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Abstract Wepresent new invariant domain preserving finite volume schemes for the
compressible Euler and Navier–Stokes–Fourier systems. The schemes are entropy
stable and preserve positivity of density and internal energy. More importantly, their
convergence towards a strong solution of the limit system has been proved rigorously
in [9, 11].Wewill demonstrate their accuracy and robustness on a series of numerical
experiments.
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1 Introduction

Numerical simulations of compressible flows find their applications in many
everyday problems, ranging from engineering, oceanography, meteorology to
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132 M. Lukáčová-Medvid’ová et al.

hemodynamics. Over the years a large variety of powerful numerical schemes has
been developed. Let us point out a few well-established and practical schemes, e.g.,
[1, 5, 6, 12, 16, 18, 19, 23, 25]. Despite of their practical success the rigorous
numerical analysis, in particular, in multiple space dimensions, is still open in gen-
eral.

In [13, 14] the concept of invariant domain preserving schemes for hyperbolic
conservation laws has been introduced. These methods satisfy some important struc-
ture preserving properties, such as positivity of some quantities, entropy production
or the minimum entropy principle. In our recent works [9–11] we have proposed
new finite volume schemes for the compressible Euler equations of gas dynamics,
compressibleNavier–Stokes andNavier–Stokes–Fourier equations, respectively.Our
new finite volume methods belong to the class of the invariant domain preserving
schemes. Their properties further allowed us to study the convergence of the schemes
rigorously. More precisely, we proved a nonlinear variant of the Lax equivalence the-
orem: a consistent numerical scheme is convergent if and only if it is stable.

Of course, the compressible Euler and Navier–Stokes–Fourier equations are truly
nonlinear, thuswe have to overcomedifficulties arising due to nonlinear terms. To this
goal, we apply a concept of dissipative measure–valued solutions developed in [2, 3,
8] for the above mentioned systems, respectively. Indeed, the Young measures which
are the space-time parametrized probability measures replace the linearity setting.
They allow us to pass to the limit in nonlinear terms and show the convergence of
our finite volume schemes. A limit is in general only a measure, more precisely a
dissipative measure–valued solution. We refer a reader to [2, 3, 8] and [9–11] for
more details on its definition.

A crucial ingredient of our convergence analysis is the fact that we have the weak-
strong uniqueness principle for all systems mentioned above. More precisely, if the
strong solution exists our dissipative measure–valued solution coincides with the
former on its lifespan. Consequently, we get the strong convergence of our numerical
solutions to the strong solution in appropriate Lebesgue spaces. The main aim of
this paper is to illustrate experimentally the behavior of our new invariant domain
preserving finite volume schemes for compressible fluids, namely for the Euler and
the Navier–Stokes–Fourier systems, cf. [9, 11].

The gas dynamics of inviscid compressible flows is governed by the Euler equa-
tions

∂t� + divxm = 0,

∂tm + divx (m ⊗ u) + ∇x p = 0,

∂t E + divx ((E + p)u) = 0, (1)

where �, p, u,m = �u, and E represent the density, pressure, velocity, momentum
and the total energy of a fluid, respectively. Taking into account the viscous and heat
conducting effects yields the Navier–Stokes–Fourier equations

∂t� + divxm = 0,
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∂tm + divx (m ⊗ u) + ∇x p = divxS(D(u)),

∂t (�e) + divx (�eu) − divx (κ∇xϑ) = S(D(u)) : ∇xu − pdivxu, (2)

where the viscous stress tensor S reads

S(D(u)) = 2μD(u) + λdivxuI, D(u) = ∇xu + ∇xuT

2
.

The systems Eq.1 and Eq.2 are closed by the standard pressure law for a perfect
gas p = p(�, ϑ) = �ϑ, ϑ is the temperature. Denoting further e the specific internal
energy, s the physical entropy, γ > 1 the adiabatic coefficient and cv = 1

γ−1 the
specific heat at constant volume we have

e(�, ϑ) = cvϑ, s(�, ϑ) = log

(
ϑcv

�

)
= 1

γ − 1
log

(
p

�γ

)
.

The total energy E = 1
2
m2

�
+ �e consists of the kinetic energy and the internal energy.

Both systems Eq.1 and Eq.2 are solved in the time-space cylinder (0, T ) × �,

� ⊂ Rd , d = 2, 3. We assume that these systems are accompanied with appropriate
boundary conditions: either the periodic boundary conditions when the domain � is
identified with a flat torus, or the no-flux boundary conditions,

u|∂� · n = 0, ∇xϑ · n = 0

in the case of the Euler equations, see Eq.1, or the no–slip boundary conditions,

u|∂� = 0

for the Navier–Stokes–Fourier system, see Eq.2. To close the formulation of the
problem we impose the initial conditions

U(0) = U0, with �0 > 0 and E0 − 1

2

|m0|2
�0

> 0, (3)

where U = (�,m, E) or U = (�,m, ϑ) for the Euler and the Navier–Stokes–Fourier
equations, respectively.

