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Abstract. The electric vehicle (EV) charging scheduling problem has
become a research focus to mitigate the impact of large-scale deployment
of EV in the near future. One of the main assumptions in literature is
that there are enough charging points (CP) in the charging station to
meet all charging demands. However, with the deployment of EVs, this
assumption is no longer valid. In this paper, we address the electric vehi-
cle charging problem in a charging station with a limited number of
heterogeneous CPs and a limited overall power capacity. Before arriv-
ing at the station, the EV drivers submit charging demands. Then, the
scheduler reserves a suitable CP for each EV and allocates the power effi-
ciently so that the final state-of-charge at the departure time is as close as
possible to the requested state-of-charge. We present two variants of the
problem: a constant output power model and a variable power model.
To solve these problems, heuristic and simulated annealing (SA) com-
bined with linear programming are proposed. Simulation results indicate
that the proposed approaches are effective in terms of maximizing the
state-of-charge by the departure time for each EV.

Keywords: Electric vehicle · Charging scheduling · Optimization ·
Heuristic · Simulated annealing

1 Introduction

The adoption of EVs has been growing rapidly over the past decade, mainly
as a result of ambitious government policies to reduce environmental pollution
and advances in the EV industry. In 2019, worldwide EV sales reached 2.1 mil-
lion, bringing the global EV fleet to 7.2 million, an increase of 40% compared to
2018 [6]. However, the future large-scale adoption of EV raises concerns about
charging service quality since charging an EV is time-consuming and requires a
considerable amount of electrical power. Nowadays, EV drivers tend to choose
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 219–235, 2021.
https://doi.org/10.1007/978-3-030-72904-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_14&domain=pdf
http://orcid.org/0000-0002-3944-0615
http://orcid.org/0000-0003-2357-0404
http://orcid.org/0000-0001-8853-3968
http://orcid.org/0000-0001-5649-3922
https://doi.org/10.1007/978-3-030-72904-2_14


220 I. Zaidi et al.

the nearest available CPs to plug in their EVs and start charging immediately.
This can easily overload charging infrastructures in a large-scale scenario result-
ing in poor service quality and EV drivers’ dissatisfaction.

Recently, there has been growing interest in the development of EV charging
scheduling strategies that focus on economical objectives such as minimizing the
electricity costs or on power grid reliability by minimizing the power losses [3] and
voltage deviations [7]. However, many studies assume that there is a sufficient
number of CPs thus focus on the power allocation and neglect the assignment
of EV to a suitable CP. Besides, they assume an identical output power of CPs.
Yet, in real life, CPs with different charging output power are installed in the
same charging station to meet the various type of charging demands and improve
the quality of service [12].

In this work, we consider a charging station that regroups several CPs with
different charging power levels. Moreover, this charging station has a maximum
power capacity that the distribution-level transformer poses. Each EV driver can
submit a charging reservation before arriving to avoid queuing. We developed
a heuristic based on interval scheduling [9] and a Simulated Annealing (SA) to
assign each EV to a suitable CP and allocate the electrical power over the plugin
time. The objective of the scheduling is to ensure a final state-of-charge at the
departure that is as close as possible to the requested state-of-charge.

The remainder of this paper is organized as follows. In Sect. 2, we present a
brief review of the main works on electric vehicle charging scheduling problems.
In Sect. 3, we describe in detail the investigated problem and formulate it as a
mixed-integer linear programming (MILP). We then propose our optimization
methods in Sect. 4 and evaluate their performance in Sect. 5. Finally, we conclude
the paper in Sect. 6.

2 Related Work

Several studies have been conducted on the EV charging scheduling problem
(EVCSP). Here, we discuss some of the relevant literature that addresses the
EVCSP in charging stations and parking lots. From the perspective of these
charging service providers, the main objectives are to reduce costs [21–23,25],
improve service quality charging by maximizing the energy delivered [14,16,23],
or maximizing charging incomes [14] while maintaining the physical constraints
of the charging infrastructure. One largely used constraint is the charging infras-
tructure capacity that defines the overall power limit to avoid potential trans-
former overload and feeder congestion [14,16,21,25]. For the charging power of
CPs, some papers consider variable power in which the charging rate varies over
time [14,16,25] others consider fixed constant power [4].

EV charging demands are usually defined by arrival and departure times and
the requested charging energy. [4,22,23] consider uncertainly in the arrival time.
[21] consider that EVs may arrive with or without an appointment. Departure
times can be provided by the EVs drivers [4,21,24,25] or it can be estimated
based on historical behavior [23]. In [16], an EV is allowed to leave before its
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initially provided departure time. Regarding the requested charging energy, [23]
assumes that the EVs drivers will provide their desired state-of-charge when they
plug-in their EVs. [20,21] assume that the EV owners will directly request the
energy demand expressed in kWh. Other papers consider charging EVs to the
rated battery capacity [14,16,24,25]. The requested charging energy can either
be a hard constraint where the desired energy must be reached [4,20,21] or a
soft constraint where the scheduler tries to achieve satisfactory energy by the
departure time [25].

