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Causes and Consequences of Changes
in Riparian Vegetation for Plant Litter
Decomposition Throughout River
Networks

John S. Kominoski , Samantha K. Chapman , Walter K. Dodds ,
Jennifer J. Follstad Shah , and John S. Richardson

Abstract Riparian ecosystems occupy land-water interfaces along upland-to-
lowland and coastal gradients of river networks.Global changes in riparian vegetation
alter the types and processing of organic matter at these interfaces and throughout
river networks. Dominant pathways of structural changes in riparian vegetation are
associated with (i) temperature increases and changes in precipitation and hydrology,
(ii) range expansion/contraction of native and non-native species, (iii) altered land-
use for agriculture/forest plantations and harvesting, and urban development, (iv)
shifts in disturbance regimes, such as fire, disease, pest outbreaks, and storms, and (v)
saltwater intrusion.Widespread changes in riparian vegetation alter above and below-
ground carbon (C) stores and shift the relative proportion of algal and detrital basal
resources in aquatic ecosystems. Global changes in riparian vegetation likely shift the
sources and sinks of organic matter along river networks from upland headwaters to
lowland rivers and coastal wetlands. Climate and global changes are expanding and
contracting continental vegetation species ranges while sea-level rise and saltwater
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intrusion are transgressing coastal ecosystems landward. Understanding the general
pathways and functional consequences of changes in riparian vegetation is vital to
conserving ecosystem functions and services throughout continental river networks
and coastal wetlands that are supported by organic matter processing.

13.1 Riparia & River Networks

Most aquatic ecosystems rely on allochthonous energy produced in riparian and
terrestrial ecosystems (Cebrian & Lartigue, 2004). Riparian ecosystems contain
unique species adapted to flooding, drought, erosion and deposition, which collec-
tively result in riparian areas as being control points of biogeochemical cycling and
organic matter processing (Bernhardt et al., 2017; McClain et al., 2003; Naiman
et al., 2010; Sabo et al., 2005). Riparian and wetland vegetation drive the quan-
tity, quality, and timing of organic matter in aquatic ecosystems (Batzer & Sharitz,
2014; Kominoski &Rosemond, 2012;Meyer et al., 1998), mediating the influence of
surface waters on global carbon (C) budgets. Climate and land-use changes drive the
transformation, export, and fate of organic matter from local habitats to entire river
networks (Benda et al., 2004). However, the composition of riparian communities
is in flux on a global scale, resulting in significant changes to aquatic ecosystem
processes and services (González et al., 2017; Kominoski et al., 2013).

The river continuum (Vannote et al., 1980), serial discontinuity (Stanford&Ward,
2001; Ward & Stanford, 1983), and flood pulse concepts (Junk et al., 1989) provided
conceptual frameworks that stimulated decades of research assessing the longitu-
dinal and lateral connectivity of organic matter from small streams to large rivers to
floodplains and wetlands. This research has demonstrated the importance of organic
matter to energy and food web dynamics across spatial scales (e.g., Hall & Meyer
1998; Minshall et al., 1983; Thorp & Delong, 1994). Aquatic ecosystems are both
connected and disconnected along hydrologic flow paths, influencing recipient and
donor-controlled ecosystems through delivery of organic matter (Ball et al., 2010).
Aquatic organisms amongst Earth’s biomes have evolved over millennia to utilize
organic matter inputs, whether delivered in seasonal pulses or supplied continuously
over annual cycles (Benstead & Huryn, 2011; Yeung et al., 2019). This connec-
tion between organic matter input regimes and evolutionary adaptations likely has
profound impacts on the quantity of energy and nutrients stored, transformed, or
transported within river networks.

Despite the evolution of these frameworks towards understanding the river
network, we know very little about the integration of organic matter processes over
time and through multiple components of river networks, such as lakes, reservoirs,
floodplains and wetlands. The role of inland aquatic ecosystems in processing terres-
trial organic matter is critically large relative to the spatial extent that surface waters
cover the globe (Battin et al., 2009). Wetlands, especially coastal wetlands, are foun-
dational to the global storage of carbon, given that they retain and bury massive
amounts of organic and inorganic matter relative to their land area (Chmura et al.,
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2003, McCleod et al., 2011). River networks actively fix, store, transform, and trans-
port carbon (Cole et al., 2007), and stream litter decomposition processes integrate
at network scales (Fig. 13.1). At local scales, riparian vegetation influences litter
processing, organic carbon availability, and aquatic ecosystem services (Fig. 13.1).
Further, threshold responses or unforeseen consequences caused by environmental