2 Finite Volume Schemes

We start by introducing the mesh, space discretization and suitable discrete spaces.
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2.1 Mesh and Space Discretization

Primary Grid. We suppose the physical space to be a polyhedral domain � ⊂ Rd ,
d = 2, 3, that is decomposed into compact elements,

� =
⋃

K∈Th

K .

The elements K are sharing either a common face, edge, or vortex.

They can be chosen to be triangular, rectangular, or any combination of them. The
primary mesh Th is assumed to satisfy the standard regularity assumptions, cf. [4,
7]. The set of all faces is denoted by 	, while the set of faces on the boundary is
denoted by 	ext , and the set of interior faces by 	int = 	\	ext . Note that there is
no boundary if the flow is periodic:

	ext = ∅ and 	int = 	.

Each face is associated with an outer normal vector n. Let |K |, |σ | be the Lebesgue
measure of an element K and a face σ , respectively. We shall suppose

|K | ≈ hd , |σ | ≈ hd−1 for any K ∈ Th, σ ∈ 	.

The parameter h ∈ (0, 1) is the maximum element size, i.e., the size of the mesh Th .

For the discretization of the Navier–Stokes–Fourier system, see Eq. 2, we addi-
tionally require the primary grid Th to satisfy the following property: there is a family
of control points Ph = {xK | xK ∈ K , K ∈ Th}, such that the segment [xK , xL ] for
any adjacent elements K and L is perpendicular to their common face σ = K ∩ L .
We denote by dσ = (xK , xL) the Euclidean distance between the points xK and xL

in Rd . This requirement is naturally satisfied by any rectangular mesh with Ph being
the set of gravity centers of all elements. For a triangular mesh, we can use the well-
centered mesh [24], where Ph is the set of circumcenters of all elements.

Dual Grid. For the theoretical analysis of our finite volume scheme for the Navier–
Stokes–Fourier system it is convenient to introduce a dual mesh Dh . A dual cell Dσ

associated to a face σ = K ∩ L is defined as Dσ = Dσ,K ∪ Dσ,L , where Dσ,K (Dσ,L )
is a triangle (tetrahedron) built by xK and the common vertices of K and L , see Fig. 1
for a two-dimensional example.

Discrete Function Spaces. We denote by Qh and Wh the set of piecewise constant
functions on the primary grid Th and the dual grid Dh , respectively. Moreover, vh ∈
Qh (resp. vh ∈ Wh) means that each component of vh belongs to Qh (resp. Wh).
Further, for a piecewise continuous function v, whenever x ∈ σ ∈ 	int , we define
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Fig. 1 Dual grid

vout(x) = lim
δ→0+ v(x + δn), vin(x) = lim

δ→0+ v(x − δn),

v(x) = vin(x) + vout(x)

2
, �v� = vout(x) − vin(x).

Upwind Flux. Given a velocity uh ∈ Qh and a function rh ∈ Qh,we define for each
face σ ∈ 	int the upwind flux

U p[rh, uh] = ruph uh · n = r inh [uh · n]+ + routh [uh · n]−

= rh uh · n − 1

2
|uh · n|�rh�,

where

[ f ]± = f ± | f |
2

and rup =
{

r in if uh · n ≥ 0,

rout if uh · n < 0.

Furthermore, we define the numerical flux function

Fh(rh, uh) = U p[rh, uh] − hβ�rh�, 0 < β < 1.

Discrete Operators. For any rh, vh ∈ Qh and qh ∈ Wh we define the following
discrete gradient and Laplace operators
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∇D : Qh → Wh

∇Drh =
∑
σ∈	

(∇Drh)σ1Dσ
, (∇Drh)σ = 1

dσ

�rh�n,

∇h : Qh → Qh

∇hrh =
∑
K∈Th

(∇hrh)K1K , (∇hrh)K =
∑

σ∈∂K

|σ |
|K |rhn,


h : Qh → Qh


hrh =
∑
K∈Th

(
hrh)K1K , (
hrh)K =
∑

σ∈∂K

|σ |
|K |

�rh�

dσ

,

and discrete divergence operators

divT : Wh → Qh

divT qh =
∑
K∈Th

(divT qh)K1K , (divT qh)K =
∑

σ∈∂K

|σ |
|K |qh · n,

divh : Qh → Qh

divhvh =
∑
K∈Th

(divhvh)K1K , (divhvh)K =
∑

σ∈∂K

|σ |
|K |vh · n,

divuph : Qh → Qh

divuph (rhvh) =
∑
K∈Th

1Kdiv
up
h (rhvh)K , divuph (rhvh)K =

∑
σ∈∂K

|σ |
|K | Fh(rh, vh).

