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Abstract We give an overview on the work developed in recent years about cer-
tain classes of incomplete Riemann solvers for hyperbolic systems. These solvers
are based on polynomial or rational approximations to |x |, and they do not require
the knowledge of the complete eigenstructure of the system, but only a bound on
the maximum wave speed. Our solvers can be readily applied to nonconservative
hyperbolic systems, by following the theory of path-conservative schemes. In par-
ticular, this allows for an automatic treatment of source or coupling terms in systems
of balance laws. The properties of our schemes have been tested with some chal-
lenging numerical experiments involving systems such as the Euler equations, ideal
magnetohydrodynamics equations and multilayer shallow water equations.

1 Introduction

Since the early work of Godunov [19], Riemann solvers constitute a fundamental
ingredient in the design of robust and accurate numerical methods for hyperbolic
conservation laws. Usually, Riemann solvers can be classified as complete or incom-
plete, depending if all the characteristic waves in the solution of the exact Riemann
problem are considered or not. Among the class of complete Riemann solvers, Roe’s
method [29] is one of the most widely used, as it usually provides the best resolution
of the Riemann wave fan. However, when analytic expressions for the eigenstructure
of the system are not available or they are difficult to compute, Roe’s method may
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be computationally expensive. Therefore, in certain situations it is preferable to con-
sider incomplete Riemann solvers, for which only part of the spectral information
is needed. In these cases, an important drawback may be the lack of resolution of
internal waves in complex scenarios.

The numerical diffusion of a given numerical flux is determined by its viscosity
matrix. In the case of Roe’s method the viscosity matrix is |A|, the absolute value of
the Roe matrix of the system, which may be difficult to compute as it requires the
knowledge of the complete eigenstructure of A. A number of incomplete Riemann
solvers based on appropriate approximations to |A| have been proposed in the litera-
ture. One of the earliest examples is given by the local Lax-Friedrichs (or Rusanov)
method, inwhich |A| is approximated using only the largest eigenvalue of the system.
Another very popular approach is the HLL method [20], where |A| is approximated
be means of a linear polynomial evaluation P(A), where P(x) interpolates |x | at the
smallest and largest eigenvalues of A. On the other hand, the paper [14] contains the
first construction of a simple approximation to |A| by means of a polynomial that
approximates |x | without interpolating it exactly on the eigenvalues.

The latter approach is the basis of the general framework proposed in [8], where
PVM (Polynomial Viscosity Matrix) methods were introduced. The viscosity matrix
of a PVM method is built as a polynomial evaluation P(A) of the Roe matrix or
the Jacobian of the flux at some other average value. It is worth noticing that a
number of well-known methods in the literature can be viewed as particular cases
of PVM schemes: Lax-Friedrichs, Rusanov, HLL, FORCE, Roe, etc. (see also [13,
23, 31]). An additional feature of PVM methods is that they can be defined in the
general framework of nonconservative hyperbolic systems, which allows to construct
natural extensions of the standard schemes cited before for solving problems in
nonconservative form.

To ensure the stability of a PVMmethod, the graph of the basis polynomial P(x)
must be over the graph of the absolute value function. On the other hand, as P(x) is
closer to |x | in the uniform norm, the behavior of the associated PVM method will
be closer to that of Roe’s method. It follows then that it is possible to use accurate
approximations to |x | for building PVM schemes resembling Roe’s method, but with
a much smaller computational cost. Following this idea, a PVM scheme based on
Chebyshev polynomials, which provide optimal uniform approximations to |x |, was
proposed in [10]. This idea was further extended in the same paper to the case of
rational functions, which greatly improve the order of approximation to |x |. The
resulting schemes were denoted as RVM (Rational Viscosity Matrix). In fact, RVM
schemes based on Newman [24] approximations provided similar performances as
Roe’s method, but with a much smaller computational cost. As the only difference
between PVM and RVM methods rely on the kind of basis function chosen, in
this work we will use the term AVM (Approximate Viscosity Matrix) to refer to
both of them. We remark that AVM methods constitute a class of general-purpose
Riemann solvers, which are constructed using only an estimate of the spectral radius
of the Roe matrix or the Jacobian of the system evaluated at an average state. As an
additional advantage, unlike Roe’s method, no entropy-fix is needed in the presence
of sonic points, as long as the basis function does not cross the origin. Recently, a
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fully two-dimensional version of AVM schemes has been proposed in [18], where
multidimensional effects are taken into account through the approximate solution of
two-dimensional Riemann problems.

TheOsher-Solomon (OS) scheme [26] is a nonlinear and completeRiemann solver
which enjoys a number of interesting features: it is robust, smooth, entropy-satisfying,
and good behaved when computing slowly-moving shocks. As a drawback, its prac-
tical implementation is complex and computationally expensive, as it requires the
computation of a path-dependent integral in phase space (see [30]). For this reason,
its practical application has been restricted to certain systems, e.g., the compress-
ible Euler equations. In [15, 16], the authors proposed a variant of the OS method
combining linear paths and a Gauss-Legendre quadrature formula. This led to a sim-
plified version of the OS scheme, denoted as DOT (Dumbser-Osher-Toro), which
conserves its good properties and it is applicable to general hyperbolic systems. In
particular, the viscosity matrix of a DOT solver is defined as a linear combination
of the absolute value matrix of the Jacobian of the physical flux evaluated at certain
quadrature points. As the practical computation of these matrices can be expensive,
they could be approximated in an efficient way following the same technique behind
AVM methods. This idea was explored in [11], leading to the class of AVM-DOT
solvers. In particular, it was shown that Chebyshev-based AVM-DOT solvers admit
a Jacobian-free implementation, in which only evaluations of the physical flux are
needed. This kind of methods is particularly interesting when solving systems in
which the Jacobian involves complex expressions: see [12].

