
Christine Zarges
Sébastien Verel (Eds.)

LN
CS

 1
26

92

Evolutionary Computation
in Combinatorial Optimization
21st European Conference, EvoCOP 2021
Held as Part of EvoStar 2021
Virtual Event, April 7–9, 2021, Proceedings

Lecture Notes in Computer Science 12692

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Christine Zarges • Sébastien Verel (Eds.)

Evolutionary Computation
in Combinatorial Optimization
21st European Conference, EvoCOP 2021
Held as Part of EvoStar 2021
Virtual Event, April 7–9, 2021
Proceedings

123

Editors
Christine Zarges
Aberystwyth University
Aberystwyth, UK

Sébastien Verel
Université du Littoral Côte d'Opale
Calais, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-72903-5 ISBN 978-3-030-72904-2 (eBook)
https://doi.org/10.1007/978-3-030-72904-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-72904-2

Preface

Combinatorial optimization is one of the main research areas in the context of algo-
rithmic problem solving. A combinatorial optimization problem is solved when one or
several solutions optimizing one or several objective functions are found from a large
finite set of candidate solutions. This ubiquitous approach is successful in many
real-world applications such as applications in the domains of transportation, energy,
planning, resource management, scheduling, system design, and many more. With new
challenges from these domains, the complexity and size of combinatorial optimization
problems increase, and therefore, new research questions arise in order to understand
and design more efficient search algorithms. Evolutionary algorithms and related
methods, which can be more or less bio-inspired, are intuitive, flexible, and powerful
approaches able to solve such problems. They are also capable of dealing with the
trade-off between solution quality and running time, which makes such approaches
very attractive. Thus, the task for the scientific community and practitioners is to
develop efficient evolutionary algorithms able to reach high-quality solutions within the
available computation resources according to the properties of the combinatorial
problem under consideration. The following papers show the most recent theoretical
and experimental research in this area.

This volume contains the proceedings of EvoCOP 2021, the 21th European Con-
ference on Evolutionary Computation in Combinatorial Optimisation. Originally
planned as a hybrid conference with on-site participation in Seville, Spain, the con-
ference was later turned into an online-only event due to the COVID-19 pandemic.

The EvoCOP conference series started in 2001, with the first workshop specifically
devoted to evolutionary computation in combinatorial optimization. It became an
annual conference in 2004. EvoCOP 2021 was organized together with EuroGP (the
24th European Conference on Genetic Programming), EvoMUSART (the 10th Inter-
national Conference on Artificial Intelligence in Music, Sound, Art and Design), and
EvoApplications (the 24th International Conference on the Applications of Evolu-
tionary Computation, formerly known as EvoWorkshops), in a joint event collectively
known as EvoStar 2021. Previous EvoCOP proceedings were published by Springer in
the Lecture Notes in Computer Science series (LNCS volumes 2037, 2279, 2611, 3004,
3448, 3906, 4446, 4972, 5482, 6022, 6622, 7245, 7832, 8600, 9026, 9595, 10197,
10782, 11452, and 12102). The table on the next page reports the statistics for each
of the previous conferences.

This year, 14 out of 42 papers were accepted after a rigorous double-blind reviewing
process, resulting in a 33% acceptance rate. We would like to acknowledge the
high-quality and timely work of our diverse Program Committee members, who each
year donate their time and expertise to maintain the high standards of EvoCOP and
provide constructive feedback to help authors improve their papers. Decisions con-
sidered both the reviewers’ report and the evaluation of the program chairs. The 14
accepted papers cover a wide spectrum of topics, ranging from the foundations of

evolutionary algorithms and other search heuristics to their accurate design and
application to combinatorial optimization problems. Fundamental and methodological
aspects deal with runtime analysis, the structural properties of fitness landscapes, the
study of core components of metaheuristics, the clever design of their search principles,
and their careful selection and configuration. Applications cover problem domains such
as scheduling, routing, search-based software engineering, and general graph problems.
We believe that the range of topics covered in this volume of EvoCOP proceedings
reflects the current state of research in the fields of evolutionary computation and
combinatorial optimization.

EvoCOP LNCS vol. Submitted Accepted Acceptance (%)

2021 12692 42 14 33.3
2020 12102 37 14 37.8
2019 11452 37 14 37.8
2018 10782 37 12 32.4
2017 10197 39 16 41.0
2016 9595 44 17 38.6
2015 9026 46 19 41.3
2014 8600 42 20 47.6
2013 7832 50 23 46.0
2012 7245 48 22 45.8
2011 6622 42 22 52.4
2010 6022 69 24 34.8
2009 5482 53 21 39.6
2008 4972 69 24 34.8
2007 4446 81 21 25.9
2006 3906 77 24 31.2
2005 3448 66 24 36.4
2004 3004 86 23 26.7
2003 2611 39 19 48.7
2002 2279 32 18 56.3
2001 2037 31 23 74.2

We would like to express our appreciation to the various people and institutions
making EvoCOP 2021 a successful event. First, we thank SPECIES, the Society for the
Promotion of Evolutionary Computation in Europe and its Surroundings, which aims to
promote evolutionary algorithmic thinking within Europe and wider, and more gen-
erally to promote inspiration of parallel algorithms derived from natural processes. We
extend our acknowledgments to Nuno Lourenço from the University of Coimbra,
Portugal, for his dedicated work with the submission and registration system, to João
Correia from the University of Coimbra, Portugal, and Francisco Chicano from the
University of Málaga, Spain, for EvoStar publicity, social media, and website, and to
Sérgio Rebelo from the University of Coimbra, Portugal, for his important graphic
design work. We wish to thank our prominent keynote speakers, Darrell Whitley from
Colorado State University, USA, and Susanna Manrubia from the Spanish National

vi Preface

Centre for Biotechnology (CSIC), Madrid, Spain. Finally, we express our continued
appreciation to Anna I. Esparcia-Alcázar from SPECIES, Europe, whose considerable
efforts in managing and coordinating EvoStar helped towards building a unique,
vibrant, and friendly atmosphere.

Special thanks go to the members of the EvoCOP Steering Committee (Christian
Blum, Francisco Chicano, Carlos Cotta, Peter Cowling, Jens Gottlieb, Jin-Kao Hao,
Jano van Hemert, Bin Hu, Arnaud Liefooghe, Manuel Lopéz-Ibáñez, Peter Merz,
Martin Middendorf, Gabriela Ochoa, Luís Paquete, and Günther Raidl) for their hard
work at and dedication to past editions of EvoCOP, making it one of the reference
international events in evolutionary computation and metaheuristics for combinatorial
optimization.

April 2021 Christine Zarges
Sébastien Verel

Preface vii

Organization

EvoCOP 2021 was organized as a part of EvoStar 2021, jointly with EuroGP 2021,
EvoMUSART 2021, and EvoApplications 2021.

Conference Chairs

Christine Zarges Aberystwyth University, UK
Sébastien Verel University of the Littoral Opal Coast, France

Publicity and e-Media Chair

João Correia University of Coimbra, Portugal

Web Chair

Francisco Chicano University of Málaga, Spain

Submission and Registration Manager

Nuno Lourenço University of Coimbra, Portugal

EvoCOP Steering Committee

Christian Blum Artificial Intelligence Research Institute, Spain
Francisco Chicano University of Málaga, Spain
Carlos Cotta University of Málaga, Spain
Peter Cowling Queen Mary University of London, UK
Jens Gottlieb SAP SE, Germany
Jin-Kao Hao University of Angers, France
Jano van Hemert Optos, UK
Bin Hu Austrian Institute of Technology, Austria
Arnaud Liefooghe University of Lille, France
Manuel Lopéz-Ibáñez University of Málaga, Spain
Peter Merz Hannover University of Applied Sciences and Arts,

Germany
Martin Middendorf University of Leipzig, Germany
Gabriela Ochoa University of Stirling, UK
Luís Paquete University of Coimbra, Portugal
Günther Raidl Vienna University of Technology, Austria

Society for the Promotion of Evolutionary Computation in Europe
and its Surroundings (SPECIES)

Marc Schoenauer
(President)

Inria Saclay - Île-de-France, France

Anna I. Esparcia-Alcázar
(Vice-president,
Secretary & EvoStar
Coordinator)

SPECIES, Europe

Wolfgang Banzhaf
(Treasurer)

Michigan State University, USA

Program Committee

Khulood Alyahya University of Exeter, UK
Soumen Atta Masaryk University, Czech Republic
Matthieu Basseur University of Angers, France
Alexander Brownlee University of Stirling, UK
Maxim Buzdalov ITMO University, Russia
Pedro Castillo University of Granada, Spain
Josu Ceberio University of the Basque Country, Spain
Francisco Chicano University of Málaga, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Carlos Cotta University of Málaga, Spain
Bilel Derbel University of Lille, France
Benjamin Doerr École Polytechnique, France
Carola Doerr CNRS and Sorbonne University, France
Paola Festa University of Napoli Federico II, Italy
Bernd Freisleben University of Marburg, Germany
Carlos García-Martínez University of Córdoba, Spain
Adrien Goëffon University of Angers, France
Andreia Guerreiro University of Coimbra, Portugal
Jin-Kao Hao University of Angers, France
Bin Hu Austrian Institute of Technology, Austria
Thomas Jansen Aberystwyth University, UK
Andrzej Jaszkiewicz Poznań University of Technology, Poland
Ayush Joshi University of Bath, UK
Ahmed Kheiri Lancaster University, UK
Mario Köppen Kyushu Institute of Technology, Japan
Frédéric Lardeux University of Angers, France
Rhydian Lewis Cardiff University, UK
Arnaud Liefooghe University of Lille, France
Manuel López-Ibáñez University of Málaga, Spain
Jose A. Lozano University of the Basque Country, Spain
Gabriel Luque University of Málaga, Spain

x Organization

Krzysztof Michalak Wrocław University of Economics, Poland
Frank Neumann University of Adelaide, Australia
Gabriela Ochoa University of Stirling, UK
Pietro S. Oliveto University of Sheffield, UK
Beatrice Ombuki-Berman Brock University, Canada
Luís Paquete University of Coimbra, Portugal
Paola Pellegrini Université Gustave Eiffel, France
Francisco Pereira Instituto Superior de Engenharia de Coimbra, Portugal
Daniel Porumbel Conservatoire National des Arts et Métiers, France
Jakob Puchinger IRT SystemX/CentraleSupélec, France
Günther Raidl Vienna University of Technology, Austria
María Cristina Riff Universidad Técnica Federico Santa María, Chile
Eduardo Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Hana Rudová Masaryk University, Czech Republic
Valentino Santucci University for Foreigners of Perugia, Italy
Frédéric Saubion University of Angers, France
Patrick Siarry Université Paris-Est Créteil, France
Jim Smith University of the West of England, UK
Thomas Stützle Université Libre de Bruxelles, Belgium
El-Ghazali Talbi University of Lille, France
Sara Tari Université du Littoral Côte d’Opale, France
Renato Tinós University of São Paulo, Brazil
Nadarajen Veerapen University of Lille, France
Carsten Witt Technical University of Denmark, Denmark
Bing Xue Victoria University of Wellington, New Zealand
Takeshi Yamada NTT Communication Science Laboratories, Japan

Organization xi

Contents

A Novel Ant Colony Optimization Strategy for the Quantum Circuit
Compilation Problem. 1

Marco Baioletti, Riccardo Rasconi, and Angelo Oddi

Hybridization of Racing Methods with Evolutionary Operators
for Simulation Optimization of Traffic Lights Programs 17

Christian Cintrano, Javier Ferrer, Manuel López-Ibáñez,
and Enrique Alba

Decomposition-Based Multi-objective Landscape Features and Automated
Algorithm Selection. 34

Raphaël Cosson, Bilel Derbel, Arnaud Liefooghe, Hernán Aguirre,
Kiyoshi Tanaka, and Qingfu Zhang

MATE: A Model-Based Algorithm Tuning Engine: A Proof of Concept
Towards Transparent Feature-Dependent Parameter Tuning Using
Symbolic Regression . 51

Mohamed El Yafrani, Marcella Scoczynski, Inkyung Sung,
Markus Wagner, Carola Doerr, and Peter Nielsen

An Improvement Heuristic Based on Variable Neighborhood Search
for a Dynamic Orienteering Problem . 68

Hoang Thanh Le, Martin Middendorf, and Yuhui Shi

Runtime Analysis of the ðlþ 1Þ-EA on the Dynamic BinVal Function 84
Johannes Lengler and Simone Riedi

Tabu-Driven Quantum Neighborhood Samplers . 100
Charles Moussa, Hao Wang, Henri Calandra, Thomas Bäck,
and Vedran Dunjko

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 120
Victor Parque

Flowshop NEH-Based Heuristic Recommendation. 136
Lucas Marcondes Pavelski, Marie-Éléonore Kessaci,
and Myriam Delgado

Stagnation Detection with Randomized Local Search. 152
Amirhossein Rajabi and Carsten Witt

An Artificial Immune System for Black Box Test Case Selection 169
Lukas Rosenbauer, Anthony Stein, and Jörg Hähner

Symmetry Breaking for Voting Mechanisms. 185
Preethi Sankineni and Andrew M. Sutton

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 202
Monique Sciortino, Rhyd Lewis, and Jonathan Thompson

Hybrid Heuristic and Metaheuristic for Solving Electric Vehicle Charging
Scheduling Problem. 219

Imene Zaidi, Ammar Oulamara, Lhassane Idoumghar,
and Michel Basset

Author Index . 237

xiv Contents

A Novel Ant Colony Optimization
Strategy for the Quantum Circuit

Compilation Problem

Marco Baioletti1(B) , Riccardo Rasconi2 , and Angelo Oddi2

1 University of Perugia, Perugia, Italy
marco.baioletti@unipg.it

2 Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
{riccardo.rasconi,angelo.oddi}@istc.cnr.it

Abstract. Quantum Computing represents the most promising technol-
ogy towards speed boost in computation, opening the possibility of major
breakthroughs in several disciplines including Artificial Intelligence. This
paper investigates the performance of a novel Ant Colony Optimization
(ACO) algorithm for the realization (compilation) of nearest-neighbor
compliant quantum circuits of minimum duration. In fact, current tech-
nological limitations (e.g., decoherence effect) impose that the overall
duration (makespan) of the quantum circuit realization be minimized,
and therefore the production of minimum-makespan compiled circuits
for present and future quantum machines is of paramount importance.
In our ACO algorithm (QCC-ACO), we introduce a novel pheromone
model, and we leverage a heuristic-based Priority Rule to control the
iterative selection of the quantum gates to be inserted in the solution.

The proposed QCC-ACO algorithm has been tested on a set of quan-
tum circuit benchmark instances of increasing sizes available from the
recent literature. We demonstrate that the QCC-ACO obtains results
that outperform the current best solutions in the literature against the
same benchmark, succeeding in significantly improving the makespan
values for a great number of instances and demonstrating the scalability
of the approach.

Keywords: Ant Colony Optimization · Quantum circuit compilation ·
Planning · Scheduling

1 Introduction

Quantum Computing explores the implications of using quantum mechanics to
model information and its processing. The impact of quantum computing tech-
nology on theoretical/applicative aspects of computation as well as on the society
in the next decades is considered to be immensely beneficial [16]. While classical
computing revolves around the execution of logical gates based on two-valued
bits, quantum computing uses quantum gates that manipulate multi-valued bits
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 1–16, 2021.
https://doi.org/10.1007/978-3-030-72904-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_1&domain=pdf
http://orcid.org/0000-0001-5630-7173
http://orcid.org/0000-0003-2420-4713
http://orcid.org/0000-0003-4370-7156
https://doi.org/10.1007/978-3-030-72904-2_1

2 M. Baioletti et al.

(qubits) that can represent as many logical states (qstates) as are the obtainable
linear combinations of a set of basis states (state superpositions). A quantum
circuit is composed of a number of qubits and by a series of quantum gates
that operate on those qubits, and whose execution realizes a specific quantum
algorithm.

Executing a quantum circuit entails the chronological evaluation of each gate
and the modification of the involved qstates according to the gate logic. Current
quantum computing technologies like ion-traps, quantum dots, super-conducting
qubits, etc. limit the qubit interaction distance to the extent of allowing the exe-
cution of gates between adjacent (i.e., nearest-neighbor) qubits only [6,13,23].
This has opened the way to the exploration of possible techniques and/or heuris-
tics aimed at guaranteeing nearest-neighbor (NN) compliance in any quantum
circuit through the addition of a number of so-called swap gates between adja-
cent qubits. The effect of a swap gate is to mutually exchange the qstates of
the involved qubits, thus allowing the execution of the gates that require those
qstates to rest on adjacent qubits. However, adding swap gates also introduces
a time overhead in the circuit execution [4] that generally depends on the quan-
tum hardware’s topology; on the other hand, it is highly desirable to minimize
the circuit’s execution time (i.e., makespan), in order to mitigate the negative
effects of decoherence and guarantee more stability to the quantum computa-
tion. The Quantum Circuit Compilation Problem (QCCP) can be described as
the synthesis of a real quantum circuit to be executed on a specific quantum
hardware.

The QCCP benchmarks used in this work1 have been initially introduced
and solved in [22] as a temporal planning problem. Subsequently, the same
benchmark was tackled in [3,17], respectively through a hybrid approach that
integrates Temporal Planning with Constraint Programming, and a heuristically-
based Greedy Randomized Search (GRS) technique [12,19]. The results obtained
in [17] have been further improved in [18] by means of a genetic algorithm. More
recently, a similar version of the priority rule introduced in [17] has been used
in [5] within a rollout procedure to further improve the best results, thus repre-
senting the benchmark’s current bests.

In this work, we use a slightly modified version of the priority rule proposed
in [5] within an Ant Colony Optimization (ACO) algorithm [9], and compare
our results with those obtained in the same paper, significantly improving the
makespan values for a considerable number of instances, and demonstrating the
scalability of the approach.

ACO is a powerful metaheuristic, inspired by the foraging behaviour of
colonies of ants that has been applied to many combinatorial optimization
problems [9], and particularly to scheduling and permutation problems [2,14];
indeed, the QCC problem tackled here has in fact a strong scheduling component.

1 A set of benchmark instances of different size belonging to the Quantum Approxi-
mate Optimization Algorithm (QAOA) class [10,11] tailored for the MaxCut problem
and devised to be executed on top of a hardware architecture proposed by Rigetti
Computing Inc. [20].

A Novel ACO Strategy for the QCC Problem 3

Among the evolutionary and swarm intelligence based algorithms, ACO seems
to be well suited for the QCC problem because of its constructive nature. In
fact, feasible solutions in ACO are built by means of an iterative process that
starts from an empty solution and adds a component at a time consistently with
the problem constraints, hence maintaining the feasibility of the solution at all
times during the building process.

The paper is organized as follows. The next section proposes a formal state-
ment of the tackled problem, whereas the subsequent section describes the novel
ant colony optimization strategy proposed for its resolution. Finally, an empiri-
cal evaluation based on the benchmark proposed in [22] is performed, and some
conclusions end the paper.

2 The QCC Problem

Formally, the Quantum Circuit Compilation Problem (QCCP) [17] is a tuple
P = 〈C0, L0, QM〉, where: (i) C0 is the input quantum circuit representing the
execution of the algorithm of interest, (ii) L0 is the initial assignment of qubits
to qstates, and (iii) QM is a representation of the quantum hardware.

– C0 is the input quantum circuit expressed as a tuple 〈Q,P-S,MIX, P, TC0〉,
where: (i) Q = {q1, q2, . . . , qN} is the set of qstates which, from a plan-
ning & scheduling perspective represent the resources necessary for each
gate’s execution (see for example [15], Chap. 15); (ii) P-S and MIX respec-
tively represent the set of p-s and mix gates that have to be scheduled,
such that every p-s(qi, qj) gate requires two qstates for execution, and every
mix(qi) gate requires one qstate only; (iii) P = {1, ..., p} is the number of
times (i.e., passes) the gates in the P-S and MIX must be executed; (iv) TC0

is a set of simple precedence constraints imposed on the P-S and MIX such
that: (1) all the p-s gates belonging to the k-th pass (P-Sk) that involve a
specific qstate qi must be executed before all the mix gates belonging to the
same pass (MIXk) that involve the same qstate qi, for k = 1, 2, . . . , p, and (2)
all the mix gates belonging to the k-th pass (MIXk) that involve a specific
qstate qi must be executed before all the p-s gates belonging to the (k+1)-th
pass (P-Sk+1) that involve the same qstate qi, for k = 1, 2, . . . , (p−1). Lastly,
the execution of every quantum gate requires the uninterrupted use of the
involved qstates during its processing time, and each qstate qi can process at
most one quantum gate at a time.

– L0 is the initial assignment at the time origin t = 0 of qstates qi to qubits ni.
In this work, the i-th qstate qi is assigned to the i-th qubit ni.

– QM is a representation of the quantum hardware as an undirected
multi-graph QM = 〈VN , Ep-s, Eswap, τmix, τp-s, τswap〉, where VN =
{n1, n2, . . . , nN} is the set of qubits (nodes), Ep-s (Eswap) is a set of undi-
rected edges (ni, nj) representing the set of adjacent locations the qstates qi

and qj of the gates p-s(qi, qj) (swap(qi, qj)) can potentially be allocated to.
In addition, the labelling functions τp-s : Ep-s → Z

+ and τswap : Eswap → Z
+

respectively represent the durations of the gate operations p-s(qi, qj) and

4 M. Baioletti et al.

swap(qi, qj) when the qstates qi and qj are assigned to the corresponding
adjacent locations. Similarly, the labelling function τmix : V → Z

+ represents
the durations of the mix gate (which can be executed at any node ni). Figure 1
shows an example of quantum hardware designs, with gate durations.

Fig. 1. Three quantum chip designs characterized by an increasing number of qubits
(N = 8, 21, 40) inspired by Rigetti Computing Inc. Every qubit is located at a different
location (node), and the integers at each node represent the qubit’s identifier. Two
qubits connected by an edge are adjacent, and each edge represents a 2-qubit gate (p-s
or swap) that can be executed between those qubits. p-s gates executed on continuous
edges have duration τp-s = 3, while p-s gates executed on dashed edges have duration
τp-s = 4. Swap gates have duration τswap = 2.

A feasible solution is a tuple S = 〈SWAP, TC〉, which extends the ini-
tial circuit C0 to a circuit CS = 〈Q,P-S,MIX,SWAP, P, TCS〉, such that
TCS = TC0 ∪ TC, where SWAP is a set of additional swap(qi, qj) gates added
to guarantee the adjacency constraints for the set of P-S gates, and TC is a
set of additional simple precedence constraints such that: (i) for each qstate qi,
a total order �i is imposed among the set Qi of operations requiring qi, with
Qi = {op ∈ P-S ∪ MIX ∪ SWAP : op requires qi}; (ii) all the p-s(qi, qj) and
swap(qi, qj) gate operations are allocated on adjacent qubits in QM , and (iii)
the graph 〈{P-S ∪ MIX ∪ SWAP}, TCS〉 does not contain cycles.

Given a solution S, the makespan mk(S) corresponds to the maximum com-
pletion time of the gate operations in S. An optimal solution S∗ is a feasible
solution characterized by the minimum makespan.

A Novel ACO Strategy for the QCC Problem 5

3 A Novel Ant Colony Optimization Strategy

The solution pursued in this work to solve the QCCP exploits the Ant Colony
Optimization (ACO) paradigm [9]. The proposed algorithm is called QCC-ACO
and its main schema is depicted in Algorithm 1. The algorithm handles a colony
of na artificial ants, which indirectly communicate through the pheromone model
and create solutions of the QCC problem. The main loop is repeated for a certain
number of times, according to a given stop criterion, for instance, a computation
time budget. At each iteration, every artificial ant builds a solution by means
of a constructive procedure (BuildSolution()); then, pheromone values are
updated (UpdatePheromoneValues()) in order to select the best solutions.

Algorithm 1. QCC-ACO
Require: A problem P = 〈C0, L0, QM〉

InitializePheromoneValues()
while not termination criterion do

for i ← 1 to na do
BuildSolution(P)

end for
UpdatePheromoneValues()

end while
return BestSolution

Algorithm 2. BuildSolution

Require: A problem P = 〈C0, L0, QM〉
S ← InitSolution(P)
t ← 0
while not all the P-S and MIX operations are inserted in S do

op ← SelectExecutableOperation(P , S, t)
if op �= NULL then

S ← InsertOperation(op, S, t)
else

t ← t + 1
end if

end while
return S

In the next two subsections some details about the solution constructive
procedure and the pheromone update strategy will be respectively provided.

3.1 Solution Construction Algorithm

The solution construction procedure used in QCC-ACO is described in Algo-
rithm 2. The algorithm produces a complete solution S for the given QCC

6 M. Baioletti et al.

problem P by starting from an empty solution and by iteratively selecting
(SelectExecutableOperation) and adding (InsertOperation) one oper-
ation (i.e., a quantum gate) at a time among those that can scheduled at the
current instant t.

An operation op can be scheduled at t if the qstates required by op are not
used in t. If no operation can be scheduled at t, the time is increased to t + 1.

Clearly, one essential step of the BuildSolution() procedure is the
SelectExecutableOperation() method (shown in Algorithm 3) through
which a new operation is selected for insertion in the partial solution, at each
iteration. This method is based on a heuristic-based priority rule originally intro-
duced in [17] and slightly modified in [5], whose technical details will be described
in the following sections.

3.2 Gate Selection Procedure Based on Priority Rules

The priority rule used in our QCC-ACO exploits the distance between qstate
pairs measured on the quantum hardware; in the following, we describe in detail
the criteria upon which such distance is assessed.

Let op ∈ Qi be a general gate operation that involves qstate qi, we define a
chain chi = {op ∈ Qi : op ∈ S} as the set of gates involving qi and currently
present in the partial solution S, among which a total order is imposed (see
Fig. 2 for a graphical representation of a complete solution composed of a set of
chains, one for each qstate qi).

Let us also define last(chi) as the last operation in the chain chi according
to the imposed total order and n(last(chi)) as the QM node at which the last
operation in the chain chi terminates its execution. Given a partial solution S,
the state LS is the tuple LS = 〈n(last(ch1)), n(last(ch2)), . . . , n(last(chN))〉 of
QM locations (nodes) where each last chain operation last(chi) terminates its
execution.

Given the multi-graph QM introduced in the QCC Problem section, we
consider the distance graph Gd(V,Ep-s), so as to contain an undirected edge
(ni, nj) ∈ Ep-s when QM can execute a p-s gate on the pair (ni, nj). In the
graph Gd, an undirected path pij between a node ni and a node nj is the list of
edges pij = ((ni, nj1), (nj1, nj2), . . . , (njk, nj)) connecting the two nodes ni and
nj and its length lij is the number of edges in the path pij . Let dij represent the
minimal length among the set of all the paths between ni and nj . The distance
dij between all nodes is computed only once at the beginning, by means of all-
pairs shortest path algorithm, whose complexity is O(|V |3) in the worst case [7].
The distance dLS associated to a given p-s(qi, qj) gate that requires two qstates
qi and qj w.r.t. the state LS of the partial solution S is defined as:

dLS (p-s(qi, qj)) = d(nlast(chi), nlast(chj)) (1)

Two qstates qi and qj are in adjacent locations in the state LS if
dLS (p-s(qi, qj)) = 1. Intuitively, given a p-s(qi, qj) gate and a partial solution
S, the value dLS (p-s(qi, qj)) yields the minimal number of swaps for moving the
two qstates qi and qj to adjacent locations on the machine QM .

A Novel ACO Strategy for the QCC Problem 7

The concept of distance defined on a single gate operation p-s(qi, qj) can be
extended to a set of gate operations, as follows. Let S be a partial solution, P-S

S

is the set of p-s(qi, qj) gates that are not yet scheduled in S and such that all
predecessors gates according to the temporal order imposed by the set TC0 (the
set of simple precedences in the input circuit C0) have already been scheduled in
S. The authors in [17] proposed two different functions to measure the distance
separating the set P-S

S
from the adjacent state. The first sums the set of the

distances dLS (p-s(qi, qj)):

DS
sum(P-S

S
) =

∑

p-s∈P-S
S

dLS (p-s(qi, qj)) (2)

The second returns the minimal value of the distance dLS (p-s(qi, qj)) in the set
P-S

S
:

DS
min(P-S

S
) = MIN

p-s∈P-S
SdLS (p-s(qi, qj)) (3)

Given the functions (2) and (3), it is now possible to assess the priority of
each gate operation op to possibly insert in the partial solution as follows:

f(S, op,P-S
S
) =

⎧
⎪⎪⎨

⎪⎪⎩

(DS′
sum(P-S

S \ {op}), 1) (p-s)

(DS′
sum(P-S

S′
), 1) (mix)

(DS′
sum(P-S

S′
),DS′

min(P-S
S′

)) (swap)

(4)

where S′ is the new partial solution after the addition of the selected gate oper-
ation op. We are now in the position to describe in detail the SelectExe-
cutableOperation() procedure, which operates over three phases (see Algo-
rithm 3).

In the first phase (Phase1), a set Ω′ of operations (PS, MIX or SWAP)
that can be time and resource feasibly scheduled at the current instant t is
selected through the EligibleSet() procedure (eligible operations at time t).
Subsequently, the values of DS

sum and DS
min of the solution S (baseline values),

are computed using formulas 2 and 3, respectively. From this point, a new set
Ω of operations is built by further restricting Ω′, in a fashion inspired to the
Priority Rule described in [5]. Namely, Ω is built by immediately inserting all
the eligible P-S and MIX operations previously stored in Ω′ (if any), while the
SWAP operations will be considered only if their execution produces a partial
solution which is better than the current solution with respect to the Dsum

heuristic value or, being equal with respect to Dsum, it is better with respect to
Dmin.

The second phase (Phase2) is executed only if the first phase returns an
empty Ω set, in which case the algorithm collects all the SWAP operations
previously contained in Ω′ whose execution produces a partial solution which is
better than the current solution with respect to Dmin only.

The third phase (Phase3) chooses the operation to be returned by the pro-
cedure. If Ω is still empty, SelectExecutableOperation returns NULL and

8 M. Baioletti et al.

Algorithm 3. SelectExecutableOperation

Require: a problem P , a partial solution S, a time t
//Phase1:
Ω′ ← EligibleSet(S, t)
Ω ← ∅
Init DS

sum and DS
min) resp. according to (2) and (3)

for all op ∈ Ω′ do
(op.DS

sum, op.DS
min) ← f(S, op,P-S

S
)

if (op is a MIX or a PS) or (op.DS
sum < DS

sum) or (op.DS
sum = DS

sum and
op.DS

min < DS
min) then

Ω ← Ω ∪ {op}
end if

end for
//Phase2:
if Ω = ∅ then

for all op ∈ Ω′ do
if (op is a SWAP) and (op.DS

min < DS
min) then

Ω ← Ω ∪ {op}
end if

end for
end if
//Phase3: op selection
if Ω = ∅ then

return NULL
end if
Evaluate prob(op) for all op ∈ Ω according to (5)
return op chosen at random with probability prob(op)

the solution construction scheme continues by increasing the current value of
t. Otherwise, a selection probability value prob(op) is firstly computed for each
operation contained in Ω, according to the following formula:

prob(op) =
τ(op)αη(op)β

∑
op′∈Ω τ(op′)αη(op′)β

(5)

where τ(op) is the pheromone value associated to the choice of op, η(op) is the
desirability value of op, and the parameters α and β regulate the contribution
of the pheromone and the desirability values to the probability of component
selection.

The pheromone values will be described in the Pheromone Models section,
while the desirability value for an operation op is computed as:

η(op) = 1 − W × op.D̂S
sum + op.D̂S

min

W + 1

where op.D̂S
sum and op.D̂S

min are the normalized values of op.DS
sum of op.DS

min,
respectively, and W is a constant which enhances the contribution of DS

sum with
respect to DS

min.

A Novel ACO Strategy for the QCC Problem 9

Finally, the SelectExecutableOperation() procedure selects an opera-
tion according to the probability distribution prob(op).

3.3 Pheromone Models

Pheromone values could be associated directly to the operations, however this
organization does not work well because P-S and MIX operations are present in
all the feasible solutions (hence their pheromone value would be not significant),
while SWAP operations can be used more times in the same solution. Therefore,
it is necessary to associate a pheromone value to contextualized operations, i.e.
to pairs (op, c), where c is a piece of information, denoting the context where op
is executed.

Using a technique similar to what is done in ACO approaches to scheduling
[14] and to planning [1], pheromone values can be associated to the pairs (op, t),
where op is the operation and t is the start time of op. Pheromone values are
organized as a matrix and the corresponding model is called Time Operation
(TO) model. Hence, in this model the (possible) start time of the operations is
taken into account both in the operation selection phase (Eq. 5), where τ(op) is
replaced with τ(op, t).

The pheromone values are updated with the following two steps procedure.
Firstly, an evaporation phase is performed, which lowers the value associated

to each operation op and each time step t with the formula

τ(op, t) ← (1 − ρ)τ(op, t) (6)

where ρ ∈ (0, 1] is a parameter called evaporation rate.
Secondly, the values associated to the best solutions are increased. In QCC-

ACO we decided to reward the best solution found so far (Sbs) or the best
solution found in the current iteration (Sib); the choice of which solution should
be rewarded is made at random, the probability of rewarding Sib is 0.8, while
Sbs is rewarded with probability 0.2.

Let S∗ the solution to reward, the pheromone value of all the operations
op ∈ S∗ is increased with the formula

τ(op, t) ← τ(op, t) +
L

mk(S∗)
(7)

where t is the time where op is executed in S∗ and L is constant (in the experi-
ments its value is fixed to 10).

Another pheromone model, based on the TO model, is the Fuzzy Time Opera-
tion (FTO) model. In this new model the value of pheromone of a given operation
op is spread around the time steps in the operation selection phase by fuzzyfing
the time step t when the pheromone model is queried. Internally, the pheromone
values are stored and updated in a matrix τ(op, t) as in the TO model. However,
in the the operation selection phase, instead of employing τ(op, t), the value
τw(op, t) is used in (5). This value is computed as the weighted average of the
pheromone values of op at times close to t: t − w, t − w + 1, . . . , t + w − 1, t + w.

10 M. Baioletti et al.

More in detail, τw(op, t) is computed with the following formula:

τw(op, t) =
w∑

h=−w

σ(h)τ(op, t + h)

where w is the width of the window and

σ(h) =
exp(−h2

2)
∑w

k=−w exp(−k2

2)

is the weight for the displacement h = −w, . . . , w. The width w is a parameter
of the model FTO, hence we will denote by FTOw the FTO model where the
width is w.

Fig. 2. Solution of the instance n.8 of the N = 8 benchmark set, with makespan
mk = 31. In the plot, PS gates are depicted in green, SWAP gates in yellow, and MIX
gates in blue. (Color figure online)

The difference between TO and FTO can be summarised as follows. Suppose
that the operation op is rewarded as a component of a good solution S∗ and that
op was executed at time t0 in S∗. In the TO model the pheromone value is only
affected at t0, while in FTO also the time steps near t0 can exploit of the value.
The strength of influence of the pheromone value at time t depends on the
difference |t − t0|: the smaller the distance, the higher the influence. A similar
way of using pheromone has already been introduced in [1] (called Fuzzy Level
Action model).

A Novel ACO Strategy for the QCC Problem 11

4 Empirical Evaluation

The QCC-ACO algorithm has been implemented in Java standard (OpenJDK,
v.11.0.9.1), without using any external library. In particular, we have used the
Java built-in pseudo random generator. All the experiments were run on an Intel
Xeon E312 machine equipped with 16 GB of RAM.

4.1 Tuning

QCC-ACO has many parameters to be set: α, β, ρ, the model M of the
pheromone (the choice is among TO and FTOw, for some reasonable values
of w), the number of ants na, W , and L. Some of the parameters, namely na,
W , and L were chosen after some preliminary runs, resulting that QCC-ACO is
not affected in a sensitive way by the values of those parameters. The choice is
na = 20,W = 10, L = 10.

Hence, we have decided to perform an extensive tuning procedure to find the
best configuration for QCC-ACO in terms of α, β, ρ and M. We have created
5 new instances of the QCC problem for each value of N = 8, 21, 40 only for
the tuning phase, in order to avoid to use the same instances for the tuning
and for the test phases. Both the parameters α and β have been varied in the
set {0, 1, 2, 3, 4}, while the possible values of ρ were 0.1, 0.2, 0.3. Finally, TO
competed against FTO1, . . . , FTO5.

For each parameter configuration, QCC-ACO was run 10 times on the 15
tuning instances, using as termination criterion the time budget of 60 s for the
instances with N = 8 and 300 s for the other instances.

The results of the tuning phase clearly indicates that the combinations (α =
1, β = 0, ρ = 0.3,M = FTO3) outperformed the others in terms of the average
relative percentage difference. In line with the results obtained in [21], the best
value for β resulted to be 0, i.e. QCC-ACO works better without using the
heuristic function η in the probabilistic operation selection (formula 5). However,
the heuristic function still plays an important role because it is used to prune
the operations to select (see Algorithm 3) and therefore to reduce the branching
factor.

Some preliminary experiments showed that the pruning stage is important
because the performances of QCC-ACO greatly deteriorate if the operation selec-
tion works with Ω = Ω′, i.e. if all the eligible operations at the given time t can
be selected.

A second, smaller set of tuning experiments have been conducted in order
to see if some small value of β can improve the QCC-ACO performances. The
parameter β have been varied in the set {0, 1

4 , 1
3 , 1

2}, while the other parameters
have been fixed to the value of the best configuration. The second experiment
confirmed that β = 0 is the best choice. Among the pheromone values, all the
fuzzified versions of TO outperformed the crisp model TO, confirming that the
fuzzification of TO works better. In particular, the best value for the width w is
3, which is an intermediate value among all the possible value for that parameter.

12 M. Baioletti et al.

Hence, we decided to adopt in the test phase the configuration (α = 1, β = 0, ρ =
0.3,M = FTO3).

4.2 Results

QCC-ACO has been tested on the 150 instances of the QCC problem (50
instances for each size N = 8, 21, 40) with u = 1.0 and P = 2. The termi-
nation criterion used in our experiments is the same that has been used in [5]:
all runs for the N = 8 instances were limited to 60 s, while for the N = 21 and
N = 40 instances all runs were limited to 300 s. For each instance QCC-ACO
has been executed 10 times.

The results are depicted in Table 1, where the average value of the makespan,
the standard deviation and the best value obtained by QCC-ACO are listed. The
columns labelled Best RH contain the best values obtained in [5] through their
Rollout heuristic. The columns labelled Δ show the difference between our results
and those of our competitor. The best results obtained from either procedure
are shown in bold.

For N = 8, QCC-ACO outperformed the Rollout heuristic (RH) in 14/50
instances, obtained the same result in 18/50 instances, and was beaten in 18/50
instances. The Wilcoxon signed rank test on QCC-ACO results against the RH
results does not show any significant difference, because its p-value is large
(0.2031). Despite in the N = 8 benchmark there is no clear winner, it is inter-
esting to note that the average improvement obtained by ACO over RH on the
improved solutions (Δ column) is equal to 1.64, versus an average worsening of
1.11. It is also interesting to see that, in 44 instances, QCC-ACO produced the
same or equivalent solutions in all the 10 executions, as the standard deviation
is 0.

For N = 21, QCC-ACO outperformed the Rollout heuristic in 35 instances,
in only 7 instances QCC-ACO was outperformed by its competitor, while in
the remaining 8 instances there was a tie. The average improvement obtained
by ACO over RH on the improved solutions is equal to 2.60, versus an average
worsening of 1.85. In this case, the Wilcoxon signed rank test has a very small
p-value (3.887 · 10−9), hence the results of QCC-ACO are significantly better
than those of RH.

The most impressive results were obtained for N = 40: in all 50 instances
QCC-ACO found better solutions than the Rollout heuristic. In particular, the
largest value of Δ was −19, obtained in three instances; remarkably, the average
improvement obtained by ACO over RH is equal to 12.12. It is worth to notice
that in all the instances except the instance #9, also the average makespans
obtained by QCC-ACO are better than the best values obtained by the Rollout
heuristic. As expected, also the p-value of Wilcoxon signed rank test is even
smaller than the case of N = 21, i.e. 8.277 · 10−10.

Figure 2 shows the plot of the solution of problem instance n.8 belonging to
the N = 8 benchmark set, while Fig. 3 shows the plot of the solution of problem
instance n.24 belonging to the N = 40 benchmark set (left), together with a
graph of the average convergence times obtained on the 10 runs (right). Despite

A Novel ACO Strategy for the QCC Problem 13

F
ig
.
3
.

L
ef

t:
so

lu
ti

o
n

o
f

th
e

in
st

a
n
ce

n
.2

4
o
f

th
e

N
=

4
0

b
en

ch
m

a
rk

se
t,

w
it

h
m

a
k
es

p
a
n

m
k

=
6
1
.
R

ig
h
t:

av
er

a
g
e

p
lo

t
o
f

co
n
v
er

g
en

ce
ti

m
es

o
n

1
0

ru
n
s,

th
e

sh
a
d
ed

a
re

a
sh

ow
s

9
5
%

co
n
fi
d
en

ce
in

te
rv

a
l.

14 M. Baioletti et al.

Table 1. Experimental results for all benchmarks

N = 8 N = 21 N = 40

Inst Avg. SD Best Best Avg. SD Best Best Avg. SD Best Best

ACO ACO ACO RH Δ ACO ACO ACO RH Δ ACO ACO ACO RH Δ

1 35.0 0.0 35 35 0 48.2 0.4 48 49 −1 61.6 1.9 58 65 −7

2 34.0 0.0 34 36 −2 50.3 0.5 50 50 0 65.8 2.3 62 74 −12

3 32.0 0.0 32 31 1 44.1 1.7 41 42 −1 63.6 1.6 61 71 −10

4 33.0 0.0 33 32 1 43.2 0.6 42 44 −2 69.1 3.2 65 74 −9

5 27.0 0.0 27 27 0 47.4 0.7 46 52 −6 71.4 2.3 68 78 −10

6 34.0 0.0 34 35 −1 48.9 0.3 48 50 −2 72.4 1.9 69 81 −12

7 32.0 0.0 32 31 1 53.9 0.9 52 55 −3 73.2 3.4 66 79 −13

8 32.6 0.7 31 34 −3 48.5 0.8 47 49 −2 65.6 1.0 64 68 −4

9 35.0 0.0 35 35 0 50.4 0.8 49 54 −5 67.0 1.2 65 66 −1

10 38.0 0.0 38 38 0 53.5 1.4 50 54 −4 70.9 1.4 69 80 −11

11 38.0 0.0 38 38 0 44.6 0.8 44 47 −3 63.0 2.1 61 68 −7

12 35.0 0.0 35 33 2 53.3 0.5 53 56 −3 69.5 2.9 66 74 −8

13 32.0 0.0 32 32 0 44.0 0.0 44 43 1 60.2 3.2 56 62 −6

14 32.0 0.0 32 32 0 46.2 0.6 46 46 0 69.8 3.0 66 74 −8

15 34.0 0.0 34 35 −1 43.5 1.3 43 46 −3 68.7 2.8 64 78 −14

16 32.0 0.0 32 32 0 57.6 0.5 57 57 0 68.2 1.8 66 77 −11

17 37.0 0.0 37 36 1 51.6 0.5 51 50 1 71.7 1.9 68 78 −10

18 30.0 0.0 30 29 1 54.5 1.4 52 54 −2 75.9 3.1 71 79 −8

19 32.0 0.0 32 32 0 52.6 1.1 51 56 −5 62.8 2.1 60 70 −10

20 31.2 0.4 31 31 0 50.3 0.7 49 50 −1 73.1 1.4 71 78 −7

21 28.1 0.3 28 27 1 50.3 0.5 50 51 −1 66.3 1.1 64 77 −13

22 40.0 0.0 40 39 1 51.0 0.0 51 54 −3 65.1 1.8 62 76 −14

23 36.0 0.0 36 35 1 49.0 0.0 49 48 1 58.9 1.5 57 63 −6

24 33.0 0.0 33 32 1 49.3 1.1 48 50 −2 65.4 2.5 61 80 −19

25 37.2 0.4 37 38 −1 50.9 0.3 50 50 0 66.7 1.7 65 71 −6

26 29.0 0.0 29 29 0 44.0 0.0 44 46 −2 67.2 1.6 63 81 −18

27 34.0 0.0 34 34 0 59.7 1.3 58 61 −3 68.6 3.1 63 81 −18

28 32.0 0.0 32 32 0 45.8 0.8 45 47 −2 72.2 1.5 69 88 −19

29 36.0 0.0 36 35 1 46.5 0.5 46 47 −1 63.7 1.4 62 77 −15

30 31.0 0.0 31 31 0 52.9 1.0 51 53 −2 64.1 1.9 62 72 −10

31 33.0 1.1 32 32 0 51.0 0.7 50 52 −2 66.7 2.3 64 69 −5

32 36.0 0.0 36 35 1 46.3 0.5 46 52 −6 56.4 1.5 53 62 −9

33 40.0 0.0 40 42 −2 50.0 0.0 50 52 −2 64.6 1.3 63 73 −10

34 33.0 0.0 33 35 −2 53.1 1.3 51 51 0 62.2 1.6 59 68 −9

35 35.0 0.0 35 38 −3 46.6 0.8 45 45 0 64.1 2.4 59 70 −11

36 29.0 0.0 29 28 1 51.1 0.9 50 49 1 72.0 2.8 68 80 −12

37 36.0 0.0 36 35 1 51.2 0.4 51 51 0 65.2 2.4 62 73 −11

38 30.0 0.0 30 29 1 52.4 0.5 52 53 −1 60.7 1.5 58 72 −14

39 29.0 0.0 29 30 −1 48.8 1.0 47 50 −3 72.3 2.5 69 82 −13

40 38.0 0.0 38 37 1 51.3 0.5 51 48 3 65.7 2.0 64 69 −5

41 34.0 0.0 34 35 −1 49.0 1.6 47 49 −2 70.8 1.8 68 76 −8

42 33.0 0.0 33 33 0 49.9 0.7 49 50 −1 62.1 1.4 60 65 −5

43 32.0 0.0 32 32 0 45.2 1.0 44 47 −3 63.4 1.5 61 72 −11

44 39.0 0.0 39 39 0 48.2 0.9 47 47 0 65.6 2.8 62 68 −6

45 36.9 0.3 36 38 −2 45.6 0.7 44 40 4 68.4 2.5 64 69 −5

46 33.0 0.0 33 34 −1 41.4 0.7 40 42 −2 63.5 2.3 59 78 −19

47 36.0 0.0 36 38 −2 47.7 0.5 47 52 −5 72.1 3.3 66 78 −12

48 32.0 0.0 32 33 −1 45.0 0.0 45 43 2 66.4 2.4 63 75 −12

49 38.0 0.0 38 36 2 55.0 0.9 53 54 −1 69.3 2.3 67 73 −6

50 31.0 0.0 31 30 1 50.7 0.7 49 53 −4 69.6 1.4 67 74 −7

A Novel ACO Strategy for the QCC Problem 15

the descending trend shows the first signs of a plateau, there is still some room
for a further solution improvement should the time limit of 300 s be increased.

5 Concluding Remarks and Future Work

In this work, we propose a novel Ant Colony Optimization (ACO) algorithm for
the realization (compilation) of nearest-neighbor compliant quantum circuits.
In particular, our ACO algorithm (QCC-ACO) introduces a novel pheromone
model and leverages a heuristic-based priority rule inspired by the priority rules
proposed by [5,17] in the recent literature to control the iterative selection of
quantum gates to be inserted in the solution.

Table 1 reports the overall and direct comparison of our ACO approach with
the state-of-the-art represented, to the best of our knowledge, by the experimen-
tal results proposed in [5]. According to our experimental results, QCC-ACO
scales quite well on the size of the QCC problem (N = 8, 21, 40): overall, QCC-
ACO was able to produce a total of 99 better solutions out of the considered
150 QCC instances; in particular, for N = 40, QCC-ACO improved over all the
given 50 instances.

The priority rule used in [5] extends the one proposed in [17], using a gate
selection strategy targeted at minimizing the insertion of SWAP gates, based on
(i) the DS

sum and DS
min values, and on (ii) an increasing value of start time t used

as a scheduling criterion for iteratively inserting the operations in the solution.
It is therefore reasonable to conjecture that the reasons of the better perfor-
mance of [5] with respect to those obtained in [17] may reside on both previous
components. In the future, it would be very interesting to perform an analysis
to determine which component plays the leading role in such improvement.

Three further possible directions of future work are also worth being pur-
sued: the first one is to apply our ACO algorithm to the case of QCC problems
with cross-talk constraints [3]; the second one is to explore the feasibility of our
evolutionary approach to the case of compilation of a quantum algorithms for
graph coloring [8]; finally, the current ACO version may be further improved
with local search procedures, though an efficient local search implementation for
the QCCP seems to require a careful and not straightforward design.

References

1. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Experimental evaluation of
pheromone models in ACOPlan. Ann. Math. Artif. Intell. 62(3), 187–217 (2011).
https://doi.org/10.1007/s10472-011-9265-7

2. Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony opti-
mization for permutation problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS,
vol. 10593, pp. 960–971. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68759-9 79

3. Booth, K.E.C., Do, M., Beck, C., Rieffel, E., Venturelli, D., Frank, J.: Compar-
ing and integrating constraint programming and temporal planning for quantum
circuit compilation. In: Proceedings of the 28th International Conference on Auto-
mated Planning & Scheduling, ICAPS 2018, pp. 366–374 (2018)

https://doi.org/10.1007/s10472-011-9265-7
https://doi.org/10.1007/978-3-319-68759-9_79
https://doi.org/10.1007/978-3-319-68759-9_79

16 M. Baioletti et al.

4. Brierley, S.: Efficient implementation of quantum circuits with limited qubit inter-
actions. Quantum Inf. Comput. 17(13–14), 1096–1104 (2017). http://dl.acm.org/
citation.cfm?id=3179575.3179577

5. Chand, S., Singh, H.K., Ray, T., Ryan, M.: Rollout based heuristics for the quan-
tum circuit compilation problem. In: 2019 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 974–981 (2019)

6. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev.
Lett. 74, 4091–4094 (1995). https://doi.org/10.1103/PhysRevLett.74.4091

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

8. Do, M., Wang, Z., O’Gorman, B., Venturelli, D., Rieffel, E., Frank, J.: Planning
for compilation of a quantum algorithm for graph coloring. ArXiv abs/2002.10917
(2020)

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, USA (2004)
10. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-

rithm. arXiv preprint arXiv:1411.4028. November 2014
11. Guerreschi, G.G., Park, J.: Gate scheduling for quantum algorithms. arXiv preprint

arXiv:1708.00023, July 2017
12. Hart, J., Shogan, A.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett.

6, 107–114 (1987)
13. Herrera-Mart́ı, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic imple-

mentation for the topological cluster-state quantum computer. Phys. Rev. A 82,
032332 (2010). https://doi.org/10.1103/PhysRevA.82.032332

14. Merkle, D., Merkle, M., Schmeck, H.: Ant colony optimization for resource-
constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)

15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

17. Oddi, A., Rasconi, R.: Greedy randomized search for scalable compilation of quan-
tum circuits. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp.
446–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 32

18. Rasconi, R., Oddi, A.: An innovative genetic algorithm for the quantum circuit
compilation problem. In: Proceeding of the Thirty-Third Conference on Artificial
Intelligence, AAAI 2019, pp. 7707–7714. AAAI Press (2019)

19. Resende, M.G., Werneck, R.F.: A hybrid heuristic for the p-median problem.
J. Heuristics 10(1), 59–88 (2004). https://doi.org/10.1023/B:HEUR.0000019986.
96257.50

20. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–6, October 2016. https://doi.org/10.1109/ICRC.2016.7738703

21. Stützle, T.: An ant approach to the flow shop problem. In: Proceedings of the 6th
European Congress on Intelligent Techniques & Soft Computing, EUFIT 1998,
Aachen, Germany, pp. 1560–1564 (1998)

22. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Temporal planning for compilation of
quantum approximate optimization circuits. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4440–
4446 (2017). https://doi.org/10.24963/ijcai.2017/620

23. Yao, N.Y., et al.: Quantum logic between remote quantum registers. Phys. Rev. A
87, 022306 (2013). https://doi.org/10.1103/PhysRevA.87.022306

http://dl.acm.org/citation.cfm?id=3179575.3179577
http://dl.acm.org/citation.cfm?id=3179575.3179577
https://doi.org/10.1103/PhysRevLett.74.4091
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1708.00023
https://doi.org/10.1103/PhysRevA.82.032332
https://doi.org/10.1007/978-3-319-93031-2_32
https://doi.org/10.1023/B:HEUR.0000019986.96257.50
https://doi.org/10.1023/B:HEUR.0000019986.96257.50
https://doi.org/10.1109/ICRC.2016.7738703
https://doi.org/10.24963/ijcai.2017/620
https://doi.org/10.1103/PhysRevA.87.022306

Hybridization of Racing Methods with
Evolutionary Operators for Simulation
Optimization of Traffic Lights Programs

Christian Cintrano(B) , Javier Ferrer , Manuel López-Ibáñez ,
and Enrique Alba

University of Malaga, Bulevar Louis Pasteur 35, 29010 Malaga, Spain
{cintrano,ferrer,manuel.lopez-ibanez,eat}@lcc.uma.es

Abstract. In many real-world optimization problems, like the traffic
light scheduling problem tackled here, the evaluation of candidate solu-
tions requires the simulation of a process under various scenarios. Thus,
good solutions should not only achieve good objective function values,
but they must be robust (low variance) across all different scenarios.
Previous work has revealed the effectiveness of IRACE for this task.
However, the operators used by IRACE to generate new solutions were
designed for configuring algorithmic parameters, that have various data
types (categorical, numerical, etc.). Meanwhile, evolutionary algorithms
have powerful operators for numerical optimization, which could help to
sample new solutions from the best ones found in the search. Therefore,
in this work, we propose a hybridization of the elitist iterated racing
mechanism of IRACE with evolutionary operators from differential evo-
lution and genetic algorithms. We consider a realistic case study derived
from the traffic network of Malaga (Spain) with 275 traffic lights that
should be scheduled optimally. After a meticulous study, we discovered
that the hybrid algorithm comprising IRACE plus differential evolution
offers statistically better results than conventional algorithms and also
improves travel times and reduces pollution.

Keywords: Hybrid algorithms · Evolutionary algorithms · Simulation
optimization · Uncertainty · Traffic light planning

1 Introduction

In many real-world optimization problems, the evaluation of candidate solu-
tions requires the simulation of a process under various scenarios that represent
uncertainty about the real-world. Good solutions should not only achieve good
objective function values but also show robustness, i.e., low variance across sce-
narios. To assess the robustness of solutions, it is often required to simulate each
solution a number of times using different data, starting conditions or random
numbers. For example, when planning the traffic light schedules within a city1,
1 Legal and technical limitations may make real-time traffic light control infeasible.

c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 17–33, 2021.
https://doi.org/10.1007/978-3-030-72904-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_2&domain=pdf
http://orcid.org/0000-0003-2346-2198
http://orcid.org/0000-0002-1074-0139
http://orcid.org/0000-0001-9974-1295
http://orcid.org/0000-0002-5520-8875
https://doi.org/10.1007/978-3-030-72904-2_2

18 C. Cintrano et al.

it is desirable to find a schedule that works well under many different traffic
conditions [3,5,7,8,13,15–18,20,21]. A common approach is to simulate each
candidate solution under a number of scenarios generated from real traffic data.
However, there is a trade-off between the number of scenarios used for evaluating
each solution and the number of candidate solutions evaluated.

Previous work [6] has shown that IRACE [11] is able to find high-quality and
low-variance traffic light schedules by dynamically adjusting the number of simu-
lations performed per solution. The elitist iterated racing algorithm implemented
by IRACE has been traditionally used for the configuration of parameters in
machine learning and optimization algorithms, where each configuration must
be evaluated on a number of training instances of a problem and the algorithm
themselves are often stochastic. The algorithm implemented in IRACE uses a
learning mechanism inspired by reinforcement learning to sample new solutions
from the best ones previously found. Although this approach tends to work well
for configuring a mix of categorical and numerical parameters with dependen-
cies and constraints among them, other operators may perform better when the
problem consists only of numerical decision variables.

In this paper, we propose a hybridization of evolutionary operators from
evolutionary algorithms (EAs) and the elitist iterated racing of IRACE. We
evaluate its performance on the traffic light optimization problem and compare
it with previous results from the literature. The idea of previous approaches to
hybridizing EAs and racing was performing independent races to carry out the
evaluation step within an EA [9], whereas our proposal replaces the sampling
mechanism in IRACE, which is not simply a sequence of independent races,
with evolutionary operators.

Besides, in order to add value to our experimentation, we use an instance
based on real data from the city of Malaga, Spain. We also use a traffic simulator,
SUMO [1,10], to evaluate each of the traffic light schedules generated by the
algorithms. With this, we not only seek to analyze which algorithm is better but
also to solve a real problem of the city.

In summary, the main contributions of this work are:

– We propose new hybrid algorithms that combine racing strategies with evo-
lutionary operators. Thus obtaining powerful and robust algorithms.

– We optimize the traffic light plan of a real city like Malaga (Spain) using
detailed micro-simulations.

– We offer an in-depth analysis of our hybrid algorithms and compare them
with well-known EAs such as a genetic algorithm (GA) and a differential
evolution (DE).

– We study which algorithm presents the greatest improvement to the city
according to different measures about traffic quality and emission reduction.

The rest of this article is organized as follows: Sect. 2 presents a description of
the Traffic Light Scheduling Problem. Section 3 describes the main contribution
of this work, the hybridization between IRACE and EAs. Section 4 outlines the
main aspects of our experimentation. We discuss the results obtained in Sect. 5.
Finally, Sect. 6 presents conclusions and future work.

Hybridization of Racing Methods with Evolutionary Operators 19

2 Problem Description

Traffic flow in large smart cities has become one of the most severe problems
that large cities face. In some cases, this problem is further aggravated due to the
high amount of traffic jams, traffic accidents, or even injured people or deaths.
Therefore traffic must be regulated with some elements such as traffic lights.
The larger the metropolitan area, the higher the number of traffic lights needed
to regulate the traffic flow. Optimal management of traffic might be beneficial
to minimize journey times, reduce fuel consumption and harmful emissions.

Traffic lights are coordinated in phases: green, yellow and red. In this way,
when some traffic lights of the same intersection are in green, some others must be
in red. Besides, the different pre-defined phases for an intersection are sequences
repeated over time, we call traffic light program (TLP) to each of those sequences.

The large number of program combinations that appear in traffic light sched-
ules of large cities require automatic tools to generate optimal TLP, which moti-
vates the Traffic Light Scheduling Problem (TLSP) [8,15,16]. The main objective
in this problem is to find optimized TLP for all the traffic lights located in the
intersections of an urban area with the aim of reducing journey time, emissions,
and fuel consumption.

Let us define the TLSP as follows. Let P = {I1, . . . , In} be a candidate TLP,
where each Ii corresponds to a different intersection defined as a set of predefined
valid phases Ii = {ϕi1, . . . , ϕimi

}, where mi = |Ii| and each ϕij ∈ N
+ represents

the duration (in seconds) of phase j in intersection Ii, that is, the duration of
each valid phase of light colors (e.g., “rr yyg rr gyyy”). The objective is to find
a TLP P ′ that minimizes a fitness function f : Γ → R such that:

P ′ = arg min
P∈Γ

{f(P)} (1)

where Γ is the space of all possible TLPs.
In order to define the fitness function, we need to explain some previous

concepts used in the definition. The evaluation of a solution is performed using a
traffic simulator that provides information regarding the flow of vehicles. Vehicles
travel from a starting position to a destination position, then the travel time (tv)
of a vehicle v is the number of simulation steps (1 second per simulation step)
in which its speed was above 0.1 m/s, while its waiting time (wv) is the number
of simulation steps in which its speed was below 0.1 m/s.

Long phase duration may lead to a collapse of the intersection. TLPs should
prioritize those phases with more green lights on the directions with a high num-
ber of vehicles circulating. So, we should maximize the following ratio measure:

GR(P) =
n∑

i=1

|Ii|∑

j=1

ϕij · Gij

Rij
(2)

where Gij is the number of traffic lights in green, and Rij is the number of traffic
lights in red in phase j of intersection i and ϕij is the duration of the phase.
The minimum value of Rij is 1 in order to avoid a division by 0.

20 C. Cintrano et al.

Finally, we define the following fitness function that should be minimized:

f(P) =
V rem(P) · tsim +

V (P)∑
v=1

tv(P) + wv(P)

V (P)2 + GR(P)
(3)

where the presence of vehicles with incomplete journeys V rem(P) penalizes the
fitness of a solution P proportionally to the simulation time tsim. The number
of vehicles that arrive at their destinations is squared (V (P)2) to prioritize this
criterion over the rest. This fitness function has been successfully used in [7,8].

3 Hybridization of IRACE and Evolutionary Algorithms

There are many definitions of hybrid algorithms, yet the general idea is to com-
bine components or concepts from different techniques to exploit desirable char-
acteristics of those components to tackle problems with particular features [2].
In this work, we combine the elitist iterated racing strategy from IRACE with
evolutionary operators to obtain an algorithm that performs well on numerical
optimization problems where the fitness of each solution is uncertain and must
be evaluated using multiple simulations. The elitist iterated racing strategy of
IRACE decides how many simulations should be performed per solution, how
solutions are compared, and which solutions should be discarded at each iter-
ation. The evolutionary operators are responsible for generating new solutions
from the surviving population of solutions. Next, we will briefly explain the base
algorithm, IRACE, and the different characteristics of the hybrid algorithm.

3.1 IRACE

IRACE [11] is a well-known tool for automatic (hyper-)parameter configuration
of optimization and machine learning algorithms. In the context of automatic
parameter configuration, decision variables correspond to algorithmic param-
eters, candidate solutions correspond to potential configurations of an algo-
rithm, and evaluating the fitness of a solution requires running the algorithm
with a particular parameter configuration on multiple training data or prob-
lem instances. However, IRACE can be seen as an optimization method for
mixed-integer black-box problem under uncertainty, and, hence, it may be used
to tackle simulation-optimization problems, such as the TLSP [6].

Algorithm 1 briefly presents IRACE applied to the TLSP. Initially, a set of
solutions are sampled uniformly at random. Then a race is performed to identify
the best solutions among the initial set. Within a race, each solution is simu-
lated multiple times on different traffic scenarios until there is enough evidence
to eliminate it because it is performing worse than the best solution found so
far. In the TLSP, we use the pairwise paired Student’s t-test as the elimination
test. The race stops once a minimum number of solutions remains alive in the
race, the budget assigned to the race is exhausted, or multiple elimination tests

Hybridization of Racing Methods with Evolutionary Operators 21

Algorithm 1. Pseudocode of IRACE

Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.
1: t ← 1
2: Θt ← SampleUniformRandomPopulation
3: Θelite ← Race(Θt)
4: while evals < totalEvals do
5: t ← t + 1
6: M ← Update(Θelite)
7: Θnew ← Sample(M)
8: Θt ← Θnew ∪ Θelite

9: Θelite ← Race(Θt)
10: end while
11: Output: best solution from Θelite

fail to eliminate any solution. The solutions that remain alive after the race are
called elite. These elite solutions are used to update a sampling model in a sim-
ilar fashion as reinforcement learning, from which new solutions are generated.
New and elite solutions together form a new population that is raced again. In
elitist racing, results from previous races are re-used in subsequent races and
elite solutions cannot be eliminated from the race until the contender has been
evaluated in as many scenarios as the elite solution. This process is iterated until
a maximum budget of simulations is exhausted. The main benefit of the racing
strategy is that poor solutions are discarded quickly to avoid wasting simula-
tions, while good solutions are simulated on many scenarios to provide a good
estimate of their fitness. Moreover, the elimination test takes into account not
only the mean value over multiple simulations but also the variance and the
number of simulations performed so far.

3.2 Hybrid Algorithms

Once we have described how IRACE works, let us analyze our hybrid algorithms.
In line 7 of Algorithm 1, the function Sample(M) generates a new set of candidate
solutions to the problem. In our hybrid algorithms, we replace that function
with operators taken from two EAs: Genetic Algorithm (GA) and Differential
Evolution (DE). We call IRACE+GA and IRACE+DE, respectively, to these
new hybrid algorithms. These EAs have already demonstrated their effectiveness
in solving the TLSP [6], so we consider them to hybridize with IRACE. In
this way, the racing step remains intact but the sampling of new solutions is
carried out by these EAs. In IRACE, the Sample(M) procedure is equivalent
to the mating selection and variation steps of an EA, i.e., selecting parents,
generating new individuals from them (crossover), making some modification to
the new solutions (mutation), and returning the new set of solutions. IRACE
works with both numerical and categorical parameters. TLSP only has numerical
parameters, so, in this paper, we do not have to deal with categorical parameters.

22 C. Cintrano et al.

The set of elite solutions Θelite contains the best solutions found by IRACE
after the race performed at each iteration (line 9). In our hybrid algorithm, the
parents used by the evolutionary operators are selected from Θelite. However,
the size of Θelite may vary each iteration and may be insufficient for the number
of parents required by the evolutionary operators. We handle this situation by
generating additional parents by random uniform sampling (as in line 2). This
mechanism also introduces more diversity to the set of parent solutions. Because
we use several evolutionary operators, the number of selected parents differs
from one algorithm to another. IRACE+GA needs two parents for the opera-
tor execution, while IRACE+DE needs four. The restriction in the number of
parents is given by the operators used by each algorithm, because each operator
requires a different number of solutions to generate a new one.

In this work, we have implemented two variants of the proposed hybrid algo-
rithm with the following operators:

– IRACE+GA: uniform crossover [19] and integer polynomial mutation [4]
– IRACE+DE: the “DE/best/1/bin” strategy [14].

The evaluation of the new solutions returned after the Sample(M) phase is
computed by performing several simulations, as carried out by IRACE. After
the evaluation phase, we merge this set of new solutions Θnew with set of elite
solutions Θelite to execute the racing. This returns a new set of elite solutions,
which will be used in the next iteration of the hybrid algorithms.

4 Experimental Setup

We describe here the experimental protocol followed in this work. First, we
describe the real-world case study of TLSP that is the main motivation of our
research. After that, we provide details about the experiments carried out. We
will analyze these experiments in the next section.

4.1 Real World Case Study

We consider a realistic scenario derived from the traffic network of Malaga [18],
which encompasses an area of about 3 km2 with 58 intersections controlled by
275 traffic lights (Fig. 1). Our network model was created from real data about
traffic rules, traffic element locations, road directions, streets, intersections, etc.

Once we have a realistic traffic network of a city, we need the routes and
vehicles circulating and their speeds. This information was collected from sen-
sorized points in certain streets measuring traffic density at various time inter-
vals. From the sensed data extracted, we have applied the Flow Generator Algo-
rithm (FGA) [18] to generate 60 different traffic scenarios with an average of
4,827 vehicles (or different vehicle routes) per scenario. In order to evaluate the
reliability of a candidate solution, we split the generated traffic scenarios into
two equal sets of 30 scenarios each. One (training) set is exclusively used for opti-
mization, that is, for identifying optimal TLSP solutions. The other (testing) set
of scenarios is used for comparing the solutions found during optimization.

Hybridization of Racing Methods with Evolutionary Operators 23

Fig. 1. Locations of traffic lights considered in the case of study. The colors show large
(red), medium (yellow) and small (green) differences between two different solutions.
(Color figure online)

4.2 Case Study Constraints

Real-world instances of the TLSP often present additional constraints. In our
case, we consider the constraints recommended by the City Council of Malaga
(Spain). Phases containing any yellow signals are called fixed phases because
they have a predetermined duration and the set of such phases will be denoted
by Y . These fixed phases correspond to pedestrian crosses, which last for a fixed
time of 4×number of lanes seconds. Non-fixed phases have a minimum duration
of ϕmin = 15 s. Moreover, the total program time (Tpi) within each intersection
Ii, which is computed as the sum of its phase durations:

Tpi =
|Ii|∑

ϕij∈Ii,j=1

ϕij (4)

is constrained within [Tpmin, Tpmax]. For the City Council of Malaga (Spain),
Tpmin = 60 and Tpmax = 120 s.

By default, the first programs of all intersections start at the same time.
However, we also optimize an offset time at each intersection (Toi) that repre-
sents a shift in seconds of the starting time of the program at the start of the
simulation. If the offset value of an intersection is negative, then program start
time is shifted back that number of seconds and the program actually starts on a
phase before the first one; whereas if the offset is positive, the program begins as
if that number of seconds has already passed, i.e., skipping those seconds from
the duration of the first phase and, maybe, of later phases. Offset times enable
the emergence of series of coordinated traffic lights that produce a continuous
traffic flow over several intersections in one main direction. Offset values are
constrained within the time interval Toi ∈ [Tomin, T omax] = [−30, 30].

4.3 Repair Procedure

The TLSP is subject to some constraints we have just explained in Sect. 4.2. To
ensure that candidate solutions are valid, we propose a repair procedure that is

24 C. Cintrano et al.

used by all the algorithms before the simulation. The value of each phase duration
ϕij is already constrained within a range that is larger than the minimum phase
duration ϕmin. However, we need to ensure that the total program time Tpi is
within [Tpmin, Tpmax]. Here we can distinguish two different cases.

In the first case, if the total program time for intersection Ii is smaller than
Tpmin, then we replace each non-fixed phase (those that do not contain a yellow
signal, i.e., ϕij /∈ Y) with

ϕij =
⌈
ϕij · Tpmin − TpY

i

Tpi − TpY
i

⌉
(5)

where TpY
i =

∑
ϕij∈Ii∩Y ϕij is the sum of the fixed phase durations within

intersection Ii.
In the second case, if the total program time is larger than Tpmax, then we

replace each non-fixed phase (ϕij /∈ Y) with

ϕij = ϕmin +
⌊
(ϕij − ϕmin) · Tpmax − TpY

i − ϕmin · |Ii \ Y |
Tpi − TpY

i − ϕmin · |Ii \ Y |
⌋

(6)

where |Ii \ Y | is the number of non-fixed phases within intersection Ii and TpY
i

is the total duration of the fixed phases within intersection Ii.

4.4 Simulator: SUMO

The quality of a solution (traffic light program) is evaluated through the Sim-
ulator of Urban Mobility (SUMO) [1,10], which is a microscopic road traffic
simulator that provides detailed information about vehicles like velocity, fuel
consumption, emissions, journey time, waiting time, etc. The study of realistic
scenarios according to real patterns of mobility of the target city is possible due
to the fine-grained realistic micro-simulations provided by SUMO.

All simulations were performed with SUMO version 0.22. Since we already
introduce variability by means of the different traffic scenarios, we fix the ran-
dom seed used by SUMO to zero in all simulations. This means that, given a
traffic scenario and a candidate solution, the simulation is deterministic. In all
experiments, we stop each run of an algorithm, either a variant of IRACE or
otherwise, after executing 30 000 calls to the SUMO simulator. Given that each
solution is simulated on a number of different scenarios, the number of solutions
evaluated per run is often much lower.

4.5 Algorithms

In our experiments we compare IRACE with the two hybrid variants described
above, namely, IRACE+GA and IRACE+DE. In addition, to assess the con-
tribution of the elitist racing mechanism, we also evaluate the classical GA and
DE algorithms. Here, we describe the implementation details of these algorithms.

Hybridization of Racing Methods with Evolutionary Operators 25

Following the conclusions from a previous work on the TLSP [6], we use
default settings for IRACE and the hybrids, except the following. The popula-
tion size is fixed to 10 individuals (also for GA and DE), the minimum number
of traffic scenarios simulated per candidate solution is set to two (T first = 2)
and we enable the deterministic option that tells IRACE that the only source
of uncertainty are the different scenarios and not the simulations themselves.
The evolutionary algorithms use a fixed number of simulations per candidate
solution. Each solution is simulated on five different training scenarios and its
fitness is computed as the mean fitness over the five simulations. In [6], the
authors already compared IRACE with differential evolution, genetic algorithm,
particle swarm optimization, and a random search; and showed that IRACE
obtained the best results with GA and DE being a close second, therefore, we
focus here in the comparison of IRACE, GA, DE, and the hybrids.

Our GA implementation uses a ranking method for parent selection and
elitist replacement for the next population, that is, the two best individuals of
the current population are included in the next one. The operators used are
uniform crossover and integer polynomial mutation with 1.0 of probability of
crossover and 0.1 of probability of mutation. These parameter settings were
found by additional experiments carried out in previous studies [3] to produce a
search behavior that is more exploitative rather than explorative, which is more
appropriate for the TLSP. Our DE implementation uses a “best/1/bin” strategy
with difference factor F = 0.5 and probability of crossover 0.5. These are the
default parameter values in jMetal [12]. Finally, IRACE+GA and IRACE+DE
use the same parameter settings as the GA and DE, respectively.

The GA and DE are implemented in Java using jMetal 5.0 [12]. IRACE and
the hybrids are implemented in R.2 We used IRACE version 2.3 as the baseline.3

4.6 Experimental Details

As mentioned above, we generated 60 traffic scenarios from real sensor data and
we split these scenarios into two sets of size 30. One set (training set) is used when
running the algorithms to find TLSP solutions, while the other set (testing set)
is used for evaluating the fitness and reliability of these solutions and comparing
the various strategies analyzed in this paper. During optimization, the traffic is
simulated up to a predefined time horizon (1 h plus 10 min of warm-up, in our
case) in order to simulate the peak period in our real-world case study. For the
constraints of the TLSP, we apply the same repair method as in [6].