Further, the discrete symmetric gradient operator is given by

Dh(vh) = 1

2
(∇hvh + ∇hv

T
h ), vh ∈ Qh .

Note that the operators ∇D and 
h can be extended to vector-valued functions com-
ponentwisely. Let vh = (v1,h, . . . , vd,h) ∈ Qh . Then we have

∇Dvh = (∇Dv1,h, . . . ,∇Dvd,h
)
, 
hvh = (


hv1,h, . . . ,
hvd,h
)
,

and

(∇Dvh)σ = 1

dσ

�vh� ⊗ n, (
hvh)K =
∑

σ∈∂K

|σ |
|K |

�vh�

dσ

.
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2.2 Numerical Scheme for the Euler System

We recall a semi-discrete finite volume scheme for the Euler system Eq.1,

Dt�h + divuph (�huh) = 0,

Dtmh + divuph Fh(mh, uh) + ∇h ph = hα−1
huh,

Dt Eh + divuph Fh[Eh, uh] + uh · ∇h ph + phdivhuh = hα−1

2

h(u2

h),

where uh = mh
�h

, ph = (γ − 1)
(

Eh − 1
2

|mh |2
�h

)
and Dt stands for the time derivative.

The scheme was firstly introduced and studied in its weak form in our recent work
[9]. Hereafter we will refer to it as the FLM method.

Definition 1 (FLM method) Given the initial values (�0,h,m0,h, E0,h) ∈ Qh ×
Qh × Qh, we seek a piecewise constant approximation (�h,mh, Eh) ∈ Qh × Qh ×
Qh which solves at any time t ∈ (0, T ] the following equations:

∫
�

Dt�hφh dx −
∑

σ∈	int

∫
σ

Fh(�h, uh)�φh�dSx = 0, ∀ φh ∈ Qh, (5a)

∫
�

Dtmh · φh dx −
∑

σ∈	int

∫
σ

Fh(mh, uh) · �φh�dSx −
∑

σ∈	int

∫
σ

phn · �φh�dSx

= −hα−1
∑

σ∈	int

∫
σ

�uh� · �φh�dSx , ∀ φh ∈ Qh, (5b)

∫
�

Dt Ehφh dx −
∑

σ∈	int

∫
σ

Fh(Eh, uh)�φh�dSx −
∑

σ∈	int

∫
σ

ph�φhuh� · ndSx

+
∑

σ∈	int

∫
σ

phφh�uh� · ndSx = −hα−1

2

∑
σ∈	int

∫
σ

�u2
h��φh�dSx , ∀ φh ∈ Qh . (5c)

The initial values can be obtained by a standard projection onto the space Qh,

�h[r ]|K = 1

|K |
∫

K
r dx for any K ∈ Th,

i.e. (�0,h,m0,h, E0,h) = (�h[�0],�h[m0],�h[E0]).
Remark 1 The FLM method in Eq. 5 can be also rewritten in the following per-cell
flux formulation
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Dt�K +
∑

σ∈∂K

|σ |
|K | Fh(�h, uh) = 0,

DtmK +
∑

σ∈∂K

|σ |
|K | (Fh(mh, uh) + phn) = hα−1

∑
σ∈∂K

|σ |
|K |�uh�,

Dt EK +
∑

σ∈∂K

|σ |
|K |

(
Fh(Eh, uh) + (phuh + phuh) · n

)
= hα−1

2

∑
σ∈∂K

|σ |
|K |�u

2
h�,

for any K ∈ Th .

Remark 2 Our finite volume method is based on an upwinding, which naturally
yields a numerical diffusion. In addition we include a numerical diffusion of the
form hβ+1
hrh , where rh = �h,mh, Eh . Altogether this diffusion is of the form
( 12 |uh · n| + hβ)h
hrh . Note that we have an additional numerical diffusion term
hα
huh and 1

2hα
hu2
h in the momentum and energy equation, respectively. In the

case the sound speed is larger than hβ , the numerical diffusion w.r.t. 
hrh is smaller
than that of standard numerical fluxes based on the Riemann problem solution.

It is truth, that we do not take a special care for the approximation of the con-
tacts. On the other hand, a better resolution can be achieved by introducing a linear
reconstruction and limiting to obtained second-order extension.

2.2.1 Properties of the FLM Method

For the rigorous convergence analysis of scheme in Eq. 5 a few important properties
are inevitable.