Both classes of AVM and AVM-DOT solvers can be extended to the case of non-
conservative hyperbolic systems, following the theory of path-conservative schemes
[28]. In particular, this includes the important case of hyperbolic systems of con-
servation laws with source terms and nonconservative products. In the conservative
case, the proposed schemes have been applied to a number of challenging problems in
ideal gas dynamics, magnetohydrodynamics (MHD) and relativisticMHD (RMHD).
Multilayer shallow water systems have been considered as a representative example
in the nonconservative framework, as they include both source and nonconservative
coupling terms [10–12]. In all the cases, the numerical tests indicate that the pro-
posed schemes are robust, running stable and accurate with a satisfactory time step
restriction.

2 Approximate Viscosity Matrix (AVM) Methods

In this section we give an overview of PVM [8] and related methods developed in
recent years [10, 12]. For the sake of clarity, we first focus on the case of a system
of conservation laws. Extensions to the nonconservative case will be treated later in
Sect. 4.

Let us consider a system of conservation laws

∂tw + ∂x F(w) = 0, (1)
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where w(x, t) takes values on an open convex set O ⊂ R
N and F : O → R

N is
a smooth flux function. The numerical solution of the Cauchy problem for (1) is
computed by means of a finite volume method of the form

wn+1
i = wn

i − �t

�x
(Fi+1/2 − Fi−1/2), (2)

where wn
i is an approximation to the average of the exact solution at the cell Ii =

[xi−1/2, xi+1/2] at time tn = n�t (the dependence on time will be dropped unless
necessary). The numerical flux is assumed to be written as

Fi+1/2 = F(wi ) + F(wi+1)

2
− 1

2
Qi+1/2(wi+1 − wi ), (3)

where the viscosity matrix Qi+1/2 controls the numerical diffusion of the scheme.
We will assume that system (1) is hyperbolic, i.e., the Jacobian matrix of the flux

at each state w ∈ O,

A(w) = ∂F

∂w
(w),

can be diagonalized as
A = PDP−1,

where D = diag(λ1, . . . , λN ), λi are the eigenvalues of A, and the columns of the
matrix P are the associated right eigenvalues of A. As it is usual, we denote the
positive and negative parts of A, respectively, as

A+ = PD+P−1, A− = PD−P−1,

where D± = diag(λ±
1 , . . . , λ±

N ), with λ+
i = max(λi , 0) and λ−

i = min(λi , 0). It is
clear that A = A+ + A−. The absolute value of A is then defined as

|A| = A+ − A−.

One of the most widely used Riemann solvers for (1) was proposed by Roe
in [29]. It usually provides the best resolution of the Riemann wave fan, although
for complex systems the method can be computationally expensive. This is due to
the fact that Roe’s method is a complete Riemann solver, in the sense that it uses
all the eigenstructure of the system. Therefore, for complex systems, or systems
for which the eigenstructure is not known, incomplete Riemann solvers may be
preferred: they use few characteristic information and are thus easier to implement
and computationally efficient.

It is important to note that Roe’s method can be written in the form (3) with
viscosity matrix Qi+1/2 = |Ai+1/2|, where Ai+1/2 is a Roe matrix for the system.
Several numerical methods have been developed by using approximations to |Ai+1/2|
as viscosity matrices; see, e.g., [13, 14, 20, 30, 31] and the references therein.
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PVM Methods
The original idea of PVM (Polynomial Viscosity Matrix) Riemann solvers [8] was
based in approximating |Ai+1/2| using an appropriate polynomial evaluation of
Ai+1/2.Assume that P(x) is a polynomial approximation of |x | in the interval [−1, 1],
and let λi+1/2,max be the eigenvalue of Ai+1/2 with maximum modulus (or an upper
bound of it). The numerical flux of the PVM method associated to P(x) is given by
(3) with viscosity matrix

Qi+1/2 = |λi+1/2,max|P(|λi+1/2,max|−1Ai+1/2),

which provides an approximation to |Ai+1/2|, the viscosity matrix of Roe’s method.
Moreover, note that the best P(x) approaches |x |, the closer the behavior of the
associated PVM scheme will be to that of Roe’s method. It is worth noticing that no
spectral decomposition of the matrix Ai+1/2 is needed to build a PVM method, but
only a bound on its spectral radius. This fact makes PVM methods greatly efficient
and applicable to systems in which the eigenstructure is not known or difficult to
obtain. In those cases in which a Roematrix is not available or is difficult to compute,
Ai+1/2 can be defined as the Jacobian evaluated at some average state.

Several well-known schemes in the literature can be interpreted as PVMmethods,
for example:

• Lax-Friedrichs: P(x) = �x
�t .• HLL: P(x) = α0 + α1x , where P(SL) = |SL | and P(SR) = |SR|, being SL and

SR approximations to the minimal and maximal speeds of propagation.
• Roe: In this case, P(x) is the Lagrange polinomial which interpolates the set of
points (λ

( j)
i+1/2, |λ( j)

i+1/2|), where λ
( j)
i+1/2 are the eigenvalues of the Roematrix Ai+1/2.

Other examples include Rusanov, FORCE or Lax-Wendroff methods (see [8]).
Another example of PVM method is the one proposed in [14], which constitutes
one of the first attempts to construct a simple approximation of |A| by means of a
polynomial that approximates |x |without interpolating it exactly on the eigenvalues.

The stability of a PVM scheme relies on the properties of the basis polynomial
P(x). In particular, the following stability condition should be verified:

|x | ≤ P(x) ≤ 1, ∀ x ∈ [−1, 1]. (4)

It was proven in [8] that condition (4) implies that the associated PVM scheme is
linearly L∞-stable under a standard CFL restriction.

A well-known drawback of Roe’s method is the need of an entropy fix to han-
dle sonic flow properly, in order to avoid entropy-violating solutions. In PVM-type
schemes there is no need of entropy fix as long as P(0) �= 0.