The algorithms presented in this paper are non-deterministic algorithms, so
we performed 30 independent runs for a fair comparison between them. After
the executions, we applied the non-parametric Kruskal-Wallis test with a confi-
dence level of 95% (p-value < 0.05) with Holms’s p-value correction to check if
the observed differences are statistically significant. In the cases where Kruskal-
Wallis test rejects the null hypothesis, we run a single factor ANOVA post hoc

2 The source code is available at https://github.com/NEO-Research-Group/irace-ea.
3 Available at https://cran.r-project.org/package=irace.

https://github.com/NEO-Research-Group/irace-ea
https://cran.r-project.org/package=irace

26 C. Cintrano et al.

test for pairwise comparisons. To properly interpret the results of statistical
tests, it is always advisable to report effect size measures. For that purpose,
we have also used the non-parametric effect size measure Â12 statistic proposed
by Vargha and Delaney [22]. In the case of minimization problems, such as the
TLSP, higher Â12 values suggest that algorithm 2 has a higher probability of
obtaining a better result than algorithm 1, e.g., Â12 = 0.3 indicates that algo-
rithm 2 gets better values than algorithm 1 in 30% of the runs.

The experiments were run on a cluster of 16 machines with Intel Core2 Quad
processors Q9400 at 2.66GHz and 4GB memory and 3 machines equipped with
three Intel Xeon CPU (E5-2670 v3) at 2.30GHz and 64GB memory. The cluster
was managed by HTCondor 8.2.7, which allowed us to perform parallel indepen-
dent executions to reduce the overall experimentation time.

5 Results

To give an in-depth view of the performance of our hybrid algorithms against
the standard ones, we will analyze their performance in several sets of scenarios
(training and testing). With this, we want to present the competitiveness of our
proposal and give a solution to the TLSP.

5.1 Training Set

During the training phase, each algorithm performs a maximum of 30,000 simula-
tions. Figure 2 shows the best fitness obtained, over the number of simulations,
averaged over 30 runs of each algorithm. We can see that, in general, up to
10,000 simulations, all the algorithms improve significantly the quality of their

•

•

•

•

•

•

•
• • •

• • • • • • • • • • • • • • • • • • • •

0.15

0.20

0.25

0.30

0.35

0.40

0 10000 20000 30000
Evaluations

M
ea

n
fit

ne
ss

• IRACE DE GA IRACE+DE IRACE + GA

•

•
• •

•
•

•
• • •

• •
•

•
• • •

• • • •0.16

0.17

0.18

0.19

0.20

0.21

10000 15000 20000 25000 30000
Evaluations

M
ea

n
fit

ne
ss

Fig. 2. Mean fitness of the best solutions found so far within each run, as estimated by
each algorithm at each moment of its execution on traffic scenarios from the training
set. Results in the range [10,000, 30,000] are magnified.

Hybridization of Racing Methods with Evolutionary Operators 27

Table 1. Results of the ̂A12 test for the evaluation of the last solutions found over
training scenarios. Probability that the algorithm (column) is better than another
algorithm (row). We highlight in bold the values when the algorithm in the column is
better than the algorithm in the row.

IRACE IRACE+DE IRACE+GA GA DE

IRACE – 0.6711 0.6100 0.6067 0.4933

IRACE+DE 0.3289 – 0.3956 0.5122 0.3556

IRACE+GA 0.3900 0.6044 – 0.5478 0.4267

GA 0.3933 0.4878 0.4522 – 0.3811

DE 0.5067 0.6444 0.5733 0.6189 —

Table 2. Statistics of each algorithm from the best solutions obtained in the 30,000
simulation of the training. We mark in bold the lower value of each metric.

Algorithm Mean Median STD Dev.

IRACE+DE 0.1585 0.1563 0.0101

IRACE+GA 0.1597 0.1590 0.0076

IRACE 0.1621 0.1615 0.0064

GA 0.1684 0.1562 0.0364

DE 0.1689 0.1596 0.0215

solutions, but after this number of simulations, the improvement slows down.
Although the GA and DE obtain the best results up to 5,000 simulations, they
are quickly overtaken by IRACE and its hybrid variants. Figure 2 also shows in
more detail the differences, starting from 10,000 simulations, between IRACE,
IRACE+DE and IRACE+GA. We can notice that IRACE+DE consistently
obtains the lowest mean fitness, while IRACE and IRACE+GA show a simi-
lar result. The plot also shows that the fitness reported by the IRACE hybrids
sometimes increases due to the racing procedure performing additional simula-
tions to refine the estimation of the fitness.

We have performed an Â12 test at the end of the training execution (30,000
simulations) to check if IRACE+DE is indeed better than the other algorithms.
Table 1 shows the results of the Â12 test among the different algorithms, where
each value gives the probability of the algorithm in the column returning a better
solution than the one in the row. The test indicates that GA is better than the
rest of the algorithms. However, we also look at the other statistics shown in
Table 2. Although GA has better median than IRACE+DE’s only by 10−4, the
standard deviation of IRACE+DE is 3.6 times less than GA. Thus, we conclude
that IRACE+DE is more robust than GA. EAs obtain lower mean and median,
while IRACE reports solutions with smaller variability. These results support
our approach to hybridizing IRACE with EAs to obtain good quality robust

28 C. Cintrano et al.

solutions. Particularly, IRACE+DE looks like a good option if we want to
apply these features.

5.2 Testing Set

The above reported statistics were obtained after evaluating the final solutions on
the same scenarios used during optimization, but the training scenarios will never
arise exactly in the real-world. We evaluate again the solutions on the 30 testing
scenarios to properly assess their quality in unseen scenarios. Figure 3 shows the
boxplots of each independent execution in each algorithm. EAs have the highest
variability, while the other three algorithms have more robust boxplots.

0.1

0.2

0.3

0.4

IRACE+GAIRACE+DEIRACE DE GA

F
itn

es
s

Fig. 3. Fitness of the solutions obtained by the 5 algorithms. Each boxplot shows the
distribution of fitness values of one solution on the 30 traffic scenarios in the test set.

Table 3. Statistics of each algo-
rithm from the best solutions
obtained in the testing phase. We
mark in bold the lower value of
each metric.

Algorithm Mean Median STD Dev

IRACE+DE 0.1607 0.1571 0.0175

IRACE+GA 0.1620 0.1577 0.0184

IRACE 0.1623 0.1581 0.0184

GA 0.1793 0.1630 0.0407

DE 0.1769 0.1676 0.0275

Table 4. Wilcoxon Test p-value of the test-
ing set with Holm correction.

IRACE DE IRACE+DE GA

DE <2e−16 — — —

IRACE+DE 0.0237 <2e−16 — —

GA 3.5e−11 0.0011 <2e−16 —

IRACE+GA 0.3284 <2e−16 0.2122 5.3e−13

To better compare the different algorithms, we summarize the mean, median
and standard deviation (see Table 3) between the different independent runs.
IRACE+DE gets the best results in each of these metrics, followed by IRACE
and IRACE+GA, which are very similar, and the last ones, the EAs. This is a
great result for IRACE+DE because, as it was proved in the training results,
remarks the competitiveness of the algorithm also in the testing phase.

Hybridization of Racing Methods with Evolutionary Operators 29

Anyway, the algorithms using IRACE obtain very similar results. This makes
us wonder if there are significant differences between them. To study this, we
perform a Wilcoxon rank-sum test between the algorithms to check if there
are significant differences. Table 4 shows the p-values reported by the test. As
we expected, IRACE+DE has significant differences compared to IRACE and
EAs. This result support our working hypothesis: including EAs (specifically a
DE) into IRACE can improve the performance. IRACE+GA and IRACE do
not offer significant differences between them, which is not a bad result either,
since at least the hybrid algorithm reaches a similar performance to IRACE.
Lastly, EAs have significant differences with the others algorithms.

Finally, we perform an Â12 test to see if our hybrid algorithms (espe-
cially IRACE+DE) effectively beat the other competitors. Table 5 shows the
results for the Â12 test. We observe that IRACE+DE is better than standard
IRACE 53.62% of the time, and 66.17% better than evolutionary ones. While
IRACE+GA is 51.33% of the time better than IRACE and 64.34% better than
the evolutionary ones. These differences are in favour of our approach. After this
experimentation, we can conclude that hybridizing IRACE with evolutionary
algorithms is a viable and competitive option. With this idea, we join the best
of both types of algorithms obtaining a powerful and robust algorithm, which
allows us to find better solutions for TLSP than the commonly used algorithms.

Table 5. Results of the ̂A12 test for testing. Probability that the algorithm (column)
is better than another algorithm (row). We highlight in bold the values when the
algorithm in the column is better than the algorithm in the row.

IRACE IRACE+DE IRACE+GA GA DE

IRACE — 0.5362 0.5133 0.4066 0.3198

IRACE+DE 0.4638 — 0.4780 0.3820 0.2946

IRACE+GA 0.4867 0.5220 — 0.3985 0.3147

GA 0.5934 0.6180 0.6015 — 0.4506

DE 0.6802 0.7054 0.6853 0.5494 —

5.3 Impact in Real World

The previous analysis has focused on the fitness function, an approximation
which encompasses some knowledge of traffic flow to guide the search, however, it
is quite complex to extract useful information for the domain’s expert. Therefore
in this section, we study the main traffic and environmental indicators which give
the domain’s expert more information about the solution.

In a real-world problem, it is desirable to analyze the impact that a repre-
sentative solution of the different algorithms would have in a real environment.
We choose one solution from each algorithm, as a typical traffic light plan as fol-
lows: (i) we calculate the mean of the fitness obtained in the 30 scenarios of the

30 C. Cintrano et al.

testing set by each of the 30 solutions of each algorithm, (ii) we order upwards
these mean fitness for each algorithm, (iii) we select, as the representative, the
solution whose fitness value is at the 16th position, that is, immediately follow-
ing the median solution. We cannot select the median because there are an even
number of solutions (30).

We simulate again each of the representative solutions in the test scenarios
but allowing all the vehicles to reach their destination. This means that the fit-
ness values are not penalized, hence, they are smaller than those reported in the
previous boxplots. With these new simulations, we obtain 34 different traffic and
environmental measures of the 30 testing scenarios. Figure 4 shows some of the
most important measures for each algorithm. In all measures, hybrid algorithms
get the best results. IRACE+DE obtains the best average values in MeanTrav-
elTime and MeanWaitingTime, while IRACE+GA has the lowest MaxTrav-
elTime and MaxWaitingTime. In practice, if we implement the IRACE+DE
solution, citizens would complete the journeys in less time (329.60 s) and with
less waiting time at intersections (88.84 s). If IRACE+GA solution were imple-
mented, the MeanTravelTime is higher than in IRACE+DE solution, but in
the worst case (MaxTravelTime and MaxWaitingTime), IRACE+GA obtains
the minimum values. On the complete opposite side, we have GA and DE, with
the worst results of the comparison.

Fitness
non−penalized

MaxTravel
Time (s)

MaxWaiting
Time (s)

MeanCO2 (g) MeanFuel (ml)
MeanTravel

Time (s)
MeanWaiting

Time (s)

0.
08

0

0.
08

5

0.
09

0

0.
09

5

0.
10

0

60
0

80
0

10
00 20

0

40
0

60
0

32
0

33
0

34
0

12
9

13
2

13
5

13
8

30
0

32
0

34
0

36
0 80 10
0

12
0

DE

GA

IRACE

IRACE+DE

IRACE+GA

DE GA IRACE IRACE+DE IRACE+GA

Fig. 4. Traffic measures per vehicle. Mean values (and standard deviation) over 30 test
traffic scenarios of the median solutions for the five algorithms.

Regarding the environmental impact (fuel consumption and CO2 emissions),
IRACE+DE gives the most eco-friendly solutions. Nowadays, pollution is a
serious issue in many cities, so offering solutions that reduce emissions and fuel
is of vital importance in today’s cities.

With all these results, we can confirm that better TLPs result in less CO2
emissions, less fuel consumption, and less journey time for the citizen. Our hybrid
proposals, specially IRACE+DE, not only offer competitive solutions from a
scientific point of view, but it would also have a positive impact in the city at
multiple levels both environmental and for the quality of life of the citizens.

Hybridization of Racing Methods with Evolutionary Operators 31

6 Conclusions

In this article, we have proposed new hybrid algorithms combining IRACE with
two evolutionary algorithms: GA and DE. These new hybrid algorithms are ide-
ally suited for black-box numerical optimization problems under uncertainty,
by using evolutionary operators designed for numerical optimization to gener-
ate better solutions, while handling uncertainty by means of the elitist racing
strategy in IRACE. We have used these hybrid algorithms (IRACE+DE and
IRACE+GA), IRACE, a GA, and a DE, to solve the TLSP using the real
instance of Málaga, Spain, and the SUMO traffic simulator to evaluate the solu-
tions. The results obtained in the experiments confirm the competitiveness of the
hybridization strategy. Both hybrid algorithms offer better results than GA (60%
of the time) and DE (70% of the time) on realistic traffic scenarios. Particularly,
IRACE+DE returns the best results during the testing, being also competitive
during the training. Besides, we have seen the impact that the solutions would
have on the city. Our hybridization strategies obtain the best results in travel
times, fuel consumption, CO2 emissions, etc. These results reinforce our algo-
rithmic proposal and show the efficiency that IRACE+DE and IRACE+GA
obtain when solving a real-world problem.

As future work, we will consider other algorithms and operators that have
proven to be effective in numerical optimization problems for hybridization
with IRACE. Although preliminary experiments hybridizing IRACE with
JADE [23], a well-known variant of DE, did not improve the results over the
IRACE+DE proposed in this paper, we plan to perform a deeper analy-
sis of IRACE+JADE to extract any insights about the behavior of the new
hybrid algorithms. Also, we plan to test our hybrid algorithms on other black-
box numerical optimization problems under uncertainty to further validate our
results.

Acknowledgements. This research was partially funded by the University of Málaga,
Andalućıa Tech and the project TAILOR Grant #952215, H2020-ICT-2019-3. C. Cin-
trano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO.
M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished Researcher (BEAGAL
18/00053) funded by the Ministry of Science and Innovation of the Spanish Govern-
ment. J. Ferrer is supported by a postdoc grant (DOC/00488) funded by the Andalusian
Ministry of Economic Transformation, Industry, Knowledge and Universities.

References

1. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - simulation of urban
mobility: an overview. In: SIMUL 2011, The Third International Conference on
Advances in System Simulation, ThinkMind, Barcelona, Spain, pp. 63–68 (2011)

2. Blum, C., Raidl, G.R.: Hybrid metaheuristics-powerful tools for optimization. In:
Artificial Intelligence: Foundations, Theory, and Algorithm. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-319-30883-8

https://doi.org/10.1007/978-3-319-30883-8

32 C. Cintrano et al.

3. Bravo, Y., Ferrer, J., Luque, G., Alba, E.: Smart mobility by optimizing the traffic
lights: a new tool for traffic control centers. In: Alba, E., Chicano, F., Luque,
G. (eds.) Smart-CT 2016. LNCS, vol. 9704, pp. 147–156. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39595-1 15

4. Deb, K., Agrawal, S.: A niched-penalty approach for constraint handling in genetic
algorithms. In: Dobnikar, A., Steele, N.C., Pearson, D.W., Albrecht, R.F. (eds.)
Artificial Neural Nets and Genetic Algorithms (ICANNGA-99), pp. 235–243.
Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-6384-9 40

5. Ferrer, J., Garćıa-Nieto, J., Alba, E., Chicano, F.: Intelligent testing of traffic light
programs: validation in smart mobility scenarios. Math. Probl. Eng. 2016, 1–19
(2016)

6. Ferrer, J., López-Ibáñez, M., Alba, E.: Reliable simulation-optimization of traffic
lights in a real-world city. Appl. Soft Comput. 78, 697–711 (2019)

7. Garćıa-Nieto, J., Alba, E., Olivera, A.C.: Swarm intelligence for traffic light
scheduling: application to real urban areas. Eng. Appl. Artif. Intell. 25(2), 274–283
(2012)

8. Garćıa-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights
with particle swarm optimization. IEEE Trans. Evol. Comput. 17(6), 823–839
(2013)

9. Heidrich-Meisner, V., Igel, C.: Hoeffding and Bernstein races for selecting poli-
cies in evolutionary direct policy search. In: Danyluk, A.P., Bottou, L., Littman,
M.L. (eds.) Proceedings of the 26th International Conference on Machine Learning,
ICML 2009, pp. 401–408. ACM Press, New York (2009)

10. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas.
5(3–4), 128–138 (2012)

11. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

12. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective opti-
mization framework. In: Laredo, J.L.J., Silva, S., Esparcia-Alcázar, A.I. (eds.)
GECCO (Companion), pp. 1093–1100. ACM Press, New York (2015)

13. Péres, M., Ruiz, G., Nesmachnow, S., Olivera, A.C.: Multiobjective evolutionary
optimization of traffic flow and pollution in Montevideo Uruguay. Appl. Soft Com-
put. 70, 472–485 (2018)

14. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization, p. 539. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-31306-0

15. Sánchez, J., Galán, M., Rubio, E.: Applying a traffic lights evolutionary optimiza-
tion technique to a real case: “Las Ramblas” area in Santa Cruz de Tenerife. IEEE
Trans. Evol. Comput. 12(1), 25–40 (2008)

16. Sánchez-Medina, J.J., Galán-Moreno, M.J., Rubio-Royo, E.: Traffic signal opti-
mization in “La Almozara” district in Saragossa under congestion conditions, using
genetic algorithms, traffic microsimulation, and cluster computing. IEEE Trans.
Intell. Transp. Syst. 11(1), 132–141 (2010). ISSN 1524-9050

17. Stolfi, D.H., Alba, E.: Red swarm: reducing travel times in smart cities by using
bio-inspired algorithms. Appl. Soft Comput. 24, 181–195 (2014)

18. Stolfi, D.H., Alba, E.: An evolutionary algorithm to generate real urban traffic
flows. In: Puerta, J., et al. (eds.) CAEPIA 2015. LNCS (LNAI), vol. 9422, pp.
332–343. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24598-0 30

https://doi.org/10.1007/978-3-319-39595-1_15
https://doi.org/10.1007/978-3-7091-6384-9_40
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/978-3-319-24598-0_30

Hybridization of Racing Methods with Evolutionary Operators 33

19. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.)
Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–
9. Morgan Kaufmann Publishers, San Mateo (1989)

20. Teklu, F., Sumalee, A., Watling, D.: A genetic algorithm approach for optimizing
traffic control signals considering routing. Comput. Aided Civ. Infrastruct. Eng.
22(1), 31–43 (2007)

21. Teo, K.T.K., Kow, W.Y., Chin, Y.K.: Optimization of traffic flow within an urban
traffic light intersection with genetic algorithm. In: Proceedings - 2nd International
Conference on Computational Intelligence, Modelling and Simulation, CIMSim
2010, pp. 172–177. IEEE Press (2010)

22. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

23. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

Decomposition-Based Multi-objective
Landscape Features and Automated

Algorithm Selection

Raphaël Cosson1(B), Bilel Derbel1, Arnaud Liefooghe1, Hernán Aguirre2,
Kiyoshi Tanaka2, and Qingfu Zhang3

1 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
{raphael.cosson.etu,bilel.derbel,arnaud.liefooghe}@univ-lille.fr

2 Faculty of Engineering, Shinshu University, Nagano, Japan
{ahernan,ktanaka}@shinshu-u.ac.jp

3 City University of Hong Kong, Kowloon Tong, Hong Kong
qingfu.zhang@cityu.edu.hk

Abstract. Landscape analysis is of fundamental interest for improv-
ing our understanding on the behavior of evolutionary search, and for
developing general-purpose automated solvers based on techniques from
statistics and machine learning. In this paper, we push a step towards the
development of a landscape-aware approach by proposing a set of land-
scape features for multi-objective combinatorial optimization, by decom-
posing the original multi-objective problem into a set of single-objective
sub-problems. Based on a comprehensive set of bi-objective ρmnk-land-
scapes and three variants of the state-of-the-art Moea/d algorithm, we
study the association between the proposed features, the global proper-
ties of the considered landscapes, and algorithm performance. We also
show that decomposition-based features can be integrated into an auto-
mated approach for predicting algorithm performance and selecting the
most accurate one on blind instances. In particular, our study reveals
that such a landscape-aware approach is substantially better than the
single best solver computed over the three considered Moea/d variants.

1 Introduction

Context. Evolutionary algorithms have been proven extremely effective for
solving a broad range of optimization problems. In the last decades, the com-
munity has gained a deep understanding on the key components underlying the
design of a successful evolutionary approach for a given problem. However, one of
the main challenge remains to automate the process of choosing the most suitable
algorithm or configuration for the instance under consideration. In fact, it is well
known that the structural properties of an optimization problem highly impact
the dynamics and performance of search algorithms, leading to the requirement
of adopting a landscape-aware algorithm selection and configuration methodol-
ogy for the success of evolutionary problem solving. On the one hand, landscape

c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 34–50, 2021.
https://doi.org/10.1007/978-3-030-72904-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_3

Decomposition-Based Multi-objective Exploratory Landscape Analysis 35

analysis [15] provides a principled approach for studying and analyzing the rela-
tion between the underlying search space structure and algorithm behavior. On
the other hand, machine learning techniques can be leveraged to perform sophis-
ticated tasks, such as predicting algorithm performance, identifying the best
algorithm configuration, or selecting the best algorithm [7]. As a byproduct, and
since the pioneer work of Rice [14], landscape-aware algorithm configuration has
emerged as an appealing approach for increasing the effectiveness and efficiency
of evolutionary algorithms. In this paper, we contribute to the development of
such an approach when specifically dealing with multi-objective and combinato-
rial optimization problems.

Related Work. Independently of whether the target problems and algorithms
aim at optimizing a single or multiple objectives, and of whether they have a
combinatorial or continuous nature, every landscape-aware methodology needs
to address the following two research challenges: (i) the design of a set of infor-
mative and high-level landscape features, and (ii) the development of automated
recommendation systems integrating the so-designed features on the basis of
statistical or machine learning prediction models. Looking at the specialized lit-
erature, a large amount of work has been conducted for single-objective opti-
mization since pioneering works in the field [4]. For instance, in single-objective
continuous optimization, the exploratory landscape analysis (ELA) constitutes
one major achievement made by the community to collect and combine exist-
ing features under a common tool and methodology [7]. Similarly, a number
of features for single-objective combinatorial optimization have been developed
over the years, and recent studies integrate them into sophisticated automated
approaches for algorithm selection and configuration [1,9]. Those single-objective
features are either based on problem-specific characteristics such as the maxi-
mum cost between two cities in the traveling salesperson problem [13], or on
general descriptors from the underlying landscape. In the latter case, this is
achieved by relying on a neighborhood relation over the search space in order to
define a (combinatorial) landscape, and by studying its properties and charac-
teristics in terms of multimodality, ruggedness, or neutrality [15].

Despite the significant progress made in the last decades, the existing lit-
erature on the development of a unified landscape-aware approach targeting
multi-objective optimization problems is more scarce [6,8]. Although landscape
features can in principle be applied to the multi-objective case, the statisti-
cal and machine learning models considered in the single-objective case are
still to be studied and validated when turning into a multi-objective setting.
For multi-objective combinatorial optimization, one can refer to the recent
study in [8], providing a comprehensive analysis of problem-independent multi-
objective landscape features, and showing their effectiveness in predicting algo-
rithm performance and in selecting from an algorithm portfolio. The features
described there are mostly based on dominance and (hypervolume) indicator.
In fact, they were designed to grasp the landscape characteristics, but also to
capture the search behavior of dominance-based multi-objective algorithms. In

36 R. Cosson et al.

a subsequent study [10], those previous features were shown to provide useful
information about the performance of different classes of multi-objective evolu-
tionary algorithms (MOEAs). However, their correlation with the performance
of decomposition-based MOEAs reveal to be less significant [10]. Getting inspira-
tion from the fact that successful MOEAs may rely on different search paradigms,
our work considers applying other mechanisms, such as decomposition, to design
new multi-objective landscape features, hence pushing one step further the devel-
opment of a landscape-aware automated evolutionary approach.

Methodology and Contribution. We rely on the concept of decomposi-
tion [16] to develop a new set of general-purpose multi-objective landscape fea-
tures and to study their effectiveness when integrated into an automated algo-
rithm selection task. Our interest in the concept of decomposition stems from the
fact that it provides a state-of-the-art framework, represented by the Moea/d
algorithm [18], by simply decomposing the multi-objective problem into a num-
ber of single-objective sub-problems. We view the decomposition paradigm as
an opportunity to leverage existing single-objective features for multi-objective
landscape analysis. Our contributions can be summarized as follows.

(i) We propose a new set of high-level multi-objective landscape features based
on decomposition. Intuitively, we attempt to capture the multi-objective
landscape by aggregating the characteristics from the single-objective sub-
problem landscapes obtained by decomposition. As such, the proposed fea-
tures are obtained by first defining single-objective features for each sub-
problem, and then aggregating them by means of descriptive statistics.

(ii) We consider the task of predicting performances of three variants of the
state-of-the-art Moea/d algorithm using a tree-based regression model to
study the effectiveness of a decomposition-based landscape-aware method-
ology for automatically selecting the best performing algorithm for a given
instance.

(iii) Throughout an extensive set of experiments using ρmnk-landscapes with
two objectives as a case study, we conduct a systematic analysis on the
association between the designed features and the benchmarked landscapes,
as well as the association between features and algorithm performance. Our
findings reveal that the designed features are able to capture the benchmark
parameters (ρ and k), and to substantially improve the so-called single best
solver when integrated into a landscape-aware algorithm selection approach.

Outline. In Sect. 2, we describe the proposed multi-objective landscape fea-
tures. In Sect. 3, we study the association of features with benchmark parame-
ters. In Sect. 4, we investigate the integration of the proposed features into an
automated landscape-aware approach. In Sect. 5, we conclude the paper.

Decomposition-Based Multi-objective Exploratory Landscape Analysis 37

2 From Single- to Multi-objective Features Based on
Decomposition

2.1 Multi-objective Optimization

A multi-objective combinatorial optimization problem can be defined by a set
of m objective functions f = (f1, f2, . . . , fm), and a discrete set X of feasible
solutions in the decision space. Let Z = f(X) ⊆ IRm be the set of feasible
outcome vectors in the objective space. To each solution x ∈ X is assigned an
objective vector z ∈ Z, on the basis of the vector function f : X → Z. In
a maximization context, an objective vector z ∈ Z is dominated by a vector
z′ ∈ Z iff ∀m ∈ {1, . . . , m}, zm � z′

m and ∃m ∈ {1, . . . , m} s.t. zm < z′
m. A

solution x ∈ X is dominated by a solution x′ ∈ X iff f(x) is dominated by f(x′).
A solution x� ∈ X is Pareto optimal if there does not exist any other solution
x ∈ X such that x� is dominated by x. The set of all Pareto optimal solutions
is the Pareto set. Its mapping in the objective space is the Pareto front. Our
goal is to identify a good Pareto set approximation, for which multi-objective
evolutionary algorithms (MOEAs) constitute a popular effective option [3].

2.2 Rationale, Methodology and Features Overview

In this work, we get inspiration from the so-called MOEAs based on decom-
position [16] in order to design new high-level multi-objective features. This
algorithm class is based on searching for good-performing solutions in multiple
regions of the Pareto front by decomposing the original multi-objective prob-
lem into a number of scalarized single-objective sub-problems. Each sub-problem
is obtained by a different parameterization of the same underlying scalarizing
function. This is typically what the state-of-the-art Moea/d algorithm [18] per-
forms, while introducing a cooperation among sub-problem solving. In particular,
this offers much flexibility for integrating existing single-objective search oper-
ators and solvers, which is actually one of the main reasons for the success of
decomposition-based MOEAs. Let us however recall that our main goal is not to
design a new multi-objective algorithm, but to design new multi-objective fea-
tures that can feed the design of a general-purpose landscape-aware approach.

Therefore, we propose to rely on the simple observation that each of the
so-defined sub-problems also implies a single-objective landscape that we can
attempt to analyze and characterize. In other words, by studying the single-
objective landscape implied by the sub-problems, we should be able to extract
some knowledge about the original multi-objective problem. More precisely, the
methodology that we adopt in the reminder of this paper consists in: (i) defin-
ing a number of single-objective landscapes using decomposition, (ii) extracting
single-objective features for each sub-problem landscape, and (iii) aggregating
those single-objective features into new multi-objective features. These steps are
detailed below.

38 R. Cosson et al.

Sub-problem Landscape Definition. Firstly, we define μ scalarized single-
objective sub-problems, where both the scalarizing function and the μ value are
user-defined parameters. Among the different scalarizing functions that may be
used, the Chebyshev function is one of the most effective since it can be shown
that any Pareto optimal solution can be achieved by solving a well-parameterized
Chebyshev sub-problem. In the rest of this paper, we should hence use the Cheby-
shev scalarizing function: g(x|ω) = maxi∈{1,...,m} ωi ·

∣
∣z�

i −fi(x)
∣
∣, such that x ∈ X,

ω = (ω1, . . . , ωm) is a positive weight vector, and z� = (z�
1 , . . . , z�

m) is a reference
point such that z�

i > fi(x) ∀x ∈ X, i ∈ {1, . . . , m}. It should be clear that μ
different sub-problems can be obtained by choosing μ different weight vectors,
denoted by ωj , j ∈ {1, . . . , μ}.

It is worth noticing that we do not make any assumption about the original
(black-box) multi-objective problem, so that we have no information about what
region every sub-problem is actually mapping to. Hence, the value of μ as well
as the procedure to generate the weight vector can be a critical issue. This is
studied in more details later when reporting our empirical results.

Single-Objective Landscape Features. Next, we define a landscape for every
single-objective sub-problem j ∈ {1, . . . , μ}, for which we compute a number of
underlying high-level single-objective features. Following the standard literature
on single-objective landscape analysis [15], the landscape of sub-problem j can
be defined as a triplet (X,N , g(·|ωj)), such that N : X −→ 2X is a neighborhood
relation defined among solutions for the considered problem; e.g., 1-bit-flips for
binary strings, or swaps for permutations.

The considered sub-problem features are based on sampling the so-defined
landscape to compute some statistics. Following the standard literature [5,15],
we consider two simple sampling strategies, namely random walks (rws) and
adaptive walks (aws). Generally speaking, a walk is an ordered sequence of solu-
tions (x0, x1, . . . , x�) such that x0 ∈ X, and xt ∈ N (xt−1) ∀t ∈ {1, . . . , �}. In a
random walk, xt being the current solution, the next solution xt+1 is simply a
random neighbor under N . The length of a random walk is a user-defined param-
eter. In an adaptive walk, the next solution xt+1 is selected to be an improving
neighbor with respect to the single-objective scalarizing function g(·|ωj). Con-
sequently, the length of an adaptive walk is the number of steps performed until
no further improvement is possible, x� is then a local optimum. Notice that the
reference point z∗ required for computing the scalar fitness values is updated on
the basis of the best objective values seen so far during the walk.

Given a sub-problem j ∈ {1, . . . , μ} and a walk (x0, x1, . . . , x�), we consider
the following four classes of single-objective features, as summarized in Table 1:

– Fitness value (fv *). In the first class, we compute some statistics inform-
ing about the distribution of fitness values observed along the walk. More
precisely, we consider the mean (avg) and standard deviation (sd) of the fit-
ness values of collected solutions. We also consider three additional statistics,
namely the first auto-correlation coefficient (r1), the kurtosis (kr), and the
skewness (sk) of fitness values. The kurtosis and the skewness are standard

Decomposition-Based Multi-objective Exploratory Landscape Analysis 39

measures in statistical analysis, while the first auto-correlation coefficient is
mostly used in the landscape analysis literature. Denoting by ḡ(·|ωj) the aver-
age fitness value of solutions in the walk, the first auto-correlation coefficient
is defined as follows [5]:

r1 =
∑�−1

t=0

(

g(xt|ωj) − ḡ(·|ωj)
) · (

g(xt+1|ωj) − ḡ(·|ωj)
)

(
∑�−1

t=0 g(xt|ωj) − ḡ(·|ωj)
)2

– Fitness difference (fd *). In the second class, we compute the average fit-
ness difference with the neighboring solutions for every xi, i ∈ {1, . . . , �}:

1
|N (xi)|

∑

x∈N (xi)

(

g(xi|ωj) − g(x|ωj)
)

. Similarly, we consider the mean (avg),
standard deviation (sd), minimum (min) and maximum (max) fitness differ-
ence over solutions from the walk.

– Improving neighbors (in *). In the third class, we compute the propor-
tional number of improving neighbors for each solution xi, i ∈ {0, . . . , �}.
Then, we consider the mean, standard deviation, minimum, and maximum of
this measure. It is worth noticing that the second and third classes of features
require to evaluate the fitness value of neighbors from all solutions from the
walk.

– Length of the adaptive walk (law *). The fourth class only contains
features extracted from the adaptive walk. In particular, we consider the
length of the adaptive walk as a feature to characterize the sub-problem
landscape. This length was shown to provide an estimation of the number of
local optima in single-objective landscape analysis [5].

Table 1. A summary of the proposed landscape features.

Description Sub-problem features MO features

Random walk Adaptive walk

Fitness values fv rws s fv aws s fv rws s r; fv aws s r

s ∈ {avg, sd, r1, kr, sk} r ∈ {avg, sd, c1, c2}
Fitness differences fd rws s fd aws s fd rws s r; fd aws s r

s ∈ {avg, sd,min,max} r ∈ {avg, sd, c1, c2}
Improving neighbors in rws s in aws s in rws s r; in aws s r

s ∈ {avg, sd,min,max} r ∈ {avg, sd, c1, c2}
Walk length – law law r

r ∈ {avg, sd, c1, c2}

Aggregated Multi-objective Features. The features described above are
computed for each sub-problem j ∈ {1, . . . , μ}, and then have a dimension μ.

40 R. Cosson et al.

For μ > 1, we need to aggregate these μ-dimensional single-objective features
into 1-dimensional multi-objective features. To do so, we use two standard statis-
tics, namely the mean (avg) and the standard deviation (sd). In addition, we use
a polynomial regression in order to fit each single-objective feature as a function
of the weight vector ωj of sub-problem j. The coefficient of the polynomial model
are then used as additional aggregated features. In this study, since we experi-
ment bi-objective optimization problems, we consider a second order polynomial
regression and propose to use the first (c1) and the second (c2) coefficients as
additional multi-objective features. As summarized in Table 1, we end up with
4 aggregation statistics over respectively 5, 4, and 4 fv, fd, and in features, in
addition to 4 aggregated features on the length of adaptive walk. This amounts
to a total of 108 decomposition-based multi-objective features.

3 A Preliminary Exploratory Analysis

As a first step, we analyze the relevance of the proposed features in capturing
the characteristics of multi-objective optimization problems regardless of any
particular evolutionary search algorithm. Therefore, we conduct a preliminary
exploratory analysis in order to highlight the association between the designed
features and the properties of well-established benchmark landscapes.

3.1 Experimental Setup

Following previous work [8], we consider ρmnk-landscapes [17] as a problem-
independent model used for constructing multi-objective multimodal landscapes
with objective correlation. Candidate solutions are binary strings of size n. The
objective function vector f = (f1, . . . , fi, . . . , fm) is defined as f : {0, 1}n �→ [0, 1]m

such that each objective fi is to be maximized. The objective value fi(x) of a
solution x = (x1, . . . , xj , . . . , xn) is an average value of the individual contribu-
tions associated with each variable xj . Given objective fi, and each variable xj ,
a component function fij : {0, 1}k+1 �→ [0, 1] assigns a real-valued contribution
for every combination of xj and its k epistatic interactions {xj1 , . . . , xjk}. These
fij-values are uniformly distributed in [0, 1]. The objective functions to be max-
imized can written as: fi(x) = 1

n

∑n
j=1 fij(xj , xj1 , . . . , xjk), ∀i ∈ {1, . . . , m}. In

this work, the k epistatic interactions are set uniformly at random among the
(n − 1) variables other than xj . By increasing the value of k from 0 to (n − 1),
problem instances can be gradually tuned from smooth to rugged. The fij-values
additionally follow a multivariate uniform distribution of dimension m, defined
by an m × m positive-definite symmetric covariance matrix (cpq) s.t. cpp = 1 and
cpq = ρ for all p �= q where ρ > −1

m−1 defines the correlation among the objectives.
In our work, we focus on bi-objective landscapes, i.e., m = 2. We use a

latin hypercube sampling to generate a set of 1 000 balanced instances spanning
parameters ranges: n ∈ {50, 51, . . . , 200}, k ∈ {0, 1, 2, . . . , 8} and ρ ∈]−1, 1]. The
random walk length is set to � = 1000 across all problem sizes. A unique random
walk is performed for all sub-problems, whereas one adaptive walk is performed

Decomposition-Based Multi-objective Exploratory Landscape Analysis 41

for each sub-problem. The number of sub-problems is set to μ = 20 and weight
vectors are distributed uniformly; i.e., ωj = ((j −1)/(μ−1), 1− (j −1)/(μ−1)).
The neighborhood relation is the standard 1-bit-flip.

For our analysis, we first conduct an exploratory analysis to better visualize
and understand the proposed features. Next, we construct a regression model
to study the accuracy of features in grasping the global properties of ρmnk-
landscapes, and we analyze the correlation among features.

3.2 Visual Analysis of Single-Objective Features

In Fig. 1, we report the values of single-objective features as a function of sub-
problems. Due to space restriction, we report a single representative feature for
each of the four classes. The blue curves correspond to ρmnk-landscapes with
k = 0, the green ones to k = 2 and the red ones to k = 4. The color scales from
red to orange, green to cyan, and blue to purple, respectively, and correspond
to the objective correlation parameter ρ varying from 1 to −1; i.e., from highly
correlated to highly conflicting objectives. For example, the standard deviation
of fitness values from a random walk (fv rws sd, bottom left), the average fitness
difference from a random walk (fd rws avg, second line, second column) and the
standard deviation of improving neighbors (in rdw sd, second line, third column)
gives a clear differentiation between landscapes with different k-values. The lower
the benchmark parameter k, the lower the standard deviation of fitness values
and the average fitness difference. Similarly, the standard deviation of fitness
values from an adaptive walk (vf aws sd, top left) and the length of an adaptive
walk (law aws avg, top right) seems to be clearly associated with parameter ρ.
The flatter the curve rendering the evolution of these two features as a function
of weight vectors, the higher the objective correlation ρ.

From our visual inspection, we can conclude that the landscape features are
representative of the different global benchmark parameters, which are unknown
in a black-box optimization scenario. However, this first analysis considers the
single-objective features and not the aggregated 1-dimensional multi-objective
features, which are discussed next.

3.3 Correlation Analysis of Features and Landscape Parameters

Investigating the accuracy of the designed multi-objective features, we consider a
typical machine learning task consisting in predicting the value of the (unknown)
global benchmark parameters k and ρ. We respectively construct a random forest
classification model and a random forest regression model [2], using the whole set
of multi-objective features computed over all considered ρmnk-landscapes. Ran-
dom forest has the nice property of providing a measure of feature importance
for model fitting. In Fig. 2, we report the relative importance of each feature
extracted from the random forest models, using the Gini impurity as a measure
of quality. Values are averaged over 10 independent repetitions of model fitting.

The first notable observation is that feature importance is different depend-
ing on whether we aim at predicting benchmark parameter ρ or k. The objective

42 R. Cosson et al.

Fig. 1. Feature values of ρmnk-landscapes decomposed into 20 sub-problems (n = 25,
each color correspond to a particular configuration of ρ and k). (Color figure online)

Fig. 2. Relative importance of features to predict ρ (left) and k (right). (Color figure
online)

correlation ρ appears mostly related to a single feature: the standard deviation of
the number of improving neighbors (in rws sd). By contrast, deciding on param-
eter k is related to multiple different features, that mostly correspond to the
fitness difference computed from adaptive walks, in particular the maximum fit-
ness difference (fd aws max). To push the analysis further, we show in Fig. 3 the
Spearman correlation matrix among a subset of features as well as benchmark
parameters ρ and k. It is worth noticing that we do not show all 108 features,

Decomposition-Based Multi-objective Exploratory Landscape Analysis 43

but only a subset of 60 features with representative correlation values due to
space restriction. Interestingly, we can distinguish four clusters, denoted C1, C2,
C3 and C4 in the figure. The largest cluster C1 contains more than 30 features.
There is a positive correlation between the first auto-correlation coefficient of
fitness values vf r1 and k, of at least 0.25. This cluster also contains a small
subset of 2 features related to the number of improving neighbors in *, with a
particularly high correlation value (>0.8) (the 3 × 3 red points at the center of
the figure). In the second cluster C2, we observe a large subset of features being
negatively correlated with k (the dark blue columns/lines intersecting in a com-
pletely red square in the middle-right of the figure). For both clusters related to
k (C1 and C2), features are not extracted from a unique class. This means that
features from different classes can be used to characterize k.

The remaining 2 clusters (C3 and C4) are associated with the second bench-
mark parameter ρ. In particular, besides the average number of improving neigh-
bors (in rws avg), cluster C3 also contains the standard deviation (in rws sd),
both computed from a random walk. This latter feature, that was found to be
the most important to predict ρ in Fig. 2, has a nearly perfect negative corre-
lation with ρ, equals to −1. The last cluster C4 contains features based on the
fitness values computed over adaptive walks (fv aws), which appear to be the
most positively correlated with ρ (3 × 3 red points at the bottom right of the
figure), with a correlation higher than 0.7.

To summarize, we find that all feature classes are useful to characterize the
(unknown) global benchmark parameter k, rendering the degree of non-linearity
of the problem. However, the fitness distribution (fv) and the number of improv-
ing neighbors (in) classes have more importance than the fitness difference (fd)
and the length of adaptive walks (law) for characterizing the (unknown) global
benchmark parameter ρ, relating to objective correlation.

4 Landscape-Aware MOEA/D Selection

In this section, we conduct a second set of experiments in order to study the
accuracy of the designed features when integrated into an automated algorithm
selection approach. We consider the more sophisticated task of selecting the best
performing algorithm among an algorithm portfolio. More precisely, we consider
three variants of the well-established Moea/d algorithm [12,18] as a case study.
In the following, we start by briefly describing the considered portfolio before
addressing our main target task.

44 R. Cosson et al.

Fig. 3. Pairwise correlation among a subset of features. (Color figure online)

4.1 Algorithm Portfolio

As mentioned earlier, the Moea/d algorithm is based on a flexible
decomposition-based framework that can be configured in different manners. In
its baseline variant [18], Moea/d first decomposes the problem into a number
of scalarized sub-problem, as discussed previously. Then, a solution is evolved
for each sub-problem in a cooperative way. The algorithm iterates over the sub-
problems and, at each iteration, an offspring is generated by means of crossover
and mutation on the basis of parent solutions selected from the so-called T -
neighborhood; i.e., the sub-problems corresponding to the T closest weights in
the objective space. The new offspring can then replace any of the sub-problem
solutions in the T -neighborhood of the current sub-problem. This corresponds
to a standard evolutionary process, where selection and replacement are per-
formed iteratively over sub-problems. In [12], it is shown that the selection and
replacement underlying the standard Moea/d framework are key algorithm
components that highly impact performance. Several generational variants are
proposed therein, allowing to tune the selection and replacement underlying the

Decomposition-Based Multi-objective Exploratory Landscape Analysis 45

Moea/d framework from fully cooperative (i.e., among all sub-problems) to
fully selfish (i.e., independently of any other sub-problem).

Interestingly, it was found that no variant outperforms the other indepen-
dently of the global benchmark parameter values ρ and k for the considered
ρmnk-landscapes. Since such parameters are unknown in a black-box optimiza-
tion scenario, the study presented in [12] leaves open the challenging question of
which variant to choose in an automated manner. In addition, this constitutes
a perfect and typical setting for the main automated algorithm selection task
addressed in this paper. We consider, in the following, three representative vari-
ants of the Moea/d framework, exposing different degrees of cooperation among
sub-problem solving. For reproducibility, and in order to be consistent with the
notations from [12], these variants are denoted as follows: (i) Moea/d, referring
to the standard variant [18], (ii) Moea/d-sc, a generational variant where selec-
tion is performed in a selfish manner for every sub-problem whereas replacement
is performed in a cooperative manner, and (iii) Moea/d-ss, a (selfish) gener-
ational variant exposing the lower degree of cooperation among sub-problems.
Besides population size, the three variants have the same set of parameters:
δ = 1, nr = 2, pmut = 1

n and pcr = 1. Due to space restriction, we refer to [12]
for a full description of these Moea/d variants.

In order to highlight the relevance of this portfolio in studying the accuracy
of our features when integrated into a landscape-aware algorithm selection app-
roach, we briefly report their relative performance using exactly the same set
of ρmnk-landscapes as in the previous section. Every algorithm is executed 20
times on each instance, using a population size equals to n, and a budget of 106

evaluations. The performance of an algorithm is computed as its hypervolume
relative deviation w.r.t. the best-found approximation set for each instance. The
hypervolume measures the area covered by an approximation set and enclosed
by a reference point [19]. For a given instance, the reference point is set to the
best value seen across all runs for each objective. We then count the number
of times an algorithm is statistically outperformed using a two-sided Mann-
Whitney test with a p-value of 0.05 and a Bonferroni correction. Results are
reported in Table 2.

Table 2. Performance matrix of the three Moea/d variants. The diagonal reports
the number of times where the corresponding algorithm is statistically outperformed by
another one (the lower the better). The other cells report how many instances (out of
1000) the algorithm in the corresponding line is statistically better than the algorithm
in the corresponding column (the higher the better).

Moea/d-sc Moea/d Moea/d-ss

Moea/d-sc 205 18 310

Moea/d 85 137 312

Moea/d-ss 120 119 622

46 R. Cosson et al.

We clearly see that each algorithm is outperformed by another one on a
subset of instances. The basic Moea/d variant seems to have a reasonably
good behavior, since it is less-often outperformed than the two other variants
overall (see diagonal). A more detailed analysis, omitted due to space restriction,
shows that there is a complex interaction between algorithm performance and
the benchmark parameters ρ and k which can be summarized as follows: (i) the
smaller k and ρ, the better Moea/d and Moea/d-sc against Moea/d-ss, (ii)
the larger ρ (highly correlated), the better Moea/d-ss, and (iii) the larger k and
the smaller ρ, the better Moea/d-sc. Of course, this general trend has some
exceptions, but it shows the impact of the unknown benchmark parameters on
the relative performance of algorithms.

4.2 Automated Algorithm Selection

Task and Experimental Methodology. We study the accuracy of the pro-
posed features by investigating the selection of the best performing Moea/d
variant. For this purpose, we adopt the following standard supervised-learning
approach. We first train three models in order to predict the performance of
every considered Moea/d variant. We use the average hypervolume deviation as
defined in the previous section as a measure of algorithm performance on a given
instance, which then corresponds to our output prediction variable. Considering
an unseen test instance, the landscape features are first computed, the perfor-
mance of each algorithm is then predicted on the basis of the trained models, and
the algorithm having the best prediction is selected as the recommended one. We
consider the same set of ρmnk-landscapes described in the previous section. We
adopt a standard validation methodology where an instance is selected for train-
ing with probability 0.9 and for testing with probability 0.1. We use a set of 100
random regression trees to learn and predict the expected relative hypervolume
deviation. Reported values are computed over 50 independent runs.

We recall that the proposed multi-objective features rely on some weight
vectors μ. We consider a variable number of weight vectors in the range
μ ∈ {1, 2, 3, 4, 5, 6, 10, 20}. Additionally, we consider two alternatives for gener-
ating weight vectors, namely uniform or random. In a random setting, a weight
vector is generated uniformly at random. In a uniform setting, the weight vec-
tor are evenly distributed in the objective space. In particular, for μ = 1, the
weight vector selected in the uniform setting is (0.5, 0.5); i.e., the “middle” of
the objective space. In this case, the multi-objective features are simply the
same than the corresponding single-objective features from the single scalar-
ized sub-problem. For μ = 2, our uniform setting corresponds to weight vector
(1, 0) and (0, 1). This means that our features are obtained by aggregating the
single-objective features computed independently for each objective of the orig-
inal multi-objective problem. The impact of this setting is carefully analyzed in
our experiments.

Decomposition-Based Multi-objective Exploratory Landscape Analysis 47

Prediction Accuracy. In order to assess the prediction accuracy, we com-
pute three complementary measures. The first two directly relate to the pre-
diction error: the percentage of times the selected algorithm does not have
the best hypervolume deviation in average, and the percentage of times the
selected algorithm is statistically outperformed by at least one other algo-
rithm. The third indicator, which is a straightforward adaptation from [11],
measures the gap between: (i) the performance of the single best solver (SBS)
having the best performance in average over the training set (without model
training), and (ii) the performance of the virtual best solver (VBS), obtained
by a model that would make perfect predictions. More precisely, let Itrain

and Itest be the set of training and testing instances, respectively, and let
rhf(A, i) be the average relative hypervolume deviation of a given algorithm
A ∈ A = {Moea/d,Moea/d-ss,Moea/d-sc} on instance i ∈ Itrain ∪Itest. For
every algorithm A ∈ A and instance subset J , let rhf(A, J) = 1

|J|
∑

i∈J rhf(A, i).
We define SBS as the algorithm having the best rhf value on the training set
Itrain, i.e., SBS = arg minA∈A

{

rhf(A, Itrain)
}

. We define VBS as the virtual
‘algorithm’ obtained by a perfect prediction model (an oracle); i.e., the algo-
rithm with the best rhf(·, i) value for each i ∈ Itest. Finally, let Recommended
Solver (RS) be the algorithm predicted by the actual trained model. The merit
indicator is:

M =
rhf(RS, Itest) − rhf(V BS, Itest)
rhf(SBS, Itest) − rhf(V BS, Itest)

It should be clear that: (i) A merit of 0 indicates that the model does not make
any error, (ii) A merit in the range [0, 1[indicates that the model is more efficient
than the SBS but worse than the VBS, (iii) a merit greater than 1 indicates that
the model is worse than the SBS. Achieving a merit value of 0 is clearly a very
challenging task and one seeks for a merit value below 1 (better than the SBS)
and as close as possible to 0 (the VBS).

Experimental Results and Discussion. Our main results are summarized
in Fig. 4 showing the accuracy indicators as a function of the number of weight
vectors μ and their type (random or uniform). For completeness, we also show
the R2 coefficient obtained by the training models.

We first clearly see that the choice of the weight vector distribution is of
critical importance. In fact, a random choice does not obtain a good accuracy,
except when the number of weights μ is substantially large. By contrast, a uni-
form strategy appears to perform reasonably well, even when the number of
weights is low. Interestingly, for uniform weights, the worst accuracy is obtained
with μ = 2. Notice that such a setting is even substantially outperformed by a
random choice of weight vectors. This indicates that computing single-objective
features independently for each objective is not a recommended strategy. By con-
trast, computing features for decomposed sub-problems is effective even when
using a very low number of weights. This indicates that a decomposition-based
approach for multi-objective landscape analysis contains a valuable information
about algorithm performance. Surprisingly, we found that a uniform choice of

48 R. Cosson et al.

Fig. 4. R2 (top left), merit (top right) and error rates (bottom) according to the number
of weights μ and their distribution. (Color figure online)

few weight vectors with μ ∈ {1, 3} performs reasonably well, although increasing
μ > 3 allows to obtain a better accuracy. The relatively good results achieved
with μ = 1 are however to be interpreted very carefully, taking into account that
the shape of the Pareto front for ρmnk-landscapes, although having different mag-
nitude in the objective space, is convex, symmetric and centered in the middle
of the objective space, regardless of the values of ρ and k [17]. Although this is a
recurrent observation for many multi-objective combinatorial optimization prob-
lems, one might need to carefully choose μ when tackling problems with different
Pareto front shapes. Such considerations are left for future investigations.

At last, in order to further show the accuracy of the proposed multi-objective
landscape features, we experiment a baseline random forest model using the
(unknown) global benchmark parameters ρ and k as input variables to predict
algorithm performance. Contrary to a black-box scenario where the knowledge
about ρ and k is not available, the accuracy of such a ‘white-box’ model should
highlight the relevance and reliability of the proposed black-box features. We
found that such a model trained with ρ and k obtains an average merit of 0.41.
Comparatively, black-box features obtain an average merit of 0.31, 0.37 and 0.29
respectively, for μ ∈ {1, 3, 20} uniform weight vectors. This once again indicates

Decomposition-Based Multi-objective Exploratory Landscape Analysis 49

that the proposed approach is very effective, and that the designed high-level
black-box features seem to provide more accurate prediction models than the
global benchmark parameters, hence allowing to substantially improve over the
single best solver, and also to get closer to the ideal virtual best solver.

5 Conclusion and Open Issues

In this paper, we push a step towards the development of automated landscape-
aware selection and configuration approaches by proposing a set of multi-
objective landscape features and analyzing their effectiveness in grasping the
global properties of black-box multi-objective combinatorial optimization prob-
lems, together with their efficiency in selecting the best performing algorithm
among three variants of the Moea/d state-of-the art algorithm. The proposed
features are based on the simple idea of aggregating the single-objective fea-
tures extracted from a number of sub-problems obtained by decomposition. Our
empirical analysis on a wide range of ρmnk-landscapes provides insights into
the accuracy of the proposed approach. However, it also raises some interesting
research questions.

For instance, problems with more than two objectives, where the distribu-
tion of weight vector is expected to play an even more important role, as well
as other real-like problems, are to be studied. Moreover, we excluded the cost
of feature computation from our analysis, which can be an issue when the total
affordable budget for the optimization task is restricted. An interesting obser-
vation is that we only need to extract features from a relatively low number of
sub-problems, as considering a single sub-problem is already shown to provide a
reasonably good performance. Additionally, solely one random walk is required
to compute the considered single-objective features, so that one can eventu-
ally end up with negligible cost features. In this respect, a more fine-grained
analysis of the cost-vs-importance of features is to be conducted in our future
investigations. Finally, an interesting question is to conduct a systematic analy-
sis of the proposed decomposition-based features w.r.t. existing dominance- and
indicator-based features, and to analyze their relative cost and accuracy. Given
that decomposition-based features were shown to be effective and does not need
any (costly) dominance- and indicator-based computations, it is our hope that
unifying the two classes of features would allow us to end up with efficient high-
level state-of-the-art features for landscape-aware multi-objective optimization.

References

1. Beham, A., Wagner, S., Affenzeller, M.: Algorithm selection on generalized
quadratic assignment problem landscapes. In: GECCO 2018, pp. 253–260 (2018)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Hoboken (2001)

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

50 R. Cosson et al.

4. Grefenstette, J.J.: Predictive models using fitness distributions of genetic opera-
tors. Found. Genet. Algorithms 3, 139–161 (1995)

5. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)
6. Kerschke, P., Trautmann, H.: The R-package FLACCO for exploratory landscape

analysis with applications to multi-objective optimization problems. In: CEC, pp.
5262–5269 (2016)

7. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

8. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-
aware performance prediction for evolutionary multi-objective optimization. IEEE
Trans. Evol. Comput. 24(6), 1063–1077 (2020)

9. Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-
aware automatic algorithm configuration: preliminary experiments on neutral and
rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol.
10197, pp. 215–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55453-2 15

10. Liefooghe, A., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Dominance, indica-
tor and decomposition based search for multi-objective QAP: landscape analysis
and automated algorithm selection. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS,
vol. 12269, pp. 33–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58112-1 3

11. Lindauer, M., van Rijn, J.N., Kotthoff, L.: The algorithm selection competition
series 2015–17. CoRR abs/1805.01214 (2018)

12. Marquet, G., Derbel, B., Liefooghe, A., Talbi, E.-G.: Shake them all!. In: Bartz-
Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672,
pp. 641–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-
2 63

13. Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.:
A novel feature-based approach to characterize algorithm performance for the trav-
eling salesperson problem. Ann. Math. Artif. Intell. 69, 151–182 (2013). https://
doi.org/10.1007/s10472-013-9341-2

14. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
15. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Applica-

tion of Fitness Landscapes. Emergence Complexity and Computation. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4

16. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evo-
lutionary algorithms based on decomposition. IEEE TEVC 21(3), 440–462 (2017)

17. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjec-
tive combinatorial search space: MNK-landscapes with correlated objectives. Eur.
J. Oper. Res. 227(2), 331–342 (2013)

18. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE TEVC 11, 712–731 (2008)

19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
TEVC 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-030-58112-1_3
https://doi.org/10.1007/978-3-030-58112-1_3
https://doi.org/10.1007/978-3-319-10762-2_63
https://doi.org/10.1007/978-3-319-10762-2_63
https://doi.org/10.1007/s10472-013-9341-2
https://doi.org/10.1007/s10472-013-9341-2
https://doi.org/10.1007/978-3-642-41888-4

MATE: A Model-Based Algorithm
Tuning Engine

A Proof of Concept Towards Transparent
Feature-Dependent Parameter Tuning Using

Symbolic Regression

Mohamed El Yafrani1(B), Marcella Scoczynski2, Inkyung Sung1,
Markus Wagner3, Carola Doerr4, and Peter Nielsen1

1 Operations Research Group, Aalborg University, Aalborg, Denmark
mey@mp.aau.dk

2 Federal University of Technology Paraná (UTFPR), Curitiba, Brazil
3 Optimisation and Logistics Group, The University of Adelaide, Adelaide, Australia

4 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. In this paper, we introduce a Model-based Algorithm Tuning
Engine, namely MATE, where the parameters of an algorithm are repre-
sented as expressions of the features of a target optimisation problem. In
contrast to most static (feature-independent) algorithm tuning engines
such as irace and SPOT, our approach aims to derive the best parameter
configuration of a given algorithm for a specific problem, exploiting the
relationships between the algorithm parameters and the features of the
problem. We formulate the problem of finding the relationships between
the parameters and the problem features as a symbolic regression prob-
lem and we use genetic programming to extract these expressions in a
human-readable form. For the evaluation, we apply our approach to the
configuration of the (1 + 1) EA and RLS algorithms for the OneMax,
LeadingOnes, BinValue and Jump optimisation problems, where the the-
oretically optimal algorithm parameters to the problems are available as
functions of the features of the problems. Our study shows that the
found relationships typically comply with known theoretical results –
this demonstrates (1) the potential of model-based parameter tuning as
an alternative to existing static algorithm tuning engines, and (2) its
potential to discover relationships between algorithm performance and
instance features in human-readable form.

Keywords: Parameter tuning · Model-based tuning · Genetic
programming

1 Motivation

The performance of many algorithms is highly dependent on tuned parameter
configurations made with regards to the user’s preferences or performance cri-
teria [4], such as the quality of the solution obtained in a given CPU cost, the
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 51–67, 2021.
https://doi.org/10.1007/978-3-030-72904-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_4

52 M. El. Yafrani et al.

smallest CPU cost to reach a given solution quality, the probability to reach
a given quality, with given thresholds, and so on. This configuration task can
be considered as a second layer optimisation problem [19] relevant in the fields
of optimisation, machine learning and AI in general. It is a field of study that
is increasingly critical as the prevalence of the application of such methods is
expanded. Over the years, a range of automatic parameter tuners have been
proposed, thus leaving the configuration to a computer rather than manually
searching for performance-optimised settings across a set of problem instances.
These tuning environments can save time and achieve better results [2].

Among such automated algorithm configuration (AAC) tools, we cite
GGA [2], ParamILS [23], SPOT [3] and irace [30]. These methods have been
successfully applied to (pre-tuned) state-of-the-art solvers of various problem
domains, such as mixed integer programming [21], AI planning [16], machine
learning [33], or propositional satisfiability solving [24]. Figure 1 illustrates the
abstract standard architecture adopted by these tools.

Fig. 1. Standard architecture of tuning frameworks.

However, the outcomes of these tools are static (or feature-independent),
which means an algorithm configuration derived by any of these tools is not
changed depending on an instance of a target optimisation problem. This leads
to a significant issue as theoretical and empirical studies on various algorithms
and problems have shown that parameters of an algorithm are highly dependent
on features of a specific instance of a target problem [12] such as the problem
size [6,35].

A possible solution to this issue is to cluster problem instances into multiple
sub-groups by their size (and other potential features), then use curve fitting to
map features to parameters [15,31]. A similar approach is also found in [29] that
first partitions problem instances based the values of their landscape features
and selects an appropriate configuration of a new problem instance based on its
closeness to the partitions. However, the former approach does not scale well to
multiple features and parameters, and the latter faces over-fitting issues due to

MATE: A Model-based Algorithm Tuning Engine 53

the nature of the partitioning approach, making it difficult to assign an unseen
instance to a specific group.

Some works have incorporated problem features in the parameter tuning
process. SMAC [22] and PIAC [28] are examples of model-based tools that con-
sider instance features to define parameter values by applying machine learning
techniques to build the model. However, an issue of these approaches is the low
explainability of the outcome. For instance, while machine learning techniques
such as random forest and neural networks can be used to map the parameters to
problem features with a high accuracy, they are considered as black-boxes, i.e.,
the outcome is virtually impossible to understand or interpret. Explainability is
an important concept, as not only it allows us to understand the relationships
between input and output [32], but in the context of parameter tuning, it can
provide an outcome that can be used to inspire fundamental research [17,18].

To tackle these issues, we propose an offline algorithm tuning approach that
extracts relationships between problem features and algorithm parameters using
a genetic programming algorithm framework. We will refer to this approach
as MATE, which stands for Model-based Algorithm Tuning Engine. The main
contributions in this work are as follows:

1. We formulate the model-based parameter tuning problem as a symbolic
regression problem, where knowledge about the problem is taken into account
in the form of problem features;

2. We implement an efficient Genetic Programming (GP) algorithm that con-
figures parameters in terms of problem features; and

3. In our empirical investigation, we rediscover asymptotically-correct theoret-
ical results for two algorithms (1+1-EA and RLS) and four problems (One-
Max, LeadingOnes, BinValue, and Jump). In these experiments, MATE shows
its potential in algorithm parameter configuration to produce models based
on instance features.

2 Background

Several methods have tried to tackle the dependence between the problem
features and the algorithm parameters. The Per Instance Algorithm Configu-
ration (PIAC) [28], for example, can learn a mapping between features and
best parameter configuration, building an Empirical Performance Model (EPM)
that predicts the performance of the algorithm for sample (instance, algo-
rithm/configuration) pairs. PIAC methodology has been applied to several com-
binatorial problems [20,25,36] and continuous domains [5].

Sequential Model-based Algorithm Configuration (SMAC) [22] is also an
automated algorithm configuration tool which considers a model, usually a ran-
dom forest, to design the relationship between a performance metric (e.g. the
algorithm runtime) and algorithm parameter values. SMAC can also include
problem features within the tuning process as a subset of input variables.

Table 1 presents a summary for some state-of-the-art methods including the
approach proposed in this paper. The term ‘feature-independent’ means that

54 M. El. Yafrani et al.

Table 1. Summary of the state-of-the-art related works

Approach name Algorithm Characteristics Ref

GGA Genetic algorithm Feature-independent,
model-free

[2]

ParamILS Iterated Local Search Feature-independent,
model-free

[23]

irace Racing procedure Feature-independent,
model-free

[30]

SPOT Classical regression,
tree-based, random forest
and Gaussian process

Feature-independent,
model-based

[3]

PIAC Regression methods Feature-dependent,
model-based

[28]

SMAC Random forest Feature-dependent,
model-based

[22]

MATE Genetic programming Feature-dependent,
model-based, explainable

the corresponding approach does not consider instance features. ‘Model-based’
approaches use a trained model (e.g. machine learning, regression, etc.) to design
parameter configurations. Model-free approaches generally rely on an experimen-
tal design methodology or optimisation method to find parameter settings of an
algorithm that optimise a cost metric on a given instance set.

The main differences between MATE and the other related approaches are:

1. A transparent machine learning method (GP) is utilised to enable human-
readable configurations (in contrast to, e.g., random forests, neural networks,
etc.).

2. The training phase is done on one specific algorithm and one specific problem
in our approach – the model is less instance-focused but more problem-domain
focused by abstracting via the use of features. For example, the AAC exper-
iments behind [17,18] have guided the creation of new heavy-tailed muta-
tion operators that were beating the state-of-the-art. Similarly, the AAC and
PIAC experiments in [34] showed model dependencies on easily-deducible
instance features.

Lastly, our present paper is much aligned with the recently founded research
field “Data Mining Algorithms Using/Used-by Optimisers (DUO)” [1]. There,
data miners can generate models explored by optimisers; and optimisers can
adjust the control parameters of a data miner.

MATE: A Model-based Algorithm Tuning Engine 55

3 The MATE Framework

3.1 Problem Formulation and Notation

Let us denote an optimisation problem by B whose instances are characterised
by the problem-specific features F = {f1, . . . , fM}. A target algorithm A with
its parameters P = {p1, . . . , pN} is given to address the problem B. A set of
instances I = {i1, . . . , iL} of the problem B and a L × M matrix V, whose
element value vi,j represents the jth feature value of the ith problem instance,
are given.

Under this setting, we define the model-based parameter tuning problem
as the problem of deriving a list of mappings M = {m1, . . . ,mN} where each
mapping mj : RM → R, which we will refer to as a parameter expression, returns
a value for the parameter pj given feature values of an instance of the problem
B. Specifically, the objective of the problem is to find a parameter expression
set M∗, such that the performance of the algorithm A across all the problem
instances in I is optimised.

3.2 Architecture Overview

In this section, we introduce our approach for parameter tuning based on the
problem features. Figure 2 illustrates the architecture of the MATE tuning
engine. In contrast to static methods, we consider the features of the problem.
These feature are to be used in the training phase in addition to the instances,
the target algorithm and the parameter specifications. Once the training is fin-
ished, the model can be used on unseen instances to find the parameters of the
algorithm in terms of the problem feature values of the instance.

Fig. 2. Architecture of the proposed MATE framework

For example, a desired outcome of applying the MATE framework can be:

– Mutation probability of an evolutionary algorithm in terms of the problem
size;

56 M. El. Yafrani et al.

– Perturbation strength in an iterated local search algorithm in terms of the
ruggedness of the instance and the problem size; and

– Population size of an evolutionary algorithm in terms of the problem size.

Note that all the examples include the problem size as a problem feature. In
both theory and practice, the problem size is among the most important problem
features, and it is usually known prior to the optimisation, without any need
for a pre-processing step. More importantly, an extensive number of theoretical
studies showed that the optimal choice of parameters is usually expressed in
terms of the problem size (see, e.g. [6,12,35]).

3.3 The Tuning Algorithm

We use a tree-based Genetic Programming system as the tuning algorithm. It
starts with a random population of trees, where each tree represents a potential
parameter expression. Without loss of generality, we assume that the target
problem is always a maximisation problem1.

The Score Function and Bias Reduction. The score function is expressed
as the weighted sum of the obtained objective values on each instance in the
training set I. Using the notations previously introduced, the score is defined in
Eq. (1):

S(t) =
1
L

Σi∈I
zA(m1(vi,1, . . . , vi,M), . . . ,mN (vi,1, . . . , vi,M), i)

Ri
(1)

where:

– S(.) is the GP score function,
– zA(ϕ1, . . . , ϕN , i) is a function measuring the goodness of applying the algo-

rithm A with the parameter values ϕ1, . . . , ϕN to instance i,
– Ri is the best known objective value for instance i.

The weights are used as a form of normalisation to reduce the bias some
instances might induce. A solution to address this issue would be to use the
optimal value or a tight upper bound. However, since we assume the such val-
ues are unknown (the problem itself can be unknown), we use the best known
objective value (Ri) as a reference instead. In order to always ensure that score
is well contained, the reference values are constantly updated whenever possible
during the tuning process.

1 The current MATE implementation is publicly available at https://gitlab.com/
yafrani/mate.

https://gitlab.com/yafrani/mate
https://gitlab.com/yafrani/mate

MATE: A Model-based Algorithm Tuning Engine 57

Table 2. Summary of problems

Problem Features Training set

OneMax(n) n: number of bits n = 10, 20, 50, 100, 200, 500

BinValue(n) n: number of bits n = 10, 20, 50, 100, 200, 500

LeadingOnes(n) n: number of bits n = 10, 20, 50, 100, 200, 500

Jump(m,n) m: width of region with
bad fitness values

(m,n)=(2,10), (3,10), (4,10), (5,10),

n: number of bits (2,20), (3,20), (4,20),

(2,50), (3,50),

(2,100), (3,100),

(2,200)

Table 3. MATE setup

Attribute/Parameter Value/Content

Terminals {1, 2,−1,−2}⋃F
Functions Arithmetic operators

Number of GP generations 100

Population size 20

Tournament size 5

Replacement rate <75%

Initialisation Grow (50%) and full (50%) methods

Mutation operator Random mutations

Mutation probability 0.2

Crossover operator Sub-tree gluing

Crossover rate 80%

Number of independent runs
of target algorithm

10

p-value for the Wilcoxon
ranksum test

0.02

Replacement Strategy – Statistical Significance and Bloat Control. As
the target algorithm can be stochastic, it is mandatory to perform multiple runs
to ensure statistical significance (refer to Table 3). Thus, the replacement of trees
is done based on the Wilcoxon rank-sum test.

Another aspect to take into account during the replacement process is bloat
control. In our implementation, we use a simple bloat minimisation method based
on the size of tree (number of nodes).

Given a newly generated tree (Y), we compare it against each tree (X) in
the current population starting from the ones with the lowest scores using the
following rules:

58 M. El. Yafrani et al.

– If Y is deemed to be significantly better than X (using the Wilcoxon test).
then we replace X with Y irrespective of the sizes.

– If there is no statistical significance between X and Y , but Y has a smaller
size than X, then we replace X with Y .

– Otherwise, we do not perform the replacement.

4 Computational Study

4.1 Experimental Setting

To evaluate our framework, we consider two target algorithms, the (1 + 1) EA(μ)
and RLS(k). The (1 + 1) EA(μ) is a simple hill-climber which uses standard bit
mutation with mutation rate μ. RLS(k) differs from the (1 + 1) EA(μ) only in
that it uses the mutation operator that always flips k uniformly chosen, pairwise
different bits. That is, the mutation strength k is deterministic in RLS, whereas
it is binomially distributed in case of the (1 + 1) EA(μ), Bin(n, μ), where n is
the number of bits.

We use MATE to configure the two algorithms for the four different problems
with different time budgets as summarised in Table 2. In the table, the features
of the problems used to tune the algorithm parameters and the different feature
values chosen to generate problem instances of the problems are also presented.
These problems have been chosen because they are among the best studied
benchmark problems in the theory of evolutionary algorithms [13]. The details
of our GP implementation for the experiments are presented in Table 3. Based
on Table 3 and the set of features, our GP method uses a minimalistic set of 6
terminals at most: m, n and {1, 2,−1,−2}.

It is worth noting that we are focusing in this paper on tuning algorithms with
a single parameter. This is done to deliver a first prototype that is validated on
algorithms and problems extensively studied by the EA theory community. An
extension to tuning several algorithm parameters forms an important direction
for future work.

For example, given a budget of (1 + o(1))en ln(n), it is known that the
(1+1)EA(1/n) optimises the OneMax function as well as any other linear func-
tions with a decent probability. It is also known that the 1/n is asymptotically
optimal [27]. Note, though, that such fixed-budget results are still very sparse [26],
since the theory of EA community largely focuses on expected optimisation
times. Since these can nevertheless give some insight into the optimal parameter
settings, we note the following:

– OneMax and BinValue: the (1+1)EA(1/n) optimises every linear function in
expected time en ln(n), and no parameter configuration has smaller expected
running time, apart from possible lower order terms [35]. For RLS, it is
not difficult to see that k = 1 yields an expected optimisation time of
(1 + o(1))n ln(n), and that this is the optimal (static) mutation strength;

MATE: A Model-based Algorithm Tuning Engine 59

– LeadingOnes: on average, RLS(1) needs n2/2 steps to optimise LeadingOnes.
This choise also minimises the expected optimisation time. For the (1+1) EA,
μ ≈ 1.59/n minimises the expected optimisation time, which is around 0.77n2

for this setting [6]. The standard mutation rate μ = 1/n requires 0.86n2

evaluations, on average, to locate the optimum, of the LeadingOnes function.
For LeadingOnes, it is known that the optimal parameter setting drastically
depends on the available budget. This can be inferred from the proofs in [6,9];
and

– Jump: mutation rate m/n minimises the expected optimisation time of the
(1+1) EA on Jump(m,n), which is nevertheless Θ((e/m)mnm) [12].

4.2 Performance Analysis

Training Phase. The experimental study is conducted by running MATE ten
times on each algorithm, problem and budget combination (refer to Table 4 for
the list of budgets). This results in an elite population of 20 individuals for each
setting, from which we select the top 5 expressions in terms of the score. These
results are then merged and the 3 most frequent expressions are selected. For
instance, the expression 2/n for OneMax with 0.5enln(n) appears 92 times over
the 200 individuals (population size (20) × runs (10)).

In the current implementation, expression types (integers and non-integers)
are not taken into account during the evolution. Therefore, the resulting expres-
sions are converted into integers in the case of RLS by merging all real numbers
r using �r� (e.g. k = 3/2 will be replaced by k = 1). On the other hand, expres-
sions are simplified for EA by eliminating additive constants (e.g. μ = 1/(n + 1)
is replaced by μ = 1/n).

Evaluation Phase I. To assess the performance of MATE, we evaluate for
each problem-budget combination each of the top 3 most frequent expressions,
by running them 100 independent times on each training dimension. We then
normalise the outputs as in Eq. (1). The results are shown in the box plots in
Table 4.

Comparison Amongst the Top 3 Configurations. When comparing the top 3
ranked configurations, we observe the following from Table 4 while we compare
medians.

