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Abstract In this paper, improvements to a level-set ghost-fluid scheme in a high
order discontinuous Galerkin framework with finite-volume sub-cells are presented.
We propose the use of a path-conservative scheme for the level-set transport in both
the discontinuous Galerkin and the finite-volume framework. Additionally, improve-
ments regarding the curvature calculation and velocity extrapolation are described.
The modified scheme is validated by a comparison of shock-drop and drop-drop
interaction simulations from literature.

1 Introduction

Compressible multi-phase flow is of major interest in many scientific and industrial
applications. Two major concepts can be distinguished: sharp and diffuse interface
methods. Popular sharp interface methods are the volume-of-fluid and the ghost-
fluidmethod. The volume-of-fluidmethod iswidely used for incompressible flow, but
was also applied to compressiblemulti-phase problems, see e.g. [15]. The ghost-fluid
method has been introduced by Fedkiw et al. [13] andwas improved bymany authors,
see e.g. Liu et al. [28], [27] and Wang et al. [45]. Merkle and Rhode demonstrated a
modified version, where amulti-phase Riemann problem is solved to obtain the ghost
states at the interface. The concept was modified to allow approximate two-phase
Riemann solvers by Fechter et al. [10–12]. The method was applied within a high
order level-set ghost-fluid framework. A discontinuous Galerkin method [17] was
used to transport both the bulk phases and the level-set field. Shocks as well as the
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phase boundary between the bulk phases were captured by a finite-volume sub-cell
scheme [39]. In [31], the sub-cell shock capturing method was used for the level-set
transport aswell. Another level-set ghost-fluid approach is based on cut-cellmethods,
see e.g. [32] or [44]. These approaches use similar methods to handle the level-set
and the geometry calculation, however their treatment of the phase boundary is based
on cut-cells. While the method of Nourgaliev et al. [32] is non-conservative like the
method presented in this paper, Vahab and Miller [44] considered a conservative
handling of the phase boundary.

In this paper, we focus on modifications to the interface handling of a compress-
ible sharp interface method in order to simulate merging droplets and bubbles. The
numerical framework is based on a discontinuous Galerkin flow solver with finite
volume sub-cells for the bulk phases, which are coupled with a level-set ghost-fluid
method. The description of the scheme will be kept short, details are described in
[11] and [31]. We propose the use of a path-conservative scheme to transport the
level-set field. This leads to a modified sub-cell shock capturing based on [8]. We
additionally discuss novel modifications of the curvature calculation and the level-set
transport, which allow the simulation of phase boundaries with high curvatures as
well as topological changes. Afterwards, complex test cases are shown to validate
the scheme: two cases with merging drops and two shock-drop interactions, which
are compared with results from literature.

2 Governing Equations

The level-set ghost-fluid framework under consideration is a sharp interface method
and assumes two distinct pure phases without a mixing zone.Wemodel each of these
bulk phases with the compressible Euler equations

∂Q
∂t

+ ∇ · F(Q) = 0, with Q =
⎛
⎝

ρ

m
E

⎞
⎠ and F(Q) =

⎛
⎝

ρu
ρuu + Ip
(ρe + p)u

⎞
⎠ , (1)

with densityρ, momentumm = ρu and total energy E = ρe as conserved quantities.
The total energy E is the sumof the internal energy per unit volume ρε and the kinetic
energy 1

2ρu · u

E = ρε + 1

2
ρu · u, (2)

with u denoting the velocity. An equation of state (EOS) has to be specified to link
the pressure and the internal energy per unit mass ε:

p = p(ρ, ε), ε = ε(ρ, p). (3)
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With our framework, an arbitrary EOS can be used. Efficiency is secured by using the
tabulation technique by Föll et al. [14], whereas an explicit evaluation of algebraic
EOS is also possible. In this paper, we fit a stiffened gas EOS, see Saurel et al. [35],
for the liquid phase and use the perfect gas law for the gaseous phase. The stiffened
gas law is chosen over the Tait EOS although the latter has been found out to model
water more precisely, see e.g. [34]. However, the Tait EOS simply links density and
pressure. Therefore, it cannot be applied to the full compressible Euler equations
directly. Following [13, 29], an additional equation for the internal energy has to be
added to use it in this case. With the choice in [13] the Tait EOS can be rewritten to
the form of the stiffened gas EOS. This approach was used in e.g. [20, 52] as well.
For a further discussion on the use of different EOS for the modeling of water see [5,
20], and e.g. [46, 47] as exemplary applications with different EOS.

