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Abstract Using standard intrusive techniques when solving hyperbolic conserva-
tion lawswith uncertainties can lead to oscillatory solutions aswell as non-hyperbolic
moment systems. Entropy-based Stochastic Galerkin methods, on the other hand,
guarantee hyperbolicity and entropy decay. A key challenge facing these methods is
computational cost, since they require repeatedly solving a non-linear optimization
problem. Furthermore, the spatial and temporal discretization needs to preserve real-
izability, meaning that the existence of a unique solution to the optimization problem
must be ensured. We review strategies to guarantee realizability, which use a special
choice of the numerical flux while considering errors from the optimization solve.
Most importantly, we indicate how intrusive entropy-based closures can be made
competitive. We show several numerical test cases and discuss the advantages and
disadvantages of several uncertainty propagation methods.

1 Introduction

Hyperbolic equations play an important role in various research as well as indus-
trial areas. The most common equations of this kind model the behavior of liquids,
gases and plasmas and are thus widely used in the automotive and aerospace indus-
try. Because of this popularity, many highly efficient and robust implementations
for these models are available. The respective codes have shown to, for example,
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simulate the airflow around an airfoil very precisely, but only if the provided input
data is identical or at least extremely close to the experimental setup. Any arising
uncertainties in the input parameters, originating from e.g. measurement tolerances,
imperfect information or modeling assumptions cannot be represented and thus lead
to differences in the results of experiments and simulations. Therefore, propagat-
ing these uncertainties through complex partial differential equations has become an
important topic in the last decades.

We consider a parameterized system of hyperbolic equations of the form

∂tu(t, x, ξ) + ∇ · f (u(t, x, ξ)) = 0 in D , (1a)

u(t = 0, x, ξ) = uIC(x, ξ) (1b)

with state variable u ∈ D ⊂ R
m depending on time t ∈ R

+, spatial position x ∈ D ⊂
R

d and uncertain parameter ξ ∈ � ⊆ R
p. The physical flux is given by f : D →

R
d×m . Note, that for ease of notation, the uncertainties ξ here only enter through

the initial condition, i.e. only the initial data is subject to randomness. Boundary
conditions are omitted for now as they are specific to the studied problem and will
be supplied for the individual test cases in the later sections. We assume that all
random parameters are independent with a joint probability density function f� =∏p

i=1 f�,i (ξi ).
As the solution of (1a) is now subject to randomness, one is often interested in

determining the statistical moments of the solution, where the first and second order
moments, i.e. the mean and variance of u, given by

E[u] = 〈u〉, Var[u] = 〈(u − E[u])2〉

are usually most interesting. We define the bracket operator above as

〈·〉 :=
∫

�

· f�(ξ) dξ1 . . . dξp.

Generally, themethods ofUncertaintyQuantification (UQ) canbe divided into two
groups, intrusive and non-intrusive, meaning the methods either require an intrusive
change of an existing deterministic solver, or the existing code can be repurposed in
a black-box manner. Several textbooks on UQ have appeared in recent years [5, 10,
27, 28, 35, 40], and we refer the reader to these textbooks for a general overview and
references to the original works. In this paper, we nevertheless want to shed some
light on how these methods can be expected to perform when applied to hyperbolic
conservation laws.Wewill alsomake some general statements that we believe are not
well-known in some part of the literature. As it has been shown [33], the stochastic
Galerkin method cannot be applied directly to conservation laws because it is prone
to yield oscillatory solutions that might result in the loss of hyperbolicity and e.g.
negative densities. We then discuss in detail the Intrusive Polynomial Moment (IPM)
method [33], which can be seen as a generalization to the stochastic Galerkinmethod.
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This method is based on entropy minimization, and choosing a suitable entropy
guarantees hyperbolicity. On the other hand, the method comes at the cost of solving
an optimization problem at every point in time for every spatial cell.

The IPM method has been inspired by entropy-based closures in kinetic theory.
In fact, the moment closure problem for a kinetic equation in velocity space is very
similar to treating uncertain parameters [20]. In the case of kinetic equations, the
techniques to put entropy-based closures into practice have been refined in a series of
papers [1–3, 9, 14, 29], and the application to UQ draws from this experience. In this
paper, we discuss realizability-preserving spatial discretizations, and acceleration
techniques to solve the IPM system more efficiently. This review is based on the
papers [19, 20, 23].

2 Why Galerkin-Type Intrusive Methods?

For the following discussion, we assume that we want to approximate the expected
value

E[u] = 〈u〉 =
∫

�

u f� dξ1 . . . dξp

of the solution u at a given time t as a function of x. Since the expected value is an
integral of the solution against the probability density function, all non-intrusive UQ
methods can be understood and analyzed as numerical quadrature rules

E[u](t, x) ≈
N∑

k=1

wku(t, x, ξ k) .

• Monte-Carlo (MC) methods sample ξ k from the probability density function f�
and take wk = 1

N .• Number-theoretic/Quasi-Monte Carlo (QMC) methods for uniformly distributed
random variables use a low-discrepancy sequence for ξ k and again wk = 1

N .• Tensorized quadrature rules take one-dimensional (e.g. Gaussian) quadrature rules
for each random input ξi . The grid for the ξ k is defined as a Cartesian product of
the one-dimensional grids and the weights are products of the one-dimensional
weights.

• Sparse grid quadrature rules use nodes ξ k on a (e.g. Smolyak) sparse grid and
weights that come from nested quadrature rules (e.g. Clenshaw-Curtis).

In the UQ literature, these methods are discussed based on their error formulas,
and the so-called curse of dimensionality is often mentioned. If u denotes the true
expected value and uN its approximation with N nodes/samples, then the methods
behave in the following way:

• The MC error is determined by the root mean square error E[(u − uN )2]1/2 =
VMC(u)N−1/2.
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• Multi-level Monte Carlo (MLMC) methods use control variates to make the con-
stant V (u) smaller [11].

• The QMC error typically behaves like |u − uN | ≤ VQMC(u)(log N )pN−1 [6].
• The tensorized grid error has the form |u − uN | ≤ Vtens(u)N−α/p.
• The sparse grid quadrature error behaves like |u − uN | ≤ Vsparse(u)(log N )pN−β .

