
Chapter 13
A Comparative Study on Multi-objective
Evolutionary Algorithms
for Tri-objective Mean-Risk-Cardinality
Portfolio Optimization Problems

Georgios Mamanis

Abstract In this research paper we experimentally investigate three state-of-the-art
evolutionary multi-objective optimization algorithms and measure their efficiency
and effectiveness in problems of multi-objective portfolio optimization. Especially
we solve the mean-risk-cardinality portfolio optimization problem with six different
measures of risk. Three different modern and state-of-the-art Multi-Objective Evolu-
tionary Algorithms (MOEAs) are employed: Strength Pareto Evolutionary Algo-
rithm (SPEA2), Multi-Objective Evolutionary Algorithm based on decomposition
(MOEA/D) and S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-
EMOA). Experimental results show that the best algorithm considering the C metric
is MOEA/D while the best algorithm considering the hypervolume metric is SPEA2
while being the fastest approach. This suggests that the best approach for solving
the problem is to run all the algorithms for a number of replicates and take the elite
non-dominated solutions from the combined pool of solutions generated by the three
algorithms.

Keywords Portfolio optimization · Portfolio selection · Multi-objective
evolutionary algorithms · Multi-objective optimization

13.1 Introduction

Portfolio optimization constitutes one of the most important problems of financial
economics. Actually it is one of the two important problems in financial economics.
Financial economics is essentially concerned with two questions: how much to save
and how to save, that is, how to invest income not consumed [18]. Generally, the
problem consists of finding an optimal distribution of the available funds among
various assets. A fundamental theory for solving this problem was given by Harry
Markowitz who introduced the mean-variance model [40]. In this model, variance
is used to define risk while mean is used to define the performance/reward of the
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portfolio. The mean-variance model results in a bi-objective quadratic optimiza-
tion problem. There are two conflicting objective functions, mean and variance. The
expected return (mean) should be maximized while variance should be simultane-
ously minimized. The solution of this multi-objective optimization problem provides
a special solution set which is called efficient in modern portfolio theory parlance
and gives the best trade-off portfolios between mean and variance. The image of the
efficient set in mean-variance space determines the efficient frontier [25]. The only
constraints that are utilized in the Markowitz’s mean-variance model are the budget
constraint which guarantees that all the available capital is invested (i.e. the fractions
invested in each asset must sum to one) and the non-negativity constraints which
forbid short-selling (i.e. the fractions invested in each asset must be non-negative).
For finding the efficient frontier with these constraints, efficient exact algorithms
that rely on quadratic optimization exist. Markowitz himself proposed the critical
line method.

The research on portfolio selection is now being focused on three directions: (i)
the development of different measures of risk [50], (ii) the introduction of additional
objectives (beyond mean and risk) and (iii) the introduction of additional real-world
constraints (beyond budget and non-negativity constraints) [2].

Many additional constraints can be considered as objectives. In multi-objective
optimization, as pointed out in [55], “we distinguish an objective from a constraint
when it is not easy to fix a right-hand side value for the constraint without knowing
the levels of the other objectives”. In this study we solve the mean-risk-cardinality
portfolio optimization problem with various measures of risk. Thus the cardinality
constraint is considered as additional objective to the classical mean-risk portfolio
model as it is exceptionally hard for the decision maker to know on beforehand the
ideal number of assets that should be added in his/her portfolio without looking at
all the tradeoffs between risk, return and the cardinality of the portfolio. Regardless,
a financial investor may lose significant portfolios with substantial tradeoff between
the objectives when he/she is compelled to fix the number of financial securities in
the portfolio on in advance. Hence, we focus on the second category of including
additional objectives in portfolio optimization problem.Multi-objective optimization
is a natural and promising field of study for portfolio optimization.

This paper extends the work done by Anagnostopoulos and Mamanis [2], by
considering different risk measures in the mean-risk-cardinality portfolio optimiza-
tion model. Anagnostopoulos and Mamanis [2] consider only the mean-variance-
cardinality portfolio optimization model. Furthermore, the paper of [2] compares
only Pareto-based multi-objective evolutionary algorithms (MOEAs). This study
compares three modern, state-of-the-art, representative MOEAs as identified in the
recent paper of [26].

According to [26], there are right now three fundamental ideal models for MOEA
designs. These are the (i) Pareto-basedMOEAs, (ii) Indicator-basedMOEAs and (iii)
Decomposition-basedMOEAs.Thedistinction between these algorithms is primarily
because of differences in the selection operators and are these operators that are
actually compared. From the first category we choose SPEA2 as it was performed
best in themean-variance-cardinality portfolio optimization problem of [2]. From the
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second category we choose as representative algorithm the SMS-EMOA (S Metric
Selection Evolutionary Multi-objective Optimization Algorithm), [27] as suggested
by the tutorial of [26] and for the same reason from the third category we choose
MOEA/D (Multi-objective Evolutionary Algorithm based on Decomposition) [64].

The portfolio optimization models that will be studied have been proposed theo-
retically in the specialized literature but they have never been solved. Their solution
consist a contribution to portfolio management. Furthermore, the algorithms have
been applied, tested and compared for the first time in this problem thus making
a contribution to methodology. The algorithms have proved their effectiveness in
artificial test functions but they must also be tested in real-world problems.

The remainder of the paper is organized as follows. InSect. 13.2 the three-objective
portfolio selection problem considered in this research is described. Section 13.3
presents the three multiobjective evolutionary algorithms and how they were imple-
mented in this particular problem. Section 13.4 presents a literature review on multi-
objective evolutionary algorithms for portfolio optimization problems. Section 13.5
is devoted to numerical results, and some concluding remarks are presented in
Sect. 13.6.

13.2 Portfolio Optimization

The problem of portfolio selection comprises of finding a best allocation of the
available funds among various assets. There are twowell establishedmodels for port-
folio choice under risk and uncertainty: the expected utility maximization/ stochastic
dominance approach and the reward-risk models [51].

