer func-

tion of the system, which is independent of the input signal. The transfer function of
the system described in Eq. (1) is given by

H(µ̃) := C(µ)
( =:A (µ̃)︷ ︸︸ ︷
sE − A(µ)

)−1
B(µ). (3)

Here, µ̃ := [
s, μ1, μ2, . . . , μd

]T ∈ R
d+1 is the vector of parameters with the addi-

tional Laplace variable s ∈ jR, where j is the imaginary unit. The corresponding
ROM of Eq. (3) is of the form

Ĥ(µ̃) := Ĉ(µ) ˆA (µ̃)−1B̂(µ), (4)

with ˆA (µ̃) := sÊ − Â(µ).
Many interpolatory methods have been proposed for linear systems, especially

for linear non-parametric systems. Themost representative methods are themoment-
matching methods [16, 17], where the H2-optimal method IRKA [17] constructs a
ROM satisfying the necessary conditions of local optimality. All these methods are
known to be applicable to non-parametric systems. Later, IRKA is extended toMOR
for parametric systems [3], where some pairs of projection matrices are constructed
for given samples of parameters, then they are combined together to get the final pair
of projectionmatrices. No rule is used for selecting the samples. In [22], a method for
parametric systems is proposed based onH2 ⊗ L2-optimality, but is only applicable
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to systems with one parameter and is facing high computational complexity for
systems with n ≥ 1000.

Choosing interpolation points using a greedy algorithm guided by an a posteriori
error bound is proposed in [12]. However, computing the error estimator needs to
compute the smallest singular values of the large matrixA (µ̃), the inf-sup constant.
An inf-sup-constant-free error estimator is newly proposed in [14], which can be
efficiently computed, and is also much tighter than the error bound [12] for many
systems with small inf-sup constants. A similar greedy algorithm is proposed in [14]
for choosing the interpolation points using the new error estimator. The adaptive
training approach proposed in this work is based on the greedy algorithm and the
new error estimator in [14]. In the next section, we briefly review the error estimator
and the corresponding greedy algorithm.

3 Greedy Method for Choosing Interpolation Points

The transfer function can be seen as a mapping from the space of inputs Rm to the
space of outputs Rp passing through a high-dimensional intermediate state in Rn . If
we look at the matrix product A −1(µ̃)B(µ) in H(µ), we may consider the primal
system

A (µ̃)Xpr(µ̃) = B(µ). (5)

Here, Xpr(µ̃) ∈ R
n is the primal state vector. The reduced primal system is defined

as
ˆA (µ̃)X̂pr(µ̃) = B̂(µ). (6)

The approximate primal solution is given by X̃pr(µ̃) := VX̂pr(µ̃) and the correspond-
ing residual is

rpr(µ̃) = B(µ) − A (µ̃)X̃pr(µ̃). (7)

Additionally, by considering the matrix product C(µ)A −1(µ̃) inH(µ), we have the
following dual system:

A T(µ̃)Xdu(µ̃) = CT(µ). (8)

Xdu(µ̃) ∈ R
n is the dual state vector. The reduced dual system is given as

ˆA T(µ̃)X̂du(µ̃) = ĈT(µ). (9)

The approximate dual solution is given by X̃du(µ̃) := VduX̂du(µ̃) and the correspond-
ing residual is

rdu(µ̃) = CT(µ) − A T(µ̃)X̃du(µ̃). (10)
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For parametric LTI systems, adopting the spirit of the RBM, [12] introduced a
method to automatically generate a ROM through a greedy algorithm. The authors
introduce a primal-dual residual-based a posteriori error estimator for the transfer
function approximation error ‖H(µ̃) − Ĥ(µ̃)‖, for both SISO and MIMO systems.
For SISO systems, it reads

|H(µ̃) − Ĥ(µ̃)| ≤ ‖rpr(µ̃)‖2‖rdu(µ̃)‖2
σmin(µ̃)

. (11)

Here, σmin(µ̃), called the inf-sup constant, is the smallest singular value of the matrix
A (µ̃) as defined in Eq. (3). The primal and dual residuals are given in Eq. (7) and
Eq. (10), respectively. The work [14] improves the method in [12] by avoiding the
calculation of the inf-sup constant required for the error estimator. This is achieved
by introducing a dual-residual system

A T(µ̃)edu(µ̃) = rdu(µ̃). (12)

The following proposition from [14] gives the a posteriori error bound.

Proposition 1 The transfer function approximation error can be bounded as

|H(µ̃) − Ĥ(µ̃)| ≤ ∣∣X̃T
du(µ̃)rpr(µ̃)

∣∣ + ∣∣eT
du(µ̃)rpr(µ̃)

∣∣.

For a proof of Proposition 1, we refer to [14]. In this form, the error bound is
not computationally efficient since one needs to solve the full-order dual-residual
system (12) to obtain edu(µ̃). Instead, system (12) is reduced by an orthogonal matrix
Ve ∈ R

n×� to obtain
ˆA T
e (µ̃)êdu(µ̃) = r̂du,e(µ̃), (13)

where ˆAe(µ̃) := VT
e A (µ̃)Ve and r̂du,e(µ̃) := VT

e rdu(µ̃). The projection matrices
V,Vdu and Ve corresponding to the primal, dual, and the dual-residual system are
generated offline.

By using the approximate solution to the dual-residual system, an efficiently
computable error estimator is obtained as

|H(µ̃) − Ĥ(µ̃)| �
∣∣X̃T

du(µ̃)rpr(µ̃)
∣∣ + ∣∣ẽT

du(µ̃)rpr(µ̃)
∣∣ =: �(µ̃), (14)

where ẽdu(µ̃) := Ve êdu(µ̃). For ease of comparison, we first present the greedy
algorithm for parametric systems introduced in [14] as Algorithm 1.
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Algorithm 1 Greedy ROM Construction for Parametric Systems [14]
Input: System matricesA(µ),B(µ),C(µ) , training set � of cardinality Nμ covering the interest-

ing parameter ranges, tolerance εtol .
Output: Projection matrix V.
1: InitializeV = [ ],Vdu = [ ],Ve = [ ], ε = 1 + εtol , fix η, the number of moments to be matched.
2: Initial interpolation point µ̃1: the first sample in �. µ̃1

α : the last sample in �. Set i = 1.
3: while ε > εtol do
4: Solve Eq. (5) at interpolation point µ̃ = µ̃i and update projection matrix

V = orth
([V mmm(A (µ̃i ),B(µ̃i ), η, µ̃i )]).

5: Solve Eq. (8) at interpolation point µ̃ = µ̃i and update projection matrix

Vdu = orth
([Vdu mmm(A T(µ̃i ),CT(µ̃i ), η, µ̃i )]).

6: Solve Eq. (12) at interpolation point µ̃ = µ̃i
α and update projection matrix

Ve = orth
([Ve Vdu mmm(A T(µ̃i

α),CT(µ̃i
α), η, µ̃i

α)]).
7: i = i + 1.
8: µ̃i = argmax

µ̃∈�
�(µ̃).

9: µ̃i
α = argmax

µ̃∈�

∣∣ẽT
du(µ̃)rpr(µ̃)

∣∣.
10: ε = �(µ̃i ).
11: end while

It is automatic apart from the need for determining, a priori, a suitable training
set �. The method proceeds by picking points from � that maximize the error
estimator at every iteration and updating the three projection matrices V,Vdu,Ve.
However, there is no principledway to select the training set a priori. If not adequately
sampled, the training set may result in a ROM whose error is not uniformly below
the tolerance. When the parameters involved can take on a wide range of values,
or if many parameters are involved, then the number of parameter samples in �

becomes large and the offline computation costs rise. We propose to solve this issue
by constructing a surrogate model for �(µ̃) in Eq. (14) and assure that computing
the surrogate is much cheaper than computing the error estimator itself. The next
section discusses this idea.

Remark 1 The algorithm is also applicable to MIMO systems. In this case, the
transfer function is matrix-valued. The key is how to compute the error estimator
�(µ̃). We first estimate the error of the reduced transfer function entry-wise, i.e.,

|Hi j (µ̃) − Ĥi j (µ̃)| �
∣∣X̃T

du(µ̃)rpr(µ̃)
∣∣ + ∣∣ẽT

du(µ̃)rpr(µ̃)
∣∣ =: �i j (µ̃). (15)
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Note that the i j-th entry of the transfer function corresponds to the input signal
at the j-th input port and the signal at the i-th output port. Then, X̃du(µ̃) is the
solution to the dual system by considering the right-hand side as the i-th row vector
ofC(µ), namely,CT(: , i) in Eq. (9). Correspondingly, the residual rpr(µ̃) is obtained
by solving Eq. (6) with the right-hand side being B(: , j), the j-th column of B(µ).
Then, �(µ̃) = argmax

i, j
�i j (µ̃).

Remark 2 In order to build the projection matrices (V,Vdu,Ve), [14] makes use of
the multi-moment matching (MMM) algorithm from [13]. The algorithm provides
an orthogonal basis for the solution at a given interpolation point, obtained through
multivariate power series expansion of the state vector. To be focused on our main
contribution, we refer to [13, 14] for detailed computations. For use in the proposed
algorithm, we give below the call to the algorithm in MATLAB®notation as

Vmmm = mmm(A(μ̃0),B(μ̃0), η, μ̃0).

Here,A(μ̃0) denotes an arbitrary matrix evaluated at a given interpolation point μ̃0,
B(μ̃0) corresponds to the right-hand sidematrix in Eqs. (5), (8) and (12), respectively.
η is the number of moments to be matched in the power series. When η = 0, the
MMM algorithm is equivalent to RBM, see [14] for more explanations.

4 Adaptive Training by Learning the Error Estimator in
the Parameter Domain

In this section,wepropose an adaptive training technique, so that the greedy algorithm
starts with a training set with small cardinality, which is then updated iteratively by
using a surrogate error estimator. Different works have considered surrogate models
of error estimators/indicators [9, 10, 25]. All of these consider a surrogate in the
context of the RBM. In this work, we deal with the frequency-domain interpolatory
MOR methods and focus on a surrogate model of an error estimator for the transfer
function approximation error. Themethodwe propose here is essentially an extension
of the RBF-based error surrogate in [9] to the frequency domain. Beyond the work
in [9], we introduce a learning process in Sect. 4.2 to show in detail how a surrogate
estimator is constructed for any parameter in the whole parameter domain. We begin
by introducing the method of RBF interpolation.

4.1 Radial Basis Functions

Radial basis functions belong to the family of kernel methods and are a popular
technique to generate surrogate models of multivariate functions f : Rd+1 → R,
defined in a domain � ⊂ R

d+1. It may be the case that the function f itself is
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unknown and one only knows a set of inputs M = {µ̃1, µ̃2, . . . , µ̃�} ⊂ � and the
corresponding function evaluations F = { f1, f2, . . . , f�} ⊂ R. Or, it may be the
case that f is known, but very expensive to evaluate repeatedly. For either case, RBF
serves to generate an interpolant g : Rd+1 → R of f given by

g(µ̃) =
�∑

i=1

ci�(‖µ̃ − µ̃i‖), ∀µ̃ ∈ �, (16)

such that it interpolates the original function at the set of input points (or centers) inM ,
i.e., f (µ̃i ) = g(µ̃i ), i = 1, . . . , �. Moreover, | f (µ̃) − g(µ̃)| � tol for all µ̃ ∈ �.
The functions �(·) are the kernels defined as (µ̃1, µ̃2) := �(‖µ̃1 − µ̃2‖) for all
µ̃1, µ̃2 ∈ �. They are called radial basis functions owing to their radial dependence
on µ̃. The coefficients {ci }�i=1 are determinedby solving the linear systemof equations

⎡
⎢⎣

(µ̃1, µ̃1) · · · (µ̃1, µ̃�)
...

. . .
...

(µ̃�, µ̃1) · · · (µ̃�, µ̃�)

⎤
⎥⎦

︸ ︷︷ ︸
R

⎡
⎢⎣
c1
...

c�

⎤
⎥⎦

︸ ︷︷ ︸
c

=
⎡
⎢⎣
f (µ̃1)

...

f (µ̃�)

⎤
⎥⎦ .

︸ ︷︷ ︸
b

(17)

We need R to be invertible. Assuming that the centers µ̃i are pairwise distinct, it can
be shown that R is positive definite for a suitable choice of the RBF �(·) and thus
Eq. (17) has a unique solution. The class of RBF giving rise to positive definite R is
limited. As a workaround, some additional constraints are imposed in practice, i.e.,

�∑
i=1

ci p j (µ̃i ) = 0, j = 1, 2, . . . , D,

so that a larger class of �(·) can be admitted. Moreover, the addition of these con-
straints help in the exact recovery of polynomial functions. We refer to [11] for
more details. The functions p1, p2, . . . , pD are a basis of the polynomial space with
suitable degree. In practice, we choose D to be equal to the dimension of the param-
eter space plus one: (d + 1) + 1. With the new conditions imposed, the radial basis
interpolant now becomes

g(µ̃) :=
�∑

i=1

ci�(‖µ̃ − µ̃i‖) +
D∑
j=1

λ j p j (µ̃). (18)

This results in a saddle-point system of dimension NRBF := (D + �) × (D + �):

[
R P
PT 0

] [
c
λ

]
=

[
b
0

]
. (19)
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With a proper choice of p1, p2, . . . , pD , the augmented coefficient matrix is positive
definite for a wider choice of kernel functions�(·). Following the common approach
in the RBF literature [11], in our numerical experiments, we consider degree-1 poly-
nomials in (d + 1) variables and the matrix P takes the form

P =
⎡
⎢⎣
1 s1 · · · μd

1
...

...
. . .

...

1 s� · · · μd
�

⎤
⎥⎦ ,

where s j , μ1
j , . . . , μ

d
j with j = 1, 2, . . . , � are entries of the j-th parameter sample

µ̃ j in the training set, i.e., µ̃ j := [s j , μ1
j , . . . , μ

d
j ]T.We refer to [32] for an exhaustive

theoretical analysis of RBFs and the recent review paper [29] that analyzes RBFs in
the larger context of kernel-based surrogate models.

4.2 Learning the Error Estimator over the Parameter Domain

As highlighted in the Introduction, one of themain bottlenecks of the standard greedy
algorithm is that the error estimator �(µ̃) needs to be determined at every parameter
in the training set. In order to evaluate it cheaply, we first construct a surrogate
model of the error estimator by learning the error estimator in the whole parameter
domain using RBF interpolation. We have the multivariate function f (µ̃) := �(µ̃)

and the learning step involves determining the coefficients c in Eq. (19). First, we
evaluate the error estimator at a small number of parameters in a coarse training set
�c : {µ̃1, . . . , µ̃Nc

}. These points shall serve as the centers µ̃ of theRBF interpolation
with Nc as the number of centers. Note that, with regard to the discussion in Sect. 4.1,
we have � = Nc.

Next, we define the kernel function �(·) and set up the linear system defined in
Eq. (19). Many choices of the kernel function exist, and in the numerical experiments
we have used the inverse multiquadric and the thin-plate spline kernel functions. For
a deeper discussion, we refer to [32]. We note here that the assembling of the kernel
matrix R can be done efficiently and software implementations exist to achieve this
[29]. The right-hand side is defined by b := [�(µ̃1), . . . ,�(µ̃Nc

)]T.
Equation 19 constitutes a small, dense system of linear equations. The computa-

tional cost of its solution scales as O((Nc + D)3). However, since Nc, D are small,
the cost remains under control. Once knowing c after solving Eq. (19), the interpolant
g(µ̃) of the error estimator is obtained over the whole parameter domain employing
only function evaluations in Eq. (18). Thus, the learned surrogate of the error esti-
mator is g(µ̃). It is not difficult to see that computing the error estimator over the
parameter domain is more expensive than using the surrogate g(µ̃).

• The cost of computing the surrogate g(µ̃) for all the parameter samples µ̃ in a
certain parameter set with cardinality N f is
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– Solving small, dense ROMs: O(r3) × Nc.
– Matrix-vector products to evaluate residuals: O(nr) × Nc.
– Vector-vector inner products to evaluate Eq. (14) : O(n) × Nc.
– Identifying the coefficients c by solving Eq. (19): O((Nc + D)3).
– Evaluating the interpolants through function evaluation Eq. (18) over a param-
eter set with cardinality N f : O(Nc + D) × N f .

• The cost of evaluating the error estimator �(µ̃) for all the parameter samples µ̃
in a certain parameter set with cardinality N f are

– Solving small, dense ROMs: O(r3) × N f .
– Matrix-vector products to evaluate residuals: O(nr) × N f .
– Vector-vector inner products to evaluate Eq. (14) : O(n) × N f .

Here, n is the full-order dimension of the system; the reduced size r is as small
as Nc + D, i.e., r ≈ Nc + D. For N f  Nc, it is clear that computing the error
estimator is more expensive than computing the surrogate.

4.3 Adaptive Choice of Interpolation Points with Surrogate
Error Estimator

In Algorithm 2, we present the proposed adaptive method to choose interpola-
tion points using a surrogate error estimator. We call the algorithm IPSUE—
Interpolation Points using SUrrogate error Estimator. To follow the learning
process in Sect. 4.2, in practice, we do not consider the entire domain R

d+1, but a
fine representation of it given by� f := {µ̃1, . . . , µ̃N f

}, containing N f  Nc param-
eters. Therefore, we consider two training sets: a coarse training set �c and a fine
training set� f . In Step 4 of Algorithm 2, we perform Steps 4–6 fromAlgorithm 1. In
Step 5, the error estimator is evaluated only over the coarse training set, an important
distinction from Algorithm 1. In Step 6, the argument of the maximum is chosen
as the next interpolation point for V. Step 7 selects the parameter that maximizes
the second summand of the error estimator and uses it as the interpolation point
(µ̃i

α) for enriching Ve in the next iteration. As noted in [14], it is important that the
interpolation points µ̃i and µ̃i

α are distinct, in order to ensure that Vdu �= Ve. Then,
in Step 8, using �(µ̃) for all µ̃ ∈ �c we learn the error estimator over the parameter
domain (represented by� f ) by determining g(µ̃) for all µ̃ ∈ � f . In Step 9, n(1)

a new
parameters are identified from � f such that they have the largest errors measured by
g(µ̃). The coarse training set is then updated with the newly identified points.



108 S. Chellappa et al.

Algorithm 2 Interpolation Points using SUrrogate error Estimator (IPSUE)
algorithm
Input: System matrices A(µ),B(µ),C(µ) , coarse training set �c of cardinality Nc , fine training

set � f of cardinality N f covering the interesting parameter ranges, tolerance εtol .
Output: Projection matrix V.
1: InitializeV = [ ],Vdu = [ ],Ve = [ ], ε = 1 + εtol , fix η, the number of moments to be matched.

Set i = 1.
2: Initial interpolation point µ̃1: a random sample from�c selected using rand(), µ̃

1
α : another ran-

dom sample from �c selected using rand(). Here, rand() is the intrinsic MATLAB®function.
3: while ε > εtol do
4: Perform Steps 4–6 from Algorithm 1.
5: Use Eq. (14) and obtain �(µ̃), ∀µ̃ ∈ �c.
6: µ̃i+1 = arg max

µ̃∈�c

�(µ̃).

7: µ̃i+1
α = arg max

µ̃∈�c

∣∣ẽT
du(µ̃)rpr(µ̃)

∣∣.
8: Form the RBF interpolant g(µ̃) of the error estimator �(µ̃) over � f .

9: Select n(1)
a . Identify {µ̃(1)

1 , . . . , µ̃(1)
na } from� f with the largest errors for g(µ̃). Usually, n(1)

a =
1.

10: Update the coarse training set with the newly identified parameters,
�c := �c ∪ {

µ̃
(1)
1 , . . . , µ̃(1)

na

}
.

11: i = i + 1.
12: ε = �(µ̃i ).
13: end while

5 Numerical Examples

In this section, we provide numerical results to show the efficiency of the proposed
IPSUE algorithm. The first example is from circuit simulation used in [14]. It is
characterized by its large parameter range. The second is a benchmark example of
a microthruster device, from the MORwiki collection [31]. This model has four
parameters. The final example is a finite element model of a waveguide filter, from
[27]. All numerical tests were performed in MATLAB®2015a, on a laptop with
Intel®Core™i5-7200U @ 2.5 GHZ, with 8 GB of RAM. In the numerical results,
Nμ refers to the cardinality of the fixed training set �, used in Algorithm 1, Nc, N f

are, respectively, the cardinality of the coarse and fine training sets used in Algo-
rithm 2 and finally Nt denotes the cardinality of the parameter test set �t used for
validating the accuracy of the final ROMs constructed by Algorithms 1 and 2. Also,
we use the same test sets for comparing the performances of Algorithms 1 and 2.
As mentioned earlier in Sect. 4.2, for the numerical examples, we have made use
of inverse multiquadric and thin-plate spline kernels [32]. From our experience, the
former was better able to interpolate the estimated error �(µ̃) for cases where �(µ̃)

depends less smoothly on the parameter. The latter gave a better performance when
the estimated error had a smoother variation as a function of the parameter. While
there is no additional hyperparameter in the case of the thin-plate spline, the tun-
ing parameter present in the inverse-multiquadric kernel can be used as an additional
degree of freedom for capturing the local behavior of the function being interpolated.
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Fig. 1 RLC interconnect
circuit

Table 1 Simulation settings
for the RLC interconnect
circuit

Setting Value

n 6134

εtol 10−3

Nμ 90 parameters

Nc {21, 27} parameters

N f 200 parameters

Nt 900 parameters

η 3

5.1 RLC Interconnect Circuit

This example models the large-scale interconnects in integrated circuit (IC) design.
It is represented in Fig. 1. The discretized model has dimension n = 6134. It is a
non-parametric system in time domain, but in the frequency domain, the frequency
f is considered as the parameter and the interpolation points are selected from a
wide frequency range: f ∈ [0 , 3] GHz. Table 1 gives the simulation settings used
for implementing Algorithms 1 and 2 to generate the reduced-order models for this
example.

Test 1: Algorithm 1 applied to RLC model

To enable comparison, we use the same training set � used in [14]. It consists of
90 samples covering the range of interest. The sampled frequencies are given by
fi = 3 × 10i/10, si = 2πj fi with i = 1, 2, . . . , 90. Algorithm 1 converges to the
set tolerance in just three iterations. The obtained ROM is of dimension r = 20. On
average, it takes 3.3s for the algorithm to converge. For the sake of robustness, we
test the ROM on a different set of test parameters �t with Nt = 900 parameters.
Figure 2a shows the error of Ĥ(s) for the parameters in �t .

Test 2: Algorithm 2 applied to RLC model

Next, we test Algorithm 2 on the RLC interconnect model. For this, we con-
sider two different coarse training sets �c of cardinality 21, 27 sampled as �

j
c =

3 × 10 j/10, j = 1, 2, . . . , 21 and j = 1, 2, . . . , 27.We consider different samplings
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Fig. 2 Results for the RLC model

for the fine training set in order to numerically illustrate that the proposed algorithm
is independent of the kind of sampling used. The fine training set � f consists of 200
logarithmically distributed parameters in the first case and in the second case con-
tains 200 parameters distributed as �

j
f = 3 × 10 j/10, j = 1, 2, . . . , 200. For the

RBF interpolation, we use thin-plate splines as the kernel function. It is given by
�(µ̃1, µ̃2) := (‖µ̃1 − µ̃2‖2)2 loge(‖µ̃1 − µ̃2‖2). Algorithm 2 converges to the spec-
ified tolerance in just three iterations for both choices of�c, with n(1)

a = 1. In the first
case, the obtained ROM is of dimension r = 21 and takes 1.6s to converge in aver-
age. The second case results in a ROM of dimension 21 and takes 1.7s on average to
converge to the defined tolerance. Figure 2b shows the error of Ĥ(s) at parameters in
the test set �t produced by the ROM obtained using Algorithm 2, with two different
coarse training sets. Clearly, Algorithm 2 takes less time than Algorithm 1, while
still producing a ROM that is uniformly below the tolerance, on an independent test
set.

5.2 Thermal Model

The second example is the model of the heat transfer inside a microthruster unit
[31]. It is obtained after spatial discretization using the finite element method and
has dimension n = 4257. The governing equation is given as

Eẋ(t) = (A0 −
3∑

i=1

hiAi )x(t) + Bu(t),

y(t) = Cx.
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Table 2 Simulation settings for the thermal model

Setting Value

n 4257

εtol 10−4

Nμ 625 parameters, log-sampled

Nc 256 parameters, log-sampled

N f 2401 parameters, log-sampled

Nt 1000 parameters, randomly sampled

η 1

Fig. 3 Results for the thermal model

Here, E,A0 are symmetric sparse matrices representing the heat capacity and heat
conductivity, respectively. Ai , i ∈ {1, 2, 3} are diagonal matrices governing the
boundary condition. The parameters h1, h2, h3 ∈ [1, 104] represent, respectively,
the film coefficients of the top, bottom, and side of the microthruster unit. We trans-
form the above system to the frequency domain and apply Algorithms 1 and 2.
In the frequency domain, the system has four parameters µ̃ := (s, h1, h2, h3) with
s = j2π f . The frequency range of interest is f ∈ [10−2, 102] Hz. The tolerance for
the ROM is set as 10−4 (Table2).

Test 3: Algorithm 1 applied to the thermal model

Owing to the wide range of parameters, we consider a large fixed training set �. To
construct it, we consider five logarithmically spaced samples for each of the four
parameters and form a grid consisting of 54 samples. For the test set �t , we form a
grid of 84 logarithmically spaced parameters and randomly select 1000 parameters
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Fig. 4 Dual-mode
waveguide filter model from
[27]

from it. The greedy algorithm takes 10 iterations to converge and results in a ROM
of size r = 86. On an average over five runs, the greedy algorithm takes 254s to
converge. In Fig. 3a, we see the performance of the resulting ROM over �t . For
several parameters, the ROM fails to meet the desired tolerance. This indicates that
the training set was not fine enough to capture all the variations in the solutions over
the parameter domain.

Test 4: Algorithm 2 applied to the thermal model

We now consider Algorithm 2 applied to the thermal model. The coarse training
set �c has 44 parameters, with logarithmic sampling. The fine training set � f has
74 parameters. For the RBF interpolation, we make use of thin-plate splines as the
kernel function. Further, we set n(1)

a = 1 in Step 9 of Algorithm 2 so that the coarse
training set is updated with one new parameter per iteration. The same test set as in
Test 3 is used. The resulting ROM has order r = 85 and its error over the test set is
below the tolerance, as shown in Fig. 3b. The algorithm took 162s to converge. The
runtime was measured as an average over five independent runs of the algorithm.
Compared with Algorithm 1, Algorithm 2 is able to meet the required tolerance with
a much smaller training set and also in shorter time.

5.3 Dual-Mode Circular Waveguide Filter

The next example is a MIMO system based on the model of a dual-mode circular
waveguide filter from [27], see Fig. 4. It is a type of narrow bandpass filter widely
used in satellite communication due to its power handling capabilities. Its operation
is governed by the time-harmonicMaxwell’s equations. After discretization in space,
the governing equations of the filter can be represented in the form of Eq. (5). The
system consists of just the frequency parameter s := j2π f , where f ∈ [11.5 , 12]
GHz is the operating frequency band of the filter. The affine form of the system
matrix is A (s) := S + s2T and B(s) := sQ. We have S,T ∈ R

n×n and Q ∈ R
n×2,

with n = 36426. The system has two inputs and two outputs. Table 3 summarizes
the simulation settings. The quantity of interest is the scattering parameters, obtained
via post-processing [28] from the system output y(s) := QTX(s). It is easy to see
that y(s) has the same expression as H(µ̃) in Eq. (3) for µ̃ = s. The error estimator
�(µ̃) in Sect. 3 can be directly applied to estimate the error of ŷ(s) computed by
the ROM. See [14] for detailed analysis. Since the system is MIMO, the scattering
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Fig. 5 Scattering parameters for the dual-mode filter

Table 3 Simulation settings for the dual-mode filter

Setting Value

n 36426

εtol 10−5

Nμ 51 parameters, uniformly spaced

Nc 17 parameters, uniformly spaced

N f 500 parameters, sampled randomly

Nt 101 parameters, uniformly spaced

η 1

parameters at a given s are in the form of a complex-valued matrix given by

S =
[
S11 S12
S21 S22

]
.

Scattering parameters are important in characterizing the performance of filters [26].

Test 5: Algorithm 1 applied to the dual-mode filter

Applying Algorithm 1 with the fixed training set � to the model results in a ROM of
size r = 10 with the greedy algorithm taking five iterations to converge. Since this
example is a MIMO system, we make use of Eq. (15). The average runtime over five
independent runs of Algorithm 1 was found to be 46s. Figure 5a plots the scattering
parameters computed from FOM simulations and those obtained from the ROM at
the parameters in the test set. We plot the absolute values of full-order scattering
parameters S11, S12 and the corresponding reduced ones Ŝ11, Ŝ12 on a Decibel scale.
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Fig. 6 Results for the dual-mode filter

In Fig. 6a, we plot the error of the scattering parameters Ŝ11, Ŝ12, Ŝ22 computed from
the ROM, over the test set �t . Note that since S12 = S21, we only show the error
|S12 − Ŝ12|.

Test 6: Algorithm 2 applied to the Dual-mode filter

In Step 8 ofAlgorithm 2, we construct an RBF surrogate for each of�i j , i, j ∈ {1, 2}
in Eq. (15) for this MIMO system. n(1)

a is set to be 1 and inverse multiquadric is used
as the kernel function. It is given by (µ̃1, µ̃2) := 1/(1 + (γ ‖µ̃1 − µ̃2‖2))2. γ is a
user-defined parameter andwe set γ = 16 in our experiments.We pick themaximum
among the four surrogates and add the corresponding parameter to the coarse training
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set, i.e., in Step 9 of Algorithm 2, we replace g(µ̃) with max
i, j∈{1,2} gi, j (µ̃). Algorithm 2

results in a ROM that is of the same size as the ROM from Test 5 (r = 10). However,
on average, Algorithm 2 only needs 24 s to converge, almost half that of the time
required in Test 5. In Fig. 6b, we plot the errors of the scattering parameters computed
from the ROM over the test set �t . Figure 5b plots the scattering parameters from
the FOM simulations and those computed by the ROM. Both algorithms result in
ROMs meeting the specified tolerance, but Algorithm 2 requires much shorter time
to generate the ROM.

6 Conclusion

In thiswork,wehaveproposed IPSUE an adaptive algorithm for updating the training
set and choosing the interpolation points for frequency-domain MOR methods. Our
target applications are cases where the problem parameters vary over a wide range of
values or the parameter space dimension is larger than two. In either of these cases,
many interpolatory MOR algorithms may take a long time to generate the ROM.
Moreover, a naive, heuristic sampling of the parameter training set may result in a
ROM that is not robust. IPSUE offers a viable means to generate reliable ROMs
that satisfy the user-defined tolerance and at the same time without being offline
expensive. The illustrated numerical examples show that it is a promising approach.
As future work, we plan to apply the algorithm to more complex models.
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A Link Between Gramian-Based Model
Order Reduction and Moment Matching

C. Bertram and H. Faßbender

Abstract We analyze a family of Runge-Kutta-based quadrature algorithms for
the approximation of the Gramians of linear time-invariant dynamical systems. The
approximated Gramians are used to obtain an approximate balancing transformation
similar to the approach used in balanced POD. It is shown that hereby rational
interpolation is performed, as the approximants span certain Krylov subspaces. The
expansion points are mainly determined by the time step sizes and the eigenvalues
of the matrices given by the Butcher tableaus.

1 Introduction

Consider an asymptotically stable,minimal, linear time-invariant single-input single-
output continuous-time dynamical system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t)
(1)

with A ∈ R
n×n , B ∈ R

n×1, C ∈ R
1×n and therefore x(t) ∈ R

n , u(t) ∈ R and y(t) ∈
R. Asymptotic stability of the system implies σ(A) ⊆ C−, i.e., all eigenvalues of
A have negative real part. Throughout this work we have a large and sparse system
matrix A in mind, so model order reduction makes sense. Yet all results are also true
for any other square matrix.

The problem addressed here is to approximate the system (1) by another system
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˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t)
(2)

with possibly complex reduced systemmatrices Â ∈ C
r×r , B̂ ∈ C

r×1, Ĉ ∈ C
1×r and

r � n.Among the many approaches for model order reduction (see, e.g., [3] and the
references therein) we will pursue a projection-based approach: two n × r matrices
V,W ∈ C

n×r withWHV = Ir are computed which define the projector � = VWH.

The projection of the states of the original system generates the reduced-order model
with system matrices

Â = WHAV, B̂ = WHB, Ĉ = CV .

In practice, to obtain a real reduced system, the projection matrices can be kept real,
but for ease of notation and explanation we allow for a complex-valued projection.

In particular we focus on a balancing related approach which is derived from
numerical integration with Runge-Kutta methods. We demonstrate how the reduced
system generated by the method presented in this work can also be obtained by
rational interpolation. Thus the transfer functions of the original and the reduced-
order system coincide at certain interpolation points. We give an explicit formulation
of those interpolation points in terms of the time step sizes used in the Runge-Kutta
method and the eigenvalues of the matrix which determines the Butcher tableau
representing the Runge-Kutta method.

1.1 Balancing of LTI Systems

Balancing is closely related to the controllability Gramian P and the observability
Gramian Q of the system (1) [1, 18, 21]. The Gramians are defined as

P =
∫ ∞

0
eAt BBTeA

Tt dt ∈ R
n×n, (3)

Q =
∫ ∞

0
eA

T tCTCeAt dt ∈ R
n×n. (4)

The Gramians P and Q are positive definite matrices as all eigenvalues of A have
negative real part. Thus, their Cholesky decompositions P = SST and Q = RRT

can be determined. Let U�T T be a singular value decomposition of RTS. Then
F = �− 1

2UTRT and F−1 = ST−T�− 1
2 define a balancing transformation. That is,

the Gramians P̂ = FPFT and Q̂ = F−TQF−1 of the transformed system

ẋ(t) = FAF−1x(t) + FBu(t), x(0) = x0,

y(t) = CF−1x(t)
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are equal and diagonal. Thus, in the balanced system it holds P̂ = Q̂ = � with the
Hankel singular values on the diagonal, which are an indicator for the importance of
the corresponding state. They are invariant under state-space transformations, i.e.,
the same for PQ and P̂Q̂ = FPQF−1 due to similarity.

In themodel order reductionmethod balanced truncation a projection is performed
onto the r most important states, i.e., the states with large Hankel singular values.
The projection � = VWT for the reduction process is derived from the partitioned
singular value decomposition

RTS = [
Ur U0

] [
�r

�0

] [
T T
r

T T
0

]

with �r ∈ R
r×r , Ur ∈ R

n×r and Tr ∈ R
n×r . The matrices V and W are obtained as

W = RUr�
− 1

2
r , V = STr�

− 1
2

r (5)

and indeed WTV = Ir holds. For more details on the Gramians and the energy
associated with reaching/observing a state see, e.g., [1, ch. 4.3].

A bottleneck in this approach is the calculation of the Gramians P, Q and their
Cholesky factors. Different methods have been proposed for this situation, see, e.g.,
[4, 25] and the references therein. A key idea to make calculations for large systems
computationally feasible is to approximate the Gramians with low-rank factors, i.e.,
ZcZT

c ≈ P and ZoZT
o ≈ Qwith rectangular matrices Zc ∈ R

n×rc , Zo ∈ R
n×ro ,which

need not be triangular, and rc, ro � n. These approximate Cholesky factors Zc and
Zo are then used instead of the actual Cholesky factors S and R to compute an
approximate balancing transformation. This also includes a reduction of the system
dimension as the number of columns in the approximate Cholesky factors is smaller
than n. In balanced truncation with the actual Cholesky factors S and R of the
Gramians as described above, stability of the system is preserved and there exists an
error bound in terms of the truncated Hankel singular values [1, Thm. 7.9]. When
the approximate Cholesky factors Zc and Zo are used, these properties are lost.
However, in practice often the reduced models are stable even when approximate
Cholesky factors are used, see, e.g., [12, Sec. 4.3].

In the method balanced proper orthogonal decomposition of snapshots (BPOD)
as discussed in [24], the Gramians are approximated with finite sums (see [26] for a
related approach). In particular the controllability Gramian is approximated via

P =
∫ ∞

0
h(t)h(t)T dt ≈

∫ T

0
h(t)h(t)T dt

≈
N∑
i=1

δi hi h
H
i (6)
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with hi ≈ h(ti ), h(t) = eAt B, an end time T ∈ R+, times t1 < · · · < tN ∈ [0, T ] and
quadrature weights δi . The approximation of h(ti ) is done by solving the ODE

d

dt
h(t) = Ah(t), h(0) = B. (7)

From (6) we find that the approximate Cholesky factor is given by

Zc = [h1, . . . , hN ] diag(√δ1, . . . ,
√

δN ).

In [24, Prop. 2] itwas shown that if approximateCholesky factorswith rank(ZT
o Zc) =

r are used in balanced truncation, then the matrix V from (5) contains the first
columns of an approximate balancing transformation. It was shown in [22] that for
certain quadrature methods for solving (7) the reduced system obtained by balanced
POD matches some moments. We will proceed as in balanced POD to obtain an
approximate balancing transformation. To obtain the approximate Cholesky factors
of the Gramians we solve a system of ODEs which consists of the ODE (7) for
approximating h(t) and a second ODE d

dt P(t) = h(t)h(t)T for approximating the
time-dependent Gramian with Runge-Kutta methods. This allows us to show a con-
nection between the Butcher tableau which characterizes the Runge-Kutta method
and the expansion points at which the moments are matched.

1.2 Rational Interpolation

In rational interpolation [1, 9, 11] the projection matrices V and W are chosen so
that the transfer function G(s) = C(s In − A)−1B of the original system (1) and
the transfer function Ĝ(s) = Ĉ(s Ir − Â)−1 B̂ of the reduced system (2) (and some
of their derivatives) coincide at certain interpolation points s ∈ C ∪ {∞}. Rational
interpolation is a powerful method: Almost every reduced LTI system (2) can be
obtained via rational interpolation from (1), see [10].

A power series expansion around s0 ∈ C \ σ(A) with ‖(s − s0)(A − s0 In)−1‖ <

1 yields

G(s) =
∞∑
j=0

m j (s0)(s − s0)
j

with the so-called moments

m j (s0) = −C(A − s0 In)
−( j+1)B = (−1) j

j !
d j

ds j
G(s)

∣∣∣∣
s=s0

.

If either
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{(A − s0 In)
−1B, . . . , (A − s0 In)

−k B} ⊆ span V (8)

or {(AT − s0 In)
−1CT, . . . , (AT − s0 In)

−kCT} ⊆ spanW (9)

then the first k moments around s0 are matched, i.e., m j (s0) = m̂ j (s0) for j =
0, . . . , k − 1. If both conditions (8) and (9) are fulfilled, then even the first 2k
moments around s0 are matched.

For the expansion point s0 = ∞ and ‖s−1A‖ < 1 we use the power series expan-
sion

G(s) =
∞∑
j=1

m j (∞)s− j

with the Markov parameters m j (∞) = CA j−1B. If

{B, AB, . . . , Ak−1B} ⊆ span V (10)

or {CT, ATCT, . . . , (AT)k−1CT} ⊆ spanW (11)

then the first k Markov parameters are matched, i.e., m j (∞) = m̂ j (∞) for j =
1, . . . , k. If both conditions (10) and (11) are fulfilled, then even the first 2k Markov
parameters are matched.

The projection matrices can be kept real when the interpolation points occur in
conjugated pairs as

span{(A − s0 In)
−1v, (A − s0 In)

−1v}
= span{Re((A − s0 In)

−1v), Im((A − s0 In)
−1v)}

holds for real vectors v.
Of course combinations of the cases mentioned above and different expansion

points are possible. To obtain a well approximating reduced system the choice of the
expansion points is essential and many strategies exist to obtain them, see, e.g., [2,
Sec. 2.2.2].

1.3 Organization of Paper

In the following we focus on the approximation of the controllability Gramian (3)
by approximately solving the Lyapunov equation

AP + PAT + BBT = 0.

The observability Gramian (4) satisfies the Lyapunov equation
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ATQ + QA + CTC = 0

and can be treated with the samemethods as the controllability Gramian by exchang-
ing A and B with AT and CT, so large parts of our discussion focus on the control-
lability Gramian only.

This paper is organized as follows. In Sect. 2 numerical integration with Runge-
Kutta methods is introduced and applied to an ODE derived from the time-dependent
Gramian. It is illustrated how the resulting system is solved efficiently and which
space is spanned by the iterates. The numerical solution of the ODE is used for
approximate balancing in Sect. 3. Using the results from the previous section it is
proven that hereby moment matching is performed. In Sect. 4 we illustrate connec-
tions to balanced POD and the ADI iteration. Finally, in Sect. 5 some examples
illustrate our findings.

2 Gramian Quadrature Algorithm

We now present a quadrature algorithm to obtain approximate Cholesky factors of
the Gramians. It was first introduced in [5] and is recapitulated here in concise form.
Consider the system of ordinary differential equations

d

dt
P(t) = h(t)h(t)T, P(0) = 0 ∈ R

n×n, (12)

d

dt
h(t) = Ah(t), h(0) = B ∈ R

n×1. (13)

Equation (13) is a linear, homogeneous differential equation which has the solution
h(t) = eAt B. Due to the fundamental theorem of calculus equation (12) is solved by
the time-dependent Gramian

P(t) =
∫ t

0
eAτ BBTeA

Tτ dτ =
∫ t

0
h(τ )h(τ )T dτ.

We intend to solve the above system ofODEs numerically to obtain an approximation
to the Gramian P = limt→∞ P(t).

2.1 Approximating the Gramian via Runge-Kutta Methods

There are numerousmethods for the numerical solution of ordinary differential equa-
tions of the type d

dt y(t) = f (t, y(t)). Single-step methods make use of the fact that
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y(t j ) = y(t j−1) +
∫ t j

t j−1

f (t, y(t)) dt

holds in order to compute approximate solutions y j ≈ y(t j ) iteratively. Here we
consider s-stage Runge-Kutta methods (see, e.g., [6, 13–15]), a particular family of
single-step methods. They are defined via

y j = y j−1 + ω j

s∑
i=1

βi k
( j)
i , j = 1, . . . , N , (14)

k( j)
i = f

(
t j−1 + γiω j , y j−1 + ω j

s∑

=1

λi
k
( j)



)
, i = 1, . . . , s, (15)

for certainβi ∈ C, γi ∈ R, i = 1, . . . , s and λi
 ∈ C, i, 
 = 1, . . . , s.Please note that
we allow for complex-valued λi j and βi unlike the usual definition of Runge-Kutta
methods. Moreover, ω j := t j − t j−1 > 0, j = 1, . . . , N , denotes the time step size.
Often Runge-Kutta methods are given in short hand by the so-called Butcher tableau

γ �

βT =

γ1 λ11 λ12 . . . λ1s

γ2 λ21 λ22 . . . λ2s
...

...
...

. . .
...

γs λs1 λs2 . . . λss

β1 β2 . . . βs

with � ∈ C
s×s , β ∈ C

s and γ ∈ R
s .

The most involved part in the iteration is the calculation of k( j)
i in (15). If in the

Butcher tableau � is a strict lower triangular matrix, then the k( j)
i can be calculated

explicitly one after another and the resulting method is called an explicit Runge-
Kutta method. Otherwise they are only defined implicitly and a system of (in general
nonlinear) equations with sn unknowns has to be solved to obtain them. One strategy
to simplify the computation is by using lower triangular matrices �, resulting in so-
called diagonally implicit Runge-Kutta (DIRK) methods. Another kind of methods,
derived fromDIRKmethods, are the Rosenbrock-Wanner methods [15, IV.7]. There,
the nonlinear function f is approximated by a linear function. If the function f to
be integrated is linear, then the Rosenbrock-Wanner methods coincide with Runge-
Kutta methods.

The ODEs (12) and (13) are solved with two possibly different s-stage Runge-
Kutta methods as suggested in [5, Remark 1]. The ODE (12) is solved with a method
based on a Butcher tableau with �̃ ∈ C

s×s and β̃ ∈ R
s
≥0.We only allow non-negative

real entries in β̃ to ensure that the approximation to the Gramian is positive semidef-
inite, cf. (25). The ODE (13) is solved using Butcher tableaus with � ∈ C

s×s and
β ∈ C

s .
Applying the iteration (14) to (13) we obtain
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h j = h j−1 + ω j

s∑
i=1

βi k
( j)
i , j = 1, . . . , N (16)

with initial value h0 = B ∈ R
n×1. The slopes k( j)

i are given via (15) by

k( j)
i = A

(
h j−1 + ω j

s∑

=1

λi
k
( j)



)
(17)

for i = 1, . . . , s. Application of (14) to (12) yields

Pj = Pj−1 + ω j

s∑
i=1

β̃i k̃
( j)
i , j = 1, . . . , N (18)

with initial value P0 = 0 ∈ R
n×n . To obtain the slopes k̃( j)

i we apply (15) to (12).
This yields k̃( j)

i = h
( j)
i (h

( j)
i )H with

h
( j)
i = h j−1 + ω j

s∑

=1

λi
k
( j)

 (19)

for i = 1, . . . , s and with k( j)

 from (17) as the ODEs (12) and (13) are coupled (i.e.,

h from (13) appears in (12)).
We now aggregate the vectors h

( j)
i and k( j)

i for i = 1, . . . , s in matrices: Let
H j = [h( j)

1 , . . . , h
( j)
s ] ∈ C

n×s and K j = [k( j)
1 , . . . , k( j)

s ] ∈ C
n×s . Note that k( j)

i =
Ah( j)

i holds. Thus

K j = AH j . (20)

To obtain H j we rewrite (19) with the matrices K j and H j

H j = [h j−1, . . . , h j−1] + ω j K j�
T

= h j−1 ⊗ 1T
s + ω j AH j�

T, (21)

where1s = [1, . . . , 1]T is the s-dimensional vector containing only ones. In the latter
equationH j is the only unknown. In case we can computeH j from (21), K j can be
determined via (20).

Finally, using H j and K j , we express the summations in (16) and (18) through
matrix multiplications. Herewith the iteration reads

Pj = Pj−1 + H j diag(ω j β̃)HH
j ,

h j = h j−1 + ω j K jβ.
(22)
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FirstH j and K j are determined using (21) and (20), then h j and Pj are updated.
In order to see whenH j is uniquely determined, (21) is reformulated via vector-

ization as a linear system of equations with a system matrix of size ns × ns

(
Ins − ω j (� ⊗ A)

)
vec(H j ) = h j−1 ⊗ 1s ∈ C

ns×1. (23)

Let μ1, . . . , μs and λ1, . . . , λn be the eigenvalues of � and A respectively. Then
the eigenvalues of Ins − ω j (� ⊗ A) are given by 1 − ω jμpλq , p = 1, . . . , s, q =
1, . . . , n. Thus the solution of (23) is unique if and only if

μp �= 1

ω jλq
(24)

for all p = 1, . . . , s and q = 1, . . . , n.
As β̃ ∈ R

s
≥0 the approximant Pj is by construction a positive semidefinite matrix

and can be expressed as Pj = Z j ZH
j for some complex-valued matrix Z j . Thus we

have

Z j Z
H
j = Z j−1Z

H
j−1 + H j diag(ω j β̃)HH

j

=
[
Z j−1,H j diag(ω j β̃)

1
2

] [
Z j−1,H j diag(ω j β̃)

1
2

]H
.

Instead of iterating on Pj as in (22), the above observation allows us to iterate on the
low-rank factor

Z j = [Z j−1,H j diag(ω j β̃)
1
2 ] ∈ C

n× js (25)

which gains s additional columns in every iteration step.
The procedure to obtain the Gramian approximation described in this section is

summarized in Algorithm 1. We require that the eigenvalues of � satisfy (24) in
order to ensure that all linear system solves have a unique solution and β̃ ∈ R

s
≥0 to

ensure Pj is positive semidefinite.

2.2 Computation of H j in Algorithm 1

Themain part of Algorithm 1 is solving forH j in line 3. Of course (23) can be used to
determineH j . However, this means the solution of the ns-dimensional system (23).
We present a more efficient way to obtain H j with the solution of s linear systems
of dimension n. A related approach has been used in [8].

Let (�′)T = S�TS−1 ∈ C
s×s be a Schur decomposition of �T, so the diagonal

entries of the upper triangular matrix (�′)T are the eigenvalues μ1, . . . , μs of �.
Consider (21) and define H ′

j = [h′
1
( j)

, . . . , h′
s
( j)] via H j = H ′

j S. Then (21) can be
reformulated as
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Algorithm 1Approximate Cholesky factor computation via an s-stage Runge-Kutta
method
Input: A ∈ R

n×n asymptotically stable, B ∈ R
n×1, positive time step sizes {ω1, . . . , ωN }, Butcher

tableau with β̃ ∈ R
s≥0 and Butcher tableau with � ∈ C

s×s , β ∈ C
s which satisfies (24)

Output: Z ∈ C
n×sN with Z ZH ≈ P

1: initialize h0 = B, Z0 = [ ]
2: for j = 1, . . . , N do
3: solveH j = [h j−1, . . . , h j−1] + ω j AH j�

T for H j ∈ C
n×s

4: update Z j = [Z j−1,H j diag(ω j β̃)
1
2 ]

5: h j = h j−1 + ω j AH jβ

6: end for
7: Z = ZN

H ′
j = (h j−1 ⊗ 1T

s )S
−1 + ω j AH ′

j (�
′)T. (26)

Let [α1, . . . , αs] = 1T
s S

−1 be the row vector containing the column sums of S−1.
Then we can rewrite (26) as

H ′
j = [α1h j−1, . . . , αsh j−1] + ω j AH ′

j (�
′)T.

To obtain H ′
j , the following systems of linear equations have to be solved

(In − ω jμi A)h
′( j)
i = αi h j−1 + ω j

i−1∑
l=1

λ′
il Ah

′
l
( j) (27)

for i = 1, . . . , s. Finally, H j is assembled viaH j = H ′
j S.

Assume that linear systems with a system matrix of dimension τ × τ are solved
with a method needing O(τ 3) flops. Then solving the ns-dimensional system (23)
would need O(s3n3) flops. In the procedure presented here a Schur decomposition
of the s × s matrix� is necessary to obtain (27), at the costs ofO(s3) flops. To solve
the s systems of dimension n × n in (27) further O(sn3) flops are necessary. All in
all the costs are reduced from O(s3n3) flops to only O(sn3) + O(s3) flops.

2.3 The Space Spanned by the Approximate Cholesky Factor
Z

The main result of this section is that the columns of the approximate Cholesky
factor Z = ZN obtained from Algorithm 1 span a (rational) Krylov subspace which
is essentially determined by the eigenvalues ofωi�. To show thiswefirst demonstrate
how the iterate Z can be obtained in only one step ofAlgorithm1with certainButcher
tableaus assembled from �, β, β̃ and the time step sizes ω j .
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After N steps of Algorithm 1 we find the approximate Cholesky factor Z which
is recursively defined via line 4. Expanding the for loop

Z = [H1, . . . ,HN ]
⎡
⎢⎣
diag(ω1β̃)

1
2

. . .

diag(ωN β̃)
1
2

⎤
⎥⎦ (28)

is obtained. For H1 we have from line 3 in Algorithm 1

H1 = 1T
s ⊗ h0 + ω1AH1�

T (29)

= 1T
s ⊗ h0 + AH1(ω1�

T).

For H2 we find from line 3 and line 5 of Algorithm 1

H2 = 1T
s ⊗ h1 + ω2AH2�

T (30)

= 1T
s ⊗ (h0 + ω1AH1β) + ω2AH2�

T

= 1T
s ⊗ h0 + AH1(ω1[β, . . . , β]) + AH2(ω2�

T)

= 1T
s ⊗ h0 + A[H1,H2]

[
ω1[β, . . . , β]

ω2�
T

]
.

Putting H1 from (29) and H2 from (30) together, one yields

[H1,H2] = 1T
2s ⊗ h0 + A[H1,H2]

[
ω1�

T ω1[β, . . . , β]
0 ω2�

T

]
.

Proceeding in this way up to iteration step N and setting Ĥ = [H1, . . . ,HN ] this
leads to the equation

Ĥ = 1T
Ns ⊗ h0 + AĤ�̂T (31)

with

�̂T :=

⎡
⎢⎢⎢⎣

ω1�
T ω1[β, . . . , β] · · · ω1[β, . . . , β]

0 ω2�
T ω2[β, . . . , β] ω2[β, . . . , β]

... 0
. . .

...

0 · · · 0 ωN�T

⎤
⎥⎥⎥⎦ ∈ C

Ns×Ns . (32)

Thus, the result Z from (28) can also be interpreted as one step of Algorithm 1
with time step size ω1 = 1, β = [ω1β

T, . . . , ωNβT]T, β̃ = [ω1β̃
T, . . . , ωN β̃T]T and

� = �̂ from (32). It is therefore sufficient to analyze one step of Algorithm 1. The
situation with more than one step is contained as a special case as described above.
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Let all entries of β̃ be positive, i.e., β̃ ∈ R
s+, then the diagonal matrix in (28) is

regular and so the space spanned by the columns of Z equals the one spanned by
the columns of Ĥ . We proceed with similarity transformations of �̂T as in Sect. 2.2
to uncouple the columns of Ĥ . Define Ĥ = Ĥ ′S with a similarity transformation
S ∈ C

Ns×Ns which transforms �̂T to its Jordan canonical form

(�̂′)T = S�̂TS−1 =
⎡
⎢⎣
J1

. . .

Jq

⎤
⎥⎦ (33)

withq Jordan blocks Jl ∈ C
sl×sl of dimension sl for l = 1, . . . , q.We further partition

Ĥ ′ = [Ĥ ′
1, . . . , Ĥ ′

q ] and

1T
Ns S

−1 = [α(1), . . . , α(q)] (34)

according to the sizes of the Jordan blocks, i.e., Ĥ ′
l ∈ C

n×sl and (α(l))T ∈ C
sl . Mul-

tiplication of (31) with S−1 from the right yields

[Ĥ ′
1, . . . , Ĥ ′

q ] = [α(1), . . . , α(q)] ⊗ h0 + A[Ĥ ′
1, . . . , Ĥ ′

q ]
⎡
⎢⎣
J1

. . .

Jq

⎤
⎥⎦ .

Due to the partitioning this equation is equivalent to

Ĥ ′
l = α(l) ⊗ h0 + AĤ ′

l Jl for l = 1, . . . , q.

The matrices Ĥ ′
l = [ĥ′(l)

1 , . . . , ĥ′(l)
sl ] are determined by

(In − μ̂l A)ĥ
′(l)
1 = α

(l)
1 h0,

(In − μ̂l A)ĥ
′(l)
i = α

(l)
i h0 + Aĥ′(l)

i−1 for i = 2, . . . , sl
(35)

with the eigenvalue μ̂l of �̂ as the diagonal element of the Jordan block Jl .
Before we proceed with the main result of this section we state a technical lemma.

Lemma 1 Let (�̂T,1T
Ns) be observable. Then there exists a transformation matrix S

to Jordan canonical form in (33) such that α(l) = [1, 0, . . . , 0] holds for l = 1, . . . , q
in (34).

Proof For l = 1, . . . , q define el = [1, 0 . . . , 0] ∈ R
1×sl . Assume that there exist

polynomials pl with

α(l) = el pl(Jl). (36)
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Now replace the matrix S in (33) and (34) with S̃ = diag(p1(J1), . . . , pq(Jq))S. As
Jl commutes with rational functions in Jl the matrix S̃ is a similarity transformation
to Jordan canonical form, too, and it holds

1T
Ns S̃

−1 = 1T
Ns S

−1 diag(p1(J1), . . . , pq(Jq))
−1

= [α(1), . . . , α(q)] diag(p1(J1)−1, . . . , pq(Jq)
−1)

= [e1, . . . , eq ].

It remains to show that a polynomial pl fulfilling (36) exists and pl(Jl) is invertible
for l = 1, . . . , q. Define the upper shift matrix rl(Jl) = −μ̂l I + Jl with ones above
the diagonal and zeros everywhere else. It holds elrl(Jl)i−1 = [0, . . . , 0, 1, 0, . . . 0],
a vector with a one at position i for i = 1, . . . , sl . For the i th row of pl(Jl) we find
with (36)

[0, . . . , 0, 1, 0, . . . 0]pl(Jl) = elrl(Jl)
i−1 pl(Jl)

= el pl(Jl)rl(Jl)
i−1

= α(l)rl(Jl)
i−1

= [0, . . . , 0, α(l)
1 , . . . , α

(l)
sl−(i−1)].

This implies that pl(Jl) is an upper triangular matrix with entries α
(l)
1 on the diagonal.

As (�̂T,1T
Ns) is observable, so is (Jl, α(l)) and thus α

(l)
1 �= 0. So pl(Jl) is invertible,

which concludes the proof.

These preparations allow us to state the following lemma.

Lemma 2 Let Ns < n and (�̂T,1T
Ns) be observable. If μ̂l �= 0 then

span Ĥ ′
l = span

{
(In − μ̂l A)−i h0 | i = 1, . . . , sl

}
.

If μ̂l = 0 then

span Ĥ ′
l = span

{
Aih0 | i = 0, . . . , sl − 1

}
.

Proof In this proof set ĥ′
i := ĥ

′(l)
i for better readability. Due to the observability of

(�̂T,1T
Ns) we find from (33) and (34) that (Jl , α(l)) is observable. Due to Lemma 1

we can assume α(l) = [1, 0, . . . , 0].
Let μ̂l �= 0. Because of (35)

span ĥ′
1 = span{(In − μ̂l A)−1h0}

holds. From (35) we find for 1 < i ≤ sl as α
(l)
i = 0
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ĥ′
i = (In − μ̂l A)−1Aĥ′

i−1

= (In − μ̂l A)−1(−μ̂−1
l (In − μ̂l A) + μ̂−1

l In)ĥ
′
i−1

= −μ̂−1
l ĥ′

i−1 + μ̂−1
l (In − μ̂l A)−1ĥ′

i−1.

Via induction this concludes the first part of the proof.
Now let μ̂l = 0. From (35)

span ĥ′
1 = span h0

is immediate. For 1 < i ≤ sl we have

ĥ′
i = Aĥ′

i−1,

and the claim again results from induction.

We conclude that the space spanned by Ĥ ′ (and thus also by Ĥ) mainly depends on
the eigenvalues μ̂l of �̂ and the dimensions sl of their eigenspaces.

3 Approximate Balancing Transformation

We now present an algorithmwhich generates an approximate balancing transforma-
tion. The reduced system is obtained via projection using approximated Gramians. It
can be seen as a variant of balanced POD where the Cholesky factors of the Grami-
ans are approximated using the quadrature described in Sect. 2.1. This procedure is
summarized in Algorithm 2.

Note that due to the use of Butcher tableaus with complex entries in general
complex reduced systemmatrices are obtained. This is the reason for using conjugate
transposition H instead of transposition T.

Algorithm 2 Approximate balancing transformation
Input: system matrices A ∈ R

n×n asymptotically stable, B ∈ R
n×1, C ∈ R

1×n , positive time step
sizes {ω1, . . . , ωN } and {τ1, . . . , τN }, Butcher tableaus with β̃c, β̃o ∈ R

s≥0 and Butcher tableaus
with �c,�o ∈ C

s×s , βc, βo ∈ C
s which satisfy (24)

Output: reduced system matrices Â ∈ C
r×r , B̂ ∈ C

r×1, Ĉ ∈ C
1×r with r = rank(ZH

o Zc)

1: obtain Zc with ZcZH
c ≈ P from Algorithm 1 with A, B, �c, βc, β̃c and {ω1, . . . , ωN }

2: obtain Zo with ZoZH
o ≈ Q from Algorithm 1 with AT, CT, �o, βo, β̃o and {τ1, . . . , τN }

3: calculate compact SVD ZH
o Zc = U�TH

4: assemble projection matrices V = ZcT�− 1
2 , W = ZoU�− 1

2

5: return Â = WHAV , B̂ = WHB, Ĉ = CV

As will be shown next, the transfer function of the reduced system generated by
Algorithm 2 interpolates the transfer function of the original system at expansion
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points which depend on the eigenvalues of the Butcher tableaus and the time step
sizes. In particular the expansion points are the inverse eigenvalues of ωi�c for
i = 1, . . . , Nc and the conjugated inverse eigenvalues of τi�o for i = 1, . . . , No.

Theorem 1 Let the inputs of Algorithm 2 with β̃c, β̃o ∈ R
s+ be given. Define �̂T

c

as in (32) with �c, βc and {ω1, . . . , ωN }. Define �̂T
o as in (32) with �o, βo and

{τ1, . . . , τN }. Let {μ̂1, . . . , μ̂qc

} = ∪N
i=1σ(ωi�c) and

{
ν̂1, . . . , ν̂qo

} = ∪N
i=1σ(τi�o)

be the eigenvalues of �̂c and �̂o with multiplicities s1, . . . , sqc and t1, . . . , tqo .
If (�̂T

c ,1
T
Ns) and (�̂T

o ,1
T
Ns) are observable and rank ZH

o Zc = Ns holds, then the
transfer function of the reduced system with system matrices Â, B̂, Ĉ produced by
Algorithm 2 satisfies

Ĝ(i)(μ̂−1
lc

) = G(i)(μ̂−1
lc

) for i = 0, . . . , slc − 1,

Ĝ(i)(ν̂
−1

lo ) = G(i)(ν̂
−1

lo ) for i = 0, . . . , tlo − 1
(37)

for lc = 1, . . . , qc and lo = 1, . . . , qo. For any zero eigenvalues the corresponding
interpolation in (37) has to be read as interpolation at ∞. If some of the values μ̂i

and ν̂ j coincide, even higher derivatives are interpolated.

Proof The reduced system is generated via projection with the matrices V and W .
Due to line 3 and line 4 of Algorithm 2 and as ZH

o Zc is regular span(V ) = span(Zc)

and span(W ) = span(Zo) hold. With Lemma 2 we find for μ̂lc , ν̂lo �= 0

span
{
(In − μ̂lc A)−i B | i = 1, . . . , slc

} ⊆ span(V ),

span
{
(In − ν̂lo A

T)−iCT | i = 1, . . . , tlo
} ⊆ span(W ).

Due to (In − μ̂lc A)−1 = −μ̂−1
lc

(A − μ̂−1
lc

In)−1 and (In − ν̂lo A
T)−1 = −ν̂−1

lo
(AT −

ν̂−1
lo

In)−1 this means

span
{
(A − μ̂−1

lc
In)

−i B | i = 1, . . . , slc
} ⊆ span(V ),

span
{
(AT − ν̂−1

lo
In)

−iCT | i = 1, . . . , tlo
} ⊆ span(W ).

Further, if μ̂lc , ν̂lo = 0, then

span
{
Ai B | i = 0, . . . , slc − 1

} ⊆ span(V ),

span
{
(AT)iCT | i = 0, . . . , tlo − 1

} ⊆ span(W ).

Due to Sect. 1.2 this concludes the proof. �
It is interesting to see that using a Runge-Kutta method it is not possible to match
moments around the expansion point zero, as thiswould require an infinite eigenvalue
of � from the Butcher tableau or an infinite time step size, which is impossible.

In [22] complex time step sizes ω j (τ j respectively) are used in Runge-Kutta
methods to achieve moment matching around complex expansion points. This is
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unfeasible in the method presented here as then the iterates Pj are in general not pos-
itive semidefinite and the approximate Cholesky factors Z j would not exist. Instead,
in the framework presented here, complex tableaus may be used.

4 Connection to Other Methods

We now show the connection of the method presented here to other methods involv-
ing Gramian approximations with low-rank Cholesky factors. We only consider the
controllability Gramian P. The approximation of the observability Gramian Q is
done analogously, cf. Sect. 1.3. All methods have in common that the approximate
Cholesky factors are computed directly, that is, no Cholesky decomposition of a large
n × n matrix is necessary.

4.1 Balanced POD

We first consider balanced POD as introduced in [24] and summarized at the end
of Sect. 1.1. A central task in BPOD is the numerical solution of the ODE (7).
Unfortunately in [24] it is not stated which numerical method should be used for
solving the ODE. In the following we assume a Runge-Kutta method with �h and
βh is used to solve the ODE in the same way as (13) was solved in Sect. 2.1. In
particular, for h0 = B and time step sizes ω j = t j − t j−1 this means

H j = [h j−1, . . . , h j−1] + ω j AH j�
T
h (38)

h j = h j−1 + ω j AH jβ
T
h

just as in Algorithm 1, but in the BPOD method the approximate Cholesky factor is
updated via

Z j = [Z j−1, h jδ
1
2
j ]

instead of Z j = [Z j−1,H j diag(ω j β̃)
1
2 ] as in Algorithm 1. We illustrate how the

balanced POD iterates can be obtained using Algorithm 1 in case h jδ j hH
j and

H j diag(ω j β̃)HH
j coincide. Due to the dimension of h j and H j this is only pos-

sible for Butcher tableaus of size s = 1 or for β̃ having only one nonzero entry.
We first consider the case s = 1 and thus have H j ∈ C

n×1. So (38) becomes

H j = h j−1 + ω j AH j�
T
h

h j = h j−1 + ω j AH jβ
T
h ,
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i.e., H j = h j if �h = βh . This is, e.g., fulfilled in the backward Euler method with
�h = βh = 1. If additionally β̃ = δ j/ω j , balanced POD and Algorithm 1 produce the
same iterates.