• Existence of numerical solution
The discrete problem Eq. 5 admits a solution (�h(t),mh(t), Eh(t)) ∈ Qh × Qh ×
Qh, for any t ≥ 0. As shown in [9], the result follows from the standard theory of
ODEs and sufficiently strong a priori bounds.

• Conservation of discrete mass and energy
In a straightforward way it can be shown that

∫
�

�h(t, ·) dx =
∫

�

�0,h dx = M̃0 > 0,
∫

�

Eh(t, ·) dx =
∫

�

E0,h dx = Ẽ0 > 0, t ≥ 0.

• Positivity of the discrete density, pressure and temperature
For any fixed h, the approximate density, pressure and consequently also temper-
ature remain strictly positive on any finite time interval. We refer the reader to [9,
Sections4.3, 4.4] for more details.



New Invariant Domain Preserving Finite Volume Schemes … 139

• Discrete entropy inequality
The discrete (renormalized) entropy inequality in the sense of Tadmor is satisfied,
cf. [20, 21]. More precisely, it holds that

d

dt

∫
Th

�hχ(sh)�h dx ≥
∑

σ∈	int

∫
σ

U p[�hχ(sh), uh][[�h]]dSx+

+
∑

σ∈	int

∫
σ

μh

(
∇�(�hχ(sh))[[�h]] + ∇p(�hχ(sh))[[ph]]

)
[[�h]]dSx ,

where χ is a non-decreasing, concave, twice continuously differentiable function
on R that is bounded from above. For the derivation and proof see [9, Section3.2].

• Minimum entropy principle
The discrete physical entropy sh = log

(
ϑ

cv

h /�h
)
attains its minimum at the initial

time, cf. [13, 22], i.e.,

sh(t) ≥ s0, t ≥ 0, where − ∞ < s0 < min sh(0).

The entropy is either constant or produced over time, thus the second law of
thermodynamics holds. See [9, Section4.2] for more details.

Clearly, the FLMmethod belongs to the class of invariant domain preserving schemes
introduced in [13, 14]. Based on the above properties the following convergence
result for the FLM method was proved in [9].

Theorem 1 (Convergence of the FLM method) Let the initial data (�0,h,m0,h,

E0,h) satisfy

�0,h ≥ � > 0, E0,h − 1

2

|m0,h |2
�0,h

> 0.

Let (�h,mh, Eh) ∈ Qh × Qh × Qh be the solution of the scheme Eq. 5 such that

0 < β < 1, 0 < α <
4

3
,

and

0 < � ≤ �h(t), ϑh(t) ≤ ϑ for all t ∈ [0, T ] uniformly for h → 0.

Then the family of approximate solutions {�h,mh, Eh}h>0 generates a dissipative
measure–valued (DMV) solution of the complete Euler system Eq.1 in the sense of
[2].

Let us point out that a DMV solution of the Euler system is a time-space parametrized
probability measure, i.e. the Young measure. The expected values of density and
entropy with respect to this Young measure satisfy the corresponding weak formula-
tion of mass conservation and entropy inequality, respectively. The weak formulation
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for the expected value of the momentum allows a concentration defect that is con-
trolled by the dissipation in the energy balance. The energy conservation is relaxed
and the expected value of the energy dissipates in time, see [2] and [9].

Furthermore, evoking the DMV–strong uniqueness result proved in [2, Theorem
3.3] we obtain the following strong convergence result.

Theorem 2 (Strong convergence of the FLM method) In addition to the hypothe-
ses of Theorem1, suppose that the complete Euler system Eq.1 admits a Lipschitz–
continuous solution (�,m, E) defined on [0, T ].

Then

�h → �, mh → m, Eh → E (strongly) in L1((0, T ) × �).

In Sect. 3 we will illustrate numerical behavior of the FLM method on a series of
well-known benchmarks. In what follows we recall the extension of the FLMmethod
to the finite volumemethod for theNavier–Stokes–Fourier system introduced in [11].
It turned out that for the convergence analysis of the latter system it ismore convenient
to work with the temperature formulation instead of the internal energy in the last
equation of Eq.2.

2.3 Numerical Scheme for the Navier–Stokes–Fourier System

Having introduced the notation in Sect. 2.1, we now present a semi-discrete finite
volume approximation of the Navier–Stokes–Fourier (NSF) system Eq.2,

Dt�h + divuph (�huh) = 0,

Dt (�huh) + divuph (�huh, uh) + ∇h ph = 2μdivh Dh(uh) + λ∇hdivhuh,

cv Dt (�hϑh) + cvdiv
up
h (�hϑh, uh) − κ
hϑh

= 2μ |Dh(uh)|2 + λ |divhuh |2 − phdivhuh .