The interface between the two phases is tracked by the level-set function�, which
is transported by a velocity field s according to

∂�

∂t
+ s · ∇� = 0. (4)

The transport velocity of the level-set function depends on the flow states at the
interface s = f (Qliq , Qgas). It is initially given on the phase boundary and is then
extrapolated into the volume. In our numerical framework (Sect. 3), it is only cal-
culated at the beginning of each time-step to reduce the complexity of the coupling
between fluid motion and level-set transport. As a direct consequence, the transport
velocity field is constant within each timestep and thus we can rewrite Eq. (4) to

∂W

∂t
+ B(x) · ∇W = 0 with W = � and B(x) = s. (5)

Equation (5) is formulated in the general form of non-conservative hyperbolic equa-
tions to introduce the notation for the numerical scheme, which is discussed in Sect.
3. The root of the level-set field marks the phase interface. The level-set function
initially fulfills the signed distance property. However, this property is not preserved
by the level-set transport (Eq. (5)). As a result, the level-set function needs to be
reinitialized. In this work, the method of choice is the solution of a Hamilton-Jacobi
equation

∂�

∂t
+ sign(�) (|∇�| − 1) = 0 (6)

as proposed in [40]. There are other approaches to reinitialize the level-set field, see
e.g. [37, 43]. A beneficial aspect of level-set methods is that geometrical properties,
such as normal vectornLS and curvature κLS can be calculated directly from the level-
set function by differentiation. According to [6], the level-set normal is calculated
by
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nLS = ∇�

|∇�| . (7)

For the calculation of the curvature the general formulation given in [6]

κLS =�2
x�yy − 2�x�y�xy + �2

y�xx

|∇�|3 +
�2

x�zz − 2�x�z�xz + �2
z�xx

|∇�|3 +
�2

y�zz − 2�y�z�yz + �2
z�yy

|∇�|3 .

(8)

is preferred over the simpler formulation

κLS = ∇ · nLS. (9)

We found that the general formulation is beneficial to obtain stable simulations of
merging droplets. A possible reason is the underresolution of the level-set field in
these situations. More sophisticated algorithms for the normal and curvature calcula-
tion based on curve parametrizations are discussed e.g. in [26], but are not considered
in this work due to their increased computational cost. In addition to the geometrical
properties, the velocity of the level-set field s has to be determined as well. It is only
calculated on the phase boundary and has to be extrapolated into the volume. This
is typically done in a two-step procedure: First, the data is set in the neighborhood
of the phase boundary. Afterwards, this initial field is extrapolated by solving the
Hamilton-Jacobi equations

∂si

∂τ
+ sign(�)nLS · ∇si = 0 i = 1, . . . , d, (10)

for the direction-wise components si of the d-dimensional velocity field s follow-
ing [1]. This is discussed in more detail in Sect. 3.2.3.

Both the reintialization and the velocity extrapolation are only performed in a
narrow, radial band around the level-set zero. Outside the narrow band the level-set
function is set to the bands fixed radius and the velocity field is set to zero.

3 Numerical Method

In this section, the general numerical framework is described briefly. First, the build-
ing blocks for the method are described in Sect. 3.1. Afterwards, they are assembled
in Sec. 3.2 to form the high order framework for the sharp interface simulations.
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Fig. 1 Domain
decomposition into liquid
(dark gray) and vapor (light
gray) region, using the zero
position of a level-set
function (green). Instead of
the DG method, a FV
sub-cell scheme is used in a
narrow band around the
resulting surrogate phase
boundary.

We start by introducing basic notation. The domain � is divided into a liquid
region �l and a vapor region �v with the phase interface 	. It holds

� = �l ∪ �v, �l ∩ �v = ∅, and �l ∩ �v = 	.

Furthermore, � is discretized with hexahedral elements such that

� =
⋃
e

�e, and �i ∩ � j = ∅, ∀i �= j.

