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Abstract This contribution deals with a high order Residual Distribution (RD)
numerical scheme to simulate sediment transport. The morphodynamic model that
has been used, couples shallow–water equations for the fluid flow and the Exner
law for the sediment part. Thus, the choice of the approach by a non-conservative
hyperbolic system has been made. Different schemes have already been applied
to approximate the entropic solution for several test cases [10]. The one proposed
in this paper resorts to RD-method, TVD Runge Kutta [27, 31] and stabilisation
upwind methods [13], with limiters. It can be viewed as an improvement of the
generalized approximate Roe method [8, 14, 29] with some other good properties
(Path-conservative, well-balanced...). Numerical results show the ability of themodel
in 1D to compute accurate solutions and to reproduce some classical test problems.
The best results that we obtained, use MinMod flux limiters.

1 Introduction

This work is incorporated within the framework of the study of a sediment transport
modelling. One aim of this contribution, is to provide first, an useful simulation
tool, in the context of a 1D space-time problem. Considering the geophysical aspect,
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the sediment transport can be divided into several categories, in this paper we will
be interested in bedload transport. The governing equations consist of a system of
three equations, modelling the interaction between fluid and sediment in a river. The
hydrodynamical component is described by the shallow–water equations (SWE) and
the morphodynamical component, is given by a solid transport discharge due to
the Exner law with the Grass formula. In this way, the model can be depicted by
a non-conservative and non-linear hyperbolic system, and our main objective is to
seek numerical solutions in accordance with these specific aspects. In particular, a
good scheme for that model, must comply with the well-balanced property and the
path-conservative character. Moreover, as the fluid interacts very weakly with the
sediment and characteristic velocities being such a different magnitude, long time
simulation and high order accuracy (at least second order) are needed.

To treat hyperbolic problem, finite volumes are the most popular methods as
the Godunov scheme. For conservation laws, first attempts to propose approximate
solver for hyperbolic systems in non-conservative form, were due to Roe [28]. After
that, several approaches have been introduced like approximate finite volume Roe
with characteristic flux scheme [14], schemes based on exact or incomplete Riemann
solvers [5], WENO schemes [32], generalized Roe methods with or without WENO
reconstruction [8–10], or kinetic schemes [24].

In parallel to finite volume, another family ofmethods calledResidualDistribution
(RD) methods that emerged from Roe’s works in the 80s, is used in this paper [11,
28]. Combining advantages from finite volume and finite element methods, their
construction allows them nowadays to be monotone, conservative, well-balanced
and easily high order accurate [1, 2, 19, 20, 27, 31].

In this contribution, a RD scheme, viewed as a recast of the approximate Riemann
solver, called FV-Roe approximation scheme is proposed with simulations. Often
used to solve the shallow–water problem, the residual based method is adapted here
to solve the coupling problemwith sediment transport. And for that the use of a TVD
Runge Kutta procedure, but also upwinding and a flux limiter procedures, have been
added, to compute weak entropic solution, considering Lax entropy.

To introduce our scheme, the present paper is organized according to the following
outline: In Sect. 2, the governing equations are introduced. In Sect. 3, our scheme is
proposed. And finally, numerical tests are given, in order to show how accurate the
scheme is, but also its well-balanced preserving aspect, for the lake at rest.

2 A Sediment Transport in a Shallow Water

In the context of the study of sediment transport in shallow water, several morphody-
namical models can be found in the litterature depending on the way of considering
the displacement mode. In the case of bedload transport, among several models [12,
18, 21, 30], the discharge is written by the Grass formula [15] for simplicity. It
involves that the critical shear stress is neglected, then the sediment is viewed as
starting its own movement as soon as the fluid starts to move. About the hydrody-
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Fig. 1 A sediment layer in a
shallow water
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namical part, shallow–water equations are considered. The result is an hyperbolic
system of three equations.

The governing system for the 1D space-time problem, is as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂h
∂t + ∂q

∂x = 0

∂q
∂t + ∂

∂x

(
q2

h + 1
2gh

2

)

= gh ∂S
∂x − ghS f

∂S
∂t − ζ

∂qb
∂x = 0,

(1)

where x denote the horizontal variable at the axis of the channel and t the time
variable (see [10]). By h(x, t) we denote the height of the water column, q(x, t)
is the discharge, g is the gravity constant, S f models the friction term and ζ a
parameter linked to the sediment porosity (ζ = 1/(1 − ρ0) with ρ0 the porosity).
The third equation of the model describes the sediment transport by the expression
of the sediment volume equation, qb being the solid transport discharge obtained by
Grass formula (here, qb = Ag(q/h)3 with Ag related to the interaction between the
fluid and the sediment). The variable S(x, t) is the distance from a given reference
level to the bottom layer. A schematic description is provided (see Fig. 1), η denoting
the extra height of the water column.