In [10] we proposed a new class of PVM schemes based on Chebyshev polynomi-
als, which provide optimal uniform approximations to the absolute value function.
The Chebyshev polynomials of even degree T2k(x) are recursively defined as

T0(x) = 1, T2(x) = 2x2 − 1, T2k(x) = 2T2(x)T2k−2(x) − T2k−4(x).
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Fig. 1 Left: Chebyshev approximations τ2p(x) for p = 2, 3, 4. Right: Internal polynomial approx-
imations (6)

Then, for p ≥ 1 we consider the polynomial of degree 2p given by (see Fig. 1, left)

τ2p(x) = 2

π
+

p∑

k=1

4

π

(−1)k+1

(2k − 1)(2k + 1)
T2k(x), x ∈ [−1, 1], (5)

which follows after truncation of the series expansion of |x | in terms of Chebyshev
polynomials. It is a classical result [2] that the order of approximation of τ2p(x)
to |x | is optimal in the L∞(−1, 1) norm. Moreover, the recursive definition of the
polynomials T2k(x) provides an explicit and efficient way to compute τ2p(x) (see the
Appendix in [10]).

Notice that τ2p(x) does not verify the stability condition (4) strictly: see Fig. 1
(left), where τ2p(x) has been drawn for p = 2, 3, 4. This drawback was partially
fixed in [10] in a rough manner, by substiting τ2p(x) by τ ε

2p = τ2p(x) + ε, where ε

is chosen as the minimum value such that τ ε
2p(x) fulfills condition (4). However, this

could cause incorrect approximations of the external waves.
In [12] we proposed another family of polynomials which approximate |x | in a

more elegant way, satisfying the stability condition (4) by construction. This class
of internal polynomials are iteratively defined as follows (see Fig. 1 (right)):

p0(x) ≡ 1, pn+1(x) = 1

2

(
2pn(x) − pn(x)

2 + x2
)
, n = 0, 1, 2, . . . (6)

RVM Methods
As it is well-known [24], rational functions provide much better approximations to
|x | than polynomials. This fact was used in [10] to create new families of very precise
incompleteRiemann solvers, denoted asRVM(RationalViscosityMatrix), following
the same idea of PVM methods but using a rational function as basis instead of a
polynomial.

In particular, two families of RVM methods will be considered here. The first
one corresponds toNewman approximations, which are constructed as follows. For a
given r ≥ 4, consider a set of distinct points in (0, 1], X = {0 < x1 < · · · < xr ≤ 1},
and build the polynomial
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Fig. 2 Left: Comparison between R8(x) and Rε
8(x) for x ∈ [−0.1, 0.1], with ε ≈ 7.37e − 3. Right:

Halley rational approximations Hr (x) in the interval [−0.1, 0.1], for r = 3, 4, 5

p(x) =
r∏

k=1

(x + xk).

The Newman rational function associated to the set X is then defined by

Rr (x) = x
p(x) − p(−x)

p(x) + p(−x)
.

It is easy to see that Rr (x) interpolates |x | at the points {−xr , . . . ,−x1, 0, x1, . . . , xr }.
Also notice that for even r both the numerator and denominator of Rr (x) are of degree
r . The uniform rate of approximation of Rr (x) to |x | depends on the choice of the
set of nodes X . Several choices are possible (see [10]); here, we have considered
Newman’s original definition, which is given by xk = ξ k , with ξ = exp(−r−1/2).

Notice that the stability condition (4) is not fulfilled in any case, so a modified
approximation of the form Rε

r (x) = Rr (x) + ε should be considered, as in the case
of Chebyshev polynomials. A comparison between Rr (x) and Rε

r (x) can be seen in
Fig. 2 (left). The differences between using Rr (x) or Rε

r (x) are particularly noticeable
in the presence of sonic points: in this case, Rε

r (x) must be used to avoid entropy-
violating solutions.

The second family of rational functions is based on iterative approximations. Note
that the absolute value |x̄ | of a given point x̄ ∈ [−1, 1] can be viewed as the positive
root of f (x) = x2 − x̄2. It is then possible to approximate |x̄ | using a root-finding
algorithm, such as Newton’s method, or the more precise choice given by the cubic
Halley’s method:

xk+1 = xk
x2k + 3x̄2

3x2k + x̄2
.

Taking x0 = 1 as initial guess, Halley’s method is well-defined and converges to x̄
(see [5]). The Halley rational approximations to |x | are thus recursively defined as

H0(x) ≡ 1, Hr+1(x) = Hr (x)
Hr (x)2 + 3x2

3Hr (x)2 + x2
. (7)
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Notice that the degrees of the numerator and denominator of Hr (x) are both equal to
3r − 1. It can be easily verified that Hr (x) satisfies the stability condition (4) without
further modifications. Figure 2 (right) shows the functions Hr (x) for r = 3, 4, 5.

As itwas commented before, another possibility is to useNewton’smethod instead
of Halley’s method. However, numerical experiments show that RVM-Halley meth-
ods provide much better resolution of internal waves than RVM-Newton schemes
with a comparable computational cost.
AVM Methods
As it can be seen in the preceding paragraphs, the idea behind PVM and RVM
methods is esentially the same, the difference depending only on using polynomials
or rational functions to approximate the absolute value function. For this reason, we
will encompass both kind of methods under the global name of AVM (Approximate
Viscosity Matrix) methods.

Therefore, an AVM method is a finite volume method of the form (2), where the
numerical flux is given by (3) with viscosity matrix

Qi+1/2 = f (Ai+1/2),

where f : R → R is a given function and Ai+1/2 is a Roe matrix or the Jacobian of
the flux evaluated at some average state. The function f must verify some conditions:

• f (x) is nonnegative and smooth.
• f (Ai+1/2) should be easy to evaluate; in particular, no spectral decomposition of

Ai+1/2 should be needed, but only a bound on its spectral radius.
• L∞-linear stability, which is accomplished under the condition

|x | ≤ f (x) ≤ CFL
�x

�t
, ∀ x ∈ [λ(1)

i+1/2, λ
(N )
i+1/2],

where λ
(1)
i+1/2 ≤ · · · ≤ λ

(N )
i+1/2 are the eigenvalues of Ai+1/2.