– OneMax: For (1+1) EA, μ = 1/n, which ranked second for budgets 0.5en ln n
and en ln n and first for budget 2en ln n performs better than μ = 1/2 ∗ n;
while for RLS, the expression k = 1 appears at least on 94%, providing the
best results;

– BinValue: μ = 1/n represents 18% on en ln n for (1+1) EA experiments, and
a similar performance with μ = 2/n and μ = 3/n; while on 0.5en ln n case
the μ = 1/n expression provides better results than μ = 1/2 and μ = 1/3; on
the same way the expression k = 1 corresponds to 60% of the cases on RLS
with the budget of 2n ln n with a better performance than k = 2 and k = n;

60 M. El. Yafrani et al.

Table 4. Results for 20 settings.

1+1-EA RLS
Budget Result Budget Result

O
ne

M
ax

0.5en ln(n) n ln(n)*

en ln(n)* 2n ln(n)**

2en ln(n)**

B
in

V
al
ue

0.5en ln(n) 0.5n ln(n)

en ln(n)* n ln(n)*

2en ln(n)** 2n ln(n)**

L
ea
di
ng

O
ne

s

0.5n2 0.5n2*

0.8n2** 0.75n2**

0.9n2**

Ju
m
p nm nm

enm** 2nm

† The y-axis show the best found expressions with its frequency between square brackets,
and the x-axis represents the normalised fitness.

MATE: A Model-based Algorithm Tuning Engine 61

– LeadingOnes: μ = 1/n is the most frequent expression among all considered
budgets on (1+1) EA and μ = 2/n presents the best performance amongst
the top 3 expressions for all budget cases; k = 1 represents 88% on RLS cases
with 0.75n2 iterations and performs better than k = 2 and k = 3 for both
considered budgets.

– Jump: μ = 2/n and μ = m/n present similar results for both budget cases;
μ = 1/n appears on 36% and 68% of the cases on (1+1) EA on the considered
budgets respectively, and performs worse than the other two μ configurations;
for RLS experiments k = m is the most frequent expression and performs
better than k = 2 ∗ m and k = 3.

Comparison of Top 3 Configurations Against Other Parameter Settings. For a
fair assessment of our results, we add to this comparison some expressions that
were not ranked in the top 3. These are μ = i/n with i ∈ {1, 3/2, 2, 5/2, 3, 4}
for (1+1) EA(μ) for OneMax and LeadingOnes. For readability purposes, the
top 3 expressions are complemented with 3 of these additional expressions in
the same order they are shown. We can observe in Table 4 that these additional
expressions present low frequencies, μ = 3/n being the highest case with 12%
with the budget en ln n, while expressions μ = 3/(2n) and μ = 5/(2n) are the
lowest cases among the considered budgets. Note that the frequencies do not
necessarily sum up to 100% as other expressions not reported here might have
occurred.

Comparison with Theoretical Results. As we have mentioned in the beginning
of this section, one should be careful when comparing theoretical results that
have been derived either in terms of running time or in terms of asymptotic
convergence analysis, as typically done in runtime analysis. It is well known that
optimal parameter settings for concrete (typically, comparatively small) dimen-
sions can be different from the asymptotically optimal ones [7,8]. We nevertheless
see that the configurations that minimise the expected running times (again, in
the classical, asymptotic sense) also show up in the top 3 ranked configurations.
In Table 4, we highlight the asymptotically optimal best possible running time
by an asterisk*. Budgets exceeding this bound are marked by two asterisks**.
As for the individual problems, we note the following:

– OneMax: It is interesting to note here that the performance is not monotonic
in k, i.e., k = 2 performs worse than k = 1 and k = 3. This is caused by a
phenomenon described in [11, Section 4.3.1], which states that, regardless of
the starting point, the expected progress is always maximised by an uneven
mutation strength. MATE correctly identifies this and suggests uneven muta-
tion strengths in almost all cases.

– BinValue: We observe that it is very difficult here to distinguish the perfor-
mance of the different configurations. This is in the nature of BinValues, as
setting the first bit correctly already ensures 50% of the optimal fitness values.
We very drastically see this effect in the recommendation to use k = n for the
RLS cases. With this configuration, the algorithm evaluates only two points:
the random initial point x and its pairwise complement x̄, regardless of the

62 M. El. Yafrani et al.

Table 5. Results for larger OneMax and LeadingOnes instances

1+1-EA RLS
Budget Result Budget Result

O
ne

M
ax

0.5en ln(n) n ln(n)*

en ln(n)* 2n ln(n)**

2en ln(n)**

L
ea
di
ng

O
ne

s

0.5n2 0.5n2*

0.8n2** 0.75n2**

0.9n2**

budget. As can be seen in Table 4, the performance of this simple strategy is
quite efficient, and hard to beat

– LeadingOnes: As mentioned earlier, for the (1+1) EA, the optimal mutation
rate in terms of minimising the expected running time is around μ = 1.59/n.
We see that μ = 3/(2n), which did not show in the top 3 ranked configurations
performs better than any of the suggestions by MATE.

– Jump: as discussed, mutation rate μ = m/n minimises the expected optimi-
sation time. MATE recognises it as a good configuration in some of the runs.
However, we see that μ = 2/n, which equals μ = m/n for 5 out of our 12
training sets, shows comparable performance, and in the enm budget case
even slightly better performance.

MATE: A Model-based Algorithm Tuning Engine 63

Evaluation Phase II. To properly assess the performance of MATE, we con-
ducted experiments for OneMax and LeadingOnes instances of larger sizes that
were not considered in the training phase. The goal of this experiment is to
empirically demonstrate that our approach generalises well for large and unseen
instances. These results are presented in Table 5 where 100 runs were performed
for OneMax with n ∈ {1000, 2000, 5000} and LeadingOnes with n ∈ {750, 1000}.
We can observe the following:

– There is less overlap amongst the confidence intervals especially for smaller
budgets, which means there is a higher level of separability amongst the
performances of the different expressions.

– By comparing these results with the ones from Table 4, we can observe that
the results of the top 3 expressions on large instances are statistically better
in the majority of cases.

– OneMax: For (1+1) EA, in contrast to the results in Table 4 where μ = 1/n
and μ = 3/(2n) show a similar performance, here μ = 1/n performs better
than the other expressions. For RLS, the best performing expression is k = 1,
which was ranked first.

– LeadingOnes: For (1+1) EA the best expressions are μ = 2/n, which was
ranked second, and μ = 3/(2n), which was not ranked among the top 3
expressions. For RLS, k = 1, ranked first and second, is the best performing
expression.

4.3 Comparative Study

Herein, we compare the performance of MATE with irace and SMAC. The goal
is to investigate the sensitivity of the obtained parameters on unseen instances.
For a fair comparison, we run irace and SMAC with 2000 maximum experiments
(which we believe is equivalent to the 100 GP generations with a population size
of 20 individuals in MATE) considering the training instances presented in Table
2. We report the best elite parameter values returned by irace (2 candidates),
SMAC (1 candidate) and MATE (most frequent expressions) in the columns μ
and k in Table 6, while the score (Eq. 1) is shown in column Score with the
standard deviation as a subscript. These parameter values are then applied over
100 runs performed for OneMax with n ∈ {1000, 2000, 5000} and LeadingOnes
with n ∈ {750, 1000}.

Table 6 shows that MATE significantly outperforms irace and SMAC for
(1+1) EA. On the other hand, the three methods show a similar performance on
RLS. This is due to the fact that the parameter μ in (1+1) EA is highly sensitive
to the problem feature n. In contrast, the parameter k in RLS is independent
from n and its best value (k = 1) was identified by the three methods for both
OneMax and LeadingOnes.

64 M. El. Yafrani et al.

Table 6. Results for MATE, irace and SMAC for OneMax and LeadingOnes instances.

1+1-EA RLS

MATE irace SMAC MATE irace SMAC

Budget µ Score µ Score µ Score Budget k Score k Score k Score

OneMax
enln(n)

2
2
n

0.990.001 0.258 0.570.002 0.009 0.80.003 nln(n) 1 10 1 10 1 10
1
n

0.990.001 0.216 0.580.002 3 0.960.002
1
2n 0.980.002 2 0.940.003

enln(n) 1
n

10 0.009 0.820.002 0.016 0.760.003 2nln(n) 1 10 1 10 1 10
2
n

10 0.013 0.790.003 3 0.980.001
1
2n 10 2 0.970.002

2enln(n) 2
n

10 0.594 0.540.002 0.008 0.860.002
1
n

10 0.589 0.540.002
1
2n 10

LeadingOnes 0.5n2 1
n

0.70.025 0.430 0.030.002 0.024 0.290.007 0.5n2 2 0.860.014 1 0.980.026 1 0.980.02
2
n

0.80.021 0.409 0.030.002 1 0.970.027 5 0.610.01
4
n

0.710.015 3 0.750.013

0.8n2 1
n

0.950.023 0.255 0.050.002 0.005 0.830.017 0.75n2 1 10 1 10 1 10
2
n

0.990.012 0.258 0.050.002 2 0.950.009
3
n

0.910.018 3 0.820.01

0.9n2 1
n

0.990.011 0.158 0.070.003 0.006 0.750.013
2
n

10 0.153 0.070.006
3
n

0.950.014

5 Conclusions and Future Directions

With this article, we have presented MATE as a model-based algorithm tuning
engine: its human-readable models map instance features to algorithm parame-
ters. Our experiments showed that MATE can find known asymptotic relation-
ships between the feature values and algorithm parameters. We also compared
the performance of MATE with iRace and SMAC investigating the sensitivity
of the obtained parameters on unseen instances of larger size. With its scalable
models, MATE performed best. It is worth noting that MATE can be a useful
guideline tool for theory researchers due to its white-box nature, similarly to
how results in [14] inspired the analysis of a generalised one-fifth success rule
in [10]. But MATE can also be extended to be used as a practical toolbox for
feature-based algorithm configuration.

In the future, we intend to explore, among other, the following three avenues.
First, the design of MATE itself will be subject to extensions, e.g. to better
handle performance differences between instances via ranks or racing. Second,
while our proof-of-concept study here was motivated by theoretical insights, we
will investigate more realistic problems for which instance features are readily
available, such as the travelling salesperson problem and the assignment prob-
lem. Third, we will investigate approaches to extend MATE to handle multiple
parameters to demonstrate its ability to tune more sophisticated algorithms.

Acknowledgements. M. Martins acknowledges CNPq (Brazil Government). M.
Wagner acknowledges the ARC Discovery Early Career Researcher Award
DE160100850. C. Doerr acknowledges support from the Paris Ile-de-France Region.
Experiments were performed on the AAU’s CLAUDIA compute cloud platform.

MATE: A Model-based Algorithm Tuning Engine 65

References

1. Agrawal, A., Menzies, T., Minku, L.L., Wagner, M., Yu, Z.: Better software analyt-
ics via “duo”: data mining algorithms using/used-by optimizers. Empirical Softw.
Eng. 25(3), 2099–2136 (2020)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7 14

3. Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W., et al.: SPOT: a toolbox for
interactive and automatic tuning in the R environment. In: Proceedings, vol. 20,
pp. 264–273 (2010)

4. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Feature based algorithm config-
uration: a case study with differential evolution. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp.
156–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 15

5. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configu-
ration of CMA-ES with limited budget. In: Genetic and Evolutionary Computation
Conference. GECCO 2017, pp. 681–688. ACM (2017)

6. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the leadingones problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

7. Buskulic, N., Doerr, C.: Maximizing drift is not optimal for solving onemax. In:
Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 425–426.
ACM (2019). http://arxiv.org/abs/1904.07818

8. Chicano, F., Sutton, A.M., Whitley, L.D., Alba, E.: Fitness probability distribution
of bit-flip mutation. Evol. Comput. 23(2), 217–248 (2015)

9. Doerr, B.: Analyzing randomized search heuristics via stochastic domination.
Theor. Comput. Sci. 773, 115–137 (2019)

10. Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably
optimal success rules. In: Proceeding of Genetic and Evolutionary Computation
Conference (GECCO 2019), pp. 1479–1487. ACM (2019). https://doi.org/10.1145/
3321707.3321733, https://arxiv.org/abs/1902.02588

11. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. Theor. Comput. Sci. 801, 1–34 (2020)

12. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

13. Doerr, B., Neumann, F.: Theory of evolutionary computation. In: Recent Devel-
opments in Discrete Optimization. Springer, Cham (2020)

14. Doerr, C., Wagner, M.: Simple on-the-fly parameter selection mechanisms for two
classical discrete black-box optimization benchmark problems. In: Proceeding of
Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 943–950.
ACM (2018). https://doi.org/10.1145/3205455.3205560

15. El Yafrani, M., Ahiod, B.: Efficiently solving the traveling thief problem using hill
climbing and simulated annealing. Inf. Sci. 432, 231–244 (2018)

16. Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Röger, G., Seipp, J.: Fd-autotune:
domain-specific configuration using fast downward. In: ICAPS 2011 Workshop on
Planning and Learning, pp. 13–17 (2011)

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-319-45823-6_15
https://doi.org/10.1007/978-3-642-15844-5_1
http://arxiv.org/abs/1904.07818
https://doi.org/10.1145/3321707.3321733
https://doi.org/10.1145/3321707.3321733
https://arxiv.org/abs/1902.02588
https://doi.org/10.1145/3205455.3205560

66 M. El. Yafrani et al.

17. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Heavy-tailed mutation opera-
tors in single-objective combinatorial optimization. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS,
vol. 11101, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99253-2 11

18. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attrac-
tion with heavy-tailed mutation operators. In: Genetic and Evolutionary Compu-
tation Conference. GECCO 2018, pp. 293–300. ACM (2018)

19. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
20. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction

and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006).
https://doi.org/10.1007/11889205 17

21. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13520-0 23

22. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

23. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

24. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The
configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–25 (2017)

25. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artif. Intell. 206, 79–111 (2014)

26. Jansen, T.: Analysing stochastic search heuristics operating on a fixed budget.
Theory of Evolutionary Computation. NCS, pp. 249–270. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-29414-4 5

27. Lengler, J., Spooner, N.: Fixed budget performance of the (1+1) EA on linear
functions. In: ACM Conference on Foundations of Genetic Algorithms, FOGA
2015, pp. 52–61. ACM (2015)

28. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of
optimization problems: the case of combinatorial auctions. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-46135-3 37

29. Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-
aware automatic algorithm configuration: preliminary experiments on neutral and
rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol.
10197, pp. 215–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55453-2 15

30. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

31. Mascia, F., Birattari, M., Stützle, T.: Tuning algorithms for tackling large
instances: an experimental protocol. In: Nicosia, G., Pardalos, P. (eds.) LION
2013. LNCS, vol. 7997, pp. 410–422. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-44973-4 44

32. Rai, A.: Explainable AI: from black box to glass box. J. Acad. Market. Sci. 48(1),
137–141 (2020)

https://doi.org/10.1007/978-3-319-99253-2_11
https://doi.org/10.1007/978-3-319-99253-2_11
https://doi.org/10.1007/11889205_17
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-030-29414-4_5
https://doi.org/10.1007/3-540-46135-3_37
https://doi.org/10.1007/3-540-46135-3_37
https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-642-44973-4_44
https://doi.org/10.1007/978-3-642-44973-4_44

MATE: A Model-based Algorithm Tuning Engine 67

33. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2951–2959 (2012)

34. Treude, C., Wagner, M.: Predicting good configurations for github and stack over-
flow topic models. In: 16th International Conference on Mining Software Reposi-
tories. MSR 2019, pp. 84–95. IEEE (2019)

35. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

36. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

An Improvement Heuristic Based
on Variable Neighborhood Search

for a Dynamic Orienteering Problem

Hoang Thanh Le1(B), Martin Middendorf1, and Yuhui Shi2

1 Swarm Intelligence and Complex Systems Group, Institute of Computer Science,
Leipzig University, Leipzig, Germany

{lht,middendorf}@informatik.uni-leipzig.de
2 Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen, China
shiyh@sustech.edu.cn

Abstract. The Dynamic Orienteering Problem (DOP) is studied where
nodes change their value over time. An improvement heuristic that is
based on Variable Neighborhood Search is proposed for the DOP. The
new heuristic is experimentally compared with two heuristics that are
based on state-of-the-art algorithms for the static Orienteering Prob-
lem. For the experiments several benchmark instances are used as well
as instances that are generated from existing road networks. The results
show that the new heuristic outperforms the other heuristics with respect
to several evaluation criteria and different measures for run time. An
additional experiment shows that the new heuristic can be easily adapted
to become a standalone algorithm that does not need given initial solu-
tions. The standalone version obtains better results than two state-of-
the-art algorithms.

Keywords: Dynamic optimization · Neighborhood search · Anytime
algorithms · Routing problems

1 Introduction

The Orienteering Problem (OP) is to find a simple cycle in a given undirected
graph with edge weights and node values such the total edge weight of the cycle
does not exceed a given threshold and the total value of all nodes in the cycle is
maximal. The name of the problem comes from a corresponding sport [31]. The
OP has applications in many areas, e.g., in the planning of city trips [32] and fuel
delivery routes [10], in agriculture [23] or for surveillance activities in military
scenarios [33]. The OP commonly occurs in applications where the nodes are
locations in a city or a region and the cycle corresponds to a route on a road
network.

This paper considers a dynamic version of the Orienteering Problem (DOP)
where the nodes to be visited can change their value (measuring, e.g., their
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 68–83, 2021.
https://doi.org/10.1007/978-3-030-72904-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_5

A Variable Neighborhood Search for a Dynamic Orienteering Problem 69

attractiveness or urgency) during the optimization process. This is interesting
because in each of the above mentioned application areas it might be possible
that unexpected changes of node values occur after which a planned route has to
be revised without exceeding the time limit (or violating other problem-specific
constraints). For example, customers might change their order and thus their
payment value, tourist spots might change their attractiveness over the course
of a day or emergencies might occur that change the urgency with which locations
have to be visited.

The DOP necessitates the development of algorithms that are able to quickly
adapt existing solutions. For this reason, we focus on improvement heuristics
that try to improve or adapt a given cycle (path) as opposed to heuristics that
independently construct a new solution (in the following the latter are referred
to as standalone algorithms). Improvement heuristics can be easily integrated
into existing tour planning systems in order to improve precalculated solutions
and adapt them if changes occur.

In particular, an improvement heuristic (VNSDOP) is proposed that is based
on Variable Neighborhood Search. This heuristic is experimentally compared
with two other heuristics that use state-of-the-art algorithms for the Static Ori-
enteering Problem. The performance of the heuristics is compared using bench-
mark instances [19] as well as instances that are generated from existing road
networks. In addition, it is evaluated whether the proposed heuristic VNSDOP is
also suited as a standalone algorithm that does not need given initial solutions.

The remaining sections are structured as follows. A short overview of existing
works on Orienteering Problems and their dynamic variants is given in Sect. 2. A
formal description of the Dynamic Orienteering Problems is presented in Sect. 3.
The heuristic VNSDOP is introduced in Sect. 4. Experimental results are pre-
sented in Sect. 5. Conclusions are given in Sect. 6.

2 Related Work

In one of the earliest works on the “Orienteering Problem” (OP) [31] the name
of the problem was chosen because the problem occurs in a sport with the same
name. However, the OP is also known as the Selective TSP [21], the Maximum
Collection Problem [17] or, due to the structural similarities to Vehicle Routing
Problems, as a Vehicle Routing Problem with Profits [4]. There exist several
possible formulations of the OP as a linear program (see, e.g., [15,21]).

The OP is known to be NP-hard [10] and numerous heuristics have been
developed for this problem. One of them is the Greedy Randomized Adap-
tive Search Procedure (GRASP) which has multiple variants, such as Memetic
GRASP [24] or GRASP with path relinking [5]. The latter is outperformed by a
newer GRASP variant that removes path segments [18] as well as by an Evolu-
tionary Algorithm [19]. Other heuristics include an Ant Colony Optimization for
a multi-objective version of the OP [29], an Evolution-inspired algorithm with
Hill Climbing [28] or an approximation algorithm for the case of an OP with a
directed graph and unit values for the nodes [25].

70 H. T. Le et al.

Regarding dynamic versions of the OP, there are several OP variants which
contain probabilistic elements. These problems are known as Stochastic OPs
and can be interpreted as a specific type of dynamic OP. In one variant [2] it is
possible that nodes randomly become unavailable after a path has been chosen
so that some of the nodes have to be skipped. In this problem, the difference
between the expected total value of the path and the expected length of the
path is to be maximized. To solve the problem a Mixed-Integer Linear model
and a Matheuristic have been proposed. In another variant the node values are
normally distributed so that the probability is to be maximized that the total
value of a path exceeds a given target value. For this problem an exact algorithm
as well as a Genetic Algorithm have been presented in [13]. In [36] the sale of
books on a university campus is presented as a Stochastic OP. It is modelled as a
Markov Decision Process and solved using Approximate Dynamic Programming
allowing for the route to dynamically change while the path is traversed.

There also exist (true) dynamic OP variants where the problem instance
changes over time. One example is the OP with Time Windows which, e.g.,
represent business hours, at which certain nodes have to be visited (see, e.g.,
the surveys in [9,11] or the application to the city of Tehran in [1]). Another
example is studied in [8] where the weights of the edges, i.e., the travel times
along the edges, change depending on the departure time from the starting node.
The case where the value of a node decreases linearly depending on when it is
visited is studied in [7]. However, in these works the edge weights or node values
depend on the time at which a given node is visited which mostly depends on
the distance previously traveled on a given path. To the best of our knowledge,
there exist no works that have considered a (time-)dynamic OP in which the
changes of an instance occur during the optimization process.

3 Problem Description

The Orienteering Problem (OP) studied in this work is specified by a tuple
(G, d,B, T, v0, s) which consists of an undirected, connected, simple graph G =
(V,E) with node set V , edge set E ⊂ {{u, v} | u, v ∈ V }, a function d : E → R≥0

that assigns to each edge e ∈ E a length d(e) > 0 which can be interpreted as the
distance to traverse that edge, a positive value B (“budget”), a time interval T
(“time horizon”), a node v0 ∈ V (“depot”), and a value function s that assigns
to each node v ∈ V a non-negative value s(v) (“score”, “profit”). It is assumed
that the function d satisfies the triangle inequality.

In this work, a closed path P is a sequence (v0, v1, . . . , vn, v0) of nodes of G
where each node occurs at most once except the depot v0 which occurs exactly
twice and forms the start and the end of the path. The length of a closed path
P is defined as the sum of the distances between the nodes vi and vi+1 (i ∈
{0, 1, 2, . . . , n − 1}) plus the distance between the nodes vn and v0 where the
distance between two nodes u and v is defined as the length of a shortest path
between u and v. The length of a path is the sum of the lengths of its edges.
Since the triangle inequality holds for d it follows that if {u, v} ∈ E, the length

A Variable Neighborhood Search for a Dynamic Orienteering Problem 71

of a shortest path between u and v equals d({u, v}). The length of a closed path
P is denoted by Length(P). The value of a closed path P is the sum of the values
s(vi) for all nodes vi (i ∈ {0, 1, 2, . . . , n}). The value of P is denoted by Value(P).
The objective of the DOP is to find a closed path P in G with Length(P) ≤ B
that maximizes Value(P).

For the dynamic version of the OP which is called Dynamic Orienteering
Problem (DOP), we consider the case where the values of the nodes can change
over time, i.e., the value function s is a (time-)dynamic function s : V ×T → R≥0

where T is a time interval. The term “time” in this work refers to the time during
the run of an optimization algorithm. This is to be distinguished from the “time”
at which a node is visited (which, for the most part, depends on the distance
travelled so far on a given path P as, e.g., in [7,8]). Note, that OPs where only
the node values can change have the property that a valid solution P whose
length does not exceed the budget B cannot become invalid over time. How s is
defined for the experiments is described in Sect. 5.3. We assume that the changes
in s are not known in advance to an optimization algorithm.

Since the static OP is known to be NP -complete [10], the NP -completeness
of the DOP immediately follows. Algorithms for the OP need to consider two
sub-problems: 1) A suitable subset V ′ ⊆ V with a preferably high sum of node
values has to be selected; 2) For the nodes in V ′, a closed path P has to be
calculated with preferably small values for Length(P). The latter sub-problem is
similar to the well-studied Traveling Salesperson Problem (TSP). If the solution
for the second sub-problem exceeds the available budget B with respect to path
length, the first sub-problem might need to be solved again. Due to the budget
constraint, the first sub-problem is similar to the well-known Knapsack Problem
(KP) such that the OP can be considered to contain an interplay of these two
combinatorial optimization problems.

4 Variable Neighborhood Search

The principle of Neighborhood Search algorithms is to modify a given solu-
tion Pold by selecting a new solution Pnew from a set of similar solutions (the
“neighborhood” of Pold) that minimizes or maximizes an objective function f .
Variable Neighborhood Search algorithms are based on the observation that a
local extremum, i.e., a local maximum or local minimum of f within one neigh-
borhood is not necessarily a local extremum within a different neighborhood [12].
Therefore, Variable Neighborhood Search algorithms change the neighbourhood
function, i.e., the set of solutions considered “similar to Pold” over the course of
the algorithm. In the following, this is written as Pnew = arg minP∈Nk(Pold) f(P)
(for the case of a minimization problem) where Nk(Pold) denotes the neighbor-
hood of the solution Pold that changes depending on an index k. As an example,
the neighborhood Nremove(P) with the index k = remove indicates the set of
paths that can be obtained by removing a non-depot node from P .

Since solving OP problems is considered here to entail the solution of two
sub-problems with different objectives, the heuristic that is proposed in this work

72 H. T. Le et al.

is based on a generalization of this principle: Given a path Pold , the algorithm
selects a new solution Pnew from a neighborhood Nk that maximizes or minimizes
an objective function f� which also changes during the run of the algorithm
depending on an index �:

Pnew =

{
arg maxP∈Nk(Pold) f�(P, Pold) if f� is to be maximized
arg minP∈Nk(Pold) f�(P, Pold) if f� is to be minimized

(1)

The combination of different neighborhoods with varying objective
functions—which can also be interpreted in the sense that the structure of the
neighborhood is now determined by the pair (Nk, f�)—allows for a finer adjust-
ment of the algorithm’s behavior. In particular, using different functions f� allows
the algorithm to focus on specific aspects of the given optimization problem. In
this work, we consider the following functions:

flength(P, P ′) = 1/|Length(P) − Length(P ′)| (2)
fvalue(P, P ′) = |Value(P) − Value(P ′)| (3)

fratio(P, P ′) =
∣∣∣∣ Value(P) − Value(P ′)
Length(P) − Length(P ′)

∣∣∣∣ = flength(P, P ′) · fvalue(P, P ′) (4)

frandom(P, P ′) = r (5)

In frandom the number r is drawn randomly with uniform probability from the
interval [0, 1]. For this case it can be shown that Eq. (1) is equivalent to choosing
Pnew as a random element from Nk(Pold). In the following, we define F =
{flength, fvalue, fratio, frandom} as the set of considered functions and if Length(P) =
Length(P ′), we define flength(P, P ′) = ∞ and fratio(P, P ′) = ∞.

As for neighborhoods, we consider two sets Nadd(P) and Nremove(P) for a
path P defined as follows. Nadd(P) is the set of paths P ′ that can be obtained
by inserting an unvisited node with positive value into P (regardless of whether
Length(P ′) exceeds the budget B) and Nremove(P) is the set of paths that can
be obtained by removing a node that is unequal to the depot v0 from P . Search
steps with respect to these two neighborhoods thus allow the algorithm to add
and remove nodes from a path.

The choice of the objective functions is motivated by the structure of the
OP. The objective function flength focuses on the path length and prefers solu-
tions of short length. This is relevant for the aforementioned sub-problem that
corresponds to the TSP. The objective function fvalue primarily considers the
total value of a path without taking its length into account. This can be inter-
preted as solely focusing on the KP sub-problem. A third objective function
fratio combines flength and fvalue such that the selection of new paths takes both
sub-problems into account. Function frandom corresponds to a random selection
of paths which is used to perturb solutions adding an exploration mechanism to
the algorithm. Note that the absolute values in F allow the algorithm to select
solutions with high total values and/or short length by appropriately choosing
whether to maximize or minimize all functions in F when adding or removing

A Variable Neighborhood Search for a Dynamic Orienteering Problem 73

Algorithm 1. VNSDOP

Parameters: initial iterations kinit , initial insertion probability p, initial solution P0

1: P ← P0
2: for it = 1, . . . , kinit do � initial exploration phase
3: for each node v not in P do
4: with probability p, insert v into P at a random position
5: end for
6: optimize the order of nodes in P using the Chained Lin-Kernighan heuristic
7: while Length(P) > B do
8: P ← argminP ′∈Nremove(P) fratio(P

′, P)
9: end while
10: end for
11: while termination criterion not satisfied do � main iterations
12: f1, f2 ← random elements from the set F
13: repeat
14: P ← argmaxP ′∈Nadd(P) f1(P

′, P)

15: until Length(P) > B ∨ Nadd(P) = ∅

16: optimize the order of nodes in P using the Chained Lin-Kernighan heuristic
17: while Length(P) > B do
18: P ← argminP ′∈Nremove(P) f2(P

′, P)
19: end while
20: end while
21: return best solution found so far

nodes. For the neighborhoods that are considered in this work, two neighboring
paths differ by a single node. Hence, the evaluation of these functions can be
performed efficiently by only considering the differing nodes.

The proposed algorithm (VNSDOP) is shown in Algorithm 1. It starts with a
short, exploration-focused initial phase containing a randomized procedure that
for a path P and a parameter p ∈ [0, 1] iterates over all unvisited nodes with a
positive value and with probability p inserts them into P at a random position
regardless of whether the length of the resulting path exceeds the budget B.
This exploration-focused procedure aims to do a quick, cursory scan of different
areas of the solution space (that also includes paths which do not contain all
nodes in V) in order to find a promising subset of nodes from which solutions
are then improved using the Chained-Lin-Kernighan heuristic [3] based on the
implementation provided by the Concorde TSP solver [6]. The computation time
for the Chained-Lin-Kernighan heuristic is included in the run time measurement
that is described in Sect. 5.1. Afterwards and if necessary, nodes are removed
based on the minimization of the function fratio which provides a balanced view
on both sub-problems without using a large amount of time. The initial phase
lasts for kinit iterations where kinit is given as a parameter.

Afterwards, the main iterations begin where the algorithm repeats three
steps until a termination criterion is satisfied. First, it performs multiple search
steps with respect to the neighborhood Nadd that maximize a randomly chosen
function from F starting with a given initial solution P0 until the resulting
path exceeds the budget B after which the path is now potentially infeasible.
Next, the calculated path P is improved with respect to Length(P) by applying
the Chained-Lin-Kernighan heuristic In the third step, if the improved path P
still exceeds the budget B, the algorithm removes nodes from P by performing
search steps with respect to Nremove(P). In the VNS framework, this can also

74 H. T. Le et al.

be interpreted as a change in neighborhood since a local optimum with respect
to Nadd(P) was reached where it is not possible to feasibly improve the path
by adding nodes. The search steps minimize a randomly chosen function from
F until the resulting path P satisfies Length(P) ≤ B. The random selection of
functions aims to provide a proper degree of variation in each iteration of the
algorithm, which in combination with frandom strengthens the exploration and
allows the algorithm to flexibly adapt to changes in the problem as it constantly
tests a variety of paths based on the current solution.

5 Computational Evaluation

In this section we describe the experiments that have been done to evaluate the
proposed heuristic VNSDOP and their results.

5.1 Measurement of Algorithm Performance

In the DOP it is possible that the quality of a path P as well as the optimal solu-
tion, i.e., the optimal path P ∗, changes during the time interval T . Thus it is not
sufficient to only consider an algorithm’s performance at a certain point in time,
e.g., when it terminates. Instead, it is necessary to take the algorithm’s opti-
mization behavior over the entirety of its run time into account. For this reason
a measurement framework with extensive logging functionalities has been imple-
mented (the source code is available at [22]). In order to measure an algorithm’s
performance over time, this work uses progress curves as described in [34], which
plot over time the quality Value(Pbest) of the best solution Pbest found so far.
Similar to [34], the progress curves are recorded with respect to different time
measures to evaluate different aspects of an algorithm. The general formulation
of progress curves allows them to be easily applied to other optimization prob-
lems if appropriate problem-specific time measures are chosen. In this work, the
following two time measures are used:

1. Function evaluations (FE) count how often the total length Length(P) or
the total value Value(P) of P has been calculated. This measure can show
how an algorithm deals with the TSP sub-problem since for a given subset of
nodes V ′ ⊆ V typically multiple paths with different lengths exist.

2. Subsets (SS) count how many different subsets V ′ ⊆ V of nodes have been
used for the calculation of paths. This time measure shows the effort of an
algorithm to select a suitable subset of V and thus the effort for solving the
sub-problem that is similar to the KP.

Observe that these time measures do not depend on the hardware that is used
to run an algorithm.

Since the quality criterion Value(P) is to be maximized, it is preferable for
the resulting progress curve to quickly reach high values as opposed to progress
curves for minimization problems such as the TSP where low values are desirable.
This allows us to use the sum UB t =

∑
v∈V s(v, t) of all node values at a

A Variable Neighborhood Search for a Dynamic Orienteering Problem 75

time t ∈ T as a trivial upper bound for normalizing the solution quality such
that for every time point t we have that Value(P)/UB t ∈ [0, 1], similar to the
“optimization accuracy” measure used for dynamic optimization problems [26].
It should be noted that besides UB t the value Value(Pbest) of the best solution
Pbest found so far might also change over time due to the dynamics of the problem
(which are described in Sect. 5.3). Taking these factors into account, an example
for such a resulting progress curve is shown in Fig. 1 left.

Fig. 1. Left: Example of a progress curve with respect to time measure SS (VNS
is used as an abbreviation for VNSDOP). Right: Visualization of the OP instance
Leipzig-100-80000-3 generated on basis of OpenStreetMap data for Leipzig. The blue
node is the depot v0 and the other colored nodes correspond to nodes with assigned
values where a bright color indicates a high value. (Color figure online)

5.2 Choice of Algorithms for Comparison

Based on the literature review presented in Sect. 2, we selected the Evolutionary
Algorithm from [19] and the Greedy Randomized Adaptive Search Procedure
with Segment Remove from [18] as algorithms for comparison with our algorithm
VNSDOP. Both comparison algorithms are fairly recent algorithms that obtained
favorable results when experimentally compared to other modern heuristics for
the OP in the respective studies. In the following, they are abbreviated as EA
and GSR, respectively. The authors of EA provide their source code on GitHub,
but for the experiments in this work the algorithm has been reimplemented
based on the source code and the description in [19] in order to fit and utilize
our measurement framework for the DOP mentioned in Sect. 5.1. The algorithm
GSR [18] has also been reimplemented as its source code is not available.

Since EA and GSR are both originally used as standalone algorithms, we also
implemented an improvement heuristic variant of each algorithm, denoted as EA′

76 H. T. Le et al.

and GSR′ respectively. For a given initial solution P0, algorithm EA′ initializes
half of its population with mutated variants of P0 that have been obtained with
its mutation operator, after which EA′ is identical to the original EA. As for
GSR′, the algorithm skips the construction phase for an initial solution if P0 does
not just contain the depot v0 and immediately proceeds to the local search phase
using P0 (otherwise the algorithm is run as GSR). If the local search phase ends
before the termination criterion is satisfied, the path obtained so far is modified
using the Segment Remove operator proposed in [18] and algorithm GSR′ is
repeated. The source code (in C++) for the proposed algorithm VNSDOP, both
reimplemented algorithms EA and GSR, and the variants EA′ and GSR′ is
available on [22].

5.3 Problem Instances

The DOP instances that are used in this work are based on two sets of (static)
OP instances. The first set is based on OPLib [20], a benchmark for Orienteer-
ing Problems. There we chose the instances brazil58, brazil48, gr48, gr120
from the gen4-subset since it contains the most difficult instances [20]. The 4
instances from the subset were chosen because they specify the distance function
d by a distance matrix whereas most of the other instances specify distances by
using point coordinates and euclidean distances between them. However, in road
networks it is not uncommon that the travel distance between two nodes differs
from their euclidean distance which is why we did not consider these instances.

The second set of instances (in the following referred to as city) is intended
to contain properties of road networks in cities and was generated as follows: We
used map data from OpenStreetMap [27] from which extracts for two German
cities, Leipzig and Berlin (as examples for a smaller and a larger city) were
downloaded by using the download server from [30]. We then applied a parser
[16] to extract the roads and processed the resulting files to obtain the road
network as a graph. On these two graphs, we randomly selected 50, 100 and 150
nodes three times each and assigned to them a random initial value s(v, 0) ∈
{1, 2, . . . , 10} excluding one random node which was set as a depot node v0
with value 0 (default value). In addition, distance matrices for these nodes were
calculated so that the instance data is given in the same form as in the OPLib
instances.

Regarding the budget B for the city instances, we chose the value B = 80 000
based on the following reasoning: A survey [14] measured that the average speed
in the two aforementioned cities is 11 mph (≈17.70 km/h). Since road transport
drivers in the European Union are not allowed to drive for more than 4.5 h
without a break [35], it is potentially possible to drive 49.5 miles during that time
frame which, after rounding, corresponds to approximately 80 km or 80 000 m
since the generated graphs measure distances in meters. Using the Concorde
TSP Solver [6], it has been verified that for none of the generated instances
all nodes can be reached within this budget. This set of instances contains 18
Orienteering Problems of which an example is shown in Fig. 1 right.

A Variable Neighborhood Search for a Dynamic Orienteering Problem 77

Based on the (static) OP instances described above, dynamic OP instances
where the value function s changes over time were generated as follows. For each
node v ∈ V in the graph of the problem instance, let s(v, 0) be the initial value
that was given beforehand (for the OPLib instances) or assigned in the procedure
above (for the city instances). Let V1 = {v ∈ V | s(v, 0) > 0 ∨ v = v0} be the
subset of nodes that are the depot or have a positive initial value (also called
“points of interest” [9]). In the following, these nodes are set to be nodes for
which the value function s can potentially change its value. Additionally, since
it is also desirable to generate instances where changes occur with different
frequencies, we consider two dynamic levels: Formally, let the dynamic level be
L ∈ {|V1|,
|V1|/2�} where L = |V1| (or L =
|V1|/2�) indicates that a dynamic
instance with a high (or low) dynamic level is generated. The value L = |V1| was
chosen since it allows for each node in V1 to potentially change its value once.

Then for each time measure tm ∈ {FE, SS}, we consider the discrete time
interval T = {1 tm, 2 tm, . . . , 1 000 000 tm} and L evenly distributed time points
ti =
i · |T |/(L + 1)� tm with i ∈ {1, 2, . . . , L}. These time points form a set
T ′ = {t0, t1, t2, . . . , tL} where t0 = 0 denotes the start time for all time measures.
The time-dynamic function s is now defined as follows. For each ti with i ∈
{1, 2, . . . , L}, a node v∗

i ∈ V1\{v0} is randomly chosen from all non-depot nodes
in V1 and we set

s(v, ti) =

{
max{0, s(v, ti−1) + q} if v = v∗

i

s(v, ti−1) if v �= v∗
i

(6)

for all v ∈ V where q is a nonzero integer randomly drawn from the interval
[−5, 5]. In other words, at each ti a random node in V1 undergoes an absolute
change in value by a nonzero integer between −5 and 5, (i.e., by 50% of the
highest number that can be randomly drawn for s(v, 0) as described above). For
all other t ∈ T\T ′, the function s is set to be constant: s(v, t) = s(v, t − 1 tm)
for all v ∈ V . Applying this procedure to the 22 static instances described above
for each value of L and tm led to 88 DOP instances, which are uploaded to [22].

5.4 Initial Solutions for the Improvement Heuristics

Improvement heuristics require an initial solution P0 that is to be improved. In
order to investigate how the compared algorithms deal with initial solutions of
varying quality, the following five initial solutions were generated for each of the
22 (static) OP instances used in this work: two random paths Prand1, Prand2 gen-
erated by randomly selecting and inserting nodes without exceeding the budget
B (two paths in order to reduce the variance), a path Pgreedy constructed by a
simple greedy heuristic which, based on the path P = (v0), repeatedly appends
nodes that increase its length the least until the path length exceeds B, the best
solution PEA of the EA [19] from Sect. 5.2 after a run time of 10 min and the
solution PGSR calculated by the algorithm GSR [18]. The solutions Prand1, Prand2

and Pgreedy represent solutions of low and medium quality, respectively, whereas
the solutions PEA and PGSR correspond to high-quality solutions generated by

78 H. T. Le et al.

state-of-the-art algorithms for the OP. In total, 110 initial solutions were cre-
ated which are available at [22]. For the dynamic OP instances, the same initial
solution is used that was generated for the static instance it is based on.

5.5 Parameter Values

The proposed algorithm VNSDOP from Sect. 4 contains two parameters: The
number of iterations in the initial phase kinit and the probability p for random
insertions in the initial phase. Regarding the former, since the number of possible
paths grows rapidly with increasing number of nodes in the graph, we consider
it reasonable to scale the length of the initial exploration phase with the size of
the instance. However, if the algorithm focuses too strongly on exploration, then
there might not be enough time to refine the discovered solutions. We thus chose
kinit =

√|V1|, i.e., the square root of the number of nodes with positive value
including the depot as a compromise between these two conflicting aspects.

As for the parameter p, it is desirable that p approximates the fraction of
nodes that are contained in an optimal solution so that the insertion and sub-
sequent optimization of the path length leads to a solution of high quality. The
authors of the EA presented in [19] dealt with a similar problem by utilizing the
formula

√
B/Length(PLK) which in the following is also used for the parameter

p. This formula, which incorporates the budget B and the length of the path
PLK obtained by applying the Chained-Lin-Kernighan heuristic on all nodes in
V1, provides an efficiently calculable approximation for the number of nodes in
an optimal solution (in relation to all nodes). The parameters from the other
algorithms EA and GSR are set as described in their respective studies [18,19].

5.6 Comparison of VNSDOP as an Improvement Heuristic with
Other Metaheuristics

Each of the compared improvement heuristics was executed on each of the 110
instances described in Sect. 5.3 with each of the initial solutions and 10 repeti-
tions over which the progress curves were averaged. The runs were performed on
a cluster with 4 computers that each have eight 3.4-GHz-cores (each run being
executed on one core) and 32 GB RAM. For the dynamic instances, the com-
pared algorithms were set to terminate when the time horizon T expires, i.e.,
after 1 000 000 function evaluations or 1 000 000 subsets are calculated, depend-
ing on the time measure tm by which the value function s changes. Runs on the
static instances were set to terminate after 1 000 000 time units have passed for
both of the time measures.

Plotting the progress curves for each instance and initial solution leads to 660
diagrams so that an individual evaluation of each diagram is not feasible. For this
reason, we calculate the percentage that the area under the progress curve (“area
under curve”, AUC) occupies from the area of a theoretical curve with constant
value 1. This value, denoted AUC rel (“relative AUC”), satisfies AUC rel ∈ [0, 1]
and provides an aggregate quality measure for the progress curves similar to [34].
These values allow us to quantify the performance on a given instance where a

A Variable Neighborhood Search for a Dynamic Orienteering Problem 79

high value indicates that an algorithm quickly obtains solutions of high quality
with respect to the time horizon T .

In order to compare the AUC values over different instances (similar to [26]),
we normalize them with respect to the best attained value. Formally, if AUC rel

I,A

denotes the relative AUC for algorithm A on an instance I, the normalized value
AUC norm

I,A ∈ [0, 1] is calculated as AUC norm
I,A = AUC rel

I,A/maxA′ AUC rel
I,A′ with

A′ ∈ {VNSDOP, EA, GSR} where a value close to 1 can be interpreted as the
algorithm A reaching a performance similar to the best performing algorithm
for instance I. This type of evaluation measure can be seen as an extension of
an evaluation measure also known as “collective mean fitness” that is commonly
used for dynamic optimization problems [26] where instead of the best values
per iteration/generation the optimization behavior over the entire run time is
taken into account.

Table 1. Average values for AUC norm
I,A for the improvement heuristics, aggregated

by different criteria, time measures and truncated to 3 decimal places. Values in bold
indicate the best average value for each aggregation criterion and time measure. The left
half of the table shows the AUC values calculated over the entire time horizon, whereas
the right half of the table shows the values when the calculation of AUC values is
restricted to the final 500 000 time units. Here “VNS” is used as an abbreviation for
VNSDOP and the notation P0 = Prand indicates the aggregation over all instances with
random initial solutions (P0 ∈ {Prand1, Prand2}).

Aggregation over instances with AUC over all 1 000 000 time units AUC over the last 500 000 time units

tm = FE tm = SS tm = FE tm = SS

EA′ GSR′ VNS EA′ GSR′ VNS EA′ GSR′ VNS EA′ GSR′ VNS

Initial solution

P0 = Prand 0.938 0.821 1.000 0.960 0.890 1.000 0.943 0.872 1.000 0.959 0.918 0.999

P0 = Pgreedy 0.944 0.899 1.000 0.963 0.940 1.000 0.950 0.923 1.000 0.964 0.949 0.999

P0 = PEA 0.957 0.940 1.000 0.972 0.963 0.999 0.963 0.946 0.999 0.973 0.960 0.999

P0 = PGSR 0.958 0.918 1.000 0.972 0.937 0.999 0.964 0.920 0.999 0.973 0.934 0.999

Instance set

OPLib 0.986 0.934 1.000 0.990 0.967 1.000 0.988 0.956 1.000 0.991 0.973 0.999

city 0.938 0.868 1.000 0.960 0.919 0.999 0.945 0.896 0.999 0.960 0.927 0.999

Dynamic level

L = |V1| 0.947 0.881 1.000 0.966 0.926 0.999 0.953 0.907 0.999 0.966 0.934 0.999

L = �|V1|/2� 0.947 0.880 1.000 0.966 0.930 0.999 0.954 0.907 0.999 0.966 0.938 0.999

Static OPs 0.946 0.879 1.000 0.964 0.927 0.999 0.952 0.907 1.000 0.965 0.935 0.999

All instances 0.947 0.880 1.000 0.965 0.928 0.999 0.953 0.907 0.999 0.966 0.936 0.999

Table 1 shows the average AUC norm
I,A aggregated over different subsets of the

instances. The AUC norm
I,A and AUC rel

I,A values for all instances and algorithms
as well as the data used for plotting the progress curves are available at [22] so
that future works can be compared with these algorithms. The aggregation crite-
ria were chosen to investigate how the different improvement heuristics perform
with initial solutions of varying quality on both sets of instances with different
dynamic levels. Here a high value indicates that on average the curves for the

80 H. T. Le et al.

respective algorithm are highly similar to the best performing algorithm on the
considered instances. In order to specifically investigate the steady-state perfor-
mance of the algorithms without effects that are caused by differences during
the initialization, an additional evaluation that only considers the AUC values
after 500 000 time units has been performed. This evaluation shows the opti-
mization behavior for the case that a heuristic is used long-term in a dynamic
environment. The results are shown in the right half of Table 1.

It can be seen that in both sets of evaluations VNSDOP obtains the best
results for the considered time measures and aggregation criteria. Especially for
time measure FE and when all time units are taken into account, its aver-
age value over all instances is 1.000 which means that it obtained the best
AUC norm

I,A value on all instances showing a high performance for different ini-
tial solutions and levels of dynamic changes in the score function s, including
static OP instances. In addition, the high values for VNSDOP in the right half
of Table 1 also indicate that the algorithm maintains a high performance over
time. Algorithm EA′ obtains slightly higher values in the right half of Table 1
than in the left half, whereas for GSR′ this is true in all but 2 cases. However,
in general it can be seen that the values for EA′ are higher than the AUC values
for GSR′ indicating that EA′ outperforms GSR′, but not VNSDOP.

5.7 Comparison of VNSDOP as a Standalone Algorithm with Other
Metaheuristics

In this section it is investigated whether VNSDOP is also suited as a standalone
heuristic algorithm for the Dynamic OP that does not utilize a starting solution
P0. For this, the same setup and instances as in the previous section are used and
the VNSDOP algorithm from Sect. 4 is called with the same parameters as in the
previous experiment, with the exception of the initial path P0 which is set as the
path P0 = (v0) that only contains the depot. The other algorithms are used in
their original version, i.e., as EA and GSR which do not use user-defined initial
solutions. However, since GSR in its original formulation [18] terminates after
the local search phase (whereas EA allows for user-defined termination criteria),
comparisons with EA and GSR are performed with two separate sets of runs.
More precisely, for the comparison with EA the same termination criteria as in
the previous experiment in Sect. 5.6 are used, whereas for the comparison with
GSR, we first run GSR on each instance and measure the number of required
time units for FE and SS. Afterwards, the evaluation of VNSDOP and GSR is
restricted to the same number of time units that GSR used.

The results, shown in Table 2, show that VNSDOP as a standalone algorithm
reaches the best performance for all aggregation criteria and time measures.
Similar to Sect. 5.6, it can be seen that the gap between EA and VNSDOP is
smaller than between GSR and VNSDOP which indicates that EA reaches a
higher performance than GSR. As for GSR, even though it obtains good results
for the time measure SS when compared to FE (indicating that it carefully
selects a subset V ′ ⊆ V and thoroughly tests it before changing the subset) it is
still outperformed by VNSDOP in all criteria and both time measures.

A Variable Neighborhood Search for a Dynamic Orienteering Problem 81

Table 2. Average values for AUC norm
I,A for the runs with standalone algorithms, aggre-

gated by different criteria, time measures and truncated to 3 decimal places. Values
in bold indicate the best average value for each aggregation criterion and time mea-
sure. Note that the results between EA and VNSDOP are separate from the runs with
GSR and VNSDOP due to the different termination criteria between EA and GSR.

Aggregation over instances with Comparison with EA Comparison with GSR

tm = FE tm = SS tm = FE tm = SS

EA VNSDOP EA VNSDOP GSR VNSDOP GSR VNSDOP

Instance set

OPLib 0.936 0.999 0.956 0.999 0.772 1.000 0.868 0.995

city 0.990 0.999 0.992 0.999 0.886 1.000 0.943 1.000

Dynamic level

L = |V1| 0.951 0.999 0.963 0.998 0.808 1.000 0.898 0.990

L = 	|V1|/2
 0.943 1.000 0.966 0.999 0.782 1.000 0.880 1.000

Static OPs 0.944 0.999 0.958 0.999 0.787 1.000 0.866 0.997

All instances 0.946 0.999 0.962 0.999 0.793 1.000 0.882 0.996

In addition, since both [19] and [18] measure algorithm performance using
the final solution quality at the time of termination, statistical tests for the static
OP instances were performed comparing the average quality of the best solution
found at the end. In particular, we used the sign test for paired samples which
is a non-parametric test and compared VNSDOP with the other two algorithms
pairing by the static OP instances. Performing the test showed that VNSDOP

obtained better results than EA and GSR on both time measures FE and SS
with a highly significant difference (n = 22, p < 0.001 for each of these tests).

6 Conclusion

This work considered a Dynamic Orienteering Problem (DOP) where the value
function s for the nodes changes over time during the optimization process. Since
dynamic problems necessitate the development of algorithms that can quickly
adapt existing solutions, an improvement heuristic based on Variable Neighbor-
hood Search (VNSDOP) has been proposed that optimizes a given initial solution.
The main idea of VNSDOP is to take the two interacting sub-problems of the
OP into account by using different functions and neighborhoods by which new
solutions are selected, but this concept can also be applied to other combina-
torial optimization problems by choosing the functions and neighborhoods in
accordance with their characteristics and structure.

The heuristic VNSDOP was compared with two improvement heuristics based
on existing state-of-the-art methods for the static OP. The experimental evalu-
ation of the algorithms, which considered the performance over the entire time
horizon, showed that VNSDOP is able to deal with several types of instances
with differing dynamic levels (including static OPs) and with initial solutions of
varying quality outperforming the other algorithms with respect to several time

82 H. T. Le et al.

measures. An additional experiment showed that VNSDOP is also suited as a
standalone heuristic not requiring initial solutions as it obtained better results
over time than the two aforementioned state-of-the-art methods for the consid-
ered criteria. For future research, dynamic Orienteering Problems with other
dynamic levels L and DOPs where other factors, such as the budget B or the
distances d between nodes dynamically change, potentially affecting the validity
of existing solutions are to be investigated.

Acknowledgements. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - project number 392050753.

References

1. Abbaspour, R.A., Samadzadegan, F.: Time-dependent personal tour planning and
scheduling in metropolises. Expert Syst. Appl. 38(10), 12439–12452 (2011)

2. Angelelli, E., Archetti, C., Filippi, C., Vindigni, M.: The probabilistic orienteering
problem. Comput. Oper. Res. 81, 269–281 (2017)

3. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling
salesman problems. INFORMS J. Comput. 15, 82–92 (2003)

4. Archetti, C., Speranza, M.G., Vigo, D.: Vehicle routing problems with profits. In:
Toth, P., Vigo, D. (eds.) Vehicle Routing, pp. 273–297 (2014)

5. Campos, V., Marti, R., Sánchez-Oro Calvo, J., Duarte, A.: Grasp with path relink-
ing for the orienteering problem. J. Oper. Res. Soc. 65, 1800–1813 (2014)

6. Cook, W., Applegate, D., Bixby, R., Chvátal, V.: Concorde TSP solver (2005).
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

7. Erkut, E., Zhang, J.: The maximum collection problem with time-dependent
rewards. Naval Res. Logist. 43(5), 749–763 (1996)

8. Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteer-
ing. Inf. Process. Lett. 83(2), 57–62 (2002)

9. Gavalas, D., Konstantopoulos, C., Pantziou, G.: A survey on algorithmic
approaches for solving tourist trip design problems. J. Heuristics 20(3), 291–328
(2014)

10. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34,
307–318 (1987)

11. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2),
315–332 (2016)

12. Hansen, P., Mladenović, N., Pérez, J.M.: Variable neighbourhood search: methods
and applications. Ann. Oper. Res. 175, 367–407 (2010). https://doi.org/10.1007/
s10479-009-0657-6

13. İlhan, T., Iravani, S.M.R., Daskin, M.S.: The orienteering problem with stochastic
profits. IIE Trans. 40(4), 406–421 (2008)

14. INRIX: Durchschnittliche Geschwindigkeit* im Automobilverkehr in ausgewählten
deutschen Städten im Jahr 2018 (in Meilen pro Stunde). Statista (2019).
https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-
durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/

15. Kara, I., Bicakci, P.S., Derya, T.: New formulations for the orienteering problem.
In: 3rd Global Conference on Business, Economics, Management and Tourism, vol.
39, pp. 849–854 (2016)

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/
https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/

A Variable Neighborhood Search for a Dynamic Orienteering Problem 83

16. Karlin, M., Heikkilä, J.: OSM-graph-parser (2017). https://github.com/rovaniemi/
osm-graph-parser

17. Kataoka, S., Morito, S.: An algorithm for single constraint maximum collection
problem. J. Oper. Res. Soc. Jpn. 31(4), 515–560 (1988)

18. Keshtkaran, M., Ziarati, K.: An efficient evolutionary algorithm for the orienteering
problem. J. Heuristics 22, 699–726 (2016)

19. Kobeaga, G., Merino, M., Lozano, J.A.: An efficient evolutionary algorithm for the
orienteering problem. Comput. Oper. Res. 90, 42–59 (2018)

20. Kobeaga, G., Merino, M., Lozano, J.A.: OPLib: test instances for the orienteering
problem (2018). https://github.com/bcamath-ds/OPLib/tree/master/instances

21. Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl.
Math. 26(2), 193–207 (1990)

22. Le, H.T.: DynamicOrienteeringAlgorithms (2020). https://github.com/L-HT/
DynamicOrienteeringAlgorithms/

23. Mann, M., Zion, B., Rubinstein, D., Linker, R., Shmulevich, I.: The orienteering
problem with time windows applied to robotic melon harvesting. J. Optim. Theory
Appl. 168, 246–267 (2015). https://doi.org/10.1007/s10957-015-0767-z

24. Marinakis, Y., Politis, M., Marinaki, M., Matsatsinis, N.: A memetic-GRASP algo-
rithm for the solution of the orienteering problem. In: Le Thi, H.A., Pham Dinh,
T., Nguyen, N.T. (eds.) Modelling, Computation and Optimization in Information
Systems and Management Sciences. AISC, vol. 360, pp. 105–116. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18167-7 10

25. Nagarajan, V., Ravi, R.: The directed orienteering problem. Algorithmica 60,
1017–1030 (2011). https://doi.org/10.1007/s00453-011-9509-2

26. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

27. OpenStreetMap contributors: planet dump (2020). https://planet.osm.org.
https://www.openstreetmap.org

28. Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., Zabielski, P.: Evolution-
inspired local improvement algorithm solving orienteering problem. Ann. Oper.
Res. 253, 519–543 (2017). https://doi.org/10.1007/s10479-016-2278-1

29. Schilde, M., Doerner, K.F., Hartl, R.F., Kiechle, G.: Metaheuristics for the bi-
objective orienteering problem. Swarm Intell. 3, 179–201 (2009). https://doi.org/
10.1007/s11721-009-0029-5

30. Schneider, W.: Bbbike.org (2020). https://download.bbbike.org/osm/
31. Tsiligiridis, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35,

797–809 (1984). https://doi.org/10.1057/jors.1984.162
32. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: The city trip

planner: an expert system for tourists. Expert Syst. Appl. 38(6), 6540–6546 (2011)
33. Wang, X., Golden, B.L., Wasil, E.A.: Using a genetic algorithm to solve the gen-

eralized orienteering problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The
Vehicle Routing Problem: Latest Advances and New Challenges. ORCS, vol. 43,
pp. 263–274. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77778-
8 12

34. Weise, T., et al.: Benchmarking optimization algorithms: an open source framework
for the traveling salesman problem. IEEE Comput. Intell. Mag. 9(3), 40–52 (2014)

35. Your Europe: Road transportation workers (2020). https://europa.eu/youreurope/
business/human-resources/transport-sector-workers/road-transportation-workers

36. Zhang, S., Ohlmann, J.W., Thomas, B.W.: Dynamic orienteering on a network of
queues. Transp. Sci. 52(3), 691–706 (2018)

https://github.com/rovaniemi/osm-graph-parser
https://github.com/rovaniemi/osm-graph-parser
https://github.com/bcamath-ds/OPLib/tree/master/instances
https://github.com/L-HT/DynamicOrienteeringAlgorithms/
https://github.com/L-HT/DynamicOrienteeringAlgorithms/
https://doi.org/10.1007/s10957-015-0767-z
https://doi.org/10.1007/978-3-319-18167-7_10
https://doi.org/10.1007/s00453-011-9509-2
https://planet.osm.org
https://www.openstreetmap.org
https://doi.org/10.1007/s10479-016-2278-1
https://doi.org/10.1007/s11721-009-0029-5
https://doi.org/10.1007/s11721-009-0029-5
https://download.bbbike.org/osm/
https://doi.org/10.1057/jors.1984.162
https://doi.org/10.1007/978-0-387-77778-8_12
https://doi.org/10.1007/978-0-387-77778-8_12
https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers
https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers

Runtime Analysis of the (µ + 1)-EA
on the Dynamic BinVal Function

Johannes Lengler(B) and Simone Riedi

Department of Computer Science, ETH Zürich, Zurich, Switzerland
johannes.lengler@inf.ethz.ch

Abstract. We study evolutionary algorithms in a dynamic setting,
where for each generation a different fitness function is chosen, and selec-
tion is performed with respect to the current fitness function. Specifically,
we consider Dynamic BinVal, in which the fitness functions for each gen-
eration is given by the linear function BinVal, but in each generation the
order of bits is randomly permuted. For the (1+1)-EA it was known that
there is an efficiency threshold c0 for the mutation parameter, at which
the runtime switches from quasilinear to exponential. Previous empiri-
cal evidence suggested that for larger population size μ, the threshold
may increase. We prove rigorously that this is at least the case in an
ε-neighborhood around the optimum: the threshold of the (μ + 1)-EA
becomes arbitrarily large if the μ is chosen large enough.

However, the most surprising result is obtained by a second order
analysis for μ = 2: the threshold increases with increasing proximity to
the optimum. In particular, the hardest region for optimization is not
around the optimum. (Extended Abstract. A full version is available on
arxiv at [17].)

1 Introduction

An important aspect of population-based optimization heuristics like evolution-
ary algorithms is their incremental nature. At any point in time the population
represents a set of solutions. This makes population-based optimization heuris-
tics very flexible. For example, the heuristic can be stopped after any time bud-
get (predefined or chosen during execution), or when some desired quality of the
solutions is reached. For the same reason, population-based algorithms are nat-
urally suited for dynamic environments, in which the optimization goal (“fitness
function”) may change over the course of optimization.1 In such a setting, it is
not necessary to restart the algorithm from scratch when the fitness function
changes, but rather we can use the current population as starting point for the
new optimization environment. If the fitness function changes slowly enough,

1 By this we mean that selection is performed according to the current fitness function
as in [8]. I.e., all individuals from parent and offspring population are compared with
respect to the same fitness function. Other versions exist, e.g. [4] studies the same
problem as [8] without re-evaluations.

c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 84–99, 2021.
https://doi.org/10.1007/978-3-030-72904-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_6

(μ + 1)-EA on the Dynamic BinVal Function 85

then population-based optimization heuristics may still find the optimum, or
track the optimum over time [2,7,10,11,20–22,24–26]. We refrain from giving a
detailed overview over the literature since an excellent review has recently been
given by Neumann, Pourhassan, and Roostapour [23]. All the settings have in
common that either the fitness function changes with very low frequency, or it
changes only by some small local differences, or both.

Recently, a new setting called dynamic linear functions was proposed by
Lengler and Schaller [18].2 A class of dynamic linear functions is determined
by a distribution D on the positive reals R

+. For the k-th generation, n weights
W k

1 , . . . ,W k
n are chosen independently identically distributed (i.i.d.) from D, and

the fitness function for this generation is given by fk : {0, 1}n → R
+; fk(x) =∑n

i=1 W k
i xi. So the fitness in each generation is given by a linear function with

positive weights, but the weights are drawn randomly in each generation. Note
that for any fitness function, a one-bit in the i-th position will always yield a
better fitness than a zero-bit. In particular, all fitness functions share a common
global maximum, which is the string OPT = (1...1). Hence, the fitness function
may change rapidly and strongly from generation to generation, but the direction
of the signal remains unchanged: one-bits are preferred over zero-bits.

Several applications are discussed in [18]. One of them is a chess engine that
can switch databases for different openings ON or OFF. The databases strictly
improve performance in all situations, but if the engine is trained against varying
opponents, then an opening may be used more or less frequently; so the weight
of the corresponding bit my be high or low. Obviously, it is desirable that an
optimization heuristic manages to switch all databases ON in such a situation.
However, as we will see, this is not automatically achieved by many simple
optimization heuristics. Rather, it depends on the parameter settings whether
the optimal configuration (all databases ON) is found.

In [18], the runtime (measured as the number of generated search points)
of the well-known (1 + 1)-EA on dynamic linear functions was studied. The
authors gave a full characterization of the optimization behavior in terms of
the mutation parameter c. In the (1 + 1)-EA, standard bit mutation is used for
generating offspring, which flips each bit independently with probability c/n.
It was shown that there is a threshold c∗ = c∗(D) ∈ R

+ ∪ {∞} such that
for c < c∗ the (1 + 1)-EA optimizes the dynamic linear function with weight
distribution D in time O(n log n). On the other hand, for c > c∗, the algorithm
needs exponential time to find the optimum. The threshold c∗(D) was given by an
explicit formula. For example, if D is an exponential distribution then c∗(D) = 2,
if it is a geometric distribution D = Geom(p) then c∗ = (2−p)/(1−p). Moreover,
the authors in [18] showed that there is c0 ≈ 1.59.. such that c∗(D) > c0 for every
distribution D, but for any ε > 0 there is a distribution D with c∗(D) < c0 + ε.
As a consequence, if c < c0 then the (1 + 1)-EA with mutation parameter c/n
needs time O(n log n) to optimize any dynamic linear functions, while for c > c0
there are dynamic linear functions on which it needs exponential time.

2 They argued that it might either be called noisy linear functions or dynamic linear
functions, but we prefer the term dynamic.

86 J. Lengler and S. Riedi

In the mostly experimental paper [15,16], Lengler and Meier defined the
dynamic binary value function DynBV as a limiting case of dynamic linear
functions. In DynBV, in each generation a uniformly random permutation πk :
{1, . . . , n} → {1, . . . , n} of the bits is drawn, and the fitness function is then
given by fk(x) =

∑n
i=1 2n−ixπk(i). So in each generation, DynBV evaluates the

BinVal function with respect to a permutation of the search space. Lengler and
Meier observed that the proof in [18] for the (1 + 1)-EA extends to DynBV
with threshold c∗ = c0, i.e., the (1 + 1)-EA needs time O(n log n) for mutation
parameter c < c0, and exponential time for c > c0. In this sense, DynBV is the
hardest dynamic linear function.

The papers [15,16] studied the (μ + 1)-EA (using only mutation) and
(μ+1)-GA (using randomly mutation or crossover) for μ ∈ {1, 2, 3, 5} on DynBV
by runtime simulations and found two main results. As they increased the popu-
lation size μ from 1 to 5, the efficiency threshold c0 increased moderately for the
(μ + 1)-EA (from 1.6 to 3.4, and strongly for the (μ + 1)-GA (from 1.6 to more
than 20). So with larger population size, the algorithms have a larger range of
feasible parameter settings, and even more so when crossover is used.

Moreover, they studied which range of the search space was hardest for the
algorithms, by estimating the drift towards the optimum with Monte Carlo sim-
ulations. For the (μ + 1)-GA, they found that the hardest region was around
the optimum, as one would expect. Surprisingly, for the (μ + 1)-EA, this did
not seem to be the case. They gave empirical evidence that the hardest regime
was bounded away from the optimum. I.e., there were parameters c for which
the (μ + 1)-EA had positive drift (towards the optimum) in a region around the
optimum. But it had negative drift in an intermediate region that was further
away from the optimum. This finding is remarkable since it contradicts the com-
monplace that optimization gets harder closer to the optimum. Notably, a very
similar phenomenon was proven by Lengler and Zou [19] for the (μ + 1)-EA on
certain monotone functions (“HotTopic”), see the discussion below. Strikingly,
such an effect was neither built into the fitness environments (not for HotTopic,
and not for DynBV) nor into the algorithms. Rather, it seems to originate in a
complex (and detrimental!) population dynamics that unfolds only in a regime of
weak selective pressure. If selective pressure is strong, then the population often
degenerates into copies of the same search point. As a consequence, diversity
is lost, and the (μ + 1)-EA degenerates into the (1 + 1)-EA. In these regimes,
diversity decreases the ability of the algorithm to make progress. For HotTopic
functions, these dynamics are well-understood [13,19]. For dynamic linear func-
tions, even though we can prove this behavior in this paper for the (2 + 1)-EA
(see below), we are still far from a real understanding of these dynamics. Most
likely, they are different from the dynamics for HotTopic functions.

Our Results. We study the degenerate population drift (see Sect. 2) for the
(μ + 1)-EA with mutation parameter c > 0 on DynBV in an ε-neighbourhood
of the optimum. I.e., we assume that the search points in the current population
have at least (1 − ε)n one-bits, for some sufficiently small constant ε > 0. We

(μ + 1)-EA on the Dynamic BinVal Function 87

find that for every constant c > 0 there is a constant μ0 such that for μ ≥ μ0 the
drift is positive (towards the optimum). This means that with high probability
the algorithm needs time O(n log n) to improve from (1 − ε)n one-bits to the
optimum. Hence, larger population sizes are helpful, as the drift of the (1+1)-EA
around the optimum is negative for all c > c0 ≈ 1.59.. (which implies expo-
nential optimization time). So for any c > c0, increasing the population size to a
large constant will decrease the runtime from exponential to quasi-linear. This is
consistent with the experimental findings in [15] for μ = {1, 2, 3, 5}, and it proves
that population size can compensate for arbitrarily large mutation parameters.

For the (2 + 1)-EA, we perform a second-order analysis of the drift (i.e., we
also analyze the lower order terms) and prove that in an ε-neighborhood of the
optimum, the drift increases with the distance from the optimum. In particular,
there are some values of c for which the drift is positive around the optimum,
but negative in an intermediate distance. It follows from standard arguments
that there are ε, c > 0 such that the runtime is O(n log n) if the algorithm
is started in an ε-neighborhood of the optimum, but that it takes exponential
time to reach this ε-neighborhood. Thus we formally prove that the hardest
part of optimization is not around the optimum, as was already experimentally
concluded from Monte Carlo simulations in [15].

Related Work. Jansen [9] introduced a pessimistic model for analyzing linear
functions, later extended in [1], which is also a pessimistic model for dynamic
linear functions and DynBV and for monotone functions. The similarities with
monotone functions go surprisingly far. It was shown in [5] that the (1 + 1)-EA
needs exponential time on some monotone functions if the mutation parameter c
is too large. The construction of hard monotone instances was simplified in [12]
and later called HotTopic functions. HotTopic functions were analyzed for
a large set of algorithms in [13]. For the (1 + λ)-EA, the (1 + (λ, λ))-GA, the
(μ + 1)-EA, and the (1 + λ)-fEA, thresholds for the mutation parameter c or
related quantities were determined such that a larger mutation rate leads to
exponential runtime, and a smaller mutation rate leads to runtime O(n log n).
The population size μ and offspring population size λ of the algorithms had no
impact on the threshold. Crucially, all these results were obtained for parameters
of HotTopic functions in which only the behavior in an ε-neighborhood around
the optimum mattered. This dichotomy between quasilinear and exponential
runtime is very similar to the situation for DynBV. However, for the (μ+1)-EA
on HotTopic functions the threshold c0 was independent of μ, while we show
that on DynBV it becomes arbitrarily large as μ grows. Thus large population
sizes help for DynBV, but not for HotTopic.

As we prove, for the (2 + 1)-EA the region around the optimum is not the
hardest region for optimization, and there are values of c for which there is
a positive drift around the optimum, but a negative drift in an intermediate
region. As Lengler and Zou showed [19], the same phenomenon occurs for the
(μ+1)-EA on HotTopic functions. In fact, they showed that larger population
size even hurts: for any c > 0 there is a μ0 such that the (μ+1)-EA with μ ≥ μ0

88 J. Lengler and S. Riedi

has negative drift in some intermediate region (and thus exponential runtime),
even if c is much smaller than one! This surprising effect is due to population
dynamics in which it is not the genes of the fittest individuals who survive in
the long terms. Rather, individuals which are strictly dominated by others (and
substantially less fit) serve as the seeds for new generations. Importantly, the
analysis of this dynamics relies on the fact that for HotTopic functions, the
weight of the positions stay fixed for a rather long period of time (as long as the
algorithm stays in the same region/level of the search space). Thus, the results do
not transfer to DynBV functions. Nevertheless, the picture looks similar insofar
as the hardest region for optimization is not around the optimum in both cases.
Since our analysis for DynBV is only for μ = 2, we can’t say whether the
efficiency threshold in c is increasing or decreasing with μ. The experiments
in [15,16] find increasing thresholds (so the opposite effect as for HotTopic),
but are only for μ ≤ 5.

2 Preliminaries

Notation and Setup. The general setting of a (μ + λ) algorithm in dynamic
environments on the hypercube {0, 1}n is as follows. A population P k of μ search
points is maintained. In each generation k, λ offspring are generated. Then a
selection operator selects the next population P k+1 from the μ+λ search points
according to the fitness function fk.

In this paper, we will study the (μ+1)-Evolutionary Algorithm ((μ+1)-EA)
with standard bit mutation and elitist selection. So for offspring generation, a
parent x is chosen uniformly at random from P k, and the offspring is generated
by flipping each bit of x independently with probability c/n, where c is the
mutation parameter. For selection, we simply select the μ individuals with largest
fk-values to form population P k+1.

For the dynamic binary value function DynBV, for each k ≥ 0 a uniformly
random permutation πk : {1, . . . , n} → {1, . . . , n} is drawn, and the fitness
function for generation k is then given by fk(x) =

∑n
i=1 2n−ixπk(i).

Throughout the paper, we assume that the population size μ and the muta-
tion parameter c are constants, whereas n tends to ∞. We use the expression
“with high probability” or whp for events En such that Pr(En) → 1 for n → ∞.
For two bit-strings x, y ∈ {0, 1}n, x dominates y if xi ≥ yi for all i ∈ {1..n}.

Our main tool will be drift theory. In order to apply this, we need to identify
states that we can adequately describe by a single real value. Following the
approach in [13] and [15], we call a population degenerate if it consists of μ
copies of the same individual. If the algorithm is in a degenerate population, we
will study how the next degenerate population looks like, so we define

Φt := {# of zero-bits in an individual in the t-th degenerate population}. (1)

Our main object of study will be the degenerate population drift (or simply drift
if the context is clear), defined as

Δ(ε) := Δt(ε) := E[Φt − Φt+1 | Φt = εn]. (2)

(μ + 1)-EA on the Dynamic BinVal Function 89

The expression is independent of t since the considered algorithms are time-
homogeneous. If we want to stress that Δ(ε) depends on the parameters μ and c,
we also write Δ(μ, c, ε). Note that the number of generations to reach the (t+1)-
st degenerate population is itself a random variable. So the number of generations
to go from Φt to Φt+1 is random. As in [13], its expectation is O(1) if μ and c are
constants, and it has an exponentially decaying tail bound, see Lemma1 below.
In particular, the probability that during the transition from one degenerate
population to another the same bit is touched by two different mutations is O(ε2),
and likewise the contribution of this case to the drift is O(ε2), see Lemma 2.