The numerical framework used in this work is based on [11] and [31]. Liquid and
vapor region are both discretized with the discontinuous Galerkin method. At the
phase boundary, which is defined by the zero position of a level-set function, a finite
volume sub-cell scheme is applied to ensure a better representation of the surrogate
phase boundary. This surrogate surface discretely represents the phase boundary and
is aligned with the sub-cell interfaces. For an overview on the domain decomposition
see Fig. 1.

3.1 Building Blocks for the Level-Set Ghost-Fluid Method

3.1.1 The DGSEM with Finite-Volume Sub-Cells

In this subsection, we discuss the Discontinuous Galerkin Spectral Element Method
(DGSEM) [23] with finite-volume sub-cells [18, 33, 39] for hyperbolic conservation
laws. We extend the DGSEM with finite-volume sub-cells to the case of hyperbolic
equations with non-conservative products, following [8]. Therefore, the framework
of path-conservative schemes is used [4]. In theDGSEM, the approximate solution of
both the bulk phases and the level-set is described by piecewise polynomials Qh and
Wh of degree N , respectively. Within each element �e the solutions are represented
by a tensor product of nodal one-dimensional Lagrange basis functions. The basis
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functions are chosen to be identical to the test functions l in the weak formulations.
The weak formulations for Eqs. (1) and (5) read

∂

∂t

∫

�e

Qhldx +
∮

∂�e

F(Qh) · nlds −
∫

�e

F(Qh) · ∇ldx = 0, (11)

∂

∂t

∫

�e

Whldx +
∮

∂�e

B(x) · ∇Whlds +
∫

�e

B(x) · ∇Whldx = 0, (12)

with the outward pointing normal vector n. In the Euler equations, the neighboring
elements are coupled by a numerical flux function F∗(Q−

h , Q+
h ) · n ≈ F(Qh) · n.

We use the HLLC [42] and the HLLE [9] Riemann solver. For the level-set transport
equation, the path-conservative jump term D∗(W−

h ,W+
h ) · n ≈ B(x) · ∇Wh has to

be approximated. We use the path-conservative Rusanov Riemann solver [8]

D∗(W−
h ,W+

h ) · n = 1

2

(B̃ · n − smaxI
) (
W+

h − W−
h

)
(13)

with the maximal signal speed

smax = max
(|s+ · n|, |s− · n|) . (14)

The superscript (·)− identifies the value inside the current cell and the superscript (·)+
identifies the value outside the current cell. To approximate the Roe type matrix B̃
we substitute the spatial dependency ofB on x with a dependency onWh . In general,
this is not valid as the advection field is a function of space. However, the level-set
variable � carries the signed-distance property. Hence, in a 1D Riemann problem it
is possible to transform the spatial dependency to a dependency on the level-set field.
This enables to approximate B̃ by integrating along a linear path 
(W−

h ,W+
h , b),

with b ∈ [0, 1] between W−
h and W+

h as

B̃ · n ≈
1∫

0

B(
(W−
h ,W+

h , b)) · ndb, 
(W−
h ,W+

h , b) = W−
h + b(W+

h − W−
h ).

(15)

We evaluate the path numerically with the trapezoidal rule and obtain

B̃ · n ≈ B(W−
h ) + B(W+

h )

2
· n. (16)

The volume terms in Eq. (11) and Eq. (12) can be calculated directly from Qh

and Wh . The derivatives of the test function and the solution can be calculated by
derivating the respective polynomial.
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The main idea of the DGSEM is to choose the same N + 1 Legendre-Gauss
points for both the numerical integration and the interpolation of the solution. This
reduces the number of operations per degree of freedom and increases the efficiency.
In addition, the multi-dimensional operator simplifies to a subsequent application of
the one-dimensional operator. Details on the implementation can be found in [2, 24]
and [17].