The classical portfolio optimization model considers a one investment period
and n available assets for investment. The investor ought to decide the proportion
x = (x1, . . . , xn) of the primary funds to be invested in the available assets, where
the decision variable wi is the weight assigned in risky asset i = 1, …, n. The
return on each (risky) asset which is considered for consideration in the portfolio is
a random variable Ri. The investor’s objective is to maximize the random portfolio
return R(x) = ∑n

i=1 xi Ri under the constraint that the sum of the weights, being
proportions, must aggregate to one

∑n
i=1 xi = 1 (i.e. it is assumed that the investor

is fully invested).
Optimality between different random variables is not an obvious concept and

the debate on the choice of a criterion with respect to which one should optimize
the portfolio optimization is still open [20]. As stated above we will present the bi-
objectivemean-riskmodel for portfolio choice and its extension to themulti-objective
portfolio optimization models.

SinceMarkowitz’s fundamental paper, the issue of picking among various random
variables R(x) is figured as a mean-risk bi-objective optimization problem, where
the mean portfolio return is maximized, while a risk measure is minimized depen-
dent upon a bunch of constraints that characterize the feasible set of portfolios. The
problem is multi-objective in nature, actually bi-objective. There are two conflicting
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objective functions, mean and risk. The expected return (mean) should bemaximized
while risk should be at the same timeminimized.Aportfolio that simultaneously opti-
mizes the twoobjective functions does not exist. Thus, the optimal trade-off portfolios
between the two objectives,mean and risk are hunted. These trade-off portfolios form
a special solution set which is called efficient in modern portfolio theory parlance.
The image of the efficient set in mean-risk space defines the so called efficient fron-
tier [25]. The intention of bi-objective optimization and in general multi-objective
optimization is to find the efficient frontier and the set of efficient solutions. This
is also in accordance with the Markowitz’s approach for portfolio selection which
suggests solving the portfolio choice problem using a two-step process. The first
step requires the computation of the efficient frontier and the portfolios that define
the efficient set. The second step involves the choice of a portfolio from this fron-
tier that reflects best the investors’ tolerance towards risk. The bi-objective portfolio
optimization problem that must be solved is given below.

max μ(x)

min ρ(x)

s.t. x ∈ X =
{

x ∈ Rn|
n∑

i=1

xi = 1, xi ≥ 0

}

(13.1)

The set of efficient portfolios is comprised by all feasible portfolios which are not
dominated by any other portfolio in the feasible set.

E = {
x1 ∈ X |�x2 ∈ X : x2 � x1

}
. (13.2)

The symbol� stands for the Pareto dominance relation. In themean-risk portfolio
management context a solution x2 is said to dominate a solution x1 if μ(x2) > μ(x1)
and ρ(x2) ≤ ρ(x1) or μ(x2) ≥ μ(x1) and ρ(x2) < ρ(x1).

The image of the efficient set in the objective space defines the efficient frontier
(or non-dominated frontier).

EF = {(ρ(x), μ(x)), x ∈ E}. (13.3)

Harry Markowitz established the mean-variance model [40]. In this model, vari-
ance is used to measure the risk ρ(x) while mean is used to define the return on the
portfolio. The only constraints that are utilized in the Markowitz’s mean-variance
model are the budget constraint which guarantees that all the available funds are
invested (i.e. the fractions invested in each asset must sum to one) and the non-
negativity constraints which forbid short-selling (i.e. the fractions invested in each
asset must be non-negative).

For computing the variance and other risk measures we need the following nota-
tion. It is assumed for every asset return a discrete probability distribution with S
states of nature. The discrete probability distribution can be produced using any
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scenario generation technique or by using historical simulation. In this paper, we use
the historical approach.

Let rjs be the return of asset j under scenario s. All scenarios are considered equally
likely, thus ps = 1/S. For any portfolio x its return under scenario s is given by the
following equation:

zs(x) =
n∑

j=1

r js x j , s = 1, . . . , S. (13.4)

Thus we have a set of S returns equally likely.
The mean of the portfolio is therefore calculated using the formula

μ(x) =
S∑

s=1

zs(x)ps . (13.5)

It is known from probability theory that the expected return or mean is the sum of
the possible values of the random variable times the probability each possible value
has. All these theory applies to discrete random variables.

The variance of the portfolio is given by

V (x) = 1

S

S∑

s=1

(zs(x) − μ(x))2. (13.6)

Variance measures the mean value of the squared distribution of each value of the
discrete random variable from its mean or expected value.

Other than variance several risk measures has also been proposed thus defining
different mean-risk models according to the risk measure used. The measures of risk
that have been proposed are: the Mean Absolute Deviation (MAD), Semi-variance,
Value-at-Risk, Expected Shortfall, Maximum Loss [50].

An advantage of these measures of risk is that their implementation does not need
any distribution assumption of returns to be made. Accordingly, we count on the
non-parametric methods to estimate these quantities [9].

The semi-variance of the portfolio is given by

SV (x) = 1

N

S∑

s=1

[
max(0, μ(x) − zs(x))

2
]
, (13.7)

where N is the total number of observations below the mean.
Semi-variance like variance measures the mean of the squared value of the values

of the discrete random variable except that it counts only the values that are below
the mean or expected return of the random variable.
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The Value-at-Risk (VaR) at a given confidence level α is the maximum level of
loss that the portfolio will not exceed with a probability α. Probability α is a user
defined parameter and is usually set at a very small number (e.g. 0.01, 0.05 or 0.1) in
order to account only for extreme losses. In this study we use α = 0.1. The negative
sign in the VaR equation shown below is used in order to describe loss since zs(w)
describes return.

VaRa(x) = − inf

⎧
⎨

⎩
z(sa)(x)|

sa∑

j=1

p( j) ≥ a

⎫
⎬

⎭
, (13.8)

where z(j) are the ordered returns such that z(1)(x) ≤ z(2)(x) ≤ · · · ≤ z(s)(x) and p(j)
their corresponding probabilities of occurrence.

Expected shortfall (ES) is the average loss conditioned that exceeds VaR.

