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Abstract In this paper we study a dispersive shallowwater type model derived from
the free surface compressible Navier-Stokes system. The compressible effects allow
to capture the acoustic-like waves propagation and can be seen as a relaxation of an
underlying incompressible model. The first interest of such a model is thus to capture
both acoustic and water waves. The second interest lies in its numerical approxima-
tion. Indeed, at the discrete level, the pseudo-compressibility terms circumvent the
resolution of an elliptic equation to capture the non-hydrostatic part of the pressure.
This drastically reduces the cost of the numerical resolution of dispersive models
especially in 2d and 3d.

A.-S. Bonnet-Ben Dhia · S. Impériale
Inria Saclay, rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
e-mail: Anne-Sophie.Bonnet-Bendhia@ensta-paris.fr

S. Impériale
e-mail: Sebastien.Imperiale@inria.fr

M.-O. Bristeau · E. Godlewski · A. Mangeney · J. Sainte-Marie (B)
Inria Paris, 2 rue Simone Iff, 75589 Paris Cedex 12, France
e-mail: Jacques.Sainte-Marie@inria.fr

M.-O. Bristeau
e-mail: Marie-Odile.Bristeau@inria.fr

E. Godlewski
e-mail: Edwige.Godlewski@upmc.fr

A. Mangeney
e-mail: Anne.Mangeney@ipgp.fr

Sorbonne University, Paris-Diderot University, CNRS, Laboratoire Jacques-Louis Lions,
75005 Paris, France

S. Impériale
Laboratoire de mécanique des solides, Route de Saclay, 91120 Palaiseau, France

A. Mangeney
Institut de Physique du Globe de Paris, Seismology Group, Paris Diderot University,
1 rue Jussieu, 75005 Paris, France

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. L. Muñoz-Ruiz et al. (eds.), Recent Advances in Numerical Methods for Hyperbolic PDE Systems,
SEMA SIMAI Springer Series 28, https://doi.org/10.1007/978-3-030-72850-2_10

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72850-2_10&domain=pdf
mailto:Anne-Sophie.Bonnet-Bendhia@ensta-paris.fr
mailto:Sebastien.Imperiale@inria.fr
mailto:Jacques.Sainte-Marie@inria.fr
mailto:Marie-Odile.Bristeau@inria.fr
mailto:Edwige.Godlewski@upmc.fr
mailto:Anne.Mangeney@ipgp.fr
https://doi.org/10.1007/978-3-030-72850-2_10


210 A.-S. Bonnet-Ben Dhia et al.

Keywords Shallow water flows · Dispersive models · Compressible models ·
Water and acoustic waves · Projection-correction schemes · Finite volumes

Math. classification. 65M12 · 74S10 · 76M12 · 35L65 · 35Q30 · 35Q35 · 76D05 ·
76Q05

1 Presentation

The non linear shallow water model with topography [7] is widely used to describe
geophysical flows and an extensive literature exists for its numerical approxima-
tion [3, 6, 10, 22, 25]. But the classical shallow water equations rely on the hydro-
static assumption and many shallow water type models taking into consideration the
dispersive effects have been proposed and studied in the literature, see [2, 8, 9, 12,
13, 19, 23, 27, 28], the list being non-exhaustive.

Considering a two-dimensional domain � ⊂ R
2 delimited by the boundary � =

�in ∪ �out ∪ �s as described in Fig. 1-(a), some of the authors have proposed a family
of 2d shallow water dispersive models written under the form [2]

∂h

∂t
+ ∂(hu)

∂x
+ ∂(hv)

∂y
= 0, (1)

∂(hu)

∂t
+ ∂

∂x

(
hu2 + g

2
h2 + hp

)
+ ∂(huv)

∂y
= −(gh + γ 2

2
p)

∂zb
∂x

, (2)

∂(hv)

∂t
+ ∂(huv)

∂x
+ ∂

∂y

(
hv2 + g

2
h2 + hp

)
= −(gh + γ 2

2
p)

∂zb
∂y

, (3)

∂(hw)

∂t
+ ∂(huw)

∂x
+ ∂(hvw)

∂y
= γ p, (4)

γw = −h
∂u

∂x
+ γ 2

2
u

∂zb
∂x

− h
∂v

∂y
+ γ 2

2
v
∂zb
∂y

, (5)

where u(t, x) = (u, v, w)T is the velocity of the fluid with x = (x, y), p is the non-
hydrostatic part of the fluid pressure, the total pressure is given by ptot = gh/2 + p
and g represents the gravity acceleration. The value of the parameter γ ∈ R will be
discussed in Remark 1. The water depth (resp. the topography profile) is denoted
h(t, x) (resp. zb(x)) and the free surface is defined by (see Fig. 1-(b))

η(t, x) := h(t, x) + zb(x). (6)

For smooth solutions, the system (1)–(5) satisfies the following energy balance

∂E

∂t
+ ∇0 ·

(
u(E + g

2
h2 + hp)

)
= 0, (7)
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(a) (b)

Fig. 1 Model domain and notations, a view from above and b vertical cross section

with the operator ∇0 = ( ∂
∂x ,

∂
∂y , 0)

T and

E = h(u2 + v2 + w2)/2 + g(η2 − z2b)/2. (8)

The system (1)–(5) defines a family {Mγ } of dispersive models written in the
more compact form

∂h

∂t
+ ∇0 · (hu) = 0, (9)

∂(hu)

∂t
+ ∇0 · (hu ⊗ u) + ∇0(

g

2
h2) + ∇γ

sw p = −gh∇0zb, (10)

divγ
sw(u) = 0, (11)

where the shallowwater versions of the gradient and divergence operators are defined
by

∇γ
sw f =

⎛
⎝
h ∂ f

∂x + f ∂ζ

∂x
h ∂ f

∂y + f ∂ζ

∂y

−γ f

⎞
⎠ , (12)

divγ
sw(w) = ∂(hw1)

∂x
+ ∂(hw2)

∂y
− w1

∂ζ

∂x
− w2

∂ζ

∂y
+ γw3, (13)

for w = (w1, w2, w3)
T and

ζ = h + γ 2

2
zb. (14)

Whereas ζ depends on γ , for the sake of simplicity, we have adopted a simplified
notation and ζγ is replaced by ζ .

The model studied in this paper consists in a compressible version of the
model (9)–(11) where the divergence free constraint (11) is replaced by an evolution
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equation—a relaxed version of (11)—modeling the propagation of acoustic-type
waves.

Remark 1 The value of the parameter γ is discussed in [2]. Here we just recall the
two extreme hydraulic regimes that can be represented by shallow water models.
First the case where u � √

gh i.e. the fluid velocity is very small compared to the
water wave velocity or equivalently the Froude number is very low. In this situation
the value γ = √

3 is well adapted sinceM√
3 corresponds to the well known Green-

Naghdi model [23]. Another typical situation is the case of advection dominated
flows—u cannot be neglected with respect to

√
gh—where the value γ = 2 is more

appropriate.

The numerical analysis of the system (9)–(11) is studied in [2] and a numerical
scheme based on a projection-correction scheme [14] has been proposed. Since the
model (9)–(11) appears as an extension of the classical Saint-Venant system, the
hyperbolic part is treated using a finite volume approach—explicit in time—coupled
with the resolution of a saddle point problem—implicit in time—corresponding to
an elliptic-type equation for the contribution of the dispersive terms.

Because of the divergence free constraint (11) used to approximate the non-
hydrostatic part of the pressure p, an implicit treatment is natural (see Sect. 3.2)
but it significantly increases the computational costs. Indeed, an explicit in time
scheme constrained by a CFL condition is required for the approximation of the
hyperbolic part implying small time steps but simple computations of the numerical
fluxes. Whereas the dispersive terms are obtained though the resolution of an elliptic
equation for the whole domain. Therefore, for the numerical approximation of the
model (9)–(11) over a 2d geometrical domain discretized with N cells, at each time
step we have to compute O(N ) numerical fluxes and to perform the resolution of a
linear symmetric problem. For a stationary linear symmetric problem having at our
disposal a good preconditioner, the resolution cost can be estimated as O(N log N )

computations but in our situation, the matrices depend on time—and hence have to
be built at each time step—and we do not have any high-performance preconditioner.
Hence the computational costs can be estimated as O(N 3/2), the resolution of the
elliptic part becoming very limitative.

In this paper we propose, starting from the compressible Navier-Stokes equations,
a modified version of (9)–(11) allowing to propagate both water and acoustic-type
waves. The proposed model consists in modifying Eq. (11) in order to include com-
pressibility effects. The new formulation has another advantage since it is possible
to discretize it with a fully explicit time scheme and the computational costs are
asymptotically O(N/

√
ε),

√
ε being a parameter that will be precised later. Even if

the parameter ε can be small, in 2d cases or with fine meshes we have εN 	 1 and
hence O(N/

√
ε) � O(N 3/2).

This paper is organized as follows. First starting from the 3d compressible Navier-
Stokes equations, we derive a 2d shallow water model where the acoustic waves—
that can be seen as pseudo-compressibility effects—are considered. Then a numer-
ical scheme—explicit in time—is proposed for this 2d model and its properties are
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studied. Some stability properties—especially a discrete entropy equality—for the
proposed scheme are established in the 1d context. Finally for a well known test
case, an illustration comparing the implicit strategy and the resolution of the pseudo-
compressible model are presented and the associated computational costs are given.

2 A Compressible and Dispersive Model in Shallow Water
Context

In this section, we derive a shallow water approximation of the 3d compressible
Navier-Stokes with free surface. The model obtained in Proposition 5 propagates
both water and acoustic waves and its dispersive properties are studied. Finally,
considering the acoustic velocity is very large compared to the gravity wave velocity,
we propose a new formulation as a pseudo-compressible shallow water dispersive
model.