The finite-volume formulations of Eqs. (1) and (5) are a special case of the weak
formulations Eqs. (11) and (12). If both the solution and the testfunction are chosen
out of the space of piecewise constant polynomials, e.g. l = 1, Eqs. (11) and (12)
simplify to the finite-volume methods

∂

∂t

∫

�e

Qhdx +
∮

∂�e

F∗(Q−
h , Q+

h ) · nds = 0, (17)

∂

∂t

∫

�e

Whdx +
∮

∂�e

D∗(W−
h ,W+

h ) · nds = 0. (18)

We combine the DGSEM and FV approach to capture discontinuities in the high
order DGSEM solution, which would otherwise lead to oscillations. In the Euler
equations, shocks and the phase boundary have to be captured. For the level-set
equation, the edge of the narrow band requires stabilization. In addition, areas with
a high curvature with respect to the grid resolution are troublesome. This can be
resolved by either a grid refinement or the sub-cell scheme. Additional problems
occur if level-set contours merge, e.g. merging drops. In this case, the process has
to be captured by a low order scheme like the sub-cell approach. For the sub-cell
method we formulate an a priori limiter following [39] in contrast to the a posteriori
limiter in [8]. The biggest advantage is a reduction in computational cost, since only
one operator is evaluated in each cell. A disadvantage is that there is no guarantee
of a stable solution. We combine multiple approaches to identify trouble cells of the
DGSEMmethod: First, a modal indicator following [18, 33] is used to detect strong
gradients in the solution of the Euler equations and the edge of the narrow band in the
solution of the level-set function. Details on modifications and the implementation
can be found in [38]. Second, the position of the level-set zero is used to capture the
phase boundary in the Euler equations. Finally, we detect zones in which two phase
boundaries meet, e.g. the merging of two droplets. Details are discussed in Sect.
3.2.4. After the troubled cells are identified, the polynomial solution is switched to a
finite-volume representation. If the cells are no longer problematic they are switched
back. The switch upholds

∫
�e

Udx ≡
∫

�e

UDGdx =
∫

�e

UFV dx U = Q,W (19)
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and hence is conservative. It can be formulated as a matrix vector multiplication with
an integration matrix V

VUDG = UFV U = Q,W. (20)

The polynomial representation has (N + 1)d degrees of freedom, with d denoting
the number of dimensions. For the finite-volume method, we choose to use (N + 1)d

equidistantly distributed finite-volume sub-cells. This choice allows the use of the
same data structure and hence an easy implementation. For the Euler equation, the
finite-volume scheme is extended to a second order TVD scheme. The coupling
between the DGSEM and the sub-cells occurs via the surface terms on the element
boundaries. The fluxes and jump terms are evaluated in the finite-volume discretiza-
tion and then projected to the polynomial discretization for the DG elements. The
scheme handles discontinuities well, since it switches to the finite-volume repre-
sentation if necessary. Its use of finite-volume sub-cells intrinsically leads to a grid
refinement, which prevents a strong loss of accuracy.

We want to highlight some advantages of the novel approach for the level-set
transport comparedwith the previously discussed approach in [12, 31]. There, Eq. (5)
is used in a divergence form with a source term

∂�

∂t
+ ∇ · (s�) = �∇ · s. (21)

In the incompressible case the right hand side of Eq. (21) is zero since the velocity
field is divergence free (∇ · s = 0), see e.g. [16, 30]. However, in the compressible
case this term needs to be discretized.

The novel path-conservative scheme has two advantages: First, the DGSEM and
finite-volume sub-cell scheme are derived from the sameweak formulation and solve
the same equation on the discrete level. In this sense, they are consistent. If Eq. (21) is
solved instead,∇ · s �= 0 still holds discretely for the discontinuousGalerkinmethod.
However, in the finite-volume scheme s is discretized with constant polynomials and
thus ∇ · s = 0. As a result both schemes solve different equations although they are
formally derived from the same weak formulation. Secondly, the time-step is only
limited by the eigenvalues of the hyperbolic transport, which is the process of interest.
If Eq. (21) is solved, the source term might be stiff. In this case the eigenvalues of
the source are larger than those of the hyperbolic transport. This leads to smaller
time-steps and thus higher costs of the numerical simulations.