ESa(x) = −E{zs(x)|zs(x) < −VaRa(x)} (13.9)

ESa(x) = −
∑S

s=1 zs(x) 1{zs (x) <−VaRa(x)}
∑S

s=1 1{zs (x) <−VaRa(x)}
(13.10)

where 1{zs (x) <−VaRa(x)} is 1 if the expression in brackets is true and zero otherwise.
Thus we consider only the returns of the discrete random variable that are below
the Value-at-Risk described above and we divide it by the number of occurrences of
such numbers. The minus sign is used to define loss since z defines return.

The maximum loss is equal to: ML(x) = −z(1)(x). (13.11)

Maximum loss is the minimum value of the possible values of the discrete random
variable. The minus sign is used to define loss since z defines returns. For example
a return of −2% is equal to a loss of 2%.

The mean absolute deviation is calculated using the following equation:

MAD(x) = 1

S

S∑

s=1

|zs(x) − μ(x)|. (13.12)

Recently, numerous researchers have perceived the practicality of incorporating
extra objectives beyond mean and risk into the portfolio optimization model [6, 24,
62]. A very good theoretical work on multi-objective portfolio optimization models
has been performed in [54–56]. In these studies, the authors defined the so-called
suitable-portfolio investor who is additionally concerned with the cardinality of the
portfolio, the maximum amount invested in any asset, the social responsibility, the
amount invested in R&D and so forth. The additional objective functions converts
the efficient frontier into a surface in a high dimensional space.
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In this research, additionally to risk and return we take into account an extra
discrete objective function which minimizes the cardinality of the portfolio. The
objective function is includedby summingup the number of non-negative proportions
in the portfolio and should be minimized.

min card(x) =
n∑

i=1

1{xi>0} (13.13)

Including a third objective (in addition tomean and risk) into the portfolio selection
model the efficient frontier is transformed into a surface in the three-dimensional
space and computing the exact efficient surface is very difficult if not impossible.
However, a discrete approximation of the efficient surface is usually acceptable. The
Pareto dominance relation described above for the mean-risk portfolio optimization
problem should be transformed. In the mean-risk-cardinality portfolio optimization
problem we say that a portfolio x2 dominates another portfolio x1 if μ(x2) ≥ μ(x1),
ρ(x2) ≤ ρ(x1), card(x2) ≤ card(x1) with at least one strict inequality.

In sum, in this research we study the mean-risk-cardinality portfolio selection
problem with non-negativity constraints. Except the added difficulty of the incor-
poration of a third criterion, there is a special one which is imposed by the non-
smoothness of the extra objective function. These issues have led us to investigate
the ability of the state-of-the-art evolutionary multi-objective algorithms in order to
compute a good approximation of the true efficient surface.

13.3 Multi-objective Evolutionary Algorithms

Evolutionary algorithms (EAs) are population-based, random search heuristics that
imitate the principles of Darwin’s theory of evolution, and are appropriate for tack-
ling optimization problems with tough search landscapes (e.g., large solution spaces,
multimodal search spaces, constraints, nonlinear and non-differentiable functions,
multiple objectives). The last capacity of EAs to take care of situations with multiple
objectives has offered ascend to the field of evolutionary multi-objective optimiza-
tion. The EAs intended for multi-objective optimization problems are called Multi-
objective Evolutionary Algorithms (MOEAs) and they contrast from traditional
EAs mainly in the selection operator. The main supremacy of MOEAs is that they
produce a good approximation of the efficient frontier in a single run and within little
computing time.

In this study we use three modern, representative MOEAs, as are identified in
the recent paper of [26] namely SPEA2 [68], MOEA/D [64] and SMS-EMOA [27]
to investigate the multi-objective portfolio selection model domain for the optimal
trade-off solutions optimistically to give a good estimation of the (unknown) effi-
cient set and its corresponding efficient surface. Furthermore, an additional goal of
this study is to compare the three algorithms in the mean-risk-cardinality portfolio
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optimization problem making a contribution in methodology and showing a new
application domain for intelligent algorithms.

SPEA2 is a prevalent and powerful Pareto-based MOEA. It adopts a typical set of
possible solutions-individuals together with a repository-archive so as to guarantee
the conservation of good non-dominated solutions. From the outset, the repository is
set to the empty set and the population (of size Npop) to a random sample of the solu-
tion space. At each iteration-generation, and while a halting criterion is not fulfilled,
SPEA2 calculates the fitness of the solutions-individuals fromboth the repository and
the normal population. SPEA2 uses a blended procedure to underline non-dominated
individuals dependent on the dominance rank and dominance count method, and a
grouping method to preserve diversity. To start with, every solution is appointed a
strength value which is equal to the number of solutions that dominates. From that
point, the fitness of an individual is basically the sum total of the strengths of its
dominators. In this manner, the non-dominated individuals have zero fitness. Mini-
mization of fitness is assumed. The density information is consolidated by adding
to the fitness value of every solution a value that is equal to the inverse of the k-th
smallest Euclidean distance (measured in objective space) plus two. Next, the repos-
itory is hopefully upgraded by the best solutions of the repository and the normal
population. The solutions in the archive experience a reproduction scheme which
is equivalent to traditional evolutionary algorithms and the outcome (the offspring
population) comprises the population of the next generation. At the last iteration
the best individuals, portfolios in our case, from both the repository and the final
population is supplied by the algorithm.

MOEA/D is another popular and effectivemulti-objective evolutionary algorithm.
In general, MOEA/D breaks down the multi-objective optimization problem into
several sub-problems, every last one of them focusing on various parts of the efficient
frontier. For decomposing themulti-objective optimization problemMOEA/Dworks
either with Chebychev scalarizations, or other scalarization methods. MOEA/D
manages a set of solutions, and every solution is associated with a particular sub-
problem i.e. a weight vector. The weight vectors are chosen with such a way so
that are equitably dispersed in the search space. For generating an offspring only
the neighborhood of the parent solution is considered. Furthermore, to store all non-
dominated solutions it produces during the search an unbounded external archive is
maintained.