In the latter two cases, α and β are related to the differentiability of u with respect
to ξ . All error constants V depend on u and certain of its derivatives. For instance,
in the case of sparse grids, u has to be in a certain Sobolev space with mixed higher-
order derivatives. For an overview and a critical discussion of the assumptions on
the solution we refer the reader to the excellent paper [38]. In the mathematical UQ
literature, the curse of dimensionality is usually defined as an effective decay of the
convergence rate when it is measured in the total number of nodes N and when the
dimension p is increased. This is clearly the case for tensorized grids. But one should
also note that for both QMC and sparse grid quadrature the decaying term dominates
the log term only if N � 2p (N � 2p/β respectively). These methods therefore only
mitigate the curse. Finally, one often finds the statement that MC methods do not
suffer from the curse, because the convergence rate is independent of the dimension
p. However, MC methods might be impractical in high dimensions. This can be
seen from the simple example (that every reader can easily try) of approximating the
volume of the unit sphere in p dimensions: Draw a uniform sample in [−1, 1]p and
determine if the sampled node is inside the unit sphere. Then the ratio of the points
inside the sphere to the total number of samples converges to the volume divided by
2p. For p = 20, MC with 100 million samples will not produce any significant digit.
The reason is that the volume of the sphere becomes so small that it becomes almost
impossible to draw a sample within the sphere. In other words, the error constant
increases rapidly with dimension p. It should be noted, however, that all of these
methods are embarrassingly parallel because uncoupled problems need to be solved.

Intrusive methods on the other hand do not rely on any form of quadrature, but
rather derive a system of equations that describes the time evolution of the moments
directly. The resulting systemcan then be solvedwith classical numericalmethods for
deterministic equations. In contrast to non-intrusive methods this does not decouple
the problem. In the stochastic Galerkin (SG) method, the solution u is expanded in a
series of polynomial basis functions ϕi : � → R, such that for the multi-index i =
(i1, · · · , i p) we have |i | :=∑p

k=1 |ik | ≤ N . The usual choice for these functions ϕi

are orthonormal polynomials with respect to the probability distribution function, i.e.
〈ϕiϕ j 〉 =∏p

n=1 δin jn . This yields the so called generalized polynomial chaos (gPC)
expansion

U(û; ξ) :=
∑

|i |≤N

ûiϕi (ξ) = ûTϕ(ξ) . (2)

The unknown, but deterministic expansion coefficients ûi ∈ R
m are called moments.

For a more compact notation, we collect these moments in the moment matrix û.
This matrix holds all moments for which |i | ≤ N holds. Therefore, û is defined
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as û := (ûi )|i |≤N ∈ R
M×m with corresponding basis functions ϕ := (ϕi )|i |≤N ∈ R

M .
The total number of basis functions for which |i | ≤ N holds is

M :=
(
N + p

p

)

.

When the gPC approximation (2) is known, statistical quantities of interest can be
computed as

E[U(û)] = û0 , Var[U(û)] = E[U(û)2] − E[U(û)]2 =
(

N∑

i=1

û2
i

)


=1,··· ,m
.

The SGmoment system is obtained by plugging the gPC ansatz (2) into the stochastic
problem (1a) and projecting the resulting residual to zero (Galerkin projection),
which yields the system

∂t ûi (t, x) + ∇ · 〈 f (U(û))ϕi 〉 = 0 , (3a)

ûi (t = 0, x) = 〈uIC(x)ϕi 〉 . (3b)

As mentioned previously, the main caveat of the method is that the moment system
is not necessarily hyperbolic and thus not applicable to every problem. We will
investigate this thoroughly in the following sections, but at this point we want to
discuss why one should be interested in an intrusive method like SG at all. Putting
SG into practice requires working with the model and new code. Additionally, the
trivial parallelism of non-intrusive methods is lost. A statement one often finds in
the UQ literature is that one should use SG because it has spectral convergence. This
means that the convergence rate of the method only depends on the smoothness of
the function. Moreover, if this smoothness is large or even infinite (i.e. the solution
possesses derivatives of orders up to infinity) then the curse of dimensionality can be
overcome. However, both Gauss and Clenshaw-Curtis quadrature also show spectral
convergence [39], so if a function is smooth enough those methods can be used as
well.

On the plus side, because sparse grids rely on nested quadrature rules, and similar
to modal versus nodal DG methods, SG reaches the same formal accuracy with
fewer unknowns. Furthermore, in many cases the expected value of a solution of
a hyperbolic system is more smooth and does not have shocks (examples can be
found in Sect. 6). Although this is not true in general [37], one often does not have
to use a high-resolution shock-capturing scheme. Two further advantages will be
utilized in this paper: Whereas collocation methods use a global grid in the uncertain
parameters, for intrusive methods one can enrich the discretization of the parameter
space adaptively. Furthermore, especially for the IPM method one can iterate faster
into steady state. Given these potential advantages we argue that although intrusive
methods have shortcomings it is worthwhile to study them, especially in the context
of hyperbolic conservation laws.
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3 Hyperbolic Conservation Laws and the IPM Method

After introducing hyperbolic conservation laws and the concept of entropy, this
section is focused on the derivation of the IPM method.

3.1 Hyperbolic Conservation Laws and Entropy Variables

Our numerical discretization of the random space should preserve certain properties
of hyperbolic equations. Although they are well-known, we briefly summarize them
in the following to fix notation. Ignoring uncertainties for the time being, to character-
ize hyperbolicity we put the conservative form (1a) into its quasi-conservative form.
Defining the flux Jacobians A j := ∇u f j ∈ R

m×m , the system (1a) can be rewritten
as

∂tu +
d∑

j=1

A j (u)∂x j u = 0 . (4)

Denoting the flux Jacobian into direction w ∈ R
d by

A(u,w) :=
d∑

j=1

A jw j ,

we call a system hyperbolic, if the flux Jacobian A(u,w) has only real eigenvalues
λk(u,w) for k = 1, · · · ,m with a complete family of eigenvectors rk(u,w) for all
states u ∈ D and every direction w ∈ R

d with ‖w‖ = 1. Note that for one spatial
dimension, i.e. d = 1, the direction is w = 1 and therefore hyperbolicity holds if the
flux Jacobian ∇u f is diagonalizable with real eigenvalues.

