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Abstract We present a non-linear dispersive shallow water model which enters in
the framework of section-averagedmodels. These new equations are derived up to the
second order of the shallowwater approximation starting from the three-dimensional
incompressible and irrotational Euler system. The derivation is carried out in the
case of non-uniform rectangular section and it generalises the well-known one-
dimensional Serre-Green-Naghdi (SGN) equations on uneven bottom. The section-
averaged model is asymptotically consistent with the Euler system in terms of mass,
momentum, and energy equation which provides the richness of content for this
model. We propose a well-balanced finite volume approximation and we present
some numerical results to show the influence of the section variation.

Keywords Open channel flow · Euler equations · Asymptotic approximation ·
Serre-Green-Naghdi equations · Free surface shallow water equations ·
Non-hydrostatic pressure · Dispersive model · Finite volume

1 Introduction

In environmental modeling of free surface flows, whenever the aspect-ratio of the
domain is small enough, the shallow water approximation is introduced to obtain
reduced model for which the computational cost is lower than the one implied by the
numerical solution of the full three-dimensional free surface equations. One of the
most widely used models to describe the channel and river motion of watercourses
is the section-averaged free surface model [2, 7, 8] which is a generalisation of
the well-known Saint-Venant system (introduced by Adhémar Jean Claude Barré de
Saint-Venant in the 19th Century [18]):
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⎧
⎨

⎩

∂t A + ∂x Q = 0,

∂t Q + ∂x

(
Q2

A
+ I1(x, A)

)

= I2(x, A).
(1)

In these equations, A = σh is the wet area of fluid cross-section, Q is the water dis-
charge, I1(x, A) = A2

2F2
r σ

is the hydrostatic pressurewhere Fr is the Froude’s number

and I2(x, A) = σ ′(x)
σ (x)

A2

2Fr 2σ(x)
− A

Fr 2
d ′(x) is the hydrostatic pressure source term

which takes into account the variation of the channel width σ and the bottom d. The
model (1) reduces to the well-known one-dimensional Saint-Venant equations for
uniform rectangular section, i.e. if σ is constant. The free surface model is the first
order shallow water approximation of the section-averaged Navier-Stokes or Euler
equations under suitable assumptions on the horizontal and the vertical scales (see,
e.g., [2, 7, 8, 10, 11] and the reference therein).

As it is well-known, the solutions of these equations are usually suitable to approx-
imate breaking waves with turbulent rollers for large transitions of the Froude’s num-
ber. However, for small or moderate transitions, the solutions of these equations are
not able to catch undular bores induced by a non-hydrostatic pressure distribution
[17]. Up to our knowledge, the first section-averaged dispersive shallow water equa-
tions for quite general assumptions on the geometry of the channel was proposed in
[6], thus allowing for the application of the resulting equations to natural rivers with
arbitrarily shaped cross-sections. This model reads
⎧
⎪⎨

⎪⎩

∂t A + ∂x Q = 0

∂t Q + ∂x

(
Q2

A
+ I1(x, A) + μ2DI1(x, A, Q)

)

= I2(x, A) + μ2DI2(x, A, Q) + O(μ2
2)

where DI1 and DI2 are the non-hydrostatic counterparts of the hydrostatic pressure
and the hydrostatic pressure source term.The case of non-uniform rectangular section
can be regarded as the natural extension of the usual one-dimensional Serre-Green-
Naghdi (SGN) equations over uneven bottom [5, 12, 19].

In this work, we focus only on the case of a rectangular variable section. We first
present the geometrical set-up in Sect. 2. Then we give the outline of the asymp-
totic derivation, and in particular, we show that the section-averaged model is fully
consistent with the Euler system in Sect. 3. Finally, in Sect. 4, we construct a first
order well-balanced finite volume approximation and we present some numerical
test cases.

2 The Three-Dimensional Incompressible Euler Equations

2.1 Settings

We consider the motion of an incompressible and irrotational fluid with constant
density ρ0 > 0 in a three-dimensional domain (see Fig. 1)
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Fig. 1 Geometric set-up

�(t) =
{
(x, y, z) ∈ R

3; x ∈ [0, Lc], α(x) ≤ y − ϕ(x) ≤ β(x), d(x) ≤ z ≤ η(t, x, y)
}

where ϕ describes the transversal variation of the channel with respect to the main
channel direction, α and β are the transversal limits of the channel, Lc its length, d
is the bottom, η is the free surface and h = η − d is the water height. The boundary
of the domain �(t) is defined by ∂�(t) and is decomposed into four parts: the free
surface 
fs(t), the wet boundary 
wb(t), the inflow boundary 
i(t) and the outflow
boundary
o(t). Thewet boundary can be decomposed itself in three parts: the bottom

b(t), the left lateral boundary 
lb(t), and the right one 
rb(t).