3.1.2 Time Discretization

For the temporal discretization of the level-set transport and the Euler equations we
either use a fully explicit 4th order Runge-Kutta (RK) scheme from [3] or an implicit-
explicit 4th order Runge-Kutta scheme by Kennedy and Carpenter [21]. The goal of
implicit-explicit time discretization is to overcome the severe time step restriction
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of explicit schemes at low Mach numbers. Hence, we treat the Euler equations with
an implicit scheme and the level-set transport with an explicit scheme. For solving
the arising non-linear equation system of the implicit part we rely on a matrix-free
Newton-GMRES approach [22] as it is applied to the DGSEM formulation in [50,
51] and extend it to the mixed DG-FV ghost-fluid formulation. More details about
this time discretization will be presented in a follow-up publication.

3.2 The Level-Set Ghost-Fluid Method

The numerical methods described above are the building blocks of the present level-
set ghost-fluid framework. In the following,we describe the necessary steps to assem-
ble the framework.

3.2.1 Algorithmic Details of the Level-Set Ghost-Fluid Method

We follow the approach in [11] for the development of our method. It consists of the
repetition of the following steps:

1. The RK-DGSEM/RK-FV solver is used to advance the level-set field and the
Euler equations for the pure phases in time.

2. The level-set function is reinitialized.
3. Depending on the level-set root, the domain � is decomposed into �l and �v

along the boundaries of the finite-volume sub-cells using already existing phys-
ical states and ghost states. This creates a surrogate phase boundary 	s .

4. The DG-FV distribution of both the Euler equations and the level-set is updated
based on modal smoothness indicators and geometrical information of the level-
set function.

5. The normal vector at the phase interface and the curvature are calculated.
6. The boundary conditions at the surrogate phase boundary and its velocity are

calculated with a two-phase Riemann solver, the so called HLLP Riemann
solver [11, 36]. It models surface tension with a jump term across the phase
boundary and provides both fluxes for each phase as well as the velocity of the
phase boundary.

7. The interface velocity is then extrapolated into the volume to obtain a velocity
field for the level-set transport.

Before the initial time-step is executed, the above mentioned procedure has to be
done once without step 1. Additionally, step 6 is applied in each Runge-Kutta stage.
The presented level-set ghost-fluid algorithm does not guarantee conservation due
to two reasons. First, the fluxes at the surrogate phase boundary may be distinct to
ensure a stable two-fluid simulation. Secondly, the state of cells which change from
the liquid into the vapor domain and vice versa are replaced with their respective
ghost state in step 3. For more details about the method the reader is referred to [31].
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3.2.2 Calculation of Derivatives: The Level-Set Normal Vector and
Curvature

The normals and the curvature are calculated by first transforming the level-set solu-
tion to the finite-volume sub-cell representation via Eq. (20) and secondly calculating
the derivatives of the level-set function with a 5th order WENO stencil as proposed
in [10]. The same operator is applied again to the components of ∇� to obtain the
second order derivatives of the level-set field. With these gradients we then evaluate
Eq. (7) and Eq. (8) to calculate normal vectors and curvature of the level-set function.
We additionally limit the curvature by an upper bound that depends on the grid reso-
lution, which we characterize by rmin = min(VFV )1/d . Thereby, VFV is the volume
of a finite-volume sub-cell. With this we can define

|κLS|max = d − 1

2rmin
= d − 1

2min(VFV )1/d
, (22)

as the maximum absolute value of the curvature, which can be resolved by the grid
assuming a safety factor of 0.5.

3.2.3 Solution of Hamilton-Jacobi Equations: Reinitialization and
Velocity Extrapolation

Two sets ofHamilton-Jacobi equations need to be solved: the reinitialization equation
Eq. (6) and the equations for the velocity extrapolation Eq. (10). Each set of equations
is solvedwith a 5th orderWENO scheme [19] in combination with a third order order
lowstorageRunge-Kuttamethodwith three stages [48]. For the velocity extrapolation
an additional step is necessary. The solution of the two-phase Riemann problem gives
a transport velocity on the cell edges that form the surrogate phase boundary. This
velocity canbe directly copied to the neighboringfinite-volume sub-cells. If a sub-cell
is involved in more than one two-phase Riemann problem, we average the velocities.
In the direct neighbors of the surrogate phase interface, the velocity is fixed. In all
other cells within the narrow band, we solve Eq. (10) to obtain a smooth velocity
field.