Hyperbolic problems tend to form shocks, inwhich case the original systemcan no
longer be solved.Therefore, the concept ofweak solutions has been introduced,which
tests the original problem against smooth basis functions with compact support and
thenmoves derivatives from the solution onto these basis functions [24, Chapter 3.4].
Unfortunately, weak solutions are not unique and can show non-physical behavior.
Hence, one is left with having to pick physical meaningful solutions from possible
weak solution candidates. This motivates a further concept, called the entropy solu-
tion [24, Chapter 3.8.1]. Note that in the case of scalar equations, the entropy solution
is actually unique under certain smallness assumptions [16, Chapter 2.4]. Let us first
introduce the entropy:

Definition 1 Let D be convex. Then a convex function s : D → R is called an
entropy for the conservation Eqs. (1a) if there exist d functions F̃j : D → R, called
entropy fluxes, which fulfill the integrability condition

∇us(u)∇u f j (u) = ∇u F̃j (u) , j = 1, · · · , d . (5)
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For classical solutions, the integrability condition ensures conservation of entropy:
By multiplying ∇us(u) from the left with the original Eq. (1a), we get with the
integrability condition (5) as

∂t s(u) +
d∑

j=0

∂x j F̃j (u) = 0 . (6)

Since (6) is again in conservation form, the entropy is conserved at smooth solutions
and the functions F̃j are the flux functions of the entropy balance law (6).

If u is a weak solution, which fulfills

∂t s(u) +
d∑

j=0

∂x j F̃j (u) ≤ 0 (7)

in a weak sense for all admissible entropies s, then u is called an entropy solution.
Note that opposed to the entropy used in thermodynamics, the mathematical entropy
s is dissipated in time: By integrating (7) over the spatial domain, while assuming
that the entropy fluxes are zero at the boundary, we obtain

d

dt

∫

D
s(u) dx ≤ 0 . (8)

The notion of entropy is closely related to hyperbolicity, which can be shown with
the help of the entropy variables

v = ∇us(u)T ∈ R
m . (9)

If s is strictly convex, the mapping v(u) is one-to-one and the solution u can be
represented in termsof entropyvariables as u : Rm → R

m with u(v) = (∇us)
−1 (v).1

A change from the conserved quantities u to their corresponding entropy variables
can be performed to put (1a) in its symmetric form

∂tu(v) +
d∑

j=1

∂x j g j (v) = 0 , (10)

where the flux with respect to the entropy variables has been denoted by g j , i.e.

g j (v) := f j (u(v)) with j = 1, · · · , d . (11)

Our goal is to check hyperbolicity, i.e. (10) needs to be brought into its quasi-
conservative form (4). Applying the chain rule results in

1Note that we have prescribed u to be in Rm , i.e. strictly speaking we have u(v) = (∇us)−T (v).
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H(v)∂tv +
d∑

j=1

B j (v)∂x j v = 0 , (12)

with
H(v) = ∇vu(v) and B j (v) = ∇v g j (v) . (13)

Note that H(v) = (∇2
us(u)

)−1
,which canbe checkedbydifferentiating∇us(u(v)) =

v with respect to v. Therefore, H(v) is symmetric positive definite and can there-
fore be rewritten as Q�QT , where Q ∈ R

m×m is orthonormal and � ∈ R
m×m is a

diagonal matrix with positive entries. Consequently, the regular, symmetric matrix
H1/2 := Q�1/2QT exists. Multiplying (12) with H−1 = H−1/2H−1/2 from the left
results in the system

∂tv +
d∑

j=1

H−1/2H−1/2∇v g j (v)H−1/2H1/2∂x j v = 0 . (14)

It remains to check under which conditions the flux Jacobian of this system is diago-
nalizable with real eigenvalues. Since H−1/2 is symmetric, symmetry of B j suffices
to show symmetry of H−1/2∇v g j (v)H−1/2.Multiplying thismatrixwith H−1/2 from
the left and H1/2 from the right is a similarity transformation and therefore does not
change eigenvalues. Hence when B j is symmetric, the system (14) is diagonalizable
with real eigenvalues and therefore hyperbolic. This can be ensured via the concept
of entropy.

Theorem 1 The matrices B j are symmetric iff the integrability condition (5) holds.

Proof See e.g. [36]. �
In the case of scalar equations, all convex functions can be used as entropies. In
particular, a family of entropies, which is also called the Kružkov entropy [18],
given by

s(u) = |u − k| for all k ∈ R

fulfills the integrability condition for the entropy flux

F̃j (u) = sgn(u − k)( f j (u) − f j (k)) .

This family of entropies can be employed to derive several solution properties for
scalar equations. One of these properties is the maximum–principle

‖u(t, ·)‖L∞(D) ≤ ‖uIC‖L∞(D) , (15)

which guarantees bounds on the solution imposed by its initial condition.
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3.2 The Intrusive Polynomial Moment Method

Let us now consider a system of hyperbolic conservation laws of the form (1a)
and move back to the discretization of the random domain. As discussed earlier, the
polynomial ansatz of stochastic-Galerkin does not necessarily preserve hyperbolicity.
A generalization of stochastic-Galerkin, which ensures hyperbolicity is the Intrusive
PolynomialMoment (IPM)method [33], which in the field of kinetic theory is known
as an entropy closure, see e.g. [25]. Instead of expanding the conserved variables u
with polynomials as done by SG, the IPM method performs such an expansion on
the entropy variables (9). Hence, substituting the entropy variables v = ∇us(u)T into
(1a) yields

∂tu(v(t, x, ξ)) + ∇ · f (u(v(t, x, ξ))) = 0 , (16)

where again u : Rm → R
m with u(v) = ∇us(u). Now, a finite dimensional rep-

resentation of the entropy variables is obtained by an expansion in terms of gPC
polynomials, i.e.

v(t, x, ξ) ≈ vN (t, x, ξ) :=
∑

|i |≤N

v̂i (t, x)ϕi (ξ) = v̂(t, x)Tϕ(ξ) , (17)

where the entropic expansion coefficients (also called dual variables) v̂i ∈ R
m are

collected in thematrix v̂ := (v̂i )i≤|N | ∈ R
M×m . Replacing the exact entropy variables

inside the original problem (16) by this expansion, we obtain

∂tu
(
v̂(t, x)Tϕ(ξ)

)+ ∇ · f
(
u
(
v̂(t, x)Tϕ(ξ)

)) = r̃(t, x, ξ) . (18)

Similar to stochastic-Galerkin, the residual r̃ is again projected to zero, yielding

∂t
〈
u
(
v̂(t, x)Tϕ

)
ϕi
〉+ ∇ · 〈 f (u (v̂(t, x)Tϕ

))
ϕi
〉 = 0 (19)

for |i | ≤ N . The moments belonging to the dual variables v̂ are now given by

ûi (v̂) = 〈u (v̂Tϕ
)
ϕi
〉

for |i | ≤ N . (20)

This mapping, i.e. û : RM×m → R ⊂ R
M×m is one-to-one, meaning that similar

to v(u), we can define a function v̂(û) with v̂ : R → R
M×m . Making use of this

mapping as well as the definition of the moments in (19) yields the IPM system

∂t ûi + ∇ · 〈 f (u (v̂(û)Tϕ
))

ϕi
〉 = 0 , for |i | ≤ N . (21)

The IPM system posses several desirable properties. Especially, if the entropy s(u)

fulfills the integrability condition (5), the IPM system is hyperbolic:
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Theorem 2 The IPM system can be brought into its symmetric form with symmetric
positive definite temporal Jacobian and symmetric spatial Jacobian, if the entropy
s(u) fulfills the integrability condition (5).