Neglecting S f in this study, a classical approach is to treat the system (1) as a
hyperbolic system with a non-conservative term B:

∂W

∂t
+ A(W )

∂W

∂x
= 0, (2)

with W = W (x, t) and (x, t) ∈ IR × IR+. In fact, the vector of unknowns is

W = (h, q, S)T ,

F is the flux function and, A(W ) equals to the difference between the Jacobian
matrix of F and the non-conservative part:

A(W ) = ∂F

∂W
(W ) − B(W ).
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More precisely,
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3 A Residual Based Predictor-Corrector Upwind
Discretization for 1D Space-Time Sediment Transport

Following the introduction, the scheme built in this work, can be viewed as an high
order recast of the approximate FV-Roe as introduced by Ghidaglia et al. in [14].
Instead of using a high order reconstruction, our approach exploits the residual based
approach discussed in [26, 27].

To present the scheme, one neglects the friction term, and one considers the
hyperbolic system with a non-conservative term. Also, to simplify writing in this
section, in integrals the term dx will be omitted (all are space integrals).

Onewill consider the intervals (computing cells) definedby Ii = [xi− 1
2
, xi+ 1

2
], i ∈

ZZ, but also the intervals Ii+ 1
2

= [xi , xi+1]. Let the step �xi = xi+ 1
2
− xi− 1

2
and that

xi− 1
2

=
i−1∑

k=1

�xk is the intercell located at the middle of Ii−1 ∪ Ii . �t is the time step

and tn = n�t . As usual, we denote by Wn
i the approximate mean value of W in

node xi and at time tn . The RD procedure consists of making the computation of the
residual, called global, on a cell Ii and then distributing fractions of this quantity to
each of its verteces. Under these assumptions, one gets for a linear approximation of
W (x, tn),

Wn
i := 1

�xi

∫

Ii

W (x, tn) ≈ W (xi , t
n).

Then, the residual–based predictor corrector method developed in [26, 27] can be
written as follows

Wn+1
i = Wn

i − �t

�x

{
1

2
�i (W

n) + 1

2
�i (W

∗)
}

+ �i− 1
2
+ �i+ 1

2
, (3)
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with�i (W ) corresponds to the approximate FV-Roe scheme discrete evolution oper-
ator (without the additional term)

�i (W ) = P+(Ai− 1
2
)φi− 1

2
+ P−(Ai+ 1

2
)φi+ 1

2
.

Concerning the non-conservative terms, one proceeds by linearization along the path
joining Wi and Wi±1, to compute an approximate value of Wi± 1

2
= 1

2 (Wi + Wi±1).
We then denote by Ai± 1

2
= A(Wi± 1

2
), Bi± 1

2
= B(Wi± 1

2
). Also, the fluctuations

are:

φi− 1
2

= Fi − Fi−1 − Bi− 1
2
(Wi − Wi−1) and φi+ 1

2
= Fi+1 − Fi − Bi+ 1

2
(Wi+1 − Wi ),

and the projectors,

P±(Ai∓ 1
2
) = 1

2
(I ± sign

(
Ai∓ 1

2
)),

with the sign of a matrix computed by eigen-decomposition

sign(Ai∓ 1
2
) = Ki∓ 1

2
sign(Li∓ 1

2
)K−1

i∓ 1
2
.

The matrixK gathering the eigenvectors of the Roe matrix (along the path), sign(L)

is the diagonal matrix whose coefficients are the sign of the eigenvalues (see [23] for
example). We denote byW ∗, a predicted value of the solution that has been obtained,
from the upwind scheme,

W ∗
i =Wn

i − �t

�xi
�i (W

n).