Note that a fully discrete (implicit in time) version of this scheme was analyzed in
our work [11].

Definition 2 (Finite volume (FV) method for NSF) Given the initial values
(�0,h, u0,h, ϑ0,h) ∈ Qh × Qh × Qh, we seek a piecewise constant approximation
(�h, uh, ϑh) ∈ Qh × Qh × Qh which solves at any time t ∈ (0, T ] the following
equations:

∫
�

Dt�h φh dx −
∑

σ∈	int

∫
σ

Fh(�h, uh)�φh�dSx = 0, ∀φh ∈ Qh, (6a)
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∫
�

Dt (�huh) · φh dx −
∑

σ∈	int

∫
σ

Fh(�huh, uh) · �φh�dSx −
∫

�

phdivhφh dx

= −2μ
∫

�

Dh(uh) : ∇hφh dx − λ

∫
�

divhuhdivhφh dx, ∀φh ∈ Qh, (6b)

cv

∫
�

Dt (�hϑh) φh dx − cv

∑
σ∈	int

∫
σ

Fh(�hϑh, uh)�φh�dSx − κ

∫
�


hϑh φh dx

=
∫

�

(
2μ |Dh(uh)|2 + λ |divhuh |2 − phdivhuh

)
φh dx, ∀φh ∈ Qh . (6c)

Remark 3 Let us point out that the hα−1-terms inEq.5b andEq.5c yield an additional
diffusion and make the FLM method a particular vanishing viscosity approximation
of the Euler system. Since the physical viscosity is naturally included in the Navier–
Stokes–Fourier system, we do not need to include the additional diffusion in Eq.
6.

Remark 4 The numerical scheme in Eq. 6 can be also rewritten in the usual finite
volume formulation for any K ∈ Th,

Dt�K +
∑

σ∈∂K

|σ |
|K | Fh(�h, uh) = 0,

Dt (�u)K +
∑

σ∈∂K

|σ |
|K | (Fh(�huh, uh) + phn)

=
∑

σ∈∂K

|σ |
|K |

(
2μDh(uh) · n + λdivhuhn

)
,

cv Dt (�ϑ)K +
∑

σ∈∂K

|σ |
|K |

(
cv Fh(�hϑh, uh) − κ

�ϑh�

dσ

)

=
∑

σ∈∂K

|σ |
|K |

(
2μ |Dh(uh)|2K + λ |divhuh |2K − pK (divhuh)K

)
.

2.3.1 Properties of the FV Method for NSF

Analogously as in the inviscid case for the convergence analysis it is fundamental
that our numerical scheme fulfills some invariant domain preserving properties. In
[11] we have proved the following:
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• Conservation of discrete mass
One can easily show that

∫
�

�h(t, ·) dx =
∫

�

�0,h dx = M̃0 > 0, t ≥ 0.

• Non-negativity of the discrete density
The approximate density remains non-negative on any finite time interval.

• Discrete total energy dissipation
Let (�h, uh, ϑh) ∈ Qh × Qh × Qh be a solution to Eq. 6. Then

Eh(t) ≤ E0, t ≥ 0,

where

Eh(t) =
∫

�

(
1

2
�h(t)|uh(t)|2 + cv�h(t)ϑh(t)

)
dx .

See [11, Theorem 3.1] for the proof.
• Discrete entropy inequality
The scheme in Eq. 6 is entropy stable. It holds that

∫
�

Dt (�hsh) dx ≥ −
∫

�

κ∇Dϑh · ∇D

(
1

ϑh

)
dx

+
∫

�

1

ϑh

(
2μ|D(uh)|2 + λ|divhuh |2

)
dx,

see [11, Lemma 3.4].

Remark 5 Note that the above properties shown in [11] for a fully discrete implicit
in time version of scheme Eq. 6 can be proven in a straightforward manner for the
semi-discrete scheme presented here.

The structure preserving properties listed above, together with the assumptions on
uniform boundedness of the discrete density and temperature, are sufficient to derive
suitable a priori estimates and consistency formulation of scheme Eq. 6 which are
inevitable for the convergence of its solutions. We now recall the convergence results
proved in [11].

Theorem 3 (Convergence of the FV method for NSF) Let the initial data satisfy
the assumptions

0 < � ≤ �0,h ≤ �, 0 < ϑ ≤ ϑ0,h ≤ ϑ, ‖u0,h‖L2 ≤ u,

for some positive constants �, �, ϑ, ϑ, u. Let (�h, ϑh, uh) ∈ Qh × Qh × Qh be the
solution of the finite volume scheme Eq. 6, satisfying the assumptions
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0 < � ≤ �h(t) ≤ �, 0 < ϑ ≤ ϑh(t) ≤ ϑ uniformly for h → 0, and all t ∈ (0, T ).