Proof In its symmetric form, the IPM system (19) reads

Ĥ(v̂)∂t v̂ +∑d
j=1 B̂ j (v̂)∂x j v̂ = 0 , (22a)

with Ĥ(v̂) := 〈∇vu(vN ) ⊗ ϕϕT
〉

, (22b)

B̂ j (v̂) := 〈∇u f j (u(vN ))∇vu(vN ) ⊗ ϕϕT
〉

. (22c)

Here, we abuse notation by defining the multiplication of Ĥ ∈ R
m·M×m·M with y ∈

R
M×m by

(
Ĥ · y

)

li
:=

m∑

l ′=1

M∑

i ′=1

Ĥ(l−1)m+i,(l ′−1)m+i ′ yl ′i ′ .

The same holds for the multiplication with B̂ j . As done for (12), if we can ensure Ĥ
being symmetric positive definite and B̂ j symmetric, we know that the IPM system
is hyperbolic. Obviously, Ĥ is symmetric. Multiplication with v̂ ∈ R

M×m from both
sides gives

v̂T Ĥ v̂ = 〈vT
N∇vu(vN )vN

〉
> 0 ,

where we use that∇vu = H is symmetric positive definite as done in (12). It remains
to show symmetry of B̂ j for all j = 1, · · · , d. Using the definition of B j from (13),
we can rewrite (22c) as

B̂ j (v̂) := 〈B j (vN ) ⊗ ϕϕT
〉

.

ByTheorem1,weknow that B j is symmetric, fromwhichwe can conclude symmetry
of B̂ j . �
Recall that solving the IPM system requires the mapping v̂(û), i.e. a mapping from
the moments to the dual variables. This mapping can be defined by inverting the
dual variables to moments map (20). The inverse exists, since the Jacobian of û(v̂) is
∇v̂ û(v̂) = Ĥ(v̂) which is positive definite, i.e. the dual variables to moments map is
strictly monotonically increasing. Unfortunately, the inversion can generally not be
performed analytically. In this case one needs to determine v̂ by solving the non-linear
system of equations

〈
u
(
v̂Tϕ

)
ϕT
〉T = û (23)

for a given moment vector û numerically. This task is commonly performed by
reformulating (23) as a root-finding problem

G(v̂; û)
!= 0
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with
G(w; û) := 〈u (wTϕ

)
ϕT
〉T − û . (24)

Here, one often uses Newton’s method to determine the root of G. Then, with
∇wG(w; û) = Ĥ(w) a Newton update takes the form d : RM×m × R

M×m → R
M×m

with
d(w, û) := w − Ĥ(w)−1 · G(w; û) . (25)

The function d will in the following be called dual iteration function. Now, the
Newton iteration for an input moment vector û is given by

w(l+1) = d(w(l), û) . (26)

The exact dual state is then obtained by computing the fixed point of d, meaning
that one converges the iteration (26), i.e. v̂ := v̂(û) = liml→∞ d(w(l), û). To obtain
a finite number of iterations, a stopping criterion

m∑

i=0

∥
∥G(w(l); û)

∥
∥ < τ (27)

is used, where τ > 0 is a user determined parameter.
It remains to discuss the discretization of the spatial and time domain, which for

ease of presentation, we perform for a scalar problem as well as a one dimensional
spatial domain. When dividing the spatial domain into cells [x j−1/2, x j+1/2] with
j = 1, · · · , Nx and using discrete times tn with n = 1, · · · , Nt , we can approximate
the i-th order moment by

ûn
i j � 1

x

∫ x j+1/2

x j−1/2

ûi (tn, x)dx .

The full moment vector in cell j at time tn is denoted by ûn
j = (ûn

0 j , · · · , ûn
N j )

T ∈
R

M×m . Furthermore, the corresponding dual variables are denoted by

v̂n
j := v̂

(
ûn
j

)
. (28)

Then, a finite-volume scheme for the IPM system (21) can be written as

ûn+1
j = ûn

j − t

x

(
G∗(v̂ j , v̂ j+1) − G∗(v̂ j−1, v̂ j )

)
, (29)

where G∗ : RM×m × R
M×m → R

M×m is the numerical flux which needs to be con-
sistent with the physical flux of the IPM system. i.e. we must have G∗(v̂, v̂) =〈
f
(
u
(
v̂Tϕ

))
ϕT
〉
. In order to evaluate the moments to dual variables map (28), we
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can use the definedNewton iteration for the inputmoments ûn
j . Altogether, this yields

the scheme from Algorithm 1.

Algorithm 1 IPM algorithm
1: for j = 0 to Nx + 1 do
2: û0j = 1

x

∫ x j+1/2
x j−1/2

〈uIC(x, ·)ϕ〉dx
3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: while ‖G(v

(m)
j ; ûnj )‖ > τ do

6: v
(m+1)
j ← d(v

(m)
j ; ûnj )

7: m ← m + 1
8: v̂nj ← v

(m+1)
j

9: for j = 1 to Nx do
10: ûn+1

j ← ûnj − t
x

[
G∗(v̂ j , v̂ j+1) − G∗(v̂ j−1, v̂ j )

]

4 Realizability-Preserving Spatial Discretization

In this section we further describe the concept of realizability and present a
realizability-preserving discretization and improved version of Algorithm 1.