Fig. 13.1 Conceptual figure depicting a river network demonstrating how spatial heterogeneity in
riparian and wetland ecosystems influences the distribution and processing of organic matter and
ecosystem services. River networks integrate the sources, fluxes, and transformations of organic
matter that vary along multiple flow paths from headwaters to the ocean that collectively influence
ecosystem services. Copyright E. E. Nixon
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change accumulating in separate sub-basins within larger river networks may occur
downstream after convergence of multiple flow paths (e.g., Ward & Stanford, 1983).

Quantification of organic matter fate in river networks that includes interior and
coastal wetlands is needed, as aquatic ecosystems receive and distribute organic
matter from ecosystems to which they are coupled (Aufdenkampe et al., 2011).
Carbon dynamics and ecosystem services at any given location in a river network
depend on upstream processes that accumulate along hierarchical and conjoining
flow paths (Benda et al., 2004; Fig. 13.1). Wetlands capture upland as well as marine
inputs of organic matter, increasing retention. Understanding network-level sources,
fates, and transformations of organic matter will aid in identifying the location and
management of freshwater ecosystem services (Benda et al., 2004; Peters et al.,
2008).

Here, we elucidate the major trends and pathways that result in shifting riparian
plant assemblages, summarize the general patterns and effects of these shifts on
organic matter dynamics in lotic ecosystems, and describe how organic matter
processing is linked to key ecosystem services.

13.2 Global Changes in Riparian Vegetation: Streams,
Rivers, & Coastal Wetlands

Shifts in riparian community composition are evident around the world, resulting
from climate change, biotic homogenization and hybridization, land use change,
altered disturbance regimes, and pollution (González et al., 2017; Kominoski et al.,
2013). In some regions of the U.S., these shifts result in communities that are novel
relative to historic communities (Macfarlane et al., 2017). These changes havemyriad
effects on the quantity, quality, and timing of organic matter inputs to surface waters.
We explore each of the drivers of change in riparian assemblages and discuss how they
influence allochthonous organic matter inputs, as well as the storage, transformation,
and transport of organic matter within aquatic ecosystems.

13.2.1 Climate Change: Temperature, Precipitation,
Hydrology, and CO2 Concentrations

The biomes that freshwaters are embedded in have strong influences on riparian
vegetation (Fig. 13.2; Dodds et al., 2015, 2019). When the amount of precipitation
is less than the potential evapotranspiration, the riparian zone can shift from trees to
grasses and shrubs. Intermittent habitats in extremely dry areas can have almost no
woody riparian vegetation, through stream channels and wetlands are often wetter
areas likely to support a greater plant biomass. In very cold areas (high altitude or
latitude), the development of woody vegetation may be inhibited by climate severity
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Fig. 13.2 Climate zones, vegetation types, and relationship to stream characteristics (modified
from Holdridge [1947]). Image from Dodds et al. (2015)

allowing only low-stature vegetation in riparian zones. Woody vegetation can have
indirect influences on decomposition aswell. In restoringAustralian rivers tomitigate
temperature increases, a 10% increase in riparian cover leads to a 1 degreeCentigrade
lowering of temperature (Davies, 2010).

Within areaswhere precipitation is, at least seasonally, unable tomeet demands for
plant growth, the effects on riparian vegetation may be strong. Climate change will
increase climate variability, and intense dry periods could alter riparian community
composition. For example, climate change and lower fire frequency and intensity
may be responsible for riparianwoody expansion into tallgrass prairie streams (Veach
et al., 2015) and this expansion has substantial influence on stream food webs and
community composition (Riley&Dodds, 2012; Vandermyde&Whiles, 2015; Veach
et al., 2015), water chemistry, andwhole-streammetabolic rates (Larson et al., 2018).
In similarly dry Mediterranean habitats, climate change is expected to inhibit early
successional riparian communities slowing regeneration of these communities in
response to disturbances such as floods (Rivaes et al., 2013).