To compute the degenerate population drift, we will frequently need to com-
pute the expected change of the potential provided that we visit an intermediate
state S. Here, a state S is simply given by a population of μ search points. We
will call this change the drift from state S, and denote it by Δ(S, ε). Formally,
if E(S, t) is the event that the algorithm visits state S between the t-th and
(t + 1)-st degenerate population,

Δ(S, ε) := E[Φt − Φt+1 | Φt = εn and E(S, t)]. (3)

This term is closely related to the contribution to the degenerate population drift
from state S, which also contains the probability to reach S as a factor:

Δcon(S, ε) := Pr[E(S, t) | Φt = εn] · Δ(S, ε). (4)

We will study DynBV around the optimum, i.e., we consider any ε = ε(n) →
0 for n → ∞, and we compute the asymptotic expansion of Δ(ε) for n → ∞.
As we will see, the drift is of the form Δ(ε) = aε ± O(ε2) ± o(1) for some
constant a.3 Analogously to [13] and [19], if a is positive (multiplicative drift),
then the algorithm starting with at most ε0n zero-bits for some suitable constant
ε0 whp needs O(n log n) generations to find the optimum. On the other hand, if a
is negative (negative drift/updrift), then whp the algorithm needs exponentially
many generations to find the optimum (regardless of whether it is initialized
randomly or with ε0n zero-bits). These two cases are typical. There is no constant
term in the drift since for a degenerate population P k we have P k+1 = P k with
probability 1−O(ε). This happens whenever mutation does not touch any zero-
bit, since then the offspring is rejected.

We will prove that, as long as we are only interested in the first order expan-
sion (i.e., in a results of the form aε±O(ε2)±o(1)), we may assume that between
two degenerate populations, the mutation operators always flip different bits. In
this case, we use the following naming convention for search points. The individ-
uals of the t-th degenerate population are all called x0. We call other individuals
x(m1−m2), where m1 stands for the extra number of ones and m2 for the extra
number of zeros compared to x0. Hence, if x0 has m zero-bits then x(m1−m2) has
m + m2 − m1 zero-bits. Following the same convention, we will denote by Xz

k a
set of k copies of xz, where the string z may be 0 or (m1 − m2). In particular,
X0

μ denotes the t-th degenerate population.

3 The o(1) term is needed since we do not make assumptions about ε. If we assumed
that ε = ε(n) goes to zero sufficiently slowly, we could swallow the o(1) into O(ε2).

90 J. Lengler and S. Riedi

Duration Between Degenerate Populations. We formalize the above asser-
tion that the number of steps between two degenerate populations satisfies expo-
nential tail bounds, and that it is unlikely to touch a bit by two different muta-
tions as we transition from one degenerate population to the next. We omit the
proofs of the following two lemmas due to space restrictions. The first one holds
as any population can degenerate in μ generations by creating copies.

Lemma 1. For all constant μ, c there is a constant a > 0 such that the following
holds for the (μ + 1)-EA with mutation parameter c in any population X on
DynBV. Let K be the number of generations until the algorithm reaches the
next degenerate population. Then for all k ∈ N0,

Pr(K ≥ k · μ) ≤ e−a·k.

Lemma 2. Consider the (μ+1)-EA with mutation parameter c on DynBV. Let
Xt and Xt+1 denote the t-th and (t + 1)-st degenerate population respectively.
Let ε > 0, and let X be a degenerate population with at most εn zero-bits.

(a) Let E2 be the event that the mutations during the transition from Xt to
Xt+1 flip at least two zero-bits. Then Pr[E2 | Xt = X] = O(ε2). Moreover,
the contribution of this case to the degenerate population drift Δ is

Δ∗(ε) := Pr[E2 | Xt = X] · E[Δt(ε) | E2 ∧ Xt = X] = O(ε2).

(b) Let S be a non-degenerate state such that there is at most one position which
is a one-bit in some individuals in S, but a zero-bit in X. Let E(S, t) be the
event that state S is visited during the transition from Xt to Xt+1, and let
E1 be the event that a zero-bit is flipped in the transition from S to Xt+1.
Then Pr[E1 | E(S, t) ∧ Xt = X] = O(ε), and the contribution to Δ(S, ε) is

Δ∗(S, ε) := Pr[E1 | E(S, t)∧Xt = X] ·E[Δt(ε) | E1∧E(S, t)∧Xt = X] = O(ε).
(5)

The contribution of the case E(S, t)∧E1 to the degenerate population drift is

Δ∗
con(S, ε) := Pr[E(S, t)] · Δ∗(S, ε) = O(ε2).

The next lemma classifies how the population can degenerate if no zero-bit
is flipped. By Lemmas 1 and 2, this assumption holds with high probability.

Lemma 3. Consider the (μ+1)-EA on the DynBV problem in any population
X. Let x1, x2, ..., xk be search points in X such that every search point of X
it dominated by one of x1, x2, ..., xk. Then either at least one zero-bit is flipped
until the next degenerate population, or the next degenerate population consists
of copies of one of the search points x1, x2, ..., xk.

Proof. Note that the transitivity holds for the domination property, in particu-
lar, if x dominates y and y dominates z, we have that x dominates z. Assume
that, starting from X, the algorithm doesn’t flip any additional zero-bits. We

(μ + 1)-EA on the Dynamic BinVal Function 91

start by inductively showing that for all subsequent time steps, every individual
in the population is still dominated by one of the search points x1, x2, ..., xk. Sup-
pose, for the sake of contradiction, that eventually there are individuals which
are not dominated by any of the search points in {x1, x2, ..., xk}, and let x∗ be
the first such individual. Since we assumed that the algorithm doesn’t flip any
additional zero-bits, x∗ must have been generated by mutating an individual x̄
and only flipping one-bits. So x̄ dominates x∗. On the other hand, x̄ is dom-
inated by one of the search points x1, x2, ..., xk by our choice of x∗. This is a
contradiction since domination is transitive. Therefore, using transitivity, the
algorithm will not generate any individual that is not dominated by any search
point in {x1, x2, ..., xk}. Furthermore, the population will never degenerate to
any other individual x̃ /∈ {x1, x2, ..., xk}. In fact, let xi be the search point in
{x1, x2, ..., xk} that dominates x̃. We have that f(x̃) < f(xi) in all iterations
and for all permutations, therefore xi will never be discarded before x̃, which
concludes the proof.
�

3 Analysis of the Degenerate Population Drift

In this section, we will find a lower bound for the drift Δ(ε) = Δ(μ, c, ε) of the
(μ + 1)-EA close to the optimum, when n → ∞. The main result, proven later
in this section, is the following.

Theorem 4. For all c > 0 there
exist δ, ε0 > 0 such that for all
ε < ε0 and μ ≥ μ0 := ec + 2, if n
is sufficiently large,

Δ(c, μ, ε) ≥ δ · ε.

Fig. 1. Transition Diagram for the (μ + 1)-EA

Lemma 3 allows us to describe
the transition from one degen-
erate population to the next
by a relatively simple Markov
chain, provided that at most
one zero-bit is flipped dur-
ing the transition. This zero-
bit needs to be flipped in order
to leave the starting state, so
we assume for this chain that
no zero-bit is flipped afterwards.
This assumptions is justified by
Lemma 2. The Markov chain is
shown in Fig. 1. The states of
the Markov chain do not cor-
respond one-to-one to the gen-
erations. For example, following

92 J. Lengler and S. Riedi

the first arrow to the left we reach a state in which one individual x(1) (the
offspring) dominates all other individuals. By Lemma3, such a situation must
degenerate into μ copies of x(1), so we immediately mark this state as a degen-
erate state with Φt+1 − Φt = 1.

The key step will be to give a lower bound for the contribution to the drift
from state Fμ(r). Once we have a bound on this, it is straightforward to compute
a bound on the degenerate population drift. Before we turn to the computations,
we first introduce a bit more notation.

Definition 5. Consider the (μ + 1)-EA in state Fμ(r) in generation k − 1. We
re-sort the n positions of the search points descendingly according to the next
fitness function fk. So by the “first” position we refer to the position which has
highest weight according to fk, and the j-th bit of a bitstring z is given by zi

such that πk(i) = j. Then we define:

– Bk
z := position of the first zero-bit in z;

– Bk
0 := position of the first flipped bit in the k-th mutation;

– zk
1 := arg min{fk(z) | z ∈ {X0

μ−1,X
(1−r)
1 }};

– zk
2 := arg max{fk(z) | z ∈ {X0

μ−1,X
(1−r)
1 }}.

In particular, the search point to be discarded in generation k is either zk
1 or it

is the offspring generated by the k-th mutation. We define Bk
0 to be ∞ if no bits

are flipped in the k-th mutation.

Now we are ready to bound the drift of state Fμ(r). We remark that the
statement for μ = 2 was also proven in [16], but the proof there was much longer,
since it did not make use of the hidden symmetry of the selection process.

Lemma 6. Consider the (μ+1)-EA on the DynBV function in the state Fμ(r)
for some r ≥ 1, and let ε > 0. Then the drift from Fμ(r) is

Δ(Fμ(r), ε) ≥ 1 − r

1 + (μ − 1) · r
+ O(ε).

For μ = 2 the bound holds with equality, i.e. Δ(F 2(r), ε) = (1−r)/(1+r)+O(ε).

Proof. Let us assume that the algorithm will not flip an additional zero-bit
through mutation before it reaches the next degenerate population. In fact, the
contribution to the drift in case it does flip another zero-bit can be summa-
rized by O(ε) due to Eq. (5) in Lemma 2. So from now on, we assume that the
algorithm doesn’t flip an additional zero-bit until it reaches the next degenerate
population.

The idea is to follow the Markov chain as shown in Fig. 1. We will compute
the conditional probabilities of reaching different states from Fμ(r), conditional
on actually leaving Fμ(r). More precisely, we will condition on the event that
an offspring x̄ is generated and accepted into the population.4 Recall that Fμ(r)
4 Here we use the convention that if an offspring is identical to the parent, and they

have lowest fitness in the population, then the offspring is rejected. Since the outcome
of ejecting offspring or parent is the same, this convention does not change the course
of the algorithm.

(μ + 1)-EA on the Dynamic BinVal Function 93

corresponds to the population of {X0
μ−1,X

(1−r)
1 }, i.e., μ−1 copies of x0 and one

copy of x(1−r). So if the offspring is accepted, one of these search points must be
ejected from the population. Let us first consider the case that x(1−r) is ejected
from the population. Then the population is dominated by x0 afterwards, and
will degenerate into X0

μ again by Lemma 3. The other case is that one of the x0

individuals is ejected, which is described by state Sμ(r, k). It is complicated to
compute the contribution of this state precisely, but by Lemma 3 we know that
this population will degenerate either to copies of x0 or of x(1−r). Hence, we
can use the pessimistic bound Δ(Sμ(r, k), ε) ≥ (1 − r) for the drift of Sμ(r, k).
Summarizing, once a new offspring is accepted, if a copy of x0 is discarded we
get a contribution of at most 1−r to the drift and if x(1−r) is discarded we get a
contribution of 0. It only remains to compute the conditional probabilities with
which these cases occur.

To compute the probabilities is not straightforward, but we can use a rather
surprising symmetry, using the terminology from Definition 5. Assume that
the algorithm is in iteration k. We make the following observation: an off-
spring is accepted if and only if it is mutated from zk

2 and Bk
0 > Bk

min :=
min{Bk

x0 , Bk
x(1−r)}. Hence, we need to compute the probability

p̂ := Pr
(
fk(x(1−r)) ≥ fk(x0) | {mutated zk

2} ∧ {Bk
0 > Bk

min}
)
,

since then we can bound Δ(Fμ(r), ε) ≥ (1 − r)p̂ + O(ε) by Lemma 2.
Clearly, the events {fk(x(1−r)) ≥ fk(x0)} and {B0 > Bk

min} are independent.
We emphasize that this is a rather subtle symmetry of the selection process.
Using conditional probability, p̂ simplifies to:

p̂ =
Pr

(
f(x(1−r)) ≥ f(x0) ∧ {mutated zk

2})

Pr
({mutated zk

2}) . (6)

To compute the remaining probabilities, we remind the reader that x(1−r) has
exactly r more zero-bits and 1 more one-bit, than x0. Hence, in order to compare
them, we only need to look at the relative positions of these r + 1 bits in which
they differ. In particular, x(1−r) = zk

2 holds if and only if the permutation πk

places the one-bit from x(r−1) before the r one-bits of x0, and this happens with
probability 1/(r +1). Moreover, recall that there are μ− 1 copies of x0 and only
one x(1−r), so the probability of picking them as parents is (μ − 1)/μ and 1/μ,
respectively. Therefore, by using the law of total probability,

Pr
({mutated zk

2})
= Pr

({mutated zk
2} | x(1−r) = zk

2

) · Pr
(
x(1−r) = zk

2

)

+ Pr
({mutated zk

2} | x0 = zk
2

) · Pr
(
x0 = zk

2

)

=
1
μ

· 1
r + 1

+
μ − 1

μ
· r

r + 1

Plugging this into (6) yields

p̂ =
(

1
r + 1

· 1
μ

) / (
1
μ

· 1
r + 1

+
μ − 1

μ
· r

r + 1

)

=
1

1 + (μ − 1)r
.

94 J. Lengler and S. Riedi

Together with Lemma 2 and the lower bound Δ(Sμ(r, k), ε) ≥ 1 − r on the
contribution to the drift from Sμ(r, k), this concludes the proof for general μ.
For μ = 2, the bound 1 − r is tight since x(1−r) dominates the only other search
point in Sμ(r, k).
�
Now we are ready to bound the degenerate population drift and prove Theorem4.

Proof (of Theorem 4). To prove this theorem, we refer to Fig. 1. By Lemma 2, the
contribution of all states that involve flipping more than one zero-bit is O(ε2). If
we flip no zero-bits at all, then the population degenerates to X0

μ again, which
contributes zero to the drift. So we only need to consider the case where we flip
exactly one zero-bit in the transition from the t-th to the (t + 1)-st degenerate
population. This zero-bit needs to be flipped in the first mutation, since otherwise
the population does not change. We denote by pr the probability to flip exactly
one zero-bit and r one-bits in x0, thus obtaining x(1−r). If fk(x(1−r)) > fk(x0)
then x(1−r) is accepted into the population and we reach state Fμ(r). This
happens if and only if among the r + 1 bits in which x(1−r) and x0 differ, the
zero-bit of x0 is the most relevant one. So Pr[fk(x(1−r)) > fk(x0)] = 1/(r + 1)
Finally, by Lemma 6, the drift from Fμ(r) is at least −(r−1)/(1+(μ−1)r)+O(ε).
Summarizing all this into a single formula, we obtain

Δ(ε) ≥ O(ε2) + p0 +
(1−ε)n∑

r=1

pr ·
[
Pr[fk(x(1−r)) > fk(x0)] · Δ(Fμ(r), ε)

]

≥ O(ε2) + p0 −
(1−ε)n∑

r=1

pr · 1
r + 1

·
(

r − 1
1 + (μ − 1)r

+ O(ε)
)

. (7)

For pr, we use the following standard estimate, which holds for all r = o(n).

pr = (1 + o(1)) · cr+1/r! · e−c · ε · (1 − ε)r.

The summands for r = Ω(n) (or r = ω(1), actually) in (7) are negligible since
pr decays exponentially in r. Plugging p0 and pr into (7), we obtain

Δ(ε) ≥ O(ε2) + (1 + o(1))εce−c

[

1 −
(1−ε)n∑

r=1

cr

(r + 1)!
· (1 − ε)r(r − 1)

(1 + (μ − 1)r)
︸ ︷︷ ︸

=:f(r,c,μ)

]

. (8)

To bound the inner sum, we use (r − 1)/(r + 1) ≤ 1 and obtain

f(r, c, μ) ≤ cr

(r + 1)!
· r − 1
(1 + (μ − 1) · r)

≤ cr

r!
· 1
1 + (μ − 1) · r

≤ cr

r!
· 1
μ − 1

.

We plug this bound into (8). Moreover, summing to ∞ instead of (1 − ε)n
only makes the expression in (8) smaller, and allows us to use the identity∑∞

r=1 cr/r! = ec − 1 ≤ ec, yielding

Δ(ε) ≥ O(ε2) + (1 + o(1))εce−c
(
1 − ec/(μ − 1)

)
.

(μ + 1)-EA on the Dynamic BinVal Function 95

If n is large enough and ε so small that the O(ε2) term can be neglected, then
by picking μ0 = 2 + ec we get Δ(ε) � εce−c/(ec + 1) > 0 and therefore we can
set for example δ = 1

2ce−c/(ec + 1), which concludes the proof.
�
We conclude this section by giving a formal statement on the runtime.

Theorem 7. Assume that the (μ + 1)-EA runs on the DynBV function with
constant parameters c > 0 and μ ≥ ec + 2. Let ε0 be as in Theorem4 and let
ε < ε0. If the (μ + 1)-EA is started with a population in which all individuals
have at most εn zero-bits, then whp it finds the optimum in O(n log n) steps.

Proof. We only sketch the proof since the argument is mostly standard, e.g. [13].
First we note that the number of generations between two degenerate populations
satisfies a exponential tail bound by Lemma1. As an easy consequence, the
total number of flipped bits between two degenerate populations also satisfies
an exponential tail bound, and so does the difference |Φt − Φt+1|. This allows
us to conclude from the negative drift theorem [3,14] that whp Φt < ε0n for an
exponential number of steps. However, in the range Φt ∈ [0, ε0n], by Theorem 4
the drift is positive and multiplicative, E[Φt − Φt+1 | Φt] ≥ δΦt/n. Therefore, by
the multiplicative drift theorem [6,14] whp the optimum shows up among the first
O(n log n) degenerate populations. Again by Lemma1, whp this corresponds to
O(n log n) generations.
�

4 Second-Order Analysis of the Drift of the (2 + 1)-EA

In this section we investigate the (2+1)-EA. We compute a second order approx-
imation of E[Φt − Φt+1 | Φt = εn], that is we compute the drift up to O(ε3)
error terms. This analysis is rather similar to the proof of Theorem4, but more
involved. Due to space restrictions, we only give the final result. The derivation
can be found in the full version [17]. The drift is

Δ(c, ε) = ε(1 + o(1))f0(c) + ε2(1 + o(1))f1(c) + O(ε3), (9)

where

f0(c) = ce−c ·
(
1 +

∑∞
r=1

cr

(r+1)! · 1−r
r+1

)
, and

f1(c) = c2e−c +
∞∑

r=1

(r + 1)(4 − 2r)
r + 2

e−c cr+2

(r + 2)!
(10)

+
e−2c

2

∞∑

r=1

cr+2

(r + 1)!
·

6+6r−3r2

(r+1)(r+2) +
∑∞

k=0
ck

k! (ΔA(k) + ΔB(k))
∑∞

k=0
ck

k! e
−c r+1

r+k+1

.

Here, ΔA and ΔB are the drifts from certain intermediate states, which we don’t
specify exactly for space reasons (see the full version [17] for details), and

ΔA = O(ε) + r(r+2)(1−k)+k(k+2)(1−r)+2−2rk
(r+1)(k+1)(r+k+2) ,

ΔB = O(ε) + −2r2k−rk2−3r2−4rk+k2+4r+k+4
(r+1)(k+1)(k+r+2) .

96 J. Lengler and S. Riedi

As a sanity check, we note that εf0(c) is essentially the same as (8) from the
proof of Theorem 4 after setting μ = 2 and ignoring all lower order terms. The
formulas are complicated, but allow us to prove the following main result.

Theorem 8. There are c∗ > 0 and ε∗ > 0 such that the (2 + 1)-EA with muta-
tion parameter c∗ has positive drift Δ(c∗, ε) = Ω(ε) for all ε ∈ (0, 1

2ε∗) and has
negative drift Δ(c∗, ε) = −Ω(1) for all ε ∈ (32ε∗, 2ε∗).

In a nutshell, Theorem 8 shows that the hardest part for optimization is not
around the optimum. In other words, it shows that the range of efficient param-
eters settings is larger close to the optimum. We remark that we “only” state the
result for one concrete parameter c∗, but the same argument could be extended
to show that the “range of efficient parameter settings” becomes larger. More-
over, with standard arguments similar to the proof of Theorem7, which we omit
here, it would be possible to translate positive and negative drift into optimiza-
tion times. I.e., one could show that whp the algorithm has optimization time
O(n log n) if the algorithm is started in the range ε ∈ (0, ε∗/4), but that the
optimization time is exponential if it is started in the range ε > 2ε∗.

Proof (of Theorem 8). Inspecting f0 in (10), we see that the sum goes over
negative terms, if we omit the zero term for r = 1. Thus the factor in the bracket
is strictly decreasing in c, ranging from 1 (for c = 0) to −∞ (for c → ∞). In
particular, there is exactly one c0 > 0 such that f0(c0) = 0. Numerically we find
c0 = 2.4931 . . . and f1(c0) = −0.4845 . . . < 0.

In the following, we will fix some c∗ < c0 and set ε∗ := −f0(c∗)/f1(c∗). Note
that by choosing c∗ sufficiently close to c0 we can assume that f1(c∗) < 0, since
f1 is a continuous function. Due to the discussion of f0 above, the choice c∗ < c0
also implies f0(c∗) > 0. Thus ε∗ > 0. Moreover, since f0(c) → 0 for c → c0, if we
choose c∗ close enough to c0 then we can make ε∗ as close to zero as we wish.

To add some intuition to these definitions, note that Δ(c, ε) = ε(f0(c) +
εf1(c)+O(ε2)), so the condition ε = −f0(c)/f1(c) is a choice for ε for which the
drift is approximately zero, up to the error term. We will indeed prove that for
fixed c∗, the sign of the drift switches around ε ≈ ε∗. More precisely, we will show
that the sign switches from positive to negative as we go from Δ(c∗, ε∗ − ε′) to
Δ(c∗, ε∗ + ε′), for ε′ ∈ (0, ε∗). Actually, we need to constrict to ε′ ∈ (ε∗/2, ε∗) so
that we can handle the error terms. This implies that the value c∗ yields positive
drift close to the optimum (in the range ε ∈ (0, 1

2ε∗)), but yields negative drift
further away from the optimum (in the range ε ∈ (32ε∗, 2ε∗)). This will imply
Theorem 8.

To study the sign of the drift, we define

Δ∗(c, ε) :=
Δ(c, ε)

ε
= (1 + o(1)) · (

f0(c) + ε · f1(c) + O(ε2)
)
.

It is slightly more convenient to consider Δ∗ instead of Δ, but note that both
terms have the same sign. So it remains to investigate the sign of Δ∗(c∗, ε∗ − ε′)
and Δ∗(c∗, ε∗ + ε′) for ε′ ∈ (ε∗/2, ε∗). We will only study the first term, the

(μ + 1)-EA on the Dynamic BinVal Function 97

second one can be analyzed analogously. Recalling the definition of ε∗ and that
f1(c∗) < 0, we have

Δ∗(c∗, ε∗ − ε′) = (1 + o(1))
(
f0(c

∗) + (ε∗ − ε′)f1(c∗)
)
+O((ε∗)2)

= (1 + o(1))
(
f0(c

∗) + ε∗f1(c
∗)

︸ ︷︷ ︸
=0

) − (1 + o(1))
(
ε′f1(c∗)

)

︸ ︷︷ ︸
<ε∗f1(c∗)/2

+O((ε∗)2)

> −(1 + o(1)) 1
2
ε∗f1(c

∗) +O((ε∗)2).

Recall that we may choose ε∗ as small as we want. In particular, we can choose
it so small that the above term has the same sign as the main term, which is
positive due to f1(c∗) < 0. Hence Δ∗(c∗, ε∗ − ε′) > 0, as desired. The inequality
Δ∗(c∗, ε∗ + ε′) < 0 follows analogously. This concludes the proof.
�

5 Conclusion

We have explored the DynBV function, and we have found that the (μ+1)-EA
profits from large population size, close to the optimum. In particular, for all
choices of the mutation parameter c, the (μ + 1)-EA is efficient around the opti-
mum if μ is large enough. However, surprisingly the region around the optimum
may not be the most difficult region. For μ = 2, we have proven that it is not.

This surprising result, in line with the experiments in [15], raises much more
questions than it answers. Does the (μ+1)-EA with increasing μ turn efficient for
a larger and larger ranges of c, as the behavior around the optimum suggests? Or
is the opposite true, that the range of efficient c shrinks to zero as the population
grows, as it is the case for the (μ + 1)-EA on HotTopic functions? Where is
the hardest region for larger μ? Around the optimum or elsewhere?

For the (μ + 1)-GA, the picture is even less complete. Experiments in [15]
indicated that the hardest region of DynBV for the (μ + 1)-GA is around the
optimum, and that the range of efficient c increases with μ. But the experiments
were only run for μ ≤ 5, and formal proofs are missing. Should we expect
that the discrepancy between (μ+ 1)-GA (hardest region around optimum) and
(μ+1)-EA (hardest region elsewhere) remains if we increase the population size,
and possible becomes stronger? Or does it disappear? For HotTopic functions,
we know that around the optimum, the range of efficient c becomes arbitrarily
large as μ grows (similarly as we have shown for the (μ + 1)-EA on DynBV),
but we have no idea what the situation away from the optimum is.

The similarities of results between DynBV and HotTopic functions are
striking, and we are pretty clueless where they come from. For example, the anal-
ysis of the (μ+1)-EA on HotTopic away from the optimum in [19] clearly does
not generalize to DynBV since the very heart of the proof is that the weights do
not change over long periods. In DynBV, they change every round. Neverthe-
less, experiments and theoretical results indicate that the outcome is similar in
both cases. Perhaps one could gain insight from “interpolating” between DynBV
and HotTopic by re-drawing the weights not every round, but only every k-th
round.

98 J. Lengler and S. Riedi

In general, the situation away from the optimum is governed by complex pop-
ulation dynamics, which is why the (μ+1)-EA and the (μ+1)-GA might behave
very differently. Currently, we lack the theoretic means to understand population
dynamics in which the internal population structure is complex and essential.
The authors believe that developing tools for understanding such dynamics is one
of the most important projects for improving our understanding of population-
based search heuristics.

References

1. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone!
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760.
ACM (2014)

2. Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A new analysis
method for evolutionary optimization of dynamic and noisy objective functions.
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1467–1474.
ACM (2018)

3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250
(2013). https://doi.org/10.1007/s00453-011-9585-3

4. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path prob-
lems. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 17–24.
ACM (2012)

5. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012). https://doi.org/10.1007/s00453-012-9622-x

7. Droste, S.: Analysis of the (1+1) EA for a dynamically changing OneMax-variant.
In: Congress on Evolutionary Computation (CEC), vol. 1, pp. 55–60. IEEE (2002)

8. Horoba, C., Sudholt, D.: Ant colony optimization for stochastic shortest path prob-
lems. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1465–
1472. ACM (2010)

9. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Tou-
ssaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp.
54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6 4

10. Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In:
Foundations of Genetic Algorithms (FOGA), pp. 40–51. Springer (2015). https://
dblp.org/rec/conf/foga/KotzingLW15.html?view=bibtex

11. Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-Boolean function.
In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7491, pp. 113–122. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32937-1 12

12. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb.
Probab. Comput. 27(4), 643–666 (2018)

13. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

14. Lengler, J.: Drift analysis. Theory of Evolutionary Computation. NCS, pp. 89–131.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

https://doi.org/10.1007/s00453-011-9585-3
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1007/978-3-540-73482-6_4
https://dblp.org/rec/conf/foga/KotzingLW15.html?view=bibtex
https://dblp.org/rec/conf/foga/KotzingLW15.html?view=bibtex
https://doi.org/10.1007/978-3-642-32937-1_12
https://doi.org/10.1007/978-3-642-32937-1_12
https://doi.org/10.1007/978-3-030-29414-4_2

(μ + 1)-EA on the Dynamic BinVal Function 99

15. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 42

16. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments, full version. arXiv preprint. http://arxiv.org/abs/2004.09949 (2020)

17. Lengler, J., Riedi, S.: Runtime analysis of the (μ + 1)-EA on the dynamic BinVal
function, full version. arXiv preprint. http://arxiv.org/abs/2010.13428 (2020)

18. Lengler, J., Schaller, U.: The (1+1)-EA on noisy linear functions with random
positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp.
712–719. IEEE (2018)

19. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (μ+1)-EA
on monotone functions. In: Foundations of Genetic Algorithms (FOGA), pp. 87–
101. ACM (2019)

20. Lissovoi, A., Witt, C.: MMAS versus population-based EA on a family of dynamic
fitness functions. Algorithmica 75(3), 554–576 (2016). https://doi.org/10.1007/
s00453-015-9975-z

21. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in
dynamic optimization. Algorithmica 78(2), 641–659 (2016). https://doi.org/10.
1007/s00453-016-0262-4

22. Lissovoi, A., Witt, C.: The impact of a sparse migration topology on the runtime
of island models in dynamic optimization. Algorithmica 80(5), 1634–1657 (2018).
https://doi.org/10.1007/s00453-017-0377-2

23. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algo-
rithms in dynamic and stochastic environments. Theory of Evolutionary Compu-
tation. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-29414-4 7

24. Neumann, F., Witt, C.: On the runtime of randomized local search and simple
evolutionary algorithms for dynamic makespan scheduling. In: International Joint
Conference on Artificial Intelligence (IJCAI), pp. 3742–3748. AAAI Press (2015)

25. Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations for the
dynamic vertex cover problem using evolutionary algorithms. In: Genetic and Evo-
lutionary Computation Conference (GECCO), pp. 903–910. ACM (2015)

26. Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., Neumann, F.: Reoptimization
time analysis of evolutionary algorithms on linear functions under dynamic uniform
constraints. Algorithmica 81(2), 828–857 (2019). https://doi.org/10.1007/s00453-
018-0451-4

https://doi.org/10.1007/978-3-030-58112-1_42
http://arxiv.org/abs/2004.09949
http://arxiv.org/abs/2010.13428
https://doi.org/10.1007/s00453-015-9975-z
https://doi.org/10.1007/s00453-015-9975-z
https://doi.org/10.1007/s00453-016-0262-4
https://doi.org/10.1007/s00453-016-0262-4
https://doi.org/10.1007/s00453-017-0377-2
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/s00453-018-0451-4
https://doi.org/10.1007/s00453-018-0451-4

Tabu-Driven Quantum Neighborhood
Samplers

Charles Moussa1(B), Hao Wang1, Henri Calandra2, Thomas Bäck1,
and Vedran Dunjko1

1 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
c.moussa@liacs.leidenuniv.nl

2 TOTAL SA, Courbevoie, France

Abstract. Combinatorial optimization is an important application tar-
geted by quantum computing. However, near-term hardware constraints
make quantum algorithms unlikely to be competitive when compared
to high-performing classical heuristics on large practical problems. One
option to achieve advantages with near-term devices is to use them in
combination with classical heuristics. In particular, we propose using
quantum methods to sample from classically intractable distributions –
which is the most probable approach to attain a true provable quantum
separation in the near-term – which are used to solve optimization prob-
lems faster. We numerically study this enhancement by an adaptation of
Tabu Search using the Quantum Approximate Optimization Algorithm
(QAOA) as a neighborhood sampler. We show that QAOA provides a
flexible tool for exploration-exploitation in such hybrid settings and can
provide evidence that it can help in solving problems faster by saving
many tabu iterations and achieving better solutions.

Keywords: Quantum computing · Combinatorial optimization · Tabu
search

1 Introduction

In the Noisy Intermediate-Scale Quantum (NISQ) era [39], hardware is limited in
many aspects (e.g., the number of qubits, decoherence, etc.), which prevent the
execution of fault-tolerant implementations of quantum algorithms. Therefore,
hybrid quantum-classical algorithms were designed for near-term applications.
Examples include algorithms for quantum chemistry problems [26,33], quantum
machine learning [7] and combinatorial optimization [19]. They generally consist
of one or many so-called parameterized quantum circuits (or variational quantum
circuits), where the circuit architecture is fixed but the parameters of individual
gates are adapted in a classical loop to achieve a computational objective.

Designed for combinatorial optimization, the Quantum Approximate Opti-
mization Algorithm (QAOA) [19] consists of a quantum circuit of a user-specified
depth p, involving 2p real parameters. To the limit of infinite depth, it converges
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 100–119, 2021.
https://doi.org/10.1007/978-3-030-72904-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_7

Tabu-Driven Quantum Neighborhood Samplers 101

to the optimum. While numerous works have been studying various theoretical
and empirical properties of QAOA [10,13,34,42,46], many practical challenges
remain. Indeed, only small-sized problems and very limited p can be run on
real hardware, which severely limits the quality of solution obtained empirically
[2,4,30]. Lastly, many open questions still remain, e.g., regarding the comparison
of QAOA with other heuristic methods on various cases of instances which stem
from particular problem domains, with different optimizers, and with varying
levels of experimental (or simulated) noise. One reason of why so many uncer-
tainties remain is that classical simulation is computationally very expensive,
and quantum devices are still scarce to prevent large real world tests [2,32].

In contrast to optimization problems, quantum advantage has been demon-
strated in sampling [1]. Indeed, theoretical results establish quantum advantage
in producing samples according to certain distributions of constant-depth quan-
tum circuits [11]. In this direction, it has been demonstrated that the sampling
of the QAOA circuit, even at p = 1, cannot be efficiently simulated classically
[20]. The above considerations point to a possibility of utilizing sampling fea-
tures of QAOA for neighborhood explorations with the added benefit that, since
the neighbourhood may be limited to fewer variables, a smaller quantum device
may already lead to improved performance of a large instance.

It is interesting to delve into sampling aspects in the domain of classical local
search algorithms, where we seek the optimum in the vicinity of the current
solution with respect to either the original optimization problem or a subprob-
lem thereof, using a deterministic or stochastic sampling strategy [3]. Such a
sampling-based local procedure is typically realized by the combination of some
parametric distribution family for drawing local trial points (e.g., the binomial
or a power-law distribution [15]) and a selection method for choosing good trial
points, and hence the overall outcome of this procedure results in the family of
sampling distributions [14,29,44].

In this work, we propose to use QAOA circuits as local neighborhood sam-
plers, having a malleable support in (many) good local optima but still allowing
a level of exploration (which is desirable since local optima may not lead to global
optima). This introduces the topics of sampling and multiobjective aspects of
QAOA that allow balancing between exploration and exploitation. To this end,
we study its combination with tabu search (TS), a metaheuristic that has been
successfully applied in practice for combinatorial optimization by local search.
Moreover, to control the trade-off between exploration and exploitation, we add
this critical component in TS to the specification of the standard QAOA circuit.

Contributions - In this work, we construct an algorithm incorporating
QAOA in TS with the usual attribute-based short-term memory structure (a.k.a
the tabu list). With our approach, we kill two birds with one stone: we gain
quantum enhancements, while the local properties of tabu search can make the
required quantum computations naturally economic in terms of needed qubit
numbers, which is vital in the near-term quantum era. We analyse and bench-
mark this incorporation with small QAOA depths against a classical TS pro-
cedure on Quadratic Unconstrained Binary Optimization (QUBO) problems of

102 C. Moussa et al.

up to 500 variables. We also propose a penalized version of QAOA incorporat-
ing knowledge from a current solution. We find that QAOA is often beneficial
in terms of saved iterations, and can exceptionally find shorter paths towards
better solutions. The structure of the paper is as follows. Section 2 provides
the necessary background on QUBOs, TS and QAOA. In Sect. 3, we detail the
TS procedure incorporating a short-term memory structure with QAOA. The
results of our simulations are presented in Sect. 4. We conclude our paper with
a discussion in Sect. 5.

2 Background

The QUBO formulation can express an exceptional variety of combinatorial opti-
mization (CO) problems such as Quadratic Assignment, Constraint Satisfaction
Problems, Graph Coloring, Maximum Cut [28]. It is specified by the optimization
problem minx∈{0,1}n

∑
i≤j xiQijxj where n is the dimensionality of the prob-

lem and Q ∈ R
n×n. This formulation is connected to the task of finding so

called “ground states”, i.e., configurations of binary labels {1,−1} minimising
the energy of spin Hamiltonians, commonly tackled in statistical physics and
quantum computing, i.e.,:

mins∈{−1,1}n

∑
i hisi +

∑
j>i Jijsisj , (1)

where hi are the biases and Jij the interactions between spins.
The QAOA approach has been designed to tackle CO problems and was

inspired from adiabatic quantum computing [19]. Firstly, the classical cost func-
tion is encoded in a quantum Hamiltonian defined on N qubits by replacing each
variable si in Eq. (1) by the single-qubit operator σz

i :

HC =
∑

i hiσ
z
i +

∑
j>i Jijσ

z
i σz

j . (2)

Here, HC corresponds to the target Hamiltonian and the bitstring corresponding
to the ground state of HC also minimizes the cost function. Secondly, a so-
called mixer Hamiltonian HB =

∑N
j=1 σx

j is leveraged during the procedure.
These hamiltonians are then used to build a layer of a quantum circuit with
real parameters. This circuit is initialized in the |+〉⊗N state, corresponding to
all bitstrings in superposition with equal probability of being measured. Then,
applying the layer p times sequentially yields the following quantum state:

|γ, β〉 = e−iβpHBe−iγpHC · · · e−iβ1HBe−iγ1HC |+〉⊗N
,

defined by 2p real parameters γi, βi, i = 1...p or QAOA angles as they corre-
spond to angles of parameterized quantum gates. Such output corresponds to
a probability distribution over all possible bitstrings. The classical optimization
challenge of QAOA is to identify the sequence of parameters γ and β so as to
minimize the expected value of the cost function from the measurement outcome.
In the limit of infinite depth, the distribution will converge to the optima.

Tabu-Driven Quantum Neighborhood Samplers 103

Tabu Search (TS) [23] is a meta-heuristic that guides a local heuristic search
procedure to explore the search space beyond local optimality. One of the main
components of TS is its use of adaptive memory, which creates a more flexible
search behavior. Such framework allows using a quantum algorithm as a local
search search tool, for solving large instances with limited-sized quantum devices.
Various works leveraged TS for solving QUBOs [22,24,27,36,37] using short-
term and long-term strategies used during the search. We note also different
hybrid settings that combine a basic TS procedure with another framework
such as genetic search [31] and Path Relinking [43]. TS was also incorporated
with quantum computers to tackle larger problems beyond their limitations.
Indeed, finding methods to leverage smaller devices is of main importance. Many
divide and conquer approaches have been designed for quantum circuits and
algorithms [12,17,38,40]. In this paper, the size of the QC comes into play more
naturally as a hyperparameter defining the «radius» of the search space.

With respect to the interplay between TS and quantum techniques, to our
knowlege TS has only been considered from the perspective of D-Wave quantum
annealers. The first approach of this kind is an algorithm called qbsolv [9]. It
starts with an initial TS run on the whole QUBO. Then the problem is parti-
tioned into several subproblems solved independently with the annealer. Sub-
problems are created randomly, by selecting variables. Non-selected ones have
their values fixed (clamping values) from the TS solution. The subsolutions are
then merged and a new TS is run as an improvement method. The second app-
roach is an iterative solver designed in [41]. At each iteration, a subproblem is
submitted to the annealer. The subproblem is obtained by clamping values from
a current solution. A tabu list is used in which each element is a list of variables
of length k. Each element is kept tabu for a user-defined number of iterations.
In contrast in this work, we consider using QAOA in combination with TS.

3 Tabu-Driven QAOA Sampling

Inspired by the above-mentioned works, we use a simple TS procedure where
QAOA is added in the neighborhood generation phase to solve QUBO problems.
Note that we could also apply QAOA in more sophisticated frameworks, but a
simpler approach is easier for understanding the benefits of QAOA with TS.

Local search algorithms explore a search space by generating sequences of
possible solutions which are refined. At each step we generate so-called neigh-
borhood from a current solution. In particular, if we denote the current solution
x, a generated neighborhood corresponds to candidates x′ that differ by at most
k bits. We denote this set as Nk(x) = {x′ ∈ {0, 1}n|δH(x′, x) ≤ k}, where δH

denotes the Hamming distance. For a simple one bit-flip generation strategy, this
corresponds to k = 1 and TS uses a modified neighborhood due to tabu condi-
tions. Although increasing k could help exploration, the neighborhood generation
comes at exponential cost. But this could mean finding better solutions in fewer
TS iterations, and thus also in principle overall faster if a fast good method for
neighborhood exploration is devised.

104 C. Moussa et al.

This motivates the use of a quantum algorithm as a proxy for exploring
Nk(x). Specifically, we will use QAOA which 2p real parameters are tweaked in
a continuous optimization scheme resulting in a probability distribution on Nk.
Increasing p (assuming the optima are found over the parameters) will improve
the quality of the output (likelihood of returning an actual global optimum).

However, in the case of local search, a greedy strategy that tends to select
the best point in the neighborhood would not only lead to potential stagnation,
but also result in longer optimization time (unless the neighborhoods are already
the size of the overall problem) [8]. Indeed, one may also consider modifications
which impose (various) notions of locality, which are usually not considered in
standard QAOA uses where it is used for the entire instance, with the sole goal
of finding optima. To this end, we first outline the basic TS procedure generally
used to solve QUBO problems [24,31,43]. Then, we show how QAOA can be
combined with the latter. Finally, we propose a modification of QAOA that bal-
ances between going for the global optimum, and prioritizing local improvements
relative to the current TS solution.

3.1 The Basic TS Algorithm

The basic TS procedure for solving a QUBO with objective function f(x) is
described in Algorithm 1, for k = 1 excluding the green-highlighted part. It uses
a simple tabu list recording the number of iterations a variable remains tabu
during the search. A variable can be set tabu for a fixed number of iterations
(denoted Tabu tenure TT) but also with a random tenure. Each iteration can
be considered as updating a current solution denoted x, exploring a modified
neighborhood N ′

1 due to the tabu considerations. Generally, x is chosen greedily
when evaluating the objective function over candidates x ∈ N ′

1.
For large problem instances, there exists an efficient evaluation technique for

QUBO solvers leveraging one-bit flip move [21]. Let Δx = f(x′)−f(x) be a move
value, that is the effect in objective of going to x′ from x. For one-bit flip moves,
we denote as Δx(i) the move value upon flipping the i-th variable, which can
be computed using only the QUBO coefficients. The procedure records a data
structure storing those move values, which is updated after each TS iteration.

Initially, all variables can be flipped (line 5). At each iteration, the tabu
solution x is updated by flipping the variable that minimizes the objective over
the neighborhood obtained by one-bit flip moves over non-tabu variables (lines
6–8). If the new tabu solution improves over the best recorded solution, the
aspiration is activated. In this case, the tabu attribute of the flipped variable is
removed. The tabu list is finally updated (lines 18–23) and iterations continue
until the stopping criterion is reached. This can be either a maximum number
of TS iterations, and/or a maximum number of TS iterations allowed without
improvement of the best solution (improvement cutoff).

Tabu-Driven Quantum Neighborhood Samplers 105

3.2 QAOA Neighborhood Sampling

In the usual TS algorithms, the neighborhood consists of candidates with Ham-
ming distance one relative to the current tabu solution x. We note that sometimes
considering also neighbors that are at most k-Hamming distance away from x
helps in finding better solutions. The number k can be set in our case as large
as the (limited) number of available qubits in a quantum hardware.

To study the exploration of such neighborhoods, a brute-force generation
approach is initially tested, thereafter replaced by QAOA. As stated before,
getting the optimum for subproblems in TS may lead to getting stuck dur-
ing the search. QAOA, by definition, is a flexible framework as an exploration-
exploitation tool. On the one hand, QAOA generates better solutions the deeper
the circuit (p), and the better the classical optimization procedure within QAOA
is. It is known it can have advantages over various standard algorithms, e.g. Simu-
lated and Quantum Annealing [42]. To extract all advantages from the capacities
of QAOA, we can further modulate the distribution over outputs it produces by
limited depth or, as we present next, modifications to the QAOA objective to
prioritize a more local behaviour. Such flexibility is important, not only for the
exploration-exploitation trade-off as it provides interesting ways fine-tune the
algorithm depending on the instance to solve.

First, the choice of variables to run QAOA on needs to be adressed. Con-
sidering the

(
N
k

)
possibilities would be intractable. Variables can be chosen ran-

domly but an approach incorporating one-bit flip move values can help in guiding
towards an optimum. The k variables can be chosen amongst the non-tabu ones
at each step. Plus, this means QAOA is an attempt at improving over the solu-
tion one would get with the one-bit flip strategy outlined previously. One can
either select the k variables greedily or add randomness by using the one-flip
gains as weights for defining a probability to be chosen. For simplification, we
consider the greedy selection based on one-bit flip move values. If we consider
the chosen variables that were flipped, the update step of the incremental eval-
uation strategy can be applied. Let l ≤ k be the number of different bits. The
newly generated candidate can be considered as a result of l sequential one-bit
flips. Thus, l calls to the above-mentioned efficient procedure are required.

A second consideration concerns the tabu strategy for updating the tabu
list. We choose to set as tabu the variables amongst the k chosen ones that were
flipped. Choosing to flip all chosen ones could be problematic as it could lead
to all variables being tabu very early during TS. An aspiration criterion can be
used if the new candidate gives the best evaluation found during the search.

Finally, the question of how to run QAOA is of main importance. In our
first scenario, QAOA will be run as a proxy for brute-force (with exploration
properties) to optimize the subproblem defined over the k chosen variables. This
is done by fixing in the QUBO the non chosen ones from the current tabu solution
x. The depth p of QAOA can be user-defined. In this work, we limit p to 2 to
showcase sampling aspects of QAOA at small depth.

106 C. Moussa et al.

Algorithm 1: QAOA-featured Tabu Search for solving QUBO.
Input: An initial solution x0, Cost function f(x)
Parameter : Tabu tenure TT, Random tabu tenure rTT, subproblem size k
Output: The best solution achieved x∗

1 x∗ ← x ← x0;
2 Tabu(i) ← 0, Δx(i) ← 0 for i ∈ [1..N];
3 while stopping criterion not reached do
4 xpre ← x;
5 for i ∈ [1..N] ∩ Tabu(i) = 0 do
6 x

(i)
i ← 1 − xi, x

(i) ← x;
7 one bit-flip gain: Δx(i) = f(x(i)) − f(x);

8 x1-bit ← x(j), j ← argminΔx(i);
9 Select greedily or randomly a subset of variables K ⊆ I s.t. |K| = k;

10 Get a new QUBO by fixing the N − k other variables in x;
11 Run QAOA and get the best sample x̂ minimizing the new QUBO;
12 xk-bit

i ← xi for i ∈ I\K and xk-bit
i ← x̂i for i ∈ K;

13 x ← the better out of x1-bit and xk-bit;
14 Update move values Δx(i) for i ∈ [1..N] ∩ xpre

i �= xi;
15 aspiration ← False;
16 if f(x) < f(x∗) then
17 x∗ ← x, aspiration ← True;

18 Tabu(i) ← Tabu(i) − 1 for i ∈ [1..N] ∩ Tabu(i) > 0;
19 for j ∈ [1..N] ∩ xpre

j �= xj do
20 if aspiration then
21 Tabu(j) ← 0;
22 else
23 Tabu(j) ← TT+Random(rTT);

Our QAOA-featured TS is outlined in Algorithm 1 where QAOA addition
is indicated in green shades. It starts with the same steps as with the standard
Tabu search algorithm until line 8. The QAOA part kicks in from line 9 by firstly
choosing a subset of k variables, and executing QAOA on the sub-QUBO problem
where we optimize over the chosen k variables while keeping the remaining bits
the same with the current point x. After obtaining the best point from QAOA
(lines 11–13), we select the better one from the QAOA outcome xk-bit and the
best one-bit flip point x1-bit and use it to update the current search point. The
move values are then updated by l calls of the fast incremental method (line
14). Finally, if the best-so-far point is improved by the updated search point, we
drop the accepted bit flips from the tabu list (line 21). Otherwise, we reset their
tabu value to the sum of tabu tenure and a random tenure (line 23).

Tabu-Driven Quantum Neighborhood Samplers 107

3.3 Enforcing Locality with Penalized QAOA

As a tool in local search algorithms, QAOA may be useful with modifications
which impose notions of locality. We incorporate these notions in the cost hamil-
tonian so that they are captured during the QAOA evolution. This can be done
through the cost function by adding a penalty term. A possibility is to consider
the Hamming distance with a current tabu solution x. Hence, the objective for
QAOA becomes:

minx′ [f(x′) + AδH(x′, x)], (3)

where δH corresponds to the Hamming distance and A is a constant. The right-
hand side additive term of Eq. (3) aims to encourage the output of candidates
that differ by few bits from the current solution if A > 0, and vice-versa. As
a neighborhood sampler, the penalty may help in enforcing locality. However,
setting the parameter A is non trivial for activating the effect of the extra term.

There is also a possibility to add information about the fitness gain in differing
from x. If switching a bit is an improving move, it would be prioritized. Our
algorithm uses the one-bit flip move values Δx in order to select the variables
to run QAOA on, from which we can construct a weighted penalty term:

− 1
2

∑N
j=1 Δx(j)(−1)xjx′

j . (4)

For a minimization problem, Δx(j) < 0 characterizes encouraging flipping the j-
th variable in new candidates. For a candidate in this case, Δx(j) is added to the
cost. Conversely, Δx(j) > 0 would result in penalizing candidates with the j-th
bit value flipped. One can also multiply by a positive constant A for enforcing
more the locality effects. The penalty translates in an additional operator term
Hpenalty, following an application of a usual cost operator in QAOA, where:

Hpenalty = − 1
2

∑N
j=1 Δx(j)(−1)xjσj

z (5)

The corresponding quantum circuit of depth one is very simple and given by⊗
i RZ((−1)xiγΔx(i)), γ ∈ R.

4 Simulations

We performed extensive simulations over instances of QUBO problems publicly
available in the well-know OR-Library [5,6,22]. In designing them, our objectives
are 1) investigating whether exploring larger neighborhood can facilitate faster
convergence (in terms of TS iterations), 2) elucidating the effect of locality on
QAOA output given by the introduced penalty in Eq. (5), and 3) studying the
utility of QAOA as a proxy for brute-force.

108 C. Moussa et al.

4.1 Larger Neighborhood Exploration Benefits

To study the first objective we replaced QAOA by brute-force search in Algo-
rithm 1. Starting from the all-zero initial solution, we first run the basic TS
with different constant tabu tenures (rTT = 0). Then, we do the same with
brute-force TS for different values of k up to 20. We study two regimes that
differ in how TS search results, namely when k is not comparatively small to N
on instances where N = 20, and when it is on instances of 100, 200, and 500
variables.

k/N Relatively Large. In the first regime, we assume that we can explore
a large percentage (more than 25%) of the instance size greedily. As instances,
we take the first eight instances of bqpgka (named 1a–8a consisting of 30–100
variables), for which we solve by TS. Then we select randomly 20 variables out
of N and clamp values of the non-selected ones from the solutions. We do so five
times per instance, resulting in 40 instances of size 20. Then TS with different
k/N values for subproblems (0.9, 0.75, 0.5, 0.25) were tried on this suite. When
using brute-force, we set TT = 2 and tried many values for the basic TS.

Figure 1 shows the proportion of (run, target value) pairs aggregated over all
functions for 10 targets generated by linear spacing using the benchmarking and
profiling tool IOHprofiler [16] for iterative optimization heuristics. The target
values were normalized by the optimum of the problems. We observed that for
k/N ≥ 0.5, these instances are straightforward to solve (in 3 iterations). The case
k = 5 required 8 iterations on one instance but managed to achieve optimality
on all of them. However, the basic TS, run for 20000 iterations, failed to solve
the same instance. Letting this instance aside, 5 iterations would be required
for k = 5, and 22 for the classical TS procedure. Hence, we clearly observe, as
expected, degrading performances as k/N decreases. This also enabled us to con-
firm numerically that a flip-gain based approach when considering subproblems
is in general beneficial towards solving QUBOs.

Fig. 1. Empirical cumulative distribution function (ECDFs) of tabu iterations for each
algorithm aggregated over all 20-variable problems with 10 target values evenly span-
ning the range of all observed function values.

Tabu-Driven Quantum Neighborhood Samplers 109

Table 1. Best values of tabu tenure (ranging from 2 to 10, adding 15) achieving the
optimum obtained with the first TS iteration(s) to reach the corresponding maximum
given in [22]. The best performances per instance are highlighted in bold. The mention
All means all TT values reached the same solution. The NA mention means no run
returns the optimum, with the best value obtained in parenthesis.

Algo. 1d (6333) 2d (6579) 3d (9261) 4d (10727) 5d (11626)

Basic 15 / 300 All / 71 <9 / 90 2 / 67 6 / 171

k = 10 All / 13 >2 / 61 6 / 39 2 / 31 All / 19

k = 15 All / 10 2+5 / 26 All / 8 3 / 18 5 / 42

k = 20 All / 7 5 / 37 All / 5 All / 11 2 / 18

Algo 1e (16464) 2e (23395) 3e (25243) 4e (35594) 5e (35154)

Basic 9 / 419 6 / 493 10 / 190 15 / 170 6 / 238

k = 10 8 / 485 7 / 111 All / 21 6 / 55 All / 25

k = 15 All / 13 6+7 / 31 All / 13 3 / 41 2 / 20

k = 20 2 / 35 NA (23370)/ 82 3 / 44 3 / 25 4 / 31

Algo 1f (61194) 2f (100161) 3f (138035) 4f (172771) 5f (190507)

Basic 8 / 970 7 / 795 4 / 449 NA (172734) / 1148 NA (190502) / 647

k = 10 15 / 213 7 / 337 15 / 77 NA (172449) / 110 NA (190502) / 126

k = 15 8 / 225 8 / 173 15 / 139 NA (172734) / 46 NA (190502) / 383

k = 20 NA (61087) / 184 NA (100158) / 101 4 / 57 4 / 57 9 / 150

k/N Relatively Small. In this regime, we study the case when k/N is relatively
small (less than 20%). The simulations are carried out on 15 QUBO instances
from bqpgka: 100-variable (named 1d–5d), 200-variable (1e–5e) and 500-variable
problems (1f–5f). Algorithms are run until the best objective value found in [22]
is reached or a maximum number of TS iterations is reached.

We run the algorithms with different TT values ranging from 2 to 10 and
adding 15, and for k = 10, 15, 20. We limit the number of iterations to 20000
for the basic version, 1000 for the brute-force approach (200 for k = 20 though).
Table 1 shows for the different values of TT , which ones achieved the best per-
formances in terms of target only. In these cases, we observe that we can find
a k such that better solutions are found using less iterations, especially on the
most dense instances 4f and 5f. These instances, when considering the underly-
ing graph given by the coefficients connecting different variables, have a density
of respectively 0.75 and 1 (a non-zero coefficient for each pair of variables). For
k = 20 the proposed approach achieved optimality where the basic TS failed.
Again, we observe performances, in terms of target achieved, depend on set-
ting well the tabu tenure in accordance with k. Intuitively, one could think that
the larger k, the smaller TT has to be to save iterations and achieve a better
objective value. But we clearly observe counter-examples.

Larger k exploration, in this regime, turns out to not always be benefi-
cial. This seems conter-intuitive when considering a target objective only, on
an instance to instance basis comparison. Figure 2 shows the proportion of (run,
target value) pairs aggregated over all functions for 1000 targets generated by lin-
ear spacing. The target values were normalized by the optimum of the problems.

110 C. Moussa et al.

Fig. 2. Empirical cumulative distribution function (ECDFs) of tabu iterations for each
algorithm aggregated over all dimensions, all problems, and 1000 target values evenly
spanning the range of all observed function values.

Again, we observe that, with larger k, the proportion of successes is higher, when
measured at the same number of iterations. Note that this can only be observed
for k = 20 up to 200 iterations. The proportion for the basic TS was close to 0.9
while the brute-force approach was superior to 0.99. Hence, we can reach very
good solutions with less iterations as k increases.

In summary, as opposed to the previous regime, the structure of the problems
becomes very important that we have to look at performances in an aggregated
way to witness the benefits of exploring larger neighborhood. Having outlined
some performances given by the brute-force approach on subproblems, we switch
to QAOA, and study its sampling effect as a proxy.

4.2 QAOA as a Proxy for Brute-Force

The second part of our simulations studies the output of QAOA as a proxy for
brute-force. To this end, we first study an example TS run from our previous
simulations. We take the subproblem QUBOs obtained at each step (except the
first one), and run QAOA at p = 1 and 2, and we study the distribution of the
energy given by |γ, β〉, after optimization, with and without the penalty term.

Having outlined the properties of the QAOA output, we run Algorithm 1, and
study its performances in comparison to the basic TS. From the optimized angles,
we try different sampling strategies to generate a candidate per iteration: just
sampling once, sampling 10 times and choosing a candidate greedily, and finally
consider all samples (even during optimization) greedily. The latter corresponds
to a quasi brute-force (BF) approach.

Tabu-Driven Quantum Neighborhood Samplers 111

Fig. 3. QUBO evaluation distribution given by sampling 105 times from the QAOA
quantum state, and by running simulated annealing 1000 times (bottom), for the last
TS iteration done on instance 1e.

Energy Distribution of QAOA. As a first step, we study how the QAOA
output distribution looks like at small depth, with the purpose of elucidating
how it can help avoiding detrimental greedy search behavior. We consider, as
an example, instance 1e for which k = 15, TT = 5 used 13 iterations greedily.
The subproblem QUBOs are kept and we run QAOA on them as previously
stated. The third and last iteration are interesting when considering the penalty
term. The former is a case where the optimum is obtained by flipping all bits
except one and where all flip moves are favorable. The last iteration has flip
moves from the current tabu solution discourage flipping all bits. Plus, very few
candidates (0.2%) improve over the tabu solution. For these iterations, we look
at the quantum state given by QAOA and analyse the distribution of the QUBO
evaluation (or energy in an Ising context).

Figure 3 shows the distribution given by 105 samples from the last iteration’s
quantum state at p = 1 and 2. At p = 1, we observe a homogeneous spread with
two major humps on the left and right side of the tabu solution evaluation. There
is a probability of 23.9% of improving from it by the quantum state. At p = 2,
we see the distribution being shifted to lower energies, yielding an improvement
probability of 75%. The average energy is 16350 for QAOA p = 1 and 16428 for
p = 2. Moreover, the standard deviation of the output decreases from 79.2 to
42. This is expected as to the limit of infinite depth, QAOA converges to the
optimum with less variance.

112 C. Moussa et al.

When running simulated annealing 1000 times with a temperature of 17.5
using 100 steps, we observed that unlike QAOA, the energy spread is restrained
to a few points, the optimum being most present. Decreasing slightly the tem-
perature or the number of steps would always yield the optimum. However, in
terms of exploration opportunities, QAOA could allow visiting different paths
that may lead to fewer iterations required towards improved solutions.

Theory shows that increasing the depth would permit QAOA to find the
optimum assuming optimal parameters are found. But by limiting the depth, we
can control how other good candidates are spread from the optimum. This could
engender new paths to solve a problem differently, where a suboptimal solution
on a subproblem leads to an easier one for QAOA towards better candidates.
Note this can be done in different ways. One way would be using brute-force and
perturbating or mixing the solution, which is not efficient. We could also have the
same effect with simulated annealing. But in many cases, we can fail finding the
optimum, and even less finding a bunch of candidates around it. Finally, due to its
flexibility, QAOA permits to leverage modifications to introduce locality notions
in a multiobjective scheme for local search, such as the previously mentioned
penalty. In the following, we study its effect on the QAOA distribution.

Penalty Effect. In Sect. 3.3, we introduced a penalty term to impose notions
of locality in QAOA as a local search tool. An extra operator based on the
hamiltonian given in Eq. (5), translates to a circuit of depth one concatenated
with a QAOA layer. We study its effect on the QAOA distribution obtained on
the resulting sub-qubos at the third and last iteration.

On iteration 3, for both QAOA and its penalized version, the distribution
tends to output candidates with largest Hamming distances to the current point
as expected. Also, the most likely candidate is the one that completely differs
from the current point, which is more favored by the penalty effect. No significant
changes were observed when penalizing at p = 2.

For the last iteration, Fig. 4 shows that the original QAOA at p = 1 results
in many probability peaks compared to the penalized version, which evolve to
a major peak with an increased depth. The penalized version demonstrates two
major peaks, from which the optimum and a close candidate to x are preferred.

This characterizes the interplay between optimizing and penalizing. At p = 1,
the penalized version has a better probability of improving x (0.34 vs 0.239)
and a higher probability of finding the optimum (0.1 vs 0.02). However, the
unpenalized p = 2 version was more likely to output the optimum (respectively
0.75 and 0.26, where the penalty at p = 2 yields 0.62 and 0.26).

In summary, using the penalty creates a balance between the greedy approach
and one-bit flip gains knowledge from the current solution. This could result in
smoothening the distribution while favouring interesting candidates for both
objectives. This will modify the search path taken during TS depending on the
outcome. Having studied numerically the output of the quantum state one can
get with QAOA, and the penalty effect, we switch to less idealized simulations
where the subproblems depend on the QAOA output during the TS search.

Tabu-Driven Quantum Neighborhood Samplers 113

depth 2 w/ penalty depth 2 w/o penalty

depth 1 w/ penalty depth 1 w/o penalty

-16400 -16300 -16200 -16100 -16000 -15900 -16400 -16300 -16200 -16100 -16000 -15900

0.00

0.01

0.02

0.03

0.0

0.1

0.2

0.00

0.03

0.06

0.09

0.0

0.1

0.2

Energy

P
ro

ba
bi

lit
ie

s

0

1

2

log(distance)

Fig. 4. Distribution of the evaluations (or energies) for the last iteration obtained on
instance 1e given by the QAOA output state, with and without the penalty term. A
colormap is given for the Hamming distance with the current tabu solution.

QAOA Exploration Possibilities. After looking at examples of QAOA out-
put and outlining a few possible exploration opportunities, we carried out a
few extra simulations but not considering the subproblems obtained with brute-
force. Hence, QAOA (and its penalized version) was called once per iteration
with BIPOP-CMAES [25,35] optimizing from one set of angles1. In the follow-
ing, we give a few examples to illustrate the exploration possibilities.

We take instances where BF simulations required few iterations and where
the basic TS was beaten in target. Namely, instance 1d for k = 15 and TT = 5
and 1e for k = 15 and TT = 10. We run Algorithm 1 for 10 times, limiting them
to 20 TS iterations. Different numbers of samples are used for generating a new
candidate per iteration: just once, 10 times and 1000 times. The latter could be
considered as a quasi-brute-force approach in these runs. We denote as m the
number of samples used in the following.

Figures 6 and 5 show the median of the best normalized evaluation obtained
per run by iteration. We observe from iteration 7 for 1d and 10 for 1e that
m = 1000 is equivalent (in median) to the BF generation. In general, the more
samples used, the better the solution found. However, we had at a few iterations
median runs that achieved higher values than BF. For instance, this happened
for the penalized p = 2 QAOA at the 5th iteration with m = 10 for 1d and
m = 1000 at the 12th for 1e. We consider also the frequency of runs for which

1 When using BIPOP-CMAES, we run circuits with 1000 measurements to estimate
expectation values. The optimizer stops when it has reached 2000 evaluations. We
obtained great performances in terms of averaged ratios (as the evaluations divided
by the optimum of the subproblem), superior to 0.97 at the considered depths.

114 C. Moussa et al.

4 6 8 10 12 14 16 18 20 22
0.7

0.75

0.8

0.85

0.9

0.95

1

BF

QAOA_D1_samples1

QAOA_D1_samples10

QAOA_D1_samples1000

QAOA_D2_samples1

QAOA_D2_samples10

QAOA_D2_samples1000

QAOApen_D1_samples1

QAOApen_D1_samples10

QAOApen_D1_samples1000

QAOApen_D2_samples1

QAOApen_D2_samples10

QAOApen_D2_samples1000

Tabu iterations

Fu
nc

tio
n

Ev
al

ua
tio

ns

5 5.2 5.4 5.6 5.8 6

0.85

0.9

0.95

Fig. 5. Median of best normalized evaluations achieved over TS iterations for instance
1d. The mentions D1, D2, mean respectively p = 1, 2 and the penalized version is
indicated by «pen». A higher curve corresponds to better solutions reached. At iteration
20, the basic TS value would be 0.38, while the lowest QAOA curve value is 0.967. The
m = 1000 runs and BF are over 0.99 starting at the 8th iteration. At iteration 5, the
penalized p = 2, m = 10 version is slightly better than the others, even BF (0.9049 vs
0.9007). At the 6th, the m = 10 versions are above BF (respectively 0.9645 and 0.9578
for unpenalized and penalized p = 2, 0.9555 and 0.9470 for p = 1, and 0.9409 for BF).

the basic TS was beaten, and the optimum was found. Table 2 summarizes our
results. Increasing m improves the frequency of successful runs. We observe that
new paths were found, mainly with an extra iteration or two but exceptionally
one run or two over 10 could save one iteration. This was the case on instance
1e with 12 iterations instead of 13, exclusively with the penalized version. These
examples are numerically in favor of a greedy (or quasi) approach in solving sub-
problems. However, QAOA allows, through a trade-off between exploration and
exploitation, discovering new paths towards optimality that are still interesting
in terms of number of iterations.

Tabu-Driven Quantum Neighborhood Samplers 115

Fig. 6. Median of best normalized evaluations achieved over TS iteration for instance
1e. At iteration 20, the lowest QAOA curve value is 0.991 (while 0.19 for the basic
TS). The m = 1000 runs and BF are over 0.99 starting at the 11th iteration. At
iteration 7, the original p = 2 QAOA using 10 samples point is higher than the others,
even BF (0.7827 vs 0.7808). This also happens at iteration 12, with the penalized
p = 2, m = 1000 (0.997085 vs 0.996902).

5 Conclusion and Outlook

In this work, we studied sampling aspects when quantum approaches, specifi-
cally the QAOA algorithm, are considered in combinatorial optimization. We
considered a practically relevant setting where a gate-based quantum algorithm,
limited in the number of qubits, is utilized in a hybrid quantum-classical frame-
work to solve large optimization instances faster. Our framework constitutes a
powerful yet simple heuristic, Tabu Search, in tandem with QAOA as a local
neighborhood sampler.

As a starting point, numerical experiments over open-source QUBO problems
up to 500 variables validate using QAOA as a proxy to explore larger neighbor-
hood, under the assumption that subproblems are solved optimally. Continuing,
we investigated the exploration possibilities given by QAOA output at small
depth. User-defined parameters such as depth and number of measurements
used to generate a candidate, can be increased to favor exploitation. On our
examples, solving subproblems emphasizing more on the latter gave better gen-
eral performances. Yet, we found that exploration can be beneficial. Iterations
can be saved with our QAOA procedure, illustrating that missing to generate
the solution of a subproblem in previous iterations could yield to faster paths
towards better solutions. Hence, the QAOA-based algorithm we introduce in this
work becomes a very flexible tool in such hybrid quantum-classical settings.

116 C. Moussa et al.

Table 2. Frequency of successful runs in beating the basic TS and finding the optima
for instance 1d for k = 15 and TT = 5, and instance 1e for k = 15 and TT = 10
(separated by /), in terms of QAOA settings (with the number of measurements noted
m). We report also the number of iterations that led to the optimum.

QAOA m Frequency beating
TS (/10)

Frequency optimum
(/10)

Iterations to
optimum

D1 0 / 0 0 / 0
D1pen 1 0 / 0 0 / 0
D2 0 / 1 0 / 1 / 14
D2pen 0 / 0 0 / 0
D1 7 / 2 1 / 2 18 / 15,16
D1pen 10 4 / 2 0 / 2 / 15,15
D2 5 / 1 2 / 1 11 / 14
D2pen 4 / 0 1 / 0 10 /
D1 8 / 7 8 / 7 9,10,12 / 13
D1pen 1000 8 / 5 8 / 5 10 / 12,13
D2 9 / 9 9 / 9 10,11 / 13,14
D2pen 10/ 7 10 / 7 9,10 / 12,13

We see numerous possibilities for future work. First, our model allows for
many hyperparameters whose function needs to be explored, and, as is usu-
ally done in many local search methods, the exploration/exploitation trade-
offs can be made online-adaptive. Second, the effect of real world limitations,
most importantly noise, and hardware connectivity, calls for further investiga-
tion. Although QAOA can be run on real hardware [2,45], its output quality
will improve as the quantum devices decreases in error, or through quantum
error mitigation [18]. Finally, it would be interesting to propose different frame-
works (e.g. [24,31,36,37]) with special emphasis on the exploration possibilities
given by small-depth quantum algorithms, and cross-compare with standard
techniques in future works. We believe our approach combined with these types
of analyses will provide new promising ways to maximize the use of limited near-
term quantum computing architectures for real world and industrial optimization
problems.

Acknowledgements. CM, TB and VD acknowledge support from Total. This work
was supported by the Dutch Research Council (NWO/OCW), as part of the Quantum
Software Consortium programme (project number 024.003.037). This research is also
supported by the project NEASQC funded from the European Union’s Horizon 2020
research and innovation programme (grant agreement No 951821).