• The graph of f (x) should be as close as possible to the graph of |x |.
We end this section with some remarks regarding computational efficiency. The

implementation of rational-based methods involves the computation of matrix pow-
ers and matrix inversions, while Chebyshev-based or internal-based methods can
be expressed in such a way that only vector operations are involved. This makes
these polynomial methods computationally cheaper than rational ones but, on the
other hand, rational methods are far more precise. Thus, a compromise has to be
accomplished between accuracy and computational cost. In general, it seems that for
problems with solutions containing very complex patterns, rational-based methods
perform better than polynomial ones in terms of the ratio between CPU times and
computed errors. Otherwise, for mildly complex problems polynomial methods may
be the preferred option.

An additional advantage of Chebyshev-based and internal-based methods is that
they admit a Jacobian-free implementation (see Sect. 3), which is not possible for
rational-based methods. This means that the numerical flux can be constructed using
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only evaluations of the physical flux F at different states, thus avoiding the compu-
tation of Jacobian matrices. This point is particularly interesting for systems with
complex physical fluxes (as, for example, the equations of RMHD), for which the
calculation of the corresponding Jacobian may be a difficult or costly task.

3 Approximate DOT Solvers

The so-called approximate DOT (Dumbser-Osher-Toro) solvers, introduced in [11],
combine the AVM technique with the universal Osher-type solvers proposed in [15].
These methods, that will be denoted in what follows as AVM-DOT, constitute simple
and efficient approximations to the classical Osher-Solomon method [26], enjoying
most of its interesting features and being applicable to general hyperbolic systems.

The numerical flux of the original Osher-Solomon method is given by

Fi+1/2 = F(wi ) + F(wi+1)

2
− 1

2

∫ 1

0

∣∣A(
(s))
∣∣
′(s)ds, (8)

where A(w) represents the Jacobian of the physical flux F evaluated at the state w,
and 
 is a path in phase-space linking the states wi and wi+1. The path 
 for a DOT
solver [15] is taken as the segment linking wi and wi+1, and the resulting integral is
approximated using a Gauss-Legendre quadrature formula. Thus, the resulting DOT
flux adopts the form (3) with viscosity matrix

Qi+1/2 =
q∑

k=1

ωk

∣∣A(wi + sk(wi+1 − wi ))
∣∣,

where ωk and sk are the weights and nodes of the quadrature formula. Now, the
absolute value of the intermediate matrices could be approximated by using the
technique of AVMmethods. The resulting AVM-DOT solver associated to a function
f (x) has then the following form:

Qi+1/2 =
q∑

k=1

ωk P̃
(k)
i+1/2,

where
P̃ (k)
i+1/2 = ∣∣λ(k)

i+1/2,max

∣∣ f
(∣∣λ(k)

i+1/2,max

∣∣−1
A(k)
i+1/2, (9)

for k = 1, . . . , q. In the above expression, λ(k)
i+1/2,max denotes the eigenvalue of

A(k)
i+1/2 = A(wi + sk(wi+1 − wi ))

)
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with maximum modulus.
Clearly, a kind of AVM methods can be obtained as a particular case of approxi-

mate AVM-DOT solvers, simply by taken q = 1 and ω1 = 1.
Jacobian-Free Implementation
We end this section with some notes on the Jacobian-free implementation of AVM-
DOT solvers. As it was already mentioned at the end of Sect. 3, this is only possible
for polynomial-based methods. To clarify the process, we will focus on the case of
an AVM-DOT solver based on internal polynomial approximations.

As it was indicated in [12], the explicit form of pn(x) combined with Horner’s
methodwill be considered instead of the recursive form (6). On the other hand, notice
that it will not be necessary to compute the viscosity matrix Qi+1/2 explicitely, but
only the vector Qi+1/2(wi+1 − wi ) appearing in the numerical flux (3).

To ilustrate the procedure, consider the polynomial

p2(x) = α0x
4 + α1x

2 + α2 = x2(α0x
2 + α1) + α2,

where the coefficients are given by α0 = −1/8, α1 = 3/4 and α2 = 3/8. Let A ≡
A(w) be the Jacobian matrix of F evaluated at an intermediate state w, and let
v be an arbitrary state; for simplicity, assume that λmax = 1. Then the following
approximation holds:

|A|v ≈ p2(A)v = (A2(α0A
2 + α1 I ) + α2 I )v.

The above expression can be computed using Horner’s algorithm:

• Define v0 = v and compute ṽ0 = A2v0.
• Calculate v1 = α0ṽ0 + α1v0 and ṽ1 = A2v1.
• Compute v2 = ṽ1 + α2v0. Then, |A(w)|v ≈ p2(A)v = v2.

The product A(w)v can be approximated using finite differences:

A(w)v ≈ F(w + εv) − F(w)

ε
,

which leads to

A(w)2v ≈ F
(
w + F(w + εv) − F(w)

) − F(w)

ε
≡ 
ε(w; v),

where, in practice, the value ε should be chosen small relative to the norm of w.
Finally, the vector |A(w)|v can be approximated using the following steps, in which
only vector operations and evaluations of the physical flux F are needed:

• Define v0 = v and compute ṽ0 = 
ε(w; v0).
• Calculate v1 = α0ṽ0 + α1v0 and ṽ1 = 
ε(w; v1).
• Compute v2 = ṽ1 + α2v0. Then, |A(w)|v ≈ v2.
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The detailed procedure to build a Jacobian-free AVM-DOT solver with pn(x) as
basis function is given next. The key point is to approximate the vectors

P̃ (k)
i+1/2�w = ∣∣λ(k)

i+1/2,max

∣∣pn(A(k))�w, k = 1, . . . , q,

where�w = wi+1 − wi and A(k) = ∣∣λ(k)
i+1/2,max

∣∣−1
A(w

(k)
i ), withw

(k)
i = wi + sk�w.

