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Abstract We present a framework to build high-accuracy IMEX schemes that fulfill
the maximum principle, applied to a scalar hyperbolic multi-scale equation. Moti-
vated by the findings in [5] that implicit R-K schemes are not L∞-stable, our scheme,
for which we can prove the L∞ stability, is based on a convex combination between a
first-order and a class of second-order IMEX schemes. We numerically demonstrate
the advantages of our scheme, especially for discontinuous problems, and give a
MOOD procedure to increase the precision.
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1 Introduction

We consider the scalar multi-scale equation
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wt + cewx + ci
ε

wx = 0, (1)

where we set the constants ce, ci > 0 and the parameter ε > 0. The model (1) mim-
ics the behavior of the isentropic Euler equations with a slow speed ce and a fast
speed ci/ε, where ε corresponds to the square of the Mach number. We treat the
derivative wx associated with the slow scale ce explicitly, whereas wx associated
with the fast scale ci/ε is treated implicitly in time due to the stiffness introduced
by ε < 1. For computational efficiency, the resulting CFL condition, and therefore
the time step, has to be independent of ε. In space, we apply an upwind discretization
because, already having in mind the non-linear nature of e.g. the Euler equations,
using a central scheme for the implicit part will not lead to a L∞-stable scheme, as
shown in [4] for a non-linear system.

The discretization of time and space follows the usual finite difference framework.
The space domain [x1, xN ] is partitioned in N uniformly spaced points (x j ) j∈[1,N ],
with the step size �x . We discretize the time variable with tn = n�t , where �t
denotes the time step. Then, the solution w(t, x) of (1) at (tn, x j ) is approximated
by wn

j . The first-order implicit-explicit (IMEX) discretization of (1) is given by

wn+1
j = w j − λ(wn

j − wn
j−1) − με(w

n+1
j − wn+1

j−1), (2)

where we define λ = ce
�t
�x and με = ci

ε
�t
�x for abbreviation. Note that λ,με > 0.

We are interested in IMEX schemes that meet the maximum principle. Here, we
focus on L∞-stable schemes, where a scheme is said to be L∞-stable if

‖wn+1‖∞ = max
j∈�1,N�

|wn+1
j | ≤ ‖wn‖∞. (3)

As proven in [3], the first-order scheme (2) is L∞-stable and TVD. Furthermore, as
proven in [5], implicit Runge-Kutta schemes, and consequently second-order IMEX
schemes, are not L∞-stable. Therefore, we would like to propose a convex combina-
tion of (2)with a second-order IMEX scheme and give conditions for the L∞ stability
for the resulting scheme. We define the convex combination between the first-order
scheme w

n+1,1st
j and a second-order update w

n+1,2nd
j for a parameter θ ∈ (0, 1) as:

wn+1
j = (1 − θ) w

n+1,1st
j + θ w

n+1,2nd
j . (4)

2 IMEX Formulation

Generic formulations of an IMEX scheme introduce two s × s matrices A = (ai j )
and Ã = (ãi j ), as well as two vectors b, b̃ ∈ R

s . They are regrouped in two linked
Butcher tableaux
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c A

bT
,

c̃ Ã

b̃T
.

The coefficients c, c̃ are only necessary if the right hand side depends explicitly on
time. In the following we will use the pairs (A, b) for the implicit and ( Ã, b̃) for the
explicit part. To reduce computational costs, we take A to be lower triangular and Ã
to be strictly lower triangular. Applying the IMEX formulation on (1), we obtain the
following scheme:

wn+1 = wn − ce�t
s∑

k=1

b̃kw
(k)
x − ci

ε
�t

s∑

k=1

bkw
(k)
x , (5)

with the stages

w(k) = wn − ce�t
k−1∑

l=1

ãklw
(l)
x − ci

ε
�t

k∑

l=1

aklw
(l)
x . (6)

IMEX Runge-Kutta (R-K) schemes can be classified depending on the structure of
the matrix A.

