
Chapter 10
The Role of Macroinvertebrates on Plant
Litter Decomposition in Streams

Micael Jonsson and Ryan A. Sponseller

Abstract Macroinvertebrate detritivores (i.e., shredders) in freshwaters are often a
main driver of decomposition rates of terrestrial plant litter. Yet, the extent to which
shredders drive this process depends on the specific functional traits and species
present in the shredder community, which in turn are determined by the broader
species pool, as well as a range of local environmental conditions, such as pH,
substrate characteristics, water chemistry, water temperature, and current velocity.
Projected global change will modify several of these environmental conditions, with
potential consequences for litter decomposition rates and overall carbon cycling in
freshwaters. In this chapter, we describe how a range of freshwater environmental
conditions determines the presence of certain species (i.e., functional traits) and
the characteristics of shredder communities (i.e., species composition and richness).
We then discuss how these characteristics in turn may influence interactions among
shredders, and between shredders and other freshwater organisms, to determine their
influence on litter decomposition in streams.

10.1 Introduction

Litter-associated macroinvertebrates (i.e., shredders) are represented by a range of
species, which are mainly insects in the orders Diptera, Plectoptera, and Trichoptera,
but also include some crustaceans and molluscs that can locally occur in high densi-
ties and, as opposed to insect shredders, often have fully aquatic life cycles. Early
studies on terrestrial plant litter and shredders in freshwater systems found clear posi-
tive associations between standing litter stock and shredder abundance (Anderson
& Sedell, 1979; Cummins et al., 1973; Short et al., 1980). Yet, it was not until the
landmark experiment by Wallace et al. (1982) that the direct role of shredders for
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plant litter decomposition was confirmed. Here, application of insecticides to an
entire headwater reach resulted in a large reduction in shredder abundance, which
dramatically reduced conversion of terrestrial leaf litter (CPOM; coarse particulate
organic matter) to small particles (FPOM; fine particulate organic matter) and down-
stream transport of FPOM (Wallace et al., 1982). During this time, parallel energetic
studies also revealed that invertebrate shredders have very low assimilation effi-
ciency (Cummins & Klug, 1979; Golladay et al., 1983; McDiffet, 1970), and that
their secondary production and respiration contribute little to the broader ecosystem
energy budget (Fisher & Likens, 1973). Collectively, this research suggested that the
role of shredders in the litter decomposition process is mainly in the conversion, via
fragmentation, of CPOM to FPOM. This functional role is nevertheless critical, as
it facilitates overall decomposition of terrestrially derived plant material (Cummins
et al., 1989; Mulholland et al., 1985; Villanueva et al., 2012; Webster & Benfield,
1986), increases the availability of litter-based resources to other freshwater organ-
isms (Cummins et al., 1973; Wallace & Webster, 1996), and underpins longitudinal
connectivity in river systems (e.g., via FPOM transport; Wallace et al., 1982). As
such, studies during this period set the stage for an actively developing and exciting
research field over the coming decades (Graça, 2001;Marks, 2019; Tank et al., 2010).

Freshwater environmental conditions interact with regional pool of available
species to determine which species (i.e., functional traits) and community character-
istics (i.e., species composition and richness) are present or absent locally at any one
site (Bonada et al., 2007; Jonsson et al., 2017; Poff, 1997; Poff et al., 2006). These
characteristics in turn influence the rate at which the macroinvertebrate shredder
community decomposes litter (Dangles & Malmqvist, 2004; Gessner et al., 2010;
Jonsson & Malmqvist, 2000; McKie et al., 2008). Hence, altered environmental
conditions will likely modify litter decomposition rates via changes in shredder
community composition, with consequences for the role that shredders have for
overall litter turnover rates. In this chapter, we will describe how certain traits may
be present or absent in (or differ in abundance among) shredder communities due
to variation in local environmental conditions. We will then go on to describe how
such variation in community characteristics may regulate litter processing rates and
trophic links between shredders and other freshwater functional feeding groups. As
a synthesis, we present possible scenarios as to how predicted global change (i.e.,
changes in climate and land use) can affect litter decomposition in fresh waters via
impacts on shredder communities, and will do so for tropical, temperate, boreal, and
Arctic biomes.

All types of freshwater systems may contain macroinvertebrate shredder species,
but their role is greatest in ecosystems that receive substantial seasonal inputs of
terrestrial (e.g., riparian) plant material relative to the area of aquatic habitat, which
is mostly in small to mid-sized streams surrounded by well-developed deciduous,
riparian vegetation. Thus, while other types of riverine systems, as well as lakes and
ponds, can receive terrestrial litter input and thereforemay house shredders, we focus
here on macroinvertebrate shredders and litter decomposition in small to mid-sized
streams that are forested, which also represent the type of freshwater systems where
most research relevant to this topic has been carried out.
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10.2 Macroinvertebrate Shredder Functional Traits

Each species that canbe classified as a freshwatermacroinvertebrate shredder exhibits
unique functional traits, or rather a set of traits, that make it more or less likely to
exist under certain environmental conditions (Poff et al., 2006), and that determine
its role in the litter decomposition process. In general, as all species classified as
shredders per definition feed, at least partially, on plant litter, and their life cycle is
often intimately tied to seasonal pulses in litter resource availability. In temperate
and boreal systems, this means that most shredders time their presence and growth as
larvae with autumn leaf senescence and subsequent peaks in litter input and increases
in standing stocks (Richardson, 1991; Wallace et al., 1999). However, while this is
true for insect shredders, other shredder/detritivorous taxa, such as crustaceans and
gastropods, that are present throughout the year, are less responsive to seasonal
variation in litter availability, but instead show a high level of feeding plasticity by
foraging also on other types of food resources (MacNeil et al., 1997; Moore, 1975).