Different optimization methods were used for tackling these problems. [24]
developed a charging scheme based on binary programming for demand respond
application and a convex relaxation method is proposed to solve the charging
scheduling problem in real-time. Authors in [25] propose a two-stage approxi-
mate dynamic programming strategy for charging a large number of EVs. [20]
provide a model predictive control based algorithm. We can also find different
metaheuristics, for example, particle swarm optimization [16,21], a GRASP-like
algorithm [4], memetic algorithm [4].

Although the above-mentioned studies have examined various aspects of the
EV charging scheduling, they have essentially assumed there are a sufficient
number of chargers for all EVs and thus the scheduler doesn’t decide to which
CP each EV is assigned. In this paper, hybrid heuristics and meta-heuristic are
proposed to jointly assign the EVs to CP and schedule the EV charging. We
consider different charging levels.

3 Problem Description and Formulation

We consider a charging station with m charging points (CPs). The switching on
and off of each CP can be controlled. An electric vehicle (EV) can be connected to
the CP but does not necessarily have to charge immediately. Each charging point
i, i = 1, ..,m has a constant output power pi (kW). We also consider the variable
power model where the output power of each CP i can vary over time from 0 to
pi. The charging station has a maximum power supply of Pmax (kW) which is
insufficient to sustain simultaneous activation of all CPs. Thus, the sum of the
output power of the CPs cannot exceed Pmax (kW) at any time. The scheduling
time horizon of one day and is divided into H time slots of length τ (minutes).
A set of n EVs that need charging in the whole day. Each EV j, j = 1, .., n,
submits a charging demand by providing the following information: the desired
arrival time to the station rj , the estimated initial state-of-charge at the arrival
(e0j ), the desired state-of-charge at the departure (ed

j ), the battery capacity Bj

(kWh), and the departure time dj . The scheduler collects all charging demands
and determines a day ahead optimized charging schedule by assigning EV to
each CP. Since there are a limited number of CP, the actual starting time for
each EV can exceed the desired arrival time. An EV will occupy a CP from
the assigned stating time until its departure time and cannot be plugged out
during this period. The preemption of charging operation is allowed. Ideally,
each EV should be charged to its desired state-of-charge by the departure time,
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however, this may not be possible due to the limited number of CP and the
charging station capacity limit. So, the objective of the scheduler is to minimize
the difference between the desired state-of-charge and the final state-of-charge
at the departure time.

In the following, a MILP model is proposed to jointly optimize the assigned
of the EV to CP and the power allocation at each time slot.

In the case of a constant power model, the decision variables are:

xt
ij =

{
1 if EV j is charging by the CP i at time slot t
0 otherwise.

ef
j : final state-of-charge of EV j at it departure time

– Objective: minimize the difference between the state-of-charge at the depar-
ture (ef

j ) and the desired state-of-charge ed
j .

min
n∑

j=1

(ed
j − ef

j )

– Constraints:
m∑

i=1

xt
ij ≤ 1 ∀j, t (1)

Constraints (1) ensure that each EV j is assigned to one CP at each time slot t.

n∑
j=1

xt
ij ≤ 1 ∀i, t (2)

Constraints (2) ensure that each CP i charges one EV at each time slot t.

xt′
i′j ≤ 1 − xt

ij ∀i, j, t, i′ �= i and t′ < t (3)

Constraints (3) ensure that each EV j is charged by one CP i i.e., The EV
assigned to a CP cannot be moved to another CP.

e0j ≤ ef
j ≤ ed

j ∀j (4)

ef
j = e0j +

τ
∑dj

t=rj
pi × xt

ij

Bj
∀j (5)

Constraints (4) and (5) calculate the final state-of-charge of each EV j.

xt
ij = 0 ∀i, j ∀t, t < rj and t ≥ dj (6)

Constraints (6) ensure each EV j can only be charged between its desired
arrival time rj and departure time dj .

xt
ij + xt′

ij′ ≤ 1 ∀i, j, t, j′ : j′ �= j, t′ ∈ [t, dj ] (7)
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Constraints (7) ensure that the CP i is reserved to the EV j from the time it
begins to charge to its departure time dj .

m∑
i=1

n∑
j=1

pi × xt
ij ≤ Pmax ∀t (8)

Constraints (8) ensure that the total output power doesn’t exceed the charg-
ing station limit at each time slot.