Increased temperatures associated with climate change will alter Arctic and high
altitude riparian vegetation. For example, alterations in ice breakup and scour will
change riparian communities (Prowse et al., 2006). Warmer temperatures will allow
higher stature and greater biomass of riparian vegetation to move to higher latitudes
and altitudes. In the Boreal zone, increased temperature is predicted to allow invasive
species to take hold, and lead to shifts in community structure as well as narrowing



278 J. S. Kominoski et al.

of riparian zones (Nilsson et al., 2013). In tundra habitats, this invasive vegetation
could be trees.

Climate change leads to hydrologic alterations‚ and many studies link shifts in
riparian communities with altered flooding and drying of flowing waters (Datry
et al., 2018). In semi-arid to arid western North America, combined effects of
elevated temperatures, altered precipitation regimes, and river regulation are expected
to reduce the abundance of dominant, native, early-successional tree species (e.g.,
cottonwoods andwillows) and favor herbaceous species, non-native drought-tolerant
species (e.g., cheatgrass and tamarisk), and late-successional, woody shade-tolerant
species (Perry et al., 2012; Reynolds & Shafroth, 2017). Some of these changes are
associated with shifts in seeding phenology that result in asynchrony between seed
release and snowmelt runoff or monsoonal precipitation, shifts in flood intensity and
frequency, and higher plant water demand (Perry et al., 2012, 2020). Changes in the
frequencies of large floods are also important in other regions (Hoffman & Rhode,
2011). For example, global climate models predict up to 27% change in riparian
vegetation area in the Lake Michigan region (Primack, 2000).

Between 1965 and 2009, woody riparian vegetation in the Grand Canyon of the
Colorado river increased in response to less flooding associated with river regulation.
Experimental floods during the later portion of the time did not slow themovement of
riparian vegetation to colonize and stabilize sand bars (Sankey et al., 2015). Increased
flooding (flood augmentation) in Rocky Mountains (upper Arkansas River basin)
decreased riparian wetland vegetation cover by 10% (Dominick & O’Neill, 1998).
The North Platte River narrowed and more dense riparian tree cover developed in
response to decreased spring flooding, however the upper Missouri River did not
demonstrate similar responses (Johnson, 1998).

13.2.2 Native and Non-native Plant Species Changes

Shifts in native and non-native riparian plant species can have predictable effects on
aquatic ecosystem structure and function (Kominoski et al., 2013). Invasive riparian
plant species such as salt cedar (Tamarix spp.) Russian olive (Elaeagnus angusti-
folia), Japanese knotweed (Fallopia japonica) and othersmay displace native species
and alter leaf litter quality and ecosystem functions in inland streams and rivers
worldwide (e.g., Kominoski et al., 2013; Lecerf & Chauvet‚ 2008) (Fig. 13.3). The
phylogeny of riparian plant species strongly influences leaf litter decomposition in
adjacent aquatic ecosystems (LeRoy et al., 2020). A number of studies have shown
that differences in litter quality are linked to genotypes of individual trees, resulting
in variable rates of decomposition rates in streams (Marks, 2019). LeRoy et al.
(2006) showed that different genotypes of poplar and their hybrids had very different
decomposition rates in streams, and a similar result was seen in experimental ponds
(Crutsinger et al., 2014). Jackrel and Wooton (2014) demonstrated using an exper-
iment of reciprocal transplants of leaves that communities of detritivores showed
adaptations to leaf litter derived from the local genotypes of red alder. Phylogeny
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Fig. 13.3 Three global examples of broad-scale changes in riparian plant species composition:
a shifts in coniferous and deciduous tree species, b increases in drought-tolerant species, and c
global distribution of plantation and crop species. Distribution of increasing and decreasing tree
species for each of the three examples are shown separately on each map. a Pinus and Tsuga
species are declining throughout the Northern Hemisphere. These species are being replaced by
deciduous species, such asAlnus species inNorthAmerica.bPopulus and Salix species are declining
throughout the Northern Hemisphere, whereas drought-tolerant specious such as Tamarix specious
(native to Eurasia) and Elaeagnus angustifolia (native from the Middle East to central Asia) are
gaining in North America, Europe, South America, Asia, and North Africa. Acer negundo (native to
North America) is increasing in Europe, and Salix (native to Europe) is invading Australia and New
Zealand. c Populus and Salix species are declining throughout the Northern Hemisphere, with the
exception of Populus hybrids grown in plantations in North America and Europe. Native riparian
vegetation throughout North America, Europe, Asia, Australia, and South America are declining
as land is used for plantation and crop species, such as Eucalyptus species and Zea mays, which
are being planted globally. Illustrations of increasing and decreasing species emphasize how shifts
in plant species composition have structural and functional consequences for riparian and aquatic
ecosystems. Image from Kominoski et al. (2013)