2.1 The Compressible Navier-Stokes-Fourier System

We consider the classical compressible Navier-Stokes system describing a free sur-
face gravitational 3d flow over a bottom topography zb(x, y) (see Fig. 2),

∂ρ̃

∂t
+ ∇ · (ρ̃U) = 0, (15)

∂(ρ̃U)

∂t
+ ∇ · (ρ̃U ⊗ U) + ∇ p̃ − ∇ · σ = ρ̃g, (16)

∂

∂t

(
ρ̃

|U|2
2

+ ρ̃ẽ

)
+ ∇ ·

((
ρ̃

|U|2
2

+ ρ̃ẽ + p̃ − σ
)
U
)

= −∇ · QT̃ + ρ̃g · U, (17)

Fig. 2 Flow domain with
water height h(t, x), free
surface η(t, x) and bottom
zb(x)
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where U = (u1, u2, u3)T is the velocity, ρ̃ is the density, p̃ is the fluid pressure, σ is
the viscosity stress and g = (0, 0,−g)T represents the gravity forces. The internal
specific energy is denoted by ẽ, the temperature by T̃ . The symbol ∇ denotes ∇ =(

∂
∂x ,

∂
∂y ,

∂
∂z

)T
. In the following, we will also use the notation v = (u1, u2)T for the

horizontal velocity and ∇x,y corresponds to the projection of ∇ on the horizontal

plane i.e. ∇x,y =
(

∂
∂x ,

∂
∂y

)T
. The square norm of the velocity vector is |U|2 = u21 +

u22 + u23.
The term ρ̃g · U = −ρ̃gu3 in (17) prevents this equation from being directly a

local energy conservation law. But multiplying the mass conservation (15) by z we
get the identity

∂(zρ̃)

∂t
+ ∇ · (zρ̃U) = ρ̃u3. (18)

Computing the integral along the vertical axis of relation (18) and using the boundary
conditions (24), (22)—that are described below—one obtains

∂

∂t

∫ η

zb

gzρ̃dz + ∇x,y ·
∫ η

zb

gzρ̃vdz =
∫ η

zb

gρ̃u3dz, (19)

which is the integrated local conservation of gravitational potential energy.
Regarding constitutive equations, we assume that the fluid is Newtonian i.e. the

viscous part of the Cauchy stress depends linearly on the velocity and is given by

σ = ξ∇ · U I + 2μD(U),

where μ is the viscosity coefficient, ξ is the second viscosity and D(U) = (∇U +
(∇U)T )/2. The heat flux QT̃ obeys the Fourier law QT̃ = −λ̃∇ T̃ , which explains
the name “Navier-Stokes-Fourier” which is often given to system (15)–(17), λ̃ being
the heat conductivity.

Among the thermodynamic variables ρ̃, p̃, T̃ , ẽ, only two of them are independent.
Indeed, we have a state law under the form

f (ρ̃, T̃ , p̃) = 0, (20)

where f is a real valued function. We give some examples below. Moreover, the
thermodynamic variables are linked by the Gibbs identity

dẽ = p̃

ρ̃2
dρ̃ + T̃ ds, (21)

where s is the specific entropy of the fluid. Classically, in order to have a convenient
entropy dissipation one has to assume that −s is a convex function of 1/ρ̃, ẽ.
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2.1.1 Boundary Conditions at the Bottom

Let nb and ns be the unit outward normals at the bottom and at the free surface
respectively, defined by (see Fig. 2)

nb = 1√
1 + |∇x,yzb|2

(∇x,y zb
−1

)
, ns = 1√

1 + |∇x,yη|2
(−∇x,yη

1

)
.

On the bottom we prescribe an impermeability condition

U · nb = 0, (22)

and a friction condition given e.g. by a Navier law

(
(σ − pI) · nb

) · ti = −κU · ti , i = 1, 2, (23)

with κ a Navier coefficient and (ti , i = 1, 2) two tangential vectors.

Remark 2 The formulation of the two boundary conditions (22), (23) means that
the fluid remains in contact with the topography. Besides, we assume throughout the
paper that the total pressure remains non-negative.

2.1.2 Boundary Conditions at Free Surface

On the free surface z = η(t, x, y), we use the kinematic boundary condition

∂η

∂t
+ v(t, x, y, η) · ∇x,yη − u3(t, x, y, η) = 0, (24)

and the no stress condition

(σ − pI) · ns = −pa(t, x, y)ns + W (t, x, y)ts, (25)

where pa(t, x, y), W (t, x, y) are two given external forcings, pa (resp. W ) mimics
the effects of the atmospheric pressure (resp. the wind blowing at the free surface)
and ts is a given unit horizontal vector. Throughout the paper we assume pa = cst ,
W = 0.

2.1.3 Boundary Conditions for the Temperature

The heat flux in Eq. (17) requires to define boundary conditions for the temperature.
Moreover when the state law (20) will be precised, the definition of the temperature
at each boundary will be mandatory. We can choose either Neumann or Dirichlet
conditions namely at the bottom
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λ
∂ T̃

∂nb
= FT̃ 0

b , (26)

or
T̃b = T̃ 0

b , (27)

and at the free surface

λ
∂ T̃

∂ns
= FT̃ 0

s , (28)

or
T̃s = T̃ 0

s , (29)

where FT̃ 0
b , FT̃

0
s are two given temperature fluxes and T̃ 0

b , T
0
s are two given tem-

peratures.

2.2 Thermodynamic Considerations

In the following proposition, we propose a formulation of the compressible Euler
system—corresponding to the system (15)–(17) with λ = ξ = μ = 0—where the
acoustic speed explicitly appears. The system is deduced from the compressible
Navier-Stokes system (15)–(17) with the boundary conditions (22)–(25).

Proposition 1 Considering a state law under the form

p̃ = f (ρ̃, T̃ ), (30)

the compressible Euler system can be rewritten under the form

∂ρ̃

∂t
+ ∇ · (ρ̃U) = 0, (31)

∂(ρ̃U)

∂t
+ ∇ · (ρ̃U ⊗ U) + ∇ p̃ = ρ̃g, (32)

∂(ρ̃ p̃)

∂t
+ ∇ · (ρ̃U p̃) + ρ̃2c̃2∇ · U = 0, (33)

where the sound speed c̃ is defined below by (47).
The system (31)–(33) is completed with the boundary conditions (22), (24)

and (25) which becomes

p̃(t, x, y, η) = pa(t, x, y) = cst. (34)



Pseudo-compressibility, Dispersive Model and Acoustic Waves ... 217

Smooth solutions of the system (31)–(33) satisfy the energy balance

∂

∂t

(
ρ̃

|U|2
2

+ ρ̃ẽ

)
+ ∇ ·

((
ρ̃

|U|2
2

+ ρ̃ẽ + p̃
)
U
)

= ρ̃g · U, (35)

where the internal energy ẽ satisfies the equation

∂(ρ̃ẽ)

∂t
+ ∇ · (ρ̃ẽU) = − p̃∇ · U. (36)

Notice that in this proposition we have kept the same notations even if we have
switched from the Navier-Stokes to the Euler system.

For the Euler system (31)–(33)—and also for theNavier-Stokes system—a crucial
point is the duality relation between the gradient and divergence operators which
writes

∫

�×[zb,η]
p̃∇.Vdxdz =

∫

∂(�×[zb,η])
p̃V.nds −

∫

�×[zb,η]
V.∇ p̃dxdz. (37)

It will be important to have, in the shallowwater context, a relation analogous to (37),
see (95) below.

Proof (Proposition 1) The main point of this proof is the derivation of Eq. (33).
Taking the scalar product of Eq. (16) by U yields the kinetic energy equation

∂

∂t

(
ρ̃

|U|2
2

)
+ ∇ ·

((
ρ̃

|U|2
2

+ p̃ − σ
)
U
)

= p̃∇ · U − σ : D(U) + ρ̃g · U. (38)

Subtracting (38) to (17) gives the equation for the internal energy

∂(ρ̃ẽ)

∂t
+ ∇ · (ρ̃ẽU) = − p̃∇ · U + σ : D(U) − ∇ · QT̃ , (39)

or equivalently

ρ̃
Dẽ

Dt
= − p̃∇ · U + σ : D(U) − ∇ · QT̃ , (40)

with the classical notation D/Dt ≡ ∂/∂t + U · ∇. We can write the continuity equa-
tion (15) as

ρ̃
Dρ̃

Dt
+ ρ̃2∇ · U = 0. (41)

With the thermodynamic relation (21) one can write ds = dẽ/T̃ − ( p̃/T̃ ρ̃2)dρ̃, thus
multiplying (40) by 1/T̃ and (41) by − p̃/T̃ ρ̃2 we obtain
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ρ̃
Ds

Dt
= 1

T̃
σ : D(U) − 1

T̃
∇ · QT̃ . (42)

This can be written also

∂(ρ̃s)

∂t
+ ∇ · (ρ̃sU) = 1

T̃
σ : D(U) − ∇ · QT̃

T̃
− QT̃ · ∇ T̃

T̃ 2
, (43)

which gives the increase with time of
∫

ρ̃s, the second principle of thermodynamics.
The state law (20) plays the role of a closure relation. When written under the

form (30), it allows to write

d p̃ =
(

∂ p̃

∂ρ̃

)

T̃

dρ̃ +
(

∂ p̃

∂ T̃

)

ρ̃

dT̃ . (44)

Therefore, from Eqs. (44), (42) and using Eqs. (41) we get

ρ̃
D p̃

Dt
+ ρ̃2

((
∂ p̃

∂ρ̃

)

T̃

+
(

∂ p̃

∂ T̃

)

ρ̃

(
∂ T̃

∂ρ̃

)

s

)
∇ · U =

1

T̃

(
∂ p̃

∂ T̃

)

ρ̃

(
∂ T̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
.(45)

Using the chain rule this can be written

ρ̃
D p̃

Dt
+ ρ̃2c̃2∇ · U = 1

T̃

(
∂ p̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
, (46)

with the sound speed c̃ given by

c̃2 =
(

∂ p̃

∂ρ̃

)

T̃

+
(

∂ p̃

∂ T̃

)

ρ̃

(
∂ T̃

∂ρ̃

)

s

=
(

∂ p̃

∂ρ̃

)

s

. (47)

And coupled with (15), Eq. (46) writes

∂(ρ̃ p̃)

∂t
+ ∇ · (ρ̃U p̃) + ρ̃2c̃2∇ · U = 1

T̃

(
∂ p̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
, (48)

Equations (15), (16) and (48) with λ = ξ = μ = 0 give Eqs. (31)–(33).
Using (36), taking the scalar product of (32)withU and after simple computations,

we obtain the energy balance (35). ��
Remark 3 Whereas, Eq. (31) expresses the local mass conservation, the volume
variations can be related to the temperature variations. Indeed, since
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dT̃ =
(

∂ T̃

∂ρ̃

)

s

dρ̃ +
(

∂ T̃

∂s

)

ρ̃

ds,

using relations (42) and (41)we get the following equation governing the temperature

ρ̃
DT̃

Dt
+ ρ̃2

(
∂ T̃

∂ρ̃

)

s

∇ · U = 1

T̃

(
∂ T̃

∂s

)

ρ̃

(
σ : D(U) − ∇ · QT̃

)
. (49)

2.3 Acoustic Waves and Water Waves

The system (31)–(33)—completedwith theboundary conditions (22), (24) and (34)—
is a compressible model with a free surface and hence acoustic and water waves can
propagate.