Assuming that the coefficients αi of the polynomial pn(x) have already been com-
puted, the polynomial pn(x) can be written as

pn(x) = α0x
2(n+1) + α1x

2n + α2x
2(n−1) + · · · + αnx

2 + αn+1.

Then each term P̃ (k)
i+1/2�w can be approximated using the following algorithm:

• Define v0 = �w and compute ṽ0 = ∣∣λ(k)
i+1/2,max

∣∣−2

ε(w

(k)
i ; v0).

• Calculate v1 = α0ṽ0 + α1v0.
• For j = 1, . . . , n, define ṽ j = ∣∣λ(k)

i+1/2,max

∣∣−2

ε(w

(k)
i ; v j ) and compute v j+1 =

ṽ j + α j+1v0.
• Finally, P̃ (k)

i+1/2�w ≈ ∣∣λ(k)
i+1/2,max

∣∣vn+1.

4 The Nonconservative Case

TheAVMandAVM-DOT solvers introduced in the previous sections can be extended
in a natural way to the case of nonconservative hyperbolic systems. We will focus in
this section in AVM-DOT solvers, as they are more general. However, all the results
can be readily adapted to AVM solvers.

Consider a hyperbolic system in nonconservative form

∂tW + A(W )∂xW = 0, (10)

where the matrixA(W ) is strictly hyperbolic for each state W belonging to an open
convex subset � ⊂ R

M . The definition of the nonconservative product A(W )∂xW
depends on the choice of a family of paths
(s;WL ,WR) joining arbitrary statesWL

and WR in the phase space �: see [22, 28] for details.
The solutions of (10) can be numerically approximated by means of path-

conservative finite volume schemes of the form [28]:

Wn+1
i = Wn

i − �t

�x
(D+

i−1/2 + D−
i+1/2), (11)

where D±
i+1/2 = D±(Wn

i ,Wn
i+1). Here D− and D+ are two continuous functions

from � × � to � satisfying

D±(W,W ) = W, ∀W ∈ �,



14 J. M. Gallardo et al.

and

D−(W0,W1) + D+(W0,W1) =
∫ 1

0
A(
(s;W0,W1))

∂


∂s
(s;W0,W1) ds (12)

for every W0,W1 ∈ �, with 
(0;W0,W1) = W0 and 
(1;W0,W1) = W1. In par-
ticular, the generalized Roe’s scheme [27] is defined by choosing

D±
i+1/2 = 1

2

(A
(Wn
i ,Wn

i+1) ± |A
(Wn
i ,Wn

i+1)|
)
(Wn

i+1 − Wn
i ),

where A
 is a Roe linearization associated to A and 
. In this case, the term
|A
(Wn

i ,Wn
i+1)| plays the role of a viscosity matrix. Using Roe’s property, it is

possible to write the above expression as

D±
i+1/2 = 1

2

∫ 1

0
A(
(s;Wn

i ,Wn
i+1))

∂


∂s
(s;Wn

i ,Wn
i+1) ds

± 1

2
|A
(Wn

i ,Wn
i+1)|(Wn

i+1 − Wn
i ).

Then, it is natural to define the Osher-Solomon scheme for solving the nonconser-
vative system (10) as (11) with

D±
i+1/2 = 1

2

∫ 1

0
A(
(s;Wn

i ,Wn
i+1))

∂


∂s
(s;Wn

i ,Wn
i+1) ds

± 1

2

∫ 1

0
|A(
(s;Wn

i ,Wn
i+1))|

∂


∂s
(s;Wn

i ,Wn
i+1) ds, (13)

or, equivalently,

D±
i+1/2 = 1

2
A
(Wn

i ,Wn
i+1)(W

n
i+1 − Wn

i )

± 1

2

∫ 1

0
|A(
(s;Wn

i ,Wn
i+1))|

∂


∂s
(s;Wn

i ,Wn
i+1) ds. (14)

Notice that (13) is more general than (14), as the latter relies on the existence of
a Roe linearization A
. Therefore, (13) could be used in the cases in which a Roe
linearization is not known or is difficult to compute.

A good choice of the family of paths 
 may be difficult or very costly in
practice, and usually relies on the physics of the problem (see [28]). A sim-
ple choice, commonly used in the literature, is given by the family of segments:

(s;WL ,WR) = WL + s(WR − WL); we will consider this choice throughout the
rest of the section. Then, denoting Ai+1/2 = A
(Wn

i ,Wn
i+1), we have:
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D±
i+1/2 = 1

2

(
Ai+1/2 ±

∫ 1

0
|A(Wn

i + s(Wn
i+1 − Wn

i ))| ds
)

(Wn
i+1 − Wn

i ),

where the integral
∫ 1
0 |A(Wn

i + s(Wn
i+1 − Wn

i ))| ds can be interpreted as a viscosity
term. Next, this integral can be approximated using a Gauss-Legendre quadrature
formula, which leads to

D±
i+1/2 = 1

2

(
Ai+1/2 ±

q∑

k=1

ωk |A(k)
i+1/2|

)
(Wn

i+1 − Wn
i ), (15)

where A(k)
i+1/2 = A(Wn

i + sk(Wn
i+1 − Wn

i )). Therefore, (15) can be interpreted as a
nonconservative extension of the DOT numerical flux. This approach has also been
considered in [16].