also plays a role with regards to the rate at which litter mixtures decay in streams
and rivers. Boyero et al. (2016) found that lower phylogenetic distance amongst leaf
species decaying together in 24 streams along a latitudinal gradient promoted greater
rates of mass loss in temperate biomes but slower rates of mass loss in the tropics.
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In coastal wetlands, mangroves are invading marsh-dominated ecosystems glob-
ally, in one of the most dramatic plant range shifts occurring today (Perry &
Mendelssohn, 2009; Saintilan et al., 2014). The expansion of mangroves into higher
latitudes on a global scale is driven by various factors including sediment increases,
sea level rise, and a declining frequency of severe freeze events, which is one of the
four major drivers of structural change described in this chapter (Cavanaugh et al.,
2014; Osland et al., 2013). Though air temperatures often drive mangrove expan-
sion (Osland et al., 2013), finer-scale changes in mangrove extent respond to many
secondary environmental factors such as erosion, land subsidence and accretion (Giri
& Long, 2014). Thus, some mangrove expansion may be due to re-emergence from
previous populations. As described above, woody plant invasion into herbaceous-
dominated upland ecosystems alters belowground processes such as root produc-
tivity, organic matter decomposition (and its quality) and microbial carbon cycling
(Knapp et al., 2008; Rundel et al., 2014). Similar changes in coastal wetlands could
have dramatic consequences not only for biogeochemical cycling, but for the viability
of the ecosystem as a whole, as organic matter buildup in coastal wetlands also
maintains surface elevation (Krauss et al., 2014).

The declining frequency of freeze-related disturbances in Florida, U.S.A. has
resulted in increasedmangrove extent, andDoughty et al. (2015) found thatmangrove
coverage increased by 69% in just 7 years at a site in Eastern Florida. Similarly, a
northeastern site in Florida saw a doubling of mangrove cover from 1986 to current
day (Cavanaugh et al., 2014).

13.2.3 Agriculture and Forest Harvesting

Shifts in the composition of riparian contributions of leaf litter can result from natural
disturbances, human disturbances, and long-term changes in land use. These events
often create space for fast-growing, disturbance-dependent trees, some ofwhich have
undefended and high-quality leaf litter, such as red alder (Alnus rubra) and yellow
poplar (Liriodendron tulipifera). These species depend on primary succession to
establish, but are often unable to persist at a site without further disturbance, so
over a time span of 60 to 80 years these trees are replaced by later successional
species. Some similar successional changes can occur due to forest harvesting (e.g.,
Kominoski et al., 2011). The types of leaf litter inputs from riparian vegetation has
a profound impact on the resulting stream community, particularly the composition
of the detritivores trophic level (Kominoski et al., 2013).

Inmany parts of the world, there has been extensive planting of non-native species
as forest crop trees. Some of the trees most commonly planted outside of their native
ranges are eucalypts (Eucalyptus globulus and E. nitens) and radiata pine (Pinus
radiata) (Ferreira et al., 2019; García et al., 2012). Ferreira et al. (2019) demon-
strated that decomposition rates of same leaf species in streams flowing through
Eucalyptus plantations are on average 23% lower than for streams in native forests,
mostly due to reduction in macroinvertebrate densities. In that study, the magnitude
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of the inhibition of decomposition varied geographically, with greater effect sizes in
more temperate regions, attributed to the greater influence of macroinvertebrates in
subtropical regions (Ferreira et al., 2019). In addition to Eucalyptus plantations for
fiber, other trees, such as palm oil and rubber trees are planted close to streamsides.
In Malaysia, there were very small differences in macroinvertebrate assemblages on
leaf packs draining palm oil forests versus native forest (Chellaiah & Yule, 2018).