Definition 1 An IMEX R-K method is said to be of type CK (Carpenter and
Kennedy [6]) if the matrix A ∈ R

s×s can be written as

A =
(
0 0
a Â

)
,

where a ∈ R
s−1 and Â ∈ R

(s−1)×(s−1) is invertible. In the case where a = 0, the
scheme is said to be of ARS type (Asher, Ruuth and Spiteri [1]).

In the following we will consider a second-order 2-stage and a second-order 3-
stage IMEX R-Kmethod of type CK. To obtain a second-order scheme, there are the
following compatibility conditions [9]:

s∑

k=1

b̃k = 1;
s∑

k=1

bk = 1; ∀k, c̃k =
k−1∑

l=1

ãkl; ∀k, ck =
k−1∑

l=1

akl ;
s∑

k=1

b̃k c̃k = 1

2
;

s∑

k=1

b̃kck = 1

2
;

s∑

k=1

bkc̃k = 1

2
;

s∑

k=1

bkck = 1

2
.

(7)

2.1 A 2-Stage CK Type IMEX R-K Method

For a 2-stageCK typemethod,wehave the followingButcher tableaux,witha22 �= 0:
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explicit:

0 0 0

c̃2 ã21 0

b̃1 b̃2

, implicit:

0 0 0

c2 a21 a22

b1 b2

. (8)

With the compatibility conditions (7), we can simplify (8) to

explicit:

0 0 0

α α 0

1 − 1
2α

1
2α

, implicit:

0 0 0

α γ α − γ

1 − 1
2α

1
2α

, (9)

where α − γ �= 0 and α �= 0.
Using (5), (6) and (9), we can define the second-order discretization of (1) as

w
(1)
j = wn

j − λα(wn
j − wn

j−1) − γμε(w
n
j − wn

j−1) − με(α − γ )(w
(1)
j − w

(1)
j−1),

wn+1
j = wn

j −
(
1 − 1

2α

)
(λ + με)(w

n
j − wn

j−1) − 1

2α
(λ + με)(w

(1)
j − w

(1)
j−1).

(10)

Due to the matrix structure of the CK type R-K scheme, we have only two compu-
tational steps. The first one computes w(1), and the second one wn+1. The con-
vex combination (4) between the schemes (2) and (10), with the shorter nota-
tion � = w j − w j−1, is given by:

w
(1)
j = wn

j − λα�n − γμε�
n − με(α − γ )�(1),

wn+1
j = wn

j −
(

λ − θ
1

2α
(λ + με) + θμε

)
�n

− θ
1

2α
(λ + με)�

(1) − (1 − θ)με�
n+1.

(11)

We can sort (11) by grouping the wn+1 and w(1) terms:

(1 + με(α − γ ))w
(1)
j − με(α − γ )w

(1)
j−1 = (1 − (λα + γμε))w

n
j

+ (λα + γμε)w
n
j−1,

(12)

(1 + (1 − θ)με)w
n+1
j − (1 − θ)μεw

n+1
j−1 = wn

j −
(

λ − θ
1

2α
(λ + με) + θμε

)
�n

− θ
1

2α
(λ + με)�

(1).

(13)

In the following, wewill assume periodic boundary conditions.Wewill prove the L∞
stability (3) by starting with the proof of ‖w(1)‖∞ ≤ ‖wn‖∞. For each time step, we
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will use the triangle inequality |x + y| ≤ |x | + |y| and the reverse triangle inequal-
ity |x | − |y| ≤ |x − y| for x, y ∈ R. To apply use those inequalities, we require in
(12)

λα + γμε ≥ 0 (14)

1 − (λα + γμε) ≥ 0 (15)

1 + με(α − γ ) ≥ 0 (16)

με(α − γ ) ≥ 0. (17)

Using equation (12), we can now write the following estimate for ‖wn‖∞:

‖wn‖∞ = (1 − (λα + γμε))‖wn‖∞ + (λα + γμε)‖wn‖∞
≥ ‖(1 − (λα + γμε))w

n
j + (λα + γμε)w

n
j−1‖∞

= ‖(1 + με(α − γ ))w
(1)
j − με(α − γ )w

(1)
j−1‖∞

≥ (1 + με(α − γ ))‖w(1)‖∞ − με(α − γ )‖w(1)‖∞
= ‖w(1)‖∞.