Plasticity in feeding traits can, however, also be found among insect shredders. In
particular, the strategy to shred plant material for food can be mixed with scraping
surfaces or collecting FPOM (Cummins & Klug, 1979). The level of plasticity, or
the extent to which shredder species use another feeding strategy than shredding, can
change with development (i.e., ontogenetic diet shifts: Feminella & Stewart, 1986;
Tierno de Figueroa & López-Rodriguez, 2019), or with variation in water chemistry
(e.g., pH: Dangles, 2002; Ledger & Hildrew, 2000). Further, it is possible that the
inherently low quality of plant litter, and the additionally, successively (seasonally)
diminishing quality of litter standing stocks (Chauvet, 1987; Gessner & Chauvet,
1994), promote a diet that includes also higher-quality, autochthonous resources,
such as algae (Brett et al., 2017; Jonsson & Stenroth, 2016; Moore, 1975) as well as
predation (Dangles, 2002). The reality of these dietary choices complicates the use
of traditional, and overly simplistic, functional feeding group designations (Mihuc,
1997). Further, to understand the role of macroinvertebrates for litter decomposition,
and how this role may be altered under changing environmental conditions, this
potential flexibility in resource use has to be considered.

Shredders also exhibit traits that are directly related to variation in abiotic
conditions, such as water chemistry (e.g., pH and nutrient concentrations), water
temperature, current velocity, and bottom substrate complexity and grain size. Thus,
depending on the local abiotic conditions, different shredder communities are found
(Jonsson et al., 2017; Malmqvist & Mäki, 1994; Poff, 1997), and it is therefore to
some extent possible to predict community characteristics in a particular freshwater
habitat, based on prevailing, local abiotic conditions. For example, strong environ-
mental filters are exerted directly by pH and nutrient concentrations (i.e., level of
eutrophication) and, thus, indirectly by landuse and land cover that shapewater chem-
istry (e.g., Jonsson et al., 2017). Across a gradient in pH, euholognathan stoneflies
tend to dominate in more acidic streams, while trichopterans and dipterans are less
common, and crustaceans are very scarce (Dangles & Guérold, 1999). Conversely,
in streams of higher pH, stonefly abundance is often lower, and crustaceans and
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other acid-sensitive species are more abundant (Dangles & Guérold, 1999; Grif-
fith & Perry, 1993). Across a gradient in eutrophication, a similar—but opposite—
change in community composition is typically observed (Woodiwiss, 1964). This is
because stoneflies in general are sensitive to the low oxygen levels resulting from
organic pollution (e.g., from agricultural runoff) and the subsequent high microbial
oxygen consumption (Hilsenhoff, 1988). Moreover, some Trichoptera groups are
fairly tolerant to low oxygen levels, and crustaceans tolerate, and often dominate,
under these conditions (Metcalfe, 1994).

High oxygen (O2) demand results in stoneflies and some other taxa being more
abundant and species rich in colder waters at higher latitudes (and altitudes) when
compared tomore southern (and/or lowland) streamswith higher temperatures,where
O2 saturation is often lower (Verberk et al., 2011). High water velocity promotes
oxygenation, and is therefore an environment where more O2 demanding species
can be found, but can also in itself create habitats that are suitable for some (i.e.,
rheophilic) taxa and an obstacle to others, shaping communities across a gradient
from slow- to fast-flowing water (Hart & Finelli, 1999). However, the impact of
water velocity on a shredder community can interact with bottom substrate type and
complexity (Huryn & Wallace, 1987). For example, high substrate complexity or
large grain sizesmaymoderate potentially adverse effects of a fast current by creating
refugia of lower current velocities (Franken et al., 2006). Because of this, and because
substrates form the main living space for benthic macroinvertebrate communities,
bottom substrate characteristics are important determinants of shredder community
composition (Reice, 1980; Sponseller & Benfield, 2001;Williams &Mundie, 1978).
In addition, bottom substrate characteristics influence stream retentiveness of terres-
trial plant litter input (Ehrman & Lamberti, 1992; Lepori & Malmqvist, 2005), a
pre-requisite for whether a rich and abundant shredder community can be found or
not (Haapala et al., 2003; Richardson, 1991; Wallace et al., 1999).