Then the family {�h, ϑh, uh,Dh(uh),∇Dϑh}h>0 generates a DMV solution of the
Navier–Stokes–Fourier system Eq.2 in the sense of [3].

Analogously as for the inviscid flows a DMV solution is the Young measure.
Expected values of density, momentum, energy and entropy satisfy appropriate gen-
eralized formulation of Eq.2. Further, applying the DMV–strong uniqueness prin-
ciple established in [3, Theorem 6.1] and [11, Theorem 5.5] we have the following
strong convergence result.

Theorem 4 (Strong convergence of the FV method for NSF) In addition to the
hypotheses of Theorem3 assume that {Vt,x }(t,x)∈(0,T )×� is a DMV solution of the
Navier–Stokes–Fourier system Eq.2 in the sense of [3] such that

Vt,x

{
0 < � ≤ � ≤ �, ϑ ≤ ϑ, |u| ≤ u

}
= 1 for a.a. (t, x) ∈ (0, T ) × � (7)

for some constants �, �, ϑ , and u. Let, moreover,

V0,x = δ�0(x),ϑ0(x),u0(x) for a.a. x ∈ �,

where (�0, ϑ0, u0) belongs to the regularity class

�0, ϑ0 ∈ W 3,2(�), �0, ϑ0 > 0 in �, u0 ∈ W 3,2
0 (�; R3). (8)

Finally, suppose that the Navier–Stokes–Fourier system Eq.2 is endowed with the
initial data (�0, ϑ0, u0) satisfying Eq.8. Let (�h, ϑh, uh) be the solution of the finite
volume scheme Eq. 6, and in addition,

|uh(t)| ≤ u uniformly for h → 0 and all t ∈ (0, T ).

Then

�h → � (strongly) in L p ((0, T ) × �) ,

ϑh → ϑ (strongly) in L p ((0, T ) × �) ,

uh → u (strongly) in L p
(
(0, T ) × �; Rd

)
, p ∈ [1,∞),

where (�, ϑ, u) is a strong (classical) solution of the Navier–Stokes–Fourier system.

3 Numerical Experiments

In this section we demonstrate the performance of both finite volume methods, the
FLM method, see Eq. 5, for the Euler equations, and the finite volume method, see
Eq. 6, for the Navier–Stokes–Fourier equations.
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For time discretization we use the forward finite differences which yield the
explicit finite volume scheme for the Euler system. Diffusive fluxes in the Navier–
Stokes–Fourier equations are approximated by the backward finite differences
and thus implicitly in time. For stability reasons, we set the time step as 
t =
min{
ta,
tb} in each sub-iteration. The first term arises from the CFL stability
condition: 
ta = CFL h/max{|u| + c}, c = √

ϑ . In our numerical simulations we
set CFL = 0.5 if not explicitly claimed otherwise. The second term is due to the
parabolic regularization: 
tb = h1−β/(2d).

3.1 Numerical Experiments for the FLM Method

3.1.1 Experimental Order of Convergence (EOC)

We aim to validate the theoretical result on the convergence of �,m, E presented in
Theorem2 by computing the corresponding norms of numerical errors

∥∥e f

∥∥ =
∥∥ f − fre f

∥∥
L1

t L1
x∥∥ fre f

∥∥
L1

t L1
x

, f ∈ {�,m, E},

where L1
t L1

x is a shortening for L1(0, T ; L1(�)). Analogous notation is used for
other Bochner spaces below. Additionally, we also provide the numerical errors of
the velocity u in L2

t L2
x−norm and pressure p in L∞

t L1
x−norm. The reference solution

is the exact solution to Eq.1

�re f = 2 + cos(2πx), ure f = sin(π t)

2 + cos(2πx)

(
1

−1

)
,

pre f = (2 + cos(2πx))(2 + sin(2πx)), x ∈ [0, 1].
(9)

Setting γ = 1.4, α = 1.3, β = 0.2 and CFL = 0.6, we observe the first order con-
vergence rate for the FLM method, see Table1.