Actually, if we introduce a parallel approach using Galerkin method by seeking a
piecewise linear solution, in a domain 
 =]0, L[,

Wh(x, t) =
∑

i

ϕi (x)Wi (xi , t), and Fh = F(Wh),

with ϕi representing the standard Lagrange basis fonctions associated to the node
xi . One replaces the unknown solution by its approximate solution by finite element
from the variational form

∫




ϕi∂tWh +
∫




ϕi∂x Fh −
∫




ϕi B(Wh)∂xWh = 0. (4)

And one can notice that by linear approximation,
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∫




ϕi∂x Fh =
∫

I
i− 1

2

ϕi∂x Fh +
∫

I
i+ 1

2

ϕi∂x Fh ≈ Fi − Fi−1

2
+ Fi+1 − Fi

2
. (5)

Hence, the resulting non-stabilized method reads

∫




ϕi∂tWh + 1

2
φi+ 1

2
+ 1

2
φi− 1

2
= 0, (6)

with the approximation of the first term �xi
dWi
dt , one recovers the mass lumping

process.
But as it is known that Galerkin method suffers from lack of stability, one adds a

residual based stabilization in the spirit of the streamline upwind method or Stream-
line Upwind Petrov Galerkin (SUPG) [17, 26, 27].

For a node xi , the stabilization operator Si reads

Si =
∫




A(Wh)∂xϕi T r̃ with r̃ = ∂tWh + ∂x Fh − B(Wh)∂xWh,

the matrixT being a scaling factor guaranteeing the uniform boundedness of the sta-
bilization w.r.t. the residual. As before, explicit computable expressions are obtained
when introducing the linear finite element approximation and introducing appropri-
ate mean value linearizations of the matrices that appear. Recalling that for a linear
approximation ∂xϕi

∣
∣
I
i± 1

2

= ∓1/�xi± 1
2
, the stabilization term can be evaluated as

Si = Ai+ 1
2
Ti+ 1

2

(∫

I
i+ 1

2

∂tWh + φi+ 1
2

)
− Ai− 1

2
Ti− 1

2

(∫

I
i− 1

2

∂tWh + φi− 1
2

)
(7)

In one dimension, a typical definition of the scaling matrix T , also used here, being
the following

Ti± 1
2

= 1

2
�xi± 1

2
sign(Ai± 1

2
)A−1

i± 1
2

= �xi± 1
2

2
|Ai± 1

2
|−1, (8)

the complete semi-discrete (in space) equations read

∫

Ii− 1
2

(
ϕi + sign(Ai− 1

2
)
)

∂tWh +
∫

Ii+ 1
2

(
ϕi − sign(Ai+ 1

2
)
)

∂tWh

= −
(
P+(Ai− 1

2
)φi− 1

2
+ P−(Ai+ 1

2
)φi+ 1

2

)
.(9)
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As it has been explained in [27], a simplified stabilization step can be added in the
Galerkin process with the Runge-Kutta scheme without any loss of accuracy (here,
an explicit RK2 of second order accuracy is used). Thus, the residual

rn+1 := Wn+1
h − Wn

h

�t
+ 1

2
(∂x Fh − Bh∂xWh)

∗ + 1

2
(∂x Fh − Bh∂xWh)

n (10)

can be replaced with a simplified residual

r∗ := W ∗
h − Wn

h

�t
+ 1

2
(∂x Fh − Bh∂xWh)

∗ + 1

2
(∂x Fh − Bh∂xWh)

n, (11)

to design the scheme by computing

∫




ϕi r
n+1 +

∫

I
i− 1

2
∪I

i+ 1
2

A(Wh)∂xϕi T r∗ = 0. (12)

Using an explicit scheme by performing mass lumping in the predictor step (6), and
with midpoint rule to evaluate the integrals, one obtains after few calculations and
recast Eq. (3), that one recalls

Wn+1
i = Wn

i − �t

�x

{
1

2
�i (W

n) + 1

2
�i (W

∗)
}

+ �i− 1
2
+ �i+ 1

2
,

with the aim to define �i± 1
2
as:

ψi± 1
2

= �t

�x

∫

I
i± 1

2

(
ϕi − 1

2
(I ∓ sign(Ai± 1

2
))

)W ∗
h − Wn

h

�t

≈1

2

(
W ∗

i − Wn
i − (I ∓ sign(Ai± 1

2
))(W ∗

i± 1
2
− Wn

i± 1
2
)
)
.