4.1 Realizability

As previously discussed, the IPM method and minimal entropy closures in general
face several challenges. Besides increased computational costs, the IPM method
cannot invert the mapping û : RM×m → R ⊂ R

M×m when the moment vector û
leaves the so-called realizable set R, which results in a failure of the method [19].
To discuss this issue, we consider a scalar, one-dimensional conservation law of the
form

∂t u(t, x, ξ) + ∂x f (u(t, x, ξ)) = 0 , (30a)

u(0, x, ξ) = uIC(x, ξ) , (30b)

i.e. m, p and d are equal to one. The following discussion is however valid for
arbitrary dimensions and we make this simplification for ease of exposition. For
scalar problems of the form (30), the solution fulfills the maximum–principle [16,
Chapter 2.4]

min
x∈D,ξ∈�

uIC(x, ξ) ≤ u(t, x, ξ) ≤ max
x∈D,ξ∈�

uIC(x, ξ) ,



Entropy–Based Methods for Uncertainty Quantification ... 41

which ideally should be preserved by the discretization of the random domain. The
IPMmethod at least enables one to impose a user-defined lower bound u− and upper
bound u+ on the solution by choosing an entropy s(u), which takes infinite values
when u /∈ (u−, u+). One such entropy is the log-barrier entropy [33]

s(u) = − ln(u − u−) − ln(u+ − u) . (31)

Then, by the entropy dissipation property (8), the IPM solution u(vN ) ≡ (s ′)−1(vN )

will remain inside the interval (u−, u+). Similarly, for systems such as the Euler
equations, certain solutionquantities such as positivity of density, energy andpressure
can again be achieved by the choice of a suitable entropy. Recall, that the image of
the dual variables to moments map (20) has been denoted by R. This set is called
realizable set. For entropies imposing solution bounds u− and u+ it is given by

R := { û ∈ R
N+1
∣
∣ ∃u : � → (u−, u+) such that û = 〈uϕ〉} . (32)

When proposing numerical methods to solve the IPM system (21), it is crucial to
prevent the moments generated by this method from leaving this set, since then,
the dual variables to moments map cannot be inverted, i.e. the system (23) has no
solution. In the following, we propose an algorithm which keeps the moments inside
R and we will refer to this property as preserving realizability.

4.2 Realizability-Preserving Discretization

The presented general Algorithm 1 will not necessarily preserve realizability, i.e. it
generates moments û /∈ R. The two sources for this are the choice of the numerical
flux as well as the fact that the system (23) cannot be solved exactly, i.e. the moments
to dual variables map has errors. Let us first write down the realizability preserving
algorithm presented in [19] and then discuss why it maintains û /∈ R. When again
using u : RN+1 → R

N+1 with u(v) = (s ′)−1(v), the chosen numerical flux is the
kinetic flux

G∗(v̂
, v̂r ) = 〈 f ∗(u(v̂T

 ϕ), u(v̂T

r ϕ))ϕ
〉

, (33)

where f ∗(u
, ur ) is a monotone flux for the underlying deterministic problem. Note
that this choice of G∗ is common in the field of kinetic theory, see e.g. [8, 13, 31,
32]. We assume that the original, deterministic scheme

H(u, v, w) = v − t

x

(
f ∗(v,w) − f ∗(u, v)

)
(34)

keeps the solution inside the bounds u− and u+, i.e. H(unj−1, u
n
j , u

n
j+1) ∈ [u−, u+] if

all inputs are bounded by u−, u+. This can for example be achieved with monotone
schemes or, for high order methods, with bound preserving limiters [4, 7, 12, 26,
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41]. Note that since the integral in (33) can generally not be solved analytically, a
quadrature rule must be employed to approximate the kinetic flux. It can however
be shown that the resulting quadrature error will not influence realizability of the
numerical scheme. Then, a realizability preserving implementation is given by

Algorithm 2 Modified IPM algorithm
1: for j = 0 to Nx + 1 do
2: û0j = 1

x

∫ x j+1/2
x j−1/2

〈uIC(x, ·)ϕ〉dx
3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: while ‖G(v

(m)
j ; ûnj )‖ > τ do

6: v
(m+1)
j ← d(v

(m)
j ; ûnj )

7: m ← m + 1
8: vnj ← v

(m+1)
j

9: unj ←
〈

u

((
vnj

)T
ϕ

)

ϕ

〉

10: for j = 1 to Nx do
11: ûn+1

j ← unj − t
x

[
G∗(v j , v j+1) − G∗(v j−1, v j )

]

Here,we use v and u instead of v̂ and û to stress that these quantities are affected by
the inexact Newton iteration. The main difference to Algorithm 1, besides the choice
of the numerical flux, is the recalculation of the moment vector from the inexact dual
variables v in line 9. It can be shown that Algorithm 2 preserves realizability: To
simplify notation, let us define the exact and inexact dual states� := vN = v̂Tϕ and
� := vTϕ. Then, the inexact moments are given by

un
j = 〈u (�n

j

)
ϕ
〉

(35)

and the moment update becomes

ûn+1
j = un

j − t

x

[〈
f ∗ (u

(
�n

j−1

)
, u
(
�n

j

))
ϕ
〉− 〈 f ∗ (u

(
�n

j

)
, u
(
�n

j+1

))
ϕ
〉]

.

(36)
Plugging the definition of the inexact moments (35) into the moment update (36)
yields

ûn+1
j =

〈(

u
(
�n

j

)− t

x

[
f ∗ (u

(
�n

j

)
, u
(
�n

j+1

))− f ∗ (u
(
�n

j−1

)
, u
(
�n

j

))]
)

ϕ

〉

= 〈
H(u(�n

j−1), u(�n
j ), u(�n

j+1))ϕ
〉

.

Now, since the ansatz u(�) = (s ′)−1(�) only takes values in [u−, u+], we have

H(u(�n
j−1), u(�n

j ), u(�n
j+1)) ∈ [u−, u+]
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for all ξ ∈ �. Therefore, the time updated moments belong to an underlying func-
tion which is bounded by u− and u+, i.e. we have ûn+1

j ∈ R. The construction of the
presented algorithm also guarantees that the CFL condition of the original scheme
ensures stability. Note that the presented IPM scheme can be extended to systems,
multi-dimensional problems andhigher ordermethods,whenever a bound-preserving
scheme (34) exists. Furthermore, when replacing all integrals by quadrature rules,
the time updated moments will remain realizable, since they belong to a function
which fulfills the prescribed bounds on the quadrature points. The main drawback
of this strategy to preserve realizability is that it introduces a non-conservative error
by recalculating moments. However, when using a Lipschitz continuous numerical
flux G∗, the error by recalculating moments is of order O(τ ) [19]. I.e. by choos-
ing a sufficiently small stopping criterion for Newton’s method the error from the
recalculation step becomes negligibly small.