From requirement (14), we get that αce + γ ci
ε

≥ 0. In order to get a Butcher tableau
independent of ε, we require α > 0 and γ ≥ 0. Relation (15) leads to a CFL condi-
tion �t

�x (αce + γ ci
ε
) ≤ 1. Note that, due to computational efficiency, we seek a time

step restriction independent of ε. Therefore, wemust take γ = 0,which is compatible
with the restriction γ ≥ 0. With those settings, (16) and (17) are always fulfilled.

Let us prove now that ‖wn+1‖∞ ≤ ‖wn‖∞. First, we rewrite (12) as follows:

− με�
(1) = 1

α
w

(1)
j − 1

α
wn

j + λ(wn
j − wn

j−1). (18)

After inserting (18) into (13), we obtain further conditions given by

r1 = 1 − θ

2α2
+ λ

(
−1 + θ

α

)
+ μεθ

(
−1 + 1

2α

)
≥ 0, (19)

r2 = λ

(
1 − θ

α

)
+ μεθ

(
1 − 1

2α

)
≥ 0, (20)

θ

2α2
− θλ

2α
≥ 0. (21)

Using (13), as well as the above conditions, we obtain the following estimate
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‖wn+1‖∞ = (1 + (1 − θ)με)‖wn+1‖∞ − (1 − θ)με‖wn+1‖∞
≤ ‖(1 + (1 − θ)με)w

n+1
j − (1 − θ)μεw

n+1
j−1‖∞

= ‖r1wn
j + r2w

n
j−1 + (με − θλ

2a
)w

(1)
j + θλ

2α
w

(1)
j−1‖∞

≤
(
1 − θ

2α2

)
‖wn‖∞ + θ

2α2
‖w(1)‖∞

≤ ‖wn‖∞,

which shows the L∞ stability. From the constraints (19)–(21), we can compute
the final estimates for the free parameters α, θ, λ. The condition (21) gives a CFL
restriction of λ ≤ 1

α
. Since we want to avoid a dependence of ce, ci or ε on α and θ ,

we need in (20) 1 − θ
α

≥ 0, that is α ≥ θ and 1 − 1
2a ≥ 0, which leads to α ≥ 1

2 .
With the same motivation, we need −1 + 1

2α ≥ 0 in (19), that is α ≤ 1
2 . Together it

follows that α = 1
2 and we get from (19) the final CFL condition λ ≤ 1. With α = 1

2
and γ = 0 fixed, we have recovered a 2-stage ARS type method with the midpoint
rule as the implicit part, given by

explicit:

0 0 0
1
2

1
2 0

0 1

, implicit:

0 0 0
1
2 0 1

2

0 1

. (22)

The above results are summed up in the following theorem:

Theorem 1 For periodic boundary conditions and under the CFL condition

�t ≤ �x

ce
,

the scheme consisting of the convex combination of the first-order scheme (2) and
the second-order scheme constructed from (22) is L∞-stable as long as θ ≤ 1

2 .

Remark 1 In order to have the maximal input of the second-order scheme, we would
want to set θ = θopt = 1

2 . With this choice of θ , the restriction (19) for α = 1
2 is

satisfied immediately and we get the less restrictive CFL condition

�t ≤ 2
�x

ce
.

Unfortunately, the midpoint rule with the above CFL condition and θ = θopt exactly
reduces to two steps of a first-order scheme. We therefore advise θ < 1

2 to get a
second-order scheme.