Let us define p̂ by

p̃ = pa +
∫ η

z
ρ̃gdz + p̂,

with pa = cst thus p̂ denotes the non-gravitational part of the pressure. Then the
system (31)–(33) with (22) and (24) also writes

∂ρ̃

∂t
+ ∇ · (ρ̃U) = 0, (50)

∂U
∂t

+ (U · ∇)U + 1

ρ̃
∇ p̂ + 1

ρ̃
∇
∫ η

z
ρ̃gdz1 = g, (51)

∂

∂t

(∫ η

z
ρ̃gdz + p̂

)
+ U · ∇

(∫ η

z
ρ̃gdz + p̂

)
+ ρ̃c̃2∇ · U = 0, (52)

∂h

∂t
+ vs · ∇x,yh = u3,s, (53)

where the subscript corresponds to the value of the free surface z = η.
Assuming a flat bottom and in a two dimensional setting (x, z), the system (50)–

(53) has the following compact formulation

M
∂Y

∂t
+ Ax

∂Y

∂x
+ Az

∂Y

∂z
= S, (54)
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with

Y =

⎛
⎜⎜⎜⎜⎝

ρ̃

u1
u3
p̂
h

⎞
⎟⎟⎟⎟⎠

, Ax =

⎛
⎜⎜⎜⎜⎝

u1 ρ̃ 0 0 0
g(h−z)

ρ̃
u1 0 1

ρ̃
g

0 0 u1 0 0
g(h − z)u1 ρ̃c̃2 0 u1 gρ̃u1

0 0 0 0 u1,s

⎞
⎟⎟⎟⎟⎠

,

Az =

⎛
⎜⎜⎜⎜⎝

u3 0 ρ̃ 0 0
0 u3 0 0 0
0 0 u3

1
ρ̃
0

0 0 ρ̃c̃2 u3 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

g(h − z) 0 0 1 ρ̃g
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

,

and

S =

⎛
⎜⎜⎜⎜⎜⎝

0
g
ρ̃

∂
∂x

∫ h
z
(
ρ̃(t, x, z) − ρ̃(t, x, z1)

)
dz1

0

g ∂
∂t

∫ h
z
(
ρ̃(t, x, z) − ρ̃(t, x, z1)

)
dz1 − gu1

∂
∂x

∫ h
z
(
ρ̃(t, x, z) − ρ̃(t, x, z1)

)
dz1 + gρ̃u3

u3,s

⎞
⎟⎟⎟⎟⎟⎠

.

Considering we are in a shallow water context, we can further assume

∂ρ̃

∂z
= ∂u1

∂z
= 0, (55)

then the system (54) reduces to

Msw ∂Y

∂t
+ Asw

x

∂Y

∂x
+ Az

∂Y

∂z
= B, (56)

with

Asw
x =

⎛
⎜⎜⎜⎜⎝

u1 ρ̃ 0 0 0
g(h−z)

ρ̃
u1 0 1

ρ̃
g

0 0 u1 0 0
ghu1 ρ̃

(
c̃2 + gz

)
0 u1 gρ̃u1

0 0 0 0 u1

⎞
⎟⎟⎟⎟⎠

, Msw =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
gh 0 0 1 ρ̃g
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

.

The eigenvalues of the matrix aAsw
x + bAsw

z for (a, b) ∈ R
2 cannot be easily

computed explicitely but the following result holds.

Proposition 2 The eigenvalues of the matrix (Msw)−1(aAsw
x + bAsw

z ) with u1 =
u3 = 0, are given by

0,±1

2

√
2C1 ± 2

√
C2 + C3, (57)
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with

C1 = c̃2(a2 + b2) − b2gh, C2 = (a2 + b2)2c̃4 + b2g2(8a2hz − 4a2z2 + b2h2),

C3 = −2b2(3a2 + b2)c̃2gh.

Proof (Proposition 2)The proof relies on simple computations that are not presented
here. ��
Remark 4 Notice that the quantitiesC2 is non-negativewhereasC3 is non-positive. In
the situation where c̃2 ≥ gh that is encountered in practice, then C1 ≥ 0, C2 + C3 ≥
0 and C1 − √

C2 + C3 ≥ 0 therefore the system has 4 real eigenvalues. But when
c̃2 ≤ gh—corrresponding to a less realistic situation—then complex eigenvalues
could appear.

Notice also that we are considering situations where c̃ 	 1 (see Eq. (68) below),
hence the eigenvalues defined by (57) satisfy the estimates

0, ±c̃
√
a2 + b2 + O

(1
c̃

)
, ±√

gh
ab√

a2 + b2
+ O

( 1

c̃2

)
, (58)

where the second ones correspond to acoustic waves and the third one to surface
waves. The first eigenvalue is zero because of the linearization of the velocity field.

2.4 Sound Speed for Sea Water

In this paragraph, we are going to precise the expression of the sound speed c̃ defined
by (47) in the particular case of sea water.

We start from an expression of the state law (30) given by [29] under the form

ρ̃ = ρ̃( p̃, T̃ ) = ρ̃0(T̃ )

1 − ε
ρ0
p̃

= ρ0ρ̃0(T̃ )

ρ0 − ε p̃
, (59)

ρ0 and ε being two constants with ε � 1 and where

ρ̃0(T̃ ) = ρ0 + a(T̃ − T0)
2, (60)

with T0 = 4 ◦C, ρ0 = 9999.7 kg.m−3, a = −6.63 10−3 kg.m−3.K−2. Notice that
from the state law (59) we have

ε p̃ = o(1). (61)

When multiplied by ε, the relation (21) is compatible with the scaling (61) if

εẽ = o(1), and εs = o(1). (62)
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Rewritting (21) under the form

d(ẽ − T̃ s) = −sdT̃ + p̃

ρ̃2
dρ̃, (63)

the Schwarz theorem applied to (63) gives the equality

−
(

∂s

∂ρ̃

)

T̃

=
(

∂( p̃/ρ̃2)

∂ T̃

)

ρ̃

,

and using the expression of p̃ given by (59) we obtain

(
∂s

∂ρ̃

)

T̃

= ρ0ρ̃
′
0(T̃ )

ερ̃3
.

An integration of the previous relation gives

s = s0(T̃ ) − ρ0ρ̃
′
0(T̃ )

2ερ̃2
, (64)

and from (64) we obtain

ds =
(
s ′
0(T̃ ) − ρ0ρ̃

′′
0 (T̃ )

2ερ̃2

)
dT̃ + ρ0ρ̃

′
0(T̃ )

ερ̃3
dρ̃,

leading to (
∂ T̃

∂ρ̃

)

s

= − 2

ρ̃

ρ0ρ̃
′
0(T̃ )

2ερ̃2s ′
0(T̃ ) − ρ0ρ̃

′′
0 (T̃ )

. (65)

Using (59), (65) we obtain the expression for the sound speed c̃ defined by (47) under
the form

c̃2 = ρ0ρ̃0(T̃ )

ερ̃2
+ ρ0ρ̃

′
0(T̃ )

ερ̃

2

ρ̃

ρ0ρ̃
′
0(T̃ )

2ερ̃2s ′
0(T̃ ) − ρ0ρ̃

′′
0 (T̃ )

. (66)

Becauseof the estimate (62) concerning the entropy, a possible choice is s ′
0(T̃ ) = 0

leading to the expression

ρ̃2c̃2 = ρ0

ε

(
ρ̃0(T̃ ) − 2

(
ρ̃ ′
0(T̃ )

)2
ρ̃ ′′
0 (T̃ )

)
. (67)

Moreover, since ε � 1 and a � 1, we have ρ̃(T̃ ) ≈ ρ0 leading to an expression for
the sound speed under the form
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ρ̃2c̃2 ≈ ρ2
0

ε

(
1 − 4a

(
T̃ − T0

)2
ρ0

)
≈ ρ2

0

ε
= ρ2

0c
2. (68)

Using the assumption (68), it is possible to combine Eq. (33) with Eq. (31) to obtain

∂

∂t

(
ρ̃

p̃2

2ρ2
0c

2

)
+ ∇ ·

(
ρ̃

p̃2

2ρ2
0c

2
U
)

+ p̃∇ · U = 0, (69)

giving a formulation of the energy balance (35) under the form

∂

∂t

(
ρ̃

|U|2
2

+ ρ̃
p̃2

2ρ2
0c

2

)
+ ∇ ·

((
ρ̃

|U|2
2

+ ρ̃
p̃2

2ρ2
0c

2
+ p̃

)
U
)

= ρ̃g · U. (70)

Hence, when ρ̃2c̃2 = ρ2
0c

2 = cst , the internal energy corresponds to p̃2

2ρ2
0 c

2 .

2.5 A Shallow Water Approximation of the Compressible
Euler System

For free surface flows, the vertical direction plays a particular role since it corresponds
to the direction of the gravity. Moreover the fluid domain, in our case, is thin in this
direction and it is natural to perform a depth averaging of system (31)–(33) together
with some approximations. Then, the two following propositions hold.

Remark 5 Notice that whereas the models described in the sequel differ from the
model (9)–(11), for the sake of simplicity, we have kept the same notations for some
of the variables of each model.

Proposition 3 Assuming ρ̃c̃ is constant, see (68), a shallow water approximation
of the compressible Euler system (31)–(33) completed with (22), (24) leads to the
model

∂η

∂t
+ u · ∇0(η + zb) = γw, (71)

∂(ρh)

∂t
+ ∇0 · (ρhu) = 0, (72)

∂(ρhu)

∂t
+ ∂

∂x

(
ρhu2 + ρg

2
h2 + hP

)
+ ∂(ρhuv)

∂y
= −(ρgh + γ 2

2
P)

∂zb
∂x

, (73)

∂(ρhv)

∂t
+ ∂(ρhuv)

∂x
+ ∂

∂y

(
ρhv2 + ρg

2
h2 + hP

)
= −(ρgh + γ 2

2
P)

∂zb
∂y

, (74)

∂(ρhw)

∂t
+ ∇0 · (ρhwu) = γ P, (75)

∂

∂t

(
ρhP + ρ2gh2

2

)
+ ∇0 ·

((
ρhP + ρ2gh2

2

)
u
)

+ ρ20c
2divγ

sw(u) = 0, (76)
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where ρ,u = (u, v, w)T ,P represent respectively a density, a velocity vector, and a
pressure term, all functions of (t, x, y), and γ a parameter.

The model described in Proposition 3 satisfies an energy balance described in the
following proposition.

Proposition 4 Smooth solutions of the system (71)–(76) satisfy the energy balance

∂

∂t

(ρh

2
|u|2 + 1

2

(
2 − γ 2

2

)
ρghzb + ρhe

)
+ ∇0 ·

(
u(

ρh

2
|u|2

+1

2

(
2 − γ 2

2

)
ρghzb + ρhe + ρg

2
h2 + hP)

)
= −γ

2
ρghw, (77)

where e is defined by

e = 1

2ρ2
0c

2

(
P + ρgh

2

)2
. (78)

And Eq. (77) can be written in a conservative form

∂

∂t

(ρh

2
|u|2 + ρg

h(η + zb)

2
+ 1

2

(
2 − γ 2

2

)
ρghzb + ρhe

)
+ ∇0 ·

(
u(

ρh

2
|u|2

+ρg
h(η + zb)

2
+ 1

2

(
2 − γ 2

2

)
ρghzb + ρhe + ρg

2
h2 + hP)

)
= 0. (79)

In other words, (78) gives a shallow water version of the internal energy defined
after (36).