When considering variable power model, we add the decision variables pt
ij

that represent the power delivered by the CP i to EV j at time t. The constraints
(5) and (8) will be replaced by the following constraints:

ef
j = e0j +

τ
∑dj

t=rj
pt

ij

Bj
∀j (9)

m∑
i=1

n∑
j=1

pt
ij ≤ Pmax ∀t (10)

We also add the following constraints to ensure that the delivered power to
an EV j by CP i doesn’t exceed its maximum output power pi :

pi × xt
ij ≥ pt

ij ∀i, j, t (11)

4 Proposed Methods

Solving the optimal charging scheduling problem with an exact method cannot
be done in polynomial time [18]. Thus, heuristics and the Simulated Annealing
(SA) metaheuristic combined with an exact method were developed.

4.1 Solution Representation

Solving the scheduling problem consists of determining the assignment of each Ev
to CP and then, in case of a constant charging model, choose the appropriate time
slots of charging. In the case of a variable power model, choose the appropriate
charging rate at each time slot. Therefore, a feasible solution consists of the
assignment of EVs to the CPs and the power allocation. The assignment of EVs
to CPs is represented as a vector (π1, .., πn) where πi is the sequence of EVs
assigned to CP i. Once we have the EV-CP assignment, we solve the power
allocation by determining the amount of power delivered by each CP to each
EV at each time slot. To this end, we define the solution variables at

ij of the EV-
CP assignment, which is equal to 1 if the EV j is plugged to the CP i at time t.
The at

ij values will be used as inputs for solving the power allocation problem.
To get at

ij from (π1, .., πn), we simply schedule all EVs sequentially without idles
times while respecting their arrival times. For each EV j in the sequence πi, we
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select the earliest possible starting time stj = max(rj , dj′) where j′ is the EV
scheduled before the EV j in πi. In this case, the variable at

ij will be equal to 1
for all t ∈ [stj , dj ]. If stj > dj , the charging demand of EV j will be rejected but
penalized in the objective function.

The proposed heuristics and neighborhood search in the SA deals with the
EV-CP assignment problem. Then, for each solution, the power allocation prob-
lem is formulated as a linear programming model.

4.2 Heuristics for Solving the Assignment of EVs to CPs

In the following, we define greedy rules for the assignment of EVs to CPs.

First Come Fist Served (FCFS) Heuristic. First-come-fist-served (FCFS)
rule is a popular approach to schedule the EVs charging. It assigns the EV with
the smallest arrival time to the first available CP.

Interval Graph Coloring Based Heuristic (IGCH). Consider the interval
graph G = (V,E) where each vertex v ∈ V represents a charging demand of an
EV j, j ∈ n defined by its arrival time rj and its departure time dj . There is an
edge e ∈ E between two vertices if and only if their associated intervals have a
nonempty intersection i.e. (j, j′) ∈ E if [rj , dj ] ∩ [rj′ , dj′ ] �= ∅. Assigning a set of
EVs to a given CP is equivalent to the k-coloring problem of the graph G. The
k-coloring problem is to assign a color c ∈ {1, .., k} to each vertex of G so that no
adjacent vertices have the same color. The set of vertices colored with the same
color corresponds to the set of EVs assigned to the same CP and it is called
a color class. Since an interval graph is a chordal graph, the greedy coloring
algorithm delivers an optimal coloring on a chordal graph following the perfect
elimination orderings [5]. A perfect elimination ordering in a graph is an ordering
of the vertices of the graph such that, for each vertex v and the neighbors of v
that occur after v in the order form a clique. We use the lexicographic breadth-
first (LexBFS) search proposed by [17] to find the perfect elimination ordering in
linear time. We add randomness to the algorithm to generate difference perfect
elimination orders by adding a random weight w to each vertex. Therefore, when
two vertices have the same label, we choose the vertex with maximum weight w.
Algorithm 1 shows the pseudocode of LexBFS ordering.

In the case where we have the chromatic number k, i.e. the number of color
classes is less than or equal to the number of CP, we assign the EVs with the same
color class to the same CP. We start with the color classes that have the greater
cardinally (the highest number of vertices with the same color) and assign them
to the CP with the greater charging output power. Otherwise, when k > m, each
remaining non assigned EV j will be assigned to the CP that has the largest
available time from rj to dj . The overall procedure of the IGCH algorithm is
depicted in Algorithm 2.
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Algorithm 1: LexBFS
input : Interval graph G = (V, E)
output: A perfect elimination orderings σ = (v1, .., vn)

1 for v ∈ V do
2 label (v) ← []
3 w(v) ← random()

4 end
5 for i = |V | down to 1 do
6 choose a vertex v ∈ V with lexicographically maximal label with ties being

broken by w(v)
7 σ(i) ← v
8 for u ∈ Neighborhood(v) do
9 label (u) ← label (u).concatenate(u)

10 end

11 end
12 return σ

4.3 Exact Methods for Solving the Power Allocation Problem

After determining the assignment of the EVs to CPs, the objective here is to
decide the amount of electric power delivered by each CP at each time slot.
We formulate both constant and variable power models as an integer linear
programming (ILP) model.