In case of arbitraryButcher tableauswith s-dimensional�h andβh thewayBPOD
fits into the framework presented here is rather crude. Consider a Butcher tableau
with the s + 1-dimensional matrices

� =
[
�h 0
βT
h 0

]
, β =

[
βh

0

]
, β̃ =

[
0

δ j/ω j

]
.

Algorithm 1 generates the iterate

[h( j)
1 , . . . , h( j)

s , h
( j)
s+1]︸ ︷︷ ︸

=H j

= [h j−1, . . . , h j−1] + ω j A[h( j)
1 , . . . , h( j)

s , h
( j)
s+1]

[
�T

h βh

0 0

]
.

Separating the first s columns from the last one yields

[h( j)
1 , . . . , h( j)

s ] = [h j−1, . . . , h j−1] + ω j A[h( j)
1 , . . . , h( j)

s ]�T
h

h
( j)
s+1 = h j−1 + ω j A[h( j)

1 , . . . , h( j)
s ]βh

and so h j = hs+1. Due to the zero entries in β̃ we further find

H j diag(ω j β̃)HH
j = h jω j

δ j

ω j
hH
j

= h jδ j h
H
j ,

i.e., Algorithm 1 and BPOD produce the same iterates for this special choice of
tableaus.

4.2 The ADI Iteration

It was shown in [5] that for certain Butcher tableaus Algorithm 1 is equivalent to
the ADI iteration [17, 19, 20, 23, 27]. In particular, the Gramian approximation
produced by Algorithm 1 for Butcher tableaus with β = β̃ and � satisfying

diag(β)� + �T diag(β) − ββT = 0 (39)

is equivalent to ADI approximants with parameters which are the negative inverses
of the eigenvalues of ωi�. Runge-Kutta methods which fulfill (39) are given by the
family ofGauß-Legendremethods (see [5], [16, Lem. 5.3]), i.e., the implicitmidpoint
rule with
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� = 1

2
, β = 1

or the Gauß-Legendre method with s = 2 as in (41). Amore generic way to construct
Butcher tableaus which satisfy (39) is given by the lower triangular matrices

� =

⎡
⎢⎢⎢⎢⎣

μ1 0 · · · 0

2Re(μ1) μ2
. . . 0

...
...

. . .
...

2Re(μ1) 2Re(μ2) · · · μs

⎤
⎥⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎣

2Re(μ1)

2Re(μ2)
...

2Re(μs)

⎤
⎥⎥⎥⎦ (40)

with parameters μ1, . . . , μs ∈ C+. With this tableau the connection to the ADI
parameters is immediate as the eigenvalues can be read off the diagonal. AnADI iter-
ation with parameters αi ∈ C− is thus equivalent to one step of Algorithm 1with step
size ω1 = 1 using a Butcher tableau given by (40) with μi = −α−1

i , see [5, Thm. 4].
From Lemma 2 and Theorem 1 it follows that the ADI iterates span a rational Krylov
space and, if used in Algorithm 2, the moments at −αi = μ−1

i are matched. See also
[2, Sect. 2.4] for a different proof.

5 Examples

In this section we illustrate the findings from Theorem 1. We state the expansion
points at whichmoments are matched for certain Runge-Kutta methods and visualize
them in the complex plane.

Explicit Runge-Kuttamethods are parameterized byButcher tableauswith strictly
lower triangular�. As suchmatrices have just zero eigenvalues onlymoments around
∞ are matched for explicit methods. An example is Euler’s method given by the
Butcher tableau with � = 0, β = 1.

For the backward Euler method we have � = 1, β = 1, so the moments are
matched around the inverse time step sizes ω−1

j and τ−1
j .

Consider the Butcher tableaus from the Gauß-Legendre and Radau IA method of
size s = 2. The Gauß-Legendre method is given by

�GL =
[ 1

4
1
4 − 1

6

√
3

1
4 + 1

6

√
3 1

4

]
, βGL =

[ 1
2
1
2

]
. (41)

This method is equivalent to the Hammer-Hollingsworth method [7] which was used
in [22]. The matrix �GL has eigenvalues μ1/2 = 1

4 ±
√
3

12 i . The Radau IA method is
given by
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Fig. 1 Expansion points in
the complex plane for
Gauß-Legendre and Radau
IA method

2 4 6 8 10
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4

]
.

It has eigenvalues λ1/2 = 1
3 ±

√
2
6 i .

When Algorithm 2 is executed with the Gauß-Legendre method for Zc and the
Radau IAmethod for Zo, then the moments are matched around the expansion points

(ω jμ1/2)
−1 = ω−1

j (3 ∓ √
3i) and (τ jλ1/2)

−1 = τ−1
j (2 ∓ √

2i)

for j = 1, . . . , N . These expansion points are visualized in the complex plane in Fig.
1 for ω j = τ j = 0.3, 0.4, . . . , 1.

6 Conclusion

Wehave presented amethodwhich generates approximate balancing transformations
using approximate Cholesky factors of the Gramians obtained via numerical quadra-
ture with Runge-Kutta methods. The moments of the reduced system coincide with
the moments of the original systems at the inverses of the (conjugated) eigenvalues
of the Butcher tableaus multiplied with the time step sizes, while explicit quadrature
methods correspond to interpolation at infinity.

It remains an open question how the expansion points can be characterized if the
SVD in Algorithm 2 is truncated, i.e., if balanced truncation is performed instead
of an approximate balancing transformation. Then the reduced system is obtained
via projection onto a subspace of a rational Krylov space and the direct connection
between the poles of the rationalKrylov space and the expansion points aroundwhich
the moments are matched is lost.



138 C. Bertram and H. Faßbender

References

1. Antoulas,A.C.:Approximation of large-scale dynamical systems. Soc. Ind.Appl.Math. (2005).
ISBN: 978-0-898-71529-3

2. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a
system-theoretic perspective. Arch. Comput. Methods Eng. 21, 331–358 (2014). https://doi.
org/10.1007/s11831-014-9111-2

3. Benner, P., Cohen, A., Ohlberger,M.,Willcox, K. (eds.):Model Reduction andApproximation:
Theory and Algorithms. SIAM (2017). ISBN: 978-1-611974-81-2

4. Benner, P., Hinze, M., ter Maten, E. (eds.): Model Reduction for Circuit Simulation. Lecture
Notes in Electrical Engineering, vol. 74. Springer, Dordrecht, The Netherlands (2011). ISBN:
978-94-007-0089-5

5. Bertram, C., Faßbender, H.: Lyapunov and Sylvester equations: a quadrature framework. arXiv
e-prints arXiv:1903.05383 (2019)

6. Butcher, J.: Numerical Methods for Ordinary Differential Equations. Wiley (2016). ISBN:
978-1-119-12150-3

7. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18(85), 50–64 (1964). https://
doi.org/10.2307/2003405

8. Butcher, J.C.: On the implementation of implicit Runge-Kutta methods. BIT 16(3), 237–240
(1976). https://doi.org/10.1007/bf01932265

9. Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J.
Comput.Appl.Math.123(1), 395–421 (2000). https://doi.org/10.1016/S0377-0427(00)00396-
4. Numerical Analysis 2000. Vol. III: Linear Algebra

10. Gallivan, K., Vandendorpe, A., Dooren, P.V.: Model reduction via truncation: an interpolation
point of view. Linear Algebra Appl. 375, 115–134 (2003). https://doi.org/10.1016/S0024-
3795(03)00648-7

11. Grimme, E.: Krylov projectionmethods formodel reduction. Ph.D. thesis, University of Illinois
at Urbana-Champaign (1997)

12. Gugercin, S., Sorensen, D., Antoulas, A.: A modified low-rank Smith method for large-
scale Lyapunov equations. Numer. Algorithms 32, 27–55 (2003). https://doi.org/10.1023/A:
1022205420182

13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, 2nd edn. Springer (2006). ISBN: 978-3-540-
30666-5

14. Hairer, E., Norsett, S.,Wanner, G.: SolvingOrdinaryDifferential Equations I, 2nd edn. Springer
(1993). ISBN: 978-3-540-78862-1

15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd edn. Springer (1996).
ISBN: 978-3-642-05221-7

16. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn.
Cambridge Texts in Applied Mathematics. Cambridge University Press (2008). https://doi.
org/10.1017/CBO9780511995569

17. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Ph.D. thesis, OvGU
Magdeburg (2016)

18. Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model
reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12(6), 519–535 (2002).
https://doi.org/10.1002/rnc.657

19. Li, J., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1),
260–280 (2002). https://doi.org/10.1137/S0895479801384937

20. Lu, A., Wachspress, E.: Solution of Lyapunov equations by alternating direction implicit itera-
tion. Comput.Math.Appl. 21(9), 43–58 (1991). https://doi.org/10.1016/0898-1221(91)90124-
M

21. Moore, B.: Principal component analysis in linear systems: controllability, observability, and
model reduction. IEEETrans.Automat. ControlAC-26, 17–32 (1981). https://doi.org/10.1109/
TAC.1981.1102568

https://doi.org/10.1007/s11831-014-9111-2
https://doi.org/10.1007/s11831-014-9111-2
http://arxiv.org/abs/1903.05383
https://doi.org/10.2307/2003405
https://doi.org/10.2307/2003405
https://doi.org/10.1007/bf01932265
https://doi.org/10.1016/S0377-0427(00)00396-4
https://doi.org/10.1016/S0377-0427(00)00396-4
https://doi.org/10.1016/S0024-3795(03)00648-7
https://doi.org/10.1016/S0024-3795(03)00648-7
https://doi.org/10.1023/A:1022205420182
https://doi.org/10.1023/A:1022205420182
https://doi.org/10.1017/CBO9780511995569
https://doi.org/10.1017/CBO9780511995569
https://doi.org/10.1002/rnc.657
https://doi.org/10.1137/S0895479801384937
https://doi.org/10.1016/0898-1221(91)90124-M
https://doi.org/10.1016/0898-1221(91)90124-M
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1109/TAC.1981.1102568


A Link Between Gramian-Based Model Order Reduction and Moment Matching 139

22. Opmeer, M.: Model order reduction by balanced proper orthogonal decomposition and by
rational interpolation. IEEE Trans. Autom. Control AC-57, 472–477 (2012). https://doi.org/
10.1109/TAC.2011.2164018

23. Peaceman, D., Rachford, H., Jr.: The numerical solution of parabolic and elliptic differential
equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955). https://doi.org/10.1137/0103003

24. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition.
I. J. Bifurcat. Chaos 15(3), 997–1013 (2005). https://doi.org/10.1142/S0218127405012429

25. Simoncini, V.: Computational methods for linear matrix equations. SIAMRev. 58(3), 377–441
(2016). https://doi.org/10.1137/130912839

26. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition.
AIAA J. 40(11), 2323–2330 (2002). https://doi.org/10.2514/2.1570

27. Wolf, T., Panzer, H.: The ADI iteration for Lyapunov equations implicitly performs H2 pseudo-
optimal model order reduction. Int. J. Control 89(3), 481–493 (2016). https://doi.org/10.1080/
00207179.2015.1081985

https://doi.org/10.1109/TAC.2011.2164018
https://doi.org/10.1109/TAC.2011.2164018
https://doi.org/10.1137/0103003
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.1137/130912839
https://doi.org/10.2514/2.1570
https://doi.org/10.1080/00207179.2015.1081985
https://doi.org/10.1080/00207179.2015.1081985


Comparing (Empirical-Gramian-Based)
Model Order Reduction Algorithms

Christian Himpe

Abstract In this work, the empirical-Gramian-based model reduction methods:
Empirical poor man’s truncated balanced realization, empirical approximate bal-
ancing, empirical dominant subspaces, empirical balanced truncation, and empirical
balanced gains are compared in a non-parametric and in two parametric variants, via
ten error measures: Approximate Lebesgue L0, L1, L2, L∞, Hardy H2, H∞, Han-
kel, Hilbert-Schmidt-Hankel, modified induced primal, and modified induced dual
norms, for variants of the thermal block model reduction benchmark. This compari-
son is conducted via a new meta-measure for model reducibility called MORscore.

1 Introduction

Model reduction research has made great strides in the past decades, spawning ever
new methods and variants for specific requirements. Yet, this plethora of algorithms
is not (or only very sparsely) evaluated against each other on common benchmarks.
Such comparisons would enable a faster transfer of mathematically research to engi-
neering and industrial applications.

In the following, prototypically, a comparison of empirical-Gramian-based meth-
ods is demonstrated for a standard benchmark system in a manner, which can be
automated, for example, to test various variants of a method to determine the best
suited for a certain problem. In the scope of this work, model reduction for affine-
parametric, generalized, linear time-invariant systems is considered:

Eẋ(t) = A(θ)x(t) + Bu(t),

y(t) = Cx(t),
(1)
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which consist of an ordinary differential equation in x , with a non-singular
mass matrix E ∈ R

N×N , an affinely decomposable parametric system matrix
A(θ) = A0 + ∑P

p=1 θp Ap ∈ R
N×N , so that E−1A(θ) is asymptotically stable for

all parameters θ ∈ � ⊂ R
P , and an input matrix B ∈ R

N×M , as well as a linear
output function defined by the output matrix C ∈ R

Q×N .
In the following some fundamentals of projection-based model reduction are

assumed; for a background on this topic the reader is referred to the seminal text-
book [2].

2 Empirical Gramians for Linear Systems

System Gramians are system-theoretic operators encoding the input-output system
properties of controllability and observability [34]. Empirical Gramians [36] are
generalizations of these system Gramians, which are based on quadrature, and were
introduced to apply linear, Gramian-based methods from linear system theory to
nonlinear systems, while incorporating nonlinear information and avoiding (explicit)
linearization. Since linear systems are a special case of nonlinear systems, with,
admittedly, a very simple “nonlinearity”, empirical Gramians can also be computed
for linear systems. Note that for linear systems, the empirical Gramians correspond
to the classic system Gramians up to numerical error; this is shown in [29, 36]. The
quality of the empirical Gramians depends on simulated state and output trajectories
for which the system is excited by perturbed input or initial state. These perturbations
are defined by scales (cm and dq ) and should reflect the operating region of the system.
Following, we summarize the three fundamental empirical system Gramians in the
special case of linear systems.

2.1 Empirical Controllability Gramian

The controllability Gramian quantifies the ability to drive a linear system to a
steady state in finite time via the input [35]. For linear systems, the control-
lability Gramian matrix is defined as WC := ∫ ∞

0 eE
−1At E−1BBᵀE−ᵀ eA

ᵀE−ᵀt dt ,
and classically computed as the (low-rank) solution to the Lyapunov equation
AWCEᵀ + EWC Aᵀ = −BBᵀ. Based on the definition of WC , the empirical con-
trollability Gramian is given by

ŴC :=
M∑

m=1

∫ ∞

0
xm(t)xm(t)ᵀdt

with xm(t) being the solution of Eẋm(t) = Axm(t) + B(cmemδ(t)), suitable scales
cm ∈ R, and the m-th canonical standard base vector em ∈ R

M .
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2.2 Empirical Observability Gramian

The observability Gramian matrix describes the ability to determine the state of
a linear system via its output in finite time [35]. For linear systems, the observ-
ability Gramian matrix is defined as WO := ∫ ∞

0 eA
ᵀE−ᵀt CᵀC eE

−1At dt ,
and is classically computed as the (low-rank) solution to the Lyapunov equation
AᵀWOE + EᵀWO A = −CᵀC . Based on the definition of WO , the (linear) empir-
ical observability Gramian (via the dual system’s controllability Gramian [59]) is
given by

ŴO :=
Q∑

q=1

∫ ∞

0
zq(t)zq(t)ᵀdt,

with zq(t) being the solution of Eᵀ żq(t) = Aᵀzq(t) + Cᵀ(dqeqδ(t)), suitable scales
dq ∈ R, and the q-th canonical standard base vector eq ∈ R

Q .

2.3 Empirical Cross Gramian

ThecrossGramianmatrix combines controllability andobservability information and
hence delineates the minimality of a linear system [18]. For square linear systems
(featuring the same number of inputs and outputs M = Q), the cross Gramianmatrix
WX is defined as WX := ∫ ∞

0 eE
−1At E−1BC eE

−1At dt , and classically computed as
the (low-rank) solution to the Sylvester equation AWX E + EWX A = −BC . Based
on the definition of WX , the (linear) empirical cross Gramian [6] is given by

ŴX :=
M∑

m=1

∫ ∞

0
xm(t)zm(t)ᵀdt

with xm(t) being the solution of Eẋm(t) = Axm(t) + B(cmemδ(t)), zm(t) being the
solution of Eᵀ żm(t) = Aᵀzm(t) + Cᵀ(dmemδ(t)), suitable scales cm , dm ∈ R, and
the m-th canonical standard base vector em ∈ R

M .
For non-square systems M �= Q, the non-symmetric cross GramianWZ , the cross

Gramian of the average system (A, B̄ = ∑M
m=1 B∗,m, C̄ = ∑Q

q=1 Cq,∗, E), is pro-
posed in [31]. The linear empirical non-symmetric cross Gramian is given by

ŴZ :=
Q∑

q=1

M∑

m=1

∫ ∞

0
xm(t)zq(t)ᵀdt
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with xm(t) being the solution of Eẋm(t) = Axm(t) + B̄(cmemδ(t)), zq(t) being the
solution of Eᵀ żq(t) = Aᵀzq(t) + C̄ᵀ(dqεqδ(t)), suitable scales cm, dq ∈ R, and the
m-th, q-th canonical standard base vectors em ∈ R

M , εq ∈ R
Q .

2.4 Parametric Empirical Gramians

Empirical Gramians may also be applied to parametric systems. Here, the approach
from [30] is utilized, which follows the general principle behind empirical Grami-
ans: averaging over an operating region. Hence, given a preselected sampling �h

from the parameter space �, an average (controllability, observability, cross, or non-
symmetric cross) Gramian is computable [6]:

W ∗(�h) :=
∑

θ∈�h

W∗(θ).

For low-dimensional parameter spaces, this could be some uniform grid in a region
of interest; for higher dimensional parameter spaces, sparse grids can be utilized [5].

Even though this averaging process can lead to annihilation, it can be justified by
the related accumulation process, typically used, i.e., in (balanced) proper orthogonal
decomposition (POD) model reduction [59], which (compresses and) concatenates
trajectories before assembling a Gramian matrix. So, given two discrete trajectory
matrices X1 and X2, which are first concatenated and then a Gramian matrix is
formed, as for the abstract computation of a POD,

[
X1 X2

] [
X1 X2

]ᵀ = X1X
ᵀ
1 + X2X

ᵀ
2 ,

this is mathematically (but not numerically due to annihilation) equivalent to the sum
of the individual trajectory Gramians.

3 Empirical-Gramian-Based Model Reduction

Following, five empirical-Gramian-basedmodel reductionmethods are summarized,
of which either can be computed via the empirical controllability and observabil-
ity Gramians {WC ,WO}, or via the empirical cross Gramian WX (empirical non-
symmetric cross Gramian WZ for non-square systems).

The considered empirical-Gramian-based model reduction methods are exclu-
sively projection-based approaches, meaning from the empirical system Gramian
matrices “projection” matrices are obtained—a reducing projection V and a
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reconstructing projection U , both of rank n < N :

U ∈ R
N×n, V ∈ R

n×N ,

which appropriately applied to the system (1) yield a reduced-order system:

(V EU ) ˙̃x(t) = (
(V A0U ) +

P∑

p=1

θp(V ApU )
)
x̃(t) + (V B)u(t),

ỹ(t) = (CU )x̃(t),

or in a more compact form, as the reduced system matrices can be precomputed:

Ẽ ˙̃x(t) = Ã(θ)x̃(t) + B̃u(t),

ỹ(t) = C̃ x̃(t).

An orthogonal projectionU = V ᵀ, VU = I is called (Bubnov-)Galerkin projection,
a bi-orthogonal projection U �= V ᵀ, VU = I is called Petrov-Galerkin projection,
and a projection U �= V , VU �= I is just called oblique projection.

In the following, only the features of the considered model reduction techniques
are briefly summarized, for a description and algorithm of these methods consult the
referenced works in the respective subsections. Note, that even though error bounds
and error indicators are mentioned below for each method, the purpose of this work
is the heuristic comparison of methods against each other.

3.1 Empirical Poor Man

The Poor Man’s Truncated Balanced Realization (PM) from [45] just utilizes either
the (empirical) controllability Gramian, or the (empirical) observability Gramian,
and uses Gramian’s dominant singular vectors as Galerkin projection. Using the
(time domain) controllability Gramian in this fashion is equivalent to the proper
orthogonal decomposition (POD); using the observability Gramian is equivalent to
the adjoint proper orthogonal decomposition [11] (aPOD).

Being a Galerkin projection, this method is stability preserving in the reduced-
ordermodel if the system is dissipative.As an error indicator, typically the normalized
sum of kept singular values is used as well as the projection error of the data [42],
which quantifies the reduced model’s preserved energy in relation to the full model.

3.2 Empirical Approximate Balancing

Approximate balancing (AB) is a technique suggested in [46, M3], which uses the
left and right singular vectors from a truncated SVD of the cross Gramian as oblique
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projection, yet, without the bi-orthogonality of the Petrov-Galerkin projections, but
orthogonality of the reducing and reconstructing projections with respect to them-
selves. This method is based on the approximate balancing method from [54], but
omits the eigenvector approximation. The counterpart variant based on controllabil-
ity and observability Gramians is known as modified proper orthogonal decomposi-
tion [42], which uses singular vectors from truncated SVDs ofWC andWO similarly
as oblique projection.

Even though, this method is claimed to be “effective for non-normal systems”
([42, Sect. III.D]), for either method no error bounds or stability guarantees are
available, but as indicated in [42, Fig. 8], an error indicator can be derived based upon
the projection error. Due to the missing bi-orthogonality between the reducing and
reconstructing projections, it is paramount to apply the projections to themassmatrix,
even if E = I . Using empirical controllability, observability or crossGramians yields
the empirical approximate balancing method.

3.3 Empirical Dominant Subspaces

The dominant subspaces (DS) method constructs a Galerkin projection by directly
combining the dominant controllability and observability subspaces [43], obtained
from the respective (empirical) Gramians; while the variant based on the (empirical)
cross Gramian is introduced in [8].

The column-rank of the projection is then determined by orthogonalization of
the conjoined singular vectors of the system Gramians, weighted by their associated
singular values. As an orthogonal projection, DS is stability preserving for dissipa-
tive systems. Furthermore, a Hardy-2 error bound exists for the controllability and
observability Gramian-based DS [53] (in two variants), while a Lebesgue-2 error
indicator is introduced in [8] for the cross-Gramian-based DS. To obtain and con-
join the system Gramians’ singular vectors, various algorithms are available, here, a
combination of truncated SVD and rank-revealing SVD is used for this task.

3.4 Empirical Balanced Truncation

Balanced truncation (BT) first transforms the system into a coordinate system in
which controllability and observability are aligned, via a Petrov-Galerkin projection,
so the respective controllability and observability Gramians are diagonal and equal.
The diagonal entries, the Hankel singular values (HSVs), measure controllability
and observability simultaneously, hence the subsystem associated to the small HSVs
is truncated. This method from [40] is the gold standard of system-theoretic model
reduction methods, due to, first, preserving stability in the reduced-order model [44],
and second, error bounds in the Hardy-∞ norm [15, 19], Hardy-2 norm [2, 54], and
Lebesgue-1 norm [37, 41].
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To balance the Gramians {WC ,WO}, the balanced POD ansatz [59] is employed,
which corresponds to the square root method [56], but using SVD-based square-roots
of theGramians.Note that this does not lead to an exactly balanced system [58,MR3].
For the WX (WZ ) balanced truncation variant, the method from [33] is used, which
in turn is based on [49, 50].

3.5 Empirical Balanced Gains

Balanced gains (BG) is a variant of balanced truncation, of which the simplified
variant from [14] is used here. In balanced gains, the system is balanced as for
balanced truncation, but instead of the Hankel singular values, or the sum thereof, an
alternate measure is utilized, based on an observation on the L2-norm of the impulse
response (of symmetric systems):

‖y‖22 = tr(CWCC
ᵀ) = tr(BᵀWOB) = tr(CWX B)

=
N∑

k=1

ĉᵀ
k ĉkσk =

N∑

k=1

b̂k b̂
ᵀ
k σk =

N∑

k=1

|b̂k ĉk |σk,

for the k-th row b̂k of the balanced input matrix B̂, and the k-th column ĉk of the
balanced output matrix Ĉ . Hence, the sequence of base vectors is given by the
magnitude of the quantity dk , instead of the HSVs σk :

dk := ĉᵀ
k ĉkσk = b̂k b̂

ᵀ
k σk = |b̂k ĉk |σk .

This means compared to balanced truncation, the same modes are used, but in a
different order. As the order of modes is not a requirement for stability preservation
in the reduced-order model, it also holds for balanced gains, cf. [44, Corollary 2].
Empirical balanced gains is then given by the (simplified) balanced gains approach
using empirical Gramians.

4 Approximate Norms

To comprehensively compare the reduced to the full order models, four signal norms,
four systemnorms, and two induced norms are applied. For an elaborate discussion of
these norms see [10, Ch. 5,6], [2, Ch. 5], [57, Ch. 2]. Due to numerical, efficiency, or
practical reasons, only approximate norms of the error system are considered. Note,
that the signal norms are computed from time-domain trajectories, and the system
(and modified induced) norms are approximated by transformations of empirical
Gramians, instead of frequency-domain sampling.
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4.1 Signal Norms

The signal norms are based on time-domain evaluations of the system output y and
the reduced system’s output ỹ, and are given as the Lebesgue norms of the output
error ‖y − ỹ‖. Practically, vector norms of vectorized discrete output trajectories yh ,
ỹh (Q outputs × K time steps data matrices) are computed.

4.1.1 Approximate L0-“Norm”

The L0 signal “norm” describes the sparsity of a discrete-time signal [52], and is
approximated, based on [32], for an error signal by

‖yh − ỹh‖L0 =
K∑

k=0

Q∑

q=1

∣
∣ sgn

(
yh,q(k) − ỹh,q(k)

)∣
∣ ≈ n

√
√
√
√

QK∏

�=1

| vec(yh − ỹh)�|.

Technically, this is not a norm, due to the lack of absolute scalability, but for the
intended purpose this function can be treated as a norm.

4.1.2 Approximate Lebesgue L1-Norm

The Lebesgue L1-norm of a signal quantifies the action or consumption of a process
and its definition and approximation for an output error signal are given by

‖y − ỹ‖L1 =
∫ ∞

0
‖y(t) − ỹ(t)‖1dt ≈ �t ‖ vec(yh − ỹh)‖1;

in terms of the model reduction error it can also be seen as the area under the error
signal.

4.1.3 Approximate Lebesgue L2-Norm

The Lebesgue L2-norm of a signal measures its energy. Its definition and approxi-
mation for an output error signal are given by

‖y − ỹ‖L2 =
√∫ ∞

0
‖y(t) − ỹ(t)‖22dt ≈ √

�t ‖ vec(yh − ỹh)‖2,

which canbe interpreted as the energy loss in the reduced-ordermodel.As allmethods
tested in this work are energy-based, this norm is the canonical error measure.
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4.1.4 Approximate Lebesgue L∞-Norm

The Lebesgue L∞-norm of a signal determines its peak, with definition and approx-
imation for an output error signal given by

‖y − ỹ‖L∞ = sup
t

‖y(t) − ỹ(t)‖∞ ≈ ‖ vec(yh − ỹh)‖∞,

whichyields themaximumerror between the full and reduced-order system’s outputs.

4.2 System Norms

The system norms characterize frequency-domain errors of the reduced system’s
transfer function Gr (ω) := Cr (Erω − Ar )

−1Br compared to the full order trans-
fer function G(ω) := C(Eω − A)−1B, for frequencies ω ∈ C, Re(ω) < 0, and are
either Hardy-norms and/or Schatten-norms of the Hankel operator H . The following
four norms were selected based on [51, Sect. 2.2.7].

4.2.1 Approximate Hardy H2-Norm

The Hardy H2-norm can be interpreted as the root-mean-square of the frequency
response to white noise, the L2-norm of the impulse response (thus also known as
impulse response norm), the maximum output amplitude for finite input, or average
gain. To approximate the H2-norm, the truncated balanced part of the output operator
and controllability Gramian are utilized [23],[54, Remark 3.3]:

‖G − Gr‖H2 =
√∫

tr
((
G(ıω) − Gr (ıω)

)(
G(ıω) − Gr (ıω)

)∗)
dω ≈

√
̂̄C2WC,22

̂̄C
ᵀ
2 .

4.2.2 Approximate Hardy H∞-Norm

TheHardy H∞-normdescribes theworst-case frequency-domain error,which relates,
via Parseval’s equation, to the maximum L2-gain, and thus to the time-domain
L2 error. Based on [19, Corollary 9.3], the H∞ error can be approximated by the
balanced truncation error bound, which in turn is approximated by the principal
discarded Hankel singular value [25, Ch. 2.4]:

‖G − Gr‖H∞ = sup
(
σ1

(
G(ıω

) − Gr
(
ıω)

)) ≈ 2
N∑

k=n+1

σk(H) ≈ 2(N − n)σn+1(H)
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and is related to the nuclear norm (Schatten-1 norm) of the Hankel operator H .
Alternatively, the H∞-norm could be approximated by the trace of the non-symmetric
cross Gramian ‖G − Gr‖H∞ ≈ − 1

2 tr(WZ ,22) = −C̄2A
−1
22 B̄2 [38].

4.2.3 Approximate Hilbert-Schmidt-Hankel Norm

The Hilbert-Schmidt-Hankel norm corresponds to the operator norm (Schatten-2
norm) of the Hankel operator, and as for the H∞-norm, is approximated using only
the principal discarded Hankel singular value:

‖G − Gr‖HSH =
√
√
√
√

N∑

k=n+1

σ 2
k (H) ≈

√
(N − n)σ 2

n+1(H).

Scaled by a factor of π , the square root of this norm yields the enclosed area of the
Nyquist plot [24].

4.2.4 Approximate Hankel Norm

The Hankel norm is given by the principal discarded singular value of the Hankel
operator, which corresponds to the Schatten-∞ norm:

‖G − Gr‖Ha = σn+1(H).

This norm is the lower bound for the model reduction error as by the Adamjan-Arov-
Krein theorem [20, 21].

4.3 Modified Induced Norms

If the Hankel operator is used in its classic form, it maps from and to a function
space of squarely integrable functions, and the (previous) Hankel norm is its induced
norm. If one relaxes the Hankel operator to admit a function space of continuous
functions as domain or range, the induced norms change as follows [60]. Note, that
for single-input-single-output systems, these modified induced norms coincide with
the Hardy-2 norm.

4.3.1 Induced Primal Norm

Expanding the Hankel operator’s domain to continuous functions, the induced norm
becomes the square root of the input-observability Gramian’s spectral radius:
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‖H − Hr‖HC =
√

λmax(B
ᵀ
22WO,22B22).

4.3.2 Induced Dual Norm

Expanding the Hankel operator’s range to continuous functions is equivalent to
expanding the dual system’sHankel operator domain, thus the induced normbecomes
the square root of the output-controllability Gramian’s spectral radius:

‖H − Hr‖HO =
√

λmax (C22WC,22C
ᵀ
22).

4.4 Parametric Norms

To obtain an error quantification for parametric systems, the previous norms are
extended with respect to the considered system’s parameter space. Given a (state-
space) error norm ‖ · ‖X , the associated parametric state-space error norm is given
by the composition with a parameter space norm ‖ · ‖Y . In [4] (see also [7]), this
composite state-parameter norms are defined via a norm as a mapping
‖ · ‖Y⊗X : M × � → R+, with the Cartesian product of output, response or operator
domain M and parameter domain �, respectively. To approximate these parametric
norms, a sampling of the parameter space �s ⊂ � is drawn, and given this finite,
discrete parameter sample �s , an approximate norm is computed. We follow [22],
in evaluating the parametric L1 ⊗ X , L2 ⊗ X , and L∞ ⊗ X norms:

‖y(θ) − ỹ(θ)‖L1⊗X =
∫

�

‖y(θ) − ỹ(θ)‖Xdθ ≈
∑

θ∈�s

‖y(θ) − ỹ(θ)‖X ,

‖y(θ) − ỹ(θ)‖L2⊗X =
√∫

�

‖y(θ) − ỹ(θ)‖2Xdθ ≈
√∑

θ∈�s

‖y(θ) − ỹ(θ)‖2X ,

‖y(θ) − ỹ(θ)‖L∞⊗X = max
θ∈�

‖y(θ) − ỹ(θ)‖X ≈ max
θ∈�s

‖y(θ) − ỹ(θ)‖X ,

for X being any of the signal, system or induced norms. To estimate the quality of
a parametric reduced-order model fairly, it is a basic requirement to have disjoint
training and test parameter sets �h ∩ �s = ∅. Typically, this is implicitly ensured
by a (sparse) grid parameter sampling for the training and randomly drawn test
parameters from a suitable distribution.
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5 MORscore

The comparison of (relative) model reduction errors for varying reduced orders, see
for example, Fig. 1, is a useful vehicle to evaluate the performance ofmodel reduction
techniques for a specific system in a certain norm. Yet, there are multiple relevant
features in these error graphs characterizing the associated model order reduction
algorithm, such as lowest attained error or fastest error decay. Now, a one-by-one
comparison for multiple methods, in various norms is too tedious for potentially
many systems. A similar problem arises in comparing optimization codes, which
is managed by so-called relative minimization profiles (RMP) [13, Sect. 5]. These
RMPs standardize such comparisons in various measures, such as best computed
objective, and inspired the following scoring. To make many-way model reduction
comparisons feasible, a scalar score is introduced next, summarizing a method’s
features in a specific norm based on the error graph.

Definition (MORscore) Given an error graph (n, ε(n)) ∈ N>0 × (0, 1], relating a
reduced-order n to a relative output error of a model reduction method M for a
system  in norm ‖ · ‖, the normalized error graph (ϕn, ϕε(n)) is determined by the
maximum reduced-order nmax ∈ N>0, and machine precision εmach ∈ (0, 1] ⊂ R via
mappings:

ϕn : N>0 → [0, 1], n �→ n

nmax
,

ϕε : (0, 1] → [0, 1], ε �→ log10(ε)

�log10(εmach)� ,

and the MORscore μ is defined as the area under this normalized error graph,

μ(nmax,εmach)(M, , ‖ · ‖) := area(ϕn, ϕε).

By ϕn the discrete reduced orders 1, 2 . . . nmax are mapped to the real interval [0, 1]
by normalization. And by ϕε the relative model reduction error ε is mapped to
the real interval [0, 1] by normalizing the 10-base logarithm of the error by the
10-base logarithm of the maximum accuracy εmach of the utilized number system;
i.e., double precision floating point numbers have an accuracy of approximately
εmach(dp) ≈ 10−16, so �log10(εmach(dp))� = −16. Practically, the area is computed
via the trapezoid rule.1 Note, that the maximum tested reduced-order nmax should be
(far) below the original model order, since the error decay flattens at some reduced
order. Hence, given a system of large order, and two model reduction methods, both
yielding their minimal error reduced models at low orders, a MORscore up to the full
order would show only little difference. Selecting the largest reduced order which
attains the minimal error as nmax, the MORscore is a lot more meaningful.

1 Specifically via: https://www.mathworks.com/help/matlab/ref/trapz.html.

https://www.mathworks.com/help/matlab/ref/trapz.html
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Altogether, the MORscore is specified by normalization and describes the model
reduction performance of amethod for a system in a normby single number, as typical
for (desktop) computer performance benchmarks. A larger MORscore μ ∈ (0, 1)
means better model reduction performance, since the more area covered, the faster
and lower the error decay. Contrary to β-RMPs [13, Def. 5.2], no computational
budget is prescribed here, nonetheless, the MORscore could be extended in this
manner by limited computational time or even a prescribed nmax.

6 Benchmark Comparison

For a thorough comparison, the presented empirical-Gramian-based model reduc-
tion methods are tested in ten (approximate) norms for different configurations of
a benchmark system. In coordination with the model reduction software projects:
pyMOR [39], MORLAB [9], M.E.S.S [48], a thermal block benchmark is tested. A
summary of the components for this comparison is given below.

Methods

Each of the five methods summarized in Sect. 3 can be computed via the empir-
ical controllability and observability Gramians {WC ,WO}, or the empirical (non-
symmetric) linear cross Gramian WZ . Hence overall, ten empirical-Gramian-based
model reduction techniques are compared:

• Empirical Poor Man (PM), via WC or WO ,
• Empirical Approximate Balancing (AB), via {WC ,WO} or WZ ,
• Empirical Dominant Subspaces (DS), via {WC ,WO} or WZ ,
• Empirical Balanced Truncation (BT), via {WC ,WO} or WZ ,
• Empirical Balanced Gains (BG), via {WC ,WO} or WZ .

Parameterization

In Sect. 6.2, a parametric benchmark with a four-dimensional parameter space is
tested. The benchmark is compared in three configurations:

• Non-Parametric (parameters treated as constants),
• Single Parameter (parameters treated as single parameter),
• Multiple Parameters (parameters treated separately).

Measures

Themodel reduction methods are compared via their MORscore for varying reduced
orders in the following normalized norms ‖y−yr‖

‖y‖ from Sect. 4:
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• Approximate Lebesgue L0-“norm”,
• Approximate Lebesgue L1-norm,
• Approximate Lebesgue L2-norm,
• Approximate Lebesgue L∞-norm,
• Approximate Hardy H2-norm,
• Approximate Hardy H∞-norm,
• Approximate Hilbert-Schmidt-Hankel-norm,
• Approximate Hankel-norm,
• Approximate modified induced primal norm,
• Approximate modified induced dual norm,

as well as the number of unstable ROMs up to the maximum order (denoted by
the symbol L). Lyapunov stability is assessed via the real part of the largest real
eigenvalue of the pencil

(
Ẽ, Ã(θ)

)
. In the parametric case, these counts are aver-

aged, similar to the considered norms, in an L1, L2 and L∞ sense over the sampled
parameters.

6.1 emgr – EMpirical GRamian Framework

All tested methods are based on empirical system Gramian matrices. To compute
these empirical Gramians for the subsequent numerical experiments, the empirical
Gramian framework emgr [26] is employed,which has a unified interface [28] for the
empirical controllability, observability, and (linear) crossGramians. The convergence
of the empirical Gramians to the classic algebraic Gramians for linear systems is
shown in [25]. Practically, the current version emgr 5.7 [27] is used.

6.2 Thermal Block Benchmark

For the comparison of the empirical-Gramian-based model order reduction meth-
ods, a recurring benchmark example (due to the well reducible diffusion process),
modeling the heat equation on the unit-square [55, Thermal Block] is utilized.

This thermal block benchmark system models dynamic heating of a two-
dimensional, square domain � = (0, 1) × (0, 1) with four enclosed circular regions
ωi=1...4 of equal radius, one per quadrant, and each of individual parametric heat con-
ductivity (diffusivity) κ(x). The left boundary of the domain ∂�1 := {0} × (0, 1) is
the inflow, realized by aNeumann boundary condition, the top and bottomboundaries
∂�2 := (0, 1) × {0}, ∂�4 := (0, 1) × {1} are insulated, via zero Neumann condi-
tions, while the right boundary ∂�3 := {1} × (0, 1) prescribes Dirichlet-zero bound-
ary conditions. Lastly, the four quantities of interestsYi are the average temperature
of each circleωi , respectively. The overall partial differential equation (PDE) system
is thus given by
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∂t u(x, t) = −κ(x)�xu(x, t), x ∈ �,

∂xu(x, t) = F(x, t), x ∈ ∂�1,

∂xu(x, t) = 0, x ∈ ∂�2 ∪ ∂�4,

u(x, t) = 0, x ∈ ∂�3,

Yi (t) = ∫
ωi

u(x, t)dx,

κ(x) =
{

θi x ∈ ωi , i = 1 . . . 4,

θ0 otherwise.

This PDE is discretized in space using the finite element method (FEM), via the
FEniCs software package [1], yielding an ordinary differential equation system of
the form (1). The resulting linear input-output system has one input and four outputs,
while the state-space has dimension 7488, and the parameter space is four dimen-
sional, with θi=1...4 ∈ [1, 10] ⊂ R as in [3], while the background diffusivity constant
is set to θ0 = 1. For more a detailed description of this benchmark, and the software
stack used for its creation, see also [47].

6.3 Numerical Results

In the following, three variants of the thermal block benchmark are tested:

1. No parameter: 1
5θ1 = 2

5θ2 = 3
5θ3 = 4

5θ4 ≡ √
10,

2. One parameter: 1
5θ1 = 2

5θ2 = 3
5θ3 = 4

5θ4 ∈ [1, 10],
3. Four parameters: θ ∈ [1, 10]4.
For the parametric variants, the (3 · dim(θ)) training samples of the parameter space
are taken from a logarithmically uniform grid, whereas (ten) test samples are drawn
randomly from a logarithmically uniform distribution over the parameter range. The
empirical Gramians are build from trajectories excited by impulses, while the ROMs
are tested by random input. The decompositions for the empirical-Gramian-based
model reduction methods are approximated up to order one-hundred.

Practically, the following numerical results are conducted using MATLAB 2020a
on an Intel(R) Core(TM) i3-7130U CPU @ 2.70GHz with 8GB RAM.

6.3.1 Fixed Parameter

In the first set of numerical experiments, the thermal block benchmark is tested
with a single fixed parameter. Exemplary in Fig. 1, the model reduction error in
the approximate L2-norm for the ten considered methods are compared for reduced
models of orders one to fifty. This figure illustrates how complex a visualization
already in a single norm is. The proposed MORscores are listed in Table 1, which is
similarly not directly decipherable by a human observer, yet, algorithmically it can
be processed.
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Fig. 1 Relative error of reduced-order models in the L2-norm compared to the full order model
for varying reduced orders

Table 1 MORscore μ(50, εmach(dp)) for the non-parametric benchmark

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.42 0.42 0.41 0.39 0.63 0.49 0.51 0.52 0.54 0.06 0

PM(WO ) 0.29 0.29 0.29 0.28 0.10 0.38 0.38 0.38 0.10 0.45 0

AB(WC ,WO ) 0.33 0.33 0.32 0.30 0.46 0.03 0.04 0.04 0.44 0.39 37

AB(WZ ) 0.08 0.08 0.08 0.08 0.35 0.02 0.02 0.02 0.35 0.04 38

DS(WC ,WO ) 0.45 0.45 0.44 0.43 0.34 0.51 0.52 0.52 0.30 0.25 0

DS(WZ ) 0.39 0.38 0.38 0.36 0.34 0.39 0.39 0.39 0.34 0.08 0

BT(WC ,WO ) 0.38 0.38 0.37 0.35 0.45 0.36 0.36 0.36 0.43 0.18 25

BT(WZ ) 0.40 0.38 0.37 0.35 0.28 0.30 0.30 0.30 0.28 0.08 37

BG(WC ,WO ) 0.43 0.43 0.42 0.41 0.43 0.35 0.35 0.35 0.42 0.17 25

BG(WZ ) 0.35 0.34 0.33 0.31 0.28 0.30 0.30 0.30 0.28 0.08 37
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In the approximate signal norms the maximum MORscores are achieved by the
DS(WC ,WO ), closely followed by BG(WC ,WO ). Notably the BT variants used are
not in lead, which in this case is related to many unstable reduced-order models, due
to the low-rank approximation of the Gramians and using an SVD-based square root
method for balancing, and thus nullifying the stability preservation of the original
balanced truncation method. While the Galerkin methods do not produce unstable
ROMs, all Petrov-Galerkin methods produce at least 25 unstable ROMs.2 The H2-
norm is lead by the PM(WC ) method, whereas the H∞, Ha and HSH norms are
headed by DS(WC ,WO ), closely followed by PM(WC ). Finally, in modified induced
norms HC and HO , PM(WC ) and PM(WO ) perform best, respectively.

Overall for this benchmark, the methods using WC and/or WO outperformed
methods using WZ , likely due to the non-square system, which requires additional
averaging in the non-symmetric cross Gramian.

6.3.2 Single Parameter

The MORscores for the single parameter benchmark are given in Table 2 (L1 ⊗ X ),
Table 3 (L2 ⊗ X ) and Table 4 (L∞ ⊗ X ). Generally, all methods performworse com-
pared to the non-parametric benchmark, since the averaging of empirical Gramians
over parameter samples decreases specific accuracy while increasing general appli-
cability.

The signal norms are lead by BT(WC ,WO ) and directly followed by BG(WC ,WO ),
PM(WC ), DS(WC ,WO ), and DS(WZ ). In the H2 and HC norms, the methods
BT(WC ,WO ), PM(WC ), and AB(WC ,WO ) are in the lead, while in the system norms
H∞, HSH , Ha, PM(WC ) heads theMORscores. TheHO norm is toppedbyPM(WO )
and AB(WC ,WO ) methods. Balanced gains (BG) seem to work well for this bench-
mark, while approximate balancing (AB) performs worst overall.

As for the non-parametric benchmark, the Galerkin methods consistently produce
stable ROMs, and the Petrov-Galerkin methods tend to assemble unstable ROMs.

6.3.3 Multiple Parameters

The MORscores for the multiple parameter benchmark are given in
Table 5 (L1 ⊗ X ), Table 6 (L2 ⊗ X ) and Table 7 (L∞ ⊗ X ), and correspond over-
all to the single parameter setting, yet, with again slightly lower scores. Curiously,
balanced gains performance drops more than balanced truncation.

2 Unstable ROMs are treated as relative error of one, ε = 1, in the method’s MORscores.
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6.3.4 MORscore Discussion

Summarizing, the presented MORscore tables can improve heuristic comparisons of
model reduction methods. An automated evaluation could include filtering extreme
values per norm, as demonstrated in the previous evaluations, or (generalized)
means [12] per methods across norms.

Specifically for the comparison of the empirical-Gramian-based model reduc-
tion methods on the thermal block benchmark, the arithmetic means of MORscores
across norms yields the PM(WC ) and DS(WC ,WO ) methods as top scoring for the
non-parametric benchmark, and the PM(WC ) = POD for the parametric benchmark
variants, as in [6].

Beyond this sample comparison, the proposedMORscore could find application in
model reduction software development signaling regressions, or defining highscore
boards of competing methods for benchmark problems.

7 Conclusion

This work should be considered an exemplary quantitative comparison using
MORscores, and by no means exhaustive. Specifically, other relevant (empirical)
Gramian-basedmethods not tested here are (empirical) singular perturbation approxi-
mation [17], and (empirical) Hankel norm approximation [16], yet both methods are
not purely projection based but require a numerically potentially expensive post-
processing of a balanced realization. Also, the empirical Gramians have various
variants [26] that could be tested, as well as different balancing algorithms [58].
Nevertheless, this work can serve as a template for benchmarking model reduction
methods by their MORscore.

Code Availability Section

The source code of the presented numerical examples can be obtained from:

http://runmycode.org/companion/view/3760

and is authored by: Christian Himpe.
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Appendix

Single Parameter Benchmark MORscores

Table 2 MORscore μ(50, εmach(dp)) for the single parameter benchmark (L1 ⊗ X )

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.26 0.25 0.25 0.23 0.37 0.42 0.44 0.44 0.37 0.07 0

PM(WO ) 0.18 0.18 0.18 0.17 0.10 0.23 0.24 0.24 0.10 0.18 0

AB(WC ,WO ) 0.15 0.15 0.14 0.14 0.35 0.03 0.04 0.04 0.36 0.18 37.5

AB(WZ ) 0.06 0.06 0.06 0.06 0.24 0.02 0.02 0.02 0.23 0.05 38.1

DS(WC ,WO ) 0.24 0.23 0.23 0.22 0.19 0.30 0.31 0.32 0.19 0.15 0

DS(WZ ) 0.24 0.23 0.23 0.22 0.24 0.29 0.19 0.30 0.24 0.07 0

BT(WC ,WO ) 0.25 0.25 0.24 0.24 0.36 0.28 0.28 0.28 0.36 0.14 14.8

BT(WZ ) 0.18 0.18 0.18 0.17 0.20 0.19 0.19 0.19 0.20 0.10 33.2

BG(WC ,WO ) 0.26 0.26 0.26 0.25 0.33 0.23 0.23 0.23 0.33 0.12 18.5

BG(WZ ) 0.12 0.12 0.12 0.11 0.19 0.18 0.18 0.18 0.19 0.09 33.2

Table 3 MORscore μ(50, εmach(dp)) for the single parameter benchmark (L2 ⊗ X )

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.22 0.22 0.22 0.20 0.34 0.39 0.40 0.41 0.34 0.04 0

PM(WO ) 0.15 0.15 0.15 0.14 0.07 0.20 0.21 0.21 0.07 0.15 0

AB(WC ,WO ) 0.11 0.11 0.10 0.10 0.32 0.00 0.01 0.01 0.33 0.15 118.66

AB(WZ ) 0.03 0.03 0.03 0.02 0.21 0.00 0.00 0.00 0.20 0.02 120.56

DS(WC ,WO ) 0.20 0.20 0.20 0.19 0.16 0.27 0.28 0.29 0.16 0.12 0

DS(WZ ) 0.20 0.20 0.20 0.19 0.21 0.26 0.26 0.27 0.21 0.04 0

BT(WC ,WO ) 0.21 0.21 0.21 0.20 0.33 0.25 0.25 0.25 0.33 0.10 47.03

BT(WZ ) 0.15 0.14 0.14 0.13 0.17 0.16 0.16 0.16 0.17 0.07 105.00

BG(WC ,WO ) 0.23 0.22 0.22 0.21 0.30 0.20 0.20 0.20 0.30 0.09 58.52

BG(WZ ) 0.08 0.08 0.08 0.07 0.16 0.15 0.15 0.15 0.16 0.05 105.00

Table 4 MORscore μ(50, εmach(dp)) for the single parameter benchmark (L∞ ⊗ X )

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.24 0.23 0.23 0.21 0.37 0.42 0.44 0.44 0.37 0.07 0

PM(WO ) 0.17 0.17 0.17 0.16 0.10 0.23 0.24 0.24 0.10 0.18 0

AB(WC ,WO ) 0.12 0.12 0.12 0.11 0.35 0.03 0.04 0.04 0.36 0.18 40

AB(WZ ) 0.05 0.05 0.05 0.05 0.24 0.02 0.02 0.02 0.23 0.05 41

DS(WC ,WO ) 0.22 0.22 0.21 0.20 0.19 0.30 0.31 0.32 0.19 0.15 0

DS(WZ ) 0.22 0.22 0.22 0.21 0.24 0.29 0.29 0.30 0.24 0.07 0

BT(WC ,WO ) 0.23 0.23 0.22 0.21 0.36 0.28 0.28 0.28 0.36 0.14 17

BT(WZ ) 0.16 0.16 0.16 0.15 0.20 0.19 0.19 0.19 0.20 0.10 34

BG(WC ,WO ) 0.24 0.24 0.24 0.23 0.33 0.23 0.23 0.23 0.33 0.12 19

BG(WZ ) 0.10 0.09 0.09 0.09 0.19 0.18 0.18 0.18 0.19 0.09 34
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Multi Parameter Benchmark MORscores

Table 5 MORscore μ(50, εmach(dp)) for the multi parameter benchmark (L1 ⊗ X )

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.23 0.23 0.23 0.22 0.30 0.33 0.34 0.35 0.29 0.08 0

PM(WO ) 0.18 0.17 0.17 0.16 0.10 0.24 0.24 0.24 0.10 0.18 0

AB(WC ,WO ) 0.07 0.07 0.07 0.06 0.29 0.03 0.04 0.04 0.28 0.18 44.8

AB(WZ ) 0.07 0.07 0.07 0.07 0.18 0.02 0.02 0.02 0.18 0.07 33.3

DS(WC ,WO ) 0.21 0.21 0.20 0.19 0.20 0.30 0.32 0.33 0.20 0.16 0

DS(WZ ) 0.19 0.19 0.19 0.18 0.20 0.24 0.25 0.25 0.21 0.09 0

BT(WC ,WO ) 0.24 0.23 0.23 0.22 0.29 0.22 0.22 0.22 0.29 0.20 5.0

BT(WZ ) 0.08 0.08 0.07 0.07 0.15 0.14 0.14 0.14 0.15 0.11 29.8

BG(WC ,WO ) 0.18 0.18 0.17 0.17 0.27 0.19 0.19 0.19 0.27 0.18 9.0

BG(WZ ) 0.05 0.05 0.05 0.05 0.13 0.12 0.12 0.12 0.13 0.11 36.3

Table 6 MORscore μ(50, εmach(dp)) for the multi parameter benchmark (L2 ⊗ X )

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.20 0.19 0.19 0.18 0.27 0.30 0.31 0.32 0.26 0.05 0

PM(WO ) 0.14 0.14 0.14 0.13 0.07 0.21 0.21 0.21 0.07 0.15 0

AB(WC ,WO ) 0.03 0.02 0.02 0.02 0.26 0.00 0.01 0.01 0.25 0.15 141.75

AB(WZ ) 0.03 0.03 0.03 0.03 0.15 0.00 0.00 0.00 0.15 0.04 105.49

DS(WC ,WO ) 0.18 0.17 0.17 0.16 0.17 0.27 0.29 0.30 0.17 0.13 0

DS(WZ ) 0.16 0.16 0.16 0.15 0.17 0.21 0.22 0.22 0.18 0.05 0

BT(WC ,WO ) 0.20 0.19 0.19 0.18 0.26 0.19 0.19 0.19 0.26 0.17 16.12

BT(WZ ) 0.03 0.03 0.03 0.03 0.12 0.11 0.11 0.11 0.12 0.08 94.29

BG(WC ,WO ) 0.14 0.13 0.13 0.13 0.24 0.16 0.16 0.16 0.24 0.15 29.53

BG(WZ ) 0.01 0.00 0.00 0.00 0.10 0.08 0.09 0.09 0.10 0.08 114.90

Table 7 MORscore μ(50, εmach(dp)) for the multi parameter benchmark (L∞ ⊗ X )

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC ) 0.21 0.21 0.20 0.20 0.30 0.33 0.34 0.35 0.29 0.08 0

PM(WO ) 0.16 0.16 0.16 0.15 0.10 0.24 0.24 0.24 0.10 0.18 0

AB(WC ,WO ) 0.04 0.04 0.04 0.04 0.29 0.03 0.04 0.04 0.28 0.18 47

AB(WZ ) 0.04 0.04 0.04 0.04 0.18 0.02 0.02 0.02 0.18 0.07 38

DS(WC ,WO ) 0.19 0.19 0.18 0.18 0.20 0.30 0.32 0.33 0.20 0.16 0

DS(WZ ) 0.18 0.17 0.17 0.17 0.20 0.24 0.25 0.25 0.21 0.09 0

BT(WC ,WO ) 0.21 0.20 0.20 0.19 0.29 0.22 0.22 0.22 0.29 0.20 7

BT(WZ ) 0.05 0.05 0.04 0.04 0.15 0.14 0.14 0.14 0.15 0.11 32

BG(WC ,WO ) 0.15 0.15 0.14 0.14 0.27 0.19 0.19 0.19 0.27 0.18 15

BG(WZ ) 0.02 0.02 0.02 0.02 0.13 0.12 0.12 0.12 0.13 0.11 40
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Optimization-Based Parametric Model
Order Reduction for the Application to
the Frequency-Domain Analysis of
Complex Systems

Rupert Ullmann, Stefan Sicklinger, and Gerhard Müller

Abstract A parametric model order reduction approach for the frequency-domain
analysis of complex industry models is presented. Linear time-invariant subsystem
models are reduced for the use in domain integration approaches in the context
of structural dynamics. These subsystems have a moderate number of resonances
in the considered frequency band but a high-dimensional input parameter space
and a large number of states. A global basis approach is chosen for model order
reduction, in combination with an optimization-based greedy search strategy for the
model training. Krylov subspace methods are employed for local basis generation,
and a goal-oriented error estimate based on residual expressions is developed as
the optimization objective. As the optimization provides solely local maxima of
the non-convex error in parameter space, an in-situ and a-posteriori error evaluation
strategy is combined. On the latter, a statistical error evaluation is performed based on
Bayesian inference. Themethod finally enables parametricmodel order reduction for
industry finite element models with complex modeling techniques and many degrees
of freedom. After discussing the method on a beam example, this is demonstrated
on an automotive example.
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1 Introduction

Numerical methods as uncertainty quantification (UQ) or globalized optimization
provide new opportunities for a robust analysis and synthesis of the vibroacoustic
quality of vehicles. Typically, such multi-query approaches involve system eval-
uations for an extensive number of different parameter values. In the automotive
industry, these methods thus are infeasible, as numerical models often have a fine
finite element (FE) discretization, which needs to be valid for different analysis
types. Corresponding models, therefore, have many degrees of freedom (n ≈ 106).
The latter is also the case for the band-limited frequency-domain analysis of linear
time-invariant models, which is discussed in the following. Although the systemmay
have a moderate number of resonant modes in that frequency band, which theoreti-
cally allows for coarser meshes, remeshing the model for any particular application
is time expensive and thus impossible in practice. Parametric model order reduction
(pMOR) is one remedy to enable multi-query methods for such a large-scale full
order model (FOM).

The transmission of structure-borne sound must be analyzed for whole vehicle
assemblies composed of different subsystems. This motivates the combination of
domain decomposition, respectively, integration, with pMOR by projection on sub-
system level. Coupling the input-to-output behavior of several reduced-order models
(ROM) in the frequency domain, efficient numerical algorithms can be obtained.
As the coupling step is not in the focus of this study, refer to [23] for an overview
in the context of dual-domain integration or [42] in the context of co-simulation.
Complete vehicle models contain hundreds of design or uncertain model parame-
ters. Domain decomposition allows for a localized treatment of these parameters on
a subsystem level. A practical pMOR method then needs to preserve multiple sub-
system parameters for variation in the ROM, not in the order of hundreds but still
up to a high-dimensional order of d = 15. At the same time, considering large-scale
subsystem FOMs, the pMOR approach must require a minimum number of FOM
system evaluations for the projection matrix construction. For later coupling, pMOR
also must be efficient with respect to the input-to-output behavior, defined by the
transfer function matrixH, for multiple-input-multiple-output (MIMO) subsystems.

The authors of [9] provide an extensive overview of pMOR. Following the scheme
of that publication and an offline-online separation principle, pMORmethods can be
classified according to the approaches chosen for the three necessary steps: parameter
sampling for identifying sampleswhich should be included in the basis, thus the train-
ing, basis construction itself in the offline phase and ROM generation at requested
parameters in the online phase. The method discussed here uses approaches for these
steps, as follows. For the first step of training, which is challenging for the combina-
tion of large-scale FOMs and high-dimensional parameter spaces, a grid-free greedy
optimization-procedure is derived in Sect. 3. For the second step of basis genera-
tion, Krylov subspace methods are chosen, see Sect. 2.1. These allow controlling the
error directly on the subsystems’ H in a bounded frequency range. The third step of
ROM generation contains the basic concept of handling ROM parameter variations
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in the online phase, in which a UQ is performed, for example. Two basic schemes are
available: local and global approaches. Local approaches generate reduced models
at certain parameter samples in the offline phase. In the online phase, these local
ROMs are interpolated over the parameter space for any parameter sample at which
the system should be evaluated employing generically chosen interpolating basis
functions. There are different concepts for interpolation: interpolating local projec-
tion matrices [2, 10, 44], reduced system matrices [3, 18, 36], or reduced transfer
functions [6, 7]. In the context of the latter, an interpolation in the pole-residue form
recently received attention [47, 48]. Local pMORmethods are attractive as no infor-
mation about the parametric dependency is necessary, thus they can be applied to
black-box subsystems. However, due to the same reason, they suffer from the “curse
of dimensionality” for parameter variations in the ROM, which can be reduced by
the application of sparse grids [7, 22], for example. As another remedy to that for
high-dimensional parameter spaces, there is a second class of methods, which is
discussed in the following section.

2 Basics of the Global Basis and Krylov Subspace Method

A projection matrix Vg is found in global approaches, which is valid over the whole
parameter space at any parameter samplep j ∈ [

pl,pu
]
.Vg can be obtained by assem-

bling a sufficiently high number of local bases Vz at different parameter points

Vg = [V1,V2, ...,Vr ] . (1)

Global basis methods are established in a class of techniques under the name of
reduced basis methods, in particular. In these methods, parameter sampling is per-
formed using a greedy search strategy and a global basis is constructed, mainly using
Proper Orthogonal Decomposition (POD), refer to [43], for example.

2.1 Krylov Subspaces

In contrast to classic reduced basis methods, Krylov subspace methods are chosen
for the local basis generation of Vz in the following. By means of Krylov subspace
methods,moments of the transfer functionmatrixH(s,p) can bematched in the FOM
and ROM. The moments mp, j are defined at an expansion point s0 in the Laplace
domain and for a fixed pz as

H(s,pz) =
∞∑

j=1

1

j !
∂H(s,pz)

∂s j

∣∣∣∣
s0

(s − s0)
j−1 =

∞∑

j=1

−mpz , j (s − s0)
j−1. (2)
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Purely imaginary expansion points s0 = iω0 are chosen in the following, for which
H(s,p) of the underlying vibroacoustic second-order system is obtained by

H(s = iω,p) = C
(
K(p) + isign (ω) S(p) + iωD(p) − ω2M(p)

)−1
B. (3)

C and B are the output and input matrices. K, M, D, S are the stiffness, mass,
viscous damping, and structural dampingmatrix,which are assumed to be symmetric.
The dynamic stiffness matrix Kd = −ω2

0M + iω0D + K + isign (ω0)S is singular
at ω0 = 0 for subsystems without Dirichlet boundary conditions. As consequence,
no moments around ω0 = 0 can be matched. Numerically stable moment matching
is obtained from Bubnov-Galerkin projection with the projection matrix Vz ,

Gq(P1,P2;Q) = span {R0,R1, ...Rr−1} = span (Vz) . (4)

Gq is a second-order Krylov subspace [40] of order q, defining the vector sequence

R0 = Q

R1 = P1R0

R j = P1R j−1 + P2Rl−2 for j ≥ 2.

By choosing P1 = −K−1
d · Dd, P2 = −K−1

d · M, and Q = −K−1
d · B, while Dd =

2iω0M + D, at least q moments of the FOM and ROM can be matched at s0. For
many cases of damping, like S as well asD are zero or defined as Rayleigh-damping
S,D = αK + βM, first-order Krylov subspaces can be used, see, [24], for example.
In any case, modified Arnoldi (like) algorithms are used for constructing the local
projection matrices in the following, involving an orthogonalization by the modified
Gram-Schmidt algorithm and a subsequent QR decomposition. In the latter, inex-
act deflation is considered, and moment matching is not exactly fulfilled anymore.
Columns in Vz with an euclidean norm smaller than the deflation length ldefl are
removed. This reduces the column size of the projection matrix for many subsystem
inputs, which are present in subsystem coupling applications.

Equation (2) defines moments of H(s,p) with respect to s. In view of pMOR,
there are methods extending the concept of moments to additional parameter dimen-
sions, see [8, 17] for one approach. Although conceptually promising, established
algorithms need to be at least modified.

2.2 Affine Matrix Decomposition

Global methods showed up to be suitable for ROM generation in higher dimensional
parameter spaces [9]. With an efficient training strategy, potentially less FOM sys-
tem solutions are needed. Simply speaking, one can see the reason for that in the
shifted interpolation problem compared to local approaches. For an efficient global
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basis method, the interpolation scheme of K, M, D and S must be found for their
dependency on p a-priori in the form of an affine matrix decomposition

A(p) =
h∑

j=1

f j (p)A j . (5)

f j (p) are scalar functions of the parameter vector p and A j ∈ C
n×n are parameter-

independent matrices. In vectorized form with a(p) = vec (A(p)) one can reformu-
late Eq. (5) as

a(p) = �f̂(p). (6)

f̂(p) ∈ C
h×1 contains the h basis functions for interpolation and� ∈ C

na×h the corre-
sponding interpolation coefficients, respectively A j per column. Knowing the affine
decomposition of a matrix allows to compute its projection by

AR(p) = VH
g A(p)Vg =

h∑

j=1

f j (p)VH
g A jVg =

h∑

j=1

f j (p)AR, j . (7)

Consequently, it is possible to precompute the projections AR, j once the projec-
tion basis is found. Afterward, AR(p) can be evaluated in the online phase for any
parameter value using the same FOM interpolation rule along with AR, j .

In summary, not an interpolation scheme between different ROMs has to be
approximated after projection as in local pMOR, but the interpolation rules for the
systemmatrices of theFOM. In contrast to the unknownanalytic relationship between
the reduced systems in local pMOR, there is a low-rank parametric dependency
of the FOM system matrices for many physical quantities, which can be derived
analytically. In this case, additional knowledge is available to avoid the curse of
dimensionality in the ROM evaluations.