SMS-EMOA[27] is a classical paradigmof indicator-basedmulti-objective evolu-
tionary algorithms. A performance indicator is a scalar measure that computes the
quality of an efficient frontier. The SMS-EMOAutilizes the hypervolume indicator as
a performance indicator. An algorithm which maximizes the hypervolume indicator
yields efficient points with good proximity and diversification characteristics. The
hypervolume indicator calculates the size the efficient frontier dominates bounded
by a reference point. SMS-EMOA plans to maximize this indicator by advancing a
population of solutions. This is accomplished by considering the contribution of solu-
tions to the hypervolume indicator in the selection technique. Toward the begin the
algorithm randomly produces a population of solutions. Next it creates an offspring
solution utilizing recombination and mutation operators. At that point this offspring
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solution replaces that solution from the population which has the minor (exclu-
sive) hypervolume contribution. The hypervolume contribution of a solution is the
difference between the hypervolume of the population minus the hypervolume of
the population without that particular solution. For applying SMS-EMOA the fast
implementation described in [32] has been used as suggested byEmmerich andDeutz
[26].

When evolutionary algorithms and of course multi-objective evolutionary algo-
rithms are applied in practical optimization problems, a crucial issue for their perfor-
mance is the solution representation (coding, chromosomal data structure). For the
portfolio selection problem Streichert et al. [57, 58] introduced a hybrid representa-
tion, where a binary string is added to indicate the existence or not of a security in
the solution portfolio leading in better algorithm performance. In the hybrid solution
representation two arrays are used for characterizing a portfolio. A binary vector
indicates if a particular financial security participates in the portfolio or not, and a
real-valued vector is used to calculate the proportion weights of the budget invested
in the available financial securities. Thus we have:

� = {δ1, . . . , δn}, δi ∈ {0, 1}, i = 1, . . . , n (13.14)

W = {w1, . . . , wn}, 0 ≤ wi ≤ 1, i = 1, . . . , n (13.15)

In order to compute the portfolio x associated with the above representation we
make the following calculations: first, the weights of the financial securities that are
not part of the portfolio are vanished (i.e. wi = 0, if δi = 0). From that point the
excess weights are normalized to fulfill the budget constraint. Thus the proportion
weight xi is calculated by xi = wi∑n

j=1 w j
for every i = 1, …, n.

For generating the offspring population, the so-called uniform crossover operator
in every array of the chromosome has been used. According to uniform crossover
operator two selected individuals-solutions produce a single child. The value for each
array is selected with equal probability from one or another parent. The offspring
population was subject also for mutation. Distinctive mutation probabilities for each
array have been utilized. In the real-valued array the Gaussian random mutation was
applied with standard deviation 0.05, while in the binary string bit flip mutation in
an arbitrarily characterized position was applied.

The algorithms stopped when 150,000 solutions-portfolios were produced. For
crossover and mutation probabilities we have used the following values. Crossover
probability was set at 0.9, Gaussian mutation probability at 1.0 and bit flip mutation
probability at 0.01 for all algorithms. Population size was fixed to 500 individuals
for every evolutionary procedure. The archive size for SPEA2 was set to 300 as well.
MOEA/D utilizes an unbounded archive size.
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13.4 Multi-objective Evolutionary Algorithms for Portfolio
Optimization Problems—A Literature Review

The popularity of metaheuristics to support decision-making in finance is gaining
momentum among researchers—which is reasonable due to the complexity of real-
life financial problems [1].

A decision maker in practical portfolio management confronts problems of
discrete and multi-objective aspects (with two or more objectives). Following the
paradigms of multi-objective optimization and the Markowitz approach the investor
desires to find the efficient sets of portfolios and their efficient frontiers (or at least
a good approximation of them).

In general, the solution of a multi-objective problem can be partitioned in two
distinct steps: the optimization of several objective functions and the decision of what
kind of tradeoffs are relevant from the decisions maker perspective. Multi-objective
optimization techniques are classified by most multi-objective optimization texts
as a priori, a posteriori and interactive approaches [16]. The second step involves
the selection of the appropriate optimization technique which will explore for the
best solution or solutions of the specified optimization problem. Most MOEAs for
portfolio selection problems have been embraced a posteriori approaches, i.e. all
objectives are viewed as equivalent significant and the target is to compute the set
of non-dominated solutions-portfolios from which the decision-maker-investor will
choose the most appropriate. In this paper we consider these techniques.

Metaheuristics are a core topic for research in operations research and computer
science the last decades [11]. They seem suitable for solving practical and complex
portfolio selection models as these models have attributes such as non-convex objec-
tive functions and search spaces. Multi-objective evolutionary algorithms (MOEAs),
on the other hand, while suitable to handle non-convex objective functions and
search spaces are additionally capable to tackle problems with multiple objectives
in a natural manner. MOEAs provide a natural tool for solving complex portfolio
selection problems with additional objective functions and/or real-world constraints,
however they have been less investigated in the specialized literature [36, 39]. The
primary preferred position of MOEAs, particularly contrasting them with single-
objective metaheuristics, is that they compute the efficient set and the respective
efficient frontier in a single run of the algorithm. Single-objective metaheuristics
require tackling a few optimization problems in order to produce an estimate of the
true efficient frontier.

Multi-objective evolutionary algorithms are applied as early as 1997 in portfolio
optimization problems [61]. The majority of papers on portfolio optimization with
MOEAs solves bi-objective problems and considers only variance as a risk measure
[41]. In this study, we solve the tri-objectivemean-risk-cardinality portfolio selection
problem with different measures of risk in addition to variance.
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13.4.1 Mean-Variance Portfolio Optimization Using MOEAs

Vedarajan et al. [61] considered a mean-variance optimization model with a top
weight bound for every financial security. For solving the problem they applied a
multi-objective genetic algorithmnamelyNon-dominatedSortingGeneticAlgorithm
(NSGA) [53]. Diosan [22] compared three popular Pareto-based MOEAs, namely:
NSGA-II [21], PESA [19] and SPEA2 [68] for solving the classical mean-variance
portfolio selection model. Various computational experiments were conducted using
real-world data. The outcome of the research shows that PESA outperforms NSGA-
II and SPEA2 for the considered experiments. Mishra et al. [43] compared three
multi-objective evolutionary techniques on the classical Markowitz mean-variance
portfolio selection model. The algorithms compared were: PAES [34], APAES [47],
and NSGA-II. They used only the smallest data set from the OR-Library with 31
assets to perform their experiments. NSGA-II was observed to be the best algorithm
among the three while PAES was the worst. On the same standard mean-variance
model and data set, [44], have also proposed and compared a multi-objective particle
swarm optimization algorithm (MOPSO), PESA and microGA [17]. MOPSO was
found to be the best algorithm based on a collective summary of quality metrics.