However, comparing to the FV-Roe scheme, the additional terms �i± 1
2
that derive

from residual stabilization are of second order, that cannot always match with non
regular solution. To avoid their effects accross discontinuous features, cell based
limiters have been introduced and finally,

�i± 1
2

= δi± 1
2
ψi± 1

2

with δi± 1
2
computed by means of a standard finite volume limiters using values

of the MUSCL MinMod flux limiter function [7].
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4 Numerical Results

We present the numerical results of several reference problems. In this section, we
aim at validating our numerical scheme and highlighting its characteristic properties
against classical tests. The first test consists in proving an approximate well-balanced
property of our scheme. We then underline the ability of our scheme to simulate a
parabolic sediment transport until a discontinuous solution is obtained.We also prove
its high order accuracy by means of an order test problem that has been discussed
in [10]. Finally, we prove that our scheme is capable of faithfully reproducing a
dam-break problem over a wet bottom topography [4].

4.1 Test of Well-Balanced Property

To check the property, the following numerical test is used [25]. It deals with the
ability of the scheme to reproduce the behaviour of the steady state. Thus, if the
numerical scheme is well-balanced, a small difference should be observed between
the initial solution and the solution obtained at the final instant.

For this, the interval [0, 10] is assumed as the physical domain and the simulation
is performed up to T = 0.5s with 100 and 200 cells. A discontinuity in the bed is
assumed as the initial condition, so the thickness of the sediment layer is considered,

zb(x, 0) =
{
4 if 4 ≤ x ≤ 8
0 elsewhere

(13)

and
q(x, 0) = 0, h(x, 0) + zb(x, 0) = 10.

The results in Table 1, show that the scheme preserves the approximate well-
balanced property [22]. The differences between the initial solution and the solution
at final time are very small.More precisely, the ratio is of around 1.5 between the dou-
bled gridpoints and the coarser one. The accuracy seems to be of order 1.5 (Table 1).

Table 1 Accuracy of the scheme for the well-balanced test property

Precision L2-error h Ratio L2-error q Ratio

100 8.6052 × 10−16 - 7.1712 × 10−15 -

200 5.2050 × 10−16 1.65 5.8743 × 10−15 1.22



Residual Based Method for Sediment Transport 201

Fig. 2 The dune at initial
time

Fig. 3 zb at 700s for RD
scheme and FV-Roe

4.2 A 1D Space-Time Dune Test Case

To verify the shock capturing property, the classical transport of parabolic sediment
layer has been taken. For this case proposed in [7, 10, 16], the interval [0, 1000] is
assumed as the physical domain and a strong interaction between the fluid and the
sediment is taken (Ag = 1). The initial conditions are given as follows (see Fig. 2):
the bathymetry is of 10 m, q(x, t) = 10 for the discharge of the fluid, h(x, t) =
10 − zb(x, t) for the water column height with the sediment layer thickness ,

zb(x, 0) =
{
0.1 + sin2

(
π(x−300)

200

)
if 300 ≤ x ≤ 500

0.1 elsewhere
. (14)

Numerical solutions are generated up to T = 700 s.As shown inFig.3, the solution
of our scheme (solid line) is compared to the solution of the FV-Roe approximation
(dotted line), and we note that the RD scheme is less diffusive than the first and
the shock is more visible (thanks to the limiters). Therefore, the results show that
our numerical scheme seems to satisfy the shock capturing property for this test. It
can be noted that it is also stable, more precisely the RD scheme does not generate
oscillations even though the interaction between the fluid and the sediment is strong
(somewhat artificialwith the initial conditions chosen [16]). The comparison between
the evolution of the dune between the RD scheme and the SRNH scheme (a second-
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Fig. 4 zb at 700s for RD
scheme and SRNH

Fig. 5 zb at 700s for RD
scheme and SRNH: zoom on
the shock

order scheme extracted from [6], see Figs. 4 and 5) seems to confirm that our scheme
is of the second order and is less diffusive than the other.

4.3 A Test of Order

To check the accuracy of the numerical scheme, let us introduce the following one-
dimensional problem for which initial conditions are:

q(0, x) = 0, h(0, x) = 2 − 0.1 exp(−x2), zb(0, x) = 0.1 − 0.01 exp(−x2).
(15)

This test problem has been considered in a previous work by Castro Diaz et al. [10],
and as the exact solution is unknown, we use a reference solution obtained by a fine
mesh of 5120 volumes (as it has been done in their work) with a medium interaction
(Ag = 0.3).

Numerically, the results for h, q and the sediment layer thickness (zb) and different
error norms, show that the second order of accuracy seems to be obtained (see Tables
2, 3 and 4).