10.3 Inter- and Intraspecific Interactions

The low assimilation efficiency of shredders reflects the inherently low quality of
plant detritus as a food source. Although some studies have shown that detritivores
can assimilate up to 40% of ingested plant biomass, others have found that the
conversion rate of ingested leaf litter to shredder biomass more often is ≤ 20%
(Golladay et al., 1983; McDiffet, 1970). Due to the low resource quality of leaf
detritus, shredders are highly dependent on microbial colonization on and within
the leaf tissue, as the microbes (primarily fungi) improve the nutritional quality to
shredders (Bärlocher, 1985; Cummins & Klug, 1979). Accordingly, studies have
shown that microbial colonization of leaf litter increases shredder assimilation effi-
ciency considerably (Cummins & Klug, 1979; Golladay et al., 1983). Nevertheless,
the generally low assimilation efficiency also means that feces produced are quite
similar to the original detrital resource in terms of nutrient content. Frass and feces
from shredder leaf consumption can therefore serve as an important pre-processed
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food resource to other shredders, collectors, and filter feeders (Dieterich et al., 1997;
Grafius & Anderson, 1979; Jonsson & Malmqvist, 2005; Patrick, 2013; Short &
Maslin, 1977). Thus, interactions between shredders and leaf-associated microbes
are critically important for shredder secondary production, the availability and quality
of litter-based resources to other freshwater organisms, and, thus, for overall plant
litter processing in streams.

Interactions among shredder individuals within a shredder community may
amplify or reduce their impacts on litter decomposition rates. For example, rates of
litter decomposition have been found to decrease with increasing shredder density,
due to strong interference competition (Jonsson & Malmqvist, 2003). In natural
systems, such effects are likely absent initiallywhen resources are abundant soon after
leaf senescence, but may become increasingly apparent as the litter resource gradu-
ally is fragmented and consumed (Jonsson, 2006). Moreover, due to different species
utilizing separate niches (i.e., ‘niche complementarity’), competition is often weaker
among species than within species (Loreau & Hector, 2001). Thus, total amount of
interference competition may be lower in a species-rich community compared to
in a community that consists of only one or a few species total (Gessner et al.,
2010; Jonsson & Malmqvist, 2000, 2003, but see McKie et al., 2009). Hence, if
shredder species are lost, litter decomposition rates may decrease despite compen-
satory increases in the abundance of remaining species, due to overall increased levels
of interference (i.e., resource) competition (Jonsson & Malmqvist, 2000, 2003).
Changes in shredder species richness can therefore alter their role as drivers of litter
decomposition rates.

Different feeding modes, such as scraping the leaf surface to selectively consume
fungal biomass, or ingesting pieces of the leaf matrix together with fungal biomass
(Bloor, 2011), are a key aspect of niche complementary among invertebrate shred-
ders. For example, isopods and stoneflies have mouthparts that are more suitable for
scraping surfaces than biting bits off a leaf, as many trichopterans do (Graça et al.,
1993; Jonsson et al., 2002). Such differences in feeding behavior may create situa-
tions of apparent niche complementarity, or cases where facilitation among species
occur (Giller et al., 2004). Hence, a higher number of shredder species should, on
average, result in higher decomposition rates (Gessner et al., 2010). These differences
in feeding modes among distantly related shredder taxa are likely also the mecha-
nistic explanation as to why mixing litter from different plant species may increase
decomposition rates (Santonja et al., 2020; Swan&Palmer, 2006; Tonin et al., 2018).
However, more subtle niche complementarity—whatever it may be—among closely
related species (e.g., within the same family or genus) can also result in higher per-
capita litter processing rates inmixed communities than for single species, if it lowers
competition or promotes facilitative interactions (Jonsson&Malmqvist, 2000, 2003;
McKie et al., 2008).

Changes in decomposition rates caused by a change in the shredder community
will likely have consequences also for other organisms, such as litter-associated
microbes (via nutrient excretion; Mulholland et al., 1985; Villanueva et al., 2012),
filter feeders and collectors (via particle production; Dieterich et al., 1997; Grafius
& Anderson, 1979; Jonsson & Malmqvist, 2005; Patrick, 2013; Short & Maslin,
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1977, but see Heard & Richardson, 1995; Jonsson et al., 2018), and predators (via
prey availability; Peckarsky, 1982). However, how a change in shredder community
composition influences other freshwater organisms via altered litter processing rates
has rarely been studied (but see Jonsson & Malmqvist, 2005; Patrick, 2013). More-
over, despite several studies showing that shredder species richness is important for
rates of litter decomposition, there is ample evidence that the presence of particular
shredder species, rather than a change in species richness per se, sometimes can be
at least as important for rates of litter decomposition (Boyero et al., 2014; Dudgeon
& Gao, 2010; Perkins et al., 2010; Santonja et al., 2018), indicating that dominant
functional traits rather than shredder diversity per se (i.e., the ‘mass ratio hypoth-
esis’; Grime, 1998) determines litter mass loss (Creed et al., 2009; Stoker et al.,
2017). Hence, future research should consider the importance of dominant traits
in shredder communities rather than merely species richness, how environmentally
induced variation in these trait values results in altered rates of decomposition, and
what consequences this has for microbes and other invertebrate guilds.