Radziukyniene and Zilinskas [49] experimentally investigated several multi-
objective algorithms on the classical mean-variance problem. The multi-objective
metaheuristics compared were: Fast Pareto genetic algorithm (FastPGA) [29],Multi-
Objective Cellular genetic algorithm (MOCeLL) [45], Archive-based hybrid Scatter
Search algorithm [46] and NSGA-II. The experiments have been performed using
data from 10 Lithuanian stocks. The results were shown that MOCeLL outperforms
the other algorithms.

Duran et al. [23] performed a comparison of various evolutionary multi-objective
techniques, namely NSGA-II, SPEA2, and IBEA (Indicator-Based Evolutionary
Algorithm) [67]. They constructed a data set using weekly returns of 26mutual funds
that are traded in the Caracas stock exchange. The research showed that NSGA-II
performed better than SPEA2 while IBEA achieved a mixed performance. There
were instances which IBEA provided the best results while in others the worst.

Streichert et al. [57, 58] raised an important issue in the solution of portfolio opti-
mization problems with metaheuristics (that of solution representation) and showed
that the solution representation and the variation operators may considerably affect
the performance of the algorithm. In their first study, they compared several solution
representationswithin the context of aMOEA(the authors applied an algorithmbased
on NSGA-II and its predecessor NSGA) on different portfolio optimization models
with cardinality, buy-in and roundlot constraints. They conducted experiments using
the smallest data set (with 31 assets) from the OR-Library. At first a binary represen-
tation with a 32-bit string for each decision variable xi was used. This representation
was compared with a real-valued representation where every variable xi is encoded
in a vector of real values between 0 and 1. In both representations, an additional
binary string was introduced in order to specify whether a financial security partici-
pates in the portfolio (1) or not (0). This extension is called by the authors knapsack
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representation or hybrid encoding. They found that the hybrid representation outper-
forms the standard approaches. The best approach was the hybrid encoding with the
real-valued vector. They solve amean-variance portfolio selectionmodel with buy-in
thresholds, roundlots and cardinality constraints.

Armananzas and Lozano [5] compared and adapted three notable optimization
algorithms, simulated annealing [7], greedy search, and ant colony optimization
to the cardinality constrained mean-variance portfolio optimization model. They
performed their experiments utilizing the five data sets from the OR-Library. The
research has shown that the ACO and the SA heuristics perform the best as observed
by visual inspections of the generated efficient frontiers. On the same mean-variance
portfolio selection problemwith quantity, cardinality and roundlot constraints.Chiam
et al. [15] introduced an order-based solution representation and analyzed how the
additional constraints affect the evolutionary search progress and the efficient frontier
achievable. They compared the newly proposed solution representation with those of
hybrid and real-valued solution representations of [57, 58] using three qualitymetrics.
For the standard portfolio problem they observed that the order-based representation
and the hybrid encoding were of the same quality considering generational distance.
However, for three problem instances the order-based representation was better than
the hybrid representation with respect to diversity.

Skolpadungket et al. [52] performed a comparative study of various multi-
objective evolutionary algorithms on the mean-variance portfolio selection problem
with cardinality constraints, floor constraints and roundlots. The algorithms tested
were: Vector Evaluated Genetic Algorithm (VEGA), Fuzzy VEGA, Multiobjective
Optimization Genetic Algorithm (MOGA), Strength Pareto Evolutionary Algorithm
2 (SPEA2), and Non-dominated sorting genetic algorithm II (NSGA-II). They based
their analysis using data from the OR-Library of the Hang Seng data set which
contains 31 assets. SPEA2 performed the best for both of the instances tested.

Chen et al. [14] proposed a novel technique for portfolio selection, namely
multi-objective extremal optimization (MOEO) [13]. They utilized the cardinality
constrainedMarkowitzmodel and they compared their approach toNSGA-II, SPEA2
and PAES. The authors test their proposed technique using the five data sets from the
OR-Library. They use the front spread [10] and C (coverage) metrics to compare the
performance of the algorithms. The results show that MOEO performs best consid-
ering the front spread metric. Concerning the C metric it was observed that MOEO
performed better than SPEA2 and PAES and a little worse than NSGA-II.

On the mean-variance cardinality constrained portfolio selection problem [3]
compared the effectiveness of five state-of-the-art MOEAs namely: Non-dominated
Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm
2 (SPEA2), Pareto Envelope-based Selection Algorithm (PESA), the Niched Pareto
Genetic Algorithm 2 (NPGA2) [28], and e-Multi-objective Evolutionary Algorithm
(e-MOEA) [33]. The experimental results demonstrated that SPEA2 is the best
technique. Furthermore, NSGA-II and e-MOEA have shown similar performance.



13 A Comparative Study on Multi-objective Evolutionary Algorithms … 289

Branke et al. [12] introduced a hybrid algorithm that merges a multi-objective
evolutionary algorithm with the critical line algorithm for portfolio selection prob-
lems with complex constraints. Especially, they tackled a mean-variance port-
folio optimization problem with buy-in threshold and cardinality constraints and
a two-objective mean-variance model with the 5–10–40 constraint.

Suganya and Vijayalakshmi Pai [60] proposed a Pareto-archived evolutionary
wavelet network (PEWN) to handle the mean-variance version of portfolio optimiza-
tion models with bounding, class, shortsale and cardinality constraints. The wavelet
coefficient shrinkage method was employed for the estimation of the input vari-
ables (covariance matrix and expected returns of the assets). Experimental studies
have been performed using daily quoted prices from the Tokyo Stock Exchange
(Nikkei225 index: March 2002 to March 2007) and Bombay Stock Exchange
(BSE200 index: July 2001 to July 2006).