Tabu-Driven Quantum Neighborhood Samplers 117

References

1. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-
1666-5

2. Arute, F., et al.: Quantum approximate optimization of non-planar graph problems
on a planar superconducting processor (2020)

3. Bäck, T.: Evolutionary Algorithms in Theory and Practice - Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

4. Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving
variational quantum optimization using CVaR. Quantum 4, 256 (2019)

5. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41(11), 1069–1072 (1990). http://www.jstor.org/stable/2582903

6. Beasley, J.: QUBO instances link - file bqpgka.txt. http://people.brunel.ac.uk/
~mastjjb/jeb/orlib/bqpinfo.html

7. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits
as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019). https://
doi.org/10.1088/2058-9565/ab4eb5

8. Beyer, H.: The theory of evolution strategies. In: Natural Computing Series.
Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04378-3

9. Booth, M., Reinhardt, S.P.: Partitioning optimization problems for hybrid classi-
cal/quantum execution technical report (2017)

10. Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed
control parameters the quantum approximate optimization algorithm’s objective
function value concentrates for typical instances arXiv:1812.04170 (2018)

11. Bravyi, S., Gosset, D., König, R.: Quantum advantage with shallow circuits. Sci-
ence 362(6412), 308–311 (2018). https://doi.org/10.1126/science.aar3106, https://
science.sciencemag.org/content/362/6412/308

12. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational
resources. Phys. Rev. X 6 (2016). https://doi.org/10.1103/PhysRevX.6.021043,
https://link.aps.org/doi/10.1103/PhysRevX.6.021043

13. Crooks, G.E.: Performance of the quantum approximate optimization algorithm
on the maximum cut problem (2018). https://arxiv.org/abs/1811.08419

14. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1+(λ, λ)) genetic algorithm. Algorithmica 80(5), 1658–1709 (2018). https://doi.
org/10.1007/s00453-017-0354-9

15. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Bosman, P.A.N. (ed.) Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 777–784. ACM
(2017). https://doi.org/10.1145/3071178.3071301

16. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking
and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281,
October 2018. https://arxiv.org/abs/1810.05281

17. Dunjko, V., Ge, Y., Cirac, J.I.: Computational speedups using small
quantum devices. Phys. Rev. Lett. 121, 250501 (2018). https://doi.org/
10.1103/PhysRevLett.121.250501, https://link.aps.org/doi/10.1103/PhysRevLett.
121.250501

18. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms
and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2020)

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
http://www.jstor.org/stable/2582903
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1007/978-3-662-04378-3
http://arxiv.org/abs/1812.04170
https://doi.org/10.1126/science.aar3106
https://science.sciencemag.org/content/362/6412/308
https://science.sciencemag.org/content/362/6412/308
https://doi.org/10.1103/PhysRevX.6.021043
https://link.aps.org/doi/10.1103/PhysRevX.6.021043
https://arxiv.org/abs/1811.08419
https://doi.org/10.1007/s00453-017-0354-9
https://doi.org/10.1007/s00453-017-0354-9
https://doi.org/10.1145/3071178.3071301
https://arxiv.org/abs/1810.05281
https://doi.org/10.1103/PhysRevLett.121.250501
https://doi.org/10.1103/PhysRevLett.121.250501
https://link.aps.org/doi/10.1103/PhysRevLett.121.250501
https://link.aps.org/doi/10.1103/PhysRevLett.121.250501

118 C. Moussa et al.

19. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm (2014)

20. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate
optimization algorithm (2016)

21. Glover, F., Hao, J.K.: Efficient evaluations for solving large 0–1 unconstrained
quadratic optimisation problems. Int. J. Metaheuristics 1(1), 3–10 (2010). https://
doi.org/10.1504/IJMHEUR.2010.033120

22. Glover, F., Kochenberger, G., Alidaee, B.: Adaptive memory tabu search for binary
quadratic programs. Manage. Sci. 44, 336–345 (1998). https://doi.org/10.1287/
mnsc.44.3.336

23. Glover, F.W.: Tabu search. In: Handbook of Combinatorial Optimization, pp.
1537–1544. Springer, US, Boston, MA (2013). https://doi.org/10.1007/978-1-4419-
1153-7_1034

24. Glover, F.W., Lü, Z., Hao, J.K.: Diversification-driven tabu search for uncon-
strained binary quadratic problems. 4OR 8, 239–253 (2010)

25. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function
testbed. In: ACM-GECCO Genetic and Evolutionary Computation Conference.
Montreal, Canada, July 2009. https://hal.inria.fr/inria-00382093

26. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature 549, 242–246 (2017). https://doi.org/10.
1038/nature23879

27. Kochenberger, G., et al.: The unconstrained binary quadratic programming prob-
lem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/
s10878-014-9734-0

28. Kochenberger, G.A., Glover, F.: A unified framework for modeling and solving
combinatorial optimization problems: a tutorial. Multiscale Optim. Methods Appl.
101–124. Springer, US, Boston, MA (2006). https://doi.org/10.1007/0-387-29550-
X_4

29. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-
output sequences. Soft. Comput. 15(9), 1675–1687 (2011)

30. Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with
a novel gibbs objective function and ansatz architecture search. Phys. Rev. Res.
2(2), 023074 (2019)

31. Lü, Z., Glover, F.W., Hao, J.K.: A hybrid metaheuristic approach to solving the
UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)

32. Medvidovic, M., Carleo, G.: Classical variational simulation of the quantum
approximate optimization algorithm (2020)

33. Moll, N., et al.: Quantum optimization using variational algorithms on near-term
quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.
1088/2058-9565/aab822

34. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards
algorithm selection in near-term quantum optimization. Quantum Sci. Technol.
5(4), 044009 (2020). https://doi.org/10.1088/2058-9565/abb8e5

35. Niko, A., Yoshihikoueno, Y., Brockhoff, D., Chan, M.: ARF1: CMA-ES/pycma:
r3.0.3, April 2020. https://doi.org/10.5281/zenodo.3764210

36. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary
quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004). https://
doi.org/10.1023/B:ANOR.0000039522.58036.68

37. Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic opti-
mization problem. Informatica (Vilnius) 17(2), 279–296 (2006)

https://doi.org/10.1504/IJMHEUR.2010.033120
https://doi.org/10.1504/IJMHEUR.2010.033120
https://doi.org/10.1287/mnsc.44.3.336
https://doi.org/10.1287/mnsc.44.3.336
https://doi.org/10.1007/978-1-4419-1153-7_1034
https://doi.org/10.1007/978-1-4419-1153-7_1034
https://hal.inria.fr/inria-00382093
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/0-387-29550-X_4
https://doi.org/10.1007/0-387-29550-X_4
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/abb8e5
https://doi.org/10.5281/zenodo.3764210
https://doi.org/10.1023/B:ANOR.0000039522.58036.68
https://doi.org/10.1023/B:ANOR.0000039522.58036.68

Tabu-Driven Quantum Neighborhood Samplers 119

38. Peng, T., Harrow, A.W., Ozols, M., Wu, X.: Simulating large quantum
circuits on a small quantum computer. Phys. Rev. Lett. 125(15), 150504
(2020). https://doi.org/10.1103/PhysRevLett.125.150504, https://link.aps.org/
doi/10.1103/PhysRevLett.125.150504

39. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(2018). https://doi.org/10.22331/q-2018-08-06-79

40. Rennela, M., Laarman, A., Dunjko, V.: Hybrid divide-and-conquer approach for
tree search algorithms (2020)

41. Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic
solver for a quantum annealer. Comput. Optim. Appl. 65, 845–869 (2016)

42. Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing,
arXiv:1901.01903 (2019)

43. Wang, Y., Lü, Z., Glover, F.W., Hao, J.K.: Path relinking for unconstrained binary
quadratic programming. Eur. J. Oper. Res. 223, 595–604 (2012)

44. Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably
essential. In: Proceeding of Genetic and Evolutionary Computation Conference
(GECCO 2007), pp. 1452–1459. ACM (2007). https://doi.org/10.1145/1276958.
1277224

45. Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Benchmarking the
quantum approximate optimization algorithm. Quantum Inf. Process. 19(7), 197
(2020). https://doi.org/10.1007/s11128-020-02692-8

46. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate
optimization algorithm: performance, mechanism, and implementation on near-
term devices, arXiv:1812.01041 (2018)

https://doi.org/10.1103/PhysRevLett.125.150504
https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1901.01903
https://doi.org/10.1145/1276958.1277224
https://doi.org/10.1145/1276958.1277224
https://doi.org/10.1007/s11128-020-02692-8
http://arxiv.org/abs/1812.01041

On Hybrid Heuristics for Steiner Trees
on the Plane with Obstacles

Victor Parque(B)

Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo,
Shinjuku, Tokyo 169-8555, Japan

parque@aoni.waseda.jp

Abstract. Minimal-length Steiner trees in the two-dimensional Eucli-
dean domain are of special interest to enable the efficient coordination
of multi-agent and interconnected systems. We propose an approach to
compute obstacle-avoiding Steiner trees by using the hybrid between
hierarchical optimization of shortest routes through sequential quadratic
programming over constrained two-dimensional convex domains, and the
gradient-free stochastic optimization algorithms with a convex search
space. Our computational experiments involving 3,000 minimal tree plan-
ning scenarios in maps with convex and non-convex obstacles show the
feasibility and the efficiency of our approach. Also, our comparative study
involving relevant classes of gradient-free and nature inspired heuristics
has shed light on the robustness of the selective pressure and exploitation
abilities of the Dividing Rectangles (DIRECT), the Rank-based Differ-
ential Evolution (RBDE) and the Differential Evolution with Successful
Parent Selection (DESPS). Our approach offers the cornerstone mecha-
nisms to further advance towards developing efficient network optimiza-
tion algorithms with flexible and scalable representations.

Keywords: Minimal trees · Steiner trees · Optimization · Planning

1 Introduction

Minimal-length trees are relevant to enable the efficient coordination of multi-
agent systems in interconnected and distributed environments, e.g. flocking [1],
formation control [2] and leader selection [3]. With origins in the formulation of
Pierre de Fermat [4], the concept of minimal trees was popularized by Vojtěch-
Kössler in the 30’s [5] and by Courant in the 40’s [6]. One of the relevant well-
known constructs is the Steiner tree in graphs. Here, for an undirected graph
G = (V,E) a minimal network connecting a subset of k elements (nodes) of
V is to be found. Naturally, if the subset contains two (all) elements of V , the
problem can be reduced to the Shortest-Path (Minimum Spanning Tree), which is
computable in polynomial time. The (geometric) Euclidean Steiner Tree problem
(EST) aims at computing minimal-length trees spanning n terminal nodes while
allowing the addition of extra (Steiner) points in the Euclidean domain. Here,
we study the obstacle-avoiding Euclidean Steiner tree problem, requiring that
no point in the tree lies in the interior of obstacles.
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 120–135, 2021.
https://doi.org/10.1007/978-3-030-72904-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_8&domain=pdf
http://orcid.org/0000-0001-7329-1468
https://doi.org/10.1007/978-3-030-72904-2_8

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 121

Input Output

Root

Fig. 1. Input: a set of nodes and an arbitrary polygonal set in the Euclidean plane.
Output: a collision-free Steiner tree.

2 Steiner Tree Problem

2.1 Definition

Basically, we tackle the obstacle-avoiding Euclidean Steiner tree problem in a
polygonal map with obstacles. Here,

– Inputs are a set of nodes and a polygonal map as portrayed by Fig. 1.
– The output is a collision-free tree as portrayed by Fig. 1.
– The quality of a solution is the overall tree length.

2.2 Background

In the early 90’s, Winter and Smith proposed an O(n) algorithm to compute
Euclidean Steiner trees with three terminals and one obstacle in the plane, in
which n is the number of extreme vertices in the obstacle [7]. In [8], Winter
used visibility graphs to generate and concatenate Steiner trees with two, three
and four terminals. In the late 90’s, Zachariasen and Winter proposed the first
exact algorithm for the obstacle-avoiding Euclidean Steiner tree in the plane by
generating and concatenating full Steiner trees [9]. In the early 2000’s, Weng
and Smith studied the Steiner Trees with one obstacle and presented an O(n2 +
nlog2w) algorithm, in which n is the cardinality of terminal points in the plane,
and w is the number of extreme points in the convex obstacle [10]. They also
generalized their result to a non-convex obstacle running with O(n2 +nw.logw).
Winter et al. devised a polynomial heuristic concatenating the exact solutions
of Steiner trees with up to four terminals, in a simple polygon [11]. In 2010,
Müller-Hannemann and Tazari devised a polynomial-time approximation scheme
with running time O(n log2 n), in which n is number of terminals plus obstacle
vertices [12]. Their approach extends the algorithm of Borradaile et al. [13]
to find (1 + ε)-approximations of Steiner trees in planar graphs whose size is
O(n log n). In 2018, Cohen and Nutov studied connectivity problems in a convex

122 V. Parque

metric space and proposed the improved approximation ratios for both Steiner
trees and Steiner forests with minimum number of Steiner points [14]. In 2019,
Chen et al. proposed the connectivity restoration of wireless networks based on
obstacle-avoiding quadrilateral Steiner trees [15].

Nature-inspired and evolutionary algorithms (EAs) are general stochastic
heuristics; and as such, several investigations have shown the potential of EAs
in tackling various forms of minimal-length tree problems, achieving compet-
itive results and approximation guarantees in various scenarios. For instance,
a mathematical model of a Physarum polycephalum slime mold network was
used to construct Steiner trees in graphs, showing the exponential convergence
towards the optimum [16]. And, two variants of Physarum-inspired algorithms
were shown to outperform Genetic Algorithm (GA), discrete Particle Swarm
Optimization (PSO) [17]. Also, evolutionary approaches were shown to be effec-
tive in the bi-level tree formulations [18,19]. The node-based and the path-based
Variable Neighborhood Search (VNS) were used to solve the Steiner tree problem
in graphs, in which solutions were initialized by using the Prim’s algorithm, and
whose effectiveness was shown in 40 instances derived from the OR-Library [20].
Also, it was shown that the (1 + 1) Evolutionary Strategy attains the 3/2-
approximation ratio in constructing Steiner trees for a class of quasi-bipartite
graphs [21].

Also, minimal trees has attracted the attention in the circuit design and the
pipe routing communities. Whereas circuit design is key to VLSI systems [22],
pipe routing is key to offshore oil and gas industries [23]. In the octilinear
Euclidean Steiner tree, sometimes referred as the X-architecture, edges are
required to be oriented at 0◦, 45◦, 90◦, 135◦. Examples of the heuristics include
Particle Swarm Optimization [24–26], variants of Genetic Algorithms [27–29],
Ant Colony Optimization [30], and more recently Differential Evolution [31,32].
For an overview on Steiner tree algorithms for VLSI applications, refer to the
survey by Chen et al. [22].

Although the above-mentioned studies have rendered minimal tree layouts
being compact and free of clutter, the study of obstacle-avoiding minimal Steiner
trees under arbitrary configurations of obstacles and terminal nodes by nature-
inspired and gradient-free optimization algorithms has received little attention.
Whereas tailored algorithms for the rectilinear and the octilinear versions of
the Euclidean Steiner tree problems exist, the study of the general versions by
gradient-free heuristics is potential to elucidate the feasibility to render minimal
trees in the plane. In particular, we formulated and evaluated five relevant classes
of gradient-free optimization algorithms for obstacle avoiding Euclidean Steiner
tree problems. Compared to above-mentioned works, this paper expands the
scope of evaluated gradient-free optimization heuristics by considering diverse
forms of selection pressure and exploration-exploitation trade-offs. Thus, it
becomes possible to elucidate the role of exploration-exploitation in the con-
text of searching obstacle-avoiding Euclidean trees. In particular, we evalu-
ated the following algorithms: (1) Differential Evolution with Global and Local
Interpolation Vectors (DEGL), (2) Rank-Based Differential Evolution (RBDE),

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 123

(3) Differential Evolution with Successful Parent Selection (DESPS), (4) Particle
Swarm Optimization with Niching Properties (NPSO), and (5) Dividing Rectan-
gles Optimization Algorithm (DIRECT). We also present insights from rigorous
computational experiments involving the comparative convergence performance
of the above-described algorithms. We present the statistical comparative study
over a large set of instances comprising 3,000 planning scenarios and 600,000
evaluations of obstacle-avoiding Euclidean Steiner tree instances. Our compu-
tational experiments have shown that selection pressure and exploitation play
important roles to render topologically compact and minimal Euclidean Steiner
tree layouts. As such, the Dividing Rectangles (DIRECT), the Rank-based Dif-
ferential Evolution (RBDE) and the Differential Evolution with Successful Par-
ent Selection (DESPS) are potential to tackle the Euclidean Steiner tree problem
in arbitrary configuration of polygonal obstacles.

3 Proposed Approach

In this section we describe our proposed approach, and the following sections
describe the key components and dynamics.

3.1 Basic Algorithm

The basic outline of our algorithm for building a minimal tree is depicted by
Fig. 2 (route bundling). Given the coordinates of a root, our goal is to construct a
tree minimizing the total length, in which the tree layout represents an obstacle-
avoiding network topology over the polygonal map. Here, our approach describes
the case of a fixed root location; and in the next section, we describe the notion of
flexible location of roots being optimized by gradient-free sampling with various
forms of selection pressure.

– Inputs. A set of nodes and a polygonal map in the Euclidean plane as por-
trayed by Fig. 2-(1).

– Shortest Paths. The shortest paths from the root towards nodes are com-
puted, as exemplified by Fig. 2-(2).

– Hierarchical Clustering. The shortest paths are clustered by the hierar-
chical (agglomerative) approach in which the distance between two shortest
paths is computed as

d(A,B) =

(
K∑

k=1

||Ak − Bk||2
)(

cos−1
(a.b

|a||b|
))

(1)

a = Aend − Ainit, (2)

where Ak is the k-th sampled point along the shortest path A, and K is the
number of 1-D equally-distanced interpolated points along the path A and B.
The vector a is defined as such Ainit and Aend is the origin and destination
coordinate of the shortest path A, respectively. The above distance metric

124 V. Parque

A B C D E F

(1)

Shortest Paths
(2)

Hierchical
Clustering

(3)

Bundling

Top-Down

A

B

C D

E
F

(4.2)

Obstacle

Obstacle

Terminal
Node

Bundling

(4.1)

A
F

B

C D

E

Bottom-Up

Root

Fig. 2. Basic concept of the route bundling approach.

combines piecewise gaps and orientation gaps, thus two shortest paths are
similar if they overlap each other and share the same direction vector. For
simplicity and without loss of generality, we use the product rule between
piecewise gaps and orientation gaps, our future work will study other possible
algebraic combinations. The hierarchical clustering of shortest paths renders
a dendrogram Z, as exemplified by Fig. 2-(3).

– Hierarchical Bundling. The minimal tree is computed by using the hierar-
chical ordering structure of the dendrogram Z, and by using a nature-inspired
approach which considers the merging, the expansion and the shrinkage of
tree structures. Basically, the location of intermediate nodes (Steiner Points)
are computed hierarchically in a bottom-up approach (from the terminal nodes
towards the root), complemented by a top-down approach (from root to ter-
minal nodes), as exemplified by Fig. 2(4)–(5) and Fig. 3. Both the bottom-up
and the top-down approaches aim at co-adaptation of the global hierarchy
when either roots or leaves change in local topology. During bundling, Steiner
points are inserted within the convex hull of the shortest paths by searching
for locations that minimize the tree length over the local region (convex hull)
of the shortest paths, as exemplified by Fig. 3. The search procedure is real-
ized by the trust region method using Sequential Quadratic Programming
(SQP) [33]. For a region involving two shortest paths A and B, the location
of the Steiner Points are encoded by the tuple r = (τ, r1, r2) where τ ∈ [NA,B]

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 125

Root

Shortest Path

Initial Tree

1

2

3

4

5

After Bundling

Steiner Point

Steiner Point

Steiner Point

Steiner Point

Steiner Point

Fig. 3. Basic concept of the stages during tree bundling. The shortest paths are
described in the top-left tree as ‘Initial Tree’. The regions in which bundling occurs are
highlighted in colored regions. (Color figure online)

is the index of the τ -th triangle derived from the set of Delaunay Triangula-
tion of the free space of the polygonal environment in the local search space,
NA,B is the number of Delaunay triangles involved in the free region of the
shortest paths A and B, and r1, r2 ∈ [0, 1]. The above encoding ensures that
the Steiner points are located inside the free space, and avoids the complex-
ity of validating whether points are outside the obstacles, thus enabling to
build a convex search space of potential Steiner points. Also, the equivalent
2-dimensional cartesian coordinate (rx, ry) of the root r can be computed by
(rx, ry) = (1 − r1)aτ +

√
r1(1 − r2)bτ +

√
r1r2cτ , where aτ , bτ , cτ are the

2-dimensional coordinates of the vertices of the τ -th triangle derived from the
Delaunay Triangulation of the free space [34].

3.2 Root Optimization

The coordinate of the root of the Steiner tree is determined by solving

min
x

f(x) = L(T (x)) =
∑

s ∈ λ(T)

�(s)

s.t. x ∈ F
, (3)

126 V. Parque

where T (x) is the Steiner tree with root at x ∈ F , F is the free space in
the polygonal map, λ(T) is the set of edges of T (x), and �(s) is the shortest
Euclidean distance connecting two nodes in the edge s ∈ T . Basically, the cost
function L(T (x)) aims at evaluating the length of the Steiner tree. Thus, by
solving the above-mentioned problem one seeks to find the root at which the
obstacle-avoiding Euclidean Steiner tree attains its minimal length. The root
of the Steiner tree is encoded by the tuple r = (τ, r1, r2), thus the free space
F is equivalent to N

NF × R
[0,1] × R

[0,1], where NF is the number of Delaunay
triangles involved in the free space. Therefore, due to the observations mentioned
above, the search space F is basically of convex nature, in which the lower
bound is (1, 0, 0), and the upper bound is (NF , 1, 1). This feature enhances the
representation used in [31] and [35] by enabling the convex search space of Steiner
points given arbitrary obstacles in the plane [19].

Also, due to the non-linear landscape of the above-mentioned cost function,
and the multimodal nature of the shortest paths when dealing with non-convex
obstacles, we use the class of gradient-free optimization algorithms considering
features of multimodality and balance between exploration and exploitation. In
this paper, we use Differential Evolution (DE) [36], Particle Swarm Optimiza-
tion and DIRECT due to the flexibility to realize diversity of exploration and
exploitation during search. In line of the above, we used five relevant classes
of gradient-free optimization heuristics, each of which denotes distinct modes of
selection pressure and balance between exploration and exploitation. Considering
other nature-inspired heuristics is straightforward, yet including a large number
of such heuristics is out of the scope of this paper. In the following sections we
describe the variants used in our study.

Differential Evolution with Global and Local Interpolation Vectors
(DEGL). Basically, in Differential Evolution (DE)

xt+1 =

{
ut f(ut) ≤ f(xt)
xt otherwise

(4)

ut = xt + mt ◦ (vt − xt), (5)

where xt is the root of the Euclidean Steiner tree at iteration t, ut is the trial root
at iteration t, ◦ is the Hadamard product (element-wise), vt is the mutant vector
at iteration t, mt is a binary vector defined by the crossover probability CR. In
Differential Evolution with Global and Local Interpolation Vectors (DEGL) [37],
the mutant vector vt is computed by:

vt = wxt .gt + (1 − wxt).lt, (6)

where wxt is the weight associated to vector xt, gt is the global interpolation
vector, lt is the local interpolation vector. Here, the weight wxt is computed
adaptively in the neighborhood with ring topology and radius η. DEGL’s sam-
pling scheme focuses on the self-balance of both exploration and exploitation
by considering not only the entire population, but also the local neighborhood
organized in a ring structure.

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 127

Rank-Based Differential Evolution (RBDE). Here, the mutant vector is

vt = x1
t + F (x2

t − x3
t), (7)

where F is the mutation factor, and the parent individuals x1
t , x

2
t and x3

t are
selected from the Whitley Distribution [38] with xi

t = PS
j for i = {1, 2, 3}, with

j =

⌊
|P |

2(β − 1)

(
β −

√
β2 − 4(β − 1)σ

)⌋
, (8)

where P is the population in Differential Evolution, |P | is the population size,
PS

j is the j-th element of the population sorted by fitness, β is a user-defined bias
term, and σ is a random number in U [0, 1]. RBDE’s sampling scheme focuses on
the selective pressure to allow exploitative power through a rank-based ordering
of the population, in which smaller values of β ∈ (1, 3] are found to be favorable
to speed-up the learning convergence in non-separable problems [38].

Differential Evolution with Successful Parent Selection (DESPS).
Here, the mutant vector vt is computed by the DE/best/1/bin strategy and
selection follows the successful parent selection principle [39]:

xbest
t , x1

t , x2
t ∈

{
PT , if qt ≤ Q
SPt, otherwise , (9)

where PT is the population at iteration t, Q is a user-defined parameter to count
stagnation during the convergence, and SPt is an archive (set) of successful
solutions at iteration t, in which the initial SP is a copy of the initial population
for t = 0 (initialization), and subsequent successful solutions replace the oldest
by selective pressure.

Particle Swarm Optimization with Niching Properties (NPSO). Here,
the global best is based on the Fitness Euclidean Ratio [40]

gbestx = argmax
x

FER(x,y) (10)

FER(x,y) = γ
f(py) − f(px)

||py − px|| , (11)

where px is the personal best of particle x, pg is the global best in the population,
pw is the global worst in the population, γ is a normalization factor, Ld, Ud are
the lower and upper bounds in the dimension d. In the above, the normalization
factor ensures that the global best of each particle is set to the particles in the
population that are close and offer fitness improvement. Thus, the above scheme
allows NPSO to let solutions move towards the best and closest particles in
the neighborhood, thus allowing the self-formation of communities in the search
space.

128 V. Parque

Dividing Rectangles Optimization Algorithm (DIRECT). DIRECT is
a gradient-free global optimization algorithm suitable for nonlinear, nonsmooth
and multimodal problems. DIRECT uses the DIviding RECTangles concept to
interpolate vectors through the mid of hypercubes, in which potential hypercubes
are selected by iterative subdivisions [41]. We use the DIRECT algorithm due to
its highly selective pressure allowing the balance of exploration and exploitation
during search. Basically, DIRECT balances the exploration-exploitation trade-
off by selecting not one but several divisions of the search space by using all
possible relative weightings of local versus global (subdivisions) hypercubes of
the search space. Whereas the purely exploitative (explorative) version of a sam-
pling algorithm would select the best (largest) subdivisions (neighborhoods) in
the search space, DIRECT selects a plural number of potential solutions and
hypercubes considering the Pareto frontier that maximizes fitness performance
and search space coverage, leading to an algorithm with the efficient trade-offs
between explorative and exploitative search.

4 Computational Experiments

We evaluated our algorithms in Matlab 2020a by using an Intel i7-4930K @
3.4 GHz and by using 3 types of polygonal maps with arbitrary configuration
of obstacle geometry and (input) terminal nodes in the plane. On maps of type
1, obstacles are represented by arbitrary non-convex polygons. In maps of type
2, obstacles are represented by squared obstacles. In maps of type 3, obstacles
are represented by rectangles resembling the configuration of walls. Our main
motivation of the above is due to our focus on scenarios being reminiscent of
indoor map configurations, in which the reasonable number of nodes are able to
co-exist in the same environment.

As for parameters in the above-mentioned classes of gradient-free optimiza-
tion algorithms, we used probability of crossover CR = 0.5, scaling factor
F = 0.7, population size |P | = 5 individuals, neighborhood ratio η = 0.1, the
bias term β = 3, and the termination criterion is set as 200 function evaluations.
Also, for each configuration, 20 independent runs were performed due to the
stochastic nature of Differential Evolution (DE) and Particle Swarm Optimiza-
tion (PSO). Other parameters were used following the respective references. The
key motivation of using the above parameters is to evaluate the (competitive)
performance of the gradient-free optimization algorithms under small evaluation
budgets, in which evaluation of the cost function is expensive.

As a result of considering 3 types of maps, 10 independent terminal node con-
figurations, 20 independent runs per each case and 5 algorithms, we evaluated
3, 000 planning scenarios of minimal trees and 600, 000 evaluations of the cost
function (Eq. 3). The fine-tuning of the above-mentioned gradient-free optimiza-
tion algorithms is out of the scope of this study. Figure 4, 5 and 6 show examples
of obtained minimal trees by (a) DEGL, (b) RBDE, (c) DESPS, (d) NPSO and
(e) DIRECT after 200 function evaluations and under the same initial condi-
tions and settings over independent runs. In these figures, the location of the

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 129

suggested root is highlighted in yellow color. By looking at these tree topologies,
we can observe differences in the tree structure by each heuristic. Also, Fig. 7
shows an example inspired by pipe routing in a real-world building environment.
Also, to evaluate the convergence of the gradient-free optimization algorithms,
Fig. 8, 9 and Fig. 10 describe the convergence behaviour of the tree length as a
function of the number of evaluations, and Fig. 11 show the Wilcoxon test on
the converged cost function of each gradient-free optimization algorithm over
independent runs.

(a) DEGL (b) RBDE (c) DESPS (d) NPSO (e) DIRECT

Fig. 4. Example of minimal tree in maps of type 1. (Color figure online)

(a) DEGL (b) RBDE (c) DESPS (d) NPSO (e) DIRECT

Fig. 5. Example of minimal tree in maps of type 2. (Color figure online)

By observing the above-described results, we note the following facts: (1)
DIRECT algorithm shows a competitive convergence in all maps (as depicted by
green color in Fig. 8, 9 and Fig. 10) when compared to the classes of Differential
Evolution (DE) and Particle Swarm Optimization (PSO). (2) Fast convergence
is attained by DIRECT algorithm, within [50, 100] function evaluations.

(a) DEGL (b) RBDE (c) DESPS (d) NPSO (e) DIRECT

Fig. 6. Example of minimal tree in maps of type 3. (Color figure online)

130 V. Parque

(a) View 1 (b) View 2

Fig. 7. Views of the topology of a minimal tree in an environment layout. The red
(green) node (s) denote the root (leaves) of the tree. (Color figure online)

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 8. Mean of convergence of the tree length over 20 independent runs in Map 1.
(Color figure online)

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 9. Mean of convergence of the tree length over 20 independent runs in Map 2.
(Color figure online)

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 131

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 10. Mean of convergence of the tree length over 20 independent runs in Map 3.
(Color figure online)

Map 1

Si
gn

ifi
ca

nt
ly

Be
tte

r
Si

gn
ifi

ca
nt

ly
Si

m
ila

r
Si

gn
ifi

ca
nt

ly
W

or
se

Map 2 Map 3

Fig. 11. Statistical significance test using Wilcoxon at 5% significance level. Numbers
represent planning instances where an algorithm in the row is significantly better,
similar and worse to an algorithm in the column (higher values in dark).

The above results offer relevant observations that regard the suitability of
the class of Differential Evolution, Particle Swarm Optimization and Dividing
Rectangles approaches. The evaluated scenarios allows to elucidate the nature of
the search space and the fitness landscape of the Euclidean Steiner tree problem
in arbitrary configurations of the polygonal domain: due to the convexity of the

132 V. Parque

encoding and our formulated search space at Eq. (3), the selective pressure and
exploitation abilities of DIRECT becomes beneficial for faster convergence in
polygonal environments with irregular and non-convex obstacle geometry. On
the other hand, evolutionary computing algorithms with strong foci on exploita-
tion such as the Rank-based Differential Evolution (RBDE) and Differential
Evolution with Successful Parent Selection (DESPS) become beneficial in polyg-
onal environments with regular and convex obstacle geometry. Thus, among the
above-studied scenarios, selective pressure and exploitation schemes are advan-
tageous to render shorter Steiner trees. Conversely, DEGL and NPSO offer less
selective pressure due to the additional perturbation from the population neigh-
borhood. Studying whether different sampling mechanisms or canonical repre-
sentations of Steiner tree structures has a positive effect on the convergence rate
is left in future agenda.

We believe the competitive performance of DIRECT is due to the amenability
of the division of rectangles concept to the convex representation of the feasible
search space (by using the Delaunay triangulation). Since the convex represen-
tation ensures that coordinates of the root are located within the free-space of
the polygonal map, the division of hypercubes in DIRECT enables to sample
the feasible search space efficiently. Since our proposed hierarchical bundling
computes the optimal topology of the Steiner tree using roots suggested by the
gradient-free optimization algorithm, the sampling of potential locations of the
root of the Steiner tree in few number of evaluations of the cost function becomes
essential to attain competitive convergence. DIRECT allows to sample roots of
the Steiner trees efficiently in less number of function evaluations due to the
Delaunay-based representation: potential roots located in proximal triangles of
the search space will suggest solutions within the proximity of such potential
roots. Likewise, roots being far from potential locations will be neglected by the
hierarchical division of hypercubes in DIRECT. Our results offer building blocks
to further advance towards developing global network optimization algorithms
with flexible and scalable representations. In future work, we aim at study-
ing Steiner tree optimization using enumerative representations [42–46] and its
applications to design modular folds [47].

5 Conclusions

In this paper we have proposed a hybrid approach to compute obstacle-avoiding
minimal trees in the plane. Our approach is based on (1) the hierarchical
bundling of the shortest paths, (2) the formulation of a convex search space
of Steiner points and roots, and (3) the gradient-free stochastic optimization
algorithms able to realize diverse forms of selection pressure and exploration-
exploitation trade-offs. Our computational experiments confirmed the feasibility
and the efficiency of our proposed approach, showing the faster convergence of
the Dividing Rectangles (DIRECT) approach, as well as the positive benefits of
selection pressure of RBDE and DESPS.

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 133

Acknowledgment. This research was supported by JSPS KAKENHI Grant Number
20K11998.

References

1. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory.
IEEE Trans. Autom. Control 51, 401–420 (2006)

2. Li, A., Wang, L., Pierpaoli, P., Egerstedt, M.: Formally correct composition of
coordinated behaviors using control barrier certificates. In: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 3723–3729
(2018)

3. Luo, W., Khatib, S.S., Nagavalli, S., Chakraborty, N., Sycara, K.: Distributed
knowledge leader selection for multi-robot environmental sampling under band-
width constraints. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5751–5757 (2016)

4. de Fermat, P.: Method for determining maxima and minima and tangents to curved
lines. Oeuvres 1, 135 (1643)

5. Vojtěch, J., Kössler, M.: On minimal graphs containing n given points. Časopis
pro pěstováńı matematiky a fysiky 63, 223–235 (1934). (in Czech). Zbl 0009.13106

6. Robbins, H., Courant, R.: What is Mathematics? Oxford University Press, New
York (1941)

7. Winter, P., MacGregor Smith, J.: Steiner minimal trees for three points with one
convex polygonal obstacle. Ann. Oper. Res. 33, 577–599 (1991). https://doi.org/
10.1007/BF02067243

8. Winter, P.: Euclidean Steiner minimal trees with obstacles and Steiner visibility
graphs. Discret. Appl. Math. 47, 187–206 (1993)

9. Zachariasen, M., Winter, P.: Obstacle-avoiding Euclidean Steiner trees in the plane:
an exact algorithm. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999.
LNCS, vol. 1619, pp. 286–299. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48518-X 17

10. Weng, J.F., MacGregor Smith, J.: Steiner minimal trees with one polygonal obsta-
cle. Algorithmica 29, 638–648 (2001). https://doi.org/10.1007/s00453-001-0002-
1

11. Winter, P., Zachariasen, M., Nielsen, J.: Short trees in polygons. Discret. Appl.
Math. 118, 55–72 (2002)

12. Müller-Hannemann, M., Tazari, S.: A near linear time approximation scheme for
Steiner tree among obstacles in the plane. Comput. Geom. Theory Appl. 43, 395–
409 (2010)

13. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation
scheme for Steiner tree in planar graphs. In: ACM-SIAM Symposium on Discrete
Algorithms, pp. 1285–1294 (2007)

14. Cohen, N., Nutov, Z.: Approximating Steiner trees and forests with minimum
number of Steiner points. J. Comput. Syst. Sci. 98, 53–64 (2018)

15. Chen, B., Chen, H., Wu, C.: Obstacle-avoiding connectivity restoration based on
quadrilateral Steiner tree in disjoint wireless sensor networks. IEEE Access 7,
124116–124127 (2019)

16. Caleffi, M., Akyildiz, I.F., Paura, L.: On the solution of the Steiner tree np-hard
problem via Physarum bionetwork. IEEE/ACM Trans. Network. 23, 1092–1106
(2015)

https://doi.org/10.1007/BF02067243
https://doi.org/10.1007/BF02067243
https://doi.org/10.1007/3-540-48518-X_17
https://doi.org/10.1007/3-540-48518-X_17
https://doi.org/10.1007/s00453-001-0002-1
https://doi.org/10.1007/s00453-001-0002-1

134 V. Parque

17. Sun, Y., Halgamuge, S.: Fast algorithms inspired by Physarum polycephalum for
node weighted Steiner tree problem with multiple terminals. In: IEEE Congress on
Evolutionary Computation, pp. 3254–3260 (2016)

18. Camacho-Vallejo, J.F., Garcia-Reyes, C.: Co-evolutionary algorithms to solve hier-
archized Steiner tree problems in telecommunication networks. Appl. Soft Comput.
84, 105718 (2019)

19. Parque, V., Miyashita, T.: Obstacle-avoiding Euclidean Steiner trees by n-star bun-
dles. In: IEEE 30th International Conference on Tools with Artificial Intelligence,
pp. 315–319 (2018)

20. Chuong, T.V., Nam, H.H.: A variable neighborhood search algorithm for solv-
ing the Steiner minimal tree problem. In: Cong Vinh, P., Alagar, V. (eds.)
ICCASA/ICTCC -2018. LNICST, vol. 266, pp. 218–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-06152-4 19

21. Lai, X., Zhou, Y., Xia, X., Zhang, Q.: Performance analysis of evolutionary algo-
rithms for Steiner tree problems. Evol. Comput. 25, 707–723 (2017)

22. Chen, X., Liu, G., Xiong, N., Su, Y., Chen, G.: A survey of swarm intelligence
techniques in VLSI routing problems. IEEE Access 8, 26266–26292 (2020)

23. Tan, W.C., Chen, I., Pantazis, D., Pan, S.J.: Transfer learning with PipNet: for
automated visual analysis of piping design. In: 2018 IEEE 14th International Con-
ference on Automation Science and Engineering (CASE), pp. 1296–1301 (2018)

24. Liu, Q., Wang, C.: Multi-terminal pipe routing by Steiner minimal tree and particle
swarm optimisation. Enterp. Inf. Syst. 6, 315–327 (2012)

25. Liu, G., Guo, W., Niu, Y., Chen, G., Huang, X.: A PSO-based timing-driven
octilinear Steiner tree algorithm for VLSI routing considering bend reduction. Soft.
Comput. 19, 1153–1169 (2015)

26. Huang, X., Liu, G., Guo, W., Niu, Y., Chen, G.: Obstacle-avoiding algorithm in X-
architecture based on discrete particle swarm optimization for VLSI design. ACM
Trans. Des. Autom. Electron. Syst. 20, 1–28 (2015)

27. Sui, H., Niu, W.: Branch-pipe-routing approach for ships using improved genetic
algorithm. Front. Mech. Eng. 11, 316–323 (2016). https://doi.org/10.1007/s11465-
016-0384-z

28. Niu, W., Sui, H., Niu, Y., Cai, K., Gao, W.: Ship pipe routing design using NSGA-II
and coevolutionary algorithm. Math. Probl. Eng. 2016, 1–21 (2016)

29. Liu, L., Liu, Q.: Multi-objective routing of multi-terminal rectilinear pipe in 3D
space by MOEA/D and RSMT. In: 2018 3rd International Conference on Advanced
Robotics and Mechatronics (ICARM), pp. 462–467 (2018)

30. Jiang, W.Y., Lin, Y., Chen, M., Yu, Y.Y.: A co-evolutionary improved multi-ant
colony optimization for ship multiple and branch pipe route design. Ocean Eng.
102, 63–70 (2015)

31. Ztopuoianu, A.C., et al.: Multi-objective optimal design of obstacle-avoiding two-
dimensional Steiner trees with application to ascent assembly engineering. J. Mech.
Des. 140, 061401-1–061401-11 (2018)

32. Wu, H., Xu, S., Zhuang, Z., Liu, G.: X-architecture Steiner minimal tree construc-
tion based on discrete differential evolution. In: Liu, Y., Wang, L., Zhao, L., Yu,
Z. (eds.) ICNC-FSKD 2019. AISC, vol. 1074, pp. 433–442. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-32456-8 47

33. Byrd, R., Gilbert, J., Nocedal, J.: A trust region method based on interior point
techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000).
https://doi.org/10.1007/PL00011391

https://doi.org/10.1007/978-3-030-06152-4_19
https://doi.org/10.1007/s11465-016-0384-z
https://doi.org/10.1007/s11465-016-0384-z
https://doi.org/10.1007/978-3-030-32456-8_47
https://doi.org/10.1007/PL00011391

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles 135

34. Parque, V., Miyashita, T.: Bundling n-Stars in polygonal maps. In: 29th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston,
MA, USA, 6–8 November 2017, pp. 358–365 (2017)

35. Zăvoianu, A.-C., et al.: On the optimization of 2D path network layouts in engi-
neering designs via evolutionary computation techniques. In: Andrés-Pérez, E.,
González, L.M., Periaux, J., Gauger, N., Quagliarella, D., Giannakoglou, K. (eds.)
Evolutionary and Deterministic Methods for Design Optimization and Control
With Applications to Industrial and Societal Problems. CMAS, vol. 49, pp. 307–
322. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-89890-2 20

36. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

37. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a
neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13, 526–553
(2009)

38. Sutton, A.M., Lunacek, M., Whitley, L.D.: Differential evolution and non-
separability: using selective pressure to focus search. In: The Genetic and Evo-
lutionary Computation Conference (GECCO), pp. 1428–1435 (2007)

39. Guo, S., Yang, C., Hsu, P., Tsai, J.: Improving differential evolution with a
successful-parent-selecting framework. IEEE Trans. Evol. Comput. 19(5), 717–730
(2015)

40. Qu, B., Liang, J., Suganthan, P.: Niching particle swarm optimization with local
search for multi-modal optimization. Inf. Sci. 197, 131–143 (2012)

41. Jones, D.R.: Direct global optimization algorithm. In: Floudas, C.A., Pardalos,
P.M. (eds.) Encyclopedia of Optimization, pp. 431–440. Springer, Boston (2001).
https://doi.org/10.1007/0-306-48332-7 93

42. Parque, V., Miura, S., Miyashita, T.: Computing path bundles in bipartite net-
works. In: Proceedings of the 7th International Conference on Simulation and
Modeling Methodologies, Technologies and Applications, pp. 422–427 (2017)

43. Parque, V., Miyashita, T.: Numerical representation of modular graphs. In: IEEE
42nd Annual Computer Software and Applications Conference, pp. 819–820 (2018)

44. Parque, V., Miyashita, T.: On the numerical representation of labeled graphs with
self-loops. In: 29th IEEE International Conference on Tools with Artificial Intelli-
gence, pp. 342–349 (2017)

45. Parque, V., Miyashita, T.: On succinct representation of directed graphs. In: IEEE
International Conference on Big Data and Smart Computing, pp. 199–205 (2017)

46. Parque, V., Miyashita, T.: On graph representation with smallest numerical encod-
ing. In: IEEE 42nd Annual Computer Software and Applications Conference, pp.
817–818 (2018)

47. Parque, V., Suzaki, W., Miura, S., Torisaka, A., Miyashita, T., Natori, M.: Pack-
aging of thick membranes using a multi-spiral folding approach: flat and curved
surfaces. Adv. Space Res. (2020, in press). https://doi.org/10.1016/j.asr.2020.09.
040

https://doi.org/10.1007/978-3-319-89890-2_20
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/0-306-48332-7_93
https://doi.org/10.1016/j.asr.2020.09.040
https://doi.org/10.1016/j.asr.2020.09.040

Flowshop NEH-Based Heuristic
Recommendation

Lucas Marcondes Pavelski1(B) , Marie-Éléonore Kessaci2 ,
and Myriam Delgado3

1 Federal University of Technology - Paraná, Av. Sete de Setembro
- 3165 - 80230-901, Curitiba, Brazil
lpavelski@alunos.utfpr.edu.br

2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
mkessaci@univ-lille.fr

3 Federal University of Technology - Paraná, Curitiba, Brazil
myriamdelg@utfpr.edu.br

Abstract. Flowshop problems (FSPs) have many variants and a broad
set of heuristics proposed to solve them. Choosing the best heuristic and
its parameters for a given FSP instance can be very challenging for practi-
tioners. Per-instance Algorithm Configuration (PIAC) approaches aim at
recommending the best algorithm configuration for a particular instance
problem. This paper presents a PIAC methodology for building models
to automatically configure the Nawaz, Encore, and Ham (NEH) algo-
rithm which proved to be a good choice in most FSP variants (especially
when they are used to provide initial solutions). We use irace to build
the performance dataset (problem features ↔ algorithm configuration),
while training Decision Tree and Random Forest models to recommend
NEH configurations on unseen problems of the test set. Results show that
the recommended heuristics have good performance, especially those by
random forest models considering parameter dependencies.

Keywords: Flowshop · Heuristics · Automatic algorithm
configuration · Parameter dependencies · Machine learning

1 Introduction

There are different frameworks proposed in the literature to automate producing
state-of-the-art strategies for solving a broad set of problems, ranging from com-
binatorial optimization to satisfiability and AI planning [28]. Some well-studied
approaches include Automatic Algorithm Configuration (AAC). Practitioners
can use an AAC to search in the algorithm parameter space for the configura-
tion that provides the best performance on a set of instances of the given prob-
lem. Per-instance algorithm/parameter selection problem has attracted more
and more interest over the past 15 years. A step further on AAC strategies would
be therefore recommending the best parameters for each target instance using

c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 136–151, 2021.
https://doi.org/10.1007/978-3-030-72904-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_9&domain=pdf
http://orcid.org/0000-0002-5622-392X
http://orcid.org/0000-0002-4372-5162
http://orcid.org/0000-0002-2791-174X
https://doi.org/10.1007/978-3-030-72904-2_9

Flowshop NEH-Based Heuristic Recommendation 137

problem features [43], possibly generalizing for unseen instances and gaining
knowledge about the problem and algorithms [36].

Flowshop Problems (FSPs) are an example of NP-hard problems that have
many variants in the literature [3,45]. A general FSP formulation considers a pro-
duction line processing a set of jobs sequentially. There are many variants of this
problem using different objectives, like the time to process all jobs (makespan),
and constraints, like no machine waiting times. Consequently, there are many dif-
ferent algorithms specialized in solving different FSPs. The Nawaz, Encore, and
Ham (NEH) algorithm [35] is an example of a generic framework that performs
well on makespan objective. Different proposals adapt NEH varying components
like insertion order and tie-breaking mechanisms for different FSP variants and
objectives [18,19,45].

There are proposals in the literature for automating FSP heuristic genera-
tion/recommendation by configuring its components. [20] presents a comprehen-
sive numerical study on different NEH initial orders. It concludes that different
initializations improve the state-of-the-art for makespan, idle-time, and total
flowtime objectives. [14] uses irace to combine the two-phase local search with
Pareto local search components and design heuristics for bi-objective (makespan
and total flowtime) FSPs. [5,6] and [32] build a grammar for automatic con-
figuration based on irace, which generates complex iterative algorithms with
different NEH variants and stochastic local search components. The differences
between [5] and [6] rely mainly on the type of the considered objective with [5]
addressing the total completion time and [6] minimizing the makespan. [39] pro-
poses and tests on permutation FSP, a framework that recommends stochastic
local search algorithms and their parameters. [1] describes a methodology for
using irace in the automatic design of FSP optimization algorithms with multi-
ple parallel machines for makespan, total flowtime, and total weighted earliness
and tardiness objectives.

Analysis of flowshop features effects on metaheuristics performance are
present in works based on Fitness Landscape Analysis (FLA) [10,22,30,31,41].
Many concepts of these works contribute to our proposal, but they focus on
studying the main effects of different instance features, solution representa-
tion, and neighborhood operator on flowshop search landscapes. Another closely
related topic is hyper-heuristics, where search information is used to select or
generate heuristics on the run [8]. Many works apply it to scheduling problems
[7,44,52].

This paper expands previous works by addressing different FSPs and using
Machine Learning (ML) techniques to recommend various NEH components. In
the present work, NEH is chosen not only because it performs well on most of
FSP variants, but also because it can provide suitable initial solutions to be
further used for other (meta)heuristics, including more complex state-of-the-art
algorithms). Most of the literature considers stochastic local search approaches
on a limited number of FSPs formulations. Our work proposes an ML-based Per-
instance Algorithm Configuration (PIAC), which considers different variants of
FSPs and a wide variety of NEH components (over 1.5 million combinations).

138 L. M. Pavelski et al.

Aiming to encompass a relatively wide range of problems, we consider various
sets of FSP instances, each with different characteristics: objectives (makespan
and total flowtime), variants (permutation, no-idle, and no-wait). We also con-
sider difficult instances from the literature (VRF [49]) and generate others whose
processing times better resemble real-world problems. The irace configurator
adopted as AAC builds the dataset used to train the ML models. Finally, the
recommended heuristics are tested on unseen problems and later compared with
the traditional NEH configuration, an irace-tuned NEH with all instances, and
a randomly chosen configuration. With that, we intend to contribute to the
general understating of FSPs and the NEH algorithm with an empirical study
of problems features and how they relate to NEH parameters. Also, by build-
ing parameter recommendation models considering parameter dependencies, this
work can contribute to the growing interest in using ML for optimization [36].

The paper is organized as follows, Sect. 2 briefly reviews some basic concepts
necessary to understand the proposal. Section 3 describes the proposed method-
ology for NEH heuristic recommendation for solving FSPs. Section 4 presents the
results obtained from the proposal. Finally, Sect. 5 highlights some conclusions
obtained from the experiments and presents future directions.

2 Background

The usual permutation FSP formulation has the following conditions [3]: (1) a set
of J unrelated, multiple-operation jobs is available for processing at time zero;
(2) each job requires M operations, and each one requires a different machine;
(3) setup times for the operations are sequence-independent and included in
processing times; (4) job descriptors are available in advance; (5) all machines
are continuously available; (6) once an operation begins, it proceeds without
interruption. Besides, a FSP instance is given by the processing times, pj,m, for
all j = 1, . . . , J and m = 1, . . . ,M , the amount of time required to process each
job j in each machine m.

A sequence is given by a permutation of (1, 2, . . . , J). As mentioned, each
machine can process an available job immediately. In other words, machine 1
starts processing the first job in the sequence at time zero, and machine m can
start processing the j-th job as soon as job j − 1-th is completed on machine m
and j-th job is completed on machine m − 1.

Given the completion times Cj for all jobs j = 1, . . . , J , it is possible to
define the makespan objective function as the time to complete all jobs, i.e.,
Cmax = max{Cj , j = 1, . . . J}. Another common objective is the total flowtime
given by F =

∑J
j=1 Cj .

Some FSPs formulations add new constraints to model real-world scenarios
better. The no-wait FSP variant includes the requirement that there are no stores
between operations, i.e., a process never waits for the next machine. Also, for
the no-idle FSP variant, the machines have no idle time between job exchanges,
which is common in steel production [3].

Flowshop NEH-Based Heuristic Recommendation 139

A pioneer work proposes an exact method for solving two-machine FSP
(M = 2) [24]. The method iteratively removes the job with the lowest processing
time and puts it in the first or the last position, depending on which machine it
belongs to (the first or the last machine, respectively). Various methods use the
idea behind this algorithm, known as Johnson’s rule: a job i precedes job j in
an optimal sequence if min{p1,i, p2,j} ≤ min{p1,j , p2,i}.

Although exact methods are optimal, they may not be computationally effi-
cient in larger instances. The general FSP problem with makespan minimization
for M = 3 or more machines is NP-Hard [21]. Therefore, there is no efficient way
to solve it (if P �= NP). Consequently, it is common to use heuristics that yield
near-optimal solutions for large instances.

There are two basic categories of FSP heuristics: constructive and improve-
ment heuristics. Constructive heuristics iteratively build the final sequence by
adding jobs to partial permutations. Otherwise, improvement heuristics start
with a full permutation and iteratively improve it, usually with swap and shift
operators [15]. In [37], a constructive heuristic sums the jobs processing times
on each machine, weighted by a slope order index (i.e., machine m has index
M − (2m − 1)). After that, it sorts the jobs by a non-increasing order of the
resulting sum. Therefore, the heuristic tries to reduce the makespan added by
the first and last jobs in the sequence.

Another well known constructive heuristic is CDS [9]. CDS idea is to divide
the M machines into two groups and apply the M = 2 machines Johnson’s
algorithm. It does so by considering virtual machines formed by the sum of
processing times for multiple machines. Usually, CDS evaluates every pair of
disjoint sets of machines (M − 1 in total). The Rapid Access (RA) heuristic [11]
combines Palmer’s and CDS heuristics. RA creates two virtual machines using
two slope order index weights to aggregate processing times (the virtual machines
processing times are pj,1′ =

∑M
m=1(M − m + 1)pj,m and pj,2′ =

∑M
m=1 mpj,m).

It then uses Johnson’s algorithm to generate the final permutation.
The NEH heuristic [35] is a well known constructive heuristic that works

by inserting jobs in partial sequences. The following steps describe the NEH
algorithm:

1. Insertion order: for each job, calculate the sum of its processing times
(
∑M

m=1 pj,m), and sort them by the non-increasing order of that sum;
2. Initialize the partial sequence with the first job and, for j = 2, . . . , J do:

(a) Insertion: Insert j-th job in every position in the partial sequence;
(b) Select the best partial sequence and continue.

This procedure has a complexity of O(MJ3), later improved to O(MJ2)
for the makespan objective because, given the previous partial sequences com-
pletion times, it is easy to recalculate the makespan from each insertion [47].
Other accelerations are available for no-wait FSP with makespan objective in
O(J) [38] and no-idle FSP with makespan and total flowtime in O(MJ2) [16].
With extensive tests, many proposals found NEH to be one of the best construc-
tive heuristics for FSPs [45]. Thus, many recent heuristics and metaheuristics
proposals internally use NEH or some variant of NEH.

140 L. M. Pavelski et al.

Some variants of NEH alter its initialization phase by using some ordering
heuristic [20], for example, including the mean and standard deviation to the sum
of the processing times on each machine [13]. In some cases, randomness can gen-
erate better initial permutations [42]. The Nagano-Mocellin (NM) initialization
penalizes jobs in the initial sequence according to a lower bound for its waiting
time (time between the end of the operation on machine j and the beginning of
the next operation on machine j + 1) [33]. Also, inverting the original insertion
order yields slightly better results in no-idle FSPs [38]. KK1 heuristic [25] calcu-
lates a slope index for each job (aj =

∑M
M=1((M − 1) ∗ (M − 2)/2+M −m)pj,m

and bj =
∑M

m=1((M −1)∗ (M −2)/2+m−1)pj,m) and builds the initial permu-
tation according to the non-increasing order of min(aj , bj). KK2 heuristic [26]
adds the skewness to the job processing times sum. Some order heuristics for
sequence-dependent FSPs draw inspiration from Traveling Salesperson Problem
construction procedures [3,46]. Other methods apply known FSP lower-bounds
as metrics to construct schedules iteratively [40]. Finally, the Liu-Reeves (LR)
heuristic is used mainly for FSPs with the flowtime objective and uses a weighted
sum of idle, completion, and artificial job times as an indicator to sort the jobs
in a schedule [29,34].

Another aspect of the NEH heuristic explored in the literature is the insertion
phase. If different positions have the same fitness, a tie-breaking strategy decides
the best position. In KK1 and KK2 [26], a tie-breaking mechanism is added to the
insertion phase, using principles of Johnson’s rule and Palmer’s weighted sums
of job times. An insertion strategy based on balancing the utilization among all
machines is proposed in [13]. Recently, in [18] a NEH variant with tie-breaking
for makespan objective uses estimated idle times.

3 Methodology

3.1 Problem and Feature Space

As described in Sect. 2, FSPs have different formulations depending on the
instance, objective and variant. To build the recommendation database, we need
a big enough sample of the problem space while maintaining a reasonable compu-
tation time to collect the performance data. In the experiments, we consider our
own generated instances: (i) exponential and Erlang instances: with exponential
(1/50 rate) and Erlang (with shape 4 and 4/50 rate) distributions, known to bet-
ter represent practical problems [2,19]; (ii) generated structured instances: with
uniform distributions such that the processing times have a correlation of 0.9
between jobs (job-correlated) or machines (machine-correlated), where less com-
plex strategies have better performance [51]. Also, instances selected from the
literature: VRF [49] instances, widely used in the permutation FSP, originally
generated to be hard for state-of-the-art heuristics.

The instance sizes (job, machines) use ranges from small instances, all combi-
nations of J = {10, 20, 30, 40, 50, 60} jobs and M = {5, 10, 15, 20} machines, and
large instances, with all combinations of J = {100, 200, 300, 400, 500} jobs and

Flowshop NEH-Based Heuristic Recommendation 141

M = {20, 40, 60} machines. For each instance set and size there are 10 instances
samples using different random seeds.

We considered all combinations of the above problem features to build the
performance dataset. In total there are (2 objectives × 3 variants × 5 process-
ing time distributions × 39 instance sizes) = 1, 170 FSP formulations with 10
instances each.

We use different types of problem features as inputs for the recommendation
models. Some simple features come directly from the problem definition, like
the number of jobs (J), the number of machines (M), FSP variants (PERM,
NOWAIT, NOIDLE), and objectives (MAKESPAN, FLOWTIME). Since, dur-
ing the recommendation, the practitioner might not know the processing times
distribution, we include some calculated statistics, such as standard deviations,
skewness and kurtosis per job (machine).

Other advanced instance features consider Fitness Landscape Analysis (FLA)
[10]. A fitness landscape consists of a solution representation, a neighborhood
connecting them, and the fitness function. In this paper, we compute FLA fea-
tures for each problem over the space of permutations connected by the insertion
neighborhood. The literature proposes FLA metrics mainly to measure problem
difficulty and gain insights about neighborhoods and operators. For example,
a low correlation of fitness values between neighbor solutions means that the
fitness landscape is rugged.

The paper adopts FLA based on solution types and random walk samples.
For solution-based FLAs we sample 100 solutions for all problems with J ≤ 100,
50 solutions when 100 < J ≤ 300 and 30 solutions when 300 < J ≤ 500.
By computing the neighborhood, the estimation of different metrics is possi-
ble like percentage of strict local minimum (maximum), local minimum (maxi-
mum), plateau, ledge, and slopes, as well as the proportion of up, down and side
edges [23].

For random walk samples, we collect the objective values from a random walk
of T = 10, 000 steps on each problem fitness landscape. From each sequence of
fitness (f1, . . . fT), we can estimate its autocorrelation. Considering a pair pq of
fitness in the sequence as up, down and side movements we calculate features
such as entropy, partial information, information stability, and density basin [50].

Regarding their computational costs, problem and processing time based
features are inexpensive to compute, and the random-walks involve 10, 000 fitness
evaluations. A neighborhood sweep computation is most costly on permutation
flowshop and is proportional to J3 [48]. The NEH insertion phase also involves
a neighborhood sweep of the same cost. Therefore the features computed are
usually less expensive than testing thousands of NEH configurations.

As shown in Table 1, in total, there are 27 features used as inputs for the
proposed recommendation models (4 problem features + 8 features based on
processing times + 10 solution statistics + 5 random walk statistics).

142 L. M. Pavelski et al.

3.2 Algorithm Space

There are many FSP heuristics available in the literature. Some of them are
general, while others are specific for different variants and objectives. Despite
that, common heuristics consist of one or more phases like index-development,
solution construction, and solution improvement [19].

Table 1. Input features for the recommendation models.

Scope Feature Value

Problem Number of jobs J

Number of machines M

FSP variant {PERM, NOWAIT, NOIDLE}
Objective {MAKESPAN, FLOWTIME}

Proc. times Jobs per machines ratio J/M

Standard deviation σ[pjm]

Standard deviation per job Ej=1...J [σ[pjm]]

Standard deviation per machine Em=1...M [σ[pjm]]

Skewness per job Ej=1...J [((pjm − E[pjm])/σ[pjm])3]]

Skewness per machine Em=1...M [((pjm − E[pjm])/σ[pjm])3]]

Kurtosis per job Ej=1...J [((pjm − E[pjm])/σ[pjm])4]]

Kurtosis per machine Em=1...M [((pjm − E[pjm])/σ[pjm])4]]

Solution statistics Strict local minimum |{s : f(s) < f(s′) ∧ s′ ∈ N(s)}|
Local minimum |{s : f(s) ≤ f(s′) ∧ s′ ∈ N(s)}|
Strict local maximum |{s : f(s) > f(s′) ∧ s′ ∈ N(s)}|
Local maximum |{s : f(s) ≥ f(s′) ∧ s′ ∈ N(s)}|
Plateau |{s : f(s) = f(s′) ∧ s′ ∈ N(s)}|
Slopes |{s : f(s) �= f(s′) ∧ s′ ∈ N(s)}|
Ledge |{s : s is none of the above}|
Up edges |{(s, s′) : f(s) < f(s′) ∧ s′ ∈ N(s)}|
Down edges |{(s, s′) : f(s) > f(s′) ∧ s′ ∈ N(s)}|
Side edges |{(s, s′) : f(s) = f(s′) ∧ s′ ∈ N(s)}|

Random walk statistics Auto-correlation Cov[ft, ft+1]/
√

V ar[ft]V ar[ft+1]

Entropy − ∑
p�=q P (pq) log6 P (pq)

Partial information (T − |{ft = ft+1 : t = 1 . . . T − 1}|)/T

Information stability maxt=1...T−1
∣∣ft − ft+1

∣∣
Density basin − ∑

p=q P (pq) log3 P (pq)

Index-development addresses different job-ordering algorithms, from a sim-
ple decreasing sum of total processing time to heuristics like LR [29], which
involves computing idle-times and artificial jobs processing times. The NEH algo-
rithm [35], using different insertion orders and tie-breaking mechanisms, supports
the construction phase. Finally, solution improvement adopts an iterative local
search algorithm like Iterated Local Search (ILS) or Iterated Greedy (IG) [23].

This work focuses o the first two phases of index development and solution
construction by NEH. These phases might be further complemented/improved
using powerful heuristics like ILS and IG. Aiming to produce both job-ordering
algorithms and NEH-based constructive heuristics, we propose the following
algorithm framework (also shown in Fig. 1):

Flowshop NEH-Based Heuristic Recommendation 143

1. Order �J × IOR� jobs using a given order heuristic;
2. Order �J × (1 − IOR)� jobs using NEH insertion order;
3. Starting from the ordered jobs, iteratively insert each job from NEH insertion

order using the given tie-breaking strategy.

Fig. 1. The proposed heuristic framework (an example with IOR = 0.5).

Using the initial order ratio IOR, it is possible to generate different NEH
heuristics that combine index development and solution construction phases. For
example, the original NEH uses IOR = 0 with a decreasing sum of processing
times as NEH initial order and first best insertion strategy. Also, using IOR =
0.75, completion time on the last machine as the initial order, sum of processing
times as NEH initial order would resemble LR-NEH [34], proposed for minimizing
flowtime on no-idle FSPs.

The orderings used in steps 1 and 2 in the framework can consider different
indicators based on the problem data (see Table 2 for the list addressed in
this paper). All indicators are computed as an aggregation of terms of the jobs
processing times on each machine. A weighted version of each indicator (IOW
and NOW parameters) is defined by multiplying each aggregated term by (M −
m + 1), where m = 1, . . . ,M is the term’s machine index, similar to Palmer’s
and RA heuristics. Different sorting options of each indicator can also be applied
(IOS and NOS parameters), as shown in Fig. 2.

Fig. 2. Order indicator sorting orders (based on [20]).

Finally, we consider five different NEH tie-breaking (NTB) mechanisms in
NEH insertion phase: first best, last best, NM [33], KK1 and KK2 [26]. In sum-
mary, Table 3 describes all parameters of the proposed heuristic. In total there

144 L. M. Pavelski et al.

are 1, 695, 456 possible configurations for the NEH variants addressed in this
work. Regarding irace configuration, the IOR parameter is ordinal ranging from
[0, 1] with 0.25 steps and the remaining are categorical. When IOR = 0 the
initial order parameters (IOW, IOS, and IOI) are not sampled by irace. Also,
when IOR = 1 NEH insertion parameters (NOI, NOS, NOW, NTB) are not
sampled.

Table 2. Order heuristic and NEH insertion order indicators.

Name Ref

Sum of job processing times [35]

Sum of the processing times standard deviation [13]

Sum processing times standard deviation, average and skewness [13]

Absolute difference of processing times [20]

Absolute residuals sum [20,46]

Square residuals sum [20,46]

Sum of the negative residuals with negative residual carry-over [20,46]

Sum of the absolute residuals with negative residual carry-over [20,46]

Sum of the squared residuals with negative residual carry-over [20,46]

Sum of the absolute residuals with double negative residuals, no carryover [20,46]

Sum of the lower bounds on the completion times [20,40]

Sum of possible idle times [20,40]

Sum of possible waiting time of jobs and idletime of machines [20,40]

Iterative idle, completion and artificial total flowtime (LR) [29]

Iterative idle, completion times (LR variant) [29]

Iterative idle times (LR variant) [29]

Iterative artificial total flowtime (LR variant) [29]

Iterative completion times (LR variant) [29,34]

Sum of job processing times minus waiting time lower bound (NM1) [27,33]

NEHKK1 [27]

NEHKK2 [25]

Table 3. Parameters of the proposed approach.

Parameter Symbol Possible values

Initial order ratio IOR 0, 0.25, 0.5, 0.75 or 1.0

Initial order weighted by machine IOW Yes or no

Initial order indicator sorting criteria IOS Figure 2

Initial order indicator IOI Table 2

NEH order weighted by machine NOW Yes or no

NEH order indicator sorting criteria NOS Figure 2

NEH order indicator NOI Table 2

NEH tie-breaking NTB First best, last best, NM, KK1 or KK2

Flowshop NEH-Based Heuristic Recommendation 145

3.3 Performance Data and Recommendation

To generate performance data, irace (used as AAC) finds the best parameters for
each FSP problem, using ten instances generated with different random seeds.
Irace runs with its default configuration, in deterministic mode with a maximum
budget of 5, 000 evaluations of candidate configurations.

After that, the proposed approach calculates the problem features listed in
Sect. 3.1. A pre-processing step removes some features with zero variance and
high correlation with others (absolute value above 0.95). Then, for each param-
eter, a training and test set is built using problem features as inputs and the
best parameter values as outputs.

The training phase uses Decision Trees (DT) and Random Forests (RF) [4] to
learn how to recommend parameters. The models implementation are taken from
the R packages rpart v4.1--15 and ranger v0.12.1. While the RF number of
trees is fixed as 2, 000, this phase considers a simple parameter grid with 10-fold
cross-validation to tune different values for DT maximum tree depth (1 to 5),
RF number of predictors sampled for each split (1 or 10) and RF number of data
points sampled for each split (2 or 40).

The DT and RF models are trained and tested associated with two recom-
mendation strategies. The first strategy considers only the problem features as
inputs and tries to predict the best parameter value (no dependencies). The sec-
ond approach recommends the parameters sequentially, and the output of one
recommendation is fed as input to the next parameters (with dependencies). The
second strategy aims to model implicit dependencies among the parameters. For
example, the NEH tie-breaking mechanism might depend on its initial sequence.
The order of recommendations is the one shown in Table 3, starting from Initial
order ratio, ending with NEH tie-breaking.

4 Results

We divided the results into two different groups (i) those obtained from a machine
learning perspective when we analyze models’ predictive qualities; and (ii) those
obtained from the optimization perspective when we focus on the best objec-
tive function achieved by each recommended strategies. The results from both
sections consider the 25% test split of the problems dataset.

4.1 Machine-Learning Performance

Figure 3 shows the proposed model results (DT and RF, with and without
parameters dependencies) in terms of accuracy (Fig. 3(a)) and F-score (Fig.
3(b)) metrics. Both metrics agree in most cases. DTs are worse on parameters
like IOI and NTB but have a good performance on IOS and IOW. RFs and
parameter dependency models are slightly better on most problems.

The high performance on the IOR recommendation task is because it is highly
unbalanced. In most cases (93%), a ratio of zero is recommended (only NEH

146 L. M. Pavelski et al.

phases with no initial sequence). The initial order parameters are only considered
for the training set when IOR > 0, and, in this case, the recommendation models
have good performance. NEH parameters are more difficult to recommend, like
NOI, possibly because the 8 order indicators have similar or negligible effect.

4.2 Recommended Heuristics Performance

The quality of recommendation models from the optimization’s perspective is
measured using the relative performance given by:

RP = 100 ∗ (Fitness − BestF itness)/BestF itness

averaged for all problems in the test set, where BestF itness is the fitness of the
best configuration found by irace to build the dataset.

NOI NOS NOW NTB

IOR IOI IOW IOS

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

DT

RF

DT

RF

No dependencies With dependencies

(a) Accuracy.

NOI NOS NOW NTB

IOR IOI IOW IOS

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

DT

RF

DT

RF

No dependencies With dependencies

(b) F-score.

Fig. 3. Prediction performance of the recommendation models (higher values indicate
better performance).

Flowshop NEH-Based Heuristic Recommendation 147

Figure 4 shows the average relative performance (ARP) statistics for the
following strategies: standard NEH with original configuration, i.e., a decreas-
ing sum of processing times order and first best insertion (Standard NEH);
global best NEH configured by irace with all problems instances and budget
of 5, 000|P | evaluations of candidate configurations (Global best NEH1), where
|P | is the number of problems; proposed recommendation models (DT and RF)
trained and tested with and without parameter dependencies. A random param-
eter choice (Random) is also compared with these strategies, but its performance
is very poor (on average 4.5 times worse than irace reference configurations).

−10

0

10

20
30

Strategy

Standard NEH

Global−best NEH

DT

DT+Dependencies

RF

RF+Dependencies

Fig. 4. Average relative performance for all strategies compared to the baseline irace
best configuration.

From the optimization perspective, it is clear that the random parameter
choice is the worst. Secondly, we can observe that choosing a single configuration
for multiple types of problems like the standard NEH and global-best NEH is
better than a random choice. Nevertheless, in most cases fixing parameters for a
set of instances is worst than instance-based recommendations. RF models show
the best performances, with more than 25% of configurations that improve upon
the best found by irace. This result indicates that the model can produce highly
efficient heuristics even on unseen problems.

According to the all-pairs Friedman test [12], RF models with parameter
dependencies are statistically better than all of the other strategies. Also, DT
models are not improved by parameter dependency are equivalent to RF models
without parameter dependency. The source code and extra results regarding DT
models interpretability are left available as supplementary material2.

5 Conclusion

This paper has presented a methodology for recommending the Nawaz, Encore,
and Ham (NEH) heuristics in the optimization of Flowshop problems (FSP).
1 The global best NEH found by irace uses the hill-sorted absolute difference of pro-

cessing times with NM tie-breaking strategy.
2 Source code and supplementary material link: https://github.com/lucasmpavelski/

flowshop-neh-based-heuristic-recommendation.

https://github.com/lucasmpavelski/flowshop-neh-based-heuristic-recommendation
https://github.com/lucasmpavelski/flowshop-neh-based-heuristic-recommendation

148 L. M. Pavelski et al.

Moreover, by recommending NEH components sequentially, we considered mod-
eling some parameter dependencies. We used irace as an Automatic Algorithm
Configuration (AAC) tool to build a training set for a variety of FSP problems.
The problems included no-idle and no-wait variants, different processing times
distributions, and hard instances used in the literature. After that, we trained
decision trees and random forest models using problem features as inputs.

The empirical results show the good performance of the proposed models,
mainly from the optimization perspective. Like NEH initial order, some param-
eters proved to be hard to predict given the addressed problem features. Finally,
the random forest’s optimization performance with parameter dependencies was
comparable to irace best configurations, even on problems unseen during the
training phase.

In future works, we intend to improve the methodology using ablation [17],
to find robust parameter values for the training dataset and possibly leverage
the models’ prediction performance. Also, investigate features’ importance given
by the Random Forest models. Moreover, comprehensive approaches could fur-
ther incorporate stochastic local search [23] recommendation models to improve
the recommended NEH heuristics’s initial solutions. Other types of FSP prob-
lems, different NEH components, fitness landscape metrics, and machine learning
models could also improve the empirical results.

Acknowledgments. M. Delgado acknowledges CNPq (a Brazilian research-funding
agency) for her partial financial support, grants 309935/2017-2 and 439226/2018-0.