Commercial FE codes usually do not provide white-box access to their code for
intrusive changes. Nevertheless, an exact interpolation problem Eq. (6) can be recon-
structed from parameter samples of the FOM system matrices, when the parametric
dependency is known from theory. This is the case for many parameters, which are
relevant for vibroacoustic FE models. For many FE formulations, material param-
eters like modulus of elasticity E , or mass density ρ have a linear influence on the
stiffness, respectively, mass matrix. The same holds for the damping matrix in the
case of the structural damping coefficient η, or the Rayleigh-damping coefficients
α and β. A linear dependence also exists for the parameters of discretized compo-
nents in the model, like linear springs or viscous dampers. The basis functions are
known formany cases of geometric parametrization, in addition. For shells, which are
modeled by triangular plate elements, the system matrices depend on the thickness
through a cubic polynomial. For Euler-Bernoulli and Timoshenko beam elements,
the influence of element length and cross-sectional dimensions is known. The deriva-
tion of Eq. (6) is also possible for geometric parameters in the case of more general
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element formulations. Fröhlich et al. [21] derived affine matrix decompositions for
shape variations of solid elements. An application is found in Sect. 4.1.

For the case that neither the underlying FE code is accessible nor additional
knowledge about the parametric dependency, and, therefore, the interpolating basis
functions are available, inexact interpolation must be applied. This can be achieved
by polynomial basis functions, for example, or regressionmethods. Another, concep-
tually different, approach to approximate Eq. (6) is given by the Discrete Empirical
Interpolation Method [4, 9, 14].

3 OGPA: Optimization-based Greedy Parameter Sampling

For the construction of the local projection matrices, proper sample positions in the
high-dimensional parameter space and the expansion points in the Laplace domain
have to be determined in the training phase of global basis construction. Greedy
algorithms are a practical approach to determine such sampling points in p and s.
In a greedy search, the samples, respectively local ROMs are found one after the
other. The best location for the next local model is determined per step, based on
maximizing error measures on a discrete training set of parameter samples. Such
approach does not provide a point selection, which is strictly optimal with respect to
some norm, as the methods of [5, 25, 29]. However, no integration of error measures
over the whole parameter space is necessary or the repetitive factorization of Kd

at all sampling points; thus greedy approaches are attractive for the application to
large-scale industry FOMs.

To ensure the generation of efficient ROMs by a greedy approach, the training
set must represent the typically non-convex error measure in the parameter space
accurately enough. This is challenging for the high-dimensional parameter spaces of
industry FOMs. Regular sampling grids show a complexity of O(ndsam) for nsam sam-
ples per parameter dimension, leading again to the curse of dimensionality, now for
the training phase of global basis generation. Sampling a 15-dimensional parameter
space coarsely by three samples per parameter dimension already requires 14 · 106
grid points, for example. Remedies are available for that. Training sets can be gen-
erated using non-regular sampling strategies, Latin Hypercube Sampling [34], for
example. Instead of using a static training set, several adaptive greedy approaches
were developed as an alternative, which follow different refinement strategies, see
[15, 26, 27], for example. In that context, [41] introduced a multi-stage procedure,
[38] used surrogate models to identify regions for sampling refinement. Adaptive
hierarchical greedy approaches are also available via sparse grids, see [13, 49],
which can be applied in global reduced basis methods, see [16, 39].
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3.1 Grid-Free Sampling

In order to meet that curse of dimensionality for the training phase of global basis
construction, a grid-free sampling approach is proposed in the following. Opposed
to the above discussed greedy approaches, the maximization of the error (estimate)
does not rely on the evaluation on a fixed or adaptive grid. Instead, the i-th expansion
point position pi in the parameter space is found in a grid-free way. To determine the
parameter sample, which is added to the global basis next, the constrained nonlinear
optimization problem

argmax
ipopt∈[pl,pu]

‖ε (p)‖ (8)

is solved for an initial (random) guess of the parameter position ip0 . The objective
function ε (p) is an error function of the ROM. To start the greedy procedure, an
initial ROM with Vg = V0 is required. Afterward, a gradient-based optimization is
employed for the solution of Eq. (8) in each greedy iteration. The idea of a greedy
search via an optimization-based determination of pwas introduced first by [11, 12].
Later, the concept was followed by [30, 46] in the context of reduced basis methods,
for example.

Following the same basic idea of an optimization-based greedy parameter sam-
pling (OGPA), the approach presented here is derived for band-limited frequency-
domain analyses and Krylov subspace methods. The error evaluation, respectively,
estimation, is in the frequency domain and is developed goal-oriented for the MIMO
subsystem transfer function matrix; thus for the use in subsystem coupling. Gradi-
ents are derived efficiently based on an adjoint formulation for the use with many
parameters.

3.1.1 Local Error Indicators for Sampling

Accounting for the fact that large-scale industry FOMs are considered, the use of the
true ROM transfer function error as optimization objective in Eq. (8) is expensive
as each evaluation of the true error needs a FOM solution. At the same time, it is
sufficient to assess the correct trend of the error, not the absolute amplitude, to solve
the optimization problem of Eq. (8). In general, the use of an error estimate results
in a trade-off between the accuracy of the reduced ROM for a fixed ROM size, hence
the efficiency, and the required computational efforts, which are necessary for error
calculations in the basis generation. Bui-Thanh et al. [12] showed this effect for their
approach in the time domain by comparing the use of the true error function and
a cheaper estimation by the residual introduced in the FOM by the ROM solution.
Utilizing the latter, more expansion points were necessary to obtain a prescribed
error. This indicates that a point placement based on error estimates is less optimal.
However, in any case, multiple local optimizations are required for basis generation,
each needing multiple iterations up to a few hundred. Consequently, many error
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evaluations are necessary, and a suitable error measure must be primarily cheap for
the application to large-scale vehicle FOMs. Evaluating the true error is not possible.

Residual expressions are an attractive choice for the error approximation as they
make use of the FOMmatrices but without the necessity of factorizations of the latter.
For the Galerkin projection of symmetric subsystems with CH = B and symmetric
Kd, the error in the transfer function matrix is related to the residual as follows

εH = H − HR = rHB K
−1
d rB. (9)

ni is the number of subsystem inputs, rB ∈ C
n×ni is obtained by

rB = B − KdVgxR,B (10)

while xR,B = K−1
d,RV

H
g B is the ROM solution and Kd,R = VH

g KdVg the projected
dynamic stiffness matrix. Taking a submultiplicative matrix norm of Eq. (9), one
results in

‖εH‖ ≤ ∥∥rHB
∥∥ ∥∥K−1

d

∥∥ ‖rB‖ . (11)

This error bound can be used to calculate various approximations to the error ‖εH‖,
see [19, 20] for some recent work. A more basic approach is to omit the first part∥∥rHB

∥∥ ∥∥K−1
d

∥∥ and just to assume a proportional behavior between ‖εH‖ ∝ ‖rB‖. On
the one hand, such approach can be only a rough approximation to the trend of ‖εH‖
and it is not possible to determine the quantitative error from that expression. The
amplification by

∥
∥K−1

d

∥
∥ is not considered; consequently this error estimate may fail

at system resonances with a low modal damping coefficient. On the other hand, it is
a computationally cheap approach, as one does not need to evaluate or approximate∥
∥K−1

d

∥
∥. In the context of large-scale FOMs, therefore, this approach is considered

in the following by evaluating the Frobenius norm of the force residual rB

r = − log10(‖rB‖F). (12)

The Frobenius norm was chosen as it is submultiplicative and gradients can be
calculated for it. The logarithm of the norm is finally calculated. This accounts for
the fact that the norm of the residual usually varies by orders of magnitude in the
parameter space. As a result, convergence criteria would be hard to determine for
the optimization algorithm without taking the logarithm.

Gradients of r are provided to the optimization algorithm. To derive the gradients
for the general case of a MIMO system, consider the case of a SISO system with
H = cK−1

d b in a first step. As cT and b are column vectors, the residual rb is also a
column vector and gradients are provided by

dr

dp j
= ∂r

∂p j
+ ∂r

∂xR,b

dxR,b

dp j
. (13)
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The evaluation of Eq. (13) requires the calculation of the total derivative dxR,b/dp j .
An additional equation is available for that, which is given by the residuum of the
ROM’s governing equations

rR = bR − Kd,RxR,b = 0. (14)

Calculating the total derivative of Eq. (14) with respect to the design parameter p j ,
rearranging the expression for dxR,b/dp j and inserting it in Eq. (13), one arrives at

dr

dp j
= ∂r

∂p j
− ∂r

∂xR,b

[
∂rR
∂xR,b

]−1
∂rR
∂p j

= ∂r

∂p j
+ �T ∂rR

∂p j
. (15)

Introducing the substitution by �T , the adjoint approach for gradient calculation is
followed. This is an effective choice, as there are usually multiple input parame-

ters, but exactly one objective, r , see [33]. With d‖rb‖2F
dp j

= 2	
(
rHb

drb
dp j

)
, the adjoint

approach finally provides the gradient as

dr

dp j
= k

(
∂ ‖rb‖2F

∂p j
+ �T ∂rR

∂p j

)
= k	

(
2rHb

∂Kd

∂p j
VgxR,b + �T ∂Kd,R

∂p j
xR,b

)
. (16)

k = 1
2‖rb‖2F log(10) is obtained from applying the chain rule to the square root and the

logarithm of ‖rb‖2F. The adjoint � is obtained from the solution of

[
∂rR
∂xR,b

]T

� = −
[
∂ ‖rb‖2F
∂xR,b

]T

, (17)

which results in
� = (

KT
d,R

)−1 (−2rHb KdVg
)T

. (18)

Starting from the gradient formulation for SISO systems, the gradients can be
derived for the general MIMO case. For the latter, the residual rB of Eq. (10) is a
matrix with as many columns as the number of inputs ni . In order to extend the above
framework for gradient calculation, the squared Frobenius norm is considered as the
sum of the squared column vector lengths of the residual

∥∥rB,i

∥∥2
F. Following that,

the squared Frobenius norm is obtained from the trace of a matrix-matrix product
‖rB‖2F = ∑ni

i=1

∥∥rB,i

∥∥2
F = tr

(
rHB rB

)
. With that considerations, the adjoint � is cal-

culated for the ni objectives of the squared column lengths
∥∥rB,i

∥∥2
F. Consequently �

becomes a matrix, which is obtained from ni right hand sides

� = (
KT

d,R

)−1 (−rHB KdVg
)T

. (19)

With that, Eq. (16) is finally extended for the general MIMO case to
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dr

dp j
= k 	

(
tr

(
rHB

∂Kd

∂ν
VgxR,B + �T ∂Kd,R

∂p j
xR,B

))
(20)

with k = 1/‖rB‖2F log(10).
The solution of the adjoint system Eq. (19) is needed, along with the derivatives of

the system matrices ∂Kd
∂p j

and ∂Kd,R

∂p j
to calculate the gradients of the objective function

r . As, the affinematrix decomposition is known for the dynamic stiffness, derivatives
of Kd and Kd,R can be obtained analytically by differentiating f j (p) in Eq. (5). The
affine matrices A j remain unchanged. The calculation of the adjoint solutions is
computationally cheap, as they are obtained from the reduced model.

For many systems, the sum of matrix-matrix and matrix-vector multiplications
of FOM size is computationally more demanding than the solution of the reduced
system for the adjoints. This is especially the case, when the Hessian matrix should
be calculated and provided to the optimization algorithms. Adjoint formulations can
be also found for the Hessian matrix, see [37] for example. But, hundreds of matrix-
matrix multiplications of FOM size are required to calculate the Hessian matrix at
one objective evaluation already for a small number of parameters. For large-scale
industry FOMs, the evaluation of the Hessian thus is prohibitively expensive.

3.1.2 Optimization Strategy

Employing Krylov subspaces for local bases, not only the optimal position in param-
eter space has to be found. To determine the expansion points for each local basis
Vz , suitable points in the Laplace, respectively, frequency domain as s0 = iω0, are
also required. This raises the question of how the frequency dependency of the sys-
tem should be included in the optimization process. Motivated by the approach of
[12] for unsteady problems, one option is to follow a separation principle: Firstly,
to integrate the error over the relevant frequency range ε (p) = ∫

ω
ε (p, ω) dω and

to find the parameter sample by optimization of Eq. (8), at which the local ROM
is constructed. Secondly, to determine the frequency point(s) for moment matching
by an appropriate method. Even if cheaper error estimates are used instead of the
true error, however, this strategy prohibits the use of large-scale FOMs. It is com-
putationally too expensive to consider the error integral over the relevant frequency
range as optimization objective. In fact, Eq. (3) belongs to a steady problem with an
additional parametric dependence on the frequency ω. Consequently, ω defines an
additional parameter dimension and is included in p̃

p̃ = [
p, ω

]T
. (21)

Using this definition of the parameter vector in combination with a one-expansion-
point-per-local-basis strategy, Eq. (8) provides both: the position of the local basis
in parameter space and the frequency position of the expansion point are obtained
without integration over the frequency domain.
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In combination with the error estimate of Sect. 3.1.1, an efficient gradient-based
optimization of Eq. (8) is possible. Sequential Quadratic Programming (SQP) is
used as optimization algorithm, due to the efficiency reasons discussed above. The
algorithm does not employ the true Hessian, but an estimation of the Hessian via
the Broyden-Fletcher-Goldfarb-Shanno approach, see [35] for example. However,
the optimization objective r , Eq. (12), is a potentially highly non-convex function.
A single gradient-based optimization in Eq. (8) thus results in a local maximum of
the error function, not the global one. Globalized optimization methods as a remedy,
[28], for example, lead to an increased computational effort in each greedy iteration
step, as they typically require a significantly high number of objective evaluations. In
the case of the application to large-scale FOMs, such globalized approaches become
impractical even for the residual error estimation as objective. Therefore, the global
maximum of the error in the parameter range remains unknown, which implies the
following consequences.

Firstly, this impacts the evaluation of the ROM accuracy and no definite evidence
over the whole relevant parameter space is possible. This holds for both, the instan-
taneous ROM accuracy during the basis construction as well as the final one after
basis generation. As a consequence of the grid-free approach, no training set is avail-
able from basis generation, which samples the parameter space densely and which
allows estimating the error bound directly from the sampling or some interpolation
in between. Adaptive approaches are one remedy to that unknown error bound of the
ROM in parameter space. In such a method, there is an error control in the online
phase, and Vg is enriched if needed. See [1], for an example. Another strategy is
followed here, which provides a strict separation between offline and online phase,
in contrast. As no a-priori error bound is available, an additional validation set is
introduced. On this validation set, the true error in the transfer functions is evalu-
ated after basis generation, but before the online phase. Only statistical measures are
employed as the maximum error remains unknown, which is discussed in Sect. 3.2
more in detail.

Another consequence of the unknown global maximum of the non-convex error
function in each greedy iteration is a semi-optimal expansion point placement in the
parameter space. While in a greedy search, one aims to place the expansion points
at the global maximum of the error per iteration, only local maxima are obtained
as discussed. As an alternative to distinct globalized optimization, heuristics are
available in literature. Urban et al. [46] discussed several possibilities for a pre-
selection of candidates for the initial point i p̃0 at the i th iteration of the greedy
search. Motivated by this, a greedy search for i p̃0 on a random parameter sample set
precedes the local optimization. Based on this sample set, which is small (npre ≤ 150)
and is changing in each iteration, the parameter sample with the smallest r is selected
as i p̃0 .

The semi-optimal expansion point placement does not solely result from the non-
global optimization, but also the use of the error estimate instead of the true error. The
latter leads to a placement of expansion points even not necessarily at localmaxima of
the true error. To address that, a two-step validation procedure for i p̃opt is introduced
in the iterations of the greedy search. In a second step after each optimization, the
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Fig. 1 Flow diagram for the pMOR basis generation and validation

maximum norm of the true relative error at this candidate parameter sample point
is evaluated in-situ. Only in the case the true error is above εlimrel , a local basis is
calculated at i p̃opt and added to Vg.

Introducing the two-step procedure for expansion point selection, it is also pos-
sible to define a stopping criterion for the greedy-based procedure. If nskipMax suc-
cessive iterations result in local maxima with εH,rel < εlimrel this can be considered as
an indicator for an accurate ROM with the prescribed tolerance over the parameter
range. ROM training is ended in this case, which is considered as a lucky breakdown.
Afterward, the ROM quality can be evaluated further in the a-posteriori ROM evalu-
ation, see Sect. 3.2. Otherwise, if nitMax iterations are performed, but still a parameter
sample is obtained from optimization with εH,rel > εlimrel , there is a bad breakdown.
Obviously, it was not possible to find a ROM in nitMax − 1 iterations, which covers
the parameter space with the prescribed error bound. In this case, the basis generation
can be restarted with different settings, or the ROM can be evaluated for its qualifi-
cation for the desired application in the a-posteriori ROM evaluation. The procedure
for basis generation is summarized in Fig. 1.
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3.2 A-Posteriori Model Quality Evaluation

To assess the quality of the ROMover thewhole admissible parameter space robustly,
the true relative error is evaluated on another additional sample set, which is decou-
pled from basis generation. In line with the concept of offline and online phase, a
validation set is used, on which the true error is analyzed after basis generation, but
before the online phase. To account for the high-dimensional parameter space, which
requires many samples on the one hand, and the expensive FOM evaluations on the
other hand, only a small validation set can be considered. The basic idea here is not
trying to assess the global maximum of the error, as this would require knowledge
of the underlying deterministic error expression or prohibitively large validation sets
to sample the whole parameter space sufficiently dense as discussed above. Instead,
the insufficient knowledge is met by assuming the error function as a black-box with
stochastic behavior.

The validation set is generated by randomsampling ofp, and statisticmeasures can
be applied to the errors εH,rel obtained on the sample set. Histograms are provided
for the following examples in order to show the potential of the proposed pMOR
method descriptively. Providing such a measure, like mean and variance, however,
is challenging in daily industrial applications. For each parameter sample, the FOM
needs to be solved to obtain the true error εH,rel. At the same time, the convergence
rate of the statistic measures may be small in high-dimensional parameter spaces,
and a large validation set may be required. Confidence levels of the obtained statistic
measures can only be estimated by extensive sampling approaches, in addition.

As a remedy, one can employ probability theory to obtain a robust and cost-
effective measure for the true error εH,rel of pROMs in high-dimensional parameter
spaces. Utilizing Bayesian inference, one can generate an estimate for the statistical
behavior of εH,rel for relatively small sample sets and can provide confidence levels
at the same time. Bayesian inference allows determining a subjective probability of
a good outcome, including the confidence level, respectively, the probability for that
assumed subjective probability of success. Success, respectively, a good outcome
is defined as εH,rel ≤ εlimrel , εH,rel > εlimrel is classified as bad outcome for a parameter
sample, respectively, as an overshoot. Consequently, a binomial setting is followed
here. Information is dropped, as one does not consider the actual magnitude of the
error except the question if it is below the error threshold or not. This leads to a
relaxed requirement for ROMmodel quality, which only needs to be ensured from a
statistical point of view. This will be demonstrated in Sect. 4.1. Even high errors of
the ROM model may be accepted, as long as there are only few overshoots, which
can be a sufficient requirement for many multi-query methods.

The application of such binomial setting as quality indicator for simulation outputs
in engineering problems is not new.But no applications to the assessment of (p)ROMs
are available to the authors’ knowledge. Lehar and Zimmermann [31] introduced the
principle in order to estimate failure probabilities for vehicle crash simulations. The
remaining paragraphs of this section follow closely that publication. Zimmermann
and vonHoessle [50] use Bayesian inference to determine solution spaces in complex
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engineering models. In the most general form, Bayes theorem is

P (A|B) = P (B|A) P (A)

P (B)
. (22)

In the setup of (p)MOR, B is an observed result from an experiment, which is
defined here as m good outcomes with εH,rel ≤ εlimrel within N samples calculated
during the experiment in total. A is the probability of a good outcome and P (A|B)

the probability of that probability for the observed experimental result. P (A) is the
prior distribution of probability A. As there is no knowledge about this distribution
before the experiment, it is assumed to be uniform between 0 and 1 initially, leading
to probabilities which are all equally likely. Performing the experiment then allows
to update that initial guess by means of Bayes theorem. For a binomial setup with
initial uniform distribution, Eq. (22) can be rewritten as

p (a|m, N ) = p (m, N |a) p (a)
∫ 1
0 p (m, N |g) p(g)dg =

(N
m

)
am(1 − a)N−m p (a)

∫ 1
0

(N
m

)
gm(1 − g)N−m p(g)dg

. (23)

As a is not known upfront, it is not practical to determine the confidence level of
a single probability value for a good sample, a. Typically this would lead to small
confidence levels. To get robust results, the confidence level has to be determined for
confidence intervals of a instead, al < a < au. Equation (23) can be reformulated
and simplified for confidence intervals of a as [31]

P (al < a < au|m, N ) =
∫ au
al

tm(1 − t)N−mdt
∫ 1
0 gm(1 − g)N−mdg

. (24)

Note, for the prior uniform distribution the probability of the probability a is con-
stant p(a) = p(s) and was eliminated from Eq. (24). Equation (24) finally allows to
determine the confidence level that the probability a for εH,rel ≤ εlimrel at any requested
parameter combination p is in the confidence interval al < a < au. The user prede-
termines the latter, and the true error, calculated at N uniformly distributed parameter
values is required as experimental measurement. No additional inputs or assumptions
are necessary on the distribution of the error εH,rel. The relation between the param-
eters p and the error εH,rel is handled as black-box. The most significant advantage,
however, is the fast convergence of the width of confidence intervals for prescribed
values of confidence level, as pointed out by [31]. In the case of an actual a close to
1 (or 0), only small sets of samples are necessary to obtain high confidence levels
for rather narrow confidence intervals.
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4 Numerical Examples

The pMORapproach is discussed in two numerical examples in the following. Firstly,
more general results are discussed on a simple beam example. Secondly, it is demon-
strated for an automotive rear axle carrier, how the numerically efficient methods for
basis generation and validation enable the application to large-scale industry models.

4.1 Cantilever Solid Beam

A beam example with high-dimensional parameter space is considered, as illustrated
in Fig. 2. The fully parameterized example is available for reproduction alongwith its
affine decomposition in [45]. A MIMO setting is chosen with two interface nodes,
each having six degrees of freedom (DOFs), which results in 12 inputs and out-
puts. The local coordinate system of the first interface node is rotated intrinsically
by ϕz = 30◦ and ϕx = 20◦, the one of the second node by ϕz = 15◦ and ϕx = 25◦.
Although the geometry of themodel is conceptually simple, it has relevance for indus-
trial applications: modeling techniques for standard industry models are used, which
are provided by the commercial FE software ABAQUS. Linear hexagon 3D elements
with eight nodes and incompatible modes (C3D8I) are chosen for discretization of
the beam. A rather coarse mesh of three elements in each cross-sectional dimension
and 40 elements per section length results in 13164 degrees of freedom (DOFs). The
nodes of the inputs are tied to the corresponding surfaces of the beam via kinematic
couplings. As there is no ability to access the program code of the ABAQUS FE pro-
gram but the affine functions f j (p) are known from theory, the affine decomposition
is reconstructed from parameter samples of the FOM system matrices. Nine variable
parameters are chosen in the following: the cross-sectional width b, and per section
the material density ρi , the Elastic modulus Ei , the structural damping coefficient ηi
as well as the section length Li . The affine matrix decompositions ofK and S consist
of 20 terms for the selected parameters, the one of M of two terms, see [45] for the
detailed formula.

Fig. 2 Schematic drawing of
the cantilever beam example
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Table 1 Lower and upper bounds of the parameter values for the beam example. All units are
omitted as they are in Newton, millimeter and ton

E1 ρ1 η1 E2 ρ2 η2 b L1 L2

pl 2.5 · 104 7 · 10−10 0.005 0.85 · 104 1 · 10−9 0.005 20 200 200

pu 7.5 · 104 10 · 10−10 0.05 3.5 · 104 5 · 10−9 0.05 24 300 400
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Fig. 3 Magnitude of the transfer function at a the diagonal element for node 1 DOF 1; b the off
diagonal element, relating node 1 DOF 1 to node 2 DOF 2. The solid line belongs to the transfer
function of the FOM, the starred line to the one of the ROM. A third setting with arbitrary parameter
values is visualized in addition to the soft and hard bound setting

The parameter ranges are specified by the bounds in Table 1 and lead to a signifi-
cant variance in the system response over parameter range, which needs to be covered
by the global basis. This is visualized for the transfer function by two parameter set-
tings in Fig. 3: a set which is called soft bound, and another called hard bound. In
the soft setting, the upper bound values are chosen for ρi and Li , the lower bound
values for b, Ei and ηi . In the hard setting, the values are defined in the opposite way.
A 10D parameter space has to be covered, with the frequency ω as one parameter
dimension, for which a range of ω ∈ [

0 rad s−1, 3000π rad s−1
]
is chosen.

PMOR with a training by OGPA is applied for these parameter settings. A maxi-
mum relative error of the ROM of εlimrel = 5 · 10−3 is prescribed, a deflation length of
ldefl = 1 · 10−9 and a Krylov order of o = 3 is specified. As initial expansion point
0p̃0 , the center point in parameter space is chosen. In addition, the maximum number
of residual evaluations per local optimization is limited to 200; thus non-converged
local optimizations may be accepted. Prior to each optimization the starting point is
determined in a greedy search on npre = 50 randomly distributed values. For these
settings, 19 expansion points are added in 20 local optimizations, respectively, iter-
ations of the automatic greedy search. Afterward, the greedy search is ended in a
lucky breakdown after nskipMax = 12 consecutive iterations with discarded expan-
sion point. In total, 32 local optimizations are performed, leading to a ROM size of
m = 235.
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Table 2 Overview over the optimized parameter samples for the greedy iterations in the beam
example. All units are omitted. Green color-coded values belong to the lower bound, blue color-
coded values to the upper bound of parameter range

it E1 ρ1 η1 E2 ρ2 η2 b L1 L2 f0
×10−10 ×10−9

0 50000 8.5 0.0275 21750 3.0 0.0275 22 250 300 755.0

1 75000 7.0 0.005 8500 1.2 0.005 24 200 367.7 60.8

2 75000 7.0 0.005 8500 1.0 0.005 22.8 261.5 313.2 42.2

3 75000 7.0 0.005 32900.0 1.0 0.005 21.2 206.6 347.2 20

4 75000 7.0 0.005 35000 1.0 0.005 21.1 215.4 321.3 20

5 75000 7.0 0.05 35000 1.0 0.05 24 200 200 20

6 25000 7.0 0.005 35000 2.3 0.005 24 300 400 437.0

7 75000 7.0 0.005 8500 5.0 0.005 20 200 400 863.3

8 49567.7 7.0 0.005 21779.4 2.8 0.005 20 300 400 127.6

9 75000 7.0 0.005 8500 2.5 0.005 24 200 400 305.5

10 25000 7.0 0.005 35000 2.2 0.005 20 200 202.5 475.7

11 75000 7.0 0.005 8500 5.0 0.005 24 300 251.6 130.3

12 75000 9.1 0.005 8500 1.0 0.005 20 294.2 200 316.9

13 25000 10 0.005 8500 5.0 0.005 20 300 400 1500

14 75000 7.6 0.005 8500 5.0 0.005 20 300 306.7 1500

15 25000 7.0 0.005 35000 3.3 0.005 20 300 282.8 201.9

16 75000 7.0 0.005 8500 2.1 0.005 24 200 377.9 1335.6

17 25000 7.0 0.005 35000 5.0 0.005 20 261.0 400 140.3

18 71360.2 7.0 0.005 8500 5.0 0.005 23.6 300 230.7 1500

19 25000 10 0.005 35000 1.1 0.005 20 300 255.2 1500

The positions of the in total 20 expansion points in parameter space are found
in Table 2. Analyzing the expansion point locations, which are determined by the
local optimizations, one can identify a general tendency of OGPA for problems in
structural dynamics. The algorithm places expansion points at the boundaries of
certain parameter dimensions, which is an observation that is common for greedy
algorithms [32]. When the frequency parameter is not considered, only 34 out of 171
parameter samples are no bound values. For the damping parameters η1 and η2, the
lower bound values are obtained except for one iteration, as used for the soft setting.
Based on heuristic experience, this is a general tendency of OGPA and mainly lower
bound damping values are chosen for any structural model. Thus, the lower bound
damping parameters can be directly used for basis construction, when the dimension
of the parameter space should be reduced for training.

As the model setting is MIMO, the ROM size reduction by inexact deflation is
significant. During the basis generation, 485 out of 720 candidates for Krylov modes
are removed from the final basis.

While for the hard and soft parameter setting, the ROM quality visually is good
(see Fig. 3), the latter is assessed statistically on the validation set a-posteriori after
basis generation ended. As the FOM has a moderate size of 13164 DOFs for this
first example, the true relative error can be evaluated on a large, randomly distributed
validation set of size nsam = 2 · 104. Solely one error overshoot with a value of
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Fig. 4 Histogram of the maximum relative error εH,rel per parameter sample. εlimrel , which was used
as error threshold in the training phase is indicated by the red vertical line

εmax
rel = 6.5 · 10−3 is observed, which is slightly larger than the error tolerance of

εlimrel = 5 · 10−3 for training. The distribution of the relative error is visualized in
Fig. 4. As such large validation sets are not feasible for large-scale industry FOMs,
the error evaluation based on Bayesian inference was introduced in Sect. 3.2. For the
large-scale validation set, one obtains

P (99.9% < a < 100%|19999, 20000) = 100%.

As the ROM is accurate, the Bayesian framework indicates this good ROM qual-
ity already with a small sample set. A validation set of 200 parameter points
would have given P (98.5% < a < 100%|199, 200) = 80.5%, a set of 500 samples
P (98.5% < a < 100%|499, 500) = 99.6%. In all cases, it was assumed conserva-
tively that the error overshoot was within the first samples.

The availability of a rather large validation set also allows to discuss the per-
formance of OGPA in the context of other approaches for training. Therefore, the
setting of OGPA is changed for further efficiency enhancements and the maximum
number of residual evaluations per local optimization is limited to 50 (M-O50:50).
The results for this setting of OGPA are discussed in the context of two base-line
scenarios: a worst-case scenario, in which the expansion points are placed arbitrarily
in the parameter space (M-WC) and a quasi best case one, in which an extensive
greedy search is performed on the validation set by using the true relative error (M-
BC). In addition, they are compared to more classic greedy search strategies with
comparable costs than M-O50:50: once on a set of 400 random parameter samples
(M-RF400), which is fixed for all iterations; once on a set of 100 random parameter
samples (M-RC100), which is smaller but changing completely in each iteration for
a better coverage of the parameter space. The same residual error indicator as for
OGPA (Eq. (12)) is used for all these greedy approaches.
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Fig. 5 Comparison of the decrease of the maximum relative error εH,rel on the validation set for
an increasing basis size in the context of different methods for training

In a first evaluation, the maximum relative error is analyzed in relation to the
basis size. The decay of the maximum error, which is analyzed in many publications
on pMOR approaches, is visualized in Fig. 5 for the discussed methods. The latter
provide slightly different results for each execution, as they involve a random param-
eter sample selection (exceptM-BC). As consequence, the corresponding algorithms
were executed five times and averaged results are provided in Fig. 5. The maximum
error values of the methods M-O50:50, M-RC100, and M-RF400, which involve a
point placement based on the error estimate of Sect. 3.1.1, are in between the results
for the worst and best case point placement in general. This shows that the error
indicator provides valuable information for training, although only the rough trend
of the true error εH is provided as discussed in Sect. 3.1.1. OGPA clearly outperforms
a more classic greedy search with the same error indicator for sufficiently large basis
sizes in Fig. 5. At the same time, only one quarter of residual evaluations is needed
per greedy iteration for M-O50:50 compared to M-RF400, however, additional cal-
culation efforts for gradient calculation are necessary. Thus, OGPA can be valuable
especially for applications, in which the maximum relative error is important.

When the a-posteriori error analysis is performed by evaluating error over-
shoots with Bayesian inference according to Sect. 3.2, OGPA is again providing
the best results around the converged basis size of m = 230. On average, there
are five error overshoots within 20000 samples. Anyhow, an error analysis by
Bayesian inference leads to another perspective on ROM quality and thus often
relaxed requirements. This is reflected in a less distinct superiority of OGPA: a
small number of 22 overshoots is also obtained with a classic greedy search (M-
RF400); even a purely random point placement results in only 203 overshoots on
average. Evaluating the latter with Bayesian inference, still confidence intervals of
P (98.5% < a < 100%|19797, 20000) = 94.7% can be obtained. In other words,
simpler training strategies than OGPA may be chosen for applications, in which
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Fig. 6 The rear axle carrier
and the labeled interface
nodes. Each node provides
six inputs and outputs 1
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rear axle carrier into
different sections
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the maximum error is not crucial, as long as there are not prohibitively many error
overshoots.

4.2 Rear Axle Carrier

As industrial example, an automotive rear axle carrier (RAC) is analyzed. The
subsystem has an interface of 14 connection points to other subsystems, result-
ing in both, 84 inputs and outputs (see Fig. 6). A FE discretization using triangular
plate-like shell elements is used with 258708 DOFs in total. As visualized in Fig.
7, the RAC is partitioned into four segments. The shell thickness and the mate-
rial density is varied independently in each segment from ti ∈ [1.3mm, 2.3mm]
and ρi ∈ [

5.5 · 10−9 tmm−3, 13 · 10−9 tmm−3
]
. The frequency band is defined as

f ∈ [20Hz, 500Hz], leading to a 9D parameter space. The system matrices are
assembled again in ABAQUS and the affine decompositions, Eq. (6), are recon-
structed from the systemmatrices at corresponding parameter samples. For the cubic
dependency of K and M on the single ti , nine affine terms are needed for both of
the two matrices. The linear influence of ρi on M can be considered with the same
decomposition. In addition, the model contains a nonzero structural damping matrix
S, which is constructed from the affine decomposition of K with fixed ηi = 0.005.
As in the cantilever beam example, a pre-evaluation showed that an optimization of
the structural damping coefficients results in the lower bound value for each greedy
iteration.

The amplitudes of two transfer functions ofH ∈ C
84×84 are visualized exemplary

in Fig. 8. Again, a soft setting with ρi = 13 · 10−9 tmm−3, ti = 1.3mm and a hard
setting with ρi = 5.5 · 10−9 tmm−3, ti = 2.3mm is defined for visualization.
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Fig. 8 Absolute value of the transfer function at a the diagonal entry for node 3 DOF 5; b at the
off diagonal entry relating node 3 DOF 5 and node 7 DOF 1. The solid line belongs to the transfer
function of the FOM, the starred line to the one of the ROM

For basis generation, a maximum relative ROM error εlimrel = 5 · 10−3 is specified,
for the deflation tolerance ldefl = 10−7 and for the Krylov order q = 2 is defined.
As another result of Sect. 4.1, the parameter values of the soft setting along with
f = 20Hz are chosen as 0p̃0 for the initial local basis. Again, the maximum number
of residual evaluations per local optimization is limited to 200 and a greedy search
on npre = 150 randomly distributed values is performed for each i p̃0 . pMOR with
OGPA results in a basis size ofm = 836. In addition to the one of 0p̃0 , 20 additional
local bases in the parameter space are identified. The resulting i p̃opt is omitted four
times in the in-situ error evaluation until the last expansion point is found. The in-situ
control was performed considering εlimrel for all entries ofHwith |Hi j | > 5 · 10−9. For
entries with a smaller amplitude, a relaxed error threshold εrlxrel = 2 · 10−1 was used
for control.

After 24 greedy iterations, no more local basis is added in six subsequent opti-
mizations, leading to a lucky breakdown after 30 greedy iterations in total.

Except for the frequency dimension, again i p̃opt contain mostly values from the
bounds of the parameter space, only 29 out of 160 sample values are no bound values.
Inexact deflation plays a significant role for basis reduction in that example. Without
any deflation, 21 expansion points would result in m = 3528, thus almost 76% of
the possible columns in Vg are removed during basis generation.

For the a-posteriori ROM error evaluation, a validation set of size nsam = 1000 is
chosen, which is smaller than the one in Sect. 4.1 due to the higher computational
costs for the FOM evaluations. For 996 samples, the error was below εH,rel = εlimrel ,
see Fig. 9 for a visualization. With four error overshoots, by means of Bayesian
inference one finally obtains a statistical ROM quality of

P (99% < a < 100%|996, 1000) = 97.1%
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Fig. 9 Histogram of the relative transfer function error for the ROM of the rear axle carrier in
logarithmic representation. εlimrel is indicated by the red vertical line

5 Summary

A global basis approach for parametric model order reduction was developed, which
is suited to large-scale industry FOMs with a moderate number of resonances in the
analyzed frequency band but a high-dimensional input parameter space. Although a
global basis method is employed, the combination of a large-scale FOM and high-
dimensional input parameter space is challenging. Only a few FOM system solves
are possible, but the model needs to be trained for the analytically unknown, non-
convex error function in the high-dimensional parameter space. Numerically efficient
procedures were introduced for basis generation and validation, to enable pMOR for
suchmodels.Anoptimization-based greedy search strategywas employed (OGPA) to
meet the “curse of dimensionality” in the training phase of global basis generation. In
the context of a combinationwith domain integration and frequency-domain analysis,
OGPA was combined with Krylov subspace methods for local basis generation. A
goal-oriented error estimate was developed as the optimization objective, based on
a residual expression as an indicator for the error in the MIMO system transfer
function matrix. During the optimization-based greedy search, local maxima of the
error estimate are obtained. The global maximum of the error, however, remains
unknown during the training and local bases are placed solely at local maxima.
As remedies, firstly the model training in the offline phase was modified for an
improved candidate expansion point placement. A pre-selection of the starting points
for optimization was performed based on an additional greedy search on a small set
of random parameter samples. A two-step validation procedure for expansion points
was introduced. Secondly, an alternative a-posteriori measure for ROM quality was
discussed: a certain number of error overshoots in the later online phase may be
accepted, as long as the ROM quality is statistically sufficient. For the evaluation of
the latter, an additional validation sampling set was introduced, on which the true
error in the transfer function is evaluated after basis generation, but before online
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phase. In combination with Bayesian inference, small validation sets are possible,
and confidence intervals are provided. The efficiency of the pMOR approach was
finally shown for both, a beam and an industry example of an automotive rear axle
carrier.
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On Extended Model Order Reduction for
Linear Time Delay Systems
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Abstract This chapter presents a so-called extended model-reduction technique for
linear delay differential equations. The presented technique preserves the infinite-
dimensional nature of the system and facilitates the preservation of properties such as
system parameterizations (uncertainties). It is proved in this chapter that the extended
model-reduction technique also preserves stability properties and provides a guaran-
teed a-priori bound on the reduction error. The reduction technique relies on the solu-
tion of matrix inequalities that characterize controllability and observability prop-
erties for time delay systems. This work presents conditions on the feasibility of
these inequalities, and studies the applicability of the extended model reduction to a
spatio-temporal model of neuronal activity, known as delay neural fields. Lastly, it
discusses the relevance of this technique in the scope of model reduction of uncertain
time delay systems, which is supported by a numerical example.
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1 Introduction

Models in terms of delay differential equations have extensively been used to describe
engineering systems such as, e.g., mechanical and electric/electronic systems [1, 25].
Systems of delay differential equations have also been used to model phenomena in,
for instance, economics and biology [18]. Such models can, however, be complex in
the sense that they consist of a large number of delay equations. This complexity can
handicap simulation, analysis, or controller synthesis and implementation. This work
presents a model order reduction technique to address the issue of model complexity
of time delay systems.

In the course of the past four decades, a myriad of model order reduction tech-
niques have been proposed for linear delay-free systems. Balanced truncation [22] is
probably themost popular of these (see [15] for an overview). Parallel to these efforts,
the model-reduction problem of time delay systems has also been studied, though
to a much lesser extent. A common approach in the model complexity reduction of
time delay systems is approximating the time delay system by a finite-dimensional
model of, potentially, low order [2, 19, 20]. This approach has been motivated by
the fact that currently analysis and design based on finite-dimensional models is in
general more appealing, as it allows for the use of well-developed classical systems
and control theory. Nonetheless, delay-structure preserving methods, i.e., methods
that preserve the infinite-dimensional nature of the time delay system during model
reduction, have also gained considerable attention [3–5, 16, 23, 28, 32, 33]. This
attention is because reliable analysis and controller synthesis techniques are avail-
able today also for time delay systems [11, 21]. In addition, for a particular order of
the reduced model, a reduced model in terms of delay differential equations has the
potential to be more accurate than a finite-dimensional approximation of the same
order [26]. In addition to the delay structure, in many cases, it is beneficial to pre-
serve other desirable properties of the original model in the reduced-order model.
Important examples are stability properties, structures of physical interconnections
(e.g., the interconnection of a system and a controller) and the presence of uncer-
tainties and model parameters. This chapter presents such a robust/parameterized
model-reduction techniques for linear time delay systems.

This chapter is an extension of the work in [24], which introduced a so-called
extended balanced truncation procedure for time delay systems. This procedure was
motivated by the technique of extended-balanced truncation for finite-dimensional
systems in [27, 29]. Following [4, 23], the work [24] defined bounds on the control-
lability and observability energy functionals of time delay systems, and constructed
a model-reduction procedure based upon those. These bounds were characterized by
matrices which are solutions to a set of matrix inequalities. Compared to the results
in [23], extended balanced truncation comes with additional degrees of freedom in
the computation of (bounds on) these functionals through the use of slack variables.
It has been shown that the proposed technique is useful for the structured model
reduction of closed-loop time delay systems and also for delay systems with poly-
topic parametrizations/uncertainties. It preserves both asymptotic stability and the
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infinite-dimensional nature of the time delay system, while also providing an a-priori
computable, guaranteed, delay-dependent error bound.

The contributions of this chapter are fourfold. First, the feasibility of the matrix
inequalities in [24] is studied in detail by presenting necessary and sufficient condi-
tions on the feasibility of thosematrix inequalities. Crucial results in [24] on the error
bound and preservation of stability were lacking mathematical proofs. As a second
contribution, this work presents the missing proofs for those results. Third, it stud-
ies and numerically illustrates the effectiveness of the extended balancing approach
for parameterized/robust model reduction of time delay systems. Lastly, this work
studies the applicability of the extended model-reduction technique to models in
neuroscience. Namely, a method for dropping the spatial dependency in a particular
model of neural fields is presented. This leads to a high-order time delay system, and
the extended model-reduction technique is then applied to reduce the order of the
resulting neural model without spatial dependency. This contribution is presented as
a numerical example.
Outline.After introducing notation, a problem statement is given in Sect. 2. Section 3
introduces and gives a characterization of the observability and controllability energy
functionals of a time delay system. Section 4 recapitulates the proposed model order
reduction procedure in [24] and provides novel detailed proofs, and easy-to-check
feasibility conditions for it are discussed in Sect. 5. The application of this technique
to delay neural fields and robust/parameterized model reduction of delay systems
is elaborated on in Sects. 6, and 7, respectively, and conclusions are presented in
Sect. 8.
Notation. The set of real (non-negative) numbers is indicated by R (R≥0), and the
Euclidean norm of a vector x ∈ R

n is denoted by |x |, which is defined as |x | :=√
xT x . The notation L2([a, b],Rn) is the space of functions x : [a, b] → R

n which
have a bounded norm ‖x‖2 = (

∫ b
a |x(t)|2 dt)1/2, whereasL∞([a, b],Rn) is the space

of bounded, piecewise continuous functions mapping [a, b] onto R
n . The Banach

space of absolutely continuous functions which map the interval [−τ , 0] onto Rn is
indicated by Cn = C([−τ , 0],Rn). Furthermore,Wn = W([−τ , 0],Rn) refers to the
space of bounded functionsϕ ∈ Cn with square-integrable derivative in a weak sense,
i.e., ϕ̇ ∈ L2([−τ , 0],Rn) for ϕ ∈ Wn. [12, 18]. A block-diagonal matrix with A1,
. . ., Am on the diagonal is represented as blkdiag{A1, · · · , Am}, and Im is them × m
identity matrix. The notation P > 0, for P ∈ R

n×n , means that P is a symmetric,
positive definite matrix. Matrix transposition and conjugate transposition are shown
by the superscripts T and H , respectively. A star ∗ in a symmetric matrix represents
a symmetric term.
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2 Problem Statement

In this chapter, we consider a time delay system Ω of the form

Ω :

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Adx(t − τ ) + Bu(t),

y(t) = Cx(t) + Cdx(t − τ ) + Du(t),

x0 = ϕ.

(1)

Here, x(t) ∈ R
n is the state vector, u(t) ∈ R

m and y(t) ∈ R
p are the external input

and the output, respectively, while τ is a constant time delay. We assume that for
all τ ∈ [0, τ̄ ], with a constant τ̄ > 0, the system is asymptotically stable for zero
input. For t ∈ R, the function segment xt : [−τ , 0] → R

n denotes the state of Ω at
the time instance t , where xt (θ) = x(t + θ) for θ ∈ [−τ , 0]. The initial condition of
the system is given by ϕ ∈ Cn , such that x(t) = ϕ(t), t ∈ [−τ , 0].

The objective is to approximate Ω by an asymptotically stable model Ω̂ of order
k < n which has the same delay structure asΩ . Moreover, the input-output behavior
of Ω̂ should be close enough, in somemeasurable sense, to that ofΩ . In addition, the
model-reduction procedure itself should be applicable to time delay systems with
polytopic uncertainties/parameterizations and it should facilitate structured model
order reduction (that is, a model order reduction procedure which preserves physical
interconnection structures in a system) for time delay systems.

It is noted that since the state of Ω belongs to Cn , it has an infinite-dimensional
nature in addition to the, potentially large, finite number of dynamical equations (i.e.,
state equations) describing it. In this chapter, model order reduction is pursued with
respect to only the latter aspect.

3 Observability and Controllability Inequalities

Following [23, 24], we will discuss a model-reduction procedure for time delay
systems based on so-called energy functionals.

First, the observability energy functional characterizes the output energy of (1) for
a non-zero initial condition and zero input, and it can thus be regarded as a measure
of observability. More precisely, we have the following definition taken from [4] (see
[16] for a similar definition).

Definition 1 The observability functional of the system (1) is the functional Lo :
Cn → R≥0 defined as

Lo(ϕ) =
∫ ∞

0
|y(t)|2dt, (2)

where y(·) is the output of the system (1) for the initial condition x0 = ϕ and zero
input u = 0.
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In addition to the observability functional, the development of a balancing-based
model-reduction procedure requires information on the controllability properties of
the time delay system. In this regard, we consider the following definition of the
controllability functional as a measure of controllability, see again [4] (and [16]).

Definition 2 The controllability functional of the system (1) is the functional Lc :
Dn → R≥0 defined as

Lc(ϕ)= inf

{∫ 0

−∞
|u(t)|2dt

∣
∣
∣
∣u∈L2 ∩ L∞

(
(−∞, 0] ,Rm

)
, lim
T→∞ x−T =0, x0=ϕ

}

,

(3)
where xt is the solution of (1) for u that satisfies the above andDn ⊂ Cn is the domain
of Lc, that is the space of function segments ϕ for which Lc(ϕ) is well defined.

Generally, the a-priori computation of the observability and controllability func-
tionals (2) and (3) is a challenging task [16]. The following lemmas from [24] present
quadratic functionals characterized by computablematriceswhich can provide a tight
upper and lower bound of Lo(ϕ) and Lc(ϕ), respectively.

Lemma 1 Consider the asymptotically stable systemΩ in (1). Let there exist matri-
ces Q > 0, Qd > 0, Q̄ > 0 and S > 0, and a scalar αo for which

Mo =

⎡

⎢
⎢
⎣

SA + AT S + Qd − Q̄ Q̄ + SAd Q − S + αo AT S CT

∗ Qd − Q̄ αo AT
d S CT

d
∗ ∗ −2αoS + τ 2 Q̄ 0
∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦ < 0 (4)

holds. Then the functional Eo : Wn × L2([−τ , 0],Rn) → R≥0 given by

Eo(ϕ, ϕ̇) = ϕT (0)Qϕ(0)+
∫ 0

−τ

ϕT (s)Qdϕ(s) ds+τ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Q̄ϕ̇(s) dsdθ, (5)

satisfies
Eo(ϕ, ϕ̇) ≥ Lo(ϕ), (6)

for each ϕ ∈ Wn and with the functional Lo as in Definition 1.

Proof The proof of this lemma can be found in [24]. �

Lemma 2 Consider the time delay system in (1). Let there exist matrices P > 0,
Pd > 0, P̄ > 0 and R > 0, and a positive scalar αc which satisfy

Mc =

⎡

⎢
⎢
⎣

AR + RAT + Pd − P̄ P̄ + Ad R P − R + αc RAT B
∗ −Pd − P̄ αc RAT

d 0
∗ ∗ −2αc R + τ 2 P̄ αc B
∗ ∗ ∗ −Im

⎤

⎥
⎥
⎦ < 0. (7)
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Then the functional Ec : Wn × L2([−τ , 0],Rn) → R≥0 given by

Ec(ϕ, ϕ̇)=ϕT (0)Uϕ(0)+
∫ 0

−τ

ϕT (s)Udϕ(s) ds+τ

∫ 0

−τ

∫ 0

θ

ϕ̇T (s)Ū ϕ̇(s) dsdθ, (8)

with U = R−1PR−1,Ud = R−1Pd R−1, Ū = R−1 P̄ R−1, satisfies

Ec(ϕ, ϕ̇) ≤ Lc(ϕ), (9)

for all ϕ ∈ Dn ∩ Wn and Lc as in Definition 2.

Proof The proof has been omitted for the sake of brevity.

Remark 1 The variables S, αo in (2), and R, αc in (7) are referred to as the slack
variables. By contrast, Q, Qd , Q̄ and U,Ud , Ū (also P, Pd , P̄) which characterize
the energy functionals (5) and (8), respectively, are referred to as the main decision
variables.

The next section recalls the proposed model-reduction procedure in [24] and
provides proofs for the technical results not provided in [24].

4 Model order reduction by truncation

Consider a partitioning of x(t) and xt (and ϕ) as

x(t) =
[
x1(t)
x2(t)

]

, xt =
[
x1,t
x2,t

]

, ϕ =
[

ϕ1

ϕ2

]

, (10)

where x1(t) ∈ R
k and ϕ1 ∈ Wk , with k < n and together with the corresponding

partitioning of the system matrices

A =
[
A11 A12

A21 A22

]

, Ad =
[
Ad,11 Ad,12

Ad,21 Ad,22

]

, B =
[
B1

B2

]

,

C = [
C1 C2

]
, Cd = [

Cd,1 Cd,2
]
.

(11)

A reduced-order approximation of (1), denoted by Ω̂ , is obtained by truncation of
the dynamics that correspond to x2, leading to

Ω̂ :

⎧
⎪⎨

⎪⎩

ζ̇(t) = A11ζ(t) + Ad,11ζ(t − τ ) + B1u(t),

ŷ(t) = C1ζ(t) + Cd,1ζ(t − τ ) + Du(t),

ζ0 = ϕ̂,

(12)
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where ζ(t) ∈ R
k and ŷ(t) ∈ R

p approximates y(t), and ϕ̂ ∈ Wk is the initial condi-
tion of Ω̂ .

The system Ω̂ approximates x1 in the partitioned coordinates, and it clearly cap-
tures the delay structure of the original system Ω . In the sequel, it is shown that this
type of model approximation can preserve other properties of the original model in
the reduced-order model provided that the matrices S and R have a certain structure.
First, we define an extended-balanced realization of Ω .

Definition 3 A realization as in (1) is said to be extended balanced if there exist
matrices S > 0, Q > 0, Qd > 0, Q̄ > 0, and a scalar αo satisfying (4), matrices
R > 0, P > 0, Pd > 0, P̄ > 0, and a scalar αc satisfying (7), and, additionally, S
and R are such that

S = R = Σ = blkdiag{σ1 Im1 ,σ2 Im2 , · · · ,σq Imq }. (13)

Here, the constants σi > 0, which satisfy σi > σi+1, i ∈ {1, ..., q − 1}, are extended
singular values of multiplicities mi and Σ

q
i=1mi = n.

Since S and R are symmetric, positive definite matrices, the system (1) can always
be transformed into an extended-balanced form by exploiting the standard balancing
transformation [10].

Lemma 3 Let there exist symmetric matrices S > 0, Q > 0, Qd > 0 and Q̄ > 0,
and a scalar αo satisfying (4), and symmetric matrices R > 0, P > 0, Pd > 0 and
P̄ > 0, and a scalar αc satisfying (7). Then, there exists a coordinate transformation
x(t) = T z(t), with T ∈ R

n×n, such that the realization in the new coordinates is
extended balanced.

An interesting feature of the presented model order reduction is that it guarantees
the preservation of stability properties, as stated in the following theorem.

Theorem 1 Let the system (1), which is asymptotically stable for zero input, be in an
extended-balanced realization and consider the reduced-order system (12) obtained
by truncation for k ≥ 1. Then, the reduced-order system Ω̂ is asymptotically stable
for zero input.

Proof As the system (1) is an extended-balanced realization, there exist a diagonal
matrix S > 0, and matrices Q > 0, Qd > 0 and Q̄ > 0, and a scalar αo such that (4)
holds. Thus, for any full-column rank matrix Ψ of appropriate dimensions it holds
that

Ψ T MoΨ < 0 (14)

with Mo as in (4). Since S is diagonal (recall Definition 3), we can write it in a block-
diagonal form as S = blkdiag{S1, S2}, where S1 ∈ R

k×k corresponds to the reduced
model Ω̂ and S2 to the truncated dynamics. Now, we choose Ψ = blkdiag{ψ,ψ,ψ},
with ψ = [Ik 0k×(n−k)]T . With this choice of Ψ and exploiting the block-diagonal
structure of S, (14) implies that
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Ψ T MoΨ =
⎡

⎢
⎣

AT11S1 + S1A11 + Qd,11 − Q̄11 ∗ ∗
ATd,11S1 + Q̄11 −Qd,11 − Q̄11 ∗

Q11 − S1 + αoS1A11 αoS1Ad,11 −2αoS1 + τ2 Q̄11

⎤

⎥
⎦ < 0, (15)

where Q11 > 0, Qd,11 > 0, Q̄11 > 0 are the upper left k × k blocks of Q > 0, Qd >
0 and Q̄ > 0, respectively.Now, using results from [11,Chapter 3], it is easily verified
that (15) is a sufficient condition for the asymptotic stability of the reduced-order
system for all time delays in the interval [0, τ ]. It should be mentioned that one may
use the inequality (7) to prove this theorem in a similar way. �

The availability of an a-priori computable error bound is an appealing property of the
presented model order reduction technique. The next theorem presents this property.

Theorem 2 Let the asymptotically stable system Ω as in (1) be in an extended-
balanced realization, as defined in Definition 3, and consider the reduced-order sys-
tem Ω̂ , as in (12), obtained by truncation for k = Σr

i=1mi for some r > 0. Moreover,
let αo = αc = α. Then, for any common input function u ∈ L2 ∩ L∞([0, T ],Rm)

and initial conditions ϕ = 0 and ϕ̂ = 0 for (1) and (12), respectively,

∫ T

0

∣
∣y(t) − ŷ(t)

∣
∣2 dt ≤ ε2

∫ T

0
|u(t)|2 dt,

for all T ≥ 0 and where the error bound ε is given as

ε = 2
q∑

i=r+1

σi , (16)

with σi as in (13).

Before presenting a proof for this theorem, we give a technical lemma which can
be proved based on results in [9].

Lemma 4 Consider a system of the form (1). If xt0 ∈ Wn at t0 ∈ R≥0 and u ∈
L∞([t0, t1],Rm) for t1 ≥ t0, then xt ∈ Wn for all t ∈ [t0, t1].
Now, we prove Theorem 2.

Proof To prove this theorem, we take a one-step reduction approach. To this end, we
first take a reduced-order system of the form (12) which is obtained by truncating the
states corresponding to the final extended singular value σq , leading to a reduced-
order model with k = n − mq . Next, we define auxiliary states

z(t) :=
[
x1(t) − ζ(t)

x2(t)

]

, w(t) :=
[
x1(t) + ζ(t)

x2(t)

]

. (17)

Using (1) and (12) for zero initial conditions, the definitions in (17) lead to the
dynamics
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ż(t) = Az(t) + Adz(t − τ ) + B̄ū(t),

δy(t) = Cz(t) + Cdz(t − τ ),
(18)

and
ẇ(t) = Aw(t) + Adw(t − τ ) + 2Bu(t) − B̄ū(t), (19)

where ūT (t) = [ ζT (t) ζT (t − τ ) uT (t) ], B̄T = [ 0 B̄T
2 ],with B̄2 = [ A21 Ad,21 B2 ],

and δy(t) = y(t) − ŷ(t) is the output of the error system. Now, based on the auxil-
iary dynamics and the observability and controllability functionals in (5) and (8), a
functional is introduced as

V (zt , wt , żt , ẇt ) = Eo(zt , żt ) + σ2
q Ec(wt , ẇt ), (20)

which is well defined as z, w ∈ Wn (u is assumed to be piecewise continuous and
bounded) due to Lemma 4. Similar to the proof of Lemma 1 in [24], it can be
shown that the time-derivative of V along the trajectories of (18) and (19) is upper
bounded by

V̇ (zt , wt , żt , ẇt ) ≤ ξTz (t)M̄oξz(t) + σ2
qξ

T
w(t)M̄cξw(t) − |δy(t)|2

+ (
2σq

)2|u(t)|2 + 2
(
zT (t) + αoż

T (t)
)
SB̄ū(t)

− 2σ2
q

(
wT (t) + αcẇ

T (t)
)
R−1 B̄ū(t),

(21)

where M̄o is obtained by applying a Schur complement to Mo defined in (4) and

M̄c := blkdiag{R, R, R, Im}−T Mcblkdiag{R, R, R, Im}−1,

with Mc and R as in (7), and

ξTz (t) := [ zT (t) zT (t − τ ) żT (t) ],
ξTw(t) := [wT (t) wT (t − τ ) ẇT (t) uT (t) ].

Given that M̄o < 0 and M̄c < 0 due to (4) and (7), (21) further implies that

V̇ (zt , wt , żt , ẇt ) ≤ − |δy(t)|2 + (
2σq

)2|u(t)|2 + 2
(
zT (t) + αoż

T (t)
)
SB̄ū(t)

− 2σ2
q

(
wT (t) + αcẇ

T (t)
)
R−1 B̄ū(t).

(22)
Also, recalling that S and R have diagonal structures due to the extended-balanced
form of the high-order system (see Definition 3), the time-derivative of V in (22)
satisfies

V̇ (zt , wt , żt , ẇt ) ≤ −|δy(t)|2 + (
2σq

)2|u(t)|2
+ 2

(
zT2 (t) + αoż

T
2 (t)

)
S2 B̄2ū(t) − 2σ2

q

(
wT

2 (t) + αcẇ
T
2 (t)

)
R−1
2 B̄2ū(t),

(23)
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where S2 and R2 are the lower right mq × mq blocks of S and R, respectively.
Next, using the facts that S2 − σ2

q R
−1
2 = 0, w2 = z2 = x2, for αo = αc = α, we

obtain
V̇ (zt , wt , żt , ẇt ) ≤ −|δy(t)|2 + (2σq)

2|u(t)|2,
. Now, integrating the above over the interval [0, T ] gives

V (zT , wT , żT , ẇT ) − V (z0, w0, ż0, ẇ0) ≤ −
∫ T

0
|δy(t)|2 dt + (

2σq
)2
∫ T

0
|u(t)|2 dt.

Theasymptotic stability of the original system implies that 0 ≤ V (zT , wT , żT , ẇT ) <

∞. Moreover, V (z0, w0, ż0, ẇ0) = 0, because of the zero initial condition. Therefore
the left-hand side of the above inequality exists and it is positive for all T ≥ 0, thus

∫ T

0

∣
∣y(t) − ŷ(t)

∣
∣2dt ≤ (

2σq
)2
∫ T

0
|u(t)|2 dt.

As a result, the one-step reduction error bound is

ε = 2σq . (24)

Next, following an analysis similar to the one presented in [13], which is based on
the triangle inequality, it can be shown that extending the above to multiple one-step
reductions leads to (16). �

The next section studies the feasibility of the matrix inequalities (4) and (7).

5 Feasibility of the Matrix Inequalities

In this section, we discuss feasibility conditions for the proposed model order reduc-
tion method. As this method relies on the matrix inequalities (4) and (7), we give
easy-to-check conditions (both necessary and sufficient) for existence of solutions
to these matrix inequalities for a common scalar αc = αo = α, as required for the
application of Theorem 2.

First, the following lemma shows that the feasibility of the inequalities is always
guaranteed for sufficiently small delays provided A + Ad is Hurwitz.

Lemma 5 Let (1) be asymptotically stable for τ = 0. Then, there exists a positive
scalar ε for which the matrix inequalities in (4) and (7) are feasible for all τ ∈ [0, ε).
Proof The fact that the system (1) is asymptotically stable for τ = 0 implies that
Ac := A + Ad is Hurwitz. Therefore, there exists a matrix Q = QT > 0 such that

AT
c Q + QAc + CT

c Cc < 0, (25)
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whereCc = C + Cd . The strict inequality in (25) guarantees the existence of a (large)
ᾱ > 0 such that

QAc + AT
c Q + CT

c Cc + (
QAd − Qd + CT

c Cd
)

× (
ᾱQ + Qd − CT

d Cd
)−1(

QAd − Qd + CT
c Cd

)T
< 0.

(26)

Following a Schur complement, this inequality implies that

[
QAc + AT

c Q + CT
c Cc QAd − Qd + CT

c Cd

∗ −ᾱQ − Qd + CT
d Cd

]

+ τ 2ᾱ

[
AT
c

AT
d

]

Q
[
Ac Ad

]
< 0

(27)
for all τ ∈ [0, εo) provided εo is sufficiently small. It can be shown that this inequality
is equivalent to (4) for S = Q,α = τ 2ᾱ and Q̄ = ᾱQ. Thus, inequality (4) also holds
for all τ ∈ [0, εo). A similar argument can be performed about the feasibility of (7),
i.e., we can show that there exists a sufficiently small εc such that (7) becomes feasible
for all τ ∈ [0, εc). The definition ε := min{εo, εc} completes the proof of Lemma 5.
�

Next, we present necessary conditions for the feasibility of (4) and (7) in terms
of upper bounds on the delay τ .

Lemma 6 Let Am := A − Ad be a non-Hurwitz matrix and λ̄m be an eigenvalue of
Am which has the largest modulus in the right-half complex plane. Then, a necessary
condition for (4) and (7) to hold is that

τ <
2

|λ̄m | . (28)

Lemma 7 Let A in (1) be a non-Hurwitz matrix and λ̄ be an eigenvalue of A which
has the largest modulus in the closed right-half complex plane. Then, a necessary
condition for (4) and (7) to hold is that

τ <

√
2

|λ̄|2 + σ2
d

, (29)

where σd is the smallest singular value of Ad .

Proof We present proofs for Lemmas 6 and 7 jointly, and based only on (4). First,
we eliminate the slack variables from (4) by multiplying it from the left and right by

[
In 0 AT 0
0 In AT

d 0

]

, and

[
In 0 AT 0
0 In AT

d 0

]T
,

respectively. This procedure results in



202 S. Naderi Lordejani et al.

[
QA + AT Q − Q̄ + Qd + τ 2AT Q̄A QAd + Q̄ + τ 2AT Q̄Ad

∗ −Q̄ − Qd + τ 2AT
d Q̄ Ad

]

< 0. (30)

This inequality further implies that

[
AT
mQ + QAm − 4Q̄ + τ 2AT

m Q̄Am QAd + 2Q̄ + Qd + τ 2AT
m Q̄Ad

∗ −Q̄ − Qd + τ 2AT
d Q̄ Ad

]

< 0.

(31)
Namely, this can be shown by the left and right multiplication of (30) by

[
In −In
0 In

]

, and

[
In −In
0 In

]T
,

respectively. Considering its upper left block, the inequality in (31) now implies that

AT
mQ + QAm − 4Q̄ + τ 2AT

m Q̄Am < 0.

Let v be an eigenvector of Am for the eigenvalue λm = μm + jωm . Then, left and
right multiplication of this inequality by vH and v implies

2μmvH Qv + (τ 2|λm |2 − 4)vH Q̄v < 0. (32)

Now, we consider only eigenvalues in the right-half complex plane. Namely, if μm ≥
0, the satisfaction of (32) requires that τ < 2/|λm | and Q̄ > 0. This result establishes
(28).

Next, we prove Lemma 7. The feasibility of (30) implies that

AT Q + QA − Q̄ + Qd + τ 2AT Q̄A <0, (33)

−Q̄ − Qd + τ 2AT
d Q̄ Ad <0, (34)

respectively, as follows from considering the block-diagonal elements. From (34),
we obtain that −Q̄ + τ 2AT

d Q̄ Ad < Qd . Using this result in (33), we conclude the
necessity of the following inequality:

AT Q + QA − 2Q̄ + τ 2AT Q̄A + τ 2AT
d Q̄ Ad < 0. (35)

Now, if we take v as an eigenvector of A corresponding to an eigenvalue λ which
lies in the closed right-half complex plane, (35) implies that

2Re(λ)vH Qv + (
τ 2|λ|2 + τ 2σ2

d − 2
)
vH Q̄v < 0.