Since γ = 0, the initial CK type method (9) reduces to an ARS type method (22).
This observation is summarized in the following corollary
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Corollary 1 If there is a second-orderCK type IMEXR-K scheme of the form (9) that
is L∞-stable in the convex combination with (2) under a CFL condition independent
of ε, then it has to be of ARS type.

2.2 A 3-Stage CK Type IMEX R-K Method

In this section, we adapt the derivation of the 2-stage case to a 3-stage CK type
method. It is described by the following Butcher tableaux, with a22 �= 0 and a33 �= 0:

explicit:

0 0 0 0

c̃2 ã21 0 0

c̃3 ã31 ã32 0

ã31 ã32 0

, implicit:

0 0 0 0

c2 a21 a22 0

c3 a31 a32 a33

a31 a32 a33

, (23)

To have the same number of computational steps as in the 2-stage scheme (5), we
have set b = (a3 j ) and b̃ = (ã3 j ).

With the second-order compatibility conditions (7) and a22 = β and a33 = α, we
introduce κ = 2(γ+β)(1−α)+2α−1

2(γ+β)
and simplify (23) to:

explicit:

0 0 0 0

γ + β γ + β 0 0

1 1 − 1
2(γ+β)

1
2(γ+β)

0

1 − 1
2(γ+β)

1
2(γ+β)

0

, implicit:

0 0 0

γ + β γ β 0

1 κ 1−2α
2(γ+β)

α

κ 1−2α
2(γ+β)

α

. (24)

Analogously to (10), we can write the second-order scheme using (24) as

w
(1)
j + μεβ�(1) = wn

j − (λ(γ + β) + μεγ )�n

wn+1
j + μεα�n+1 = wn

j −
(

λ
2(γ + β) − 1

2(γ + β)
+ κμε

)
�n

−
(

λ
1

2(γ + β)
+ με

1 − 2α

2(γ + β)

)
�(1).

Weconduct an analogous analysis as in the 2-stage case,which results in the following
ARS-type IMEX R-K method for β ∈ (0, 1

2 ):

explicit:

0 0 0 0

β β 0 0

1 1 − 1
2β

1
2β 0

1 − 1
2β

1
2β 0

, implicit:

0 0 0 0

β 0 β 0

1 0 1
2(1−β)

1 − 1
2(1−β)

0 1
2(1−β)

1 − 1
2(1−β)

. (25)
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Fig. 1 Values of the optimal convex combination parameter θopt (left panel) and the optimal CFL
number Copt (right panel), with respect to the IMEX parameter β.

One example for (25) is the widely used ARS(2,2,2) method with β = 1 −
√
2
2 ,

see [1].

Theorem 2 For periodic boundary conditions and under the CFL condition

�t ≤ �x

ce
,

the scheme consisting of the convex combination of the first-order scheme (2) and
the second-order scheme constructed from (25) with β ∈ (0, 1

2 ) is L
∞-stable as long

as θ ≤ 2β(1 − β).

Remark 2 In order to have the maximal input of the second-order scheme, we set

θopt = 2β(1 − β). (26)

With the choice θ = θopt, we get the less restrictive CFL condition

�t ≤ Copt
�x

ce
, where Copt = 1

1 − β
. (27)

The values of θopt and Copt are displayed with respect to β in Fig. 1.

Remark 3 Allowing β = 1
2 , the 3-stage ARS type method (25) reduces to the 2-

stage ARS type method using the midpoint rule (22). In addition, the choice β = 1
2

maximizes both θopt and λ.