References

1. Alfaro-Fernández, P., Ruiz, R., Pagnozzi, F., Stützle, T.: Automatic algorithm
design for hybrid flowshop scheduling problems. Eur. J. Oper. Res. 282(3), 835–
845 (2020). https://doi.org/10.1016/j.ejor.2019.10.004

2. Baker, K.R., Trietsch, D.: Appendix A: practical processing time distributions.
Principles of Sequencing and Scheduling, pp. 445–458. John Wiley & Sons Ltd.,
Hoboken (2009). https://doi.org/10.1002/9780470451793.app1

3. Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley Pub-
lishing, New Jersey (2009)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

5. Brum, A., Ritt, M.: Automatic algorithm configuration for the permutation flow
shop scheduling problem minimizing total completion time. In: Liefooghe, A.,
López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 85–100. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77449-7 6

6. Brum, A., Ritt, M.: Automatic design of heuristics for minimizing the makespan
in permutation flow shops. In: 2018 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8, July 2018. https://doi.org/10.1109/CEC.2018.8477787

7. Burcin Ozsoydan, F., Sağir, M.: Iterated greedy algorithms enhanced by hyper-
heuristic based learning for hybrid flexible flowshop scheduling problem with
sequence dependent setup times: a case study at a manufacturing plant. Comput.
Oper. Res. 125, 105044 (2021). https://doi.org/10.1016/j.cor.2020.105044

https://doi.org/10.1016/j.ejor.2019.10.004
https://doi.org/10.1002/9780470451793.app1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-319-77449-7_6
https://doi.org/10.1109/CEC.2018.8477787
https://doi.org/10.1016/j.cor.2020.105044

Flowshop NEH-Based Heuristic Recommendation 149

8. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin,
J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 14

9. Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n job, m
machine sequencing problem. Manage. Sci. 16(10), B630–B637 (1970)

10. Czogalla, J., Fink, A.: Fitness landscape analysis for the no-wait flow-shop schedul-
ing problem. J. Heuristics 18(1), 25–51 (2012). https://doi.org/10.1007/s10732-
010-9155-x

11. Dannenbring, D.G.: An evaluation of flow shop sequencing heuristics. Manage. Sci.
23(11), 1174–1182 (1977). https://doi.org/10.1287/mnsc.23.11.1174

12. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7(1), 1–30 (2006)

13. Dong, X., Huang, H., Chen, P.: An improved NEH-based heuristic for the permu-
tation flowshop problem. Comput. Oper. Res. 35(12), 3962–3968 (2008). https://
doi.org/10.1016/j.cor.2007.05.005

14. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Automatic configuration of
state-of-the-art multi-objective optimizers using the TP+PLS framework. In: Pro-
ceedings of the 13th annual conference on Genetic and evolutionary computation.
GECCO 2011, pp. 2019–2026. Association for Computing Machinery, New York,
NY, USA, July 2011. https://doi.org/10.1145/2001576.2001847

15. Emmons, H., Vairaktarakis, G.: Theoretical results, algorithms, and applications.
In: Flow Shop Scheduling. International Series in Operations Research & Manage-
ment Science, vol. 182, 11th edn. Springer, New York (2013). https://doi.org/10.
1007/978-1-4614-5152-5

16. Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Buyukdagli, O.: A variable iter-
ated greedy algorithm with differential evolution for the no-idle permutation flow-
shop scheduling problem. Comput. Oper. Res. 40(7), 1729–1743 (2013). https://
doi.org/10.1016/j.cor.2013.01.005

17. Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations
through ablation. J. Heuristics 22(4), 431–458 (2016). https://doi.org/10.1007/
s10732-014-9275-9

18. Fernandez-Viagas, V., Framinan, J.M.: On insertion tie-breaking rules in heuristics
for the permutation flowshop scheduling problem. Comput. Oper. Res. 45, 60–67
(2014). https://doi.org/10.1016/j.cor.2013.12.012

19. Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuristics
for permutation flow-shop scheduling with makespan objective. J. Oper. Res. Soc.
55(12), 1243–1255 (2004). https://doi.org/10.1057/palgrave.jors.2601784

20. Framinan, J.M., Leisten, R., Rajendran, C.: Different initial sequences for the
heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime
in the static permutation flowshop sequencing problem. Int. J. Prod. Res. 41(1),
121–148 (2003). https://doi.org/10.1080/00207540210161650

21. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

22. Hernando, L., Daolio, F., Veerapen, N., Ochoa, G.: Local optima networks of the
permutation flowshop scheduling problem: makespan vs. total flow time. In: 2017
IEEE Congress on Evolutionary Computation (CEC), pp. 1964–1971. IEEE, San
Sebastian, Spain, June 2017. https://doi.org/10.1109/CEC.2017.7969541

23. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, San Francisco, USA (2004)

https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1007/s10732-010-9155-x
https://doi.org/10.1007/s10732-010-9155-x
https://doi.org/10.1287/mnsc.23.11.1174
https://doi.org/10.1016/j.cor.2007.05.005
https://doi.org/10.1016/j.cor.2007.05.005
https://doi.org/10.1145/2001576.2001847
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1016/j.cor.2013.01.005
https://doi.org/10.1016/j.cor.2013.01.005
https://doi.org/10.1007/s10732-014-9275-9
https://doi.org/10.1007/s10732-014-9275-9
https://doi.org/10.1016/j.cor.2013.12.012
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1080/00207540210161650
https://doi.org/10.1109/CEC.2017.7969541

150 L. M. Pavelski et al.

24. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Res. Logistics Q. 1(1), 61–68 (1954). https://doi.org/10.1002/nav.
3800010110

25. Kalczynski, P.J., Kamburowski, J.: An improved NEH heuristic to minimize
makespan in permutation flow shops. Comput. Oper. Res. 35(9), 3001–3008 (2008).
https://doi.org/10.1016/j.cor.2007.01.020

26. Kalczynski, P.J., Kamburowski, J.: An empirical analysis of the optimality rate of
flow shop heuristics. Eur. J. Oper. Res. 198(1), 93–101 (2009). https://doi.org/10.
1016/j.ejor.2008.08.021

27. Kalczynski, P.J., Kamburowski, J.: On the NEH heuristic for minimizing the
makespan in permutation flow shops. Omega 35(1), 53–60 (2007). https://doi.
org/10.1016/j.omega.2005.03.003

28. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). https://doi.
org/10.1162/evco a 00242

29. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the
P//

∑
Ci scheduling problem. Eur. J. Oper. Res. 132(2), 439–452 (2001). https://

doi.org/10.1016/S0377-2217(00)00137-5
30. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neu-

trality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION
2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25566-3 18

31. Marmion, M.-E., Regnier-Coudert, O.: Fitness landscape of the factoradic rep-
resentation on the permutation flowshop scheduling problem. In: Dhaenens, C.,
Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 151–164.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6 14

32. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based
generation of stochastic local search heuristics through automatic algorithm con-
figuration tools. Comput. Oper. Res. 51, 190–199 (2014). https://doi.org/10.1016/
j.cor.2014.05.020

33. Nagano, M.S., Moccellin, J.V.: A high quality solution constructive heuristic for
flow shop sequencing. J. Oper. Res. Soc. 53(12), 1374–1379 (2002)

34. Nagano, M.S., Rossi, F.L., Martarelli, N.J.: High-performing heuristics to minimize
flowtime in no-idle permutation flowshop. Eng. Optim. 51(2), 185–198 (2019).
https://doi.org/10.1080/0305215X.2018.1444163

35. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega 11(1), 91–95 (1983). https://doi.org/
10.1016/0305-0483(83)90088-9

36. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP
fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 20

37. Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total
time–a quick method of obtaining a near optimum. J. Oper. Res. Soc. 16(1), 101–
107 (1965). https://doi.org/10.1057/jors.1965.8

38. Pan, Q.K., Wang, L., Zhao, B.H.: An improved iterated greedy algorithm for the
no-wait flow shop scheduling problem with makespan criterion. Int. J. Adv. Manuf.
Technol. 38(7), 778–786 (2008). https://doi.org/10.1007/s00170-007-1120-y

https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1016/j.cor.2007.01.020
https://doi.org/10.1016/j.ejor.2008.08.021
https://doi.org/10.1016/j.ejor.2008.08.021
https://doi.org/10.1016/j.omega.2005.03.003
https://doi.org/10.1016/j.omega.2005.03.003
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1016/S0377-2217(00)00137-5
https://doi.org/10.1016/S0377-2217(00)00137-5
https://doi.org/10.1007/978-3-642-25566-3_18
https://doi.org/10.1007/978-3-642-25566-3_18
https://doi.org/10.1007/978-3-319-19084-6_14
https://doi.org/10.1016/j.cor.2014.05.020
https://doi.org/10.1016/j.cor.2014.05.020
https://doi.org/10.1080/0305215X.2018.1444163
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1007/978-3-319-99259-4_20
https://doi.org/10.1057/jors.1965.8
https://doi.org/10.1007/s00170-007-1120-y

Flowshop NEH-Based Heuristic Recommendation 151

39. Pavelski, L.M., Delgado, M.R., Kessaci, M.É.: Meta-learning on flowshop using fit-
ness landscape analysis. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference. GECCO 2019, pp. 925–933. ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3321707.3321846

40. Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total
flowtime. Int. J. Prod. Econ. 29(1), 65–73 (1993). https://doi.org/10.1016/0925-
5273(93)90024-F

41. Reeves, C.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–
490 (1999). https://doi.org/10.1023/A:1018983524911

42. Ribas, I., Companys, R., Tort-Martorell, X.: Comparing three-step heuristics for
the permutation flow shop problem. Comput. Oper. Res. 37(12), 2062–2070 (2010).
https://doi.org/10.1016/j.cor.2010.02.006

43. Rice, J.R.: The algorithm selection problem. In: Rubinoff, M., Yovits, M.C. (eds.)
Advances in Computers, Advances in Computers, vol. 15, pp. 65–118. Elsevier,
Washington, DC, USA (1976). https://doi.org/10.1016/S0065-2458(08)60520-3,
iSSN: 0065-2458

44. Rodriguez, J.A.V., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-
heuristic approach to the scheduling of the hybrid flow shop with sequence depen-
dent setup times and uniform machines. In: Baptiste, P., Kendall, G., Munier-
Kordon, A., Sourd, F. (eds.) In proceedings of the 3rd Multidisciplinary Interna-
tional Conference on Scheduling : Theory and Applications (MISTA 2007), pp.
506–513. Paris, France (2007), issue: 0

45. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flow-
shop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005). https://doi.org/10.
1016/j.ejor.2004.04.017

46. Stinson, J.P., Smith, A.W.: A heuristic proǵramminǵ procedure for sequencinǵ the
static flowshop. Int. J. Prod. Res. 20(6), 753–764 (1982). https://doi.org/10.1080/
00207548208947802

47. Taillard, É.: Some efficient heuristic methods for the flow shop sequencing
problem. Eur. J. Oper. Res. 47(1), 65–74 (1990). https://doi.org/10.1016/0377-
2217(90)90090-X

48. Taillard, É.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M

49. Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop schedul-
ing problems minimising makespan. Eur. J. Oper. Res. 240(3), 666–677 (2015).
https://doi.org/10.1016/j.ejor.2014.07.033

50. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the
structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)

51. Watson, J.P., Barbulescu, L., Howe, A.E., Whitley, L.D.: Algorithm performance
and problem structure for flow-shop scheduling. In: AAAI/IAAI, pp. 688–695.
American Association for Artificial Intelligence, Menlo Park, CA, USA (1999)

52. Yahyaoui, H., Krichen, S., Derbel, B., Talbi, E.G.: A hybrid ILS-VND based hyper-
heuristic for permutation flowshop scheduling problem. Procedia Comput. Sci. 60,
632–641 (2015). https://doi.org/10.1016/j.procs.2015.08.199

https://doi.org/10.1145/3321707.3321846
https://doi.org/10.1016/0925-5273(93)90024-F
https://doi.org/10.1016/0925-5273(93)90024-F
https://doi.org/10.1023/A:1018983524911
https://doi.org/10.1016/j.cor.2010.02.006
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1080/00207548208947802
https://doi.org/10.1080/00207548208947802
https://doi.org/10.1016/0377-2217(90)90090-X
https://doi.org/10.1016/0377-2217(90)90090-X
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/j.ejor.2014.07.033
https://doi.org/10.1016/j.procs.2015.08.199

Stagnation Detection with Randomized
Local Search

Amirhossein Rajabi(B) and Carsten Witt

Technical University of Denmark, Kgs. Lyngby, Denmark
{amraj,cawi}@dtu.dk

Abstract. Recently a mechanism called stagnation detection was pro-
posed that automatically adjusts the mutation rate of evolutionary algo-
rithms when they encounter local optima. The so-called SD-(1+1) EA
introduced by Rajabi and Witt (GECCO 2020) adds stagnation detec-
tion to the classical (1+1) EA with standard bit mutation, which flips
each bit independently with some mutation rate, and raises the mutation
rate when the algorithm is likely to have encountered local optima.

In this paper, we investigate stagnation detection in the context of
the k-bit flip operator of randomized local search that flips k bits chosen
uniformly at random and let stagnation detection adjust the parame-
ter k. We obtain improved runtime results compared to the SD-(1+1) EA
amounting to a speed-up of up to e = 2.71 . . . Moreover, we propose
additional schemes that prevent infinite optimization times even if the
algorithm misses a working choice of k due to unlucky events. Finally, we
present an example where standard bit mutation still outperforms the
local k-bit flip with stagnation detection.

Keywords: Randomized search heuristics · Local search ·
Self-adjusting algorithms · Multimodal functions · Runtime analysis

1 Introduction

Evolutionary Algorithms (EAs) are parameterized algorithms, so it has been
ongoing research to discover how to choose their parameters best. Static param-
eter settings are not efficient for a wide range of problems. Also, given a spe-
cific problem, there might be different scenarios during the optimization, which
results in inefficiency of one static parameter configuration for the whole run.
Self-adjusting mechanisms address this issue as a non-static parameter control
framework that can learn acceptable or even near-optimal parameter settings
on the fly. See also the survey article [6] for a detailed coverage of static and
non-static parameter control.

Many studies have been conducted on frameworks which adjust the mutation
rate of different mutation operators, in particular in the standard bit mutation

Supported by a grant from the Danish Council for Independent Research (DFF-FNU
8021-00260B).

c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 152–168, 2021.
https://doi.org/10.1007/978-3-030-72904-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_10&domain=pdf
http://orcid.org/0000-0003-0898-5003
http://orcid.org/0000-0002-6105-7700
https://doi.org/10.1007/978-3-030-72904-2_10

Stagnation Detection with Randomized Local Search 153

for the search space of bit strings {0, 1}n to make the rate efficient on unimodal
functions. For example, the (1 + (λ, λ)) GA using the 1/5-rule can adjust its
mutation strength (and also its crossover rate) on OneMax [5], resulting in
asymptotic speed-ups compared to static settings. Likewise, the self-adjusting
mechanism in the (1+λ) EA with two rates proposed in [9] performs on unimodal
functions as efficiently as the best λ-parallel unary unbiased black-box algorithm.

The self-adjusting frameworks mentioned above are mainly designed to opti-
mize unimodal functions. Generally, they are not able to suggest an efficient
parameter setting where algorithms get stuck in a local optimum since they
mainly work based on the number of successes, so there is no signal in such a
situation. On multimodal functions, where some specific numbers of bits have
to flip to make progress, Stagnation Detection (SD) introduced in [17] can over-
come local optima in efficient time. This module can be added to most of the
existing algorithms to leave local optima without any significant increase of the
optimization time of unimodal (sub)problems. To our knowledge, no study has
put forward other runtime analyses of self-adjusting mechanisms on multimodal
functions. However, in a broader context of mutation-based randomized search
heuristics, the heavy-tailed mutation presented in [11] has been able to leave a
local optimum in a much more efficient time than the standard bit mutation
does. Moreover, in the context of artificial immune systems [2] and hyperheuris-
tics [13], there are proofs that specific search operators and selection of low-level
heuristics can speed up multimodal optimization compared to the classical muta-
tion operators.

Recent theoretical research on evolutionary algorithms in discrete search
spaces mainly considers global mutations which can create all possible points
in one iteration. These mutations have been functional in optimization scenarios
where information about the difficulties of the local optima is not available. For
example, the standard bit mutation which flips each bit independently with a
non-zero probability can produce any point in the search space. However, local
mutations can only create a fixed set of offspring points. The 1-bit flip mutation
that often can be found in the Randomized Local Search algorithm (RLS) can
only reach a limited number of search points, which results in being stuck in a
local optimum with the elitist selection. Nevertheless, local mutations may out-
perform global mutations on unimodal functions and multimodal functions with
known gap sizes. It is of special interest to use advantages of local mutations on
unimodal (sub)functions additionally to overcome local optima efficiently.

This paper investigates k-bit flip mutation as a local mutation in the con-
text of the above-mentioned stagnation detection mechanism. This mechanism
detects when the algorithm is stuck in a local optimum and gradually increases
mutation strength (i. e., the number of flipped bits) to a value the algorithm
needs to leave the local optimum. Similarly, we aim to show that the algorithms
using k-bit flip can use stagnation detection to tune the parameter k. One of the
key benefits of such algorithms is using the efficiency of RLS, which performs
very well on unimodal (sub)problems without fear of infinite running time in
local optima. An additional advantage of using k-bit flip mutation accompanied

154 A. Rajabi and C. Witt

by stagnation detection is that it overcomes local optima more efficiently than
global mutations. Moreover, the outcome points out the advantages and prac-
ticability of our self-adjusting approach that makes local-mutation algorithms
able to optimize functions that have been intractable to solve so far.

We propose two algorithms combining stagnation detection with local muta-
tions. The first algorithm called SD-RLS gradually increases the mutation
strength when the current strength has been unsuccessful in finding improve-
ments for a significantly long time. In the most extreme case, the strength ends
at n, i. e., mutations flipping all bits. With high probability, SD-RLS has a run-
time that is by a factor of (ne

m)m/
(

n
m

)
(up to lower-order terms) smaller on

functions with Hamming gaps of size m than the SD-(1+1) EA previously con-
sidered in [17]. This improvement is especially strong for small m and amounts
to a factor of e on unimodal functions. Although it is unlikely that the algo-
rithm fails to find an improvement when the current strength allows this, there
is a risk that this algorithm misses the “right” strength and therefore it can
have infinite expected runtime. To address this, we propose a second algorithm
called SD-RLS∗ that repeatedly loops over all smaller strengths than the last
attempted one when it fails to find an improvement. This results in expected
finite optimization time on all problems and only increases the typical runtime
by lower-order terms compared to SD-RLS. We also observe that the algorithms
we obtain can still follow the same search trajectory as the classical RLS when
one-bit flips are sufficient to make improvements. In those cases, well-established
techniques for the analysis of RLS like the fitness-level method carry over to our
variant enhanced with stagnation detection. This is not necessarily the case in
related approaches like variable neighborhood search [12] and quasirandom evo-
lutionary algorithms [8] both of which employ more determinism and do not
generally follow the trajectory of RLS.

We shall investigate the two suggested algorithms on unimodal functions
and functions with local optima of different so-called gap sizes, corresponding
to the number of bits that need to be flipped to escape from the optima. Many
results are obtained following the analysis of the SD-(1+1) EA [17] which uses a
global operator with self-adjusted mutation strength. In fact, often the general
proof structure could be taken over almost literally but with improved overall
bounds. In conclusion, the self-adjusting local mutation seems to be the preferred
alternative to the SD-(1+1) EA with global mutation. However, we will also
investigate carefully chosen scenarios where global mutations are superior.

This paper is structured as follows: in Sect. 2, we state the classical RLS
algorithm and introduce our self-adjusting variants with stagnation detection;
moreover, we collect important mathematical tools. Section 3 shows runtime
results for the simpler variant SD-RLS, concentrating on the probability of leav-
ing local optima, while Sect. 4 gives a more detailed analysis of the variant
SD-RLS∗ on benchmark functions like OneMax and Jump. Section 5 analyzes
an example function which the standard (1+1) EA with standard bit mutation
can solve in polynomial time with high probability whereas the k-bit flip muta-
tion with stagnation detection needs exponential time. Through improved upper

Stagnation Detection with Randomized Local Search 155

bounds, we give in Sect. 6 indications for that our approach may also be supe-
rior to static settings on instances of the minimum spanning tree problem. This
problem and other scenarios are investigated experimentally in Sect. 7 before
we finally conclude the paper. Due to space restrictions, several proofs had to
be omitted from this paper and have been replaced by proof sketches, but note
that these proofs can be found in the preprint [18].

2 Preliminaries

2.1 Algorithms

In this paper, we consider pseudo-boolean functions f : {0, 1}n → R that w. l. o. g.
are to be maximized. One of the first randomized search heuristics studied in the
literature is randomized local search (RLS) [4] displayed in Algorithm 1. This
heuristic starts with a random search point and then repeats mutating the point
by flipping s uniformly chosen bits (without replacement) and replacing it with
the offspring if it is not worse than the parent.

Algorithm 1. RLS with static strength s

Select x uniformly at random from {0, 1}n

for t ← 1, 2, . . . do
Create y by flipping s bit(s) in a copy of x.
if f(y) ≥ f(x) then

x ← y.

The runtime or the optimization time of a heuristic on a function f is the
first point time t where a search point of maximal fitness has been created; often
the expected runtime, i. e., the expected value of this time, is analyzed.

Theoretical research on evolutionary algorithms mainly studies algorithms
on simple unimodal well-known benchmark problems like

OneMax(x1, . . . , xn) := |x|1,

but also on the multimodal Jumpm function with gap size m defined as follows:

Jumpm(x1, . . . , xn) =

{
m + |x|1 if |x|1 ≤ n − m or |x|1 = n

n − |x|1 otherwise

The mutation used in RLS is a local mutation as it only produces a limited
number of offspring. This mutation, which we call s-flip in the following (in the
introduction, we used the classical name k-bit flip), flips exactly s bits randomly
chosen from the bit string of length n, so for any point x ∈ {0, 1}n, RLS can
just sample from

(
n
s

)
possible points. As a result, s-flip is often more efficient

compared to global mutations when we know the difficulty of making progress

156 A. Rajabi and C. Witt

since the algorithm just looks at a certain part of the search space. To be more
precise, we recall the so-called gap of the point x ∈ {0, 1}n defined in [17] as the
minimum Hamming distance to points with the strictly larger fitness function
value. Formally,

gap(x) := min{H(x, y) : f(y) > f(x), y ∈ {0, 1}n}.

It is not possible to make progress by flipping less than gap(x) bits of the current
search point x. However, if the algorithm uses the s-flip with s = gap(x), it can
make progress with a positive probability. In addition, on unimodal functions
where the gap of all points in the search space (except for global optima) is one,
the algorithm makes progress with strength s = 1.

Nevertheless, understanding the difficulty of a local optimum has not gen-
erally been possible so far, and benefiting from domain knowledge to use it to
determine the strength is not always feasible in the perspective of black-box
optimization. Therefore, despite the advantages of s-flip, global mutations, e. g.
standard bit mutation, which can produce any point in the search space, have
been used in the literature frequently. For example, the (1+1) EA that uses
a similar approach to Algorithm 1 benefits from standard bit mutation that
implicitly uses the binomial distribution to determine how many bits must flip.
Consequently, even if the algorithm uses strength 1 (e.g. mutation rate 1/n),
with a positive probability, the algorithm can escape from any local optimum.

We study the search and success probability of Algorithm 1 and its relation to
stagnation detection more closely. With similar arguments as presented in [17], if
the gap of the current search point is 1 then the algorithm makes an improvement
with probability 1/R at strength 1, and the probability of not finding it in n ln R
steps is at most (1 − 1/n)n lnR ≤ 1/R (where R is a parameter to be discussed).
Similarly, the probability of not finding an improvement for a point with gap of
k within

(
n
k

)
ln R steps is at most

(

1 − 1
(
n
k

)

)(nk) lnR

≤ 1
R

.

Hence, after
(
n
k

)
ln R steps without improvement there is a probability of at

least 1− 1/R that no improvement at Hamming distance k exists, so for enough
large R the probability of failing is small.

We consider this idea to develop the first algorithm. We add the stagnation
detection mechanism to RLS to manage the strength s. As shown in Algorithm 2,
hereinafter called SD-RLS, the initial strength is 1. Also, there is a counter u for
counting the number of unsuccessful steps to find the next after the last success.
When the counter exceeds the threshold of

(
n
s

)
ln R, strength s is increased by

one, and when the algorithm makes progress, the counter and strength are reset
to their initial values. In the case that the algorithm is failed to have a success
where the strength is equal to the gap of the current search point, the algo-
rithm misses the chance of making progress. Therefore, with probability 1/R,
the optimization time would be infinitive. Choosing a large enough R to have

Stagnation Detection with Randomized Local Search 157

an overwhelming large probability of making progress could be a solution to
this problem. However, we propose another algorithm that resolves this issue,
although the running time is not always as efficient as with Algorithm 2.

In Algorithm 3, hereinafter called SD-RLS∗, we introduce a new variable r
called radius. This parameter determines the largest Hamming distance from
the current search point that algorithm must investigate. In details, when the
radius becomes r, the algorithm starts with strength r (i. e., s = r) and when the
threshold is exceeded, it decreases the strength by one as long as the strength
is greater than 1. This results in a more robust behavior. In the case that the
threshold exceeds and the current strength is 1, the radius is increased by one to
cover a more expanded space. Also, when the radius exceeds n/2, the algorithm
increases the radius to n, which means that the algorithm covers all possible
strengths between 1 and n. We note that the strategy of repeatedly returning to
lower strengths remotely resembles the 1/5-rule with rollbacks proposed in [1].

Algorithm 2. RLS with stagnation detection (SD-RLS)
Select x uniformly at random from {0, 1}n and set s1 ← 1.
u ← 0.
for t ← 1, 2, . . . do

Create y by flipping st bits in a copy of x uniformly.
u ← u + 1.
if f(y) > f(x) then

x ← y.
st+1 ← 1.
u ← 0.

else if f(y) = f(x) and st = 1 then
x ← y.

if u >
(
n
s

)
ln R then

st+1 ← min{st + 1, n}.
u ← 0.

else
st+1 ← st.

The parameter R represents the probability of failing to find an improve-
ment at the “right” strength. More precisely, as we will see in Theorem 1 and
Lemma 2 (for SD-RLS and SD-RLS∗, respectively), the probability of not find-
ing an improvement where there is a potential of making progress is at most
1/R. We recommend R ≥ |Im f | for SD-RLS (where Im f is the image set of f),
and for a constant ε, R ≥ n3+ε · |Im f | for SD-RLS∗, resulting in that the prob-
ability of ever missing an improvement at the right strength is sufficiently small
throughout the run.

158 A. Rajabi and C. Witt

Algorithm 3. RLS with robust stagnation detection (SD-RLS∗)
Select x uniformly at random from {0, 1}n and set r1 ← 1 and s1 ← 1.
u ← 0.
for t ← 1, 2, . . . do

Create y by flipping st bits in a copy of x uniformly.
u ← u + 1.
if f(y) > f(x) then

x ← y.
st+1 ← 1.
rt+1 ← 1.
u ← 0.

else if f(y) = f(x) and rt = 1 then
x ← y.

if u >
(
n
st

)
ln R then

if st = 1 then
if rt < n/2 then rt+1 ← rt + 1 else rt+1 ← n
st+1 ← rt+1.

else
rt+1 ← rt.
st+1 ← st − 1.

u ← 0.
else

st+1 ← st.
rt+1 ← rt.

2.2 Mathematical Tools

The following lemma containing some combinatorial inequalities will be used
in the analyses of the algorithms. The first part of the lemma seems to be
well known and has already been proved in [14] and is also a consequence of
Lemma 1.10.38 in [3]. The second part follows from elementary manipulations.

Lemma 1. For any integer m ≤ n/2, we have

(a)
∑m

i=1

(
n
i

) ≤ n−(m−1)
n−(2m−1)

(
n
m

)
,

(b)
(

n
M

) ≤ (
n
m

) (
n−m

m

)M−m for m < M < n/2.

3 Analysis of the Algorithm SD-RLS

In this section, we study the first algorithm called SD-RLS, see Algorithm 2. In
the beginning of the section, we show upper and lower bounds on the time for
escaping from local optima. Then, in Theorem 2, we show the important result
that on unimodal functions, SD-RLS with probability 1 − |Im f |/R behaves in
the same way as RLS with strength 1, including the same asymptotic bound on
the expected optimization time.

The following theorem shows the time SD-RLS takes with probability 1−1/R
to make progress of search point x with a gap of m.

Stagnation Detection with Randomized Local Search 159

Theorem 1. Let x ∈ {0, 1}n be the current search point of SD-RLS on a pseudo-
boolean function f : {0, 1}n → R. Define Tx as the time to create a strict improve-
ment if gap(x) = m. Let U be the event of finding an improvement at Hamming
distance m. Then, we have

E (Tx | U) ≤

⎧
⎪⎨

⎪⎩

(
n
m

)
(1 + O(m lnR

n)) if m = o(n),
O

((
n
m

)
ln R

)
if m = Θ(n) ∧ m < n/2,

O(2n ln R) if m ≥ n/2.

Moreover, Pr(U) ≥ 1 − 1/R.

Compared to the corresponding theorems in [17], the bounds in Theorem 1
are by a factor of (ne

m)m/
(

n
m

)
(up to lower-order terms) smaller. This speedup

is roughly e for m = 1, i. e., unimodal functions (like OneMax) but becomes
less pronounced for larger m since, intuitively, the number of flipped bits in
a standard bit mutation will become more and more concentrated and start
resembling the m-bit flip mutation.

Proof. The algorithm SD-RLS can make an improvement only where the current
strength s is equal to m and the probability of not finding an improvement during
this phase is

(

1 −
(

n

m

)−1
)(n

m) lnR

≤ 1
R

.

If the improvement event happens, the running time of the algorithm to
escape from this local optimum is

E (Tx | U) <

m−1∑

i=1

(
n

i

)
ln R

︸ ︷︷ ︸
=:S1

+
(

n

m

)

︸ ︷︷ ︸
=:S2

,

where S1 is the number of iterations for s < m and S2 is the expected number
of iterations needed to make an improvement where s = m.

By using Lemma 1 for m < n/2, we have

E (Tx | U) <

m−1∑

i=1

(
n

i

)
ln R +

(
n

m

)
<

n − m + 2
n − 2m + 3

(
n

m − 1

)
ln R +

(
n

m

)

=
n − m + 2
n − 2m + 3

· m

n − m + 1

(
n

m

)
ln R +

(
n

m

)

=
(

n

m

)(
n − m + 2
n − 2m + 3

· m

n − m + 1
ln R + 1

)
,

and for m ≥ n/2, we know that
∑n

i=1

(
n
i

)
< 2n, so we can compute

E (Tx | U) =
m−1∑

i=1

(
n

i

)
ln R +

(
n

m

)
≤ O(2n ln R)

160 A. Rajabi and C. Witt

Altogether we achieve

E (Tx | U) ≤

⎧
⎪⎨

⎪⎩

(
n
m

)
(1 + O(m lnR

n)) if m = o(n),
O

((
n
m

)
ln R

)
if m = Θ(n) ∧ m < n/2,

O(2n ln R) if m ≥ n/2.

��
Using the previous lemma, we obtain the following result that allows us to

reuse existing results for RLS on unimodal functions.

Theorem 2. Let f : {0, 1}n → R be a unimodal function and consider SD-RLS
with R ≥ |Im f |. Then, with probability at least 1 − |Im f |

R , the SD-RLS never
increases the radius and behaves stochastically like RLS before finding an opti-
mum of f .

With these two general results, we conclude the analysis of SD-RLS and
turn to the variant SD-RLS∗ that always has finite expected optimization time.
In fact, we will present similar results in general optimization scenarios and
supplement them by analyses on specific benchmark functions. It is possible to
analyze the simpler SD-RLS on these benchmark functions as well, but we do
not feel that this gives additional insights.

4 Analysis of the Algorithm SD-RLS∗

In this section, we turn to the algorithm SD-RLS∗ that iteratively returns to
lower strengths to avoid missing the “right” strength. We recall Tx as the number
of steps SD-RLS∗ takes to find an improvement point from the current search
point x. Let phase r consists of all points of time where radius r is used in the
algorithm. When the algorithm enters phase r, it starts with strength r, but
when the counter exceeds the threshold, the strength decreases by one as long
as it is greater than 1. In the case of strength 1, the radius r is increased to r+1
(or to n if r+1 is at least n/2), so the algorithm enters phase r+1 (or phase n).

Let Er be the event of not finding the optimum within phase r, and U j
i for

j > i be the event of not finding the optimum during phases i to j − 1 and
finding it in phase j. In other words, U j

i = Ei ∩ · · · ∩ Ej−1 ∩ Ej . For i = j, we
define U i

i = Ei. We obtain the following result on the failure probability which
follows from the fact that the algorithm tries to find an improvement for

(
n
m

)
ln R

iterations with a probability of success of
(

n
m

)−1 when the radius is at least m.

Lemma 2. Let x ∈ {0, 1}n be the current search point of SD-RLS∗ on a pseudo-
boolean fitness function f : {0, 1}n → R and let m = gap(x). Then

Pr(Er) ≤
{

1
R if m ≤ r < n

2

0 if r = n.

Stagnation Detection with Randomized Local Search 161

The following lemma bounds the time to leave a local optimum conditional
on that the “right” strength was missed.

Lemma 3. Let x ∈ {0, 1}n with m = gap(x) < n/2 be the current search point
of SD-RLS∗ with R ≥ n3+ε · |Im f | for an arbitrary constant ε > 0 on a pseudo-
boolean function f : {0, 1}n → R and Tx be the time to create a strict improve-
ment. Then, we have

E (Tx | Em) = o

(
R

|Im f |
(

n

m

))
,

where Em is the event of not finding an optimum when the radius r equals m.

The reason behind the factor R/|Im f | in Lemma 3 is that for proving a running
time of SD-RLS∗ on a function like f , the event Em happens with probability 1/R
for each point in Im f , so in the worst case, during the run, there are expected
|Im f |/R search points where the counter exceeds the threshold, resulting in an
expected number of at most |Im f |/R · o(R/|Im f |(n

m

)
) extra iterations for the

whole run in the case of exceeding the thresholds. Also, note that we always
have R/|Im f | = Ω(1) since according to the assumption, R > |Im f |.

The following theorem and its proof are similar to Theorem 1 but require
a more careful analysis to cover the repeated use of smaller strengths. We note
that the bounds differ from Theorem 1 only in lower-order terms unless m is
very big.

Theorem 3. Let x ∈ {0, 1}n be the current search point of SD-RLS∗ with
R ≥ n3+ε · |Im f | for an arbitrary constant ε > 0 on a pseudo-boolean func-
tion f : {0, 1}n → R. Define Tx as the time to create a strict improvement if
gap(x) = m. Then, we have

E (Tx) ≤
{(

n
m

) (
1 + O

(
m2

n−2m ln R
))

if m < n/2

2nn ln R if m ≥ n/2
,

and E (Tx) ≥ (
n
m

)
/W , where W is the number of strictly better search points at

Hamming distance m.

Similarly to Lemma 2, we obtain a relation to RLS on unimodal functions
and can re-use existing upper bounds based on the fitness-level method [20].

Lemma 4. Let f : {0, 1}n → R be a unimodal function and consider SD-RLS∗

with R ≥ n3+ε · |Im f | for an arbitrary constant ε > 0. Then, with probability at
least 1 − |Im f |

R , SD-RLS∗ never increases the radius and behaves stochastically
like RLS before finding an optimum of f .

Denote by T the runtime of SD-RLS∗ on f . Let fi be the i-th fitness value
of an increasing order of all fitness values in f and si be a lower bound on the
probability that RLS finds an improvement from search points with fitness value
fi, then

E (T) ≤
|Im f |∑

i=1

1
si

+ o(n).

162 A. Rajabi and C. Witt

Finally, we use the results developed so far to prove a bound on the Jump
function which seems to be the best available for mutation-based hillclimbers.

Theorem 4. Let n ∈ N. For all 2 ≤ m, the expected runtime E (T) of SD-RLS∗

with R ≥ n4+ε for an arbitrary constant ε > 0 on Jumpm satisfies

E (T) ≤
{(

n
m

) (
1 + O

(
m2

n−2m ln n
))

if m < n/2,

O(2nn ln n) otherwise.

5 An Example Where Global Mutations Are Necessary

While our s-flip mutation along with stagnation detection can outperform the
(1+1) EA on Jump functions, it is clear that its different search behavior may be
disadvantageous on other examples. Concretely, we will present a function that
has a unimodal path to a local optimum with a large Hamming distance to the
global optimum. SD-RLS will with high probability follow this path and incur
exponential optimization time. However, the function has a second gradient that
requires two-bit flips to make progress. The classical (1+1) EA will be able to
follow this gradient and to arrive at the global optimum before one-bit flips have
reached the end of the path to the local optimum.

In a broader context, our function illustrates an advantage of global mutation
operators. By a simple swap of local and global optimum, it immediately turns
into the direct opposite, i. e., an example where using global instead of local
mutations is highly detrimental and increases the runtime from polynomial to
exponential with overwhelming probability. An example of such a function was
previously presented in [10]; however, both the underlying construction and the
proof of exponential runtime for the (1+1) EA seem much more complicated
than our example.

We will in the following define the example function called NeedGlobal-
Mut and give proofs for the behavior of SD-RLS and (1+1) EA. In fact, Need-
GlobalMut is obtained from the function NeedHighMut defined in [17] to
show disadvantages of stagnation detection adjusting the rate of a global muta-
tion operator. The only change is to adjust the length of the suffix part of the
function, which rather elegantly allows us to re-use the previous technique of
construction and a major part of the analysis. We also encourage the reader to
read the corresponding section in [17] for further insights into the construction.

In the following, we will imagine any bit string x of length n as being split
into a prefix a := a(x) of length n−m and a suffix b := b(x) of length m, where m
is defined below. Hence, x = a(x)◦b(x), where ◦ denotes the concatenation. The
prefix a(x) is called valid if it is of the form 1i0n−m−i, i. e., i leading ones and
n−m−i trailing zeros. The prefix fitness pre(x) of a string x ∈ {0, 1}n with valid
prefix a(x) = 1i0n−m−i equals i, the number of leading ones. The suffix consists
of � 1

3

√
n consecutive blocks of �n1/4 bits each, altogether m ≤ 1

3n3/4 = o(n)
bits. Such a block is called valid if it contains either 0 or 2 one-bits; moreover,
it is called active if it contains 2 and inactive if it contains 0 one-bits. A suffix

Stagnation Detection with Randomized Local Search 163

where all blocks are valid and where all blocks following first inactive block are
also inactive is called valid itself, and the suffix fitness suff(x) of a string x with
valid suffix b(x) is the number of leading active blocks before the first inactive
one. Finally, we call x ∈ {0, 1}n valid if both its prefix and suffix are valid.

The final fitness function is a weighted combination of pre(x) and suff(x).
We define for x ∈ {0, 1}n, where x = a ◦ b with the above-introduced a and b,

NeedGlobalMut(x) :=
⎧
⎪⎨

⎪⎩

n2suff(x) + pre(x) if pre(x) ≤ 9(n−m)
10 ∧ x valid

n2 m + pre(x) + suff(x) − n − 1 if pre(x) > 9(n−m)
10 ∧ x valid

−OneMax(x) otherwise.

The function NeedGlobalMut equals NeedHighMutξ from [17] for the
setting ξ = 1/2 (ignoring that ξ < 1 was disallowed there for technical reasons).
We note that all search points in the second case have a fitness of at least n2m−
n−1, which is bigger than n2(m−1)+n, an upper bound on the fitness of search
points that fall into the first case without having m leading active blocks in the
suffix. Hence, search points x where pre(x) = n − m and suff(x) = � 1

3

√
n

represent local optima of second-best overall fitness. The set of global optima
equals the points where pre(x) = 9(n − m)/10 and suff(x) = � 1

3

√
n, which

implies that (n−m)/10 = Ω(n) bits have to be flipped simultaneously to escape
from the local toward the global optimum.

Theorem 5. With probability 1 − o(1), SD-RLS with R ≥ n needs 2Ω(n) steps
to optimize NeedGlobalMut. The (1+1) EA optimizes this function in time
O(n2) with probability 1 − 2−Ω(n1/3).

6 Minimum Spanning Trees

Our self-adjusting s-flip mutation operator can also have advantages on classical
combinatorial optimization problems. We reconsider the minimum spanning tree
(MST) problem on which EAs and RLS were analyzed before [15]. The known
bounds for the globally searching (1+1) EA are not tight. More precisely, they
depend on log(wmax), the logarithm of the largest edge weight. This is different
with RLS variants that flip only one or two bits due to an equivalence first
formulated in [16]: if only up to two bits flip in each step, then the MST instance
becomes indistinguishable from the MST instance formed by replacing all edge
weights with their rank in their increasingly sorted sequence. This results in a
tight upper bound of O(m2 ln n), where m is the number of edges, for RLS1,2, an
algorithm that uniformly at random decides to flip either one or two uniformly
chosen bits [21]. Although not spelt out in the paper, it is easy to see that the
leading term in the polynomial O(m2 ln m). This 2 stems from the logarithm of
sum of the weight ranks, which can be in the order of m2. We will see that the
first factor of 2 can, in some sense, be avoided in our SD-RLS∗.

164 A. Rajabi and C. Witt

The following theorem bounds the optimization time of SD-RLS∗ in the case
that the algorithm has reached a spanning tree and the fitness function only
allows spanning trees to be accepted. It is well known that with the fitness func-
tions from [15], the expected time to find the first spanning tree is O(m log m),
which also transfers to SD-RLS∗; hence we do not consider this lower-order term
further. However, our bound comes with an additional term related to the num-
ber of strict improvements. We will discuss this term after the theorem.

Theorem 6. The expected optimization time of SD-RLS∗ with R = m4 on the
MST problem with m edges, starting with an arbitrary spanning tree, is at most

(1 + o(1))
(
(m2/2)(1 + ln(r1 + · · · + rm)) + (4m ln m)E (S)

)

= (1 + o(1))
(
m2 ln m + (4m ln m)E (S)

)
,

where ri is the rank of the ith edge in the sequence sorted by increasing edge
weights and E (S) is the expected number of strict improvements that the algo-
rithm makes conditioned on that the strength never exceeds 2.

The term E (S) appearing in the previous theorem is not easy to bound. If
E (S) = o(m), the upper bound suggests that SD-RLS may be more efficient than
the classical RLS1,2 algorithm; with the caveat that we are talking about upper
bounds only. However, it is not difficult to find examples where E (S) = Ω(m),
e. g., on the worst-case graph used for the lower-bound proof in [15], which we
will study below experimentally, and we cannot generally rule out that E (S)
is asymptotically bigger than m on certain instances. However, empirically SD-
RLS∗ can be faster than RLS1,2 and the (1+1) EA on MST instances, as we
will see in Sect. 7. In any case, although the algorithm can search globally, the
bound in Theorem 6 does not suffer from the log(wmax) factor appearing in the
analysis of the (1+1) EA.

We also considered variants of SD-RLS∗ that do not reset the strength
to 1 after each strict improvement and would therefore, be able to work with
strength 2 for a long while on the MST problem. However, such an approach is
risky in scenarios where, e. g., both one-bit flips and two-bit flips are possible and
one-bit flips should be exploited for the sake of efficiency. Instead, we think that
a combination of stagnation detection and selection hyperheuristics [19] based
on the s-flip operator or the learning mechanism from [7], which performs very
well on the MST, would be more promising here.

7 Experiments

In this section, we present the results of the experiments conducted to see the per-
formance of the proposed algorithms for small problem dimensions. This exper-
imental design was employed because our theoretical results are asymptotic.

In the first experiment, we ran an implementation of Algorithm 3 (SD-RLS∗)
on the Jump fitness function with jump size m = 4 and n varying from 80 to
160. We compared our algorithm against the (1+1) EA with standard mutation

Stagnation Detection with Randomized Local Search 165

rate 1/n, the (1+1) EA with mutation probability m/n, Algorithm (1+1) FEAβ

from [11] with three different β = {1.5, 2, 4}, and the SD-(1+1) EA presented in
[17]. In Fig. 1, we observe that SD-RLS∗ outperforms the rest of the algorithms.

Fig. 1. Average number of fitness calls (over 1000 runs) the mentioned algorithms took
to optimize Jump4.

In the second experiment, we ran an implementation of four algorithms SD-
RLS∗, (1+1) FEAβ with β = 1.5 from [11], the standard (1+1) EA and RLS1,2

from [15] on the MST problem with the fitness function from [15] for two types
of graphs called TG and Erdős–Rényi.

The graph TG with n vertices and m = 3n/4+
(
n/2
2

)
edges contains a sequence

of p = n/4 triangles which are connected to each other, and the last triangle is
connected to a complete graph of size q = n/2. Regarding the weights, the edges
of the complete graph have the weight 1, and we set the weights of edges in
triangle to 2a and 3a for the side edges and the main edge, respectively. In this
paper, we consider a = n2. The graph TG is used for estimating lower bounds
on the expected runtime of the (1+1) EA and RLS in the literature [15]. In this
experiment, we use n = {24, 36, 48, 60}. As can be seen in Fig. 2b, (1+1) FEAβ

is faster than the rest of the algorithms, but SD-RLS∗ outperforms the standard
(1+1) EA and RLS1,2.

Regarding the graphs Erdős–Rényi, we produced some random Erdős–Rényi
graphs with p = (2 ln n)/n and assigned each edge an integer weight in the range
[1, n2] uniformly at random. We also checked that the graphs certainly had a
spanning tree. Then, we ran the implementation on MST of these graphs. The
obtained results can be seen in Fig. 2a. As we discussed in Sect. 6, SD-RLS∗

does not outperform the (1+1) EA and RLS1,2 on MST with graphs where the
number of strict improvements in SD-RLS∗ is large.

166 A. Rajabi and C. Witt

iynéR–sődrEshparG)a((b) Graphs TG

Fig. 2. Average number of fitness calls (over 400 runs) the mentioned algorithms took
to optimize the fitness function MST of the graphs.

For statistical tests, we ran the implementation of the algorithms on the
graphs TG and Erdős–Rényi 400 times, and all p-values obtained from a Mann-
Whitney U-test between the algorithms, with respect to the null hypothesis of
identical behavior, are less than 10−4 except for the results regarding the graph
TG with n = 24.

Conclusions

We have transferred stagnation detection, previously proposed for EAs with stan-
dard bit mutation, to the operator flipping exactly s uniformly randomly chosen
bits as typically encountered in randomized local search. Through both theoret-
ical runtime analyses and experimental studies we have shown that this combi-
nation of stagnation detection and local search efficiently leaves local optimal
and often outperforms the previously considered variants with global mutation.
We have also introduced techniques that make the algorithm robust if it, due
to its randomized nature, misses the right number of bits flipped, and analyzed
scenarios where global mutations are still preferable. In the future, we would
like to investigate stagnation detection more thoroughly on instances of classical
combinatorial optimization problem like the minimum spanning tree problem,
for which the present paper only gives preliminary but promising results.

Stagnation Detection with Randomized Local Search 167

References

1. Bassin, A., Buzdalov, M.: The 1/5-th rule with rollbacks: on self-adjustment of the
population size in the (1+(λ, λ)) GA. In: Proceedings of GECCO 2019 (Compan-
ion), pp. 277–278. ACM Press (2019)

2. Corus, D., Oliveto, P.S., Yazdani, D.: Fast artificial immune systems. In: Auger, A.,
Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN
2018. LNCS, vol. 11102, pp. 67–78. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99259-4 6

3. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation. NCS, pp.
1–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 1

4. Doerr, B., Doerr, C.: The impact of random initialization on the runtime of ran-
domized search heuristics. Algorithmica 75(3), 529–553 (2016)

5. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1+(λ, λ)) genetic algorithm. Algorithmica 80(5), 1658–1709 (2018)

6. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimiza-
tion: provable performance gains through dynamic parameter choices. In: Doerr,
B., Neumann, F. (eds.) Theory of Evolutionary Computation. NCS, pp. 271–321.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 6

7. Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k outperforms
standard bit mutation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M.,
Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 824–834. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 77

8. Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceed-
ings of GECCO 2010, pp. 1457–1464. ACM (2010)

9. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1 + λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)

10. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit
strings. In: Ryan, C., Keijzer, M. (eds.) Proceedings of GECCO 2008, pp. 929–
936. ACM Press (2008)

11. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of GECCO 2017, pp. 777–784. ACM Press (2017)

12. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighbor-
hood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics.
ISORMS, vol. 272, pp. 57–97. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-91086-4 3

13. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the time complexity of algorithm
selection hyper-heuristics for multimodal optimisation. In: Proceedings of AAAI
2019, pp. 2322–2329. AAAI Press (2019)

14. Lugo, M.: Sum of “the first k” binomial coefficients for fixed n. MathOverflow
(2017). https://mathoverflow.net/q/17236. Accessed 15 Mar 2021

15. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theoretical Comput. Sci. 378, 32–40 (2007)

16. Raidl, G.R., Koller, G., Julstrom, B.A.: Biased mutation operators for subgraph-
selection problems. IEEE Trans. Evol. Comput. 10(2), 145–156 (2006)

17. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal opti-
mization. In: Proceedings of GECCO 2020, pp. 1314–1322. ACM Press (2020)

18. Rajabi, A., Witt, C.: Stagnation detection with randomized local search (2021).
CoRR abs/2101.12054. http://arxiv.org/abs/2101.12054

https://doi.org/10.1007/978-3-319-99259-4_6
https://doi.org/10.1007/978-3-319-99259-4_6
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1007/978-3-319-91086-4_3
https://mathoverflow.net/q/17236
http://arxiv.org/abs/2101.12054

168 A. Rajabi and C. Witt

19. Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics for pseudo-
Boolean optimisation. Ph.D. thesis, University of Sheffield, UK (2019). http://
ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786561

20. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In: Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Opti-
mization. Kluwer Academic Publishers, New York (2001)

21. Witt, C.: Revised analysis of the (1+1) EA for the minimum spanning tree problem.
In: Proceedings of GECCO 2014, pp. 509–516. ACM Press (2014)

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786561
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.786561

An Artificial Immune System for Black
Box Test Case Selection

Lukas Rosenbauer1(B), Anthony Stein2, and Jörg Hähner3

1 BSH Hausgeräte GmbH, Im Gewerbepark B35, 93059 Regensburg, Germany
lukas.rosenbauer@bshg.com

2 University of Hohenheim, Garbenstr. 9, 70599 Stuttgart, Germany
anthony.stein@uni-hohenheim.de

3 University of Augsburg, Eichleitner Str. 30, 86159 Augsburg, Germany
joerg.haehner@informatik.uni-augsburg.de

Abstract. Testing is a crucial part of the development of a new product.
For software validation a transformation from manual to automated tests
can be observed which enables companies to implement large numbers of
test cases. However, during testing situations may occur where it is not
feasible to run all tests due to time constraints. Hence a set of critical
test cases must be compiled which usually fulfills several criteria. Within
this work we focus on criteria that are feasible for black box testing
such as system tests. We adapt an existing artificial immune system for
our use case and evaluate our method in a series of experiments using
industrial datasets. We compare our approach with several other test
selection methods where our algorithm shows superior performance.

Keywords: Software validation · Test automation · Artificial immune
system · Bio-inspired computing

1 Introduction

Testing is major part in modern product development and aims at revealing
errors as quickly as possible. Thus quality can be ensured. Testing becomes
more and more automated which enables companies to carry out large numbers
of tests. These tests may have a variable runtime and capabilities. This has led
to need to steadily optimize the test cases at hands [22,31].

Bioinspired computation has led to major improvements in several ways. For
example test data or even entire test cases can be generated using genetic algo-
rithms (GA) [8,23]. Mutation testing focuses on changing parts of the software
to test in order to evaluate how effective the underlying tests are [10].

The aforementioned techniques focus on use cases where the underlying
source code is available to testers which is coined white box testing. However, in
certain industries such as the automotive sector that is not always the case since
software is bought from other companies and only machine code is integrated.
Hence there is only a limited or no knowledge of these components available.
Software validation in such an environment is called black box testing [3].
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 169–184, 2021.
https://doi.org/10.1007/978-3-030-72904-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_11

170 L. Rosenbauer et al.

Within this work we focus on the selection of appropriate test cases during
black box testing. This is necessary during some situations of software validation
such as smoke testing [6]. The aforementioned testing approach aims at deciding
if a software version should be rejected or should be investigated more deeply.
Thus prolonged testing times or expensive manual checks may be avoided. If only
a few or minor errors are detected, then other seemingly working features can
be evaluated more deeply whilst the development team tries to fix the already
recognized faults.

A critical test suite should be chosen according to several criteria such as its
execution time or fault revealing capabilities [22]. Hence the test case selection
can be modelled as a multi-objective optimization problem [15]. Within this work
we adapt a novel class of optimizers called germinal center artificial immune
system (GCAIS) [12] to the task. This has lead to the following contributions:

– We introduce a new population initialization method to GCAIS which leads
to a diverse starting solutions.

– We move with GCAIS beyond set covering use cases [12] and knapsack prob-
lems [13] and show its feasibility for the use case.

– Within our experiments we exclusively rely on industrial datasets in order to
verify our method in a real world setting.

– We compare our improved GCAIS variant with a variety of other algo-
rithms including a nondominated sorting genetic algorithm II (NSGA-II)
based method specialized for black box test selection [15]. Statistical tests
indicate the superiority of our approach.

In Sect. 2 we discuss related work. This is followed by a problem description
(Sect. 3). Afterwards we introduce GCAIS and how we adapted it (Sect. 4). Then
we switch to an evaluation of our approach in Sect. 5. This is followed by a short
discussion of future work and a conclusion in Sect. 6.

2 Related Work

Choosing an appropriate test suite is a difficult task in many subbranches of
testing. This includes the test suite minimisation problem, the test case selection
problem and the test case prioritisation problem [31].

Test case prioritisation approaches try to order given test cases according to
some quality criterion, for example their likelihood to fail [27]. A current trend
is to apply reinforcement learning to train such an ordering based on historical
test data [21,30]. However, test case prioritisation methods are not limited to
artificial intelligence approaches. There are also several approaches outside the
field as documented by Marijan et al. [17]. These methods mostly focus on failure
revealing capabilities.

Test suite minimisation usually deals at specification level and only has infor-
mation about the available test cases and which requirements they cover [7,31].
However, there are also variations where branch coverage [9], call stack coverage
[18] or model transitions [28] are considered instead.

An Artificial Immune System for Black Box Test Case Selection 171

Test case selection occurs with the scenario mentioned in Sect. 1. Correspond-
ing test suites can be selected according to single or multiple objectives [22,31].
If coverage metrics are used, then the corresponding problem is NP-hard since
these are instances of the weighted set covering problem [31]. Arrieta et al. [1]
employ a NSGA-II for a black box test case selection specialized for simulations
of cyber physical systems and corresponding test objectives. Lachmann et al.
[15] also developed an NSGA-II based approach that optimizes several criteria
next to requirement coverage for generic black box test case selection. Other
approaches are limited to white box testing since they focus for example on code
coverage [19,26,29].

From an immune computation point of view we have been influenced by the
works of Joshi et al. [12,14] who translated new insights on germinal centres into
a generic search heuristic. The algorithm is related to other metaheuristics such
as Simple evolutionary algorithms with isolated population (SEIP) [32] or global
simple evolutionary multi-objective optimiser [20] since all three rely on negative
selection and maintain populations of so called non-dominated solutions. How-
ever, immune computation is not limited to negative selection but also offers
other unique properties combined such as memory, fault tolerance and robust-
ness [2]. We are also not the first to use artificial immune systems for a practical
use case. They have already been applied successfully in security, optimization
and machine learning [16]. Especially GCAIS has already been applied to the
aforementioned test suite minimisation problem (using requirement coverage as a
decision basis) [25]. A succeeding work by Rosenbauer et al. [24] applied GCAIS
to the test case selection problem but there they also focused solely on require-
ments coverage. However, several surveys [22,31] underline that a selection only
based on requirement coverage is insufficient as empirical results indicate that
coverage is not necessarily linked to fault revealing capabilities. Hence we move
to a multi-objective version of the test case selection problem, which also includes
fault revealing capabilities, to overcome this issue and furthermore change the
algorithmic structure of GCAIS to fit this use case.

3 Problem Description

For black box testing certain objectives that are feasible for white box testing
are technically not possible. For example optimizing code coverage. Hence we
focus on the following objectives which are applicable in black box testing:

– Requirement coverage: A test case tc covers at least one requirement. If
a set of test cases covers a large number of requirements this indicates that
most of the functionality is tested. This can be formalized as follows:

Cov(S) =
|⋃tc∈S r(tc)|

R
∈ [0, 1] (1)

where S is a set of selected tests and r(tc) is the set of requirements that a test
case covers. Further R denotes the total number of requirements. We name the

172 L. Rosenbauer et al.

objective Cov(S). It is worth mentioning that the coverage objective alone is
NP-hard and not even in the approximable (APX) computational class since
it corresponds to the weighted minimum set cover problem [4].

– Failure probability: Throughout the life time of a project, a test is executed
several times. We use its execution history to estimate a test’s probability to
fail as:

P (tc fails) =
ftc
ntc

(2)

where ftc is the number of executions where tc failed and ntc is the total
number of executions of the test. In our experiments we maximize the average
failure probability of the set of selected tests:

FP (S) =
∑

tc∈S P (tc fails)
|S| ∈ [0, 1] (3)

The intention of this objective is to reveal faults. We abbreviate this objective
as FP (S).

– Execution time: Due to limited time budgets the resulting test suite should
have a low execution time:

D(S) =
∑

tc∈S

d(tc) ∈ R≥0 (4)

where d(·) is the approximated duration of a test case. We use the mean value
of previous executions as an estimate. We call this objective D(S).

It is worth mentioning that the estimations of the failure probability and
execution time can be retrieved rather easily with modern testing tools. If for
example test-frameworks such as pytest or google test are used, the testing results
can be stored in a junit xml which contains the duration and outcome of each
executed test.

Throughout this work we encode a test suite as a binary vector of length m
where m is the number of available test cases. If an entry is set to 1 then the
test is used and if it is set to 0 then the test is not used. For example if there
are 5 tests available and only the third bit is set to one, then only the third test
is used and the other four not.

With the formal definitions of the objectives and solution encoding we are
able to introduce the optimization problem at hand:

max Cov(S), max FP (S), min D(S)
D(S) ≤ B

S ∈{0, 1}m
(5)

where B is a predefined execution time boundary. It indicates how much time is
available for a test suite to run.

Some of the objectives are opposed to each other. For example if more tests
are added to enlarge the coverage then the execution time is also increased.

An Artificial Immune System for Black Box Test Case Selection 173

Furthermore, if the coverage and average fault probability should be enlarged
simultaneously, an optimization algorithm has to add tests with a high likelihood
to fail that also verify previously uncovered requirements. If only tests are added
that nearly never fail but cover a lot of requirements, then the average fault
probability will decline. Further, if a test suite solely focuses on tests with a
high likelihood to fail but only tests a few features then this will lead to a rather
small coverage.

Solutions of a multi-objective optimization problem can be compared using
Pareto-domination [20]. A solution x is said to Pareto-dominate another solution
y if and only if it is superior in at least one objective but not worse in the others.
Within this work this is the case if one of the following conditions is fulfilled:

1. Cov(x) > Cov(y) ∧ FP (x) ≥ FP (y) ∧ D(x) ≤ D(y)
2. Cov(x) ≥ Cov(y) ∧ FP (x) > FP (y) ∧ D(x) ≤ D(y)
3. Cov(x) ≥ Cov(y) ∧ FP (x) ≥ FP (y) ∧ D(x) < D(y)

Condition 1 is valid if x has a higher requirement coverage whilst not having a
greater execution time or worse average fault probability. A satisfied condition
2 implies that the tests of x have a higher chance of failing whilst not covering
less requirements and having a higher runtime. The last condition is fulfilled if
x has no worse coverage and average failure probability whilst having a lower
runtime. We abbreviate the relation as x >p y.

4 Germinal Center Artificial Immune System

GCAIS is a population-based, randomised search heuristic that is based on
the immune system of vertebrates. The heuristic has been influenced by recent
insights about germinal centre reaction [12]. Germinal centres (GC) are regions
where the invading antigen (Ag) is presented to immune cells. If an invasion
occurs, the cells produce antibodies (Ab) that try to bind the pathogen and
eradicate it. The GCs start to grow and try to find the best Abs. GCs communi-
cate with each other in order to exchange their Abs. The latter can be improved
by proliferation, mutation, and selection of immune cells. In this analogy the Ag
is the optimization problem, the B cell is a solution population and the Abs are
the solutions that are developed by the heuristic. For a more detailed description
the reader is referred to Joshi et al. [11].

GCAIS employs a standard bitwise mutation. Hence the algorithm flips indi-
vidual bits with a probability of 1

m . For example, if there are 10 test cases and a
solution uses the fifth test then the mutation operator deletes the test from the
solution with a probability of 0.1.

During each iteration GCAIS mutates its entire population. The mutated
population is merged with the original one. Afterwards those solutions of the
newly created population are deleted that are Pareto-dominated by another pop-
ulation member. This is repeated until a stopping criterion such as a maximum
number of search iterations is met. We describe the procedure in Algorithm 1.

174 L. Rosenbauer et al.

Algorithm 1: Germinal centre artificial immune system (GCAIS).
input : problem with binary encoded solutions, problem dimension m

1 P = initialize population()
2 while stopping criterion is not met do
3 P’ = {}
4 for x in P do
5 y = mutate x
6 insert y to P’

7 end
8 // merge populations
9 P = P ∪ P’

10 // sort out dominated solutions
11 P = {x ∈ P | � ∃y ∈ P : y >p x}
12 end

Algorithm 2: Multi-axis initialization.
input : test cases, m, fault probabilities, time budgets tk, max retries r
output: a population of solutions

1 P = {}
2 // create random solutions
3 for each time budget tk do
4 S = 0
5 count = 0
6 while count ≤ r and D(S) ≤ tk do
7 draw test case i
8 if time left to add i then
9 add i to S

10 count = 0

11 else
12 count += 1
13 end

14 end
15 insert S to P

16 end
17 S = 0
18 // create greedy solutions
19 while ∃i ∈ {0, 1, ..., m − 1} : S[i] = 0 ∧ P (tc i fails) > 0 do
20 index = i ∈ {0, 1, ..., m − 1} : S[i] = 0 ∧ P (tc i fails) > 0
21 S[index] = 1
22 insert a copy of S to P

23 end
24 return P

It is worth mentioning that GCAIS also allows unfeasible solutions (in our case
solutions with an execution time higher than the available execution time).

An Artificial Immune System for Black Box Test Case Selection 175

The function initialize population creates a starting population. Joshi et al.
[12] generate a population consisting solely of the zero vector. However, we took
another route. We create random solutions for a series of fixed time budgets tk
(within this use case for 5, 10,...,100% of the total execution time). If we try to
create a random solution for a fixed time budget then we draw a test uniformly
at random. If the remaining budget is higher than the test case’s execution time
we add the test case. If not then we draw another test case. If we cannot add
a new test after a maximum number of retries r (in our later experiments we
used r = 5) then we stop adding new tests. We also add the test cases collected
by a greedy algorithm that takes tests according to their failure probability (see
Algorithm 2). Thus we create a diverse starting population for the metaheuristic.
We coin this method multi-axis initialization as it creates solutions alongside a
random and a greedy axis.

It is worth mentioning that Joshi et al. [13] developed a mechanism based on
epsilon dominance to keep the population size in bounds whilst keeping a level
of diversity. In a follow-up study Rosenbauer et al. [25] showed that this can be
detrimental for covering problems and proposed another way. They limited the
number of solutions that have the same values for the objectives. If the number
is exceeded, random solutions of this class of solutions are deleted. For example
if the boundary is set to 100 then only hundred solutions of an execution time
of one hour, a requirement coverage of 50% and an average failure probability of
80% are allowed. We use the method of Rosenbauer et al. [25] since one of our
optimization objectives (requirements coverage) corresponds to a set covering
problem.

5 Evaluation

For our experiments we acquired datasets from BSH Hausgeräte GmbH which
is an international producer of home appliances. The company produces vari-
ous devices ranging across dishwashers, ovens to washing machines. Each dataset
contains the results of several test sessions (a test session is a run of a test suite).
Tests are executed iteratively since software is developed iteratively within BSH
which is a common practice. Hence a time series of test executions is available.
We use the first 5 sessions to compute the initial estimations for the fault prob-
abilities as described in Eq. 2 and update them as we progress through the test
sessions.

An overview of the datasets is found in Table 1. They are from two different
oven projects and a dishwasher project. In total we can rely on the results of
about 2, 000 test cases and more than 200, 000 verdicts. The datasets include
a project with a higher percentage of failed tests (Oven 1) and a rather low
number of failed test cases (Dishwasher and Oven 2). Furthermore the number
of test cases between the two product groups is also vastly different. Hence the
considered datasets show some degree of diversity.

In order to evaluate our GCAIS variant, we compare the method against the
following algorithms:

176 L. Rosenbauer et al.

– Random selection: In software validation it is a common approach to select
a test suite entirely at random [5]. Random tests are greedily added until a
given predefined execution time budget for the test suite is exhausted. We
added the method in order to compare GCAIS to a widespread selection
mechanism and to see if it is better than pure randomness.

– NSGA-II: Lachmann et al. [15] successfully used a NSGA-II for black box
testing. We employ the same variant which uses a bitflip mutation, binary
tournament selection and a HUX-crossover (probability of 0.9).

– SEMO: We widen our comparison by using the simple evolutionary mul-
tiobjective optimizer (SEMO) [20] as well. Thus we are able to explore if
reasonable results may already be achieved with this rather simple meta-
heuristic since the NSGA-II based approaches were only compared against a
pure random selection [1,15].

For the GCAIS we use a population boundary of 200. We chose the hyper-
parameter in a preliminary evaluation which we leave out here (due to space
restrictions). We selected the hyperparameter by evaluating the possible bound-
ary values {100, 200, ..., 500} on the dishwasher dataset’s first test session con-
sidered. There our GCAIS variant performed the best with the aforementioned
boundary.

Within our evaluation we use the available data to simulate the use case.
Before each test session we run the considered algorithms on the corpus of avail-
able tests. Then we only consider found solutions that are within a given execu-
tion time budget B. We choose the solution x that maximizes FP (x) +Cov(x).
Thus we focus on a high mixture of coverage and failure probability. We consider
time budgets of 5, 10, ..., 100% of the execution time of all tests. We repeat all
experiments a hundred times and focus on averaged results.

Table 1. Examined datasets.

Oven 1 Oven 2 Dishwasher

sessions 39 36 45

test cases 486 477 1499

verdicts 22,350 17,349 186,195

failed 10.94% 3.41% 3.44%

We give each algorithm a search time of five minutes. Furthermore if the
encountered Pareto-Frontier does not change over 100 iterations then we regard
this as convergence and let the algorithm terminate.

For our experiments we used a Dell OptiPlex XE3 with 32 GB RAM and an
Intel i7 8700 processor with exclusive use for the experiment. We also published
our source code and datasets in order to ease the reproducibility of results1.

1 Available here: https://github.com/LagLukas/moa testing.

https://github.com/LagLukas/moa_testing

An Artificial Immune System for Black Box Test Case Selection 177

5.1 Failure Revealing Capabilities

The goal of testing is finding errors and not proving their absence. Hence we
examined how well the found test suites perform in this task. We compared
the solutions of SEMO, NSGA-II and the random selection on every considered
dataset with GCAIS’ solutions. In order to compare the found test suites we rely
on statistical tests. We employ a series of one-sided Wilcoxon tests2 and use a
significance level of 0.05. We use the statistical tests to evaluate the null hypoth-
esis of the form “the solutions of algorithm x find more errors than GCAIS’s
solutions on dataset y”. We display the corresponding p-values in Table 2. All of
them are below the significance level and hence we reject every null hypothesis
and infer that the computed test suites of GCAIS are better in finding errors.

Table 2. p-values for one-sided Wilcoxon tests. The columns represent a dataset and
the rows an algorithm to compare with. The entry of row x and column y is the p-value
of the null hypothesis “the solutions of algorithm x find more errors than GCAIS’s
solutions on dataset y”.

Oven 1 Oven 2 Dishwasher

NSGA-II 0.0 6.26e−274 1.70e−10

Random 1.19e−110 0.0 8.98e−25

SEMO 1.18e−81 1.41e−262 0.04

We switch our focus to analysing how high the time budget needs to be until
the first error is detected. We display the minimum, maximum, quartiles and
average execution time that were necessary to find a first fault in Table 3. There
we can see that, in three experimental settings, GCAIS produces solutions that
have on average the lowest time budget.

We can also see a large range for the time budgets needed to detect the first
error. This variety of values may disturb the mean value. Thus we decided to
examine the median for each algorithm and dataset. There we can observe that
GCAIS has the lowest median. SEMO and the pure random selection lead to
similar results on the Oven 1 dataset (regarding the median). We also added the
first and third quartiles into Table 3 in order to describe the time budget distri-
bution more accurately. Once more we can make the observation of rather low
values for GCAIS. Furthermore the necessary time budget seems to be rather
stable as in many cases the first quartile, the median, and the third quartile are
the same. For the other examined methods this not the case and their distribu-
tions are more diverse. We consider these close quartiles as an indicator for the
robustness of the solutions produced by GCAIS.

2 It is worth mentioning that for this statistical test no preconditions must be checked.
Furthermore, the one-sided variant checks if the median of a random variable X is
higher than the median of a random variable Y .

178 L. Rosenbauer et al.

Table 3. Overview of the time budget needed to reveal the first error. The table
contains the mean values ± σ, medians, maxima and minima. The best values are
marked bold.

Oven 1 Oven 2 Dishwasher

GCAIS mean 0.145 ± 0.28 0.296 ± 0.39 0.024 ± 0.06

third quartile 0.05 0.36 0.01

median 0.05 0.05 0.01

first quartile 0.05 0.04 0.01

max 0.65 0.64 0.3

min 0.02 0.02 0.01

NSGA-II mean 0.316 ± 0.36 0.415 ± 0.45 0.239 ± 0.25

third quartile 0.48 1.0 0.55

median 0.1 0.1 0.05

first quartile 0.1 0.05 0.05

max 0.69 0.41 0.75

min 0.02 0.01 0.01

RANDOM mean 0.182 ± 0.27 0.313 ± 0.38 0.056 ± 0.02

third quartile 0.19 0.41 0.05

median 0.05 0.1 0.05

first quartile 0.05 0.05 0.05

max 0.63 0.74 0.15

min 0.04 0.01 0.05

SEMO mean 0.222 ± 0.32 0.35 ± 0.37 0.062 ± 0.04

third quartile 0.35 0.48 0.05

median 0.05 0.185 0.05

first quartile 0.04 0.08 0.05

max 0.8 0.59 0.25

min 0.01 0.01 0.01

Table 4. P -values for one-sided Wilcoxon tests. The columns represent a dataset and
the rows an algorithm to compare with. The entry of row x and column y is the p-value
of the null hypothesis “algorithm x’s solutions find the first error earlier than GCAIS’s
solutions on dataset y”.

Oven 1 Oven 2 Dishwasher

NSGA-II 6.52e−46 5.95e−13 6.46e−06

Random 7.56e−11 9.89e−06 2.28e−17

SEMO 1.03e−60 5.80e−55 2.14e−50

An Artificial Immune System for Black Box Test Case Selection 179

We deem a discussion solely based on central tendencies such as mean values
or medians as insufficient and once more decided to use statistical tests to take a
deeper look at our results. We reuse a significance level of 0.05 and rely on one-
sided Wilcoxon tests. We examine the nullhpyothesis “algorithm x’s solutions
need a lower time budget to find a first error than GCAIS’s solutions on dataset
y” for each considered algorithm and dataset. We show the corresponding p-
values in Table 4. The p-values are below our significance level and we reject
all null hypotheses and accept the alternative hypothesis. Thus we infer that
solutions found by GCAIS are capable of finding the first error earlier than
NSGA-II, a pure random selection, and SEMO. It is worth mentioning that
the comparably good results of GCAIS are not only due to the initialization. An
additional comparison between our immune system and the initialization showed
that GCAIS also performs better in this scenario. The same is valid on these
datasets if we compare our variant with the vanilla version of Joshi et al. [12].

We additionally examined the objective failure probability F (·) and there we
could see that in all but one combination the GCAIS approach is significantly
better than the other approaches. This might be seen as an indicator for why
GCAIS has been found to be superior in detecting errors on the considered
datasets.

5.2 Detection of Broken Features

In the previous subsection we solely focused on the detection of failures. It lacks
the link to the requirements the tests cover. For example if two features are
broken and one test suite leads to a lot of failed test exclusively for one feature
and another one has a failed test for each broken feature then the first test suite
would be better even though it would have failed to identify all broken features.
Thus within this subsection we focus on the evaluation of how well the considered
methods recognize broken features.

We examine hypotheses of the form “the solutions of algorithm x detect more
broken features than GCAIS’s solutions on dataset y” using a series of one-sided
Wilcoxon tests and a significance level of 0.05. The p-values are displayed in
Table 5. We can reject the null hypothesis in 8 out of 9 cases and accept the
alternative hypothesis (GCAIS detects more broken features). However, on our
dishwasher dataset the p-value for NSGA-II is rather low (about 0.1751) but
still not significant which means that we cannot reject the null hypothesis. Thus
we decided to perform an additional two-sided Wilcoxon test to check if on
average both methods perform equally well on this dataset and this statistical
test indicated that this is the case.

We decided to investigate the difference between GCAIS and NSGA-II on
the dishwasher dataset more deeply. We plotted the average difference of the
percentage of detected broken features in Fig. 1. The x-axis displays the test
session index, the y-axis the relative time budget and the z-axis the difference
in detected broken features. We can see a clear superiority of GCAIS for high
budgets and very low budgets (less than 10%). NSGA-II is ahead for time bud-
gets of about 20% for very early test sessions. For succeeding test sessions this

180 L. Rosenbauer et al.

Table 5. p-values for one-sided Wilcoxon tests. The columns represent a dataset and
the rows an algorithm to compare with. The entry of row x and column y is the p-
value of the null hypothesis “algorithm x’s solutions detect more broken features than
GCAIS’s solutions on dataset y”.

Oven 1 Oven 2 Dishwasher

NSGA-II 1.38e−309 3.38e−12 0.1751

Random 0.0 9.50e−200 1.09e−109

SEMO 5.31e−245 5.02e−85 1.399e−43

Fig. 1. Difference in the percentage of found broken features between GCAIS and
NSGA-II on the dishwasher dataset. A positive value indicates that GCAIS found
more broken features (a negative one indicates the opposite).

gap is tightening. After session index 5 GCAIS becomes significantly superior.
Hence if more test outcomes are available then GCAIS’s performance increases
on this dataset.

Our previous evaluation exclusively focused on the question if GCAIS per-
forms better than the other methods. We also intend to give a total overview
instead of only this relative consideration. Thus we also visualized the raw num-
bers in Fig. 2. Figure 2 a) shows the performance on the dishwasher dataset
and there performance is generally slowly rising with an increasing time budget.
There a few outliers became apparent where GCAIS finds even more broken
functionalities, especially at the start of testing. In this phase there are the most
faults in our dataset which explains this observation. Figures 2 b) and c) display
the performance on the two oven datasets. There generally more errors occurred
overall and also in a higher number during later stages of testing. This explains
why there are several test sessions where we detected high numbers of broken
requirements. The succeeding test sessions often show less issues found since

An Artificial Immune System for Black Box Test Case Selection 181

(a) Percentage of found broken features using GCAIS on the dishwasher dataset.

(b) Percentage of found broken features us-
ing GCAIS on the oven 1 dataset

(c) Percentage of found broken features us-
ing GCAIS on the oven 2 dataset.

Fig. 2. Percentages of found broken features across the considered datasets.

between the two sessions the found oven software bugs have been fixed. It is
worth mentioning that the two oven projects share some generic components
hence they show some similarity in their error behaviour.

6 Conclusion and Future Work

Black box testing is a scenario where only limited knowledge of the underlying
system is available. This is for example often the case in the system test level or
if software from third parties is used. For such environments there are situations
where it is not feasible to run all tests. Hence sets of important tests must be
known in order to get a quick insight into the system when a new software version
is examined.

182 L. Rosenbauer et al.

We adapted a recent metaheuristic called germinal center artificial immune
system (GCAIS) to search for critical tests. The system is aware of previous
failures, test execution times, and requirement coverage. Based on this knowledge
the artificial immune system is able to compile crucial test suites for a variety
of time budgets. We compared our approach with other algorithms including
a NSGA-II variant specialized for black box test case selection using several
industrial datasets. There we could not only observe that GCAIS is capable of
finding errors earlier but it is also able to detect more errors within a given time
budget. Furthermore, our system is capable of finding failing tests for several
requirements simultaneously. Hence we demonstrated that GCAIS is a promising
candidate for black box test case selection.

In the future we intend to examine white box testing objectives such as code
coverage metrics as well. We think that GCAIS performs equally well in such
scenarios.