Since Re(λ) ≥ 0, this relation cannot be feasible without the satisfaction of (29). �
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Remark 2 We note that the conditions provided by Lemmas 6 and 7 are only nec-
essary conditions and not sufficient, i.e., they imply the infeasibility of the matrix
inequalities if those conditions do not hold.

Remark 3 The condition of Lemmas 6 and 7 are more beneficial and practical when
the model order reduction problem of feedback control systems with delays in the
feedback channel is concerned, especially for systemswith an unstable plant, leading
to a non-Hurwitz A. In these system, the matrix A − Ad is often non-Hurwitz.

Next, we present a result that is helpful in solving the matrix inequalities. Namely,
given the couplings among α and the slack matrices in (4) and (7) (assuming that
αo = αc = α, in view of Theorem 2), these inequalities are nonlinear. To still enable
solving these inequalities by using existing techniques for linear matrix inequalities,
we perform a line search overα. For the line search to becomemore efficient, bounds
on the search space for α should be provided. The following lemma provides such
lower bound.

Lemma 8 Consider A, and define Am := A − Ad and let λ and λm be arbitrary
eigenvalues of A and Am, respectively. Then, a necessary condition for the matrix
inequalities (4) and (7) to hold is that

α > max{τ 2Re(λ),
τ 2

4
Re(λm)}. (36)

Proof Here, we use only (4) to derive this inequality. The term (Mo)33 (the (3,3)
component of Mo) implies that

Q̄ <
2α

τ 2
S, (37)

which follows from the fact that (Mo)33 is a diagonal element. Using this result along
with the fact that (Mo)11 < 0, we can conclude that

SA + AT S + Qd − 2α

τ 2
S < 0. (38)

Let Av = λv, i.e., v is an eigenvector corresponding to the eigenvalue λ of A. Then,
left and right multiplication of the above inequality with v and vH , respectively,
implies that

vH SAv + vH AT Sv − 2α

τ 2
vH Sv + vH Qdv < 0.

This, in turn, leads to (

2Re(λ) − 2α

τ 2

)

vH Sv < 0.

Since S > 0, this inequality holds only for α > Re(λ)τ 2. Following a similar pro-
cedure, it can be shown that the satisfaction of (4) also requires α > Re(λm)τ 2/4,
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with λm an eigenvalue of Am . The fact that these hold for all eigenvalues of A and
Am leads to (36). �

Remark 4 Clearly, the lower bound in (36) becomes zero when A and A − Ad are
both Hurwitz, given the fact that α < 0 is not allowed because of the fact that (Mo)33
must be negative definite.

6 Example: Delay Neural Fields

This section presents a numerical example. The involved matrix inequalities are
solved using the software CVX [14].

In this example, we study the application of the extended model-reduction tech-
nique to a model which describes the spatio-temporal interactions between neural
populations in the brain. For comparison, we have also applied the position bal-
ancing technique in [16] to this model. Contrary to the bounds on the energy func-
tions used in this chapter, position balancing relies on matrices that characterize the
exact observability and energy functionals for a restricted class of functionals. These
matrices represent the solution to a set of differential equations which are solved
approximately [17].

Consider the delayed-neural fields model (see [6] for a survey) in the form of
integro-differential equations:

li ẋi (r, t) = −xi (r, t) + si

⎛

⎝
n∑

j=1

∫

R
wi j (r, r

′)x j (r
′, t − τi j (r, r

′)) dr ′ + Ii (r, t)

⎞

⎠ ,

(39)
for i = 1, ..., q, where q is the number of considered neuronal populations. The
compact setR ⊂ Rdescribes the spatial domain containing the neuronal populations;
it is assumed here to be uni-dimensional for simplicity.Moreover, r ∈ R is the spatial
variable and xi (r, t) represents the neuronal activity of population i at time t ≥ 0
and position r ∈ R; wi j : R × R → R is a bounded function such that wi j (r, r ′)
describes the synaptic strength between location r ′ in population j and location
r in population i . The constant li > 0 is the time decay constant of population i ;
Ii : R × R → R denotes the exogenous input to population i ; τi j : R × R → [0, τ̄ ],
τ̄ ≥ 0, is the self (for i = j) or mutual (for i = j) time delay resulting from the non-
instantaneous communication between neurons, due to the finite velocity of signals
along the axons. The continuously differentiable function si : R → R describes the
excitability of population i .

To be able to rewrite (39) in the form (1), we first assume that the self time delays
are zero (τi i = 0) and the mutual delays are all fixed and equal, i.e., τi j (r, r ′) = τ
for all i = j and all r, r ′ ∈ R. With this assumption, and after linearizing the system
around an operating profile x∗

i (r) for the input Ii (r, t) = I ∗
i (r) (see [7] for details),

the approximate model has the form
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L ˙̃x(r, t) = −x̃(r, t) + S
∫

R
(
W1(r, r

′)x̃(r ′, t) + W2(r, r
′)x̃(r ′, t − τ )

)
dr ′ + S Ĩ (r, t),

(40)
where x̃ T := [x̃1, ..., x̃q ] with x̃i = xi − x∗

i , Ĩ
T := [ Ĩ1, ..., Ĩq ] with Ĩi = Ii − I ∗

i ,
L = diag{l1, ..., lq} andW1 = diag{wi i }, for i = 1, ..., q, andW2 = [wi j ] − W1, for
all i, j = 1, ..., q. Finally, S = diag{s̄1, ..., s̄q}, where s̄i results from the linearization
of the function si .

In the absence of delays (τi j (r, r ′) = 0), an approach was proposed in [30] to
analytically reduce the dynamics of the infinite-dimensional dynamics (39) to a
finite-dimensional differential equation by assuming that the kernels wi j can be
decomposed on a finite basis of spatial functions. Following this idea, we assume that
Wi (r, r ′), i = 1, 2, is a so-called Pincherle-Goursat Kernel, i.e., there exist Xi (r) ∈
R

q×Ni and Yi (r) ∈ R
q×Ni , Ni ∈ N, such that

Wi (r, r
′) = Xi (r)Y

T
i (r ′). (41)

We note that Xi (r) contains the basis vectors of Wi . We further assume that there
exists ĩ(t) ∈ R

N1+N2 , for which the decomposition Ĩ (r, t) = X (r)ĩ(t), with X =
[X1, X2], holds. Given the structure of Wi in (41) and of Ĩ , we approximate the
solution x̃ as x̃(r, t) = X̃(r)v(t), where

X̃(r) = [
X1(r) X2(r) Xe(r)

]
(42)

can be regarded as a reduction basis (albeit depending on the spatial variable). In
(42), Xe(r) ∈ R

q×Ne denotes a potential enrichment of this reduction basis over the
elements X1 and X2, which result from the structure of Wi . Moreover, v(t) ∈ R

n ,
n = N1 + N2 + Ne, is an unknown vector the driving dynamics which is yet to be
obtained.

Remark 5 We note that the structure of this approximation separates the effect of
the spatial and temporal variables.

Then, the substitution of (41) and the approximation (42) into (40) leads to

L X̃(r)v̇(t) = −X̃(r)v(t) + SX1(r)K1v(t) + SX2(r)K2v(t − τ ) + S X̃(r)ĩ(t),
(43)

where Ki = ∫
R Y T

i (r ′)X̃(r ′) dr ′, i = 1, 2. This equation holds for every r , so we can
multiply both sides of (43) by X̃ T (r) from the left. Then, integration of both sides
of the resulting equation over R leads to

Ml v̇(t) = (M1K1 − M)v(t) + M2K2v(t − τ ) + Msĩ(t),

where
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Table 1 Parameters of the neural field

Parameter Value Parameter Value

L diag{10, 20} w11 0

S diag{20, 20} w12 −30 exp

(

−
∣
∣r−r ′−1.32×10−2

∣
∣2

0.06

)

R [0, 2.5] ∪ [12.5, 15] × 10−3 w21 38 exp

(

−
∣
∣r−r ′−1.25×10−3

∣
∣2

0.06

)

τ 0.03 sec w22 −2.55 exp

(

−|r−r ′|2
0.03

)

Ml =
∫

R
X̃ T (r)L X̃(r)dr, M1 =

∫

R
X̃ T (r)SX1(r)dr , M2 =

∫

R
X̃ T (r)SX2(r)dr ,

Ms =
∫

R
X̃ T (r)SX (r)dr, M =

∫

R
X̃ T (r)X̃(r)dr .

(44)
Clearly, if Ml is invertible, this equation can be written in the form (1) by defining

A = M−1
l (M1K1 − M) , Ad = M−1

l M2K2, B = M−1
l Ms F,

C =
∫

R
C̄(r)X̃(r) dr, Cd = 0, D = 0.

Here, we have considered ĩ(t) = Fu(t) with F ∈ R
(N1+N2)×m and u(t) ∈ R

m as the
input. We note that F is defined such that the elements of u are independent. More-
over, C̄(r) ∈ R

p is the distributed output matrix. Namely, we consider outputs of
the form y(t) = ∫

R C̄(r)x̃(r, t) dr . Given the complexity of wi j and the enrichment
basis Xe, the dimension of X̃(r) and, subsequently, the order n of the time delay
system describing the dynamics of v(t) can be large.

In this example, we consider a neural field with the parameters reported in Table 1.
The input is given by Ĩ1(r, t) = 0 and Ĩ2(r, t) = (1 + r) exp(−r2/0.03)u(t) and the
output is characterized by C̄(r) = [1, 0.1]. After computing X1(r) and X2(r), where
a truncated Taylor series expansion has been exploited (for details, see Appendix
A) and considering Xe = 0, we obtain a system of the form (1) of order n = 9, and
FT = [1, 1, 0, ..., 0]. The frequency response function of this system between the
input u and the output y is represented by Gv( jω).

The corresponding singular values resulting from the application of the extended
model order reduction technique in comparison to those from the position balancing
technique are plotted in Fig. 1. In the same figure, we have reported the reduction
error ε, for the extended technique, as a function of the reduction order k. It is
observed that the singular values from the position balancing technique are smaller
than those from the extended method. However, we note that the position balancing
technique does not provide an a-priori error bound, neither does it guarantee the
stability of the reduced system. We observe a quick decay in the singular values
from the extended technique after k = 2. Thus, we may approximate the dynamics
of v(t) by a model, with the frequency response function represented by Ĝv( jω), of
order k = 2 and expect an accurate model approximation. In Fig. 2, the frequency



On Extended Model Order Reduction for Linear Time Delay Systems 207

1 2 3 4 5 6 7 8 9
10-12

10-10

10-8

10-6

10-4

10-2

100

Fig. 1 The singular values σk and the error bound ε as a function of the reduction order k
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Fig. 2 Comparison between the transfer functions of the original, reduced and error systems in the
neural field example
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response function G( jω) of the original (linearized) model in (40) is compared to
Gv( jω) and Ĝv( jω). In the same figure, we have presented transfer functions of the
error systems G( jω) − Gv( jω) and Gv( jω) − Ĝv( jω), of both techniques. From
this figure, we can clearly observe the high accuracy of the approximation from the
extended technique. The approximate model from the position balancing method
is slightly more accurate. We note that G( jω) is obtained by performing a spatial
discretization over a grid of 200 cells, and the same grid has been used to numerically
compute the matrices in (44). The error between G( jω) and Gv( jω) stems from the
limited resolution of the discretization and also the Taylor series expansion.

Remark 6 In addition to slightly outperforming the presented model-reduction
technique in terms of accuracy, position balancing relies on the computation of delay
Lyapunov equations which only require asymptotic stability of the model (instead of
solutions to matrix inequalities as in (4) and (7)). Nonetheless, we stress that posi-
tion balancing does neither provide guarantees on stability preservation nor gives an
a-priori bound on the reduction error.

We stress that the assumption made here requires a strong separation between spatial
and temporal evolution of (40) as well as a spatially uniform delays. Further work
is needed to relax these requirements.

7 Application to Parameterized Model Reduction

An extended model-reduction procedure as presented in the previous sections is
particularly suited for system-theoretic applications such as structured and parame-
terized model reduction. In this chapter, we focus on the latter application and refer
to [24] for a detailed discussion on the former.

Namely, a large class of parameterized time delay systems can be written in the
form of time delay systems with a polytopic parameterization of the form

Ωδ :

⎧
⎪⎨

⎪⎩

ẋ(t) = Aδx(t) + Adδx(t − τ ) + Bδu(t),

y(t) = Cδx(t) + Cdδx(t − τ ) + Dδu(t),

x0 = ϕ.

(45)

where the subscript δ denotes a polytopic parameterization such that a parameterized
matrix Mδ is defined as Mδ := ∑d

i=1 δi Mi , where Mi , i = 1, ..., d, is a given matrix
and δ ∈ Δ with Δ = {δ ∈ R

d |δi ≥ 0,
∑d

i=1 δi = 1}. It is assumed that for all δ ∈ Δ,
this system has the same stability properties as the system in (1).

Although the methods in [23] and [4] can be generalized to enable the reduction
of this type of systems, those can result in low-quality model approximations and
conservative error bounds, if not infeasible. On the other hand, the extended model
reduction improves both the feasibility and the accuracy of model approximation
for this type of systems. This is due to the fact that in an extended model-reduction
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method, we can assign a polytopic structure to themain decision variables to increase
the degrees of freedom in the model-reduction procedure. In conventional methods,
such as those in [23] and [4], the main decision variables Q and P are directly used in
computing the balancing transformation, and assigning a polytopic structure to those
complicates the reduction procedure (see [31], for parameterized model reduction of
delay-free systems to get an idea about complexities that can arise when assigning
parametric structures to P and Q).

In the extended technique, for the parameterized system in (45), the inequality
(4) is adapted to the following form:

Moδ =

⎡

⎢
⎢
⎣

SAδ + AT
δ S + Qdδ − Q̄δ Q̄δ + SAdδ Qδ − S + αo AT

δ S CT
δ

∗ −Qdδ − Q̄δ αo AT
dδS CT

dδ

∗ ∗ −2αoS + τ 2 Q̄δ 0
∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦ < 0.

(46)

By virtue of the properties of the polytopic uncertainty/parameterization, it can be
shown that Moδ = ∑d

i=1 δi Moi (note that S = ∑d
i=1 δi S) with

Moi =

⎡

⎢
⎢
⎣

SAi + ATi S + Qdi − Q̄i Q̄i + SAdi Qi − S + αo ATi S CT
i

∗ −Qdi − Q̄i αo ATdi S CT
di

∗ ∗ −2αoS + τ2 Q̄i 0
∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦ , i = 1, ..., d.

(47)

This implies that if there exist matrices Qi > 0, Q̄i > 0, Qdi > 0, i = 1, ..., d, and
S > 0, and a scalar αo such that Moi < 0 for i = 1, ..., d, then Moδ < 0. This result
together with a similarly adapted inequality Mcδ < 0 (an adaption to the inequality
(7)) provides matrices S and R required for reducing (45) by pursuing the same
procedure as in Sect. 4.

Remark 7 It is noted that in this parameterized model order reduction technique,
S and αo must satisfy d (the number of parameters) inequalities of the form (47)
simultaneously.

Remark 8 The error bound obtained from the parameterized technique is robust
in the sense that it holds for all δ ∈ Δ. Moreover, it can be shown that the reduced
system is asymptotically stable and it has the same parameterization as the original
one.

7.1 Example

Next, we present an example. In this example, we consider a wave equation which
has a damping factor in the forward direction. The wave equation, together with the
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considered boundary conditions and the initial condition, is given by

∂

∂t
q1(t, ξ) + c

∂

∂x
q1(t, ξ) = 0.025 f q1(t, ξ), (48)

∂

∂t
q2(t, ξ) − c

∂

∂x
q2(t, ξ) = 0, (49)

q1(t, 0) = β1q2(t, 0) + u(t), (50)

q2(t, l) = β2q1(t, l), (51)

q1(0, ξ) = 0, (52)

q2(0, ξ) = 0, (53)

where t ≥ 0 and ξ ∈ [0, l] are the temporal and spatial variables, respectively. Here,
l = 1000 m is the length of the spatial domain. Moreover, qi (t, ξ) ∈ R, i = 1, 2, are
the distributed variables, c = 1000m/s is the speed of the travelingwave components,
and f is a damping factor. We take f to be uncertain, but we assume that the upper
and lower bounds of it are known as f ∈ [0.5, 10.5].Moreover,β1 = 1 andβ2 = 0.7,
and u(t) is the input. The output is given by

y(t) = q1(t, l). (54)

From the literature, it is know that this system can bemodeled by delay-difference
equations [8]. However, in this study, for the sake of illustration, we discretize the
first PDE describing q1 (48) to obtain an approximative model of it in terms of ODEs,
whereas we write the other PDE (49) in terms of an equivalent delay equation, that
is, we can show that q2(t, 0) = q2(t − τ , l), with τ = l/c.

To perform the discretization, the spatial domain of the first PDE is discretized
into n cells of length Δξ. In the discretization scheme, Qi (t), for i = 1, 2, . . . , n,
approximates the spatial average of q1(t, ξ) over the i th cell and satisfies

Q̇i (t) = γ1Qi−1(t) − γ2Qi (t), i = 1, 2, . . . , n (55)

with γ1 = c/Δξ and γ2 = c/Δξ − 0.025 f . In this formulation, we approximate
Q0(t) ≈ q1(t, 0). Following the fact that q2(t, 0) = q2(t − τ , l), and by using the
boundary conditions (50) and (51), we can further write Q0(t) ≈ β1β2Qn(t − τ ) +
u(t), where the approximation q1(t, l) ≈ Qn(t) has been used. Finally, using (55)
together with these relations and the approximation y(t) ≈ Qn(t), we obtain amodel
of the form (1) with C = [0, 0, · · · , 1], Cd = 0 and

A =

⎡

⎢
⎢
⎢
⎢
⎣

−γ2 0 0

γ1
. . .

. . .

. . .
. . . 0

0 γ1 −γ2

⎤

⎥
⎥
⎥
⎥
⎦

, Ad =
[
0 γ1β1β2

0 0

]

, B =
[

γ1
0

]

.
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Fig. 3 The singular values σk and the error bound ε as a function of the reduction order k, for the
robust model reduction

We can then write this model as a time delay system with polytopic uncertainties,
due to uncertainties in f , in the form of (45) with d = 2. The order of this model,
determined by the resolution of the discretization, is chosen to be n = 25. The fre-
quency response function of the discretized model between input u and output y is
denoted by G( jω).

The presented robust/parameterized model order reduction method has been
applied to this model. Figure 3 presents the resulting extended singular values σi

in comparison to the error bound ε as a function of the order k of the reduced system.
Based on this figure, we choose k = 4. Note that σi and ε are independent of the
uncertain variable. Figure 4 reports the frequency response function of the original
model G( jω) of order n = 25 in comparison to the reduced-order model Ĝ( jω) of
order k = 4 for the extremal values f = 0.5 and f = 10.5. We observe that for both
extremal values of f , themodel-reduction results are quite accurate.We also observe,
in the subfigure on the right-hand side of Fig. 4, that in both cases, theH∞-norm of
the error system G( jω) − Ĝ( jω) is smaller than the a-priori obtained error bound,
as expected.
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Fig. 4 (Left) comparison between the frequency response function of the original system G and
the reduced-order one Ĝ, and (right) error bound in comparison to the frequency response function
of the error system G − Ĝ for the extremal values of the uncertain parameter f

8 Conclusions

In this chapter, by introducing slack variables in the computation of bounds on the
energy functionals, we have obtained an extended model-reduction technique for
linear time delay systems. This technique exhibits more flexibility compared to its
existing counterparts, making it interesting for purposes such as parameterized and
structured model reduction. Moreover, the proposed technique preserves stability
properties and also provides a computable error bound. We have numerically eval-
uated the performance of the proposed method by applying it to a model of neural
fields in the brain and to a model with polytopic uncertainties.

Appendix A. Derivation of X (r)

We consider wi j (r, r ′), for i, j = 1, 2. This function can be written in the following
general form

Wi j (r, r
′) = ki j exp

(

−
∣
∣r − r ′ − μi j

∣
∣2

2σi j

)

= ki j exp

(

− |r |2
2σi j

)

exp

(

−
∣
∣r ′ + μi j

∣
∣2

2σi j

)

exp

(
r(r ′ + μi j )

σi j

)
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for some constants ki j ,σi j and μi j . We wish to decompose wi j (r, r ′) into a multi-
plication of only-r and only-r ′ dependent functions. However, the term exp(r(r ′ +
μi j )/σi j ) cannot be directly decomposed into such a desirable form. To cope with
this issue, we use the Taylor series approximation of order ρ of this term to obtain

exp

(
r(r ′ + μi j )

σi j

)

≈ [
1 r r2 ... rρ

] [
1 (r ′+μi j )

σi j

(r ′+μi j )
2

2σ2
i j

...
(r ′+μi j )

ρ

ρ!σρ
i j

]T
,

where ρ is the order of approximation. With this approximation, we can now write

wi j (r, r
′) ≈ fi j (r)g

T
i j (r

′)

where
fi j (r) = [

fi j,0(r) · · · fi j,ρ(r)
]
,

gi j (r) = [
gi j,0(r) · · · gi j,ρ(r)

]

with

fi j,m(r) = rm exp

(

− |r |2
2σi j

)

,

gi j,m(r ′) = ki j

(
r ′ + μi j

)m

m!σm
i j

exp

(

−
∣
∣r ′ + μi j

∣
∣2

2σi j

)

, m = 0, 2, ..., ρ.

With this representation of w(r, r ′), we may choose

X1 =
[

0
f22

]

, X2 =
[
f12 0
0 f21

]

,

Y1 =
[

0
g22

]

, Y2 =
[

0 g21
g12 0

]

.

With this choice of X1 and X2, we obtain N1 = ρ and N2 = 2ρ. We also note that
this choice of X1 and X2 leads to w11 = 0.
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Applications of Model Order Reduction



A Practical Method for the Reduction
of Linear Thermo-Mechanical Dynamic
Equations

Artur Jungiewicz, Christoph Ludwig, Shuwen Sun, Utz Wever,
and Roland Wüchner

Abstract Linear thermo-mechanical equations are widely used for the dynamic
modeling of electric motors/generators or gas turbines. In order to use them in the
context of a digital twin, real-time capable versions of the models must be achieved.
In principle, model order reduction techniques for coupled thermo-elastic physics are
known. However, commercial tools and even open-source tools allow only limited
access to the necessary information in terms of coupling terms. This paper aims at
providing an algorithm for the reduction of thermo-elastic equations in the framework
of given software tools. After sampling and running some simple test cases in the
offline stage, the reduced coupling term can be obtained and directly applied in the
online stage to solve the reduced thermo-mechanical equations without intrusion into
the commercial FEMsoftware.Moreover, the numerical residual due to sampling and
grouping techniques is also discussed in the paper. Basically, an algorithm similar
to operator inference [15] is applied for extracting the coupling term. The complete
workflow for extracting the coupling matrix is demonstrated on the open-source
software Code_Aster.
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1 Introduction

An increasing number of disruptive innovations with high economic and social
impact shape our digitalizing world. Simulation technologies are key enablers of
digitalization, since they facilitate digital twins that mirror physical products and
systems into the digital world. However, digital twins require a paradigm shift in
computational engineering: Instead of expert centric tools, such as common CAx
software, engineering and operation require largely autonomous digital assist sys-
tems that continuously interact with the physical environment through background
simulation, optimization, and control. This new type of digital engineering tools
must efficiently integrate models and data from different product life cycle phases
and master the resulting exploding computational complexities [6].

Within this paper we concentrate on technologies supporting the operation phase
of a component. These technologies allow to monitor the entire state of a system
at any point in time. A simulation model runs in parallel to the operation and is
synchronized by sensor values at discrete time points. In some reports this construct
is called the “digital twin” of a real system. Further benefits of the digital twin
are, e.g., inspection and service planning, lifetime prediction [11], advanced fault
detection and control and optimization during operation [10].

An overview of model order reduction techniques are given in [3, 5, 8]. The
reduction of linear thermal equation [13] and structural mechanical equation [16]
by Krylov methods are well known. Practically, the mass and the stiffness matrix
may be extracted from commercial and open-source software and Arnoldi iterations
can be applied. Within this paper, we want to discuss coupled linear thermo-elastic
equations. While the basic algorithms for model order reduction have already been
discussed [4, 14], reduction in the framework of commercial tools with limited
access to necessary information is still an active field of research. Here, we basically
use the ideas derived in [15]. They reconstruct system matrices in the projected
space from data, which is called operator inference. In the present paper we use the
method for extracting the necessary (reduced) coupling matrix. The projection onto
the subspace is performed by the Krylov method and the data are provided by the
underlying simulator.

The paper is organized as follows: In Sect. 2, the coupled equations for the thermo-
elastic model are described. The partial differential equations are presented and their
structure after spatial discretization is discussed. Section 3.1 discusses methods how
to reduce the coupled equations. Krylov reduction is considered for the thermal and
mechanical part of the equations. Especially, those reduction strategies are discussed
in the framework of software tools, where often the desired coupling information can-
not be extracted. Section 3.2 describes a new algorithm for generating the desired
coupling matrix. This scheme has to be performed once and can be interpreted as a
further preprocessing step (additionally to the reduction itself). It is a general algo-
rithmwhich can be applied for any software,where onlymass and stiffnessmatrix can
be extracted for a single physics [7, 9]. The overall algorithm is summarized in Sect.
3.3. Section 4 describes the full workflow for the reduction of linear thermo-elastic
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equations in the case of using Code_Aster [7] as the underlying simulation software.
The accuracy of the reduction method is demonstrated on a typical application.

2 The Thermo-Mechanical Model

In this sectionwederive the basic equations for heat transfer and structuralmechanics.
Furthermore, the coupling of the equations is discussed.

2.1 Structural Mechanics

Let us consider a solid body of the form � ⊂ R
3 composed of a material with

Young’s modulus E , E ≥ 0 and Poisson ratio ν, −1 ≤ ν ≤ 0.5, and with the bound-
ary ∂� = �D ∪ �N . The body is subject to volume forces f ∈ R

3 in the body� and
surface forces g ∈ R

3 on the boundary �N ⊂ ∂�. The boundary �D ⊂ ∂� should
be fixed, i.e., all displacements are zero. Displacements u ∈ � → R

3 ∈ E(�,R3)

with some appropriate function space E(�,R3) are determined by the equations of
linear elasticity (see, e.g., [12]):

ρut t − div(Ae(u)) = F in � × [t0, T ],
(Ae(u)) · n = g on �N × [t0, T ],
u = 0 on �D × [t0, T ],

(1)

where the strain e(u) is given the symmetrized gradient of displacements

e(u) = 1

2
(∇u + ∇u	) ∈ R

3×3, (2)

and the stress Ae(u) is determined by

Ae(u) = 2μe(u) + λtrace(e(u)) · I (3)

= 2μe(u) + λdiv(u)I .

Here, λ = νE
(1+ν)(1−2ν)

and μ = E
2(1+ν)

are the so-called Lamé constants and I is the
identity matrix.

Equation (1) gives the strong formulation for linear elasticity. Discretization of
the weak formulation by finite elements leads to the linear system, cf. [17]:

Mu ü + K uu = F, K u, Mu ∈ R
N1×N1 , u, F ∈ R

N1 , (4)
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where N1 denotes the dimension of the ansatz space, Mu is mass matrix, K u is the
stiffness matrix, and, by abuse of notation, F the vector of acting forces and u the
vector of displacements.

Note that, in this work, an undamped system is considered. In general, a damp-
ing matrix Du ∈ R

N1×N1 may be introduced in Eq. (4) which might even be time
dependent (the same holds for the stiffness matrix K u).

2.2 Heat Transfer

The heat equation is given by

Tt + ∇ · (κ(x)∇T ) + s = 0 in �,

κ(x)∇T · n = g on �N ,

T = f on �D.

(5)

Spatial discretization of the weak formulation of (5) leads to the linear system:

MT Ṫ + K T T = Q, MT , K T ∈ R
N2×N2 , T , Q ∈ R

N2 , (6)

where MT is the thermal mass matrix and K T the thermal stiffness matrix.

2.3 Coupling of Equations

The coupling of temperature and the displacements takes place by extending the
definition of the strain:

e(u) = 1

2
(∇u + ∇u	) + α
T I, (7)

where 
T is the temperature difference w.r.t. a given reference temperature and I is
the identity matrix. Then, according to Eq. (3), also the mechanical stress depends
on the temperature. After assembly of the finite elements, a coupling block appears
in the overall stiffness matrix. The coupled dynamic equation is given by

(
0 0
0 Mu

)(
T̈
ü

)
+

(
MT 0
0 0

)(
Ṫ
u̇

)
+

(
K T 0
K Tu K u

)(
T
u

)
=

(
Q(t)
F(t)

)
, (8)

where K Tu ∈ R
N1×N2 is the coupling matrix. Due to the unsymmetric coupling in

the common stiffness matrix, Eq. (8) may be decoupled:
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MT Ṫ + K T T = Q(t), (9)

Mu ü + K uu = F(t) − K TuT . (10)

Nearly all software tools are able to extract the thermal and structural mass and
stiffness matrix [1, 7, 9]. However, the coupling matrix K Tu is often not available.
Instead, the thermal load is given as a complete vector:

FTu = FTu(T (t)) = K TuT . (11)

3 Derivation of the Reduction Algorithm

In this sectionwedescribe the complete scheme for obtaining the reducedmodel. First
we recall the known algorithm for reducing linear thermo-mechanic equations Sect.
3.1. The main contribution of this paper is presented in Sect. 3.2, where we describe
the extraction of the coupling matrix. Finally, the overall algorithm is summarized
in Sect. 3.3.

3.1 Model Order Reduction

In many real world applications, the number N1 and N2 of degrees of freedom of
the discretized systems (9) and (10) is large and its numerical integration is not
possible in real time. Model order reduction strategies [3] introduce a reduced state
of significantly lower dimension.

For the structural mechanics we have the reduction v ∈ R
n1 with n1 
 N1 :

u ≈ �v, � ∈ R
N1×n1 . (12)

One way to obtain the reduction matrix � for the mechanical system (4) is to use
a Krylov subspace method [2, 16], where it consists of an orthonormal basis of the
Krylov subspace

span
{
K−1

ω F, K−1
ω MK−1

ω F, . . . , (K−1
ω M)r−1K−1

ω F
}
, (13)

which may be computed by the Arnoldi algorithm.
Inserting the reduction (12), obtained by (13) into the differential equation (4)

and multiplying from left by �	, one obtains the reduced equation

�	Mu�v̈ + �	K u�v = �	F(t). (14)

Similar to the structural mechanics, the temperature is reduced. With
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T ≈ �S, S ∈ R
n2 , � ∈ R

N2×n2 , n2 
 N2, (15)

it holds
�	MT�Ṡ + �	K T�S = �	 Q(t). (16)

The reduced coupled equation for (9) and (10) is

�	MT�Ṡ + �	K T�S = �	 Q(t), (17)

�	Mu�v̈ + �	K u�v = �	F(t) − �K Tu�S. (18)

Introducing the abbreviations

M̂T = �	MT� ∈ R
n2×n2 ,

K̂ T = �	K T� ∈ R
n2×n2 ,

M̂u = �	Mu� ∈ R
n1×n1 ,

K̂ u = �	K u� ∈ R
n1×n1 ,

K̂ Tu = �	K Tu� ∈ R
n1×n2 ,

we obtain

M̂T Ṡ + K̂ T S = �	 Q(t), (19)

M̂u v̈ + K̂ uv = �	F(t) − K̂ TuS.

The presented algorithm for the reduction of the thermo-elastic equations makes use
of the fact that the coupling matrix K Tu is available. However, as it was pointed out
in the previous section, this is often not the case. That is, only the combined thermal
load FTu(T (t)) ∈ R

N1 (11) is available . Then Eq. (19) read

M̂T Ṡ + K̂ T S = �	 Q(t), (20)

M̂u v̈ + K̂ uv = �	F(t) − �	FTu(T (t)).

The reduced Eq. (19) may be computed without any problems. However, Eq. (20)
is not suited for real-time evaluation. The term �	FTu(T (t)) ∈ R

n1 depends on the
temperature T (t) which, in turn, depends on the source vector Q(t) and is therefore
not known in advance. The equation

�	FTu(T (t)) = K̂ TuS (21)

also performs a decoupling and thus allows the evaluation of the coupling term at the
actual (reduced) temperature. Therefore, we present an algorithm for extracting the
reduced coupling matrix K̂ Tu from the vectors FTu(T (t)) which can be performed
offline.
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3.2 Extraction of the Coupling Matrix

As already mentioned, the main difficulty lies in how the coupling matrix K Tu can
be obtained since most software tools do not provide an option for users to extract
this matrix. In the following we present an algorithm similar to the ideas presented
in [15] for estimating the coupling matrix K Tu in a pre-processing step to solve the
coupling problem. The basic idea is to use the equation

FTu = K TuT , (22)

setting up a sample of temperatures

Tm = (T 1, . . . , Tm) ∈ R
N2×m, (23)

computing the corresponding thermal loads

Fm
Tu = (FTu,1, . . . , FTu,m) ∈ R

N1×m, (24)

and solving the least-squares problem

min
K Tu∈RN1×N2

‖Fm
Tu − K TuTm‖2F , (25)

where ‖.‖F is the Frobenius norm. In order to obtain a unique solution of the least-
squares problem (25), the number of samplesm should fulfill the inequalitym > N2.
Solving the least-squares problem (25) has two significant drawbacks:

• The dimension of the least-squares problem (25) is at least N1 × N2. Decoupling
of the problem by determining the K Tu column wise is possible, but still very
expensive in terms of computation time.

• The temperature samplesmust be linear independent in order to obtain a reasonable
condition number for problem (25).

In the followingwe try to overcome these drawbacks by setting up amore practical
identification for the couplingmatrix. Following [15], the main idea within this paper
is to directly estimate the reduced coupling matrix. The number of coefficients to be
estimated reduces drastically:

K Tu ∈ R
N1×N2 ⇒ K̂ Tu = �	K Tu� ∈ R

n1×n2 . (26)

The following Eq. (27) is used for the identification of the reduced coupling matrix:

�	FTu = �	K TuT = �	K Tu�S = K̂ TuS. (27)

The data required for the least-squares identification are again generated by the
underlying software tool. That is, for a sample of temperatures the corresponding
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thermal load is evaluated:

T i , i = 1, . . . , k ⇒ FTu,i , i = 1, . . . , k. (28)

From the given temperature samples the reduced temperature is derived:

Si = �	T i , i = 1, . . . , k. (29)

Similar to (23) and (24), sample matrices of the reduced temperature and the reduced
thermal loads are set up:

Sk = (S1, . . . , Sk) ∈ R
n2×k (30)

F̂
k
Tu = (�	FTu,1, . . . ,�

	FTu,k) ∈ R
n1×k . (31)

Now we are able to set up the least-squares identification problem for the reduced
coupling matrix:

min
K̂ Tu∈Rn1×n2

‖F̂k
T u − K̂ TuSk‖2F , (32)

where ‖.‖F is again the Frobenius norm. In order to obtain a unique solution of the
least-squares problem (32), the number of samples k should fulfill the inequality
k ≥ n2, which is of course much smaller than in the case of (25).

The least-squares problem (32) holds for arbitrary temperature samples T i , i =
1, . . . , k and the corresponding thermal loads FTu,i , i = 1, . . . , k. Therefore, we
should choose the matrix Sk = �	T k in such a way that the least-squares problem
(32) has a reasonable condition number. Note, that � as an orthonormal matrix does
not downgrade the condition number and it is sufficient to choose a reasonable sample
matrix T k .

A possible approach is setting up a transient thermal simulation and choosing the
temperature field at different time steps as samples. However, as already discussed in
[15], in practical problems the states at different time stepsmay be linearly dependent
and a large condition number of thematrix Sk will be encountered in the computation.
Thus, instead of pursuing this transient approach, it is better to choose a set of
temperature fields directly and gather them in the temperature sample matrix T k .
An obvious and elegant choice is T k = T n2 = �. This would result in Sn2 being
the identity matrix and yield a trivial identification problem (32). However, if � is
calculated outside the commercial tool it may prove difficult to correctly import and
prescribe these vectors as temperature fields. To do so, internal settings such as node
ordering or dualization of boundary conditions would have to be taken into account.
Therefore, we propose to choose simple temperature fields only prescribing nonzero
temperature at a few nodes. Such an approach can usually be performed easily via a
GUI or a script.

More precisely, we choose temperature samples in the following way: First, unit
temperature is prescribed at a few nodes. In each subsequent case, a different set
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of nodes is selected and unit temperature is prescribed. The remaining nodes are
assumed to have zero temperature. This procedure is repeated until all nodes are at
least covered one time. An example of this method is given by

T k =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 1 1 1 1 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 1 1 1 1 · · · 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 · · · 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

	

. (33)

Here, the i th column of T k denotes the i th testing case. In total, k different test
cases are generated. In principle, T k has a good condition number and the least-
squares problem (32) is well posed.

Another improvement of least-squares problem may be achieved by considering
also the geometric order of nodes. Because of the initial ordering of the nodes, a
naive grouping of nodes normally gathers the nodes only in one direction of the
given structure and thus, generate similar thermal loads. It is highly recommended
to consider also other directions of the structure in the generation of testing cases.
Due to the fact, that we are solving least-squares problems, we are not limited in the
number of test cases. The error of this simplemethod highly depends onwhich testing
cases are chosen. The extreme situation is that the identity matrix is selected for the
testing cases but better sampling techniques may be chosen to reduce computational
effort. The better the sampling technique catches the properties of the mechanics and
interactions between the nodes, the better the result of the approximated coupling
term will be. More techniques can be applied here in future work for a better result.
In Sect. 4, the influence of sampling and grouping of test cases on the approximation
residual is illustrated using an example setup.

3.3 Algorithm

The whole process of reducing the thermo-mechanical equations (8) is summarized
in Algorithm 1. The main parts are the separate reduction of the thermal and the
mechanical equation, and the generation of the coupling matrix. The flow chart is
displayed in Fig. 1.

After running Algorithm 1, the reduced system (19) may be solved in a natural
way: Solving alternatively the reduced thermal and the mechanical equations. Note
that it is possible to use different time steps for thermal and mechanical equations
and synchronize them after a few time steps. For numerical time integration we use
the Newmark-beta method with α = 0.25 and β = 0.5.
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Fig. 1 The flow chart of the algorithm

Algorithm 1: Algorithm for the reduction of the coupled thermo-elastic equa-
tions (9) and (10) (Offline stage)
1: procedure Reduction(Mu ,K u ,MT ,K T ,F,Q)
2: Input : Mu ,K u Mechanical mass and stiffness matrix
3: Input : MT ,K T Thermal mass and stiffness matrix
4: Input : F,Q Mechanical and thermal load �All inputs can be extracted directly from

commercial software
5: Output: �,� Projection of mechanical and thermal equations
6: Output: K̂ Tu Reduced coupling matrix
7: Reduce: [�, Hu] = Arnoldi(K−1

u Mu , K
−1
T F)

8: Reduce: [�, HT ] = Arnoldi(K−1
T MT , K−1

T Q)

9: Compute thermal load: T i ⇒ FTu,i , i = 1, . . . , k according to (33) and (28)

10: Reduce temperature and thermal load according to (29), (30) and (31) ⇒ Sk , F̂
k
T u

11: Compute reduced coupling matrix: min K̂ Tu∈Rn1×n2 ‖F̂k
T u − K̂ TuSk‖2F

12: end procedure

4 Implementation and Results

In this section, we demonstrate the performance of the method on a Finite Element
model [7] and compare the full model with the reduced one. In a first section, the
modeling process and the details of themodelwill be described.Afterward, the results
for the Finite Element model will be presented in detail. Especially the influence of
how to generate the coupling matrix is discussed.

4.1 Modeling

The validation of the described approach for the reduction of linear thermo-elastic
equations was performed with the open-source FEM software package Code_Aster
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[7]. The geometry from the included testcase tpna01b was used and thermo-
mechanical couplingwas introduced. The geometrymodel and itsmesh are presented
in Fig. 2. The mesh is composed of 525 nodes and 320 hexahedron elements. The
material parameters are listed in Table 1.

For the thermal system, homogeneous Dirichlet boundary conditions are applied
at the face ABCD. The heat flux through ABEF and DCHG is fixed to 20.0Wm−2

and to 50.0Wm−2 through BCHE and ADGF .
In the mechanical model, the nodes on face ABCD are fixed for all spatial direc-

tions. A harmonic force is acting in vertical direction with magnitude of 0.5N and
frequency of 2Hz. It is located at the highest points of the arc. Additionally, it is
assumed that displacement data are measured at a single node located at the highest
point of the arc (see again Fig. 2).

Table 1 Material parameters of the model

Material parameters Value

Young modulus E (GPa) 2100000

Poisson’s ratio ν 0.3

Density ρ (kg/m3) 7800

Linear dilation coefficient α (K−1) 0.001

Thermal conductivity λ (W/(m3 K)) 100.0

Heat capacity ρCp (J/(m3 K)) 100.0

Fig. 2 Geometry and mesh of the model tpna01b. The acting outer load is marked as arrows in
the middle of the arc. Furthermore, the position for observing the displacements are marked as a
small black circle
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4.2 Results

Finally, the presented algorithm is validated by means of comparison with a refer-
ence solution obtained from Code_Aster. For the current application, the degrees of
freedom of the model are reduced from 500 to 6 for temperature and from 1500 to
21 for the displacements.

First, the temperature evolution from 0s to 1 s at a randomly picked node is
compared with the reference solution, see Fig. 3. It can be seen that, after some initial
oscillations, the solutions are in good agreement. Figure 4 presents the temperature
at all nodes after 1 s. The absolute difference between these results is approximately
4.9 × 10−5 corresponding to a relative error of about 0.01%.

Additionally, the thermal expansion load in the reduced space, calculated byAlgo-
rithm 1, is compared with the reference solution obtained from a coupled simulation
performed in Code_Aster.

Figure 5 presents a comparison between the values of the thermal load at each
DOF in the reduced space. In addition, the thermal load history at the sixth DOF is
visualized in Fig. 6.

As mentioned in Sect. 3.2, not only the condition number of the test temperature
matrix (33) is important, but also the connectivity of the nodes (for obtaining differ-
ences in the response in terms of the thermal load). In the configuration of Fig. 7 we
have chosen a more naive sample of temperatures shown in (33) which does not con-
sider the connectivity of the nodes. It can be observed that the configuration in Fig. 6
is preferable. In this case, the node connectivity is considered by adding 20 extra

Fig. 3 The temperature
history of node 51 from 0 to
1s

Fig. 4 The temperature
distribution of all nodes at 1s
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Fig. 5 The value of thermal expansion load applied on each reduced dof at 1s

Fig. 6 The load history applied on the sixth degree of freedom in the reduced subspace

cases with unit temperatures applied on the nodes lying on the same longitudinal
direction.

Finally, displacements at the observation point obtained from the reduced-order
model are compared to the reference solution from Code_Aster. Two different load-
ing conditions have been investigated: Thermal loading/no mechanical loading and
thermal loading with an additional harmonic mechanical load acting at the top of the
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Fig. 7 The thermal expansion load when worse grouping technique is applied compared with
Fig. 6

Fig. 8 The displacement of the observation point in x direction from 0 to 1s with purely thermal
load

arc. The displacements at the observation node for the former case is presented in
Fig. 8, whereas for the latter case in Fig. 9.

Figure 10 (only thermal load) and Fig. 11 (thermal and mechanical load) present
the displacements at a second randomly chosen observation point.
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Fig. 9 The displacement of the observation point in x direction from 0s to 1 s with additional
harmonic mechanical load

Fig. 10 The displacement of a second observation point in x direction from 0 to 1s with pure
thermal load
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Fig. 11 The displacement of a second observation point in x direction from 0s to 1 s with additional
harmonic mechanical load

5 Conclusions

The reduction of thermo-elastic dynamic equations is a task of ongoing interest in
industry. While the basic algorithms and techniques for reduction are known, at
least in the linear case, it is not yet known how to use them in the framework of
existing software tools. It turned out that many software tools are able to extract the
mass matrix and stiffness matrix for a single physics. However, for coupled physics
such as thermo-elasticity also coupling information is needed for reduction. Many
software tools solve this by adding an additional right-hand side (thermal load) to the
mechanical equation. In this paper we have presented an algorithm similar to that of
[15] for constructing the couplingmatrix from solver information such as the thermal
load. The method works reliably, because we directly estimate the reduced coupling
matrix and thus obtain a small and well-conditioned linear least square problem.
This algorithm has to be performed only once and thus can be seen as an additional
offline preprocessing step. The performance of the method is demonstrated on a half
arc where we achieve good agreement of the original and the reduced equations.

Further work will be spent to apply the algorithm within other commercial soft-
ware tools.

Acknowledgements The authors would like to thank the reviewers for their careful revision of the
paper. Furthermore, they want to thank the reviewer for the hint of applying directly the thermal
modes for the training of the coupling matrix.
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Reduced-Order Methods in Medical
Imaging

Saifon Chaturantabut, Thomas Freeze, Elias Salomão Helou,
and Charles H. Lee

Abstract With technological advances and increasing demand for finer resolution
images, tomographic medical imaging can be a huge computational problem, con-
sequently, the processing time for image construction can be prohibitively large and
impractical for real-time applications. The main bottlenecks are retrieving data and
solving the inverse problem to attain medical images. Proper Orthogonal Decompo-
sition (POD) is a model-reduction technique that can be used to compress a large
set of images into an orthonormal basis whose elements can accurately generate
any images in the original collection with the fewest possible modes. Applicability
of POD on tomographic images is not possible without the linearity of the inverse
problem. Due to its structure, the first few POD elements contain all the dominant
features of the entire image collection. Thus, instead of performing the inverse Radon
transform on all medical tomographic images, one needs to process only the primary
POD modes once and reuse them to construct all tomographic images, rendering its
computational savings. In this article, we improve the PODmethod further by imple-
menting its hybrid version. Namely, the computation of the covariance matrix and
associated eigenvalues and eigenvectors can be expensive for large-size images. This
process can be sped by working with the down-sampled data and use the resulting
coefficients to reconstruct the full-resolution images. Image reconstruction of fish
eggs in a test tube will be presented. Errors and computational savings will also be
discussed.
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1 Introduction

One way of creating a tomographic image is to emit X-rays through an object from a
variety of different angles and spatial positions. Both the emission intensity of each
ray and the intensity of the beam received by sensors on the other side of the object
are then recorded. The attenuation of the ray as it transverses the matter depends on
the attenuation coefficient along the X-ray beam path. These attenuation readings
give us line integrals of the function which represents a cross-sectional image of the
object. Medical tomography calls for methods to solve both the computational and
storage-related problems involved in handling these large data sets.

Numerous studies have used themodel-reduction technique called proper orthogo-
nal decomposition (POD). The method was first introduced by Sirovich in 1987 [24]
and extracts the dominant features of a data set. Subsequent applications of POD
include reducing and controlling fluid flow in chemical vapor deposition reactor [16,
17], amplifying weak signal-to-noise ratios of antenna arrays [13], the compression
of hyperspectral data from satellites [21], cancer detection and classification [1, 11,
22, 23], and maximizing stock return [12]. In medical imaging, POD has been used
to speed up the reconstruction process of many applications. In electrical impedance
tomography (EIT) [14, 15], POD was shown to speed up the computation of recon-
struction without decreasing the quality of the reconstructed images significantly. In
[4], the use of POD in Hyperspectral tomography (HT) was shown to significantly
reduce the computational cost, enhance the fidelity of the tomographic reconstruc-
tions, and improve the stability of the reconstruction in the presence of measurement
noise. In [5], POD was used for the preprocessing of datasets in vortex detection in
4D MRI Data. In [18], POD was used to generate a basis model for simulated blood
patterns for a given vascular location with various anatomical configurations. This
basis was then further used to improve the noisy data of blood flow images.

In this study, we use POD to reduce a large set of medical tomography data
into a much smaller set of representative modes that can be used to reconstruct any
image in the set with a high degree of accuracy. Our method uses an inexpensive
technique to down sample and extract the weights of a smaller dataset to use in
the computation of a large dataset in order to reduce the number of applications of
the inverse mathematical transformation needed to create the medical tomographic
images. Rigorous details will be furnished in Sect. 2.2.

2 Methods

In the present section we describe the most well known and widespread tomographic
image reconstruction technique and the basic theory of proper orthogonal decompo-
sition.
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2.1 Medical Tomography

As an X-ray beam moves across matter, it is attenuated following the Beer-Lambert
law:

Ie
Id

= e
∫
L f (s)ds,

where Ie is the X-ray beam’s emitted intensity, Id is the X-ray beam’s detected
intensity, L is the line segment joining emitter to detector and f : R2 → R is the
linear attenuation factor.

Therefore, on one hand, it is possible to experimentallymeasure
∫
L f (s)ds. On the

other hand, because the attenuation factors provide information about the object’s
interior, it is interesting to know f . In what follows we will describe one way of
recovering f from its integrals with respect to arc length along straight lines. Since
it is possible to measure integral data, we parametrize this information, accordingly
defining the so-called Radon Transform (rt) as follows:

pθ (t) := R[ f ](θ, t) :=
∫

R

f (tξ θ + sξ⊥
θ )ds,

where ξ θ := (cos θ

sin θ

)
and ξ⊥

θ := (− sin θ

cos θ

)
. For a fixed θ , the function pθ is also known

as a projection. A geometric representation of the rt is given at the left in Fig. 1. In
this figure, the Shepp-Logan phantom, which is an image composed by the linear
combination of the indicator function of 10 ellipses (a complete description can be
found in [10]), is centralized in axes x and y. The t axis, whose slope is determined
by the angle θ , is also shown. For the point t = t ′, the perpendicular dashed line
represents the integration path, and the graph of pθ (t) is plotted. The representation
of the rt in the plane θ × t is called sinogram. The sinogram of the Shepp-Logan
phantom is presented at the right in Fig. 1.

Because it is useful in the Radon inversion problem, we define here the Fourier
Transform (ft) and its inverse. Let f : Rn → C and define, for ω ∈ R

n:

f̂ (ω) := F [ f ](ω) :=
∫

Rn

f (x)e−ix·ωdx.

Then, under reasonable conditions:

f (x) = F −1[ f̂ ](x) := 1

(2π)n

∫

Rn

f̂ (ω)eiω·xdω.

The dimension n is not explicitly stated in the notation, but should always be clear
from the domain of the function being transformed.

One of the key mathematical results about the Radon Transform is the Fourier
Slice Theorem (fst), which relates the Fourier Transform of the rt of an image to
the Fourier Transform of the image itself. It can be stated as the following equality
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Fig. 1 Left: geometric representation of the line integral defining the Radon transform R[ f ](θ, t).
Right: sinogram, i.e., the Radon transform R[ f ] of the image f on the left depicted on the θ × t
plane

(the proof is not difficult and is left as an exercise or may be found in [9, 10, 20]):

p̂θ (ω) = f̂
(
ωξ θ

)
. (1)

Recall that pθ (t) = R[ f ](θ, t). Therefore, what the fst states is that the one-
dimensional ft of a projection pθ corresponds to a “slice” of the two-dimensional
ft of the original image.

Therefore, because the projections pθ can, in principle, bemeasured usingX-rays,
it is possible to fill the Fourier space with data in order to use the Fourier inversion
formula and to obtain the desired image. Methods that use this idea are called Fourier
reconstructionmethods and can be useful. However, because this process will require
interpolation in the Fourier space and because the Fourier sampling thus obtained
is sparse in the higher frequencies, which determine the finer details of the image,
Fourier reconstruction methods may present undesirable image artifacts. An alter-
native is provided by the Filtered Backprojection algorithm, which is presented and
discussed in what follows. The two-dimensional Fourier inversion formula can be
written in polar coordinates as follows:

f (x) = 1

(2π)2

∫

[0,π]

∫

R

|ω| f̂ (ωξ θ )e
iωx·ξ θ dωdθ.

Now, using the fst (1) we have

f (x) = 1

2π

∫

[0,π]
1

2π

∫

R

|ω| p̂θ (ω)eiωx·ξ θ dωdθ,
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which is an inversion formula for the rt since it only depends on data given by the
Radon Transform in order to recover f . This formula is called the Filtered Back-
projection (fbp) algorithm. In order to estimate the computational cost of the fbp
algorithm, we will assume that the rt was sampled in nθ angles, each of which was
sampled in nt positions. The most common sampling procedure, which will assume
here, use parallel projections, that is, the rt is sampled at the pairs (θκ , t�) where

(κ, �) ∈ {1, 2, . . . , nθ } × {1, 2, . . . , nt },

and

θκ = π
(κ − 1)

nθ − 1
and t� = −1 + 2

(� − 1)

nt − 1
.

The fbp algorithm can be split in two operations: a filtering step followed by a
backprojection step. The filtering is described by the following integration:

g(θ, t) := 1

2π

∫

R

|ω| p̂θ (ω)eiωtdω,

whichmust be computed for every θκ where the Radon Transformwas sampled. Each
of these integrations can be computed using the Fast Fourier Transform (fft) algo-
rithm which uses O(nt log nt ) flops. Because there are nθ of such integrations, the
total asymptotic flops count becomes O(nθnt log nt ). Notice that prior to the compu-
tation of the above integral, each of the projections pθκ

must be Fourier transformed,
which is a step that will also take O(nθnt log nt ) flops. We will not be concerned
with the constant implicit in the big O notation, we simply state that the filtering step
consumes O(nθnt log nt ) flops. Now, the backprojection step is defined as

B[g](x) :=
∫

[0,π]
g(θ, x · ξ θ )dθ.

We will assume that the image being reconstructed will be estimated in a cartesian
grid of np × np samples. Therefore, the above integrationwill be computed n2p times,
one for each image sample. Since there are nθ samples θκ , the total flop count in this
case will be O(nθn2p).

Summing up, the total flops count is O(nθn2p) + O(nθnt log nt ). It is usual to
sample the rt such that the sampling rates are proportional among themselves, that
is np ∼ nt ∼ nθ and we can, therefore, see that the computation cost is dominated
by the backprojection step giving an overall O(n3p) asymptotic flop count.

A three-dimensional reconstruction can be obtained by stacking nr two-
dimensional reconstructions. In this case, the dataset is going to have nr sino-
grams, each of which contains nθ × nt samples of the rt of the function fi ,
i ∈ {1, 2, . . . , nr }, that represents slice i of the three-dimensional image.

We finish this brief introduction by mentioning some literature that approaches
the problem of reducing the computational load of the backprojection step in many
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cases obtaining equivalent formulations of the operation that can be computed using
around O(n2p log np) flops. The list is not meant to be exhaustive. One approach uses
a transformation to log-polar coordinates, which recast the backprojection as a con-
volution [2]. Also possible is to interpolate Radon samples to a linogram coordinate
system [6, 7]. Another approach considers the use of hierarchical decompositions in
either the Radon [8] or in the image [3] domains. It is also possible to use a backpro-
jection slice theorem in order to reduce the flops count of the most computationally
intensive part of the fbp algorithm [19].

2.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) has been used in many applications to
construct a low-dimensional subspace that captures the dominant behavior in various
applications. One of the most important properties of POD is that it can construct an
approximation that minimizes the error in 2-norm for a given fixed basis rank.

Consider a set of snapshots {X(1),X(2), . . . ,X(Ns)} ⊂ R
N . In general, each

snapshot may depend on certain parameter value, time instance, or spatial location.
Suppose we want to approximate a snapshotX( j) by using a set of orthonormal vec-
tors {�(1), �(2), . . . , �(K )} ⊂ R

N , which has rank K < N . Then, the approximation
can be written in the form of

X( j) ≈
K∑

k=1

α
( j)
k �(k), j = 1, . . . , Ns . (2)

or, equivalently in amatrix form X( j) ≈ �α( j), whereα
( j)
k is the kth component of

vector α( j) = �TX( j) ∈ R
K , and � = [�(1), �(2), . . . , �(K )] ∈ R

N×K . The above
approximation can be considered as applying orthogonal projection ��T , i.e.,

X( j) ≈ ��TX( j), j = 1, . . . , Ns . (3)

POD provides an orthonormal basis that minimizes this approximation error in 2-
norm for a given basis rank K ≤ r , where r := rank({X(1),X(2), . . . ,X(Ns)}). That
is, POD basis is the optimal solution to the following minimization problem:

�POD = arg min
�∈RN×K

Ns∑

j=1

‖X( j) − ��TX( j)‖22. (4)

It can be shown [25] that PODbasis defined above canbeobtained from the left sin-
gular vector of the snapshot matrix X = [X(1),X(2), . . . ,X(Ns)]. Let X = U	VT

be the singular value decomposition of X, where matrices U = [U (1), . . . ,U (r)] ∈
R

N×r andV = [V (1), . . . , V (r)] ∈ R
Ns×r arematrices with orthonormal columns and
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	 = diag(σ1, . . . , σr ) ∈ R
r×r is a diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Then the POD basis matrix of dimension K is the first K columns of the left singular
matrix U, i.e., �POD = [U (1), . . . ,U (K )] ∈ R

N×K , for K ≤ r . Moreover, it is well
known [25] that this minimum error is given by

Ns∑

j=1

‖X( j) − �POD�T
PODX( j)‖22 =

r∑

�=K+1

σ 2
� , (5)

which is the sum of the neglected singular values σ 2
K+1, . . . , σ

2
r from the SVD of X.

When the dimension N of snapshots is not too large, we can directly obtain the
POD basis from the SVD of the snapshot matrix directly. However, in practice, N can
be extremely large and computing POD basis through SVDmight not be efficient. In
this case, it is common to use a technique called themethod of snapshots, which is
based on finding the eigen-decomposition of the covariance matrix of X defined by
� := XTX ∈ R

Ns×Ns . For Ns < N and Ns = r = rank(X), recall that the singular
value decomposition ofX is given byX = U	VT . Then� = (U	VT )T (U	VT ) =
V	2VT . Note that, since V ∈ R

Ns×Ns is an orthonormal matrix, VT = V−1 and
� = V	2VT canbe considered as eigen-decomposition of�. In particular, each right
singular vector V (�) is an eigenvector of the covariance matrix�with corresponding
eigenvalue σ 2

� , for � = 1, 2, . . . , Ns . We can obtain the POD basis, which is the
first K columns of U by computing U = XV	−1. That is, each POD basis vector
�

(k)
POD ∈ R

N , k = 1, 2, . . . , K , for K ≤ Ns , is given by

�
(k)
POD = 1

σk

Ns∑

j=1

V (k)( j) X( j), (6)

where V (k)( j) is the j th entry of the and kth eigenvector V (k) of the covariancematrix
�. Equivalently, the POD basis matrix �POD = [�(1)

POD, . . . , �
(K )
POD] ∈ R

N×K can
be computed from �POD = XVK	−1

K , where VK = [V (1), . . . , V (K )] and 	K =
diag(σ1, . . . , σK ). The steps for constructing a PODbasismatrix by using themethod
of snapshots are summarized in Algorithm 1.

Algorithm 1Method of snapshots for constructing POD basis

Input: Snapshots X(1), . . . ,X(Ns) ∈ R
N , Ns ≤ N and POD dimension K .

Output: POD basis matrix �POD = [�(1)
POD, . . . , �

(K )
POD] ∈ R

N×K .

1: Create matrix X = [X(1), . . . ,X(Ns)] ∈ R
N×Ns , and let r = rank(X).

Form covariance matrix � = XTX.
2: Compute eigen-decomposition � = VDVT , where D = diag(σ 2

1 , . . . , σ 2
r ).

3: Compute POD basis by using (6) or
using the matrix form: �POD = XVKD

−1/2
K ,

where VK = V(:, 1 : K ) and DK = D(1 : K , 1 : K ) in Matlab notation.
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The two methods described below illustrate how downsampling can be used in
conjunctionwith POD to create a reduced-ordermethod of storing and reconstructing
medical tomography images.

2.3 Downsampled POD Method

We begin with a matrix of nr sinograms, X = [X(1),X(2), . . . ,X(nr )] ∈ R
N×nr ,

where N = nθ × nt .We recall that nr is the number of slices of the three-dimensional
tomographic dataset, nθ is the number of projections of each slice, and nt is the
number of spatial samples of each projection of each slice. We can make significant
gains in efficiency by downsampling the data by taking a reduced resolution and
number of layers, and number of projections to approximate the sinograms,Xwith a
down-sampledmatrix X̂ = [X̂(1), X̂(2), . . . , X̂(Nr )] ∈ R

N̂×Nr where N̂ = Nθ × Nt

with dimensions Nr � nr , Nθ � nθ , and Nt � nt .
As described in the previous section, we then find and sort the eigenvalues σ̂ 2

k

and corresponding eigenvectors, V̂ (k) for k = 1, 2, . . . , Nr of the covariance matrix
�̂ ∈ R

Nr×Nr . By using (6), each POD mode is given by

�̂
(k)
POD = 1

σ̂k

Nr∑

j=1

V̂ (k)( j)X̂( j), (7)

for k = 1, 2, . . . , NPOD , where NPOD ∈ {1, 2, . . . , Nr } is the desired number of
POD modes.

Next, we find the projection of each sinogram onto each POD mode to deter-

mine the weights needed to reconstruct the images by taking α̂( j) = �̂
T
PODX̂( j) ∈

R
NPOD for layers j = 1, . . . , Nr , where �̂POD = [�̂(1)

POD, �̂
(2)
POD, . . . , �̂

(NPOD)
POD ] ∈

R
N̂×NPOD is the POD basis matrix. Let Ŷ = [Ŷ(1), . . . , Ŷ(Nr )] be the matrix of

tomograms corresponding to our matrix of sinograms, X̂. Then,

Ŷ( j) ≈ iRadon

(
NPOD∑

k=1

α̂
( j)
k �̂

(k)
POD

)

, (8)

where iRadon represents inversion using the fbp algorithm. By using linearity of this
inversion iRadon, (8) is equivalent to

Ŷ( j) ≈
NPOD∑

k=1

α̂
( j)
k iRadon

(
�̂

(k)
POD

)
. (9)
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Let us define �̂
(k)
POD = iRadon

(
�̂

(k)
POD

)
. Thus, if we take NPOD � Nr , we only

need to store the truncated POD modes, {�̂(k)
POD}NPOD

k=1 , and corresponding truncated
α̂( j) values to reconstruct the tomograms Ŷ( j), j = 1, . . . , Nr .

2.4 Hybrid-POD Method

In the second method, we only down sample X by layers, so that we are using
Nr < nr , but the resolution and number of angles remains the same as the full data
set. Take Xh = [Xh(1), . . . ,Xh(Nr )] ∈ R

N×Nr to be the matrix containing data set
down-sampled along the layers only. In this section, we use the same weights from
the eigenvectors V̂ ( j) and eigenvalues σ̂ 2

k of the covariance matrix �̂ together with
the coefficient α̂( j), j = 1, . . . , Nr , from the down-sampled method in Sect. 2.3 to
construct full-resolution approximate POD modes �

(k)
hPOD and to reconstruct the

corresponding tomogramsYh(1), . . . ,Yh(Nr ). In otherwords, each PODmode from
the hybrid approach can be defined as

�
(k)
hPOD = 1

σ̂k

Nr∑

j=1

V̂ (k)( j)Xh( j) (10)

for k = 1, 2, . . . , NPOD . The sinograms are then approximated by

Xh( j) ≈
NPOD∑

k=1

α̂
( j)
k �

(k)
hPOD, j = 1, . . . , Nr . (11)

By using the linearity of the inverse Radon transform, as done in the previous section,

we can define �
(k)
hPOD = iRadon

(
�

(k)
hPOD

)
and obtain the approximate tomograms

of the form

Yh( j) ≈
NPOD∑

k=1

α̂
( j)
k �

(k)
hPOD, j = 1, . . . , Nr . (12)

In practice, we can compute the approximated tomograms in (12) directly without
forming the approximated sinograms in (11). The inverse Radon transform of these
POD modes has to be computed only once and they can be reused for approxi-
mating the reconstructions in all layers. This therefore can significantly reduce the
computational cost in practice. Note that, the tomographic reconstruction using this
hybrid-POD approach requires less computational cost than the traditional POD
reconstruction approach as shown in Table 1. In particular, the hybrid approach has
less computational complexity than the traditional POD approach when forming the
covariance matrix for constructing PODmodes and when computing the coefficients
for the POD approximation. The accuracy and efficiency of the hybrid approach are
demonstrated in Sect. 3.3.
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2.5 Implementation Details

To test our model, we collect ray attenuation data through a test tube of fish eggs
from nθ = 200 angles. The resolution of each sinogram is nt = 2048 pixels so that
the dimensions of the sinogram data set is 2048 (resolution) × 256 (layers) × 200
(angles). The resolution downsampling is fixed at every 16 rows, beginning with
row 16/2 = 8, i.e., we use rows 8, 24, 40, . . ., 2024, and 2040. The angles are
not down sampled. Thus, for our experiment Nt = 128 and Nθ = nθ = 200. The
number of snapshots used is varied by varying the downsampling of the number of
layers. For example, with 64 layers (i.e., Nr = 64) we skip every nr/Nr = 256/64 =
4 layers, beginning with layer 4/2 = 16. Thus, our down-sampled dataset is size
128 (resolution) × Nr (layers) × 200 (angles) for Nr = 8, 16, 32, 64, 128, and 256
(where Nr = 256 means all layers are used in the computation of the POD modes).
To transform each 2048 (resolution) by 200 (angles) sinogram to a 1448 by 1448
tomogram, we use a Ram-Lak filters in our backscattered Inverse Radon transform.