Mishra et al. [42] address a realisticmean-variance portfolio optimization problem
considering cardinality, budget and quantity constraints. They propose a new multi-
objective optimization technique, which they call non-dominated sorting multiob-
jective particle swarm optimization (NS-MOPSO) and they compared with four
Multi-objective Evolutionary Algorithms based on non-dominated sorting (PESA-
II, SPEA2, NSGA-II, 2 LB-MOPSO) and one based on decomposition (MOEA/D).
The computational results got from the examination are additionally compared with
those of single objective metaheuristics such as the simulated annealing, tabu search,
genetic algorithm and particle swarm optimization. The results showed a superiority
of (NS-MOPSO).

Lwin et al. [38] studied the Markowitz’s mean-variance portfolio selection
problem with quantity, cardinality, roundlot and pre-assignment constraints. An effi-
cient learning-guided hybrid evolutionary multiobjective technique is proposed to
handle the constrained portfolio selection model in the extended mean-variance
framework. The suggested algorithm was compared against four state-of-the-art
multiobjective evolutionary techniques, namely Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2), Pareto Archived Evolution Strategy (PAES), Non-dominated
Sorting Genetic Algorithm II (NSGA-II) and Pareto Envelope-based Selection Algo-
rithm II (PESA-II). Experimental results are outlined for openly accessible OR-
library datasets from seven market indices including up to 1318 financial securi-
ties. Exploratory outcomes on the portfolio selection problem with the additional
constraints exhibit that the proposed algorithm fundamentally beats the four notable
multiobjective evolutionary algorithms concerning the quality of produced efficient
frontier in the conducted experiments.

Zhou et al. [66] introduces a multi-objective genetic algorithm namely DEA-
MOEA/D by integrating decomposition method and DEA (Data Envelopment
Analysis) method for the mean-variance cardinality constrained portfolio model.
The results show that DEA-MOEA/D is better than FDH-MOGA, MOEA/D and
NSGA-II, not only for test functions, but also for the portfolio model.

Liagkouras and Metaxiotis [37], introduces a new multi-objective evolutionary
Algorithm (MOEA) for the solution of the mean-variance cardinality constrained
portfolio optimization problem (CCPOP). The suggested MOEA incorporates an
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efficient encoding scheme especially designed for the CCPOP. Furthermore, the
submitted MOEA included a new mutation and crossover operator tailor-made to
perform well with the new representation scheme. Seven different datasets from
several stock markets are utilized for testing the proposed algorithm. The perfor-
mance of the proposed efficiently encoded multiobjective portfolio optimization
solver (EEMPOS) is contrasted with two popular and very efficient and effective
MOEAs, namely NSGA-II and MOEA/D. The research results demonstrate that
the proposed EEMPOS outperforms the two different MOEAs for all performance
metrics considered for a fraction of computing time needed by the other algorithms.

13.4.2 Mean-Risk Portfolio Optimization Using MOEAs

Zeiaee and Jahed-Motlagh [63] applyNSGA-II in amean-VaRportfolio optimization
model. They use data from 12 stocks of the Tehran Stock exchange. They provide the
efficient frontier using summary attainment surfaces. The efficient frontier showed
an acceptable diversity of portfolios capturing different trade-offs between expected
return and VaR. Krink and Paterlini [35] proposed a novel evolutionary multi-
objective algorithm for portfolio optimization: DEMPO—Differential Evolution for
Multi-objective Portfolio Optimization. They tested their technique with NSGA-II
in a classic mean-variance, mean-VaR and mean-ES portfolio optimization problem
using daily observations from 219 stocks of the Italian stock market. The results
showed that the DEMPO outperformed NSGA-II.

Zhang et al. [65] applied a newlydeveloped algorithmMOEA/D [64] on aportfolio
selection model with minimum transaction units, transaction costs and cardinality
constraints. Eight test instances with up to 150 decision variables were constructed
based on data from the German stock index DAX. For comparison purposes they
tested their new approach with NSGA-II having the same reproduction repair and
solution representation with MOEA/D implementation. The experimental outcomes
demonstrated that MOEA/D is better than NSGA-II in the majority of the problem
instances considered.

Anagnostopoulos and Mamanis [4] investigated the ability and compared the
effectiveness of NSGA-II, SPEA2 and PESA, on the mean-VaR and mean-ES port-
folio selection models with quantity, cardinality and class constraints. To test the
proposed algorithms they used daily returns from 96 stocks included in the US S&P
100 index. From the computational experiments it was not observed an apparent
dominant technique. All algorithms have shown good quality and robust results as
compared also with efficient points obtained using the exact method of CPLEX
commercial package.

Baixauli-Soler et al. [8] tackled a mean-VaR portfolio optimization problem with
minimum transaction lots and transaction costs and solved it using SPEA2. They used
daily data of 50 stocks from the Eurostoxx 50 index. Theymanaged to obtain reliable
results from the solution of four models: the standard mean-VaR portfolio selection
model, the mean-VaR portfolio optimization model with minimum transaction units,
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the mean-VaR portfolio selection model with transaction costs and the mean-VaR
portfolio selection model including both minimum transaction lots and transaction
costs. They also showed that by not including real constraints into the portfolio
selection model this lead to inefficient solutions.

13.4.3 Three-Objective Portfolio Optimization Using MOEAs

Vedarajan et al. [61] proposed a three-objective portfolio selection problem, where
the third additional objectivemeasures the transaction cost due to changes in portfolio
weights which is to be minimized. For solving the problem they applied the NSGA.

Ong et al. [48] suggested an algorithm which includes the grey and possibilistic
regression models to forecast expected return and covariance matrix for a three-
objective portfolio selection model with two sources of risk (an uncertainty risk
function and the classic variance). In order to handle themulti-objective quadric opti-
mization problem, a multi-objective evolution algorithm which transfers the vector
objective function into a scalar was employed. A computational example with six
stocks was built in order to compare the suggested method to the classical mean-
variance model. The suggested technique has been shown to provide more workable
and precise results than the Markowitz model.