A Linear Programming for Constant Power Model: We define the binary
decision variables yt

ij .

yt
ij =

{
1 if EV j is charging by the CP i at time t
0 otherwise.

Let Hj = {t|t ∈ H, at
ij = 1}. We set yt

ij = 0 ∀t /∈ Hj

– Objective :

min
m∑

j=1

(ed
j − ef

j )

– Constraints:
e0j ≤ ef

j ≤ ed
j ∀j (12)

ef
j = e0j +

∑dj

t=rj
yt

ij × τ × pi

Bj
∀j (13)

Constraints (12) and (13) calculate the final state-of-charge of each EV j.

n∑
i=1

m∑
j=1

yt
ij × pi ≤ Pmax ∀t (14)

Constraints (14) ensure that the total output power doesn’t exceed the charg-
ing station limit at each time slot.
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Algorithm 2: Heuristic using interval graph coloring
input : Scenario of n EVs and m CPs
output: assignment of EVs to CPs

1 Construct the interval graph G of the scenario
2 Get a perfect elimination ordering σ of G using Algorithm 1
3 k ← 1
4 Color(σ(0)) ← k
5 for i = n down to 1 do
6 v ← σ(i)
7 for c = 0 to k do
8 if color c /∈ Color(Neighborhood(v)) then
9 Color(v) ← c

10 end

11 end
12 if all colors c ∈ Color (Neighborhood(v)) then
13 k ← k + 1
14 Color(v) ← c

15 end

16 end
17 Sort CPs in non-decreasing order of their output power
18 Sort the color classes in non-decreasing order their cardinality
19 Assign the EVs of the k first classes to the k first CPs
20 if k > m then
21 for each EV j in the remaining non assigned classes do
22 Choose the CP i that have the largest sub-interval of [rj , dj ] where the

CP is free (no EV is plugged in) and assign the EV CP i
23 end

24 end

A Linear Programming for the Variable Power Model: We define the
continuous decision variables pt

ij which represents the power delivered by the
CP i to EV j at time t.

min
m∑

j=1

(ed
j − ef

j )

Constraints :
e0j ≤ ef

j ≤ ed
j ∀j (15)

ef
j = e0j +

∑dj

t=rj
pt

ij × τ

Bj
∀j (16)

Constraints (15) and (16) calculate the final state-of-charge of each EV j.

at
ij × pi ≥ pt

ij ∀i, j, t ∈ Hj (17)

Constraints (17) ensure that the delivered power by each CP i doesn’t exceed
its maximum rated power pi at each time t.
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n∑
i=1

m∑
j=1

pt
ij ≤ Pmax ∀t (18)

Constraints (18) ensure that the total output power doesn’t exceed the charging
station limit.

4.4 Simulated Annealing

Simulated annealing algorithm, initially proposed by [8], has been successfully
adapted to address several optimal resource scheduling problems. The pseudo-
code of the SA algorithm is shown in Algorithm 3.

A candidate solution for SA represents the EV-CP assignment part described
in Sect. (4.1). We obtain its objective value by solving the LP problem repre-
senting the power allocation as described in Sect. (4.3). In preliminary exper-
iments, the population-based meta-heuristics turned out to be worse than SA
and time-consuming due to solving an LP for each newly generated solution in
the population. Thus, we pursue with SA only.

First, an initial solution S0 is generated using the FCFS rule. Starting from
the initial solution S0, SA generates a neighborhood solution S′. The difference
in the objective value between the new solution S′ and the current solution
S is calculated as Δf = f(S′) − f(S). The neighborhood solution S′ replaces
the current solution based on the Metropolis criteria; It will replace the current
solution if there is an improvement i.e. Δf < 0. If it also improves the best
solution found so far, it will become the new global best solution Sbest. Otherwise,
a random number r is generated following the uniform distribution U [0, 1] and
the neighborhood solution S′ will become the current solution if r ≤ e−Δf/T

where T is a parameter called temperature, which regulates the probability of
accepting worsening solutions. The temperature is initially set to a value T0

proportional to the objective function value of the initial solution T0 = μf(S0)
where μ is a fixed parameter.

At each iteration l, the temperature is gradually decreased by a cooling
scheme. The authors in the original SA paper [8] propose the following decreasing
geometric cooling scheme:

Tl+1 = αTl

Where 0 < α < 1. Typically, when α is set to high implying a slow decrease
of the temperature. We also consider the Lundy-Mees cooling scheme proposed
by [11]:

Tl+1 =
Tl

a + bTl

Connolly in [1] develops a variant of the Lundy-Mees scheme that set the
parameter a to 1 and b in dependence of the initial temperature T0, the final
temperature Tf and the size of the neighborhood M :

b =
T0 − Tf

MT0Tf
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The algorithm will stop if it reaches the maximum number of iteration or
after a fixed number of moves that did not result in accepted solutions. When the
stopping criterion is met, the algorithm terminates returning the best solution
Sbest found so far.