3.2.4 Specific Modifications of the Algorithm for Simulating Merging
Droplets

If topological changes are simulated, e.g. merging droplets, special attention has to
be payed in regions where those topological changes take place. In the following we
detail the two necessary modifications.

In a first step, we have to ensure that we capture topological changes with the
finite-volume sub-cell framework, since they are associated with discontinuities in
the level-set field. We use the topological information that is available through the
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sign of the level-set function. Therefore, we switch the level-set solution to the finite-
volume sub-cell discretization in each element. Afterwards, we evaluate the level-set
sign line-wise in all spatial directions. If the sign changes more than once, the DG
element contains a topological change which has to be captured with the sub-cell
approach. In a second step, we have to identify the specific sub-cells that are involved
in the topological change. We check the number of two-phase Riemann problems a
sub-cell is involved in. If a sub-cell is affected by more than one two-phase Riemann
problem per direction it is identified as a potential merge cell (Itopo = 1). In those
cells, the advection velocity cannot be determined by averaging, cf. Sect. 3.2.3.
The use of the advection velocity in the merge cells is avoided by introducing a
specific form of the path-conservative jump term. Summarizing Eqs. (13)-(16), the
path conservative jump term D∗(W−

h ,W+
h ) for the transport of the level-set field

Eq. (5) is

D∗(�−,�+) = 1

4
((s+ + s−) − 2 max

(|s+|, |s−|))(�+ − �−), (23)

where the velocities s+, s− are selected via

s− = s− · n, s+ = s+ · n if I−
topo = I+

topo,

s− = s− · n, s+ = s− · n if I−
topo = 0, I+

topo = 1,

s− = s+ · n, s+ = s+ · n if I−
topo = 1, I+

topo = 0.

(24)

Hence, the transport velocity is chosen according to theItopo identifier. This procedure
ensures that the velocity for the level-set transport is taken only from cells that are
not involved in a topological change.

4 Numerical Results

In this sectionwe apply the numerical framework to test problems in the low and high
Mach number regime. First, we look at two droplets in a gas with a linear velocity
profile to evaluate the accuracy of the curvature calculation. Secondly, a simulation of
two merging droplets with a Weber number of We = 2.2 is performed. Afterwards,
two shock-drop interactions with a shock Mach number of Ms = 1.47 and Weber
numbers of We = 7339 and We = 12 are simulated and compared to results from
literature.

4.1 Drop Collision in Linear Velocity Profile

The first testcase is an adaption from [25] inwhich a drop collision in a shear layer has
been described. Since we only consider inviscid fluids in this paper, we have slightly
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Fig. 2 Computational setup for a drop collision in a gas with a linear velocity profile. The upper
and lower boundaries are slip walls whereas the left and right boundaries are periodic. The domain
is discretized with 90 × 60 4th order elements coupled with a HLLC Riemann solver.

Table 1 Initial conditions and material parameters for the drop collision in a linear velocity profile.

p0 ρ0 γ p∞ σ

Gas phase 71.43 1.0 1.4 0 −
Liquid phase 81.43 1.0 7.15 3307 10

altered the test case into a collision of twodrops emerged in a gaswith a linear velocity
profile. It allows to benchmark the curvature calculation during the merging process.
It is a difficult test, since the droplets have only a small relative velocity in normal
direction. The setup is visualized in Fig. 2 with the following parameters: radius
r = 1, position of the left drop (−2.5, 0.84), position of the right drop (2.5,−0.84)
and maximum velocity U = 1. The initial conditions and material parameters are
given in Table 1. For the time discretization an explicit 4th order Runge-Kutta scheme
with CFL = 0.3 is used. If the static capillary time step restriction is calculated as
in [7], the time-step is limited by the wave propagation of the acoustic waves. The
ratio of capillary to accoustic time-step is tcapillary/tacoustic ≈ 24.