Once formula (15) has been derived, AVM-DOT schemes for the nonconservative
system (10) can be built in a natural way, considering

D±
i+1/2 = 1

2

(
Ai+1/2 ±

q∑

k=1

ωk P̃
(k)
i+1/2

)
(Wn

i+1 − Wn
i ),

where P̃ (k)
i+1/2 is defined in (9).

We will focus now in the particular case of a hyperbolic system of conservation
laws with source terms and nonconservative products, that is,

∂tw + ∂x F(w) + B(w)∂xw = G(w)∂x H, (16)

wherew(x, t) ∈ O (beingO ⊂ R
N open and convex), F : O → R

N is a smooth flux
function, B : O → MN (R) is a smooth matricial function, and G : O → R

N and
H : R → R are given functions. System (16) can be written in the form (10) adding
the trivial equation ∂t H = 0 and defining

W =
(

w

H

)
∈ � = O × R ⊂ R

N+1, A(W ) =
(
A(w) −G(w)

0 0

)
,

where A(w) = ∂F
∂w

(w) + B(w). In this case, aRoe linearizationAi+1/2 can be defined
as [27]

Ai+1/2 =
(
Ai+1/2 −Gi+1/2

0 0

)
,

where Ai+1/2 = Li+1/2 + Bi+1/2,Li+1/2 being aRoematrix for the flux F in the usual
sense, that is, Li+1/2(w

n
i+1 − wn

i ) = F(wn
i+1) − F(wn

i ); Bi+1/2 is a matrix verifying

Bi+1/2(w
n
i+1 − wn

i ) =
(∫ 1

0
B(wn

i + s(wn
i+1 − wn

i )) ds

)
(wn

i+1 − wn
i ),
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and Gi+1/2 is a vector satisfying

Gi+1/2(Hi+1 − Hi ) =
( ∫ 1

0
G(wn

i + s(wn
i+1 − wn

i )) ds

)
(Hi+1 − Hi ).

A simple calculation gives

|A(W )| =
(|A(w)| −|A(w)|A(w)−1G(w)

0 0

)
,

as long as A(w) is nonsingular. Substituing in (15), the DOT scheme for solving (16)
can be written as

wn
i+1 = wn

i − �t

�x
(D+

i−1/2 + D−
i+1/2), (17)

with

D±
i+1/2 = 1

2

(
F(wn

i+1) − F(wn
i ) + Bi+1/2(w

n
i+1 − wn

i ) − Gi+1/2(Hi+1 − Hi )

±
q∑

k=1

ωk |A(k)
i+1/2|

(
wn

i+1 − wn
i − (A(k)

i+1/2)
−1G(k)

i+1/2(Hi+1 − Hi )
))

, (18)

where A(k)
i+1/2 = A(wn

i + sk(wn
i+1 − wn

i )), and similarly for G(k)
i+1/2.

Finally, AVM-DOT schemes for (16) are obtained by substituting |A(k)
i+1/2| by

P̃ (k)
i+1/2 in (18):

D±
i+1/2 = 1

2

(
F(wn

i+1) − F(wn
i ) + Bi+1/2(w

n
i+1 − wn

i ) − Gi+1/2(Hi+1 − Hi )

±
q∑

k=1

ωk P̃
(k)
i+1/2

(
wn

i+1 − wn
i − (A(k)

i+1/2)
−1G(k)

i+1/2(Hi+1 − Hi )
))

. (19)

In the case of a systemof conservation laws (that is, B = 0 andG = 0), the scheme
(17) can be written in the form (2) by simply taking Fi+1/2 = D−

i+1/2 + F(wn
i ) or,

equivalently, Fi+1/2 = −D+
i+1/2 + F(wn

i+1).

5 Numerical Experiments

In this section we test the performances of AVM-DOT schemes with some chal-
lenging problems related to ideal MHD equations in the conservative case, and to
multilayer shallow water equations in the nonconservative case.
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Depending on the basis function f (x), the AVM-DOT schemes will be denoted:

• DOT-Cheb-2p: f (x) is the Chebyshev polynomial τ2p(x).
• DOT-Newman-r : f (x) is taken as the Newman rational function Rr (x).
• DOT-Halley-r : f (x) = Hr (x), the r -th Halley rational function.
• DOT: the original DOT method in [15], in which the eigendecomposition is com-
puted numerically.

For higher order schemes, third-order PHM [21] reconstructions have been used,
combined with a third-order TVD Runge-Kutta method for time stepping.

5.1 Applications to Magnetohydrodynamics

The MHD system of equations is given by [4]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ = −∇ · (ρv),

∂t (ρv) = −∇ ·
(

ρvvT +
(
P + 1

2
B2

)
I − BBT

)
,

∂tB = ∇ × (v × B),

∂t E = −∇ ·
((

γ

γ − 1
P + 1

2
ρq2

)
v − (v × B) × B

)
,

(20)

where ρ represents the mass density, v = (vx , vy, vz)
t and B = (Bx , By, Bz)

t are the
velocity and magnetic fields, and E is the total energy. Denoting by q and B the
magnitudes of the velocity and magnetic fields, the total energy is

E = 1

2
ρq2 + 1

2
B2 + ρε,

where the specific internal energy ε and the hydrostatic pressure P are related through
the equation of state P = (γ − 1)ρε, with γ the adiabatic constant. In addition to
the equations, the magnetic field must satisfy the divergence-free condition

∇ · B = 0. (21)

In the numerical experiments, condition (21) has been imposed by means of the
projection method in [3]. Notice that for B = 0, system (20) reduces to the Euler
equations for gases. The eigenstructure of system (20) is completely determined:
see, e.g., [4].
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5.1.1 Stationary Contact Discontinuity

The purpose of this test, first proposed in [17], is to study the effect of the numeri-
cal diffusion in the approximation of a stationary contact discontinuity. This effect,
known as numerical heat conduction, may cause incorrect heating across the discon-
tinuity. The initial conditions for the Euler equations are given by

(ρ, vx , P) =
{

(1, 0, 1) for x ≤ 0.5,

(2, 0, 1) for x > 0.5,

with γ = 1.4. The solution consists in a stationary contact wave located at x = 0.5.
The problem has been solved in the domain [0, 1] with 200 cells and CFL= 0.5
until a final time t = 4.