3 Results

3.1 Test Tube with Fish Eggs

In this study, we consider a test tube containing fish eggs and water. The setup can be
found in Fig. 2. The test tube is X-rayed at 2048 uniformly spaced layers, resulting in
2048 different sinograms (2048 layers). Ray attenuation is measured for 200 angles.
Sinogram resolution is 2048 pixels.

Fig. 2 The above image
shows high frequency energy
passing through the test tube
and various fish eggs
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Fig. 3 The above figure shows the sinograms with the original in the top left and then as recon-
structed with increasing amounts of modes used

3.2 Down-Sampling Results

Our objective in this subsection is to assess how well the POD technique performs
in reconstructing the down-sampled data and its computational savings. For down-
sampling we apply two different rates to down sample: skip every 8 vertical lay-
ers giving k ∈ {4, 12, 20, . . . , 2044} and skip every 16 spatial pixels giving j ∈
{8, 24, 40, . . . , 2040}. We leave the angular resolution unchanged. Consequently,
this changes our data-cube shape from (2048, 2048, 200) to (256, 128, 200). We
employ the POD method with 256 snapshots of sinograms and each of which is of
dimensions 128 by 200. As a result, there are 256 POD sinograms that one can use
to reconstruct any layers. For demonstration purpose, we showed the results for the
792th layer. The sinogram for the 792th layer along with its reconstructions using 32,
64, and 128 POD modes are shown in Fig. 3. Due to the principal components, only
a small number of primary POD modes are needed. That is, rather than performing
the Radon transformation on all 256 modes, one only needs to perform it on the
first few POD modes, which yields the computational savings. The corresponding
reconstructed images are shown in Fig. 4. As seen in both figures, the larger num-
ber of POD modes are used, the more resemblance the reconstructed image gets. In
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Fig. 4 The above figure shows the constructed image with the original in the top left and then as
reconstructed with increasing amounts of modes used

addition, we see increasing detail (and high frequency noise) as the number of modes
used increases.

We then examined the Root-Mean-Square Error (RMSE) as the number of modes
utilized was varied. The RMSE can be seen in Fig. 5, where the x-axis shows the
layer numbers and y-axis shows number of PODmodes used and the color bar shows
the RMSE. It generally shows that as the number of modes increases the total error
decreases. Note that for the first 25 layers did not contain any fish eggs and thus the
errors seem low and almost all POD modes. On the other hand, layers between 175
and 210 contain multiple eggs and thus higher number of POD modes are needed
to reduce the RMSE. Furthermore, the actual image in Fig. 4 has the scale of order
10−2 and with 50 POD modes, one can reconstruct any layer with RMSE less than
5 × 10−4. Computational savings are shown in Fig. 6. It should be pointed out that
the total time for reconstructing all 256 layers takes 1445 s and by using 64 POD
modes, it is amount to 70 s or 5% of the time.
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Fig. 5 The above figure shows the RMSE of the constructed image as a function of layer number
and the number of POD modes used

Fig. 6 The computation time with the down-sampling method was significantly shorter due to the
much smaller number of layers and decreased image resolution
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3.3 Hybrid-POD Method

To fully demonstrating the hybrid-POD technique, we use a finer tomographic data
set. Particularly, this set of data contains Nr = 2048 layers and each of which has
spatial and angular resolutions of Nt = 2048 and Nθ = 1025, respectively. The fol-
lowing results demonstrate the accuracy and efficiency of the hybrid-POD method
presented in Sect. 2.4. Figures 7, 8, 9, and 10 provide the comparison of the original
sinograms and tomograms (in layers 500, 1000, 1500, 2000) with the reconstructed
ones from the hybrid-POD approach with NPOD = 128, 256, 512, 1024, 2048. It
should be pointed out that the first 865 layers contain only water. As seen from
Fig. 7 that, when there is no object detected in layer 500, the POD-hybrid approach
seems to reconstruct the images accurately for all cases of different POD modes.
For layers 1000, 1500, 2000 that contain fish eggs, the details of sinogram and
tomogram images can be detected more accurately as more POD modes are used,
as shown in Figs. 8, 9, and 10. In these cases, the hybrid-POD reconstructions are
visually indistinguishable when the number of POD modes NPOD ≥ 256 is used.
To measure the accuracy of this approach, we consider the RMSE and its average

Fig. 7 The comparison of the original sinogram in layer 500 (water with no inclusions) with its
sinogramapproximations (left plots) and the corresponding tomogramwith its approximations (right
plots) from hybrid-POD approach using Nt = 2048 (resolution) Nθ = 1025 (angles) Nr = 2048
(layers) with different dimension of POD basis NPOD = 128, 256, 512, 1024, 2048
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Fig. 8 The comparison of the original sinogram in layer 1000 with its approximations (left plots)
and the corresponding tomogram with its approximations (right plots) from hybrid-POD approach
using Nt = 2048 (resolution) Nθ = 1025 (angles) Nr = 2048 (layers) with different dimension of
POD basis NPOD = 128, 256, 512, 1024, 2048

for the reconstructed sinograms and the corresponding tomograms in Figs. 11 and
12, respectively, with different POD modes. As seen in most POD applications, the
plots of average relative RMSE in these figures show that when more POD modes
are used, the reconstruction becomes more accurate. Note that, in top plot of Fig. 12,
the relative RMSEs of the reconstructed tomograms seem to be quite high around
the first 865 layers when compared with the RMSE of the remaining layers as clearly
shown in the bottom plot of Fig. 12 that separately calculates the average relative
RMSE of the first 865 layers and the remaining layers. This might result from the
fact that these first 865 layers contain just water with no fish eggs or other objects.

The computational saving fromusing the hybrid-PODapproach for reconstructing
tomograms when compared to the direct approach that performs the inverse Radon
transform on the sinograms are given in Fig. 13. The computational time considered
in Fig. 13 for the POD-hybrid approach includes the CPU time for constructing
the coefficients from the down-sample snapshots and CPU time for performing the
inverse Radon transform of the hybrid-PODmodes. As expected, when dimension of
the hybrid-POD basis increases, it requires more computational time to perform the
reconstruction. However, all of these POD-hybrid cases can still provide significant



252 S. Chaturantabut et al.

Fig. 9 The comparison of the original sinogram in layer 1500 with its approximations (left plots)
and the corresponding tomogram with its approximations (right plots) from hybrid-POD approach
using Nt = 2048 (resolution) Nθ = 1025 (angles) Nr = 2048 (layers) with different dimension of
POD basis NPOD = 128, 256, 512, 1024, 2048

saving. In particular, the POD-hybrid approach uses 4.7, 9.3, 18.3, 36.4, and 72.6%
of the CPU time required by the direct tomographic reconstruction when the number
of POD modes is NPOD = 128, 256, 512, 1024, and 2048, respectively.

4 Discussion

There are two main aspects of computational saving in this work. The first one
comes from using POD basis to approximate the sinograms. This allows us to obtain
tomograms by performing inverse Radon transform on the low-dimensional POD
basis, instead of the high-dimensional sinograms. This advantage is clearly shown
in Sect. 3.2 when constructing the down-sample case. The reconstruction time is
reduced to 5% of the direct reconstruction when 64 POD modes, instead of 256
sinograms, are used in the inverse Radon transform.

Another aspect of computational saving provided in this work is based on apply-
ing the POD-hybrid approach described in Sect. 2.4. This approach can substantially
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Fig. 10 The comparison of the original sinogram in layer 2000 with its approximations (left plots)
and the corresponding tomogram with its approximations (right plots) from POD-hybrid approach
using Nt = 2048 (resolution) Nθ = 1025 (angles) Nr = 2048 (layers) with different dimension of
POD basis NPOD = 128, 256, 512, 1024, 2048

decrease the computational cost when we want to reconstruct tomography images
for full-resolution sinograms by using POD method, instead of using down-sampled
sinograms. The comparison of complexity for direct reconstruction using the tradi-
tional POD approach and for the hybrid-POD approach is shown in Table 1. Notice
that, the hybrid approach can clearly decrease the computational cost in Step 1 for
forming the covariance matrix and Step 5 for computing the coefficients in the POD
approximation. Notice that, in Step 6, the computational cost of performing inverse
Radon transform,which is not included in the table, is the same for both the traditional
POD and the hybrid-POD approaches because�

(k)
POD and�

(k)
hPOD have the same size.

The flops count for the inverse Radon transform is discussed in Sect. 2.1. Note that,
from Table 1, the additional cost for computing the down-sampled POD modes in
Step 4 is negligible when N̂ � N and Ns � N , where N̂ and N are the dimensions
of the down-sampled sinograms and of the full-resolution sinograms, respectively.
This numerical saving reflects in the overall CPU time for tomographic reconstruction
demonstrated in Sect. 3.3. In particular, the POD-hybrid approach with NPOD = 512
uses only 12.2% of CPU time for the direct reconstruction (77.8% computational
saving) with average relative RMSE of order O(10−2).
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Fig. 11 The relative RMSE of sinograms for each layer (top). The corresponding average relative
RMSE of sinograms averaging over (i) all 2048 layers, (ii) layers 1 to 856 that contain water, and
(iii) layers 866 to 2048 that contain fish eggs (bottom)

Besides computational cost saving, memory storage can also be substantially
reduced by using the down-sampled approach and the hybrid-POD approach. In
particular, in order to reconstruct Ns tomograms Y(1), . . . ,Y(Ns), we only need to
store the K -dimensional POD basis matrix of size N × K and the coefficient matrix
of size K × Ns , which generally require less storage than storing the full-resolution
sinograms in X = [X(1), . . . ,X(Ns)] of size N × Ns , especially for large N or for
K < Ns � N .
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Fig. 12 The relative RMSE of tomograms for each layer (top). The corresponding average relative
RMSE of tomograms averaging over (i) all 2048 layers, (ii) layers 1 to 856 that contain water, and
(iii) layers 866 to 2048 that contain fish eggs (bottom)
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Table 1 Comparison of computational complexity for constructing Ns approximated tomograms
Y ( j), j = 1, . . . , NS , by using the traditional POD method and the proposed hybrid-POD method
of dimension NPOD = K . Note that �(k)

POD and �
(k)
hPOD are the kth column of �POD and �POD ,

respectively. Note that np-by-n p is size of output each tomogram

Fig. 13 The computational time for reconstructing the tomograms by using the POD-hybrid
approach with number of POD modes NPOD = 128, 256, 512, 1024, 2048, when compared with
the CPU time of the direct reconstruction
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5 Conclusion

This work applies POD approximation on tomographic reconstruction to reduce
computational time. We first consider the down-sample approach, which can reduce
the computational complexity by performing inverse Radon transform on the low-
dimensional POD basis, instead of the high-dimensional sinograms. It was shown
in Sect. 3.2 that this approach can reduce the reconstruction time by 95% while the
RMSE is of order O(10−3). In the case of reconstructing a high-resolution image,
we introduce the POD-hybrid approach, which uses some information from down-
sample snapshots to construct the weights and the hybrid-POD basis. This approach
is shown in Sect. 3.3 to efficiently construct the tomograms with high accuracy, e.g.,
the hybrid-POD approachwith NPOD = 512 gives 77.8% computational savingwith
average relative RMSE of orderO(10−2). The complexity reduction approaches pre-
sented in this work can be readily extended and applied to other general tomographic
reconstruction.
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Abstract The paper presents a practical approach to deploy Krylov-based model
order reduction techniques for industrial vibroacoustic problems. The numerical
analysis of frequency-domain transfer functions provides valuable insights into the
model’s behavior even at an early stage of product development. Model order reduc-
tion is a promising approach to yield faster computations while analyzing large-scale
vibroacoustic models, where an expensive evaluation is performed for a significantly
large number of frequency points. However, reducing a full-order model including
damping mechanisms requires special attention so as to efficiently gain from the
reduction process with respect to accuracy and performance. Therefore, one main
focus of this contribution is to identify methods and strategies to efficiently reduce
vibroacoustic models incorporating different damping mechanisms. The identified
and optimized model reduction approach is finally applied to an industrial problem,
where a real automotive structure is reduced and evaluated for the coupled system
response using a combined substructuring and model reduction scheme. Moreover,
through the example, the efficiency of the Krylov-based techniques is demonstrated
with respect to localized damping.
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1 Introduction

Acoustic comfort for passengers is one crucial objective for automotive manufactur-
ers and engineers. Especially for electric and hybrid vehicles, an early assessment
of product design has the potential to reduce the amount of structure-borne sound
radiated into the passenger cabin. The application of numerical tools for vibroacous-
tic simulations is a cost-effective option to assist engineers in evaluating necessary
acoustic measures. Understanding and quantifying the amount of vibration flowing
through a structure provide an insight into the parts that have the potential for design
optimization.

The finite element method (FEM) is a popular numerical tool for approximating
the mechanical response of structural models with complex design characteristics
[1, 2]. With FEM discretization, the propagating structure-borne sound through a
structure can be approximated at respective nodes. However, analysis at higher fre-
quencies using FEM yield very fine meshes so as to accurately capture the essential
features of a shorter wave. As a result, system matrices of huge dimensions are
inevitable to resolve the wave propagation sufficiently. In majority of the cases,
high-performance clusters are needed to perform such complex analyses. Therefore,
computing becomes highly expensive in terms of solver time as well as memory
requirements. Consequently, the application of FEM is limited to available computa-
tional resources. Another alternative is to use other suitable numerical tools like the
statistical energy analysis for high-frequency ranges [3]. But such a method cannot
perform the evaluation for yielding local information, because the method is based
on the statistical average of acoustic parameters without spatial discretization. So as
to benefit from the powerful FEM capabilities, it is advisable to consider different
strategies to reduce computational requirements without compromising on accuracy.
Hence, model order reduction (MOR) techniques, where the aim is to reduce the
large-scale dimension of a system to significantly lower order with acceptable accu-
racy, is a promising alternative to enhance computational efficiency.

The MOR techniques have already seen numerous applications and advances in
the field of structural dynamics [4–15]. The mathematical background for MOR
follows to the book [16] and dissertations [17, 18]. In general, the classical second-
order equations of motion are subjected toMOR techniques for a reduction in system
dimension. Structure-preserving methods, presented in [19–21], were identified to
deliver accurate reducedmodels without destroying the characteristics of the second-
order system. Among the various techniques, the Krylov-based MOR (KMOR) have
shown to be efficient when applied to large-scale systems by performing reduction
using the structure-preserving second-order Krylov subspaces [15, 22]. In addition,
the stability-preserving approaches were developed to address the question of retain-
ing the stability in reduced models. However, stability of the system is not of high
importance for analysis in the frequency domain as compared to the analysis in time
domain [13]. Unlike the frequency domain analysis that performs solving for some
specific frequency points, the time-domain analysis performs the integration of the
transient response over time. As a result, for an unstable reduced system, the resulting
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error in transient response will eventually explode. As the paper demand steady-state
dynamic analysis in the frequency domain, less focus is laid on describing the stability
of the considered automotive structures.

In the context of vibroacoustics, MOR research has been intensively performed
with Krylov subspace methods for instance in [4, 7, 13]. The objective of the contri-
bution is to present a robust Arnoldi KMOR algorithm for the second-order equations
of motion with the aim of reducing the large dimensions of the assembly-oriented
automotive structures. The focus can be outlined to (a) considering models that
include various damping mechanisms, (b) efficient parallelized algorithm that can
handle very large scale models where model reduction is performed for MIMO sys-
tems with a large number of inputs and outputs, and (c) fast evaluation of coupled
system response within a substructuring framework that incorporates the individual
reduced-order models (ROM). The following paragraphs brief on the necessity of
considering the above-mentioned facts within the paper.

Damping is an important phenomenon in vibroacoustic applications that accounts
for the dissipation of vibration energy [23, 24]. Especially at resonance frequencies
where the amplitude of vibration is unpredictably high, damping is required to reduce
the energy of structure-borne sound. Equivalently, identifying resonant frequencies
enable design engineers to incorporate additional damping measures. Hence, with
KMOR, reproducing the systemdynamics accurately,with respect to resonantmodes,
in the reduced system is crucial for vibroacoustic applications. One way is to closely
analyze the various numerical damping mechanisms andmodeling them properly for
KMOR. Based on the type of damping model, the KMOR scheme can be optimized
for maximum efficiency. The paper discusses in detail the two popular numerical
damping models in engineering, namely the Rayleigh damping and the structural
damping model. The former was addressed for model reduction in [25]. However,
the type of damping model approximates the viscous damping phenomenon to be
frequency-independent. On the other hand, the structural damping model considers
damping phenomenon to be frequency-dependent. As a result, the structural damp-
ing model is most preferred for simulating linear viscoelastic materials. The paper,
therefore, investigates theKMORprocedure to efficiently include structural damping
mechanisms that can be highly non-proportional in practical applications.

A practical approach to simulate the coupled system response using KMOR tech-
niques is to couple the transfer functions of the comprising subsystems, obtained
from the ROMs, in a substructuring framework. As a result, the framework provides
flexibility in analysis and faster computations. The method of frequency-based sub-
structuring with Lagrange multipliers in [26, 27] is used in this work. Evaluating
coupled system response using substructuring with the classical component mode
synthesis (CMS) was presented in [28]. But in the presence of localized damping, the
CMSmethod yields expensive computation and less accurate reduced model. To jus-
tify the statement, the paper also presents a comparison of yielded error by deploying
the KMOR and CMS method for models in the presence of localized damping.

Finally, the development of an efficient KMOR algorithm with respect to compu-
tational time and resources is given equal importance as deriving a reduced model
accurately. The paper presents an algorithm developed in C++ that can efficiently
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handle very large-scale models performing extensive orthogonalization and defla-
tion. Parallelized mathematical routines support the presented KMOR algorithm to
efficiently distribute the workload among multiple processors within a shared mem-
ory multiprocessor architecture. The performance advantage with model reduction,
in comparison to the conventional direct solving, is also presented for the complex
automotive assembly.

2 Krylov-Based Model Order Reduction

2.1 Problem Definition

The governing equations for vibration analysis are the classical second-order equa-
tions of motion obtained from the theory of structural mechanics. The finite element
discretization, by deducing the weak form of the governing equations, leads to the
assembled system of linear equations, which when represented in the frequency
domain can be expressed as

(−ω2M + iωD + K
)
z(ω) = f(ω), (1)

where ω is the angular frequency, M ∈ C
n×n is the mass matrix, D ∈ C

n×n is the
dampingmatrix,K ∈ C

n×n is the stiffness matrix, z ∈ C
n is the state or displacement

vector, and f ∈ C
n is the load vector.

In the expression above, it is worth noting that the systemmatrices are considered
to span the complex space. There are often cases in structural mechanics where the
system matrices belong to the complex space. In this paper, only the stiffness matrix
is expected to be complex in the presence of one of the below-mentioned damping
model. Therefore, for presenting the general case, the consideration of complex
system matrices is continued throughout this contribution.

2.1.1 Damping Models

An undamped model is practically not realizable for evaluating the actual response
of a vibrating structure. An overview of various numerical damping models, that
enable simulations to include damping, can be found in example [24, 29]. Based
on the type of damping model, the KMOR scheme can be optimized for maximum
efficiency. The popular damping models in the field of engineering are the

1. Rayleigh damping or the proportional viscous damping and
2. structural damping or hysteric damping.

The Rayleigh damping model is one of the simplest ways to approximate viscous
damping, where damping is approximated as frequency-independent. The nature
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of viscous damping represented as “proportional” means that the damping term
is proportional to the stiffness and mass matrices. The same can be expressed as
D = αM + βK, where α and β are proportionality constants. Of the various damp-
ing models, Rayleigh damping models can be easily deployed and also accurately
predicted usingmodal techniques as they preserve the normalmodes of the undamped
case [29]. Or in other words, MOR can be performed for the undamped case and fur-
ther be extended to the case with Rayleigh damping. Even though the model can be
used to understand the damping nature within a system, it cannot be practically used
to represent the frequency-dependent damping nature of many industrial problems.

On the other hand, the structural damping model can be used to accurately model
the frequency-dependent viscous damping. However, the damping model requires
special attention for yielding accurate ROMs due to the facts listed below. With
structural damping, the measure of damping in structures is included using a rela-
tive measure called the damping loss factor η. The loss factor is proportional to the
damping capacity which is the ratio of the dissipated energy to the total energy [24,
30]. Experimental methods to identify the damping loss factor frommeasured vibra-
tion data can be referred to [23, 31]. The damping model mathematically introduces
imaginary terms to the stiffness matrix [32], expressed as K = (1 + iη)K ∈ C

n×n .
The imaginary term results in a numerical damping effect within the system by
introducing a phase shift between the damping force and the path of vibration. An
example is the introduction of a complex Young’s modulus E = (1 + iη)E as the
material parameter. For easiness, the complex stiffness matrix is represented further
simply as K.

The proportional dampingmodels of both Rayleigh damping and structural damp-
ing were considered for model reduction in [33] by exploiting the spectral structure.
As a result, an efficient reduction can be performed with real arithmetic saving
computational costs in comparison to an equivalent reduction in a complex space.
However, to include non-proportional damping, which can be efficiently included
with structural damping, complex arithmetic is required. As a non-proportionally
damped system is inevitable for practical cases, the structural damping model is pre-
ferred in the following discussion over Rayleigh damping or a proportional case of
structural damping.Also, the structural dampingmodel is used in the presented indus-
trial example of automotive structures for introducing highly localized damping. In
comparison with other viscous damping models that can be efficiently reduced with
second-order Krylov subspaces [6, 15, 25], the current paper identifies the structural
damping model to yield faster model reduction by using an equivalent first-order
subspace. Hence, the main focus of the paper is to deal with the non-proportional
structural damping model efficiently for model reduction.

2.2 Reduction Framework

In system theory, the basic linear system of equations in (1) can be rewritten to form
the full-order model (FOM) system denoted as � with m1 inputs and m2 outputs,



264 H. K. Sreekumar et al.

represented as

� :
{

(−ω2M + iωD + K)z(ω) = Gu(ω)

y(ω) = LHz(ω)
(2)

where the superscript H denotes the complex conjugate. The dynamic system excited
with an input excitation signal u(ω) ∈ C

m1 results an output system response y(ω) ∈
C

m2 . The multiple-input multiple-output (MIMO) configuration can be described
with the rectangular matrices G ∈ C

n×m1 and L ∈ C
n×m2 , which are the input and

output system matrices respectively. Finally, the corresponding transfer function
H ∈ C

m2×m1 for the FOM can be expressed as

H(ω) = LH
(−ω2M + iωD + K

)−1
G. (3)

Structure of system matrices: Analysis of structural models yields, in majority
cases, symmetric system matrices. Even when the models consist of an unsymmet-
ric connector or distributed coupling elements, the symmetric configuration can be
enforced to yield symmetric matrices. However, with the introduction of structural
damping, the stiffness matrix becomes complex non-Hermitian symmetric (other-
wise termed as complex symmetric) and loses its symmetric structure in the com-
plex space. Or in mathematical terms, structural damping yields stiffness matrix with
real part �(K) = �(K)T and imaginary part �(K) = �(K)T where superscript T
denotes the real matrix transpose.

The objective of deploying KMOR is to approximate the expensive FOM system,
� in (2)with corresponding less-expensiveROMsystem,�R , of smaller dimensions.
The statement follows:

�R :
{

(−ω2MR + iωDR + KR)zR(ω) = GRu(ω)

y(ω) = LH
R zR(ω),

(4)

where KR,DR,MR ∈ C
r×r , zR ∈ C

r , GR ∈ C
r×m1 , and LR ∈ C

r×m2 are the ROMs
of the corresponding system matrices with reduced dimension r � n.

Finally, the transfer function corresponding to the reduced system �R can be
expressed as

HR(ω) = LH
R

(−ω2MR + iωDR + KR
)−1

GR . (5)

With KMOR, the system matrices in the reduced space, in (4), are a result of
orthogonal projectionusing the twoprojectionbasisV andW, such as [ ]R = WH [ ]V
for [ ] := {M,K,D}, z = VzR , LR = LHV, and GR = WHG.

The moment-matching criterion represents the base for approximating FOM
within the respective ROM [16–18]. With the interpolatory method of KMOR, the
FOM of large-scale dimension is projected into a space of very small order where
computations can be performed faster. This is done by projecting the FOM matrices
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with the two projection bases that are essentially the computed moments. The pro-
jection bases are iteratively constructed by computing moments using the Arnoldi
algorithm [17]. As a result, with moment matching, the approximated transfer func-
tion in the reduced space enables �(ω) ≈ �R(ω) or H(ω) ≈ HR(ω) for the desired
inputs and outputs.

2.2.1 Deflation and Deflation Tolerance

The convergence of a method is affected by rank deficiency caused by the linearly
dependent computed moments. The problem is more pronounced for large-scale
systems with many inputs and outputs like the models presented in this paper. One
classical approach to deal with the problem is deflation. Other robust methods like
the recycling of subspaces presented in [34–37], to accelerate the convergence of a
reduction algorithm, are also promising approaches and is a point for future investi-
gations. However, the paper limits the focus to the application of an efficient deflation
strategy.

In a block-wise construction of projection bases, deflation can be efficiently per-
formed using the rank-revealing QR (RRQR) decomposition presented in [38]. The
rank-revealing R matrix exposes smaller singular values that help to deflate the cor-
responding vector entries of the orthogonalized matrix Q. The method is already
deployed in [18] for the block-wise framework to compute state-space projection
bases. With the presented deflation with RRQR decomposition, singular values cor-
responding to the linearly dependent columns can be identified and eliminated. As
compared to exact arithmetic, in numerical codes linearly dependent columns will
be never exactly yielding zero norms. A suitable tolerance σtol is thereby chosen to
safely define the criterion to eliminate the linearly dependent column entries.

The deflation tolerances, used for deflating the redundant moments of the various
models presented in this paper, are chosen after performing a sensitivity analysis.
The individual models were subjected to different values of deflation tolerance. The
study starts from the case of zero deflation which corresponds to a very low deflation
toleranceσtol = 10−25. The sensitivity of theRRQRdeflation evaluated for increasing
σtol. The sensitivity for the number of deflatedmoments by performing the placement
of repeated or closely spaced expansion points by keeping other KMOR parameters
as constant. The method is observed to yield 100% deflation for repeated expansion
points. In the second case, expansion points are placed close to each other at constant
frequency intervals. An optimal deflation tolerance is then chosen which yields a
promising percentage of deflated moments, for instance, 25% for the presented beam
example. A similar analysis is performed for the increasing order of Taylor series
expansion. The above strategy by observing the sensitivity of deflation has shown
to obtain promising values for deflation tolerance. However, the time required to
find such an optimal value is not included in the performance comparison. Hence,
investigations are proposed for cheap estimation of optimal deflation tolerances.
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2.2.2 Choice of Expansion Points

The moments are computed for a small number of interpolating frequency points,
also popularly known as the expansion points. The moments computed at the various
expansion points are interpolated within the desired frequency range using rational
interpolation or multi-point Padé approximation [17]. A suitable choice of expansion
points yields accurate and smaller ROM. As the contribution focuses mainly on
optimizing KMOR procedures for damping models, a study on various methods to
place expansion points is not considered within the actual scope. Hence, the method
of Greedy search algorithm, refer to [39], is chosen for the presented examples as a
method to place the expansion points based on the error distribution over the entire
frequency range.

A discussion on choosing real and complex interpolation points was presented
in [17, 40]. In order to avoid confusion from explanations in the cited literature,
here the usage of real and imaginary interpolation points are with respect to angular
frequency ω in (2); not the Laplace parameter s = iω. As already mentioned about
the requisites for the reduction of vibroacoustic models, resonant modes are to be
detected in the respectiveROM.Therefore, real interpolations are necessary for yield-
ing local approximation accurately within the desired frequency range [17]. Imag-
inary interpolation points, which in principle yield broader approximation, require
further investigation for vibroacoustic applications. In addition, the choice of imagi-
nary expansion point can also be used sometimes formodels with viscous damping to
yieldmomentmatching in real space. Thework [10] also presents a similar approach.
On the other hand, for the structural damping model, this is not possible due to the
inherent complex stiffness matrix.

2.2.3 Selection of Krylov Subspace

The reduction of the second-order dynamic system presented in (2) is carried out by
performing a structure-preserving approach. As compared to the conventional state-
space reduction, structure-preserving approach essentially preserves the second-
order characteristics of the governing equation in the ROM [19–21]. According to
theory for the general case, the structure-preserved ROMs are achieved by using pro-
jection bases spanning the second-orderKrylov subspaces expanded for all expansion
points:

V ⊂
nEP⋃

j=1

K input
q1,2

(
−K̃−1

j D̃ j ,−K̃−1
j M̃ j ,−K̃−1

j G
)

(6)

W ⊂
nEP⋃

j=1

Koutput
q2,2

(
−K̃−H

j D̃H
j ,−K̃−HM̃H

j ,−K̃−H
j L

)
(7)

where the subspace matrices at an expansion point ωEP
j take the form:
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K̃ j = −(ωEP
j )2M + i(ωEP

j )D + K, D̃ j = D + 2i(ωEP
j )M, M̃ j = M. (8)

The second-order Krylov subspace spanning the input subspace and output sub-
space, denoted asK input

q1,2 andKoutput
q2,2 , matches q1 and q2 number of moments, respec-

tively. For nEP number of expansion points and in case of zero deflation, the projec-
tion bases take the form V ∈ C

n×r1 andW ∈ C
n×r2 , where r1 = m1 × q1 × nEP and

r2 = m2 × q2 × nEP are the reduced dimensions.
In the current paper, the ROMs are achieved by using a single projection basis.

Or in other words, the Galerkin projection or the one-sided projection scheme is
followed. According to the nature of the numerical damping model, the one-sided
projection scheme and the two-sided projection scheme can provide different num-
bers of matched moments, as discussed below. The former is chosen over the latter,
because of (a) the significantly large computational time required to compute the
second projection basis—including matrix inversion and deflation, (b) the effort
required by following the latter scheme to finally yield square system matrices by
controlling the same level of deflation for both the subspaces—this is the case of
ensuring if r1 = r2 = r , and (c) the negligible gain in accuracy when ROMs yielded
from the latter scheme are used for applications presented in this paper. While the
first disadvantage is straightforward when the corresponding reduction algorithm is
considered, the second disadvantage is more pronounced in practical applications
considered in this paper which are dealing with models having a large number of
inputs and outputs. A detailed explanation of the last disadvantage is provided in the
following discussion of the systems with structural damping. Even though the paper
considers one-sided projection, the expression for the respective second projection
basis is also provided in the case of some damping models. This is to highlight the
case of ideal reduction where the two-sided projection scheme can yield full moment
matching.

According to the theorems presented in [14, 20], the mapping of FOM to the
reduced space using second-order Krylov subspaces matches q1 + q2 moments of
FOM and ROM in the real space. Also it was proven, the consideration of sym-
metric MIMO configuration, expressed as G = L, for real symmetric system matri-
ces match 2q number of moments (q1 = q2 = q) delivering ROM matrices with
dimension r × r for r = m × q × nEP. In such cases, one-sided projection V = W
using a single-input Krylov subspace is sufficient for matching the same 2q number
of moments. However, for vibroacoustic application with structural damping, the
moment-matching criterion is to be defined similarly for the complex space. This
was proved by Li and Bai [41] for the second-order systems using the structure-
preserving approach. An equivalent theorem and its corollary are restated below for
moment matching in the complex domain by extending the representation to the
second-order Krylov subspaces. Therefore, the proof in [41] applies equally.

Theorem 1 When the system matrices K ∈ C
n×n,D ∈ C

n×n,M ∈ C
n×n,

G ∈ C
n×m1 , and L ∈ C

n×m2 are subjected to reduction using second-order Krylov
subspaces expressed in (6) and (7), then q1 + q2 number of moments of FOM transfer
function match with corresponding moments of ROM transfer function.
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Corollary 1 WhenK = KH ∈ C
n×n,D = DH ∈ C

n×n,M = MH ∈ C
n×n are com-

plex Hermitian and L = G ∈ C
n×m, then 2q number of moments of FOM transfer

function match with corresponding moments of ROM transfer function when one-
sided projection is performed with second-order Krylov subspace expressed in (6)
such that V = W.

The stated theorem and corollary can be used to describe the moment matching
behavior for the various damping models. The different cases of damping models
with a discussion on the required subspace and the nature of projection bases are
listed below:

1. Undamped systems
For the theoretical undamped systems when the damping matrix D = 0, it has
been shown in [6, 15] that the resulting second-order input and output Krylov
subspace (V ≡ W) span an equivalent first-order subspace:

V ⊂
nEP⋃

j=1

K input
q,2

(
−K̃−1

j D̃,−K̃−1
j M̃ j ,−K̃−1

j G
)

=
nEP⋃

j=1

K input
q,1

(
−K̃−1

j M̃,−K̃−1
j G

)

(9)

2. Systems with structural damping
As already explained, the structural damping is introduced with the help of com-
plex stiffness matrix. Hence, the discussion on the choice of Krylov subspace
is, therefore, an extended discussion of the undamped case with zero viscous
damping. Or mathematically, the damping matrix D = 0 retains when structural
damping is introduced. As evident from the undamped case, the resulting equiva-
lent first-order subspace is valid for the structural damping model. Therefore, the
projection bases:

V ⊂
nEP⋃

j=1

K input
q,1

(
−K̃−1

j M̃,−K̃−1
j G

)
, and (10)

W ⊂
nEP⋃

j=1

Koutput
q,1

(
−K̃−H

j M̃H ,−K̃−H
j L

)
(11)

can be used to reduce the system. A difficulty arises in moment matching using
Corollary1 because the stiffness matrix in the presence of structural damping is
complex symmetric (not Hermitian). Hence, an ideal reduction for such a sys-
tem is to perform two-sided projection as indicated in general Theorem1 using
projection bases expressed in (10) and (11). However, for the application models
presented in this paper, one-sided projection is still preferred because (a) the mass
matrix is symmetric in all cases, and also (b) as a trade-off between accuracy and
performance. Reduction of the application models using the one-sided projection
has shown to yield efficient ROMs, even though the entire number of moments
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q1 + q2 according to Theorem1 have not matched. More discussion about the
algorithm and the reduction process follows in the coming sections.
Performing structure-preserving KMOR approach on such a system with struc-
tural damping is found to yield ROMswith characteristics of the respective FOM.
Or in other words, the reduced stiffness matrix becomes, as expected, unsymmet-
ric due to the lost symmetric characteristics of the respective full-order stiffness
matrix (with the introduction of structural damping), whereas the symmetric char-
acteristic of full-order mass matrix remains preserved as Hermitian.
Moreover, analyzing the nature of the stiffness matrix with structural damping,
�(K) can be either proportional or non-proportional to�(K). In both cases, it was
found that the imaginary part of the stiffness matrix has to be included for reduc-
tion. Unlike the Rayleigh damping model, discussed as the next damping model,
the reduced model of the undamped system cannot be reused by multiplying the
constants of proportionality. This applies still in the case when the imaginary
part is proportional to the stiffness matrix. Therefore, structural damping yields
computation of moments in complex domain, i.e., V ∈ C

n×r .
3. Systems with Rayleigh damping

As already discussed, for the case of Rayleigh damping, the proportionality con-
stants in the damping model are considered as parameters. In such cases, the
projection can be performed for the undamped case and the resulting ROM is
reused. This can be expressed as DR = αMR + βKR . The reason being that the
system with Rayleigh damping retains the same normal modes of the undamped
system. A mathematical proof is presented in [6].

4. Systems with other damping models
Though the presented dampingmodels are some among the various other damping
models, a general system with viscous damping has to be reduced using the
second-order Krylov subspace following the Theorem1.

The above discussion encourages the introduction of damping into a model with
the help of a structural dampingmodel for simulating the frequency-dependent nature
of damping, thereby enabling faster computation by using an equivalent first-order
subspace. Therefore, the realization of the projection bases for application to vibroa-
coustics can be performed much faster as compared to the second-order Krylov
subspace. Moreover, with a structural damping model, localized damping measures
can be included within the reduced model.

3 Numerical Implementation

The paper provides enormous importance to the development of an efficient numeri-
cal scheme that can handle the KMOR procedure for reducing the industrial automo-
tive structure. In the previous sections, it was discussed that the structural damping
model is suitable to handle non-proportionally damped systems where KMOR is
performed by using an equivalent first-order Krylov subspace. However, the intro-
duction of structural damping demands computation of moments in the complex
space and cannot be practically avoided.
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Table 1 Software specifications

Programming platform Math library Sparse solver

C++ Intel® MKL 2018 Special
Release

Intel® MKL PARDISO

As a result of the study performed on vibroacoustic models, a block rational
Arnoldi first-order Krylov (RAFOK) algorithm is presented as pseudocode in Algo-
rithm1. The algorithm performs KMOR using a one-sided projection according to
(10) so as to deal with a system modeled with structural damping. The algorithm is
highly optimized to deliver maximum computational efficiency and can handle large-
scale FOMs. Table1 presents a short overview of the software platform, on which the
RAFOK algorithm is deployed. The algorithm is coded in C++ with mathematical
routines enabled with threaded Intel® Math Kernel Library (MKL) for BLAS, sparse
BLAS, and sparse solver routines [42].

Algorithm 1 Block-RAFOK for reducing systems with structural damping

Input: System matricesM,K, Starting vectors G = L ∈ C
n×m , Expansion Points ωEP,

Order of Series Expansion q, Deflation Tolerance σtol
Output: Projection Bases V,W ∈ C

n×r

1 Function [V,W] = BlockRAFOK(M,K,G,ωEP, q, σtol):
// Generation of Projection Basis

2 Initialize V = [ ], nEP = length(ωEP)

3 for k = 1 to nEP do /* For every expansion point */

4 K̃ = −(ω
(k)
EP )2M + K

5 Ṽ0 = −K̃−1G /* Compute starting Krylov basis (see Eq. 10)
*/

6 if k == 1 then
7 V̌ = PerformDeflationBlockWiseRRQR(Ṽ0, σtol) /* Check for

deflation */
8 else
9 V̄ = PerformIterativeGramSchmidt(Ṽ0,V) /* Orthogonalize

w.r.t already orthogonalized basis */

10 V̌ = PerformDeflationBlockWiseRRQR(V̄, σtol)

11 V = [V V̌] /* Append Krylov modes */
12 end
13 for i = 2 to q do /* For every series expansion */
14 Ṽ = −K̃−1MV̌ /* Compute new Krylov basis (see Eq. 10) */

15 V̄ = PerformIterativeGramSchmidt(Ṽ,V)

16 V̌ = PerformDeflationBlockWiseRRQR(V̄, σtol)

17 V = [V V̌] /* Append Krylov modes */
18 end
19 end
20 W = V
21 end
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The algorithm represents an iterative block Arnoldi algorithmwhere the moments
are computed iteratively as an entire block to finally yield the orthogonal projection
basis. For MIMO systems, there is a high chance that the computed moments in
every iteration might overlap or linearly dependent on the calculated blocks. The
overlapping effect is highly pronounced with increasing system dimensions. There-
fore, an efficient orthogonalization procedure with extensive deflation is required to
identify and deflate the redundant moments. However, orthogonalization is not an
essential condition formomentmatching orKMOR. They are required from a numer-
ical point of view in order to gain faster convergence and to avoid rank deficiency in
finite precision [17]. In the algorithm, a classical Gram-Schmidt orthogonalization is
performed for the whole computed block by incorporating reorthogonalization [43]
so as to compensate for the phenomenon of loss of orthogonality with the proposed
Arnoldi algorithm. Reorthogonalization is performed for the computed moments
until when the length of the orthogonalized basis or respective norm is accurate to
its predecessor or orthogonalized moments in the previous iteration. According to
[43], the algorithm is more likely to terminate successfully.

The most expensive procedure in RAFOK occurs at factorization Steps5 and 14.
But for each expansion point, the factorization in Step5 is saved and therefore reused
in Step14.Consideration of structural damping yield factorization to be performed on
complex non-Hermitian symmetric matrix. The solver settings to complex symmetric
yield relatively faster computation with reduced memory requirement, when com-
pared to full representation. The block-wise orthogonalization and deflation steps are
also found to be computationally fast as compared to their vector-wise alternative.
The linear dependency of computed moments is analyzed for the presented block-
wise implementation by performing an RRQR decomposition at Steps10 and 16. A
suitable tolerance σtol is chosen according to the approach presented in Sect. 2.2.1.

4 Results

The work presents the outcome of model reduction using the presented RAFOK
algorithm on two different examples. The first example represents a generic model
of a beam discretized using FEM. However, in the field of engineering, the ques-
tion of applicability of model reduction for very large-scale practical applications is
often raised. Therefore, a second model is presented, which represents a real-world
automotive model of the BMW i8 rear axle system with high modeling complexity.
The models are subjected to steady-state dynamic analysis in the frequency domain
for the frequency range between 20 and 1000Hz. The motivation to choose the spec-
ified minimum frequency is the acoustic hearing threshold of humans, whereas the
maximum frequency limit is arbitrarily chosen and can be less or high depending on
the characteristics of the analyzed mechanical system; for example, the occurrence
of important resonances within the frequency range.

The discussion of each application example also includes performance compar-
ison of reduction algorithm with the commercial ABAQUS™ direct solver for the
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Table 2 Hardware specifications

Processor # cores Base frequency RAM Platform

CPU 1: 2 ×
Intel® Xeon®
Silver 4114a

20 2.20GHz 32 GB Windows 10,
x86-64

CPU 2: 2 ×
Intel® Xeon®
Gold 5122b

8 3.60GHz 64 GB RedHat OS 6,
x86-64

aProcessor used for RAFOK execution and majority of ABAQUS™ direct solve
bHigh-endmachine to performABAQUS™direct solve for large-scale rear axle carrier substructure
(with 1050897 DoF)

evaluation of all transfer functions (with respect to all possible permutations of con-
sidered inputs and outputs). The wall-clock for the KMOR procedure is categorized
into the classical offline and online phase [39]. The offline phase includes the KMOR
procedurewhere the presentedKrylov subspace is computed so as to yield the respec-
tive projection bases and ROMs. Thus, the algorithm receives the FOMs which are
already pre-computed using standard FEM software. The wall-clock for the offline
phase, therefore, excludes the generation of system matrices. On the other hand, the
online phase conducts the frequency-domain analysis using the generated ROMs, see
(4). This phase executes the inversion of the assembled matrix using dense solvers
for solving the system of linear equations.

An overview of the two types of hardware configurations used for analyses in this
contribution can be seen in Table2. The hardware used for some direct solving with
ABAQUS™ is different from that of the hardware used for KMOR execution due
to memory restrictions to handle the large-scale model. However, the performance
comparison using two different hardware configurations can still indicate significant
time savings on fair grounds.

For determining the accuracy of the transfer functionHR(ω) in (5) evaluated from
ROMs, the original transfer function H(ω) in (3) obtained from FOM is used. To
measure the overall error of all transfer functions over frequency, a relative error
measure can be defined as the maximum relative error of all transfer functions at
each frequency represented as:

εrel,max(ω) = max
|H(ω) − HR(ω)|

|H(ω)| , (12)

where εrel,max(ω) forms a vector with length equal the number of frequency points.
Finally, the L2 norm can be computed to yield the overall error norm over all fre-
quencies expressed as:

εrel,max = ∥∥εrel,max(ω)
∥∥
L2 . (13)
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Themaximumrelative errormeasure (12) is used to determine thefinal accuracy of
ROMs within this contribution. However, they cannot be practically realized within
an iterative reduction framework so as to evaluate the accuracy of yielded ROM.
The reason being the computation of H(ω) for the above error estimate is equally
expensive as monolithic solving of the respective FOM. As the paper directs the
scope toward obtaining an accurate ROM, consideration of cheaper error estimates
is not included in the current investigation. Alternate error estimates for MOR are
discussed more in [13, 40]. Also, it is crucial to note that the time required for
evaluating error measures using the original transfer function is not included within
the KMOR wall-clock. This is to enable a better comparison of the efficiency of
KMOR approaches for different damping scenarios independent from the type of
error estimate.

4.1 Generic System

Agenericmodel of a rectangular beam, shown in Fig. 1, serves as a benchmarkmodel.
Discretization is performed with FEM, where the individual elements are assigned to
three-dimensional continuum elements with isotropic material properties for steel.
The beam is subjected to a steady-state dynamic analysis in the desired frequency
range between 20 and 1000Hz performed for 981 frequency steps. A discretized
model respecting proper wave resolution yields a FOM dimension of 20412 degrees
of freedom (DoFs). Structural damping is enforced with a constant damping loss
factor η = 0.001. A symmetric MIMO system is formed by including two random
nodes with translational DoFs at the two ends of the beam, illustrated in Fig. 1. That
means a total of 6 DoFs are considered to be the inputs and outputs defining the
transfer function.

The RAFOK algorithm is performed on the model using the parameters described
in Table3. An optimal value for expansion order q and deflation tolerance σtol is
chosen by performing a convergence study. The final ROM yields a dimension of
72 DoFs in the computed Krylov subspace. The accuracy of the resulting transfer
function is plotted over frequency in Fig. 3. It is evident that the behavior of the
system can be accurately reproduced from ROM for all 981 frequency steps. In order

Fig. 1 Generic FE model of
simple beam
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Table 3 Reduction parameters for the beam model

n r m ωEP (in Hz) q σtol Overall
error
norma

20412 72 6 {500 268 970} 4 10−11 3 × 10−9

aNorm of all maximum relative error over frequency from (13)
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Fig. 2 Plot of a random transfer function H(3,4) and corresponding relative error

Table 4 Performance comparison for the beam model

Case Wall-clock time (in minutes)

ABAQUS™ direct solve 13.8a

KMOR offline phase 0.04a

KMOR online phase 0.002b

a15 threads on CPU 1
bSingle thread on CPU 1

to visualize the model complexity which is less in this generic model (as compared
to the automotive structure), a random entry of the transfer functionH(3,4) along with
the corresponding relative error is plotted in Fig. 2. The expression H(3,4) denotes
the transfer function corresponding to the fourth input and third output signals. As
the chosen optimal expansion points and order of series expansion yielded a full
ROM dimension, the moments are within the limit of deflation tolerance. Or in
other words, no moments were deflated for the optimal KMOR parameter setting in
Table3. The algorithm terminated at this point where sufficient accuracy has been
achieved. However, a further iteration with higher tolerance would have yielded
linearly dependent moments, whose contribution toward an accurate ROM is very
negligible.

In terms of performance, the various clock times are tabulated in Table4 with
respective hardware configurations and the number of CPU threads used for the
corresponding execution. A 99% savings in time is evident by comparing KMOR
offline phasewith the respective direct solve.As expected, the online phase evaluating
the system response using yielded ROMs account for a very negligible CPU time.
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Fig. 3 Overall relative error for all transfer functions

Fig. 4 Left: Complete view of the BMW i8 rear axle assembly with symbols � and ◦ representing
the input/output locations of thewheel carrier and the rear axle carrier, respectively.Right:Magnified
view

4.2 Coupled System

The rear axle assembly of the BMW i8 automobile is chosen as the practical example
for studying the behavior of systems reproduced by the deployment of their individual
ROMs. The model has been chosen to represent a vibroacoustic problem so as to
simulate the vibrations that are being transmitted from the wheel carrier to the rear
axle carrier. Different views on the FE model of the rear axle assembly are shown in
Fig. 4. An equivalent network representation of the whole rear axle assembly with
the coupled individual parts has been illustrated in Fig. 5.

The assembly represents various parts or subsystems with localized damping
measures. Among the various subsystems in the assembly, the rear axle carrier is
considered to be challenging forMOR due to its modeling complexity. Especially the
rear axle carrier includes (a) springs connected to lumpedmasses, (b) variousmaterial
models with structural damping, and (c) element types assigned to plate, beam,
solid, connector, and distributed coupling elements. Moreover, the part demands
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Fig. 5 Monolithic substructuring model of BMW i8 rear axle assembly

high computational power due to its large dimension accounting for approximately
one million DoFs. Consequently, CPU 2 configuration (see Table2) having higher
RAM is required to perform conventional direct solving. Therefore, more focus is
given to the rear axle carrier to evaluate the performance of the presented RAFOK
algorithm with respect to computation time and accuracy of ROM.

Thenetwork representation describes the coupling connection between the various
subsystems that comprise the whole assembly. The Lagrange multiplier frequency-
based substructuring formulation from [26, 27] was deployed to couple the different
subsystems of the rear axle assembly. The framework couples the individual trans-
fer functions at the coupling interface between the respective sub-parts so as to
determine the combined transfer function of the whole assembly. With KMOR in a
substructuring framework, the idea is to replace the individual subsystem’s original
transfer functions with approximated transfer functions evaluated from their respec-
tive ROMs. In the network representation in Fig. 6, the models that have undergone
KMOR with RAFOK algorithm are highlighted with their optimal ROM dimen-
sion. The bushes are modeled with simple spring and damper elements which do not
require a reduction in model order. A summary of respective KMOR parameters and
resulting ROM accuracy, in terms of overall error norm, is presented in Table5 for
all substructures of the rear axle assembly.

An efficient deflation procedure is necessary tomaintain the stability and accuracy
of the yielded ROM. In Table5, the expected dimension of reduced model rexp is
compared to the yielded reduced dimension r of ROM after performing a successful
deflation. As alreadymentioned, the rear axle carrier subsystem is highly challenging
for MOR procedure. A random entry of transfer functions is plotted for the rear axle
in Fig. 7 along with the corresponding relative error over frequency. From the figure,
the modal complexity with respect to dynamics is evident. The accuracy of all the
computed transfer functions from their ROMs is presented in Fig. 8. But it can be
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Fig. 6 Hybrid KMOR-substructuring model of BMW i8 rear axle assembly

Table 5 Summary of reduction parameters for different BMW i8 rear axle assembly subsystems
Part n rexp r rCMS

a m ωEP (in Hz) q σtol Error
normb

Rear axle carrier 1050897 720 669 928 60 {500 129 763 950} 3 10−9 5 ×
10−4

Wheel carrier 37680 288 143 108 36 {500 843} 4 10−11 9 ×
10−5

Wishbone: Top 1 2808 36 36 42 12 {500} 3 10−11 7 ×
10−5

Wishbone: Top 2 2808 36 36 59 12 {500} 3 10−11 6 ×
10−4

Wishbone: Mid-
dle

2772 72 54 51 12 {500 44} 3 10−11 5 ×
10−5

Wishbone: Bot-
tom 1

2952 72 57 54 12 {500 37} 3 10−11 1 ×
10−5

Wishbone: Bot-
tom 2

2808 36 36 42 12 {500} 3 10−11 2 ×
10−5

aDimension of ROMs yielded from Craig-Bampton CMS reduction
bOverall error norm of all maximum relative error over frequency from (13)

noted that a saturation level has reached for the higher frequency range. A possible
solution to reduce the error level even further would be to use the expensive two-
sided projection. However, an acceptable accuracy level is achieved for the entire
frequency range of interest. In Table6, the corresponding performance of the KMOR
algorithm, comparedwith themonolithic solving routine, is recorded for the rear axle
carrier. Similar plots corresponding to other substructures are omitted in this paper
for brevity.

Finally, the coupled system response in terms of power flow through the whole
system can be evaluated by computing the nodal force f and nodal velocity v at an
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Fig. 7 Plot of a random transfer function of rear axle carrier H(25,27) and corresponding relative
error

Table 6 Performance comparison for the rear axle carrier model

Case Wall-clock time (in minutes)

ABAQUS™ direct solve 561a

KMOR offline phase 13.16b

KMOR online phase 0.375c

a8 threads on CPU 2
b15 threads on CPU 1
cSingle thread on CPU 1

arbitrary cutting plane of the model, expressed in [44, 45]:

P̄ = 1

2
� (

fH .v
)
. (14)

The computed power flow facilitates suitable adaptation to design parameters
so as to minimize power flow through the structure. In this paper, the power flow
into the rear axle carrier for an excitation at the wheel carrier is presented, refer
Fig. 9. Also, the corresponding error measure plotted over frequency is plotted. An
additional comparison ismade for the resulting power flowwith a conventionalCraig-
Bampton CMS reduction feature of ABAQUS™. The number of modes included
for reduction is suitably chosen to finally yield ROMs of comparable dimensions
(similar to dimension obtained with RAFOK). The corresponding dimensions of the
ROMs obtained from the CMS procedure, denoted as rCMS, are presented in Table5.
As expected for models with non-proportional damping, the CMS technique yield
less accurate ROMs for the rear axle assembly with highly localized damping. It
is observable that the KMOR approach yields a numerical response with an error
significantly smaller than the CMS case. Hence, it is evident that KMOR performs
efficiently as compared to CMS for systems with localized damping.
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Fig. 8 Overall relative error norm of rear axle carrier for all transfer functions
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Fig. 9 Plot of mean power flow into the rear axle carrier and corresponding relative error

5 Conclusions and Remarks

In summary, the contribution deals with an efficient way to performKMOR for large-
scale MIMO models, shown up to one million DoFs. An efficient block RAFOK
algorithm with the objective of maximum utilization of computational resources and
approaches to optimize the algorithm for vibroacoustic applications with structural
damping was presented. Finally, the developed algorithm is deployed to reduce a real
automotive rear axle assembly incorporating highly localized dampingmeasures. The
RRQR deflation strategy has shown to work efficiently to deliver accurate reduced
models. Furthermore, the comparison of coupled system response obtained from the
reduced models in terms of power flow justifies the KMOR algorithm as a suitable
model reduction technique for vibroacoustic models with non-proportional damping.

The scopeof theworkhas considered structuralmodelswith afinal aimof reducing
the presented real automotive structure efficiently for vibration analysis. The outcome
serves as a base for further extension to other vibroacoustic problems with fluid-
structure coupling. Also, the development of other MOR aspects like the parametric
MOR, adaptive methods, efficient error estimators, and deflation tolerances, for the
current framework is open for future research.
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Model-Based Adaptive MOR Framework
for Unsteady Flows Around Lifting
Bodies

Gaetano Pascarella and Marco Fossati

Abstract The problem of performing accurate reconstructions of vortex-dominated
unsteady flows by means of reduced basis methods is studied. When faced with the
necessity of reconstructing the flow field over a specified time window, a method that
aims at automatically and adaptively selecting the most accurate reduction technique
among a collection of models is presented. The rationale behind the development
of such an adaptive framework is to try to cope with the potential loss of important
dynamic information that accompanies classical methods, e.g., proper orthogonal
decomposition, where snapshots are treated as statistically independent observation
of the dynamical system at study. The adaptive framework will be assessed with
respect to two different ways of estimating the reconstruction error by the various
methods. One method, referred to as direct error, will employ additional snapshots
and will compare explicitly the reduced solution with the reference data. The second
method will instead consider a finite volume discretization of the equations and eval-
uate the error in terms of the unsteady residual of the reduced solution. A backward
differencing formula will be used to ensure second-order accuracy in the estimation
of the residual. Emphasis will be put on the comparative assessment of the two error
estimation methods with respect to the identification of the most suitable reduced
method to be used for the reconstruction at a specific instant of time. Problems of
relevance to aircraft aerodynamics will be considered such as the impulsive start of
2D airfoils in high-lift configurations.

1 Introduction

The study of the unsteady aerodynamics of lifting surfaces is a central problem in
fluid mechanics. The vortices that are generated by lifting bodies are linked to the
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efficiency of the body in generating lift and their study and understanding are at
the basis of the design of next-generation aircraft. Reduced-order models (ROMs)
have been recently developed to allow for accurate evaluations of aerodynamic per-
formance during parametric studies or design processes without requiring heavy
computational costs such as high-fidelity computational fluid dynamics simulations.
Comprehensive reviews of applications of model reduction to fluid dynamics prob-
lems, with a focus also on modal analysis and feature extraction, can be found at
[1–3] and references therein. Different methods have been proposed and adopted in
the literature to deal specifically with unsteady problems, considering both intrusive
and non-intrusive approaches, the difference between the two lying in the use of
the governing equations underlying the physical phenomenon under consideration.
Hereafter, non-intrusive and equation-free will be used interchangeably. In addi-
tion to the classical and widely used proper orthogonal decomposition (POD) [4–6],
mostly used in an intrusive manner [7–9], methods such as spectral POD [10–12],
dynamic mode decomposition (DMD) [13, 14], and recursive DMD [15] have been
introduced in the attempt to obtain models capable to take into account the temporal
dynamics of the flow field that is not always accurately represented by the classical
POD [16, 17]. Even if these methods have been conceived in the effort to extract
pure dynamic information and more exact coherent structures from fluid flows, they
are eligible for reduced-order modeling, since they still allow to describe the flow
dynamics as a combination of the evolution of a few flow primitives [18, 19]. They
can be used in principle in both an intrusive and non-intrusive manner. A recent
work [20, 21] has been presented in the literature where all these methods are com-
bined together, in a non-intrusive manner, to define an adaptive approach capable
to automatically select the best-in-class method to realize as accurate as possible
reconstructions of the unsteady flows. The adaptive ROM has proven to be effec-
tive in providing a fairly accurate reconstruction of complex unsteady flows with an
accuracy that has shown to be superior to an approach using only pure POD [21].
In the present work, this adaptive method is revisited on the basis of a comparative
study of two different approaches to the computation of the reconstruction error. A
non-intrusive and an intrusive formulation of the error are presented and compared
with respect to their ability in providing an estimation of the reconstruction error
and ultimately in their performance in selecting the most appropriate ROMs over a
specific time window. A critical analysis is presented that will take into account the
requirements of the different error formulae and the trade-off between their com-
putational cost and accuracy in the reconstruction. Section2 introduces the class of
methods that will be considered in the adaptive approach, Sect. 3 will briefly outline
the adaptive framework while Sects. 3.2 and 3.3 will discuss the error formulations
and their sensitivities. Eventually, Sect. 4 will show the performance of the different
methods with respect to two unsteady flows over two airfoils.
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2 Linear Reduced Basis Methods

A class of reduced basis methods is considered for the definition of the adaptive
approach. Themethods considered have been proposed and investigated in the recent
literature, they are all implemented considering a non-intrusive modeling, and con-
sist of the classical POD, a recent variant called SPOD, DMD, and RDMD.With the
exception of POD, which extracts features without considering any temporal corre-
lation among the training data, all the other methods have been developed with the
aim of extracting features which are more capable to unveil the correct underlying
dynamics, addressing this point through consideration of some temporal correlation
among the available snapshots. The literature on these methods is quite vast and
detailed and the interested reader could refer to it. In the following, the key elements
of these methods will be reported. POD is a classical data compression method and
is based on the following optimality condition:

max
φi∈Rn

〈U, φi 〉 with ‖φi‖2 = 1 i = 1, 2, . . . , Ns (1)

which allows to extract the closest set of basis functions φk
i (x) to the initial dataset

U. In Eq.1, 〈·, ·〉 represents the average over time, while U is a Np × Ns matrix
with the Ns snapshots, u(x, t), arranged in columns, Np indicates the number of grid
points in the high-fidelity mesh. The scalar product in the optimization problem (1) is
simply the euclidean scalar product between two vectors of R

n , namely < x, y >=∑n
i=1 xi yi , and it is also the inner product used for all the norms introduced hereafter.

Using this definitions and themethod of snapshots defined in [5], it can be shown that
extracting POD feature is equivalent to solving an eigenvalue problem for the matrix
R = UUT , where T denotes transposition. The POD feature can then be obtained
projecting the eigenvectors of matrix R into the high-dimensional space through the
snapshots. The fundamental features are eventually linearly combined together to
provide the reconstructed field at a desired instant of time [4]. The reconstruction
formula based on an non-intrusive way of computing the coefficients is

u(x, t̄) � ∑M≤Ns
i=1 aki (t̄)φ

k
i (x)

aki (t̄) = p(t̄) + ∑NS
j=1 w j f

(| t̄ − t j |) .
(2)

In the present work, the coefficients of the linear expansion aki (t̄) needed to compute
the solution for any new time, t̄ , are obtained by radial basis function interpola-
tion [22], see second row in Eq.2. In this equation, p(t̄) is a polynomial of low degree
and the kernel function f is a real-valued function on [0;∞). Specifically, the kernel

functions used in the present work are gaussian functions, f
(| t̄ − t j |) = e− (t̄−t j )

2

2σ ,
and the t j , centers of the RBF, are the time instants corresponding to the components
of the POD eigenvectors extracted from matrix R. SPOD is a variant of the POD,
not to be confused with the POD in the frequency domain [23], where the basis
functions φk

i are obtained by using a modified correlation matrix of the snapshots,
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R̂ = F (R), that introduces a filter along the diagonals of the matrix, establishing a
connection between snapshots at subsequent instants of time [10]. In particular, the
generic filtered element of the correlation matrix R̂ is

ˆRi, j =
N f∑

k=−N f

gk Ri+k, j+k, (3)

where thefilterwidth N f defines the timewindowoverwhich the temporal correlation
between snapshots is considered. The filter gk can be a user-defined function. In the
present work a constant function is considered, namely gk = 1

N f +1 , which allows
convergence to pure discrete Fourier transform (DFT) when the filter spans over all
the correlation matrix R [10]. The reconstruction formula of SPOD is identical to
the one of POD. DMD is a method that takes directly into account the temporal
correlation of the snapshots by considering a linear regression in time over all the set
of snapshots [13]. Each state is assumed to propagate in time by a constant matrix,
namelyUn+1 = AUn , whereUn,Un+1 are the matrix of snapshots stacked from time
t0 to time tn and from time t1 to time tn+1, respectively, andA is the matrix containing
the dynamics information. Practically, DMD aims at extracting eigenvectors and
eigenvalues of this matrix, which define spatial structures (eigenvectors) and their
associated frequencies, growth/decay rate (eigenvalues). Since the matrixA for fluid
flowproblems canbeof veryhighdimension a singular valuedecomposition is used to
express the dynamics in a lower space. Therefore, the eigenvalues and eigenvectors
of the corresponding reduced dynamic matrix Ã are computed and the dynamic
eigenvectors are then projected onto the high-dimensional space to recover the actual
DMDflowstructures, following the algorithm for the extraction of exactDMDmodes
reported in [14]. The reconstruction formula takes the form

u(x, t̄) � ∑M≤Ns
i=1 αDMD

i φDMD
i (x)eωi t̄

minα∈CM ||Un+1 − �DαV||2
(4)

where ωi are the DMD eigenvalues extracted from matrix Ã, φDMD
i are the exact

DMD modes, αi are the modes coefficients, i.e., DMD modes amplitudes, which
can be computed in several ways, mainly based on cosidering the entire set of snap-
shots [24] or only the initial snapshot [25]. Themethod developed in the present work
considers all the set of available snapshots and uses the solution of the optimization
problem reported in [24], which is in the second row of Eq.4.Dα is a diagonal matrix
containing theDMDcoefficientsαi ,M is DMD rank, i.e., the number ofDMDmodes
extracted, V is the Vandermonde matrix built with DMD eigenvalues and � is the
matrix of the DMD modes. For complex systems, the DMD modes may not provide
a sufficiently sound physical interpretation, since the evolution of each mode is lim-
ited to a damped/growing or pure periodic oscillation. The recursive dynamic mode
decomposition has been recently proposed combining together features from pure
DMD and POD. The main aim of the method is trying to bridge the pure frequency
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extraction of DMD with the optimality property of POD, as SPOD does for POD
and DFT. In order to do so, flow features are obtained in an iterative manner where
at each step of the recursion process, the DMD mode which is closest to the set of
initial data is selected [15] according to the following minimization:

min
i∈{1,2,...,Ns−1} = ‖Ur − φi,rai,r‖2, (5)

where Ur is the dataset on which the DMD extraction is applied at the r th step of
recursion, calculated by subtracting the contribution of the first r − 1 modes from
the set of initial snapshots, φi,rai,r is the reconstruction computed considering only
the i th DMD mode at the r th step of recursion. The reconstruction formula of the
initial dataset will be

u(x, t j ) =
M≤Ns∑

i=1

γi (t j )ψ i (x) + rM j = 1, 2, . . . , Ns (6)

where rM bears the residual of the approximation at the M th step of recursion, the
first part is identical to POD, therefore γi (t̄) are the RDMD coefficients, whileψ i (x)
are the RDMD modes and to reconstruct the flow field at a general time instant t̄ the
same RBF interpolation as POD, reported in the second row of Eq.2, is used.

3 Adaptive Approach

The idea of the adaptive approach is to be able to automatically select the method and
the corresponding number ofmodes that, for a specific instant of time,will provide the
lowest error in the reconstructed field. The ROMconstruction and error assessment is
part of an off-line phase where all methods are evaluated to identify the best method
for any specific instant of time. The output of the assessment process takes the form of
a convex envelope of all the errors for eachmethod and the associated best in class for
a specific instant of time. Figure1 reports the proposed adaptive approach, whereW
is the same as matrix U defined in Sect. 2, containing the training snapshots. During
the offline phase, the high-fidelity training set is generated using a CFD solver, basis
functions φk

i (x) are extracted for all the methods reported in Sect. 2, and finally, each
ROM is assessed using a specific definition of error (see Sect. 3.2). The output of
the offline phase is a database containing the basis functions per each method and
the hierarchy of methods for each instant of time of the window under investigation,
together with the best choice of the rank for each set of basis functions. During the
online phase, the solution is requested for a specific instant of time and the database
is explored to select the appropriate basis functions and associated data required for
the reconstruction [20], in terms also of the appropriate number of modes to be used.
It is worth noticing that, even if the off-line phase requires many computations in
terms of extraction of basis functions and construction of the error database (left box
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Fig. 1 Schematic of the adaptive approach distinguished in the offline and online phases

in Fig. 1), the online phase is not affected in terms of computational cost with respect
to a single ROM, while providing a better accuracy in the flow field reconstruction
over the investigated time window (see Sect. 4). Besides that, the time required for
the off-line phase is not considered as a crucial parameter in the present study, being
this process performed once and for all.