10.4 Impacts of Global Change on Litter Decomposition
via Effect on Invertebrate Shredders

In the face of current and future global change, freshwaters are among the most
threatened ecosystems. In addition to potential direct and indirect effects of predicted
climate change (IPCC, 2007;Moss et al., 2009; Settele et al., 2014), a long list of other
anthropogenic changes, including different types of land uses, will continue to impact
freshwater systems and their biodiversity inmanyways (Dudgeon et al., 2006). These
impactswill alter the rates of ecosystemprocesses, and inmany cases lead to impaired
ecosystem functioning (Dudgeon, 2010). Below, we explore how different types of
global changemay impact rates of litter decomposition via influences on invertebrate
shredders (see also Table 10.1).

10.4.1 Warming

Global air temperature is expected to increase by 2–5 °C by the end of the twenty-
first century, mainly due to effects of greenhouse gas emissions from human activ-
ities (IPCC, 2007). However, these warming trends will not be uniform globally.
Instead, northern regions (i.e., the boreal and Arctic) are predicted to experience
the greatest future temperature change, whereas considerably smaller increases may
be observed in the tropics (IPCC, 2007; Settele et al., 2014). While stream water
temperatures are regulated by a complex set of drivers (groundwater, shading, etc.),
there is reason to expect that warmer air temperatures will increase water temper-
ature, at least for some portion of the year (Morrill et al., 2005; Webb & Nobilis,
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Table 10.1 Hypothesized effects of global change on shredder communities, and subsequent
changes in plant litter decomposition rates due to altered importance of the shredder community, in
four different biomes, each with expected biome-specific global changes. The hypothesized change
(‘Effects on decomposition rates’) is based on the overview in the above text and cited literature
within that text, and the presumed changed importance of shredders plant litter decomposition in
fresh waters from before to after the impact of global change. The number of ‘ + ’ or ‘–’ represents
the hypothesized strength of the effect

Biome Global change Effect on freshwater
system

Effect on the
shredder
community

Effect on
decomposition
rates

Tundra Warming Increased water
temperature

Reduced
psychrophile
species

– –

Increased metabolic
rates

+

Shrubification Increased litter
input

Increased shredder
abundance

+ +

Boreal forest Warming Increased water
temperature

Reduced
psychrophile
species

– –

Increased drought
occurrence

Reduced shredder
biomass and
richness

–

Precipitation Increased flood
stochasticity

Reduced shredder
biomass and
richness

–

Removal of litter
input

– –

Increased N and
dissolved C

Increased microbial
biomass

+ +

Forestry Reduced litter
quality

Reduced shredder
biomass and
richness

– – –

Temperate
forest

Warming Increased anoxic
conditions

Reduced shredder
biomass and
richness

– – –

Reduced microbial
biomass

– –

Increased drought
occurrence

Reduced shredder
biomass and
richness

– – –

Disconnect between
land and water

– – –

Precipitation Increased flash
floods

Reduced shredder
biomass and
richness

– – –

Removal of litter
input

– – –

(continued)
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Table 10.1 (continued)

Biome Global change Effect on freshwater
system

Effect on the
shredder
community

Effect on
decomposition
rates

Agriculture Reduced flows Reduced shredder
biomass and
richness

– – –

Disconnect between
land and water

– – –

Tropical rain
forest

Warming Increased water
temperature

Increased metabolic
rates

+

Precipitation Reduced flows Reduced shredder
biomass and
richness

–

Disconnect between
land and water

–

Agriculture Reduced flows Reduced shredder
biomass and
richness

–

Disconnect between
land and water

– –

2007). Aswater temperature is a strong environmental filter that determinesmacroin-
vertebrate community composition (Jacobsen et al., 1997), such changes are likely
to impact the distribution of freshwater organisms, their interactions, and thus the
processes they carry out (Settele et al., 2014). Hence, warming-induced changes
in shredder community composition will likely alter intra- and interspecific inter-
actions, including the presence and strengths of facilitation and effects of niche
complementarity, and interactions among different types of organisms that are asso-
ciated with litter processing or products thereof. For example, warming has been
shown toweaken facilitation betweenmacroinvertebrate andmicrobial decomposers,
presumably via increased metabolic demands and reduced nutrient excretion by the
macroinvertebrates (Bernabé et al., 2018).

Warming of freshwaters will inevitably have the largest adverse impacts on cold-
loving (i.e., psychrophile) macroinvertebrate species at higher latitudes, and if these
species are important shredders, also the litter decomposition processwill be severely
affected (e.g., Perkins et al., 2010). As increases in temperature are likely to be
greatest in high-latitude ecosystems, which often have species-poor communities
dominated by only a few species that are adapted to colder conditions (e.g., stone-
flies; Irons et al., 1994; Jacobsen et al., 1997; Li & Dudgeon, 2009; Masese et al.,
2014), the impact of warming on the role of shredders for litter decomposition may
be most pronounced in these systems (Table 10.1). Hence, in northern regions, the
major effect of warming will likely be a changed shredder community composi-
tion due to taxon-specific temperature preferences and responses in metabolic rates
to warming in relation to available resources (i.e., starvation; Perkins et al., 2010;
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Sweeney, 1978; Sweeney & Schnack, 1977). The impact on litter processing may,
however, be alleviated if more southern shredder species expand their ranges north-
ward to fill vacant niches. Yet, the extent to which such species replacement can
take place will depend on other environmental filters (e.g., local pH), geographic
barriers, the rate at which warming occurs, as well as the migratory ability of the
southern, more thermophilic species (Bilton et al., 2001). Moreover, climate-change
induced alterations of riparian vegetation may counteract adverse effects of warming
or even promote the role of shredders for litter decomposition in streams (Jonsson
& Canhoto, 2017; Wondzell et al., 2019).