The governing equations for the motion of the fluid are the incompressible and
irrotational Euler equations in �(t), for all t ∈ (0, T ], which can be written as fol-
lows:

div [u] = 0 ,

∂

∂t
(u) + div [u ⊗ u] + ∇ p

ρ0
− F = 0

(2)

where u = (u, v, w)T is the velocity field, F = (0, 0,−g)T is the gravity accelera-
tion and p is the pressure. These equations are completed by the irrotational equation:

curl [u] = 0. (3)

The system is closed by suitable boundary conditions. We denote by nfs the
outward normal to the free surface which depends on time:

nfs = 1
√

1 + (∂xη)2 + (∂yη
)2

(−∂xη, −∂yη, 1
)T

,

and by nwb the outward normal to the wet boundary:
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nwb =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
√
1 + (∂xd)2

(∂xd, 0, −1)T if nwb = nb

1
√
1 + (∂xα)2

(∂xα, −1, 0)T if nwb = nlb

1
√
1 + (∂xβ)2

(∂xβ, 1, 0)T if nwb = nrb

At the free surface, we prescribe a kinematic boundary condition

∂tη + u∂xη + v∂yη = w on 
fs(t) (4)

completed with the dynamical condition which takes into account the equilibrium
with atmospheric stress

p = pa on 
fs(t). (5)

In the sequel, without loss of generality, we set pa = 0.
At the wet boundary, we prescribe a no-penetration condition:

u∂xd − w = 0 on 
b(t),
u∂xα − v = 0 on 
lb(t),
u∂xβ + v = 0 on 
rb(t).

(6)

2.2 Dimensionless Euler Equations

Let us consider the following scales involved in the wave motion: L a wave-length in
the longitudinal direction, H2 a characteristic water depth, H1 a characteristic scale
of the channel width and h1 a wave-length in the transversal direction.We then define
the classical dispersive parameter μ2 (see e.g. [13])

μ2 = H 2
2

L2

and μ1 = h21
L2 where μ1 is also a dispersive parameter but in the transversal direction.

In the following, we consider the asymptotic regime:

h1 < H1 = H2 � L

such that the following inequality holds

μ1 < μ2
2.
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Under these assumptions, we get the following ordering:

μ21 <
μ21
μ2

< min

⎛

⎝
μ21
μ22

, μ1μ2

⎞

⎠ < max

⎛

⎝
μ21
μ22

, μ1μ2

⎞

⎠ < μ1 < min

(
μ1
μ2

, μ22

)

< max

(
μ1
μ2

, μ22

)

< μ2 � 1.

We also introduce (U, V = √
μ1U,W = √

μ2U )T the scale of fluid velocity. The

time scale is T = L

U
. Let us define P = p

ρ0
and choose the pressure scale to be

P = U 2.
This allows us to introduce the dimensionless quantities of time t̃ , space (̃x, ỹ, z̃),

pressure P̃ , depth d̃, water elevation η̃ and velocity field (̃u, ṽ, w̃), via the following
scaling relation

x̃ = x

L
, ỹ = y

h1
, z̃ = z

H2
, t̃ = t

T
, P̃ = P

P
, ϕ̃ = ϕ

h1
, ũ = u

U
, d̃ = d

H2
, ṽ = v

V
, η̃ = η

H2
, w̃ = w

W
.

(7)

Finally, we define the non-dimensional Froude’s number by Fr = U√
gH2

.