Fieldsend et al. [31] formulated the cardinality constrained portfolio optimization
problem as a tri-objective problem where they seek to compute all possible tradeoffs
between return, risk and the cardinality of the portfolio. This is performed by formu-
lating the number of assets in the portfolio as an extra objective to be minimized.
Fieldsend search for the efficient frontierswhich represent the trade-off among return,
cardinality and variance and using amodifiedMOEA to compute the efficient surface
in one execution of the algorithm. They base their solution approach in a simple (1
+ 1)-evolution strategy [30]. They test their method using weekly asset returns from
the US S&P 100 index and emerging stock markets for the period January 1992 to
December 2003.

Anagnostopoulos andMamanis [2] haveperformeda computational studywith the
state-of-the-art MOEA techniques, on the same three-criterion problem introducing
however additional practical constraints (quantity and class constraints). They test the
ability of MOEAs to solve large-scale instances with 200 and 300 assets generated
randomly. The MOEAs tested and compared were: SPEA2, PESA and NSGA-II.
The results revealed a clear win of SPEA2 with PESA coming next while being the
fastest approach.

Subbu et al. [59] introduced a hybrid multiobjective optimization technique that
merges evolutionary algorithm and linear optimization to simultaneously maximize
a return measure and minimize two measures of risk. The return is described by
portfolio’s book yield while the two sources of risk are measured by value-at-risk and
variance. The constraints are all linear functions of the portfolio weights expressing
duration and convexitymismatches. For identifying the efficient frontier they employ
Pareto Sorting Evolutionary Algorithm (PSEA).
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Radziukyniene and Zilinskas [49] experimentally investigated several multiob-
jective algorithms on a three-objective mean-variance-annual-dividend-yield port-
folio selection model. The multi-objective metaheuristics compared were: Multi-
Objective Cellular genetic algorithm (MOCeLL) [45], Fast Pareto genetic algorithm
(FastPGA) [29], NSGA-II and Archive-based hybrid Scatter Search algorithm [46].
The experiments have been performed using data from 10 Lithuanian stocks. The
results were shown that MOCeLL performs best concerning generational distance
and hypervolume while NSGA-II and FastPGA are the best algorithms considering
the inverted generational distance.

Based on the above literature review on evolutionary multi-objective algorithms
for portfolio optimization we aim to apply the state-of-the-art MOEAs in different
mean-risk-cardinality portfolio optimization models.Wemake a contribution both in
finance as we solve problems that have never been solved in the specialized literature
and to computer science, comparing and identifying the best representative MOEAs
for solving the problems and showing a new application domain for intelligent algo-
rithms. More specifically: The corresponding MOEAs have never been compared in
such a problem. Their effectiveness has been proven in other fields and artificial func-
tions but they should be tried in various practical problems as well. Furthermore, as
it is shown from the literature review, the majority of papers deal with mean-variance
portfolio optimization problems, fewer studies consider different risk measures in a
mean-risk framework and even fewer consider tri-objective portfolio optimization
problems.

13.5 Experimental Results

We demonstrate here the computational outcomes acquired by applying MOEAs in
the mean-risk-cardinality portfolio selection models just as a cross-algorithm perfor-
mance comparison. The data requiredwere collected from the yahoofinancewebpage
and they are referred to the S&P 100 index. Daily returns from 2 October 2012 to 2
October 2017 of 94 assets have been computed and each computed rate of return was
considered to define a different scenario, thus the total number of scenarios were T
= 1257.

All algorithms have utilized the same parameter settings. A population and archive
size of 300 individuals have been used. MOEA/D uses an unbounded archive. A
crossover probability of 0.9 was used for all the three algorithms. Mutation proba-
bilities of 0.01 for the Δ array and 1.0 for theW set were used. The algorithms were
stopped after 150,000 solutions were generated.

For comparing the three differentMOEAs the Set Coverage (C-metric) and hyper-
volume metric have been employed. The C-metric is calculated as follows: Let A
and B be two approximation sets of the efficient frontier. C(A, B) is defined as the
percentage of the solutions in B that are covered (it is dominated or it is equal) by at
least one solution in A, i.e.,
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C(A, B) = |{u ∈ B}|∃υ ∈ A : υ�u|
|B| . (13.16)

C(A, B) = 1 means that all solutions in B are covered by some solutions in A,
while C(A, B) = 0 implies that no solution in B is covered by a solution in A.
According to [69], binary quality measures like C-metric overcome the limitations of
unarymeasures like hypervolume and, if properly designed, are capable of indicating
whether A is better than B.

Hypervolume metric can quantify how well the computational methods perform
in computing solutions along the full extent of the efficient frontier. It essentially
computes the volume of the objective space dominated by the solutions generated by
the corresponding algorithm bounded by a reference point. Consequently, the higher
the hypervolume metric value the better.

SMS-EMOA and MOEA/D are properly oriented so as to minimize the three
objective functions. To express the expected return objective in minimization form,
the expected return objective is transformed as μ(x). In order to compute the hyper-
volume metric SPEA2 is also operates in the minimization problem although this is
not a requirement.

All algorithms have been run 10 times for every portfolio problem on identical
computers (Intel(R) Core (TM) i5-7200U, 2.5 GHZ, 4.00 GB) and coded using
Microsoft Visual C++.

Table 13.1 shows the means of the C-metric values for all portfolio models and
Table 13.2 gives the mean computing time used by each algorithm for each problem.

With respect to computational time, as shown in Table 13.2, SPEA2 is the fastest
approach followed by MOEA/D and SMS-EMOA. On average, SPEA2 requires
about 13.5% of the CPU time that MOEA/D needs and 2.3% of SMS-EMOA. In
addition, MOEA/D requires on average only about 17% the time that SMS-EMOA
needs.