A second strategy, which does not require recomputing moments and therefore
does not add such an error is choosing a modified CFL condition. Here, the main
idea is to account for effects the error in � has on the scheme by choosing a smaller
time step size. Denoting this error by

�n
j = �n

j (ξ) := �n
j (ξ) − �n

j (ξ) ,

a more restrictive CFL condition, which ensures realizability is given by

Theorem 3 Let us assume that the entropy ansatz only takes values in (u−, u+)

and the underlying numerical flux f ∗ is monotone. If furthermore, the numerical
optimizer enforces the stopping criterion

max
ξ∈�

⎧
⎨

⎩
max

�∈
[
�̄n

j,min,�̄
n
j,max

]

u′(�(ξ))

u′(�(ξ) + �n
j (ξ))

⎫
⎬

⎭
≤ γ , (37)

with

�n
j,min(ξ) := min

{
�n

j−1(ξ),�n
j (ξ),�n

j+1(ξ)
}

and �n
j,max(ξ) := max

{
�n

j−1(ξ),�n
j (ξ),�n

j+1(ξ)
}

,

the time updated moment vector ûn+1
j is realizable under the modified CFL condition

γ
t

x
max

u∈[u−,u+] | f
′(u)| ≤ 1 . (38)

The proof of this theorem as well as an implementation strategy can be found in
[19]. Due to its simplicity and efficient implementation of different discretization
schemes, we will use the strategy of recalculating moments, i.e. Algorithm 2 in the
following.
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5 Accelerating the IPM Solution

In this section we describe two acceleration techniques, as presented in [23], which
reduce the numerical effort of the IPM method.

5.1 Adaptivity

As previously mentioned, in contrast to non-intrusive methods, intrusive methods
allow a more fine-grained control over the solution, as the uncertainties or more
precisely their respective moments, are directly propagated through time and the
corresponding quantities of interest (e.g. mean or variance) are not collected in a
secondary step as in e.g. SC or MC methods. Using adaptivity, we try to avoid using
high-order moment representations and corresponding high order quadrature rules
in portions of the domain, where the quantities of interest are well-represented with
low-order moments. As these lower-order moment bases result in non-linear system
(23) that are easier to solve, this approach can significantly reduce overall runtimes.
We use the discontinuity sensor described in [30] in the UQ context. To do this, the
polynomial approximation at refinement level 
 is defined as

ũ
 :=
∑

|i |≤M


uiϕi .

We further define an indicator for a moment vector at level 
 as

S
 := 〈(ũ
 − ũ
−1
)2〉

〈ũ2

〉

. (39)

Note, that a similar indicator has been used in [17] for intrusive methods in UQ. We
use the first element in S
, i.e. the density ρ, to determine the refinement level. This
regularity indicator is therefore computed for every cell at every timestep and the
current refinement level is kept if the indicator lies in the interval Iδ := [δ−, δ+]. If its
value falls below δ−, the refinement level is decreased to the next lower refinement
level and vice versa if the value exceeds δ+. See [23] for more details on the method.

5.2 One-Shot IPM

The second method is limited to steady state problems. In this case, we are interested
in solving

∇ · f (u(x, ξ)) = 0 in D (40)
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with adequate boundary conditions. Then, the IPM moment system reads

∇ · 〈 f (u(vN (x, ξ)))ϕT 〉T = 0 in D . (41)

Steady state problems are usually solved by introducing a pseudo-time and iterating
the solution until the condition

Nx∑

j=1

x j‖ûn
j − ûn−1

j ‖ ≤ ε , (42)

with convergence tolerance ε, is fulfilled. To obtain a more compact notation, let us
define the pseudo-time update of the moments by

c(w
,wc, wr ) := 〈u(wT
c ϕ)ϕT 〉T (43)

− t

x

(〈g(u(wT
c ϕ), u(wT

r ϕ))ϕT 〉T − 〈g(u(wT

 ϕ), u(wT

c ϕ))ϕT 〉T ) .

Note that the first term of this update recalculates moments from inexact dual vari-
ables, i.e. we perform a recalculation step according to Algorithm 2. To indicate the
usage of inexact dual states, we again use the notation vn

j . Then, the moment iteration
of cell j , which is performed until (42) is fulfilled reads

ûn+1
j = c

(
vn
j−1, v

n
j , v

n
j+1

)
. (44)

During each iteration, the dual variables vn
j are again obtained by iterating

v
(l+1)
j = d(v

(l)
j ; ûn

j )

until the stopping criterion (27) is fulfilled. A schematic of this method is given in
Fig. 1. In the following, we refer to updating the dual variables as the inner loop
and the iteration of the moments as the outer loop. The key idea of the One-Shot
IPM (osIPM) method is to break up the inner loop and iterate moments and dual
variables to their steady state simultaneously. This method is motivated by the One-
Shot method in shape optimization [15], which proposes to perform only a single
iteration for the primal, dual and design updates. The osIPM method now reads

vn+1
j = d(vn

j , û
n
j ) for all j , (45a)

ûn+1
j = un

j − t

x

[
G∗(v j−1, v j ) − G∗(v j , v j+1)

]
for all j . (45b)

Note that the dual variables from the One-Shot iteration are written without a bar
to indicate that they are not intended to be a solution of the dual problem. It can be
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n ← 0

ûn+1
j = c(vn

j−1,v
n
j ,v

n
j+1)

vl+1
j = d(vl

j , û
n+1
j ) l ← l + 1n ← n+ 1

steady
state?

done

ûn
Δ,vn

Δ

vn+1
Δ

no

yes

ûn+1
Δ

(a)

n ← 0

ûn+1
j = c(vn

j−1,v
n
j ,v

n
j+1)

vn+1
j = d(vn

j , û
n+1
j )n ← n+ 1

steady
state?

done

ûn
Δ,vn

Δ

vn+1
Δ

no

yes

ûn+1
Δ

(b)

Fig. 1 Left: IPM method for steady state problems. Right: osIPM method. The use of  indicates
that all spatial cells of the corresponding quantity are collected in a vector.

shown that the osIPM method converges locally [23]. Numerical studies show that
the One-Shot IPM method requires more iterations of the outer loop compared to
the general IPM method, but as these iterations are significantly cheaper in terms of
computational effort, the method yields a significant boost in the performance [23].

6 Results

In order to demonstrate the properties of the presented IPM method and the related
acceleration techniques, in this section we show four different test cases for the
Burgers and the Euler equations, each highlighting different aspects.