Table 1 Relative errors and EOC for the FLM method at time t = 0.1
h ||e� || EOC ||em || EOC ||eE || EOC ||eu || EOC ||ep || EOC

1/32 9.00e−03 – 4.15e−02 – 1.21e−02 – 5.75e−02 – 1.94e−02 –

1/64 4.05e−03 1.15 1.88e−02 1.14 5.40e−03 1.16 2.65e−02 1.12 8.74e−03 1.15

1/128 1.81e−03 1.16 8.36e−03 1.17 2.41e−03 1.16 1.20e−02 1.14 3.94e−03 1.15

1/256 8.07e−04 1.17 3.71e−03 1.17 1.08e−03 1.16 5.41e−03 1.15 1.78e−03 1.15
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Table 2 Initial data of 1D tests

Test �L uL pL �R u R pR Tmax xm

1 1.0 −2.0 0.4 1.0 2.0 0.4 0.15 0.5

2 1.0 0.0 1000.0 1.0 0.0 0.01 0.012 0.5

3 1.4 0.0 1.0 1.0 0.0 1.0 2.0 0.5

4 1.4 0.1 1.0 1.0 0.1 1.0 2.0 0.5

3.1.2 1D Benchmark Problems

We test one-dimensional Riemann problems studied in [15, 23] with the initial data

(�, u, p) =
{

(�L , uL , pL) if 0 ≤ x < xm,

(�R, u R, pR) if xm ≤ x ≤ 1,

with the corresponding values presented in Table2.
Test 1 has a weak solution consisting of two rarefaction waves and it is typically

used for checking the positivity of density; Test 2 is designed for strong shock;
Test 3 and 4 are designed to capture stationary contact waves. We set γ = 1.4,
β = 0.2 and aim to show the numerical performance of the scheme Eq. 5 on the
domain � = [0, 1] with mesh size h = 1/400. First, we present in Fig. 2 the results
of numerical simulations for different choices of α, that is the parameter appearing
in the artificial diffusion terms in Eq.5b and Eq.5c. Secondly, we show in Fig. 3 the
comparison of the numerical solutions obtained by the FLMmethod with that of the
HLL finite volume method [23].

3.1.3 2D Benchmark Problems

Now we test the two-dimensional Riemann problems studied in [15–17] with � =
[−1, 1]2. Boundary values are obtained by extrapolation of conservative variables
(�,m, E).

Test 1: circular two-dimensional Sod problem with the initial data

(�, u1, u2, p) =
{

(1.0, 0, 0, 1.0), |x | < 0.4,

(1.0, 0, 0, 0.1), else.

Figure4 displays the contour lines of the numerical solution of density, velocity
components, and pressure at time t = 0.2 which are in a very good agreement with
the results presented in literature, cf., e.g., [23].
Test 2: two-dimensional benchmark Riemann problem consisting of two moving
shocks and two standing slip lines. The initial values are set as
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Fig. 2 1D tests: from top to bottom are Tests 1 to 4, from left to right numerical solutions of �,
u, p. The solid blue lines represent solutions obtained by the exact Riemann solver. The dotted
red lines and the dashed black lines are solutions obtained by the FLM scheme with α = 1.5 and
α = 3, respectively

(�, u1, u2, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.5313, 0, 0.7276, 0.4), x > 0, y > 0,

(1.0, 0.7276, 0, 1.0), x < 0, y > 0,

(0.8, 0, 0, 1.0), x < 0, y < 0,

(1.0, 0, 0.7276, 1.0), x > 0, y < 0.

Figure5 shows the numerical solution for density and pressure for different CFL
numbers. Numerical solutions obtained by the FLM method are in good agreement
with the results presented in literature, see, e.g., [16].
Test 3: two-dimensional Riemann problem with the initial condition
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Fig. 3 1D tests: from top to bottom are Tests 1 to 4, from left to right numerical solutions of �, u,
p. The solid blue lines, the dotted red lines and the dashed black lines are solutions obtained by the
exact Riemann, HLL, and FLM (α = 1.5) solvers, respectively

(�, u1, u2, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.1, 0, 0, 1.1), x > 0, y > 0,

(0.5065, 0, 0.8939, 0.35), x < 0, y > 0,

(1.1, 0.8939, 0.8939, 1.1), x < 0, y < 0,

(0.5065, 0, 0.8939, 0.35), x > 0, y < 0.

In this configuration there are two forwardmoving shocks and two backwardmoving
shocks. Figure6depicts the contour lines of the numerical solutionof density, velocity
components, and pressure at time t = 0.25. We can again confirm that the numerical
solution is in good agreement with the results presented in the literature, cf., e.g.,
[16].
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Fig. 4 Test 1: Sod problem solution on rectangular mesh hx = hy = 0.05 with α = 1.5, β = 0.2
at time t = 0.2

3.2 Numerical Experiments for the FV Method for NSF

3.2.1 Experimental Order of Convergence (EOC)

Our aim in this section is to validate theoretical results on the convergence of �, u, ϑ

presented in Theorem4 by computing the numerical errors

‖e f ‖ = ‖ f − fre f ‖Lq
t Lq

x

‖ fre f ‖Lq
t Lq

x

, f ∈ {�, u, ϑ}, q = 1, 2.