10.4.2 Climate-Induced Changes in Vegetation

Warming will also gradually change the terrestrial plant community composition
(e.g., conifers will be replaced by broadleaf species; e.g., Walther et al., 2002) and
functional trait representation, which in itself will further alter productivity on land
as well as the quantity and quality of litter supplied to fresh waters during leaf
senescence (Kominoski et al., 2013). Further, as tree species differ in phenology of
leaf senescence (Dixon, 1976; Eckstein et al., 1999), and as phenology is coupled
with litter quality (Campanella & Bertiller, 2008; Niinemets & Tamm, 2005), a
gradual change in plant community composition in response to warming will also
alter the temporal resource availability to shredders, and the quality of those resources
(Jonsson&Canhoto, 2017). Themost dramaticwarming-induced shifts in vegetation
are predicted to occur at high latitudes (i.e., in the tundra) and altitudes (i.e., above the
current tree line), as treeswill expand into these previously open areas, or, conversely,
in regions that become too warm and dry for trees to persist (Table 10.1; Chen
et al., 2011; Walther et al., 2002; Zhang et al., 2013). In the former situation, an
increased shredder abundance, and thus an increased role of shredders for plant
litter decomposition, may be expected, as the availability of litter resources will
increase, whereas in the latter situation, shredders likely are lost, or severely reduced
in abundance, reducing their role for plant litter processing.

Changes in terrestrial net primary productivity (NPP) are also expected in response
to warming, especially in northern regions (i.e., boreal and Arctic) and at high eleva-
tions (e.g., Gao et al., 2013), as this is where temperature increases will be the
greatest (IPCC, 2007; Settele et al., 2014). Mean annual temperature and NPP are
generally positively correlated (Huston & Wolverton, 2009), so increased NPP as a
consequence of climate warming is expected. However, lower latitudes may experi-
ence reduced NPP due to increasingly dry conditions caused by higher temperatures
(IPCC, 2007; Settele et al., 2014; Walther et al., 2002). These potential changes in
terrestrial NPP are important because this is tightly coupled to leaf litter production
(Wardle et al., 2003), and therefore with amount of terrestrial plant litter that fresh-
water systems receive from the riparian zone, but also to shading that may counteract
effects of warming on water temperature (Wondzell et al., 2019).
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More subtle changes in litter quality may also be caused by warming, because
in sufficiently warm and wet environments, where resources are abundant, plant
strategies involve growing in height to escape intra- and interspecific competition for
light (Hautier et al., 2009). This strategy requires allocation of resources to biomass
production, and therefore results in lower investment into secondary compounds (i.e.,
defense against herbivores; Bazzaz et al., 1987; Coley, 1988), which then increases
the quality (i.e., palatability) of the litter produced. However, contrastingly, higher
concentrations of atmospheric carbon dioxide (CO2), which is onemain agent behind
climate warming, and subsequent greater CO2 uptake by vegetation, may result in
poorer litter quality as the carbon (C)-to-nitrogen (N) ratio, as well as concentrations
of lignin and phenolics, increase (Norby et al., 2001; Stiling&Cornelissen, 2007). In
addition to differences in litter quality having strong effects on decomposition rates
(Heal et al., 1997; Lidman et al., 2017; Ostrofsky, 1997), changes in litter qualitymay
also exacerbate stochiometric mismatches between shredders and the litter resources
(Norby et al., 2001; Tuchman et al., 2002). Such a change would have immediate
consequences for freshwater secondary production, especially in combination with
increased metabolic demands due to higher water temperature (Perkins et al., 2010;
Sweeney, 1978; Sweeney & Schnack, 1977).

10.4.3 Direct and Indirect Effects of Changed Precipitation

Similar to the effects of increasing air temperature, precipitation patterns will change
unevenly across the globe. Current models suggest that some regions will experience
greater annual rainfall with positive effects on terrestrial NPP, whereas other areas
are expected to experience lesser amounts with more severe and prolonged droughts
and adverse effects on terrestrial NPP (Table 10.1; IPCC, 2007; Settele et al., 2014;
Walther et al., 2002). Such effects on terrestrial NPP will in themselves affect the
role of macroinvertebrates for plant litter decomposition in fresh waters, via changes
in litter input quantity and quality (see 10.4.2). In addition, studies suggest that
precipitation drives litter input dynamics to fresh waters in the tropics, whereas
temperature in itself is a more important driver at higher latitudes (Tonin et al.,
2017). However, greater stochasticity in precipitation, in terms of both amounts and
frequency (Pendergrass et al., 2017), and thus frequency of floods and droughts
in freshwater systems, is expected in a warmer climate (Trenberth, 2011). Hence,
besides affecting NPP, altered precipitation may affect the role of shredders for litter
processing by regulating litter input dynamics, and via impacts on the frequency and
magnitude of floods, runoff of dissolved organic matter, and frequency and length
of droughts.