References

1. Arrieta, A., Wang, S., Arruabarrena, A., Markiegi, U., Sagardui, G., Etxeberria, L.:
Multi-objective black-box test case selection for cost-effectively testing simulation
models. In: Proceedings of the Genetic and Evolutionary Computation Conference,
New York, NY, USA, pp. 1411–1418. GECCO 2018. Association for Computing
Machinery (2018)

2. Azuaje, F.: Review of “Artificial Immune Systems: A New Computational Intelli-
gence Approach” by L.N. de Castro and J. Timmis (Eds) Springer, London, 2002.
Neural Net. 16(8), 1229 (2003)

3. Bath, G., McKay, J.: The Software Test Engineer’s Handbook: A Study Guide for
the ISTQB Test Analyst and Technical Test Analyst Advanced Level Certificates
2012. Rocky Nook Computing, Rocky Nook (2014)

4. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the Forty-sixth Annual ACM Symposium on Theory of Computing, New York,
NY, USA, pp. 624–633. STOC 2014. ACM (2014)

5. Duran, J.W., Ntafos, S.C.: an evaluation of random testing. IEEE Trans. Softw.
Eng.SE 10(4), 438–444 (1984)

6. Dustin, E., Rashka, J., Paul, J.: Automated Software Testing: Introduction, Man-
agement, and Performance. Addison-Wesley Longman Publishing Co., Inc., New
York (1999)

7. Gotlieb, A., Marijan, D.: FLOWER: optimal test suite reduction as a network
maximum flow. In: Proceedings of the 2014 International Symposium on Software
Testing and Analysis, New York, NY, USA, pp. 171–180. ISSTA 2014. ACM (2014)

8. Haga, H., Suehiro, A.: Automatic test case generation based on genetic algorithm
and mutation analysis. In: 2012 IEEE International Conference on Control System,
Computing and Engineering, pp. 119–123 (2012)

9. Jeffrey, D., Gupta, N.: Improving fault detection capability by selectively retaining
test cases during test suite reduction. IEEE Trans. Softw. Eng. 33(2), 108–123
(2007)

10. Jia, Y., Harman, M.: Constructing subtle faults using higher order mutation test-
ing. In: 2008 Eighth IEEE International Working Conference on Source Code Anal-
ysis and Manipulation, pp. 249–258 (2008)

An Artificial Immune System for Black Box Test Case Selection 183

11. Joshi, A.: The Germinal Centre Artificial Immune System. Ph.D. thesis, University
of Birmingham (2017)

12. Joshi, A., Rowe, J.E., Zarges, C.: An immune-inspired algorithm for the set cover
problem. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 243–251. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10762-2 24

13. Joshi, A., Rowe, J.E., Zarges, C.: Improving the performance of the germinal
center artificial immune system using epsilon-dominance: a multi-objective knap-
sack problem case study. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS,
vol. 9026, pp. 114–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16468-7 10

14. Joshi, A., Rowe, J., Zarges, C.: On the effects of incorporating memory in GC-
AIS for the set cover problem. In: MIC 2015: The XI Metaheuristics International
Conference (2015)

15. Lachmann, R., Felderer, M., Nieke, M., Schulze, S., Seidl, C., Schaefer, I.: Multi-
objective black-box test case selection for system testing. In: Proceedings of the
Genetic and Evolutionary Computation Conference, New York, NY, USA, pp.
1311–1318. GECCO 2017. Association for Computing Machinery (2017)

16. Luo, W., Liu, R., Jiang, H., Zhao, D., Wu, L.: Three branches of negative repre-
sentation of information: a survey. IEEE Trans. Emerg. Top. Comput. Intell. 2(6),
411–425 (2018)

17. Marijan, D., Gotlieb, A., Sen, S.: Test case prioritization for continuous regres-
sion testing: an industrial case study. In: 2013 IEEE International Conference on
Software Maintenance, pp. 540–543 (2013)

18. McMaster, S., Memon, A.M.: Call stack coverage for test suite reduction. In: 21st
IEEE International Conference on Software Maintenance (ICSM 2005), pp. 539–
548 (2005)

19. Mondal, D., Hemmati, H., Durocher, S.: Exploring test suite diversification and
code coverage in multi-objective test case selection. In: 2015 IEEE 8th Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pp.
1–10 (2015)

20. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimiza-
tion: Algorithms and Their Computational Complexity. Natural Computing Series.
Springer-Verlag, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3.
ISBN 978-3-642-16543-6

21. Nguyen, A., Le, B., Nguyen, V.: Prioritizing automated user interface tests using
reinforcement learning. In: Proceedings of the Fifteenth International Conference
on Predictive Models and Data Analytics in Software Engineering, New York, NY,
USA, pp. 56–65. PROMISE 2019. Association for Computing Machinery (2019)

22. Note Narciso, E., Delamaro, M., Nunes, F.: Test case selection: a systematic liter-
ature review. Int. J. Softw. Eng. Knowl. Eng. 24, 653–676 (2014)

23. Rodrigues, D.S., Delamaro, M.E., Corrêa, C.G., Nunes, F.L.S.: Using genetic algo-
rithms in test data generation: a critical systematic mapping. ACM Comput. Surv.
51(2) (2018)

24. Rosenbauer, L., Stein, A., Hähner, J.: An artificial immune system for adaptive test
selection. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
(2020)

25. Rosenbauer, L., Stein, A., Hähner, J.: A Germinal Centre Artificial Immune System
for Software Test Suite Reduction. Artificial Life (2020)

https://doi.org/10.1007/978-3-319-10762-2_24
https://doi.org/10.1007/978-3-319-10762-2_24
https://doi.org/10.1007/978-3-319-16468-7_10
https://doi.org/10.1007/978-3-319-16468-7_10
https://doi.org/10.1007/978-3-642-16544-3

184 L. Rosenbauer et al.

26. de Souza, L.S., de Miranda, P.B.C., Prudencio, R.B.C., Barros, F.D.A.: A multi-
objective particle swarm optimization for test case selection based on functional
requirements coverage and execution effort. In: 2011 IEEE 23rd International Con-
ference on Tools with Artificial Intelligence, pp. 245–252 (2011)

27. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement Learning for
Automatic Test Case Prioritization and Selection in Continuous Integration. CoRR
abs/1811.04122 (2018)

28. Vaysburg, B., Tahat, L.H., Korel, B.: Dependence Analysis in Reduction of
Requirement Based Test Suites. In: Proceedings of the 2002 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, pp. 107–111. ISSTA 2002,
Association for Computing Machinery, New York, NY, USA (2002)

29. Whalen, M.W., Rajan, A., Heimdahl, M.P., Miller, S.P.: Coverage metrics for
requirements-based testing. In: Proceedings of the 2006 International Symposium
on Software Testing and Analysis, New York, NY, USA, pp. 25–36. ISSTA 2006.
Association for Computing Machinery (2006)

30. Xiao, L., Miao, H., Shi, T., Hong, Y.: LSTM-based deep learning for spatial-
temporal software testing. Distrib. Parallel Databases 38(3), 687–712 (2020)

31. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

32. Yu, Y., Yao, X., Zhou, Z.H.: On the approximation ability of evolutionary opti-
mization with application to minimum set cover. Artif. Intell. S180–181 (2010)

Symmetry Breaking for Voting
Mechanisms

Preethi Sankineni(B) and Andrew M. Sutton

University of Minnesota Duluth, Duluth, MN, USA
sanki002@d.umn.edu

Abstract. Recently, Rowe and Aishwaryaprajna [FOGA 2019] intro-
duced a simple majority vote technique that efficiently solves Jump with
large gaps, OneMax with large noise, and any monotone function with a
polynomial-size image. In this paper, we identify a pathological condition
for this algorithm: the presence of spin-flip symmetry. Spin-flip symme-
try is the invariance of a pseudo-Boolean function to complementation.
Many important combinatorial optimization problems admit objective
functions that exhibit this pathology, such as graph problems, Ising mod-
els, and variants of propositional satisfiability. We prove that no popu-
lation size exists that allows the majority vote technique to solve spin-
flip symmetric functions with reasonable probability. To remedy this, we
introduce a symmetry-breaking technique that allows the majority vote
algorithm to overcome this issue for many landscapes. We prove a suf-
ficient condition for a spin-flip symmetric function to possess in order
for the symmetry-breaking voting algorithm to succeed, and prove its
efficiency on generalized TwoMax and families of constructed 3-NAE-
SAT and 2-XOR-SAT formulas. We also prove that it fails on the one-
dimensional Ising model, and suggest different techniques for overcoming
this. Finally, we present empirical results that explore the tightness of
the runtime bounds and the performance of the technique on randomized
satisfiability variants.

1 Introduction

Voting crossover is a recombination operator requiring multiple parents in which
each position of the resulting offspring is decided by a majority vote. This tech-
nique has existed as an evolutionary operator for decades [4], but only recently
has received attention from the theory community [7,17]. Notably, a recent paper
by Rowe and Aishwaryaprajna [17] introduced a simple evolutionary algorithm
in which a population of μ individuals is constructed by performing μ rounds of
tournament selection on randomly selected parents, and then produces a final
string by performing a single majority vote over the entire population. Despite
the relative simplicity of this approach, the authors proved it solves OneMax
and Jump in O(n log n) time, even when the Jump function has a gap of size
(1− ε)n. It also attains a O((n+σ2) log n) upper bound on OneMax perturbed
by any additive noise with variance σ2, which is so far the best known running
time for any randomized search heuristic on noisy OneMax.
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 185–201, 2021.
https://doi.org/10.1007/978-3-030-72904-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_12

186 P. Sankineni and A. M. Sutton

Rowe and Aishwaryaprajna also pointed out that the voting algorithm always
samples strings with close to n/2 ones, which is a limitation on many func-
tions such as LeadingOnes, or even on linear functions with largely unbalanced
weights like BinVal. Nevertheless, they proved that any monotone function f
can be optimized using only O(|IM f |2 log n) tournaments to create the voting
population, and introduced a modification that focuses on a single bit at a time
and successfully solves LeadingOnes in O(n log n) time.

In this paper, we want to extend the analysis of this surprisingly simple
yet effective approach to understand how it performs on other nonlinear, non-
monotone function classes. In particular, we investigate the particular pathology
known as spin-flip symmetry, which is invariance of a function under comple-
mentation. We show that the voting algorithm fails on every spin-flip symmetric
function with probability exponentially close to one, irrespective of the popu-
lation size. This issue arises for the Voting Algorithm because it constructs its
population by performing tournaments over a uniform distribution of the search
space. Thus, even for relatively simple functions, the event the tournament win-
ner points in the direction of a global optimum x� is obscured by the equally
likely event that a complementary string pair points in the direction of x�. To
address this, we create a technique that effectively breaks the spin-flip symmetry
in the space so that the distribution is no longer uniform over the space, but will
prefer certain strings over their complements. One important feature that such
a technique must exhibit is that it has no prior knowledge of the location of the
global optima.

The concept of symmetry breaking for search algorithms arose first from the
constraint programming community [2]. In this framework, the set of symmetries
of a propositional formula corresponds to the set of permutations on variables
that belong to the automorphism group of the formula. In other words, the
symmetries are exactly the variable permutations to which the truth of the
formula is invariant. Symmetry breaking in this context is a method of adding
extra constraints that eliminate such symmetries, and thus reduce the decision
tree complexity, which can be used as a technique in constraint solvers [16,
18]. The effect of symmetry breaking constraints on local search algorithms was
investigated by Prestwich and Roli [15] who empirically demonstrated that the
extra constraints have a detrimental effect on local search by increasing the
relative size of basins of attraction for suboptimal solutions, while simultaneously
decreasing the relative size of basins of attraction for optimal solutions.

In the related context of evolutionary optimization, Naudts and Naudts [12]
examined the presence of symmetry in fitness functions for genetic algorithms.
They investigated a classical model of magnetism for which discrete spin-value
orientations are assigned to each site of a lattice. The energy function of this
model (called the Ising model [10]) exhibits spin-flip symmetry, which is an
invariance to the inversion of spin-values. They found empirically that the sim-
ple genetic algorithm (SGA) is incapable of solving the spin-flip symmetric one-
dimensional Ising model. Symmetry breaking techniques, involving systemat-
ically fixing spin orientations [13], can solve the one-dimensional problem in
quadratic time.

Symmetry Breaking for Voting Mechanisms 187

One challenge for traditional crossover on spin-flip symmetric functions comes
from the presence of synchronization problems [9]. Loosely speaking, synchro-
nization problems arise from attempting to recombine two relatively fit individ-
uals with complementary building blocks. In this situation, a search heuristic
must rely on something other than recombination, such as niching, fitness shar-
ing, or specialized mutation operators. Naudts and Naudts [12] also identified
difficult configurations that a pure hill-climber would have trouble navigating.

The interest in the effect of spin-flip symmetry on hardness was also picked
up by the theory community. Fischer [5] proved that despite the perceived hard-
ness of the one-dimensional Ising model, the two-dimensional Ising model (where
the underlying structure is a toroidal lattice) can be solved by the Metropolis
algorithm in polynomial time. Briest et al. [1] also studied the two-dimensional
Ising model, as well as a number of other structures including cliques connected
by bridge edges and the hypercubic lattice. Fischer and Wegener [6] studied the
one-dimensional Ising model more closely and proved that pure hill-climbing or
mutation strategies such as RLS and the (1 + 1) EA can solve it in expected
cubic time. They also considered a number of other techniques such as the Gene
Invariant Genetic Algorithm [3] and fitness sharing. Sudholt [20] investigated
the efficacy of crossover on the Ising model with an underlying tree topology.
He proved that a mutation-only evolutionary algorithm with constant popula-
tion size needs exponential time to solve this problem due to the presence of
synchronization problems. On the other hand, a (2 + 2) GA employing two-
point crossover and fitness sharing solves the problem in expected time O(n3).
Sutton [21] studied a set of spin-flip symmetric functions that are computation-
ally easy while problematic for stochastic hill-climbing algorithms like the (1 +
1) EA.

The remainder of this paper is structured as follows. In the next section
we describe the Voting Algorithm and provide some background and discuss
intractability of symmetric functions. In Sect. 3 we present a symmetry-breaking
strategy and prove efficient bounds for a number of problems. In Sect. 4 we
report experiments that study the tightness of the bounds and the dependence
of success on other problem parameters. We conclude the paper in Sect. 5.

2 Search by Majority Vote

Majority vote crossover was introduced in 1994 as occurrence-based scanning
by Eiben, Raué and Ruttkay [4]. In this technique, a set of μ > 2 parents
{x(1), x(2), . . . , x(μ)} ⊆ {0, 1}n produce an offspring y where the i-th position yi is
chosen deterministically by the majority function yi = Maj(x(1)

i , x
(2)
i , . . . , x

(μ)
i),

where Maj(b1, . . . , bm) chooses the element of {0, 1} that occurs most frequently
among its arguments1. The idea behind the design of this operator is that good
values are more prevalent in a set of parents selected by fitness.

This crossover was analyzed as a component in traditional evolutionary algo-
rithms by Friedrich et al. [7] on the Jump benchmark function, and instances
1 The tie-breaking rule, when m is even, depends on the setting.

188 P. Sankineni and A. M. Sutton

of the vertex cover problem. Whitley et al. [22] showed that Jump with gap
O(log n) could be solved in linear time by producing three parents for majority
vote crossover using next ascent hill-climbing.

Motivated by this work, Rowe and Aishwaryaprajna [17] introduced the Vot-
ing Algorithm, listed in Algorithm 1, that works by first generating a population
of size μ by conducting μ repeated rounds of tournament selection applied to
two parents generated uniformly at random. At the end of the μ rounds, a single
output string is generated by majority vote. Note that this algorithm is not a tra-
ditional evolutionary algorithm employing majority crossover, but a time-limited
sampling procedure that applies majority crossover to all of its samples.

Algorithm 1: Voting Algorithm
1 Let p ← (0, . . . , 0);
2 repeat μ times
3 Let x, y ∈ {0, 1}n be chosen uniformly at random;
4 if f(x) > f(y) then p ← p + x;
5 else p ← p + y;

6 for 1 ≤ i ≤ n do
7 if pi = μ/2 then choose zi uniformly at random from {0, 1};
8 else zi ← [pi > μ/2];

9 return z;

The strong performance of the Voting Algorithm on OneMax and OneMax
with additive noise comes from the fact that tournament selection can reveal a
clear signal in the sampling process that ensures the majority vote is in the right
direction. This is also the case with Jump. In fact, for gaps of (1 − ε)n, where
1/2 < ε < 1 is a constant, the algorithm is unable to even detect a difference
between OneMax and Jump as it is extremely unlikely to even generate a string
within the gap in polynomial time.

2.1 Functions with Spin-Flip Symmetry

Spin-flip symmetric functions pose a particular challenge to Algorithm 1,
because, in contrast to simple hill-climbing algorithms that follow a local fit-
ness signal, the Voting Algorithm relies on a majority of the population to agree
on which part of the space the target for optimization lies. If the function has
spin-flip symmetry, then any string in {0, 1}n has the same probability of win-
ning the tournament in lines 4 and 5 (and hence participating in the vote) as
its complement. The intuition is that each member of the population has an
equal chance to vote for a global optimum or its binary complement, which
obscures the signal toward either. We formalize this in the following theorem.
Unfortunately, our proof only works for sublinear population sizes. However, we
conjecture that the claim would actually hold for any population size.

Symmetry Breaking for Voting Mechanisms 189

Theorem 1. Let f be a spin-flip symmetric function with a polynomial number
of global optima and let 0 < ε < 1. Then for any population size μ = O(n1−ε),
with probability 1 − o(1), the Voting Algorithm fails to find an optimal solution.

Proof. Without loss of generality, suppose x� = 1n is a global optimum of f .
We define the sequence of random variables X1,X2, . . . , Xμ, where Xt is the
Hamming weight of the winner of the tournament in lines 4 and 5 of Algorithm 1.

The Hamming weight is the number of ones in the bit string. By Chernoff
bounds, the probability that the Hamming weight of a binary string drawn
uniformly at random from {0, 1}n exceeds n/2+

√
n log n is at most e− 2 log2 n

3 . Let
E be the event that no string in the population bears a Hamming weight of larger
than n/2+

√
n log n. Taking a union bound over all 2μ random strings generated

during the execution of the algorithm, Pr(E) ≥ 1− 2μe− 2 log2 n
3 = 1− e−Ω(log2 n).

By spin-flip symmetry, for any string x ∈ {0, 1}n, the probability that x is
the winner of the tournament is equal to the probability that the binary com-
plement x̄ is the winner of the tournament. Therefore, for all k ∈ {0, 1,n/2},
define Pr(Xt = n/2 − k) = Pr(Xt = n/2 + k) =: Pk. Thus we have
E[Xt] =

∑n/2
k=0 ((n/2 − k) + (n/2 + k)) Pk = n/2, and setting X :=

∑μ
t=1 Xt,

E[X] = nμ/2. Conditioning on E , we have

Pr(X ≥ nμ/2 + n | E) ≤ exp
(−2n

μ log2 n

)

by Hoeffding’s inequality.
But X ≥ nμ2 + n is a necessary condition for zi = 1 for all i ∈ {1, 2, . . . , n},

since for this to occur, we must have every pi > μ/2 , X =
∑n

i=1 pi and μ =
O(n1−ε). Therefore, the probability that the global optimum 1n is generated is

at most e
−Ω

(
n

µ log2 n

)
+ 1 − Pr(E). Taking a union bound over all of the global

optima of f completes the proof. ��

3 A Symmetry-Breaking Strategy

Theorem 1 demonstrates that the voting mechanism can fail to optimize func-
tions with spin-flip symmetry when the sample size is too low. Moreover, we
conjecture that this result can be extended to higher sample sizes. The failure
seems to arise because the fitness-distance coupling is perfectly mirrored every-
where in the search space. The consequence is that information about distance
to a global optimum is canceled out. In order to overcome this effect, it is nec-
essary to implement a symmetry-breaking strategy to introduce a bias toward
a global optimum or its complement. Moreover, the strategy must not rely on
information about the true location of a global optimum. We take advantage of
the following symmetry property.

Property 1. Let f : {0, 1}n → R be a function with spin-flip symmetry. Then
there is a global optimum x� ∈ {0, 1}n with x�

1 = 1.

190 P. Sankineni and A. M. Sutton

This property follows from the invariance of f under complementation. In the
case that the first bit of a global optimum x�

1 = 0, by spin-flip symmetry f(x�) =
f(x�), so x� is also globally optimal, and x�

1 = 1. The modified voting algorithm
is listed in Algorithm 2. The only modification occurs after the parent generation
step by complementing a generated string if it contains a 0 in the first element.

Algorithm 2: Voting Algorithm with Symmetry Breaking
1 Let p ← (0, . . . , 0);
2 repeat μ times
3 Let x, y ∈ {0, 1}n be chosen uniformly at random;
4 if x1 = 0 then x ← x;
5 if y1 = 0 then y ← y;
6 if f(x) > f(y) then p ← p + x;
7 else p ← p + y;

8 for 1 ≤ i ≤ n do
9 if pi = μ/2 then choose zi uniformly at random from {0, 1};

10 else zi ← [pi > μ/2];

11 return z;

We analyze what properties a spin-flip symmetric function f must have so
that Algorithm 2 could optimize f . Let x� be a global maximum of f such that
x�
1 = 1. We define two indicator functions

1>
x,y :=

{
1 if f(x) > f(y),
0 otherwise.

1=
x,y :=

{
1 if f(x) = f(y),
0 otherwise.

Define the set Q = {(x, y) ∈ {0, 1}n × {0, 1}n : x1 = y1 = 1}. Algorithm 2
generates a pair of candidates by drawing a pair uniformly from Q. For k > 1,
define the set

S�
k := {(x, y) ∈ Q : xk = x�

k, yk
= xk}

to be the pairs of strings that are not equal in the k-th component, but the left
element of the pair is correct with respect to x�. ��
Lemma 1. For any spin-flip symmetric function f with global maximum x�,
suppose there is a bound ξk(n) > 0 such that

1
22n−4

∑

(x,y)∈S�
k

(

1>
x,y − 1>

x,y⊕ek
+

1=
x,y − 1=

x,y⊕ek

2

)

≥ ξk(n),

where ek is the k-th standard basis vector of {0, 1}n and k is an arbitrary index
in {2, ..., n}. The ⊕ denotes the component-wise exclusive-or operation. Then the
string z returned by Algorithm 2 is correct (with respect to x�) in position k with
probability Pr(zk = x�

k) ≥ 1 − exp
(−μξk(n)2/2

)
.

Symmetry Breaking for Voting Mechanisms 191

Proof. In a tournament decided by f , the element x of the pair (x, y) wins with
probability one if f(x) > f(y) and with probability 1/2 if f(x) = f(y). Thus,

Pr(x wins | xk = x�
k, yk
= xk) =

1
22n−4

∑

(x,y)∈S�
k

(

1>
x,y +

1=
x,y

2

)

,

since
∣
∣
∣S

�
k

∣
∣
∣ = (2(n−2))2. Similarly,

Pr(x wins | xk = yk = x�
k) =

1
22n−4

∑

(x,y)∈S�
k

(

1>
x,y⊕ek

+
1=

x,y⊕ek

2

)

.

By this, and the assumption in the claim,

Pr(x wins | xk = x�
k, yk
= xk) − Pr(x wins | xk = yk = x�

k) ≥ ξk(n).

Since f is spin-flip symmetric, Pr(x wins | xk = yk = x�
k) = 1/2, therefore

Pr(x wins | xk = x�
k, yk
= xk) ≥ 1

2
+ ξk(n).

The remainder of the proof is similar to the proof that the original Voting Algo-
rithm succeeds on OneMax [17]. In particular, we appeal to Bayes’ Theorem
and the fact that Pr(xk = x�

k) = Pr(x wins) = 1/2.

Pr(xk = x�
k | x wins) =

Pr(x wins | xk = x�
k) Pr(xk = x�

k)

Pr(x wins)
= Pr(x wins | xk = x�

k)

=
1

2
Pr(x wins | xk = x�

k, yk �= xk) +
1

2
Pr(x wins | xk = yk = x�

k)

≥ 1

2
+ ξk(n)/2. (1)

At the end of the main loop at line 7 of Algorithm 2, E[pk] ≥ μ
2 + μξk(n)/2.

The probability that zk is correct in the final string z can be bounded by Hoeffd-
ing’s inequality. Pr(zk
= x�

k) = Pr(pk ≤ μ/2) ≤ exp
(−μξk(n)2/2

)
. ��

3.1 Generalized TwoMax

Perhaps the simplest function exhibiting spin-flip symmetry is the TwoMax
function [8,14], the generalized form of which can be defined as follows. Given
an arbitrary string z ∈ {0, 1}n, TwoMaxz(x) = max{d(x, z), n − d(x, z)}.

Here d(x, z) denotes the Hamming distance between strings x and y. There
are exactly two global optima for the TwoMax function: z and its complement z.

Theorem 2. For any μ ≥ 8π2(c + 1)n2 ln n, Algorithm 2 correctly finds an
optimum of generalized TwoMaxz with probability at least 1 − n−c.

192 P. Sankineni and A. M. Sutton

Proof. Let k > 1 be an arbitrary index. Without loss of generality, we assume
the TwoMaxz target is z = x� = 1n. By this assumption, for any (x, y) ∈ S�

k ,
(y ⊕ ek)k − yk = 1. Moreover, for any x ∈ {0, 1}n, designating TwoMaxz as f ,
if f(x)
= (n + 1)/2, then |f(x) − f(x ⊕ ek)| = 1 (otherwise it is zero).

For any pair of strings (x, y) ∈ S�
k , we define the quantity

ψk (x, y) := 1>
x,y − 1>

x,y⊕ek
+

1=
x,y − 1=

x,y⊕ek

2
∈ {−1/2, 0, 1/2}. (2)

Note that ψk (x, y) ∈ {−1/2, 0, 1/2} since ψk (x, y) = 1/2 if and only if (a)
f(x) = f(y) and f(x) < f(y ⊕ ek), or (b) f(x) > f(y) and f(x) = f(y ⊕ ek).
Case (a) occurs only when f(x) = |y|1, and case (b) only when f(x) = |y|1 + 1.
Similarly, ψk (x, y) = −1/2 if and only if (c) f(x) = f(y) and f(x) > f(y⊕ek), or
(d) f(x) < f(y) and f(x) = f(y⊕ek). Case (c) occurs only when f(x) = n−|y|1,
and case (d) when f(x) = n − |y|1 − 1.

To bound ξk(n), it is helpful to partition the search space into sets Li accord-
ing to fitness value. Denote by Li = |{x ∈ {0, 1}n : x1 = xk = 1, f(x) = i}| for
i ∈ {�n/2, . . . , n}. Then2

Li =
(

n − 2
i − 2

)

+
(

n − 2
i

)

, for i > n/2, and Ln/2 =
(

n − 2
n/2

)

, when n is even.

This follows from the fact that, fixing x1 = xk = 1, we can either choose the
remaining i − 2 ones or choose i zeros among the n − 2 free positions. If i = n/2
for even n, there are exactly n/2 ways to choose the remaining positions.

We explicitly calculate the sum of ψk (x, y) over elements (x, y) ∈ S�
k where

f(x) = i by multiplying the count Li of elements with fitness value i by the
number of different ways to construct cases (a)–(d). In particular, since y1 = 1
and yk = 0 are fixed, there are exactly

(
n−2
j−1

)
ways to construct a y so that

|y|1 = j. For any f(x) = i ≥ �n/2, ∑
(x,y)∈S�

k : f(x)=i ψk (x, y) is equal to

Li

2

⎛

⎜
⎜
⎜
⎝

(
n − 2
i − 1

)

︸ ︷︷ ︸
case (a)

+
(

n − 2
i − 2

)

︸ ︷︷ ︸
case (b)

−
(

n − 2
(n − i) − 1

)

︸ ︷︷ ︸
case (c)

−
(

n − 2
(n − i − 1) − 1

)

︸ ︷︷ ︸
case (d)

⎞

⎟
⎟
⎟
⎠

=
Li

2

((
n − 2
i − 2

)

−
(

n − 2
i

))

=
1
2

(
n − 2
i − 2

)2

− 1
2

(
n − 2

i

)2

. (3)

Note that when n is even,
(

n−2
n/2−2

)
=

(
n−2
n/2

)
. Furthermore, cases (b) and (c)

cannot occur since we require f(y) ≥ n/2 and f(y ⊕ ek) ≥ n/2. Thus, when n is
even and f(x) = n/2,

2 We implicitly use the convention that
(

a
b

)
= 0 for a < b.

Symmetry Breaking for Voting Mechanisms 193

∑

(x,y)∈S�
k : f(x)=n

2

ψk (x, y) =
1
4
Ln/2

⎛

⎜
⎜
⎜
⎝

(
n − 2

n/2 − 1

)

︸ ︷︷ ︸
case (a)

−
(

n − 2
n/2

)

︸ ︷︷ ︸
case (d)

⎞

⎟
⎟
⎟
⎠

=
Ln/2Cn/2−1

4
,

(4)
where Cn is the n-th Catalan number.

Rewriting the sum over indicator functions by summing over all fitness values
for f(x), we obtain

∑

(x,y)∈S
�
k

ψk (x, y) =
1

2

n∑

i=�n/2�

((n − 2

i − 2

)2

−
(n − 2

i

)2)
+

[n ≡ 0 mod 2]Ln/2Cn/2−1

4
,

by (3) and (4), where we have used [·] to denote the Iverson bracket. The sum
telescopes, hence

≥ 1
2

((
n − 2
�n/2�

)2

+
(

n − 2
�n/2� − 1

)2
)

≥ 1
2

(
4n/2−1

√
πn

)2

=
4n−2

2πn
=: 22n−4ξk(n),

where the final inequality follows from Stirling’s formula. Applying Lemma 1,
the probability that zk is correct in the final string z is bounded as Pr(zk = 1) ≥
1 − exp

(− 2μ
16π2n2

) ≥ 1 − n−(c+1). Taking a union bound over all n − 1 positions
k > 1 completes the proof. ��

3.2 Satisfiability Problems

We now consider special cases of the propositional satisfiability problem (SAT)
that exhibit spin-flip symmetry. In the classical propositional satisfiability prob-
lem, we have a propositional formula F constructed as a conjunction of disjunc-
tive clauses over a set of Boolean variables. Another family of SAT instances is
the conjunction of XOR clauses, which are clauses containing an exclusive dis-
junction of literals. XOR clauses are useful for describing cryptographic prim-
itives for applying SAT solvers to problems in cryptography [19]. When every
clause in the formula is an exclusive disjunction of k literals, the problem is
called k-XOR-SAT. Deciding the satisfiability of a k-XOR-SAT formula is not
NP-complete, as it can be expressed as solving a system of linear equations
over a finite field, and resolved with Gaussian elimination. If k is even, then the
objective function counting the number of satisfied clauses is spin-flip symmetric
because the truth of each XOR clause containing an even number of literals is
invariant to complementation.

We define an infinite family of satisfiable 2-XOR-SAT formulas {F xor
i }i∈N\{1}

as F xor
n :=

∧
i∈[n]

∧
j∈[i−1] ((xi ⊕ ¬xj) ∧ (¬xi ⊕ xj)). The formula is constructed

in such a way that it is always satisfiable by both 1n and 0n.
The fitness of an individual f : {0, 1}n → N to F xor

n is the number f(x)
of clauses in that are satisfied by the string x. Note that f exhibits spin-flip
symmetry.

194 P. Sankineni and A. M. Sutton

Not-all-equal 3-satisfiability (3-NAE-SAT) is a variant of Boolean 3-satisfi-
ability (3-SAT) in which each clause is a disjunction of three literals. 3-NAE-SAT
requires the three truth values in each clause are not all equal to each other: at
least one is true, and at least one is false. A clause in which all three literals
are true would be considered unsatisfied in 3-NAE-SAT (unlike in 3-SAT, where
such a clause would be satisfied). NAE-SAT is particularly useful in problem
reductions, and is used for NP-completeness proofs for classes of problems with
similar symmetry [11, Section 5.3.1].

Similar to 2-XOR-SAT, we define an infinite family of satisfiable 3-NAE-SAT
formulas as {F nae

3 , F nae
4 , . . .} as follows. We define the set of all 3-CNF clauses

on the variables u, v, w with only one negated literal as C
(1)
u,v,w := (¬u ∨ v ∨ w) ∧

(u ∨ ¬v ∨ w) ∧ (u ∨ v ∨ ¬w).
Similarly, we define the set of all 3-CNF clauses on the variables u, v, w with

only two negated literals as C
(2)
u,v,w := (¬u∨¬v∨w)∧(¬u∨v∨¬w)∧(u∨¬v∨¬w).

A 3-NAE-SAT formula is constructed as F nae
n :=

∧
i<j<k

(
C

(1)
xi,xj ,xk ∧ C

(2)
xi,xj ,xk

)
.

Note that again, F nae
n is constructed in such a way that both 1n and 0n are

satisfying assignments. Furthermore the fitness function counting the number of
satisfied clauses exhibits spin-flip symmetry since the NAE satisfiability of any
k clause is invariant to assignment complementation.

Lemma 2. For any k ∈ {2, . . . , n}, the fitness functions for both F xor
n and F nae

n

yield a bound on the tournament probability in the claim of Lemma 1, which is
ξk(n) = Ω(1/n).

Proof. For any x ∈ {0, 1}n, x satisfies exactly 2
(
n
2

)−2|x|1 (n − |x|1) = n2+2|x|21−
n(2|x|1 + 1) clauses in F xor

n since there are 2
(
n
2

)
clauses in F xor

n , but any clause
(xi ⊕ ¬xj) is not satisfied if xi = 1 and xj = 0 (similarly, any clause (¬xi ⊕ xj)
is not satisfied if xi = 0 and xj = 1). In the case of the 3-NAE-SAT formulas, an
arbitrary x ∈ {0, 1}n satisfies exactly 6

(
n
3

) − 2|x|1
(
n−|x|1

2

) − 2(n − |x|1)
(|x|1

2

)
=

(n − 2)
(
n2 + |x|21 − n(|x|1 + 1)

)
clauses in F nae

n , since there are 6
(
n
3

)
clauses in

the formula, but a clause containing only true (respectively, false) literals under
x must be subtracted from the count.

Define the set Li := {x : |x|1 = i}. Then it follows that (i) the number of
clauses in F xor

n satisfied by any x ∈ Li is n2+2i2−n(2i+1), and (ii) the number
of clauses in F nae

n satisfied by any x ∈ Li is (n − 2)(n2 + i2 − n(i + 1)). Since
2i2−n(2i+1) = 2(n−i)2−n(2(n−i)+1) and i2−n(i+1) = (n−i)2−n(n−i+1),
Li ∪ Ln−i partitions {0, 1}n into fitness levels.

There are exactly
(
n−2
i−2

)
+

(
n−2

i

)
strings x ∈ {0, 1}n with x1 = xk = 1 on

fitness level Li ∪ Ln−i. For any string y ∈ Lj with y1 = 1 and yk = 0, y ⊕ ek is
in Lj+1. Thus it either jumps up one fitness level, or falls down one fitness level.
We derive an appropriate bound for claim in Lemma 1 as

Symmetry Breaking for Voting Mechanisms 195

1
22n−4

∑

(x,y)∈S�
k

(

1>
x,y − 1>

x,y⊕ek
+

1=
x,y − 1=

x,y⊕ek

2

)

=
1

22n−4

n∑

i=�n/2�
|(Li ∪ Ln−i) ∩ {x : xk = 1}|

×
((

n − 2
i − 2

)

−
(

n − 2
i − 1

)

−
(

n − 2
i

)

+
(

n − 2
i − 2

))

≥ 1
22n−3

[(
n − 2
�n/2

)2

+
(

n − 2
�n/2 − 1

)2
]

= Ω(1/n),

where the final inequality is the same as in the proof of Theorem 2. ��
Setting μ sufficiently large and applying the result of Lemma 2 via a union

bound over all variables proves the following theorem.
Theorem 3. Algorithm 2 with μ = Ω(n2 log n) finds a satisfying assignment to
F xor

n or F nae
n with probability 1 − o(1).

Ideally, we would like to see how the success of Algorithm 2 depends on the
constraint density in random models of F xor

n and F nae
n , but so far have not been

able to do so. Instead, we investigate this dependency empirically in Sect. 4

3.3 Failure Case: 1D Ising Model

The Ising model was originally developed in statistical physics [10], but more
recently developed into a model for studying the behavior of evolutionary algo-
rithms, especially in the presence of spin-flip symmetry. Van Hoyweghen, Gold-
berg and Naudts [8] point out that in the class of spin-flip symmetric functions,
TwoMax and the Ising model are at two extremes. The former can be optimized
by a simple hill-climber, whereas the latter is confounded by a highly neutral
landscape.

The Ising model is defined by a set of variables that correspond to nuclear
magnetic moments, or spins, of a set of sites arranged on a graph structure. Each
variable takes one of two states {−1,+1}, and neighboring spins with the same
value have lower energy than neighbors with opposite values.

Given an undirected graph G = (V,E), the energy of a configuration s ∈
{−1,+1}|V | is given by the Hamiltonian function

H(s) = −∑
(i,j)∈E Jijsisj − ∑|V |

j=1 hjsj ,
where Jij is the interaction between neighboring sites i and j, and hj is an

external magnetic field that interacts with site j. The ground state configuration
is the sequence that minimizes H.

In the context of evolutionary algorithms, one usually ignores the linear term
(e.g., by setting hj = 0), and takes the interactions as Jij = −1/2, and performs
an affine transform from {−1,+1}n → {0, 1} to obtain the quadratic pseudo-
Boolean function

fIsing : {0, 1}n := x �→
∑

(i,j)∈E

(xixj + (1 − xi)(1 − xj)) .

196 P. Sankineni and A. M. Sutton

Note when hj = 0, the maxima of fIsing correspond to the ground states of
H. We will also follow this convention, and consider the maximization of fIsing
rather than the minimization of H.

We consider the one-dimensional Ising model (see Fig. 1), that is, the func-
tion fIsing defined above on an undirected cycle graph G = (V,E) of n nodes,
i.e., V = {1, 2, . . . , n} and E = {(i, j) : i < j} ∪ {(1, n)}. We prove that the bias
toward the ground state solution 1n introduced by Algorithm 2 is not sufficient
to provide information to the majority vote.

x1

x2 x3 x4 x5

x6

x7x8x9x10

Fig. 1. One-dimensional Ising model on 10 sites for a given configuration x =
(1001110110). Shaded sites have spin 1 and unshaded sites have spin 0. Each edge
incident on nodes with opposite spin contributes one violation, so the pictured config-
urations has 6 violations yielding a fitness value fIsing(x) = 4.

Lemma 3. For the 1D Ising model on n vertices, if n is even, then for any odd
index k > 1 it holds that Pr(zk = x�

k = 1) = 1/2.

Proof. We prove the case of k = 3, and note that the proof strategy is similar for
all odd k. We say an edge (i, j) is violated for a length-n binary string x when
xi
= xj . Thus fIsing(x) = n − |{(i, j) ∈ E : (i, j) is violated for x}|. We refer to
a violated edge as a violation.

We show that for a pair (x, y) drawn uniformly at random from the set Q,
Pr(x wins | xk = 1) = 1/2. As with the proof of Lemma 1, we have Pr(x wins |
xk = 1, yk = 0) − Pr(x wins | xk = yk = 1) is equal to

1
22n−4

∑

(x,y)∈S�
k

(

1>
x,y − 1>

x,y⊕ek
+

1=
x,y − 1=

x,y⊕ek

2

)

.

To determine this sum, we count the pairs (x, y) ∈ S�
k for which the inequality

(or equality) of fIsing(x) and fIsing(y) changes when flipping bit k. Note that
fIsing(y) − fIsing(y ⊕ ek) ∈ {−2, 0, 2}, since changing a single bit in y can only
introduce two violations (if yk−1 = yk = yk+1), remove two violations (if yk−1 =
yk+1, but yk−1
= yk), or leave the count of violations unchanged. As k = 3,
violations are only produced by y⊕ek in strings with prefix 1000, and violations
are only removed by y ⊕ ek in strings with prefix 1101.

Symmetry Breaking for Voting Mechanisms 197

Fix x = (1 . . .). We claim that the sum
∑

y : y1=1,yk=0
1>

x,y −1>
x,y⊕ek

is equal to

|{y = (1101 . . .) : f(y) = f(x) − 2}| − |{y = (1000 . . .) : f(y) = f(x)}|

=
(

n − 3
n − f(x)

)

−
(

n − 3
n − f(x) − 1

)

(5)

The positive terms in the LHS of the sum in Eq. (5) correspond to strings y
with f(x) > f(y) but f(x) ≤ f(y ⊕ ek). Such strings have more violations
than x, but must have no more violations than x once the k-th bit is flipped.
Since the only strings whose violations are reduced when flipping the k-th bit
from 0 to 1 must contain the prefix (1101 . . .), this set of strings corresponds to
{y = (1101 . . .) : f(y) = f(x) − 2}, i.e., have exactly n − f(x) + 2 violations.
There are two violations already coming from the length-4 prefix of these strings.
Hence we enumerate the length-(n − 4) suffixes that contain exactly n − f(x)
violations. There are

(
n−3

n−f(x)

)
such suffixes.

The negative terms of the sum in Eq. (5) correspond to strings y with f(x) ≤
f(y) but f(x) > f(y ⊕ ek). Since the fitness of y can only be decreased by
introducing violations with changing the k-th bit from 0 to 1, this set can be
described as {y = (1000 . . .) : f(y) = f(x)}. Such strings have exactly one
violation in the length-4 prefix, thus we count strings of length n − 4 with n −
f(x) − 1 violations.

Similarly, we claim the sum
∑

y : y1=1,yk=0
1=

x,y − 1=
x,y⊕ek

is equal to

(|{y = (1101 . . .) : f(y) = f(x)}| + |{y = (1000 . . .) : f(y) = f(x)}|)
− (|{y = (1101 . . .) : f(y) = f(x) − 2}| + |{y = (1000 . . .) : f(y) = f(x) + 2}|)

=

(
n − 3

n − f(x) − 2

)

+

(
n − 3

n − f(x) − 1

)

−
(

n − 3

n − f(x)

)

−
(

n − 3

n − f(x) − 3

)

=

(
n − 3

f(x) − 1

)

+

(
n − 3

n − f(x) − 1

)

−
(

n − 3

n − f(x)

)

−
(

n − 3

f(x)

)

. (6)

The positive terms of the sum in Eq. (6) correspond to strings y with f(x) = f(y)
but f(x)
= f(y⊕ek). Such strings must have n−f(x) violations. If y = (1101 . . .),
two violations already occur in the prefix, so we enumerate the

(
n−3

n−f(x)−2

)
length-

(n − 4) suffixes with n − f(x) − 2 violations. If y = (1000 . . .), one violation
already occurs in the prefix, so we count the

(
n−3

n−f(x)−1

)
length-(n − 4) suffixes

with n − f(x) − 1 violations. The negative terms are accounted for similarly.
Let L2i = |{x : x1 = xk = 1 and f(x) = 2i}| denote the count of strings

x = (1x21 . . .) on fitness level 2i. For these strings, either x = (111 . . .) or
x = (101 . . .). In the first case, the number of strings on fitness level 2i is equal
to the number of strings of length n−3 starting at xk+1 with n−2i violations. In
the second case, we must account for the two violations already in the length-3
prefix. It follows that

L2i =
(

n − 2
n − 2i

)

+
(

n − 2
n − 2(i + 1)

)

=
(

n − 2
n − 2i

)

+
(

n − 2
2i

)

.

198 P. Sankineni and A. M. Sutton

Combining (5) and (6),
∑

(x,y)∈S�
k

(
1>

x,y − 1>
x,y⊕ek

+
1=
x,y−1=

x,y⊕ek

2

)
is exactly

1
2

n/2∑

i=0

L2i

((
n − 3
n − 2i

)

−
(

n − 3
n − 2i − 1

)

+
(

n − 3
2i − 1

)

−
(

n − 3
2i

))

= 0,

since the i-th term of the sum is the negative of the (n/2 − i)-th term. We
conclude that Pr(x wins | xk = 1, yk = 0) = Pr(x wins | xk = yk = 1). By
spin-flip symmetry, Pr(x wins | xk = yk = 1) = 1/2, and by the law of total
probability, Pr(x wins | xk = 1) = 1/2. Applying Bayes’ Theorem, Pr(xk = 1 |
x wins) = 1/2. The value of pk at the end of the loop at line 7 of Algorithm 2,
is binomially distributed with median μ/2, which completes the proof. ��

Thus for the 1D Ising model, there is no bias toward correct values, and the
substring matches an optimal solution only with exponentially low probability.
This is captured as follows.

Theorem 4. Let n be an even positive integer. For any μ, Algorithm 2 fails to
generate an optimal solution for the 1D Ising model on n vertices with probability
at least 1 − 2−n/2.

Proof. The two optimal solutions for the 1D Ising model are 1n and 0n. Let z be
the string generated by Algorithm 2. Since Algorithm 2 only generates strings
with x1 = 1, Pr(z = 0n) = 0. By Lemma 3, for any odd k > 1, Pr(zk = 1) = 1/2.
Thus Pr(z = x�) ≤ Pr

(⋂
k∈{3,5,...,n−1} zk = 1

)
= 2−n/2. ��

The pathology of the Ising model search space is that the Hamming weight
of the candidate solutions do not give strong hints to the location of global
optima. In addition to spin-flip symmetry, there are vast classes of equal fitness
that correspond to strings with the same count of zero blocks. One technique
to overcome this would be to add a so-called external field to the Ising model
energy function. In this case, the energy of the system would have an additional
linear term to break the symmetry, i.e., fIsing(x) +

∑
i xi. With the additional

term, the spin-flip symmetry is also broken, and Algorithm 1 will succeed for
sufficiently large μ, since the fitness is now biased by Hamming weight. How-
ever, this leverages the fact that 1n is now the unique optimum, and is not as
interesting from the perspective of randomized optimization heuristics.

4 Experiments

To investigate the tightness of the runtime bounds and study the effect of con-
straint density on the performance of Algorithm 2 on satisfiability problems,
we report the results of a number of simulations. For generalized TwoMax,
we measure the empirical cumulative distribution of solved cases as a function
of population size μ. For each value of μ, we performed 100 trials of uniformly
generating a random hidden string, and counting the number of trials in which

Symmetry Breaking for Voting Mechanisms 199

Algorithm 2 was able to locate the string or its complement. Figure 2a reports
the result of this experiment. Empirically, we see that already all of the trials
are solved well below the population size required by Theorem 2. For example,
to obtain a success probability of at least 1/2 when n = 100, Theorem 2 requires
μ ≈ 4.18 × 106 (i.e., by setting c = ln 2/ ln 100 ≈ 0.15).

0 2 4
/106

0

0.5

1

μ

Fr
ac
ti
on

so
lv
ed

n = 100
n = 150
n = 200
n = 250
n = 300

(a) Generalized TwoMax vs pop. size μ.

0 0.5 1

0

0.5

1

ρ

F r
ac
ti
on

so
lv
ed

XOR n = 50;µ = 7 · 104

1960 ≤ m ≤ 2450

XOR n = 100;µ = 2 · 105

100 ≤ m ≤ 9990

NAE n = 20;µ = 104

440 ≤ m ≤ 6840

NAE n = 50;µ = 5 · 104

2400 ≤ m ≤ 117600

(b) SAT formulas vs. constraint density.

Fig. 2. Runtime distribution for the Voting Algorithm with Symmetry Breaking (Algo-
rithm 2) on various problem instances.

For the SAT problems, we generate random XOR- or NAE-SAT formula
on n variables and m clauses conditioned on satisfiability by a randomly cho-
sen assignment. This is identical to the so-called random planted distribution
over formulas. To investigate the effect of constraint density as captured by the
relative number of clauses to variables, we fix the population size μ and vary
the clause parameter m for the random planted distributions. For each value
of m, we generate 100 random formulas and record whether Algorithm 2 finds
any optimal solution. The proportion solved by the algorithm as a function of
constraint density ρ for each class is plotted in Fig. 2b, and the details of the
generated formula classes are listed in the plot legend. Note that we calculate
total constraint density as a ratio of selected clauses to total clauses in F xor

n or
F nae

n . Thus for XOR-2-SAT, ρ = m
n(n−1) and for NAE-3-SAT, ρ = m

n(n−1)(n−2) .
We mention here that due to the large number of clauses for high-density for-
mulas (especially for NAE-SAT), we are restricted to smaller values of n in our
experiments. There is a sharp transition from unsolved to solved for fixed μ
on XOR-2-SAT formulas. On NAE-3-SAT formulas, the transition is smoother.
This phenomenon illustrates the rate at which the constraint density of formulas
provides enough signal for Algorithm 2 to be successful.

200 P. Sankineni and A. M. Sutton

5 Conclusion

We studied the effect of spin-flip symmetry on an algorithm that employs major-
ity vote crossover on a population constructed by binary tournament selection
from {0, 1}n. We rigorously proved that the algorithm fails to solve spin-flip
symmetric functions with at most 2o(n) global optima. The presence of symme-
try convolutes the selective advantage of tournament winners by the existence of
their equally fit complements, and this is problematic for majority vote crossover.

To ameliorate this problem, we introduced a symmetry breaking technique
that does not require a priori knowledge of the global optimum. It operates by
sampling strings uniformly from the set with a single position fixed. We proved
that this small modification results in a O(n2 log n) performance guarantee on
easy spin-flip symmetric functions such as generalized TwoMax and variants
of propositional satisfiability. We also proved that the technique cannot handle
the highly neutral landscape of the one-dimensional Ising model.

References

1. Briest, P., et al.: The Ising model: simple evolutionary algorithms as adaptation
schemes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 31–40. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 4

2. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. Proc. KR 96(1996), 148–159 (1996)

3. Culberson, J.: Genetic invariance: a new paradigm for genetic algorithm design.
Technical Report TR92-02, University of Alberta, June 1992

4. Eiben, A.E., Raué, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recom-
bination. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS,
vol. 866, pp. 78–87. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58484-6 252

5. Fischer, S.: A polynomial upper bound for a mutation-based algorithm on the
two-dimensional ising model. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102,
pp. 1100–1112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24854-5 108

6. Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recom-
bination. Theor. Comput. Sci. 344(2–3), 208–225 (2005)

7. Friedrich, T., Kötzing, T., Krejca, M.S., Nallaperuma, S., Neumann, F., Schirneck,
M.: Fast building block assembly by majority vote crossover. In: Proceeding of
GECCO 2016 (2016)

8. Hoyweghen, C.V., Goldberg, D.E., Naudts, B.: From TwoMax to the Ising model:
easy and hard symmetrical problems. In: Proceeding of GECCO (2002)

9. Hoyweghen, C.V., Naudts, B., Goldberg, D.E.: Spin-flip symmetry and synchro-
nization. Evol. Comput. 10(4), 317–344 (2002)

10. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31(1),
253–258 (1925)

11. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press,
Oxford (2011)

https://doi.org/10.1007/978-3-540-30217-9_4
https://doi.org/10.1007/3-540-58484-6_252
https://doi.org/10.1007/3-540-58484-6_252
https://doi.org/10.1007/978-3-540-24854-5_108
https://doi.org/10.1007/978-3-540-24854-5_108

Symmetry Breaking for Voting Mechanisms 201

12. Naudts, B., Naudts, J.: The effect of spin-flip symmetry on the performance of
the simple GA. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 67–76. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0056850

13. Naudts, B., Verschoren, A.: SGA search dynamics on second order functions. In:
Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997.
LNCS, vol. 1363, pp. 207–221. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0026602

14. Pelikan, M., Goldberg, D.E.: Genetic algorithms, clustering, and the breaking of
symmetry. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 385–
394. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3 38

15. Prestwich, S., Roli, A.: Symmetry breaking and local search spaces. In: Barták,
R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 273–287. Springer,
Heidelberg (2005). https://doi.org/10.1007/11493853 21

16. Puget, J.: Symmetry breaking revisited. Constraints 10(1), 23–46 (2005)
17. Rowe, J.E.: Aishwaryaprajna: the benefits and limitations of voting mechanisms

in evolutionary optimisation. In: Proceeding of FOGA (2019)
18. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-

lems. Discrete Appl. Math. 155(12), 1539–1548 (2007)
19. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

20. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Pro-
ceeding of GECCO (2005)

21. Sutton, A.M.: Superpolynomial lower bounds for the (1+1) EA on some easy com-
binatorial problems. Algorithmica 75(3), 507–528 (2016)

22. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and
exploitation without mutation: solving the Jump function in Θ(n) time. In: Auger,
A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.)
PPSN 2018. LNCS, vol. 11102, pp. 55–66. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99259-4 5

https://doi.org/10.1007/BFb0056850
https://doi.org/10.1007/BFb0056850
https://doi.org/10.1007/BFb0026602
https://doi.org/10.1007/BFb0026602
https://doi.org/10.1007/3-540-45356-3_38
https://doi.org/10.1007/11493853_21
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-319-99259-4_5
https://doi.org/10.1007/978-3-319-99259-4_5

A Heuristic Algorithm for School Bus
Routing with Bus Stop Selection

Monique Sciortino(B), Rhyd Lewis, and Jonathan Thompson

School of Mathematics, Cardiff University, Cardiff CF24 4AG, Wales
{sciortinom,lewisr9,thompsonjm1}@cardiff.ac.uk

Abstract. In this paper a heuristic algorithm is proposed for a school
bus routing problem which is formulated as a capacitated and time-
constrained open vehicle routing problem with a homogeneous fleet and
single loads. The algorithm determines the selection of bus stops from
a set of potential stops, the assignment of students to the selected bus
stops, and the routes along the selected bus stops. Its goals are to min-
imize the number of buses used, the total route journey time and the
student walking distances. It also aims at balancing route journey times
between buses. The performance of the algorithm is evaluated on a set
of twenty real-world problem instances and compared against solutions
achieved by a mixed integer programming model. Reported results indi-
cate that the heuristic algorithm finds high-quality solutions in very short
amounts of computational time.

Keywords: School bus routing · Bus stop selection · Local search ·
Heuristics · Set covering · Mixed integer programming

1 Introduction

The school bus routing problem (SBRP) is a combinatorial optimization problem
which was first investigated over 40 years ago [18]. In various countries, school
bus transportation forms part of the government’s administrative mechanism
and is funded through local taxes. Students who live at least a certain distance
from the school they attend are entitled to free or subsidized transport to and
from school. In Malta, for example, school transport is provided free of charge
to all state school students residing at least 1km from their school. Additional
restrictions are also typically imposed on the distance that students are expected
to walk between their homes and their designated bus stops.

For the academic year 2019–2020, the Maltese government announced that
e27 million was to be allocated to provide free transport for over 26,000 students.
Given the large amount of funds being invested, it is crucial that governments
make efforts to minimize the total cost required to provide these services. One
of the highest priorities is to limit the number of buses used, since each bus
has an acquisition cost and a driver employment cost. Moreover, it is critical
to minimize operational costs by ensuring that route journey times are kept as
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 202–218, 2021.
https://doi.org/10.1007/978-3-030-72904-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-72904-2_13

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 203

short as possible. This also promotes positive well-being of students, particularly
younger ones. In Wales, for example, a maximum 45 min and 60 min journey
time is recommended for primary and secondary school pupils, respectively.

The SBRP falls into a larger class of problems called vehicle routing problems
(VRPs). These involve designing optimal delivery or collection routes from one or
more depots to a set of geographically scattered customers, subject to a variety
of side constraints [15]. Typical constraints in VRPs include maximum capacity
restrictions on vehicles (capacitated VRP (CVRP)) and maximum time/distance
restrictions on routes. The CVRP first appeared over six decades ago in the
seminal paper by Dantzig and Ramser [9]. Sariklis and Powell [21] proposed
the open VRP (OVRP) in which routes do not start and end at a depot (as in
the classical VRP), but rather either start or end at a depot. The SBRP can
be modelled as a capacitated and time/distance-constrained OVRP (e.g. [4]). A
taxonomic review of the VRP and its variants is presented by Braekers et al. [6].

Desrosiers et al. [10] decompose the SBRP into five subproblems. In the first
subproblem, data preparation, a network containing the schools, student resi-
dences, potential bus stop locations and bus depots is generated. Information
on the number of students at each residence, the school destination of each stu-
dent, the number of buses available and their capacities is also specified. The
second subproblem, bus stop selection, seeks to select a subset of bus stops from
a set of potential bus stops and assign students to these stops. Route generation
deals with designing routes that optimize operational efficiency without sacri-
ficing bus safety and service quality. These objectives are often conflicting in
nature since an improvement in the level of service quality can increase the cost
of provision. The last two subproblems, school bell time adjustment and route
scheduling, adjust the schools’ opening/closing times to allow buses to service
multiple schools and establish chains of routes that can be executed by the same
vehicle.

In this paper, we focus on the single-school SBRP in which a series of routes is
constructed for each school. This is because mixed loads (students from different
schools travelling on the same bus simultaneously) are not permitted in the
locations considered. The majority of the publications on school bus routing
also deal with the single-school SBRP (e.g. [20,22,24]). Here, we cover the first
three subproblems stated above. Park and Kim [19] and Ellegood et al. [13]
note that bus stop selection is often omitted in the literature; however, they
classify the solution approaches developed for the SBRP with bus stop selection.
Here, we employ the location-allocation-routing (LAR) strategy, in which bus
stops are first selected, students are assigned to stops, and then route generation
follows. Park and Kim [19] and Ellegood et al. [13] also observe that most studies
assume a homogeneous (same capacity) fleet. We take the same assumption here
and dedicate our research to the morning problem, whereby students are picked
up from stops and dropped off at school. A solution to the afternoon problem,
whereby students are picked up from school and dropped off at stops, can be
found by reversing the routes.

204 M. Sciortino et al.

The remainder of the paper is organized as follows. Section 2 defines our
SBRP whereas Sect. 3 describes our heuristic algorithm developed for this prob-
lem. Section 4 presents the set of real-world problem instances considered as well
as the computational results. Finally, Sect. 5 provides the concluding remarks.

2 Problem Definition

In our SBRP, we define a parameter mw which indicates the maximum walk-
ing distance that a student is expected to walk to get to a bus stop. We also
define parameter me which specifies the minimum walking distance that students
should live from the school to be eligible for school transportation. As in [16], our
problem can be represented via two sets of vertices, V1 and V2, and two sets of
edges, E1 and E2. The vertex set V1 consists of one school v0 and n potential bus
stops v1, v2, . . . , vn and the edge set E1 contains all n(n+1) directed edges (u, v)
with u, v ∈ V1 and u �= v. Each edge (u, v) in the complete directed graph (V1, E1)
is weighted by the shortest driving time t(u, v) from u to v. Meanwhile, the ver-
tex set V2 consists of eligible student addresses, with each address w ∈ V2 being
weighted by the number s(w) of students living at address w who require school
transportation. E2 is the set {{w, v} : w ∈ V2 ∧ v ∈ V1 \ {v0} ∧ d(w, v) ≤ mw},
where d(w, v) gives the shortest walking distance from address w to bus stop v.

For this problem we can assume that the undirected bipartite graph (V2, V1 \
{v0}, E2) has no isolated vertices. Otherwise, either an address has no bus stop
within walking distance mw (and therefore a new bus stop must be added to
V1), or a bus stop has no address within walking distance mw and can thus be
removed from V1. Moreover, a bus stop v ∈ V1 \ {v0} for which there exists
an address w ∈ V2 with just one incident edge {w, v} shall be referred to as a
compulsory stop. This is because such a stop v is the only stop within walking
distance mw to students living in address w and must therefore be present in a
solution.

A feasible solution to our SBRP is given by a set of routes R = {R1, R2, . . .},
as illustrated in Fig. 1. Each route R ∈ R uses one bus of capacity C which
visits a subset of bus stops and terminates at the school v0. The subset of bus
stops traversed by all routes is denoted by V ′

1 ⊆ V1 \ {v0}. This set should cover
each address w ∈ V2 at least once, meaning that students in each address w will
have at least one bus stop in V ′

1 within walking distance mw. Such a covering
shall be referred to as a complete covering of V2 whereas a covering which does
not satisfy this property shall be referred to as an incomplete covering of V2. In
addition, the total number s(R) of students boarding the bus on route R should
not exceed the capacity C, and the journey time t(R) of route R should not
exceed the maximum journey time mt. These constraints can be expressed as
follows:

⋃

R∈R
R = V ′

1 (1)

∀w ∈ V2, ∃ v ∈ V ′
1 | {w, v} ∈ E2 (2)

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 205

s(R) ≤ C ∀ R ∈ R (3)
t(R) ≤ mt ∀ R ∈ R. (4)

Fig. 1. A feasible solution with |R| = 2, |V1| = 21, |V ′
1 | = 14 and |V2| = 22.

It is important to note that bus stops in V ′
1 are not restricted to feature in

exactly one route in R. For example, there may not be enough spare capacity in
a bus to serve all students waiting at a bus stop v ∈ V ′

1 . In that case, bus stop
v must be visited by more than one bus and we call such a stop a multistop.
In VRP literature, this characteristic is referred to as the allowance of split
deliveries [11,12]. Each student boarding at a multistop is only permitted to
board one specific route serving that stop since, otherwise, a bus stopping at
that multistop may possibly be too full to serve a subsequent stop in its path.

As in [16], the calculation of the journey time t(R) of route R ∈ R is composed
of two components; the total bus travel time and the total bus dwell time. Each
dwell time within a route captures the time spent servicing a designated bus
stop, i.e. the time spent to halt the bus, open the doors, board the students
and merge back into traffic. In our case, we estimate the dwell time at stop v
in route R by d(v,R) = d1 + d2s(v,R), where s(v,R) represents the number of
boarding students at stop v onto route R, d2 represents the boarding time per
student, and d1 is a parameter which accounts for the remaining servicing time.
Here, d1 and d2 are taken to be 15 and 5 s, respectively. Therefore, given a route
R = (v1, v2, . . . , vl, v0), the route journey time t(R) is given by

t(R) =

(
l−1∑

i=1

t(vi, vi+1) + t(vl, v0)

)
+

(
l∑

i=1

(
d1 + d2s(vi, R)

))
, (5)

where the first component gives the total bus travel time and the second com-
ponent gives the total bus dwell time.

206 M. Sciortino et al.

As previously mentioned, the primary objective of our SBRP is to identify
an appropriate subset of bus stops V ′

1 in order to minimize the number |R| of
routes (buses) included in a solution. In our case, this is achieved by attempt-
ing to produce feasible solutions that use the lower bound of 	∑w∈V2

s(w)/C

routes needed to serve all students. A solution satisfying constraints (1)–(3)
and meeting this lower bound of |R| is always guaranteed since multistops are
allowed; however, any one of the routes could potentially violate the maximum
riding time constraint (4). Thus, there may be cases where additional routes are
needed. In the generation of feasible solutions, two secondary objectives and a
tertiary objective are also considered. The first secondary objective deals with
the effectiveness of the school transportation service, whereby we seek to mini-
mize the total student walking distance. Through the other secondary objective,
we aim to target efficiency of the service by minimizing the total route journey
time in a solution. The tertiary objective is employed whenever multiple feasible
solutions have the same minimum total route journey time. Here, we encourage
equity of service by minimizing the discrepancy between the longest and shortest
routes.

3 Algorithm Description

Our heuristic algorithm uses the following overall strategy. Initially, a subset of
bus stops is selected and a nearest neighbour heuristic is employed to construct
an initial solution using a fixed number |R| of routes. As mentioned, |R| is
initially taken to be the lower bound stated in the previous section. Note also that
the initial assignment of stops to routes allows the violation of (4). A local search
routine involving six improvement heuristics is then invoked on this solution to
try and shorten the routes using the current subset of bus stops. After this
routine has completed, a procedure is performed whereby the current subset of
selected bus stops is altered, the current solution is repaired, and the local search
routine is re-applied. This is repeated until a time limit is reached, leading to
an approach similar to iterated local search. If no solution satisfying (1)–(4) is
achieved at this limit, the number |R| of routes is increased by one and the
algorithm is restarted.

3.1 Construction of Initial Solution

In our approach, the initial subset of bus stops V ′
1 is selected as follows. First, all

compulsory stops are included in V ′
1 . The non-compulsory stops are arranged in

non-increasing order according to the number of currently uncovered addresses
they serve. The stop with the largest such value is then added to V ′

1 , breaking
ties randomly. This ordering and selection procedure is repeated until a complete
covering of V2 is obtained. Each address in V2 is then assigned to the closest bus
stop in V ′

1 . The assignment of addresses to stops determines the number sV ′
1
(v)

of boarding students at each stop v ∈ V ′
1 . It may also be the case that some

stops have no boarding students, in which case they are removed from V ′
1 . Next,

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 207

each bus stop in V ′
1 is assigned to one of the |R| routes such that each bus is not

overloaded. This assignment follows a parallel backward implementation of the
nearest neighbour constructive heuristic. To start, |R| empty routes are defined
and the remaining capacity ci of each route Ri ∈ R is set to C. The |R| closest
stops to the school are then added at the front of the routes, one in each route.
Closeness to school is measured by the dwell time at the stop plus the shortest
driving time from the stop to the school. In order to calculate the dwell time at
stop v ∈ V ′

1 in route Ri, the minimum of ci and sV ′
1
(v) is considered as there

may be more than ci students boarding at stop v. In this case, a multistop is
created since the remaining sV ′

1
(v) − ci students boarding at stop v will need

to be assigned to a different route Rj . The remaining capacities ci are then
updated accordingly. This iterative procedure of determining the closest stop to
the most recently added stop in route Ri, adding it to the front of the route and
updating the remaining capacity ci is repeated until all stops in V ′

1 are assigned
to a route. On completion, an initial solution R will have been generated and
can be evaluated according to the cost function described presently.

3.2 Cost Function

A solution R = {R1, R2, . . .} is evaluated according to the cost function

f(R) =
∑

R∈R
t′(R), (6)

where

t′(R) =

{
t(R) if t(R) ≤ mt,

mt + mt(1 + t(R) − mt) otherwise.
(7)

This means that if the journey time of a route R ∈ R exceeds mt, then this
journey time is scaled up heavily via a penalty. Otherwise, it is unaltered. The
addition of the value 1 in the second case of (7) guarantees that two routes both
with journey time at most mt are always preferred over one route with journey
time exceeding mt.

3.3 Local Search Routine

As mentioned, the intention of our local search routine is to shorten the journey
times of routes in R while maintaining the satisfaction of (1)–(3). Our routine
uses a combination of three intra-route and three inter-route operators, with
the former being applied to a single route R1 ∈ R and the latter being applied
to a pair of routes R1, R2 ∈ R. Without loss of generality, assume that R1 =
(v1, v2, . . . , vl1 , v0) and R2 = (u1, u2, . . . , ul2 , v0). Note that this local search acts
on a solution using a fixed subset of bus stops V ′

1 . The six operators considered
are the following:

• Exchange: Choose two stops vi, vj in R1, where 1 ≤ i < j ≤ l1, and swap
their position.

208 M. Sciortino et al.

• Two-Opt : Choose two stops vi, vj in R1, where 1 ≤ i < i + 3 ≤ j ≤ l1, and
invert sub-route vi, . . . , vj .

• Generalized Or-Opt : Choose stops vi, vj , vk in R1, where 1 ≤ i ≤ j ≤ l1 and
(1 ≤ k < i or j + 1 < k ≤ l1 + 1). Remove sub-route vi, . . . , vj and transfer
it before stop vk, possibly also inverting the sub-route if this yields a better
cost. If k = l1 + 1, then the sub-route is transferred before school v0.

• Or-Exchange: Choose stops vi, vj in R1, where 1 ≤ i ≤ j ≤ l1, and stop uk in
R2, where 1 ≤ k ≤ l2 + 1. Remove sub-route vi, . . . , vj from R1 and transfer
it before stop uk in R2, possibly also inverting the sub-route if this yields a
better cost. If k = l2 + 1, then the sub-route is transferred before school v0.

• Cross-Exchange: Choose stops vi1 , vj1 in R1, where 1 ≤ i1 ≤ j1 ≤ l1, and
stops ui2 , uj2 in R2, where 1 ≤ i2 ≤ j2 ≤ l2. Swap sub-routes vi1 , . . . , vj1 and
ui2 , . . . , uj2 , possibly inverting either sub-route if this yields a better cost.

• Creating Multistops: If routes R1, R2 satisfy t(R1) > mt and s(R2) < C,
then choose stop vi in R1, where 1 ≤ i ≤ l1, for which s(vi, R1) ≥ 2. If vi is
not already in R2, then insert a copy of vi in R2 before the stop uk, where
1 ≤ k ≤ l2, (or school v0) which causes the smallest increase in t(R2). Next
transfer z = min{s(vi, R1) − 1, C − s(R2)} students from the occurrence of
stop vi in R1 to the occurrence of stop vi in R2. Here, the value z gives
the maximum number of students who can be transferred (hence, decreasing
t(R1) as much as possible) such that both occurrences of vi have at least one
boarding student and both routes R1 and R2 satisfy (3).

The neighbourhood sizes corresponding to the above operators are O(|V ′
1 |2),

O(|V ′
1 |2), O(|V ′

1 |3), O(|V ′
1 |3), O(|V ′

1 |4), and O(|V ′
1 |3), respectively. These opera-

tors are the same as those used in [16]. The exchange, two-opt and cross-exchange
operators are also used in a similar context in [8], while the generalized Or-opt
and Or-exchange are extensions (case i �= j) of operators used in [8] and [22].
Note that some Or-exchange and cross-exchange moves can lead to a violation
of (3). Such moves are therefore not evaluated. Moreover, these two operators
can result in duplicate stops in the same route, which are removed as follows.
Without loss of generality, assume that sub-route vi, . . . , vj is being transferred
from route R1 to route R2 and that one stop vh, i ≤ h ≤ j, is already present in
R2. Then stop vh is removed from the sub-route and the students boarding this
occurrence of vh are all transferred to the occurrence of vh in R2.

Our local search routine follows the direction of steepest descent. In each
iteration, all moves in the union of the six neighbourhoods are evaluated and
the move which gives the largest reduction in cost is performed. If multiple moves
give the largest reduction in cost, the one which yields the smallest discrepancy
between the longest and shortest routes in the solution is performed. Such a
breakage of ties aims at balancing the journey times between buses. The local
search routine terminates when a solution whose neighbourhoods contain no
improving moves is reached.

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 209

3.4 Generation of Alternative Solutions

Recall that the subset of bus stops V ′
1 is fixed during our local search routine.

For this reason, our algorithm also contains an operator that generates a new
subset of bus stops V ′′

1 , assigns students to these bus stops, and then creates a
set of routes that use these stops. We designed four variants of the algorithm,
which differ in the way they generate V ′′

1 . These are:

(I) Generating V ′′
1 from scratch;

(II) Generating V ′′
1 from the subset V ′

1 used in the previous iteration;
(III) Generating V ′′

1 from the most recent subset V ′
1 that yields a feasible solution

with the lowest cost found so far;
(IV) Generating V ′′

1 via a trade-off between Variants II and III, whereby V ′′
1 has

50% chance of being generated according to Variant II and 50% chance of
being generated according to Variant III.

Note that in Variant III, the subset of stops generated in the previous itera-
tion is used if no subset has yielded a feasible solution so far.

In Variant I, the generation of V ′′
1 follows the same selection strategy as that

discussed in Sect. 3.1 and new routes are again produced via nearest neighbour
construction. In Variants II to IV, the non-compulsory stops in V ′

1 are identified
and a random selection of these is removed. Assuming a total number α of
non-compulsory stops, in our case the number of removals is selected according
to a Binomial distribution with parameters α and 3/α so that three stops are
removed on average. Upon removal, if we have an incomplete covering of V2, then
additional stops must be added to V ′

1 . If all addresses not covered by the stops
in V ′

1 are covered by stops which were not originally in V ′
1 , then, at each stage,

a stop from the latter set of stops which serves the largest number of uncovered
addresses is added, breaking ties randomly. If, on the other hand, some address
is also uncovered by the stops which were not originally in V ′

1 , then at least one
of the removed stops must be added back. The same selection strategy is applied
in this case and the whole procedure is repeated until a new complete covering
V ′′
1 of V2 is achieved. Each address is then reassigned to the closest stop in V ′′

1

and stops with no addresses assigned to them are removed from V ′′
1 .

Having determined a new subset of bus stops, repairs are then made to R
so that only bus stops in V ′′

1 feature in the solution. To do this, all occurrences
of stops in V ′

1 \ V ′′
1 are first removed from R. For stops v ∈ V ′′

1 ∩ V ′
1 for which

sV ′′
1

(v) < sV ′
1
(v), sV ′

1
(v) − sV ′′

1
(v) students are removed from occurrences of

v in R. If this results in an occurrence of v with no boarding students, then
this occurrence is removed from R. For stops v ∈ V ′′

1 ∩ V ′
1 for which sV ′′

1
(v) >

sV ′
1
(v), an attempt is made to add students to occurrences of v in R. If not all

sV ′′
1

(v) − sV ′
1
(v) students can be added, then a new occurrence of v must be

added to R. Stops v ∈ V ′′
1 \ V ′

1 must also be added to the solution. A new stop
is inserted in a route having the lowest load, at the position which causes the
least increase in the route journey time. If this insertion does not cater for all
students boarding that stop, then the procedure is repeated.

210 M. Sciortino et al.

Having repaired solution R (or generated completely new routes in the case
of Variant I), the local search routine is then re-invoked. This repair-and-improve
process is repeated until the time limit is reached.

4 Computational Experiments

A total of twenty real-world problem instances are considered here, summarized
in Table 1. The problem instances pertaining to the UK and Australia originate
from [16] and can be downloaded at [1]. The remainder were generated by us
using the Bing Maps API and can be downloaded at [2]. Each problem instance
was generated as follows. The location of the school was first identified and a
number of random student addresses were selected on/outside a circle of radius
me from the school. The number of students living at each address was generated
randomly according to the following distribution: 1, 2, 3 and 4 with probabilities
0.45, 0.4, 0.14 and 0.01, respectively. As mentioned in [16], this distribution

Table 1. Summary statistics for the twenty real-world problem instances, listed in
increasing order of |V1|. The number S represents the total number of students, calcu-
lated as

∑
w∈V2

s(w). Distances me and mw are given in km.

Location Country/State |V1| |V2| S me mw C

Mġarr Malta 60 110 190 1.0 1.0 40

Mellieh̄a Malta 83 98 171 1.0 1.0 40

Porthcawl Wales 153 42 66 3.2 1.6 70

Qrendi Malta 161 150 255 1.0 1.0 40

Suffolk England 174 123 209 4.8 1.6 70

Senglea Malta 186 158 266 1.0 1.0 40

Victoria Gozo 292 99 171 1.0 1.0 40

H̄̄andaq Malta 298 170 285 1.0 1.0 40

Pembroke Malta 329 200 335 1.0 1.0 40

Canberra ACT 331 296 499 4.8 1.0 70

Valletta Malta 419 159 268 1.0 1.0 40

Birkirkara Malta 422 181 306 1.0 1.0 40

H̄̄amrun Malta 519 321 192 1.0 1.0 40

Cardiff Wales 552 90 156 4.8 1.6 70

Milton Keynes England 579 149 274 4.8 1.6 70

Bridgend Wales 633 221 381 4.82 1.6 70

Edinburgh-2 Scotland 917 190 320 1.6 1.6 70

Edinburgh-1 Scotland 959 409 680 1.6 1.6 70

Adelaide South Australia 1188 342 565 1.6 1.6 70

Brisbane Queensland 1817 438 757 3.2 1.6 70

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 211

approximates the relevant statistics in the locations considered. Potential bus
stops were then identified through public records such that each stop has at
least one address within walking distance mw and each address has at least one
stop within walking distance mw. Shortest driving times between each bus stop
pair and shortest walking distances between each bus stop and address pair were
then determined. Here, we use C ∈ {40, 70}, depending on the location of the
problem instance under study, and mt = 2700 s (45 min).