Many tree species planted for fiber production in riparian habitats have leaf litter
of low quality. In particular, conifers (pines, firs, etc.) and eucalypts are considered
as low-quality due to being well defended physically and chemically against break-
down, having lowN:C, and possibly chemical defenses (Graça&Cressa, 2010). Pine
plantations in the UK have been a common target for afforestation, however, pine
litter decomposes less than 20% as quickly as birch leaves, despite similar detriti-
vore assemblages, and suggests planting pines or other conifers alongside streams
could lead to reductions in stream productivity (Collen et al., 2004). In other parts
of the world, North American trees such as Douglas-fir and Sitka spruce have been
planted, often right up to streamside (e.g., Gee & Smith, 1997), although the impacts
of these plantings on instream decomposition are not clear. Kominoski et al. (2011)
showed that leaf litter decomposition rates were lower in streams flowing through
conifer forests than streams with a larger component of angiosperms, primarily red
alder). The overall productivity and yield of particulate detritus from catchments
in Alaska with a high component of alder in riparian areas were much higher than
streams drainingmostly conifer stands (Wipfli &Musselwhite, 2004). These forestry
related shifts in streamside species composition and consequent inputs will affect
decomposition rates, either through types of inputs or catchment characteristics.

Forest harvesting, and other land-use, can impact instream decomposition rates.
In some studies forest harvest has resulted in decreased rates of decomposition (e.g.,
Kreutzweiser et al., 2008; Lecerf & Richardson, 2010), whereas other studies have
documented increased rates from forestry (Benfield et al., 2001,McKie&Malmqvist,
2009). In each of these studies there was little evidence for why decomposition rates
changed, particularly in opposite directions in different regions. These impacts of
forestry on decomposition rates occur whether or not riparian buffers are retained
during harvesting, and the mechanisms for these changes remains an open research
question.

Agricultural crops may be grown right up to stream edges in some jurisdictions.
This would certainly alter leaf litter composition, and probably reduce input rates.
An additional consideration is that in some parts of the world, crop plants have been
genetically modified, and their leaf litter may include anti-herbivory chemicals. In
much of the USA corn has been so-modified to include Bacillus thuringiensis (Bt)
genes to reduce insect damage. The leaf litter from this corn has been shown to slow
the growth rate of a detritivorous caddisfly larva, Lepidostoma liba, although there
were noother large-scale effects on streamcommunities fromsuch studies (Chambers
et al., 2010). Conversion of forest to pasture has several effects on instreamprocesses,
including the particular types of leaf litter inputs. In three streams in Ecuador, the
contrast between reaches in forest and pasture showed lower decomposition rates
of a standardized leaf litter in pasture reaches, largely attributed to the absence of a
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single species of shredding caddisfly larvae from pasture streams (Encalada et al.,
2010). Young et al. (1994) found rates of leaf litter decomposition were higher in
streams draining more intensively managed pastures, which they attributed to higher
nutrient yield, particularly Nitrogen, from pastures.

13.2.4 Urbanization

The urban stream syndrome represents the suite of alterations to stream ecosystems
that accompany urbanization (e.g., Booth et al., 2016; Paul & Meyer, 2001). These
include increased peaks in flows, increased nutrients and contaminants, warmer peak
temperatures and rapid shifts, channel simplification, altered riparian vegetation, etc.
All of these aspects can influence litter decomposition rates (Younget al., 2008).Litter
decomposition rates are often different in urban streams from those in comparable
forested sites, due to a host of potential influences. For example, in urban streams
in Puerto Rico, decomposition rates were only 30% or lower than rates in forested
streams, attributed to loss of consumer species in urban streams (Classen-Rodriguez
et al., 2019). Similarly, breakdown rates in urban streams in Brazil were about half
that of rates in forested streams, considered to be due to shifts in decomposer assem-
blages, especially loss of detritivorous invertebrates (Martins et al., 2015). Decom-
position of litter in a stream in Malaysia was nearly twice as rapid in urban reaches
than in forested sections, presumably due to nutrient enrichment (Yule et al., 2015).
Breakdown rates in streams in Maine were higher in more urbanized catchments,
and was attributed to elevated concentrations of nutrients along the rural to urban
gradient (Huryn et al., 2002). Rates of breakdown were almost four times higher in
urban streams in the Southeast USA compared to forest streams (Paul et al., 2006).
The influence of urbanization is large, but the direction and magnitude are highly
variable, and depends on the suite of processes altered in any given urban setting.