3.1 Physical Problem: Navier-Stokes Equations

The above adaptive framework is here applied to address the problem of dimension-
ality reduction of the high-dimensional system arising from the discretisation of the
set of the classical two-dimensional Navier-Stokes equations of fluid mechanics

∂u
∂t

+ ∇ · F (u) = 0. (7)

The system of Eq.7 is a set of four homogeneous PDEs for an advection-diffusion
problem representing the dynamics of a viscous fluid. One equation is hyperbolic,
the other three are parabolic. u is the vector representing mass, momentum, and total
energy per unit volume for a fluid system. The system of equations is complemented
by two thermodynamics equations of state for a perfect ideal gas. The type of bound-
ary and initial conditions depends on the specific problem at hand and it will be
made explicit later in Sect. 4. The system of Eq.7 serves two purposes: (1) obtain
high-fidelity solutions for the training of the reduced model (2) construct an error
database, when the adaptive framework is equipped with a particular definition of
the error which requires the evaluation of the residual produced by the reduced-order
solutions when plugged into the finite volume (FV) discretization of Eq.7. This will
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be better clarified in the next section, where two definitions of the error will be intro-
duced. The computation of new solutions using the adaptive framework during the
online phase is instead completely equation-free and based exclusively on the Eqs. 2
and 4.

3.2 Error Estimation

Central to any adaptation techniques is the estimation of the error of the approach.
When dealing with complex unsteady problems involving the full set of Navier-
Stokes equations, ROMs lack rigorous a priori and a posteriori error bounds (i.e.,
certified and reliable ROMs). Lots of efforts have been put in literature to define such
bounds, but the study has been usually limited to a POD basis [26] and introducing
simplifications to the initial set of the governing equations [27, 28]. In this case,
two different methods have been considered, one referred to as direct error and
one referred to as residual error. The direct error approach computes the error of
the ROM by comparing directly the reconstructed solution with a reference high-
fidelity solution. In the present approach, the reference high-fidelity solution does
not belong to the set of snapshots used to define the reduced model, therefore, in
order to be viable, the direct error estimation requires a higher number of snapshots,
some of which will be used to build the reduced model and some others that will
be used only for error evaluation, see Fig. 2 top. Approaches exist, where instead a
direct error estimation is done by using all the snapshots available without making
a distinction between snapshots to be used for error estimation and snapshots to be
used for the ROM. The so-called leave-one-out approach (LOO) iteratively excludes
one snapshot from the set and uses the remaining Ns − 1 to build a “depleted”
reduced model used to reconstruct the solution at the conditions corresponding to the
excluded snapshot [29]. This approach allows exploiting at most the set of snapshots
available, but it is characterized by an estimation that is not based on the actual set
of snapshots that will be used to build the full ROM and, therefore, might provide
not accurate estimation of the direct error. The formula used here for the direct error
is the following norm of the error at every nodal point in the mesh:

εD = 1
√
Np

||uref(x, t̄) − uROM(x, t̄)||2 (8)

where x is the vector with the nodal points of the mesh. The residual error is intro-
duced to be able to provide an error estimation approach, that similarly to the LOO
approach does not need a discrimination between snapshots for error analysis and
model construction, but at the same time, allows to always consider the full set of
available snapshots for the estimation, see Fig. 2 bottom. The residual error is com-
puted by plugging the reconstructed solution from the ROM into the same discrete
form of the conservation equations that have been used to solve the high-fidelity
counterpart of the problem. This process is still part of the offline phase, namely the
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error estimation step in Fig. 1. Specifically, for the present work, a FV edge-based
approximation is used for the discretisation of the conservation equations, together
with a backward differencing formula (BDF), first term in the Eq.9, for the treatment
of the unsteady term, leading to the following residual error:

εR(t̄) = 1
√
Np

∥
∥
∥
m

3unm−4un−1
m +un−2

m
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+
∑

l∈Lm 
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m,un
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e
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∥
∥
∥
2
.

(9)

In the residual formula, �tres is a user-defined time step used to account for time
accuracy in the BDF formula and it is a parameter that will influence the value
of the error as explained later in Sect. 3.3. The superscripts n, n − 1 and n − 2
refer to three instants of time used for the evaluation of the error at time n. n − 1
and n − 2, respectively, indicate the solution at time tn − �tres and at time tn −
2�tres. In the present approach, also solutions at tn−1 and tn−2 are obtained by
means of the ROM while constructing the residual error database during the offline
phase. The second row in the definition of the residual error refers to the spatial
discretization and accounts here for a domain term and a boundary term according
to the classical FV edge-based discretization [30]. In particular, ϕlm(un

m,un
l , ηlm)

represents the FV discretisation of convective and viscous fluxes in the internal points
of the domain, un

m,un
l are, respectively, the conserved quantities at time n at node

m and l and ηlm represents the integrated normal along the edge connecting nodes
m and l. ψe

m(un
m,ue

b, ν
e
b) is the FV discretization of such fluxes on the boundaries,

where ue
b is the set of conserved quantities obtained by the imposition of the boundary

conditions and νe
b is the integrated normal at the boundary of the domain. 
m is the

cell volume of the mth cell. The above formulae for the direct and residual errors
will provide evaluations corresponding to a specific choice of snapshots, number of
modes for the reconstruction, and, for the case of the residual error, �tres. While
the present work is not focusing on the choice of snapshots, a critical analysis on
the choice of the number of modes and �tres is considered. More details about the
impact of these elements on the error used for selecting the ROM are reported in the
following Sect. 3.3.

3.3 Sensitivity

The error estimation depends on a number of parameters. In the case of direct error,
the sensitivity of the error is analyzed with respect to the choice of the number
of modes in the reconstruction and the method used for the reconstruction. In this
analysis, the choice of modes is based on their ranking according to the relative
energy content of each mode [4, 12], the output of such analysis being the optimal
number of modes to be used for each set of basis function at a specific instant of
time, which guarantees the lowest error. In the case of residual error, an additional
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Fig. 2 Conceptual difference between direct and residual errors

Fig. 3 Sensitivity w.r.t. the choice of �tres (left), number of modes, and choice of method for
density (right)

parameter that is considered here is the choice of the time step used to evaluate the
BDF formula. The latter is quite a relevant parameter since it will affect the error
measure as a consequence of the necessity of having two additional solutions to
evaluate the BDF formula. This has been achieved here by using the same ROM to
reconstruct the three solutions, i.e., the one at the instant of time of interest and two
previous instants of time. Figure3 left reports the example of the analysis done to
assess the sensitivity of the residual error on the choice of �tres. In all the analyses
presented later, an iterative process has been put into place to reach a state where the
changes in residual error as �tres is reduced is below a specific tolerance set for all
cases to 10−8. The right plot of the same figure shows instead the analysis done to
assess the impact of the choice of the number of modes in the evaluation of the error.
The latter has been done both for residual and direct errors. On the basis of these
considerations, an algorithm to compute the error associated to a specific method has
been proposed, that on one side automatically identifies the maximum�tres allowing
for independence of the residual error from the choice of �tres, while on the other
allows considering the optimal number of modes to be used for a specific method
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during the reconstruction as the number of modes guaranteeing the lowest error. The
pseudo-algorithm for error estimation is

Pseudo-algorithm

for t = 1, Nt

if ∃ uREF(t) then
εd(t) = min εd(t;Nm,Nmet) ∀ Nm,Nmet
end

if � uREF(t) .or. Resid then

�tr = �tr0
εr (t;�tr) = min εr(t;�tr,Nm,Nmet) ∀ Nm,Nmet
εr,p = 0
�er(t;�r) = abs(εr - εr,p)

while �er(t;�r) .gt. threshold
�tr = �tr/K
εr,p = εr(t;�tr )
εr(t;�tr) = min εr(t;�tr,Nm,Nmet) ∀ Nm,Nmet
�er(t;�r) = abs(εr - εr,p)
if �er(t;�r) .lt. threshold
exit

end
end

end

end

The pseudo-algorithm is performed offline (Error estimation step in the left box
in Fig. 1). The expected outcome for the direct error εD is the method Nmet and its
corresponding number of modes Nm , which guarantees the lowest εD . Equivalently,
for the residual error, the result will be the method Nmet and its corresponding num-
ber of modes Nm which guarantees the lowest εR , with the only difference that a
preliminary sensitivity analysis is performed, as stated above, to compute the best
�tres for the evaluation of the residual. The selection of the best values for all these
parameters goes through a manual exploration of the parameter space, where a set
of Nm , �tres and all the methods Nmet are considered. Convergence of the pseudo-
algorithm to a globally optimal solution is expected as the number of points in the
parameter space is increased.
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4 Demonstration on Lifting Surfaces

A series of 2D test cases are considered to assess the performance of the adaptive
method using the two different ways of computing the reconstruction error reported
in Sect. 3.2. These are both impulsive start flows around a NACA0012 airfoil and a
high-lift configuration airfoil known as the 30P30N configuration [31]. These flows
exhibit two different interesting flowpatterns: both cases are non-periodic flows, with
the first featuring an irregular detachment of vortices typical of the path to stall. The
30P30N case insteadwill feature the dynamics of starting vortices detaching from the
three elements of the airfoil that progressively will merge into a single vortex being
transported downstream. After the four vortices have merged, a stationary flow field
is established in proximity of the airfoil and the dynamics is the one typicals of an
advection-dominated problem. All the high-fidelity simulations used in the present
work have been obtained using the open-source CFD code SU2 (https://su2code.
github.io) [32].

4.1 Stalled NACA0012 Airfoil

The conditions of the simulation for the NACA0012 airfoil are reported in Table1,
the corresponding details of the reduced basis method are reported in Table2. As
regards the numerical setup for the high-fidelity simulation, the laminar Navier-
Stokes equations have been solved, using a second-order FV discretization for the
fluxes (MUSCL approach) and a second-order dual-time stepping scheme to deal
with the unsteady part. In particular, the convective fluxes have been discretized using
the Roe scheme. As initial condition, the entire domain is initialized to free stream
quantities, while the boundary conditions on the body and at the domain borders are
no-slip (for momentum equations) adiabatic (for energy equation) and free stream
quantities, respectively. The time required for computing a single time step using
high-fidelity CFD is approximately 15min on 1 core, while the time required to
compute a single time step with ROM is in the order of a tenth of a second on 1 core.
Figure4 illustrates the vorticity field at two different instants of time. A structured
grid was used with 60,600 nodes and 60,196 quadrilateral elements. The training set
of snapshots wasmade of 75 solutions saved each 4 × 10−3 s. The sensitivity analysis
on the time step used for the residual evaluation led to a �tres of 10−5 s. Figure5
reports the sensitivity of the reconstruction error for the density with respect to the
choice of the number of modes and with respect to the different methods. While
not reported in the figure, the same analysis has been performed for all the other
conserved quantities. The way plots have been represented reflects the steps of the
pseudo-algorithm reported in Sect. 3.2. Indeed for each plot in Fig. 5, the minimum
envelop of the curves related to different modes is taken as the first step of the pseudo-
algorithm. A general trend is observed where the error tends to reduce as the number
ofmodes employed for the reconstruction is increased. This is not always observed in

https://su2code.github.io
https://su2code.github.io
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Table 1 NACA0012 simulation parameters

Mach α (deg) Reynolds T∞ (K) Time (s) �t (s) CFL

0.1 15 10,000 288.15 0.3 10−3 5

Table 2 NACA0012 ROM setting

NS �tNS (s) N. modes �tRES (s) NDOF-CFD NDOF-ROM ROM (s)

75 4 10−3 Error-based 10−5 242,600 O(102) 1.8

Fig. 4 NACA0012 impulsive start. Unsteady flow at two instants of time. Normalized vorticity
magnitude = ω/Vc being V the magnitude of velocity vector and c the airfoil chord

the case of DMD, where time windows exist for which the reconstructed flowwith as
few as five modes is the one that globally has the lowest direct error. This is supposed
to happen as a consequence of the specific flow dynamics that has a very specific
frequency captured by the few DMD modes. In Fig. 5 the first column represents
the sensitivity analysis on the number of modes performed using the direct error,
while the second column reports the same sensitivity performed with the residual
error, as they have been defined in Sect. 3.2. It can also be observed that the direct
error evaluation tends to be in general lower than the residual error when comparing
the same ROM. This difference is obviously related to the fact that the two error
definitions lie in different vector spaces.

Figure6 represents the second and ultimate step of the pseudo-algorithm. Indeed
all the minimum envelopes obtained from Fig. 5 for each method in the adaptive
framework are combined together to obtain the minimum envelopes reported in the
first row of Fig. 6. The procedure is repeated for each conservative variable, obtaining
the remaining rows reported in Fig. 6. Therefore, these final envelopes represent the
minimum error among all the considered methods and all the number of modes used
in the reconstruction. Also for this final step, results considering both error definitions
(residual error on the left, direct error on the right), are reported. Table3 reports the
percentage values of the choice of the best method over the timewindow explored for
each one of the conserved quantities, which better clarifies the contribution of each
of these methods to the minimum envelopes represented in Fig. 6. It can be observed
that for this type of flow, POD and RDMD are the most used methods. Some instants



Model-Based Adaptive MOR Framework for Unsteady Flows … 295

Fig. 5 NACA0012 sensitivity w.r.t. number of modes and choice of method for density. Residual
error = log10(εr (ρ)) (left column), Direct error = log10(εd (ρ)) (right column)
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Fig. 6 NACA0012 minimum envelope of errors. Residual error = log10(εr (ρ, ρu, ρv, ρe)) (left
column), Direct error = log10(εd (ρ, ρu, ρv, ρe)) (right column)
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Table 3 NACA0012 choice of ROM for each conserved quantity according to the residual or direct
error

POD (%) SPOD1 (%) DMD (%) RDMD (%)

ρD 48 4 0 48

ρR 55 9 0 36

ρuD 54 1 0 45

ρuR 55 4 0 41

ρvD 48 8 0 44

ρvR 55 4 1 40

ρeD 32 4 0 64

ρeR 56 7 0 37

Fig. 7 NACA0012 momentum magnitude contours at 0.05 s. Residual error (top), Direct error
(bottom)

of time are best reconstructed using SPOD with a filter of 10 and only very few
instants of time are best reconstructed with DMD. Finally, Figs. 7 and 8 report the
reconstruction of the flow field by means of the adaptive approach for two different
instants of time. A comparison with a reference high-fidelity solution not used in the
definition of the ROM is presented. The momentum magnitude is shown as obtained
by reconstructing independently the two components ρu and ρv. Colored contours
refer to the high-fidelity solution, while solid black lines the reconstructed field. The
figure also reports the number of modes and the method used for the reconstruction
of the two components of the momentum. Overall, the agreement is good and minor
differences are observed between the reconstruction based on the direct error and the
one based on the residual error.
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Fig. 8 NACA0012 momentum magnitude contours at 0.29 s. Residual error (top), Direct error
(bottom)

Table 4 30P30N simulation parameters

Mach α (deg) Reynolds T∞ (K) Time (s) �t (s) CFL

0.2 19 9×106 288.15 0.06 10−4 0.4

4.2 High-Lift 30P30N Airfoil

The conditions of the simulation for the 30P30N airfoil are reported in Table4,
the corresponding details of the reduced basis method are reported in Table5. As
regards the numerical setup of the high-fidelity simulation, the unsteady Reynolds
averaged Navier-Stokes (URANS) have been solved, being this problem turbulent,
using a second-order FV discretization for the fluxes (MUSCL approach) and a
second-order dual-time stepping scheme to deal with the unsteady part. In particular,
the convective fluxes have been discretized using the Roe scheme. The turbulent
model used in the URANS context was SST [33]. Initial and boundary conditions
are the same as the ones specified for the previous test case. The time required for
computing a single time step using high-fidelity CFD is approximately 60min on
1 core, while the time required to compute a single time step with ROM is in the
order of a tenth of a second on 1 core. Figure9 illustrates the vorticity field at two
different instants of time. A hybrid grid, with quadrilaterals in the boundary layer
and unstructured triangles in the rest of the domain, was used with 327,733 nodes
and 551,040 quadrilateral elements.

The training set of snapshots was made of 100 solutions saved each 4 × 10−4 s.
The sensitivity analysis on the time step used for the residual evaluation led to a
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Table 5 30P30N ROM setting

NS �tNS (s) N. modes �tRES (s) NDOF-CFD NDOF-ROM ROM (s)

100 6 × 10−4 Error-based 5×10−6 1,966,398 O(102) 24

Fig. 9 30P30N impulsive start. Unsteady flow at two instants of time. Normalized vorticity mag-
nitude = ω/Vc being V the magnitude of velocity vector and c the airfoil chord

�tres of 5×10−6 s. As for the previous test case, Fig. 10 reports the sensitivity of
the reconstruction error for the density with respect to the choice of the number of
modes and with respect to the different methods. Differently from the NACA0012
case, no general trend can be observed with respect to the reduction of reconstruction
error as the number of modes increases. This may be related to the different unsteady
dynamics of this flow that reaches an advection-dominated status as the vortices
coalesce and then get transported downstream. The strong oscillations appearing for
the DMD residual error as the number of modes increases (third row on the left
column of Fig. 10) might be due to the addition of higher frequency modes as the
rank in the DMD algorithm increases, whichmight not be representative of the actual
dynamics and introduce spurious oscillation in the time and space derivatives in the
formula 9 for the evaluation of the residual. An investigation of the terms in Eq.9 that
primarily contributes to this spurious oscillation is out of the scope of the present
work. Similarly to the NACA0012 case, the direct error evaluation tends to be in
general lower than the residual error when comparing the same ROM.

Also similarly to the previous test case, Fig. 11 reports the error curves as a result
of the application of the pseudo-algorithm in Sect. 3.3. The steep increase in the
direct error envelope at the very end of the investigated time window which can
be noticed from this figure (plots on the right columns), might be related to the
starting vortex diffusion as it is convected downstream. This same behavior is not
present in the residual error envelope, being the diffusion contemplated in the FV
discretization of the Navier–Stokes equations. Table6 reports the percentage values
of the choice of the best method over the time window explored for each one of
the conserved quantities. Also for this flow, it can be observed that POD is the
most used method, but differently from the previous case SPOD with a filter of 10
is the second best choice over the specified time window. Finally, Figs. 12 and 13
report the reconstruction of the flow field by means of the adaptive approach for two
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Fig. 10 30P30N sensitivity w.r.t. number of modes and choice of method for density. Residual
error = log10(εr (ρ)) (left column), Direct error = log10(εd (ρ)) (right column)
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Fig. 11 30P30N minimum envelope of errors. Residual error = log10(εr (ρ, ρu, ρv, ρe)) (left
column), Direct error = log10(εd (ρ, ρu, ρv, ρe)) (right column)
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Table 6 30P30N choice of ROM for each conserved quantity according to the residual or direct
error

POD (%) SPOD1 (%) DMD (%) RDMD (%)

ρD 81 11 0 8

ρR 38 26 29 7

ρuD 82 10 0 8

ρuR 65 26 8 1

ρvD 90 9 0 1

ρvR 36 43 17 4

ρeD 69 19 0 12

ρeR 38 28 29 5

Fig. 12 30P30N momentum magnitude contours at 0.0159s. Residual error (top), Direct error
(bottom)

different instants of time. A comparison with a reference high-fidelity solution that
is not used in the definition of the ROM is presented. The momentum magnitude is
shown as obtained by reconstructing independently the two components ρu and ρv.
Colored contours refer to the high-fidelity solution while solid black lines refer to the
reconstructed field. The figure also reports the number of modes and the method used
for the reconstruction of the two components of the momentum. Despite the different
choice of methods as opposite to what happens in the previous test case (see Figs. 7
and 8), overall, the agreement is good and minor differences are observed between
the reconstruction based on the direct error and the one based on the residual error.
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Fig. 13 30P30N momentum magnitude contours at 0.0507s. Residual error (top), Direct error
(bottom)

5 Final Remarks and Outlook

The choice of the error estimator is non-trivial and sometimes driven by engineer-
ing/practical considerations and a combination of direct and residual errors can be
considered to find the optimal trade-off between the ability to obtain a consistent
estimation of the reconstruction error and the number of snapshots that need to be
excluded for the ROM due to the evaluation of the direct error. It is worth notic-
ing that the two definitions of the error introduced, which define the two different
adaptive frameworks, can be compared only in a heuristic way since they lie in two
different spaces. Overall, the trends in terms of choice of method between direct
and residual errors are consistent but differences are observed when looking at spe-
cific time windows, i.e., for the 30P30N test case, the choice reported in Figs. 12
and 13 are different for the two definitions of the error. The direct error tends to
be a more reliable estimation of the error since no pollution is expected, neverthe-
less, it requires a bigger database of snapshots to be able to use some of them only
for error estimation and the rest for the ROM construction. Despite the difference
in the method selection, the reconstructed solutions show a good agreement with a
reference CFD solution. The present analysis was based on conservative quantities,
i.e., error estimation and reconstruction were performed for mass, momentum, and
total energy. In case the ROM is required to obtain a primitive or another derived
quantity, these can be obtained from the conservative ones. An alternative approach
is under evaluation, for the adaptive framework equipped with the residual error,
considering an estimation of the residual of such non-conserved quantities as a func-
tion of the residuals of the conserved quantities. An analysis of the influence of the
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SPOD filter is underway including the possibility to deal with non-uniform time
steps (e.g., skew-normal SPOD). Smoothness and regularity of reconstructed solu-
tion when transitioning from one method to the other is under consideration (e.g.,
when is it actually needed from a “practical” viewpoint?). Finally, a zonal approach
is under development that aims at adaptivity “within” each computational domain
and not only in the time domain.
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Reduced Basis Methods for Quasilinear
Elliptic PDEs with Applications to
Permanent Magnet Synchronous Motors

Michael Hinze and Denis Korolev

Abstract In this paper, we propose a certified reduced basis (RB) method for quasi-
linear elliptic problems together with its application to nonlinear magnetostatics
equations, where the later model permanent magnet synchronous motors (PMSM).
The parametrization enters through the geometry of the domain and thus, combined
with the nonlinearity, drives our reduction problem. We provide a residual-based a-
posteriori error bound which, together with the Greedy approach, allows to construct
reduced basis spaces of small dimensions.We use the empirical interpolationmethod
(EIM) to guarantee the efficient offline-online computational procedure. The reduced
basis solution is then obtained with the surrogate of Newton’s method. The numer-
ical results indicate that the proposed reduced basis method provides a significant
computational gain, compared to a finite element method.

1 Introduction

A crucial task in the design of electric motors is the creation of proper magnetic
circuits. In permanent magnet electric motors, the latter is created by electromag-
nets and permanent magnets. The corresponding mathematical model is governed
by a quasilinear elliptic PDE (magnetostatic approximation of Maxwell equations)
which describes the magnetic field generated by the sources. One of the engineering
design goals consists of improving the performance of the motor through modifying
the size and/or location of the permanent magnets. This problem can be viewed as
a parameter optimization problem [2, 4, 9, 10], where the parameters determine
the geometry of the computational domain. The underlying optimization problem
then requires repeated solutions of the nonlinear (in general) elliptic problem on the
parametrized domain. Therefore, there is an increasing demand for fast and reliable
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reduced models as surrogates in the optimization problem. To achieve this goal, we
use the reduced basis method [7, 11]. The extension of reduced basis techniques to
nonlinear problems is a non-trivial task and the crucial ingredients of themethod then
highly dependent on the underlying problem. Efficient implementation of the greedy
procedure requires a posteriori error bounds, which, to the best of our knowledge,
are not yet available for the problem we consider. In [1] the reduced basis method
is applied to approximate the micro-problems in a homogenization procedure for
quasilinear elliptic PDEs with non-monotone nonlinearity. However, we note that
this is different from our approach, where we use the reduced basis method for the
approximation of the solution of a quasilinear PDE. In our case, the monotonicity of
the problem allows the a posteriori control of the global reduced basis approximation
error. We provide the corresponding error bound for quasilinear elliptic equations,
which is based on a monotonicity argument and can be viewed as a generalization
of the classical error bound for linear elliptic problems [12], where the coercivity
constant is now substituted by the monotonicity constant of the spatial differen-
tial operator. The computational efficiency of the reduced basis method is based
on the so-called offline-online decomposition. The offline phase corresponds to the
construction of the surrogate model and depends on high-dimensional simulations,
and thus is expensive. The online phase, where the surrogate model is operated, is
usually decoupled from high-dimensional simulations and thus in general is inexpen-
sive. This splitting is feasible if all the quantities in the problem admit e.g. the affine
decomposition, which essentially means that all parameter dependencies can be sep-
arated from the spatial variables. The recovery of the affine decomposition in the
presence of nonlinearities represents an additional challenge and it is usually treated
with the empirical interpolation method (EIM) [3, 6]. The EIM algorithm requires
additional data, i.e., the basis for interpolation is constructed from nonlinearity snap-
shots in the “truth” space. For the efficient numerical solution of the reduced basis
problem with Newton’s method, we extend the computational machinery, proposed
in [6] for semilinear PDEs. It leads to a reduced numerical scheme with full affine
decomposition and thus to a considerable acceleration in the online phase, compared
to the original finite element simulations.

2 The Quasilinear Parametric Elliptic PDE

2.1 Abstract Formulation

We start by introducing themodel for a permanent magnet synchronousmachine.We
consider a three-phase six-pole permanent magnet synchronous machine (PMSM)
with one buried permanent magnet per pole.We parametrize the problem through the
size of the magnet by introducing a three-dimensional parameter p = (p1, p2, p3)
which characterizes magnet’s width p1, magnet’s height p2, and the perpendicular
distance from themagnet to the rotor p3 inmm. In Fig. 1, the geometry of the problem
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is shown. PMSM then can be described with sufficient accuracy by the magnetostatic
approximation of Maxwell’s equations

−∇ · (ν(x, |∇u(p)|)∇u(p)) = Je − ∂

∂x2
Hpm,1(p) + ∂

∂x1
Hpm,2(p) in �(p) (1)

with boundary conditions

u|BC = u|DA = 0 and u|AB = − u|CD .

Here AB, BC,CD, DA represent parts of the boundary ∂� andmarked in Fig. 1.We
assume that �(p) represents the cross section of the electric motor which is located
in the x1 − x2 plane of R3 and the solution u is the x3-component of the magnetic
vector potential. The x3-component of the current density is represented by Je, and
Hpm,1(p) and Hpm,2(p) are components of the permanent magnet magnetic field.
The nonlinear magnetic reluctivity function

ν(x, η) =
{

ν1(η), for x ∈ �1(p)

ν2(x), for x ∈ �2(p),
(2)

represents ferromagnetic properties of the material. Here we split the domain �(p)
into two non-overlapping subdomains �1(p) (ferromagnetic steel) and �2(p) (air,
magnet, coils) such that ν1 ∈ C1(�1(p)) and ν2 is piecewise constant on �2(p)
(i.e., constant for each material). In practice, we reconstruct ν1 from the real B − H
measurements of PMSM by using cubic spline interpolation. The scheme preserves
desired physical properties of the reluctivity function (see, e.g. [8] for the details of
the interpolation scheme) and provides the fast-growing nonlinearity of exponential
type. We use physical constants for ν2. Then the reluctivity function satisfies

0 < νLB ≤ ν(x, η) ≤ ν0, ∀x ∈ �(p), (3)

where νLB can be chosen independently of the parameter p (see Sect. 3.4 for details).
We continue with an abstract formulation of a two-dimensional nonlinear mag-

netostatic field problem with geometric parametrization, where the parameter set is
given by D ⊂ R

3 and describes the geometry of the permanent magnet. The regu-
lar, bounded, and p-dependent domain �(p) ⊂ R

2 gives rise to a p-dependent real
and separable Hilbert space X (p) := X (�(p)) and the corresponding dual space
X ′(p) := X ′(�(p)). The function space X (p) is such that

X (p) := {v| v ∈ L2(p),∇v ∈ (L2(p))2, u|BC = u|DA = 0, u|AB = − u|CD}

with H 1
0 (p) ⊂ X (p) ⊂ H 1(p), where H 1(p) := {v| v ∈ L2(p),∇v ∈ (L2(p))2},

H 1
0 (p) := {v| v ∈ H 1(p), v|∂� = 0}. The inner product on X (p) is defined

by (w, v)X (p) = ∫
�(p) ∇w · ∇v dx and the induced norm is given by ‖v‖X (p) =
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(v, v)
1/2
X (p), which is indeed a norm due to Poincare-Friedrichs inequality. Then the

abstract problem reads as follows: for p ∈ D, find u(p) ∈ X (p) such that

a[u(p)](u(p), v; p) = f (v, p), ∀v ∈ X (p), (4)

where we have

a[u](w, v; p) =
∫

�(p)
ν(x, |∇u|)∇w · ∇v dx, (5)

f (v; p) =
∫

�(p)

(
Jev − Hpm,2

∂v

∂x1
+ Hpm,1

∂v

∂x2

)
dx . (6)

The quasilinear form a[·](·, ·; p) is strongly monotone on X (p) with monotonicity
constant νLB > 0, i.e.,

a[v](v, v − w; p) − a[w](w, v − w; p) ≥ νLB‖v − w‖2X (p) ∀ v,w ∈ X (p), (7)

and Lipschitz continuous on X (p) with Lipschitz constant 3ν0 > 0, i.e.,

|a[u](u, v; p) − a[w](w, v; p)| ≤ 3ν0‖u − w‖X (p)‖v‖X (p) ∀ u, w, v ∈ X (p).
(8)

The conditions (7), (8) are established, e.g. in [8]. Then problem (4) admits a unique
solution (see [14], Th 25.B). Moreover, those properties will be needed for the error
estimates.

In order to avoid domain re-meshing caused by the change of the parameters, we
transfer the domain �(p) to a fixed domain �̂ := �( p̂), where p̂ is the reference
parameter with x̂ := x( p̂) as a spatial coordinate on �̂ (see e.g., [12]). Further we
assume that �̂ = �̂1 ∪ �̂2 and this can be decomposed into L = L1 + L2 (in our
case L = 12) non-overlapping triangles (see Fig. 1) so that �̂ = ∪L

d=1�̂d and in par-
ticular �̂1 = ∪L1

d=1�̂
1
d and �̂2 = ∪L2

d=1�̂
2
d . The transformation T (p) on each triangle

is affine, whereas piecewise affine and continuous over the whole domain according
to

T (p)|�̂d
: �̂d → �(p)

x̂ �→ Cd(p)x̂ + zd(p), (9)

for d = 1, . . . , L , where Cd(p) ∈ R
2×2 and zd(p) ∈ R

2. According to (9), the Jaco-
bian matrix JT (p) of the transformationT (p) is constant on each region of the given
parametrization, i.e., we have JT (p)|�̂d

= Cd(p).

Now we state the problem (4) on the reference domain �̂ with the corresponding
Hilbert space X̂ := X ( p̂) equipped with the inner product (ŵ, v̂)X̂ = ∫

�̂
∇ŵ · ∇v̂dx̂

and the induced norm ‖v̂‖X̂ = (v̂, v̂)
1/2

X̂
. It reads as follows: for p ∈ D, find û(p) ∈ X̂

so that
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Fig. 1 The cross section of one pole of the machine with the magnet depicted in gray and the
region of the geometric parametrization indicated by the dashed box. The dashed lines indicate the
triangulation into L triangles. Figure is adapted from [4]

a[û(p)](û(p), v̂; p) = f (v̂, p), ∀v̂ ∈ X̂ , (10)

where the quasilinear form in (5) is now transformed with the change of variables
formula into

a[û](ŵ, v̂; p) =
∫

�̂

ν(x̂, |J−T
T (p)∇û|)[J−T

T (p)∇ŵ] · [J−T
T (p)∇v̂]|det JT (p)| dx̂ .

(11)

Similarly, the linear form in (5) is transformed into

f (v̂; p) =
∫

�̂

[ f ◦ T (p)]v̂|det JT (p)| dx̂ . (12)

Since �̂ = �̂1 ∪ �̂2, we have the decomposition

a[ŵ](ŵ, v̂; p) := aν1 [ŵ](ŵ, v̂; p) + aν2(ŵ, v̂; p), (13)

where aν1 is the restriction of (11) to �̂1 with nonlinear reluctivity function ν1, and
aν2 is the restriction of (11) to �̂1 with piecewise constant reluctivity function ν2.
Application of Newton’s method requires the computation of the derivative of aν1 ,
which is given by

a′[u](w, v; p) =
∫

�1(p)

ν ′
1(|∇u|)
|∇u| (∇u · ∇w)(∇u · ∇v)dx + aν1(w, v; p) (14)

and transformed as in (11) to the reference domain �̂1 with the change of variables
formula.
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We then introduce a high-dimensional finite element discretization (“truth”
approximation) of our problem in the space X̂N = span{φ1, . . . , φN } ⊂ X̂ of piece-
wise linear and continuous finite element functions. The finite element approxi-
mation is obtained by a standard Galerkin projection: given the ansatz ûN (p) =∑N

j=1 ûN j (p)φ j for the discrete solution and testing against the basis elements in

X̂N leads to the system

N∑
j=1

AN
i j (p)ûN j (p) = FN i (p), 1 ≤ i ≤ N, (15)

of nonlinear algebraic equations, where FN (p) ∈ R
N , FN j (p) = f (φ j ; p), 1 ≤

j ≤ N and AN (p) ∈ R
N×N , AN

i j (p) = a[ûN (p)](φ j , φi ; p), 1 ≤ i, j ≤ N .We then

apply a Newton iterative scheme: given a current iterate ˆ̄uN j (p), 1 ≤ j ≤ N , we
find an increment δûN j (p), 1 ≤ j ≤ N , such that

N∑
j=1

D̄N
i j (p)δûN j (p) = FN i (p) −

N∑
j=1

ĀN
i j (p) ˆ̄uN j (p), 1 ≤ i ≤ N, (16)

where D̄N (p) ∈ R
N×N , D̄N

i j (p) = a′[ ˆ̄uN ](φ j , φi ; p) and ĀN (p) ∈ R
N×N , ĀN

i j (p) =
a[ ˆ̄uN ](φ j , φi ; p), 1 ≤ i, j ≤ N are computed at each Newton’s iteration.

From here onward by the “truth” solution û(p), we understand its finite element
approximation ûN (p), assuming that the given finite element approximation is good
enough.

3 Reduced Basis Approximation

3.1 An EIM-RB Method

To perform the reduced basis approximation, we first introduce a subsetDtrain ⊂ D
from which a sample Du

N = { p̄1 ∈ D, . . . , p̄N ∈ D} with associated reduced basis
space Ŵ u

N = span{ζn := û( p̄n), 1 ≤ n ≤ N } of dimension N are built with the
help of a weak Greedy algorithm. This algorithm constructs iteratively nested
(Lagrangian) spaces Ŵ u

n , 1 ≤ n ≤ N using an a posteriori error estimator�u(Y ; p),
which predicts the expected approximation error for a given parameter p in the space
Ŵ u

n = Y . We want the expected approximation error to be less than the prescribed
tolerance εRB . We initiate the algorithm with an arbitrary chosen parameter p̄1 with
the corresponding snapshot û( p̄1) for the basis enrichment. Nextwe proceed as stated
in the following Algorithm1.
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Algorithm 1 RB-Greedy algorithm
Input: Tolerance εRB , max. number of iterations Nmax, parameter setDtrain ⊂ D
Output: RB spaces {Ŵ u

n }Nn=1

1: while m ≤ Nmax and εn := max
p∈Dtrain

�u (Ŵ u
n , p) > εRB do

2: p̄n ← argmax
p∈Dtrain

�u (Ŵ u
n−1, p)

3: Du
n ← Du

n−1 ∪ { p̄n}
4: Ŵ u

n ← Ŵ u
n−1

⊕
span{ζn ≡ û( p̄n)}

5: n ← n + 1
6: end while

We note that the basis functions ζn are also orthonormalized relative to the (·, ·)X̂
inner product with a Gram-Schmidt procedure to generate a well-conditioned system
of equations.

The empirical interpolation method (EIM) [3] is used to ensure the availabil-
ity of offline/online decomposition in the presence of the nonlinearity. For the
EIM nonlinearity approximation, we construct a sampleDν

M = {pν
1 ∈ D, . . . , pν

M ∈
D} and associated approximation spaces W ν

M = span{ξm := ν1(û(pν
m); x̂; pν

m), 1 ≤
m ≤ M} = span{q1, . . . , qM } together with a set of interpolation points TM =
{x̂ M

1 , . . . , x̂ M
M }. Then we build an affine approximation νM

1 (û(p); x̂; p) of ν1(û(p);
x̂; p) as

ν1(û(p); x̂; p) : = ν1(|J−T
T (x̂, p)∇û(x̂, p)|) ≈

M∑
m=1

ϕm(p)qm(x̂)

=
M∑

m=1

(B−1
M νp)mqm(x̂) := νM

1 (û(p); x̂; p), (17)

where νp := {ν1(û(p); x̂ M
m ; p)}Mm=1 ∈ R

M and BM ∈ R
M×M with (BM)i j = q j (x̂ M

i )

is the interpolation matrix. The EIM algorithm is initiated with an arbitrary chosen
sample point pν

1 ∈ D and then associated quantities are computed as follows:

ξ1 = ν1(û(pν
1); x̂; pν

1), x̂ M
1 = arg sup

x̂∈�̂

|ξ1(x̂)|, q1 = ξ1

ξ1(x̂ M
1 )

. (18)

The next parameters in the sample Sν
M are selected according to the following Algo-

rithm2:
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Algorithm 2 EIM algorithm
Input: Tolerance εE I M , max. number of iterations Mmax, parameter setDtrain ⊂ D
Output:Approximation spaces {W ν

m}Mm=1, interpolation points {Tm}Mm=1
1: while m ≤ Mmax and δmax

m > εE I M do
2: [δmax

m , pν
m ] ← argmax

p∈Dtrain

inf
z∈W ν

m−1

‖ν1(û(p); .; p) − z‖L∞(�̂)

3: Dν
m ← Dν

m−1 ∪ {pν
m}

4: rm(x̂) = ν1(û(pν
m); x̂; pν

m) − νm1 (û(pν
m); x̂; pν

m)

5: x̂ Mm = arg sup
x̂∈�̂

|rm(x̂)|, qm = rm/rm(x̂ Mm )

6: m ← m + 1
7: end while

The EIM approximation of ν1 results in the EIM-approximation aM [·](·, ·; p) of
the quasilinear form a[·](·, ·; p) and then the reduced basis approximation is obtained
by a standard Galerkin projection: given p ∈ D, find ûN ,M(p) ∈ Ŵ u

N such that

aM [ûN ,M(p)](ûN ,M(p), v̂N ; p) = f (v̂N ; p), ∀v̂N ∈ Ŵ u
N (19)

holds. Since �̂ = �̂1 ∪ �̂2, we have the decomposition

aM [ŵ](ŵ, v̂; p) := aν1
M [ŵ](ŵ, v̂; p) + aν2(ŵ, v̂; p), (20)

where aν1
M [·](·, ·; p) is the EIM approximation of aν1[·](·, ·; p) with nonlinear reluc-

tivity ν1(p) replaced by its EIM counterpart νM
1 (p).

3.2 Error Estimation

WedefineWu
N (p) := {wN |wN = ŵN ◦ T−1, ŵN ∈ Ŵ u

N } as a push-forward reduced
basis space over the parametrized domain�(p) for error estimation purposes, where
T−1 is the inverse of the geometric transformation (9). First, we study the conver-
gence of ûN ,M(p) → û(p).

Proposition 3.1 (A-priori Error Bound) Assume that the EIM approximation error
of the nonlinearity satisfies supp∈D‖ν1(p) − νM

1 (p)‖L∞ ≤ εM. Assume further that
a(·; ·, ·; p) is Lipschitz continuous on X (p) with Lipschitz constant 3ν0 > 0 and
that the EIM approximation aM(·; ·, ·; p) of a(·; ·, ·; p) is strongly monotone with
monotonicity constant ν̃LB := νLB − εa > 0. Then we have

‖û(p) − ûN ,M (p)‖X̂ ≤
√
C2(p)

C1(p)
inf

ŵN∈Ŵ u
N

{(
1 + 3ν0

ν̃LB

)
‖û(p) − ŵN ‖X̂ + εM

ν̃LB
‖ŵN ‖X̂

}

with the geometric constants
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C1(p) := min
1≤d≤L

{λmin(Cd(p)
−1Cd(p)

−T )| detCd(p)|} (21)

and

C2(p) := max
1≤d≤L

{λmax(Cd(p)
−1Cd(p)

−T )| detCd(p)|} (22)

Proof Set u := u(p) ∈ X (p), uN ,M := uN ,M(p) ∈ Wu
N (p) and letwN ∈ Wu

N (p) be
arbitrary. Set σN ,M := uN ,M − wN . First, we note that

aM [uN ,M ](uN ,M , wN ) − a[u](u, wN ) = 0, ∀wN ∈ Wu
N (p) ⊂ X (p). (23)

Then we use (23), the strong monotonicity condition and Lipschitz continuity to
obtain the bound

ν̃LB‖σN ,M‖2X (p) ≤ aM [uN ,M ](uN ,M , σN ,M) − aM [wN ](wN , σN ,M )

= a[u](u, σN ,M) − a[wN ](wN , σN ,M)

+ a[wN ](wN , σN ,M ) − aM [wN ](wN , σN ,M)

≤ 3ν0‖u − wN‖X (p)‖σN ,M‖X (p)

+ sup
p∈D

‖ν1(p) − νM
1 (p)‖L∞‖wN‖X (p)‖σN ,M‖X (p).

Dividing both sides by ν̃LB‖σN ,M‖X (p) and using the triangle inequality

‖u − uN ,M‖X (p) ≤ ‖u − wN‖X (p) + ‖σN ,M‖X (p),

we obtain the estimate

‖u(p) − uN ,M(p)‖X (p) ≤
(
1 + 3ν0

ν̃LB

)
‖u(p) − wN‖X (p) + εM

ν̃LB
‖wN‖X (p). (24)

Inspecting the geometric dependence with the lower bound,

‖v‖2X (p) =
L∑

d=1

2∑
i, j=1

[Cd(p)
−1Cd(p)

−T ]i j | detCd(p)|
∫

�̂d

∂v̂

∂ x̂i

∂v̂

∂ x̂ j
d x̂ (25)

� min
1≤d≤L

{λmin(Cd(p)
−1Cd(p)

−T )| detCd(p)|} ‖v̂‖2
X̂

= C1(p)‖v̂‖2
X̂
,

applied to the left-hand side of (24), together with the similarly established upper
bound

‖v‖2X (p) ≤ max
1≤d≤L

{λmax (Cd(p)
−1Cd(p)

−T )| detCd(p)|} ‖v̂‖2
X̂

= C2(p)‖v̂‖2
X̂

(26)
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applied to the right-hand side of (24), the desired result follows after a short calcu-
lation. �

For efficient implementation of the reduced basismethodology and the verification
of the error, it is necessary to provide an a posteriori error bound,which can be quickly
evaluated. For this, we establish an error bound based on the residual. We denote by
rM(·; p) ∈ X̂ ′ the residual (formed on the reference domain) of the problem, defined
naturally as

rM(v̂; p) = f (v̂; p) − aM [ûN ,M ](ûN ,M , v̂; p). (27)

We have the following:

Proposition 3.2 (A posteriori Error Bound) Let νLB > 0 be the lower bound of the
monotonicity constant. Then, the RB-EIM error êN ,M(p) := û(p) − ûN ,M(p) can be
bounded by

‖êN ,M(p)‖X̂ ≤ ‖rM(·; p)‖X̂ ′

νLB C1(p)
+ C2(p)δM(p)

νLBC1(p)
‖ûN ,M(p)‖X̂ := �N ,M(p) (28)

with the geometric constants (21), (22) and the EIM approximation error

δM(p) = sup
x̂∈�̂

|ν1(|J−T
T (x̂, p)∇ûN ,M (x̂; p)|) − νM

1 (|J−T
T (x̂, p)∇ûN ,M (x̂; p)|)|

(29)

of the nonlinearity

Proof Since in the case eN ,M = 0, there is nothing to show,we assume that eN ,M �= 0.
We then use strong monotonicity condition (7) and the definition of the residual (27)
to estimate

νLB‖eN ,M‖2X (p) ≤ a[u](u, eN ,M ) − a[uN ,M ](uN ,M , eN ,M )

= f (eN ,M) − aM [uN ,M ](uN ,M , eN ,M )

+aM [uN ,M ](uN ,M , eN ,M ) − a[uN ,M ](uN ,M , eN ,M )

:= rM(eN ,M) + aM [uN ,M ](uN ,M , eN ,M ) − a[uN ,M ](uN ,M , eN ,M )

= rM(êN ,M) + aM [uN ,M ](uN ,M , eN ,M ) − a[uN ,M ](uN ,M , eN ,M )

≤ ‖rM‖X̂ ′ ‖êN ,M‖X̂ + δM(p)‖uN ,M‖X (p)‖eN ,M‖X (p)

Now, the final result follows from the estimate (25) and (26), applied to ‖eN ,M‖2X (p)
and the right-hand side of the inequality, corresponding,ly. ��
We address the computational realization of the estimator (28) in the next section.
Next we denote by r(·; p) ∈ X̂ ′ the residual of the original problem (without EIM
reduction), defined as
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r(v̂; p) = f (v̂; p) − a[ûN ](ûN , v̂; p) (30)

and let êN (p) := û(p) − ûN (p) be the error of the reduced basis approximation.
Along the lines of Proposition3.2 one can prove the error bound

‖êN (p)‖X̂ ≤ ‖r(·; p)‖X̂ ′

νLB C1(p)
:= �N (p). (31)

We use (31) to investigate the factor of overestimation in the reduced basis approxi-
mation.

Proposition 3.3 (Effectivity bound for RB-approximation) Let ηN (p) = �N (p)
‖êN ‖X̂

.
Then

ηN (p) ≤ 3ν0
νLB

√
C1(p)C2(p) (32)

Proof Let v̂r ∈ X̂ denote the Riesz representative of r(·; p). Then we have

〈v̂r , v̂〉X̂ = r(v̂; p), v̂ ∈ X̂ , ‖v̂r‖X̂ = ‖r(·; p)‖X̂ ′ .

Now let vr := v̂r ◦ T−1 ∈ X (p). Then, using Lipshitz continuity of (8), we have

‖vr‖2X (p) = 〈vr , vr 〉X (p) = r(vr ;μ) = a[u](u, vr ; p) − a[uN ](uN , vr ; p)
≤ 3ν0‖eN‖X (p)‖vr‖X (p).

With the estimates (25) and (26), applied to both sides of this inequality, we obtain

‖v̂r‖X̂

‖êN‖X̂

≤ 3ν0

√
C2(p)

C1(p)
.

With (31), we then conclude

ηN (p) = �N (p)

‖êN‖X̂

= ‖v̂r‖X̂

νLB C1(p)‖êN‖X̂

≤ 3ν0
νLB

√
C1(p)C2(p).

and obtain the effectivity bound. ��
This bound is further used to explain the gap between the true error and the estimator.
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3.3 Computational Procedure

The computational process in the reduced basis modelling can be split into the offline
and the online phase. The computations in the offline phase depend on the dimen-
sion N of the finite element space and are expensive, but should be performed only
once. The computations in the online phase are independent of N , with compu-
tational complexity which depends only on the dimension N of the reduced basis
approximation space and the dimension M of the EIM approximation space. The key
concept utilized here is parameter separability (or affine decomposition) of all the
forms involved in the problem. With EIM, we can achieve an affine decomposition
of the quasilinear form

aν1
M [ûN ,M(p)](ŵ, v̂; p) =

M∑
m=1

L1∑
d=1

2∑
i, j=1

ϕm(p)�i, j
d,L1

(p)ai, jm,d(ŵ, v̂), (33)

aν2(ŵ, v̂; p) =
L2∑
d=1

2∑
i, j=1

�
i, j
d,L2

(p)ai, jd (ŵ, v̂),

such that �
i, j
d,L1

: D → R for d = 1, . . . , L1, i, j = 1, 2 and �
i, j
d,L2

: D → R for
d = 1, . . . , L2, i, j = 1, 2 are functions depending on p and on the parameter-
independent forms

ai, jm,d(ŵ, v̂) =
∫

�̂1
d

qm
∂ŵ

∂ x̂i

∂v̂

∂ x̂ j
d x̂, 1 ≤ d ≤ L1, 1 ≤ i, j ≤ 2,

ai, jd (ŵ, v̂) =
∫

�̂2
d

∂ŵ

∂ x̂i

∂v̂

∂ x̂ j
d x̂, 1 ≤ d ≤ L2, 1 ≤ i, j ≤ 2.

For notational convenience,we set cm(ŵ, v̂; p) := ∑L1
d=1

∑2
i, j=1 �

i, j
d,L1

(p)ai, jm,d(ŵ, v̂)

so that

aν1
M [ûN ,M(p)](ŵ, v̂; p) =

M∑
m=1

ϕm(p)cm(ŵ, v̂; p).

Similarly, the affine decomposition of f has the form

f (v̂; p) =
∫

�̂

Jev̂ dx̂ −
L∑

d=1

2∑
i=1

| detCd(p)|Cd(p)
−T
1 i

∫
�̂d

Hpm,1
∂v̂

∂ x̂i
d x̂

+
L∑

d=1

2∑
i=1

| detCd(p)|Cd(p)
−T
2 i

∫
�̂d

Hpm,2
∂v̂

∂ x̂i
d x̂ =

Q f∑
q=1

� f
q (p) fq(v̂),
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where �
f
q : D → R for q = 1, . . . , Q f are parameter-dependent functions and

parameter-independent forms fq(v̂).
We now give the details of the numerical scheme for the nonlinear part, defined

on the domain �̂1. The second term in (33) is linear and can be treated similarly. We
expand our reduced basis solution as ûN ,M(p) = ∑N

j=1 ûN ,M jζ j and test against the

basis elements in Ŵ u
N to obtain the algebraic equations

N∑
j=1

M∑
m=1

ϕm(p)C j (N ,M)

i m (p)ûN ,M j (p) = FN i (p), 1 ≤ i ≤ N , (34)

where C j (N ,M)(p) ∈ R
N×M ,C j (N ,M)

i m (p) = cm(ζ j , ζi ; p), 1 ≤ i ≤ N , 1 ≤ m ≤ M,

1 ≤ j ≤ N , and FN i (p) = f (ζi ; p). Since ϕM(p) = {ϕM k(p)}Mk=1 ∈ R
M is given

by

M∑
k=1

BM
m kϕM k(p) = ν1(ûN ,M(x̂ M

m ; p); x̂ M
m ; p), 1 ≤ m ≤ M (35)

= ν1

(
N∑

n=1

ûN ,M n(p)ζn(x̂
M
m ); x̂ M

m ; p
)

, 1 ≤ m ≤ M.

We then insert (35) into (34) to get the following nonlinear algebraic equation system:

N∑
j=1

M∑
m=1

D j (N ,M)

i m (p)ν1

(
N∑

n=1

ûN ,M n(p)ζn(x̂
M
m ); x̂ M

m ; p
)

ûN ,M j (p) = FN i (p),

(36)

where 1 ≤ i ≤ N and D j (N ,M)(p) = C j (N ,M)(p)(BM)−1 ∈ R
N×M .

To solve (36) for ûN ,M j (p), 1 ≤ j ≤ N , we apply a Newton’s iterative scheme:
given the current iterate ˆ̄uN ,M j (p), 1 ≤ j ≤ N , compute an increment δûN ,M j (p),
1 ≤ j ≤ N , from

N∑
j=1

[ ĀN
i j (p) + Ē N

i j (p)]δûN ,M j (p) = RN i (p), 1 ≤ i ≤ N , (37)

and update ˆ̄uN ,M j (p) := ˆ̄uN ,M j (p) + δûN ,M j (p), where the residual RN (p) ∈ R
N

for the Newton’s scheme must be calculated at every Newton iteration according to

RN i (p) = FN i (p) −
N∑
j=1

M∑
m=1

D j (N ,M)

i m (p)ν1( ˆ̄uN ,M(x̂ M
m ; p); x̂ M

m ; p) ˆ̄uN ,M j (p).

(38)
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Furthermore, ĀN (p) ∈ R
N×N , ĀN

i j (p) = aν1
M [ ˆ̄uN ,M(p)](ζ j , ζi ; p) and Ē N (p) ∈

R
N×N with

Ē N
i j (p) =

N∑
s=1

¯̂uN ,M s(p)
M∑

m=1

Ds(N ,M)
i m (p)

g j
m(p)∂1ν1( ˆ̄uN ,M(x̂ M

m ; p); x̂ M
m ; p)

|J−T
T (x̂ M

m , p)∇ ˆ̄uN ,M (x̂ M
m ; p)| , (39)

where 1 ≤ i, j ≤ N and

g j
m(p) = [J−T

T (x̂ M
m , p)∇ ¯̂uN ,M (x̂ M

m ; p)] · [J−T
T (x̂ M

m , p)∇ζ j (x̂
M
m )]

for 1 ≤ m ≤ M . In (39), ∂1ν1 denotes the partial derivative of ν1 with respect to its
first argument

Although (39) looks quite involved, it possesses an affine decomposition and
allows efficient assembling in the online phase. Indeed, the matrix D j (N ,M)(p) is
parameter-separable, since C j (N ,M)(p) is parameter-separable and the evaluation
of g j ∈ R

M in (39) requires the evaluation of the reduced basis functions only on
the set of interpolation points TM . Therefore, these quantities can be computed and
stored in the offline phase and can be assembled in the online phase independently
ofN . The operation count associated with each Newton’s update is then as follows:
the assembling of the residual RN (p) in (38) is achieved at cost O(MN 2) together
with the EIM system solve at cost O(M2). The Jacobian ĀN (p) + Ē N (p) in (36) is
assembled at costO(MN 3), where the dominant cost is for the assembling of Ē N (p).
It is then inverted at cost O(N 3). The operation count in the online phase is thus
O(MN 3) per Newton iteration. However, we observe in our numerical experiment
that it is sufficient to use ĀN (p) and drop Ē N (p) term in (37), which results in
O(MN 2 + N 3) operations per Newton iteration.

Next, we address the computation of the a posteriori error bound (28). It requires
the computation of the dual norm of the residual (27). Since the right-hand side
f (·; p) and aM [·](·, ·; p) are parameter-separable, the residual rM(·; p) is also
parameter-separable and admits an affine decomposition together with its Riesz rep-
resentative v̂r (p) ∈ X̂ according to

rM(v̂; p) =
Qr∑
q=1

�r
q(p)rM q(v̂), v̂r (p) =

Qr∑
q=1

�r
q(μ)v̂r q , (40)

where rM(v̂; p) = (v̂r (p), v̂)X̂ for all v̂ ∈ X̂ and Qr = Q f + N (M + 4ML1 +
4L2). Since the dual norm of the residual is equal to the norm of its Riesz rep-
resentative, we have

‖rM(·; p)‖X̂ ′ = ‖v̂r (p)‖X̂ = (�r (p)T Gr�
r (p))1/2, (41)

where �r (p) = {�r
q(p)}Qr

q=1 ∈ R
Qr and Gr ∈ R

Qr×Qr with (Gr )i j = (vr i , vr j )X̂
and the dual norm (41) is then computed at cost O(Q2

r ). The evaluation of the norm
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‖ûN ,M(p)‖X̂ is at cost O(N 2). Once νLB is available, the constants C1(p) and C2(p)
in (28) are computed directly.

The EIM approximation error (29) is computed on the discretized domain
�̂h ⊂ �̂: the nonlinearity depends on the gradient and it is evaluated on the triangle
barycenters x̂b j , 1 ≤ j ≤ NT , where NT is the total number of triangles in the iron
material region for a given finite element triangulation. The EIM procedure results
in the set of triangle barycenter points TM = {x̂ M

b1
, . . . , x̂ M

bM
}, where M << NT .

In the offline phase, we evaluate the gradients {∇ζn}Nn=1 for each basis element
{ζn}Nn=1 of the reduced basis space Ŵ

u
N on the interpolation barycenters TM . We thus

store offline {∇ζn|TM (x̂ M
b j

)}Mj=1 ∈ R
M×2 for 1 ≤ n ≤ N and then efficiently evaluate

the nonlinearity on TM with the ansatz ∇ûN ,M(p)
∣∣
TM

= ∑N
j=1 ûN ,M j (p) ∇ζ j

∣∣
TM

online. The operation count for the EIM approximation νM
1 (ûN ,M(x̂; p); p) is then

O(M2 + NT M), and the evaluation of ν1 at M points. We note that (29) requires the
knowledge of ν1(ûN ,M(p); x̂; p) and thus one full evaluation of the nonlinearity. In
order to increase the online computational efficiency, an one-point estimator ε̂M(p)
can be used (see, e.g., [6]). It requires the evaluation of the nonlinearity at only one
point, but ε̂M(p) ≤ δM(p) in general, thus this lower bound estimator must be effec-
tive, i.e., ε̂M (p)

δM (p) should close to 1. In our case, the nonlinearity is of the exponential

type and the effectivity of the bound is of the order 102 in practice.

3.4 Numerical Results

First, we introduce a parameter set D = [18, 19] × [4, 5] × [7, 8]. The nonlinear
reluctivity function ν1(p) is reconstructed from the real B − H measurements using
cubic spline interpolation. Finite element simulations are based on a mesh composed
of 121012 triangles and 60285 nodes (excluding Dirichlet boundary nodes). Piece-
wise linear, continuous finite element functions are chosen for the finite element
approximation. We solve the finite element problem with Newton’s method. We iter-
ate unless the norm of the residual is less than the tolerance level, which we set to
10−4. The tolerance level 10−5 is used for the RB Newton’s method.

We generate the RB-EIMmodel as follows: we start fromDE I M(1)
train ⊂ D (a regular

6 × 6 × 6 grid over D of size 216) and compute finite element solutions for each
parameter in DE I M(1)

train to approximate the nonlinearity with the EIM within the pre-
scribed tolerance εE I M = 5 · 10−1. Since the norm ‖ûN ,M(p)‖X̂ is of the order 10−2,
we hope to further balance the contributions of the reduced basis and EI nonlinearity
approximation in the estimator on the test set. Next we run the RB-Greedy proce-
dure with the prescribed tolerance εRB = 10−2 for the estimator (28) onDtrain ⊂ D,
whereDtrain is a regular 10 × 10 × 10 grid overD of size 1000. We set νLB = 110,
since

νLB ≤ min
x̂∈�̂

ν1(|J−T
T (x̂, p)∇ûN ,M (x̂; p)|) � 110 (42)
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for all p ∈ Dtrain in our setting. This is a robust heuristic procedure, since for small
N , the reduced basis solution ûN ,M(x̂; p) is a good approximation to û(x̂; p) in the
regions with low magnetic flux density |∇û(·; p)|. The size of the magnet (change
in the parameter p) influences only the high values of the magnetic flux density
|∇ûN ,M(·; p)| in the magnetic circuit and does not have an impact on the minimum
of the reluctivity function. We note that the evaluation of δM(p) (29) requires one
full evaluation of the nonlinearity, thus it is available for the computation in (42) for
the a posteriori error estimation.

Once the reduced basis model is constructed (Nmax = 12, Mmax = 50), we use it
to improve the quality of the nonlinearity approximation: we generate the reduced
basis solutions overDE I M(2)

train := Dtrain and use them to construct the improved EIM
approximation space W ν

M of dimension Mmax = 50. With the new approximation
of the nonlinearity, we run the RB-Greedy procedure over Dtrain again with the
prescribed tolerance εRB = 10−2, which results in the reduced basis space Ŵ u

N of
dimension Nmax = 10.

Next, we introduce a parameter test sampleDtest ⊂ D of size 343 (7 × 7 × 7 grid
with uniformly random sampling on each interval) and verify the convergencewith N
of max�N ,M = max

p∈Dtest

�N ,M (p) for different values of M (see Fig. 2a). We see that

with N = 8 and M = 50 the estimator is below the prescribed tolerance εRB = 10−2

on the test set. One observes that there is an increase in the estimator for N ≥ 8 and
for M < 50 due to the poor quality of the EIM approximation. Moreover, we can
naturally split the estimator into two parts: the reduced basis and the nonlinearity
approximation error estimation contributions

�RB
N ,M(p) := ‖rM(·; p)‖X̂ ′

νLB C1(p)
, �E I

N ,M(p) := C2(p)δM(p)

νLB C1(p)
‖ûN ,M(p)‖X̂ . (43)

We then set

�RB
N ,M := max

p∈Dtest

�RB
N ,M (p), �E I

N ,M := max
p∈Dtest

�E I
N ,M (p). (44)

The strategy is to balance two contributions in (44) for the specified tolerance level
εRB , e.g., by choosing N = 8 and M = 50, see Fig. 2b. In Fig. 2b we can also see
the improvement from the described above additional EIM step.

In Table1 we present, as a function of N and M, the maximum error bound
max
p∈Dtest

�N ,M (p) aswell as themean η̄N ,M andmax ηN ,M of the effectivityηN ,M (p) :=
�N ,M (p)
‖êN ,M‖X̂

. The effectivities require the knowledgeof “truth” solution, thereforewe com-
pute the finite element solutions for all the parameters in the test set. We observe that
the values of η̄N ,M and max ηN ,M are quite large, which partially can be explained
by the estimate (32) for the effectivity ηN (p) of the reduced basis approximation. In
our example, we have
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Fig. 2 Convergence with N of max�N ,M for different values of M on the test set (a). Convergence
with N of�RB

N ,M and�E I
N ,M contributions forM = 50 on the test set. The number in the label bracket

indicates the EIM step (b)

Table 1 Performance of RB-EIM model on the test set

N M max�N ,M �̄N ,M (p) η̄N ,M max ηN ,M

4 30 1.24 E-01 4.74 E-02 7.41 E02 1.46 E03

6 40 4.59 E-02 2.37 E-02 3.98 E02 7.18 E02

8 45 9.30 E-03 5.10 E-03 2.46 E02 6.24 E02

8 50 8.90 E-03 5.51 E-03 2.49 E02 6.32 E02

10 50 8.90 E-03 5.30 E-03 8.48 E02 4.65 E03

max
x̂∈�̂

ν1(|J−T
T (x̂, p)∇ûN ,M (x̂; p)|) ≤ ν0

onDtest , where ν0 ≈ 7.95 × 105 is the reluctivity of air. Therefore, the upper bound
constant for ηN (p) is of order 103 in practice.

In Fig. 3 we plot the reduced basis solutions, i.e., the magnetic equipotential lines
for several parameters and the corresponding reluctivity functions, evaluated fully
with splines and with EIM. Next, we compare the average CPU time required for
both the finite element method, which takes≈150s to obtain the solution, and the RB
method (Nmax = 10, Mmax = 50), which takes ≈0.27/0.95 s without/with the error
bound evaluation and results in the speedup factors of 555 and 158, respectively.1

The computation of the error bound significantly increases the total CPU time since
the complexity of the error bound evaluation scales quadratically with Qr , where Qr

is large and requires one full evaluation of the nonlinearity. The offline phase requires
the knowledge of the “truth” finite-element solutions for the first EIM approximation

1 All the computations are performed in MATLAB on Intel Xeon(R) CPU E5-1650 v3, 3.5GHz x
12 cores, 64GB RAM.
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Fig. 3 Magnetic equipotential lines, computed with reduced basis method (10 RB functions, 50
EIM basis functions) for parameter value a p = (18, 4, 7), b p = (19, 5, 8). Reluctivity function
ν1(p), computed with full spline approximation and its EIM counterpart νM

1 (p) for parameter value
c p = (18, 4, 7), d p = (19, 5, 8)

step. Since 216 finite element solutions were generated in the consecutive order, it
takes ≈9h, but it can be done in parallel to reduce the computational time. The
Greedy algorithm execution takes ≈4h, and since we run it twice, it takes ≈8h for
our implementation. We note that our implementation may not be optimal, therefore
the offline time is only a rough estimate.