For the sake of clarity and simplicity dropping ·̃, using the dimensionless vari-
ables (7), and reordering the terms with respect to the powers of μ1 and μ2, the
dimensionless incompressible Euler system (2) reads as follows:

∂xu + ∂yv + ∂zw = 0, (8)

∂t u + u∂xu + v∂yu + w∂zu + ∂x P = 0, (9)

μ1
(
∂tv + u∂xv + v∂yv + w∂zv

)+ ∂y P = 0, (10)

μ2
(
∂tw + u∂xw + v∂yw + w∂zw

)+ ∂z P = − 1

Fr
2 . (11)

Under this scaling, the boundary conditions (4)–(5) and (6) remain unchanged and
the dimensionless irrotational Eq. (3) becomes

∂yu = μ1∂xv, μ1∂zv = μ2∂yw, ∂zu = μ2∂xw. (12)

Thanks to the ordering μ2
1 < μ2 and the structure of Eqs. (12), it is natural to

compute the asymptotic expansion of u in two steps first with respect to y, then
with respect to z. It can be achieved by first width-averaging the Euler system (8)–
(11), then by depth-averaging the resulting equations. For the sake of completeness,
skipping the technical details, we present the outline of the derivation. Interested
readers can found the details in [6].
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3 Derivation of the Section-Averaged Model

3.1 Width-Averaged Equations

By integrating for s ∈ [α(x), y], the first two equations of the irrotational equations
(12) and the divergence equation (8), keeping in mind the boundary conditions (4)–
(5) and (6), we get the following asymptotic expansions:

u(t, x, y, z) = uα(t, x, z) − μ1

2
∂xdivx,z

[
wα(t, x, z)(y − α(x))2

]+ O

(
μ2
1

μ2

)

,

(13)

v(t, x, y, z) = −divx,z [wα(t, x, z)(y − α(x))] + O

(
μ1

μ2

)

(14)

and

w(t, x, y, z) = wα(t, x, z) − μ1

2μ2
∂zdivx,z

[
wα(t, x, z)(y − α(x))2

]+ O

(
μ2
1

μ2
2

)

(15)
where Xα(t, x, z) := X (t, x, α(x), z).

For a given function (t, x, y, z) 	→ X (t, x, y, z), we define its width-average by

〈X〉(t, x, z) := 1

σ(x)

∫ β(x)

α(x)
X (t, x, y, z) dy

where σ(x) = β(x) − α(x) is the width of the channel.
Integrating Eqs. (8)–(11) for y ∈ [α(x), β(x)], using Leibniz integral rule, keep-

ing inmind the boundary conditions (4)–(5) and (6), using the asymptotic expansions
(13)–(15), we obtain the width-averaged Euler system:

divx,z [σwα] = O

(
μ1

μ2

)

,

∂

∂t
(σuα) + divx,z [σuαwα] + ∂

∂x
(σ Pα)+ = Pα

∂σ

∂x
+ O

(
μ1

μ2

)

,

μ2

(
∂

∂t
(σwα) + divx,z [σwαwα]

)

+ ∂

∂z
(σ Pα) = − σ

Fr 2
+ Pα

∂σ

∂z
+ O(μ1)

(16)

where Pα(t, x, z) + O(μ1) = P(t, x, y, z) thanks to Eq. (10). The motion of the
fluid is now in a two-dimensional domain:

〈�〉(t) = {(x, z) ∈ R; d(x) ≤ z ≤ η∗(t, x)
}
.

The irrotational condition (12) reduces to
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∂uα

∂z
= μ2

∂wα

∂x
+ O(μ1) (17)

and the boundary conditions to

∂η∗

∂t
+ uα

∂η∗

∂x
= wα + O

(
μ1

μ2

)

and Pα = O(μ1) on 〈
fs〉(t) , (18)

uα∂xd = wα + O

(
μ1

μ2

)

on 〈
b〉(t) (19)

where 〈
fs〉(t) is the free surface boundary and 〈
b〉(t) the bottom boundary of the
width-averaged fluid domain 〈�〉(t).

The function η∗ in the above expression depends only on t and x . Indeed, inte-
grating Eq. (11) for s ∈ [z, η(t, x, y)], using the previous asymptotic expansions,

and noting
D

Dt
w = ∂tw + u∂xw + v∂yw + w∂zw, we can write

Pα(t, x, z) = η(t, x, y) − z

Fr 2
+ μ2

∫ η(t,x,y)

z

D

Dt
wα(t, x, s) ds + O(μ1) .

Thus, taking the y-derivative of the above expression provides

0 = ∂yη

(
1

F2
r

+ μ2
D

Dt
wα |z=η

)

+ O(μ1) = −∂yη ∂z P|z=η + O(μ1)

Consequently, since ∂z P|z=η �= 0, we get ∂yη = O(μ1). This is the so-called flat free
surface approximation. Therefore, one can write

η(t, x, y) = η∗(t, x) + O(μ1) (20)

where the * is dropped in the following.