13.3 Impacts of Altered Litter Decomposition Throughout
River Networks

13.3.1 Land-Use Change Impacts

Organic matter source and bioavailability are closely linked to human land use
activities. Global reductions in terrestrial C are attributed to increasing human co-
option of terrestrial gross primary production (Running, 2012). For example, wetland
drainage and riparian land clearing remove terrestrial organic matter storage, and
widespread replacement of native vegetation with agricultural crops for direct and
indirect human consumption reduce carbon availability for ecosystem functions and
services (Allan, 2004; Running, 2012). Projected increases in cultivated land area
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coupled with increased nutrient mobilization (MEA, 2005) will reduce the amount
of terrestrial organic matter loading (Running, 2012) and increase in situ aquatic
organic matter production, which is more bioavailable. This shift towards more
readily available organic matter will influence secondary production and energy
flow paths within aquatic food webs from headwaters to downstream lakes and rivers
(Griffiths et al., 2009). The distribution of dissolved organic carbon in the Ipswich
River, Massachusetts demonstrates how organic matter processes throughout a river
network potentially contribute to nutrient regulating and water supply ecosystem
services (Stewart et al., 2011). In agricultural regions, the interaction of increased
nutrient inputs, reduced terrestrial carbon inputs, and reduced light limitation explain
why most carbon export from the Mississippi River Basin is due to aquatic primary
production (Shih et al., 2010).

13.3.2 Climate Change and Eutrophication Impacts

Global changes in soil and water temperatures, hydrologic variability, and nutrient
availability will increase rates of ecosystem metabolism and alter organic matter
export (Acuña & Tockner, 2010). Elevated temperature increases rates of leaf litter
decomposition in streams and rivers (Follstad Shah et al., 2017). The magnitude
of this increase is similar, whether decay is mediated by microbes alone or due
to the combined effects of microbes and detritivores (Follstad Shah et al., 2017).
However, this thermal response of detritivores may not scale to the level of river
networks, as decomposition rates at this scale depend on the availability of terrestrial
organic matter inputs. For example, some of the land use changes (described above)
reduce inputs of terrestrial organicmatter inputs to streams and rivers. In addition, net
primary production may be diminished in water-stressed riparian plant communities,
despite elevated CO2 concentrations that promote higher rates of photosynthesis and
growth and greater water use efficiency (Perry et al., 2013). These studies imply that
changes to riparian community organic matter production can modulate predicted
effects of climate change at the scale of river networks. Reservoirs alter upstream-
downstream organic matter linkages via increased storage of organic matter within
reservoirs (Vörösmarty et al., 2003) and enhanced loss of carbon as CO2 andmethane
(CH4) emissions (Kominoski &Rosemond, 2012; Tranvik et al., 2009). Streamswith
lower terrestrial organic matter inputs and lower standing stocks of benthic organic
matter, as well as downstream reaches of river networks that have lower quality
organic matter, are likely to remove less nutrients (Barnes et al., 2012; Taylor &
Townsend 2010), potentially contributing to denitrification efficiency loss (Mulhol-
land et al., 2008). Reductions in standing stocks of organic matter could result in
lower secondary production of food webs that support downstream fisheries (Cross
et al., 2006).

Elevated temperature and moderate eutrophication are shifting streams and rivers
towards greater heterotrophy, resulting in more emissions of CO2. Whole-stream
metabolism studies along natural thermal gradients show that ecosystem respiration
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increases in response to rising temperature to a greater extent than gross primary
production, resulting in declines in net ecosystem production (Demars et al., 2011).
Moderate nutrient enrichment stimulates organic matter decomposition rates in
streams and rivers (Woodward et al., 2012) and at the network scale results in reduced
terrestrial C residence time (Rosemond et al., 2015). In temperate biomes, terres-
trial C losses can exceed instream C production resulting in greater net heterotrophy
(Rosemond et al., 2015). Again, however, this pattern is dependent on terrestrial C
supply concomitant with heterotrophic demand for C in eutrophic systems.

Model simulations show that flow regime alterations have a greater effect on
organic C dynamics within river networks than altered thermal regimes, but this
effect is most pronounced in headwater streams relative to mainstem rivers (Acuña&
Tockner, 2010). More floods and longer droughts are predicted to reduce the amount
of organic C processed within the river network due to reduced rates of respiration
and increased C export (Acuña & Tockner, 2010). Some of the increased export of
C in Mediterranean systems may also be due to drought-induced phenological shifts
in leaf litter senescence, followed by winter flood events (Acuña et al., 2007).