6.1 Burgers’ Equation

In the following, we investigate Burgers’ forming shock testcase from [33], which
has also been investigated in [19–22]. The stochastic Burgers equation for a one-
dimensional spatial domain is given by

∂t u(t, x, ξ) + ∂x
u(t, x, ξ)2

2
= 0 ,

u(t = 0, x, ξ) = uIC(x, ξ) .
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The initial condition is now randomly distributed, i.e. we have

uIC(x, ξ) :=

⎧
⎪⎨

⎪⎩

uL , if x < x0 + σξ

uL + uR−uL
x0−x1

(x0 + σξ − x), if x ∈ [x0 + σξ, x1 + σξ ]
uR, else

. (46)

The initial condition describes a forming shockwith a linear connection from x0 + σξ

to x1 + σξ , i.e. the random variable ξ shifts the forming shock structure to the left
and right. We assume a uniformly distributed random variable in the interval [−1, 1],
i.e. ξ ∼ U ([−1, 1]). Furthermore, we use the following parameter values:

D = [a, b] = [0, 3] Range of spatial domain
Nx = 2000 Number of spatial cells
tend = 0.0909 End time
x0 = 0.5, x1 = 1.5, uL = 12, uR =
1, σ = 0.2

Parameters of initial condition (46)

N + 1 = 6 Number of moments
ε = 10−7 Accuracy of Newton’s method

We compare the solution in ξ at a fixed spatial position x∗ for time tend for
stochastic-Galerkin and IPM in Fig. 2. The IPM method uses the bounded–barrier
entropy

s(u) = (u − u−) ln(u − u−) + (u+ − u) ln(u+ − u) ,

which, in contrast to the log–barrier entropy (31) takes finite values at u− and u+.
Indeed, as seen in Sect. 4.2, it suffices that the ansatz

(
s ′)−1

only takes values in
[u−, u+] to enforce such bounds. For the bounded–barrier entropy, we can choose the
distance to the exact solution to be zero, i.e. we have u := uR − u− = u+ − uL =
0. We also show results for the log–barrier entropy with u = 0.5. It can be seen
that stochastic-Galerkin oscillates heavily while both IPM solutions maintain the
overall shock characteristics.However, the bounded–barrier entropy is able to capture
the shock more adequately while maintaining the maximum–principle (15). In the
following,we focus on the bounded–barrier entropy and investigate its behaviorwhen
approximating expectation value and variance. For this, we let the simulation run
until an increased end time tend = 0.14 is reached. Expectation value and variance
are shown in Fig. 3. While stochastic-Galerkin yields a step-like profile, the IPM
method when using the bounded–barrier entropy shows a significantly improved
solution. Note, that the log–barrier entropy yields a similar result.
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Fig. 2 Solution SG and IPMwith bounded–barrier (u = 0) and log–barrier (u = 0.5) entropies
at fixed spatial position x∗ = 1.5 for time tend = 0.0909.

6.2 Euler Equations

A further commonly used test case for intrusive methods is Sod’s shock tube with
uncertain shock position, see for example [22, 33, 34]. The stochastic Euler equations
in one spatial dimension read

∂t

⎛

⎝
ρ

ρu
ρe

⎞

⎠+ ∂x

⎛

⎝
ρu

ρu2 + p
u(ρe + p)

⎞

⎠ = 0 ,

where, in our test case, we use the initial condition

ρIC =
{

ρL if x < xinterface(ξ)

ρR else
,

(ρu)IC = 0 ,

(ρe)IC =
{

ρLeL if x < xinterface(ξ)

ρReR else
.

Here, ρ denotes the density, u is the velocity and e is the specific total energy. One
can determine the pressure p from

p = (γ − 1)ρ

(

e − 1

2
u2
)

.
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Fig. 3 Expectation value and variance for SG and IPM at time tend = 0.14.

The heat capacity ratio is γ and has a value of 1.4 for air. We use the random
interface position xinterface(ξ) = x0 + σξ , where ξ is again uniformly distributed in
the interval [−1, 1]. The IPM method again needs to pick a suitable entropy. In this
work, we choose the entropy

s(ρ, ρu, ρe) = −ρ ln

(

ρ−γ

(

ρe − (ρu)2

2ρ

))

,

though more choices are possible. Parameter values which differ from Burgers’ test
case are

D = [a, b] = [0, 1] Range of spatial domain
Nx = 5000 Number of spatial cells
tend = 0.14 End time
x0 = 0.5, σ = 0.05 Interface position parameters
ρL = 1.0, eL = 2.5, ρR = 0.125, eR =
0.25

Initial states

When running the simulation, the SG method fails already during the first time
update. The reason for this can be seen in Fig. 4. Here, the SG and IPM reconstruc-
tions of the gas density ρ are depicted at t = 0 s at a fixed spatial cell. While the
IPM reconstruction maintains positivity, the Gibbs phenomena that result from the
polynomial representation of SG lead to negative density values. A similar behavior
can be seen for the energy e. Then, the eigenvalues of the Euler equations, which
include v ± √

γ p/ρ become complex, i.e. the system is no longer hyperbolic.
As discussed, the IPM method maintains hyperbolicity, meaning that one can

run the simulation until the desired end time tend = 0.14 s is reached. The resulting
expectation values and variances are depicted in Fig. 5. It can be seen that the IPM
method yields a satisfactory approximation of the expectation value and variance
at the rarefaction wave as well as the contact discontinuity. However, the shock
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Fig. 4 Initial density for SG and IPM at fixed spatial position x∗ = 0.46 when using 6 moments.
The view is zoomed to ξ ∈ [−1, 0] and negative regions are marked in red.

Fig. 5 Expectation value and variance for SG and IPM at time tend = 0.14 s.

yields discontinuous step-like profiles, similar to the stochastic-Galerkin results for
Burgers’ equation.

6.3 2-D Euler Equations with One-Shot

In order to demonstrate the acceleration impact of the aforementioned One-Shot
strategy for the steady-state case, we will quantify the effects of an uncertain angle
of attack φ ∼ U (0.75, 1.75) for a NACA0012 airfoil using the Euler equations in
two spatial dimensions. This test-case is taken from [23]. Similar to the 1-D case,
the stochastic Euler equations in two dimensions are given by
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∂t

⎛

⎜
⎜
⎝

ρ

ρu1
ρu2
ρe

⎞

⎟
⎟
⎠+ ∂x1

⎛

⎜
⎜
⎝

ρu1
ρu21 + p
ρu1u2

u1(ρe + p)

⎞

⎟
⎟
⎠+ ∂x2

⎛

⎜
⎜
⎝

ρu2
ρu1u2

ρu22 + p
u2(ρe + p)

⎞

⎟
⎟
⎠ = 0 ,

with the closure term for the pressure as

p = (γ − 1)ρ

(

e − 1

2
(u21 + u22)

)

.