3.2 Depth-Averaged Equations

Integrating Eq. (17) together with the first equation of System (16) for s ∈ [d(x), z],
keeping in mind Eqs. (18)–(19), we obtain

uα(t, x, z) = ud(t, x) − μ2

∫ z

d(x)
∂xS(ud , x, s) ds + O(μ2

2)

and
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wα(t, x, z) = − 1

σ(x)

∂

∂x
(ud(t, x)S(x, z)) + O(μ2)

where S(u, x, z) = 1

σ(x)

∂

∂x
(uS(x, z)), S(x, z) = σ(x)(z − d(x)) and Xd(t, x) =

Xα(t, x, d(x)).
Thanks to the flat free surface approximation (20), one can write the section-

average of the velocity u as follows:

u = 1

A

∫ η(t,x)

d(x)

∫ β(x)

α(x)
u(t, x, y, z) dy dz

where A = ∫ η(t,x)
d(x)

∫ β(x)
α(x) dy dz = σ(x)h(t, x) is thewet area, σ = β − α is thewidth

of the channel and h = η − d is the water height.
Thus, since u(t, x, y, z) = uα(t, x, z) + O(μ1) = ud(t, x) − μ2

∫ z
d(x) ∂xS(ud , x,

s)ds + O(μ2
2), we deduce the following asymptotic expansion of u:

u = u(t, x) + μ2B0(u, x, z) + O(μ2
2) (21)

where

B0(u, x, z) = 1

A(t, x)

∫ η(t,x)

d(x)

(

σ(x)
∫ z

d(x)
∂xS(u, x, s) ds

)

dz −
∫ z

d(x)
∂xS(u, x, s) ds.

Similarly, we get for w:

w(t, x, y, z) = −S(u, x, z) + O

(
μ1

μ2

)

. (22)

Using the asymptotic expansion of u (21) and w (22) , we obtain the asymptotic
expansion of the pressure P at order O(μ2

2)

P(t, x, y, z) = Pα(t, x, z) + O(μ1) = Ph(t, x, z) + μ2Pnh(t, x, z) + O(μ2
2)

where

Ph(t, x, z) = (η(t, x) − z)

Fr
2

is the usual hydrostatic pressure and

Pnh(t, x, z) = ∫ η(t,x)
z

1

2σ(x)2
∂z
(
(σ (x)S(u, x, s))2

)
ds

− ∫ η(t,x)
z ∂tS(u, x, s) + u(t,x)

σ (x) ∂x (σ (x)S(u, x, s)) ds

is the non-hydrostatic part of the pressure.
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3.3 Section-Averaged Model

To end the asymptotic derivation, we integrate vertically the set of equations (16)
between d and η and drop all terms of order lower than μ2. We get the generalised
Serre-Green-Naghdi equations for non-uniform rectangular section:

⎧
⎨

⎩

∂t A + ∂x Q = 0

∂t Q + ∂x

(
Q2

A
+ I1(x, A) + μ2DI1(x, A, Q)

)

= I2(x, A) + μ2DI2 + O(μ2
2)

(23)
where A = σh is the wet area, Q is the water discharge, I1(x, A) = A2

2F2
r σ(x) is

the hydrostatic pressure, I2(x, A) = σ ′(x)
σ (x)

A2

2Fr 2σ(x)
− A

Fr 2
d ′(x) is the hydrostatic

pressure source term, DI1 = ∫ η(t,x)
d(x) Pnh(t, x, z)σ (x) dz is the non-hydrostatic pres-

sure and DI2 = ∫ η(t,x)
d(x) Pnh(t, x, z)σ ′(x) dz − σ(x)Pnh(t, x, d(x))d ′(x) is the non-

hydrostatic pressure source term.
Moreover, Eqs. (23) are by construction asymptotically consistent with the Euler

system (8)–(11). We have the following result:

Theorem 1 System (23) admits a total energy

E = A
u2

2
+ A

η

F2
r

− I1 + μ2

2

∫

�

S2(u, x, z) dydz (24)

which satisfies the following energy equation

∂t E + ∂x ((E + I1 + μ2DI1)u) = 0. (25)

Moreover, the quantity E is consistent with the total energy E = u2+μ1v
2+μ2w

2

2 + z
F2
r

of the Euler equation (8)–(11), in the sense that

∂t

∫

�

E dydz + ∂x

∫

�

(E + P)u dydz = ∂t E + ∂x ((E + I1 + μ2DI1)u) + O(μ2
2).