In Fig. 3 the temporal evolution of the phase boundary during a collision is visu-
alized. Due to the linear velocity profile, the drops are deformed as they approach
each other. The distance between the two drops shrinks until it can no longer be
resolved by the grid. At this instance the drops merge. We observe two merges at two
different positions that happen almost at the same time. They enclose a vapor bubble,
which vanishes quickly due to its underresolution. Afterwards, a wave moves along
the drop surface and changes the droplets shape towards a spherical form. The same
qualitative behavior is observed in [25]. We conclude that our numerical framework
is suitable to simulate merge phenomena.
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Fig. 3 Temporal evolution of the phase boundary for the drop collision in linear velocity profile.
Due to inertial forces the drops are deformed as they approach each other. Then they merge and
form a single drop.

Table 2 Initial conditions and material parameters for collision of liquid ethanol droplets in air.

p0[bar] ρ0[kg m−3] γ [−] p∞[bar] σ [kg s−2]
Air 1.0 1.226 1.4 0 −
Ethanoll 1.11375 791 1.208 8466.14 2.275

4.2 Droplet Collisions with Wec = 2.2

In a next step, we apply our framework to a binary droplet collision. Inspired by [41],
we simulate ethanol droplets in air with a collision Weber number of Wec = 2.2,
being defined as

Wec = ρlU 2
c d

σ
, (25)

with the liquid densityρl , the droplet diameterd and the relative velocity of the droplet
Uc. The initial conditions and material parameters are summarized in Table 2.

Both drops have a radius of r = 0.2 mm. Initially, they are seperated by a distance
of 2.5r . The droplets are initialized with a vertical velocity of v(1) = 2.0m

s and
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Fig. 4 Temporal evolution of the phase boundary (white line) and the absolute value of the momen-
tum for the drop collision with Wec = 2.2, choosing 1282 elements with N = 4 for the spatial
resolution. The gray and the black line indicate the phase boundary of the simulations with 642 and
322 elements, respectively.

v(2) = −2.0m
s to obtain a collision Weber number of Wec = 2.2. Following [41],

we expect coalescence of the two droplets and an oscillation of the remaining single
drop. Diverging from the setup in [41] we do not use radial coordinates and neglect
viscous effects. The domain � = [−0.75mm, 0.75mm]2 is discretized with three
different resolutionswith 322, 642 and 1282 elements. A polynomial degree of N = 4
and the HLLC Riemann solver is used. A 4th order implicit-explicit scheme, see
Sect. 3.1.2, is used for the time discretization. For this setup, we achieve a speed-up
of approximately 4 compared to the fully explicit scheme. Due to the low Mach
number, we can choose a time-step that is approximately 25 times larger than for the
explicit scheme with a CFL number of CFL = 0.8. Still, the acoustic waves are the
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Fig. 5 Computational setup for the shock droplet interaction assuming symmetric conditions. The
shock is depicted in red.

fastest characteristics as the ratio tcapillaryexplicit /tacousticexplicit ranges from ≈ 75 to ≈ 150 for
the three different spatial resolutions.

In Fig. 4, the temporal evolution of the absolute value of the momentum for the
discretization with 1282 elements is visualized. Additionally, the phase boundary for
the simulations with 322, 642 and 1282 elements is indicated with a black, a gray
and a white line, respectively. We observe the expected behavior qualitatively. A
quantitative comparison with [41] is not possible due to the neglect of viscous and
three-dimensional effects. A particular consequence of the inviscid flow model is
the occurence of further deformations of the phase interface under grid refinement.
The only stabilizing mechanism is the numerical viscosity, which decreases as the
grid resolution increases. A convergent behavior of the observed phenomena should
occur if viscous effects are considered.

4.3 Shock-Droplet Interaction

In the following, we simulate 2D shock-droplet interactions at two different Weber
numbers, We = 7339 and We = 12. The numerical setup is taken from Winter et
al. [49] and is visualized in Fig. 5. However, we neglect viscous effects. We initialize
a water droplet at rest surrounded by air at x = 0. A right moving shock wave with a
Mach number ofMs = 1.47 is positioned at x = −D0. The initial droplet diameter is
chosen as D0 = 1m. The lower domain boundary is set as a symmetry plane. On the
left, Dirichlet boundary conditions impose the initial conditions onto the boundary.
The remaining boundaries are treated as supersonic outflows. Since both Ms andWe
are higher than in the test cases considered in Sects. 4.1 and 4.2, the capillary time-
step restriction is not considered here. The domain� = [−2D0, 10D0] × [0, 3D0] is
discretizedwith 512 × 256DGelements. For this testcasewe use theHLLERiemann
solver, explicit 4th order Runge-Kutta time integration and a polynomial degree of
N = 3. Initial conditions andmaterial parameters for both considered cases are given
in Table 3. The droplet is initialized in mechanical equilibrium with the surrounding
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Table 3 Initial conditions and material parameters for the shock-droplet interaction.