Climate change further poses unprecedented effects on coastal regions by causing
saltwater intrusion into vulnerable ecosystems through accelerating rates of sea-level
rise, changes in the hydrologic cycle and temperature regime, and potentially the
increasing strength and frequency of storms (Farfan et al., 2014; Herbert et al., 2015,
Nicholls & Cazenave, 2010; Osland et al., 2016). Direct effects of climate change
on coastal ecosystems can result in loss of wetland area and ecosystem function if
and when rates of sea-level rise exceed the natural capacity of foundation species
in wetlands to adapt (Charles et al., 2019; Saha et al., 2011; Wilson et al., 2018).
Low-lying coastal ecosystems are periodically influenced by storms and continu-
ously influenced by sea-level rise and saltwater intrusion (Dessu et al., 2018; Herbert
et al., 2015; Osland et al., 2016). Our collective understanding is that saltwater intru-
sion generally decreases C storage and increases nutrient export in coastal wetlands
(Ardón et al., 2013, 2016; Charles et al., 2019; Herbert et al., 2015, 2018; Neubauer,
2013; Wilson et al., 2018).

13.3.3 Impacts of Altered Hydrologic Connectivity

Ecosystems are becoming increasinglymore or less connected through globalization,
fragmentation, and climate change. Connectivity—the flow of organisms, water,
materials, and ecological processes across landscapes (Taylor et al., 1993)—can
be used to understand how to better manage and restore threatened and declining
ecosystems (Haddad et al., 2015; Kominoski et al., 2019; Pringle, 2001). The extent
and health of coastal ecosystems are declining worldwide (Dahl & Stedman, 2013;
Nicholls et al., 2007), so understanding how changes in hydrologic connectivity
influence the structure and function of these threatened ecosystems is paramount
(Sheaves, 2009). Storage and accumulation rates of carbon and nutrients in coastal
wetlands are sensitive to underlying topographic gradients that influence hydrologic
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connectivity to these sources, as well as temporal changes in connectivity that can
be both directional (e.g., sea-level rise) and episodic (e.g., hurricanes, droughts,
floods). Therefore, hydrologic connectivity can influence biogeochemical processes,
including net primary productivity and organicmatter mineralization (Bouillon et al.,
2008; Castañeda-Moya et al., 2013; Koch et al., 2012; Noe et al., 2001).

Changes in hydrology associated with urbanization and river regulation influence
the sources and fates of organic matter in river networks. Urbanization increases
impervious cover, reducing infiltration rates and increasing the tendency of flash
floods as well as increasing organic matter via septic and sewage inputs (Paul &
Meyer, 2001; Walsh et al., 2005). Therefore, urban watersheds are likely to have less
continuous sources of soil carbon due to reduced infiltration rates, but potentially
more C point sources associated with engineered open spaces (Aitkenhead-Peterson
et al., 2009) or instream production and wastewater inputs (Newcomer et al., 2012).
Urban watersheds may also exhibit increased retention and burial of C in reser-
voirs (Vörösmarty et al., 2003). All of these factors ultimately alter the quantity and
bioavailability of organic matter in urbanized waterways. River regulation alters the
hydrologic regimes, but also the distribution of lotic and lentic surface waters in river
networks. Acuña and Tockner (2010) showed that the majority of organic C inputs
to river networks is processed within reservoirs, which altered C dynamics in river
reaches below impoundments. Reservoirs alter upstream-downstream organic matter
linkages via increased storage of organic matter within reservoirs (Vörösmarty et al.,
2003) and enhanced loss of carbon as CO2 andmethane (CH4) emissions (Kominoski
& Rosemond 2012; Tranvik et al., 2009).