Remark 1 This is a positive feature of the approximate model (23), which provides
the richness of content for thismodel and can be used in the estimation of the accuracy
of numerical algorithms.Moreover, it is well-known that the energy conservation law
plays a fundamental role in the justification of the theory of shallow water equations.

Remark 2 As a direct consequence of (24) and (25), we are able to recover the
energy conservation law of the usual models in the case of σ ≡ 1, i.e. A = h:

• ifμ2 = 0, we recover the classical total energy of the Saint-Venant system, namely
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E = hu2

2
+ h(h + 2d)

2F2
r

.

• if μ2 �= 0, we recover the classical total energy of the Serre-Green-Naghdi system
(see for instance [9]), namely

E = hu2

2
+ h(h + 2d)

2F2
r

+ μ2

(
h3

6
(∂xu)2 − d ′ h

2

2
∂xu + (d ′)2

2

)

.

4 A Well-Balanced Finite Volume Approximation

The main drawback of Eqs. (23) is that it has third order terms in space which may
lead to instabilities at the numerical level. Therefore, we first propose a more stable
formulation of Eqs. (23) before presenting its numerical approximation.

Skipping the technical details, defining a linear operator L (where L is defined
below)

L[A, d, σ ](u) = AL[A, d, σ ]
( u

A

)
,

one can show that System (23) can be written:

⎧
⎨

⎩

∂t A + ∂x Q = 0
(
Id − μ2L[A, d, σ ])

(

∂t (Au) + ∂x

(
Q2
A

))

+ ∂x I1(x, A) + μ2AQ[A, d, σ ]
(
Q
A

)
= I2(x, A) + O(μ2

2)
(26)

where Q = Au is the discharge, Id is the identity operator, L is a linear operator

L[A, d, σ ](u) = 1
A

[
∂x
(
T [A, d, σ ] (u, σ )

)− T [A, d, σ ] (u, ∂xσ)
]

+ 1
Aσ(x)d ′(x) T [A, d, σ, z = d(x)] (u)

and Q is a quadratic operator

Q[A, d, σ ](u) = 1
A

[
∂x
(
G[A, d, σ ] (u, σ )

)− G[A, d, σ ] (u, ∂xσ)
]

+ 1
Aσ(x)d ′(x) G[A, d, σ, z = d(x)] (u)

with T , G are given by

T [A, d, σ, z](u) = ∂x (u)

∫ η

z

S(x, s)

σ (x)
ds + u

∫ η

z

1

σ(x)
∂x S(x, s) ds,

and

G[A, d, σ, z](u) = ∫ ηz 2 (∂x u)2 S(x,s)
σ (x) + u2

σ(x)

(
∂x S(x,s)∂x σ(x)

σ (x) − ∂x ∂x S(x, s)
)

+ ∂x

(
u2
2

)
S(x,s)∂x σ(x)

σ (x)2
ds
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with

X[A, d, σ ](u, ψ) =
∫ η

d(x)
ψX[A, d, σ, z](u) dz.

In particular, one can explicitly compute those operators:

• if σ ∈ R
+∗ and d ∈ R are constant then we recover the standard one-dimensional

SGN equations (see for instance [14–16]) over flat bottom with

L[A, d, σ ](u) = L0[A, σ ](u) = 1

σh
∂x

(
σh3

3
∂x u

)

and

Q[A, d, σ ](u) = Q0[A, σ ](u) = 1

σh
∂x

(
2

3
σh3 (∂x u)2

)

.

• if σ ∈ R
+∗ is constant and d = d(x) then we recover the standard one-dimensional

SGN equations (see for instance [14–16]) over uneven bottom with

L[A, d, σ ](u) = L1[A, d, σ ](u) = L0[A, σ ](u) − 1

σh
∂x

(
σh2

2
ud ′(x)
)

+ h

2
∂x ud

′(x) − u
(
d ′(x))2

and

Q[A, d, σ ](u) = Q1[A, d](u) = Q0[A, σ ](u) + 1

σh
∂x

(

σ
h2

2
u2d ′′(x)

)

+ h (∂x u)2 d ′(x) + u2d ′(x) d ′′(x).