Here the reference solution is the same as in Eq.9. Thus, we have a manufactured
exact solution with a suitable external force in the momentum and energy equa-
tion. Setting μ = λ = κ = 1, β = 0.2 and CFL = 0.6 we observe the first order
convergence rate for the scheme Eq. 6, see Table3. We can observe the first order
convergence on rectangular as well as triangular mesh.
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Fig. 5 Test 2: solution of � (upper row) and p (lower row) on rectangular mesh hx = hy = 0.05
with α = 1.5, β = 0.5 at time t = 0.52

Table 3 Relative errors and EOC for the FV method for NSF at time t = 0.1
h

∥∥e�
∥∥ EOC ‖eu‖ EOC

∥∥eϑ
∥∥ EOC

∥∥e�
∥∥ EOC ‖eu‖ EOC

∥∥eϑ
∥∥ EOC

L1((0, T ) × �)-norm L2((0, T ) × �)-norm

Rectangular mesh

32 2.09e−02 – 2.24e−02 – 1.27e−02 – 2.52e−02 – 2.71e−02 – 1.49e−02 –

64 9.51e−03 1.14 1.06e−02 1.08 5.78e−03 1.13 1.15e−02 1.12 1.31e−02 1.05 6.84e−03 1.12

128 4.27e−03 1.16 4.87e−03 1.12 2.60e−03 1.15 5.21e−03 1.15 6.10e−03 1.10 3.09e−03 1.15

256 1.90e−03 1.16 2.21e−03 1.14 1.16e−03 1.16 2.34e−03 1.16 2.80e−03 1.12 1.38e−03 1.16

512 8.49e−04 1.17 9.98e−04 1.15 5.20e−04 1.16 1.05e−03 1.16 1.27e−03 1.14 6.19e−04 1.16

Triangular mesh

1/32 9.17e−03 – 1.23e−02 – 4.90e−03 – 1.10e−02 – 1.60e−02 – 5.82e−03 –

1/64 4.02e−03 1.19 6.68e−03 0.89 2.43e−03 1.01 4.83e−03 1.18 8.79e−03 0.87 2.92e−03 0.99

1/128 1.78e−03 1.18 4.10e−03 0.70 1.20e−03 1.02 2.13e−03 1.18 5.44e−03 0.69 1.45e−03 1.01

1/256 7.92e−04 1.17 2.99e−03 0.46 5.87e−04 1.03 9.50e−04 1.17 3.94e−03 0.46 7.19e−04 1.01

1/512 3.56e−04 1.15 2.53e−03 0.24 2.89e−04 1.02 4.27e−04 1.15 3.31e−03 0.25 3.57e−04 1.01
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Fig. 6 Test 3: solution of �, u1, u2, and p on rectangular mesh hx = hy = 0.05 at time t = 0.25

3.2.2 2D Benchmark Problems

Test 4: Circular shock problem.
We again test the two-dimensional Sod problem using the same initial data as in the
first experiment of Sect. 3.1.3 with μ = λ = κ = 0.001 and CFL = β = 0.6. The
contour lines of the numerical solutions are shown in Fig. 7. Small viscosity effects
can be noticed but overall the numerical solutions for inviscid and viscous case are
similar as expected.
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Fig. 7 Test 4: Circular shock solution on rectangular mesh hx = hy = 0.05 at time t = 0.2

Test 5: Gresho Vortex problem with the initial data [15]

(u, p)(r) =

⎧⎪⎨
⎪⎩

(5r, 5 + 12.5r2) r < 0.2,

(2 − 5r, 9 − 4 ln 0.2 + 12.5r2 − 20r + 4 ln r) 0.2 ≤ r < 0.4,

(0, 3 + 4 ln 2) r > 0.4.

Figure8 displays the contour lines of the numerical solutions obtained by the scheme
Eq. 6 with the parameters μ = λ = κ = 0.01, and CFL = β = 0.6 at time t = 0.2.
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Fig. 8 Test 5: Gresho vortex solution on rectangular mesh hx = hy = 0.05 at time t = 0.2

Conclusion

We have presented behavior and performance of two new convergent finite volume
methods for compressible fluids, both inviscid and viscous. These new finite volume
methods satisfy some important invariant domain preserving properties, such as the
minimum entropy principle, mass and energy conservation, positivity preservation,
total energy dissipation and entropy production. These are crucial for showing the
stability and consistency of the schemes. In the framework of a nonlinear version of
the Lax equivalence theorem, see [9, 11], these properties directly imply the strong
convergence of numerical solutions to a strong solution on its lifespan. Our numerical
experiments presented in Sect. 3 confirm these theoretical convergence results.
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