The two operators divγ
sw and ∇γ

sw defined by (12), (13) appear in Eqs. (71)–(76)
so that we can rewrite this system in a more compact form

∂η

∂t
+ u · ∇0(η + zb) = γw, (80)

∂(ρh)

∂t
+ ∇0 · (ρhu) = 0, (81)

∂(ρhu)

∂t
+ ∇0 · (ρhu ⊗ u) + ∇0(

ρg

2
h2) + ∇γ

swP = −gh∇0zb, (82)

∂

∂t

(
ρhP + ρ2gh2

2

) + ∇0 ·
((

ρhP + ρ2gh2

2

)
u
)

+ ρ2
0c

2divγ
sw(u) = 0, (83)

An important point is that whatever the value of γ , these operators satisfy the
duality relation

∫

�

∇γ
sw( f ) · wdx = −

∫

�

divγ
sw(w) f dx +

∫

�

h f w · nds, (84)
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where the vector n = (nx , ny, 0)T is the outward unit normal vector to the boundary
�, see Fig. 1. In Eq. (84), f and w belong to suitable function spaces that will be
precised later. Notice that, we also have a local form of (84) under the form

∇γ
sw( f ) · w = ∇0 · (h f w) − divγ

sw(w) f. (85)

Proof (Proposition 3) It is easy to see (cf. [21, Lemma 2.1]) that a depth averaging
of the compressible Euler system with gravity and free surface (31)–(33)—with,
according to Sect. 2.4, ρ̃c̃ ≈ ρ0c—completed with the boundary conditions (22),
(24), (34) leads to

∂

∂t

∫ η

zb
ρ̃dz + ∇x,y ·

∫ η

zb
ρ̃vdz = 0, (86)

∂

∂t

∫ η

zb
ρ̃vdz + ∇x,y ·

∫ η

zb
ρ̃v ⊗ vdz + ∇x,y

∫ η

zb
p̃dz = p̃(t, x, zb(x))∇x,y zb, (87)

∂

∂t

∫ η

zb
ρ̃u3dz + ∇x,y ·

∫ η

zb
ρ̃u3vdz = p̃(t, x, zb(x)) −

∫ η

zb
ρ̃gdz, (88)

∂

∂t

∫ η

zb
ρ̃ p̃dz + ∇x,y ·

∫ η

zb
ρ̃ p̃vdz + ρ20c

2
∫ η

zb
∇ · Udz = 0. (89)

As in [2] we are now going to make some assumptions concerning the variations
along the vertical axis of the velocity field U, the density ρ̃ and of the pressure p̃. In
order to be consistent with the shallow water assumption, the choice

u1(t, x, z) = u(t, x), u2(t, x, z) = v(t, x), ρ̃(t, x, z) = ρ(t, x), (90)

is natural since it consists in assimilating the horizontal velocity field and the density
with their vertical means. For the velocity u3 and the pressure p̃, we choose

u3(t, x, z) =ϕδ

(
η − z

h

)
w(t, x), (91)

p̃(t, x, z) =ρg(η − z) + ψδ

(
η − z

h

)
P(t, x), (92)

and the two families of functions ψδ = ψδ(z) and ϕδ = ϕδ(z) satisfy

{∫ 1
0 ϕδ(z)dz = ∫ 1

0 ψδ(z)dz = 1
2

∫ 1
0 ϕδ(z)ψ ′

δ(z)dz = 1,
ψδ(1) = δ, ψδ(0) = 0, ϕδ(1) = 1.

(93)

Notice that these choices are similar to those in [2]. Figure2 in [2, paragraph 2.3.2]
illustrates the shape of the functionsψδ and ϕδ for two typical values of δ namely δ =
2 and δ = 3/2 (corresponding to γ = 2 and γ = √

3). It appears that the functions
ψδ and ϕδ do not significantly differ when δ = 2 or when δ = 3/2, the choice δ = 2
corresponding to a linear profile.
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The duality relation (37) is a guideline for the definition of the shallow water
versionof the divergence operator. Therefore, from (90)–(93) andusing an integration
by parts, we obtain

∫ η

zb

ψδ

(
η − z

h

)
∇ · Udz =

∫ η

zb

ψδ

(
η − z

h

)
∇0 · udz +

[
u3ψδ

(
η − z

h

)]η

zb

−
∫ η

zb

wϕδ

(
η − z

h

)
∂

∂z
ψδ

(
η − z

h

)
dz

= 2w + h∇0 · u − δu · ∇0zb, (94)

where (22) has been used and allowing us to write

∫ η

zb

p̃∇ · Udz ≈
∫ η

zb

(
1

h

∫ η

zb

g(η − z1)dz1 + P

)
ψδ

(
η − z

h

)
∇ · Udz

=
(

ρgh

2
+ P

)∫ η

zb

ψδ

(
η − z

h

)
∇ · Udz

=
(ρgh

2
+ P

)(
2w + h∇0 · u − δu · ∇0zb

)
. (95)

The computations (94), (95) are used to approximate the last term in Eq. (89) under
the form ∫ η

zb

∇ · Udz ≈ 2w + h∇0 · u − δu · ∇0zb.

And with the choices (90)–(93), the system (86)–(89) writes

∂(ρh)

∂t
+ ∇0 · (ρhu) = 0, (96)

∂(ρhu)

∂t
+ ∂

∂x

(
ρhu2 + ρg

2
h2 + hP

)
+ ∂(ρhuv)

∂y
= −(ρgh + δP)

∂zb
∂x

, (97)

∂(ρhv)

∂t
+ ∂(ρhuv)

∂x
+ ∂

∂y

(
ρhv2 + ρg

2
h2 + hP

)
= −(ρgh + δP)

∂zb
∂y

, (98)

∂(ρhw)

∂t
+ ∇0 · (ρhwu) = δP, (99)

∂

∂t

(
ρhP + ρ2gh2

2

)
+ ∇0 ·

((
ρhP + ρ2gh2

2

)
u
)

+ρ2
0c

2 (2w + h∇0 · u − δu · ∇0zb) = 0. (100)

Using the choices (90)–(93), Eq. (19) gives

∂

∂t

(
ρh(η + zb)

2

)
+ ∇0 ·

(
ρh(η + zb)

2
u
)

= ρhw, (101)
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and combining (101) with (96) gives

∂η

∂t
+ u · ∇0(η + zb) = 2w. (102)

Finally, a simple change of variables, namely w = γ ŵ/2 with γ 2 = 2δ in the
system (96)–(100), (102) leads to Eqs. (71)–(76) where the symbol ˆ has been
dropped. ��
Proof (Proposition 4) After simple computations and using Eq. (72), Eq. (76) mul-
tiplied by (P + ρgh

2 )/(ρ2
0c

2) gives

∂

∂t

(
ρh

2ρ20c
2

(
P + ρgh

2

)2) + ∇0 ·
(

ρh

2ρ20c
2

(
P + ρgh

2

)2
u

)
+

(
P + ρgh

2

)
divγ

sw(u) = 0, (103)

Now, taking the scalar product of Eqs. (73)–(75) with u, using the duality rela-
tion (85) and adding the obtained relation with (103) gives (77).

And the sum of Eq. (77) with (101) multiplied by g—in which the change of
variable w = γ ŵ/2 is done and the symbol ˆ has been dropped—gives (79).

��

2.6 When the Density is Almost Constant

On the one hand, the propagation of acoustic waves requires a compressible medium,
on the other hand the variations of the fluid density are often neglected e.g. when
considering a linearized version of the Euler system (31)–(33).

In this paragraph, we assume that the variations of the fluid density have little
influence over the hydrodynamic regime and the waves propagation, that is not a
strong assumption for water, see (60). Nevertheless, it is not possible to simply
consider that the density is constant in the consideredmodels. Indeed, the assumption
ρ = cst in the 3d case—Eq. (15)—or in the shallowwater context—Eq. (101)—leads
to a divergence free condition that is not compatible with the equations governing
the pressure variations namely Eq. (33) or Eq. (76) in the shallow water regime.

Hence when the variations of the fluid density can be neglected, the Proposition 3
can be reformulated as follows.

Proposition 5 Assuming the setting of Proposition 3 and neglecting the variation
of the fluid density, a shallow water approximation of the compressible Euler sys-
tem (31)–(33) is given by
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∂h

∂t
+ ∇0 · (hu) = 0, (104)

∂(hu)

∂t
+ ∇0 · (hu ⊗ u) + ∇0(

g

2
h2) + ∇γ

sw p = −gh∇0zb, (105)

∂

∂t

(
hp + gh2

2

) + ∇0 ·
((
hp + gh2

2

)
u
)

+ c2divγ
sw(u) = 0, (106)

where the operators ∇γ
sw and divγ

sw are defined by (12), (13).

Proof (Proposition 5) The model (81)–(83) is nothing else than a rewritting of
Eqs. (72)–(76) where the variations of the fluid density are neglected i.e. ρ ≡ ρ0 and
we have introduced p = P/ρ0. ��

For the model obtained in Proposition 3, Eq. (101) is crucial to obtain an energy
balance. In order to obtain an energy balance for the model given in Proposition 5,
we introduce a function ζ̃ = ζ̃ (t, x) solution of the transport equation

∂ζ̃

∂t
+ u · ∇0ζ̃ = γw, (107)

or equivalently using (104)

∂(hζ̃ )

∂t
+ ∇0 · (hζ̃u) = hγw. (108)

From the definition (13) and using (104), we can write

hdivγ
sw(u) = hγw + h∇0 · (hu) − hu · ∇0ζ = hγw − ∂(hζ )

∂t
− ∇0 · (hζu

)
,

and hence, Eq. (108) can be written under the form

∂(hζ̂ )

∂t
+ ∇0 · (hζ̂u

) = hdivγ
sw(u), (109)

with ζ̂ = ζ̃ − h − γ 2zb/2 = ζ̃ − ζ . Notice that ζ̃ is an approximation in the con-
stant density case of the variable η + zb governed by Eq. (80). And from Eq. (106),
ζ̂ = O(1/c2). The existence of solution for Eq. (107) has been widely studied, let us
mention the contributions of Di Perna and Lions by the means of renormalized solu-
tions [17] and two extensions [16, 26], see also [11].Weassumehere that the variables
h, u and the quantity zb are regular enough so that these existence results are valid.