Corollary 2 If there is a second-order CK type IMEX R-K scheme of the form (25)
that is L∞-stable in the convex combination with (2) under a CFL condition inde-
pendent of ε, then it has to be of ARS type.
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3 Numerical Results

This section is dedicated to providing numerical experiments to test the schemes
introduced above:

• The first-order scheme given by (2),
• The second-order scheme given by (25),
• The L∞-stable scheme obtained via the convex combination with the parame-
ter θ = θopt given by (26), between the first-order scheme (2) and the second-order
scheme (25),

• TheMOODscheme resulting from an optimal order detection procedure explained
in Sect. 3.1 and applied to the L∞-stable scheme.

Throughout this section, the space domain is given by [0, 1] and periodic boundary
conditions are prescribed. The time domain is given by [0, tend], where tend chosen
such that the exact solution completes exactly one revolution of the space domain,
as follows:

tend = 1

ce + ci
ε

.

Unless otherwise mentioned, the space and time discretizations are linked with the
optimal CFL condition defined by (27). The constants ce and ci are both taken equal
to 1.

We start this section with an introduction to an order detection procedure in Sect.
3.1. Then, we provide a way to choose the parameter β in Sect. 3.2. Finally, in Sect.
3.3, we provide several numerical tests with smooth and especially non-smooth exact
solutions. The smooth exact solution is given by

wsmooth
ex (t, x) = 1 + ε

2

(
1 + sin

(
2π

(
x −

(
ce + ci

ε

)
t
)))

, (28)

and describes the transport of a sine wave of amplitude ε. The discontinuous exact
solution is given by

wex =

⎧
⎪⎨

⎪⎩
1 + ε if x −

(
ce + ci

ε

)
t ∈

(
1

4
,
3

4

)
,

1 otherwise.
(29)

which corresponds to the transport of a square wave of amplitude ε.

3.1 Optimal Order Detection: A MOOD-like Technique

The L∞-stable scheme is a convex combination between the diffusive first-order
scheme and the oscillatory second-order scheme. Since those oscillationsmay violate
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themaximumprinciple,wedonotwish to use the second-order scheme everywhere in
the computational domain. Using the L∞-stable scheme introduces enough diffusion
to get rid of the oscillations and to ensure the maximum principle. However, once the
diffusion has been introduced, there is no need to add even more diffusion and the
second-order scheme could be used until its result once again violates the maximum
principle, at which point the L∞-stable scheme is necessary once again.

The procedure outlined above is akin to the Multidimensional Optimal-Order
Detection techniques developed in the MOOD framework (see for instance [2]). It
results in the MOOD scheme, given by the algorithm below:

Algorithm If the exact solution is bounded betweenwmin andwmax, using the optimal
CFL number (27), the MOOD scheme is given as a result of applying the following
algorithm at each time step.

1. Compute the second-order solution.
2. Detect if this second-order solution breaks the maximum principle, i.e. if it

oscillates below wmin or above wmax.
3. If the maximum principle is violated, compute and output the solution given by

the L∞-stable scheme; otherwise, output the second-order solution.

This algorithm ensures a drastic improvement in the numerical results when this
procedure is used instead of using the L∞-stable scheme at each time step.

3.2 Choice of β in the 3-Stage Method

This first set of numerical experiments is dedicated to providing a way to choose an
optimal value for β. At the moment, we know that β ∈ (0, 1/2) and we are able to
find a non-zero value of θ for all values of β. According to Fig. 1, the optimal CFL
number as well as the optimal θ increase as β goes to 1/2. Therefore, it would be
tempting to take β as close to 1/2 as possible. To check whether this preliminary
analysis is accurate, we study the CPU time and the L∞ error of the scheme with
respect to β, in order to suggest an optimal value of β.

Throughout this set of numerical experiments, we consider the smooth exact
solution (28) with ε = 10−1.

Study of the CPU time. The CPU time taken by our program is influenced by β

because the CFL number Copt, given by (27), itself depends on β. Indeed, as β varies
from 0 to 1/2, Copt ranges between 1 and 2, as evidenced in Fig. 1.