We also note that in the presented numerical example the relatively small param-
eter domain D was chosen. In the author’s opinion, it is possible to enlarge the
parameter domain with the increasing cost of the nonlinearity approximation by
combining few additional EIM steps as described above and exploiting divide-and-
conquer principles and hp-adaptivity in the Greedy procedure (see, e.g., [5, 13]).
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4 Conclusion

In this paper, we propose the reduced basis method for quasilinear elliptic PDEs with
application to the nonlinear magnetostatic problem. The geometric parametrization
for the PDE is introduced in the setting of magnet design for the permanent magnet
electric motor. We present a new a -posteriori error bound for the class of problems
we consider and use it for the weak Greedy algorithm and corresponding reduced
basis construction. The affine decomposition of the quasilinear form was achieved
with the help of EIM. Numerical results confirm a significant speed-up factor which
supports the validity of the proposed approach.
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Structure-Preserving Reduced- Order
Modeling of Non-Traditional Shallow
Water Equation

Süleyman Yildiz, Murat Uzunca, and Bülent Karasözen

Abstract An energy- preserving reduced -order model (ROM) is developed for
the non-traditional shallow water equation (NTSWE) with full Coriolis force. The
NTSWE in the noncanonical Hamiltonian/Poisson form is discretized in space by
finite differences. The resulting systemof ordinary differential equations is integrated
in time by the energy preserving average vector field (AVF) method. The Poisson
structure of the discretized NTSWE exhibits a skew-symmetric matrix depending on
the state variables. An energy- preserving, computationally efficient reduced order
model (ROM) is constructed by proper orthogonal decomposition with Galerkin
projection. The nonlinearities are computed for the ROM efficiently by discrete
empirical interpolation method. Preservation of the discrete energy and the discrete
enstrophy are shown for the full- order model, and for the ROM which ensures the
long- term stability of the solutions. The accuracy and computational efficiency of
the ROMs are shown by two numerical test problems.

Keywords Shallow water equation · Model order reduction · Hamiltonian
mechanics · Finite difference methods · Implicit time integrator

1 Introduction

The shallow water equation (SWE) consists of a set of two-dimensional partial dif-
ferential equations (PDEs) describing a thin inviscid fluid layer flowing over the
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topography in a rotating frame. SWE is a hyperbolic PDEs describing geophysi-
cal wave phenomena, e.g., the Kelvin and Rossby waves in the atmosphere and the
oceans. SWEs are frequently used in large-scale geophysical flow prediction [5, 16],
investigation of baroclinic instability [8, 43], and planetary flows [44]. Energy and
enstrophy are the most important conserved quantities of the SWEs, whereas the
energy cascades to large scales, whilst while enstrophy cascades to small scales [4,
42].

Real-time simulation of SWEs requires a large amount of computer memory and
computing time. The reduced- order models (ROMs) have emerged as a powerful
approach to reduce the computational cost of evaluating large systems of PDEs like
the SWE by constructing a low-dimensional linear reduced subspace, that approx-
imately represents the solution to the system of PDEs with a significantly reduced
computational cost. The solutions of the high fidelity full- order model (FOM), gen-
erated by space-time discretization of PDEs are projected usually on low- dimen-
sional reduced spaces using the proper orthogonal decomposition (POD), which is
the widely used reduced order modeling technique. Applying POD Galerkin projec-
tion, the dominant POD modes of the PDEs are extracted from the snapshots of the
FOM solutions. The computation of the FOM solutions is performed in the offline
stage, whereas the reduced system from the low-dimensional subspace is solved in
the online stage. The primary challenge in producing the low- dimensional models
of the high dimensional discretized PDEs is the efficient evaluation of the nonlin-
earities. The computational cost is reduced by sampling the nonlinear terms and
interpolating, known as hyper-reduction techniques [2, 3, 9, 11, 32, 47].

The naive application of POD or DEIM may not preserve the geometric struc-
tures, like the symplecticness, energy preservation, and passivity of Hamiltonian,
Lagrangian, and port- Hamiltonian PDEs. The stability of reduced models over long-
time integration and the structure-preservingproperties has been recently investigated
in the context of Lagrangian systems [10, 25], and for port-Hamiltonian systems
[13]. For linear and nonlinear Hamiltonian systems, the symplectic model reduction
technique, proper symplectic decomposition (PSD) is constructed for Hamiltonian
systems like linear wave equation, sine-Gordon equation, nonlinear Schrödinger
equation to ensure long- term stability of the reduced model [1, 34]. Recently, the
average vector field (AVF) method is used as a time integrator to construct ROMsre-
duced order models for Hamiltonian systems like Korteweg-de Vries equation [23,
31] and nonlinear Schrödinger equation [24]. ROMsReduced order models for the
SWEs are constructed in conservative form using POD-DEIM [27, 28], in the β-
plane by POD-DEIM and tensorial POD [38, 39], by dynamic mode decomposition
[6, 7], the f -plane using POD [19]. In these articles, the preservation of the energy
and other conservative quantities in the reduced space isare not discussed.

In this paper, we have constructed structure-preserving ROMs for the non-
traditional shallow water equation (NTSWE) [17, 40, 42] with the full Coriolis
force. Replacing the first- order derivatives that appear in the NSTWE, a skew-
gradient system, i.e., a non-canonical Hamiltonian system of ordinary differential
equations (ODEs) is obtained. Time discretization of this system of non-canonical
Hamiltonian system of ODEs by the AVF [15] leads to FOM, which preserves the
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discrete Hamiltonian and Casimirs. The skew-symmetric structure of the full- order
skew-gradient system is preserved using the reduced- order technique in [23, 24, 31].
The full- order and reduced- order NTSWE have state- dependent skew-symmetric
matrices, which does not allow separation of online and offline computations of the
nonlinear terms. Following [31], we have shown that the complexity of the ROM can
be reduced for the POD and for the discrete empirical interpolation method (DEIM)
[11]. The numerical results for two different representative examples of the NTSWE
confirm the structure- preserving features like preserving the Hamiltonian (energy)
and enstropy. The efficiency of the ROMs are is demonstrated by achieved speed-ups
with the POD and DEIM over the FOM solutions.

The paper is organized as follows. In Sect. 2, the NTSWE is described in the
Hamiltonian form. The structure- preserving FOM in space and time is developed
in Sect. 3. The ROM with POD and DEIM are constructed in Sect. 4. In Sect. 5,
numerical results for two NTSWE examples are presented. The paper ends with
some conclusions.

2 Shallow Water Equation

Most of the models of the ocean and atmosphere include only the contribution to
the Coriolis force from the component of the planetary rotation vector that is locally
normal to geopotential surfaces when the vertical length scales are much smaller
than the horizontal length scales. This approach is known as traditional approxima-
tion. However, many atmospheric and oceanographic phenomena are substantially
influenced by the non-traditional component of the Coriolis force [41], such as deep
convection [30], Ekman spirals [26], and internal waves [22]. The nondimensional
NTSWE [17, 40, 42] has the same structural form as the traditional SWE [37] by
distinguishing between the canonical velocities ũ(x, y, t) and ṽ(x, y, t), and particle
velocities u(x, y, t) and v(x, y, t)

∂ ũ

∂t
= hqv − ∂�

∂x
,

∂ṽ

∂t
= −hqu + ∂�

∂y
,

∂h

∂t
= − ∂

∂x
(hu) − ∂

∂y
(hv),

(1)

where x and y denote horizontal distances within a constant geopotential surface,
and h(x, y, t) is the height field. The one-layer NTSWE (1) describes an inviscid
fluid flowing over bottom topography at z = hb(x, y) in a frame rotating with angu-
lar velocity vector � = (�(x), �(y), �(z)). The orientation of the x and y axes are
considered arbitrary with respect to North. In traditional rotating and non-rotating
SWEs, only the particle velocity components appear. The canonical velocity com-
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ponents are related to the canonical momentum per mass or to the depth average of
particle velocities as

ũ = u + 2�(y)

(
hb + 1

2
h

)
, ṽ = v − 2�(x)

(
hb + 1

2
h

)
. (2)

The Bernoulli potential � and potential vorticity q are given by

� = 1

2
(u2 + v2) + g(hb + h) + h(�(x)v − �(y)u),

q = 1

h
(2�(z) + ṽx − ũ y).

The traditional SWE and NTSWE differ only by a function of the space alone,
so their time derivatives are identical. The non-rotating, traditional SWE [36] and
NTSWE (1) have the same Hamiltonian structure and Poisson bracket [17, 40, 42]

∂ z̃

∂t
= J (z̃)

δH

δz̃
=

⎛
⎝ 0 q −∂x

−q 0 −∂y
−∂x −∂y 0

⎞
⎠

⎛
⎝hu
hv

�

⎞
⎠ , (3)

where z = (u, v, h) and z̃ = (ũ, ṽ, h), J is the symplectic (Poisson) matrix, and
δH denotes the variational derivative of the Hamiltonian. The Hamiltonian or the
energy of (1) is given in terms of particle velocity components by

H (z) =
∫∫ {

1

2
h(u2 + v2) + gh

(
hb + 1

2
h

)}
dx, (4)

over a periodic domain.We remark that the Hamiltonian (4) is treated as a function of
the canonical velocity components ũ and ṽ and the layer thickness using the relations
(2).

The non-canonical Hamiltonian form of NTSWE (3) is determined by the skew-
adjoint Poisson bracket of two functionals A and B [29, 37] as

{A ,B} =
∫∫ (

q
δ(A ,B)

δ(ũ, ṽ)
− δA

δυ̃
· ∇ δB

δh
+ δB

δυ̃
· ∇ δA

δh

)
dx, (5)

where υ̃ = (ũ, ṽ). The functional Jacobian is given by

δ(A ,B)

δ(ũ, ṽ)
= δA

δũ

δB

δṽ
− δB

δũ

δA

δṽ
.

The Poisson bracket (5) is related to the skew-symmetric symplectic matrix J as
{A ,B} = {A ,JB}. Although the matrix J in (3) is not skew-symmetric, the
skew-symmetry of the Poisson bracket appears after integrations by parts [29], and
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the Poisson bracket satisfies the Jacobi identity

{A , {B,D}} + {B, {D,A }} + {D, {A ,B}} = 0,

for any three functionalsA ,B, andD . The preservation of the Hamiltonian follows
from the antisymmetry of the Poisson bracket (5)

dH

dt
= {H ,H } = 0.

Besides the Hamiltonian, there are other conserved quantities in form of Casimirs

C =
∫∫

hG(q)dx,

where G is an arbitrary function of the potential vorticity q. The Casimirs are addi-
tional constants of motion which commute with any functional A , i.e., the Poisson
bracket vanishes. Important special cases are the potential enstrophy

Z = 1

2

∫ ∫
hq2dx = 1

2

∫ ∫
1

h

(
�(z) + ∂ṽ

∂x
− ∂ ũ

∂y

)2

dx,

the mass M = ∫∫
hdx, and the vorticity V = ∫∫

hqdx.

3 Full- Order Model

The skew-symmetry of the Poisson form is preserved for the thermal Shallow water
equation using finite elements [18], for the rotational SWE with discontinuous
Galerkin method [21] and finite volume method [35].

The NTSWE (1) is discretized by finite differences on a uniform grid in the
spatial domain (a, b) × (c, d) with the nodes xi j = (xi , y j )T , where xi = a + (i −
1)�x and y j = c + ( j − 1)�y, i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1, and then
discretized in space canonical and particle velocity components and height are given
by

u(t) = (u11(t), . . . , u1Ny (t), u21(t), . . . , u2Ny (t), . . . , uNx Ny (t))
T ,

v(t) = (v11(t), . . . , v1Ny (t), v21(t), . . . , v2Ny (t), . . . , vNx Ny (t))
T ,

ũ(t) = (ũ11(t), . . . , ũ1Ny (t), ũ21(t), . . . , ũ2Ny (t), . . . , ũNx Ny (t))
T ,

ṽ(t) = (ṽ11(t), . . . , ṽ1Ny (t), ṽ21(t), . . . , ṽ2Ny (t), . . . , ṽNx Ny (t))
T ,

h(t) = (h11(t), . . . , h1Ny (t), h21(t), . . . , h2Ny (t), . . . , hNx Ny (t))
T .
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where for w = u, v, ũ, ṽ, h, wi j (t) denotes the approximation of w(x, t) at the grid
nodes xi j at time t , i = 1, . . . , Nx , j = 1, . . . , Ny .We note that the degree of freedom
is given by N = Nx Ny because of the periodic boundary conditions, i.e., the most
right and the most top grid nodes are not included. Throughout the paper, we do not
explicitly represent the time dependency of the semi-discrete solutions for simplicity,
and we write u, v, ũ, ṽ and h. The semi-discrete vector for the solution vectors are
defined by z = (u, v,h) ∈ R

3N and z̃ = (ũ, ṽ,h) ∈ R
3N .

For the approximation of the first- order partial derivative terms, we use one-
dimensional central finite differences to the first- order derivative terms in either x-
and or y- direction, and we extend them to two dimensions utilizing the Kronecker
product. For a positive integer s, let D̃s denotes the matrix related to the central finite
differences to the first- order ordinary differential operator under periodic boundary
conditions

D̃s =

⎛
⎜⎜⎜⎜⎜⎝

0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 1 0

⎞
⎟⎟⎟⎟⎟⎠

∈ R
s×s .

Then, on the two- dimensional mesh, the central finite difference matrices corre-
sponding to the first- order partial derivative operators ∂x and ∂y are given, respec-
tively, by

Dx = 1

2�x
D̃Nx ⊗ INy ∈ R

N×N , Dy = 1

2�y
INx ⊗ D̃Ny ∈ R

N×N ,

where ⊗ denotes the Kronecker product, and INx and INy are the identity matrices
of size Nx and Ny , respectively.

Central difference approximation of the first- order differential operators ensures
that the discretized ODE is in skew-symmetric form, which is necessary for the
preservation of the Hamiltonian and other conserved quantities. The skew-symmetry
is also preserved using finite elements for the thermal shallow water equation [18],
the rotational and linear SWEs with discontinuous Galerkin method [21, 46] and
finite volume method [35]. Discretization of SWE as a hyperbolic system with non-
linear conservation laws using cell-centered finite volumemethods [20] and the well-
balanced schemes central upwind and finite volume Galerkin method [14] leads to
stable and accurate solutions of the rotational SWE with waves and geostrophic jets.

We further partition the time interval [0, T ] into Nt uniform intervals with the step
size �t = T/Nt as 0 = t0 < t1 < · · · < tNt = T , and tk = k�t , k = 0, 1, . . . , Nt .
Then, we denote by ũk = ũ(tk), ṽk = ṽ(tk) and hk = h(tk) the full discrete solution
vectors at time tk . Similar setting is used for the other components, as well.

The full discrete form of the energy and the enstrophy at a time instance tk are
given as
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Hk =
N∑
i=1

{
1

2
hk
i

(
(uk

i )
2 + (vki )

2
) + ghk

i

(
(hb)i + 1

2
hk
i

) }
�x�y, (6)

Zk = 1

2

N∑
i=1

(
(Dx ṽk)i − (Dy ũk)i + �(z)

)2
hk
i

�x�y.

The semi-discrete formulation of the NTSWE (1) leads to a 3N - dimensional
system of Hamiltonian ODEs in skew-gradient form

d z̃
dt

= J (z̃)∇zH(z) =
⎛
⎝ 0 qd −Dx

−qd 0 −Dy

−Dx −Dy 0

⎞
⎠

⎛
⎝u ◦ h
v ◦ h
�

⎞
⎠ , (7)

with the discrete Bernoulli potential

� = 1

2
(u ◦ u + v ◦ v) + g(h + hb) + h

(
�(x)v − �(y)u

)
,

where ◦ denotes element-wise or Hadamard product. The matrix qd ∈ R
N×N is the

diagonal matrix with the diagonal elements qd
ii = qi where q is the semi-discrete

vector of the potential vorticity q, i = 1, . . . , N .
To confirm the energy- conserving property of the space discretised discretized

equations, we apply the energy- conserving time integrator, the average vector field
method (AVF). The AVF method preserves higher order polynomial Hamiltonians
[15], including the cubic Hamiltonian H of the NTSWE (1). Quadratic Casimir’s
functions like mass and circulation are preserved exactly by AVFmethod. But higher
-order polynomial Casimirs like the enstrophy (cubic) can not be preserved. Practical
implementation of theAVFmethod requires the evaluation of the integral on the right-
hand side of (8). Since the Hamiltonian H and the discrete form of the Casimirs,
potential enstrophy, mass, and circulation are polynomial, they can be exactly inte-
grated with a Gaussian quadrature rule of the appropriate degree. The AVF method
is a fully implicit, second- order accurate Poisson integrator. The AVF method is
used with finite element discretization of the rotational SWE [4, 45] and for thermal
SWE [18] in Poisson form. After time integration of the semi-discrete NTSWE (7)
by the AVF integrator, the full discrete problem reads as: for k = 0, 1, . . . , Nt − 1,
given z̃k find z̃k+1 satisfying

z̃k+1 = z̃k + �t J

(
z̃k+1 + z̃k

2

) ∫ 1

0
∇zH(ξ(zk+1 − zk) + zk)dξ. (8)
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4 Reduced- Order Model

In this section, we construct ROMs that preserve the skew-gradient structure of the
NTSWE (7) and, consequently, the discrete Hamiltonian (6). Because the NTSWE
is a non-canonical Hamiltonian PDE with a state- dependent Poisson structure, a
straightforward application of the POD will not preserve the skew-gradient structure
of the NTSWE (7) in reduced form. Energy preserving POD reduced systems are
constructed for Hamiltonian systemswith constant skew-symmetricmatrices like the
Korteweg- de Vries equation [23, 31] and nonlinear Schrödinger equation (NLSE)
[24]. The approach in [23] can be applied to skew-gradient systems with state-
dependent skew-symmetric structure as the NTSWE (7). We show that the state-
dependent skew-symmetric matrix in (7) can be evaluated efficiently in the online
stage independent of the full dimension N . The full and reducedmodels are computed
separately approximating the nonlinear terms by DEIM. The DEIM also preserves
the skew-symmetric form as shown for the (NLSE) [24].

The POD basis are computed through the mean subtracted snapshot matrices Sũ ,
Sṽ and Sh , constructed by the solutions of the full discrete high- fidelity model (8)

Sũ =
(
ũ1 − ũ, . . . , ũNt − ũ

)
∈ R

N×Nt ,

Sṽ =
(
ṽ1 − ṽ, . . . , ṽNt − ṽ

)
∈ R

N×Nt ,

Sh = (
h1 − h, . . . ,hNt − h

) ∈ R
N×Nt ,

where ũ, ṽ, h ∈ R
N denote the time averaged mean of the solutions

ũ = 1

Nt

Nt∑
k=0

ũk , ṽ = 1

Nt

Nt∑
k=0

ṽk , h = 1

Nt

Nt∑
k=0

hk .

The mean-subtracted ROMs is used frequently in fluid dynamics to stabilize the
reduced system, and it guarantees that ROM solutions would satisfy the same bound-
ary conditions for the FOM [6].

The POD modes are computed by applying singular value decomposition (SVD)
to the snapshot matrices

Sũ = Wũ	ũU
T
ũ , Sṽ = Wṽ	ṽU

T
ṽ , Sh = Wh	hU

T
h ,

where for i = ũ, ṽ, h, Wi ∈ R
N×Nt and Ui ∈ R

Nt×Nt are orthonormal matrices, and
	i ∈ R

Nt×Nt is the diagonal matrix with its diagonal entries are the singular values
σi,1 ≥ σi,2 ≥ · · · ≥ σi,Nt ≥ 0. Then, the matrix Vi,n ∈ R

N×n of rank n POD modes
consists of the first n left singular vectors from Wi corresponding to the n largest
singular values, which satisfies the following least- squares error
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min
Vi,n∈RN×n

||Si − Vi,nV
T
i,n Si ||2F =

Nt∑
j=n+1

σ 2
i, j , i = ũ, ṽ, h,

where ‖ · ‖F is the Frobenius norm. Moreover, we have the reduced approximations

ũ ≈ ũ + Vũ,nũr , ṽ ≈ ṽ + Vṽ,nũr , h ≈ h + Vh,nhr , (9)

where the reduced (coefficient) vectors ũr , ũr andhr are the solutions of the following
ROM of (7):

d

dt
z̃r = V T

z,n J (z̃)∇zH(z), (10)

where z̃r = (ũr , ṽr ,hr ), and the components of the vector z̃ = (ũ, ṽ,h) are given as
in (9). The block diagonal matrix Vz,n contains the matrix of POD modes for each
solution component given by

Vz,n =
⎛
⎝Vũ,n

Vṽ,n

Vh,n

⎞
⎠ ∈ R

3N×3n .

The ROM (10) is not a skew-gradient system. A reduced skew-gradient system is
obtained formally by inserting Vz,nV T

z,n between J (z̃) and ∇zH(z) [23], leading to
the ROM

d

dt
z̃r = Jr (z̃)∇zr H(z), (11)

where Jr (z̃) = V T
z,n J (z̃)Vz,n and ∇zr H(z) = V T

z,n∇zH(z). The reduced- order
NTSWE (11) is also solved by the AVF.

The reduced NTSWE (11) can be written explicitly as

d

dt
z̃r =

⎛
⎝ 0 V T

u,nq
dVv,n −V T

u,nDxVh,n

−V T
v,nq

dVu,n 0 −V T
v,nDyVh,n

−V T
h,nDxVu,n −V T

h,nDyVv,n 0

⎞
⎠ V T

z,n∇zH(z). (12)

The reduced system (12) has constant matrices which can be precomputed in offline
stage, whereas the matrices V T

u,nq
dVv,n and V T

v,nq
dVu,n should be computed in online

stage depending on the full- order system. Exploiting the diagonal structure of qd ,
the computational complexity of evaluating the state- dependent skew-symmetric
matrix in (12) can be reduced similar to the skew-gradient systems with constant
skew-symmetric matrices as in [31]. Let vec(·) denotes vectorization of a matrix.
For any A ∈ R

m×n and B ∈ R
n×p
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vec(AB) = (Ip ⊗ A)vec(B) = (B	 ⊗ Im)vec(A).

Thus, for a diagonal matrix D ∈ R
n×n and V ∈ R

n×r ,

vec(V	DV ) = (Ir ⊗ V	)vec(DV )

= (Ir ⊗ V	)(V	 ⊗ In)vec(D)

= (V ⊗ V )	vec(D)

= (V ⊗ V )	M	 D̃

=
⎛
⎜⎝
V (1, :) ⊗ V (1, :)

...

V (n, :) ⊗ V (n, :)

⎞
⎟⎠

	

D̃,

where M ∈ R
n×n2 is a matrix satisfying M(a ⊗ b) = a ◦ b for any vector a, b ∈

R
n , and D̃ = [D11, D22, . . . , Dnn]T ∈ R

n . Using the above result, the computational
complexity of the matrix products V T

u,nq
dVv,n and V T

v,nq
dVu,n is reduced from O(n ·

N (n + N )) to O(n2 · N ).
Due to nonlinear terms, the computation of the reduced system still scales with

the dimension N of the FOM. This can be reduced by applying the hyper-reduction
technique such as DEIM [11]. The ROM (11) can be rewritten as a nonlinear ODE
system of the form:

d

dt
z̃r = V T

z,n F(z̃) =
⎛
⎝V T

u,n F1(z̃)
V T

v,n F2(z̃)
V T
h,n F3(z̃)

⎞
⎠ . (13)

The DEIM is applied by sampling the nonlinearity F(·) and then interpolating with
hyper-reduction. To obtain the DEIM basis, we form the snapshot matrices defined
by

Gi = (F1
i , F2

i , . . . , FNt
i ) ∈ R

N×Nt , i = 1, 2, 3,

where Fk
i = Fi (z̃k) denotes the i th component of the nonlinearity F(z̃) in (13) at

time tk computed by using the FOM solution vector z̃, k = 1, . . . , Nt . Then, we can
approximate each Fi (z̃) in the column space of the snapshot matrices Gi . We first
apply POD to the snapshot matrices Gi and find the basis matrices VFi ,m ∈ R

N×m

whose columns are the basis vectors spanning the column space of the snapshot
matrices Gi . We apply the DEIM algorithm [11] to find a projection matrix Pi ∈
R

N×m

Fi (z̃) ≈ VFi ,m(PT
i VFi ,m)−1PT

i Fi (z̃),

and then we get the DEIM approximation to the reduced nonlinearities in (13) as

V T
u,n F1(z̃) ≈ Vu,1(P

T
1 F1(z̃)), V T

v,n F2(z̃) ≈ Vv,2(P
T
2 F2(z̃)), V T

h,n F3(z̃) ≈ Vh,3(P
T
3 F3(z̃)),
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where

Vu,1 = V T
u,nVF1,m (PT

1 VF1,m )−1, Vv,2 = V T
v,nVF2,m (PT

2 VF2,m )−1, Vh,3 = V T
h,nVF3,m (PT

3 VF3,m )−1

are all the matrices of size n × m, and they are precomputed in the offline stage.
Using the DEIM approximations, the ROM (13) becomes

d

dt
z̃r =

⎛
⎝Vu,1Fr,1(z̃)
Vv,2Fr,2(z̃)
Vh,3Fr,3(z̃)

⎞
⎠ , (14)

where the reducednonlinearities Fr,i (z̃) = PT
i Fi (z̃) are computed by considering just

m 
 N entries of the nonlinearities Fi (z̃) among N entries, i = 1, 2, 3. In addition,
being an approximation to the right- hand side of the ROM (13), the ROM (14)
with DEIM approximately preserves the skew-gradient structure, but exactly at the
interpolation points.

5 Numerical Results

In this section, we present two numerical examples to demonstrate the efficiency
of the ROMs. We consider the propagation of the inertia-gravity waves by Coriolis
force, known as geostrophic adjustment [42], and the shear instability in the form of
roll-up of an unstable shear layer, known as barotropic instability [42]. For numerical
simulations, we consider the nondimensional form of theNTSWE (1)with the setting

x = Rd x̂, y = Rd ŷ, u = cû, v = cv̂, h = Hĥ, hb = Hĥb,

(
�(x), �(y), �(z)

) = �
(
�̂(x), �̂(y), �̂(z)

)
,

where a component with a hat denotes a dimensionless variable, and � is planetary
rotation rate to construct the gravity wave speed c

c = √
gH , Rd = c

2�
, σ = H

Rd
= 2�H

c
.

The non-traditional parameter is given as σ = H/Rd , where H represents the layer
thickness scale and Rd is Rossby deformation radius, and g denotes the gravitational
acceleration [17, 40]. The parameters are taken following [42] as H = 1000m, � ≈
7.3 × 10−5 rad s −1, g = 10−3 ms−2. The dimensionless components of the rotation
vector at latitude φ are taken as

�̂(x) = 0, �̂(y) = cos(φ), �̂(z) = sin(φ),



338 S. Yildiz et al.

where we set φ = π/4 in the numerical experiments. In all examples, the spatial and
temporal mesh sizes are taken as �x = 0.1 and �t = 0.1, respectively.

In order to determine the numbers n andm of the POD and DEIMmodes, respec-
tively, we use the so-called relative cumulative energy criteria for a desired number
p = m, n

min
p

∑p
j=1 σ 2

j∑Nt
j=1 σ 2

j

> 1 − κ, (15)

where κ is a user-specified tolerance. In our simulations, we set κ = 10−3 and κ =
10−5 to catch at least 99.9% and 99.999% of data information for POD and DEIM
modes, respectively. We take the same number of modes for each state variable.

The error between a discrete FOM solution and a discrete reduced approximation
(FOM-ROMerror) aremeasured for the componentsw = ũ, ṽ,h using the following
time averaged relative errors in L2-norm

‖w − ŵ‖rel = 1

Nt

Nt∑
k=1

‖wk − ŵk‖L2

‖wk‖L2
, ‖wk‖2L2 =

N∑
i=1

(wk
i )

2�x�y,

where ŵ = w + Vw,nwr denotes the reduced approximation to w. All simulations
are performed on a machine with Intel� CoreTM i7 2.5GHz 64 bit CPU, 8GB RAM,
Windows 10, using 64 bit MatLab R2014.

5.1 Single-Layer Geostrophic Adjustment

We consider the NTSWE on the periodic spatial domain [−5, 5]2 and on the time
interval [0, 150] [42]. The initial conditions are prescribed in form of a motionless
layer with an upward bulge of the height field

h(x, y, 0) = 1 + 1

2
exp

[
−

(
4x

5

)2

−
(
4y

5

)2
]

,

u(x, y, 0) = 0,

v(x, y, 0) = 0.

The inertia-gravity waves propagate after the collapse of the initial symmetric peak
with respect to axes. Nonlinear interactions create shorter waves propagating around
the domain and increasingly more complicated patterns are formed.

For this test problem, each snapshot matrix Sũ , Sṽ and Sh has size 10000 × 1500
(same for the nonlinearity snapshots). According to the energy criteria (15), we take
n = 40 POD modes and m = 240 DEIM modes. In Fig. 1, the singular values decay
slowly, which is the characteristic of the problems with wave phenomena in fluid
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Fig. 1 Normalized singular values for solution snapshots (left) and Relative FOM-ROM errors
(right)
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Fig. 2 Energy error |Hk − H0| (left) and enstrophy error |Zk − Z0| (right)

dynamics [33]. Due to the slow decay of the singular values, FOM-ROM errors for
all components with a varying number of POD modes in Fig. 1 decrease slowly with
small oscillations.

The energy and the enstrophy errors in Fig. 2 show small drifts with bounded
oscillations over the time, i.e., they are preserved approximately at the same level of
accuracy. In Figs. 3 and 4, the height h and the potential vorticity q are shown at the
final time. It was show in [12] that a priori error bounds are proportional to the sums
of the singular values corresponding to neglected POD basis vectors in the reduced
system and in the DEIM approximation of the nonlinear terms. Large number of
DEIMpoints are needed for convergence ofNewtonmethod for solving the nonlinear
fully discrete form of the reduced system (12). It can be seen from the Figs. 3 and 4
and Tables1 and 2 that POD, POD-DEIM reduced solutions, and conserved reduced
quantities have almost the same level accuracy. The speed-up factors in Table3 show
that the ROM with DEIM increases the computational efficiency further.
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Fig. 3 Full and reduced solutions for the height h at the final time

Fig. 4 Full and reduced solutions for the potential vorticity q at the final time

5.2 Single-Layer Shear Instability

We consider the NTSWE on the periodic spatial domain [0, 10]2 and on the time
interval [0, 150] [42]. The initial conditions are given as

h(x, y, 0) = 1 + �h sin

{
2π

L

[
y − �y sin

(
2πx

L

)] }
,

u(x, y, 0) = −2π�h

�z L
cos

{
2π

L

[
y − �y sin

(
2πx

L

)] }
,

v(x, y, 0) = −4π2�h�y

�z L2
cos

{
2π

L

[
y − �y sin

(
2πx

L

)]}
cos

(
2πx

L

)

where �h = 0.2, �y = 0.5 and the dimensionless spatial domain length L = 10, as
the case in the first test example. This problem illustrates the roll-up of an unstable
shear layer.

Decay of the singular values and FOM-ROM errors in Fig. 5 are similar to the
single-layer geostrophic adjustment case in Fig. 5.

Similar to the previous example, each snapshotmatrix has size 10000 × 1500, and
the number of POD and DEIM modes are set as n = 10 and m = 345, respectively,
according to the energy criteria (15).

The energy and enstropy errors in Fig. 6 are bounded over time with small oscilla-
tions as in the case of the first test example. Similarly, the height h and the potential
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Fig. 5 Normalized singular values for solution snapshots (left) and Relative FOM-ROM errors
(right)
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Fig. 6 Energy error |Hk − H0| (left) and enstrophy error |Zk − Z0| (right)

Fig. 7 Full and reduced solutions for the height h at the final time

vorticity q are well approximated by the ROMs at the final time in Figs. 7 and 8. In
Tables1, 2 and 3, the accuracy and computational efficiency of the reduced approx-
imations are demonstrated.
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Fig. 8 Full and reduced solutions for the potential vorticity q at the final time

Table 1 Time averaged relative L2-errors

‖ũ − ̂̃u‖Rel ‖ṽ −̂̃v‖Rel ‖h − ĥ‖Rel

Example5.1 40 POD modes 1.151e-01 1.151e-01 6.172e-03

240 DEIM modes 1.156e-01 1.156e-01 6.180e-03

Example5.2 10 POD modes 3.946e-02 9.088e-02 4.224e-03

345 DEIM modes 4.859e-02 1.011e-01 5.464e-03

Table 2 Mean absolute FOM-ROM errors of the conserved quantities

Energy Enstrophy

Example5.1 40 POD modes 7.094e-04 9.067e-04

240 DEIM modes 8.837e-04 1.370e-03

Example5.2 10 POD modes 4.450e-03 3.068e-02

345 DEIM modes 1.529e-02 3.589e-02

Table 3 CPU time (in seconds) and speed-up factors

Example5.1 Example5.2

CPU time Speed-up CPU time Speed-up

FOM 1051.0 1038.1

POD Basis
computation

61.6 23.2

Online
computation

412.7 2.55 167.4 6.2

DEIM Basis
computation
(POD &
DEIM)

129.2 54.3

Online
computation

87.1 12.1 47.3 22.0
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6 Conclusions

In contrast to the canonical Hamiltonian systems like the NLS and non-canonical
Hamiltonian systems with constant Poisson structure, NTSWE possesses state-
dependent Poisson structure. In this paper, the Hamiltonian/energy reduced- order
modeling approach in [23] is applied by reducing further the computational cost of
theROM in the online stage by exploiting the special structure of the skew-symmetric
matrix corresponding to the discretized Poisson structure. The accuracy and compu-
tational efficiency of the reduced solutions are demonstrated by numerical examples
for the POD and DEIM. Preservation of the energy and enstrophy shows further the
stability of the reduced solutions over time.
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A Non-stationary Thermal-Block
Benchmark Model for Parametric Model
Order Reduction

Stephan Rave and Jens Saak

Abstract In this contribution, we aim to satisfy the demand for a publicly available
benchmark for parametric model order reduction that is scalable both in degrees of
freedom as well as parameter dimension.

1 Introduction

Model order reduction (MOR) of parametric problems (PMOR) is accepted to be an
important field of research, in particular, due to its relevance for multi-query appli-
cations such as uncertainty quantification, inverse problems, or parameter studies
in the engineering sciences. Still, publicly available software is often either tailored
to a very specific problem or bound to a specific PDE discretization software. The
joint feature of the software packages, emgr [13], M-M.E.S.S. [23], MORLAB [7]
and pyMOR [18], reported in this volume is the attempt to make (P)MOR available
in a more general-purpose fashion. Further packages that fall into this category are
rbMIT [17], RBmatlab [11, 21], RBniCS [5, 12], redbKIT [16, 19], psssMOR [8].
So far, comparison of PMOR methods is a difficult task [6]. We think that one of the
difficulties is the lack of models that can be easily used and fairly compared in all
packages. It is the goal of this benchmark to overcome some of the shortcomings of
available benchmarks.

The MOR community Wiki [24] already provides a number of parametric bench-
mark models. However, most of them have not only large dimensions making them
difficult to access directly for dense matrix-based packages like [7], but also cumber-
some to use during development and testing of new sparse methods. Other bench-
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marks have rather limited parameter dimension, i.e., they feature only scalar or at
most two-dimensional parameters. A very common feature among the benchmarks
in the Wiki is that essentially all of them are matrix-based, giving easy access for
MATLAB®-based solvers, but at the same time making it difficult for packages like
pyMOR [3, 15, 18] to show their full flexibility.

Therefore, the new benchmark introduced in this chapter has a few features
addressing exactly these problems. The model is of limited dimension in the basic
version provided as matrices. On the other hand, it also provides the FEniCS [2,
14]-based procedural setup1 allowing for easy generation of larger versions or inte-
gration into FEniCS-based software packages. The current version features one to
four parameters, but the setup can be extended to higher parameter dimensions by
tweaking the basic domain description given as plain text input for gmsh [10]. Thus,
we provide maximal flexibility with a small, but scalable, benchmark with up to four
independent parameters, given in a description that can easily be adapted for many
PDE discretization tools. The benchmark we introduce here is a specific version
of the so-called thermal-block benchmark. This type of model has been a standard
test case in the reduced basis community for many years, e.g., [22]. This specific
model setup is also known as the “cookie baking problem” [4] in the numerical
linear algebra community. It further presents a flattened 2D version of what is some-
times referred to as the “skyscraper model” in high-performance computing, e.g., [9,
p. 216].We choose the common name used for this type ofmodel in the reduced-basis
community.

The remainder of this chapter is organized as follows. The next section provides
a basic, abstract description of the model problem. After that, in Sect. 3, we present
three variants of our model that will be used in the numerical experiments of the
following chapters.

2 Problem Description

Weconsider a basic parabolic “thermal-block”-type benchmark problem. To this end,
consider the computational domain� := (0, 1)2 whichwe partition into subdomains

�1 := {ξ ∈ � | |ξ − (0.3, 0.3)| < 0.1}, �2 := {ξ ∈ � | |ξ − (0.7, 0.3)| < 0.1},
�3 := {ξ ∈ � | |ξ − (0.7, 0.7)| < 0.1}, �4 := {ξ ∈ � | |ξ − (0.3, 0.7)| < 0.1},
�0 := � \ (�1 ∪ �2 ∪ �3 ∪ �4),

with its boundary partitioned into

�in := {0} × (0, 1), �D := {1} × (0, 1), �N := (0, 1) × {0, 1},

cf. Fig. 1. Given a parameter μ ∈ R
4≥0, let the heat conductivity σ(ξ ;μ) given by

1 Actually, the core feature is the unified form language (UFL) [1] that also other packages, e.g.,
firedrake [20] use.
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Fig. 1 Computational
domain and boundaries

σ(ξ ;μ) :=
{
1 ξ ∈ �0

μi ξ ∈ �i , 1 ≤ i ≤ 4,
(1)

and let the temperature θ(t, ξ ;μ) in the time interval [0, T ] for thermal input u(t) at
�in be given by

∂tθ(t, ξ ;μ) + ∇ · (−σ(ξ ;μ)∇θ(t, ξ ;μ)) = 0 t ∈ (0, T ), ξ ∈ �,

σ(ξ ;μ)∇θ(t, ξ ;μ) · n(ξ) = u(t) t ∈ (0, T ), ξ ∈ �in,

σ (ξ ;μ)∇θ(t, ξ ;μ) · n(ξ) = 0 t ∈ (0, T ), ξ ∈ �N ,

θ(t, ξ ;μ) = 0 t ∈ (0, T ), ξ ∈ �D,

θ(0, ξ ;μ) = 0 ξ ∈ �.

More precisely, we let θ ∈ L2(0, T ; V ) with ∂tθ(μ) ∈ L2(0, T ; V ′) be given as the
solution of the weak parabolic problem

〈∂tθ(t, ·;μ), v〉 +
∫

�

σ(μ)∇θ(t, ξ ;μ) · ∇vdξ =
∫

�in

u(t)vds t ∈ (0, T ), v ∈ V,

(2)

θ(0, ξ ;μ) = 0, (3)

where V := {v ∈ H 1
0 (�) | v�D = 0} denotes the space of Sobolev functions with

vanishing trace on �D and V ′ is its continuous dual.
As outputs y(t;μ) ∈ R

4 we consider the average temperatures in the subdomains
�i , i.e.
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yi (t;μ) := 1

|�i |
∫

�i

θ(t, ξ ;μ)dξ, 1 ≤ i ≤ 4. (4)

To ease the notation, we drop the explicit dependence on ξ in the following.
In viewof the definition (1) ofσ as a linear combination of characteristic functions,

we can write (2)–(4) as

∂tm(θ(t;μ), v) + a0(θ(t;μ), v) +
4∑

i=1

μi · ai (θ(t;μ), v) = ϕ(v) · u(t) ∈ V

θ(0;μ) = 0

yi (t;μ) = ψi (θ(t;μ)),

(5)

for t ∈ (0, T ), v ∈ V , 1 ≤ i ≤ 4, with bilinear forms m, ai ∈ Bil(V, V ) given by

m(w, v) :=
∫

�

wvdξ and ai (w, v) :=
∫

�i

∇w · ∇vdξ

and linear forms ϕ,ψi ∈ V ′ given by

ϕ(v) :=
∫

�in

vds, and ψi (v) := 1

|�i |
∫

�i

vdξ.

To arrive at a discrete approximation of (5), we perform a Galerkin projection
onto a space S1(T ) ∩ V of linear finite elements w.r.t. a simplicial triangulation of
� approximating the decomposition into the subdomains �0, . . . , �4. Assembling
matrices E ∈ R

n×n for m, Ai ∈ R
n×n for ai , B ∈ R

n×1 for ϕ, and C ∈ R
4×n for ψi ,

all w.r.t. the finite element basis, we arrive at the linear time-invariant system

E · ∂t x(t;μ) = A0 · x(t;μ) +
4∑

i=1

μi Ai · x(t;μ) + B · u(t)

y(t;μ) = C · x(t;μ).

(6)

Here, n denotes the dimension of the finite element space and x is the coefficient
vector of the discrete solution state θ w.r.t. the finite element basis.

For the numerical experiments in the following chapters, the mesh T was gener-
ated with gmsh version 3.0.6 with “clscale” set to 0.1, for which the system matrices
were assembled using FEniCS 2019.1.

The source code of the model implementation as well as the resulting system
matrices are available at

https://doi.org/10.5281/zenodo.3691894

https://doi.org/10.5281/zenodo.3691894
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Note that due to the handling of Dirichlet constraints in FEniCS, all matrices were
assembled over the full unconstrained space S1(T ). Rows of E, Ai corresponding to
degrees of freedom located on �D have zero off-diagonal entries. The corresponding
diagnal entries are 1 for E , −1 for A0, and 0 for A1, . . . , A4. Rows of B correspond-
ing to Dirichlet degrees of freedom are set to 0. Consequently, all system matri-
ces A(μ) := A0 + ∑4

i=1 μi Ai have a k-dimensional eigenspace with eigenvalue −1
spanned by the k finite element basis functions associated with �D .

3 Problem Variants

The following chapters test the model introduced in the previous section in three dif-
ferent variants. The simplest case is a basic non-parametric version with all param-
eters fixed. For the parametric versions, either all four parameters are considered
independent or they are all scaled versions of a single scalar parameter. This section
introduces all of them with the specific parameter selections and allowed parameter
domains.

3.1 Four-Parameter LTI System

This represents exactly the model in (5), or (6), with its full flexibility with respect
to the parameters. Note that by construction the model becomes singular in case any
of the μi becomes zero. Thus, we limit the μi from below by 10−6. This will also
limit the condition numbers of the linear systems involving the matrices E and Ai

(i = 0, . . . , 4) in the PDE solvers as well as MOR routines. At the same time, we
do not allow for the subdomain heat conductivities to be drastically larger than the
conductivity for�0. So, we limit also from the above, resulting in parameter domains
μi ∈ [10−6, 102], (i = 1, . . . , 4).

Figure2 shows the final heat distribution, at t = 1 after 100 steps of implicit Euler
with μ = [102, 10−2, 10−3, 10−4], in pyMOR 2019.2.

3.2 Single-Parameter LTI System

In this variation of the model, the parameters are limited in flexibility. Wemake them
all use the same order of magnitude by defining

μ = μ̃ ·

⎡
⎢⎢⎣
0.2
0.4
0.6
0.8

⎤
⎥⎥⎦ ,
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Fig. 2 A sample final heat distribution
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10−2
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Fig. 3 Sigma magnitude plot for the single-parameter LTI system

for a single scalar parameter μ̃ ∈ [10−6, 102]. The transfer function, arising after
Laplace transformation of (6) is a rational matrix-valued function of the frequency
and the parameters. Its Sigma-magnitude plot, i.e., the maximum singular value of
the transfer function matrix, with this restriction on μ, is shown in Fig. 3.
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3.3 Non-parametric LTI System

This is the simplest version of the benchmark.We use the setup described in Sect. 3.2
with μ̃ = √

10. Note that this value of μ̃ is rather arbitrary. Depending on the desired
application, different values may be insightful. For both time-domain and frequency-
domain investigations, variation is strongest in the parameter range [10−5, 10−1].
On the other hand, values between 1.25 and 5.0 essentially turn the model into a
simple heat equation on the unit square with almost homogeneous heat conductivity
σ(t, ξ, μ̃) ≈ 1. Hence, μ̃ = √

10 ≈ 3.1623 appears to be a proper choice to get
reasonably close to an easy to solve textbook problem, here. Smaller values of μ,
especially when approaching μ = 0, can be used to make the problem arbitrarily
ill-conditioned.

4 Conclusion

We have specified a flexible, scalable benchmark that can be used both based on pre-
generated matrices or based on a procedural inclusion into an existing finite element
setting. The new model has been added to the benchmark collection hosted at the
MOR Wiki [24, Thermal Block].
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Parametric Model Order Reduction
Using pyMOR

Petar Mlinarić, Stephan Rave, and Jens Saak

Abstract pyMOR is a free software library for model order reduction that includes
both reduced basis and system-theoretic methods. All methods are implemented in
terms of abstract vector and operator interfaces, which allows a direct integration of
pyMOR’s algorithms with a wide array of external PDE solvers. In this contribution,
we give a brief overview of the available methods and experimentally compare them
for the parametric instationary thermal-block benchmark defined in [12].

1 Introduction

pyMOR is a free software library for buildingmodel order reduction applicationswith
the Python programming language [9, 11]. Originally only implementing reduced
basismethods, since version 0.5, released in January 2019, it additionally implements
system-theoretic methods such as balanced truncation [10] and IRKA [2]. Here,
we focus on version 2019.2, released in December 2019, which added support for
parametric system-theoretic methods.

We consider model reduction of the thermal-block model defined in [12], which
takes the form

Eẋ(t;μ) = A(μ)x(t;μ) + Bu(t), x(0;μ) = 0,

y(t;μ) = Cx(t;μ),
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with system matrices E, A(μ) ∈ R
n×n , input matrix B ∈ R

n×1, output matrix C ∈
R

p×n , state x(t) ∈ R
n , input u(t) ∈ R, and output y(t) ∈ R

p, where μ ∈ P ⊂ R
d

is the parameter. The matrix-valued function A additionally has parameter affine
form A(μ) = A0 + ∑d

i=1 μi Ai , where μ = (μ1, μ2, . . . , μd). We also consider a
non-parametric version, for which we write A instead of A(μ).

We begin, in Sect. 2, with a brief discussion of pyMOR’s software design. In
Sect. 3, we give a brief overview of the methods implemented in pyMOR 2019.2.
Next, we give numerical results in Sect. 4. A conclusion follows in Sect. 5.

2 Software Design

The central goal of pyMOR’s design is to allow an easy integrationwith external PDE
solver libraries. To this end, generic interfaces for vectors and operators have been
defined that give pyMOR access to the solver’s internal data structures representing
vectors, matrices, or nonlinear operators, as well as operations on them, e.g., the
computation of inner products or the solution of the linear equation system.

All high-dimensional model reduction operations in pyMOR, for instance POD
computation or Petrov-Galerkin projection, are expressed in terms of these interfaces.
Compared to a file-based exchange of matrices or solution snapshots, this approach
enables the usage of problem adapted solvers implemented in the PDE library or the
reduction of very large MPI-distributed problems [9].

3 Overview of Model Order Reduction Methods

The majority of MOR methods implemented in pyMOR are projection-based meth-
ods, i.e., they consist of finding basis matrices V and W and defining the reduced-
order model as

Ê ˙̂x(t;μ) = Â(μ)x̂(t;μ) + B̂u(t), x̂(0;μ) = 0,

ŷ(t;μ) = Ĉ x̂(t;μ),

where Ê = WTEV , Â(μ) = WTA(μ)V = Â0 + ∑d
i=1 μi Âi , Âi = WTAiV , B̂ =

WTB, and Ĉ = CV . If V = W , we call it a Galerkin projection and otherwise a
Petrov-Galerkin projection.

In the following, we give short descriptions of some projection-based methods
with remarks on their implementation in pyMOR.
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3.1 Reduced Basis Method

We consider a weak POD-Greedy algorithm [8] to build a basis matrix V for which
the maximum state-space approximation error

max
μ∈Strain

N∑

i=1

x(ti ;μ) − V x̂(ti ;μ)||2H 1
0 (�)

for constant input u ≡ 1 over some training set Strain of parameters is minimized
in the Sobolev H 1

0 -norm. To this end, in each iteration of the Greedy algorithm the
current reduced-order model is solved for all μ ∈ Strain and the parameter μmax is
selected for which an (online-efficient) estimate of the MOR error is maximized [7].
For this parameter, the matrix of full-order model (FOM) solution snapshots

X = [
x(t1;μmax) x(t2;μmax) · · · x(tN ;μmax)

]
,

is computed, and the first left-singular vectors of its H 1
0 -orthonormal projection onto

the H 1
0 -orthogonal complement of V are added to V .

Note that, in the non-parametric case, POD-Greedy reduces to POD, i.e., using
the first few left singular vectors of the snapshot matrix X as a Galerkin projection
basis.

3.2 System-Theoretic Methods

3.2.1 Balanced Truncation

For non-parametric models, balanced truncation (BT) consists of solving two Lya-
punov equations

APET + EPAT + BBT = 0,

ATQE + ETQA + CTC = 0.
(1)

Based on the solutions P and Q, it computes V andW of the Petrov-Galerkin projec-
tion. pyMOR provides bindings to dense Lyapunov equation solvers in SciPy [16],
Slycot [14] (Python wrappers for SLICOT [13]), and Py-M.E.S.S. [6]. For the
reduction of large-scale models, there are bindings for low-rank solvers in Py-
M.E.S.S.. Since Py-M.E.S.S. does not allow generic vectors, there is also an imple-
mentation of the alternating direction implicit iteration in pyMOR [3].

It is known that BT preserves asymptotic stability and has a priori bounds for
Hardy H∞ and H2 errors depending on the truncated Hankel singular values (the
square roots of the eigenvalues of ETQEP).
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For parametric models, there are several possible extensions of BT [4, 15, 17].
We focus on the simplest global basis approach by concatenating several local basis
matrices. Letμ(1), μ(2), . . . , μ(�) ∈ P be parameter samples and V (1), V (2), . . . , V (�)

and W (1),W (2), . . . ,W (�) corresponding local basis matrices. To guarantee asymp-
totic stability, we use Galerkin projection with

[
V (1) V (2) · · · V (�) W (1) W (2) · · · W (�)

]

after orthogonalization and rank truncation.

3.2.2 LQG Balanced Truncation

LQG balanced truncation (LQGBT) is a variant of BT related to the linear-quadratic-
Gaussian (LQG) optimal control problem. Unlike BT, LQGBT consists of solving
Riccati equations:

APET + EPAT − EPCTCPET + BBT = 0,

ATQE + ETQA − ETQBBTQE + CTC = 0.

Similar to BT, it guarantees the preservation of asymptotic stability and has an a priori
error bound. As for Lyapunov equations, pyMOR provides bindings for external
Riccati equation solvers and an implementation of the low-rank RADI method [5].

Additionally, there is bounded-real BT in pyMOR, but it currently relies on a
dense solver which does not respect the vector and operator interfaces, so it is not
possible to use it with a PDE solver.

3.2.3 Iterative Rational Krylov Algorithm

Iterative rational Krylov algorithm (IRKA) is a locally optimal MOR method in the
Hardy H2 norm. In each step, it computes (tangential) rational Krylov subspaces

V = span{(σ1E − A)−1Bb1, (σ2E − A)−1Bb2, . . . , (σr E − A)−1Bbr },
W = span{(σ1E − A)−TCTc1, (σ2E − A)−TCTc2, . . . , (σr E − A)−TCTcr }.

(2)

The interpolation points σ1, σ2, . . . , σr for the next step are chosen as reflected
poles −λ1,−λ2, . . . ,−λr of the projected matrix pencil λWTEV − WTAV (vec-
tors b1, b2, . . . , br and c1, c2, . . . , cr are computed based on the eigenvectors). Even
if the original model has real poles, the projected poles can be complex. Since the
complex number support is limited in PDE solvers, solving complex shifted linear
systems (σ E − A)x = b needs to be done using an iterative method. Implementing
efficient preconditions for such systems is a future research topic for pyMOR. For
this reason, we demonstrate IRKA only on the non-parametric example in Sect. 4.1.
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In the parametric case, we only use one-sided IRKA (OS-IRKA), where W in (2)
is replaced by V , which guarantees real interpolation points for the heat equation
example we consider. To generate the global basis matrix, we concatenate the local
basis matrices V (i) and do a rank truncation.

3.2.4 Generating Reduced Models

All system-theoretic methods in pyMOR can be called similarly. For instance, BT
can be run with

bt = BTReductor(fom, mu=mu)

rom = bt.reduce(10)

where fom is the (parametric) full-order model (an instance of LTIModel) and
mu is the parameter sample. The reduce method of bt accepts the reduced order
as a parameter (among others) and returns the non-parametric reduced-order model
rom (again an instance of LTIModel). The basis matrices are then available as
VectorArrays in bt.V and bt.W.

4 Numerical Results

Here, we present results of applying MOR methods discussed in Sect. 3 to para-
metric models, in particular the thermal-block example. To demonstrate pyMOR’s
integration with external PDE solvers, we used FEniCS 2019.1.0 ([1]) to define the
full-order model.

We use the Hardy H2 norm to quantify the results, which is defined for non-
parametric, asymptotically stable systems

Eẋ(t) = Ax(t) + Bu(t), x(0) = 0,

y(t) = Cx(t),
(3)

as the L2 norm of the impulse response h : [0,∞) → R
p×1 defined by h(t) =

C exp(t E−1A)E−1B, assuming E is invertible [2]. This can be computed using

h2L2([0,∞);Rp×1) = tr
(
CPCT

) = tr
(
BTQB

)
, (4)

where P and Q are as in (1). Note that for a reduced-order model

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = 0,

ŷ(t) = Ĉ x̂(t),
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the error system

[
E 0
0 Ê

] [
ẋ(t)
˙̂x(t)

]

=
[
A 0
0 Â

] [
x(t)
x̂(t)

]

+
[
B
B̂

]

u(t),

y(t) − ŷ(t) = [
C −Ĉ

]
[
x(t)
x̂(t)

]

,

is of the same form as the FOM (3), which allows us to compute H2 errors, i.e., the
H2 norm of the error system, using (4).

We chose to use theH2 normbecause it is independent of the input u. Additionally,
it can be computed efficiently using the low-rank Lyapunov equation solver available
in pyMOR.

Webeginwith the non-parametric version inSect. 4.1, comparing system-theoretic
methods with POD. Then, in Sects. 4.2 and 4.3 we compare methods for parametric
versions.

The source code of the implementations used to compute the presented results
can be obtained from

https://doi.org/10.5281/zenodo.3928528

and is authored by Petar Mlinarić and Stephan Rave.

4.1 Non-parametric Version

Fig. 1 compares BT, LQGBT, IRKA, OS-IRKA, and POD in terms ofH2 error. The
POD model was trained using the step response (u(t) = 1 for t ≥ 0). We see that
BT, LQGBT, and IRKA give similar results, while OS-IRKA and POD give worse
errors. Interestingly, POD is mostly better than OS-IRKA in this example.

2 4 6 8 10

10 4

10 2

100

Reduced order

A
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2
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r BT

LQGBT
IRKA
OS-IRKA
POD

Fig. 1 Comparison of the methods from Sect. 3 for the non-parametric model (Sect. 4.1)

https://doi.org/10.5281/zenodo.3928528
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Fig. 2 The H2 norms of the one-parameter model for different parameter values

4.2 Single-Parameter Version

In this setting, as the training set we chose 10 logarithmically equi-spaced parameter
values from 10−6 to 102. For testing, we added additional 9 in-between points. We
used BT and OS-IRKA to get reduced models of order 10 for each parameter value
and concatenated their local bases as explained in Sect. 3.2.1. After truncation, BT’s
global basis was of order 175 and OS-IRKA’s was 67. To have a fairer comparison,
we further truncated BT’s global basis to the same order as OS-IRKA.

Figure2 shows theH2 norm of the full-order model for different parameters, from
which we see that it only changes by about an order of magnitude over the parameter
range. Therefore, we restrict to showing only the absoluteH2 errors in the following
plots. In particular, Fig. 3 shows the absoluteH2 error for BT andOS-IRKA. Possibly
related to BT being a Petrov-Galerkin projection method, its global basis produces
worse results than the local bases. On the other hand, OS-IRKA improves with using
the global basis.

Finally, Fig. 4 compares BT and OS-IRKA with RB. For RB, we used the same
training set to generate a model of order 67. In this example, OS-IRKA performed
best near the boundaries of the parameter set and comparable to other methods in
the middle. On the other hand, BT gave the worst results near the boundaries. RB
produced an almost flat absoluteH2 error curve, which is not surprising since it tries
to minimize the worst error.

4.3 Four-Parameter Version

Here, we randomly sampled 20 points ei from the uniform distribution over [−6, 2]4
to generate the training set μ(i) = 10ei and additional 20 such points for testing. As
before, we used BT andOS-IRKA to find reducedmodels of order 10 at each training
parameter point. Here, after truncation, BT’s global basis was of order 347 and OS-
IRKA’s was 128. Figure5 compares them, where the first 20 parameter values are
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Fig. 3 Comparison of using local and global bases (see Sect. 3.2.1) for balanced truncation (BT)
and one-sided iterative rational Krylov algorithm (OS-IRKA) for the one-parameter model
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Fig. 4 Comparison of methods for the one-parameter model for fixed reduced order (67)
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Fig. 5 Comparison of using local and global bases (see Sect. 3.2.1) for balanced truncation (BT)
and one-sided iterative rationalKrylov algorithm (OS-IRKA) for the four-parametermodel. The first
20 parameters are used to construct local bases and global bases are tested on further 20 parameters
(cf. Fig. 3)
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Fig. 6 Comparison of methods for the four-parameter model for fixed reduced order (128)

from the training set and the other for testing. As we had in the previous example,
OS-IRKA gives better results on a global basis.
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Figure6 compares the two methods with RB. We see that they give comparable
results, although they are rather different methods. On closer inspection, we note
that, in this example, BT gives better errors the most and RB shows the smallest
maximum error and the least variation in error.

5 Conclusions

We briefly presented pyMOR, a freely available Python package for MOR, built on
generic interfaces for easy integration with external PDE solvers. We then described
some of the MOR methods implemented in pyMOR, which includes both system-
theoretic and reduced basis methods. Lastly, we compared methods on a thermal-
block benchmark discretized with FEniCS.
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Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P.: SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat. Methods (2020). https://doi.
org/10.1038/s41592-019-0686-2

17. Wittmuess, P., Tarin, C., Keck, A., Arnold, E., Sawodny, O.: Parametric model order reduction
via balanced truncation with Taylor series representation. IEEE Trans. Autom. Control 61(11),
3438–3451 (2016). https://doi.org/10.1109/TAC.2016.2521361

https://doi.org/10.1137/15M1026614
https://doi.org/10.1137/15M1026614
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1109/TAC.1981.1102568
https://pymor.org
https://pymor.org
http://arxiv.org/abs/2003.00846
http://www.slicot.org
https://github.com/python-control/Slycot
https://doi.org/10.1137/15M1027097
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TAC.2016.2521361


Matrix Equations, Sparse Solvers:
M-M.E.S.S.-2.0.1—Philosophy, Features,
and Application for (Parametric) Model
Order Reduction

Peter Benner, Martin Köhler, and Jens Saak

Abstract Matrix equations are omnipresent in (numerical) linear algebra and sys-
tems theory. Especially inmodel order reduction (MOR), they play a key role inmany
balancing-based reduction methods for linear dynamical systems. When these sys-
tems arise from spatial discretizations of evolutionary partial differential equations,
their coefficient matrices are typically large and sparse. Moreover, the numbers of
inputs and outputs of these systems are typically far smaller than the number of spa-
tial degrees of freedom. Then, in many situations, the solutions of the corresponding
large-scale matrix equations are observed to have low (numerical) rank. This fea-
ture is exploited by M-M.E.S.S. to find successively larger low-rank factorizations
approximating the solutions. This contribution describes the basic philosophy behind
the implementation and the features of the package, as well as its application in the
MOR of large-scale linear time-invariant (LTI) systems and parametric LTI systems.

1 Introduction

The M-M.E.S.S. toolbox [55] for MATLAB® (or package for GNU Octave) in ver-
sion 2.0.1 focuses on the solution of large-scale symmetric algebraic and differential
matrix equations and their application in model order reduction (MOR) and linear-
quadratic regulator (LQR) problems. The basis for all considerations and problem
formulations are linear dynamical systems of the form
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Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(�)

where E, A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m , and x(t) ∈ R
n , for all time

instances t ∈ [0, T ]. We assume that E is invertible, and often in addition that (�)
is asymptotically stable.

Some of the supported matrix equations have applications in H∞-control, where
the slightly more structured system

Eẋ(t) = Ax(t) + B1u(t) + B2w(t),

y(t) = C1x(t) + D11u(t) + D12w(t),

z(t) = C2x(t) + D21u(t) + D22w(t),

(�∞)

is considered.
M-M.E.S.S. aims at systems, where n ∈ N is too large to store an n × n matrix

in the computer’s memory. This will usually be accounted for by the facts, that
p,m � n and E , A are sparse or have a sparse realization that we can exploit in
computations. We present more details about the exploitable structures in Sect. 2.

Similarly, for systems (�∞), the matrices B1, B2, C1, C2 are considered thin and
rectangular and the parts Di j , i, j ∈ {1, 2} correspondingly small.

The contribution of this document is two-fold. On the one hand, we give the first
concise introduction to M-M.E.S.S., its general philosophy and current features. On
the other hand, we show how the software, that is in core intended for the solution
of large-scale matrix equations, can be employed in the implementation of basic
parametric MOR (PMOR) methods for systems of the form (�).

Beforemoving on to the historical evolution of the package, we state the equations
that can currently be solved by M-M.E.S.S.. The following is a list of all equations
for which at least one solver function exists:

Algebraic Lyapunov equations

0 = APET + EPAT + BBT

0 = ATQE + ETQA + CTC
(CALE)

Algebraic Riccati equations

0 = APET + EPAT + BBT − EPCTCPET

0 = ATQE + ETQA + CTC − ETQBBTQE
(CARE)

0 = ÃPET + EP ÃT + B̃1 B̃
T
1 − EP

(
C̃T
1 C̃1 − C̃T

2 C̃2

)
PET

0 = ÃTQE + ETQ Ã + C̃T
1 C̃1 − ETQ

(
B̃1 B̃

T
1 − B̃2 B̃

T
2

)
QE

(H∞ − ARE)
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In the last pair of equations, the matrix Ã is sparse plus low-rank (splr), i.e. Ã =
A +UV T, where U , V are tall and skinny. Moreover, the matrices B̃1, B̃2, C̃1, C̃2

are derived from the given system data by scaling and potentially rotation of the
matrices B1, B2, C1, C2.

For finite time horizon linear-quadratic control problems, one needs to solve dif-
ferential Riccati equations. We restrict to providing only the controller equations
here, while the dual “filter-type” equations are supported as well.

Autonomous differential Riccati equations

−ET Q̇(t)E = ATQ(t)E + ETQ(t)A + CTC − ETQ(t)BBTQ(t)E (ADRE)

Non-autonomous differential Riccati equations

−E(t)T Q̇(t)E(t) = (
A(t) + Ė(t)

)T
Q(t)E(t) + E(t)TQ(t)

(
A(t) + Ė(t)

)
(NDRE)

+ C(t)TC(t) − E(t)TQ(t)B(t)B(t)TQ(t)E(t)

The last equations are formulated for the time-varying counterpart of (�), i.e., the
system where all matrices are allowed to depend on time as well. Both DREs contain
the case of differential Lyapunov equations. Optimized solvers for those are still
work in progress and must at the moment be implemented by setting either B or
C (in the dual equation) to zero and thus eliminating the quadratic term. Available
solution methods in M-M.E.S.S. are described in Sect. 2.

Classic Lyapunov equation-based balanced truncation is known to preserve
asymptotic stability of the original system in the reduced-order model. Other
balancing-based methods have been developed to preserve other properties like pas-
sivity or contractivity. For these special balancing-type MOR methods, other matrix
equations need to be solved that do not have a tailored solver in M-M.E.S.S., yet.
Still, they can be reformulated into one of the types above. In order to have a more
complete picture of what equations can be solved with the current M-M.E.S.S., we
list them here, but get back to them in Sect. 3 and describe their reformulations into
the special cases above and why they can still be solved using M-M.E.S.S..
Positive real balancing

0 = APET + EPAT + (EPCT − B)(D + DT)
−1

(EPCT − B)
T

0 = ATQE + ETQA + (ETQB − CT)(D + DT)
−1

(ETQB − CT)
T

(PRARE)

Bounded real balancing

0 = APET + EPAT + BBT + (EPCT + BDT)(I − DDT)
−1

(EPCT + BDT)
T

0 = ATQE + ETQA + CTC + (ETQB + CTD)(I − DTD)
−1

(ETQB + CTD)
T

(BRARE)
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Linear-quadratic-Gaussian balancing

0 = APET + EPAT + BBT − (EPCT + BDT)(I + DDmaths f T )
−1

(EPCT + BDT)
T

0 = ATQE + ETQA + CTC − (ETQB + CTD)(I + DTD)
−1

(ETQB + CTD)
T

(LQGARE)

1.1 A Brief History of M-M.E.S.S.

Early days, the LyaPack years
The packageM-M.E.S.S. originates in thework of Penzl [14, 47, 48] around the year
2000. More precisely, we understand M-M.E.S.S. as a continuation and successor
of Penzl’s LyaPack-toolbox [49] for MATLAB. While most of the basic ideas from
the original package have been preserved, some features have been abandoned and
some have been altered to improve efficiency and reliability.

The treatment of generalized state-space systems, i.e., systems (�)with nontrivial,
i.e., non-identity, E-matrices have been added first. These changes still happened
under the LyaPack-label in versions 1.1–1.8 until about 2007.