As alreadymentionned, the assumption ρ = cst implies that mass and volume are
conserved that could be seen as contradictory with the capability of acoustic waves to
propagate—with finite speed—since it requires a compressibility in the considered
media. But the quantity ζ̂ can also be related to the temperature effects and allows
to circumvent this difficulty. More precisely, when λ = μ = 0 and assuming
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(
∂ T̃

∂ρ̃

)

s

= τ = cst,

Equation (109) looks like a shallow water version of Eq. (49), the variable ζ̂ corre-
sponding to a shallow water approximation of the quantity T̃

τρ0
. Hence the variations

of ζ̂ correspond to volume variations and can be assimilated to dilatation effects
generated by temperature variations.

Proposition 6 Smooth solutions of the system (104)–(106) satisfy the energy bal-
ance

∂

∂t

( h
2

|u|2 + g

2

(
2 − γ 2

2

)
hzb + h

2c2
(
p + gh

2

)2) + ∇0 ·
(

u(
h

2
|u|2

+ g

2

(
2 − γ 2

2

)
hzb + h

2c2
(
p + gh

2

)2 + g

2
h2 + hp)

)
= −γ h

2
gw, (110)

that is a shallow water version of Eq. (35). Equation (110) can be rewritten under
a conservative form given by

∂

∂t

( h
2

|u|2 + g
h(η + zb)

2
+ g

hζ̂

2
+ h

2c2
(
p + gh

2

)2) + ∇0 ·
(

u(
h

2
|u|2

+g
h(η + zb)

2
+ h

2c2
(
p + gh

2

)2 + g

2
h2 + g

hζ̂

2
+ hp)

)
= 0. (111)

Multiplying Eq. (106) by p + gh/2 and after simple computations, we obtain the
relation

∂

∂t

(
h

2c2
(
p + gh

2

)2) + ∇0 ·
(

h

2c2

((
p + gh

2

)2
u
))

+ (p + gh

2
)divγ

sw(u) = 0.

(112)
And comparing (112) with (36) we obtain that when the density is kept constant, the
internal energy is given by (p + gh/2)2/(2c2), see also (78).

Proof (Proposition 6) Taking the scalar product of Eq. (105) by u gives

∂

∂t

(h
2
|u|2

)
+ ∇0 ·

(
u
(h
2
|u|2 + g

2
h2

)) + u · ∇γ
sw p − g

2
h2∇0 · u + ghu · ∇0zb = 0.

(113)
Using the duality relation (85) in (113) and adding Eq. (112) gives (110).

Besides, using Eq. (109) multiplied by g/2 and added to (110) gives (111). ��
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2.7 The Boundary Conditions

The set of equations (104)–(106) is completed with the following boundary con-
ditions. We are considering a channel with an inlet �in and an outlet �out and we
impose specific conditions on each of them, see Fig. 1. The inflow is imposed by
a given discharge qg on �in , and a water depth hg is imposed on �out . Finally, we
prescribe slip boundary conditions for the velocity at the walls of the channel �s .
Hence we have

hu(t, x) = qg(t, x), on �in, (114)

h(t, x) = hg(t, x), on �out , (115)

u(t, x) · n = 0, on �s . (116)

Notice that we can replace the prescribed water depth at the outflow by a free outflow
consisting in imposing a Neumann boundary condition over the elevation

∇0h · n = 0, on �out .

2.8 Dispersion Relation

The model (104)–(106) is a shallow water type model with compressible effects
coming from the acoustic wave propagation. A fundamental question is to know
what are the velocities of the waves propagating in such a model and typically the
influence of the sound speed c over these velocites.

Let us consider the system (104)–(106) in the one-dimensional case, with flat
topography and where the temperature variations are neglected. It has the form of an
advection-reaction system, namely

∂Y

∂t
+ A

∂Y

∂x
+ BY = 0, (117)

with

Y =

⎛
⎜⎜⎝
h
u
w

p

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

u h 0 0
g + p

h u 0 1
0 0 u 0
0 c2 − gh

2 0 u

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 − γ

h

0 0 γ c2

h 0

⎞
⎟⎟⎠ .

Let us introduce Y0 ∈ R
4 and k, ω being two constants, namely the wave number

and the frequency. A necessary condition so that the system (117) admits a solution
having the form Y = Y0ei(kx−ωt) is that
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det(iωI4 − ik A + B) = 0,

I4 being the identity matrix of dimension 4. This leads to the four roots

ω

k
= u ±

√
2

2

√
Csw,1 ±

√
(Csw,1)2 − Csw,3, (118)

withCsw,1 = c2 + gh + p + c2 γ 2

(hk)2 andCsw,2 = 4c2γ 2(gh + p). As in (58), we can
assume that c 	 1 leading to the four approximated roots

u ± γ

√
gh + p

γ 2 − (hk)2
+ O

(
1

c2

)
, u ± c

√
1 + γ 2

(hk)2
+ O

(
1

c

)
. (119)

Remark 6 From the estimates (119), it appears that the model (104)–(106) is able to
propagate both water waves and acoustic waves. But since we are in a shallow water
context, we have hk � 1 and for the acoustic waves we do not exactly recover the
expected velocities u ± c.

Remark 7 In the context of wave propagation i.e. with flat bottom and assuming the
water depth has the form h = h0 + f (kx − ωt) with h0 = cst and | f (.)| � h0, it is
easy to see that the first term in (119) becomes

γ

√
gh0

γ 2 − (hk)2
+ O

(
1

c2

)
,

corresponding for γ = √
3 in the context of large wavelength (kh0 � 1) and up to

O((kh0)2) terms, to the classical Airy wave dispersion relation [1].

2.9 A Pseudo-compressible Model

As we have seen in the previous paragraph, if c is chosen corresponding to the sound
speed in water, then the model (104)–(106) is able to propagate, in a shallow water
context, both water and acoustic waves. But since c 	 1, we introduce

ε = 1

c2
,

then the model (104)–(106) can be seen as a pseudo-compressible version of the
model (9)–(11) allowing to derive an explicit in time numerical scheme that will be
studied in the following section. More precisely Eq. (106) writes
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ε

(
∂

∂t

(
hp + gh2

2

) + ∇0 ·
((
hp + gh2

2

)
u
))

+ divγ
sw(u) = 0,

and corresponds to Eq. (11) when ε goes to 0. Following the results obtained in
Proposition 6, it is important to notice that in the formulation (104)–(106), the limit
ε → 0 is not singular. Unlike the incompressible limit of compressible models, the
limit when ε → 0 of the model (104)–(106) is the model (9)–(11).

Hence the model (104)–(106) can be seen as

• a dispersive shallow water type model propagating water and acoustic waves,
• a pseudo-compressible dispersive model whose numerical resolution is easier to
implement compared to a fully compressible model. This second aspect is studied
in the two next sections.

Notice that several authors have proposed approximated versions of the divergence
free constraint for dispersivemodels [19, 24], for which the origin of relaxation is not
related to acoustics. The model formulation (104)–(106) is similar to the one studied
in [20] but the derivation process—based on the so-called hyperbolic divergence
cleaning [15]—differs. The numerical strategy proposed in [20] based on high order
discontinuous Galerkin schemes is also different from the one presented hereafter.

3 The Numerical Scheme (Explicit in Time)

In this section, we propose and study a numerical scheme for the system (104)–(106)
with ε = 1/c2.

Let us introduce the notations

X =

⎛
⎜⎜⎝

h
hu
hv

hw

⎞
⎟⎟⎠ , F(X) =

⎛
⎜⎜⎝

hu hv

hu2 + g
2h

2 huv

huv hv2 + g
2h

2

huw hvw

⎞
⎟⎟⎠ ,

and S(X) = (0,−gh∇0(zb))T , R = (0,∇γ
sw p)T where∇γ

sw p is definedby (12). Then,
the system (104)–(106) can be written under the form

∂X

∂t
+ ∇x,y · F(X) + R = S(X), (120)

ε
( ∂

∂t

(
hp + gh2

2

) + ∇0 ·
((
hp + gh2

2

)
u
))

+ divγ
sw(u) = 0. (121)
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3.1 Time Discretisation

Let us sketch the main steps of the procedure. We set t0 the initial time and tn+1 =
tn + �tn where �tn satisfies a stability condition (CFL) precised later—at the fully
discrete level—and the state Xn denotes an approximation of X (tn). For each time
step, we consider an intermediate state which will be denoted with the superscript
n+1/2. The first step consists in solving the Saint-Venant part of the system (120)
with the topography source term and completed with the hyperbolic part of (121)
in order to obtain the state Xn+1/2 = (hn+1/2, (hu)n+1/2)T and (hp)n+1/2. Then the
state Xn+1 is computed taking into account the contribution of the non-hydrostatic
pressure terms.

More precisely, in the system (120), (121) water waves generally propagate at a
lower velocity than acoustic waves. Therefore, we propose an explicit time scheme—
constrained by an associated CFL condition that will be precised in the fully discrete
case, see (159)—for the Saint-Venant part of Eq. (120). For the dispersive terms, we
adopt an iterative resolution scheme explicit in time and constrained by a generally
more restrictive CFL condition associated with the sound speed. Hence, the proposed
semi-discretization in time consists in the following time-splitting strategy

⎧⎪⎪⎨
⎪⎪⎩

Xn+1/2 = Xn − �tn∇x,y · F(Xn) + �tn S(Xn),

(hp)n+1/2 = (hp)n − g
2

(
hn+1/2)2 − hn)2

)

−�tn∇0 ·
(
hn

(
pn + g

2 (h
n)2

)
un

)
,

(122)

{
pn+1/2,k+1 = pn+1/2,k − �tn

εKhn+1 divγ
swun+1/2,k,

un+1/2,k+1 = un+1/2,k − �tn

Khn+1 ∇γ
sw pn+1/2,k+1,

k = 1, . . . , K (123)

with pn+1/2,1 = pn+1/2, un+1/2,1 = un+1/2, pn+1 = pn+1/2,K+1, un+1 = un+1/2,K+1

and where for the first component of X we have hn+1 = hn+1/2 since the first compo-
nent of R is zero. Notice that the two operators divγ

sw and∇γ
sw are defined by Eqs. (12),

(13) using hn+1. K is an integer that is defined in order to ensure a stability condi-
tion for the acoustic-like wave propagation. The value of K is precised in the fully
discrete case, see (162).