Figure 3 shows the approximations to the density component. Both in the first- and
third-order solutions, DOT-Newman-4 gives the best approximation to the solution,
followed byDOT-Halley-2, DOT-Cheb-4 andDOT-Halley-1. TheHLL scheme gives
a very diffusive resolution of the discontinuity. On the other hand, Fig. 4 shows the
corresponding efficiency curves which represent, in logarithmic scale, the CPU times
versus the L1 errors with respect to the exact solution for different meshes. In any
case, DOT-Newman-4 is the most efficient solver. This test shows that the choice of

Fig. 3 Test 5.1.1: Left: first order. Right: third order. The solutions obtained with the Roe and DOT
schemes coincide with the reference (exact) solution. The lower row shows a zoom near the upper
part of the discontinuity
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Fig. 4 Test 5.1.1: Efficiency curves CPU vs. L1-error. Left: first order. Right: third order

an appropriate first-order solver is important even when it is going to be used as a
building block for higher-order schemes.

5.1.2 Brio-Wu Shock Tube Problem

This experiment was proposed in [4] to show the formation of a compound wave
consisting of a shock followed by a rarefaction wave. The initial conditions are the
following:

(ρ, vx , vy, vz, Bx , By, Bz, P) =
{

(1, 0, 0, 0, 0.75, 1, 0, 1) for x ≤ 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1) for x > 0,

with γ = 2. The problem has been solved until time t = 0.2 in the interval [−1, 1]
with a 1000 cell spatial discretization andCFL= 0.8. The results are shown in Fig. 5:
in this case there are no appreciable differences between the solutions computed with
Roe, DOT-Newman-4, DOT-Halley-2, DOT-Cheb-4 andDOT. On the other hand, the
first order HLL method provides a worse resolution of the compound wave, which
is however improved in third order.

Fig. 5 Test 5.1.2: Zoom of the density compound wave. Left: first order. Right: third order
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5.1.3 Orszag-Tang Vortex

The Orszag-Tang vortex [25] constitutes a model of transition to supersonic MHD
turbulence in which, departing from a smooth state, complex interactions between
shock waves are generated as the system evolves.

For (x, y) ∈ [0, 2π ] × [0, 2π ], the initial data are given by

ρ(x, y, 0) = γ 2, vx (x, y, 0) = − sin(y), vy(x, y, 0) = sin(x),

Bx (x, y, 0) = − sin(y), By(x, y, 0) = sin(2x), P(x, y, 0) = γ,

with γ = 5/3. Periodic boundary conditions are imposed in the x- and y-directions.
The computations have been done using a 192 × 192 uniform mesh and CFL=0.8.

Figure 6 shows the results obtained with the third-order DOT-Cheb-4 scheme
at time t = 3; similar solutions are obtained with the third-order DOT-Newman-4,
DOT-Halley-2, and DOT schemes. The results are in very good agreement with those
found in the literature, thus showing that our schemes are robust and accurate enough
to resolve the complicated structure of this vortex system. Finally, Table 1 shows the
relative CPU times with respect to the first-order DOT scheme.

The relativistic version of the Orszag-Tang problem has also been considered. In
this case, due to the very complex form of the Jacobians of the system, the Jacobian-
free implementation introduced at the end of Sect. 3 has been found to be a very
advantageous choice. Figure 7 shows the solution computed at time t = 4 with a
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Fig. 6 Test 5.1.3: Density (left) and pressure (right) computed at time t = 3 with the third-order
DOT-Cheb-4 scheme

Table 1 Test 5.1.3: Relative CPU times with respect to the first-order DOT solver

Method CPU (first order) CPU (third order)

DOT 1.00 5.82

DT-Cheb-4 0.16 1.04

DOT-Newman-4 0.38 2.32

DOT-Halley-2 0.50 2.79

HLL 0.05 0.36
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Fig. 7 Relativistic Orszag-Tang vortex: Left: density. Right: pressure

Jacobian-free second-order PVM-int-8 scheme, based on the internal polynomial
approximation introduced in Sect. 2. At a qualitative level, our results are in good
agreement with those found in, e.g., [32]. For a more detailed discussion about
Jacobian-free AVM-DOT solvers applied to relativistic MHD, the reader is referred
to [12].

5.1.4 The Rotor Problem

In this section we consider the rotor problem proposed in [1]. At the beginning, a
dense disk rotates at the center of the domain, while the ambient fluid remains at
rest. These two areas are connected with a taper function, which helps to reduce the
initial discontinuity. As time evolves, the rotating dense fluid tends to be confined
into an oblate shape, due to the action of the magnetic field.

The computational domain is [0, 1] × [0, 1] with periodic boundary conditions.
Defining r0 = 0.1, r1 = 0.115, f = (r1 − r)/(r1 − r0) and r = [(x − 0.5)2 + (y −
0.5)2]1/2, the initial conditions are given by

(ρ(x, y), vx (x, y), vy(x, y)) =

⎧
⎪⎨

⎪⎩

(10, −(y − 0.5)/r0, (x − 0.5)/r0) if r < r0,

(1 + 9 f,−(y − 0.5) f/r, (x − 0.5) f/r) if r0 < r < r1,

(1, 0, 0) if r > r1,

with Bx = 2.5/
√
4π , By = 0 and P = 0.5. We take γ = 5/3.