Neighborhood Generation. A neighborhood solution is obtained through a
perturbation on the assignment of Evs to CPs in the current solution by one of
the following moves:

– Swap in the same CP: a neighborhood solution is generated by randomly
choosing a CP and interchange the position of two EVs scheduled in this CP.
The positions of EVs are randomly selected.

– Swap from two different CP: a neighborhood solution is generated by ran-
domly swapping two EVs between two CPs. The CPs and EVs are randomly
selected.

– Insert: a neighborhood solution is generated by randomly choosing an EV
in a CP and move it to another position in another CP. The CPs and the
position of the EV are randomly selected.

– Shift left: a neighborhood solution is generated by moving an EV at position
p1 from a CP to position p2 in the same CP where p2 < p1. The positions p1
and p2 are randomly selected.

– Shift right: a neighborhood solution is generated by moving an EV at position
p1 from a CP to position p2 in the same CP where p2 > p1. The positions p1
and p2 are randomly selected.

After each move, the power allocation is solved using the ILP models
described in Sect. 4.3.

5 Experimental Analysis

To evaluate the performance of the proposed methods, several simulations are
conducted, and the relevant results are discussed in this section. Note that all
algorithms are implemented in C++ programming language. We use CPLEX
12.7 as a solver for the LP models in our heuristics and SA. Note that the
CPLEX was not used to solve the MILP presented in Sect. (3) since we couldn’t
get results for small instances vehicles even after turning for several days due to
out of memory errors.

5.1 Parameters Tuning for SA

The tuning of the particular optimization problem is essential to obtain good
results. We use the IRACE (Iterated Racing for Automatic Algorithm Config-
uration) package [10] which allows an automatic parameter configuration using
the Iterated F-race method. Two scenarios of each case were selected to be the
training instances for IRACE. Table 1 presents the parameters of the SA along
with the range of values that tested for each parameter. The final choices of the
parameter values are also presented and they are used in all experiments in the
following sections.
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Algorithm 3: Simulated annealing
input : Initial solution S0, maxNeighbours, maxAccepted, final Temperature

Tf , maxTrials, μ
output: best solution found Sbest

1 Sbest ← S0 , S ← S0 , T ← μf(S0), M ← maxTrails
maxNeighbours

, trail ← 0

2 do
3 accepted ← 0, generated ← 0
4 while generated ≤ maxNeighbours and accepted ≤ maxAccepted do
5 S′ ← Neighbour(S)
6 Δf ← f(S′) − f(S)
7 generated ← generated + 1
8 trail ← trail + 1

9 if f(S′) < f(S) or U(0, 1) ≤ e−Δf/T then
10 S ← S′, accepted ← accepted + 1
11 if f(S) < f(Sbest) then
12 Sbest ← S
13 end

14 end

15 end
16 update T according to the cooling scheme

17 while trail ≤ maxTrails and accepted > 0;
18 return Sbest

Table 1. Values tested for the SA parameters tuning.

Parameter value range Best

μ [0.01, 0.9] 0.12

Max neighbours 20,50,100 50

Cooling technique LandyMees, Geometric LandyMees

α [0.01,0.9] -

final temperature [0.001,0.1] 0.01

max accepted 0.1,0.2,0.3,0.4 0.1

5.2 Scenarios Generation

Regarding the charging station, we consider three cases with different number of
CPs m = {10, 20, 40}. For each case, 30% of CPs deliver 3.7 kW, 30% deliver 11
kW, 30% deliver 22 kW and 10% deliver 43 kW. This charging rates are chosen
from the standard IEC 61851 [19] that defines the classification of the different
charging modes. The charging station maximum capacity Pmax is set to 70% of∑n

i=1 pi. The scheduling time horizon is one day and the time slot τ is set to
6 min.

To test the model implemented, we need to model the stochastic EVs charg-
ing demands. The EV arrivals are randomly occurring and independent events.
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Table 2. Comparison of results with m = 10.

scenario n k FCFS IGCH SA

obj time (s) mean best std time mean best std time (s)