3.2 Influence of the Pseudo-compressibility over the
Computational Costs

In [2], the authors have studied the model (1)–(5)—that is exactly the model (104)–
(106) with ε = 0—and proposed the following semi-discretization in time
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Xn+1/2 = Xn − �tn∇x,y · F(Xn) + �tn S(Xn), (124)

(hu)n+1 = (hu)n+1/2 − �tn∇γ
sw pn+1, (125)

divγ
swun+1 = 0, (126)

in which Eq. (125) allows to correct the predicted value Xn+1/2 in order to obtain a
state which satisfies the divergence free condition (126). The equation satisfied by
the pressure is then an elliptic equation which is obtained by applying the shallow
water divergence operator divγ

sw to Eq. (125) and reads

divγ
sw

(
1

hn+1
∇γ
sw pn+1

)
= 1

�tn
divγ

sw

(
(hu)n+1/2

hn+1

)
. (127)

Once the pressure has been determined by the elliptic equation (127), the correction
step (125) gives the final step Xn+1.

The main drawback of the time scheme (124)–(126) is the numerical cost of the
resolution of Eq. (127). And Eq. (106) can be seen as a relaxed version of Eq. (126)
allowing to replace the step (125)–(126) by the iterative method (123) applied to
the model (120)–(121). More precisely, inserting the second equation of (123) (at
iteration k − 1) into the first one gives the relation

pk+1 = pk − �tn

εK
divγ

swun+1/2,k−1 + (�tn)2

εK 2 hn+1
divγ

sw

( 1

hn+1
∇γ
sw pk

)
,

= 2pk − pk−1 + (�tn)2

εK 2 hn+1
divγ

sw

( 1

hn+1
∇γ
sw pk

)
, (128)

where the superscripts n+1/2 have been dropped. Equation (128) appears as an explicit
in time discretization of a wave equation. As expected, when ε tends to 0, Eq. (128)
reduces to Eq. (127). Likewise, inserting the first equation of (123) into the second
one gives the relation

uk+1 = 2uk − uk−1 + (�tn)2

εK 2 hn+1
∇γ
sw

( 1

hn+1
divγ

swuk
)
. (129)

The stability of the two discretizations (128), (129) will be examined in Sect. 4.4.
As alreadymentioned, if N is the number of cells in the consideredmesh, the com-

putational cost of the resolution of (127) is O(N 3/2) whereas the resolution of (123)
is O(K N ) = O(N/

√
ε). And hence, an estimation of ε is required to compare the

costs of the explicit and implicit resolutions.



Pseudo-compressibility, Dispersive Model and Acoustic Waves ... 235

3.3 Choice of ε

If one is interested in the simulation of both water and acoustic waves, ε is chosen so
that ε = 1/c2, c being the sound speed. But if the objective is to approximate a relaxed
version of the system (1)–(5) then ε is no more a physical parameter and has to be
chosen so that the system (104)–(106) is a good approximation of the system (9)–
(11). Hence, at each time step, ε can be chosen according to the computed values of
the velocities and of the water depth.

And we can proceed as follows.
The energy of the model (104)–(106) behaves as

h
u2 + v2 + w2

2
+ g

2
hζ + g

(
2 − γ 2

2

)
hzb + εh

2

(
p + g

2
h
)2

.

Hence, we have to choose ε such that

ε
(
p + g

2
h
)2 � u2 + v2 + w2 + g(η + zb) + g

(
4 − γ 2) zb. (130)

Another possibility is to recall that ε is related to the sound speed with ε = 1/c2 and
hence ε has to satisfy

1√
ε

= c 	 |u| + |v| + √
gh,

i.e.

ε � 1

(|u| + |v| + √
gh)2

. (131)

The two conditions (130) and (131) are easy to implement and similar when |u| +
|v| + |w| � √

gh. But, in the context of dispersive flows (130) is more appropriate
since the vertical velocity w is taken into account.

We have seen that the choice ε = 1/c2 corresponds to the propagation of acoustic
waves. Smaller values of ε increase the computational costs of the scheme since
it enlarges the value of the number of iterations K for the resolution of (123), see
Sects. 3.1 and 3.2.

4 Detailed Numerical Scheme in 1d

A numerical scheme for the model (9)–(11) has been proposed and studied in [2].
Here we focus on the one dimensional case in order to prove the capability of the
pseudo-compressible formulation.

In the one dimensional case, the model (104)–(106) writes
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∂h

∂t
+ ∂(hu)

∂x
= 0, (132)

∂(hu)

∂t
+ ∂

∂x

(
hu2 + g

2
h2 + hp

)
= −(gh + γ 2

2
p)

∂zb
∂x

, (133)

∂(hw)

∂t
+ ∂(huw)

∂x
= γ p, (134)

ε

(
∂

∂t

(
hp + gh2

2

) + ∂

∂x

((
hp + gh2

2

)
u
))

+ γw + h
∂u

∂x
− γ 2

2
u

∂zb
∂x

= 0. (135)

In a more compact form and with obvious notations, the system (132)–(135)
becomes

∂X

∂t
+ ∂F(X)

∂x
+ R = S(X), (136)

ε
(∂(h p̂)

∂t
+ ∂(hu p̂)

∂x

)
+ divγ

sw(u) = 0, (137)

with u = (u, w)T , p̂ = p + gh/2 and

X =
(
h
hu

)
, (138)

∇γ
sw f =

(
h ∂ f

∂x + ∂ζ

∂x f−γ f

)
, divγ

swu = ∂(hu)

∂x
− u

∂ζ

∂x
+ γw. (139)

Notice that the fundamental duality relation

∫

C
p divγ

swu dx = [hup]∂C −
∫

C
∇γ
sw p · u dx, (140)

holds for any interval C .
The smooth solutions of Eqs. (132)–(135) satisfy the energy equality

∂

∂t

(h
2
(u2 + w2) + g

2

(
2 − γ 2

2

)
+ εh

2

(
p + gh

2

)2) + ∂

∂x

(
u(

h

2
(u2 + w2)

+g

2

(
2 − γ 2

2

)
+ εh

2

(
p + gh

2

)2 + g

2
h2 + hp)

)
= −γ gh

2
w. (141)

Introducing the 1d version of Eq. (109) given by

∂(hζ̂ )

∂t
+ ∂

∂x

(
hζ̂u

) = hdivγ
sw(u), (142)

allows to have a conservative form of Eq. (141) under the form



Pseudo-compressibility, Dispersive Model and Acoustic Waves ... 237

∂

∂t

(
Ē + εh

2

(
p + gh

2

)2) + ∂

∂x

(
u
(
Ē + εh

2

(
p + gh

2

)2 + g

2
h2 + hp

)) = 0,

(143)
with Ē = h(u2 + w2)/2 + gh(η + zb)/2 + g hζ̂

2 , see Proposition 6.

4.1 Semi-discrete (in Time) Scheme

The 1d version of the time discretization (122)–(123) writes

{
Xn+1/2 = Xn − �tn ∂F(Xn)

∂x + �tn S(Xn)

(h p̂)n+1/2 = (h p̂)n − �tn ∂(hn p̂nun)
∂x

(144)

{
pn+1/2,k+1 = pn+1/2,k − �tn

εKhn+1 divγ
swun+1/2,k

un+1/2,k+1 = un+1/2,k − �tn

Khn+1 ∇γ
sw pn+1/2,k+1 (145)

with pn+1/2,1 = pn+1/2, un+1/2,1 = un+1/2 and pn+1 = pn+1/2,K+1, un+1 =
un+1/2,K+1 where for the first component of X we have hn+1 = hn+1/2.

The scheme (144)–(145) is explicit in time so it is important to examine its stability
w.r.t. the discretisation step �tn , this will be done in Sect. 4.4.

4.2 The Semi-discrete (in Space) Scheme

To approximate the solution X = (h, hu, hw)T , hp of the system (132)–(135), we
use a combined finite volume/finite difference framework. We assume that the com-
putational domain is discretized with I nodes xi , i = 1, . . . , I . We denote Ci the
cell (xi−1/2, xi+1/2) of length �xi = xi+1/2 − xi−1/2 with xi+1/2 = (xi + xi+1)/2.
We denote Xi = (hi , qx,i , qz,i )T with

Xi ≈ 1

�xi

∫

Ci

X (t, x)dx,

the approximate solution at time t on the cell Ci with qx,i = hiui , qz,i = hiwi . Like-
wise, for the topography, we define

zb,i = 1

�xi

∫

Ci

zb(x)dx .

The non-hydrostatic part of the pressure is discretized on a staggered grid

pi+1/2 ≈ 1

�xi+1/2

∫ xi+1

xi

p(t, x)dx,
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with �xi+1/2 = xi+1 − xi and we set p̂i+1/2 = pi+1/2 + ghi+1/2/2 where hi+1/2 is
defined by �xi+1/2hi+1/2 = (�xi hi + �xi+1hi+1)/2.

Now we propose and study the semi-discrete (in space) scheme approximating
the model (136)–(137). The semi-discrete scheme writes

�xi
∂Xi

∂t
+ (

Fi+1/2− − Fi−1/2+
) + Ri = 0, (146)

�xi+1/2ε
∂

∂t

(
hi+1/2 p̂i+1/2

)
+ ε

(
Fp̂,i+1 − Fp̂,i

) + divγ

sw,i+1/2 ({u j }) = 0, (147)

with the numerical fluxes

Fi+1/2+ = F (Xi , Xi+1, zb,i , zb,i+1) + Si+1/2+ (148)

Fi+1/2− = F (Xi , Xi+1, zb,i , zb,i+1) + Si+1/2−. (149)

F is a numerical flux for the conservative part of the system, S is a convenient
discretization of the topography source term.

Since the first two lines of (136) correspond to the classical Saint-Venant system,
the numerical fluxes

Fi+1/2± =
⎛
⎝

Fh,i+1/2

Fqx ,i+1/2±
Fqz ,i+1/2

⎞
⎠ , (150)

can be constructed using any numerical solver for the Saint-Venant system. More
precisely for Fh,i+1/2,Fqx ,i+1/2± we adopt numerical fluxes suitable for the Saint-
Venant system with topography [10, 22, 25]. Notice that from the definition (138),
since only the second component of S(X) is non zero, only Fqx has two interface
values under the form Fqx ,i+1/2±. For the definition of Fqz ,i+1/2, the formula (see [5])

Fqz ,i+1/2 = Fh,i+1/2wi+1/2, (151)

with

wi+1/2 =
{

wi if Fh,i+1/2 ≥ 0
wi+1 if Fh,i+1/2 < 0

(152)

can be used. The fluxes Fp̂,i are defined similarly to (151), (152) but on the staggered
grid by the following formula

Fp̂,i = Fh,i+1/2 + Fh,i−1/2

2
p̂i , (153)

with

p̂i =
{
p̂i−1/2 if Fh,i+1/2+Fh,i−1/2

2 ≥ 0
p̂i+1/2 if Fh,i+1/2+Fh,i−1/2

2 < 0.
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Combining the finite volume approach for the hyperbolic part with a finite differ-
ence strategy for the parabolic part, the non-hydrostatic part Ri is defined by

Ri =
(

0
∇γ

sw,i p

)
,

where the two components of ∇γ

sw,i p are defined (see (139)) by

�xi ∇γ

sw,i p
∣∣
1

= hi (pi+1/2 − pi−1/2) + pi+1/2

2

(
ζi+1 − ζi

)

+ pi−1/2

2

(
ζi − ζi−1

)
, (154)

�xi ∇γ

sw,i p
∣∣
2

= −γ

2

(
�xi+1/2 pi+1/2 + �xi−1/2 pi−1/2

)
, (155)

with ζi = hi + γ 2

2 zb,i . And in (147), divγ

sw,i+1/2 (u) is defined by

�xi+1/2div
γ

sw,i+1/2 (u) =hi+1 + hi
2

(ui+1 − ui ) − ui + ui+1

2

(
zb,i+1 − zb,i

)

+ γ�xi+1/2

2

(
wi+1 + wi

)

= (hu)i+1 − (hu)i − ui + ui+1

2

(
ζi+1 − ζi

)

+ γ�xi+1/2

2

(
wi+1 + wi

)
. (156)

Notice that in the definitions (154)–(155) and in the sequel, the quantity p means
{p j }. Likewise in Eq. (156) and in the sequel, u means {u j } for 1 ≤ j ≤ I .