p0[bar] ρ0[kg m−3] γ [−] p∞[bar] σ [Nm−1]
Air 1.01325 1.204 1.4 0 −
Water (SIE) 1.01355 1000 6.12 3430 15.1571

Water (RTP) 1.19865 1000 6.12 3430 9269.85

air. The pressure difference between droplet and air is given by the Young-Laplace
Law. For the comparison with the literature, the non-dimensional time t∗ is defined
as

t∗ = t
D0
us

√
ρL

ρs

, (26)

with us denoting the post shock velocity and ρs the post shock density.
As in Winter et al. [49], we considered two breakup regimes: the shear induced

entrainment (SIE) regime and the Rayleigh-Taylor piercing (RTP) regime. For the
SIE case, We = 7339, we show the results at the time instances t∗ = 0.25, t∗ = 0.75
and t∗ = 1.5 in Fig. 6. After the shock impinges on the droplet, the surrounding
flow deforms the droplet’s surface and a complex vortex system is generated in the
wake. The two disconnected ligaments at t∗ = 1.5 stem from the fact that part of
the interface has already left the domain. Comparing with the results of Winter et
al. [49], the deformations are very similar in the early stages of the simulation.
At later stages, differences become more and more apparent. These stem from the
neglect of viscous effects in the presented results. The inclusion of viscosity at the
interface by Winter et al. [49] produces a smoother droplet surface and a postponed
breakup. This can be observed by comparing the time instance t∗ = 1.5 from Fig. 6
with their results. Nevertheless, this testcase displays the capability of the proposed
framework to capture strongly deformed interfaces. An inclusion of viscous effects
will be considered in future work.

Next, we consider the RTP case, We = 12. Here, viscous effects are negligible.
Results for the non-dimensional time instances t∗ = 0.25, t∗ = 0.75 and t∗ = 1.5
can be seen in Fig. 7. Similar to the SIE case, the droplet deforms after the shock
impingement. However, due to the larger surface tension forces, the dropletmaintains
amore compact form in contrast to the casewith a higherWe number.Comparingwith
the results shown in [49], both simulations show a good agreement in the predicted
droplet shape. These results demonstrate that our method allows to simulate complex
high Mach number settings.
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Fig. 6 Numerical Schlieren image(top) and non-dimensional streamwise velocity(bottom) u∗ =
u/us for the SIE case at different time instances. The phase interface is depicted in white.
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Fig. 7 Numerical Schlieren image(top) and non-dimensional streamwise velocity(bottom) u∗ =
u/us for the RTP case at different time instances. The phase interface is depicted in white.
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5 Conclusion

In this paper we provided an overview over a level-set ghost-fluid framework for
sharp interface multi-phase flow simulations based on the work in [10] and [31]. We
discussed an improved finite-volume sub-cell scheme for the level-set equation based
on path-conservative schemes. In addition, two changes in the curvature calculation
were presented. At first, the general second derivative of the level-set was used.
Secondly, we introduced an upper bound of the curvature value, depending on the
size of the grid elements, limiting the curvature by the grid resolution. At last, we
discussed a necessary modification of the level-set transport to capture merging
phenomena. We avoided the use of the transport velocity in the merge cells since it
cannot be defined properly.

We showed that these modifications allow the simulation of merging drops with
surface tension in two settings: drops in a gas with a linear velocity profile and
colliding drops. Afterwards we showed that complex shock-drop interactions are
also well within the capabilities of the framework. The modifications allowed the
resolution of very fine two-phase structures with respect to the grid size and ensured
a stable simulation. We currently work on an extension of the framework to viscous
flows. In addition, more complex interactions of bubbles and droplets and drop-
wall interactions will be addressed. Detailed investigations on the implicit-explicit
framework are currently underway.
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