Model with constant power

1 20 12 0.52 0.47 0.53 0.26 0.15 0.29 0.25 0.13 0.09 56.15

2 29 18 3.74 0.42 2.92 2.41 0.22 0.35 1.26 0.80 0.29 82.26

3 24 16 2.05 0.35 2.20 1.68 0.39 0.28 0.55 0.25 0.17 68.69

4 25 17 1.64 0.43 1.80 1.11 0.51 0.31 0.57 0.31 0.15 72.62

5 30 16 4.79 0.44 2.57 2.34 0.36 0.35 2.01 1.34 0.47 93.43

6 27 16 2.80 0.35 2.57 0.79 0.19 0.31 1.48 0.66 0.46 104.38

7 29 14 2.10 0.42 2.01 1.26 0.23 0.35 0.96 0.66 0.21 80.72

8 26 16 2.26 0.34 1.39 1.08 0.22 0.31 0.85 0.42 0.36 78.28

9 22 14 2.41 0.30 1.78 1.15 0.31 0.25 0.48 0.10 0.35 91.35

10 22 15 0.73 0.28 0.56 0.37 0.19 0.26 0.32 0.19 0.10 90.17

11 27 9 2.21 0.50 1.32 0.79 0.24 0.37 1.02 0.53 0.35 77.03

12 25 10 1.87 0.33 0.60 0.43 0.10 0.34 0.53 0.29 0.19 75.24

13 20 8 2.03 0.27 0.91 0.59 0.07 0.23 0.46 0.19 0.22 59.76

14 23 9 2.21 0.31 0.95 0.83 0.06 0.28 0.86 0.45 0.28 69.82

15 22 9 1.47 0.29 0.64 0.44 0.12 0.26 0.52 0.32 0.17 67.86

Model with variable power

1 20 12 0.27 0.30 0.25 0.02 0.14 0.23 0.03 0.00 0.05 61.50

2 29 18 3.34 0.39 2.53 2.09 0.23 0.33 0.80 0.20 0.28 90.74

3 24 16 1.79 0.32 1.73 1.03 0.28 0.26 0.23 0.00 0.16 76.03

4 25 17 1.26 0.35 1.40 0.62 0.56 0.28 0.13 0.00 0.09 85.89

5 30 16 4.51 0.38 2.52 1.98 0.56 0.33 1.48 0.66 0.46 104.38

6 27 16 2.46 0.34 0.81 0.46 0.24 0.30 0.61 0.13 0.25 105.85

7 29 14 1.90 0.36 1.59 0.61 0.42 0.32 0.68 0.27 0.23 101.39

8 26 16 2.00 0.33 1.07 0.28 0.35 0.29 0.48 0.10 0.35 91.35

9 22 14 2.06 0.28 1.24 0.33 0.39 0.24 0.48 0.09 0.25 97.57

10 22 15 0.48 0.27 0.38 0.13 0.27 0.24 0.05 0.00 0.05 88.00

11 27 9 1.89 0.34 0.76 0.32 0.28 0.34 0.67 0.09 0.30 90.27

12 25 10 1.64 0.32 0.37 0.16 0.27 0.28 0.35 0.04 0.25 87.20

13 20 8 1.73 0.25 0.59 0.50 0.02 0.23 0.17 0.00 0.16 70.88

14 23 9 2.04 0.29 0.59 0.57 0.05 0.26 0.60 0.10 0.27 77.36

15 22 9 1.14 0.28 0.30 0.00 0.20 0.24 0.20 0.00 0.10 74.38
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Table 3. Comparison of results with m = 20.

scenario n k FCFS IGCH SA

obj time (s) mean best std time (s) mean best std time (s)