4.3 Wet-Dry Interface

The method presented above supposes that the water depth does not vanish since
the resolution of (145) requires dividing the shallow water gradient and divergence
operators by h. We use a strategy similar to [2, paragraph 5.2] that can be viewed as
a Dirichlet condition on the dry zone of the domain, such that the non-hydrostatic
pressure is solved only on the wet domain.

In practice, we introduce a small parameter θ � 1 and the definitions (154)–(155)
become
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�xi ∇γ

sw,i p
∣∣∣
1

= 1hi≥hθ

(
hi (pi+1/2 − pi−1/2) + pi+1/2

2

(
ζi+1 − ζi

) + pi−1/2

2

(
ζi − ζi−1

))
,

�xi ∇γ

sw,i p
∣∣∣
2

= − γ 1hi≥hθ

2

(
�xi+1/2 pi+1/2 + �xi−1/2 pi−1/2

)
,

�xi+1/2div
γ

sw,i+1/2 (u) = 1hi≥hθ

(
(hu)i+1 − (hu)i − ui + ui+1

2

(
ζi+1 − ζi

)

+ γ�xi+1/2

2

(
wi+1 + wi

))
,

with hθ = max(h, θ).

4.4 Stability of the Scheme

Using the definitions (144), (145), (146), (147), (154) and (155), the fully discrete
scheme for the system (136)–(137) writes

⎧⎨
⎩

Xn+1/2
i = Xn

i − �tn

�xi

(
Fn
i+1/2− − Fn

i−1/2+
)

,

(h p̂)n+1/2
i+1/2 = (h p̂)ni+1/2 − �tn

�xi+1/2

(
Fn
p̂,i+1 − Fn

p̂,i

)
,

(157)

{
pn+1/2,k+1
i+1/2 = pn+1/2,k

i+1/2 − �tn

εKhn+1 div
γ

sw,i+1/2 un+1/2,k,

un+1/2,k+1
i = un+1/2,k

i − �tn

Khn+1 ∇γ

sw,i p
n+1/2,k+1.

(158)

The first equation of (157) gives a finite volume scheme for the Saint-Venant system.
The choice of numerical fluxes Fi+1/2± (see [10]) coupledwith a numerical treatment
of the topography source term e.g. using the hydrostatic reconstruction [3] gives
a numerical resolution of the Saint-Venant system endowed with strong stability
properties [4] that are recalled in Propositions 7 and 8. In Eqs. (157)–(158), �tn

satisfies a CFL condition having the form

�tn = max
i∈I

�xi
|V n

i | , (159)

where V n
i is related to the eigenvalues of the Saint-Venant system, see [10]. Since the

expression of the numerical fluxes (Rusanov, HLL, kinetic solver…) is not precised
we are not able to give the exact expression of the CFL condition. In order to study
the discrete energy balance induced by the numerical scheme (157)–(158), we define
a discrete version of (142) under the form

�tn

�xi
(hζ̂ )

n+1/2,k+1
i = �xi

�tn
(hζ̂ )

n+1/2,k
i − 1

K

(
ζ̂
n+1/2,k
i+1/2 Fh,i+1/2 − ζ̂

n+1/2,k
i−1/2 Fh,i−1/2

)

+
�xi+1/2h

n+1
i+1/2

2K
divγ

sw,i+1/2 (un+1/2,k ) +
�xi+1/2h

n+1
i−1/2

2K
divγ

sw,i−1/2 (un+1/2,k ), (160)
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where ζ̂i+1/2 is defined by

ζ̂i+1/2 =
{

ζ̂i if Fh,i+1/2 ≥ 0
ζ̂i+1 if Fh,i+1/2 < 0.

Now we focus on the stability condition for the resolution of (145) or equiva-
lently (128). Using the definitions (154) and (155), we obtain the discrete version of
the operator

�γ
sw p = divγ

sw

(1
h

∇γ
sw p

)
,

with Di+1/2 p = −�xi+1/2�
γ

sw,i+1/2 p and

Di+1/2 p = − hi+1

�xi+1

(
pi+3/2 − pi+1/2

)
+ hi

�xi

(
pi+1/2 − pi−1/2

)

− pi+3/2

2�xi+1

(
ζi+2 − 2ζi+1 + ζi

)
− �xi − �xi+1

�xi+1�xi
pi+1/2

(
ζi+1 − ζi

)

− pi−1/2

2�xi

(
ζi+1 − 2ζi + ζi−1

)

+ pi+3/2

4hi+1�xi+1

(
ζi+2 − ζi+1

)(
ζi+1 − ζi

)

+ pi+1/2

4

(
1

hi+1�xi+1
+ 1

hi�xi

)(
ζi+1 − ζi

)2

+ pi−1/2

4hi�xi

(
ζi+1 − ζi

)(
ζi − ζi−1

)

+ γ 2�xi+1/2

4

(
�xi+3/2 pi+3/2 + �xi+1/2 pi+1/2

�xi+1hi+1

+ �xi+1/2 pi+1/2 + �xi−1/2 pi−1/2

�xi hi

)
. (161)

Using the expression (161), we are now able to precise the CFL type stability
condition for the discretized version of Eq. (128) that writes

2 − (�tn)2

εK 2 hi+1/2�xi+1/2

(
hi+1

�xi+1
+ hi

�xi
+ 1

4

(
1

hi+1�xi+1
+ 1

hi�xi

)(
ζi+1 − ζi

)2

−�xi − �xi+1

�xi+1�xi

(
ζi+1 − ζi

)
+

γ 2�x2i+1/2

4

(
1

hi+1�xi+1
+ 1

hi�xi

))
≥ 0,

that is fulfilled for
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K 2 ≥ (�tn)2

2εhi+1/2�xi+1/2

(
hi+1

�xi+1
+ hi

�xi
+ 1

4

(
1

hi+1�xi+1
+ 1

hi�xi

)(
ζi+1 − ζi

)2

+|�xi − �xi+1|
�xi+1�xi

|ζi+1 − ζi | +
γ�x2i+1/2

4

(
1

hi+1�xi+1
+ 1

hi�xi

))
. (162)

And the condition (162) is satisfied when

K 2 ≥ (�tn)2

2εhmin�x2min

(
2hmax + 2

hmin
(δζ )2max + (δζ )max + γ 2�x2max

2hmin

)
,

with rmin = min1≤i≤I ri , rmax = max1≤i≤I ri for r = h,�x and δζmax =
max1≤i≤I−1 |ζi+1 − ζi |.

The fully discrete scheme (157), (158) satisfies the following stability properties.

Proposition 7 Assuming a suitable CFL condition (159) adpated to the chosen
numerical fluxes (150) for the hyperbolic part, the scheme obtained by coupling the
semi-discretizations (144), (145) and (146), (147)

(i) preserves the nonnegativity of the water depth i.e. hni ≥ 0, ∀i , ∀n,
(ii) preserves the steady state of the lake at rest,
(iii) is consistent with the model (136)–(137).

Let us consider that, under a suitable CFL condition associated with the time
discretization (144) and the chosen numerical fluxes Fh,i±1/2 and Fqx ,i±1/2 in (150),
the numerical approximation of the Saint-Venant part of Eq. (136) allows to obtain
a discrete entropy equality under the form

�xi
(
Esv
i

)n+1/2 = �xi
(
Esv
i

)n − �tn
(Gn

i+1/2 − Gn
i−1/2

) + Dn
i , (163)

with Esv
i = hi

2 u
2
i + g

2 (η
2
i − z2b,i ) and where Gn

i±1/2 are numerical fluxes. Dn
i is a

nonpositive term and contains typically two different contributions: the numerical
dissipation coming from the upwinding in the space discretization and the error due
to the explicit time scheme.

Then assuming (163), we now prove that the numerical scheme (157), (158)
satisfies a discrete entropy equality.

Proposition 8 Assuming (163), the scheme (144), (145), (146),(147) satisfies the
following discrete entropy equality

�xi Ē
n+1
i = �xi Ē

n
i − �tn

(Ḡn
i+1/2 − Ḡn

i−1/2

) + D̄n
i , (164)

where Ēi = Esv
i + hi

2 w2
i + g(hζ̂ )i + ε

2
˜hi p̂2i and
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Ḡn
i+1/2 = Gn

i+1/2 + Fn
h,i+1/2

(wn
i+1/2)

2

2
+ εFn

h,i+1

( p̂ni+1)
2

2

+ 1

K

K∑
k=1

(
hn+1
i+1/2u

n+1/2,k
i+1/2 pn+1/2,k+1

i+1/2 + ζ̂
n+1/2,k
i+1/2 Fh,i+1/2

)
,

�xi (
˜hi p̂

2
i )n+1 = 1

2K

K∑
k=1

⎛
⎝�xi+1/2

hn+1
i+1/2

2

(
p̂n+1/2,k+1
i+1/2

)2 + �xi−1/2
hn+1
i−1/2

2

(
p̂n+1/2,k+1
i−1/2

)2
⎞
⎠ ,

with

�xi D̄n
i = �xiDn

i + �tn
([

Fn
h,i+1/2

]
− (wn

i+1 − wn
i )2 −

[
Fn
h,i−1/2

]
+ (wn

i − wn
i−1)

2
)

+ �tn

2

(
Fn
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2
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2 − Fn
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2
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2

)
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2

(
Fn
h,i
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2 − Fn
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2
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2

)

+ �xi h
n+1
i

2
(w
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i − wn

i )2 +
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i+1/2

2
( p̂n+1/2

i+1/2 − p̂ni+1/2)
2

+
�xi−1/2h

n+1
i−1/2

2
( p̂n+1/2

i−1/2 − p̂ni−1/2)
2

−
K∑

k=1

�xi+1/2h
n+1
i+1/2

2

(
ε
(
p̂n+1/2,k+1
i+1/2 − p̂n+1/2,k

i+1/2

)2 −
∣∣∣un+1/2,k+1

i+1/2 − un+1/2,k
i+1/2
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−
K∑

k=1

�xi+1/2h
n+1
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2

(
ε
(
p̂n+1/2,k+1
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i−1/2

)2 −
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)

.