Transition to M-M.E.S.S. and present
The transition to the relabeled M-M.E.S.S.-1.0 package included a complete reor-
ganization of the process data. Also, LyaPack used string manipulations and eval-
calls to mimicked function pointers, which we replaced by proper function handles
supported in modernMATLAB and GNU Octave. Moreover, the formulation of the
low-rank alternating directions implicit (LR-ADI) iteration, which always was the
heart and soul of LyaPack, was greatly updated to allow for cheaper evaluation of
stopping criteria and an iteration inherent generation of real solution factors, which
could only be achieved through post-processing in LyaPack.

The necessity for an a priori selection of shift parameters for convergence accel-
eration used to be a major point of criticism regarding the ADI-based solvers. The
selection of shift generation methods was extended in M-M.E.S.S. and especially
a new method that automatically generates the shifts during the iteration [34] was
added, which makes the solvers accessible also to non-experts.

Other than that, version 1.0 saw general code modernization to support optimized
features in MATLAB and to be 100% GNU Octave compatible.

The two major contributions of version 2.0 were the inclusion of the RADI itera-
tion [7] for (CARE) and several solvers for differential Riccati equations in both the
autonomous (ADRE) and non-autonomous (NDRE) cases.

Moreover, over time more system classes, including specially structured
differential-algebraic equation (DAE)-based systems and second-order systems, have
been added.

Future development plans
The most immediate upcoming feature in the near future is the inclusion of Krylov
subspace projection methods for algebraic Lyapunov [59, 61] and Riccati equa-
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tions [39, 60, 62]. The infrastructure and solvers are under current development
and the feature is going to be part of version 3.0. The plans for the more distant
future include, inclusion of low-rank solvers for Sylvester equations [12] and non-
symmetric AREs [13], as well as the discrete-time counterparts of the existing equa-
tions, i.e., Stein equations [12, 32, 34, 38, 51] and discrete-time Riccati equations.
Also, more complex sets of equations like Lur’e equations [50] and Lyapunov-plus-
positive equations [8, 19, 58] are currently investigated and will be added if solvers
can be implemented in a robust and efficient way using the M-M.E.S.S. infrastruc-
ture.

1.2 Structure of This Chapter

The following section introduces M-M.E.S.S. and its basic implementation philos-
ophy. It further elaborates on supported system structures beyond the basic form
in (�) and describes the current basic features of the package. Section3 is dedicated
to the description ofMORmethods contained or demonstrated inM-M.E.S.S., while
Sect. 4 shows how the existing tools in M-M.E.S.S. can be used to implement basic
PMOR methods from the literature. The last section demonstrates how M-M.E.S.S.
can be employed in PMOR, solving a selection of the above equations, for the bench-
mark example introduced in the separate chapter [52] of this volume. Similarly, this
benchmark setting is considered in the other software chapters [18, 31, 40], in order
to compare the applicability of the individual packages in a standardized setting.

2 M-M.E.S.S.—Philosophy and Features

The M-M.E.S.S. philosophy relies on three simple principles:

Abstract state-spacesystem All routines assume to work on a system of the
form (�), or (�∞). For a simple spatially discretized parabolic PDE, (�) is
exactly given by the sparse matrices describing the semi-discretized system. For
other systems, (�) may be a dense, inaccessible realization, like, e.g. a projection
to a hidden manifold for a Stokes-type DAE system.

Implicit reformulation When the system matrices are potentially dense or even
inaccessible, or otherwise prohibitive to use, thematrices are never formed explic-
itly, but only their actions are expressed in terms of the original data. For the
aforementioned DAEs, this means, only the given semi-explicit system matri-
ces are employed, but the algorithm runs as if it was formulated on the hidden
manifold, i.e., for the implicit ordinary differential equation. This technique is
often also called implicit index-reduction. For second-order systems, similarly, it
is sometimes prohibitive to work with the double-sized phase-space realization
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in companion form. Again, all operations are executed only using the original
second-order matrices, while solutions live in the double-sized space.

operation abstraction The abstraction of operations is realized via the so-called
user-supplied function sets (usfs), which we have inherited from LyaPack. In
comparison to LyaPack, we have slightly extended this set of functions. At the
same time, we have removed the necessity to provide empty functions, which are
now automatically replaced by a do_nothing function. While making things
far more complicated in, e.g. the default case (see Table1), where all matrices
are expected to be available, this allows to hide the actual matrix realization from
the algorithms. This way, in principle, the algorithms can run matrix-free with
respect to A and E as demonstrated in [16].

The basic structure and design, of M-M.E.S.S., was decided when object-oriented
features in MATLAB were in their early stages and essentially absent in GNU
Octave. Still, some of the design follows object-oriented paradigms. We mimic
the object orientation by passing three central data structures through all relevant
functions. These three items of type struct are

eqn This structure essentially holds all relevant information about the underly-
ing system (�), or (�∞) and determines which equation in the dual pair we
are aiming to solve, by eqn.type=‘N’, or eqn.type=‘T’ representing the
transposition on the left multiplication by A.

oper The operator structure, generated by the function operatormanager,
holds all function handles for the relevant operations with the system matrices A
and E . A list of these operations can be found in Table2. Most functions in the list
are accompanied by two functions, with appendices _pre and _post, called at
the beginning and the end of a function working with them. They are intended for
the generation and clean up of helper data, like the pre-factorization of matrices,
when a sparse direct solver is used, or the generation of a preconditioner for an
iterative solver.

opts The actual options structure is a structure of structures, i.e., it has a substruc-
ture for each algorithm/function but also holds central information on the top level.
For example, opts.norm defines the norm that should consistently be used in
all operations and hierarchy levels of the potentially cascaded algorithms, while
substructures like opts.adi, or opts.shifts provide the specific control
parameters for the LR-ADI algorithm and the shift computation.

Note that for all matrix operations in the usfs, we allow for corresponding _pre and
_post functions. Other functions like init or size do not support _pre and
_post.

While the function handles in operwork on the original A from (�), sometimes
it is necessary to actually work with low-rank updated versions of A in the form
A +UV T. We have seen an example in (H∞ − ARE), where Ã is in the very form.
Another prominent appearance is theNewton-Kleinman iteration (see [33] for classic
iteration and [14] for the low-rank version) for (CARE), wherein iteration j , the step
equation (for the second equation in the pair) takes the form
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Table 1 Supported system structures via user-supplied function sets (usfs)

usfs default so_1 / so_2 dae_1 dae_2 dae_1/2/3_so

System Standard/
generalized
state-space form

Second-order
1st/2nd
companion form

Semi-explicit
index-1 DAE

Semi-explicit
index-2
Stokes-type
DAEs

Semi-explicit
second-order
index-1/2/3
DAEs using
companion form

Demos FDM [49], Rail
[15]

TripleChain [54,
66]

DAE1 (BIPS
Power-systems
model [24])

DAE2 Stokes
[57], Kárman
vortex
shedding [69]

Constrained
TripleChain

(
A − BK j−1

)T
X j E + ETX j

(
A − BK j−1

) = [
C K j−1

]T [
C K j−1

]
.

Therefore, most solvers in M-M.E.S.S. assume that this structure can be given.
The flag eqn.haveUV set to a non-zero value indicates that this is the case. Then
the fields eqn.U and eqn.V need to hold the corresponding dense rectangular
matrices of compatible dimensions. Similarly, the field eqn.haveE indicates that a
non-trivial, i.e., non-identity E matrix is present and needs to be used via the function
handles in Table2.

Note that it is prohibitive to form A +UV T explicitly, since even for very sparse
A it can easily be a dense matrix. Especially, it is prohibitive to use direct solvers
based on matrix decompositions on it, since then even if A +UV T manages to
preserve some sparsity, the fill-in will make the triangular factors dense. Therefore,
all linear systems with A +UV T are solved via the Sherman-Morrison-Woodbury
matrix-inversion formula (see, e.g. [27, Sect. 2.1.4]) in M-M.E.S.S..

2.1 Available Solver Functions and Underlying Methods

We provide two solvers for the standard cases in (CALE) and (CALE) that are purely
matrix-based, intended for large-scale sparsematrix coefficients and classic two-term
low-rank factorizations of the constant terms and cores in the quadratic terms. The
functions are called mess_lyap and mess_care and mimic the calls of lyap
and care from MATLAB’s control systems toolbox, or the GNU Octave control
package, for dense matrices.

Other than that,we have the functions inTable3 that allow formoreflexible tuning,
solve a large variety of equations and, especially, benefit from the full potential of the
user-supplied functions. In the table, we give references to the most state-of-the-art
presentations of the algorithms in the literature, on which our implementations are
based.
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Table 2 User-supplied function names and their actual operation

Function call Operation

Y = oper.mul_A(eqn,opts,opA,B,opB) Y = AopABopB

Y = opr.mul_E(eqn,opts,opE,B,opB) Y = EopEBopB

Y = oper.mul_ApE(eqn,opts,opA,p,opE,B,opB) Y =(
AopA + pEopE

)
BopB

X = oper.sol_A(eqn,opts,opA,B,opB) AopAX = BopB

X = oper.sol_E(eqn,opts,opE,B,opB) EopEX = BopB

X = oper.sol_ApE(eqn,opts,opA,p,opE,B,opB)
(
AopA + pEopE

)
X =

BopB

Result = oper.init(eqn,opt,oper,f1,f2) General initialization and
sanity checks

[W,res0] = oper.init_res(eqn,opts,oper,V)
Compute initial residual
factor W from V, and
res0 = ‖W‖

[eqn,opts,oper] = eval_matrix_functions(eqn,opts,oper,t)
In the time-varying case, fix
all the above to time
instance t

n = oper.size(eqn,opts,oper) Returns the dimension n in
(�)

3 Model Order Reduction in M-M.E.S.S.

The basic MOR facilities in M-M.E.S.S. are limited. Still, all building blocks for
projection-based MOR using balancing methods, where matrix equations are most
obviously applied, are available. For the sake of completeness and to fix our notation,
we repeat the basics of projection-basedMOR.Given a state-space systemof the form
(�), we search for the two rectangular transformation matrices V, W ∈ R

n×r that
define the actual oblique projection T = V (WTV )

−1
WT, but transform the system

into the reduced coordinates directly. The reduced-order model then takes the form

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t) + Du(t),
(ROM)

where Ê = WTEV, Â = WTAV ∈ R
r×r , B̂ = WTB ∈ R

r×m , and Ĉ = CV ∈
R

p×r .
The number of actual MOR routines in M-M.E.S.S. is rather limited. In version

2.0.1, we have mess_balanced_truncation implementing classic Lyapunov
balancing [37, 42, 65], for systems (�) realized with sparse E and A [14, 29, 54],
andmess_tangential_irka implementing the tangential iterativeKrylov algo-
rithm (IRKA) [28] for first- and second-order systems. Our Gramian computation
methods are integrated in a range of MOR software packages, though. While sss-
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Table 3 Solver functions with algorithm and feature descriptions and latest and most feature
complete literature references

Solver Description Reference

Algebraic Lyapunov equations

mess_lradi The low-rank alternating
directions implicit (LR-ADI)
iteration in residual-based
formulation and with
automatic shift selection
for (CALE)

[34]

Algebraic Riccati equations

mess_lrnm An inexact Kleinman-Newton
iteration with line search for
(CARE)

[69]

mess_lrradi The RADI iteration for
(CARE)

[7]

mess_lrri A low-rank version of the
Riccati iteration [36] for
(H∞ − ARE)

Differential Riccati equations

mess_bdf_dre Low-rank formulation of
backward differentiation
formulas for large-scale
differential Riccati equations
(ADRE), (NDRE)

[35]

mess_rosenbrock_dre Low-rank formulation of
Rosenbrock methods for
large-scale differential Riccati
equations (ADRE)

[35]

mess_splitting_dre Splitting schemes for
large-scale differential Riccati
equations (ADRE), (NDRE)

[63, 64]

MOR [20] directly callsM-M.E.S.S.-1.0.1, for other packages likeMOREMBS [23]
and MORPACK [43], we have contributed tailored versions of our algorithms.

Also, we provide tools like a square root method (SRM) function to compute
the transformation matrices V and W from given Gramian factors. This function
currently only uses the classic Lyapunov balancing error bound in the adaptive mode.
This is subject to change in future versions.

3.1 IRKA and Classic Balanced Truncation

Consider that all matrices in (�) are available. As an example we use the Steel Profile
benchmark [15, 45], included inM-M.E.S.S., using the versionwithn = 1 357.Then
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computing the reduced-order matrices Er , Ar , Br , Cr for maximum reduced order
25 using the tangential IRKA [28] is as easy as calling:

eqn = getrail (1);
opts.irka.r = 25;
[Er, Ar, Br, Cr] = …

mess_tangential_irka(eqn.E_,eqn.A_, eqn.B, eqn.C, …
opts)

This will use default values for maximum iteration numbers and stopping criteria,
which can be refined via the opts.irka structure. For a list of available options
see help mess_tangential_irka.

Analogously, to compute a (Lyapunov) balanced truncation approximation of
maximum order 50 and with an absolute H∞-error tolerance of 10−2 for the same
model the simplest call is:

eqn = getrail (1);
[Er, Ar, Br, Cr] = ...

mess_balanced_truncation(eqn.E_, eqn.A_, eqn.B, …
eqn.C, 50, 1e-2);

Note that Lyapunov balancing leaves the D matrix untouched in general, while it is
absent in this example anyway. Note, further, that the interface may change slightly
in future releases to make it more consistent with that of the IRKA function and to
allow for the addition of the other balancing methods.

The balanced truncation approximation can be achieved in a step-by-step proce-
dure, first, by computing the two Gramian factors, then applying them in the SRM to
determine V andW , and finally, compressing the large-scale matrices to the reduced-
order system matrices. This can all be executed using the procedural building blocks
of mess_balanced_truncation. The example bt_mor_rail_tol in the
DEMOS/Rail folder, residing in the main installation folder of M-M.E.S.S.-2.0.1,
demonstrates this procedure. The step-wise approach can also be used for a num-
ber of structured systems like second-order systems, or semi-explicit DAE systems,
while mess_balanced_truncation only supports generalized systems with
invertible E , and all coefficients given explicitly as matrices, at the moment. See
Table4 for an overview of demonstration examples explaining these procedures.

3.2 Further Variants of Balanced Truncation

We have shown the Riccati equations defining the Gramians employed in positive-
real, bounded-real, and linear-quadratic-Gaussian balanced truncation in equa-
tions (PRARE), (BRARE), (LQGARE) in the Introduction. Assuming, we have
computed the Gramian factors, the reduced-order models can be derived, along the
lines of the demonstration examples from Table4. This can be done using the same
M-M.E.S.S. function at least for a fixed desired reduced order. The error bound based
order decision in the SRMneeds adaptation to the specific error bound in some cases,
though, see e.g., [2, Sect. 7.5] for a comparison of the bounds and procedures.
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Table 4 Demonstration examples for balanced truncation of structured systems in M-M.E.S.S.

Example Description References

bt_mor_DAE1_tol Balanced truncation for a
semi-explicit power systems
model of differential index 1

[24]

bt_mor_DAE2 Balanced truncation for Stokes
and Oseen equations of index 2

[17, 30]

BT_TripleChain First-order and
structure-preserving balanced
truncation for a model with
three coupled
mass-spring-damper chains

[53, 54, 66]

BT_sym_TripleChain As above, but exploiting
state-space symmetry of the
tailored companion form
first-order reformulation

BT_DAE3_SO First-order and
structure-preserving balanced
truncation for a variant of the
above system that has a
constraint turning it into an
index-3 DAE

[56, 67, 68]

Here, we restrict ourselves to presenting how the specially structured Riccati
equations can be solved with the existing functionality in M-M.E.S.S..

3.2.1 Positive-Real Balancing

For positive-real systems, by definition D + DT is positive-definite, when it is invert-
ible. This is always the case when the Riccati equations exist and do not degenerate
to a set of Lur’e equations. Then we can decompose D + DT into Cholesky factors,
i.e., RTR = D + DT. Using these Cholesky factors, we define

Ẽ = E, Ã = A +UV T, B̃ = BR−1, C̃ = R−TC,

with U = B̃ and V T = C̃ , and a straight forward calculation shows that (PRARE)
can be rewritten in the form

0 = ÃP ẼT + Ẽ P ÃT + B̃ B̃T + Ẽ PC̃TC̃ P ẼT

0 = ÃTQẼ + ẼTQ Ã + C̃TC̃ + ẼTQB̃ B̃TQẼ .

This resembles the Riccati case in (H∞ − ARE) with a low-rank updated matrix
A and only the positive quadratic term present. This case is supported by the
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mess_lrri routine. Note that D + DT is of small dimension, such that this refor-
mulation is always feasible.

3.2.2 Bounded-Real Balancing

The bounded-real assumptions guarantee that I − DDT and I − DTD are symmetric
positive definite. Therefore, we can decompose them into Cholesky factors, i.e.,
RTR = I − DDT and LTL = I − DTD. Now, we define

Ẽ = E, Ã = A +UV T, B̃ = BL−1, C̃ = R−1C,

with U = BDT and V T = (I − DDT)
−1
C and another technical, but straight for-

ward, calculation shows that (BRARE) can be rewritten in the form:

0 = ÃP ẼT + Ẽ P ÃT + B̃ B̃T + Ẽ PC̃TC̃ P ẼT

0 = ÃTQẼ + ẼTQ Ã + C̃TC̃ + ẼTQB̃ B̃TQẼ .

This, again, falls into the class of equations in (H∞ − ARE)with a low-rank updated
matrix A and only the positive square term present. As mentioned above, this case
is supported by the mess_lrri routine. For the same reason as above, this refor-
mulation can always be done.

3.2.3 Linear-Quadratic-Gaussian Balancing

For linear-quadratic-Gaussian balanced truncation, an important special case (see,
e.g., [3, 11, 41, 44]) is D = 0. In that case (LQGARE) obviously reduces to
the standard Riccati equation (CARE) that can be solved using mess_lrnm or
mess_lrradi. The corresponding M-M.E.S.S. workflow is demonstrated in the
lqgbt_mor_FDM example for a simple heat equation model semi-discretized by
the finite difference method.

On the other hand, when D �= 0, it is, by standard assumptions in M-M.E.S.S.,
real and all eigenvalues of DDT and DTD are non-negative. Therefore, I + DDT

and I + DTD are symmetric and positive definite and analogous to the above, we can
decompose into Cholesky factorizations RTR = I + DDT and LTL = I + DTD.
We now define

Ẽ = E, Ã = A +UV T, B̃ = BL−1, C̃ = R−1C,

with U = −BDT and V T = (I + DDT)
−1
C . An analogous calculation to the

bounded-real case shows that (LQGARE) can be rewritten in the form
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0 = ÃP ẼT + Ẽ P ÃT + B̃ B̃T − Ẽ PC̃TC̃ P ẼT

0 = ÃTQẼ + ẼTQ Ã + C̃TC̃ − ẼTQB̃ B̃TQẼ .

Due to the different signs, here, we end up with a standard Riccati equation (CARE),
just like in the case D = 0. Again the transformation is always feasible in the sense
of M-M.E.S.S. applicability.

4 Parametric Model Order Reduction Using M-M.E.S.S.

PMOR aims to preserve symbolic parameters in the original system description also
in the reduced-order model. In the most general case, the system

E(μ)ẋ(μ, t) = A(μ)x(μ, t) + B(μ)u(t),

y(μ, t) = C(μ)x(μ, t) + D(μ)u(t),
(�(μ))

is transformed into

Ê(μ) ˙̂x(μ, t) = Â(μ)x̂(μ, t) + B̂(μ)u(t),

ŷ(t) = Ĉ(μ)x̂(μ, t) + D(μ)u(t).
(ROM(μ))

By default, M-M.E.S.S.-2.0.1 does not support PMOR. It is, however, very easy
to implement basic PMOR routines building up on the methods from the previous
section. The key ingredient, that at the same time establishes the link to the previous
section in many methods, is the necessity to evaluate standard MOR problems in
certain trainingpoints for givenparameter valuesμ(i) (i = 1, . . . , k), e.g., on a sparse-
grid in the parameter domain. While piecewise MOR approaches (e.g., [4]) aim to
find constant global (with respect to the parameter) transformation matrices V and
W to derive (ROM(μ)), other methods aim to establish it by interpolation of some
kind.The literature basically provides three approaches interpolating different system
features, see, e.g., [10] for further categorization of PMOR methods:

• matrix interpolation, i.e., function interpolation of the parameter-dependent coef-
ficient matrices, or the transformation matrices, (e.g., [1, 25, 26, 46]),

• interpolation of the transfer functions in the parameter variable [5],
• interpolation of system poles (e.g., [9, 70]).

We demonstrate the basic steps for piecewise and interpolatory methods along
with the lines of [4, 5] in the remainder of this section and give numerical illustrations
in Sect. 5.
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4.1 Piecewise MOR

We have mentioned above that the aim, here, is to find V and W constant, such that
Ê(μ) = WTE(μ)V , Â(μ) = WTA(μ)V , B̂(μ) = WTB(μ), Ĉ(μ) = C(μ)V . The
strong point of this method is that it trivially allows the ROMs in the parameters μ(i)

to vary in their reduced order. This is due to the fact that

V = [
V (1) · · · V (k)

]
and W = [

W (1) · · ·W (k)
]
,

with V (i) and W (i) the transformation matrices at parameter sample μ(i). This con-
catenation should be followed by a rank truncation to eliminate linear dependencies.

It essentially does not matter how the single transformation matrices have been
generated. We follow the presentation in [4], where IRKA is used. In the numerical
experiments, we also compare to versions using balanced truncation in the training
samples.

4.2 Interpolation of Transfer Functions

The representation of (�(μ)) in frequency domain after Laplace transformation in
the time variable (t), leads to the transfer function

H(μ, s) = C(μ)(sE(μ) − A(μ))−1B(μ).

For fixed μ, the IRKAmethod seeks to interpolate this function in s-direction, while
the well-known balanced truncationmethod computes an approximation to this func-
tion, with a computable error bound. Therefore, it is an obvious task to try to extend
these features by interpolation in μ-direction. Baur and Benner meet this goal in [5]
for local balanced truncation approximations of (�(μ)), achieving both stability
preservation and an error bound, i.e., the selling points of balanced truncation. More-
over, their method shares the flexibility with respect to the ROM orders since the
interpolation is done via the transfer function, that has a fixed dimension independent
of the realization of the system. On the other hand, interpolation on matrix manifolds
and with respect to system invariants need to fix the dimensions of those objects.

For simplicity we restrict ourselves to the case of scalar parameters. The approach
in [5] defines (ROM(μ)) via its transfer function, which is chosen as an interpolant
of the form

Ĥ(μ, s) =
k∑

i=1

�i (μ)Ĥ (i)(s) =
k∑

i=1

�i (μ)Ĉ (i)
(
s Ê (i) − Â(i)

)−1
B̂(i)

=
k∑

i=1

Ĉ (i)(μ)
(
s Ê (i) − Â(i)

)−1
B̂(i)
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Fig. 1 Computational domain and sigma magnitude plot for the thermal block model

with scalar coefficients functions �i (μ), Ĥ (i)(s) the transfer function of the ROM
at parameter sample μ(i) and Ĉ (i)(μ) = �i (μ)Ĉ (i). One can use the last identity to
define the matrices for the ROM realization

Ê =
⎡
⎢⎣
Ê (1)

. . .

Ê (k)

⎤
⎥⎦ , Â =

⎡
⎢⎣
Â(1)

. . .

Â(k)

⎤
⎥⎦ , B̂ =

⎡
⎢⎣
B̂(1)

...

B̂(k)

⎤
⎥⎦ ,

Ĉ(μ) = [
Ĉ (1)(μ) · · · Ĉ (k)(μ)

]
,

such that

Ĥ(μ, s) = Ĉ(μ)
(
s Ê − Â

)−1
B̂.

Note that the parameter could as well be put into B̂. The specific choice of
Lagrange polynomials is not necessary. We present experiments with both classic
polynomial interpolation and spline interpolation in the next section. Since we are
dealing with scalar coefficient functions here, it is advisable for a modern MATLAB
implementation to exploit the power of Chebfun [21, 22]. We do this for the poly-
nomial interpolation and the generation of the grid of training parameters, while the
splines use our own implementation.

5 Numerical Experiments

The experiments reported here have been executed inMATLABR2019a on a Lenovo
X380 Yoga equipped with an Intel® i7 8770 and 32GB of main memory running
64bit Linux based on Ubuntu 18.04. The experiments use M-M.E.S.S.-2.0.1 [55]
and Chebfun version 5.7.0 [21, 22].
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Fig. 2 Relative sigma-magnitude errors of different piecewise parametric reduction approaches for
the thermal-block model
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Fig. 3 Relative sigma-magnitude errors of different piecewise parametric one-sided reduction
approaches for the thermal-block model
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Fig. 4 Relative sigma-magnitude errors of different transfer function interpolation methods for
parametric reduction for the thermal-block model

The source code of the implementations used to compute the presented
results can be obtained from:

https://doi.org/10.5281/zenodo.3678213

and is authored by Jens Saak and Steffen W. R. Werner.

For easier comparison with the other reported software packages, all exper-
iments use the thermal-block benchmark introduced in Chapter 16 of this vol-
ume. It describes a simple heat transfer model on the domain depicted in Fig. 1a.
Here, we investigate the one-parameter version of the benchmark. That means,
the heat transfer coefficients on the four circular sub-domains are given as 0.2,
0.4, 0.6, and 0.8µ for a single scalar parameter μ ∈ [10−6, 102] = M ⊂ R. The
full order model has dimension n = 7 488 and one input but 4 outputs. In Fig. 1b,
we present the sigma-magnitude plot of the full-order model (FOM), i.e., we plot
‖H(μ, s)‖2 = σmax(H(μ, s)) over the full parameter range and the frequency range
[10−4, 104]. The plot is based on 100 logarithmically equi-spaced sample points
(logspace-generated) in each direction. We also use this sampling for all relative

https://doi.org/10.5281/zenodo.3678213
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sigma-magnitude error plots in the other figures. The error plots analogously show
‖H(μ, s) − Ĥ(μ, s)‖2/‖H(μ, s)‖2.

Excluding the 10000 evaluations for the pre-sampling of the original transfer
function, all computations for generation of the ROMs and evaluation of the approx-
imation errors can be executed in less than 8min.

We compare both IRKA and classic (Lyapunov) balanced truncation (BT) in the
piecewise as well as the transfer function interpolation context. For IRKA, we use
fixed order r = 20 in all training samples, while for BT, we run in two modes. Since
we have theBT error-bound that allows for adaptive processing, i.e., automatic choice
of the reduced order, we do that with absolute error tolerance 10−4. On the other hand,
for a more fair comparison to IRKA, we also run BT for fixed order r = 20. We refer
to these two modes as BT(10−4) and BT(20).

For the piecewise approaches, we use ten logarithmically equi-spaced
(logspace-generated) parameter samples in M as the training positions. For the
interpolatory approaches, we choose 10 Chebyshev-roots generated by Chebfun. We
have mentioned the final rank-truncation after basis concatenation in Sect. 4.1. We
use a tolerance equal to eps in the standard case. Alternatively, to further compress
the final parametric ROM, we truncate with tolerance 10−6 and refer to this approach
by the name truncated piecewise.

For the training, BT can not reuse information from previous samples very easily.
On the other hand, IRKAcanbe initializedwith theROMfrom theprevious parameter
sample, which in most cases made it converge after less than five steps (mostly being
stopped by the criterionmonitoring the relative change of themodel in theH2-norm).
For further implementation details, we refer to the scripts in the code package.

Although BT guarantees the local ROMs in the sample points to preserve the
asymptotic stability of the original model, and also IRKA preserves stability upon
convergence, this feature is in general lost after concatenating the bases to the global
one. Still, for a one-sided projection the stability of the global ROMcan be preserved.
Due to stability and symmetry of the thermal-block model, Bendixson’s theorem [6]
guarantees this. Therefore,we compare to a one-sided approach that simply combines
V and W into one matrix. The comparison can be found in Figs. 2 and 3. And the
corresponding ROM orders are given in the first block of Table5.

For the interpolatory approaches,we compareLagrangepolynomials andvariation
diminishingB-splines of order 2. Here, we always useBT(10−4) in the BT case, since
the results are already hard to distinguish from the IRKA-based ones in this case and
we do not expect much improvement from the higher local orders.

It can be seen fromTable5 that the piecewise BTmodels are, in parts significantly,
smaller than the piecewise IRKA models. This comes at the price that the accuracy
is not as good in parts of the domain. Nonetheless, e.g., the truncated one-sided
BT(10−4) approximation yields a relative error of below 1% on a majority (around
70%) of the investigated frequency parameter domain with a model size that is 3.7
to 5.6 times smaller. There is a significant increase in error for those frequencies,
where the transfer function has very small values (see Fig. 1b) that can be considered
to be on the noise level (Fig. 3).
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Table 5 Reduced orders of the training-sample ROMs and final ROM (numbers in () are after
additional truncation with tolerance 10−6)

Method ROMs Full One-
sided

Piecewise

BT(10−4) 9/12/15/13/12/9/8/9/8/7 102
(52)

200
(36)

BT(20) 20/20/20/20/20/20/20/20/20/20 199
(64)

200
(72)

IRKA 20/20/20/20/20/20/20/20/20/20 200
(132)

200
(132)

Lagrange

BT(10−4) 9/9/12/15/12/9/8/8/7/7 96 –

IRKA 20/20/20/20/20/20/20/20/20/20 200 –

B-spline

BT(10−4) 9/9/12/15/12/9/8/8/7/7 96 –

IRKA 20/20/20/20/20/20/20/20/20/20 200 –

The results are very satisfactory and so are the computation times. This indicates
that the implementations can be used for larger and more challenging examples, that
we can not report here due to space restrictions.
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66. Truhar, N., Veselić, K.: An efficient method for estimating the optimal dampers’ viscosity for
linear vibrating systems using Lyapunov equation. SIAM J. Matrix Anal. Appl. 31(1), 18–39
(2009). https://doi.org/10.1137/070683052

67. Uddin, M.M.: Computational methods for model reduction of large-scale sparse structured
descriptor systems. Dissertation, Department of Mathematics, Otto-von-Guericke University,
Magdeburg, Germany (2015). http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-6535

68. Uddin, M.M.: ComputationalMethods for Approximation of Large-Scale Dynamical Systems.
CRC Press, Boca Raton (2019). https://doi.org/10.1201/9781351028622

69. Weichelt, H.K.: Numerical aspects of flow stabilization byRiccati feedback. Dissertation, Otto-
von-Guericke-Universität, Magdeburg, Germany (2016). http://nbn-resolving.de/urn:nbn:de:
gbv:ma9:1-8693

70. Yue, Y., Feng, L., Benner, P.: An adaptive pole-matching method for interpolating reduced-
order models (2019). arXiv preprint arXiv:1908.00820 [math.NA]

https://doi.org/10.1080/00207178708933971
https://doi.org/10.1080/00207178708933971
https://doi.org/10.1137/070683052
http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-6535
https://doi.org/10.1201/9781351028622
http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-8693
http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-8693
http://arxiv.org/abs/1908.00820


MORLAB—The Model Order Reduction
LABoratory

Peter Benner and Steffen W. R. Werner

Abstract For an easy use of model reduction techniques in applications, software
solutions are needed. In this paper, we describe the MORLAB, Model Order Reduc-
tion LABoratory, toolbox as an efficient implementation of model reduction tech-
niques for dense,medium-scale linear time-invariant systems. Giving an introduction
to the underlying programming principles of the toolbox, we show the basic idea of
spectral splitting and present an overview about implemented model reduction tech-
niques. Two numerical examples are used to illustrate different use cases of the
MORLAB toolbox.

1 Introduction

For the modeling of natural processes as, e.g., fluid dynamics, chemical reactions, or
the behavior of electronic circuits, power, or gas transportation networks, dynamical
input-output systems are used

G :
{

0 = f (x(t), Dx(t), . . . , Dkx(t), u(t)),

y(t) = h(x(t), Dx(t), . . . , Dkx(t), u(t)),
(1)

with states x(t) ∈ R
n , inputs u(t) ∈ R

m and outputs y(t) ∈ R
p. The operator D j

denotes the derivative or shift operator of order j ∈ N in case of underlying
continuous- or discrete-time dynamics. Due to the demand for increasing the accu-
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racy of models, the number of states describing (1) is drastically increasing and,
consequently, there is a high demand for computational resources (time and mem-
ory) when using (1) in simulations or controller design. A solution to this problem
is given by model order reduction, which aims for the construction of a surrogate
model Ĝ, with a much smaller number of internal states x̂(t) ∈ R

r , r � n, which
approximates the input-to-output behavior of (1) such that

‖y − ŷ‖ ≤ tol·‖u‖,

for an appropriately defined norm, a given tolerance tol and all admissible inputs u,
where ŷ is the output of the reduced-order system.

A software solution for model order reduction of dynamical systems is theMOR-
LAB,ModelOrder Reduction LABoratory, toolbox. Originating from [6], the tool-
box is mainly developed as efficient open-source implementation of established
matrix equation-based model reduction methods for dense, medium-scale, linear
time-invariant systems, with its implementation compatible with MathWorks MAT-
LAB and GNU Octave. In the latest version [12], MORLAB gives a large variety
of balancing-based model reduction methods and also some non-projective meth-
ods. Most of those are not known to be implemented somewhere else. In contrast to
other software solutions, the general philosophy ofMORLAB is to work on invariant
subspaces rather than with spectral decompositions, as the model reduction routines
in the Control System ToolboxTM and Robust Control ToolboxTM in MATLAB, or
projections on hidden manifolds, as, e.g., in the M-M.E.S.S. toolbox [36] and sss-
MOR toolbox [16]. An overview about different software packages for model order
reduction can be found in the MORwiki.1 Mainly the two spectral projection meth-
ods, the matrix sign function, and the right matrix pencil disk function, are used in
the underlying implementations. Therefore, MORLAB is suited as backend source
code for multi-step model reduction approaches, for example, using a pre-reduction
step; see, e.g., [26, 37]. Additionally to model order reduction methods, the tool-
box implements efficient matrix equation solvers, system-theoretic subroutines, and
evaluation routines to examine original and reduced-order systems in the frequency
and time domain. Due to the brevity of the paper, the additional main features are
not further considered in detail.

In this paper, we will describe the underlying principles and structures of the
MORLAB toolbox and give some applications of the software. The meta data of the
latest MORLAB version [12] can be found in Table1. In the following, Sect. 2 starts
with an introduction of the programming principles that were used in MORLAB.
Afterward, Sect. 3 gives the underlying ideas of the spectral splitting, on which the
toolbox bases, followed by Sect. 4 with an overview about the implemented model
reduction methods. In Sect. 5, two applications of using MORLAB as backend soft-
ware are presented. The paper is concluded by Sect. 6.

1 https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Comparison_of_Software

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Comparison_of_Software
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Table 1 Code meta data of the latest MORLAB version [12]

Name (shortname) Model Order Reduction LABoratory (MORLAB)

Version (release-date) 5.0 (2019-08-23)

Identifier (type) https://doi.org/10.5281/zenodo.3332716 (doi)

Authors Peter Benner, Steffen W. R. Werner

Orcids https://orcid.org/0000-0003-3362-4103,
https://orcid.org/0000-0003-1667-4862

Topic (type) Model Reduction (Toolbox)

License (type) GNU Affero General Public License v3.0 (open)

Languages MATLAB

Dependencies MATLAB (≥2012b), Octave (≥4.0.0)

Systems Linux, MacOS, Windows

Website https://www.mpi-magdeburg.mpg.de/projects/morlab

2 Code Design Principles

The main aim of the MORLAB toolbox is to give efficient and comparable imple-
mentations of many different model reduction methods. Following certain design
principles, which will be explained in more detail in the upcoming subsections, the
following list of main features briefly summarizes the MORLAB toolbox.

Feature checklist

Open source and free The toolbox is running under the GNUAffero General Pub-
lic License v3.0 and is freely available on the project website
and on Zenodo.

Fast and exact Using spectral projection methods, the toolbox can outper-
form other established software in terms of accuracy and
speed.

Unified framework All model reduction routines share the same interface and
allow for quick exchange and easy comparison between the
methods.

Configurable All subroutines can be configured separately using option
structs.

Modular Each subroutine can be called on its own by the user to be
used and combined in various ways.

Portable No binary extensions are required, which allows for running
the toolbox with bare MATLAB or Octave installations.

In general, MORLAB uses spectral projection methods for all steps of the model
reduction procedure. Figure1 shows the different stages in MORLAB from the full-

https://doi.org/10.5281/zenodo.3332716
https://orcid.org/0000-0003-3362-4103
https://orcid.org/0000-0003-1667-4862
https://www.mpi-magdeburg.mpg.de/projects/morlab
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Fig. 1 General MORLAB workflow

order to the reduced-order model. First, the full-order model is decomposed into (at
most) three subsystems that can usually be considered independently of each other
for the application of model reduction techniques. This first main step, the additive
system decomposition, is discussed in more detail in Sect. 3. Afterwards the model
reduction methods are applied to the resulting subsystems. An overview of those can
be found in Sect. 4. At the end, the reduced subsystems are coupled for the resulting
reduced-order model. Based on this basic workflow, the different design principles
applied in MORLAB are explained in the following. For the sake of brevity, mainly
the model reduction routines are considered.

2.1 Toolbox Structure

The routines inMORLAB follow a strict structure and naming scheme to make them
easy to find and interpret in terms of their objective. Describing first the general
structure, the routines of the toolbox are divided by their purpose into the following
subdirectories:

checks/ Contains subroutines that are used for internal checks of data,
e.g., if the system structures fit to the model reduction methods.

demos/ Contains example scripts showing step-by-step explanations of
the different main features of the toolbox.

eqn_solvers/ Contains the matrix equation solvers.
evaluation/ Contains functions to evaluate the full-order or reduced-order

models in the time or frequency domain.
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Table 2 Currently supported system classes

Class System equations Routine name

Continuous-time standard systems
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t) ct_ss

Discrete-time standard systems
xk+1 = Axk + Buk ,

yk = Cxk + Duk
dt_ss

Continuous-time descriptor systems
Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t) ct_dss

Discrete-time descriptor systems
Exk+1 = Axk + Buk ,

yk = Cxk + Duk
dt_dss

Continuous-time second-order systems
Mẍ(t) = −Kx(t) − Eẋ(t) + Buu(t),
y(t) = Cpx(t) + Cv ẋ(t) + Du(t) ct_soss

mor/ Contains the model reduction routines.
subroutines/ Contains auxiliary and system-theoretic routines that are used

by the model reduction techniques, matrix equation solvers, or
evaluation functions.

Considering the naming scheme of MORLAB, each function starts with ml_ as
assignment to the toolbox. This makes MORLAB routines easier to distinguish from
other source codes and also allows for easy searching. Mainly, the model reduction
routines, but some subroutines are also additionally named after the system classes
they can be applied to. Currently, there are routines for continuous- (ct) and discrete-
time (dt) dynamical systems with equations that describe standard (ss), descriptor
(dss) or second-order state spaces (soss). The resulting different system classes,
supported in the latest MORLAB version, are summarized in Table2 with their
names, system equations and the corresponding naming schemes.

2.2 Function Interfaces

A typical function call inMORLAB can be seen in Fig. 2. From before, we know that
the called function is a MORLAB routine for continuous-time standard systems (see
Table2). The actual function name, bt, stands for the balanced truncation method.
Figure2 shows the principle idea in MORLAB to give an easy interface to the user.
Here, sys contains the data of the original system, while rom gives the resulting
reduced-order model in exactly the same format as the original model was given,
indicating the purpose of using reduced-order models as surrogates for the original
system. In general, MORLAB supports three different interfaces for model reduction
methods. It is possible to pass directly the system matrices to the function (e.g.,
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Fig. 2 Example function call of a model reduction routine in MORLAB

ml_ct_ss_bt(A, B, C, D, opts)) or to construct the system as an object
by using the native data type struct, with appropriate naming of fields, or the state-
space object (ss) introduced by the Control System ToolboxTM in MATLAB or the
‘control’ package inOctave. The latter format allows for easy interconnection to other
model reduction software and also for using system-theoretic routines implemented
in the two mentioned software libraries.

The second important part of the MORLAB interface for nearly all routines are
the opts and info structs, as shown in Fig. 2. Supporting the feature of config-
urability, the opts struct allows the user the rearrangement of all computational
parameters, which would be usually set by the function itself during runtime. In
general, each MORLAB function that allows the user to change optional parameters
for the computations has an opts struct for that purpose. As result, higher level
routines can contain nested structs to change computational parameters of used sub-
routines. Figure3 shows an example opts struct for theml_ct_ss_bt. This struct
again contains entries ending on opts denoting also opts structs for subroutines
that are called by the main function. Beside changing computational parameters, a
second aim of the opts struct is the a priori determination of system information.
For example, if a system is known to be stable, the additive decomposition into the
stable and anti-stable subsystems can be turned off using the opts struct to avoid
unnecessary computations. For easy application, only entries, which the user wants
to change, need to be existing in the struct. Also, the toolbox comes with an option
constructor (ml_morlabopts), which creates a complete but empty opts struct
for a given function name. The consistent naming of optional parameters between
different routines allows the easy reuse of opts structs for different functions.
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Fig. 3 Example opts struct for the ml_ct_ss_bt function

The counterpart of the opts struct is the info struct. Here, information about
the performance and results of the routine are collected. As for opts, the info
struct can be nested as it contains structs starting with info, which give information
about used subroutines. Also, this struct is used for optional outputs, e.g., projection
matrices of a model reduction method can be stored here.

2.3 Documentation

MORLAB comes with an extensive documentation that is accessible in several ways.
Each routine has a complete inline documentation, which can be displayed by the
help command, containing the syntax, description, and literature references for
background information. Besides, a complete overview about the existingMORLAB
routines with short description can be generated by help morlab. As usual for
MATLAB toolboxes, a full HTML documentation is provided in the toolbox and
demo scripts can be used as a starting how-to to get into the main features of the
toolbox.

3 Additive System Decomposition Approach

Most model order reduction methods are in a certain sense restricted with respect
to the spectrum of the underlying system matrices, e.g., the classical balanced trun-
cation method can only be applied to first-order systems with finite stable matrix
pencils. Other software solutions use therefore either an eigendecomposition of the
system matrices in the beginning or apply projections onto the hidden manifolds.
In MORLAB, this problem is solved by working directly with the corresponding
invariant subspaces of the matrix pencil. As shown in Fig. 1, this results in the addi-
tive decomposition of the full-order system into independent reducible subsystems,
in the literature known as additive decomposition of the transfer function, which
will be coupled at the end again. MORLAB has two different approaches for this
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additive decomposition based on either the solution of a Sylvester equation or on
a block-wise projection approach. This gives MORLAB the advantage of handling
unstructured systems, while staying efficient and accurate due to only computing
the necessary deflating subspaces. For both approaches, the matrix sign and disk
functions are used, as quickly defined below.

Let Y ∈ R
n×n be a matrix with no purely imaginary eigenvalues, then the Jordan

canonical form of Y can be written as

Y = S

[
J− 0
0 J+

]
S−1, (2)

where S is an invertible transformation matrix, J− contains the k eigenvalues of Y
with negative real parts and J+ the n − k eigenvalues with positive real parts. The
matrix sign function is then defined as

sign(Y ) = S

[−Ik 0
0 In−k

]
S−1, (3)

with S the transformation matrix from (2); see, e.g., [35]. Efficient computations can
be based on a Newton scheme.

Let λX − Y , with X,Y ∈ R
n×n , be a regular matrix pencil with no eigenvalues

on the unit circle and its Weierstrass canonical form be written as

λX − Y = W

[
λIk − J0 0

0 λN − J∞

]
T−1, (4)

where W, T are invertible transformation matrices, λIk − J0 contains the k eigen-
values inside the unit disk and λN − J∞ the n − k eigenvalues outside the unit disk.
The right matrix pencil disk function is then defined by

disk(Y, X) = T

(
λ

[
0 0
0 In−k

]
−

[
Ik 0
0 0

])
T−1, (5)

with T , the right transformation matrix from (4). The computation follows the
inverse-free iteration [1, 5] and a subspace extraction method [7, 38].

In the following subsections, the ideas of the additive decomposition for two
general system classes are quickly summarized.

3.1 Standard System Case

Assume a continuous-time standard system
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ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(6)

with A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m , A having no eigenvalues on the
imaginary axis and its representation in the frequency domain by the corresponding
transfer function

G(s) = C(s In − A)−1B + D,

for s ∈ C. Most model reduction methods can only be applied to asymptotically
stable systems, which means in case of (6) that A has only eigenvalues with negative
real parts. Nevertheless, model reduction methods can be applied by decomposing
the system (6) into two subsystems, where the system matrices contain either the
stable or anti-stable system part, i.e., we search for a transformation matrix T such
that

T−1AT =
[
As 0
0 Au

]
,

where As contains only the stable and Au the anti-stable eigenvalues. Using T as
state-space transformation and partitioning accordingly the input and outputmatrices
yields the additive system decomposition of the system’s transfer function

G(s) = Gs(s) + Gu(s).

Applying the matrix sign function (3) to A gives the appropriate spectral splitting,
where the spectral projectors onto the deflating subspaces are given as

Ps = 1

2
(In − sign(A)) and Pu = 1

2
(In + sign(A)).

Let QR�T = In − sign(A) be a pivoted QR decomposition, the dimension of the
deflating subspace corresponding to the eigenvalues with negative real part is given
by 0.5(n + tr(sign(A))), and we get

QTAQ =
[
As WA

0 Au

]
.

By solving the standard Sylvester equation,

−Au X + X As − WA = 0, (7)

the final transformation matrix and its inverse are given by
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T = Q

[
Ik X
0 In−k

]
and T−1 =

[
Ik −X
0 In−k

]
QT. (8)

The MORLAB implementation uses the Newton iteration with Frobenius norm
scaling for the computation of the matrix sign function as well as a matrix sign
function-based solver for the Sylvester equation (7). Note that the actual transforma-
tion matrix (8) is never set up completely but only applied block-wise on the original
system to avoid unnecessary computations.

Remark 1 (Splitting of discrete-time standard systems) In case of discrete-time
standard systems, the implementation involves the matrix sign function of (A +
In)−1(A − In) and the solution of the discrete-time Sylvester equation A−1

u X As −
X − A−1

u WA = 0 for doing the spectral splitting with respect to the unit circle.

3.2 Descriptor System Case

Now, we consider the case of continuous-time descriptor systems

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(9)

with E, A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m , λE − A having no finite
eigenvalues on the imaginary axis and its representation in the frequency domain
by the corresponding transfer function

G(s) = C(sE − A)−1B + D, s ∈ C.

In contrast to the previous section, an additional splitting for the algebraic part cor-
responding to the infinite eigenvalues of λE − A is necessary, i.e., we search for
transformation matrices W, T such that

W (λE − A)T = λ

⎡
⎣Es 0 0

0 Eu 0
0 0 E∞

⎤
⎦ −

⎡
⎣As 0 0

0 Au 0
0 0 A∞

⎤
⎦ , (10)

where λEs − As contains the finite stable eigenvalues, λEu − Au the finite anti-
stable eigenvalues and λE∞ − A∞ only infinite eigenvalues. Then, the system and
its transfer function accordingly decouple into the different parts

G(s) = Gs(s) + Gu(s) + G∞(s),

as shown in Fig. 1. For this purpose, the [14, Theorem 3] is used to construct block-
wise orthogonal transformation matrices.
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First, the splitting of the algebraic part is performed as G = Gsu + G∞ by using
the matrix disk function. In fact, the inverse-free iteration is applied to the matrix
pencil λ(αA) − E for appropriate scaling parameter α to compute matrices Ã and
Ẽ , whose null spaces are the deflating subspaces of λ(αA) − E corresponding to
the eigenvalues inside and outside the unit circle, respectively; see [1, 5]. Using a
stabilized subspace extractionmethod [7, 38], the orthogonal projectionmatrices can
be obtained and according to [14] combined into appropriate transformationmatrices
to get

W̃ (λE − A)T̃ = λ

[
Esu 0
0 E∞

]
−

[
Asu 0
0 A∞

]
,

where λEsu − Asu contains all the finite eigenvalues. Afterward, the generalized
matrix sign function, working implicitly on the spectrum of E−1

su Asu , is used such that
the null spaces of Esu − sign(Asu, Esu), and Esu + sign(Asu, Esu) are the deflating
subspaces corresponding to the eigenvalues left and right of the imaginary axis,
respectively. Using the same subspace extraction method and block transformation,
the block diagonalization (10) is accomplished.

Remark 2 (Splitting of discrete-time descriptor systems) In the discrete-time
descriptor case, the second splitting with respect to the imaginary axis needs to be
replaced by a splitting with respect to the unit disk. Although, this is the actual nature
of the matrix disk function, for performance reasons, the generalized matrix sign
function is used as sign(Asu − Esu, Asu + Esu) replaces the sign functions above.

4 Model Reduction with the MORLAB Toolbox

Most of the model reduction methods inMORLAB belong to the class of projection-
based model reduction, i.e., we are searching for truncation matrices W, T ∈ R

n×r ,
which are used to project the state space, x ≈ T x̂ , and the corresponding equations.
For example, given a continuous-time descriptor system (9), the reduced-order sys-
tem is computed by

WTET︸ ︷︷ ︸
Ê

˙̂x(t) = WTAT︸ ︷︷ ︸
Â

x̂(t) + WTB︸ ︷︷ ︸
B̂

u(t),

ŷ(t) = CT︸︷︷︸
Ĉ

x̂(t) + D︸︷︷︸
D̂

u(t),
(11)

with Ê, Â ∈ R
r×r , B̂ ∈ R

r×m , Ĉ ∈ R
p×r and D̂ = D. In the following, a very brief

overview about the implementedmodel reductionmethods inMORLAB is provided.



404 P. Benner and S. W. R. Werner

4.1 First-Order Methods

For the sake of generality in theMORLAB setting, only themethod abbreviations are
mentioned here. According to the naming scheme, see Sect. 2 and Fig. 2, the abbre-
viations have to be connected with the system classes to give the actual MORLAB
function.

One of the oldest ideas for model reduction, and fitting with the spectral splitting
approach from before, is modal truncation.While originally, a part of the eigenvector
basis was used for the projection [18], the deflating subspaces from Sect. 3 are an
appropriate choice when using shifting and scaling on the spectrum of the system
matrices.

A large part of themodel reductionmethods inMORLABare so-called balancing-
relatedmethods. In classical balanced truncation [29], the continuous-timeLyapunov
equations

AP + PAT + BBT = 0,

ATQ + QA + CTC = 0,
(12)

are solved for the system Gramians P and Q, which are then used by, e.g., the square
root or balancing-free square root method to compute the reduced-order projection
matrices; see, e.g., [27, 40]. The balancing-related methods are based on the idea
of balanced truncation but replace the Lyapunov equations (12) by other matrix
equations, which infuse different properties to the resulting methods. Some com-
ments on the implementation of balancing-related methods in MORLAB are given
for previous versions in [10] for the standard system case and the general idea of the
implementation of model reduction for descriptor systems is given in [11].

Also, the Hankel-norm approximation is implemented. This method is non-
projection-based, i.e., by construction, there are no W, T fulfilling (11) and also
D̂ = D does not hold anymore. This method solves the optimal approximation prob-
lem in the Hankel semi-norm and is also a good guess for the H∞ approximation
problem [14, 21]. It can be seen as a refinement of the balanced truncation method
since it is also based on the solution of (12).

As an overview for the current MORLAB version, Table3 shows all the imple-
mented model reduction methods for first-order continuous-time systems, with their
routine abbreviation, comments on their properties and references for the standard
and descriptor versions.

Remark 3 (Discrete-time model reduction methods) Currently, only the methods
mt,bt, and lqgbt have discrete-time implementations for the standard and descrip-
tor system cases. Discrete-time equivalents of the continuous-time matrix equations
are solved for those methods.
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Table 3 First-order model reduction methods

Method Routine name Comment References

Balanced truncation bt preserves stability [27, 29]

Balanced stochastic
truncation

bst preserves minimal
phase

[9, 22]

Frequency-limited
balanced truncation

flbt local frequency
approx.

[20, 24]

Time-limited balanced
truncation

tlbt local time approx. [20, 23]

LQG balanced
truncation

lqgbt unstable system
reduction

[9, 25]

H∞ balanced
truncation

hinfbt unstable system
reduction

[30]

Positive-real balanced
truncation

prbt preserves passivity [19, 34]

Bounded-real
balanced truncation

brbt preserves contractivity [32, 34]

Modal truncation mt preserves spectrum
parts

[8, 18]

Hankel-norm
approximation

hna best approx. in
Hankel-norm

[14, 21]

4.2 Second-Order Methods

In case of systems with second-order time derivatives, the toolbox implements dif-
ferent structure-preserving approaches. Given the system structure from Table2, the
reduced-order models will also have the form

M̂ ¨̂x(t) = −K̂ x̂(t) − Ê ˙̂x(t) + B̂uu(t),

ŷ(t) = Ĉ p x̂(t) + Ĉv
˙̂x(t) + D̂u(t),

(13)

with M̂ Ê, K̂ ∈ R
r×r , B̂u ∈ R

r×m , Ĉ p, Ĉv ∈ R
p×r and D̂ ∈ R

p×m .MORLAB imple-
ments the second-order balanced truncation and balancing-related methods for this
purpose. Originating in [17, 28, 33], the second-order balanced truncation approach
uses a first-order realization of the original second-order system and then restricts to
parts of the system Gramians to result in (13). In [13], a collection of the different
construction formulas can be found that are all implemented inMORLAB, as well as
the frequency- and time-limited second-order balanced truncation methods, which
are also implemented inMORLAB. The naming of the methods follows the previous
subsection.
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5 Numerical Examples

In the following, two benchmark examples are shown to demonstrate possible appli-
cations of the MORLAB toolbox. The experiments reported here have been exe-
cuted on a machine with 2 Intel(R) Xeon(R) Silver 4110 CPU processors running at
2.10GHz and equipped with 192GB total main memory. The computer is running on
CentOS Linux release 7.5.1804 (Core) and using MATLAB 9.4.0.813654 (R2018a)
with the MORLAB toolbox version 5.0 [12].

The source code of the implementations used to compute the presented
results can be obtained from

https://doi.org/10.5281/zenodo.3865495

and is authored by Jens Saak and Steffen W. R. Werner.

5.1 Butterfly Gyroscope

As a first numerical example, we consider the butterfly gyroscope benchmark exam-
ple from [31]; see [15] for the background. We will use the MORLAB toolbox
as backend software for a two-step model reduction approach. Thereby, a fast pre-
reduction step is used to create an accurate, medium-scale approximation of the orig-
inal model and, afterward, more sophisticated model reduction methods are used to
construct the final reduced-order model, see, e.g., [26, 37]. The model we consider
now involves second-order time derivatives as it has the form

Mẍ(t) + Eẋ(t) + Kx(t) = Buu(t),

y(t) = Cpx(t),
(14)

with a state-space dimension n = 17 361 and m = 1, p = 12 inputs and outputs,
respectively.

As in [37], we use the structure-preserving interpolation framework from [4] as an
efficient pre-reduction method that preserves the system structure in an intermediate
medium-scale approximation. Therefore, we compute the following matrices:

(σ 2
j M + σ j E + K )−1Bu = Vj and (σ 2

j M + σ j E + K )−HCT
p = Wj ,

with the interpolation point σ j ∈ C. For our experiments, we choose the interpolation
points as ±logspace(0, 8, 100)i and concatenate afterwards all Vj and Wj

into a single truncation matrix, which is orthogonalized using the economy size QR
decomposition. This approach leads to an intermediate reduced-order model with the
structure as in (14) and state-space dimension 2 600. The frequency response of the
original model and intermediate approximation can be seen in Fig. 4. The computa-

https://doi.org/10.5281/zenodo.3865495
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Fig. 4 Frequency-domain results of the intermediate reduced-order model for the butterfly gyro-
scope

tion of the frequency response of the original system took around 4.3min, while the
computation of the intermediate reduction took 2.4 and 3.4min for the computation
of the intermediate model’s frequency response. The intermediate approximation is
very accurate as it can be seen by the relative error in the right plot of Fig. 4, which
was computed by

‖G(iω) − Ĝ(iω)‖2
‖G(iω)‖2 ,

in the frequency range ω ∈ [100, 108].
The intermediate model is still too large for practical application, therefore, we

apply now the second-order balanced truncation methods from MORLAB to it. The
toolbox supports an all-at-once approach for balancing-related model reduction, i.e.,
the underlying Gramians are computed once and then used for several different
reduced-order models. Therefore, we can compute all 8 different second-order bal-
ancing formulas from [13] at the same time and compare them afterward. Those
computations took around 1.5min. Figure5 shows the resulting reduced-order mod-
els in the frequency domain with their relative approximation errors. Both plots were
directly generated with the MORLAB routine ml_sigmaplot, which computes
sigma and error plots for an arbitrary number of given models. The computation of
all 8 frequency responses for the final reduced-order models took 0.34s. The notation
in the legend follows the formulas from [13]. Except for the pm and vpm models, all
other reduced-order models are asymptotically stable. Clearly, the winners are p, v,
pv, and so, which all have, in principle, the same size and error behavior.
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Fig. 5 Frequency-domain results of the final reduced-order models for the butterfly gyroscope

5.2 Parametric Thermal Block Model

As second example, we consider the parametric thermal block model as described in
a Chap. 16 of this volume with the single parameter setup; see also [39]. Following
this description, we consider the first-order generalized state-space system

Eẋ(t;μ) = A(μ)x(t;μ) + Bu(t),

y(t;μ) = Cx(t;μ),
(15)

where A(μ) = A0 + μ (0.2A1 + 0.4A2 + 0.6A3 + 0.8A4) ,with the parameterμ ∈
[10−6, 102], the state-space dimension n = 7 488 and m = 1, p = 4 inputs and out-
puts, respectively. The matrix pencil λE − A(μ) is finite and stable for all parameter
valuesμ in the range of interest. This example is also used by other reported software
packages in this volume for easier comparison; see Chap. 7, 17, 18.

Although MORLAB does not implement parametric system classes yet, we will
use the toolbox as model reduction backend for two-step parametric model reduction
methods, i.e., we useMORLAB for the computation of nonparametric reduced-order
models, which are afterward combined into a parametric reduced-order model. In
the following, we will introduce some concepts of two-step parametric model order
reduction, which are then applied to (15).

The first idea is taken from [3]. Given some nonparametric reduced-order models
G j computed for parameter samplesμ j , j = 1, . . . , k, a global parameter interpolat-
ing system can be constructed in the frequency domain using Lagrange interpolation
as

Ĝ(s, μ) =
k∑
j=1

� j (μ)G j (s), (16)

http://dx.doi.org/10.1007/978-3-030-72983-7_16
http://dx.doi.org/10.1007/978-3-030-72983-7_7
http://dx.doi.org/10.1007/978-3-030-72983-7_17
http://dx.doi.org/10.1007/978-3-030-72983-7_18
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with � j (μ) Lagrange basis functions in the parameter μ with the knot vector
μ1, . . . , μk . Rewriting the sum (16) gives a realization for the interpolating reduced-
order model

Ê =
⎡
⎢⎣
Ê1

. . .

Êk

⎤
⎥⎦ , Â =

⎡
⎢⎣
Â1

. . .

Âk

⎤
⎥⎦ ,

B̂ =
⎡
⎢⎣
B̂1
...

B̂k

⎤
⎥⎦ , Ĉ = [

�1(μ)Ĉ1, . . . , �k(μ)Ĉk
]
,

where Ê j , Â j , B̂ j , Ĉ j are the matrices of the local reduced-order models. Thinking
of other scalar function approximation methods, easy extensions of (16) come into
mind. Replacing the Lagrange basis functions � j (μ) by linear B-splines b1, j (μ)

over the knot vector μ1, . . . , μk , we can construct a piecewise linear interpolating
reduced-order model. Another idea would be to use the variation diminishing B-
spline approximation, which just needs some modifications of the knot vector used
for the basis functions. In general, this transfer function interpolation-based approach
comes with several advantages. First, it does not matter how the local reduced-order
models were computed or which size they have. If all local reduced-order models are
stable, the global interpolating one will be stable by construction, too. Also, instead
of setting up the complete reduced-order model, it can be advantageous to use the
local reduced-order models for simulations in parallel and combine the results at the
end by the parametric output matrix.

A different approach is given by the piecewise approximation; see, e.g., [2]. For
this method, let the local reduced-order models be computed by projection methods
and the truncationmatrices be collected asW = [W1, . . . ,Wk] and T = [T1, . . . , Tk].
The parametric reduced-order system is then computed using W, T as truncation
matrices on the original system, as in (11). Concerning the parametric matrix A(μ)

in (15), we note that

WTA(μ)T = WTA0T + μ
(
0.2WTA1T + 0.4WTA2T + 0.6WTA3T + 0.8WTA4T

)
= Â0 + μ

(
0.2 Â1 + 0.4 Â2 + 0.6 Â3 + 0.8 Â4

)
.

Using this method, we can preserve the exact parameter dependency in the reduced-
order model. Variants of it, for example, use column compression of T and W to
control the size of the resulting reduced-order model. Also, it needs to be noted
that by concatenation of the projection matrices, original properties like stability
preservation can be lost. Therefore, modifications like a one-sided projection by
combining [W, T ] into a single basis can be used to handle most systems.

For our numerical example, we will use the following setup. For the parame-
ter sampling points, we use 10 logarithmically distributed Chebyshev roots, i.e., let
ν1, . . . , νk be the Chebyshev roots in the interval [−6, 2], the sampling points are
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given as μ j = 10ν j . The local reduced-order models are computed by the balanced
truncation routine from MORLAB (ml_ct_dss_bt) using 10−4 for the absolute
error bound and we save the reduced-order models as well as the truncation matrices
for the parametric approaches. The computation of the 10 nonparametric reduced-
order models took 32.4min. The following different parametric reduced-order mod-
els are then computed using the nonparametric results from MORLAB:

• two-sided piecewise approximation (TwoPW),where the final truncated projection
matrices were compressed using singular value decompositions and a relative
truncation tolerance of 10−4,

• one-sided piecewise approximation (OnePW), where the final truncated projec-
tion matrix was compressed using the basis concatenation and the singular value
decomposition with relative truncation tolerance 10−4,

• transfer function interpolation using Lagrange basis functions (InterpLag),
• transfer function interpolation using linear B-splines (InterpBspline),
• transfer function approximation using the variation diminishing approximation
with quadratic B-spline basis functions (VarDABspline).

Figure6 shows the results in the frequency domain, where we computed the point
wise relative errors as

‖G(iω,μ) − Ĝ(iω,μ)‖2
‖G(iω,μ)‖2 ,

in the ranges ω ∈ [10−4, 104] and μ ∈ [10−6, 102]. The piecewise methods, TwoPW
and OnePW, are the clear winners of the comparison. We note that TwoPW is unsta-
ble for all parameters, while OnePW is stable. Also, the interpolation approaches
work nicely, where the interpolation property is clearly visible in the plots. The vari-
ation diminishing B-spline result, VarDABspline, seems to be a smoother version of
InterpBspline.

In the time domain, we simulate the parametric systems using a pre-sampledwhite
noise input signal. The relative errors shown in Fig. 7 are computed by

√√√√ 4∑
j=1

|y j (t;μ) − ŷ j (t;μ)|2
|y j (t;μ)|2

in the ranges t ∈ [0, 1] and μ ∈ [10−6, 102]. The TwoPW is not shown in Fig. 7,
since due to the instability in all parameters, no useful results were computed during
the simulation. For the rest, we see that again OnePW performs overall very good.
Also, we see that the B-spline approaches and classical Lagrange interpolation give
more or less the same results. The computation times for the frequency responses
as well as for the time simulations as shown in Figs. 7 and 6 for 100 logarithmically
equidistant chosen test parameters are given in Table4.
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Fig. 6 Relative errors in the frequency domain of different parametric extensions for the thermal
block model
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Fig. 7 Relative errors in the time simulation of different parametric extensions for the thermal
block model

Table 4 Computation times of frequency responses and time simulations for the parametric thermal
block model for 100 test parameters in seconds

System Frequency response Time simulation

Original model 647.51 31.65

TwoPW 1.32 —

OnePW 2.29 0.71

InterpLag 2.17 1.10

InterpBspline 2.23 0.69

VarDABspline 2.20 0.70

6 Conclusions

We presented the MORLAB toolbox as an efficient software solution for model
reduction of dense,medium-scale linear time-invariant systems.Wegave an overview
of the main features and structure of the toolbox, as well as underlying programming
principles. An important point when considering unstructured systems is the spectral
splitting, which we showed inMORLAB to be based on spectral projection methods.
Following the computational steps led to an overview of the implemented model



MORLAB—The Model Order Reduction LABoratory 413

reduction methods in MORLAB. We gave two numerical examples to illustrate how
MORLAB can be used as backend software for different system types. In the first
example, MORLAB provided the efficient, structure-preserving implementation of
sophisticated model reduction methods that are used in two-step approaches. In the
second example, we used MORLAB to generate local reduced-order models that
were afterward combined by different techniques to construct parametric reduced-
order systems.

Acknowledgements This work was supported by the German Research Foundation (DFG)
Research Training Group 2297 “MathCoRe”, Magdeburg.
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