In Fig. 2, we note that the CPU time for the L∞-stable and MOOD schemes
decreases when β tends to 1/2. This was expected as the CFL numberCopt is increas-
ing with β, thus allowing for larger time steps. Let us also note that the MOOD
procedure is not very costly for this smooth test case. Moreover, we remark that the
second-order scheme takes twice as much CPU time as the first-order scheme, which
is also expected due to the additional intermediate step.



On High-Precision L∞-stable IMEX Schemes 89

Fig. 2 CPU time (in milliseconds) with respect to the IMEX parameter β, using the optimal
values θopt and Copt, in the context of the test case presented in Sect. 3.2.

Fig. 3 L∞ error with respect to the IMEX parameter β, using the optimal values θopt and Copt, in
the context of the test case presented in Sect. 3.2. The right panels contain a zoom on the left panel
data.

Study of the L∞ Error.Now, we turn to the study of the L∞ error with respect to β.
Forβ ∈ (0, 1/2), the L∞-stable andMOODschemes are L∞-stable, but this property
alonedoes not indicate their precision. Fromnowon,we take the optimalCFLnumber
Copt.

In Fig. 3, we observe that the second-order scheme is, as expected, much more
precise than the first-order one. In addition, we note that the L∞-stable scheme is
more precise than the first-order one, but not by a large margin. Finally, we remark
that the MOOD procedure is essential to improve the precision of the L∞-stable
scheme.

Regarding the choice of β, we note on the top right panel that the L∞-stable
scheme reduces to the first-order one in two cases. When β = 0, we get θopt = 0,
and the convex combination consists only in the first-order scheme. When β = 1/2,
we get θopt = 0 and Copt = 2, and the convex combination actually coincides with
the first-order scheme. Between these two values, the L∞ error produced by the
L∞-stable scheme reaches a minimum. Interestingly, this minimum is close to the
point where the MOOD error starts increasing (see the bottom right panel). We note
that this minimum is located around β 
 1 − √

2/2, which is widely used e.g. in [1,
3, 9].
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Fig. 4 L∞ error curves for the smooth solution (28), with ε = 10−2.

Conclusion: Choice of β. In this first study, we have observed that:

• the CPU time gets smaller as β gets larger;
• the L∞ error reaches a minimum at β = 1 − √

2/2.

Based on this observations, we define βopt, which will be used in the remainder of
this article, as

βopt = 1 −
√
2

2
.

3.3 Numerical Tests

Before we start with the numerical results, we want to remark that we do not consider
an increase in space order. Such an increase, and its effect on smooth solutions, has
been documented at length in [3]. Therein was concluded that, if ε is close to 1,
then using a second-order scheme in time and a first-order scheme in space does not
provide a significant and observable gain compared to a first-order scheme in time
and space. Conversely, if ε is close to 0, then using a first-order scheme in time and
a second-order scheme in space does not provide a significant and observable gain
compared to a first-order scheme in time and space.

Therefore, we focus here only on second-order time accuracy whereas accuracy
in space will be studied in forthcoming work.

3.3.1 Smooth Solution: Order of Accuracy

To demonstrate that our schemes reach the desired order of accuracy, we compute L∞
error curves with the smooth initial condition (28). In Fig. 4, we display the L∞
error with respect to the number of discretization points for the four schemes under
consideration.

We note, as expected, that the first- and second-order schemes are respectively
first- and second-order accurate. Moreover, the L∞-stable scheme is first-order accu-
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Fig. 5 Approximation of the discontinuous solution (29). From left to right and top to bottom,
we have taken: ε = 1 and N = 40, ε = 10−1 and N = 220, ε = 10−2 and N = 2000, ε = 10−3

and N = 20000. These large values of N have been chosen to ensure that 20 time iterations are
systematically needed to reach tend. If smaller values are taken, the time steps are too large to
visualize noticeable differences between the schemes.

rate, and the MOOD procedure greatly increases the precision of the L∞-stable
scheme, almost bringing it to the level of the second-order scheme. The loss of pre-
cision of the MOOD scheme compared to the second-order scheme is due to the
fact that the MOOD scheme is L∞-stable, contrary to the second-order scheme, and
therefore it does not allow any violation of the maximum principle, even if such a
violation would result in a precision increase.