• if σ = σ(x) and d = d(x) then we get the generalised one-dimensional SGN
equations for non-uniform rectangular channel over uneven bottom with

L[A, d, σ ](u) = L1[A, d, σ ](u) + 1

σh
∂x

(

σ ′(x) h
3

3
u

)

− σ ′(x)
σ

(

∂x u
h2

3
+ u

h2

3

σ ′(x)
σ

− u
h

2
d′(x)
)

and
Q[A, d, σ ](u) = Q1[A, d, σ ](u) + 1

σh ∂x

(
(
σ ′(x))2 u2

σ
h3
3

)

+ 1
σh ∂x

(

d′(x)σ ′(x)u2 h2
2

)

− 1
σh ∂x

(

σ ′(x)u2 h3
3

)

+ ∂x

(

∂x

(
u2
2

)

σ ′(x) h33
)

− 1
σh σ ′(x)R[A, d, σ ](u)

with
R[A, d, σ ](u) = (∂x u)2 h3

3 + u2
(

σ ′(x)
σ

)2
h3
3 + u2

(
σ ′(x)

σ

)

d′(x) h22 − u2
(

σ ′′(x)
σ

)2
h3
3 + u2d′′(x) h22

+∂x

(
u2
2

)
σ ′(x)

σ
h3
3 − u2d′(x) σ ′(x)

σ
h2
2 − u2σ ′(x) (d′(x))2 h + u2σ ′′(x)d′(x) h22

−∂x

(
u2
2

)

σ ′(x)d′(x) h22 .

It is known that third order derivatives involved in the initial model (23) may create
high frequencies instabilities, but the presence of the

(
Id − μ2L[A, d, σ ])−1

in the
second equation of (26) stabilises the equations with respect to these perturbations.
Therefore, in the following, we construct a numerical scheme for Eqs. (26) instead
of Eqs. (23).
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4.1 Numerical Method

This section is devoted to the numerical method to solve the reformulated dispersive
model (26). It is rather natural to split the hyperbolic part to the dispersive one as
done by several authors (see for instance [3–5]).

Let N ∈ N
∗. Let us consider the following uniform mesh on [0, Lc]. Cells are

denoted for every i ∈ [0, N + 1], by mi = (xi−1/2, xi+1/2) with xi = xi−1/2+xi+1/2

2 the
cell center and δx = xi+1/2 − xi−1/2 the space mesh. The interfaces x1/2 = 0 and
x = xN+1/2 denote the upstream and the downstream ends. We also consider a time
discretisation tn defined by tn+1 = tn + δtn where the time step δtn is computed
through a CFL condition related to the hyperbolic part.

Let us first highlight that the still water steady state for Eqs. (26) is independent
of μ2. Indeed, one has ∀μ2 > 0, the still water steady state equation reads

u = 0,
A

σ
+ d = h0

for some positive h0. As a consequence, the construction of a well-balanced scheme
can be easily achieved considering only the hyperbolic part of Eqs. (26), for instance,
by the use of the hydrostatic reconstruction (see for instance [1]).

Let us define di+1/2 = max(di , di+1) where di = 1
δx

∫

mi
d(x)dx , σi+1/2 =

max(σi , σi+1) where σi = 1
δx

∫

mi
σ(x)dx and let us define the reconstructed states

A−
i+1/2 = σi+1/2

(
Ai

σi
+ di − di+1/2

)

, A+
i+1/2 = σi+1/2

(
Ai+1

σi+1
+ di+1 − di+1/2

)

with
U−

i+1/2 = (A−
i+1/2, A

−
i+1/2ui ), U+

i+1/2 = (A+
i+1/2, A

+
i+1/2ui+1)

where Ui = (Ai , Aiui )T ≈ 1
δx

∫

mi
(A, Au)T dx .

Let us introduce the flux

F1(U ) = Q, F2(U ) = Q2/A and F3(x,U ) = I1(x, A) + μ2G[A, d, σ ] (u, σ )

and

S(x,U ) = I2 + μ2G[A, d, σ ] (u, ∂xσ) − μ2σ(x)d ′(x) G[A, d, σ, z = d(x)] (u) .

Then, one can write System (26) as follows:

∂t A + ∂x F1(U ) = 0(
Id − μ2L[A, d, σ ]) (∂t Q + ∂x F2(U )) + ∂x F3(x,U ) − S(x,U ) = 0

With these settings, we define the following numerical scheme:
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An+1
i = An

i − δtn
δx

(
F1

(
U−,n

i+1/2,U
+,n
i+1/2

)
− F1

(
U−,n

i−1/2,U
+,n
i−1/2

))

Q∗
i = Qn

i − δtn
δx

(
F2

(
U−,n

i+1/2,U
+,n
i+1/2

)
− F2

(
U−,n

i−1/2,U
+,n
i−1/2

))

Qn+1
i = Q∗

i − δtn
δx (Y n)i

where

AnY n =
(
F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
− F3

(
xi−1/2,U

−,n
i−1/2,U

+,n
i−1/2

)
+ μ2Nn

i

)

1≤i≤N
.