Remark 8 When considering the semi-descrete in space scheme detailed in Sect. 4.2,
a semi-discrete in space version of (164) holds where all the non-negative terms in
the expression of D̄n

i corresponding to time discretisation errors vanish.

Proof (Proposition 7) (i) The statement that F preserves the nonnegativity of the
water depth means exactly that

Fh(hi = 0, ui , hi+1, ui+1) − Fh(hi−1, ui−1, hi = 0, ui ) ≤ 0,

for all choices of the other arguments. From (144), (146), (148) and (149), we need
to check that, with obvious notations

Fh(X
n
i+1/2−, Xn

i+1/2+) − Fh(X
n
i−1/2−, Xn

i−1/2+) ≤ 0,

whenever hni = 0. And this property holds typically when the hydrostatic recon-
struction (HR) is used to approximate the topography source term since for the HR
technique hi = 0 implies hi+1/2− = hi−1/2+ = 0, see [3].

(ii) When uni = 0 for all i , the properties of the hydrostatic reconstruction tech-
nique ensure Fn

i+1/2− = Fn
i−1/2+ in (144), (146) and Fn

p,i+1− = Fn
p,i+ in (147). More-
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over since uni = 0 ∀i we have Ri = 0 in (146) and divγ

sw,i+1/2 ({u}) = 0 in (147).
Therefore ∀i

Xn+1
i = Xn

i , and pn+1
i+1/2 = pni+1/2,

proving that the scheme is well-balanced.
(iii) The discretization (144), (145) is an explicit first order time scheme. The

numerical fluxes defined by (148), (149) and (153) are a consistent discretization
of the hyperbolic part of the system (136), (137) without topography. Likewise, the
hydrostatic reconstruction applied to the fluxes (150), (153) gives a consistent dis-
cretization of the system (136), (137) with topography and the discretizations (154),
(155) being obviously consistent with the dispersive part, this proves the result. ��
Proof (Proposition 8) Since we have assumed that the kinetic energy of the Saint-
Venant part of Eq. (136) satisfies (163), this means that the first two components
of the first equation of (157) multiplied respectively by ghni − (uni )

2/2 and uni give
Eq. (163). It remains to consider the contributions to the energy balance of the last
two components of (157) and of Eq. (158).

First let us multiply the third component of the first equation of (157) by wn
i , then

we get

hn+1
i
2

(w
n+1/2
i )2 − hni

2
(wn

i )2 + �tn

�xi

(
Fn
h,i+1/2

(wn
i+1/2)

2

2
− Fn
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(wn
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2

2

)

= �tn

�xi

([
Fn
h,i+1/2

]
− (wn
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i )2 −

[
Fn
h,i−1/2

]
+ (wn

i − wn
i−1)

2
)

+ hn+1
i
2

(w
n+1/2
i − wn

i )2,

with the notations [a]+ = max(a, 0), [a]− = min(a, 0)a = [a]+ + [a]− andwn
i+1/2

is defined by (152). Then we multiply the last component of Eq. (157) by pni+1/2 +
g
2h

n
i+1/2 leading to

hn+1
i+1/2

2

(
p̂n+1/2
i+1/2

)2 −hni+1/2

2

(
p̂ni+1/2

)2 + �tn
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(
Fn
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2

2
− Fn
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2

2
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2

)

+ hn+1
i+1/2

2

(
p̂n+1/2
i+1/2 − p̂ni+1/2

)2
,

with Fh,i+1 = (Fh,i+3/2 + Fh,i+1/2)/2. Thanks to the definition (151), the two quan-
tities

Fn
h,i+1

2
( p̂ni+1 − p̂ni+1/2)

2, and − Fn
h,i

2
( p̂ni − p̂ni−1/2)

2,

are always non-positive.
Second, we multiply the equations (158) respectively by p̂n+1/2,k+1

i+1/2 and un+1/2,k
i

and sum the obtained relations for k = 1, . . . K . Precisely, starting from the defini-
tions (154), (155), we rewrite ∇γ

sw,i p under the form
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∇γ

sw,i p = ∇γ

sw,i+1/2− p + ∇γ

sw,i−1/2+ p,

with

∇γ

sw,i+1/2− p =
∣∣∣∣
hi (pi+1/2 − pi ) + pi+1/2

2

(
ζi+1 − ζi

)
− γ

2 �xi+1/2 pi+1/2

and we obtain a discrete version of the duality relation (140) under the form

�xi∇γ

sw,i+1/2− pn+1/2,k+1 · un+1/2,k
i = en+1/2,k+1/2

i+1/2−

− �xi+1/2

2
divγ

sw,i+1/2

(
un+1/2,k

)
pn+1/2,k+1
i+1/2 , (165)

with en+1/2,k+1/2
i+1/2− defined by

en+1/2,k+1/2
i+1/2− = hn+1

i+1/2u
n+1/2,k
i+1/2 pn+1/2,k+1

i+1/2 − hn+1
i un+1/2,k

i pn+1/2,k+1
i

+ pn+1/2,k+1
i+1/2

(
ζi+1 − ζi

)un+1/2,k
i − un+1/2,k

i+1

2

− γ

4
�xi+1/2 p

n+1/2,k+1
i+1/2 (w

n+1/2,k
i − w

n+1/2,k
i+1 ).

Notice that in the expression of en+1/2,k+1/2
i+1/2− the last two terms are second order and

en+1/2,k+1/2
i+1/2+ + en+1/2,k+1/2

i+1/2− = hn+1
i+1 u

n+1/2,k
i+1 pn+1/2,k+1

i+1 − hn+1
i un+1/2,k

i pn+1/2,k+1
i .

The duality relation (165) has been written for the variable pn+1/2,k+1
i±1/2 but the last

two terms in (165) should be a discrete version of the r.h.s. of Eq. (112) i.e. of the
quantity p̂divγ

sw(u). And since p̂ = p + gh/2 the reminder is (for interfaces i ± 1/2)

g

2
hn+1
i+1/2div

γ

sw,i+1/2

(
un+1/2,k) + g

2
hn+1
i−1/2div

γ

sw,i−1/2

(
un+1/2,k),

corresponding to the right hand side of (160) multiplied by g.
For the errors coming from the time dicretization of Eqs. (158), we have
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Summing the previous relations for k = 1, . . . , K and adding the result to the other
contributions gives the corresponding expressions appearing in relation (164). This
ends the proof. ��
Remark 9 For the discretization of the model (132)–(135), we have presented a first
order scheme in space and time. Second order extensions (in space and time) can be
proposed, following [2].

4.5 Simulation Results

In this paragraph, only few numerical examples are presented. A more complete
validation of the numerical procedure will be presented in a companion paper. Notice
that in the 1d case, we mainly validate the numerical scheme but the reduction of the
computation costs will be more significant in a two-dimensional setting.

4.5.1 Dingemans Experiments

The experiments carried out by Dingemans [18] at Delft Hydraulics deal with the
wave propagation over uneven bottoms. A wave generator produces a small ampli-
tude wave (0.02 m) at the left boundary of a basin with vertical shores. A vertical
shore closes the basin at the right boundary, due to the considered time window, the
measurements are not perturbed by the reflected wave on the right boundary. At rest,
the water depth in the channel varies from 0.4 m to 0.1 m, see Fig. 3. Eight sensors
recording the free surface elevation are located at abscissa 2m, 4m, 10.5m, 12.5m,
13.5m, 14.5m, 15.7m and 17.3m.

For γ = √
3, we compare the simulation results obtained with the two numerical

schemes (the one proposed in [2] and the one proposed in this paper with ε = 1/c2 =
10−4 m−2.s2). The results obtained with a uniform mesh of 1600 nodes are depicted
over Fig. 4 where the computed and measured free surface elevations at four points
are presented. Notice that for ε = 10−7 m−2.s2 that is the most physical choice, the
simulations of the complete and relaxed model cannot be distinguished.

Fig. 3 Channel profile for
the experiments and location
of the sensors
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Fig. 4 Comparisons between the experimental data (solid line), the simulations of the dispersive
model with the model presented in [2] (blue dashed line) and the relaxed model presented in this
paper (red dashed-dotted line) with ε = 10−4 m−2.s2. Figures (a), (b), (c) and (d) respectively
correspond to the results for the sensors 3, 4, 5 and 6

Fig. 5 Variations of the quantity x �→ ε(p + gh/2) with ε = 10−7 m−2.s2 at time t = 0.01 s

For the test case depicted in Sect. 4.5.1, the basin is at rest at the initial instant and
we give at time t = 0.01 s, the value of the quantity ε(p + gh/2) representing the
pseudo-compressible effects. It appears over Fig. 5 that at time t = 0.1 s, whereas the
free surface has just begun to deform at the boundary where the wave is generated,
the acoustic-type waves have already propagated in the basin.
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4.5.2 Comparison of the Computational Costs

For the simulation results given in Sect. 4.5.1, we compare the computational costs
of the numerical schemes with and without pseudo-compressibility effects. More
precisely, we compare the CPU time necessary to simulate the test case presented
in Sect. 4.5.1 with the method proposed in [2]—corresponding to an incompressible
model and requiring to solve the elliptic Eq. (127)—and the proposed explicit in time
scheme (122)–(123) with the pseudo-compressible effects.

The advantages of the model and numerical strategy presented in this paper are
significant for 2d problemswith a large number of nodes but can hardly be highlighted
in the 1d case where the elliptic operator to inverse is a symmetric tridagonal matrix.
Hence, in order to illustrate the interest of the proposed scheme, we have used a
conjugate gradient technique mimicking what would be done to solve (127) in 2d
for an unstructured mesh.

Figure6 presents the CPU time required to perform the simulations of the Dingue-
mans experiment with several meshes namely with 2000, 4000, 8000, 16000 and
32000 nodes. It appears that when the number of nodes increases, the proposed
explicit in time scheme is more efficient than the conjugate gradient algorithm (used
here without preconditioning). Notice that the authors have not performed an exhaus-
tive comparison between the costs of the conjugate gradient technique—for which
several optimizations are possible—and the iterative and explicit time resolution
scheme (122)–(123).

Fig. 6 Computational costs
necessary to simulate the
Dinguemans experiment
with several meshes
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