Model with constant power

16 48 22 6.04 1.86 3.33 2.49 0.50 1.41 3.87 2.52 0.61 320.80

17 50 22 6.22 1.50 3.59 2.09 0.64 1.40 4.25 3.45 0.42 340.73

18 59 30 4.95 1.67 3.68 2.55 0.63 1.68 3.01 2.26 0.42 391.15

19 66 28 7.39 1.98 5.90 4.78 0.71 1.91 5.39 3.84 0.74 428.59

20 51 23 4.73 1.52 3.51 2.08 0.61 1.38 3.33 2.58 0.52 323.44

21 58 33 6.60 1.70 5.61 3.88 0.86 1.65 4.10 2.80 0.71 381.73

22 53 26 3.76 1.59 3.49 2.40 0.69 1.41 2.66 1.30 0.60 322.97

23 68 37 9.24 1.98 7.80 5.41 0.85 1.90 6.08 4.60 0.67 448.97

24 52 27 4.21 1.49 3.02 1.76 0.78 1.43 2.57 1.96 0.37 340.59

25 54 28 5.89 1.59 5.17 3.82 0.81 1.46 4.02 3.09 0.58 370.09

26 40 20 4.11 1.17 2.18 1.55 0.36 2.01 2.10 1.29 0.42 283.48

27 40 18 4.05 1.13 2.05 1.33 0.28 2.11 2.28 1.42 0.51 259.32

28 37 20 3.52 1.12 1.53 1.03 0.31 1.97 1.37 0.96 0.30 246.28

29 33 15 2.88 0.91 0.90 0.62 0.14 1.58 0.85 0.44 0.30 206.95

30 39 18 3.48 1.13 2.04 1.47 0.27 2.21 1.58 0.88 0.34 240.35

Model with variable power

16 48 22 5.39 1.33 2.58 1.77 0.53 1.25 3.87 2.52 0.61 320.80

17 50 22 5.79 1.37 3.02 1.84 0.80 1.28 3.64 2.50 0.61 368.63

18 59 30 4.20 1.63 2.75 1.80 0.54 1.54 2.16 1.25 0.42 427.03

19 66 28 6.72 1.82 5.22 3.40 0.65 1.72 4.44 3.24 0.64 480.56

20 51 23 4.24 1.41 2.52 1.60 0.48 1.30 2.49 1.64 0.56 371.11

21 58 33 6.03 1.58 5.22 3.18 0.87 1.49 3.54 2.20 0.47 427.77

22 53 26 3.18 1.44 2.69 1.66 0.64 1.34 2.04 1.16 0.42 368.22

23 68 37 8.75 1.86 6.66 5.12 0.73 1.77 5.46 4.29 0.53 507.92

24 52 27 3.75 1.44 2.36 0.99 0.62 1.32 2.25 1.23 0.50 373.87

25 54 28 5.44 1.48 4.46 2.67 0.78 1.37 3.64 2.34 0.57 390.13

26 40 20 3.61 1.06 1.29 0.82 0.23 1.88 1.62 0.91 0.46 299.69

27 40 18 3.75 1.09 1.27 0.38 0.29 1.97 1.68 0.97 0.57 280.38

28 37 20 3.22 1.11 0.84 0.45 0.26 1.80 0.98 0.20 0.32 267.22

29 33 15 2.60 0.86 0.41 0.09 0.19 1.49 0.58 0.11 0.20 241.82

30 39 18 3.16 1.10 1.29 0.67 0.22 2.11 1.10 0.62 0.31 297.82
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Table 4. Comparison of results with m = 40.

scenario n k FCFS IGCH SA

obj time (s) mean best std time (s) mean best std time (s)