Changes in both magnitude and frequency of floods due to climate change will
influence freshwater macroinvertebrate community composition, and most inverte-
brate groups will exhibit a reduced abundance in response to altered flow regimes
(Kakouei et al., 2018; McMullen & Lytle, 2012). In addition, spates due to extreme
rainfall events can drive the exports of organic C and nutrients from freshwater
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systems, especially by reducing the retention of CPOM (Giling et al., 2015). Thus,
if flooding events occur during or soon after leaf senescence, these will influence the
spatial distribution of litter resources, with consequences for invertebrate shredders
and other functional feeding groups that to some extent depend on this resource or
products from the decomposition process (i.e., collectors and filter feeders). Such
effects of high flow may be moderated by substrate characteristics that increase flow
heterogeneity and promote litter retention, or be exacerbated by past human activi-
ties that have resulted in reduced structural complexity and increased channelization
of streams (Ehrman & Lamberti, 1992; Koljonen et al., 2012; Lepori & Malmqvist,
2005).

Even moderately reduced flows may have large impacts on shredder-mediated
litter decomposition rates, if they result in increased distance between riparian vege-
tation and thewater body, reducing litter input and in-stream litter availability (Arroita
et al., 2015; Giling et al., 2015), and thus shredder abundance (Richardson, 1991;
Wallace et al., 1999). In the event of drastically reduced flows (i.e., extensive and
prolonged droughts), invertebrate shredders (as well as other freshwater organisms)
can be extremely vulnerable, as habitat conditions (e.g., oxygen levels and temper-
ature) progressively deteriorate and habitats disappear (Bonada et al., 2007; Herbst
et al., 2018). This habitat deterioration, in turn, will affect litter decomposition rates
in streams where shredders are important actors in that process (Leberfinger et al.,
2010; Monroy et al., 2016). It is important to note, however, that droughts (as well
as spates) can have very different effects on the role of shredders for plant litter
decomposition, depending on when during the year they occur and how they overlap
with certain developmental stages of the locally important shredder species.

Runoff of dissolved organic matter (DOM), including critical nutrients (i.e., C, N,
and phosphorus [P]), can stimulate litter-associated microbial biomass and activity
in freshwater systems (Emilson et al., 2017), and thus increase the palatability of
terrestrial plant litter and the rate at which it is decomposed by invertebrate shredders
(sensu Heal et al., 1997; Rosemond et al., 2015). In regions where increased precipi-
tation is expected as a consequence of climate change, freshwater systems will likely
receive increased amounts of DOM from terrestrial runoff (Christensen et al., 2001;
Larsen et al., 2011). In warmer regions, where increasingly dry conditions will have
adverse effects of terrestrial vegetation, inputs of DOM may become more sporadic
but of higher magnitude following rare, extreme rain episodes (Table 10.1; Alpert
et al., 2002; Nunes et al., 2009). In addition to quantitative changes, DOM runoff
may also change qualitatively, as a consequence of changed soil nutrient availability
following climate-change induced alterations in plant physiology and community
composition, and, thus, plant litter chemistry (Bazzaz et al., 1987; Niinemets &
Tamm, 2005). Such qualitative changes may, as for quantitative changes, influence
litter-associated microbial communities with consequences for litter palatability and
the rate at which shredders decompose the plant litter.

Runoff of terrestrial organic matter may also reduce pH, which can be tightly
coupled to concentrations ofDOM(i.e., organic acidity). Thus, as opposed to positive
effects of DOM via increased microbial biomass and litter palatability, runoff may
also result in reduced shredder contributions to litter decomposition, and reduced
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overall decomposition rates, if important acid-sensitive shredder (and microbial)
species are lost (Petrin et al., 2007; Schmera et al., 2013). However, in the boreal
region, where precipitation and subsequent runoff are predicted to increase the most,
many important shredder taxa are naturally tolerant to low pH (Dangles et al., 2004),
so effects of DOM on shredder-mediated litter processing via changed shredder
communities should be small in the north. However, besides bringing nutrients,
or lowering the pH, runoff may also bring sediment other chemicals from land to
water. The effect of such environmental change on the role of shredders for the litter
decomposition process will depend on the causal agent (e.g., type of human activity)
and the way in which catchment characteristics are altered (see 10.4.5).

10.4.4 Fire and Strong Winds

Climate change is expected to increase frequencies of forest fires and strong winds
(Seidl et al., 2017). If large areas of a catchment are disturbed by either storm felling
or fire, increased runoff (Verkaik et al., 2013) and subsequent effects on macroin-
vertebrate communities (Minshall, 2003) may persist until the forest has recovered.
At smaller scales, fire and wind disturbance can result in increased inputs of dead
wood, which in turn could alter water flow and promote retention of plant litter with
positive effects on shredder abundance and their importance for litter decomposi-
tion. However, both fire and wind can also remove riparian vegetation and open
the canopy, and thus change the resource base and the dominant functional feeding
groups present in the freshwater system (Vannote et al., 1980). However, this effect is
likely to be transient, provided that secondary succession proceeds in the absence of
disturbance (Stone &Wallace, 1998). In fact, fire and wind disturbance may promote
shredder abundance and shredder-mediated decomposition, if it allows for regenera-
tion of early-successional deciduous vegetation, which produces higher-quality litter
in a seasonal manner, as opposed to the often dominant late-successional, coniferous
species.