The matrix An is the cell-centered approximation of the linear operator
(
Id −

μ2L[A, d, σ ]) andNn
i is the cell-centered approximation of−G[A, d, σ ] (u, ∂xσ) +

σ(x)d ′(x) G[A, d, σ, z = d(x)] (u).
The numerical fluxes are defined by

F1

(
U−,n

i+1/2,U
+,n
i+1/2

)
= F1
(
U−,n

i+1/2

)
+F1
(
U+,n

i+1/2

)

2 − sni+1/2(A
+,n
i+1/2 − A−,n

i+1/2)

F2

(
U−,n

i+1/2,U
+,n
i+1/2

)
= F2
(
U−,n

i+1/2

)
+F2
(
U+,n

i+1/2

)

2 − sni+1/2(Q
+,n
i+1/2 − Q−,n

i+1/2)

F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
= F3
(
xi+1/2,U

−,n
i+1/2

)
+F3
(
xi+1/2,U

+,n
i+1/2

)

2 +
(

An
i
2

2σi F2
r

− A−,n
i+1/2

2

2σi+1/2F2
r

)

F3

(
xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2

)
= F3
(
xi+1/2,U

−,n
i+1/2

)
+F3
(
xi+1/2,U

+,n
i+1/2

)

2 +
(

An
i+1

2

2σi+1F2
r

− A+,n
i+1/2

2

2σi+1/2F2
r

)

such that whenever μ2 = 0, we recover the classical numerical scheme1 for the
hyperbolic part

Un+1
i = Un

i − δtn
δx

(
F (xi+1/2,U

−,n
i+1/2,U

+,n
i+1/2) − F (xi−1/2,U

−,n
i−1/2,U

+,n
i−1/2)
)

with F (x,U, V ) = (F1(U, V ),F2(U, V ) + F3(x,U, V )). In these expressions,

si+1/2 = max
j=1,2

∣
∣
∣λ j (xi+1/2,U

−,n
i+1/2)

∣
∣
∣ ,

∣
∣
∣λ j (xi+1/2,U

+,n
i+1/2)

∣
∣
∣

where λ j (x,U ) = Q/A + (−1) j
√

A
σ(x)F2

r
, j = 1, 2 are the eigenvalues of the Jaco-

bian matrix of (F1, F2 + F3)
T .

The numerical scheme is consistent and stable under the CFL condition

max
1≤i≤N

(∣
∣λ1(xi ,U

n
i )
∣
∣ ,
∣
∣λ2(xi ,U

n
i )
∣
∣
) δtn

δx
≤ 1 .

1For the sake of simplicity and clarity, we have presented the finite volume method using the
Rusanov solver but the method is not limited to this one.
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4.2 Propagation of a Solitary Wave

In this section, we test the accuracy of themethod andwe show numerically the influ-
ence of the section variation in the case of the propagation of a solitary wave. For this
purpose, we consider the exact solitary wave solutions of the Green-Naghdi equa-
tions in the one-dimensional setting over a flat bottom (see [15]), given in variables
with dimensions, by

η(t, x) = asech2(k(x − ct)), u(t, x) = c

(
η(t, x)

η(t, x) + z0

)

with k =
√
3a

2z0
√
z0 + a

and c = √g(z0 + a) (27)

where z0 is the depth of the fluid and a is the relative amplitude.

Accuracy
The propagation of the solitary wave (27) is initially centered at x0 = 10 m with a
relative amplitude a = 0.2 m over a constant water depth z0 = 2 m. The computa-
tional domain is Lc = 100 m and it is discretized with N cells. The single solitary
wave propagates from left to right. In this test, since the solitary wave is initially
far from boundaries, the boundary conditions do not affect the computation, thus we
choose to impose free boundary conditions at the downstream and upstream ends.
The exact solution is computed in a channel of width σ = 1.