Our heuristic algorithm was coded in C++ and run on a 3.6 GhZ 8-Core Intel
Core i9 processor with 8GB RAM. Variants I to IV were each run 25 times on
each instance. The time limit for each run was taken to be five minutes. Overall,
we found that feasible solutions using the lower bound of 	∑w∈V2

s(w)/C
 routes
were achieved in nineteen of the twenty instances in all runs. The only instance
which required one additional route was the rural-based Suffolk instance. This
was also observed in [16].

Statistics on the results achieved by our algorithm are summarized in Table 2.
Columns 3 to 6 display the average number of iterations performed in each

Table 2. Number of iterations performed by our algorithm. All figures are averaged
across the 25 runs, rounded to the nearest integer, plus/minus the standard deviation.

Location |R| Variant I Variant II Variant III Variant IV

Mġarr 5 12777 ± 112 32131 ± 367 25137 ± 360 27482 ± 248

Mellieh̄a 5 1323 ± 9 6951 ± 53 5359 ± 107 5848 ± 74

Porthcawl 1 91916 ± 1091 96843 ± 1210 85351 ± 2465 92171 ± 3915

Qrendi 7 9602 ± 68 28176 ± 230 22880 ± 656 23901 ± 621

Suffolk 4 3384 ± 37 8076 ± 95 6436 ± 193 6660 ± 191

Senglea 7 16026 ± 105 45776 ± 317 42425 ± 1177 43792 ± 896

Victoria 5 2124 ± 31 6956 ± 90 5135 ± 206 5367 ± 254

H̄̄andaq 8 2439 ± 30 8438 ± 120 7433 ± 495 7731 ± 362

Pembroke 9 4208 ± 29 16109 ± 160 14170 ± 621 14702 ± 468

Canberra 8 2431 ± 42 10073 ± 167 8038 ± 290 8456 ± 247

Valletta 7 6639 ± 6 21976 ± 78 20915 ± 577 21405 ± 403

Birkirkara 8 4691 ± 70 17519 ± 276 16039 ± 635 16466 ± 491

H̄̄amrun 9 3233 ± 54 13681 ± 242 13210 ± 258 13404 ± 259

Cardiff 3 16241 ± 102 25386 ± 181 25330 ± 185 25345 ± 131

Milton Keynes 4 8601 ± 7 20039 ± 40 18699 ± 637 19196 ± 272

Bridgend 6 3932 ± 57 11066 ± 106 9944 ± 119 10277 ± 85

Edinburgh-2 5 5681 ± 66 5692 ± 55 5709 ± 52 5680 ± 60

Edinburgh-1 10 1792 ± 20 6489 ± 83 6365 ± 141 6417 ± 128

Adelaide 9 1745 ± 24 5943 ± 72 5530 ± 173 5668 ± 134

Brisbane 11 742 ± 18 3304 ± 71 3241 ± 70 3262 ± 70

212 M. Sciortino et al.

algorithm variant. For each variant, this number was compared with the average
number of iterations that resulted in solutions satisfying (1)–(4). For Bridgend,
approximately 74%, 61%, 26% and 32% of the iterations performed in Variants I
to IV, respectively, produced infeasible solutions, on average. For Brisbane, the
four average proportions of infeasible solutions were all less than 0.2%. Some
infeasible solutions were also produced in Variants II and IV for Porthcawl and
Variants I, II and IV for Suffolk. The average proportions were both less than
0.04% for Porthcawl and all less than 0.7% for Suffolk. All remaining instances
saw (1)–(4) satisfied in all runs.

According to Table 2, Variant II performed the highest average number of
iterations for all instances except Edinburgh-2. On the contrary, Variant I per-
formed the lowest average number of iterations for all instances except Porthcawl
and Edinburgh-2. This was expected given that this variant does not use infor-
mation from previous iterations when altering the current subset of bus stops.
Consequently, applications of local search take longer in each iteration. It is also
evident that Variant IV performed a higher average number of iterations than
Variant III for all instances except Edinburgh-2.

Fig. 2. Boxplots displaying the performance of the variants on the Mellieh̄a, Victoria,
Bridgend and Brisbane instances.

For each instance, a Kruskal-Wallis test on the 100 total journey times (in
minutes) reached by our heuristic algorithm revealed statistically significant
differences between the algorithm variants (p < 0.001). Post-hoc Bonferroni-
adjusted pairwise comparison tests indicated that, for 16 instances, the total
journey times of Variants I and II are significantly different at the 0.05 level
than those of Variants III and IV. Half of these instances also saw a significant
difference between Variants I and II. Two instances (Porthcawl and Edinburgh-
2) saw significant differences between Variant III and all other variants, whereas

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 213

the Mġarr instance saw significant differences between Variant I and all other
variants. For the Mellieh̄a instance, significant differences were found between
Variants I and II, I and IV, and II and III. Boxplots displaying the performance
of the variants on four selected instances are displayed in Fig. 2.

Moving to Table 3, Columns 4 to 7 display the best total journey times for
the different algorithm variants. Each instance’s best reported result across all
variants is displayed in bold and the number of runs giving that result is shown in
brackets. According to Table 3, Variants I to IV produced best reported results
in 2, 3, 16 and 14 instances, respectively. Moreover, Variants I to IV produced
best total journey times that are at most 14.37%, 8.76%, 4.28% and 2.14%
(respectively) worse than the best reported results. It is also evident that our
best reported result for eight instances was achieved by only one run. For the
other twelve instances, multiple runs reached the best reported result. Some or
all multiple runs for all these instances except Porthcawl and Edinburgh-2 have
different corresponding subsets of bus stops. The total number of alternative
subsets of bus stops is given in Column 3 of Table 3.

The best reported results from our heuristic algorithm are also compared with
those of Lewis and Smith-Miles [16], in Column 2. The algorithm used in [16] is
similar to Variant II of our algorithm, but makes use of a first-fit-decreasing bin-
packing heuristic for the assignment of bus stops to routes rather than a nearest
neighbour heuristic. Our best reported results for two instances (Porthcawl and
Cardiff) match those in [16]. Additionally, our best reported results for six of
the remaining eight instances are better than those in [16].

An attempt was also made to improve each instance’s best reported result
from our heuristic algorithm. For this purpose, a mixed integer programming
(MIP) model was formulated as shown in the appendix. This model was exe-
cuted using Gurobi 9.0 with a run time limit of one hour per bus stop subset.
Each run was also seeded with the best feasible solution found by our heuristic
algorithm for that bus stop subset. The MIP results are presented in Columns 8
to 10 of Table 3. Column 8 gives the total route journey time of the best incum-
bent solution reached. Column 9 displays the percentage improvement between
the best reported result from our heuristic algorithm and the best incumbent
result. Finally, Column 10 gives the relative MIP optimality gap between the
best incumbent result and the best known lower bound on the optimal total
route journey time. Note that Gurobi was able to find a solution having a better
total route journey time for four instances and the percentage improvements of
these range between 0.19% and 1.58%. On the other hand, Gurobi was not able
to improve the heuristic algorithm solution of ten instances within the time limit.
For the remaining six instances, the solver did not provide any results before the
time limit was reached. The optimality gaps for the achieved MIP results range
between 8.35% and 69.17%.

214 M. Sciortino et al.

T
a
b
le

3
.

B
es

t
(a

cr
o
ss

th
e

2
5

ru
n
s)

to
ta

l
ro

u
te

jo
u
rn

ey
ti

m
es

(i
n

m
in

u
te

s)
a
ch

ie
v
ed

b
y

o
u
r

h
eu

ri
st

ic
a
lg

o
ri

th
m

.
C

o
lu

m
n

2
g
iv

es
th

e
b
es

t
re

p
o
rt

ed
re

su
lt

s
in

[1
6
]
fo

r
th

e
in

st
a
n
ce

s
p
er

ta
in

in
g

to
th

e
U

K
a
n
d

A
u
st

ra
li
a
.
C

o
lu

m
n

8
g
iv

es
th

e
to

ta
l
ro

u
te

jo
u
rn

ey
ti

m
e

o
f

th
e

b
es

t
in

cu
m

b
en

t
so

lu
ti

o
n

a
ch

ie
v
ed

b
y

G
u
ro

b
i.

C
o
lu

m
n

9
d
is

p
la

y
s

th
e

p
er

ce
n
ta

g
e

im
p
ro

v
em

en
t

b
et

w
ee

n
th

e
b
es

t
re

p
o
rt

ed
re

su
lt

fr
o
m

o
u
r

h
eu

ri
st

ic
a
lg

o
ri

th
m

a
n
d

th
e

re
su

lt
in

C
o
lu

m
n

8
.

T
h
e

la
st

co
lu

m
n

g
iv

es
th

e
re

la
ti

v
e

g
a
p

b
et

w
ee

n
th

e
re

su
lt

in
C

o
lu

m
n

8
a
n
d

th
e

b
es

t
k
n
ow

n
lo

w
er

b
o
u
n
d

o
n

th
e

o
p
ti

m
a
l
to

ta
l
ro

u
te

jo
u
rn

ey
ti

m
e.

L
o
ca

ti
o
n

B
es

t
[1

6
]

H
eu

ri
st

ic
A

lg
o
ri

th
m

M
IP

(G
u
ro

b
i)

S
u
b
se

ts
V

a
ri

a
n
t

I
V

a
ri

a
n
t

II
V

a
ri

a
n
t

II
I

V
a
ri

a
n
t

IV
In

cu
m

b
en

t
Im

p
ro

v
em

en
t

M
IP

G
a
p

M
ġ
a
rr

-
3

9
0
.7

0
8
7
.7
7

(2
)

8
7
.7
7

(2
)

8
7
.7
7

(3
)

8
7
.4

2
0
.4

0
%

8
.3

5
%

M
el

li
eh̄

a
-

2
1
2
1
.3

7
1
2
1
.2

5
1
2
1
.1
8

(2
)

1
2
1
.1
8

(1
)

1
2
0
.9

5
0
.1

9
%

1
1
.6

5
%

P
o
rt

h
ca

w
l

2
6
.8

7
1

2
8
.0

2
2
7
.3

5
2
8
.0

2
2
6
.8
7

(2
)

2
6
.8

7
-

4
4
.3

5
%

Q
re

n
d
i

-
7

9
7
.6

7
9
6
.6

3
9
5
.8
0

(6
)

9
5
.8
0

(5
)

9
5
.8

0
-

4
0
.5

2
%

S
u
ff
o
lk

1
1
3
.4

3
1
2

1
1
8
.7

7
1
1
6
.0

8
1
1
2
.7
5

(2
0
)

1
1
2
.7
5

(2
1
)

1
1
2
.7

5
-

5
5
.5

4
%

S
en

g
le

a
-

4
8
4
.8

5
8
4
.5

7
8
3
.1
8

(7
)

8
3
.1
8

(7
)

8
1
.8

7
1
.5

8
%

6
3
.3

6
%

V
ic

to
ri

a
-

4
1
1
9
.1

8
1
1
7
.7

7
1
1
5
.9
7

(2
)

1
1
5
.9
7

(4
)

1
1
5
.9

7
-

3
8
.6

6
%

H̄̄
a
n
d
a
q

-
1
2

1
4
2
.4

7
1
4
0
.2

8
1
3
8
.1
8

(1
1
)

1
3
8
.1
8

(7
)

-
-

-

P
em

b
ro

k
e

-
1

1
3
2
.8

2
1
3
3
.3

7
1
2
8
.8
0

(1
)

1
2
9
.4

8
1
2
8
.8

0
-

5
2
.8

9
%

C
a
n
b
er

ra
1
9
0
.6

0
1

1
9
8
.2

7
1
9
3
.1

3
1
8
8
.2
5

(1
)

1
8
8
.3

7
1
8
8
.2

5
-

5
7
.0

0
%

V
a
ll
et

ta
-

1
1
2
5
.2

8
1
2
2
.5

0
1
1
7
.8

2
1
1
7
.2
8

(1
)

1
1
7
.2

8
-

6
6
.1

2
%

B
ir

k
ir

k
a
ra

-
4

1
1
6
.2

7
1
1
3
.8

7
1
0
8
.2
5

(1
)

1
0
8
.2
5

(3
)

1
0
8
.2

5
-

5
5
.4

0
%

H̄̄
a
m

ru
n

-
2

1
1
8
.6

8
1
0
8
.7

5
1
0
4
.2
7

(1
)

1
0
4
.2
7

(1
)

1
0
4
.2

7
-

6
2
.1

2
%

C
a
rd

iff
5
7
.5

2
3

5
7
.5
2

(1
3
)

5
7
.5
2

(1
6
)

5
7
.5
2

(2
5
)

5
7
.5
2

(2
5
)

5
7
.5

2
-

6
9
.1

7
%

M
il
to

n
K

ey
n
es

6
3
.4

8
1

6
8
.5

7
6
5
.4

5
6
1
.6
3

(1
)

6
2
.9

5
6
1
.1

0
0
.8

7
%

5
4
.5

8
%

B
ri

d
g
en

d
1
8
5
.5

2
1

2
0
1
.2

8
1
9
1
.6

7
1
8
6
.0

0
1
8
5
.4
8

(1
)

-
-

-

E
d
in

b
u
rg

h
-2

5
6
.0

8
1

5
5
.8
7

(2
5
)

5
5
.8
7

(2
5
)

5
5
.9

0
5
5
.8
7

(2
5
)

-
-

-

E
d
in

b
u
rg

h
-1

1
5
1
.4

0
1

1
7
4
.5

0
1
6
5
.9

5
1
5
2
.5
8

(1
)

1
5
3
.6

0
-

-
-

A
d
el

a
id

e
1
3
6
.8

0
1

1
4
7
.8

3
1
4
3
.2

3
1
3
5
.4
7

(1
)

1
3
6
.2

2
-

-
-

B
ri

sb
a
n
e

2
3
5
.1

5
1

2
5
4
.9

7
2
5
4
.3

0
2
3
7
.6
3

(1
)

2
4
1
.3

8
-

-
-

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 215

5 Conclusions and Future Developments

In this paper a real-world SBRP has been studied, which incorporates several fea-
tures found in the literature such as bus capacities, student eligibility, maximum
student riding time, maximum student walking distance, multistops (multiple
buses visiting a single bus stop) and bus dwell times. A heuristic algorithm has
been developed which encompasses the first three subproblems of the SBRP, as
defined in [10].

Experiments conducted on twenty problem instances from Malta, the UK
and Australia demonstrate the success of the heuristic algorithm on a variety
of real-sized instances. For all instances, our algorithm was able to find high-
quality solutions in a very short computational time. It also copes with large-scale
instances of more than 1800 potential bus stops and 750 students. Through dif-
ferent variants, our algorithm has provided multiple subsets of bus stops yielding
the best reported total journey time for ten instances. This extension to what
has been done in [16] is beneficial since government administrators can liaise
with bus operators to identify the most appropriate subset of bus stops based
on factors such as bus depot locations and bus stop accessibility.

The performance of our heuristic algorithm was also compared against solu-
tions achieved through a branch-and-cut method. Only four of the twenty best
reported results from the heuristic algorithm turned out to be slightly worse (by
less than two minutes) than the results achieved by MIP. The MIP optimality
gaps turned out to be higher than expected. These may be improved by allowing
a longer time limit.

The proposed heuristic algorithm as well as the MIP model formulation pre-
sented in this paper can be extended to other SBRP variants. One such variant is
the heterogeneous fleet, in which buses are characterized by different capacities,
as studied in [17,20,24] amongst others. Another potential future development
is the consideration of multi-tripping where several routes, possibly pertain-
ing to different schools, are merged so that buses are able to perform multiple
routes successively. Recent work in this area is discussed in [5,23]. It is also
suggested that future work should address uncertainty in the bus travel times
as this will make the heuristic algorithm more applicable in real-world settings
(e.g. [3,7,25]).

Acknowledgement. The research work disclosed in this publication is supported by
the Tertiary Education Scholarships Scheme (TESS, Malta).

Appendix

The MIP model presented here produces solutions consisting of cycles that start
and end at the school. The arc from the school to the first bus stop in each route
is then excluded. This is possible by assuming that the driving time from the
school to any stop is zero.

The decision variables of our model are as follows. Binary variable xuvR

indicates whether route R ∈ R travels from u ∈ V1 to v ∈ V1 \ {u}. Binary

216 M. Sciortino et al.

variable yvR indicates whether route R ∈ R visits v ∈ V1. Also, binary variable
zwv indicates whether students in address w ∈ V2 walk to stop v ∈ V1 \ {v0}.
Variable svR ∈ {0, 1, . . . , C} gives the number of students boarding route R ∈ R
from stop v ∈ V1 \ {v0}. Moreover, variable lvR ∈ {0, 1, . . . , C} gives the total
load of route R ∈ R just after visiting stop v ∈ V1 \ {v0}. Finally, variable
tR ∈ [0,mt] specifies the total journey time of route R ∈ R. The MIP formulation
is as follows:

min
∑

R∈R
tR (8)

s.t.
∑

u∈V1

xuvR = yvR ∀v ∈ V1, R ∈ R (9)

∑

u∈V1

xvuR = yvR ∀v ∈ V1, R ∈ R (10)

yv0R ≥ yvR ∀v ∈ V1 \ {v0}, R ∈ R (11)
∑

v∈V1\{v0}
d(w,v)≤mw

zwv = 1 ∀w ∈ V2 (12)

∑

R∈R
yvR ≥ zwv ∀v ∈ V1 \ {v0}, w ∈ V2 (13)

∑

w∈V2

s(w)zwv −
∑

R∈R
svR = 0 ∀v ∈ V1 \ {v0} (14)

yvR ≤ svR ∀v ∈ V1 \ {v0}, R ∈ R (15)
CyvR ≥ svR ∀v ∈ V1 \ {v0}, R ∈ R (16)
luR + svR − C(1 − xuvR) ≤ lvR ∀u, v ∈ V1 | v �= v0, R ∈ R (17)
luR + svR + C(1 − xuvR) ≥ lvR ∀u, v ∈ V1 | v �= v0, R ∈ R (18)
∑

u,v∈V1

t(u, v)xuvR +
∑

v∈V1\{v0}
(d1yvR + d2svR) = tR ∀R ∈ R. (19)

Objective function (8) minimizes the total journey time of all routes. Con-
straints (9)–(11) relate to stop and school visits. Constraints (9)–(10) guarantee
that if route R ∈ R visits v ∈ V1, then route R should enter and leave v exactly
once. Next, Constraints (11) force each route R ∈ R to visit school v0 whenever
it visits at least one stop v ∈ V1 \ {v0}. Constraints (12)–(14) relate to student
walks and pickups. Constraints (12) ensure that students living in each address
w ∈ V2 walk to exactly one stop within walking distance mw. Constraints (13)
assure that no student walks to an unvisited stop, while Constraints (14) guaran-
tee that the total number of students boarding from stop v ∈ V1\{v0} is equal to
the total number of students walking to that stop. Constraints (15)–(16) relate
to student boardings. These constraints force the number of students boarding
route R ∈ R from stop v ∈ V1 \ {v0} to be 0 if route R does not visit stop v. If
route R visits stop v, then (15) also updates the lower bound on the number of
boarding students to 1. In addition, Constraints (17)–(18) relate to route loads
and also serve as subtour elimination constraints as proposed in [14]. Note that
lv0R = 0 ∀R ∈ R. These constraints guarantee that no route contains a subtour

A Heuristic Algorithm for School Bus Routing with Bus Stop Selection 217

disconnected from school v0 and that each route load increases in accordance to
the number of students boarding the bus on that route. In fact, if route R ∈ R
goes from u ∈ V1 to stop v ∈ V1 \ {u, v0}, then the load of route R just after
visiting stop v is set equal to the sum of the load of route R just after visiting u
and the number of students boarding route R from stop v. Finally, Constraints
(19) calculate the total journey time of each route R ∈ R.

References

1. http://rhydlewis.eu/resources/busprobs.zip
2. https://github.com/MoniqueSciortino/sbrpMaltaInstances
3. Babaei, M., Rajabi-Bahaabadi, M.: School bus routing and scheduling with

stochastic time-dependent travel times considering on-time arrival reliability. Com-
put. Ind. Eng. 138, 106125 (2019)

4. Bektaş, T., Elmastaş, S.: Solving school bus routing problems through integer
programming. J. Oper. Res. Soc. 58(12), 1599–1604 (2007)

5. Bertsimas, D., Delarue, A., Martin, S.: Optimizing schools’ start time and bus
routes. Proc. Nat. Acad. Sci. 116(13), 5943–5948 (2019)

6. Braekers, K., Ramaekers, K., Nieuwenhuyse, I.V.: The vehicle routing problem:
state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016)

7. Caceres, H., Batta, R., He, Q.: School bus routing with stochastic demand and
duration constraints. Transp. Sci. 51(4), 1349–1364 (2017)

8. Chen, X., Kong, Y., Dang, L., Hou, Y., Ye, X.: Exact and metaheuristic approaches
for a bi-objective school bus scheduling problem. PLoS One 11(4), e0153614 (2015)

9. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80–91 (1959)

10. Desrosiers, J., Ferland, J.A., Rousseau, J.M., Lapalme, G., Chapleau, L.: An
overview of a school busing system. Sci. Manag. Transp. Syst. 235–243 (1981)

11. Dror, M., Trudeau, P.: Savings by split delivery routing. Transp. Sci. 23(2), 141–
145 (1989)

12. Dror, M., Trudeau, P.: Split delivery routing. Naval Res. Logistics 37(3), 383–402
(1990)

13. Ellegood, W.A., Solomon, S., North, J., Campbell, J.F.: School bus routing prob-
lem: contemporary trends and research directions. Omega 95, 1–18 (2020)

14. Kek, A.G.H., Cheu, R.L., Meng, Q.: Distance-constrained capacitated vehicle rout-
ing problems with flexible assignment of start and end depots. Math. Comput.
Model. 47(1–2), 140–152 (2008)

15. Laporte, G., Nobert, Y., Taillefer, S.: Solving a family of multi-depot vehicle rout-
ing and location-routing problems. Transp. Sci. 22(3), 161–172 (1988)

16. Lewis, R., Smith-Miles, K.: A heuristic algorithm for finding cost-effective solutions
to real-world school bus routing problems. J. Discrete Algorithms 52–53, 2–17
(2018)

17. Lima, F.M., Pereira, D.S., Conceição, S.V., Ramos Nunes, N.T.: A mixed load
capacitated rural school bus routing problem with heterogeneous fleet: algorithms
for the Brazilian context. Expert Syst. Appl. 56, 320–334 (2016)

18. Newton, R.M., Thomas, W.H.: Design of school bus routes by computer. Socio
Econ. Plann. Sci. 75–85 (1969)

19. Park, J., Kim, B.I.: The school bus routing problem: a review. Eur. J. Oper. Res.
202, 311–319 (2010)

http://rhydlewis.eu/resources/busprobs.zip
https://github.com/MoniqueSciortino/sbrpMaltaInstances

218 M. Sciortino et al.

20. Sales, L.D., Melo, C.S., Bonates, T.D., Prata, B.D.: Memetic algorithm for the
heterogeneous fleet school bus routing problem. J. Urban Plann. Dev. 144(2),
04018018 (2018)

21. Sariklis, D., Powell, S.: A heuristic method for the open vehicle routing problem.
J. Oper. Res. Soc. 51(5), 564–573 (2000)

22. Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., Springael, J.:
A metaheuristic for the school bus routing problem with bus stop selection. Eur.
J. Oper. Res. 229(2), 518–528 (2013)

23. Shafahi, A., Wang, Z., Haghani, A.: Solving the school bus routing problem by
maximizing trip compatibility. Transp. Res. Rec. J. Transp. Res. Board 2667(1),
17–27 (2017)

24. Siqueira, V.S., Silva, E.N., Silva, R.V., Rocha, M.L.: Implementation of the meta-
heuristic GRASP applied to the school bus routing problem. Int. J. E-Educ. E-Bus.
E-Manag. E-Learn. 6(2), 137–145 (2016)

25. Sun, S., Duan, Z., Xu, Q.: School bus routing problem in the stochastic and timede-
pendent transportation network. PLoS ONE 13(8), e0202618 (2018)

Hybrid Heuristic and Metaheuristic
for Solving Electric Vehicle Charging

Scheduling Problem

Imene Zaidi1(B) , Ammar Oulamara2 , Lhassane Idoumghar1 ,
and Michel Basset1

1 Université de Haute -Alsace, IRIMAS UR 7499, 68100 Mulhouse, France
{imene.zaidi,lhassane.idoumghar,michel.basset}@uha.fr

2 Université de Lorraine, LORIA Laboratory UMR7503,
54506 Vandoeuvre-lès-Nancy, France

ammar.oulamara@loria.fr

Abstract. The electric vehicle (EV) charging scheduling problem has
become a research focus to mitigate the impact of large-scale deployment
of EV in the near future. One of the main assumptions in literature is
that there are enough charging points (CP) in the charging station to
meet all charging demands. However, with the deployment of EVs, this
assumption is no longer valid. In this paper, we address the electric vehi-
cle charging problem in a charging station with a limited number of
heterogeneous CPs and a limited overall power capacity. Before arriv-
ing at the station, the EV drivers submit charging demands. Then, the
scheduler reserves a suitable CP for each EV and allocates the power effi-
ciently so that the final state-of-charge at the departure time is as close as
possible to the requested state-of-charge. We present two variants of the
problem: a constant output power model and a variable power model.
To solve these problems, heuristic and simulated annealing (SA) com-
bined with linear programming are proposed. Simulation results indicate
that the proposed approaches are effective in terms of maximizing the
state-of-charge by the departure time for each EV.

Keywords: Electric vehicle · Charging scheduling · Optimization ·
Heuristic · Simulated annealing

1 Introduction

The adoption of EVs has been growing rapidly over the past decade, mainly
as a result of ambitious government policies to reduce environmental pollution
and advances in the EV industry. In 2019, worldwide EV sales reached 2.1 mil-
lion, bringing the global EV fleet to 7.2 million, an increase of 40% compared to
2018 [6]. However, the future large-scale adoption of EV raises concerns about
charging service quality since charging an EV is time-consuming and requires a
considerable amount of electrical power. Nowadays, EV drivers tend to choose
c© Springer Nature Switzerland AG 2021
C. Zarges and S. Verel (Eds.): EvoCOP 2021, LNCS 12692, pp. 219–235, 2021.
https://doi.org/10.1007/978-3-030-72904-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72904-2_14&domain=pdf
http://orcid.org/0000-0002-3944-0615
http://orcid.org/0000-0003-2357-0404
http://orcid.org/0000-0001-8853-3968
http://orcid.org/0000-0001-5649-3922
https://doi.org/10.1007/978-3-030-72904-2_14

220 I. Zaidi et al.

the nearest available CPs to plug in their EVs and start charging immediately.
This can easily overload charging infrastructures in a large-scale scenario result-
ing in poor service quality and EV drivers’ dissatisfaction.

Recently, there has been growing interest in the development of EV charging
scheduling strategies that focus on economical objectives such as minimizing the
electricity costs or on power grid reliability by minimizing the power losses [3] and
voltage deviations [7]. However, many studies assume that there is a sufficient
number of CPs thus focus on the power allocation and neglect the assignment
of EV to a suitable CP. Besides, they assume an identical output power of CPs.
Yet, in real life, CPs with different charging output power are installed in the
same charging station to meet the various type of charging demands and improve
the quality of service [12].

In this work, we consider a charging station that regroups several CPs with
different charging power levels. Moreover, this charging station has a maximum
power capacity that the distribution-level transformer poses. Each EV driver can
submit a charging reservation before arriving to avoid queuing. We developed
a heuristic based on interval scheduling [9] and a Simulated Annealing (SA) to
assign each EV to a suitable CP and allocate the electrical power over the plugin
time. The objective of the scheduling is to ensure a final state-of-charge at the
departure that is as close as possible to the requested state-of-charge.

The remainder of this paper is organized as follows. In Sect. 2, we present a
brief review of the main works on electric vehicle charging scheduling problems.
In Sect. 3, we describe in detail the investigated problem and formulate it as a
mixed-integer linear programming (MILP). We then propose our optimization
methods in Sect. 4 and evaluate their performance in Sect. 5. Finally, we conclude
the paper in Sect. 6.

2 Related Work

Several studies have been conducted on the EV charging scheduling problem
(EVCSP). Here, we discuss some of the relevant literature that addresses the
EVCSP in charging stations and parking lots. From the perspective of these
charging service providers, the main objectives are to reduce costs [21–23,25],
improve service quality charging by maximizing the energy delivered [14,16,23],
or maximizing charging incomes [14] while maintaining the physical constraints
of the charging infrastructure. One largely used constraint is the charging infras-
tructure capacity that defines the overall power limit to avoid potential trans-
former overload and feeder congestion [14,16,21,25]. For the charging power of
CPs, some papers consider variable power in which the charging rate varies over
time [14,16,25] others consider fixed constant power [4].

EV charging demands are usually defined by arrival and departure times and
the requested charging energy. [4,22,23] consider uncertainly in the arrival time.
[21] consider that EVs may arrive with or without an appointment. Departure
times can be provided by the EVs drivers [4,21,24,25] or it can be estimated
based on historical behavior [23]. In [16], an EV is allowed to leave before its

Hybrid Heuristic and Metaheuristic for Solving EVCSP 221

initially provided departure time. Regarding the requested charging energy, [23]
assumes that the EVs drivers will provide their desired state-of-charge when they
plug-in their EVs. [20,21] assume that the EV owners will directly request the
energy demand expressed in kWh. Other papers consider charging EVs to the
rated battery capacity [14,16,24,25]. The requested charging energy can either
be a hard constraint where the desired energy must be reached [4,20,21] or a
soft constraint where the scheduler tries to achieve satisfactory energy by the
departure time [25].

Different optimization methods were used for tackling these problems. [24]
developed a charging scheme based on binary programming for demand respond
application and a convex relaxation method is proposed to solve the charging
scheduling problem in real-time. Authors in [25] propose a two-stage approxi-
mate dynamic programming strategy for charging a large number of EVs. [20]
provide a model predictive control based algorithm. We can also find different
metaheuristics, for example, particle swarm optimization [16,21], a GRASP-like
algorithm [4], memetic algorithm [4].

Although the above-mentioned studies have examined various aspects of the
EV charging scheduling, they have essentially assumed there are a sufficient
number of chargers for all EVs and thus the scheduler doesn’t decide to which
CP each EV is assigned. In this paper, hybrid heuristics and meta-heuristic are
proposed to jointly assign the EVs to CP and schedule the EV charging. We
consider different charging levels.

3 Problem Description and Formulation

We consider a charging station with m charging points (CPs). The switching on
and off of each CP can be controlled. An electric vehicle (EV) can be connected to
the CP but does not necessarily have to charge immediately. Each charging point
i, i = 1, ..,m has a constant output power pi (kW). We also consider the variable
power model where the output power of each CP i can vary over time from 0 to
pi. The charging station has a maximum power supply of Pmax (kW) which is
insufficient to sustain simultaneous activation of all CPs. Thus, the sum of the
output power of the CPs cannot exceed Pmax (kW) at any time. The scheduling
time horizon of one day and is divided into H time slots of length τ (minutes).
A set of n EVs that need charging in the whole day. Each EV j, j = 1, .., n,
submits a charging demand by providing the following information: the desired
arrival time to the station rj , the estimated initial state-of-charge at the arrival
(e0j), the desired state-of-charge at the departure (ed

j), the battery capacity Bj

(kWh), and the departure time dj . The scheduler collects all charging demands
and determines a day ahead optimized charging schedule by assigning EV to
each CP. Since there are a limited number of CP, the actual starting time for
each EV can exceed the desired arrival time. An EV will occupy a CP from
the assigned stating time until its departure time and cannot be plugged out
during this period. The preemption of charging operation is allowed. Ideally,
each EV should be charged to its desired state-of-charge by the departure time,

222 I. Zaidi et al.

however, this may not be possible due to the limited number of CP and the
charging station capacity limit. So, the objective of the scheduler is to minimize
the difference between the desired state-of-charge and the final state-of-charge
at the departure time.

In the following, a MILP model is proposed to jointly optimize the assigned
of the EV to CP and the power allocation at each time slot.

In the case of a constant power model, the decision variables are:

xt
ij =

{
1 if EV j is charging by the CP i at time slot t
0 otherwise.

ef
j : final state-of-charge of EV j at it departure time

– Objective: minimize the difference between the state-of-charge at the depar-
ture (ef

j) and the desired state-of-charge ed
j .

min
n∑

j=1

(ed
j − ef

j)

– Constraints:
m∑

i=1

xt
ij ≤ 1 ∀j, t (1)

Constraints (1) ensure that each EV j is assigned to one CP at each time slot t.

n∑
j=1

xt
ij ≤ 1 ∀i, t (2)

Constraints (2) ensure that each CP i charges one EV at each time slot t.

xt′
i′j ≤ 1 − xt

ij ∀i, j, t, i′ �= i and t′ < t (3)

Constraints (3) ensure that each EV j is charged by one CP i i.e., The EV
assigned to a CP cannot be moved to another CP.

e0j ≤ ef
j ≤ ed

j ∀j (4)

ef
j = e0j +

τ
∑dj

t=rj
pi × xt

ij

Bj
∀j (5)

Constraints (4) and (5) calculate the final state-of-charge of each EV j.

xt
ij = 0 ∀i, j ∀t, t < rj and t ≥ dj (6)

Constraints (6) ensure each EV j can only be charged between its desired
arrival time rj and departure time dj .

xt
ij + xt′

ij′ ≤ 1 ∀i, j, t, j′ : j′ �= j, t′ ∈ [t, dj] (7)

Hybrid Heuristic and Metaheuristic for Solving EVCSP 223

Constraints (7) ensure that the CP i is reserved to the EV j from the time it
begins to charge to its departure time dj .

m∑
i=1

n∑
j=1

pi × xt
ij ≤ Pmax ∀t (8)

Constraints (8) ensure that the total output power doesn’t exceed the charg-
ing station limit at each time slot.

When considering variable power model, we add the decision variables pt
ij

that represent the power delivered by the CP i to EV j at time t. The constraints
(5) and (8) will be replaced by the following constraints:

ef
j = e0j +

τ
∑dj

t=rj
pt

ij

Bj
∀j (9)

m∑
i=1

n∑
j=1

pt
ij ≤ Pmax ∀t (10)

We also add the following constraints to ensure that the delivered power to
an EV j by CP i doesn’t exceed its maximum output power pi :

pi × xt
ij ≥ pt

ij ∀i, j, t (11)

4 Proposed Methods

Solving the optimal charging scheduling problem with an exact method cannot
be done in polynomial time [18]. Thus, heuristics and the Simulated Annealing
(SA) metaheuristic combined with an exact method were developed.

4.1 Solution Representation

Solving the scheduling problem consists of determining the assignment of each Ev
to CP and then, in case of a constant charging model, choose the appropriate time
slots of charging. In the case of a variable power model, choose the appropriate
charging rate at each time slot. Therefore, a feasible solution consists of the
assignment of EVs to the CPs and the power allocation. The assignment of EVs
to CPs is represented as a vector (π1, .., πn) where πi is the sequence of EVs
assigned to CP i. Once we have the EV-CP assignment, we solve the power
allocation by determining the amount of power delivered by each CP to each
EV at each time slot. To this end, we define the solution variables at

ij of the EV-
CP assignment, which is equal to 1 if the EV j is plugged to the CP i at time t.
The at

ij values will be used as inputs for solving the power allocation problem.
To get at

ij from (π1, .., πn), we simply schedule all EVs sequentially without idles
times while respecting their arrival times. For each EV j in the sequence πi, we

224 I. Zaidi et al.

select the earliest possible starting time stj = max(rj , dj′) where j′ is the EV
scheduled before the EV j in πi. In this case, the variable at

ij will be equal to 1
for all t ∈ [stj , dj]. If stj > dj , the charging demand of EV j will be rejected but
penalized in the objective function.

The proposed heuristics and neighborhood search in the SA deals with the
EV-CP assignment problem. Then, for each solution, the power allocation prob-
lem is formulated as a linear programming model.

4.2 Heuristics for Solving the Assignment of EVs to CPs

In the following, we define greedy rules for the assignment of EVs to CPs.

First Come Fist Served (FCFS) Heuristic. First-come-fist-served (FCFS)
rule is a popular approach to schedule the EVs charging. It assigns the EV with
the smallest arrival time to the first available CP.

Interval Graph Coloring Based Heuristic (IGCH). Consider the interval
graph G = (V,E) where each vertex v ∈ V represents a charging demand of an
EV j, j ∈ n defined by its arrival time rj and its departure time dj . There is an
edge e ∈ E between two vertices if and only if their associated intervals have a
nonempty intersection i.e. (j, j′) ∈ E if [rj , dj] ∩ [rj′ , dj′] �= ∅. Assigning a set of
EVs to a given CP is equivalent to the k-coloring problem of the graph G. The
k-coloring problem is to assign a color c ∈ {1, .., k} to each vertex of G so that no
adjacent vertices have the same color. The set of vertices colored with the same
color corresponds to the set of EVs assigned to the same CP and it is called
a color class. Since an interval graph is a chordal graph, the greedy coloring
algorithm delivers an optimal coloring on a chordal graph following the perfect
elimination orderings [5]. A perfect elimination ordering in a graph is an ordering
of the vertices of the graph such that, for each vertex v and the neighbors of v
that occur after v in the order form a clique. We use the lexicographic breadth-
first (LexBFS) search proposed by [17] to find the perfect elimination ordering in
linear time. We add randomness to the algorithm to generate difference perfect
elimination orders by adding a random weight w to each vertex. Therefore, when
two vertices have the same label, we choose the vertex with maximum weight w.
Algorithm 1 shows the pseudocode of LexBFS ordering.

In the case where we have the chromatic number k, i.e. the number of color
classes is less than or equal to the number of CP, we assign the EVs with the same
color class to the same CP. We start with the color classes that have the greater
cardinally (the highest number of vertices with the same color) and assign them
to the CP with the greater charging output power. Otherwise, when k > m, each
remaining non assigned EV j will be assigned to the CP that has the largest
available time from rj to dj . The overall procedure of the IGCH algorithm is
depicted in Algorithm 2.

Hybrid Heuristic and Metaheuristic for Solving EVCSP 225

Algorithm 1: LexBFS
input : Interval graph G = (V, E)
output: A perfect elimination orderings σ = (v1, .., vn)

1 for v ∈ V do
2 label (v) ← []
3 w(v) ← random()

4 end
5 for i = |V | down to 1 do
6 choose a vertex v ∈ V with lexicographically maximal label with ties being

broken by w(v)
7 σ(i) ← v
8 for u ∈ Neighborhood(v) do
9 label (u) ← label (u).concatenate(u)

10 end

11 end
12 return σ

4.3 Exact Methods for Solving the Power Allocation Problem

After determining the assignment of the EVs to CPs, the objective here is to
decide the amount of electric power delivered by each CP at each time slot.
We formulate both constant and variable power models as an integer linear
programming (ILP) model.

A Linear Programming for Constant Power Model: We define the binary
decision variables yt

ij .

yt
ij =

{
1 if EV j is charging by the CP i at time t
0 otherwise.

Let Hj = {t|t ∈ H, at
ij = 1}. We set yt

ij = 0 ∀t /∈ Hj

– Objective :

min
m∑

j=1

(ed
j − ef

j)

– Constraints:
e0j ≤ ef

j ≤ ed
j ∀j (12)

ef
j = e0j +

∑dj

t=rj
yt

ij × τ × pi

Bj
∀j (13)

Constraints (12) and (13) calculate the final state-of-charge of each EV j.

n∑
i=1

m∑
j=1

yt
ij × pi ≤ Pmax ∀t (14)

Constraints (14) ensure that the total output power doesn’t exceed the charg-
ing station limit at each time slot.

226 I. Zaidi et al.

Algorithm 2: Heuristic using interval graph coloring
input : Scenario of n EVs and m CPs
output: assignment of EVs to CPs

1 Construct the interval graph G of the scenario
2 Get a perfect elimination ordering σ of G using Algorithm 1
3 k ← 1
4 Color(σ(0)) ← k
5 for i = n down to 1 do
6 v ← σ(i)
7 for c = 0 to k do
8 if color c /∈ Color(Neighborhood(v)) then
9 Color(v) ← c

10 end

11 end
12 if all colors c ∈ Color (Neighborhood(v)) then
13 k ← k + 1
14 Color(v) ← c

15 end

16 end
17 Sort CPs in non-decreasing order of their output power
18 Sort the color classes in non-decreasing order their cardinality
19 Assign the EVs of the k first classes to the k first CPs
20 if k > m then
21 for each EV j in the remaining non assigned classes do
22 Choose the CP i that have the largest sub-interval of [rj , dj] where the

CP is free (no EV is plugged in) and assign the EV CP i
23 end

24 end

A Linear Programming for the Variable Power Model: We define the
continuous decision variables pt

ij which represents the power delivered by the
CP i to EV j at time t.

min
m∑

j=1

(ed
j − ef

j)

Constraints :
e0j ≤ ef

j ≤ ed
j ∀j (15)

ef
j = e0j +

∑dj

t=rj
pt

ij × τ

Bj
∀j (16)

Constraints (15) and (16) calculate the final state-of-charge of each EV j.

at
ij × pi ≥ pt

ij ∀i, j, t ∈ Hj (17)

Constraints (17) ensure that the delivered power by each CP i doesn’t exceed
its maximum rated power pi at each time t.

Hybrid Heuristic and Metaheuristic for Solving EVCSP 227

n∑
i=1

m∑
j=1

pt
ij ≤ Pmax ∀t (18)

Constraints (18) ensure that the total output power doesn’t exceed the charging
station limit.

4.4 Simulated Annealing

Simulated annealing algorithm, initially proposed by [8], has been successfully
adapted to address several optimal resource scheduling problems. The pseudo-
code of the SA algorithm is shown in Algorithm 3.

A candidate solution for SA represents the EV-CP assignment part described
in Sect. (4.1). We obtain its objective value by solving the LP problem repre-
senting the power allocation as described in Sect. (4.3). In preliminary exper-
iments, the population-based meta-heuristics turned out to be worse than SA
and time-consuming due to solving an LP for each newly generated solution in
the population. Thus, we pursue with SA only.

First, an initial solution S0 is generated using the FCFS rule. Starting from
the initial solution S0, SA generates a neighborhood solution S′. The difference
in the objective value between the new solution S′ and the current solution
S is calculated as Δf = f(S′) − f(S). The neighborhood solution S′ replaces
the current solution based on the Metropolis criteria; It will replace the current
solution if there is an improvement i.e. Δf < 0. If it also improves the best
solution found so far, it will become the new global best solution Sbest. Otherwise,
a random number r is generated following the uniform distribution U [0, 1] and
the neighborhood solution S′ will become the current solution if r ≤ e−Δf/T

where T is a parameter called temperature, which regulates the probability of
accepting worsening solutions. The temperature is initially set to a value T0

proportional to the objective function value of the initial solution T0 = μf(S0)
where μ is a fixed parameter.

At each iteration l, the temperature is gradually decreased by a cooling
scheme. The authors in the original SA paper [8] propose the following decreasing
geometric cooling scheme:

Tl+1 = αTl

Where 0 < α < 1. Typically, when α is set to high implying a slow decrease
of the temperature. We also consider the Lundy-Mees cooling scheme proposed
by [11]:

Tl+1 =
Tl

a + bTl

Connolly in [1] develops a variant of the Lundy-Mees scheme that set the
parameter a to 1 and b in dependence of the initial temperature T0, the final
temperature Tf and the size of the neighborhood M :

b =
T0 − Tf

MT0Tf

228 I. Zaidi et al.

The algorithm will stop if it reaches the maximum number of iteration or
after a fixed number of moves that did not result in accepted solutions. When the
stopping criterion is met, the algorithm terminates returning the best solution
Sbest found so far.

Neighborhood Generation. A neighborhood solution is obtained through a
perturbation on the assignment of Evs to CPs in the current solution by one of
the following moves:

– Swap in the same CP: a neighborhood solution is generated by randomly
choosing a CP and interchange the position of two EVs scheduled in this CP.
The positions of EVs are randomly selected.

– Swap from two different CP: a neighborhood solution is generated by ran-
domly swapping two EVs between two CPs. The CPs and EVs are randomly
selected.

– Insert: a neighborhood solution is generated by randomly choosing an EV
in a CP and move it to another position in another CP. The CPs and the
position of the EV are randomly selected.

– Shift left: a neighborhood solution is generated by moving an EV at position
p1 from a CP to position p2 in the same CP where p2 < p1. The positions p1
and p2 are randomly selected.

– Shift right: a neighborhood solution is generated by moving an EV at position
p1 from a CP to position p2 in the same CP where p2 > p1. The positions p1
and p2 are randomly selected.

After each move, the power allocation is solved using the ILP models
described in Sect. 4.3.

5 Experimental Analysis

To evaluate the performance of the proposed methods, several simulations are
conducted, and the relevant results are discussed in this section. Note that all
algorithms are implemented in C++ programming language. We use CPLEX
12.7 as a solver for the LP models in our heuristics and SA. Note that the
CPLEX was not used to solve the MILP presented in Sect. (3) since we couldn’t
get results for small instances vehicles even after turning for several days due to
out of memory errors.

5.1 Parameters Tuning for SA

The tuning of the particular optimization problem is essential to obtain good
results. We use the IRACE (Iterated Racing for Automatic Algorithm Config-
uration) package [10] which allows an automatic parameter configuration using
the Iterated F-race method. Two scenarios of each case were selected to be the
training instances for IRACE. Table 1 presents the parameters of the SA along
with the range of values that tested for each parameter. The final choices of the
parameter values are also presented and they are used in all experiments in the
following sections.

Hybrid Heuristic and Metaheuristic for Solving EVCSP 229

Algorithm 3: Simulated annealing
input : Initial solution S0, maxNeighbours, maxAccepted, final Temperature

Tf , maxTrials, μ
output: best solution found Sbest

1 Sbest ← S0 , S ← S0 , T ← μf(S0), M ← maxTrails
maxNeighbours

, trail ← 0

2 do
3 accepted ← 0, generated ← 0
4 while generated ≤ maxNeighbours and accepted ≤ maxAccepted do
5 S′ ← Neighbour(S)
6 Δf ← f(S′) − f(S)
7 generated ← generated + 1
8 trail ← trail + 1

9 if f(S′) < f(S) or U(0, 1) ≤ e−Δf/T then
10 S ← S′, accepted ← accepted + 1
11 if f(S) < f(Sbest) then
12 Sbest ← S
13 end

14 end

15 end
16 update T according to the cooling scheme

17 while trail ≤ maxTrails and accepted > 0;
18 return Sbest

Table 1. Values tested for the SA parameters tuning.

Parameter value range Best

μ [0.01, 0.9] 0.12

Max neighbours 20,50,100 50

Cooling technique LandyMees, Geometric LandyMees

α [0.01,0.9] -

final temperature [0.001,0.1] 0.01

max accepted 0.1,0.2,0.3,0.4 0.1

5.2 Scenarios Generation

Regarding the charging station, we consider three cases with different number of
CPs m = {10, 20, 40}. For each case, 30% of CPs deliver 3.7 kW, 30% deliver 11
kW, 30% deliver 22 kW and 10% deliver 43 kW. This charging rates are chosen
from the standard IEC 61851 [19] that defines the classification of the different
charging modes. The charging station maximum capacity Pmax is set to 70% of∑n

i=1 pi. The scheduling time horizon is one day and the time slot τ is set to
6 min.

To test the model implemented, we need to model the stochastic EVs charg-
ing demands. The EV arrivals are randomly occurring and independent events.

230 I. Zaidi et al.

Table 2. Comparison of results with m = 10.

scenario n k FCFS IGCH SA

obj time (s) mean best std time mean best std time (s)

Model with constant power

1 20 12 0.52 0.47 0.53 0.26 0.15 0.29 0.25 0.13 0.09 56.15

2 29 18 3.74 0.42 2.92 2.41 0.22 0.35 1.26 0.80 0.29 82.26

3 24 16 2.05 0.35 2.20 1.68 0.39 0.28 0.55 0.25 0.17 68.69

4 25 17 1.64 0.43 1.80 1.11 0.51 0.31 0.57 0.31 0.15 72.62

5 30 16 4.79 0.44 2.57 2.34 0.36 0.35 2.01 1.34 0.47 93.43

6 27 16 2.80 0.35 2.57 0.79 0.19 0.31 1.48 0.66 0.46 104.38

7 29 14 2.10 0.42 2.01 1.26 0.23 0.35 0.96 0.66 0.21 80.72

8 26 16 2.26 0.34 1.39 1.08 0.22 0.31 0.85 0.42 0.36 78.28

9 22 14 2.41 0.30 1.78 1.15 0.31 0.25 0.48 0.10 0.35 91.35

10 22 15 0.73 0.28 0.56 0.37 0.19 0.26 0.32 0.19 0.10 90.17

11 27 9 2.21 0.50 1.32 0.79 0.24 0.37 1.02 0.53 0.35 77.03

12 25 10 1.87 0.33 0.60 0.43 0.10 0.34 0.53 0.29 0.19 75.24

13 20 8 2.03 0.27 0.91 0.59 0.07 0.23 0.46 0.19 0.22 59.76

14 23 9 2.21 0.31 0.95 0.83 0.06 0.28 0.86 0.45 0.28 69.82

15 22 9 1.47 0.29 0.64 0.44 0.12 0.26 0.52 0.32 0.17 67.86

Model with variable power

1 20 12 0.27 0.30 0.25 0.02 0.14 0.23 0.03 0.00 0.05 61.50

2 29 18 3.34 0.39 2.53 2.09 0.23 0.33 0.80 0.20 0.28 90.74

3 24 16 1.79 0.32 1.73 1.03 0.28 0.26 0.23 0.00 0.16 76.03

4 25 17 1.26 0.35 1.40 0.62 0.56 0.28 0.13 0.00 0.09 85.89

5 30 16 4.51 0.38 2.52 1.98 0.56 0.33 1.48 0.66 0.46 104.38

6 27 16 2.46 0.34 0.81 0.46 0.24 0.30 0.61 0.13 0.25 105.85

7 29 14 1.90 0.36 1.59 0.61 0.42 0.32 0.68 0.27 0.23 101.39

8 26 16 2.00 0.33 1.07 0.28 0.35 0.29 0.48 0.10 0.35 91.35

9 22 14 2.06 0.28 1.24 0.33 0.39 0.24 0.48 0.09 0.25 97.57

10 22 15 0.48 0.27 0.38 0.13 0.27 0.24 0.05 0.00 0.05 88.00

11 27 9 1.89 0.34 0.76 0.32 0.28 0.34 0.67 0.09 0.30 90.27

12 25 10 1.64 0.32 0.37 0.16 0.27 0.28 0.35 0.04 0.25 87.20

13 20 8 1.73 0.25 0.59 0.50 0.02 0.23 0.17 0.00 0.16 70.88

14 23 9 2.04 0.29 0.59 0.57 0.05 0.26 0.60 0.10 0.27 77.36

15 22 9 1.14 0.28 0.30 0.00 0.20 0.24 0.20 0.00 0.10 74.38

Hybrid Heuristic and Metaheuristic for Solving EVCSP 231

Table 3. Comparison of results with m = 20.

scenario n k FCFS IGCH SA

obj time (s) mean best std time (s) mean best std time (s)

Model with constant power

16 48 22 6.04 1.86 3.33 2.49 0.50 1.41 3.87 2.52 0.61 320.80

17 50 22 6.22 1.50 3.59 2.09 0.64 1.40 4.25 3.45 0.42 340.73

18 59 30 4.95 1.67 3.68 2.55 0.63 1.68 3.01 2.26 0.42 391.15

19 66 28 7.39 1.98 5.90 4.78 0.71 1.91 5.39 3.84 0.74 428.59

20 51 23 4.73 1.52 3.51 2.08 0.61 1.38 3.33 2.58 0.52 323.44

21 58 33 6.60 1.70 5.61 3.88 0.86 1.65 4.10 2.80 0.71 381.73

22 53 26 3.76 1.59 3.49 2.40 0.69 1.41 2.66 1.30 0.60 322.97

23 68 37 9.24 1.98 7.80 5.41 0.85 1.90 6.08 4.60 0.67 448.97

24 52 27 4.21 1.49 3.02 1.76 0.78 1.43 2.57 1.96 0.37 340.59

25 54 28 5.89 1.59 5.17 3.82 0.81 1.46 4.02 3.09 0.58 370.09

26 40 20 4.11 1.17 2.18 1.55 0.36 2.01 2.10 1.29 0.42 283.48

27 40 18 4.05 1.13 2.05 1.33 0.28 2.11 2.28 1.42 0.51 259.32

28 37 20 3.52 1.12 1.53 1.03 0.31 1.97 1.37 0.96 0.30 246.28

29 33 15 2.88 0.91 0.90 0.62 0.14 1.58 0.85 0.44 0.30 206.95

30 39 18 3.48 1.13 2.04 1.47 0.27 2.21 1.58 0.88 0.34 240.35

Model with variable power

16 48 22 5.39 1.33 2.58 1.77 0.53 1.25 3.87 2.52 0.61 320.80

17 50 22 5.79 1.37 3.02 1.84 0.80 1.28 3.64 2.50 0.61 368.63

18 59 30 4.20 1.63 2.75 1.80 0.54 1.54 2.16 1.25 0.42 427.03

19 66 28 6.72 1.82 5.22 3.40 0.65 1.72 4.44 3.24 0.64 480.56

20 51 23 4.24 1.41 2.52 1.60 0.48 1.30 2.49 1.64 0.56 371.11

21 58 33 6.03 1.58 5.22 3.18 0.87 1.49 3.54 2.20 0.47 427.77

22 53 26 3.18 1.44 2.69 1.66 0.64 1.34 2.04 1.16 0.42 368.22

23 68 37 8.75 1.86 6.66 5.12 0.73 1.77 5.46 4.29 0.53 507.92

24 52 27 3.75 1.44 2.36 0.99 0.62 1.32 2.25 1.23 0.50 373.87

25 54 28 5.44 1.48 4.46 2.67 0.78 1.37 3.64 2.34 0.57 390.13

26 40 20 3.61 1.06 1.29 0.82 0.23 1.88 1.62 0.91 0.46 299.69

27 40 18 3.75 1.09 1.27 0.38 0.29 1.97 1.68 0.97 0.57 280.38

28 37 20 3.22 1.11 0.84 0.45 0.26 1.80 0.98 0.20 0.32 267.22

29 33 15 2.60 0.86 0.41 0.09 0.19 1.49 0.58 0.11 0.20 241.82

30 39 18 3.16 1.10 1.29 0.67 0.22 2.11 1.10 0.62 0.31 297.82

232 I. Zaidi et al.

Table 4. Comparison of results with m = 40.

scenario n k FCFS IGCH SA

obj time (s) mean best std time (s) mean best std time (s)

Model with constant power

31 93 45 6.27 6.30 3.92 2.43 0.67 5.34 4.76 3.91 0.58 1621.11

32 99 53 7.27 6.38 6.70 5.24 0.62 5.86 5.56 4.57 0.55 1433.02

33 79 41 6.64 5.74 3.59 2.19 0.55 4.45 4.81 3.50 0.69 1122.35

34 102 52 9.59 6.69 6.76 4.84 1.03 6.39 6.90 5.98 0.54 1442.63

35 93 52 7.77 5.97 5.61 4.10 0.70 5.51 6.11 4.83 0.48 1382.38

36 96 50 4.30 6.20 4.78 3.52 0.64 5.64 3.45 2.84 0.33 1462.46

37 96 52 9.47 6.47 5.09 4.02 0.69 5.61 6.77 5.89 0.71 1480.53

38 112 58 9.82 7.45 7.71 5.96 1.06 6.95 7.96 6.68 0.64 1648.97

39 95 43 7.04 6.26 4.70 3.53 0.80 6.04 5.34 4.40 0.55 1379.94

40 78 38 6.56 5.83 3.40 2.71 0.32 4.90 3.92 3.05 0.52 1127.74

41 85 37 6.40 5.22 4.09 3.13 0.68 9.35 4.44 3.20 0.55 1188.21

42 82 39 5.47 5.51 3.37 2.10 0.52 8.83 3.40 2.29 0.58 1245.61

43 88 40 6.36 5.47 4.27 2.96 0.68 9.86 4.56 3.86 0.41 1241.81

44 91 40 6.13 5.24 3.68 2.72 0.52 9.56 4.46 3.33 0.70 1239.36

45 79 39 6.81 4.70 4.36 2.98 0.56 8.13 4.69 3.41 0.51 1131.08

Model with variable power

31 93 45 5.32 5.75 2.59 1.21 0.77 5.07 3.59 2.34 0.63 1663.55

32 99 53 6.30 7.47 5.27 3.32 1.03 5.46 4.87 3.36 0.62 1629.41

33 79 41 5.79 5.15 2.47 1.44 0.62 4.37 3.88 2.97 0.49 1258.61

34 102 52 8.16 6.60 5.32 2.61 1.02 5.79 5.62 4.43 0.64 1645.17

35 93 52 6.69 5.86 4.02 1.71 0.84 5.18 4.75 4.01 0.39 1613.15

36 96 50 3.18 6.30 3.40 1.27 0.75 5.36 2.44 1.52 0.43 1640.23

37 96 52 8.31 6.27 3.39 1.72 0.60 5.37 6.24 4.67 0.70 1569.15

38 112 58 8.57 7.26 5.88 3.84 0.84 6.43 6.93 5.41 0.65 1784.67

39 95 43 5.79 6.24 3.02 1.21 0.80 5.65 4.17 3.27 0.62 1579.64

40 78 38 5.61 4.71 2.12 1.20 0.52 4.55 3.18 1.94 0.63 1307.81

41 85 37 5.56 5.20 2.78 1.23 0.76 8.74 3.47 2.49 0.52 1430.08

42 82 39 4.70 4.95 1.93 1.01 0.41 8.82 2.65 1.71 0.58 1259.53

43 88 40 5.33 5.19 2.93 1.71 0.76 8.08 3.43 2.25 0.54 1376.60

44 91 40 5.11 5.19 2.38 1.32 0.59 9.29 3.49 2.33 0.63 1357.30

45 79 39 5.98 4.38 2.86 1.60 0.63 8.67 3.95 2.51 0.60 1253.41

Hybrid Heuristic and Metaheuristic for Solving EVCSP 233

Therefore, the arrival time is modeled using a non-homogeneous Poisson Process
with an arrival rate that varies λ(h) at each hour h = {1, ..., 24}. The arrivals
are likely high in the morning and low in the afternoon. The parking times prj

follow an exponential distribution with a mean parking duration that also varies
over time. There is no correlation between the arrival time and the parking time
so the two variables can be generated independently [15]. The departure time dj

of each EV can be directly obtained dj = rj + prj . The initial state-of-charge at
the arrival (e0j) is considered uniformly distributed in the range of [20,70]. The
desired state-of-charge of each EV j (ed

j) is uniformly chosen from [e0j ,100]. The
battery capacities are chosen randomly from the list of current real-world EVs
battery capacities [2].

We generate 15 scenarios for each case. In the first 10 scenarios, the chromatic
number (k) of the interval graph of the scenario is greater than the number of
CPs while it is less or equal in the last five scenarios.

5.3 Simulation Results

Due to the stochastic nature of the IGCH and the SA algorithm, 30 independent
executions were done for each scenario to obtain statistically significant results.
The objective value is calculated for each scenario and we collect the mean,
best, the standard deviation (std), and average execution time in seconds of
each algorithm. Table 2, Table 3 and Table 4 shows the comparison of results
obtained with m = 10, m = 20 and m = 40 respectively. We highlight in bold
the best solution found.

About comparison between the model with constant power and the model
with variable power, the objective value in the second one was averagely lower by
26.6% by the IGCH and by 20% by the SA than the first model. Thus, charging
demands can be satisfied more using the variable power model.

For all scenarios, the best solutions found by the SA and IGCH always out-
perform the FCFS heuristic. For the scenarios with m = 10, the SA algorithm
outperforms the IGCH in all scenarios whereas it outperforms the IGCH in 18
scenarios out of 30 with m = 20 and in 2 scenarios out of 30 when m = 40.

We perform the Mann-Whitney U test [13] to compare the results between the
IGCH and the SA for each case. The Mann-Whitney U test is a non-parametric
statistical test for determining whether two independent samples were drawn
from a population with the same distribution. We compare the p-value to a
significance level of 0.05. The p-value found was 0.0001, 0.3661 and 0.0038 for
results with m = 10, m = 20 and m = 40, respectively. It suggests that there
is no significant difference between the results with m = 20 of SA and IGCH
algorithms. However, we can conclude that the difference between the SA and
IGCH results with m = 10 and m = 40 are statistically significant. The average
time taken by the three methods is always greater in scenarios with m = 40 when
there are more EV charging demands. Also, the IGCH uses an average of 99.5%
less computational time than SA. It is also noted that increment of computation
time in the SA algorithm is due to solving multiple LP with CPLEX at each
neighbor generation while there are one LP solved for each IGCH execution.

234 I. Zaidi et al.

In conclusion, the proposed IGCH is significantly better than the FCFS mech-
anism and it is preferable to the SA regarding the execution time. Moreover, it
can handle large scenario better than the SA.

6 Conclusion

In this paper, we addressed the electric vehicle charging scheduling problem
(EVCSP) in a charging station with different charging modes to maximize the
final state-of-charge of each EV by the departure time. To solve the optimization
problem, we designed a heuristic based on interval scheduling and Simulated
Annealing (SA) combined with linear programming. Variable power and con-
stant power models were both studied and compared. Different scenarios were
presented to evaluate the performance of the proposed algorithms. The results
show that the variable power model is better for allocating power. The results
also show that the proposed heuristic and SA can achieve an optimal solution
and outperform the SA algorithm, and the performance is significantly better
than the First Come First Serve (FCFS) mechanism. In this paper, we have
assumed that the data on vehicle recharging (arrival time, departure time, state
of charge, etc.) are known in advance. This assumption is realistic since many
recharging service operators require a reservation of the recharging in advance
to avoid queues. However, it is interesting to study the dynamic case of vehicle
arrival. In future work, we will consider multi-objective optimization to reduce
the charging cost.

References

1. Connolly, D.T.: An improved annealing scheme for the QAP. Eur. J. Oper. Res.
46(1), 93–100 (1990)

2. EVDB: Ev database (2020). https://ev-database.org
3. Franco, J.F., Rider, M.J., Romero, R.: An MILP model for the plug-in electric

vehicle charging coordination problem in electrical distribution systems. In: 2014
IEEE PES General Meeting—Conference and Exposition, National Harbor, MD,
USA, pp. 1–5. IEEE (2014)

4. Garćıa-Álvarez, J., González, M.A., Vela, C.R.: Metaheuristics for solving a real-
world electric vehicle charging scheduling problem. Appl. Soft Comput. 65, 292–306
(2018)

5. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Can. J. Math. 16, 539–548 (1964)

6. IEA: Global EV outlook (2020). https://www.iea.org/reports/global-ev-outlook-
2020

7. Kang, Q., Wang, J., Zhou, M., Ammari, A.C.: Centralized charging strategy and
scheduling algorithm for electric vehicles under a battery swapping scenario. IEEE
Trans. Intell. Transp. Syst. 17(3), 659–669 (2016)

8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

9. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education, India (2006)

https://ev-database.org
https://www.iea.org/reports/global-ev-outlook-2020
https://www.iea.org/reports/global-ev-outlook-2020

Hybrid Heuristic and Metaheuristic for Solving EVCSP 235

10. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

11. Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Program.
34(1), 111–124 (1986)

12. Luo, L., et al.: Optimal planning of electric vehicle charging stations comprising
multi-types of charging facilities. Appl. Energy 226, 1087–1099 (2018)

13. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 50–60 (1947)

14. Niu, L., Zhang, P., Wang, X.: Hierarchical power control strategy on small-scale
electric vehicle fast charging station. J. Cleaner Prod. 199, 1043–1049 (2018)

15. Pflaum, P., Alamir, M., Lamoudi, M.Y.: Probabilistic energy management strategy
for EV charging stations using randomized algorithms. IEEE Trans. Control Syst.
Technol. 26(3), 1099–1106 (2018)

16. Rahman, I., Vasant, P.M., Singh, B.S.M., Abdullah-Al-Wadud, M.: On the per-
formance of accelerated particle swarm optimization for charging plug-in hybrid
electric vehicles. Alexandria Eng. J. 55(1), 419–426 (2016)

17. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

18. Sassi, O., Oulamara, A.: Electric vehicle scheduling and optimal charging prob-
lem: complexity, exact and heuristic approaches. Int. J. Prod. Res. 55(2), 519–535
(2017)

19. IEC 61851–1: 2017 Standard: Electric vehicle conductive charging system-part
1: general requirements. The International Electrotechnical Commission, Geneva,
Switzerland, 292, 7 February 2017

20. Tang, W., Zhang, Y.J.A.: A model predictive control approach for low-complexity
electric vehicle charging scheduling: optimality and scalability. IEEE Trans. Power
Syst. 32(2), 1050–1063 (2016)

21. Wu, H., Pang, G.K.H., Choy, K.L., Lam, H.Y.: Dynamic resource allocation for
parking lot electric vehicle recharging using heuristic fuzzy particle swarm opti-
mization algorithm. Appl. Soft Comput. 71, 538–552 (2018)

22. Wu, W., Lin, Y., Liu, R., Li, Y., Zhang, Y., Ma, C.: Online EV charge scheduling
based on time-of-use pricing and peak load minimization: properties and efficient
algorithms. IEEE Trans. Intell. Transp. Syst.(2020)

23. Yang, S.: Price-responsive early charging control based on data mining for electric
vehicle online scheduling. Electric Power Syst. Res. 167, 113–121 (2019)

24. Yao, L., Lim, W.H., Tsai, T.S.: A real-time charging scheme for demand response
in electric vehicle parking station. IEEE Trans. Smart Grid 8(1), 52–62 (2016)

25. Zhang, L., Li, Y.: Optimal management for parking-lot electric vehicle charging
by two-stage approximate dynamic programming. IEEE Trans. Smart Grid 8(4),
1722–1730 (2015)

Author Index

Aguirre, Hernán 34
Alba, Enrique 17

Bäck, Thomas 100
Baioletti, Marco 1
Basset, Michel 219

Calandra, Henri 100
Cintrano, Christian 17
Cosson, Raphaël 34

Delgado, Myriam 136
Derbel, Bilel 34
Doerr, Carola 51
Dunjko, Vedran 100

El Yafrani, Mohamed 51

Ferrer, Javier 17

Hähner, Jörg 169

Idoumghar, Lhassane 219

Kessaci, Marie-Éléonore 136

Le, Hoang Thanh 68
Lengler, Johannes 84
Lewis, Rhyd 202
Liefooghe, Arnaud 34
López-Ibáñez, Manuel 17

Middendorf, Martin 68
Moussa, Charles 100

Nielsen, Peter 51

Oddi, Angelo 1
Oulamara, Ammar 219

Parque, Victor 120
Pavelski, Lucas Marcondes 136

Rajabi, Amirhossein 152
Rasconi, Riccardo 1
Riedi, Simone 84
Rosenbauer, Lukas 169

Sankineni, Preethi 185
Sciortino, Monique 202
Scoczynski, Marcella 51
Shi, Yuhui 68
Stein, Anthony 169
Sung, Inkyung 51
Sutton, Andrew M. 185

Tanaka, Kiyoshi 34
Thompson, Jonathan 202

Wagner, Markus 51
Wang, Hao 100
Witt, Carsten 152

Zaidi, Imene 219
Zhang, Qingfu 34

	Preface
	Organization
	Contents
	A Novel Ant Colony Optimization Strategy for the Quantum Circuit Compilation Problem
	1 Introduction
	2 The QCC Problem
	3 A Novel Ant Colony Optimization Strategy
	3.1 Solution Construction Algorithm
	3.2 Gate Selection Procedure Based on Priority Rules
	3.3 Pheromone Models

	4 Empirical Evaluation
	4.1 Tuning
	4.2 Results

	5 Concluding Remarks and Future Work
	References

	Hybridization of Racing Methods with Evolutionary Operators for Simulation Optimization of Traffic Lights Programs
	1 Introduction
	2 Problem Description
	3 Hybridization of IRACE and Evolutionary Algorithms
	3.1 IRACE
	3.2 Hybrid Algorithms

	4 Experimental Setup
	4.1 Real World Case Study
	4.2 Case Study Constraints
	4.3 Repair Procedure
	4.4 Simulator: SUMO
	4.5 Algorithms
	4.6 Experimental Details

	5 Results
	5.1 Training Set
	5.2 Testing Set
	5.3 Impact in Real World

	6 Conclusions
	References

	Decomposition-Based Multi-objective Landscape Features and Automated Algorithm Selection
	1 Introduction
	2 From Single- to Multi-objective Features Based on Decomposition
	2.1 Multi-objective Optimization
	2.2 Rationale, Methodology and Features Overview

	3 A Preliminary Exploratory Analysis
	3.1 Experimental Setup
	3.2 Visual Analysis of Single-Objective Features
	3.3 Correlation Analysis of Features and Landscape Parameters

	4 Landscape-Aware MOEA/D Selection
	4.1 Algorithm Portfolio
	4.2 Automated Algorithm Selection

	5 Conclusion and Open Issues
	References

	MATE: A Model-Based Algorithm Tuning Engine
	1 Motivation
	2 Background
	3 The MATE Framework
	3.1 Problem Formulation and Notation
	3.2 Architecture Overview
	3.3 The Tuning Algorithm

	4 Computational Study
	4.1 Experimental Setting
	4.2 Performance Analysis
	4.3 Comparative Study

	5 Conclusions and Future Directions
	References

	An Improvement Heuristic Based on Variable Neighborhood Search for a Dynamic Orienteering Problem
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Variable Neighborhood Search
	5 Computational Evaluation
	5.1 Measurement of Algorithm Performance
	5.2 Choice of Algorithms for Comparison
	5.3 Problem Instances
	5.4 Initial Solutions for the Improvement Heuristics
	5.5 Parameter Values
	5.6 Comparison of VNSDOP as an Improvement Heuristic with Other Metaheuristics
	5.7 Comparison of VNSDOP as a Standalone Algorithm with Other Metaheuristics

	6 Conclusion
	References

	Runtime Analysis of the (+ 1)-EA on the Dynamic BinVal Function
	1 Introduction
	2 Preliminaries
	3 Analysis of the Degenerate Population Drift
	4 Second-Order Analysis of the Drift of the (2 + 1)-EA
	5 Conclusion
	References

	Tabu-Driven Quantum Neighborhood Samplers
	1 Introduction
	2 Background
	3 Tabu-Driven QAOA Sampling
	3.1 The Basic TS Algorithm
	3.2 QAOA Neighborhood Sampling
	3.3 Enforcing Locality with Penalized QAOA

	4 Simulations
	4.1 Larger Neighborhood Exploration Benefits
	4.2 QAOA as a Proxy for Brute-Force

	5 Conclusion and Outlook
	References

	On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles
	1 Introduction
	2 Steiner Tree Problem
	2.1 Definition
	2.2 Background

	3 Proposed Approach
	3.1 Basic Algorithm
	3.2 Root Optimization

	4 Computational Experiments
	5 Conclusions
	References

	Flowshop NEH-Based Heuristic Recommendation
	1 Introduction
	2 Background
	3 Methodology
	3.1 Problem and Feature Space
	3.2 Algorithm Space
	3.3 Performance Data and Recommendation

	4 Results
	4.1 Machine-Learning Performance
	4.2 Recommended Heuristics Performance

	5 Conclusion
	References

	Stagnation Detection with Randomized Local Search
	1 Introduction
	2 Preliminaries
	2.1 Algorithms
	2.2 Mathematical Tools

	3 Analysis of the Algorithm SD-RLS
	4 Analysis of the Algorithm SD-RLS*
	5 An Example Where Global Mutations Are Necessary
	6 Minimum Spanning Trees
	7 Experiments
	References

	An Artificial Immune System for Black Box Test Case Selection
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Germinal Center Artificial Immune System
	5 Evaluation
	5.1 Failure Revealing Capabilities
	5.2 Detection of Broken Features

	6 Conclusion and Future Work
	References

	Symmetry Breaking for Voting Mechanisms
	1 Introduction
	2 Search by Majority Vote
	2.1 Functions with Spin-Flip Symmetry

	3 A Symmetry-Breaking Strategy
	3.1 Generalized TwoMax
	3.2 Satisfiability Problems
	3.3 Failure Case: 1D Ising Model

	4 Experiments
	5 Conclusion
	References

	A Heuristic Algorithm for School Bus Routing with Bus Stop Selection
	1 Introduction
	2 Problem Definition
	3 Algorithm Description
	3.1 Construction of Initial Solution
	3.2 Cost Function
	3.3 Local Search Routine
	3.4 Generation of Alternative Solutions

	4 Computational Experiments
	5 Conclusions and Future Developments
	References

	Hybrid Heuristic and Metaheuristic for Solving Electric Vehicle Charging Scheduling Problem
	1 Introduction
	2 Related Work
	3 Problem Description and Formulation
	4 Proposed Methods
	4.1 Solution Representation
	4.2 Heuristics for Solving the Assignment of EVs to CPs
	4.3 Exact Methods for Solving the Power Allocation Problem
	4.4 Simulated Annealing

	5 Experimental Analysis
	5.1 Parameters Tuning for SA
	5.2 Scenarios Generation
	5.3 Simulation Results

	6 Conclusion
	References

	Author Index