10.4.5 Human Activities

Multiple types of land use will influence freshwater systems and their shredder
communities in different ways (Table 10.1). Forestry, and in particular large-scale
clear-cutting, affects vegetation and thus runoff of DOM (i.e., nutrients and pH)
in a similar way as do large-scale disturbances (see 10.4.4), and may therefore
mimic effects of forest secondary succession on freshwater invertebrate commu-
nities and plant litter decomposition. However, additional impacts on soils (i.e.,
damage from forestry machines and soil scarification to promote seedling growth
and survival) create novel disturbance regimes, resulting in, for example, increased
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sediment inputs, with often adverse effects on freshwater invertebrate communities
and litter decomposition rates (Gurtz &Wallace, 1984; Lecerf & Richardson, 2010).

Forestry also, typically, transforms the tree community composition, in favor of
species (e.g., conifers and Eucalyptus) that produce lower-quality litter to freshwater
systems (Ferreira et al., 2016; Laudon et al., 2011). Such changes in riparian vegeta-
tion is an important determinant of the presence of shredders; a reduced litter input
quality will lessen the role of shredders in the decomposition process (Raposeiro
et al., 2018), as shredders contribute more when litter is of higher quality, whereas
microbes are more important for the decomposition of lower-quality litter (Hieber
& Gessner, 2002; Raposeiro et al., 2018).

Effects of forestry may, however, also be small. In fact, macroinvertebrate abun-
dance has in some cases been found to be higher in streams impacted by forestry,
suggesting that other environmental filters, such as pH, override the impact of forestry
on macroinvertebrate communities (Liljaniemi et al., 2002). This may be especially
true for stream environments that are characterized by strongly limiting conditions
in temperature and/or nutrients (i.e., in the boreal region, e.g., Lidman et al., 2017).
Moreover, as suggested above, forestry may, in the absence of fire disturbance,
emulate some beneficial aspects of natural disturbances, by creating young decid-
uous riparian vegetation that provide high-quality litter input to fresh waters and thus
promote the abundance of shredders (Liljaniemi et al., 2002; McKie & Malmqvist,
2009). In any case, equivocal effects of forestry on freshwater macroinvertebrates
maybe due to the level of effects beingmediated byother conditions, such as substrate
type (Gurtz &Wallace, 1984), and will certainly differ among different management
strategies. Thus, it is somewhat difficult to draw general conclusions as to how
forestry affects the importance of invertebrate shredders for litter decomposition in
freshwaters; these effects are likely transient in time and highly context dependent
(Ferreira et al., 2016).

Agriculture can, in several ways, have large impacts on freshwater systems and
their macroinvertebrate communities, and due to a growing human population, agri-
cultural activities and their associated impacts are predicted to increase (Dudgeon
et al., 2006; Laurance et al., 2014; Moss, 2008). When land is cultivated for agricul-
tural purposes, there may be a complete removal of riparian vegetation, resulting in
a more autochthonous resource base with subsequent changes in macroinvertebrate
community composition (Allan, 2004; Vannote et al., 1980). Alternatively, there is
a modified riparian plant community composition, which alters quantity and quality
of litter input to streams (Stenroth et al., 2015), and thus likely the role of shredders
for litter decomposition. However, one of the more dramatic impacts of agriculture
is the runoff of nutrients, which stimulates microbial biomass and microbially medi-
ated litter decomposition (Gulis & Suberkropp, 2003;Woodward, 2012), but thereby
likely also litter palatability and shredder-mediated decomposition (Bärlocher, 1985;
Cummins & Klug, 1979). However, this potentially positive effect on shredders may
be counteracted, because reduced oxygen levels due to increased microbial activity
have adverse impacts on some important shredder species, such as stoneflies, which
therefore typically are absent in streams impacted by agriculture (Hilsenhoff, 1988;
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Stenroth et al., 2015). Accordingly, effects of nutrient enrichment on litter decom-
position have been found to be stronger in colder regions, suggesting that the initial
importance of macroinvertebrates (higher in colder regions), and effects of nutrient
enrichment on these, determine effects of nutrient enrichment on plant litter decom-
position (Ferreira et al., 2014). Agricultural activities often also result in runoff of
directly harmful substances, such as pesticides (Cooper, 1993; Willis & McDowell,
1982). These substances may influence the role of invertebrate shredders for litter
decomposition, either by reducing litter palatability via impacts on the microbial
community (i.e., microbial conditioning; Bärlocher, 1985; Cummins & Klug, 1979;
Jonsson et al., 2015) or by directly affecting the shredder community (Liess & von
der Ohe, 2005).