In what follows, we quantify the numerical accuracy of our numerical scheme
by computing the numerical solution for this particular test case for an increasing
number of cells N over a duration T = 20 s. Starting with N = 100 number of cells,
we successively multiply the number of cells by two. For all n, we compare, in Fig. 2,
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Mn := max0≤i≤N+2(hni ) of our numerical solution provided by Eqs. (26) with the
exact one M(tn) := max h(tn, x)x∈[0,Lc] = 2.2 given by (27). One can easily remark
that the first order discretisation is not accurate for long time simulation due to the
numerical dissipation. However, to limit the numerical dissipation of the first order
numerical scheme, one can either limit the simulation time or consider a very large
number of cells. However, it is better to increase the order of the numerical scheme
but this is left to future work. Therefore, in what follows, we consider a shorter
simulation time and a large number of cells, just to illustrate the influence of the
variation of the channel.

Influence of the Section Variation
We consider again the propagation of a solitary wave initially centered at x0 = 10
m of relative amplitude a = 0.2 m, over a constant water depth z0 = 2 m onto a
computational domain of Lc = 50 m and discretized with N = 5000 cells. The final
simulation time is T = 8 s. Initially starting with (η(0, x), u(0, x)) (see Eqs. (27)),
we compute the numerical simulation for the channels defined by

σ(x; ε) = β(x; ε) − α(x; ε) with β = 1

2
− ε

2
exp
(−ε2
(
x − L/2)2

))
and α = −β

with ε = 0, ε = 0.1, ε = 0.2, ε = 0.3 and ε = 0.4. The obtained results are presented
in Fig. 3. In Fig. 3a, for each geometry, we show the evolution of the maximum of the
water level Mn := max0≤i≤N+2(hni ). As expected, since the first part for x ≤ 25 is
linearly converging, thewater level increaseswhile for x > 25, the channel is linearly
diverging and therefore, the amplitude of the water level decreases. Moreover, in all
numerical simulations, the mass is conserved. Indeed, for each value of ε, we have
displayed in Fig. 3b, the ratio of mn

m0 wheremn := 1
N+2

∑N+1
i=0 An

i is the mass of water

at time tn . The ratio mn

m0 is almost equal to 1, up to the order of accuracy of the
numerical scheme.

In what follows, we quantify the numerical accuracy of our numerical scheme.
Starting with N = 100 number of cells, we successively multiply the number of cells
by two. The errors on the water surface deformation are presented in Table1 and in
Table2. These errors are computed at t = 8 s using the L2:

‖ηnum − ηref‖2 =
√

δx
∑

i

∣
∣ηnumi (t = 8) − ηref(t = 8, xi )

∣
∣

and the L∞ norms where ηref is the exact solution in the case ε = 0 and is a reference
one computed with 10 000 cells for ε = 0.4. Since the results are almost the same
whatever ε is, we have decided to present only the results for ε = 0 and ε = 0.4 in
Table1 and in Table2.

As expected, the obtain numerical order is slow because of the numerical dissi-
pation of the solitary wave (as already pointed out in several works, see for instance
[3] for which we obtain almost the same order of convergence in the case of uni-
form section). Moreover, as expected, cross-sectional variations have no influence
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Table 1 Convergence rate of the L2 error for ε = 0. The order is computed through first order
interpolation polynomial

N ‖ηnum − ηexact‖2 ‖ηnum − ηexact‖∞
100 0.0789 0.0449

200 0.0497 0.0288

400 0.0304 0.0180

800 0.0198 0.0116

1600 0.0153 0.0081

3200 0.0138 0.0062

Order 0.53 0.58

Table 2 Convergence rate of the L2 error for ε = 0.4. The reference solution is computed with 10
000 cells. The order is computed through first order interpolation polynomial

N ‖ηnum − ηref‖2 ‖ηnum − ηref‖∞
100 0.05212 0.02533

200 0.02096 0.01082

400 0.01079 0.00554

800 0.00748 0.00503

1600 0.00635 0.00412

3200 0.00505 0.00300

Order 0.64 0.56

on the convergence rate. Let us just emphasise that the convergence rates are slightly
better in the case of non-uniform section because we are comparing our results to a
reference solution and not to the exact one.

5 Conclusions and Perspectives

We have presented the derivation of a new dispersive model for open channel with
non-uniform rectangular section. This model generalises the usual Serre-Green-
Naghdi equation. We have presented its numerical finite volume approximation for
which we have proposed two simple test cases. In a forthcoming paper, we will focus
on the case of arbitrary channel section and we will propose a high order numerical
scheme.
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