Model with constant power

31 93 45 6.27 6.30 3.92 2.43 0.67 5.34 4.76 3.91 0.58 1621.11

32 99 53 7.27 6.38 6.70 5.24 0.62 5.86 5.56 4.57 0.55 1433.02

33 79 41 6.64 5.74 3.59 2.19 0.55 4.45 4.81 3.50 0.69 1122.35

34 102 52 9.59 6.69 6.76 4.84 1.03 6.39 6.90 5.98 0.54 1442.63

35 93 52 7.77 5.97 5.61 4.10 0.70 5.51 6.11 4.83 0.48 1382.38

36 96 50 4.30 6.20 4.78 3.52 0.64 5.64 3.45 2.84 0.33 1462.46

37 96 52 9.47 6.47 5.09 4.02 0.69 5.61 6.77 5.89 0.71 1480.53

38 112 58 9.82 7.45 7.71 5.96 1.06 6.95 7.96 6.68 0.64 1648.97

39 95 43 7.04 6.26 4.70 3.53 0.80 6.04 5.34 4.40 0.55 1379.94

40 78 38 6.56 5.83 3.40 2.71 0.32 4.90 3.92 3.05 0.52 1127.74

41 85 37 6.40 5.22 4.09 3.13 0.68 9.35 4.44 3.20 0.55 1188.21

42 82 39 5.47 5.51 3.37 2.10 0.52 8.83 3.40 2.29 0.58 1245.61

43 88 40 6.36 5.47 4.27 2.96 0.68 9.86 4.56 3.86 0.41 1241.81

44 91 40 6.13 5.24 3.68 2.72 0.52 9.56 4.46 3.33 0.70 1239.36

45 79 39 6.81 4.70 4.36 2.98 0.56 8.13 4.69 3.41 0.51 1131.08

Model with variable power

31 93 45 5.32 5.75 2.59 1.21 0.77 5.07 3.59 2.34 0.63 1663.55

32 99 53 6.30 7.47 5.27 3.32 1.03 5.46 4.87 3.36 0.62 1629.41

33 79 41 5.79 5.15 2.47 1.44 0.62 4.37 3.88 2.97 0.49 1258.61

34 102 52 8.16 6.60 5.32 2.61 1.02 5.79 5.62 4.43 0.64 1645.17

35 93 52 6.69 5.86 4.02 1.71 0.84 5.18 4.75 4.01 0.39 1613.15

36 96 50 3.18 6.30 3.40 1.27 0.75 5.36 2.44 1.52 0.43 1640.23

37 96 52 8.31 6.27 3.39 1.72 0.60 5.37 6.24 4.67 0.70 1569.15

38 112 58 8.57 7.26 5.88 3.84 0.84 6.43 6.93 5.41 0.65 1784.67

39 95 43 5.79 6.24 3.02 1.21 0.80 5.65 4.17 3.27 0.62 1579.64

40 78 38 5.61 4.71 2.12 1.20 0.52 4.55 3.18 1.94 0.63 1307.81

41 85 37 5.56 5.20 2.78 1.23 0.76 8.74 3.47 2.49 0.52 1430.08

42 82 39 4.70 4.95 1.93 1.01 0.41 8.82 2.65 1.71 0.58 1259.53

43 88 40 5.33 5.19 2.93 1.71 0.76 8.08 3.43 2.25 0.54 1376.60

44 91 40 5.11 5.19 2.38 1.32 0.59 9.29 3.49 2.33 0.63 1357.30

45 79 39 5.98 4.38 2.86 1.60 0.63 8.67 3.95 2.51 0.60 1253.41
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Therefore, the arrival time is modeled using a non-homogeneous Poisson Process
with an arrival rate that varies λ(h) at each hour h = {1, ..., 24}. The arrivals
are likely high in the morning and low in the afternoon. The parking times prj

follow an exponential distribution with a mean parking duration that also varies
over time. There is no correlation between the arrival time and the parking time
so the two variables can be generated independently [15]. The departure time dj

of each EV can be directly obtained dj = rj + prj . The initial state-of-charge at
the arrival (e0j ) is considered uniformly distributed in the range of [20,70]. The
desired state-of-charge of each EV j (ed

j ) is uniformly chosen from [e0j ,100]. The
battery capacities are chosen randomly from the list of current real-world EVs
battery capacities [2].

We generate 15 scenarios for each case. In the first 10 scenarios, the chromatic
number (k) of the interval graph of the scenario is greater than the number of
CPs while it is less or equal in the last five scenarios.

5.3 Simulation Results

Due to the stochastic nature of the IGCH and the SA algorithm, 30 independent
executions were done for each scenario to obtain statistically significant results.
The objective value is calculated for each scenario and we collect the mean,
best, the standard deviation (std), and average execution time in seconds of
each algorithm. Table 2, Table 3 and Table 4 shows the comparison of results
obtained with m = 10, m = 20 and m = 40 respectively. We highlight in bold
the best solution found.

About comparison between the model with constant power and the model
with variable power, the objective value in the second one was averagely lower by
26.6% by the IGCH and by 20% by the SA than the first model. Thus, charging
demands can be satisfied more using the variable power model.

For all scenarios, the best solutions found by the SA and IGCH always out-
perform the FCFS heuristic. For the scenarios with m = 10, the SA algorithm
outperforms the IGCH in all scenarios whereas it outperforms the IGCH in 18
scenarios out of 30 with m = 20 and in 2 scenarios out of 30 when m = 40.

We perform the Mann-Whitney U test [13] to compare the results between the
IGCH and the SA for each case. The Mann-Whitney U test is a non-parametric
statistical test for determining whether two independent samples were drawn
from a population with the same distribution. We compare the p-value to a
significance level of 0.05. The p-value found was 0.0001, 0.3661 and 0.0038 for
results with m = 10, m = 20 and m = 40, respectively. It suggests that there
is no significant difference between the results with m = 20 of SA and IGCH
algorithms. However, we can conclude that the difference between the SA and
IGCH results with m = 10 and m = 40 are statistically significant. The average
time taken by the three methods is always greater in scenarios with m = 40 when
there are more EV charging demands. Also, the IGCH uses an average of 99.5%
less computational time than SA. It is also noted that increment of computation
time in the SA algorithm is due to solving multiple LP with CPLEX at each
neighbor generation while there are one LP solved for each IGCH execution.
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In conclusion, the proposed IGCH is significantly better than the FCFS mech-
anism and it is preferable to the SA regarding the execution time. Moreover, it
can handle large scenario better than the SA.

6 Conclusion

In this paper, we addressed the electric vehicle charging scheduling problem
(EVCSP) in a charging station with different charging modes to maximize the
final state-of-charge of each EV by the departure time. To solve the optimization
problem, we designed a heuristic based on interval scheduling and Simulated
Annealing (SA) combined with linear programming. Variable power and con-
stant power models were both studied and compared. Different scenarios were
presented to evaluate the performance of the proposed algorithms. The results
show that the variable power model is better for allocating power. The results
also show that the proposed heuristic and SA can achieve an optimal solution
and outperform the SA algorithm, and the performance is significantly better
than the First Come First Serve (FCFS) mechanism. In this paper, we have
assumed that the data on vehicle recharging (arrival time, departure time, state
of charge, etc.) are known in advance. This assumption is realistic since many
recharging service operators require a reservation of the recharging in advance
to avoid queues. However, it is interesting to study the dynamic case of vehicle
arrival. In future work, we will consider multi-objective optimization to reduce
the charging cost.
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