Figure 8 shows the solutions obtained with the third-order DOT-Cheb-4 scheme
at time t = 0.295 on a 200 × 200 mesh with CFL= 0.8. The results are in good
agreement with those presented in [1]. As in the previous test, DOT-Newman-4 and
DOT-Halley-2 give similar results as DOT-Cheb-4. On the contrary, the DOT scheme
fails for this problem around time t ≈ 0.187. Finally, the third-order HLL and DOT-
Cheb-4 methods are compared in Fig. 9. As it can be seen, DOT-Cheb-4 produces
more precise results than HLL, which indicates that the choice of a precise first-order
solver is important even when designing high-order schemes.
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Fig. 8 Test 5.1.4: Density ρ (left) and pressure P (right) computed at time t = 0.295 with the
third-order DOT-Cheb-4
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Fig. 9 Test 5.1.4: Comparison between the density solutions obtained with the third-order HLL
(left) and DOT-Cheb-4 (right) schemes

5.2 Applications to the Two-Layer Shallow Water System

The two-layer shallow water equations constitute a representative model of the non-
conservative systems considered in Sect. 4, as they include both source and non-
conservative coupling terms (see [7]). The equations governing the one-dimensional
flow of two superposed inmiscible layers of shallow water fluids can be written in
the form (16) by taking

w =

⎛

⎜⎜⎝

h1
q1
h2
q2

⎞

⎟⎟⎠ , F(w) =

⎛

⎜⎜⎜⎜⎜⎜⎝

q1
q21
h1

+ g

2
h21

q2
q22
h2

+ g

2
h22

⎞

⎟⎟⎟⎟⎟⎟⎠
, G(w) =

⎛

⎜⎜⎝

0
gh1
0

gh2

⎞

⎟⎟⎠ , B(w) =

⎛

⎜⎜⎝

0 0 0 0
0 0 gh1 0
0 0 0 0

rgh2 0 0 0

⎞

⎟⎟⎠ ,

where h j are the fluid depths, q j = h ju j represent the discharges, u j are the veloc-
ities, and H(x) is the depth function measured from a fixed level of reference; g
is the gravity constant and r = ρ1/ρ2 is the ratio of densities. Notice that j = 1
corresponds to the upper layer and j = 2 to the lower one.
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To build the AVM-DOT fluxes (19), we define

Bi+1/2 =

⎛

⎜⎜⎝

0 0 0 0
0 0 gh1,i+1/2 0
0 0 0 0

rgh2,i+1/2 0 0 0

⎞

⎟⎟⎠ , Gi+1/2 =

⎛

⎜⎜⎝

0
gh1,i+1/2

0
gh2,i+1/2

⎞

⎟⎟⎠ ,

where

hk,i+1/2 = hk,i + hk,i+1

2
, k = 1, 2.

Notice that the exact eigenstructure of the two-layer system is not explicitely known.
However, a first order approximation of the maximum wave speed is given by

|λi+1/2,max| ≈ |ūi+1/2| + ci+1/2,

where

ūi+1/2 = q1,i+1/2 + q2,i+1/2

h1,i+1/2 + h2,i+1/2
, ci+1/2 = √

g(h1,i+1/2 + h2,i+1/2).

5.2.1 Internal Dam-Break

This test was proposed in [9] to simulate a dam-break in a two-layer system. The
initial conditions are given by

h1(x, 0) =
{
0.9 if x < 5,

0.1 if x ≥ 5,
h2(x, 0) = 1 − h1(x, 0),

and q1(x, 0) = q2(x, 0) = 0, for x ∈ [0, 10]. The ratio of densities is taken as r =
0.99. The problem has been solved using a mesh with 200 grid points until time
t = 20, with CFL number 0.9. Open boundary conditions have been imposed.

Fig. 10 Test 5.2.1: Free surface and interface. Left: first order. Right: third order



24 J. M. Gallardo et al.

Figure 10 shows the free surface and the interface (η j = h j − H ). The best results
in first order are obtained with the DOT-Newman-4 and DOT schemes, followed by
DOT-Halley-2 and DOT-Cheb-4, while HLL is not able to capture the interface
correctly. On the other hand, in third order all the schemes perform equally well,
being HLL the one that gives the less precise results.

5.2.2 Transcritical Flux with Shock

The initial condition for this test consists in an internal dam-break over a non-flat bot-
tom, which eventually tends towards a stationary transcritical solution with a shock
(see [10]). Specifically, the initial conditions are given by q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) =
{
0.48 for x < 0,

0.02 for x ≥ 0,
h2(x, 0) = H(x) − h1(x, 0),

and the bottom topography is defined by

H(x) = 1 − 1

2
e−x2 , x ∈ [−5, 5].

Open wall boundary conditions have been imposed, and the ratio of densities has
been chosen as r = 0.998.

The numerical solutions have been computed on a mesh with 200 grid points
until final time t = 100, with CFL number 0.9. The results have been represented
in Fig. 11. In first order, the DOT-Newman-4 and DOT schemes provide the best
resolution of the interface, followed by DOT-Halley-2 and DOT-Cheb-4; on the
other hand, HLL is unable to resolve the complex structure of the interface. The
situation improves when going to third order, although again HLL presents a worse
resolution near discontinuities. This can be better seen in the bottom row of Fig. 11,
where a closer view of the shock has been plotted. Notice also that the DOT scheme
presents more pronounced oscillations near the shock than DOT-Newman-4. Finally,
the relative CPU times with respect to the first-order DOT scheme are shown in
Table 2.
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Fig. 11 Test 5.2.2: Free surface, interface and bottom. Left: first order. Right: third order. The lower
row shows a closer view of the shock at the interface

Table 2 Test 5.2.2: Relative CPU times with respect to the first-order DOT solver

Method CPU (first order) CPU (third order)

DOT 1.00 2.98

DOT-Cheb-4 0.15 0.51

DOT-Newman-4 0.37 1.17

DOT-Halley-2 0.44 1.39

HLL 0.06 0.24
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