With respect to C-metric, as presented in Table 13.1, it is observed that SPEA2
is the worst algorithm. On average its solutions are covered by the other two algo-
rithms in approximately more than 41% for all portfolio problems while it covers
only approximately 4.7% of the solutions of the other two algorithms. MOEA/D is
slightly better than SMS-EMOA since it covers on average roughly 14%of the gener-
ated solutions of SMS-EMOA and SMS-EMOA covers only 4.3% of the generated
solutions of MOEA/D.

Concerning the hypervolume metric, as shown in Table 13.3 the results are
completely different. SPEA2 wins in five of six risk measures as shown with bold
font. This suggests that MOEA/D and SMS-EMOA provide solutions with good
proximity (that is why they win considering C-metric) but with poor coverage and
diversity of the efficient surface. This phenomenon can be seen in the following
figures, where we see that SPEA2 approaches areas with more assets in the portfolio
(but less risk) than SMS-EMOA and MOEA/D.

Thus we observe that although SMS-EMOA andMOEA/D covers approximately
50% of the solutions generated by SPEA2 this also shows that there are another
50% of solutions not covered by the two algorithms. This recommends that the best
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Table 13.1 C metric for all mean-risk-cardinality portfolio optimization problems

MOEA/D SMS-EMOA SPEA2

Variance

MOEA/D – 0.105 0.369

SMS-EMOA 0.007 – 0.479

SPEA2 0.004 0.044 –

Value at risk

MOEA/D – 0.154 0.295

SMS-EMOA 0.109 – 0.476

SPEA2 0.084 0.084 –

Expected shortfall

MOEA/D – 0.158 0.454

SMS-EMOA 0.047 – 0.475

SPEA2 0.030 0.036 –

Mean absolute deviation

MOEA/D – 0.166 0.630

SMS-EMOA 0.022 – 0.566

SPEA2 0.006 0.039 –

Maximum loss

MOEA/D – 0.146 0.224

SMS-EMOA 0.054 – 0.245

SPEA2 0.059 0.123 –

Semi-variance

MOEA/D – 0.112 0.319

SMS-EMOA 0.018 – 0.472

SPEA2 0.010 0.045 –

Table 13.2 CPU time in seconds for each algorithm and each mean-risk-cardinality portfolio
problem

Variance VaR ES MAD ML SV

MOEA/D 7101.59 1383.01 5052.40 5392.13 4406.37 4077.06

SMS-EMOA 32,326.94 16,350.71 26,327.99 27,318.23 33,584.29 24,086.28

SPEA2 630.07 557.71 652.90 668.62 604.73 579.64

Table 13.3 Hypervolume for all algorithms and risk measures

Variance VaR ES MAD ML SV

MOEA/D 0.8976174 0.8572079 0.8585893 0.8747477 0.8733369 0.8974866

SMS-EMOA 0.8981439 0.8608451 0.8589865 0.8746798 0.8734708 0.8980951

SPEA2 0.8981417 0.8625269 0.8593118 0.8749439 0.8745495 0.8981631
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Fig. 13.1 Mean-variance-cardinality efficient surface, a MOEA/D, b SMS-EMOA, c SPEA2

technique for tackling the problem is to execute all the algorithms several times and
take the efficient portfolios from the combined pool of solutions generated by the
three algorithms.

In Fig. 13.1, 13.2, 13.3, 13.4, 13.5 and 13.6 we see the efficient surface for the
Mean-Risk-Cardinality portfolio optimization problem generated by all algorithms
for different risk measures. It is seen for each cardinality level the mean-risk efficient
frontier for different risk measures generated by each algorithm. In general, for the
problem, it is seen that as the number of assets in the portfolio increases the risk
decreases but the expected return of the portfolio decreases as well. And this is
observed independently for each risk measure.

Furthermore, for a fixed level of expected return, there are various portfolios with
varying risk but generally portfolioswith smaller risk containmore securities and this
is certainly a tradeoff since investors prefer to have small portfolios. By examining
the above surfaces decision makers can therefore find portfolios that suit to their
preferences the best.
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Fig. 13.2 Mean-VaR-cardinality efficient surface, a MOEA/D, b SMS-EMOA, c SPEA2

13.6 Conclusion

Multi-objective portfolio optimization is gaining momentum the last years. Port-
folio optimization is an inherently multi-objective problem from its origin. However
the last years additional criteria has been proposed in the classical mean-risk port-
folio selectionmodels. In this research we considered themean-risk-cardinality port-
folio selection model with six different risk measures. Three different state-of-the-
art Multi-Objective Evolutionary Algorithms (MOEAs) were employed: Strength
Pareto Evolutionary Algorithm (SPEA2), Multi-Objective Evolutionary Algorithm
based on decomposition (MOEA/D) and S-Metric Selection-Evolutionary Multi-
Objective Algorithm (SMS-EMOA). Experimental results demonstrated that the best
algorithm considering the C metric was MOEA/D while the best algorithm consid-
ering the hypervolume metric was SPEA2 while being the fastest approach. This
recommends that the best technique for tackling the problem is to execute all the
algorithms several times and take the efficient portfolios from the combined pool of
solutions generated by the three algorithms.

As future research other MOEAs can be used like memetic and convolution-
based MOEAs which are alternative MOEAs frameworks in addition to Pareto-
based, indicator-based and decomposition-based MOEAs which were considered in
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Fig. 13.3 Mean-ES-cardinality efficient surface, a MOEA/D, b SMS-EMOA, c SPEA2

this study. Furthermore there are also other less explored but important multiob-
jective algorithms (from the family of multi-objective metaheuristics and not only
evolutionary algorithms) e.g., the multiobjective versions of ant colony optimization,
particle swarm optimization, scatter search, simulated annealing, tabu search and
GRASP. A comparative study of different approaches seems particularly interesting
and necessary.
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Fig. 13.4 Mean-MAD-cardinality efficient surface, a MOEA/D, b SMS-EMOA, c SPEA2
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Fig. 13.5 Mean-ML-cardinality efficient surface, a MOEA/D, b SMS-EMOA, c SPEA2
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Fig. 13.6 Mean-SV-cardinality efficient surface, a MOEA/D, b SMS-EMOA, c SPEA2
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