13.3.4 Impacts on Ecosystem Services

Detrital organic matter is a critical supporting component of many ecosystem func-
tions, and the production, storage, transformation, and transport of organic matter
are spatially and temporally dynamic throughout watersheds and river networks
(Fig. 13.1; Hall & Meyer 1998; Minshall et al., 1983; Thorp & Delong, 1994).
The ability for science to link biophysical processes of litter, to societal values of
ecosystem services requires a mechanistic understanding of how these functions and
services are related and linked spatially and temporally (Bennett et al., 2009; Daily
et al., 2009; Rosemond et al., 2015). A critical knowledge gap is understanding
how these ecosystem services are driven by network-level organic matter dynamics,
which is required given dynamic and heterogeneous changes in transport, sources,
and processing of litter fromvarious locations throughout river networks. The relative
importance of organic matter sources changes longitudinally within river networks
(Vannote et al., 1980). The relative support of the basal resources supporting aquatic
food webs from particulate and dissolved terrestrial and aquatic sources is highly
variable throughout river networks and estuaries (Cawley et al., 2014; Sobczak et al.,
2002). Worldwide construction of dams for hydropower generation increases the
accumulation and burial of organic matter (Downing et al., 2008) that can lead to
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sources of CO2 and methane (Kominoski & Rosemond, 2012; St Louis et al., 2000;
Tranvik et al., 2009). The cycling of nitrogen and phosphorus are closely linked to
the availability of detrital carbon (Kominoski et al., 2018; Rosemond et al., 2015;
Seitzinger et al., 2006; Taylor & Townsend, 2010) and thus the amount of nutrients
retained on land rather than exported downstream where eutrophication and hypoxia
of coastal waters has caused collapse of estuaries (NRC, 2000; Rabalais et al., 2002).
Organicmatter primarily contributes to regulating and supporting ecosystem services
via its control of ecosystem function through microbial food webs and biogeo-
chemical processes that are foundational to many—if not all—aquatic ecosystem
services.

In coastal wetlands, mangrove encroachment can increase ecosystem C storage
(Doughty et al., 2015; Kelleway et al., 2016), but the magnitude of these C storage
differences depends on environmental setting (Yando et al., 2016). The majority of
mangrove carbon storage increases are often due to aboveground biomass (Charles
et al., 2020; Doughty et al., 2015) but some studies show that soil carbon can also
increase either over longer time scales (Kelleway et al., 2016) or in some cases
rapidly (Simpson et al., 2019). Using experimental mangrove removals, Guo et al.
(2017) found that mangrove cover was positive related to soil organic carbon content.
Increases in soil carbon storage when mangroves invade into marshes are likely
driven by an increase in root growth (Fig. 13.4; Coldren et al., 2019). Although
organic matter decomposition is an important driver of the blue carbon storage in
wetlands and of surface elevation, less is known about how decomposition changes
whenmangroves encroach into salt marshes (but see Charles et al., 2020). Decompo-
sition rates in coastal wetlands depends in part on litter quality, but also are controlled
by the oxygen availability in oils, as anoxic conditions limit enzyme reactions that
control organicmatter breakdown (Chapman et al., 2019). It’s possible thatmangrove
encroachment into salt marshes could alter both the litter quality and the oxygen
availability. Perry and Mendelssohn (2009) found no difference in decomposition
rates in plots where mangroves had encroached into the marsh as compared to those
still dominated by the salt marsh grass Spartina alterniflora. However, Charles et al.
(2020) found that mangrove litter decomposed much more slowly than the domi-
nant salt marsh plant Batis martima in coastal Texas sites where mangroves are
encroaching. Taken together, these findings suggest that changes in organic matter
decompositionwithmangrove encroachmentmay depend on the species composition
of the salt marsh.

The ability of aquatic ecosystems to support ecosystem services for society
depends on the timing, quantity, and source of organic matter inputs. Global envi-
ronmental changes (e.g., climate, land-use, and hydrology) influence the quantity,
source, and processing rates of organic matter (Kominoski & Rosemond 2012; Tank
et al., 2010), which challenge our ability to maintain and sustain aquatic ecosystem
services (Fig. 13.1 and examples above). The magnitude and speed of these global
changes lends urgency to better quantify organicmatter dynamics that support aquatic
ecosystem services at network scales. The variability in organic matter sources and
transformations across different aquatic ecosystems (streams, lakes, wetlands) will
result in retention, production and transport dynamics that vary over space and time.
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Fig. 13.4 Response of mangroves and salt marshes to warming conditions: a mangrove height
(cm), where chronic warming accelerates vertical growth, b percent change in cover, where areal
expansions of mangrove shade out salt marsh plants, c change in below-ground plant mass (g/m2),
where increased root productivity and areal coverage of individual mangroves result in greater
below-ground growth, and d change in elevation (mm), which is largely determined by changes
in below-ground biomass. Warming treatments included ambient (control) and warming chamber.
Data are means ± SE. Image from Coldron et al. (2019)
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