A reduction in microbial litter conditioning, independent of cause, may require
compensatory feeding by shredders to maintain growth (Bärlocher, 1985; Cummins
& Klug, 1979; Flores et al., 2014). Hence, despite adverse impacts on the microbial
community, the importance of shredders for plant litter decomposition may increase.
Conversely, the importance of shredders may decrease despite positive effects on the
microbial community, e.g., via nutrient input, if consumption of less litter is required
to sustain shredder growth (Zubrod et al., 2015). Hence, human-induced impacts on
litter-associated microbial communities can either decrease or increase the role of
shredders in the decomposition process, but the above described, unexpected effects
are likely transient, as longer-term effects on per-capita feeding activity will act on
shredder abundance. Accordingly, no effects on shredder activity from agricultural
pesticides, despite reduced microbially mediated litter decomposition (Rasmussen
et al., 2012), or compensatory feeding due to lower litter quality (Flores et al., 2014),
will likely eventually result in reduced shredder contribution to the decomposition
process (Bärlocher, 1985; Cummins & Klug, 1979).

Human activities also result in voluntary or involuntary introduction of nonnative
species (Ricciardi, 2007), and these species may become invasive with potentially
large impacts onnative organisms and theprocesses theymediate (Ricciardi&Cohen,
2007; Mueller & Hellmann, 2008). With regard to plant litter decomposition in fresh
waters, it is not well studied how introduced and invasive plant (Dangles et al.,
2002) or shredder species may influence the role of shredders. Invasive crayfish are,
however, a good example of how massive the effects of species introductions can
be. Besides the signal crayfish (Aphanomyces astaci) being a carrier of the crayfish
plague and, thus, reducing (or completely removing) populations of native crayfish
(Strand et al., 2014), introduced and invasive crayfish species may impact litter
decomposition and other processes in complex ways (Jackson et al., 2014; Turley
et al., 2017). Thus, this area of global-change effects on litter decomposition in fresh
waters definitely needs more research.

Besides the potentially large impact of each of the above presented global changes
on freshwater macroinvertebrates and litter decomposition, freshwater systems are
often influenced by several types of disturbances simultaneously (Dudgeon et al.,
2006). Hence, it is difficult to predict consequences of global change in natural
systems based on studies of isolated disturbance types (Jackson et al., 2016). More-
over, the ongoing loss of freshwater biodiversity (Dudgeon et al., 2006) may weaken
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the resistance and resilience of fresh waters to disturbances (i.e., the insurance
hypothesis; Yachi & Loreau, 1999). For example, effects of an invasive terrestrial
plant on shredder-mediated litter decomposition may differ depending on the diver-
sity and composition of the shredder community feeding on litter from that plant
(Dangles et al., 2002).Nonetheless, the large environmental variability that is inherent
in many freshwater systems may have increased the tolerance of these systems to
multiple disturbances, compared tomore stable aquatic environments, such asmarine
systems (Jackson et al., 2016).

10.5 Conclusion

In summary, many types of global change have the potential to modify terrestrial
and freshwater environmental conditions that will have consequences for shredder
communities and their role as drivers of litter decomposition and overall organic
matter dynamics in streams. These impacts are very likely to differ across biomes.
Indeed, even the same type of global change, e.g., warming, will likely have different
implications for freshwater systems depending on biome, resulting in different
effects—in terms of magnitude and/or direction—on the role of shredders for rates
of leaf litter decomposition (Table 10.1). For example, increases in water temper-
ature due to climate change are expected to be much higher at northern latitudes
than in the tropics (IPCC, 2007; Settele et al., 2014), resulting in losses of impor-
tant psychrophile shredder species in the north, whereas tropical communities may
remain intact. On the other hand, as a result of climate change, terrestrial vegeta-
tion may become more abundant in the north and at higher latitudes (Chen et al.,
2011; Walther et al., 2002; Zhang et al., 2013), resulting in increased shading of
streams and more terrestrial plant litter input; this may reduce water temperatures
and promote shredder abundance and thus strengthen their importance as drivers of
the decomposition process (e.g., Lagrue et al., 2011; Wondzell et al., 2019).

Overall, while global change may result in a weakened or strengthened role
of macroinvertebrate shredders for plant litter decomposition in fresh waters, we
hypothesize that the effect of warming will be small in the tropics, in part due to
relatively low importance of shredders (as opposed to microbes) for litter decompo-
sition in this biome (Li & Dudgeon, 2009), either negative or positive in the tundra
and boreal regions, and the strongest—and only negative—in the temperate region,
due to increased habitat fragmentation and deteriorating environment (Bonada et al.,
2007; Herbst et al., 2018), and disconnected land–water systems (Arroita et al., 2015;
Giling et al., 2015), resulting from greater drought frequencies from global warming
and intensified human water use (Table 10.1). Nevertheless, how the role of shred-
ders for organic matter processing in streams will be altered by current and future
climate change is immensely difficult to predict. Moreover, other types of global-
change drivers, such as land use, may also show biome-specific effects, but not in
the same way as climate change. For example, effects of deforestation on plant litter
availability and the shredder community may be more pronounced in the tropics than
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in northern regions, but this has yet not been comparatively studied. Therefore, future
research on organic matter processing and C cycling in streams must consider the
potentially altered role of shredders under changed environmental conditions, but
at the same time also realize that alterations in this role will differ among different
types of global change, and be specific depending on the biome that is studied (Table
10.1).
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