As a consequence, the MOOD procedure is especially well-suited for smooth
problems where the maximum principle is important. Let us now compare these
approaches on a discontinuous solution, where we expect the L∞-stable scheme to
be of greater interest.

3.3.2 Discontinuous Solution

Wenowconsider the following discontinuous exact solutionwex. In Fig. 5,we display
the results of the four schemes for different values of ε.

We first notice in the top left panel that the approximation of the exact solution is
similar for all four schemes in the case of ε = 1.
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Fig. 6 L1 (left panels) and L1
o (right panels) error curves for the discontinuous solution (29),

for ε = 1 (top panels) and ε = 10−2 (bottom panels).

In the other three panels, for ε ∈ {10−1, 10−2, 10−3}, we note that the first-order
scheme is always in-bounds, while the second-order scheme always violates the
maximum principle. Here, we observe a clear improvement when using the L∞-
stable scheme, but the result is still somewhat diffusive. TheMOODprocedure allows
another gain in precision compared to the first-order scheme, while still staying in-
bounds.

This underlines the necessity of L∞-stable schemes when approximating discon-
tinuous solutions. In addition, the MOOD procedure is useful when approximating
continuous and discontinuous solutions with good precision, while respecting the
maximum principle.

The final numerical experiment consists in quantifying howmuch better the result
of the L∞-stable scheme is, compared to both first- and second-order approxima-
tions,when considering a discontinuous solution. To address such an issue,we cannot
simply compute the error in the L∞ norm. Indeed, this norm is not well-suited for
measuring the errors produced when approximating a discontinuous exact solution
with a diffusive approximation. Instead, we turn to the L1 norm, as well as a modifi-
cation, the L1

o quasinorm, which does not satisfy the triangle inequality property of
a norm but enables us to measure relevant errors, defined as follows:
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.
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This quasinorm is the L1 norm added to a quantity which has been designed to
measure only overshoots and undershoots. This quantity encodes how much the
numerical solution violates the maximum principle. Therefore, we expect this added
term to vanish as soon as the L∞-stable scheme,with orwithoutMOOD, is employed.

In the top panels of Fig. 6, we note that, for ε = 1, both errors take similar values
for the four schemes under consideration. This is due to the fact that there are few
spurious oscillations in this case (see Fig. 5, top left panel). In addition, we observe
that the scheme is accurate up to order 1/2 which is expected when approximating
discontinuous solutions, see for instance [7].

Now, looking at the bottom left panel, we note that the L1 error is lower for the
second-order scheme than for the other ones and that the orders of accuracy of all
schemes tend to 1/2 for large enough N . However, the bottom right panel, which
takes into account the over- and undershootswhen computing the error, paints another
picture: the second-order scheme is actually theworst of all four. In addition, the error
actually stays roughly constant when the number of discretization points increases.
This means that, as N increases, the gains in L1 error seem to be compensated by an
increase of the overshoot and undershoot amplitude.

4 Conclusions and Future Work

We have presented a way of constructing L∞-stable IMEX schemes that, combined
with a MOOD procedure, yield high-precision approximate solutions for stiff and
non-stiff systems. As we have demonstrated with simple numerical examples, for
non-stiff systems higher order IMEX R-K schemes still give good results although
violating the maximum principle, whereas for stiff systems they produce spurious
oscillations and L∞-stable schemes are needed to give accurate solutions. In this
work, we have mainly focused on the time accuracy and have neglected higher order
space discretizations. This, together with the extension to TVD and higher order
IMEX schemes, is explored in [8]. In addition, for physical applications, asymptotic
preservation properties, as well as scale-independent diffusion, will be studied.
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