As in the previous test case, the heat capacity ratio is set to γ = 1.4. For this test case,
we apply the Euler slip boundary condition to the airfoil’s boundary as vT n = 0,
where n denotes the surface normal. At a sufficiently large distance away from
the airfoil, we prescribe a far field flow with a given Mach number of Ma = 0.8,
pressure p = 101 325 Pa and a temperature of 273.15 K. The uncertain angle of
attack φ is uniformly distributed in the interval of [0.75, 1.75] degrees or in other
words φ(ξ) = 1.25 + 0.5ξ with ξ ∼ U (−1, 1). The initial condition in the entire
domain is equal to the far field boundary values and thus violates the Euler slip
boundary condition at the airfoil. Consequently, we iterate in pseudo-time to correct
the flow solution until the expectation value of the density fulfills the criterion (42)
with ε = 6 · 10−6.

The used computational mesh (see Fig. 6c) consists of 22 361 triangular elements
and resembles a circular domain of 40 m diameter, where the airfoil of 1 m length is
located at the very center. The mesh is finely resolved close to the airfoil as we are
only interested in effects close to the airfoil and becomes coarser the closer to the far
field boundary. In order to be able to measure the quality of the obtained solutions
with andwithout theOne-Shot acceleration strategy, we compute a reference solution
using stochastic-Collocationwith 100Gauss-Legendre quadrature points (see Fig. 6).
We will show the L2-error behavior of the discrete quantity e = (e1, · · · , eNx )

T ,
where e j is the cell average of the quantity e in spatial cell j . The discrete L2 norm
is denoted by

‖e‖ :=
√
√
√
√

Nx∑

j=1

x j e2j .

Given the SC reference solution u and the moments of a compared numerical
method û, we investigate the relative error

‖E[u] − E[U(û)]‖

‖E[u]‖

and
‖Var[u] − Var[U(û)]‖

‖Var[u]‖

.

As small fluctuations in the large cells of the coarse far field would dominate this
error measure, we only compute the error inside a box of one meter height and
1.1m length around the airfoil. Figure 7 shows the resulting error with respect to
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Fig. 6 Reference solution E[ρ] and Var[ρ] and the mesh close to the airfoil which is used in the
computation of all presented methods.

Fig. 7 Comparison of the relative L2-error of the density for IPM, osIPM, readosIPM and SC. All
IPM related methods are converged to a residual of ε = 6 · 10−6, whereas SC is converged to a
residual of ε = 1 · 10−7. All computations are performed with 5 MPI threads.

the reference solution of IPM, osIPM and SC. The superscript in the figure denotes
the number of used quadrature points, whereas the subscript denotes the moment
order. We chose a total polynomial order of 9 for all IPM methods, meaning 10
moments are used in the computation and a Clenshaw-Curtis quadrature rule of
order 4, resulting in 17 quadrature points. Based on the same quadrature set, all IPM
solutions were also compared to a SC solution in order to get a better understanding
of the methods convergence behavior and acceleration properties of osIPM. As it
can be seen from the presented results, the osIPM yields the same error and almost
identical convergence history as IPM, while being significantly faster. In comparison
to SC however, the errors for the mean as well as the variance are comparably small,
but the SC method reaches the given error level faster in terms of computational
time. Only when the One-Shot approach is combined with adaptivity and refinement
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Table 1 Moment and quadrature setup for the applied refinement levels.

Refinement level 0 1 2 3

Total degree of
moments

1 2 3 4

Number of
quadrature points

3 5 5 9

retardation, as it can be seen for the readosIPM plot in Fig. 7, the IPM method is
yields even faster convergence rates than SC. For more information about refinement
retardation and adaptivity, see [23]. Also note that the acceleration of the One-Shot
approach becomesmore dominant when looking at higher dimensional uncertainties,
see [23].

6.4 Unsteady 2-D Euler Equations with Adaptivity

To investigate adaptivity, we again use the two dimensional Euler equations. The
problem setting is similar to the transient Sod shock tube test case from above. The
geometry describes a nozzle similar to a de Laval nozzle (see Fig. 8e), where the
initial condition is set to a discontinuity positioned in the middle of the narrow part
of the nozzle. The density in the left part is set to 1 kg m−3 and the energy is set to
ρe = p/(γ − 1) = 2.5 J m−3 with the pressure p equal to 1 Pa. For the right part of
the domain the density is set to ρ = 0.8 kg m−3 and the pressure p = 0.125 Pa. The
gas in both sides is at rest. For this testcase we inflict the initial condition with one
uncertainty, i.e. the shock’s position,which is nowmodeled as xshock ∼ U (−0.5, 0.5).
The used computational mesh consists of 76 696 triangular cells and is refined in the
area of the shock and the nozzle opening towards the right side of the domain (see
Fig. 8a). The applied boundary conditions are Euler slip conditions for the wall of
the nozzle and Dirichlet conditions set to the initial condition for the left and right
side of the mesh. The shown results in Fig. 8 resemble a time of 6 s.

As for the previous testcases, the reference solutionwas computedusing stochastic-
Collocation (see Figs. 8a, 8b) with a Gauss-Legendre quadrature with 50 quadrature
points. As the previously mentioned parameter δ± are user determined, these refine-
ment/coarsening thresholds were set to δ− = 1.5E − 3 and δ+ = 5E − 4 for the
presented results in Figs. 8c, 8d. The resulting refinement levels are shown in Fig. 8c
and the total order of used moments in combination with the associated quadrature
points for each refinement level are given in Table 1. For the quadrature a tensorized
Clenshaw-Curtis rule is used.

As for the previous test cases, we observe a good agreement between the IPM and
the reference solution computed by SC. Due to the lower degree of moments the IPM
solution again show a more step-like profile in the emerging shocks. As expected,
the presented refinement levels are high in the regions around the shock and lower
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Fig. 8 Comparison for the mean and variance of the SC reference solution (a, b) and the adaptive
IPMmethod (c,d) with the refinement levels in f. e shows the computationalmesh. All computations
are performed using 20 MPI threads.

order moments are started to be used further upstream where the flow becomes more
and more constant as time progresses. Further upstream of the shock, the method
even uses the lowest refinement level as the shock has not yet reached this part of
the nozzle and thus the solution is still equal to the initial condition. All in all the
results show that the method chooses high levels of refinement in areas where they
are required by the complexity of the solution. Thus, the method is computationally
much of efficient in the remainder of the domain.
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