Residual Based Method for Sediment Transport 203

Table 2 Accuracy of the RD-scheme with distributed residual scheme for h
# gridpts L1-error Order L2-error Order L∞-error Order

20 5.628 × 10−3 - 8.600 × 10−3 - 2.088 × 10−2 -

40 2.421 × 10−3 1.22 4.159 × 10−3 1.05 1.086 × 10−2 0.94

80 7.918 × 10−4 1.61 1.408 × 10−3 1.56 4.036 × 10−3 1.43

160 2.072 × 10−4 1.93 3.815 × 10−4 1.88 1.211 × 10−3 1.74

320 5.257 × 10−5 1.98 9.693 × 10−5 1.98 3.159 × 10−4 1.94

640 1.314 × 10−5 2.00 2.423 × 10−5 2.00 7.927 × 10−5 1.99

Table 3 Accuracy of the RD-scheme with distributed residual scheme for q, the discharge
# gridpts L1-error Order L2-error Order L∞-error Order

20 2.350 × 10−2 - 3.771 × 10−2 - 9.248 × 10−2 -

40 1.042 × 10−2 1.17 1.835 × 10−2 1.04 4.783 × 10−2 0.95

80 3.435 × 10−3 1.60 6.205 × 10−3 1.56 1.783 × 10−2 1.42

160 8.995 × 10−4 1.93 1.681 × 10−3 1.88 5.349 × 10−3 1.73

320 2.281 × 10−4 1.98 4.269 × 10−4 1.98 1.397 × 10−3 1.94

640 5.697 × 10−5 2.00 1.067 × 10−4 2.00 3.510 × 10−4 1.99

Table 4 Accuracy of the RD-scheme with distributed residual scheme for zb, the height of the
sediment layer
# gridpts L1-error Order L2-error Order L∞-error Order

20 2.969 × 10−5 - 5.443 × 10−5 - 1.423 × 10−4 -

40 1.265 × 10−5 1.23 2.739 × 10−5 0.99 8.168 × 10−5 0.80

80 4.469 × 10−6 1.50 9.014 × 10−6 1.60 2.861 × 10−5 1.51

160 1.200 × 10−6 1.90 2.536 × 10−6 1.83 8.578 × 10−6 1.74

320 3.019 × 10−7 1.99 6.409 × 10−7 1.98 2.217 × 10−6 1.95

640 7.516 × 10−8 2.01 1.596 × 10−7 2.00 5.571 × 10−7 1.99

4.4 A Dam Break Test over a Wet Bottom Topography

In this classical test case ([4]) a dam break is considered over a flat wet bottom, in a
channel of 10m long. A low interaction between the fluid and the sediment is taken
(Ag = 0.005), and the initial conditions are,

h(x, 0) =
{

2 if x ≤ 5m
0.125 if x > 5m

, (16)

q(x, 0) = 0m/s and the bottom topography zb = 0m. The numerical test is per-
formed until T = 1s. The results confirm that our scheme keep the stability as
attempted for the coupled approaches (see Fig. 6, 7), in comparison the approach
by splitting [3]. The accuracy of our RD scheme is of course better than those
obtained by the FV-Roe scheme (8). More precisely, as expected and considering
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Fig. 6 Dam break over a
wet bottom: h at t = 1s for
RD scheme with 1000 cells

Fig. 7 Dam break over a
wet bottom: zb at t = 1s for
RD scheme with 1000 cells

Fig. 8 Dam break over a
wet bottom: error analysis
for RD scheme

the bottom firstly (Fig. 6) the solution computed with the RD scheme forms two
plates without any oscillation (in a critical region includes the interval [4, 6] with
−0.1 < zb < −0.05, and in a region where x > 6.5 with zb > 0.5). Then, for the
free surface (Fig. 7), the solution of the RD scheme (dashed line) is decreasing along
the time, and a plate is reached without oscillation in the critical region [4, 6]. For
both unknowns, a comparison with the FV-Roe approximation (dotted line) is pro-
posed, underlying that the results are quite similar. However the RD scheme is more
accurate for the bottom (see Fig. 8 for which the L2 errors are produced from a
referent solution computed with 2000 elements grid).

5 Concluding Remarks

This contribution proposed a new predictor-corrector scheme, based on the residual,
to simulate a sediment transport problem. Numerical tests have highlighted its high
order accuracy, its approximate well-balancedness property and its stability for some
test problems. In particular, the solutions obtained for the problem of dam-break with
wet topography are sharp. Work is in progress to take into account dry bottoms, for
example. The extension of this model to take into account a coastal configuration (2D
physical domain), by parallel programming,will also be done in a future contribution.
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